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Preface

New? In what sense? Surely I am not the only person who, after extensively justi-
fying why certain mathematical structures naturally arise in physics, gets questions
like: “this is all nice maths but what’s the physics?” Meanwhile I figured out what
this truly means: “I don’t see any differential equations!” Okay, this is indeed a bit
overstated. Nowadays any mathematical argument involving groups, when these are
moreover referred to as “symmetry groups”, stands a serious chance of being eligi-
ble for carrying the label “physics”. But it hasn’t always been like this. John Slater
(cf. the Slater determinant in quantum chemistry) referred to the use of group theory
in quantum physics by Weyl, Wigner et al. as der Gruppenpest, what translates as
the “plague of groups”. Even in 1975 he wrote [14]: “As soon as [my] paper became
known, it was obvious that a great many other physicists were as ‘disgusted’ as I
had been with the group-theoretical approach to the problem. As I heard later, there
were remarks made such as ‘Slater has slain the Gruppenpest’. I believe that no
other piece of work I have done was so universally popular.” Donkeys usually don’t
make the same mistake twice, . ..

... and, surely I am not the only person who, after extensively justifying why certain
mathematical structures naturally arise in physics, gets questions like: “this is just
the same thing in a different language!” Well, so was Copernicus’ description of
the planets as compared to Ptolemy’s. Looking back at the facts, Ptolemy’s descrip-
tion turned out to be more accurate, accounting even for relativistic effects. So was
abandoning the view that the Earth was the centre of the universe and that planets
move around it on hierarchies of epicycles a step backward? Of course not. Taking
the superheavy object that the sun is to be a fixed point of reference unveiled the
gravitational force as well as a critical glimpse of Newton’s laws of motion, in
terms of Galilei’s visions and Kepler’s work. Similarly, programming languages
are not just a different way of writing down Os and 1s, but also capture the flows of
information within a computational process. Surely we wouldn’t want the whole of
mathematics to be written down entirely in terms of Os and 1s; imagine researching
physics in terms of nothing but Os and 1s! All this just to say that language means
structure and additional structure means additional content: using group theory is
not just about using a different language but about identifying symmetry as a key
ingredient of physics. The same goes for the structures that are discussed in this

vii
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book: they all identify a key ingredient in physics that deserves our attention. They
moreover identify this ingredient as present in a wide range of theories, including
theories of information and computation.

The contributing research landscape. Once a subset of mathematics is accepted by
the general physics community as relevant, many physicists seem to stop making
a distinction between that piece of mathematics and the natural phenomenon this
piece of mathematics aims to describe. For this reason, there is a high entrance
fee for a mathematical structure to be awarded this privilege. But this also means
that progress in physics does go hand-in-hand with the use of new mathematical
structures. This book contains a number of such structures which recently have been
finding their way into quantum information, foundations of general relativity, quan-
tum foundations, and quantum gravity foundations. A surprising feature of many
of these is that these structures are already heavily used in “Euro-style” computer
science, and some were even crafted for this particular purpose. In general relativity
“Scott domains” enable to reconstruct spacetime topology from the causal structure
without making any reference to smoothness [10]. Dana Scott (= male) initially
introduced these domains in the late 60s to provide semantics for the A-calculus [13],
which plays a key role both in the foundations of mathematics and in programming
language foundations [19]. In quantum information monoidal categories [21] are
becoming more prominent, for example, for the description of particular computa-
tional models such as topological quantum computing (see [11] for a survey), and
measurement-based quantum computing (see for example [5, 6, 8]), in which the
interaction between classical and quantum data is of key importance. Earlier it was
already suggested that topological quantum field theories [2], which are functors
between certain kinds of monoidal categories, could be relevant for a theory of
quantum gravity [3, 7]. Again, these monoidal categories are of key importance
in computer science, for example, they provide semantics for linear logic [20], a
logic which is important in concurrency theory [18], the theoretical underpinning of
mobile phone networks, internet protocols, cash machines etc.

At the n-category café John Baez suggested that a less opportunistic title for this
volume would have been: “Structures you would already know about, had you been
paying proper attention”. While as title poetry this isn’t great, he is of course right,
and for more than one reason. John himself pointed to the fact that, for example,
“Category theory has been important in algebraic topology ever since its intercep-
tion in 1945. It’s just taken a while for these structures to become part of the toolkit
of the average mathematical physicist.” He and Mike Stay have more examples on
page 125 of their chapter entitled “Physics, topology, logic and computation: A
Rosetta Stone” [4]. The other reason is the one I mentioned above: these structures
are already heavily used in theoretical computer science, where the play the role of
“logic of interaction” [1], “discrete (relativistic!) spacetime” [9, 12], among many
other roles.

A personal appreciation. | started my research career in the late eighties in quantum
foundations. If that didn’t already guaranty academic suicide, I moreover studied
hidden variable theories. After my PhD, in an attempt to save my career, I moved
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to the dying area of quantum logic within the retiring Geneva group led by Piron.
Having become aware of my mistake I moved into pure mathematics, to category
theory, an area hated by most non-category-theoretic-mathematicians, within the
retiring category theory group at McGill University. The great surprise is that after
all of this I am still standing, while many other scholars, far more brighter than I
am, lost the battle. The worst carnage in terms of academic careers surely must have
taken place in high energy physics [15, 16]. In quantum foundations the academic
death-toll is less, but this mostly has to do with the the style quantum theory is
taught in most places: “Don’t think, just do!”, resulting in not many people end-
ing up in quantum foundations. The reason that I ended up surviving must be that
although each of |quantum foundations), |quantum logic), |category theory) causes
academic disaster, |quantum categorical logic foundations) proved to be some kind
of a hit in European computer science circles where, surprisingly, “foundations”
means “cool”. In those circles structural research is indeed highly appreciated, the
reason being that one simply can’t do without. Meanwhile, the membership of
our multidisciplinary group here at Oxford University Computing Laboratory [22]
has grown to 30, which besides Samson Abramsky and myself now also includes
Andreas Doring, and a zoo of DPhil (= Oxford PhD) students with backgrounds in
theoretical physics, computer science, pure mathematics, philosophy, engineering,
and even linguistics.

How did this all came about? In 2005 1 organized an event called Cats, Kets and
Cloisters (CKC) at Oxford University Computing Laboratory [23]. The event aimed
to set the stage for an encounter of researchers studying mathematical structures in
computer science, quantum foundations, pure mathematicians including specialists
in logic, category theory and knot theory, and quantum informaticians. It in partic-
ular included twelve tutorial lectures by leading experts. The success of the confer-
ence what witnessed by the fact that since there was no budget to invite speakers,
these twelve leading experts all covered there own expenses. Moreover, a chain of
similar events [24-26] emerged after CKC, the most recent one being Categories,
Quanta and Concepts (CQC) at the Perimeter Institute [27].

But alow in all this was the following. When asked by several PhD students were
they could read about “this kind of stuff”, there simply wasn’t a satisfactory answer.
This is were this volume kicks in: it collates a series of tutorials that do the job.

Contributions to this volume. We start with an ABC on monoidal category theory, by
Abramsky and Tzevelekos, Baez and Stay, and Coecke and Paquette. These bulky
contributions nicely complement each other, the first one being the lecture notes of
the category theory course here at Oxford University Computing Laboratory, the
second one exemplifying how the same structures arise in very different areas, and
the third one establishing that monoidal categories have always been “out there”
in physics. The “linear” feature of these categories is then further emphasized, in
graphical realm by Selinger, and in computational realm by Haghverdi and Scott.
In particular, Selinger’s chapter is the first rock-solid comprehensive account on the
topic of graphical calculi for monoidal categories, in which he fixes several caveats
of the existing literature. Then follows a Blute-Panagaden double which applies the
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theory to formal distributions and formal Feynman diagrams. After that we have
a living Legend, Jim Lambek, who exposes connections between particle physics
and mathematical linguistics, an area which he pioneered in the 1950s. Next up is
domain theory, starting with a tutorial overview by Martin, followed by a detailed
account of the domain-theoretic structure on classical and quantum states by Coecke
and Martin. This is then followed by a range of structures dealing with spacetime:
first Martin and Panangaden’s application of domain theory to general relativity,
then Hiley’s use of Clifford algebras, and finally Doring and Isham’s use of topos
theory in an 180 page long mega contribution. We end with applications of monoidal
categories in quantum computational models, firstly a general account by Hines,
which is followed by Panangaden and Paquette’s survey of topological quantum
computing.

Acknowledgments We in particular thank John Baez and the attendants of the n-category café for
the “online public review process” of several chapters in this volume. Assistance in producing this
volume was provided by the EC-FP6-STREP Foundational Structures in Quantum Information and
Computation (QICS). We also acknowledge support from EPSRC Advanced Research Fellowship
EP/D072786/1 entitled The Structure of Quantum Information and its Ramifications for IT.

