
Chapter 10
A Partial Order on Classical and Quantum
States

B. Coecke and K. Martin

Abstract We introduce a partial order on classical and quantum mixed states which
reveals that these sets are actually domains: Directed complete partially ordered sets
with an intrinsic notion of approximation. The operational significance of the par-
tial orders involved conclusively establishes that physical information has a natural
domain theoretic structure. For example, the set of maximal elements in the domain
of quantum states is precisely the set of pure states, while the completely mixed
ensemble I/n is the order theoretic least element ⊥.

In the same way that the order on a domain provides a rigorous qualitative defini-
tion of information, a special type of mapping on a domain called a measurement
provides a formal account of the intuitive notion “information content.” Not only
is physical information domain theoretic, but so too is physical entropy: Shannon
entropy is a measurement on the domain of classical states; von Neumann entropy
is a measurement on the domain of quantum states.

These results yield a foundation from which one can (a) reason qualitatively
about probability, (b) derive the lattices of Birkhoff and von Neumann in a uni-
fied manner, suggesting that domains may provide a formalism for the logic of
partial belief, and (c) develop new techniques for studying phenomena like noise
and entanglement. Along the way, new lines of investigation open up within various
subdisciplines of physics, mathematics and theoretical computer science.

10.1 Introduction

One of the great lessons of the differential and integral calculus is that we can con-
quer the infinite, and in particular, the continuous, by means of the discrete. An
infinite sum may be understood as a limit of finite sums, the area beneath a curve as
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the limit of areas of approximating rectangles, the line tangent to a curve at a point
is the limit of the secant lines joining points nearby.

The philosophy espoused is unambiguous: The ideal can be realized as a limit
of the partial; the abstract, as a limit of the concrete; the continuous, a limit of the
discrete, and so on. And this powerful ideology, as it arises in the context of recursive
functionals, is part of what the axioms of domain theory are intended to capture.
But even in Scott’s prelude to the subject, it is difficult to keep the imagination from
wandering beyond the confines of computation [16]:

Maybe it would be better to talk about information; thus, x � y means that x and y want to
approximate the same entity, but y gives more information about it. This means we have to
allow incomplete entities, like x , containing only partial information.

In its purest interpretation, domain theory is a branch of mathematics which offers
an exclusively qualitative account of information: A proposal for how we might find
information structured in a universe where all things arise as a limit of the partial.

Physics of course is also the study of information. But with one caveat: In
physics, the term “information” normally manages to escape rigorous mathemat-
ical definition, and in those cases where it does not, its formulations tend toward
the purely quantitative. But what is self-evident is that only qualitative accounts of
physical phenomena are capable of imparting “structural laws of general validity.”
From A. Einstein,

I do not believe in micro- and macro-laws, but only in (structural) laws of general validity.

Now this is not to say that physics ought to be done in laboratories without numbers,
simply that our understanding of physical reality should be mathematically express-
ible in such a way that the laws of nature are clearly delineated from the conventions
of man.

Thus, at least on the surface, there is a good match between what domain theory
offers, and what physics needs: Domain theory can provide the structures of reality,
physics in turn can explicate the reality of the structures. A research program in
this direction begins with the demonstration contained herein that the density oper-
ator formulation of quantum mechanics is an instance of domain theory: Its partial
elements are the mixed states, its total or idealized elements are the pure states.

The route to this discovery passes through the measurement formalism, a the-
ory [8] which allows for the quantitative expression μ : D → [0,∞)∗ of the
qualitative notion captured by a domain (D,�). In doing so, it yields an indis-
pensable methodology for uncovering the structural aspects of information which
often enough seem to appear in purely quantitative disguise. Such is the case with
classical and quantum information, for instance, which are normally formulated in
terms of Shannon and von Neumann entropy.

Our method of transport is a philosophy still advocated in certain studies on the
foundations of physics [3, 9, 13]: Every formal idea should represent a meaning-
ful physical notion, and each successive mathematical development ought to have
a clear counterpart in physical reality. To illustrate, the partial order on classical
states is defined inductively in terms of Bayesian state update, which corresponds
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to the process by which an observer looks for an object and updates his knowledge
according to what he finds. Similarly, the partial order on quantum states relies on
the physical notion of a measurement process.

On our way, this vehicle escorts classical and quantum probability into a genuine
formal realization of the Bayesian ideal, elegantly captured by F. P. Ramsey [14]:
“Probability is the logic of partial belief.”

Pi

ψ

µ−→

Concretely, we introduce the domain of classical states, which has Shannon
entropy as a measurement. The partial order on classical states extends to yield a
domain of quantum states with von Neumann entropy as a measurement. As already
mentioned, the operational significance of the partial orders involved unquestion-
ably demonstrates that physical information has a natural domain theoretic structure.
By recognizing this structure, the present work achieves unity across various subdis-
ciplines of physics and information theory. For example, the Birkhoff-von Neumann
contrast, between classical and quantum, which arises in the logical aspect, is in
perfect harmony with Shannon and von Neumann entropy, which arises in more
“pragmatic” pursuits. All of these are part of a single, and it would appear, more
complete, picture of physical reality.

10.2 Classical States

The information an observer has a priori about the result of an event in which one
of n different outcomes is possible can be described by a function x : {1, . . . , n} →
[0, 1] that assigns a probability xi indicating the degree to which outcome i is likely.
These are called classical states.

Definition 1 The classical n-states are

Δn := {x ∈ [0, 1]n :
n∑

i=1

xi = 1},

where x = (x1, . . . , xn) and n ≥ 1.
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In this section we will introduce a natural partial order on classical states that is
probably best referred to as the Bayesian order. Before doing so, here is a brief indi-
cation of how this order was discovered and our original motivation for studying it.

In contrast to a classical n-state, a quantum n-state is a self-adjoint, positive,
trace one, linear operator ρ : Hn → Hn on a n dimensional complex Hilbert space
Hn . In particular, ρ is an n × n matrix of complex numbers whose n eigenvalues
λi ≥ 0 for 1 ≤ i ≤ n add up to one. Thus, to each quantum state ρ we can associate
a classical state spec(ρ) = (λ1, . . . , λn).

Thus, if we have a partial order� on Δn , we might be able to use the connection
between quantum and classical given above to derive a natural candidate for a partial
order on quantum states as follows:

ρ � σ ⇔ spec(ρ) � spec(σ ) and (insert magic here).

And then the questions start: (i) Can we really order matrices by ordering their
eigenvalues? (ii) How exactly do we form the list (λ1, . . . , λn), when in actuality
the eigenvalues spec(ρ) of ρ only form a set? (iii) How do we order classical states?

The first two questions will be answered in the next section, but the short answers
are: (i) Yes, if we have the right order on Δn , and (ii) quantum measurement. Let us
then get on with the answering of (iii).

10.2.1 Two States and the Parabola

Begin by imagining n + 1 boxes

? ? ?

1 i n+1

In one of these boxes, there lies a tenured position in the land of free expression.
There are two observers searching frantically for its location. The knowledge an
observer has about its location is a classical state x ∈ Δn+1, formed by assigning a
probability xi which indicates the likelihood that the tenured position is located in
box i :

knowledge x :: x1 xi xn+1

1 i n+1

For example, if the observer is frustrated beyond belief because he has no earthly
idea which box contains the tenured position, then his knowledge would be the
completely mixed state

⊥ = (1/(n + 1), . . . , 1/(n + 1)),

indicative of the fact that he regards all boxes as equally likely:
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1 1 1

1

n+1 n+1 n+1

n+1i

On the other hand, if the observer knows the tenured position is located in box i ,
then his knowledge would be the pure state

ei = (0, . . . , 1, . . . , 0),

where the one occurs at index i :

0 1 0

1 n+1i

In general, the actual location is always represented by a pure state. This much is
independent of all observers.

Let k be the actual location of the tenured position, x ∈ Δn+1 represent the
knowledge of the first observer and y ∈ Δn+1 the knowledge of the second observer:

0 1 0

1 n+1k

y1 yk yn+1

x1 xk xn+1knowledge x ::

knowledge y ::

actual position ::

In the interest of holding the reader’s attention, let x �= y. If � is a partial order on
Δn+1 that expresses what it means for one state to be more informative than another,
and in this order we have x � y, then observer one knows less about the location of
the tenured position than observer two.

But now suppose that each observer looks into box i only to discover that it does
not contain the tenured position. Then xi < 1 and yi < 1. In addition, the knowledge
of the first observer changes to

pi (x) = 1

1− xi
(x1, . . . , x̂i , . . . , xn+1) ∈ Δn,

while the state of the second observer’s knowledge updates to pi (y):

0

1 n+1i (=k )

0

1−xi

1−yi

0
xn+1

yn+1

1−xi

1−yi

knowledge x ::

knowledge y ::

actual position ::

x1

y1

Because the second observer knew more than the first before observation, and
because they have both increased their knowledge by the same amount (they both
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now additionally know that it is not in box i), we must conclude that the second still
knows more than the first. That is,

pi (x) � pi (y)

whenever i �= k. But this reasoning should apply in all situations, i.e., it should not
depend on the actual location of the tenured position: We should allow for the reality
that k could be any of the values in {1, . . . , n + 1}. Thus, we arrive at a potential
definition of (Δn+1,�) in terms of (Δn,�):

x � y ⇔ (∀i)(xi , yi < 1 ⇒ pi (x) � pi (y)).

This leaves just one question: How do we order Δ2? The answer appears when we
imagine that the order � on Δn is known, and then use it to formally express some
of the well-known intuitions used in physics when reasoning about classical states
as information:

• The completely mixed state should be the least element of (Δn,�),

(∀x)⊥ � x,

• The set of pure states should be the set of maximal elements,

max(Δn) = {ei : 1 ≤ i ≤ n},
• The observer’s a priori uncertainty, Shannon entropy

μx = −
n∑

i=1

xi log xi ,

should be a measurement in the sense of domain theory [8]. In particular, as states
become more informative, uncertainty should decrease:

x � y ⇒ μx ≥ μy,

i.e., as a map from the poset Δn to the poset [0,∞)∗ of nonnegative reals in their
opposite order, it should be monotone.

• The mixing law should be respected by �:

x � y and p ∈ [0, 1] ⇒ x � (1− p)x + py � y.

The state (1 − p)x + py is a mixture of x and y whose composition consists of
(1 − p) percent x and p percent y. Thus, the mixing law says that if y is more
informative than x , then any mixture of the two is more informative than x , but
less informative than y.

This leaves only one way of ordering Δ2.
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Definition 2 For x, y ∈ Δ2, we order classical two states by

(x1, x2) � (y1, y2) ⇔ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1).

We will prove the uniqueness of this order after explaining its derivation. For the
latter, look at the graph of Shannon entropy μ on two states:

μ

x1

Remembering that the order � on Δ2 should be defined so that Shannon entropy
μ : Δ2 → [0,∞)∗ is a measurement in the sense of domain theory (and hence
monotone), a natural candidate for � appears when we flip the parabola upside
down:

(0, 1) (1, 0)

⊥ = ( 1
2
, 1

2 )

The order suggested by this picture is simply a copy of [0, 1/2]∗ and [1/2, 1] joined
at 1/2,

(0, 1) (1, 0)

⊥ = 1
2
, 1

2( )

which is exactly how we defined the order on Δ2 (Definition 2).
For its uniqueness, first realize that there are at least two reasonable interpreta-

tions of the mixing law: (i) (Informatically) When two comparable states are mixed,
a loss of information is experienced from one point of view that is simultaneously
a gain of information from the other, (ii) (Geometrically) The line connecting two
comparable states moves up in the order.

Lemma 1 A partial order� on Δn respects the mixing law iff the map f : [0, 1] →
Δn given by f (t) = (1 − t)x + t y is monotone for each pair of comparable states
x � y.

Proof The monotonicity of f implies the mixing law. For the converse, let s < t .
By the mixing law, x � f (t) � y, so applying the mixing law again to x � f (t),
gives
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x �
(

1− s

t

)
x + s

t
· f (t) � f (t),

which finishes the proof since f (s) = (1− s
t

)
x + s

t f (t).

Now the uniqueness of (Δ2,�) is transparent.

Theorem 1 There is a unique partial order on Δ2 which satisfies the mixing law
and has ⊥ = (1/2, 1/2). It is the order on classical two states.

Proof Let ≤ be any partial order on Δ2 which respects the mixing law and has least
element ⊥ = (1/2, 1/2).

Because ⊥ ≤ e1 = (1, 0), Lemma 1 implies that the straight line path f1 from
f1(0) = ⊥ to f1(1) = e1 is monotone. Similarly, the line f2 from f2(0) = ⊥ to
f2(1) = e2 = (0, 1) is monotone. Thus, � ⊆ ≤.

To prove ≤ ⊆ �, suppose x ≤ y. First, we must have either x1, y1 ≤ 1/2 or
1/2 ≥ x1, y1: Otherwise, the line f from f (0) = x to f (1) = y passes through ⊥,
and since f is monotone by the mixing law, we have x = ⊥ � y. But this means
that either x � y or y � x . In the first case, the proof is done. In the latter, we must
have y ≤ x , which by the antisymmetry of ≤, gives x = y, and hence x � y. ��

Thus far, we have not defined terms like “domain” and “measurement.” At this
stage, there is no need to. Let us simply point out that Δ2 is a domain with Shannon
entropy μ as a measurement such that

ker μ = max(Δ2) = {e1, e2}.

The precise definitions of these terms will become apparent as we proceed.

10.2.2 A Partial Order on Classical States

When an observer looks in box i and discovers that the object of his desire is not
there, the classical state x representing his knowledge of its location collapses to
one pi (x) in a lower dimension as follows.

Definition 3 Let n ≥ 2. The projection which collapses the i th outcome is the partial
map pi : Δn+1 ⇀ Δn given by

pi (x) = 1

1− xi
(x1, . . . , x̂i , . . . , xn+1)

for 1 ≤ i ≤ n + 1 and 0 ≤ xi < 1. It is defined on dom(pi ) = Δn+1 \ {ei }.
In the way of needless (but fun) geometric illustration, consider the case of the

triangle Δ3. If x = (x1, x2, x3), then although pi (x) is technically a member of Δ2,
we can still picture its effect on x as follows:

Recalling the definition of (Δ2,�) from the last section, we can now completely
specify the order on classical states.
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e1 e2

e3

p3x = 1
1−x3

(x1, x2,0)

p2x = 1
1−x2

(x1, 0, x3)
x

Definition 4 Let n ≥ 2. For x, y ∈ Δn+1, we define

x � y ⇔ (∀i)(x, y ∈ dom(pi ) ⇒ pi (x) � pi (y)),

where i ranges over the set {1, . . . , n + 1}.
To be perfectly clear, notice that x, y ∈ dom(pi ) iff xi , yi < 1. The following

operators on classical states will prove indispensable in what follows.

Definition 5 Let n ≥ 2. For x ∈ Δn , we set

x+ := max
1≤i≤n

xi and x− := min
1≤i≤n

xi .

We have x− ∈ [0, 1/n] and x+ ∈ [1/n, 1].
For example, a state x is pure iff x+ = 1, while ⊥ is the unique classical state x

with x+ = x−.

Lemma 2 Let x, y ∈ Δn for n ≥ 2. Then

(i) If x � y with xi = 1, then yi = 1.
(ii) If x � ⊥, then x = ⊥.

Proof (i) Assume for n ≥ 2. For n + 1, suppose xi = 1. First, we claim there is
some k �= i with yk = 0. If not, then because n + 1 ≥ 3, there is some k �= i such
that

0 < yk <
∑

k �=i

yk = 1− yi ≤ 1,

as the sum above involves at least two positive numbers. Because k �= i , xk = 0, so
the inductive hypothesis applied to pk(x) � pk(y) gives

yi

1− yk
= xi

1− xk
= 1 �⇒ yk = 1− yi ,
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which contradicts yk < 1 − yi . Thus, there is k �= i with xk = yk = 0, and the
inductive hypothesis applied to pk(x) � pk(y) yields

yi = yi

1− yk
= xi

1− xk
= 1,

finishing the proof.
(ii) We know x+ < 1, since otherwise by (i) we would have ⊥+ = 1. Now the

proof is a trivial induction: Since x � ⊥, we have pi (x) � pi (⊥) = ⊥n , and by the
inductive hypothesis, pi (x) = ⊥n for all i ∈ {1, . . . , n + 1}. The only possibility is
x = ⊥.

Lemma 3 For classical n-states x � y, either x = ⊥, y = ⊥ or there is an index
k ∈ {1, . . . , n} such that xk ≤ yk , xk > x− and yk > y−.

Proof The result is true for n = 2. Assume it for n. To prove it for n + 1, we start
with x, y �= ⊥. Immediately, we have x �= y (otherwise, x �= ⊥ ⇒ xk = yk =
x+ > x−), and by virtue of Lemma 2(i), x+ < 1.

Now let i be an index with xi ≥ yi . Throughout, yi < 1, since otherwise x = y.
Then either (1) pi (x) �= ⊥n or (2) pi (x) = ⊥n .

In case (1), we cannot have pi (y) = ⊥n (Lemma 2(ii)), so the inductive hypoth-
esis applies, yielding an index of pi (x) and pi (y) which we can relabel as an index
k of x and y with

x−

1− xi
≤ pi (x)− <

xk

1− xi
≤ yk

1− yi
> pi (y)− ≥ y−

1− yi
.

Then xk > x− and yk > y−. In addition, since xi ≥ yi ,

xk ≤ 1− xi

1− yi
· yk ≤ 1 · yk,

which finishes the proof in case (1).
In case (2), pi (x) = ⊥. It helps to picture x as the (n + 1)-state

(
1− xi

n
, . . . , xi , . . . ,

1− xi

n

)
,

though our proof does not depend on this informal remark. Because x �= ⊥,
xi �= (1− xi )/n, so either (1− xi )/n > xi or xi > (1− xi )/n.

The case (1 − xi )/n > xi is simple: Since xi ≥ yi , there must exist k �= i with
xk ≤ yk , or else we could derive xi < yi . Then we have

yk ≥ xk = 1− xi

n
> xi ≥ yi ,

which also makes it clear that xk > x− = xi and yk > yi ≥ y−.
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For the last case, we have xi > (1 − xi )/n. First we eliminate the possibility
y+ = 1. If y+ = 1, then there is an index j with y j = 0. Delicately, we can take
j �= i because n + 1 ≥ 3. Then p j (x) �= ⊥n and p j (y) �= ⊥n , so the inductive
hypothesis applies to yield an index k

x−

1− x j
≤ p j (x)− <

xk

1− x j
≤ yk

1− y j
> p j (y)− ≥ y−

1− y j
.

But xk > x− implies that k = i . In addition, we have known from the start that
yi < 1, which means yi = 0 because y+ = 1. But then 0 = yi = yk ≥ xk = xi = 0,
which contradicts xi > (1− xi )/n ≥ 0.

To finish case (2), we have x+, y+ < 1 and xi = x+ > (1 − xi )/n. What we
will prove is that xi > x−, yi > y− and xi ≤ yi . The first of these is clear. For
the other two, let k be any index different from i . Then pk(x) �= ⊥n , which means
pk(y) �= ⊥n since pk(x) � pk(y). By the inductive hypothesis, there is an index j
such that

x−

1− xk
≤ pk(x)− <

x j

1− xk
≤ y j

1− yk
> pk(y)− ≥ y−

1− yk
.

Again, x j > x− implies j = i . Hence, yi > y−. But this also gives us
xi (1− yk) ≤ yi (1− xk), for all k �= i , which enables

xi

∑

k �=i

(1− yk) ≤ yi

∑

k �=i

(1− xk) �⇒ xi

yi
≤ n − 1+ xi

n − 1+ yi
,

ending in (n − 1)xi + xi yi ≤ (n − 1)yi + xi yi . ��
Lemma 4 If x � y in Δn for n ≥ 2, then there is an index i ∈ {1, . . . , n} such that
xi = x− ≥ y− = yi .

Proof If x = ⊥ the claim is trivial; thus, y �= ⊥, by Lemma 2(ii). By Lemma 3,
there is an index k ∈ {1, . . . , n} such that xk ≤ yk , xk > x− and yk > y−.

If xk = 1 ≤ yk , then x = y and the proof is done. If yk = 1, then let i be an index
where xi = x−. We cannot have i = k since xk > x−. Thus, xi = x− ≥ yi = 0.

Assume for n. For n+ 1, pk(x) � pk(y), and the inductive hypothesis applies to
yield an index i of x and y with

pk(x)− = xi

1− xk
≥ yi

1− yk
= pk(y)−.

Because xk ≤ yk , xi ≥ yi . But since xk > x− and yk > y−, we have xi = x− and
yi = y−.

Now that we understand the behavior of minima, the nature of the maxima is
immediate (and fundamental).
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Proposition 1 Let x, y ∈ Δn and ei be the pure states in Δn.

(i) If x � y, then there is an index i such that xi = x+ ≤ y+ = yi .
(ii) For any i , xi = x+ if and only if x � ei .

(iii) If x � y and x+ = y+, then x = y.

Proof All of these statements are proved by induction. The arguments below all
assume that the respective claims are true for n and give the argument for the n + 1
case. That they are true for n = 2 is clear.

(i) By Lemma 4, there is an index k with xk = x− ≥ y− = yk , so we apply the
inductive hypothesis to pk(x) � pk(y) to obtain an index i such that

pk(x)+ = xi

1− x−
≤ yi

1− y−
= pk(y)+.

Since xi ≥ x− = xk and xi ≥ x j for all j �= k using pk(x)+ = xi/(1 − x−), we
have xi = x+. Similarly, yi = y+. That xi � yi now follows from

xi ≤ 1− x−

1− y−
· yi ≤ 1 · yi

since x− ≥ y−.
(ii) Let i be an index where xi = x+ and ei ∈ Δn+1 be the associated pure state

whose value at index i is one. To prove that x � ei , we must show that pk(x) �
pk(ei ) for all k �= i . Fix an arbitrary k �= i .

First, let j be the index of pk(x) corresponding to index i in x . This index exists
because k �= i . The value of pk(x) at index j is

pk(x)+ = xi

1− xk
.

Second, pk(ei ) is a pure state in Δn whose value at index j is one. By the inductive
hypothesis, pk(x) � pk(ei ), for all k �= i , which means x � ei .

