
Chapter 11
Domain Theory and General Relativity

K. Martin and P. Panangaden

Abstract We discuss the current state of investigations into the domain theoretic
structure of spacetime, including recent developments which explain the connection
between measurement, the Newtonian concept of time and the Lorentz distance.

11.1 Introduction

Domains [AJ94, GKK] are special types of posets that have played an important
role in theoretical computer science since the late 1960s when they were discovered
by Dana Scott [Sco70] for the purpose of providing a semantics for the lambda
calculus. They are partially ordered sets that carry intrinsic (order theoretic) notions
of completeness and approximation. The basic intuition is that the order relation
captures the idea of approximation qualitatively. There is an abstract notion of finite
piece of information, or of finite approximation, which plays a key role in the anal-
ysis of computation.

These posets have a number of topologies defined on them: the Scott topology
and the interval topology, in particular. The Scott topology is particularly important
in that continuity with respect to this topology captures some of the information
processing aspects of computability. In particular, a Scott continuous function has
the following property: a finite piece of information about the output requires only
a finite piece of information about the input. While this does not completely reduce
Turing computability to topology it captures a very crucial information processing
aspect of computable functions.
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General relativity is Einstein’s theory of gravity in which gravity is understood
not in terms of mysterious “universal” forces but rather as part of the geometry of
spacetime. It is profoundly beautiful and beautifully profound from both the physi-
cal and mathematical viewpoints and it teaches us clear lessons about the universe in
which we live that are easily explainable. For example, it offers a wonderful expla-
nation of gravity: if an apple falls from a tree, the path it takes is not determined
by the Newtonian ideal of an “invisible force” but instead by the curvature of the
space in which the apple resides: gravity is the curvature of spacetime. In addition,
the presence of matter in spacetime causes it to “bend” and Einstein even gives us
an equation that relates the curvature of spacetime to the matter present within it.

The study of spacetime structure from an abstract viewpoint—i.e., not from the
viewpoint of solving differential equations—was initiated by Penrose [Pen65] in a
dramatic paper in which he showed a fundamental inconsistency of gravity. It was
known since Chandrasekhar [Cha31] that since everything attracts everything else
a gravitating mass of sufficient size will eventually collapse. What Penrose showed
was that any such collapse eventually leads to a singularity where the mathemat-
ical description of spacetime as a continuum breaks down. This leads to the need
to reformulate gravity. It is hoped that the elusive quantum theory of gravity will
resolve this problem.

Since the first singularity theorems [Pen65, HE73] causality has played a key
role in understanding spacetime structure. The analysis of causal structure relies
heavily on techniques of differential topology [Pen72]. For the past decade Sorkin
and others [Sor91] have pursued a program for quantization of gravity based on
causal structure. In this approach the causal relation is regarded as the fundamental
ingredient and the topology and geometry are secondary.

In a paper that appeared in 2006 [KP], we prove that the causality relation is
much more than a relation—it turns a globally hyperbolic spacetime into what is
known as a bicontinuous poset. The order on a bicontinuous poset allows one to
define an intrinsic topology called the interval topology. On a globally hyperbolic
spacetime, the interval topology is the manifold topology. Theorems that reconstruct
the spacetime topology have been known [Pen72] and Malament [Mal77] has shown
that the class of time-like curves determines the causal structure. We establish these
results as well though in a purely order theoretic fashion: there is no need to know
what “smooth curve” means.