Oxford, England Bob Coecke
August 2009
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Part I
An ABC on Compositionality



Chapter 1
Introduction to Categories
and Categorical Logic

S. Abramsky and N. Tzevelekos

Abstract The aim of these notes is to provide a succinct, accessible introduction
to some of the basic ideas of category theory and categorical logic. The notes are
based on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those seeking
a first introduction to the subject, with fairly minimal prerequisites. The coverage
is by no means comprehensive, but should provide a good basis for further study; a
guide to further reading is included.

The main prerequisite is a basic familiarity with the elements of discrete math-
ematics: sets, relations and functions. An Appendix contains a summary of what
we will need, and it may be useful to review this first. In addition, some prior
exposure to abstract algebra—vector spaces and linear maps, or groups and group
homomorphisms—would be helpful.

1.1 Introduction

Why study categories—what are they good for? We can offer a range of answers for
readers coming from different backgrounds:

e For mathematicians: category theory organises your previous mathematical
experience in a new and powerful way, revealing new connections and structure,
and allows you to “think bigger thoughts”.

e For computer scientists: category theory gives a precise handle on impor-
tant notions such as compositionality, abstraction, representation-independence,
genericity and more. Otherwise put, it provides the fundamental mathematical
structures underpinning many key programming concepts.
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e For logicians: category theory gives a syntax-independent view of the fundamen-
tal structures of logic, and opens up new kinds of models and interpretations.

e For philosophers: category theory opens up a fresh approach to structuralist
foundations of mathematics and science; and an alternative to the traditional
focus on set theory.

e For physicists: category theory offers new ways of formulating physical theories
in a structural form. There have inter alia been some striking recent applications
to quantum information and computation.

1.1.1 From Elements To Arrows

Category theory can be seen as a “generalised theory of functions”, where the focus
is shifted from the pointwise, set-theoretic view of functions, to an abstract view of
functions as arrows.

Let us briefly recall the arrow notation for functions between sets.! A function f
with domain X and codomain Y is denoted by: f : X — Y.

Diagrammatic notation: X —f> Y.

The fundamental operation on functions is composition:if f : X — Yandg:Y —
Z, then we can define go f : X — Z by go f(x) := g(f()c)).2 Note that, in
order for the composition to be defined, the codomain of f must be the same as the
domain of g.

Diagrammatic notation: X i) y -5 7.
Moreover, for each set X there is an identity function on X, which is denoted by:
dy : X — X idy(x) == x.

These operations are governed by the associativity law and the unit laws. For f :
X—>Y,g:Y—>Z h:Z—>W:

(hog)of=ho(gof), foidy =f=idyo f.

Notice that these equations are formulated purely in terms of the algebraic opera-
tions on functions, without any reference to the elements of the sets X, Y, Z, W.
We will refer to any concept pertaining to functions which can be defined purely
in terms of composition and identities as arrow-theoretic. We will now take a first

L' A review of basic ideas about sets, functions and relations, and some of the notation we will be
using, is provided in Appendix A.
2 We shall use the notation “:=” for “is defined to be” throughout these notes.
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step towards learning to “think with arrows” by seeing how we can replace some
familiar definitions couched in terms of elements by arrow-theoretic equivalents;
this will lead us towards the notion of category.

We say that a function f : X — Y is:

injective ifVx,x' € X. f(x) = f(x) = x=x/,
surjective if Vy e Y.Ax € X. f(x) =y,

monic  ifVg,h. fog=foh — g=h,
epic ifVg,h.gof=hof — g=h.

Note that injectivity and surjectivity are formulated in terms of elements, while epic

and monic are arrow-theoretic.

Proposition 1 Let [ : X — Y. Then,

1. f isinjective iff f is monic.
2. f is surjective iff f is epic.

Proof We show 1. Suppose f : X — Y is injective, and that f o g = f o h, where
g,h:Z — X.Then,forallz € Z:

f(g@) =fog@)=foh(z)=f(h(z).
Since f is injective, this implies g(z) = h(z). Hence we have shown that
Vze Z.g(z) =h(2),

and so we can conclude that g = h. So f injective implies f monic.

For the converse, fix a one-element set 1 = {e}. Note that elements x € X are in
1-1 correspondence with functions x : 1 — X, where x(e) := x. Moreover, if
f(x) = ytheny = f o x. Writing injectivity in these terms, it amounts to the
following.

Vx,x’ e X. fox=fox = i=¥

Thus we see that being injective is a special case of being monic. |

Exercise 2 Show that f : X — Y is surjective iff it is epic.

1.1.2 Categories Defined

Definition 3 A category C consists of:

e A collection Ob(C) of objects. Objects are denoted by A, B, C, etc.
e A collection Ar(C) of arrows (or morphisms). Arrows are denoted by f, g, h,
etc.
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e Mappings dom, cod : Ar(C) — Ob(C), which assign to each arrow f its domain
dom( f) and its codomain cod(f). An arrow f with domain A and codomain B
is written f : A — B. For each pair of objects A, B, we define the set

C(A,B) ={fe€Ar(C)| f: A— B}.

We refer to C(A, B) as a hom-set. Note that distinct hom-sets are disjoint.
e For any triple of objects A, B, C, a composition map

capc:CA,B)xC(B,C) — C(A,C).
ca.B.c(f, g) iswritten go f (orsometimes f; g). Diagrammatically:

ALt c

For each object A, an identity arrow id4 : A — A.

The above must satisfy the following axioms.

ho(gof)=(hog)of, foida=f=idgof.
whenever the domains and codomains of the arrows match appropriately so that the
compositions are well-defined. A
1.1.3 Diagrams in Categories

Diagrammatic reasoning is an important tool in category theory. The basic cases are
commuting triangles and squares. To say that the following triangle commutes

P

A—B
lg
h
C
is exactly equivalent to asserting the equation g o f = h. Similarly, to say that the
following square commutes
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means exactly that g o f = k o h. For example, the equations
ho(gof)=(hog)of, foidy=f=idgo [,

can be expressed by saying that the following diagrams commute.

f ida

A—>B A— A
hog f
g f
gof f
C——D B—B
h idp

As these examples illustrate, most of the diagrams we shall use will be “pasted
together” from triangles and squares: the commutation of the diagram as a whole
will then reduce to the commutation of the constituent triangles and squares.

We turn to the general case. The formal definition is slightly cuambersome; we
give it anyway for reference.

Definition 4 We define a graph to be a collection of vertices and directed edges,
where each edge ¢ : v — w has a specified source vertex v and target vertex w.
Thus graphs are like categories without composition and identities.® A diagram in a
category C is a graph whose vertices are labelled with objects of C and whose edges
are labelled with arrows of C, such that, if ¢ : v — w is labelled with f : A — B,
then we must have v labelled by A and w labelled by B. We say that such a diagram
commutes if any two paths in it with common source and target, and at least one of
which has length greater than 1, are equal. That is, given paths

Alse e B ad A D% D, B

if max(n, m) > 1 then

f‘no...ofl :gmo...ogl_
To illustrate this definition, to say that the following diagram commutes
E—S s A — 1

amounts to the assertion that f o e = g o e; it does not imply that f = g.

3 This would be a “multigraph” in normal parlance, since multiple edges between a given pair of
vertices are allowed.
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1.1.4 Examples

Before we proceed to our first examples of categories, we shall present some back-
ground material on partial orders, monoids and topologies, which will provide run-
ning examples throughout these notes.

Partial orders

A partial order is a structure (P, <) where P is a set and < is a binary relation on
P satisfying:

e x <ux (Reflexivity)
e x<YyAYSX = x=Y (Antisymmetry)
e x<yAy<z = x<z (Transitivity)

For example, (R, <) and (P(X), €) are partial orders, and so are strings with the
sub-string relation.

If P, Q are partial orders, amap h : P — Q is a partial order homomorphism
(or monotone function) if:

Vx,y€ P.x <y = h(x) < h(y).

Note that homomorphisms are closed under composition, and that identity maps are
homomorphisms.

Monoids

A monoid is a structure (M, -, 1) where M is a set,
- MxM—M
is a binary operation, and 1 € M, satisfying the following axioms.
x-y-z=x-(y-2), l-x=x=x-1.
For example, (N, 4, 0) is a monoid, and so are strings with string-concatenation.

Moreover, groups are special kinds of monoids.
If M, N are monoids, amap i : M — N is a monoid homomorphism if

Vmi,my e M.h(my - mp) = h(my) - h(my) , h(l)=1.

Exercise 5 Suppose that G and H are groups (and hence monoids), and that & :
G — H is a monoid homomorphism. Prove that % is a group homomorphism.
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Topological spaces

A topological space is a pair (X, Tx) where X is a set, and Ty is a family of subsets
of X such that

o U, XeTy,
o ifU, VeTxthenUNYV e Ty,

o if {U;}ies is any family in T, then | J;, U; € Tx .

iel
A continuous map f : (X, Tx) — (Y, Ty) is a function f : X — Y such that, for
allU € Ty, f~1(U) e Ty.

Let us now see some first examples of categories.

e Any kind of mathematical structure, together with structure preserving functions,
forms a category. E.g.