For the converse, suppose x � y := ei . By (i), there is an index k such that
xk = x+ and yk = y+. But y is pure, so we must have k = i , which means
xi = xk = x+.

(iii) Starting with x � y and x+ = y+, we use Lemma 4 to project away the
minima xk = x− ≥ y− = yk , obtaining pk(x) � pk(y). Applying (i) to this pair
yields an index i with

pk(x)+ = xi

1− x−
≤ yi

1− y−
= pk(y)+.

As in the proof of (i), xi = x+ and yi = y+. But since xi = yi > 0 and pk(x)+ ≤
pk(y)+, we have x− ≤ y−, which gives x− = y−. This means pk(x)+ = pk(y)+,
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and since pk(x) � pk(y), the inductive hypothesis applies, leaving pk(x) = pk(y).
Because we also have xk = yk , the states x and y are equal. ��

Proposition 1(ii) shows that an outcome with maximum probability in a classical
state has a certain qualitative character to it. In general, it is the only outcome we
can say this about.

Theorem 2 Δn is a partially ordered set for each n ≥ 2. Its maximal elements are
the pure states,

max(Δn) = {x ∈ Δn : x+ = 1},

and its least element is the completely mixed state ⊥ := (1/n, . . . , 1/n).

Proof The proof is by induction. It is true for n = 2. Assume the result for n. Then
for n + 1, the reflexivity and transitivity are clear.

For antisymmetry, let x � y and y � x . By Proposition 1(i), we have x+ ≤ y+
and y+ ≤ x+. By Proposition 1(iii), x = y.

That the least element is ⊥ follows from pi (⊥) = ⊥n for all i . For its maximal
elements, first suppose x+ = 1 and that x � y. By Proposition 1(i), there is an
index i with xi = x+ = 1 ≤ y+ = yi , so yi = 1, which means x = y. Hence,
x ∈ max(Δn+1).

Conversely, if x ∈ max(Δn+1), then x � ei by Proposition 1(ii), where ei is the
pure state corresponding to xi = x+. By the maximality of x , x = ei , which means
x+ = 1. ��

The next result displays some fundamental properties of the order on classical
states—the crucial degeneration lemma.

Lemma 5 (Degeneration) If x � y in Δn, then

(xi = 0 ⇒ yi = 0) & (yi = y j > 0 ⇒ xi = x j )

for all 1 ≤ i, j ≤ n.

Proof Both of these are proved by induction. For n = 2 they are easily seen to be
true; we give the arguments for n + 1 assuming n.

For (xi = 0 ⇒ yi = 0), we can assume x+, y+ < 1: If x+ = 1, then x = y since
x is maximal; If y+ = 1, then either yi = 0, which finishes the proof, or yi = 1,
in which case Proposition 1(i) gives yi = y+ = 1 ≥ x+ = xi > 0, contradicting
xi = 0. Thus, since x+, y+ < 1, any k �= i yields pk(x) � pk(y), and since
xi/(1− xk) = 0, the inductive hypothesis gives yi/(1− yk) = 0 hence yi = 0.

For the other claim, suppose yi = y j > 0 with i �= j . Then y+ < 1. In addition,
x+ < 1 or else x = y and we are done. Then because n + 1 ≥ 3, there is k ∈
{1, . . . , n+1} \ {i, j}. For any such index, we have pk(x) � pk(y), so the inductive
hypothesis gives xi/(1− xk) = x j/(1− xk), i.e., xi = x j . ��

The standard projections πk : Δn → [0, 1] are πk(x) = xk for 1 ≤ k ≤ n.
Lemma 4 extends to increasing sequences as follows.
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Lemma 6 If (xi ) is an increasing sequence in Δn, then

(i) There is an index k with πk(xi ) = x−i for all i .
(ii) There is an index k with πk(xi ) = x+i for all i .

Proof (i) Before starting, a crucial consequence of Lemma 5 for the present argu-
ment is that

{k : yk = y−} ⊆ {k : xk = x−}

provided that x � y and y− > 0. Thus, any increasing sequence (xi ) with x−i > 0
leads to a decreasing sequence of nonempty finite sets. The intersection of such
a sequence must be nonempty, and any member k in this intersection will satisfy
πk(xi ) = x−i for all i .

Thus, for our sequence (xi )i≥1, we may assume that there is a least integer m ≥ 1
with x−m = 0. First, the proof is finished if we find k with πk(xi ) = x−i for all i ≤ m,
since then we have πk(xm) = 0 and hence πk(xi ) = 0 for all i ≥ m, by Lemma 5,
which means πk(xi ) = x−i for all i ≥ 1.

The case m = 1 is trivial. If m > 1, then for the subsequence (xi )i<m , we have
x−i > 0 for i < m, by the choice of m, so our opening remarks give πk(xi ) = x−i ,
for all i < m, where k is any index in {k : πk(xm−1) = x−m−1}. By Lemma 4, there
is k with πk(xm−1) = x−m−1 and πk(xm) = x−m . This value of k gives πk(xi ) = x−i
for all i ≤ m.

(ii) We simplify modify the proof of Proposition 1(i) using (i).

Now we take our first step toward proving that Δn is a domain.

Definition 6 A subset S of a poset is directed if it is nonempty and

(∀x, y ∈ S)(∃z ∈ S) x, y � z .

A directed-complete partial order, or dcpo, is a poset in which every directed subset
has a supremum.

A familiar example of a directed set is an increasing sequence: A sequence (xi )

such that xi � xi+1 for all i . Joyfully, on classical states, one can always replace
directed sets with increasing sequences, so we never have to think about the former.

Proposition 2 The classical states Δn are a dcpo. In more detail,

(i) If (xi ) is an increasing sequence, then

⊔

i≥1

xi = ( lim
i→∞π1(xi ), . . . , lim

i→∞πn(xi )).

(ii) Every directed subset of Δn contains an increasing sequence with the same
supremum.
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Proof We first prove (i) by induction. It is true for n = 2. Assume for n. Given an
increasing sequence (xi ), Lemma 6 yields an index k such that πk(xi ) = x−i for
all i . The sequence (pk(xi )) is increasing in Δn , so by the inductive hypothesis, we
know that

lim
i→∞

(
π j (xi )

1− x−i

)

exists for all j �= k. The sequence (x−i ) is decreasing and contained in [0, 1/(n+1)],
so it has a limit sk = lim πk(xi ) < 1, which means (1 − x−i ) has a limit that is not
zero. Thus,

s j := lim
i→∞π j (xi ) = lim

i→∞

(
π j (xi )

1− x−i

)
· lim

i→∞(1− x−i )

exists for j �= k. Notice that

n+1∑

j=1

s j =
n+1∑

j=1

lim
i→∞π j (xi ) = lim

i→∞

n+1∑

j=1

π j (xi ) = 1,

which means that s = (s1, . . . , sn+1) is a classical state. We claim that s is the
supremum of (xi ).

To avoid needless complication, we can assume x+i < 1, since otherwise (xi ) has
finitely many distinct elements, and then the claim is obvious. To prove that xi � s
for all i , we must show

(∀i)(∀ j) s j < 1 ⇒ p j (xi ) � p j (s).

Fix an index j with s j < 1. Then the sequence (p j (xi ))i≥1 is increasing in Δn , so
by the inductive hypothesis, it has a supremum

⊔

i≥1

p j (xi ) =
(

lim
i→∞

π1(xi )

1− π j (xi )
, . . . ,

̂

lim
i→∞

π j (xi )

1− π j (xi )
, . . . , lim

i→∞
πn+1(xi )

1− π j (xi )

)

which is equal to p j (s) since s j = limi→∞ π j (xi ) < 1. Hence, p j (xi ) � p j (s) for
all i and j with s j < 1, which means xi � s for all i .

To prove that s is the supremum of (xi ), let u be any upper bound of (xi ). We
must show that s � u, i.e.,

(∀ j) s j < 1 & u j < 1 ⇒ p j (s) � p j (u).

Let j be any index with s j < 1 and u j < 1. Then since p j (xi ) � p j (u) for all
i , we have p j (s) = ⊔i≥1 p j (xi ) � p j (u), using the inductive hypothesis and that
s j < 1. Thus, s � u, which proves s =⊔ xi .
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The directed completeness of Δn and (ii) now follow from a theorem in [8] pro-
vided there is a strictly monotone map f : Δn → [0,∞)∗ which preserves suprema
of increasing sequences. To see that f (x) = 1 − x+ is one such map, if (xi ) is an
increasing sequence, Lemma 6(ii) yields an index k with πk(xi ) = x+i for all i , so

⎛

⎝
⊔

i≥1

xi

⎞

⎠
+
= lim

i→∞πk(xi ) = lim
i→∞ x+i ,

which makes it clear that f preserves suprema of increasing sequences. That f is
strictly monotone follows from Proposition 1(iii). ��
Definition 7 A map f : D → E between dcpo’s is Scott continuous if it is mono-
tone

x � y ⇒ f (x) � f (y)

and it preserves directed suprema:

f
(⊔

S
)
=
⊔

f (S)

for any directed set S ⊆ D.

Corollary 1 A monotone map f : Δn → E into a dcpo E is Scott continuous iff for
each increasing sequence (xi ) in Δn, f

(⊔
xi
) =⊔ f (xi ).

Proof If S ⊆ Δn is directed, then
⊔

f (S) � f (
⊔

S) by monotonicity. For the other
direction, Proposition 12(ii) gives an increasing sequence (xi ) in S with

⊔
S =⊔

xi , enabling

f
(⊔

S
)
= f
(⊔

xi

)
=
⊔

f (xi ) �
⊔

f (S),

confirming that f preserves suprema of all directed sets provided it does so for
increasing sequences. ��

For instance, the map

Δn → [0, 1] :: x �→ x+

is Scott continuous, while x �→ 1− x+ is Scott continuous as a map Δn → [0, 1]∗.
An amusing example of a Scott continuous map that is not Euclidean continuous is
the natural retraction from Δ2 onto

∂Δ2 = max(Δ2) .

Generally speaking, the entropy of an event with probability p is − log p. If
forced to choose a single probability representative of an entire classical state x ,
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x+ would be the most sensible choice, because of its qualitative significance in
Proposition 1. Thus, one might say that s(x) = − log x+ measures the entropy of a
classical state.

Corollary 2 The map s : Δn → [0,∞)∗ given by s(x) = − log x+ is Scott contin-
uous. It has the following properties:

(i) For all x, y ∈ Δn, if x � y and s(x) = s(y), then x = y.
(ii) For all x ∈ Δn, we have s(x) = 0 iff x ∈ max(Δn).

(iii) For all x ∈ Δn, we have s(x) = log n iff x = ⊥.

Proof The map is well-defined because x+ ∈ [1/n, 1]. That s is strictly monotone
follows from Proposition 1. (ii) and (iii) follow from combinations of direct calcu-
lation and applications of (i).

By the last result, a monotone map f : D → Δn from a dcpo D is Scott contin-
uous iff s ◦ f is Scott continuous. We will take a closer look at entropy later on.

10.2.3 Symmetries for Classical States

We now establish the fundamental role played by the symmetric group

S(n) = {σ |σ : {1, . . . , n} � {1, . . . , n}}

of bijections on the set {1, . . . , n}. These we also refer to as permutations or sym-
metries. The composition of x ∈ Δn and σ ∈ S(n) is written x · σ .

Definition 8 A state x ∈ Δn is monotone if xi ≥ xi+1 for all i < n.

A classical state x ∈ Δn can be completely described by a monotone state x · σ
and a symmetry σ−1. The order on Δn has an analogous representation.

Lemma 7 For states x, y ∈ Δ2, we have x � y iff there is a permutation σ of {1, 2}
such that x · σ = (x+, x−), y · σ = (y+, y−) and x+y− ≤ x−y+.

Theorem 3 For x, y ∈ Δn, we have x � y iff there is a permutation σ of {1, . . . , n}
such that x · σ and y · σ are monotone and

(x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.

Proof By the last lemma, the claim is true for n = 2. Assume the result for n ≥ 2.
For the case n + 1, we prove both implications separately.

First suppose x � y. Let k be an index with xk = x− ≥ y− = yk . By
the inductive hypothesis applied to pk(x) � pk(y), there is a permutation σ of
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{1, . . . , n} such that pk(x) · σ and pk(y) · σ are monotone. Now compose σ with
the natural bijection that maps indices of pk(x) and pk(y) to indices of x and y,
and since there is no harm in doing so, call the resulting bijection σ : {1, . . . , n} →
{1, . . . , n + 1} \ {k}.

We extend σ to a permutation of {1, . . . , n + 1} by setting σ(n + 1) := k. It is
then clear that x · σ and y · σ are monotone and that

(x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all 1 ≤ i < n. To finish this direction, we need to prove

(x · σ)n(y · σ)n+1 ≤ (x · σ)n+1(y · σ)n .

Because (x · σ)n+1 = xk = x− ≥ y− = yk = (y · σ)n+1, we need only consider
the case that (y · σ)n < (x · σ)n .

First, x+ < 1, since (x · σ)n > 0 ⇒ (x · σ)1 = x+ < 1. Next, y+ < 1,
since otherwise (y · σ)n+1 = 0, in which case the inequality is trivial. Now let j
be an index with x j = x+ ≤ y+ = y j . By the inductive hypothesis applied to
p j (x) � p j (y), we obtain a permutation π of {1, . . . , n}. Similar to the case of σ ,
we regard π as a bijection

{2, . . . , n + 1} → {1, . . . , n + 1} \ { j}

and then extend it to a permutation of {1, . . . , n + 1} by setting π(1) := j . Again
x · π and y · π are monotone, and in this case we have

(x · π)i (y · π)i+1 ≤ (x · π)i+1(y · π)i

for 2 ≤ i < n + 1. Because x · π = x · σ and y · π = y · σ , setting i = n yields the
desired inequality, finishing this direction.

For the other, let σ be a permutation of {1, . . . , n+ 1} with x · σ, y · σ monotone
and (x · σ)i (y · σ)i+1 ≤ (x · σ)i+1(y · σ)i for all i with 1 ≤ i < n + 1. First notice
that slightly more is true:

(∗) (x · σ)i (y · σ) j ≤ (x · σ) j (y · σ)i

for 1 ≤ i ≤ j ≤ n + 1.
In the cases (x · σ)i = 0 and (y · σ) j = 0, (∗) is clear; if (x · σ)i > 0 and

(y ·σ) j > 0, then (y ·σ)k > 0 for k ≤ j by monotonicity, which means (x ·σ)k > 0
for all i ≤ k ≤ j as well, since for k > i we have

(x · σ)k ≥ (x · σ)k−1(y · σ)k

(y · σ)k−1
> 0

assuming (x · σ)k−1 > 0. Without division by zero to worry about, (∗) is now clear.
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To prove x � y we must show pk(x) � pk(y) for all k with xk < 1, yk < 1. To
this end, fix one such k. We restrict σ to a bijection

{1, . . . , n + 1} \ σ−1(k)→ {1, . . . , n + 1} \ {k}

which then yields a permutation σk of {1, . . . , n} such that pk(x) · σk and pk(y) · σk

are monotone. By (*), we have

(pk(x) · σk)i (pk(y) · σk)i+1 ≤ (pk(x) · σk)i+1(pk(y) · σk)i

for all 1 ≤ i < n. By the inductive hypothesis, pk(x) � pk(y), finishing the proof.
��

The explicit nature of the representation using symmetries can be advantageous
in establishing certain properties of the order.

Lemma 8 The map x �→ x · σ is an order isomorphism of Δn for each σ ∈ S(n).

Proof Let f (x) = x · σ . To see that f is monotone, if x � y, then there is ν ∈ S(n)

with x · ν and y · ν monotone satisfying the inequalities of Theorem 3. But the
same is true of x · σ and y · σ if we apply the permutation σ−1 · ν to each. Thus,
f (x) = x · σ � y · σ = f (y).

The same argument shows g(x) = x · σ−1 is monotone. Because f and g are
also inverse to one another, each is an order isomorphism. ��

It is now time to take a more in depth look at the order on classical states. To
keep things simple initially, we start on the outside and work our way inward. The
boundary of Δn+1,

∂Δn+1 =
⋃

1≤i≤n+1

ker πi ,

can be understood geometrically as n + 1 copies of Δn identified at certain points.
The same result holds order theoretically. That is, the dcpo ∂Δn+1 is order isomor-
phic to n + 1 copies of the dcpo Δn identified along their common boundaries.

Proposition 3 For n ≥ 1, we have an order isomorphism

Δn � {x ∈ Δn+1 : πi (x) = 0},

for any of the standard projections πi : Δn+1 → [0, 1] with 1 ≤ i ≤ n + 1.

Proof First, in+1 : Δn → Δn+1 :: x �→ (x, 0) is an order embedding. It is order
reflecting:

in+1(x) � in+1(y) �⇒ x = pn+1(in+1(x)) � pn+1(in+1(y)) = y.

For its monotonicity, let x � y. By Theorem 3, there is σ ∈ S(n) with x · σ and
y · σ monotone such that the usual inequalities hold.
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Now extend σ to a permutation in S(n+1) by setting σ(n+1) = n+1. Because
the value of the state in+1(x) at index n + 1 is zero, in+1(x) · σ and in+1(y) · σ are
monotone and satisfy the inequalities of Theorem 3. Thus, in+1(x) � in+1(y).

The other n maps, ik for 1 ≤ k ≤ n, which produce an n + 1 state having value
zero at index k, all arise as the composition of isomorphisms (derived from right
multiplication by a symmetry) followed by in+1. ��

Thus, the boundary of the triangle Δ3 is a dcpo made of three copies of Δ2:

Δ2

Δ3
Δ2

Δ2

• •

•

To get an idea of what the order is like on int(Δn), we need to look a little closer.
First, some long overdue notation.

Definition 9 The monotone classical states are denoted

Λn := {x ∈ Δn : (∀i < n) xi ≥ xi+1}.
For σ ∈ S(n),

Δn
σ := {x ∈ Δn : x · σ ∈ Λn}.

Notice that Δn
1 = Λn .

As we have already seen, the order on monotone states can be characterized
purely algebraically. For the sake of emphasis:

Lemma 9 For x, y ∈ Λn, x � y iff (∀ 1 ≤ i < n) xi yi+1 ≤ yi xi+1.

Just as was the case with its boundary, there is also a natural way of dividing Δn

itself into regions: For each n ≥ 1,

Δn :=
⋃

σ∈S(n)

Δn
σ .

And just as before, these regions are identical (order-theoretically).

Proposition 4 Let n ≥ 2.

(i) For each σ ∈ S(n), Δn
σ is closed under directed suprema in Δn.

(ii) For an increasing sequence (xi ) in Δn, there is σ ∈ S(n) with xi ∈ Δn
σ for all i .
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(iii) The natural map

r : Δn → Λn

is a Scott continuous retraction whose restriction to Δn
σ is an order isomor-

phism Δn
σ � Λn for each σ ∈ S(n).

Proof (i) Since every directed set contains an increasing sequence with the same
supremum, we only have to prove this result for increasing sequences (xi ) in Δn

σ .
By Lemma 8 and the formula for suprema,

(⊔
xi

)
· σ =

⊔
(xi · σ) = ( lim

i→∞π1(xi · σ), . . . , lim
i→∞πn(xi · σ)).

But the state on the far right is monotone because all the xi · σ are. This proves that⊔
xi ∈ Δn also belongs to Δn

σ .
(ii) This is a straightforward induction using Lemma 6(i).
(iii) For σ ∈ S(n), we denote the order isomorphism in Lemma 8 by rσ (x) =

x · σ . Set r(x) = rσ (x) for x ∈ Δn
σ . This map is well defined and its restriction to

Δn
σ is an order isomorphism: Δn

σ = r−1
σ (Λn) � Λn .

It is monotone: If x � y, then by Theorem 3, there is σ ∈ S(n) with x, y ∈ Δn
σ

which gives r(x) = rσ (x) � rσ (y) = r(y).
It is Scott continuous: If μ : Δn → [0,∞)∗ is strictly monotone, Scott contin-

uous and μr = μ, then r itself is Scott continuous, since it is monotone and has
continuous measure μr . Let μx = − log x+ (Corollary 2).

Finally, r |Λn = 1Λn , which proves that r is a retraction.

Thus, we can think of Δn as being n!-many copies of the retract Λn identified
along their common boundaries. For instance, Δ3 splits into six different regions,
all order isomorphic to Λ3:

e3

e2e1

Λ3

This, combined with an elementary analysis of Λ3, allows us to determine the
upper sets of (Δ3,�) shown in Fig. 10.1.

We now have our first example of an intuition about classical states that has been
formally justified. Consider a closed cylinder of volume V partitioned into smaller
volumes Vi as follows:

V1 V2 V3
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Fig. 10.1 Pictures of ↑x for x ∈ Δ3

The cylinder is known a priori to contain a single molecule. With no other infor-
mation available to us, our knowledge of the molecule’s location is (p1, p2, p3)

where pi = Vi/V . Or is it? Well, it is if we assume that the volumes are labelled
from left to right as 1,2,3. But if they have been labelled in the reverse order, as

V1 V2 V3

3 2 1

then our knowledge is (p3, p2, p1).
Naturally, we intuitively understand that in the grand scheme of things it makes

no difference how we label things—as long as all statements made about the exper-
iment are made with respect to the same choice of labels, we will not encounter any
trouble: What is physically true for one choice of labels is also true for any other.
But that’s where the magic is! We have derived this simple truth: For each σ ∈ S(n),
the map x �→ x · σ is an order isomorphism.

In short, there is a definite physical reason why Δn is divided into different
regions Δn

σ all of which are “identical” (Δn
σ � Δn

ν ). For the very same reason,
measures of information content in such experiments tend to be symmetric.

Definition 10 A function f : Δn → E is symmetric if for all σ ∈ S(n), we have
f (x · σ) = f (x).

Lemma 10 Let E be a dcpo. Then

(i) Every function f : Λn → E determines a unique symmetric extension f̄ :
Δn → E given by f̄ = f ◦ r where r is the natural retraction.
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(ii) Monotonicity, strict monotonicity and Scott continuity are inherited by f̄ when-
ever they are possessed by f .

Proof (i) For the uniqueness of f̄ , if g : Δn → E is another symmetric extension
of f , then for any x ∈ Δn

σ , we can write

g(x) = g(x · σ) = f (x · σ) = f̄ (x · σ) = f̄ (x)

using that g is symmetric, followed by the fact that g = f on Λn , and then the fact
that f̄ is a symmetric extension of f .