Our more abstract stance also teaches us something new: a globally hyperbolic
spacetime itself can be reconstructed in a purely order theoretic manner, beginning
from only a countable dense set of events and the causality relation. The ultimate
reason for this is that the category of globally hyperbolic posets, which contains the
globally hyperbolic spacetimes, is equivalent to a very special category of posets
called interval domains. This provides a profound connection between domain
theory, first introduced for the purposes of assigning semantics to programming
languages, and general relativity, a theory meant to explain gravity. Even from a
purely mathematical perspective this equivalence is surprising, since globally hyper-
bolic spacetimes are usually not order theoretically complete, but interval domains
always are.
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Measurements were introduced by Martin in [Mar00a]. One thing they provide is
a way of incorporating quantitative information into domain theory. More recently
we have also shown how the geometry of spacetime can be reconstructed order theo-
retically. The reason is that the Lorentz distance defines a Scott continuous function
on the domain of spacetime intervals. What is even more interesting, though, is
that our setting provides a way to topologically distinguish between Newtonian and
relativistic notions of time. Every global time function defines a measurement on
the domain of spacetime intervals, in particular, it is Scott continuous. The Lorentz
distance is not only Scott continuous, but satisfies a stronger property, that it is
interval continuous. An interval continuous function must assign zero to any element
which approximates nothing. Thus, no interval continuous function on the domain
of spacetime intervals can ever be a measurement and the reason for this has entirely
to do with relativity: a clock moving at the speed of light records no time as having
elapsed, so an interval continuous function is incapable of distinguishing between a
single event and a null interval.

11.2 Domains, Continuous Posets and Topology

A poset is a partially ordered set, i.e., a set together with a reflexive, antisymmetric
and transitive relation.

Definition 1 Let (P,�) be a partially ordered set. A nonempty subset S ⊆ P is
directed if (∀x, y ∈ S)(∃z ∈ S) x, y � z. The supremum of S ⊆ P is the least of all
its upper bounds provided it exists. This is written

⊔
S.

These ideas have duals that will be important to us: a nonempty S ⊆ P is filtered
if (∀x, y ∈ S)(∃z ∈ S) z � x, y. The infimum

∧
S of S ⊆ P is the greatest of all its

lower bounds provided it exists.

Definition 2 For a subset X of a poset P , set

↑X := {y ∈ P : (∃x ∈ X) x � y} & ↓X := {y ∈ P : (∃x ∈ X) y � x}.

We write ↑ x =↑{x} and ↓ x =↓{x} for elements x ∈ X .

A partial order allows for the derivation of several intrinsically defined topolo-
gies. Here is our first example.

Definition 3 A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x � y ⇒ y ∈ U , and
(ii) U is inaccessible by directed suprema: For every directed S ⊆ P with a supre-

mum,

⊔
S ∈ U ⇒ S ∩ U �= ∅.
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The collection of all Scott open sets on P is called the Scott topology.

Posets can have a variety of completeness properties. The following complete-
ness condition has turned out to be particularly useful in applications.

Definition 4 A dcpo is a poset in which every directed subset has a supremum. The
least element in a poset, when it exists, is the unique element ⊥ with ⊥ � x for
all x .

The set of maximal elements in a dcpo D is

max(D) := {x ∈ D : ↑x = {x}}.

Each element in a dcpo has a maximal element above it.

Definition 5 For elements x, y of a poset, write x � y iff for all directed sets S
with a supremum,

y �
⊔

S ⇒ (∃s ∈ S) x � s.

We set ↓↓x = {a ∈ D : a � x} and ↑↑x = {a ∈ D : x � a}.
For the symbol “�,” read “approximates.”

Definition 6 A basis for a poset D is a subset B such that B ∩↓↓x contains a directed
set with supremum x for all x ∈ D. A poset is continuous if it has a basis. A poset
is ω-continuous if it has a countable basis.

Continuous posets have an important property, they are interpolative.

Proposition 1 If x � y in a continuous poset P, then there is z ∈ P with x �
z � y.

This enables a clear description of the Scott topology,

Theorem 1 The collection {↑↑x : x ∈ D} is a basis for the Scott topology on a
continuous poset.

Definition 7 A continuous dcpo is a continuous poset which is also a dcpo.
A domain is a continuous dcpo.

The next example is due to Scott[Sco70] and worth keeping in mind when we
consider the analogous construction for globally hyperbolic spacetimes.

Example 1 The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] � [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:
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• For directed S ⊆ IR,
⊔

S = ⋂
S,

• I � J ⇔ J ⊆ int(I ), and
• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

The domain IR is called the interval domain.

We also have max(IR) � R in the Scott topology. Approximation can help explain
why:

Example 2 A basic Scott open set in IR is

↑↑[a, b] = {x ∈ IR : x ⊆ (a, b)}.