— Set (sets and functions)

— Mon (monoids and monoid homomorphisms)

— Grp (groups and group homomorphisms)

— Vect; (vector spaces over a field k, and linear maps)
— Pos (partially ordered sets and monotone functions)
— Top (topological spaces and continuous functions)

e Rel: objects are sets, arrows R : X — Y are relations R € X x Y. Relational
composition:

R;S(x,7) <= 3Jy.R(x,y) A S(3,2)

e Letk be a field (for example, the real or complex numbers). Consider the follow-
ing category Mat;. The objects are natural numbers. A morphism M : n — m is
an n X m matrix with entries in k. Composition is matrix multiplication, and the
identity on n is the n x n diagonal matrix.

¢ Monoids are one-object categories. Arrows correspond to the elements of the
monoid, with the monoid operation being arrow-composition and the monoid
unit being the identity arrow.

¢ A category in which for each pair of objects A, B there is at most one morphism
from A to B is the same thing as a preorder, i.e. a reflexive and transitive relation.

Note that our first class of examples illustrate the idea of categories as mathematical
contexts; settings in which various mathematical theories can be developed. Thus
for example, Top is the context for general topology, Grp is the context for group
theory, etc.

On the other hand, the last two examples illustrate that many important mathe-
matical structures themselves appear as categories of particular kinds. The fact
that two such different kinds of structures as monoids and posets should appear
as extremal versions of categories is also rather striking.

This ability to capture mathematics both “in the large” and “in the small” is a
first indication of the flexibility and power of categories.
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Exercise 6 Check that Mon, Vecty, Pos and Top are indeed categories.

Exercise 7 Check carefully that monoids correspond exactly to one-object cate-
gories. Make sure you understand the difference between such a category and Mon.
(For example: how many objects does Mon have?)

Exercise 8 Check carefully that preorders correspond exactly to categories in which
each homset has at most one element. Make sure you understand the difference
between such a category and Pos. (For example: how big can homsets in Pos be?)

1.1.5 First Notions

Many important mathematical notions can be expressed at the general level of cate-
gories.

Definition 9 Let C be a category. A morphism f : X — Y inC is:

e monic (or a monomorphism) if fog= foh — g=h,

e epic (or an epimorphism) ifgof=hof — g=h.

An isomorphism in C is an arrow [ : A — B such that there exists an arrow
Jj : B — A—the inverse of i—satisfying

joi=idy, ioj=idg.
A

We denote isomorphisms by i : A = B, and write i ! for the inverse of i. We say

that A and B are isomorphic, A = B, if there exists some i : A = B.
Exercise 10 Show that the inverse, if it exists, is unique.
Exercise 11 Show that = is an equivalence relation on the objects of a category.

As we saw previously, in Set monics are injections and epics are surjections. On the
other hand, isomorphisms in Set correspond exactly to bijections, in Grp to group
isomorphisms, in Top to homeomorphisms, in Pos to order isomorphisms, etc.

Exercise 12 Verify these claims.

Thus we have at one stroke captured the key notion of isomorphism in a form which
applies to all mathematical contexts. This is a first taste of the level of generality
which category theory naturally affords.

We have already identified monoids as one-object categories. We can now iden-
tify groups as exactly those one-object categories in which every arrow is an iso-
morphism. This also leads to a natural generalisation, of considerable importance
in current mathematics: a groupoid is a category in which every morphism is an
isomorphism.
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Opposite Categories and Duality

The directionality of arrows within a category C can be reversed without breaking
the conditions of being a category; this yields the notion of opposite category.

Definition 13 Given a category C, the opposite category C°P is given by taking the
same objects as C, and

C°°(A, B) :=C(B, A).

Composition and identities are inherited from C. A

Note that if we have

A-LB-5 ¢

in C°P, this means

Al BEoc

in C, so composition g o f in C°P is defined as f o g in C!
Consideration of opposite categories leads to a principle of duality: a statement
S is true about C if and only if its dual (i.e. the one obtained from S by reversing all
the arrows) is true about C°P. For example,
A morphism f is monic in C°P if and only if it is epic in C .
Indeed, f is monic in C°P iff forall g, h : C — B in C°P,
fog=foh = g=h,
iff forall g, h : B — CinC,
gof=hof = g=h,

iff f is epic in C. We say that monic and epic are dual notions.

Exercise 14 If P is a preorder, for example (R, <), describe P°P explicitly.

Subcategories

Another way to obtain new categories from old ones is by restricting their objects
OT arrows.

Definition 15 Let C be a category. Suppose that we are given collections

Ob(D) c Ob(C), VA, B e Ob(D).D(A, B) CC(A, B).
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We say that D is a subcategory of C if
A €Ob(D) = idy € D(A,A), fe€D(A,B),geD(B,C)= gof € D(A, (),

and hence D itself is a category. In particular, D is:

e A full subcategory of C if for any A, B € Ob(D), D(A, B) = C(A, B).
e A lluf subcategory of C if Ob(D) = Ob((). A

For example, Grp is a full subcategory of Mon (by Exercise 5), and Set is a lluf
subcategory of Rel.

Simple cats
We close this section with some very basic examples of categories.

e 1 is the category with one object and one arrow, that is,

where the arrow is necessarily id, . Note that, although we say that 1 is the one-
object/one-arrow category, there is by no means a unique such category. This is
explained by the intuitively evident fact that any two such categories are isomor-
phic. (We will define what it means for categories to be isomorphic later.)

e In two-object categories, there is the one with two arrows, 2 := e e , and
also:
. e X\ . X\
2, = e——e | 2_ = o e 2o = o o

Note that we have omitted identity arrows for economy. Categories with only
identity arrows, like 1 and 2, are called discrete categories.

Exercise 16 How many categories C with Ob(C) = {e} are there? (Hint: what do
such categories correspond to?)

1.1.6 Exercises

1. Consider the following properties of an arrow f in a category C.

e f is split monic if for some g, g o f is an identity arrow.
e f is split epic if for some g, f o g is an identity arrow.

(a) Prove thatif f and g are arrows such that g o f is monic, then f is monic.
(b) Prove that, if f is split epic then it is epic.

(c) Prove that, if f and g o f are iso then g is iso.

(d) Prove that, if f is monic and split epic then it is iso.
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(e) In the category Mon of monoids and monoid homomorphisms, consider the
inclusion map

i:(N,+,0) — (Z,+,0)

of natural numbers into the integers. Show that this arrow is both monic and
epic. Is it an iso?

The Axiom of Choice in Set Theory states that, if {X;};cs is a family of non-
empty sets, we can form aset X = {x; | i € I} where x; € X; foralli € I.

(f) Show that in Set an arrow which is epic is split epic. Explain why this needs
the Axiom of Choice.

(g) Is it always the case that an arrow which is epic is split epic? Either prove
that it is, or give a counter-example.

2. Give a description of partial orders as categories of a special kind.

1.2 Some Basic Constructions

We shall now look at a number of basic constructions which appear through-
out mathematics, and which acquire their proper general form in the language of
categories.

1.2.1 Initial and Terminal Objects

A first such example is that of initial and terminal objects. While apparently trivial,
they are actually both important and useful, as we shall see in the sequel.

Definition 17 An object [ in a category C is initial if, for every object A, there exists
a unique arrow from I to A, which we write t4 : I — A.

A terminal object in C is an object T such that, for every object A, there exists a
unique arrow from A to T, which we write 74 : A — T. A

Note that initial and terminal objects are dual notions: 7T is terminal in C iff it is
initial in C°P. We sometimes write 1 for the terminal object and 0 for the initial one.
Note also the assertions of unique existence in the definitions. This is one of the
leitmotifs of category theory; we shall encounter it again in a conceptually deeper
form in Sect. 1.5.

Let us examine initial and terminal objects in our standard example categories.

In Set, the empty set is an initial object while any one-element set {e} is terminal.
In Pos, the poset (&, &) is an initial object while ({e}, {(e, ®)}) is terminal.

In Top, the space (&, {&}) is an initial object while ({e}, {<, {e}}) is terminal.
In Vecty, the one-element space {0} is both initial and terminal.

In a poset, seen as a category, an initial object is a least element, while a terminal
object is a greatest element.
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Exercise 18 Verify these claims. In each case, identify the canonical arrows.
Exercise 19 Identify the initial and terminal objects in Rel.

Exercise 20 Suppose that a monoid, viewed as a category, has either an initial or a
terminal object. What must the monoid be?

We shall now establish a fundamental fact: initial and terminal objects are unique up
to (unique) isomorphism. As we shall see, this is characteristic of all such “univer-
sal” definitions. For example, the apparent arbitrariness in the fact that any singleton
set is a terminal object in Set is answered by the fact that what counts is the property
of being terminal; and this suffices to ensure that any two concrete objects having
this property must be isomorphic to each other.

The proof of the proposition, while elementary, is a first example of distinctively
categorical reasoning.

Proposition 21 If I and I’ are initial objects in the category C then there exists a

unique isomorphism I — I'.