(ii) Each property is preserved by composition and satisfied by r .

Example 1 Canonical symmetric functions on Δn

(i) The maps Δn → [0, 1] :: x �→ x+ and Δn → [0, 1]∗ :: x �→ 1− x+.
(ii) Entropy s(x) = − log x+.

(iii) The natural retraction r : Δn → Λn .
(iv) Shannon entropy

μx = −
n∑

i=1

xi log xi .

As the last result illustrates, the retraction r : Δn → Λn provides us with a
general approach for solving problems involving classical states: First solve it for
Λn , and then for Δn in general.

10.2.4 Approximation of Classical States

A decent understanding of approximation can provide insight about the nature of
partiality. Partiality, as we will see in the next section, is imperative for a meaningful
discussion on entropy.

Definition 11 Let D be a dcpo. For x, y ∈ D, we write x � y iff for all directed
sets S ⊆ D,

y =
⊔

S ⇒ (∃s ∈ S) x � s.

The approximations of x ∈ D are

↓↓x := {y ∈ D : y � x},

and D is called exact if ↓↓x is directed with supremum x for all x ∈ D.

A continuous dcpo is exact, and in that case, the “way below” relation and our
notion of approximation above are equivalent. In addition, the two notions also coin-
cide on maximal elements.
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Lemma 11 Let D be a dcpo. For each x ∈ D, the set ↓↓x is directed with supremum
x iff it contains a directed set with supremum x.

The ability to approximate classical states is provided by the mixing law.

Proposition 5 (The mixing law) If x � y in Δn, then

x � (1− p)x + py � y

for all p ∈ [0, 1].
Proof Let z denote the classical state (1 − p)x + py. Because x � y, there is a
symmetry σ with x · σ, y · σ monotone. First,

(z · σ)i = (1− p)(x · σ)i + p(y · σ)i

≥ (1− p)(x · σ)i+1 + p(y · σ)i+1

= (z · σ)i+1,

for 1 ≤ i < n, which means z · σ is monotone. Thus, x � z follows from

(x · σ)i (z · σ)i+1 ≤ (x · σ)i+1(z · σ)i

⇔
p(x · σ)i (y · σ)i+1 ≤ p(x · σ)i+1(y · σ)i ,

while z � y follows similarly. ��
A path from x to y in a space X is a continuous map

p : [0, 1] → X

with p(0) = x and p(1) = y. A segment of a path p is p[a, b] for b > a. Any mono-
tone path into Δn with its Euclidean topology is Scott continuous. For instance, by
the mixing law (Lemma 1), the straight line path from x to y,

πxy(t) = (1− t)x + t y

is Scott continuous iff x � y.

Lemma 12 Let x � y with x ∈ Δn and y ∈ Λn. Then

(i) If yi > 0 for all i , then x ∈ Λn.
(ii) If x � y, then x ∈ Λn.

Proof (i) The proof is by induction. For the n + 1 case, Lemma 4 gives an index i
with xi = x− ≥ yi = y−, while the monotonicity of y yields yn+1 = y− = yi > 0.
By degeneration (Lemma 5), xn+1 = xi = x− > 0.
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Now we can apply the inductive hypothesis to pn+1(x) � pn+1(y), since
pn+1(y) ∈ Λn and all its values are positive, to deduce that pn+1(x) ∈ Λn . But
since xn+1 = x−, we have x ∈ Λn+1.

(ii) We apply (i). By the Scott continuity of π⊥y ,

y =
⊔

t<1

π⊥y(t),

and since x � y, we have x � π⊥y(t) for some t < 1. Because y ∈ Λn, π⊥y(t) ∈
Λn , and π⊥y(t)i > 0 for all i since t < 1. By (i), x ∈ Λn . ��
Proposition 6 Let r : Δn → Λn be the natural retraction.

(i) If x, y ∈ Δn
σ and x � y, then πxy(t) ∈ Δn

σ for all t ∈ [0, 1].
(ii) For x, y ∈ Δn, we have x � y iff

(∀σ ∈ S(n))(y ∈ Δn
σ ⇒ x ∈ Δn

σ ) and (r(x)� r(y) in Λn) .

Proof (i) This was shown in the proof of the mixing law. (ii) First recall that right
multiplication by σ ∈ S(n), rσ (x) = x ·σ , is an order isomorphism of Δn . If x � y,
then x � y, which means x, y ∈ Δn

σ for some σ ∈ S(n). Because rσ is an order
isomorphism,

x � y ⇒ rσ (x) � rσ (y) in Δn .

But r(x) = rσ (x) and r(y) = rσ (y), which means r(x) � r(y) in Δn . However,
r(x), r(y) ∈ Λn and in addition Λn is closed under directed suprema in Δn by
Prop. 4(i), which means that the supremum in Λn of a directed set S ⊆ Λn is equal
to the supremum it has as a subset of Δn . Thus, r(x)� r(y) in Λn .

To finish this direction, suppose y ∈ Δn
σ . Then x ·σ = rσ (x) � rσ (y) = y ·σ in

Δn , since rσ is an order isomorphism. But y · σ is monotone, so Lemma 12 implies
that x · σ is too, i.e., x ∈ Δn

σ .
For the other direction, if we choose any σ ∈ S(n) with y ∈ Δn

σ , then x ∈ Δn
σ .

By assumption, we have rσ (x) = r(x) � r(y) = rσ (y) in Λn . If we show that
rσ (x) � rσ (y) in Δn , then because rσ is an order isomorphism, we may conclude
x � y in Δn .

Let (yi ) be an increasing sequence in Δn with rσ (y) = ⊔ yi . By Proposition 4,
there is ν ∈ S(n) with yi ∈ Δn

ν for all i , and hence y · σ ∈ Δn
ν . Then because

y ∈ Δn
σ ·ν , we have x ∈ Δn

σ ·ν by assumption, so the following relation involves only
states in Λn :

x · (σ · ν) = x · σ � y · σ = y · (σ · ν) =
⊔

(yi · ν).

Because x · σ � y · σ in Λn , we must have x · (σ · ν) � yi · ν for some i , i.e.,
rν(rσ (x)) � rν(yi ) which gives rσ (x) � yi . Then rσ (x) � rσ (y) in Δn , and now
the proof is finished. ��
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Theorem 4 The classical states Δn are exact.

(i) For every x ∈ Δn, π⊥x (t)� x for all t < 1.
(ii) The approximation relation � is interpolative: If x � y in Δn, then there is

z ∈ Δn with x � z � y.

Proof The exactness of Δn follows from (i), the Scott continuity of π⊥x , and
Lemma 11. To prove (i), we first show that π⊥x (t) � x in Λn for any x ∈ Λn

and t < 1. Notice that π⊥x (t) ∈ Λn for all t ∈ [0, 1] by Proposition 6(i). Let
x =⊔ yk ∈ Λn for an increasing sequence (yk)k≥1 in Λn .

For i < n fixed, we will show that there is an integer ki such that

(
1− t

n
+ t xi

)
πi+1(yk) ≤ πi (yk)

(
1− t

n
+ t xi+1

)

for all k ≥ ki . If xi = 0, then xi+1 = 0 by the monotonicity of x , and then we can
take ki = 1, by the monotonicity of each yk . Thus, we can assume xi > 0.

If xi+1 = 0, then we can write

(
1− t

n
+ t xi

)
lim

k→∞πi+1(yk) = 0 < δ < xi

(
1− t

n

)
= lim

k→∞πi (yk)

(
1− t

n

)
,

where δ > 0 is some constant, and we use x = ⊔ yk . This makes it clear that such
a ki exists in this case. Thus, we can also assume xi+1 > 0.

If xi = xi+1 > 0, then because yk � x , degeneration (Lemma 5) gives πi (yk) =
πi+1(yk) > 0 for each k. In this case, we can again take ki = 1. Thus, we assume
xi > xi+1 > 0. By the degeneration lemma, this also implies πi (yk) > 0 and
πi+1(yk) > 0 for all k. But then we get

(1− t)/n + t xi

(1− t)/n + t xi+1
<

xi

xi+1
= lim

k→∞
πi (yk)

πi+1(yk)
,

using xi > xi+1 > 0, t < 1 and
⊔

yk = x . Thus, in this case there is also a large
enough ki such that the desired inequality holds for all k ≥ ki .

Then π⊥x (t) � yk where k ≥ max{ki : 1 ≤ i < n}, which proves π⊥x (t)� x in
Λn for all t < 1. To finish the proof, let x be any classical state and r : Δn → Λn

the natural retract. We know

• x ∈ Δn
σ ⇒ π⊥x (t) ∈ Δn

σ for all t ∈ [0, 1], and
• r(π⊥x (t)) = π⊥r(x)(t)� r(x) in Λn , for all t < 1,

where the first follows from Proposition 6(i), and the second from what we proved
above. By Prop. 6(ii), these two give π⊥x (t)� x for all t < 1.

(ii) First, for any x ∈ Δn , we have π⊥x (s)� π⊥x (t) whenever s < t . This easily
follows from (i): For p := π⊥x (t) we have
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π⊥x (s) = π⊥p(s/t)� p = π⊥x (t).

If x � y, then x � π⊥y(t)� y for some t < 1. Thus,

x � π⊥y(t)� π⊥y((t + 1)/2) � y,

so taking z := π⊥y((t + 1)/2) finishes the proof. ��
The last result demonstrates the existence of a natural approximative structure on

classical states: The dcpo Δn can rightfully be called a domain. As we said at the
start, domains normally have partial elements, and total or ideal elements. We now
explain the relationship between the qualitative notion of approximation� and the
natural intuitive notions of “partiality” and “totality” for classical states.

Intuitively, a classical state x is partial iff it offers no certainty about any outcome
iff (∀i) 0 < xi < 1 iff (∀i) xi > 0. One may object that x = (1/2, 1/2, 0) ∈ Δ3

seems partial but is excluded from the above. However, only “some” of x is partial,
the element p3(x) = ⊥ ∈ Δ2. As a state in Δ3, though, x is not genuinely partial
because it imparts certainty about the third outcome.

On the other hand, if we assume that the order theoretic structure of Δn has cap-
tured our intuitive understanding of classical states, we easily arrive at an alternative
formulation of partiality: An object is partial when it approximates something. The
latter of course is purely qualitative and provides exactly what one hopes for: A
formalization of intuition.

Lemma 13 (Partiality) For each x ∈Δn, the set ↑↑x is nonempty iff xi >0 for all i .

Proof If x � y, there there is t < 1 with x � π⊥y(t). Because t < 1, π⊥y(t)i >0,
so degeneration (Lemma 5) gives xi >0. For the other direction, let xi > 0 for all i .

Intuitively, because x is in the interior of Δn , the line segment from ⊥ to x can
be extended nontrivially to a point y on the boundary of Δn , for which we then have
x � y. Formally now, we can assume x �= ⊥. Then

0 < x− < 1/n ⇒ λ := 1

1− nx−
> 1.

Let y be the classical state defined pointwise by

yi = 1

n
· (1− λ)+ λ · xi

for each 1 ≤ i ≤ n. To see that y is in fact a classical state, notice that

0 = 1

n
· (1− λ)+ λx− ≤ yi ≤

n∑

i=1

yi = 1.

Since 0 ≤ 1/λ < 1, π⊥y(1/λ) = x � y, which proves ↑↑x �= ∅. ��
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The “opposite” of partiality is totality: A classical state is total when it imparts
certainty about all of its outcomes. Thus, the total or ideal classical states are exactly
the pure states ei , which we have already characterized qualitatively as being pre-
cisely max(Δn). But the approximation relation can offer additional insight about
the sense in which pure states are total.

To understand the connection between the two, let’s begin by thinking about
x � y, which we could say means that

• All paths (yi ) to y must qualitatively exceed x after some finite stage,

which can be read as

• All paths to y essentially begin with x ,

and finally

• A process (yi ) can only end up in state y = ⊔ yi provided that it has the infor-
mation represented by x : x is necessary for having y, i.e., the only way to know
y is to first know x .

In each version of� above, some reference to a process is made (a path is assumed
to be generated by some process), providing us with a crucial distinction between
� and �: x � y is a statement about processes, x � y is a statement about
information. The difference between these two becomes clear by considering states
x, y, z with x � y � z but not x � z.

Example 2 Let ⊥ �= x � y := (1/2, 1/2, 0) � z := e1. Then x �� z. Here are two
equivalent perspectives:

(i) In terms of knowledge: We are not required to know that an object is not in box
3 before we can know that it is in box 1.

(ii) In terms of processes:From an initial state of⊥, one way to conclude the object
is in box 1 is to begin by ruling out box 3 as a possibility, and then look in
one of the others—but this does not describe all ways. We could just look in
box 1.

Thus, � makes statements about potential evolutions of state; � is concerned
with what we must know in order to obtain information using the process of
observation.

This example suggests that� is capable of expressing a characteristic of totality:
The only time we expect the implication

(∀y, z) y ∈ ↑↑x and y � z ⇒ z ∈ ↑↑x

to hold nontrivially is when x is a state from which a unique outcome is likely, i.e.,
x approximates a unique pure state. When ↑↑x satisfies the implication above, it is
called an upper set.
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Proposition 7 (Approximation of pure states) Let n ≥ 2

(i) For all x ∈ Δn, x � ei iff x = π⊥ei (t) for some t < 1.
(ii) For all x ∈ Δn, ↑↑x is an upper set iff it is empty, all of Δn, or contains a unique

pure state.

Proof (i) For n = 2 this is clear. Assume n ≥ 3. Because x � ei , there is s < 1
with x � π⊥ei (s). By degeneration, (∃a > 0)(∀k �= i)(xk = a), which now makes
the claim obvious.

(ii) For (⇒), every nonempty upper set contains at least one maximal element.
By (i), either x = ⊥, or ↑↑x contains a unique pure state.

For the other direction, we need to prove that ↑↑x is an upper set when it contains
a unique pure state ei . Suppose x � y � z. First, because x � ei , it is routine to
show that xi = x+ and xk = x− for all k �= i . Because ↑↑x contains a unique pure
state, x �= ⊥, which means x+ > x− > 0. To apply Proposition 6(ii), we first show
z ∈ Δn

σ ⇒ x ∈ Δn
σ .

Let z · σ be monotone. Because x � z, x · σ � z · σ , which means there is an
index k with (x · σ)k = x+ ≤ (z · σ)k = z+. By the monotonicity of z · σ and
degeneration,

(z · σ)k = (z · σ)1 = z+ ≥ x+ > 0 �⇒ (x · σ)k = (x · σ)1 = x+ > 0,

which means x · σ is monotone, since the only other value it assumes is x−.
To finish, we need to show r(x) � r(z) in Λn . First, r(z)2 > 0, since otherwise

r(z) = e1, for which we already know r(x)� r(ei ) = e1 = r(z). By degeneration,
this also means r(y)2 > 0. Because r(x) � r(y) in Λn, there is t < 1 with
r(x) � π⊥r(y)(t). Thus,

r(x)1

r(x)2
≤ (1/n)(1− t)+ tr(y)1

(1/n)(1− t)+ tr(y)2
<

r(y)1

r(y)2
≤ r(z)1

r(z)2
,

where the strict inequality follows from r(y)1 > r(y)2 > 0 (which is a conse-
quence of degeneration using r(x)1 > r(x)2 > 0 and r(x) � r(y)). Because
r(x)i/r(x)i+1 = 1 for 1 < i < n, it is clear that r(x) � r(z) in Λn . ��

An approximation a of a pure state x defines a region ↑↑a of Δn known in domain
theory as a Scott open set.

Definition 12 A subset U of a dcpo D is Scott open if

• U is an upper set: (∀x ∈ U )(∀y ∈ D) x � y ⇒ y ∈ U, and
• U is inaccessible by directed suprema: For any directed set S ⊆ D,

⊔
S ∈ U ⇒ S ∩U �= ∅ .

The collection of all Scott open subsets of D is σD .
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Notice that a map f : D → E between dcpo’s is Scott continuous in the sense
defined earlier iff f −1(U ) is Scott open in D whenever U is Scott open in E .

Lemma 14 For all x ∈ Δn, ↑↑x is an upper set iff it is Scott open.

Proof If z = ⊔ S ∈ ↑↑x , then by interpolation (Theorem 4), there is y ∈ Δn with
x � y � z. Thus, by y � z, there is s ∈ S with y � s, and since ↑↑x is an upper
set, s ∈ ↑↑x . Interestingly, one can also show that ↑↑x is Scott open iff ↑(↑↑x) is Scott
open.

The relation between approximation, partiality and purity can now be summa-
rized as follows:

(i) The partial elements are those x ∈ Δn with ↑↑x �= ∅.
(ii) For a partial element x ∈ Δn , ↑↑x is Scott open iff x = π⊥ei (t) for some i and

some t < 1 iff (x = ⊥ or x approximates a unique pure state).

Thus, the “totality” of a pure state x is largely explained by the fact that ↑↑a is Scott
open whenever a � x . To complete the picture,

Lemma 15 A subset U ⊆ Δn is Scott open iff

• Any monotone path from x ∈ U to a pure state lies in U, and
• The line from ⊥ to x ∈ U has a segment contained in U,

and for pure states x , there is an equivalence between “approximation of x” and
“Scott open set containing x”: Given any a � x , the set ↑↑a is Scott open, while
given any Scott open U with x ∈ U , we can (by exactness) find an approximation
a ∈ U of x with x ∈ ↑↑a ⊆ U .

Approximation can also describe things of a more concrete nature. Because of its
close connection to the mixing law, which is especially evident in the case of pure
states (Proposition 7(i)), we can sometimes reinterpret mixing as approximation.
This, for instance, can be useful when one seeks to explain the sense in which certain
forms of noise work “against” the state σ of a system.

Example 3 The depolarization channel The map dp : Δn → Δn by

dp(σ ) = p⊥+ (1− p)σ

describes the process by which a state σ ∈ Δn is depolarized with probability p > 0
(has all bias and hence all information removed from it) and is otherwise unaltered.
But notice:

dp(σ ) = π⊥σ (1− p),

which means dp(σ ) � σ for p > 0. In particular, the effect of depolarization on a
state is qualitative.
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To say that the effect of noise is qualitative essentially means that while the state
of the system has suffered, it has not been “degraded beyond recognition.” This is
not always the case: Some forms of noise are more destructive than others and the
order on classical states can at times capture this.

Example 4 Classical bit flipping A state σ ∈ Δ2 suffering the effect of a magnetic
field is “flipped” with probability p and otherwise left alone

f p(σ ) = pσ ∗ + (1− p)σ,

where ∗ is the involution (x, y)∗ = (y, x). In this case, we have

(∀σ. f p(σ ) � σ) ⇔ 0 < p ≤ 1/2,

i.e., the effect of the noise is qualitative iff the field is weak enough.

Those familiar with classical information theory may know what we call classical
bit flipping by another name, the binary symmetric channel. In this important exam-
ple, a bit (a “0” or a “1”) is transmitted correctly through a channel with probability
1− p and reversed with probability p:

1 11 − p

p

0 0
1 − p

p

Given that information is sent through the binary symmetric channel, we want to
determine the information that is actually received. The information sent is modelled
by σ = (x, y) ∈ Δ2, where x is the probability that 0 is sent and y is the probability
that 1 is sent. The effect that the channel has on information passing through it (σ )
is captured by its channel matrix

[
1− p p

p 1− p

]

To determine the information received when (x, y) is sent, we calculate a distribu-
tion for the output using the channel matrix as follows:

[
1− p p

p 1− p

]
·
[

x
y

]
=
[
(1− p)x + py
px + (1− p)y

]

All of this is implicit in the operator f p(σ ) = pσ ∗ + (1 − p)σ of Example 4: The
distribution for the output is f p(σ ), the 0 bit is e1 = (1, 0), the 1 bit is e2 = (0, 1),
and reversing σ means applying the involution ∗ to obtain σ ∗.
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10.2.5 Entropy, Content and Partiality

We have already seen how the use of� on Δn enables a precise formulation of what
it means to say that a classical state is “information.” One of the advantages in taking
this approach to defining information is that the structure of a domain can then be
used to define the notion “information content,” i.e., we can say what it means to
measure the content of information.

The idea introduced in [8] is this: Assuming that information is formally spec-
ified as a domain, measuring content means measuring partiality, i.e., the amount
of partiality in an object. The importance of this conceptually is that partiality, as
we have already seen, is intimately connected to the order theoretic structure of a
domain.

To slightly motivate the formal definition we are about to see, suppose that μ :
Δn → [0,∞) is a measure of content on classical states. Then μx is the amount of
uncertainty (or partiality) in x . As we move up in the order � on Δn , states become
more informative, so uncertainty decreases:

x � y ⇒ μx ≥ μy.

That is, as a map from Δn to [0,∞)∗, μ is monotone. If μ is defined in terms of the
usual formulae from physics (arithmetic, logarithms, other elementary functions),
then it is continuous in the sense of analysis, and hence Scott continuous from Δn

to [0,∞)∗.
The essence of the distinction between content and a random continuous map on

a domain is subtle. Consider a pure state x ∈ max(Δn) and one of its approximations
a � x , so that a is information any process must have before it can evolve to x .
Then we also expect a � y provided that

(i) y is a state from which it is possible to evolve to x , and
(ii) y is “close enough” to x in content.

The first translates as “y � x”; the second translates as “|μx − μy| < ε,” on the
assumption that μ measures information content. Putting everything together now,
if μ is a measure of content, then we expect that

x ∈ ↑↑a ⇒ (∃ε > 0)(y � x & |μx − μy| < ε ⇒ y ∈ ↑↑a).

Because x is pure, we can replace ↑↑a with a Scott open set U ⊆ Δn , as we saw in
the last section.

Definition 13 A Scott continuous map μ : D → [0,∞)∗ on a dcpo is said to
measure the content of x ∈ D if

x ∈ U ⇒ (∃ε > 0) x ∈ με(x) ⊆ U,

whenever U ∈ σD is Scott open and
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με(x) := {y ∈ D : y � x & |μx − μy| < ε}

are the elements ε close to x in content. The map μ measures X if it measures the
content of each x ∈ X .