One of the interesting things about IR is that it is a domain that is derived from an
underlying poset with an abundance of order theoretic structure. Part of this structure
is that the real line is bicontinuous, a fundamental notion in the present work:

Definition 8 A continuous poset (P,≤) is bicontinuous if

• For all x, y ∈ P , x � y iff for all filtered S ⊆ P with an infimum,

∧
S ≤ x ⇒ (∃s ∈ S) s ≤ y,

and
• For each x ∈ P , the set ↑↑x is filtered with infimum x .

Example 3 R, Q are bicontinuous.

Definition 9 On a bicontinuous poset P , sets of the form

(a, b) := {x ∈ P : a � x � b}

form a basis for a topology called the interval topology.

The proof uses interpolation and bicontinuity. In contrast to a domain, a bicon-
tinuous poset P has ↑↑x �= ∅ for each x , so it is rarely a dcpo. We tend to prefer the
notation ≤ for the order on a poset that is known to be bicontinuous. Otherwise, we
use the notation �.

Definition 10 For x, y in a poset (P,≤),

x < y ≡ x ≤ y & x �= y.

In general, < and � are completely different ideas.

11.3 The Causal Structure of Spacetime

A manifold M is a locally Euclidean Hausdorff space that is connected and has a
countable basis. Such spaces are paracompact. A Lorentz metric on a manifold is a
symmetric, nondegenerate tensor field of type (0, 2) whose signature is (− + ++).
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Definition 11 A spacetime is a real four-dimensional1 smooth manifold M with a
Lorentz metric gab.

Let (M, gab) be a time-orientable spacetime. Let �+≤ denote the future directed
causal curves, and �+� denote the future directed time-like curves.

Definition 12 For p ∈ M,

I +(p) := {q ∈ M : (∃π ∈ �+�) π(0) = p, π(1) = q}

and

J+(p) := {q ∈ M : (∃π ∈ �+≤) π(0) = p, π(1) = q}

Similarly, we define I −(p) and J−(p).

We write the relation J+ as

p ≤ q ≡ q ∈ J+(p).

The following properties from [HE73] are very useful:

Proposition 2 Let p, q, r ∈ M. Then

(i) The sets I +(p) and I −(p) are open.
(ii) p ≤ q and r ∈ I +(q) ⇒ r ∈ I +(p)

(iii) q ∈ I +(p) and q ≤ r ⇒ r ∈ I +(p)

(iv) Cl(I +(p)) = Cl(J+(p)) and Cl(I −(p)) = Cl(J−(p)).

We always assume the chronology conditions that ensure (M,≤) is a partially
ordered set. We also assume strong causality which can be characterized as fol-
lows [Pen72]:

Theorem 2 A spacetime M is strongly causal iff its Alexandroff topology is Haus-
dorff iff its Alexandroff topology is the manifold topology.

The Alexandroff topology on a spacetime has {I +(p) ∩ I −(q) : p, q ∈ M} as a
basis [Pen72].2

11.4 Global Hyperbolicity

Penrose has called globally hyperbolic spacetimes “the physically reasonable space-
times [Wal84].”

1 The results in the present paper work for any dimension n ≥ 2 [J93].
2 This terminology is common among relativists but order theorists use the phrase “Alexandrov
topology” to mean something else: the topology generated by the upper sets.
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Definition 13 A spacetime M is globally hyperbolic if it is strongly causal and if
↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈ M.

Theorem 3 ([KP]) If M is globally hyperbolic, then (M,≤) is a bicontinuous
poset with � = I + whose interval topology is the manifold topology.

This result motivates the following definition:

Definition 14 A poset (X,≤) is globally hyperbolic if it is bicontinuous and each
interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

Globally hyperbolic posets have rich enough structure that we can deduce many
properties of spacetime from them without appealing to differentiable structure or
geometry. Here is one such example:

Definition 15 Let (X,≤) be a globally hyperbolic poset. A subset π ⊆ X is a causal
curve if it is compact, connected and linearly ordered. We define

π(0) := ⊥ and π(1) := �

where ⊥ and � are the least and greatest elements of π . For P, Q ⊆ X ,

C(P, Q) := {π : π causal curve, π(0) ∈ P, π(1) ∈ Q}

and call this the space of causal curves between P and Q.