Proof Since [ is initial and I’ is an object of C, there is a unique arrow ¢ : [ — I’
We claim that ¢}/ is an isomorphism.

Since I’ is initial and [ is an object in C, there is an arrow ¢ : I’ — I. Thus we
obtain ¢;/; L’, : I — I, while we also have the identity morphism id; : I — I. But
I is initial and therefore there exists a unique arrow from [ to I, which means that
tpr; Uy = id;. Similarly, ;1 = idp, so ¢y is indeed an isomorphism. ]

Hence, initial objects are “unique up to (unique) isomorphism”, and we can (and
do) speak of the initial object (if any such exists). Similarly for terminal objects.

Exercise 22 Let C be a category with an initial object 0. For any object A, show the
following.

e If A = 0 then A is an initial object.
o If there exists a monomorphism f : A — 0 then f is an iso, and hence A is
initial.

1.2.2 Products and Coproducts

1.2.2.1 Products

We now consider one of the most common constructions in mathematics: the forma-
tion of “direct products”. Once again, rather than giving a case-by-case construction
of direct products in each mathematical context we encounter, we can express once
and for all a general notion of product, meaningful in any category—and such that,
if a product exists, it is characterised uniquely up to unique isomorphism, just as for
initial and terminal objects. Given a particular mathematical context, i.e. a category,
we can then verify whether on not the product exists in that category. The concrete
construction appropriate to the context will enter only into the proof of existence;
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all of the useful properties of the product follow from the general definition. More-
over, the categorical notion of product has a normative force; we can test whether
a concrete construction works as intended by verifying that it satisfies the general
definition.

In set theory, the cartesian product is defined in terms of the ordered pair:

XxY: ={x,y)|xeX AyeTY}
It turns out that ordered pairs can be defined in set theory, e.g. as
(e, y) = {{x, y}, ¥}

Note that in no sense is such a definition canonical. The essential properties of

ordered pairs are:

1. We can retrieve the first and second components x, y of the ordered pair (x, y),
allowing projection functions to be defined:

m o (x,y) — X, i (x,y) > y.

2. The information about first and second components completely determines the
ordered pair:

(x1,x2) = (y1,y2) & x1 =y1 A X2 = .

The categorical definition expresses these properties in arrow-theoretic terms, mean-
ingful in any category.

Definition 23 Let A, B be objects in a category C. An A,B—pairing is a triple
(P, p1, p2) where P is an object, p; : P — A and p : P — B. A morphism
of A,B—pairings

f (P, p1,p2) — (Q,q1,92)

is a morphism f : P — Q inC suchthat gy o f = pjand g2 o f = p3, i.e. the
following diagram commutes.

~

A q1 Q q2 B

The A,B—pairings form a category Pair(A, B). We say that (A x B, m,mp) is a
product of A and B if it is terminal in Pair(A, B). A
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Exercise 24 Verify that Pair(A, B) is a category.

Note that products are specified by triples A I AaxB B B, where 1;’s are
called projections. For economy (and if projections are obvious) we may say that
A x B is the product of A and B. We say that C has (binary) products if each
pair of objects A, B has a product in C. A direct consequence of the definition, by
Proposition 21, is that if products exist, they are unique up to (unique) isomorphism.

Unpacking the uniqueness condition from Pair(A, B) back to C we obtain a more
concise definition of products which we use in practice.

Definition 25 (Equivalent definition of product) Let A, B be objects in a category
C. A product of A and B is an object A x B together with a pair of arrows A Sl

A x B =2 B such that for every triple A <L C -2 B there exists a unique
morphism

(f,.g):C— AXB

such that the following diagram commutes.

m bL%)
A< AxB- _.p
A
o o) =f
f |8 e mol(f.g) =g
|
C

We call (f, g) the pairing of f and g.

Note that the above diagram features a dashed arrow. Our intention with such
diagrams is always to express the following idea: if the undashed part of the diagram
commutes, then there exists a unique arrow (the dashed one) such that the whole
diagram commutes. In any case, we shall always spell out the intended statement
explicitly.

We look at how this definition works in our standard example categories.

In Set, products are the usual cartesian products.

In Pos, products are cartesian products with the pointwise order.
In Top, products are cartesian products with the product topology.
In Vecty, products are direct sums.

In a poset, seen as a category, products are greatest lower bounds.

Exercise 26 Verify these claims.

The following proposition shows that the uniqueness of the pairing arrow can be
specified purely equationally, by the equation:

Vh:C—> AXB. h={moh,moh)
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Proposition 27 For any triple A I Ax B2 Bthe following statements are
equivalent.

(D) For any triple A <L C -5 B there exists a unique morphism (f, g) : C —
A X Bsuchthatwyo(f,g) = fandmyo (f, g)=g.

(I1) For any triple A <L C -5 B there exists a morphism (f,g) : C - A X B
such that wy o (f, g) = f and mp o (f, g) = g, and moreover, for any h : C —
AX B, h={(mjoh,moh).

Proof For (I)=(I), takeany h : C — A x B ; we need to show h = (wjoh, mpyoh).
We have

J'[]Oh 7720]1

A<—C—8B
and hence, by (I), there exists unique k : C — A x B such that
mok=moh A mok=moh (%)
Note now that () holds both for k := h and k := (71 o h, 5 o h), the latter because

of (I). Hence, h = (my o h, mp o h).

For (I)=(I), take any triple A <f— c -5 B. By (II), we have that there exists an

arrow (f, g): C — A x Bsuchthatmy o (f,g) = fandmp o (f, g) = g. We need
to show it is the unique such. Letk : C — A x B s.t.

mok=f A mok=g
Then, by (II),
k= (miok,mok)={(f, g)

as required. [ |

In the following proposition we give some useful properties of products. First, let us
introduce some notation for arrows: given f] : A] — By, f> : Ay — Bj, define

fix o= {(fiom, from): A1 x Ay — By X Bs.

Proposition 28 Forany f : A — B, g : A — C, h : A — A, and any p :
B—B,q:C—C

o (f,gloh=(foh,goh),
o (pxq)o(f,g)=(pof.qog).

Proof For the first claim we have:

(f:8)oh=(mio((f.g)oh),mo((f,g)oh))=(foh,goh).
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And for the second:

(pxq)o(f,g)=(pom,qom)olf g
=(pomo(f,g,qomolf g))
=(pof.gog). -

General Products
The notion of products can be generalised to arbitrary arities as follows. A product
for a family of objects {A;};<s in a category C is an object P and morphisms
pi:P— A; (i€l
such that, for all objects B and arrows
fi:B— A; (i€l
there is a unique arrow
g:B— P
such that, for all i € I, the following diagram commutes.

p— % . p

N

A;

As before, if such a product exists, it is unique up to (unique) isomorphism. We
write P = [[;c; A; for the product object, and ¢ = (f; | i € I) for the unique
morphism in the definition.

Exercise 29 What is the product of the empty family?

Exercise 30 Show that if a category has binary and nullary products then it has all
finite products.

1.2.2.2 Coproducts

We now investigate the dual notion to products: namely coproducts. Formally,
coproducts in C are just products in C°P, interpreted back in C . We spell out the
definition.

Definition 31 Let A, B be objects in a category C A coproduct of A and B is an
object A + B together with a pair of arrows A A + B &2 B such that for

every triple A —> C <%~ B there exists a unique morphism
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[f.gl:A+B —C
such that the following diagram commutes.

il"ll in2
A—>A+B<——8B

I [f,g]oim =f
[f.g] [f,gloinp=¢g

\

\
]
¢ A

We call the in;’s injections and [ f, g] the copairing of f and g. As with pairings,
uniqueness of copairings can be specified by an equation:

Vh:A+ B — C.h=[hoing, hoin]
Coproducts in Set
This is given by disjoint union of sets, which can be defined concretely e.g. by
X+Y ={l} xX U{2} x7Y.
We can define injections

iI"Il in2

X X+Y Y

inp(x) :==(1,x), i) = (@2,y).
Also, given functions f : X —> Z and g : Y — Z, we can define
[f,gl: X+Y — Z

[f, gl(1,x) = f(x), [f,gl2,y) =g().

Exercise 32 Check that this construction does yield coproducts in Set.

Note that this example suggests that coproducts allow for definition by cases.
Let us examine coproducts for some of our other standard examples.

In Pos, disjoint unions (with the inherited orders) are coproducts.
In Top, topological disjoint unions are coproducts.

In Vect;, direct sums are coproducts.

In a poset, least upper bounds are coproducts.

Exercise 33 Verify these claims.
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Exercise 34 Dually to products, express coproducts as initial objects of a category
Copair(A, B) of A,B—copairings.

1.2.3 Pullbacks and Equalisers

We shall consider two further constructions of interest: pullbacks and equalisers.