In order for a map μ to be regarded “a measure of content,” it must minimally
be capable of distinguishing those elements which it claims are maximally informa-
tive. That is, μ must measure all of the objects which it regards as possessing no
uncertainty ker μ := {x : μx = 0}.
Definition 14 A measurement is a Scott continuous map μ : D → [0,∞)∗ on a
dcpo that measures ker μ := {x ∈ D : μx = 0}.

The measurement formalism [8] teaches that the ability to measure content is
indicative of a purely structural relationship that exists between two classes of infor-
mative objects. Neither class need consist of numbers. This relationship is formally
expressed by a map μ : D → E whose general nature is to reflect properties of
simpler objects E onto more complex objects D.

The motivation for the idea stems from the empirical fact that it is often easier to
reason about D in terms of E rather than deal with D directly [8]. Hence the reflec-
tive nature of μ: It confirms that we actually can learn about x ∈ D by studying the
properties of its simplification μx ∈ E .

Definition 15 A Scott continuous map μ : D → E between dcpo’s is said to mea-
sure the content of x ∈ D if

x ∈ U ⇒ (∃ε ∈ σE ) x ∈ με(x) ⊆ U,

whenever U ∈ σD is Scott open and

με(x) := μ−1(ε)∩ ↓x

are the elements ε close to x in content. The map μ measures X if it measures the
content of each x ∈ X .

Definition 16 A measurement is a Scott continuous map μ : D → E between
dcpo’s that measures ker μ := {x ∈ D : μx ∈ max(E)}.

These definitions are easily seen to be equivalent to the quantitative formulations
we saw earlier by setting E = [0,∞)∗. To establish the reflective nature of content,
we use the following relationship between the order � on a dcpo D and its Scott
open sets σD:

x � y ⇔ (∀U ∈ σD)(x ∈ U ⇒ y ∈ U ).

Proposition 8 Let μ : D → E be a measurement and x an object that it measures.

(i) If μx ∈ max(E), then x ∈ max(D).
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(ii) If μx = ⊥, then x = ⊥, provided ⊥ ∈ D exists.
(iii) If y � x and μx = μy, then x = y.
(iv) If xn � x and (μxn) is directed with supremum μx, then

⊔
xn = x.

In addition, the composition of measurements is again a measurement.

Proof The proofs here are essentially taken verbatim from [8], where other proper-
ties of content can be found.

(i) Let x ∈ U . Then y ∈ με(x) ⊆ U , for some ε ∈ σE . Since U was arbitrary,
x � y. By antisymmetry, x = y.

(ii) If x � y, then μx = μy, since μx ∈ max(E), which gives y ∈ ker μ. Since μ

is a measurement, it measures y, so x = y by (iii).
(iii) First, μ(⊥) � μx = ⊥, so μ(⊥) = ⊥ = μx . Since ⊥ � x , we can apply (i)

to obtain x = ⊥.
(iv) Let xn � u for all n. If x ∈ U , then x ∈ με(x) ⊆ U , which means

μx =
⊔

μxn ∈ ε,

and so μxn ∈ ε for some n, which gives xn ∈ U and hence u ∈ U . Since U
was arbitrary, x � u. Thus,

⊔
xn = x .

Finally, if we have measurements D
μ−→ E

λ−→ F , then λμ measures ker λμ as
follows. First, if x ∈ ker λμ and x ∈ U ∈ σD , then x ∈ ker μ so there is ε ∈ σE

with x ∈ με(x) ⊆ U . Then, since μx ∈ ε and μx ∈ ker λ, there is δ ∈ σF with
μx ∈ λδ(μx) ⊆ ε. We have

x ∈ (λμ)−1(δ)∩ ↓x ⊆ με(x) ⊆ U,

which finishes the proof. ��
With the benefit of the abstract formulation of content, let us take a second look

at uncertainty (E = [0,∞)∗). By Proposition 8(i), we know that

μx = 0 ⇒ x ∈ max(D),

for any measurement μ : D → [0,∞)∗. That is, quantitative certainty implies
qualitative certainty. As a case in point, if D = Δn , then, as we will see shortly,
Shannon entropy μ : D → [0,∞)∗ given by

μx = −
n∑

i=1

xi log xi

is a measurement. Thus, any classical state x with entropy μx = 0 is pure. But now
we have an explanation for why such properties hold:
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(i) In the sense of the measurement formalism, μ is a measure of content between
the domains Δn and [0,∞)∗, and

(ii) Measures of content between domains always reflect maximality.

The same is true of the von Neumann entropy on quantum states (that we will see
later). But the moral of the last result is what is most important: Subject to moderate
hypotheses, information behaves in the same manner as its content.

Proposition 9 The natural retraction r : Δn → Λn is a measurement.

Proof To start, notice that ker r = max(Δn). Let U ⊆ Δn be a Scott open set that
contains the pure state x . By exactness, there is ⊥ �= a � x with a ∈ U . By
Prop. 6(ii), r(a)� r(x) in Λn . Because x is pure, ε := ↑↑r(a) is a Scott open subset
of Λn (a corollary of Theorem 4 and Proposition 7). We claim x ∈ rε(x) ⊆ ↑↑a ⊆ U
as follows.

First, x ∈ rε(x) by r(a) � r(x). Then, if y ∈ rε(x), we have r(a) � r(y) in
Λn and y � x . To prove that a � y in Δn and finish the proof, we must show
y ∈ Δn

σ ⇒ a ∈ Δn
σ .

For this subtle point, a takes its maximum at a unique index, because a �= ⊥
and it approximates a pure state (Proposition 7(i)). Then r(a) does as well. Since
r(a) � r(y), degeneration implies the same is true of r(y) and hence of y. Thus,
because y takes its maximum at a unique index, and because y � x ∈ max(Δn), we
have y ∈ Δn

σ ⇒ x ∈ Δn
σ , while a � x then implies a ∈ Δn

σ . ��
We have made intuitive use of this fact numerous times: Whenever we prove a

statement about classical states by first proving it for monotone states, we are implic-
itly appealing to the fact that r(x) provides a decent measure of the content of x .

Example 5 The standard variable v : Δn → [0,∞)∗ given by

v(x) = 1− x+

is a measurement with ker v = max(Δn). To prove as much, we need only show
that its restriction to Λn , λ := v|Λn , is a measurement, since then v = λ ◦ r must be
another.

To this end, let U ⊆ Λn be a Scott open set and x ∈ ker λ. Because U is Scott
open, there is t < 1 with a := π⊥x (t) ∈ U . We then have

x ∈ λε(x) ⊆↑a ⊆ U,

where

ε := 1

2
· a2

a1 + a2
> 0 .

Example 6 The entropy s : Δn → [0,∞)∗ given by

s(x) = − log x+
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is a measurement with ker s = max(Δn). First, s(x) ≥ v(x), using the classic
inequality log t ≤ t − 1 for t > 0. Thus,

x ∈ sε(x) ⊆ vε(x),

for any pure state x and ε > 0. Because v is a measurement, so is s.

Now for Shannon entropy.

Lemma 16 Let x � y be monotone classical states in Δn. Then there is k ∈
{1, . . . , n} such that

(i) (∀i < k) xi ≤ yi , and
(ii) (∀i ≥ k) xi ≥ yi .

Proof First, since x � y, we have by induction that xi yi+ j ≤ yi xi+ j , for each
j ∈ {0, . . . , n − i}. Thus, if xi ≥ yi , then xi+ j ≥ yi+ j for each j ∈ {0, . . . , n − i}.
Now let k be the least integer 1 ≤ k ≤ n with xk ≥ yk . Notice that such a k exists
since xn ≥ yn . This finishes the proof.

The relative Shannon entropy of y given x is

μ(y‖x) :=
n∑

i=1

yi log(yi/xi )

where x, y ∈ Δn . This quantity is always nonnegative and is zero iff x = y.

Theorem 5 Let μ : Δn → [0,∞)∗ be the Shannon entropy on classical states

μx = −
n∑

i=1

xi log xi

where the logarithm is natural. Then μ is a measurement. In addition,

(i) For all x, y ∈ Δn, if x � y and μ(x) = μ(y), then x = y.
(ii) For all x ∈ Δn, we have μ(x) = 0 iff x ∈ max(Δn).

(iii) For all x ∈ Δn, we have μ(x) = log n iff x = ⊥.

Proof Because μ is symmetric, its Scott continuity follows if we show that its
restriction to the dcpo Λn is Scott continuous. First we prove its monotonicity into
[0,∞)∗.

Let x � y be monotone classical states. By Lemma 16, there is an integer
k ∈ {1, . . . , n} such that xi ≤ yi for i < k and xi ≥ yi for i ≥ k. Then

n∑

i=1

(yi − xi ) log xi =
∑

i<k

(yi − xi ) log(xi/xk)+
∑

i>k

(yi − xi ) log(xi/xk) ≥ 0.
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Notice that if xk = 0 then the sum of the i > k vanishes, while the sum of the i < k
blows up, but is nevertheless nonnegative. From the nonnegativity of this sum, we
have

μx ≥ −
n∑

i=1

yi log xi ≥ μy,

where the second inequality follows from μ(y‖x) ≥ 0. This proves that μ is mono-
tone into [0,∞)∗.

If in addition to x � y we also have μx = μy, then the inequality above imme-
diately gives μ(y‖x) = 0, which implies x = y. This establishes that μ is strictly
monotone. For its Scott continuity, if (xi ) is increasing, then

μ
(⊔

xi

)
= μ( lim

i→∞π1(xi ), . . . , lim
i→∞πn(xi ))

= lim
i→∞μ(π1(xi ), . . . , πn(xi ))

= lim
i→∞μxi ,

where the first equality uses Proposition 12 and the second uses the continuity of μ

with respect to the Euclidean topology. By Lemma 1, μ is Scott continuous. Finally,
μ is a measurement: For x ∈ Δn , we have

μx ≥ −x+ log x+ ≥ 1

n
· v(x),

using log t ≤ t−1 for t > 0 and x+ ≥ 1/n, where v is the variable from Example 5.
Since v is a measurement, (1/n) ·v is a measurement, which means that μ is as well.

�

It is important to realize that the minimal account of content given here is more
substantial than it may seem: There are natural mappings which do not measure
content.

Example 7 Numbers are not enough. For n ≥ 3, consider

f : Δn → [0,∞)∗ :: x �→ x−.

It is Scott continuous, symmetric and assumes its order theoretic minimum at ⊥.
Furthermore, even though f (x) = 0 for all x ∈ max(Δn), f does not measure the
content of a single pure state.

For instance, suppose f measured the content of e1 ∈ Δ3. Then given any open
U ⊆ Δn with e1 ∈ U , there would exist ε > 0 with e1 ∈ fε(e1) ⊆ U . Then
(1/2, 1/2, 0) ∈ U . But because this applies to any open set U , we now have a proof
that e1 � (1/2, 1/2, 0).
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More intuitively: Many states are assigned maximal measure by f which are not
pure. For instance f (x, y, 0) = 0 on Δ3, even though the only time (x, y, 0) is pure
is when x = 1 or y = 1.

Here is a summary.

Example 8 Canonical measures of content on Δn

(i) The maps Δn → [0, 1] :: x �→ x+ and Δn → [0, 1]∗ :: x �→ 1− x+.
(ii) Entropy s(x) = − log x+.

(iii) The natural retraction r : Δn → Λn .
(iv) Shannon entropy

μx = −
n∑

i=1

xi log xi .

10.3 Quantum States

We now pursue the idea which motivated our study of the Bayesian order on classi-
cal states: The spectral order on quantum states. Later we will see that the spectral
order can be characterized in a manner completely analogous to the order on classi-
cal states:

• The inductive formulation, in terms of quantum projections, and
• The symmetric formulation, in terms of unitary transformations.

These two accounts of the quantum order, when restricted to a class of states exhibit-
ing classical behavior, are equivalent to the inductive and symmetric characteriza-
tions of the Bayesian order on classical states studied in the last section.

10.3.1 Essentials

An n-dimensional complex Hilbert space Hn is an n-dimensional vector space over
C with specified inner product 〈· | ·〉.
Definition 17 A base of Hn is a sequence (ψi )

n
i=1 of unit vectors,

〈ψi | ψi 〉 = 1,

which are mutually orthogonal:

i �= j ⇒ 〈ψi | ψ j 〉 = 0.

We write x ⊥ y to express the orthogonality of two vectors x, y ∈ Hn , and as is
customary, extend this notation to subspaces of Hn as follows:
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Ψ ⊥ Φ ⇔ ∀ψ ∈ Ψ \ {o},∀φ ∈ Φ \ {o} : ψ ⊥ φ

where o is the zero of Hn .

Definition 18 A linear operator ρ : Hn → Hn is self-adjoint if

〈φ | ρψ〉 = 〈ρφ | ψ〉,

for all φ,ψ ∈ Hn , positive when

〈ψ | ρψ〉 ≥ 0

for all ψ ∈ Hn , and idempotent when ρ2 := ρ ◦ ρ = ρ.

The spectral theorem of von Neumann [12], roughly speaking, states that each
self-adjoint operator on a Hilbert space decomposes into a sum of simple operators
called projections.

Definition 19 A projection or projector is a self-adjoint, linear, idempotent operator.
The set of projections is denoted P

n . A projection P ∈ P

n is fully characterized by
its subspace of fixed points fix(P) ⊆ Hn .

All we need here is the finite dimensional case of the spectral theorem.

Theorem 6 A self-adjoint linear operator ρ : Hn → Hn decomposes uniquely into
a linear combination of mutually orthogonal projections

ρ =
∑

λ∈spec(ρ)

λ · Pλ
ρ with

∑

λ∈spec(ρ)

Pλ
ρ = I

whose images span Hn. The set spec(ρ) ⊆ R is called the spectrum of ρ.

We write the fact that the images of the projections span Hn as

span

⎛

⎝
⋃

λ∈spec(ρ)

fix(Pλ
ρ )

⎞

⎠ = Hn , (10.1)

where by idempotence we have fix(P) = Im(P) = P(Hn).

Definition 20 The trace of a linear operator ρ on Hn is

tr(ρ) :=
∑

i

〈ψi | ρψi 〉,

where {ψi } is any base of Hn . If A is any matrix representation of ρ, then tr(ρ) =∑
Aii is the sum of the elements on the diagonal of A.
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The standard kinematical account of a quantum system includes both a descrip-
tion of the states a system can take, and of its observables, i.e., the measurements
that can be performed on the system.

Definition 21 A density operator ρ on Hn is a self-adjoint, positive, linear operator
with tr(ρ) = 1. A quantum n-state is a density operator. The class of quantum
n-states is denoted Ωn .

Definition 22 A quantum state ρ is pure if spec(ρ) ⊆ {0, 1}. The set of pure states
is written Σn .

A classical state is a distribution on the set of pure states max(Δn). Similarly,
Gleason’s theorem [5] establishes that density operators encode precisely the mea-
sures on the closed subspaces of Hn , i.e., density operators are distributions on the
set of pure states.

Definition 23 A quantum n-measurement is a self-adjoint linear operator e : Hn →
Hn .

For instance, if e is the energy observable, then its spectrum spec(e) contains the
actual energy values a system can assume. According to quantum mechanics, if the
density operator of a system is ρ, then a measurement of the observable e yields
λ ∈ spec(e) as the result with probability

probλ
e (ρ) := tr(Pλ

e · ρ).

Now what we want to do is rewrite all of this in a form more amenable to the
task at hand.

Definition 24 L

n is the set of closed subspaces of Hn .

By the spectral theorem, we can write a self-adjoint operator e as

eψ =
∑

λ∈spec(e)

(λ · Pλ
e )ψ.

By mutual orthogonality, eψ = λψ ⇔ Pλ
e ψ = ψ , so the eigenspaces

eλ := {ψ ∈ Hn | eψ = λψ} = fix(Pλ
e )

give rise to a labeled collection of mutually orthogonal subspaces

De := {eλ | λ ∈ spec(e)}

which span Hn .

Definition 25 A decomposition of Hn is a family of mutually orthogonal subspaces
of Hn of dimension at least one which span Hn . The decompositions of Hn are
denoted D

n .
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We will also refer to the union
⋃

D of a decomposition D as being the decom-
position itself since the first characterizes the latter.

Definition 26 A spectral decomposition of Hn is an injective function f : X → L

n

defined on a nonempty set X ⊆ R with f (X) ∈ D

n . The domain of f is written
spec( f ) = X and called the spectrum of f .

Equivalently, a spectral decomposition is a partial injection f : R ⇀ L

n with
Im( f ) ∈ D

n and spec( f ) := dom( f ).

Lemma 17 There is a one to one correspondence between self-adjoint operators on
Hn and spectral decompositions of Hn.

Thus, we frequently use the operator and decomposition language interchange-
ably. For example, here is an alternate formulation of quantum states:

Definition 27 A density operator is a spectral decomposition r with

∑

λ∈spec(r)

λ · dim(rλ) = 1

and spec(r) ⊆ [0,∞).

In particular, a pure state r ∈ Σn is a decomposition r : {0, 1} → L

n with

∑

λ∈{0,1}
λ · dim(rλ) = 1.

From this equation we see that the subspace r1 is one-dimensional. In fact, r1 serves
to characterize r , since r0 must then be a certain n−1 dimensional subspace known
as the orthocomplement of r1,

r0 = r⊥1 := {ψ ∈ Hn | ψ ⊥ r1} .

We have proven the following.

Lemma 18 The pure states on Hn are in bijective correspondence with the one
dimensional subspaces of Hn.

So much for states. For observables, we will consider only those e on Hn with
the maximum number of distinguishable outcomes n. By simple renaming then,
we can take spec(e) = {1, . . . , n}. This convention highlights the role played by
measurements: They are labelings, i.e., to each outcome 1 ≤ i ≤ n, a measurement
assigns those states ei of the system for which observable e has value i with certainty
(probability one).

Definition 28 A labeling is a spectral decomposition

e : {1, . . . , n} → L

n .
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Notice that non-degeneration of spec(e) implies that the decomposition De con-
sists only of one-dimensional subspaces (pure states), i.e., De cannot be refined any
further:

Definition 29 A decomposition D is a refinement of decomposition D′ iff

⋃
D ⊆

⋃
D′ .

Finally, the probabilities. Recall that the probability of obtaining outcome i in a
measurement of observable e on a system with density operator r is given by

probi
e(r) := tr(Pi

e · r) .

For a state r and a labeling e, 〈r |ei 〉 denotes the i th diagonal element of the matrix
representation of r when expressed in a base B in which all Pi

e diagonalize, and thus,
by the spectral decomposition theorem, in which e itself diagonalizes. Writing Pi

e ·r
in base B then yields

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . . 0

0
1

0

0
. . .

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎜⎜⎜⎝

〈r |e1〉
. . . ?
〈r |ei 〉

?
. . .

〈r |en〉

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ?
. . .

... 0
0 ?

? · · · ?〈r |ei 〉? · · · ?
? 0

0
...

. . .

? 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and thus

tr(Pi
e · r) = 〈r |ei 〉 ,

from which we conclude

probi
e(r) = 〈r |ei 〉 . (10.2)

In particular, 〈r |ei 〉 does not depend on B, but only on r and ei , since it is equal to
tr(Pi

e · r). Further, since tr(r) = 1,

n∑

i=1

〈r |ei 〉 = 1,

which simply says that a measurement for observable e yields some outcome i ∈
spec(e) with probability one.

Definition 30 For a state r and labeling e, we define

spec(r |e) := (〈r |e1〉, . . . , 〈r |en〉) ∈ Δn .
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Notice that spec(r |e) is a list, while spec(r) is a set.

In general, spec(r |e) may not consist of eigenvalues of r , i.e., elements of
spec(r). However, if r also diagonalizes in base B, then its diagonal consists of
eigenvalues of r . And this is the case we are most interested in.

Definition 31 A state r admits a labeling e if

Im(spec(r |e)) = spec(r).

Any state admits at least n! labelings, corresponding with different permutations
of spec(r |e). More generally, the following result tells us exactly when a labeling
yields the spectrum of a state.

Proposition 10 The following are equivalent for state r and labeling e:

• r admits labeling e.
• De is a refinement of Dr .
• r diagonalizes in a base B in which e is diagonal.
• r and e commute, that is, [r, e] = r · e − e · r = 0.

The following are equivalent for states r and s:

• They admit a joint labeling e.
• They admit joint refinement D.
• They diagonalize in a common base B.
• They commute, that is, [r, s] = 0.

Additionally, states r and s admit labeling e iff

[r, s] = [r, e] = [s, e] = 0 .

In particular we have in all the above cases that

B ⊂
⋃

De ⊆
⋃

D ⊆
⋃

Dr ∩
⋃

Ds ⊆
⋃

Dr

whenever one of the inclusions applies.

Proof Given a base B, for all ψ ∈ B we have ψ ∈ ⋃De iff all ψ ∈ B are
eigenvectors of e iff e diagonalizes in the base B. Thus, any self-adjoint operator
e diagonalizes in a base B iff B ⊆⋃De .

We already showed above that r admits labeling e when there exists a base B in
which both r and e diagnalize, that is, whenever B is included both in

⋃
Dr and⋃

De and as such

B ⊆
⋃
{span(ψ) | ψ ∈ B} ⊆

⋃
Dr

where since e is non-degenerated we have
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{span(ψ) | ψ ∈ B} = De

and thus
⋃

De ⊆⋃Dr . Two states r and s then admit a joint labeling e whenever

⋃
De ⊆

⋃
Dr ∩
⋃

Ds .

The converses of these derivations is obvious. Whenever r and s admit diagonal-
ization in a common base B, when representing them in B commutation reduces to
commutation of reals. For the other results with respect to commutation, in par-
ticular the fact that self-adjoint operators diagonalize in a common base if they
commute, we refer to relevant literature.

Lemma 19 Let r be a state and e be a labeling with [r, e] = 0. Then

〈r |ei 〉 = λ⇔ ψi ∈ rλ ⇔ ei ⊆ rλ (10.3)

and

dim(rλ) = card({1 ≤ i ≤ n | 〈r |ei 〉 = λ}) . (10.4)

In particular, dim(rλ) does not depend on the choice of e, so neither do the multi-
plicities of eigenvalues.

Finally, the following result is indispensable and we will appeal to it time and
time again (often implicitly).

Lemma 20 (Definability) For any labeling e and classical state x, there is a unique
quantum state r ∈ Ωn with [r, e] = 0 and spec(r |e) = x.