This definition is motivated by the fact that a subset of a globally hyperbolic
spacetime M is the image of a causal curve iff it is the image of a continuous
monotone increasing π : [0, 1] → M iff it is a compact connected linearly ordered
subset of (M,≤).

Theorem 4 ([Mar06]) If (X,≤) is a separable globally hyperbolic poset, then the
space of causal curves C(P, Q) is compact in the Vietoris topology and hence in
the upper topology.

This result plays an important role in the proofs of certain singularity theo-
rems [Wal84], in establishing the existence of maximum length geodesics [HE73],
and in the proof of certain positive mass theorems [Pen93]. Moreover, while events
in spacetime are maximal elements of IM, causal curves are maximal elements
in a higher order domain C(IM), called the convex powerdomain of IM. This is
discussed in more detail in [Mar06].

We can also deduce new aspects of spacetime. Globally hyperbolic posets are
very much like the real line. In fact, a well-known domain theoretic construction
pertaining to the real line extends in perfect form to the globally hyperbolic posets:

Theorem 5 ([KP]) The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}
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ordered by reverse inclusion

[a, b] � [c, d] ≡ [c, d] ⊆ [a, b]
form a continuous domain with

[a, b] � [c, d] ≡ a � c & d � b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) � X

where the set of maximal elements has the relative Scott topology from IX.

This observation—that spacetime has a canonical domain theoretic model—
teaches us something new: from only a countable set of events and the causality
relation, one can reconstruct spacetime in a purely order theoretic manner. Explain-
ing this requires domain theory.

11.5 Spacetime from a Discrete Causal Set

An abstract basis is a set (C,�) with a transitive relation that is interpolative from
the—direction:

F � x ⇒ (∃y ∈ C) F � y � x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also interpola-
tive from the + direction:

x � F ⇒ (∃y ∈ C) x � y � F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a � b} =�⊆ C2

whose relation is

(a, b) � (c, d) ≡ a � c & d � b.

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 6 ([KP]) Let C be a countable dense subset of a globally hyperbolic
spacetime M and �= I + be timelike causality. Then

max(IC) � M

where the set of maximal elements have the Scott topology.
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In “ordering the order” I +, taking its completion, and then the set of maximal
elements, we recover spacetime by reasoning only about the causal relationships
between a countable dense set of events. One objection to this might be that we
begin from a dense set C , and then order theoretically recover the space M—but
dense is a topological idea so we need to know the topology of M before we can
recover it! But the denseness of C can be expressed in purely causal terms:

C dense ≡ (∀x, y ∈ M)(∃z ∈ C) x � z � y.

Now the objection might be that we still have to reference M. We too would like to
not reference M at all. However, some global property needs to be assumed, either
directly or indirectly, in order to reconstruct M.

Theorem 6 is very different from results like “Let M be a certain spacetime with
relation ≤. Then the interval topology is the manifold topology.” Here we iden-
tify, in abstract terms, a process by which a countable set with a causality relation
determines a space. The process is entirely order theoretic in nature, spacetime is
not required to understand or execute it (i.e., if we put C = Q and �=<, then
max(IC) � R). In this sense, our understanding of the relation between causality
and the topology of spacetime is now explainable independently of geometry.

Ideally, one would now like to know what constraints on C in general imply that
max(IC) is a manifold.

11.6 Spacetime as a Domain

The category of globally hyperbolic posets is naturally isomorphic to a special cat-
egory of domains called interval domains.