1.2.3.1 Pullbacks
Definition 35 Consider a pair of morphisms A —f> C < B.The pull-back of
f along gis apa1r A <2 D % B such that f o p = gogq and, for any pair

A < p' %5 B such that fop =goq’, there exists aunique & : D' — D such
that p’ = p o h and ¢’ = g o h. Diagrammatically,

Example 36

e In Set the pullback of A -5 C <*— B is defined as a subset of the cartesian
product:

AxcB = {(a,b) e Ax B| f(a) =gDb)}.
For example, consider a category C with

dom

Ar(C) — Ob(C) d Ar(C).
Then the pullback of dom along cod is the set of composable morphisms,

i.e. pairs of morphisms ( f, g) in C such that f o g is well-defined.
e In Set again, subsets (i.e. inclusion maps) pull back to subsets:

[y —u

[

X Y
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Exercise 37 Let C be a category with a terminal object 1. Show that, for any A, B €
Ob(C), the pullback of A = 1 < B is the product of A and B, if it exists.

Just as for products, pullbacks can equivalently be described as terminal objects in

suitable categories. Given a pair of morphisms A i> c <& B, we define an
(f, g)—cone to be a triple (D, p, q) such that the following diagram commutes.

D B
A C

A morphism of (f, g)—cones k : (D1, p1,q1) = (D2, p2,q2) is a morphism £ :
D1 — D5 such that the following diagram commutes.

—_—

—_—

f

Dy
7N

h
A<y Do——B

We can thus form a category Cone(f, g). A pull-back of f along g, if it exists, is
exactly a terminal object of Cone( f, g). Once again, this shows the uniqueness of
pullbacks up to unique isomorphism.

1.2.3.2 Equalisers

f
Definition 38 Consider a pair of parallel arrows A ——= B. An equaliser of (f, g)
g

is an arrow e : E — A such that f o e = g o e and, for any arrow 2 : D — A such
that f oh = goh, there is a unique h:D— Esothath = eoh. Diagrammatically,

E46>A*>T>B

A

h/

D A

As for products, uniqueness of the arrow from D to E can be expressed equationally:
Vk:D—> E.eok=k.

Exercise 39 Why is ¢ o k well-defined for any k : D — E? Prove that the above
equation is equivalent to the uniqueness requirement.
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Example 40 In Set, the equaliser of f, g is given by the inclusion
xeAl fx) =gk} —A.

This allows equationally defined subsets to be defined as equalisers. For example,

f
consider the pair of maps R2 ——= R, where
g

f:(x,y)r—)xz—i—yz, g:(x,y)— 1.

Then, the equaliser is the unit circle as a subset of R2,

1.2.4 Limits and Colimits

The notions we have introduced so far are all special cases of a general notion of
limits in categories, and the dual notion of colimits (Table 1.1).

Table 1.1 Examples of limits and colimits

Limits Colimits
Terminal objects Initial objects
Products Coproducts
Pullbacks Pushouts
Equalisers Coequalisers

An important aspect of studying any kind of mathematical structure is to see what
limits and colimits the category of such structures has. We shall return to these ideas
shortly.

1.2.5 Exercises

1. Give an example of a category where some pair of objects lacks a product or

coproduct.
2. (Pullback lemma) Consider the following commutative diagram.
f g
A—=B—>C
\LL[ l v l w
b=—E——F

Given that the right hand square BCEF and the outer square ACDF are pull-
backs, prove that the left hand square ABDE is a pullback.
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3. Consider A —f> C <5 B with pullback A £ p %L B.Foreach A <

D' L5 B’ with fop =goq,letep(p’,q") : D' — D be the arrow dictated
by the pullback condition. Express uniqueness of ¢ (p’, ¢) equationally.

1.3 Functors

Part of the “categorical philosophy” is:

‘ Don’t just look at the objects; take the morphisms into account too.

We can also apply this to categories!

1.3.1 Basics

A “morphism of categories” is a functor.
Definition 41 A functor F : C — D is given by:

e An object-map, assigning an object F'A of D to every object A of C.
e An arrow-map, assigning an arrow Ff : FA — FB of D to every arrow f :
A — B of C, in such a way that composition and identities are preserved:

F(gof)=FgoFf, Fidg = idpg.
A
Note that we use the same symbol to denote the object- and arrow-maps; in practice,

this never causes confusion. Since functors preserve domains and codomains of
arrows, for each pair of objects A, B of C, there is a well-defined map

Fap:C(A, B) > D(FA, FB).

The conditions expressing preservation of composition and identities are called
functoriality.

Example 42 Let (P, <), (Q, <) be preorders (seen as categories). A functor F :
(P, <) — (Q, <) is specified by an object-map, say F : P — Q, and an appro-
priate arrow-map. The arrow-map corresponds to the condition

Vpi.p2 € P.p1 <pp = F(p1) < F(p2),

i.e. to monotonicity of F. Moreover, the functoriality conditions are trivial since in
the codomain (Q, <) all hom-sets are singletons.
Hence, a functor between preorders is just a monotone map.
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Example 43 Let (M, -, 1), (N, -, 1) be monoids. A functor F : (M, -, 1) —
(N, -, 1) is specified by a trivial object map (monoids are categories with a single
object) and an arrow-map, say F : M — N. The functoriality conditions corre-
spond to

Vmy,my € M. F(my-my) = F(my) - F(my), F()=1,

i.e. to F being a monoid homomorphism.
Hence, a functor between monoids is just a monoid homomorphism.

Other examples are the following.

e Inclusion of a sub-category, C < D, is a functor (by taking the identity map for
object- and arrow-map).
e The covariant powerset functor P : Set — Set:

X PX), (f: X—=>Y)=>P(f)=S—{f(x)|x S}

e U : Mon — Set is the “forgetful” or “underlying” functor which sends a monoid
to its set of elements, “forgetting” the algebraic structure, and sends a homomor-
phism to the corresponding function between sets. There are similar forgetful
functors for other categories of structured sets. Why are these trivial-looking
functors useful 7—We shall see!

e Group theory examples. The assignment of the commutator sub-group of a group
extends to a functor from Group to Group; and the assignment of the quotient
by this normal subgroup extends to a functor from Group to AbGroup. The
assignment of the centraliser of a group does not!

e More sophisticated examples: e.g. homology. The basic idea of algebraic topol-
ogy is that there are functorial assignments of algebraic objects (e.g. groups) to
topological spaces, and variants of this idea ((co)homology theories) are perva-
sive throughout modern pure mathematics.

Functors “of several variables”

We can generalise the notion of a functor to a mapping from several domain cate-
gories to a codomain category. For this we need the following definition.

Definition 44 For categories C, D define the product category C x D as follows. An
objectin C x D is a pair of objects from C and D, and an arrow in C x D is a pair of
arrows from C and D. Identities and arrow composition are defined componentwise:

idca, By := (idy4, idp), (f.8)o(f.g)=(fof,go0g).

A functor “of two variables”, with domains C and D, to £ is simply a functor:

F:CxD— €.
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For example, there are evident projection functors

C«~—CxD—D.

1.3.2 Further Examples

1.3.2.1 Set-Valued Functors
Many important constructions arise as functors F' : C — Set. For example:

e If G is a group, a functor F : G — Set is an action of G on a set.

e If P is aposet representing time, a functor ' : P — Set is a notion of set varying
through time. This is related to Kripke semantics, and to forcing arguments in set
theory.

e Recall that 2_ is the category e Cj/ e . Then, functors F : 2, — Set
correspond to directed graphs understood as in Definition 4, i.e. as structures
(V, E,s,t), where V is a set of vertices, E is a set of edges, and 5,7 : E — V
specify the source and target vertices for each edge.

Let us examine the first example in more detail. For a group (G, -, 1), a functor
F : G — Set is specified by a set X (to which the unique object of G is mapped),
and by an arrow-map sending each element m of G to an endofunction on X, say
me _ : X — X. Then, functoriality amounts to the conditions

Vmi,my € G. F(my-my) = F(m1) o F(m2), F(1) =idy,
that is, for all m{,m» € Gand all x € X,
(my-mo)ex =mpemyex, lex =x.

We therefore see that F' defines an action of G on X.

Exercise 45 Verify that functors F : 2_, — Set correspond to directed graphs.

Example: Lists
Data-type constructors are functors. As a basic example, we consider lists. There is
a functor

List : Set — Set

which takes a set X to the set of all finite lists (sequences) of elements of X. List
is functorial: its action on morphisms (i.e. functions, i.e. (functional) programs) is
given by maplist:

f:X—Y
List(f) : List(X) — List(Y)
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List(f)lx, ... xa] == [f(x0), ..., f(xn)]

We can upgrade List to a functor MList : Set — Mon by mapping each set X to the
monoid (List(X), *, €) and f : X — Y to List(f), as above. The monoid operation
x : List(X) x List(X) — List(X) is list concatenation, and € is the empty list. We
call MList(X) the free monoid over X. This terminology will be justified in Chap.
5.

1.3.2.2 Products as Functors

If a category C has binary products, then there is automatically a functor
_x_:CxC—C
which takes each pair (A, B) to the product A x B, and each (f, g) to

fxg:={(fom,gom).