Although the notions decomposition, refinement and labeling as well as the rep-
resentation of states and measurements as maps that label subspaces in terms of
spectra are not standard in orthodox quantum theory [12], they prove to be useful in
our setting since they highlight degeneration of spectra, a fundamental ingredient in
the ordering of both classical and quantum states.

10.3.2 A Partial Order on Quantum States

Here is the spectral order on quantum states Ωn .

Definition 32 For states r, s ∈ Ωn , we write r � s iff there exists a labeling e such
that

• e is admitted both by r and s,
• spec(r |e) � spec(s|e) in Δn .
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Though the order on quantum states only requires that there exist a single joint
labeling, it nevertheless applies to all labels shared by r and s. This is like the way
that x � y for classical states implies x ·σ � y ·σ , for any σ ∈ S(n) with x, y ∈ Δn

σ .

Proposition 11 If r � s in Ωn, then spec(r |e) � spec(s|e) in Δn, for any labeling
e with [r, e] = [s, e] = 0.

Proof We prove the equivalent statement that

spec(r |e) � spec(s|e) ⇔ spec(r |e′) � spec(s|e′) (10.5)

whenever [r, e] = [s, e] = [r, e′] = [s, e′] = 0. Since

⋃
Dr ∩

⋃
Ds =

⋃
{rλ | λ ∈ spec(r)} ∩

⋃
{sλ′ | λ′ ∈ spec(s)}

=
⋃
{rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)} ,

and, since whenever [r, e] = [s, e] = 0 we have

⋃
De ⊆

⋃
Dr ∩

⋃
Ds

by Proposition 10, it follows that

⋃
De ⊆

⋃
{rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)} ,

where, since rλ ⊥ rλ′ and sλ ⊥ sλ′ for λ �= λ′, the subspaces rλ ∩ sλ′ are mutually
orthogonal for non-coincideng labels (λ, λ′) and thus mutually exclusive. Since their
union includes

⋃
De they span Hn , so they constitute a decomposition

Dr,s := {rλ ∩ sλ′ | λ ∈ spec(r) , λ′ ∈ spec(s)}

with De as a refinement.

Dr :: rλ

Ds :: sλ′

Dr,s :: rλ ∩ sλ′

Since De is a refinement of Dr,s it also follows that

dim(rλ ∩ sλ′) = card
({

i ∈ {1, . . . , n} ∣∣ ei ⊆ rλ ∩ sλ′
})

where the quantity on the left does not depend on e. Since,
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ei ⊆ rλ ∩ sλ′ ⇔ ei ⊆ rλ, ei ⊆ sλ′

⇔ λ = 〈r |ei 〉, λ′ = 〈s|ei 〉
⇔ (〈r |ei 〉, 〈s|ei 〉) = (λ, λ′)

for (λ, λ′) ∈ spec(r)× spec(s), we have

card
({

i ∈ {1, . . . , n} ∣∣ (〈r |ei 〉, 〈s|ei 〉) = (λ, λ′)
}) = dim(rλ ∩ sλ′) .

Thus, writing

spec(r, s|e) =
(
(〈r |e1〉, 〈s|e1〉) , . . . , (〈r |en〉, 〈s|en〉)

)

it follows that the list spec(r, s|e) contains a fixed collection of elements

(
. . . , (λ, λ′) , . . . , (λ, λ′)︸ ︷︷ ︸ , . . .

)
,

dim(rλ ∩ sλ′)

where all (λ, λ′) ∈ spec(r)× spec(s), independent on the choice of e except for
the order of the elements in this list, that is, given e and e′ such that [r, e] = [s, e] =
[r, e′] = [s, e′] = 0 we have

spec(r, s|e′) = spec(r, s|e) · σ

for some permutation σ : {1, . . . , n} → {1, . . . , n} and thus

spec(r |e′) = spec(r |e) · σ and spec(s|e′) = spec(s|e) · σ .

But these are classical states, so

spec(r |e) � spec(s|e) ⇔ spec(r |e) · σ � spec(s|e) · σ,

from which implication (10.5) follows. ��
The last result uses one of the two fundamental properties possessed by the

Bayesian order on Δn : It is symmetric, i.e., the map

Δn → Δn :: x �→ x · σ

is an order isomorphism, for any σ ∈ S(n). This label independence of the Bayesian
order is a simple case of a more general notion satisfied by the spectral order which
we will study in the section on symmetries. To hint at the connection: The equation

spec(r |e) · σ = spec(r |e · σ)
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indicates that permuting the classical state spec(r |e) is the same as permuting the
subspaces (ei )

i=n
i=1 of the labeling e.

The second crucial property of the Bayesian order on Δn is that it is degenerative:

x � y ⇒ (yi = y j > 0 ⇒ xi = x j > 0).

Here is the quantum version of the degeneration lemma for classical states.

Lemma 21 If r � s in Ωn then

r0 ⊆ s0 (10.6)

and

⋃
s>0 ⊆

⋃
r>0 , (10.7)

where

r>0 := Dr \ {r0} and s>0 := Ds \ {s0} .

Proof Since r � s they admit a labeling e such that spec(r |e) � spec(s|e) and
thus by degeneration for classical states (Lemma 5), we have

{1 ≤ i ≤ n | 〈r |ei 〉 = 0} ⊆ {1 ≤ i ≤ n | 〈s|ei 〉 = 0}

so eq. (10.6) follows. Analogously, for

〈s|ei 〉 ∈ spec0(s) := spec(s) \ {0}

classical degeneration again yields

{1 ≤ j ≤ n | 〈s|e j 〉 = 〈s|ei 〉} ⊆ {1 ≤ j ≤ n | 〈r |e j 〉 = 〈r |ei 〉}

so eq. (10.7) follows. ��
Recall that an increasing sequence (xi ) of classical states must be confined to

some region Δn
σ . Here is the analogous result for the spectral order.

Lemma 22 Let (ri )i≥1 be a sequence such that for all i ≥ 1 we have that ri � ri+1.
Then there exists a joint refinement D(ri ) of (Dri )i≥1 and thus the states (ri )i≥1
admit joint labeling.

Proof We agree that the first index for states refers to the sequence index and that
the second refers to eigenvalues. First note that by Lemma 21, since ri � ri+1 we
have

ri,0 ⊆ ri+1,0 (10.8)
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⋃
ri+1,>0 ⊆

⋃
ri,>0 . (10.9)

We now proceed by induction.
As base case we take r1 as its own refinement. Note that the spectrum of a state r

decomposes in a zero and a non-zero part to which we refer as spec0(r). Let Di be
the constructed joint refinement for (r1, . . . , ri ). Set

Di+1 = (D ∪ E ∪ F) \ {o} ,

where

D = {a ∩ ri,0 | a ∈ Di }
E = {a ∩ ri+1,0 | a ∈ ri,>0}

F = ri+1,>0 .

Graphically, in terms of decompositions of Hn in subspaces,

r1,0
⋃

r1,>0

·
·
·

ri,0
⋃

ri,>0

ri+1,0
⋃

ri+1,>0
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

D E F

We now prove that Di+1 is a joint refinement for (r1, . . . , ri+1). Since ri � ri+1
they admit a joint refinement G so we have by Proposition 10 that

⋃
G⊆
⋃

Dri ∩
⋃

Dri+1

=
(

ri,0 ∪
⋃

ri,>0

)
∩
(

ri+1,0 ∪
⋃

ri+1,>0

)

=
(

ri,0 ∩ ri+1,0

)
∪
(⋃

ri,>0 ∩ ri+1,0

)
∪
(⋃

ri,>0 ∩
⋃

ri+1,>0

)

= ri,0 ∪
(⋃

ri,>0 ∩ ri+1,0

)
∪
⋃

ri+1,>0

by Eqs. (10.8) and (10.9) and since

ri,0 ∩
⋃

ri+1,>0 = ∅ .
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We moreover have

span
(⋃

ri,>0 ∩ ri+1,0

)
= span

(⋃
{a ∩ ri+1,0 | a ∈ ri,>0}

)

= span
(⋃

E
)

Since Di is a refinement for Dri it also follows that

span(ri,0) = span
(⋃

{a ∩ ri,0 | a ∈ Di }
)

= span
(⋃

D
)

.

Thus,

Hn = span(
⋃

G)

= span
(⋃

Dri ∩
⋃

Dri+1

)

= span
(⋃

D ∪
⋃

E ∪
⋃

F
)

= span
(⋃

Di+1

)
.

The elements in D, E and F are mutually orthogonal since Di , ri,>0 and ri+1,>0
consist of mutually orthogonal elements. Moreover, the sets

⋃
D,
⋃

E and
⋃

F are
themselves mutually orthogonal since

• ⋃F =⋃ ri+1,>0 ⊥ ri+1,0 ⊇⋃ E ,
• ⋃D ⊆ ri,0 ⊥⋃ ri,>0 ⊇⋃ E , and,
• ⋃D ⊆ ri,0 ⊥⋃ rn,>0 ⊇⋃ ri+1,>0 =⋃F ,

where the last inclusion follows from Eq. (10.9). Thus, Di+1 is a decomposition of
Hn . Since

• ⋃F =⋃ ri+1,>0,
• ⋃ E = ri+1,0, and,
• ⋃D ⊆ ri,0 ⊆ ri+1,0,

by eq. (10.8), it follows that
⋃

Di+1 ⊆ ri+1,0 ∪
⋃

ri+1,>0 =
⋃

Dri+1

so Di+1 is a refinement of Dri+1 . Since

• ⋃ E = ⋃ ri+1,>0 ⊆ ⋃ ri,>0 ⊆ ⋃Dn , by Eq. (10.9) and the inductive assump-
tion,

• ⋃F ⊆⋃ ri,>0 ⊆⋃Di , and,
• ⋃D ⊆⋃Di ,

it follows that Di+1 is a refinement of Di and thus of all Dr j for 1 ≤ j ≤ i .
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Finally, consider an infinite sequence (ri )i≥1 such that for all i ≥ 1 we
have that ri � ri+1 and let (Di )i≥1 be the corresponding series of refinements,
each member being the above constructed common refinement of (Dr1 , . . . ,Dri ).
Note that (

⋃
Di )i≥1 is decreasing with respect to intersection. Then, since Hn is

n-dimensional, there can only be n distinct decompositions contained in (Di )i≥1,
that is n − 1 non-trivial refinements steps Di �→ Di+1. Thus,

⋃
D(ri ) :=

⋂

i≥1

⋃
Di

is equal to the intersection of a finitely many decreasing sets and thus must be equal
to its smallest member, which is a common refinement for (Dri )i≥1. ��
Theorem 7 Ωn is a partially ordered set for each n ≥ 2. Its maximal elements are
the pure states,

max(Ωn) = Σn,

while its least element is the completely mixed state

⊥ :=
⎛

⎜⎝
1/n 0

. . .

0 1/n

⎞

⎟⎠ .

Proof For reflexivity, consider any labeling e admitted by state r . Then, due to
reflexivity in Δn (Theorem 2), reflexivity in Ωn follows.

For anti-symmetry assume that r � s and s � r . By Lemma 22 there exists a
joint labeling e and thus by definition 32 we have

spec(r |e) � spec(s|e) and spec(s|e) � spec(r |e) .

Due to anti-symmetry in Δn we obtain spec(r |e) = spec(s|e) so r = s by
Lemma 20.

For transitivity assume that r � s and s � t . By Lemma 22 there exists a joint
labeling e and thus we have

spec(r |e) � spec(s|e) and spec(s|e) � spec(t |e) .

Thus, due to transitivity in Δn we obtain spec(r |e) � spec(t |e) and thus by Defi-
nition 32 we have r � t .

Since spec(r) = {0, 1} for any r ∈ Σn , when s ∈ Ωn satisfies r � s it follows
for any labeling e admitted by r and s that we have

spec(r |e) = (1, 0, . . . , 0) · σ � spec(s|e)
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in Δn for some permutation σ , so spec(r |e) = spec(s|e) since spec(r |e) ∈
max(Δn), and thus r = s.

Conversely, for any state r ∈ Ωn expressed in a base B ∈ De in which it diago-
nalizes, we have

spec(r |e) � (1, 0, . . . , 0) · σ

in Δn for some permutation σ , so r has a pure state above it, and thus the pure
quantum states are the only maximal elements of Ωn .

Since spec(⊥) = {1/n} we have D⊥ = Hn and thus ⊥ admits any labeling.
Given r ∈ Ωn and labeling e admitted by e we then have

spec(⊥|e) = (1/n, . . . , 1/n) � spec(r |e) ,

so ⊥ � r and thus ⊥ is the least element of Ωn . ��
Examining the proofs given so far reveals that the technique used in defining the

spectral order serves to distinguish an interesting class of partial orders on classical
states for which the Bayesian order is the canonical member.

Corollary 3 If � is a symmetric and degenerative partial order on Δn, then the
relation in Definition 32 is a partial order on Ωn. Moreover,

• max(Ωn) = Σn whenever max(Δn) = {ei : 1 ≤ i ≤ n}, and
• The completely mixed state is the bottom of Ωn whenever (1/n, . . . , 1/n) is the

bottom of Δn.

By Lemma 20, we can define a quantum state r by specifying two pieces of
information: (i) a labeling e which it admits, that is [r, e] = 0, and (ii) a classical
state x for which spec(r |e) := x . We use this idea in what follows.

Proposition 12 The quantum states Ωn are a dcpo. In more detail,

(i) If (ri )i≥1 is an increasing sequence, then its supremum
⊔

i≥1 ri exists and is
implicitly defined by

spec
( ⊔

i≥1

ri

∣∣∣ e
)
=
(

lim
i→∞〈ri |e1〉, . . . , lim

i→∞〈ri |en〉
)

(10.10)

for some and thus any joint labeling e of (ri )i≥1.
(ii) Every directed subset of Ωn contains an increasing sequence with the same

supremum.

Proof By Lemma 22 there exists a joint labeling e for (ri )i≥1 and thus by Defini-
tion 32 it follows that (spec(ri |e))i≥1 is an increasing sequence in Δn . Then by
Proposition 12 we know that the pointwise limit
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lim
i→∞ spec(ri |e) :=

(
lim

i→∞〈ri |e1〉, . . . , lim
i→∞〈ri |en〉

)

exists. We define a state r implicitly via

spec(r |e) = lim
i→∞ spec(ri |e) .

We first show that this state r is independent on the choice of e. Since

⋃
D(ri ) =

⋂

i

⋃
Dri =

⋂

i

⋃
{ri,λi |λi ∈ spec(ri )}

=
⋃{⋂

i

ri,λi

∣∣∣ ∀i : λi ∈ spec(ri )
}

,

where we leave the proof of the first equality to the reader (straightforward verifica-
tion via the inductive definition of D(ri )), so

D(ri ) =
{⋂

i

ri,λi

∣∣∣ ∀i : λi ∈ spec(ri )
}

.

Note that by
⋃

D(ri ) =
⋂

i
⋃

Dri it also follows that for any joint labeling e of
(ri )i≥1, since

∀i ≥ 1 :
⋃

De ⊆
⋃

Dri ⇒
⋃

De ⊆
⋂

i

⋃
Dri ,

we have
⋃

De ⊆⋃D(ri ), that is,
⋃

D(ri ) contains all joint labelings of (ri )i≥1 (and
only those, so it is maximal with respect to this property).

If e is a joint labeling of (ri )i≥1 and
⋂

i ri,λi �= ∅, where

(λi )i≤1 ∈
∏

i≤1

spec(ri ) ,

then there exists some e j ∈ De such that e j ⊆⋂i ri,λi for which we have

e j ⊆
⋂

i

ri,λi ⇔ ∀i : e j ⊆ ri,λi

⇔ ∀i : 〈ri |e j 〉 = λi

⇔ (〈ri |e j 〉
)

i≥1 = (λi )i≥1 .

Since limi→∞〈ri |e j 〉 exists, limi→∞ λi exists and is equal to it. However, (λi )i≥1
does not depend on any labeling so neither does its limit limi→∞ λi . can define r
now as follows without any reference to a labeling:
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spec(r) :=
{

lim
i→∞ λi

∣∣∣∣ (λi )i≤1 ∈
∏

i≤1

spec(ri ) ,
⋂

i

ri,λi �= ∅
}

,

r : spec(r)→ L

n :: lim
i→∞ λi �→

⋂

i

ri,λi .

Next we prove that r is an upper bound of (ri )i≥1. By Proposition 12 we have

⊔

i≥1

spec(ri |e) =
⊔

i≥1

(
〈ri |e1〉, . . . , 〈ri |en〉

)

= lim
i→∞ spec(ri |e)

= spec(r |e) .

so for all i ≥ 1 we have spec(ri |e) � spec(r |e) and thus by definition of the order
on quantum states it follows that ri � r for all i ≥ 1.

We now show that r is the least upper bound of (ri )i≥1. Let s be any upper
bound of the sequence (ri )i≥1, i.e., for all i ≥ 1, ri � s. We now prove that r �
s. By the proof of Lemma 22 we know that there exists a finite subsequence of
(ri )i≥1 (of which we can assume that it has n members) which yields the same
common refinement of (ri )i≥1 for the given construction—since there are only n−1
refinement steps possible. Denote this finite subsequence by (ri j )

j=n
j=1. Then, since

ri1 � . . . � rin � s

they admit a common refinement and thus a common labeling e, which is also a
common labeling for the whole sequence (ri ), and which we can assume to be the
one by means of which we defined r since the definition of r does not depend on the
choice of labeling. In this labeling we then have for each i ≥ 1 that

spec(r |e) =
⊔

i≥1

spec(ri |e) � spec(s|e)

in Δn since for all i ≥ 1 we have spec(ri |e) � spec(s|e). Thus r � s by definition
of the order on quantum states.

We conclude r =⊔i≥1 ri from which Eq. (10.10) then follows.

(ii) The map Ωn → [0, 1] :: r �→ max(spec(r)) preserves suprema of increas-
ing sequences and is strictly monotone. ��

Thus, we can think of spec(·|·) as being Scott continuous in its first argument:
For any observable e,

spec
(⊔

ri |e
)
=
⊔

spec(ri |e)

whenever (ri ) is an increasing sequence in Ωn .
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10.3.3 Symmetries for Quantum States

We introduce symmetries, the quantum analogue of permutations for classical states.

Definition 33 A unitary transformation is a surjective linear operator U : Hn →
Hn which preserves angles:

〈Uφ | Uψ〉 = 〈φ | ψ〉 ,

for all ψ, φ ∈ Hn . U is called a quantum n-symmetry.

In particular, the inverse U−1 of a unitary operator U is unitary.

Lemma 23 Let U be a quantum symmetry on Hn. For any labeling e,

U · e : {1, . . . , n} → L

n :: i �→ {U (ψ) ∈ Hn | ψ ∈ ei }

is a labeling, while for any state r ,

U · r : spec(r)→ L

n :: λ �→ {U (ψ) ∈ Hn | ψ ∈ rλ}

is a state with spec(U · r) = spec(r).

In both cases only the action of U on subspaces comes into play. Thus, two
unitary operators U and U ′ related by U = reiθ · U ′ with r > 0 and θ ∈ [0, 2π)

should be thought of as equivalent. The linearity of the maps, in conjuction with the
coincidence of the action of U and U ′ on subspaces does force them to essentially
be the same [4], e.g. span(eiθψ) = span(ψ), though for ψ �= φ and both nonzero
we find span(φ + eiθψ) �= span(φ + ψ) for θ �= 0. Thus, a quantum n-symmetry
should be conceived of as a class of unitary operators on Hn with equivalent action
on subspaces. We will freely represent such a class by one of its representatives.

Lemma 24 For a state r and a labeling e with [r, e] = 0,

〈r |(U · e)i 〉 = 〈U−1 · r |ei 〉 . (10.11)

Proof First note that

(U · e)i = {U (ψ) ∈ Hn | ψ ∈ ei } = {ψ ∈ Hn | U−1(ψ) ∈ ei }

and

(U−1 · r)λ = {U−1(ψ) ∈ Hn | ψ ∈ rλ} = {ψ ∈ Hn | U (ψ) ∈ rλ} .

Next, following Eq. (10.3) we have



10 A Partial Order on Classical and Quantum States 647

〈r |(U · e)i 〉 = λ ⇔ (U · e)i ⊆ rλ

⇔ ∀ψ ∈ Hn : U−1(ψ) ∈ ei ⇒ ψ ∈ rλ

⇔ ∀ψ ∈ Hn : ψ ∈ ei ⇒ U (ψ) ∈ rλ

⇔ ei ⊆ (U−1 · r)λ

⇔ 〈U−1 · r |ei 〉 = λ,

which completes the proof. ��
Now we give a symmetric characterization of the spectral order analogous to

the symmetric characterization of the Bayesian order on classical states. Equa-
tion (10.11) leads us to the following dual formulations, which we call the active
and passive (cfr. active and passive transformations in classical mechanics are those
acting on the system and the reference frame, respectively). We assume for both
theorems that a labeling e has been fixed in advance.

Theorem 8 (Active) For r, s ∈ Ωn, we have r � s iff there exists a quantum sym-
metry U : Hn → Hn such that

• spec(U · r |e) and spec(U · s|e) are monotone
• [r, e] = [s, e] = 0

and

〈U · r |ei 〉〈U · s|ei+1〉 ≤ 〈U · r |ei+1〉〈U · s|ei 〉

for all i with 1 ≤ i < n.

Theorem 9 (Passive) For r, s ∈ Ωn, we have r � s iff there exists a quantum
symmetry U : Hn → Hn such that

• spec(r |U · e) and spec(s|U · e) are monotone
• [r, U · e] = [s, U · e] = 0

and

〈r |(U · e)i 〉〈s|(U · e)i+1〉 ≤ 〈r |(U · e)i+1〉〈s|(U · e)i 〉

for all i with 1 ≤ i < n.

Proof Any labeling e′ can be obtained from a given one e as U · e for some unitary
transformation U . Indeed, in terms of linear operators this correspondence translates
as e′ = U ◦ e ◦ U−1 so e · ψ = i ψ iff e′ · U (ψ) = i U (ψ), that is, ψ ∈ ei ⇔
U (ψ) ∈ e′i yielding the definition of U · e in terms of labelings. The result then
straightforwardly follows from Theorem 3 and Lemma 24. ��

The following is now merely an observation.