Definition 16 An interval poset is a poset D that has two functions left :
D → max(D) and right : D → max(D) such that

(i) Each x ∈ D is an “interval” with left(x) and right(x) as endpoints:

(∀x ∈ D) x = left(x) � right(x),

(ii) The union of two intervals with a common endpoint is another interval: For all
x, y ∈ D, if right(x) = left(y), then

left(x � y) = left(x) & right(x � y) = right(y),

(iii) Each point p ∈↑x ∩max(D) of an interval x ∈ D determines two subintervals,
left(x) � p and p � right(x), with endpoints:

left(left(x) � p) = left(x) & right(left(x) � p) = p

left(p � right(x)) = p & right(p � right(x)) = right(x)
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Notice that a nonempty interval poset D has max(D) �= ∅ by definition. With inter-
val posets, we only assume that infima indicated in the definition exist; in particular,
we do not assume the existence of all binary infima.

Definition 17 For an interval poset (D, left, right), the relation ≤ on max(D) is

a ≤ b ≡ (∃ x ∈ D) a = left(x) & b = right(x)

for a, b ∈ max(D).

The axioms of interval posets imply that (max(D),≤) is a poset.

Definition 18 An interval domain is an interval poset (D, left, right) where D is a
continuous dcpo such that

(i) If p ∈ ↑↑x ∩ max(D), then

↑↑(left(x) � p) �= ∅ & ↑↑(p � right(x)) �= ∅.

(ii) For all x ∈ D, the following are equivalent:

(a) ↑↑x �= ∅
(b) (∀y ∈ [ left(x), · ] )( y � x ⇒ y � right(y) in [ ·, right(y) ] )

(c) (∀y ∈ [·, right(x)])( y � x ⇒ y � left(y) in [ left(y), · ] )

(iii) Invariance of endpoints under suprema:

(a) For all directed S ⊆ [p, ·]

left(
⊔

S) = p & right(
⊔

S) = right(
⊔

T )

for any directed T ⊆ [q, ·] with right(T ) = right(S).
(b) For all directed S ⊆ [·, q]

left(
⊔

S) = left(
⊔

T ) & right(
⊔

S) = q

for any directed T ⊆ [·, p] with left(T ) = left(S).

(iv) Intervals are compact: For all x ∈ D, ↑ x ∩ max(D) is Scott compact.

Interval domains are interval posets whose axioms also take into account the
completeness and approximation present in a domain: (i) says if a point p belongs
to the interior of an interval x ∈ D, the subintervals left(x) � p and p � right(x)

both have nonempty interior; (ii) says an interval has nonempty interior iff all inter-
vals that contain it have nonempty interior locally; (iii) explains the behavior of
endpoints when taking suprema.
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For a globally hyperbolic (X,≤), we define:

left : IX → IX :: [a, b] �→ [a]

and

right : IX → IX :: [a, b] �→ [b].

Lemma 1 If (X,≤) is a globally hyperbolic poset, then (IX, left, right) is an inter-
val domain.

In essence, this is the only example.

Lemma 2 If (D, left, right) is an interval domain, then (max(D),≤) is a globally
hyperbolic poset.

The equivalence between globally hyperbolic posets and interval domains is as
follows:

Definition 19 The category IN of interval domains and commutative maps is
given by

• objects Interval domains (D, left, right).
• arrows Scott continuous f : D → E that commute with left and right, i.e., such

that both

D
leftD � D D

rightD� D

and

E

f

�

leftE

� E

f

�
E

f

�

rightE

� E

f

�

commute.
• identity 1 : D → D.
• composition f ◦ g.

Definition 20 The category G is given by

• objects Globally hyperbolic posets (X,≤).
• arrows Continuous in the interval topology, monotone.
• identity 1 : X → X .
• composition f ◦ g.

It is routine to verify that IN and G are categories.
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Proposition 3 The correspondence I : G → IN given by

(X,≤) �→ (IX, left, right)

( f : X → Y ) �→ ( f̄ : IX → IY )

is a functor between categories.

Proposition 4 The correspondence max : IN → G given by

(D, left, right) �→ (max(D),≤)

( f : D → E) �→ ( f |max(D) : max(D) → max(E))

is a functor between categories.

Before the statement of the main theorem in this section, we recall the definition
of a natural isomorphism.