Functoriality is shown as follows, using Proposition 28 and uniqueness of pairings
in its equational form.

(fxgo(f'xgh=(xgo(f om,g om)=(fof omn,gog om)
=(fof)x(gog),

idA X idB = (IdA omp, idB OTL’2> = (JT] o idAxB,Trz (e} idAx3> = idAxB-

1.3.2.3 The Category of Categories
There is a category Cat whose objects are categories, and whose arrows are functors.
Identities in Cat are given by identity functors:

Idc:C—C:=A— A, f> f.

Composition of functors is defined in the evident fashion. Note that if F : C — D
and G : D — &£ then,for f : A — BinC,

Go F(f):=G(F(f):GF(A) — G(F(B))

so the types work out. A category of categories sounds (and is) circular, but in prac-
tice is harmless: one usually makes some size restriction on the categories, and then
Cat will be too “big” to be an object of itself. See Appendix A.

Note that product categories are products in Cat! For any pair of categories C, D,
set

cZcxp D
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where C x D the product category (defined previously) and x;’s the obvious projec-

tion functors. For any pair of functors C i £ N D, set
(F,G): £ —>CxD:=Ar (FA,GA), f— (Ff,Gf).

It is easy to see that (F, G) is indeed a functor. Moreover, satisfaction of the product
diagram and uniqueness are shown exactly as in Set.

1.3.3 Contravariance

By definition, the arrow-map of a functor F is covariant: it preserves the direction
of arrows, soif f : A — B then Ff : FA — FB. A contravariant functor
G does exactly the opposite: it reverses arrow-direction, so if f : A — B then
Gf : GB — GA. A concise way to express contravariance is as follows.

Definition 46 Let C, D be categories. A contravariant functor G from C to D is a
functor G : C°P — D. (Equivalently, a functor G : C — D°P.) A

Explicitly, a contravariant functor G is given by an assignment of:

e anobject GA in D to every object A in C,
e an arrow Gf : GB — GA in D to every arrow f : A — B in C, such that
(notice the change of order in composition):

G(gof)=GfoGg, Gidy = idga.

Note that functors of several variables can be covariant in some variables and con-
travariant in others, e.g.

F:CPxD— €.
Examples of Contravariant Functors
e The contravariant powerset functor, P°P : Set®® — Set, is given by:

POP(X) :=P(X).
PP(f:X—=Y):PY)— PX)=T+— {xeX| fx)eT}.

e The dual space functor on vector spaces:
O*: Vect,c;p — Vect, .=V = V*.
Note that these are both examples of the following idea: send an object A into func-

tions from A into some fixed object. For example, the powerset can be written as
P(X) = 2%, where we think of a subset in terms of its characteristic function.



28 S. Abramsky and N. Tzevelekos

Hom-functors

We now consider some fundamental examples of Set-valued functors. Given a cat-
egory C and an object A of C, two functors to Set can be defined:

e The covariant Hom-functor at A,
C(A,_):C —> Set,
which is given by (recall that each C(A, B) is a set):
C(A, )(B):=C(A, B), CA, )(f:B—>C):=gr— fog.
We usually write C(A, _)(f) as C(A, f). Functoriality reduces directly to the
basic category axioms: associativity of composition and the unit laws for the

identity.
e There is also a contravariant Hom-functor,

C(_,A):C®° — Set,
given by:
C(_,A)B):=C(B,A), C(_,A)(h:C—>B)y:=gr>goh.
Generalising both of the above, we obtain a bivariant Hom-functor,

C(,_):C% xC —> Set.

Exercise 47 Spell out the definition of C(_, _) : C°P x C —> Set. Verify carefully
that it is a functor.

1.3.4 Properties of Functors

Definition 48 A functor F : C — D is said to be:

e faithful if each map F4 p : C(A, B) - D(FA, FB) is injective;

Jull if each map F4 p : C(A, B) — D(FA, FB) is surjective;

an embedding if F is full, faithful, and injective on objects;

an equivalence if F is full, faithful, and essentially surjective: i.e. for every object
B of D there is an object A of C such that F(A) = B,

e an isomorphism if there is a functor G : D — C such that

GoF =Idg, FoG=Idp.
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We say that categories C and D are isomorphic, C = D, if there is an isomorphism
between them. Note that this is just the usual notion of isomorphism applied to Cat.
Examples:

e The forgetful functor U : Mon — Set is faithful, but not full. For the latter, note
that not all functions f : M — N yield an arrow f : (M,-,1) — (N, -, 1).
Similar properties hold for other forgetful functors.

e The free monoid functor MList : Set — Mon is faithful, but not full.

e The product functor _ x _ : C x C —> C is generally neither faithful nor full.
For the latter, e.g. in Set, the function f : N2 - N? := (m,n) — (n,n) cannot
be expressed in the form f; x f;. Faithfulness of the functor is examined in
Exercise 1.3.5(2).

e There is an equivalence between FDVect; the category of finite dimensional
vector spaces over the field k, and Maty, the category of matrices with entries
in k. Note that these categories are very far from isomorphic! This example is
elaborated in Exercise 1.3.5(1).

Preservation and Reflection

Let P be a property of arrows. We say that a functor F : C — D preserves P if
whenever f satisfies P, so does F(f). We say that F reflects P if whenever F (f)
satisfies P, so does f. For example:

All functors preserve isomorphisms, split monics and split epics.
Faithful functors reflect monics and epics.

Full and faithful functors reflect isomorphisms.

Equivalences preserve monics and epics.

The forgetful functor U : Mon — Set preserves products.

e o T

Let us show c; the rest are given as exercises below. Solet f : A — B in C be such
that F f is an iso, that is, it has an inverse g’ : FB — FA. Then, by fullness, there
exists some g : B — A so that g’ = Fg. Thus,

F(gof)=FgoFf =g oFf=idpa = F(ida).

By faithfulness we obtain g o f = id4 . Similarly, f o g = idp and therefore f is
an isomorphism.

Exercise 49 Show items a, b and d above.
Exercise 50 Show the following.

e Functors do not in general reflect monics or epics.
o Faithful functors do not in general reflect isomorphisms.
e Full and faithful functors do not in general preserve monics or epics.
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1.3.5 Exercises

1. Consider the category FDVecty of finite dimensional vector spaces over R, and
Matp of matrices over R. Concretely, Matp is defined as follows:

Ob(Matg) :=N,
Matg (n, m) := {M | M is an n X m matrix with entries in R} .

Thus, objects are natural numbers, and arrows n — m are n X m real matrices.
Composition is matrix multiplication, and the identity on # is the n x n identity
matrix.

Now let F : Matg — FDVectg be the functor taking each n to the vector space
R"™ and each M : n — m to the linear function

FM :R" — R" := (x1,...,x5) = [x1, ..., x, M
with the 1 x m matrix [x, ..., x,]M considered as a vector in R™. Show that F
is full, faithful and essentially surjective, and hence that FDVectr and Maty are
equivalent categories. Are they isomorphic?
2. Let C be a category with binary products such that, for each pair of objects A, B,
C(A, B) # 0. ()

Show that the product functor F : C x C — C is faithful.
Would F still be faithful in the absence of condition (x)?

1.4 Natural Transformations

“Categories were only introduced to allow functors to be defined; functors were only intro-
duced to allow natural transformations to be defined.”

Just as categories have morphisms between them, namely functors, so functors have
morphisms between them too—natural transformations.

1.4.1 Basics

Definition 51 Let F', G : C — D be functors. A natural transformation
t:F— G

is a family of morphisms in D indexed by objects A of C,

{ta: FA—> GA}scon©)
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such that, for all f : A — B, the following diagram commutes.

EFf
FA————>FB
1A B

GAT‘GB

This condition is known as naturality.
If each ¢4 is an isomorphism, we say that ¢ is a natural isomorphism.

t:FiG.

Examples:

e Let Id be the identity functor on Set, and x o(ld, Id) be the functor taking each set
X to X x X and each function f to f x f. Then, there is a natural transformation
A ld — x o (ld, Id) given by:

Ax : X — X x X =x (x,x).

Naturality amounts to asserting that, for any function f : X — Y, the following
diagram commutes.

X—Y
Ax Ay

XXXWYXY

We call A the diagonal transformation on Set. In fact, it is the only natural trans-
formation between these functors.
e The diagonal transformation can be defined for any category C with binary prod-
ucts by setting, for each object A in C,
Apg:A— A x A:=(idy, idy).

Projections also yield natural transformations. For example the arrows

TA,B) i AXB— A
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specify a natural transformation 71 : x — 7. Note that x, w1 : C x C — C are
the functors for product and first projection respectively.