Proposition 13 The map (U · −) : Ωn → Ωn is an order isomorphism for any
quantum symmetry U : Hn → Hn.
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Theorem 8 is the quantum counterpart of Theorem 3 for classical states: The
action on states (U · −) : Ωn → Ωn in terms of a unitary transformation U
corresponds to the action on states (− · σ) : Δn → Δn in terms of a permuta-
tion σ . But what is the classical analogue of the passive formulation of the spectral
order?

Definition 34 A classical labeling is an injective function

e : {1, . . . , n} → max(Δn).

The standard labeling is 1 defined by 1(i) = ei .

Like the quantum case, we can write a classical state x from the point of view of
a classical labeling e as

spec(x |e) := (〈x |e1〉, . . . , 〈x |en〉),

where 〈·|·〉 is the standard inner product on R

n . For e = 1, spec(x |1) = x . Notice
too that 〈ei |e j 〉 = 0 for i �= j , so the image of a classical labeling e is by definition
a mutually orthogonal collection of pure states.

A classical labeling e induces a permutation 1−1 ◦ e ∈ S(n). Thus, a classical
labeling is merely a way of rearranging a fixed set of n orthogonal pure states
max(Δn). By contrast, a quantum labeling corresponds to selecting n orthogonal
pure states from an infinite set of potential pure states and arranging the n pure
states chosen.

Because classical labelings and symmetries are essentially the same, Theorem 3
is the passive formulation of the Bayesian order when we fix the standard classical
label 1 as our reference frame. All other classical labels e can be written as e = 1◦σ
for some σ ∈ S(n), analogous to the quantum case. To summarize:

Classically Quantum

Labeling Permutation e
Self-adjoint operator e

with spectrum {1, . . . , n}
Symmetry Permutation σ Unitary transformation U

The equivalence of “symmetry” and “labeling” for classical states suggests the
following analogy: Symmetries are to classical states as labelings are to quantum
states. Though this is not entirely conceptually satisfying, it is a useful mathematical
view of things. To illustrate, notice the strong resemblance between the following
characterization of the spectral order, in terms of labels, and the symmetric charac-
terization of the Bayesian order.

Theorem 10 For r, s ∈ Ωn, we have r � s iff there is a quantum labeling e such
that

• spec(r |e) and spec(s|e) are monotone
• [r, e] = [s, e] = 0
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and

〈r |ei 〉〈s|ei+1〉 ≤ 〈r |ei+1〉〈s|ei 〉

for all i with 1 ≤ i < n.

Compared to Theorem 8 and Theorem 9, in this result it is the act of labeling itself
that transforms a state into a monotone classical state. In the classical case, it is
obviously a permuation (classical label) which converts a state to monotone form.

As a second example, first recall that the symmetric group S(n) divides Δn into
order isomorphic regions,

Δn :=
⋃

σ∈S(n)

Δn
σ ,

where Δn
σ � Λn . Similarly, quantum states are divided into order isomorphic

regions by the class of measurement operators:

Ωn :=
⋃

e

Ωn|e,

where Ωn|e := {r ∈ Ωn : [r, e] = 0}, i.e., the set of quantum states admitted by
measurement e. Here is the quantum version of Proposition 4.

Proposition 14 Let n ≥ 2. Then

(i) For each labeling e, Ωn|e is closed under directed suprema.
(ii) For an increasing sequence (ri ), there is a labeling e with ri ∈ Ωn|e for all i .

(iii) The natural map

q : Ωn → Λn

is Scott continuous, strictly monotone and restricts to a retraction

re : Ωn|e � Δn → Λn

for each e.

Proof The precise definition of q is as follows: For s ∈ Ω|e, we define q(s) :=
r(spec(s|e)), where r : Δn → Λn is the natural retraction. ��

In particular, the Bayesian order on classical states is an instance of the spectral
order on quantum states, which is realized whenever we specify a labeling e. It may
interest the reader to know that both authors claim that q : Ωn → Λn cannot be
factored into a composition of monotone maps

Ωn ?→ Δn r→ Λn,

where ? : Ωn → Δn denotes a monotone map that probably doesn’t exist.
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10.3.4 Approximation of Quantum States

Like classical states, the ability to approximate quantum states order theoretically is
a consequence of the mixing law.

Proposition 15 If r � s in Ωn, then

r � (1− p)r + ps � s

for all p ∈ [0, 1].
Proof First, (1− p)r + ps is a density operator. Because r � s, there is a labeling
e with [r, e] = [s, e] = 0. Then

[(1− p)r + ps, e] = ((1− p)r + ps)e − e((1− p)r + ps)

= (1− p)[r, e] + p[s, e]
= 0.

Next,

spec((1− p)r + ps|e) = (1− p)spec(r |e)+ p · spec(s|e),

because (1− p)r + ps, r and s are diagonal when written in the base e. The result
now follows from the mixing law for classical states. ��

Like the classical case, the mixing law is equivalent to saying that the path πrs :
[0, 1] → Ωn from r to s given by

πrs(t) = (1− t)r + ts

is Scott continuous iff r � s.

Lemma 25 If r � s in Ωn and spec(s) ⊆ (0,∞), then

[s, e] = 0 ⇒ [r, e] = 0,

for any labeling e.

Proof First recall that [s, e] = 0 means that De is a refinement of Ds . But the
spectrum of s is positive, so Lemma 21 implies that Ds is a refinement of Dr . Thus,
De is a refinement of Dr , which means [r, e] = 0.

The last result is the quantum analogue of Lemma 12(i) for classical states. The
next few results further demonstrate the parallel between Δn

σ for classical states and
Ωn|e for quantum states.

Proposition 16 Let n ≥ 2.

(i) If r, s ∈ Ωn|e, then πrs(t) ∈ Ωn|e for all t ∈ [0, 1].
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(ii) For r, s ∈ Ωn, we have r � s iff for any labeling e, if s ∈ Ωn|e, then r ∈ Ωn|e
and spec(r |e)� spec(s|e) in Δn.

Proof (i) This was established in the proof of the mixing law.
(ii) (⇒) Let r � s. Then for some t < 1, r � π⊥s(t). If [s, e] = 0, then by (i),

[π⊥s(t), e] = 0 for all t , since we always have [⊥, e] = 0. However, because t < 1,
the spectrum of π⊥s(t) is positive, which is clear since

spec(π⊥s(t)|e) = (1− t)⊥+ t · spec(s|e).

By Lemma 25, [r, e] = 0. The other part is obvious.
(ii)(⇐) Suppose s =⊔ si for an increasing sequence (si ). Then there is a label-

ing e with [si , e] = 0 for all i and [s, e] = 0. By assumption, [r, e] = 0, and since

spec(r |e)� spec(s|e) =
⊔

i≥1

spec(si |e) in Δn,

we have spec(r |e) � spec(si |e) for some i , and hence r � si . Thus, r � s. ��
Ωn is a domain: A dcpo with an intrinsic notion of approximation.

Theorem 11 The quantum states Ωn are exact. In addition,

(i) For all r ∈ Ωn, π⊥r (t)� r for all t < 1.
(ii) The approximation relation � is interpolative: If r � s in Ωn, then there is

q ∈ Ωn with r � q � s.

Proof (i) By Prop. 16(i), [π⊥r (t), e] = 0 whenever [r, e] = 0. Since

spec(π⊥r (t)|e) = (1− t)⊥+ t · spec(r |e)� spec(r |e) in Δn,

Proposition 16 (ii) gives π⊥r (t)� r for all t < 1.
The map π⊥r is Scott continuous, so r is the supremum of an increasing sequence

of approximations. This implies that ↓↓r is directed with supremum r , proving the
exactness of Ωn .

(ii) Mimic the argument for classical states to show π⊥r (t1) � π⊥r (t2) whenever
t1 < t2. ��

The notion of partiality derivable from � on Ωn is worth taking a brief look at.
As before, we call r ∈ Ωn partial iff ↑↑r �= ∅.

Lemma 26 (Partiality) For r ∈ Ωn, the set ↑↑r �= ∅ iff spec(r) ⊆ (0,∞).

Proof The only direction which requires proof is (⇐). Let e be a labeling with
[r, e] = 0. Let x := spec(r |e) ∈ Δn . From the proof of Lemma 13 for classical
states, there is y ∈ Δn such that π⊥y(t) = x for some t < 1.
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Let s ∈ Ωn with [s, e] = 0 and spec(s|e) = y. First, π⊥s(t) = r , since
π⊥s(t), r ∈ Ωn|e and

spec(π⊥s(t)|e) = π⊥y(t) = x = spec(r |e).

Because t < 1, r = π⊥s(t)� s in Ωn . ��
Thus, a quantum state which is partial cannot be pure. In addition, by exactness,

all quantum states r arise as the supremum of an increasing sequence

(π⊥r (1− 1/n))n≥1

of partial states which approximate r .

Lemma 27 (Approximation of pure states) Let n ≥ 2 and ψ ∈ max(Ωn) be a
pure state. For all r ∈ Ωn, r � ψ ⇔ r = π⊥ψ(t) for some t < 1.

Proof Let r � ψ . Let e be any labeling with [ψ, e] = 0. Then [r, e] = 0 and

x := spec(r |e)� y := spec(ψ |e) ∈ max(Δn) .

Thus, by Prop. 7,

(∃t < 1) x = π⊥y(t).

But π⊥ψ(t) ∈ Ωn|e and spec(π⊥ψ(t)|e) = π⊥y(t) = x = spec(r |e), so r =
π⊥ψ(t), since each is diagonal in e and their spectra are equal. ��

Thus, the order theoretic approximations of pure states ψ are precisely the
mixtures of ψ with the completely mixed ensemble ⊥.

Example 9 The depolarization channel dp : Ωn → Ωn describes the process
by which the density operator of a system has all bias removed from it with
probability p

dp(r) = p · I/n + (1− p)r.

It can be rewritten as

dp(r) = p⊥+ (1− p)r,

very similar to the classical case we considered earlier. Just as in the classical case,
we also have dp(r)� r for p > 0.

10.3.5 Entropy

The word “measurement” is used in domain theory and in quantum mechanics. They
are related as follows: Domain theoretically, to measure the content of an object x ,
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we must do something to x that will convert the information it represents into a
simpler form μx that can be understood. Physically, as it turns out, the content of a
quantum state r can be measured by selecting an appropriate quantum measurement
e that converts r into a monotone classical state spec(r |e). (We might think of e as
a way of extracting classical information from r .) This defines the map

q : Ωn → Λn,

completely analogous to r : Δn → Λn for classical states, which is a measurement
in the sense of domain theory.

Proposition 17 The map q : Ωn → Λn is a measurement.

Proof First, q is Scott continuous, strictly monotone, and preserves and reflects
maximal elements. To show that it measures ker q = max(Ωn), let ψ ∈ Ωn and
U ⊆ Ωn be Scott open with ψ ∈ U .

Then there is 0 < t < 1 with a := π⊥ψ(t) ∈ U . Because a � ψ in Ωn ,
q(a) � q(ψ) in Λn , which means ε := ↑↑q(a) is a Scott open subset of Λn . We
claim that ψ ∈ qε(ψ) ⊆↑a ⊆ U . That ψ ∈ qε(ψ) is clear.

Now let s ∈ qε(ψ). Then there is a labeling e with [s, e] = [ψ, e] = 0. Because
a � ψ , we must have [a, e] = 0. But we also know

⊥ �= r(spec(a|e)) = q(a) � q(s) = r(spec(s|e)),

where r : Δn → Λn is the natural retraction. Now the proof that r is a measurement
gives

spec(a|e) � spec(s|e) in Δn,

which implies that a � s, and thus s ∈ U , finishing the proof. ��
In particular, we can measure the content of a quantum state with a classical state.

Example 10 The content of a density operator ρ can also be measured with its largest
eigenvalue,

ρ �→ max(spec(ρ)).

This is a measurement into [0, 1] since it factors as q(ρ)+. Similarly,

ρ �→ 1− q(ρ)+

and

ρ �→ − log q(ρ)+

are measurements into [0,∞)∗.
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The measures of content in the last example are the quantum versions of the maps
x �→ x+, x �→ 1 − x+ and x �→ − log x+ on classical states. The extension of
Shannon entropy to quantum states is called von Neumann entropy.

Theorem 12 Let σ : Ωn → [0,∞)∗ be the von Neumann entropy on quantum
states

σ(r) = −tr(r · log r)

where the logarithm is natural. Then σ is a measurement in the sense of domain
theory. In addition,

(i) For all r, s ∈ Ωn, if r � s and σ(r) = σ(s), then r = s.
(ii) For all r ∈ Ωn, we have σ(r) = 0 iff r ∈ max(Ωn) = Σn.

(iii) For all r ∈ Ωn, we have σ(r) = log n iff r = ⊥.

Proof The von Neumann entropy σ factors as

σ = μ ◦ q

where q : Ωn → Λn assigns to a quantum state its monotone spectrum, and
μ : Λn → [0,∞)∗ is Shannon entropy. Since q and μ have all the properties men-
tioned in this result, so does σ . ��

By now it is clear that quantum information is more intricate than classical infor-
mation, if for no other reason than the superficial observation that a density operator
is “more complicated” than a classical state. What we now want is a precise formu-
lation of the intuitive idea that there is more information in the quantum than in the
classical.

One hint is provided by Proposition 14: We can associate each classical state to
a quantum state in such a way that information is conserved:

conservation of information

=
(qualitative conservation)+ (quantitative conservation)

=
(order embedding)+ (preservation of entropy).

And this is what we now prove: While each classical state can be associated to a
quantum state in such a way that information is conserved, the converse is never
true.

Theorem 13 Let n ≥ 2. Then

• There is an order embedding φ : Δn → Ωn such that σ ◦ φ = μ.
• For m ≥ 2, there is no order embedding φ : Ωn → Δm with μ ◦ φ = σ .
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Proof For the first, Proposition 14 gives an embedding which preserves entropy.
For the second, if there is an embedding of Ωn into Δm which preserves entropy, it
yields an injection of max(Ωn) into max(Δm), which is impossible since the first of
these sets is infinite, while the latter is finite.

The reader may be interested to know that the authors both claim that the above
result holds independent of entropic considerations.

10.4 Synthesis

We now obtain a unified perspective on classical and quantum which leads to a
methodology applicable in any setting where one has (i) a notion of state and (ii) a
notion of state update as the result of observation.

10.4.1 Classical Projections

We first turn back to classical states to show that they admit a more general class
of projectors and that the inductive definition of the Bayesian order extends to this
larger class. First note that a classical projection

pi : Δn+1 ⇀ Δn

is undefined in the singleton

fix(pi )
⊥ := {x ∈ Δn+1 | xi = 1}

and has as “fixed points”

fix(pi ) := {x ∈ Δn+1 | xi = 0} .

Any projection pi moreover has a complementary projector, namely

p⊥i : Δn+1 ⇀ Δ1 : x �→ (1)

which is undefined in

fix(pi )
⊥ := {x ∈ Δn+1 | xi = 0} .

This projector expresses the update that the observer experiences when he looks in
box i and the object of his desire is actually there. Equivalently, this corresponds to
looking in all boxes except box i and not finding the object. The condition

x � y ⇒ p⊥i (x) � p⊥i (y)
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is however trivially satisfied whenever p⊥i is defined both in x and y. As such,
one could have included it in Definition 2.7 providing an interpretation “whatever
outcome we obtain when looking in box i , the corresponding collapse of knowledge
preserves the partial order”.

We define general projectors, encoding knowledge update when looking in sev-
eral boxes at once. Let n ≥ 2 and 1 ≤ k ≤ n. The map which collapses all i1, . . . , i th

k
outcomes is

pi1,...,ik : Δn ⇀ Δn−k

pi1,...,ik (x) = 1

1−∑ j xi j

(x1, . . . , x̂i1 , . . . , x̂i j , . . . , x̂ik , . . . , xn)

for 1 ≤ i1, . . . , ik ≤ n and 0 ≤ xi1 , . . . , xi j , . . . , xik < 1. The projector correspond-
ing to “looking in all boxes except” is

p⊥i1,...,ik
: Δn ⇀ Δn−k

p⊥i1,...,ik
(x) = 1∑

j xi j

(x̂1, . . . , xi1 , . . . , xi j , . . . , xik , . . . , x̂n)

for 1 ≤ i1, . . . , ik ≤ n.
The set of projectors as defined constitute a Boolen algebra isomorphic to the

powerset P({1, . . . , n}) when we adjoin the empty map

p1,...,n : Δn ⇀ ∅

and the identity

p : Δn → Δn .

In particular we have

p⊥
1,...î1,...,î j ,...,îk ,...,k

= pi1,...,ik ,

that is, projections inherit orthogonality from the complementation of the Boolean
algebra P({1, . . . , n}).
Proposition 18 Let x, y ∈ Δn+1. Then

x � y ⇔ (∀ {i1, . . . , ik} ⊆ {1, . . . , n} ) pi1,...,ik (x) � pi1,...,ik (y).

Proof Given pi : Δn ⇀ Δn−1 define p̃i : Δn ⇀ Δn via

p̃i : Δn pi
⇀ Δn−1 ιi→ Δn
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where

π j (ιi (x)) = x j for j < i
π j (ιi (x)) = 0 for j = i
π j (ιi (x)) = x j+1 for j > i .

Analogously we introduce the map

p̃i1,...,ik = ιi1,...,ik · pi1,...,ik : Δn ⇀ Δn

where

π j (ιi (x)) = x j+l−1 for il−1 < j < il
π j (ιi (x)) = 0 for j = il
π j (ιi (x)) = x j+l for il < j < il+1

when assuming that i1, . . . , ik is monotone and formally setting i0 = 0 and ik+1 =
n + 1. We then have

p̃i1,...,ik = p̃i1 · . . . · p̃ik

from which the result follows by induction. ��
Clearly, we rely on the following.

Proposition 19 Projections commute with respect to composition.

In particular, the Boolean algebra of projections is defined from concatenated
action of projections

p̃ ≤ q̃ ⇔ p̃ · q̃ = p̃

where p̃ and q̃ are defined as in the proof of Proposition 18.

10.4.2 Quantum Projections

We now show that the projective structure of classical states and its corresponding
inductive definition of the Bayesian order are preserved by the natural embeddings
of Δn into Ωn . In particular, the classical projections become instances of Hilbert
space projectors.

The Hilbert space projectors P

n also constitute an orthocomplemented lattice for
the partial order

P ≤ Q ⇔ P · Q = P .
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This lattice is however no longer distributive, e.g. [2, 3], and as such is not a Boolean
algebra. Related to this, commutativity for projections as we have in Proposition 19
is not valid anymore for Hilbert space projectors.

Analogous to the introduction of p̃ given p in order to be able to compose pro-
jections, we now will have to do the converse for Hilbert space projectors in order
to state an inductive definition of the partial ordering ofthe quantum states.

Any projector P ∈ P

n can be equivalently represented as a partial surjective map

P : Hn ⇀ fix(P)

which is undefined in fix(P)⊥. When an isomorphism

h : fix(P)→ Hk

is specified, with 0 ≤ k = dim(fix(P)) ≤ n, we can define

P↓ : Hn P
⇀ fix(P)

h→ Hk

of which the codomain does not depend on P anymore.
Note that such a map P↓ as well as P itself is fully characterized by its kernel,

thus these maps are in bijective correspondence with the subspaces L

n via

P

n → L

n : P �→ fix(P)

and also with {0, 1}-labeled decompositions, or equivalently, two element ordered
decompositions, via

P �→ (fix(P), fix(P)⊥
)
.

Abstracting over the {0, 1}-labeling we set

DP :=
{
fix(P), fix(P)⊥

}
.

Proposition 20 The following are equivalent for state r and projector P:

• They admit joint labeling e.
• Dr and DP admit a joint refinement D.
• They diagonalize in a common base B.
• [r, P] = 0.

The following are equivalent for states r and s and projector P:

• They admit joint labeling e, i.e., Dr , Ds and DP admit a joint refinement D, i.e.,
they diagonalize in a common base B.

• They pairwise admit joint labeling, i.e., Dr , Ds and DP pairwise admit joint
refinement, i.e., they pairwise diagonalize in a common base.

• [r, P] = [s, P] = [r, s] = 0.



10 A Partial Order on Classical and Quantum States 659

Proof Equivalence of the first four conditions follows from Proposition 10 since P
is a state up to normaliztion, that is,

1

dim
(
fix(P)

) P ∈ Ωn .

Given a joint refinement D for r, s and P any labeling e such that
⋃

De = ⋃D
is a joint labeling, and a base B ∈ ⋃De yields joint diagonalization. At its turn,
given a base B in which r, s and P diagonalize then

⋃
{span(ψ) | ψ ∈ B}

is a joint refinement.
Whenever we have a joint refinement, a joint labeling or a joint base for s, t

and P then we have pairwise existence of one too. For the converse statement we
provide a proof. We are going to prove a more general statement however, namely,
that whenever we have a set of decompositions {Di | i ∈ I }, for technical simplicity
envisioned as being finite, and such that for all i, j ∈ I we have that Di and D j

admits a joint refinement, then {Di | i ∈ I } as a whole admits one. (This fact
is implied by well-known results in the study of quantum structures [2, 3, 7, 13],
though the terminology there is different from ours. For the sake of a self-contained
discussion, we provide a complete proof.)

We call a, b ∈ L

n compatible, denoted a ↔ b, iff {a, a⊥} and {b, b⊥} admit
joint refinement—in lattice terms this means that they generate a subalgebra of L

n

which is Boolean [3]. Then we have that

span
(

a ∩ b , a ∩ b⊥
)
= a . (10.12)

Indeed, existence of a joint refinement for {a, a⊥} and {b, b⊥} implies

Hn= span
(
(a ∪ a⊥) ∩ (b ∪ b⊥)

)

= span
(
(a ∩ (b ∪ b⊥)) ∪ (a⊥ ∩ (b ∪ b⊥))

)

= span
(
span
(

a ∩ (b ∪ b⊥)
)

, span
(

a⊥ ∩ (b ∪ b⊥)
))

and since

span
(

a ∩ (b ∪ b⊥)
)
⊆ a and span

(
a⊥ ∩ (b ∪ b⊥)

)
⊆ a⊥

are subspaces of Hn this forces Eq. (10.12).
The fact that each Di is a decomposition, implying mutual orthogonality of its

members, and that we have pairwise existence of a joint refinement for all decom-
positions in {Di | i ∈ I }, implies that
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∀a, b ∈
⋃
{Di | i ∈ I } : a ↔ b .