Definition 21 A natural transformation η : F → G between functors F : C → D
and G : C → D is a collection of arrows (ηX : F(X) → G(X))X∈ C such that for
any arrow f : A → B in C,

F(A)
ηA� G(A)

F(B)

F( f )

�

ηB

� G(B)

G( f )

�

commutes. If each ηX is an isomorphism, η is a natural isomorphism.

Categories C and D are equivalent when there are functors F : C → D and
G : D → C and natural isomorphisms η : 1C → G F and μ : 1D → FG.

Theorem 7 ([KP]) The category of globally hyperbolic posets is equivalent to the
category of interval domains.

This result suggests that questions about spacetime can be converted to domain
theoretic form, where we can use domain theory to answer them, and then translate
the answers back to the language of physics (and vice-versa). Notice too that the
category of interval posets and commutative maps is equivalent to the category of
posets and monotone maps.

It also shows that causality between events is equivalent to an order on regions
of spacetime. Most importantly, we have shown that globally hyperbolic spacetime
with causality is equivalent to a structure IX whose origins are “discrete.” This is
the formal explanation for why spacetime can be reconstructed from a countable
dense set of events in a purely order theoretic manner.
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11.7 Time and Measurement

A domain is a partially ordered set with intrinsic notions of completeness and
approximation defined by the order. A measurement is a function μ that to each
informative object x assigns a number μx which measures the information con-
tent of the object x . Let us now define the latter term precisely before discussing it
further.

A function f : D → E between domains is Scott continuous if the inverse image
of a Scott open set in E is Scott open in D. This is equivalent [AJ94] to saying that
f is monotone,

(∀x, y ∈ D) x � y ⇒ f (x) � f (y),

and that it preserves directed suprema:

f
(⊔

S
)

=
⊔

f (S),

for all directed S ⊆ D. In particular, for the domain [0,∞)∗ of nonnegative reals in
their opposite order, a Scott continuous function μ : D → [0,∞)∗ will satisfy

1. For all x, y ∈ D, x � y ⇒ μx ≥ μy, and
2. If (xn) is an increasing sequence in D, then

μ

⎛

⎝
⊔

n≥1

xn

⎞

⎠ = lim
n→∞ μxn .

This is the case of Scott continuity that we are most interested in presently:

Definition 22 A Scott continuous μ : D → [0,∞)∗ is said to measure the content
of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0) x ∈ με(x) ⊆ U

where

με(x) := {y ∈ D : y � x & |μx − μy| < ε}

are called the ε-approximations of x .

We often refer to μ as simply “measuring” x ∈ D or as measuring X ⊆ D when it
measures each element of X . The last definition, as well as the next, easily extend
to maps μ that take values in an arbitrary domain E .

Definition 23 A measurement μ : D → [0,∞)∗ is a Scott continuous map that
measures the content of ker(μ) := {x ∈ D : μx = 0}.
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The order on a domain D defines a clear sense in which one object has “more
information” than another: a qualitative view of information content. The definition
of measurement attempts to identify those monotone mappings μ which offer a
quantitative measure of information content in the sense specified by the order. The
essential point in the definition of measurement is that μ measure content in a man-
ner that is consistent with the particular view offered by the order. There are plenty
of monotone mappings that are not measurements—and while some of them may
measure information content in some other sense, each sense must first be specified
by a different information order. The definition of measurement is then a minimal
test that a function μ must pass if we are to regard it as providing a measure of
information content.

We now consider a few properties that measures of information content have
which arbitrary monotone mappings in general need not have: qualities that make
them ‘different’ from maps that are simply monotone. Other such properties may be
found in [Mar00a].

Theorem 8 ([Mar00a]) Let μ : D → [0,∞)∗ be a measurement.

(i) If x ∈ ker(μ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If μ measures the content of y ∈ D, then

(∀x ∈ D) x � y & μx = μy ⇒ x = y.

(iii) If μ measures X ⊆ D, then

{↑με(x) ∩ X : x ∈ X, ε > 0}

is a basis for the Scott topology on X.

A global time function t : M → R on a globally hyperbolic spacetime M is a
continuous function such that x < y ⇒ t (x) < t (y) and t−1(r) = � is a Cauchy
surface for M, for each r ∈ R.