Let C be a category with terminal object 7', and let K7 : C — C be the functor
mapping all objects to 7 and all arrows to idz. Then, the canonical arrows

Tpa:A— T
specify a natural transformation t : Ild — Ky (where Id the identity functor
on C).
Recall the functor List : Set — Set which takes a set X to the set of finite
lists with elements in X. We can define (amongst others) the following natural
transformations,
reverse : List — List, wunit:ld — List, flatten: Listo List — List,

by setting, for each set X,

reversey : List(X) — List(X) :=[x1, ..., xx]1 = [xn, ..., x1],
unity : X — List(X) :=x — [x],

flatteny : List(List(X)) — List(X)
k
]

. 1 1 k
.=[[xl,...,xnl],...,[xl,...,xnk

Consider the functor P := x o (U, U) with U : Mon — Set, i.e.
P:Mon— Set:=(M,,)>MxM, fr— fxf.

Then, the monoid operation yields a natural transformation ¢ : P — U defined
by:

M.y MxM— M:=mm)—m-m.

Naturality corresponds to asserting that, for any f : (M, -, 1) — (N, -, 1), the
following diagram commutes,

that is, for any m1,my € M, f(my) - f(mo) = f(m1 - my).
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e If V is a finite dimensional vector space, then V is isomorphic to both its first
dual V* and to its second dual V**.
However, while it is naturally isomorphic to its second dual, there is no natural
isomorphism to the first dual. This was actually the original example which moti-
vated Eilenberg and Mac Lane to define the concept of natural transformation;
here naturality captures basis independence.

Exercise 52 Verify naturality of diagonal transformations, projections and terminals
for a category C with finite products.

Exercise 53 Prove that the diagonal is the only natural transformation ld —>
x o (ld, Id) on Set. Similarly, prove that the first projection is the only natural
transformation x — 71 on Set.

1.4.2 Further Examples

1.4.2.1 Natural Isomorphisms for Products

Let C be a category with finite products, i.e. binary products and a terminal object
1. Then, we have the following canonical natural isomorphisms.
anpciAx(BxC)—> (AxB)xC,
SA,B:AXBiBXA,

I4:1xA—> A,

1

ra:Ax1— A.

The first two isomorphisms are meant to assert that the product is associative and
symmetric, and the last two that 1 is its unit. In later sections we will see that these
conditions form part of the definition of symmetric monoidal categories.

These natural isomorphisms are defined explicitly by:

aa,p,c = ({71, T 0 M), M2 0 M2) ,
sA,B = (m2, 1),
gy :=mp,
rpA :=1q .

Since natural isomorphisms are a self-dual notion, similar natural isomorphisms can
be defined if C has binary coproducts and an initial object.

Exercise 54 Verify that these families of arrows are natural isomorphisms.
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1.4.2.2 Natural Transformations Between Hom-Functors

Let f : A — B in a category C. Then, this induces a natural transformation

C(f,):C(B,) —CA, ),
C(f, )c:C(B,C) —C(A,C)=(g:B—>C)—> (gof:A—C).

Note that C(f, _)c is the same as C(f, C), the result of applying the contravariant
functor C(_, C) to f. Hence, naturality amounts to asserting that, for each h :
C — D, the following diagram commutes.

C
e, c) "¢, D)

C(£.0) C(f.D)

Starting froma g : B — C, we compute:

CA, M(C(f,C)@) =ho(gof)=(hog)of=C(f D)C(B,M)Q)).
The natural transformation C(_, f) : C(_, A) — C(_, B) is defined similarly.
Exercise 55 Define the natural transformation C(__, f) and verify its naturality.

There is a remarkable result, the Yoneda Lemma, which says that every natural
transformation between Hom-functors comes from a (unique) arrow in C in the
fashion described above.

Lemma 1 Let A, B be objects in a category C. For each natural transformation
t:C(A,_) — C(B,_), there is a unique arrow f : B — A such that

t=C(f,_).
Proof Take any such A, B and ¢ and let
f:B— A :=14(idy).

We want to show that t+ = C(f, _). For any object C and any arrow g : A — C,
naturality of # means that the following commutes.
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e ) A cal o)

Starting from id4 we have that:
1c(C(A, g)(ida)) = C(B, g)(ta(idn)) . ie. ic(g) =go f.

Hence, noting that C(f, C)(g) = g o f, we obtaint = C(f, _).
For uniqueness we have that, for any f, ' : B — A, if C(f,_) = C(f’,_) then

f=idao f=C(f A)ida) = C(f', AXida) = ids 0 f = f'.
Exercise 56 Prove a similar result for contravariant hom-functors.

Alternative definition of equivalence

Another way of defining equivalence of categories is as follows.

Definition 57 We say that categories C and D are equivalent, C >~ D, if there are
functors F : C — D, G : D — C and natural isomorphisms

GoFZ=Ilde, FoGE=ldp.

1.4.3 Functor Categories
Suppose we have functors F, G, H : C — D and natural transformations
t:F—G, u:G— H.
Then, we can compose these natural transformations, yieldingu ot : F — H:
(Wot)y = FA 2 GA M HA.
Composition is associative, and has as identity the natural transformation
Ip . F— F:={(Up)a:=1idy : FA— FA}4.

These observations lead us to the following.
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Definition 58 For categories C, D define the functor category Func(C, D) by
taking:

e Objects: functors F : C — D.
e Arrows: natural transformations ¢t : FF — G.

Composition and identities are given as above. A

Remark 59 We see that in the category Cat of categories and functors, each hom-set
Cat(C, D) itself has the structure of a category. In fact, Cat is the basic example of
a “2-category”, i.e. of a category where hom-sets are themselves categories.

Note that a natural isomorphism is precisely an isomorphism in the functor category.
Let us proceed to some examples of functor categories.

e Recall that, for any group G, functors from G to Set are G-actions on sets. Then,
Func(G, Set) is the category of G-actions on sets and equivariant functions:
f:X — Ysuchthat f(mex) =me« f(x).

e Func(2_,, Set): Graphs and graph homomorphisms.

e If F,G : P — (Q are monotone maps between posets, then ¢ : F — G means
that

Vxe P.Fx <Gx.

Note that in this case naturality is trivial (hom-sets are singletons in Q).
Exercise 60 Verify the above descriptions of Func(G, Set) and Func(2_,, Set).

Remark 61 The composition of natural transformations defined above is called ver-
tical composition. The reason for this terminology is depicted below.

/Glf\ L
C———D —— (_C luot D
W \H/

H

As expected, there is also a horizontal composition, which is given as follows.

F F' F'oF
C lt J/r’ E —— (C lt’ot £

G’ G'oG
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1.4.4 Exercises

1. By identifying the relevant functors, express pairing (_, _) as a natural transfor-
mation. What does naturality correspond to explicitly?
2. Show that the two definitions of equivalence of categories, namely

(a) C and D are equivalent if there is an equivalence F : C — D (definition 48),

(b) C and D are equivalent if there are F : C — D, G : D — C, and isomor-
phisms F o G = Idp, G o F = Id¢ (Definition 57), are: equivalent! Note
that this will need the Axiom of Choice.

3. Define a relation on objects in a category C by: A = B iff A and B are
isomorphic.

(a) Show that this relation is an equivalence relation.
Define a skeleton of C to be the (full) subcategory obtained by choosing one
object from each equivalence class of = (note that this involves choices, and
is not uniquely defined).

(b) Show that C is equivalent to any skeleton.

(c) Show that any two skeletons of C are isomorphic.

(d) Give an example of a category whose objects form a proper class, but whose
skeleton is finite.

4. Given a category C, we can define a functor
y:C — Func(C,Set) := A+ C(_,A), fr—C(, f).

Prove carefully that this is indeed a functor. Use exercise 56 to conclude that
y is full and faithful. Prove that it is also injective on objects, and hence an
embedding. It is known as the Yoneda embedding.

5. Define the horizontal composition u e ¢ of natural transformations explicitly.
Prove that it is associative.

1.5 Universality and Adjoints
There is a fundamental triad of categorical notions:
Functoriality, Naturality, Universality.

We have studied the first two notions explicitly. We have also seen many examples of
universal definitions, notably the various notions of limits and colimits considered
in Sect. 1.2. It is now time to consider universality in general; the proper formulation
of this fundamental and pervasive notion is one of the major achievements of basic
category theory.

Universality arises when we are interested in finding canonical solutions to prob-
lems of construction: that is, we are interested not just in the existence of a solution
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but in its canonicity. This canonicity should guarantee uniqueness, in the sense we
have become familiar with: a canonical solution should be unigue up to (unique)
isomorphism.

The notion of canonicity has a simple interpretation in the case of posets, as an
extremal solution: one that is the least or the greatest among all solutions. Such
an extremal solution is obviously unique. For example, consider the problem of
finding a lower bound of a pair of elements A, B in a poset P: a greatest lower
bound of A and B is an extremal solution to this problem. As we have seen, this is
the specialisation to posets of the problem of constructing a product:

~» A product of A, B in a poset is an element C such that C < Aand C < B, (C
is a lower bound);

~+ and for any other solution C’, i.e. C’ such that C’ < A and C’ < B, we have
C’ < C.(C is a greatest lower bound.)