We will now construct a joint refinement inductively, that is, we build a series
(di ) containing all elements of

⋃{Di | i ∈ I } and construct a joint refinement
Ek+1for (d1, . . . , dk+1) given a joint refinement Ek for (d1, . . . , dk), taking as base
case E1 := {d1, d⊥1 }. Set

Ek+1 := {a ∩ dk+1, a ∩ d⊥k+1 | a ∈ Ek} \ {o} .

It clearly follows that
⋃

Ek+1 ⊆⋃ Ek so we obtain a decreasing sequence.
We then also have that

• span(E1) = Hn , and,
• span(Ek+1) = span

({a ∩ dk+1, a ∩ d⊥k+1 | a ∈ Ek}
) = span (Ek)

due to Eq. (10.12), what proves that the inductive procedure preserves spanning Hn .
Mutual orthogonality of the elements in Ek+1 also follows construction.

It remains to be proven that

⋂

j∈I

⋃
E j ⊆
⋃

Di

for all i ∈ I . Let #(di ) be the length of (di ). From the construction it follows that the
elements of E#(di ) are of the form a1 ∩ . . . ∩ a#(di ) where a j ∈ {d j , d⊥j }. For every
Di there is a subsequence of elements ai j such that di j ∈ Di . Let ai1 ∩ . . .∩ai#Di

be
the corresponding subterm. We claim that the only non-empty such terms are those
for which there is exactly one 1 ≤ j ≤ #Di such that ai j = di j and for all others
k �= j we have ai j = d⊥ik

. That there is at most one follows from the fact that the
elements in Di are mutually orthogonal. That there is necessarily one follows from
the fact that we otherwise have d⊥i1

∩ . . . ∩ d⊥i#Di
as this subterm what implies that

any vector contained in it should be orthogonal to all di j ∈ Di , what is impossible
since Di spans Hn . So every subterm ai1 ∩ . . . ∩ ai#Di

and thus also every term
a1 ∩ . . . ∩ a#(di ) contains di j ∈ Di and thus

a1 ∩ . . . ∩ a#(di ) ⊆
⋃

Di

so

⋂

j∈I

⋃
E j =
⋃

E#(di ) ⊆
⋃

Di

for all i ∈ I what completes the proof. ��
It is well-known that projectors on Hn induce maps on Ωn in terms of Luders’

rule [11], that is
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P[−] : Ωn ⇀ Ωn : r �→ P · r · P

tr(P · r)

for tr(P · r) > 0. Note that P : Ωn ⇀ Ωn is still idempotent since

P · (P · r · P) · P = P · r · P ,

so we can set

fix(P[−]) := {P · r · P | r ∈ Ωn} .

Given an isomorphism

g : fix(P[−]) → Ωk,

with 0 ≤ k = dim(fix(P)) ≤ n, and possibly induced by an isomorphism h on the
underlying Hilbert spaces, we can define a map

Ωn P[−]
⇀ fix(P[−]) g→ Ωk . (10.13)

This will be of our view of projectors in this section, except for an additional
extension of the kernel to those density matrices that do not commute with P .

• By a projector P↓[−] : Ωn ⇀ Ωk we refer to the partial map induced by P ∈ P

n

which has as kernel those states x ∈ Ωn which are such that either

– tr(P · x) = 0
– [x, P] �= 0

and with the images defined by Eq. (10.13).

When writing down P↓[−] we as such assume that an isomorphism h, or equiva-
lently, g has been specified.

We introduce some dialectics analogous to that of labelings.

• A state r admits a projector P↓[−] iff P↓[ r ] is defined.

Then by Proposition 20 P and r admit joint labeling.
Let I(k, n) be the collection of monotone maps of the form

ι : {1, . . . , k} → {1, . . . , n}

for 0 ≤ k ≤ n, where the monotonicity is with respect to the usual order on natural
numbers, and let

I

n =
⋃
{I(k, n) | 0 ≤ k ≤ n} .
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Let

ι∗ : {1, . . . , n} ⇀ {1, . . . , k}

be the partial inverse for any given ι and let P

n|e be the projectors P ∈ P

n that admit
a given labeling e, that is,

P

n|e :=
{

P ∈ P

n
∣∣∣
⋃

De ⊆
⋃

DP

}
.

Lemma 28 Given a labeling e of Hn then P

n|e ∼= I

n .

Proof Given I ⊆ {1, . . . , n} define ι ∈ I

n such that I is its range. It then follows
that

P({1, . . . , n}) ∼= I

n

via I �→ ι due to monotonicity of ι.
We moreover have that P ∈ P

n|e iff
⋃

De ⊆ ⋃{fix(P), fix(P)⊥} iff there
exists IP ⊆ {1, . . . , n} such that ei ∈ fix(P) ⇔ i ∈ IP , and thus we have
P

n|e ∼= P({1, . . . , n}) via P �→ IP .

In Proposition 18, we characterized the Bayesian order in terms of projections.
Here is the formulation for the spectral order in terms of quantum projections.

Theorem 14 Let n ≥ 2. For r, s ∈ Ωn, we have

r � s ⇔ P↓[ r ] � P↓[ s ] (10.14)

• for all projectors P↓[−] admitting both r and s, and,
• provided there are enough projectors admitting both r and s,

where we adopt the base cases

• Ω0 := ∅ ;
• Ω1 := {(1)} with (1) � (1) ;
• For r, s ∈ Ω2 we have r � s iff there exist p, q ∈ [0, 1] with p ≤ q and a pure

state t ∈ Σn such that

r = (1− p)⊥+ pt s = (1− q)⊥+ qt ,

with

⊥ :=
( 1

2 0
0 1

2

)
.

Proof Any self-adjoint operator on H2 either has a non-degenerated spectrum or is
⊥. Excluding the latter case, given r ∈ Ω2 there exists a unique labeling e (up to
permutation of the labels) such that r admits e. This labeling is obtained by setting
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e1 = r+ and e2 = r⊥+ , where r+ are the eigenvectors for eigenvalue max(spec(r)).
In view of Definition 32, it then follows that if e is admitted both by r and s and
spec(r |e) � spec(s|e) then

〈r |e1〉 = max(spec(r)) ≤ max(spec(s)) = 〈s|e1〉

with s+ = r+ is necessary and sufficient for r � s. Defining p, q ∈ [0, 1] by

p = 2〈r |e1〉 − 1 and q = 2〈s|e1〉 − 1 ,

and the pure state t ∈ Ωn such that t1 = e1 we obtain

(1− p)⊥+ pt = (1− p)

( 1
2 0
0 1

2

)
+ p

(
1 0
0 0

)
=
( 〈r |e1〉 0

0 1− 〈r |e1〉
)
= r

and (1− q)⊥+ qt =
( 〈s|e1〉 0

0 1− 〈s|e1〉
)
= s

what encodes s+ = r+ and 〈r |e1〉 ≤ 〈s|e1〉 provided that p ≤ q.
Let r � s according to Definition 32. We need to prove that r and s admit enough

projectors and that they satisfy Eq. (10.14) with respect to those admitted. So let us
first define what we mean by enough projectors.

We mean by this having at least enough to consitute a family of mutually orthog-
onal projectors {Pi

e | 1 ≤ i ≤ n} that support the spectral decomposition of a
labeling

e =
∑

i

i Pi
e .

One verifies that this is equivalent to saying that there exists a family of mutually
orthogonal projectors {Pi | 1 ≤ i ≤ n} such that

⋂
i
⋃

DPi is the decomposition
of some labeling e. It is moreover not restrictive to assume that for all i we have
dim(fix(Pi )) = n − 1.

Since r � s they admit a joint labeling e that admits projectors P

n|e, among
which we have those defined by fix(Pi ) = ei . Then De = ⋂i

⋃
DPi so r and s

admit enough projectors.
We now show that r � s implies P↓[ r ] � P↓[ s ] provided P↓[−] is admitted

both by r and s. By Proposition 20 we have, since there exists a pairwise common
refinement for r , s and P , that they all together admit a joint labeling e for which
we then moreover have spec(r |e) � spec(s|e) ∈ Δn . Let

IP := {1 ≤ i ≤ n | ei ∈ fix(P)}

and set I⊥P := {0, . . . , 1} \ IP . By Proposition 18 we then have that

pI⊥P
(spec(r |e)) � pI⊥P

(spec(s|e)) .
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Let ι ∈ I(k, n) with k = dim(fix(P)) such that it range coincides with IP . Next,
given any isomorphism h : fix(P) → Hk , and thus also a corresponding one on
states

g : fix(P[−])→ Ωk

choose a labeling (e′i ) of Hk such that h(eι(i)) = e′i —we slightly abusively refer
to a base vector by the subspace of the labeling in which it is contained. We obtain
commutation of the following maps

where h̃ : L

n ⇀ L

k is here the partial surjective map arising when h : fix(P) →
Hk is applied pointwisely to those one-dimensional a ∈ L

n which are such that
a ⊆ fix(P). Indeed, we have

i
ι�→ ι(i)

e�→ eι(i)
h̃�→ e′i .

Since due to
⋃

De ⊆⋃DP we have

P↓(r) = g

(
1

tr(P · r)
P · r · P

)

= 1∑
i∈IP

〈r |ei 〉

⎛

⎜⎝
〈r |eι(1)〉 0

. . .

0 〈r |eι(k)〉

⎞

⎟⎠ in (e′i )

It then follows that

π j

(
pI⊥P

(spec(r |e))
)
= 1∑

i∈IP
〈r |ei 〉 〈r |eι( j)〉

=
〈
P↓(r)

∣∣∣ e′j
〉

= π j

(
spec(P↓(r)|e′)

)

so

pI⊥P
(spec(r |e)) = spec(P↓(r)|e′)

and thus
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spec(P↓(r)|e′) � spec(P↓(s)|e′) .

We then conclude P↓(r) � P↓(s).
Conversely, assume that there exists mutually orthogonal projectors

{Pi | 1 ≤ i ≤ n} such that
⋂

i
⋃

DPi is the decomposition of some labeling e and
for which we have P↓[ r ]i � P↓[ s ]i . Since r and s are admitted by all Pi we have
by the proof of Proposition 20 that there exists a joint labeling for r and s and all
Pi , which as such can only be e itself due to De = ⋂i

⋃
DPi . By constructing the

isomorphisms

he : Ωn|e → Δn and he′ : Ωn−1|e′ → Δn−1

for each projector Pi such that we have commutation of

Ωn|e he � Δn

Ωn−1|e′

P↓i
�

he′� Δn−1

pi

�

taking into account the isomorphisms gi : fix(Pi [−]) → Ωk that are different for
each Pi , we can embed the quantum case for projectors Pi and states r and s that
admit a fixed labeling e in the classical one with projectors pi . Then r � s follows
from spec(r |e) � spec(s|e) ∈ Δn which itself results from the inductive definition
for classical states. ��

Denote by P

n• projectors on n − 1 dimensional subspaces of Hn . We have the
following analogy between classical and quantum states:

Classical Quantum
States Δn Ωn

Pure states max(Δn ) Σn

Primitive projections { pi | 0 ≤ i ≤ n} Pn
•

General projections { pi 1 ,...,i k
| 0 ≤ i1, . . . , i k ≤ n} Pn

10.4.3 The Lattices of Birkhoff and Von Neumann

In the spectral order, quantum states are ordered by requiring of a labeling e that it
commute with the states r and s under consideration. In the corresponding induc-
tive formulation, a condition of commutation with states is imposed on projections.
Knowing the structural importance of non-commutativity of observables in quantum
mechanics, it may surprise the reader to learn that the lattices of Birkhoff and von
Neumann [2], the powerset P{1, . . . , n} and the collection L

n of subspaces of Hn
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ordered by inclusion, can be recovered from Δn and Ωn in a purely order theoretic
manner.

Recall here that the fundamentally different nature of quantum versus classical
observables can also be explained in order theoretic terms, roughly, by the distribu-
tivity of P{1, . . . , n} versus the non-distributivity of L

n [3, 7, 13]. The relation
between observables and these lattices is as follows.

A (real-valued) observable of a classical system, with pure states Σn
cl
∼=

{1, . . . , n}, is a map a : Σn
cl → R with range spec(a) that assigns to each pure state

the value of that observable. As a consequence, any proposition about the system of
the form

“The value of classical observable a is contained in E ⊆ spec(a)”

encodes as the set a−1(E). By considering all observables, that is, all such maps a,
we obtain P{1, . . . , n} ∼= P(Σn

cl) as the algebra of propositions about the system.
Inclusion of sets encodes implication of propositions.

Envision the pure states Σn
qm of a quantum system as the one-dimensional sub-

spaces of Hn , that is, a pure state is the set of fixed points r1 of a density operator r
with spec(r) ⊆ {0, 1}. For an observable on a quantum system, i.e., a self-adjoint
operator A with spectrum spec(A), any proposition about the system of the form

“The value of quantum observable A is contained in E ⊆ spec(A)”

encodes as the fixed points of the projector P E
A , since the states included in it will

yield an outcome in E in a measurement of the observable A (the probability of all
other outcomes is zero). This set of fixed points is a subspace of Hn . By considering
all observables, that is, all self-adjoint operators A, we obtain L

n ⊂ P(Σn
qm) as the

algebra of propositions about the system. And once again, inclusion of subspaces
encodes implication of propositions.

And so now, to briefly state things, in this section we establish the following:
Though the domain of quantum states is grounded in commutativity, it is neverthe-
less a genuine quantum structure in the sense of present day theoretical physics.

Definition 35 Let D be a dcpo. An element x ∈ D is irreducible if

∧(↑ x ∩max(D)
) = x .

The set of irreducible elements in D is Ir(D).

Our first result establishes that the irreducible states in Δn have an unmistakable
operational significance: They are precisely the states one derives by applying all
possible combinations of projections pi to the initial state ⊥ ∈ Δn .

Lemma 29 For x ∈ Δn, the following are equivalent:

(i) The state x is irreducible.
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(ii) For all i ∈ {1, . . . , n}, either xi = x+ or xi = 0.
(iii) There is a nonempty subset X ⊆ max(Δn) with x =∧ X.

Proof Recall from Proposition 1(ii) that for any classical state x and any index i ,
x � ei ⇔ xi = x+. This fact is used implicitly in what follows.

(i) ⇒ (ii): Let x be irreducible. Let y ∈ Δn be the classical state with yi =
y+ ⇔ ei ∈ ↑ x ∩ max(Δn) and yi = 0 otherwise. Then y is a lower bound for
↑ x ∩max(Δn), so y � x . We claim that y = x . If y+ < x+, then

n∑

i=1

xi ≥
∑

xi=x+
xi >

∑

yi=y+
yi = 1,

which contradicts the fact that x is a classical state. Then y+ ≥ x+. But since y � x ,
we know y+ ≤ x+. Thus, x+ = y+, which gives x = y. This proves (ii).

(ii) ⇒ (i): The proof is by induction. It is true for n = 2. Assume it for Δn , and
let x ∈ Δn+1 be a state of the desired form. We can assume x is not pure, since
otherwise x is clearly irreducible.

Let y ∈ Δn+1 be a lower bound for the set ↑ x ∩ Δn+1. Because x is not pure,
y cannot be pure either. Let i be any index with 1 ≤ i ≤ n + 1. Then pi (x) has
the form mentioned in (ii), so it is irreducible by the inductive hypothesis. The state
pi (y) is a lower bound of ↑ pi (x) ∩ max(Δn), so the irreduciblity of pi (x) gives
pi (y) � pi (x). Then y � x . This puts x ∈ Ir(Δn+1).

(iii) ⇒ (i): Let y be the state with yi = y+ iff ei ∈ X and yi = 0 otherwise. By
(i)=(ii), y is irreducible, while X = ↑ y ∩max(Δn) gives

x =
∧

X =
∧(↑ y ∩max(Δn)

) = y,

which shows that x is irreducible. ��
(i)⇒ (iii): Obvious.

Now we prove that P{1, . . . , n} is recoverable from the irreducible elements of
Δn . Specifically, Ir(D) in the order it inherits from D is order isomorphic to a subset
of P
(
max(D)

)
ordered by reverse inclusion, so we must consider Ir(D) in its dual

order, Ir(D)∗. Second, since every x ∈ D has a maximal element above it, the empty
set is not represented in Ir(D)∗, so we adjoin a least element 0 to obtain the poset

Ir(D)∗⊥ := Ir(D)∗ ∪ {0} .

Proposition 21 For any n ≥ 2,

Ir(Δn)∗⊥ � P{1, . . . , n}.

Proof Let e : {1, . . . , n} → max(Δn) be the natural bijection that takes an outcome
i to its associated pure state e(i) = ei . An order isomorphism
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ϕ : Ir(Δn)∗ → P{1, · · · , n} \ {∅}

is then given by

ϕ(x) = e−1(↑ x ∩max(Δn)
)
.

First, ϕ is surjective: Given ∅ �= X ∈ P{1, . . . , n},

ϕ
(∧

e(X)
)
= X,

using Lemma 29(iii). Next, it is an order embedding: For x, y ∈ Ir(Δn)∗,

x � y ⇔ ↑ x ∩max(Δn) ⊆ ↑ y ∩max(Δn)

⇔ e−1(↑ x ∩max(Δn)
) ⊆ e−1(↑ y ∩max(Δn)

)

⇔ ϕ(x) ⊆ ϕ(y).

Now we simply extend ϕ to an order isomorphism from Ir(Δn)∗⊥ to P{1, · · · , n} by
setting ϕ(0) = ∅, and the proof is finished. ��

We turn now to the analogous result for quantum states. To stress the analogy
with classical states we denote pure states now as max(Ωn) rather than as Σn .

First we prove the analogue of Proposition 1(ii) for quantum states. Denote by
r+ the subspace of eigenvectors for the largest eigenvalue, that is r+ = rλ for
λ = max

(
spec(r)

)
.

Lemma 30 For r ∈ Ωn and t ∈ max(Ωn), we have

r � t ⇔ t1 ⊆ r+

and thus

r+ =
⋃
{t1 | t ∈↑r ∩max(Ωn)} .

Proof Let t ∈ max(Ωn) be such that t1 ⊆ r+. Define a labeling e that satisfies

• e1 = t1,
• e2, . . . , edim(r+) ∈ r+ ∩ t⊥1 , and,
• edim(r+)+1, . . . , en ∈⋃Dr ∩ (r+)⊥.

By Proposition 1(ii) we then have spec(r |e) � spec(t |e) and thus r � t .
Conversely, let t ∈ max(Ωn) be such that r � t . Then there exists labeling e

such that [r, e] = [t, e] = 0, that is
⋃

De ⊆ ⋃Dr ∩⋃Dt , which implies since
Dt = {t⊥1 , t1} with t1 one-dimensional that there exists i ∈ {1, . . . , n} such that
t1 = ei , say i = 1. Then
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spec(r |e) � spec(t |e) = (1, 0, . . . , 0)

in Δn . By Prop. 1(ii) it then follows that 〈r |ei 〉 = spec(r |e)+ so ei ⊆ r+ and thus
t1 ⊆ r+. ��

A quantum state is irreducible iff its spectrum can be viewed as an irreducible
classical state.

Lemma 31 For r ∈ Ωn, the following are equivalent:

(i) The state r is irreducible.
(ii) There is a labeling e with [r, e] = 0 and spec(r |e) ∈ Ir(Δn).

(iii) Either there exists λ ∈ (0, 1] such that spec(r) = {0, λ} or r = ⊥.

In either case, spec(r |e) ∈ Ir(Δn) for any labeling e with [r, e] = 0.

Proof By Lemma 29, (ii) ⇔ (iii) is obvious. The rest of the proof essentially relies
on the analogous result for classical states.

(i)⇒ (iii) Let r be irreducible and e be a labeling with [r, e] = 0. Let

X = {spec(t |e) : t ∈↑r ∩max(Ωn) ∩ (Ωn|e)}.

By Lemma 29(iii), the infimum of X is an irreducible classical state, and we use this
to implicitly define a quantum state s ∈ Ωn by

spec(s|e) :=
∧

X ∈ Ir(Δn).

By the definition of spec(s|e), we immediately have spec(r |e) � spec(s|e), which
implies r � s in Ωn .

We claim that r = s. To prove this, we need only show that

↑r ∩max(Ωn) ⊆↑s ∩max(Ωn),

for then we have

r � s ⇒ ↑r ∩max(Ωn) =↑s ∩max(Ωn)

⇒ r =
∧
↑r ∩max(Ωn) =

∧
↑s ∩max(Ωn)

⇒ s � r

using the irreducibility of r .
Let t ∈↑ r ∩ max(Ωn). By Lemma 30, t1 ⊆ r+, and since r+ ⊆ s+, t1 ⊆ s+,

which again by Lemma 30 gives t ∈↑s ∩max(Ωn). But why do we have r+ ⊆ s+?
This is the crucial part of the argument: Since [r, e] = 0,

⋃
De ⊆ ⋃Dr , so De

contains a subset S of cardinality dim(r+) whose union is contained in r+. Each
element of S is a one dimensional subspace of Hn , so the usual bijection allows us
to treat S as a collection of pure states.
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For each pure state t ∈ S, we have [t, e] = 0, since t1 ∈ De, and
t ∈ ↑r ∩max(Ωn), using Lemma 30 and t1 ⊆ r+. Then by the definition of s,
s � t , while Lemma 30 gives t1 ⊆ s+. But then, because s+ is a subspace, we
clearly have

r+ = span({t1 : t ∈ S}) ⊆ s+,

which proves r = s. Thus, spec(r |e) = spec(s|e) is irreducible in Δn .
(iii) ⇒ (i) Let r = ⊥. Then ↑ ⊥ ∩ max(Ωn) = max(Ωn). If s � max(Ωn)

(pointwisely) then by Lemma 30 it follows that

Hn = {t1 | t ∈ max(Ωn)} ⊆ s+ .

Thus s = ⊥ so s � r and as such since trivially ⊥ � max(Ωn) (pointwisely) we
conclude ⊥ =∧(↑⊥ ∩max(Ωn)

)
.