Theorem 9 For any global time function t : M → R on a globally hyperbolic
spacetime, the function Δt : M → [0,∞)∗ given by Δt[a, b] = t (b) − t (a)

measures all of I(M). It is a measurement with ker(Δt) = max(I(M)).

Let d : I(M) → [0,∞)∗ denote the Lorentz distance on a globally hyperbolic
spacetime

d[a, b] = sup
πab

len(πab)

where the sup is taken over all causal curves that join a to b.

Definition 24 The interval topology on a continuous poset P exists when sets of the
form
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(a, b) = {x ∈ P : a � x � b} & ↑↑x = {y ∈ P : x � y}

form a basis for a topology on P .

For bicontinuous posets, this definition of interval topology is equivalent to the
definition considered earlier. A function between continuous posets is interval con-
tinuous when each poset has an interval topology and the inverse image of an inter-
val open set is interval open. By the bicontinuity of M, the interval topology on
I(M) exists, so we can consider interval continuity for functions I(M) → [0,∞)∗.

Theorem 10 The Lorentz distance d : I(M) → [0,∞)∗ has the following
properties:

(i) It is monotone: x ≤ y ⇒ d(x) ≥ d(y),
(ii) It preserves the way below relation: x � y ⇒ d(x) > d(y),

(iii) It is interval continuous and hence Scott continuous.

It does not measure I(M) at any point of ker(d).

That the Lorentz distance is not a measurement is a direct consequence of the
fact that a clock travelling at the speed of light records no time as having elapsed
i.e. the set of null intervals is equal to

ker(d) \ max(I(M)) �= ∅

but measurements always have the property that μx = 0 implies x ∈ max(D)

(Theorem 8).
In fact, no interval continuous function μ : I(M) → [0,∞)∗ can be a measure-

ment: by interval continuity, μx = 0 for any x with ↑↑x = ∅. Just like the Lorentz
distance, an interval continuous μ will also assign 0 to “null intervals.” In this way,
we see that interval continuity captures an essential aspect of the Lorentz distance.
In addition, since Δt is a measurement, it cannot be interval continuous. This pro-
vides a surprising topological distinction between the Newtonian and relativistic
concepts of time: d is interval continuous, Δt is not. Put another way, Δt can be
used to reconstruct the topology of spacetime (Theorem 8(iii)), while d is used to
reconstruct its geometry.

11.8 Spacetime Geometry from a Discrete Causal Set

Let us return now to the reconstruction of spacetime (Sect. 11.5) from a countable
dense set (C,�). Specifically, we take the rounded ideal completion I(C)of the
abstract basis of intervals

int(C) = {(a, b) : a � b} =�⊆ C2
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whose relation is

(a, b) � (c, d) ≡ a � c & d � b.

We are then able to recover spacetime as

max(IC) � M

where the set of maximal elements have the Scott topology. Let us now suppose that
in addition to int(C) that we also begin with a countable collection of numbers lab

chosen for each (a, b) ∈ int(C) in such a way that the map

int(C) → [0,∞)∗ :: (a, b) �→ lab

is monotone. Then in the process of reconstructing spacetime, we can also construct
the Scott continuous function d : IC → [0,∞)∗ given by

d(x) = inf{lab : (a, b) � x}.

In the event that the countable number of lab chosen are the Lorentz distances lab =
d[a, b], then the function d constructed above yields the Lorentz distance for any
spacetime interval, the reason being that both are Scott continuous and are equal on
a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances, we
can reconstruct the spacetime manifold together with its geometry in a purely order
theoretic manner.

11.9 Conclusions

We have seen the following ideas in this paper:

1. how to reconstruct the spacetime topology from the causal structure using purely
order-theoretic ideas,

2. an abstract order-theoretic definition of global hyperbolicity,
3. that one can reconstruct spacetime, meaning its topology and geometry, from a

countable dense subset,
4. an equivalence of categories between the category of interval domains and the

category of globally hyperbolic posets.
5. a topological distinction between Newtonian and relativistic notions of time.
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