Let spec(r) = {0, λ}. First, r �↑ r ∩ max(Ωn) (pointwisely) is again trivial.
Second, let s �↑r ∩max(Ωn) (pointwisely). Then,

↑r ∩max(Ωn) ⊆↑s ∩max(Ωn)

so it follows by Lemma 30 that

r+ =
⋃
{t1 | t ∈↑r ∩max(Ωn)}

⊆
⋃
{t1 | t ∈↑s ∩max(Ωn)}

= s+ .

Now define a labeling e that satisfies

• e1, . . . , ek ⊆ r+ for k := dim(r+),
• ek+1, . . . , ek+l ⊆ (r+)⊥ ∩ s+ for l := dim(s+)− dim(r+), and,
• ek+l+1, . . . , en ⊆ (s+)⊥ where 1− l − k = 1− dim(s+).

We have [r, e] = [s, e] = 0, while Lemma 29 gives spec(s|e) � spec(r |e) since
spec(r |e) is irreducible in Δn . Thus, s � r . ��
Theorem 15 For any n ≥ 2,

Ir(Ωn)∗⊥ � L

n .

Proof An order isomorphism ϕ : Ir(Ωn)∗ → L

n \ {0} is given by

ϕ(r) = r+.
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For its surjectivity, given any A ∈ L

n \ {0}, define an irreducible quantum state
r : {0, λ} → L

n by rλ = A and r0 = A⊥, where λ = 1/dim(A) > 0. Then
ϕ(r) = A. The fact that it is an order isomorphism follows straightforwardly from
quantum degeneration (Lemma 21).

The particular nature of this proof, which essentially relies on how we recover
P{1, . . . , n} from Δn , exhibits how much of the structure of Ωn is already present
in the partial order on Δn .

To summarize, we are able to recover L

n , the basic quantum structure from which
all other are derivable, from the domain of quantum states in a purely order theoretic
manner. Here is an analogy worth remembering: Ωn is to L

n as density operators
are to pure states. More to the point, in view of the fact that

• The canonical order theoretic structure corresponding to quantum mechanics in
terms of only pure states is L

n ,

we are tempted to claim that

• The canonical order theoretic structure corresponding to quantum mechanics in
terms of density operators is Ωn .

In short, because the density operator formulation offers a more complete picture
than simply working with pure states, the domain Ωn offers a more complete picture
than the lattice L

n .
Finally, let us add one last twist to the story: Not only does this more complete

picture emerge as the result of commutative considerations, but any natural approach
to ordering states which allows non-commutativity seems destined to fail!

Fact 1 If we define r � s for r, s ∈ Ωn by either

(i) “there exists a labeling e such that spec(r |e) � spec(s|e) in Δn,” or
(ii) “for all labelings e we have spec(r |e) � spec(s|e) in Δn,”

where e does not necessarily commute with r and s, then in both cases, the relation
� is not an information order.

Justification We will only provide explicit proofs of the following partial statements
for the case of n = 2 (arguments in higher dimensions are essentially of the same
nature):

• In case (i), all states (including bottom) are above all pure states.
• In case (ii), no state (including bottom) is strictly below a pure state.

Let r be a pure state with ψ ∈ r1 and let ψ⊥ ∈ r0. Then there exists a labeling e such
that ψ +ψ⊥ ∈ e1 and ψ −ψ⊥ ∈ e2. For this labeling e we have 〈r |e1〉 = 〈r |e2〉 =
1/2, that is, spec(r |e) = ⊥ in Δ2. Thus, for all s ∈ Ω2 we have spec(r |e) �
spec(s|e) in Δ2. In case (i) this implies r � s in Ω2. In case (ii) this implies that
we cannot have s � r in Ω2. ��
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Thus, the commutativity implied by the existence of a joint labeling in the spec-
tral order seems unavoidable if one wants to obtain a non-trivial partial order. This
can be physically explained as follows: Quantum mechanics bears as one of its most
fundamental principles that the maximal knowledge an observer can have about a
system at a single point in time amounts to knowing the values of a class of observ-
ables that constitute a maximally commuting family; any knowledge beyond this is
forbidden. Thus, on the assumption that a partial order on quantum states should
make statements about knowledge we possess about a system, commutativity at
some level is probably unavoidable.

10.5 Applications

We consider some basic applications of classical and quantum states.

10.5.1 A Calculus for Noise

One of the basic ideas in the measurement formalism [8] is that one can differ-
entiate functions f : D → E between collections of informative objects with
respect to underlying notions of content. Speaking abstractly, it offers a definition
of “informatic rate of change,” i.e., the rate at which (the content of) the output of a
process changes with respect to (the content of) its input.

As we have seen, the domains of classical and quantum states have many natural
notions of content, so in principle we ought to be able to study informatic rates
of change in these settings as a means of improving our understanding about the
behavior of various phenomena.

One such example arises easily in the study of noise: By modelling the effect
of noise as a selfmap on classical or quantum states, we can apply the informatic
derivative with respect to a preferred notion of content μ to gain a precise measure
of the effect a given form of noise f has on a given state σ . For ease of exposition,
we illustrate the idea on Δ2. Here are some natural candidates for μ:

• μx = 1− x+
• μx = 2x+x−
• μx = −x+ log x+ − x− log x− (Shannon entropy)

We’ll use the first since it is the simplest.

Definition 36 A noise operator is a function f : Δ2 → Δ2 such that f σ � σ .

The intuition in this definition is that noise qualitatively increases uncertainty.
Now, suppose a system is in state σ when it suffers an unwanted interaction with its
environment, which changes its state to f σ . How can we measure the effect of the
noise on the state of the system?

First, we write down a “grammar” which allows for the description of noise: A
simple class of noise operators N is
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• ⊥, 1 ∈ N

• f, g ∈ N ⇒ f ◦ g ∈ N

• f, g ∈ N ⇒ p f + (1− p)g ∈ N for p ∈ [0, 1],
• f, g ∈ N & f � g ⇒ p f ∗ + (1− p)g ∈ N for p ∈ [0, 1/2],
where ∗ is the involution (x, y)∗ = (y, x). It is straightforward to check that the
class of noise operators on Δ2 are closed under the operations mentioned above.

Now the effect that channel f ∈ N has on state σ can be systematically calculated
as follows:

Theorem 16 If f, g ∈ N, then

• d(⊥)μ(σ ) = 0,
• d(1)μ(σ ) = 1,
• d( f ◦ g)μ(σ ) = d fμ(gσ) · dgμ(σ ),
• d(p f + (1− p)g)μ(σ ) = pd fμ(σ )+ (1− p)dgμ(σ ),
• d(p f ∗ + (1− p)g)μ(σ ) = (1− p)dgμ(σ )− pd fμ(σ ),

for any σ �= ⊥.

This theorem allows us to verify inductively that d fμ(σ ) is a measure of reliabil-
ity. For instance, if d fμ(σ ) = 0, then the noise f has had a very strong effect on σ

(as a channel, f is unreliable for the transmission of σ ), while if d fμ(σ ) = 1, we
intuitively expect f (σ ) = σ , i.e., f is completely reliable.

Lemma 32 If f is a noise operator and f σ = σ , then either d fμ(σ ) ≥ 1 or it does
not exist.

We now have a fun and systematic approach to an interesting problem: Deter-
mining the states that a particular type of noise does not affect.

Example 11 Consider the depolarization of a classical state,

f σ = p⊥+ (1− p)σ.

For σ �= ⊥, we have

d fμ = pd(⊥)μ + (1− p)d(1)μ = 1− p,

so the only unaffected state is ⊥ for p > 0.

Example 12 The effect of a magnetic field on data stored on a disk is

f σ = pσ ∗ + (1− p)σ.

For σ �= ⊥, we have

d fμ = −pd(1)μ + (1− p)d(1)μ = 1− 2p.

Thus, if you are a state, it is better to be depolarized than flipped.
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In quantum mechanics, the study of noise and how to beat it is called decoher-
ence. In the quantum case, some neat measures of content arise, corresponding to
the classical ones:

• μx = 1− x+ �⇒ μρ = 1− spec(ρ)+,
• μx = 2x+x− �⇒ μρ = 1− tr(ρ2),
• μx = −x+ log x+ − x− log x− �⇒ μρ = −tr(ρ log ρ).

For consistency, we use the first one here as well.

Example 13 Depolarization of quantum states is

f (r) = t · I

n
+ (1− t)r = t⊥+ (1− t)r.

Once again, d fμ(r) = 1 − t . But the reason is physical. For instance, in the two
dimensional case we have

f (r) = (1− t)r + t

3
(σxrσx + σyrσy + σzrσz)

It affects the entire state in a uniform way. Quantum bit/phase flipping, by contrast,
only affects “part” of r . Things get more interesting then.

10.5.2 The Axioms of Domain Theory

This work led to the introduction of a new class of domains, the exact domains.
We will show in this section that exact domains offer a new perspective on the
more traditional, continuous domains [1]. With the benefit of this new point of view,
it then becomes possible to ask certain foundational questions that some domain
theorists may find intriguing.

Recall that in the study of approximation on classical states, we learned that
x � y is a statement which implicitly carries a specific context. In order to conclude
x � z when y � z, we need to know that the statement y � z is being made in
the same context as x � y. Aside from the case when x approximates a pure state
(Prop. 7), there is another way of ensuring this: If all entities involved (x, y, z) can
be regarded as necessary for a single state (↑↑z �= ∅).

Proposition 22 (Context) For all x, y, z ∈ Δn, if x � y � z and ↑↑z �= ∅, then
x � z.

Proof First we prove that if x, y, z ∈ Λn with x � y � z in Λn and zi > 0 for all
i , then x � z in Λn . Let z = ⊔wk where (wk)k≥1 is increasing in Λn . Now we
proceed just as in the proof of Theorem 4. For xi = xi+1 > 0, we can take ki = 1,
since the monotonicity of wk implies

xi

xi+1
= 1 ≤ πi (wk)

πi+1(wk)
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for all k, while in the case of xi > xi+1 > 0, degeneration (Lemma 5) gives
yi > yi+1 > 0, which accounts for the strict inequality in

xi

xi+1
<

yi

yi+1
≤ zi

zi+1
= lim

k→∞
πi (wk)

πi+1(wk)
.

The definition of limit again makes it clear that the required ki exists.
More generally, if x � y � z � w in Δn , we use Proposition 6(ii) to prove

x � z. First, z ∈ Δn
σ ⇒ x ∈ Δn

σ follows from Lemma 12(i) since zi > 0 for all
i using Lemma 13 and z � w. And second, since Proposition 6(ii) gives r(x) �
r(y) � r(z) in Λn , our opening argument now applies leaving r(x)� r(z) in Λn .

The value of this observation is that it provides a theoretical explanation for why
the approximation relation on Δn is interpolative:

Lemma 33 If D is an exact dcpo such that for all x, y, z ∈ D,

x � y � z ⇒ x � z,

whenever ↑↑z �= ∅, then � is interpolative. Moreover, a dcpo is continuous iff it is
exact and x � y � z ⇒ x � z for all x, y, z ∈ D.

Proof The proof given in [1] applies unchanged. ��
From this we can see that exact domains require precision when reasoning about

approximation. By contrast, the single most important aspect of approximation on
a continuous domain is not that it is interpolative [1], but rather that it is context
independent. The present work seems to provide sufficient impetus for investigating
domains beyond the continuous variety.

10.5.3 Qualitative Measures of Entanglement

Quantum entanglement is the essential feature in quantum communication schemes
and quantum cryptographic protocols that distinguishes them from their classical
counterparts. For the particular dialectics used here we refer to the standard literature
on the matter.

We illustrate by means of a series of examples how the results of this paper can
be applied to the study of entanglement. A full development on the matter is in
preparation.

Example 14 Measures of entanglement of bipartite quantum systems. Let Hn be a
n-dimensional complex Hilbert space. According to Schmidt’s biorthogonal decom-
position theorem [15], any bipartite state Ψ ∈ Hn ⊗Hn can be rewritten as

Ψ =
∑

i

ciψi ⊗ φi
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with (ψi ) and (φi ) orthonormal bases of Hn and (ci ) positive real coifficients which
are as a set uniquely defined. In particular we have

∑
i c2

i = 1 due to normalization
of Ψ , so every Ψ ∈ Hn⊗Hn defines a unique classical state c := (c2

i ). We can then
qualitatively measure entanglement using the dcpo Λn as

Ent : Hn ⊗Hn → Λn : Ψ �→ r(c)

where r is the usual retraction on classical states.
Moreover, every measure of content

μ : Λn → [0, 1]∗

gives rise to a quantitative measure of entanglement

μ · Ent : Hn ⊗Hn → [0, 1]∗ .

When taking as μ Shannon entropy we find the usual quantitative measure of entan-
glement for bipartite quantum systems.

The maximal element of Λn then encodes the non-entangled states, that is, the
pure tensors ψ ⊗φ. The minimal element of Λn then encodes the maximally entan-
gled state, that is

∑

i

1√
n
ψi ⊗ φi ∈ Hn ⊗Hn

which does not depend on the choice of bases.
Since μ : Λ2 → [0, 1]∗ is a duality, using Λ2 rather than in [0, 1]∗ doesn’t teach

us much for the case n = 2, that is, for a pair of qubits. For qutrits however, n = 3,
we capture essential qualitative differences by valuating in Λ3.

Consider for example the state

S := 1√
2
(ψ1 ⊗ φ1 + ψ2 ⊗ φ2) ∈ H3 ⊗H3,

that is,

S = 1√
2
(|00〉 + |11〉).

The state S is entangled but this entanglement has essentially a qubit nature, that is,
we can express the state by only using a subbase of H3 that contains two vectors. In
particular, the entanglement coincides with that of the EPR or singlet state so it is
maximal as qubit entanglement.

On the other hand, the states
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Tq := q(ψ1 ⊗ φ1)+ 1− q

2
(ψ2 ⊗ φ2 + ψ3 ⊗ φ3) ∈ H3 ⊗H3

for 1/3 < q < 1, that is,

Tq := q(|00〉)+ 1− q

2
(|11〉 + |22〉) ,

exhibits genuine qutrit entanglement.
Unfortunately, for q ranging in ( 1

3 , 1) Shannon entropy ranges in (0, 1) so some
Tq have entropy higher than S and some have entropy less than S. The valuation
μ · Ent as such doesn’t capture the qualitative feature that distinquishes between
maximal qubit-type entanglement and essentially qutrit type entanglement.

However, Λ3 does. Indeed, consider

Ent(S) = r

(
1

2
,

1

2
, 0

)
and Ent(Tq) = r

(
q,

1− q

2
,

1− q

2

)
,

that is,

•Ent(S)

Ent(Tq)
Λ3

in graphical terms. Since there is no value for q ∈ ( 1
3 , 1) for which we have that

(1/2, 1/2, 0) and (q, (1− q)/2, (1− q)/2) compare in Λ3, it follows for all Tq

with q ∈ ( 1
3 , 1) that

Ent(S) �� Ent(Tq) and Ent(Tq) �� Ent(S) .

The states Ψ ∈ H3 ⊗H3 for which we have Ent(Ψ ) � Ent(S) are those which
are such that

Ent(Ψ ) = r

(
q,

1− q

2
,

1− q

2

)

for 0 ≤ q ≤ 1/3, that is, that are convex combinations of S and the maximally
entangled state in H3 ⊗H3,

1√
3
(|00〉 + |11〉 + |22〉) ,
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for which we set

* := Ent
(

1√
3
(|00〉 + |11〉 + |22〉)

)
.

Graphically,

•Ent(S)

Λ3

•
⊥

↓ Ent(S)

where ↓Ent(S) is the lower set of Ent(S) in Λ3.
The states Ψ ∈ H3 ⊗H3 for which we have Ent(S) � Ent(Ψ ) are those which

are such that

Ent(Ψ ) = r (q, 1− q, 0)

for 0 ≤ q ≤ 1/2, that is, convex combinations of S and the minimally entangled
state in H3 ⊗H3 (the pure tensor |00〉), for which we set

* := Ent(|00〉) .

Graphically,

⊥

•Ent(S)

Λ3

•

•

↑ Ent(S)

where ↑Ent(S) is the upper set of Ent(S) in Λ3.
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We can now refine our qualitative representation of entanglement for bipartite
states using the order on quantum states.

Example 15 Qualitative entanglement of bipartite quantum systems In Example 14,
the quantitative valuation μ · Ent with μ Shannon entropy, that is, the usual val-
uation attributed to a bipartite quantum system in order to measure entanglement,
can equivalently be defined as the von Neumann entropy of one of the quantum
states ρ1(Ψ ) or ρ2(Ψ ) for Ψ ∈ Hn ⊗ Hn that arise by tracing over the other
system.

Explicitly, for Ψ =∑i ciψi ⊗ φi we obtain

ρ1(Ψ ) := tr2(Ψ ) =
⎛

⎜⎝
c2

1 0
. . .

0 c2
n

⎞

⎟⎠ in (ψi )

ρ2(Ψ ) := tr1(Ψ ) =
⎛

⎜⎝
c2

1 0
. . .

0 c2
n

⎞

⎟⎠ in (φi ) .

Since the diagonals coincide, von Neumann entropy coincides and in either case
gives the same value.

This implies that we can refine the valuation of entanglement Ent in Example 14
as

EntΩ : Hn ⊗Hn → Ωn ×Ωn : Ψ �→ (ρ1(Ψ ), ρ2(Ψ ))

where Ωn ×Ωn is ordered pointwisely, that is,

(r1, r2) � (s1, s2) ⇔ r1 � r2 and s1 � s2 .

On Ωn ×Ωn we can then define as a measure of content

μ1,2 : Ωn ×Ωn → [0, 1]∗ : (r1, r2) �→ μ(r1)+ μ(r2)

2

where μ is von Neumann entropy. This results in a quantitative measure of entan-
glement on Hn ⊗Hn that exactly coincides with the usual one. Indeed,

μ1,2

(
EntΩ(Ψ )

)
= μ1(ρ1(Ψ ))+ μ2(ρ2(Ψ ))

2
= μ(ρ1(Ψ )) = μ(ρ2(Ψ )) .

Note here in particular that EntΩ “almost” turns the states in Hn ⊗ Hn into a
domain by setting

Ψ � Φ ⇔ EntΩ(Ψ ) � EntΩ(Φ) .



680 B. Coecke and K. Martin

We obtain a preorder that has pure tensors as maximal elements and that has ⊥ as a
minimum.

We however lose some anti-symmetry in this passage. In particular, when consid-
ering the Schmidt base, the order loses track of relative phases between base vectors.
Indeed,

EntΩ (ψ1 ⊗ φ1 + ψ2 ⊗ φ2) = EntΩ (ψ1 ⊗ φ1 + iψ2 ⊗ φ2)

although

ray (ψ1 ⊗ φ1 + ψ2 ⊗ φ2) �= ray (ψ1 ⊗ φ1 + iψ2 ⊗ φ2)

so these vectors do not encode the same state.
However, this can be fixed by taking into account their phases in defining the

order. We will provide the details in a future paper.
Pure tensors avoid this since

ψ ⊗ (iφ) = (iψ)⊗ φ = i(ψ ⊗ φ)

for which we have

ray (iψ ⊗ φ) = ray (ψ ⊗ φ) .

The maximally entangled states do not depend on the bases at all.
The essential difference between the qualitative valuations EntΩ and Ent is the

fact that EntΩ takes into account the identity of pure tensors above.

Example 16 Qualitative entanglement of multipartite quantum systems In Example
14 we measured entanglement of bipartite quantum systems using unicity of the
coefficients in the Schmidt biorthogonal decomposition. There however does not
exist a similar construction for arbitrary multipartite sytems, that is, there is no
Schmidt-type decomposition theorem for arbitrary Hn ⊗ . . .⊗Hn .

In particular, up to now there was not even a satisfactory notion of maximal
entanglement e.g. see [10]. Indeed, when considering three partite qubit states, for
the Greenberger-Horn-Zeilinger state [6]

GHZ := 1√
2
(|000〉 + |111〉)

and the W-state

W := 1√
3
(|100〉 + |010〉 + |001〉)

there are conflicting arguments about which one is maximally entangled. The gen-
eral favourite is however GHZ in particular in view of its maximal violation of
certain type of inequalities (e.g. Bell’s) that are characteristic for entanglement.

The solution of this conflict lies in specification of a context with respect to which
one measures entanglement, in the sense of Example 15.
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We propose here a qualitative measure for multipartite entanglement that favours
GHZ as the maximally entangled state, allong the lines of the valuation in Exam-
ple 15 for bipartite entanglement.

Define

EntΩ : Hn ⊗ . . .⊗Hn → Ωn × . . .×Ωn : Ψ �→
(
ρ1(Ψ ), . . . , ρm(Ψ )

)

where ρi (Ψ ) arises by tracing over all systems except the i th. We can do this for
example by considering the Schmidt decomposition for Hn ⊗ (Hn ⊗ . . .⊗Hn)

where the single Hilbert space encodes the i th system.
We then obtain for the above examples that

EntΩ(GHZ) =
((

1/2 0
0 1/2

)
,

(
1/2 0
0 1/2

)
,

(
1/2 0
0 1/2

))

since we have

GHZ = 1√
2
(|0〉|00〉 + |1〉|11〉)

with respect to the 1st component and

EntΩ(W) =
((

2/3 0
0 1/3

)
,

(
2/3 0
0 1/3

)
,

(
2/3 0
0 1/3

))

since for example

W :=
√

2√
3
|0〉
(

1√
2

(|10〉 + |01〉)
)
+ 1√

3
|1〉|00〉

and as such it follows that

EntΩ(GHZ) � EntΩ(W) .

Depicting only the part of Ω2 containing the relevant pure states |0〉 and |1〉 here,
that is, a copy of Δ2, this represents graphically as EntΩ(GHZ)

versus EntΩ(W)
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where the maps π1, π2 and π3 represent the components of EntΩ .
We can define a quantitative measure of entanglement on Hn ⊗ . . . ⊗ Hn via

composition of EntΩ and

μ1,...,m : Ωn × . . .×Ωn → [0, 1]∗ : (r1, . . . , rn) �→ 1

m

∑

i

μ(ri )

where μ is again von Neumann entropy. We obtain as such the desired values on
pure tensors and the maximally entangled state. In particular do we obtain

μ1,2,3

(
EntΩ(GHZ)

)
= 1 .

When one prefers to abstract over the identity of the pure tensors above, it is clear
that all the above still holds by substituting Λn for Ωn , that is, Ent for EntΩ .
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