Because the ideas of universality and adjunctions have an appealingly simple form
in posets, which is, moreover, useful in its own right, we will develop the ideas in
that special case first, as a prelude to the general discussion for categories.

1.5.1 Adjunctions for Posets

Suppose g : QO — P is a monotone map between posets. Given x € P, a g-approxi-
mation of x (from above) is an element y € Q such that x < g(y).
A best g-approximation of x is an element y € Q such that

x<g(y) ANVze Q. (x<gr) = y=<z).

If a best g-approximation exists then it is clearly unique.

1.5.1.1 Discussion

It is worth clarifying the notion of best g-approximation. If y is a best g-approxi-
mation to x, then in particular, by monotonicity of g, g(y) is the least element of
the set of all g(z) where z € Q and x < g(z). However, the property of being a best
approximation is much stronger than the mere existence of a least element of this
set. We are asking for y itself to be the least, in Q, among all elements z such that
x < g(z). Thus, even if g is surjective, so that for every x there is a y € Q such that
g(y) = x, there need not exist a best g-approximation to x. This is exactly the issue
of having a canonical choice of solution.

Exercise 62 Give an example of a surjective monotone map g : Q — P and an
element x € P such that there is no best g-approximation to x in Q.

If such a best g-approximation f(x) exists for all x € P then we have a function
f: P — Qsuchthat,forallx € P,z € Q:

x<gk) <= fx)=<z. (1.1)
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We say that f is the left adjoint of g, and g is the right adjoint of f. It is immediate
from the definitions that the left adjoint of g, if it exists, is uniquely determined

by g.
Proposition 63 If such a function f exists, then it is monotone. Moreover,

idp <go f, fog=idg,  fogof=f, gofog=g.
Proof If we take z = f(x) in Eq. (1.1), then since f(x) < f(x),x < go f(x).
Similarly, taking x = g(z) we obtain f o g(z) < z. Now, the ordering on functions
h,k : P — Q is the pointwise order:
h<k & VxeP.h(x)<kkx).

This gives the first two equations.

Now, if x <p x'thenx < x’ < go f(x'), so f(x) is a g-approximation of x,
and hence f(x) < f(x’). Thus, f is monotone.

Finally, using the fact that composition is monotone with respect to the pointwise
order on functions, and the first two equations:

g=Iidpog<gofog=<goidg=g,

and hence g = g o f o g. The other equation is proved similarly. |

Examples:

e Consider the inclusion map
i:7Z— R.

This has both a left adjoint f* and a right adjoint f%, where f£, fR : R — Z.
Forallz € Z,r € R:

<R = iw=r, flin<: = r<i@.

We see from these defining properties that the right adjoint maps a real r to the
greatest integer below it (the extremal solution to finding an integer below a given
real). This is the standard floor function.

Similarly, the left adjoint maps a real to the least integer above it yielding the
ceiling function. Thus:

foy=1.  ffeo=1.
e Consider arelation R € X x Y. R induces a function:

fr:PX) — P(Y):=S+> {ye¥|3IxeS.xRy}.
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This has a right adjoint [R] : P(Y) — P(X):
SCIRIT <= fr(CT.
The definition of [ R] which satisfies this condition is:
[RIT :={xe X |VyeY xRy = yeT}.

If we consider a set of worlds W with an accessibility relation R € W x W
as in Kripke semantics for modal logic, we see that [R] gives the usual Kripke
semantics for the modal operator [], seen as a propositional operator mapping the
set of worlds satisfied by a formula ¢ to the set of worlds satisfied by [e.

On the other hand, if we think of the relation R as the denotation of a (possibly
non-deterministic) program, and 7 as a predicate on states, then [R]T is exactly
the weakest precondition wp(R, T). In Dynamic Logic, the two settings are com-
bined, and we can write expressions such as [R]T directly, where 7" will be (the
denotation of) some formula, and R the relation corresponding to a program.

e Consider a function f : X — Y. This induces a function:

fTLPW) —PX) =T {xeX| fx) eT}.

This function f~! has both a left adjoint A(f) : P(X) —> P(Y), and a right
adjoint V(f) : P(X) — P(Y).Foral SC X, T C Y:

AHS) ST <= Sc D), U S8 & TSV

How can we define V(f) and 3( f) explicitly so as to fulfil these defining condi-
tions? — As follows:

AHS) ={yeY |IxeX. f(x)=y A x eSS},
Y(AHIS) ={reY|VxeX. fx) =y = x € S}.

If R € X x Y, which we write in logical notation as R(x, y), and we take the
projection function 1 : X x ¥ — X, then:

V(m1)(R) =Vy. R(x,y), A@)(R) = 3Jy. R(x, y).

This extends to an algebraic form of the usual Tarski model-theoretic semantics
for first-order logic, in which:

‘ Quantifiers are Adjoints
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1.5.1.2 Couniversality

We can dualise the discussion, so that starting with a monotone map f : P — Q
and y € Q, we can ask for the best P-approximation to y from below: x € P such
that f(x) < y,andforall z € P:

f@ <y < z=<x.
If such a best approximation g(y) exists for all y € Q, we obtain a monotone map
g : O — P such that g is right adjoint to f. From the symmetry of the definition, it
is clear that:

f is the left adjoint of g <= g is the right adjoint of f

and each determines the other uniquely.

1.5.2 Universal Arrows and Adjoints

Our discussion of best approximations for posets is lifted to general categories as
follows.
Definition 64 Let G : D — C be a functor, and C an object of C. A universal arrow
Jrom C to G is a pair (D, n) where D is an object of D and

n:C— G(D),

such that, for any object D’ of D and morphism f : ¢ — G(D'), there exists a
unique morphism f D — D' in D such that f = G(f) on.

Diagrammatically:
C——">GD) D
[ \
(NN (N
P G f
\ ]
G(D’ !
(DY) D N
As in previous cases, uniqueness can be given a purely equational specification:
Vh:D—> D .Ghyon=h. (1.2)

Exercise 65 Show that if (D, ) and (D', n’) are universal arrows from C to G then
there is a unique isomorphism D = D',
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Exercise 66 Check that the equational specification of uniqueness (1.2) is valid.
Examples:

e Take U : Mon — Set. Given a set X, the universal arrow is
nx : X — U(MList(X)) := x — [x].
Indeed, for any monoid (M, -, 1) and any function f : X — M, set
f:MList(X) — (M, -, 1) :=[x1,..., xn] = F(x1) - -+ - f(xn).

It is easy to see that f is a monoid homomorphism, and that U(f) onxy = f.
Moreover, for uniqueness we have that, for any & : MList(X) — (M, -, 1),

U)o nx =x > h(lx]) = [x1. ..., x,] = h(x1]) - -+ - h([xa])
=[x1,...,x ] = h([x1] % * [x,])

=[x1,..., x50 > h([x1,...., x4, ) =h.

e Let K : C — 1 be the unique functor to the one-object/one-arrow category. A
universal arrow from the object of 1 to K corresponds to an initial object in C.
Indeed, such a universal arrow is given by an object I of C (and a trivial arrow in
1), such that for any A in C (and relevant arrow in 1) there exists a unique arrow
from I to A (such that a trivial condition holds).

e Consider the functor (ld¢, ld¢) : C — C x C, taking each object A to (A, A)
and each arrow f to (f, f). A universal arrow from an object (A, B) of C x C to
(Idc, lId¢) corresponds to a coproduct of A and B.

Exercise 67 Verify the description of coproducts as universal arrows.
As in the case of posets, a related notion to universal arrows is that of adjunction.

Definition 68 Let C, D be categories. An adjunction from C to D is a triple
(F, G, 0), where F and G are functors

and 6 is a family of bijections

0.5 : C(A, G(B)) —> D(F(A), B),
for each A € Ob(C) and B € Ob(D), natural in A and B.
We say that F is left adjoint to G, and G is right adjoint to F. A

Note that 6 should be understood as the “witnessed” form—i.e. arrows instead of
mere relations—of the defining condition for adjunctions in the case of posets:
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x<g(y) &= f(x)=y.
This is often displayed as a two-way ‘inference rule’:

A — GB
FA— B

Naturality of 6 is expressed as follows: forany f : A — G(B)andany g : A’ — A,
h:B— B,

Oa,g(fog) =04p(f)oF(g),
04, (G(h)o f) =hobap(f).

Note that f, g are in C, and 4 is in D. In one line:

Oa,p(Gh)o fog)=hobsp(f)oF(g).

Diagrammatically:
C(A,Gh
ca.GB) SN oa 68 S e gy A 6B S9N e oY
9A,B’J/ 9A,BL leA’.B GA,BL J/QA’.B’
I /
D(FA., B) 5 D(FA. B) s D(FA', B) D(FA. B) 5o =D(FA', B)

Thus, 0 is in fact a natural isomorphism

~

6:C(.GL) = DFQ), ),

where C(_, G(_)) : C°P x D — Set is the result of composing the bivariant hom-
functor C(__, __) with ldcop x G, and D(F(_), _) is similar.

In the next propositions we show that universal arrows and adjunctions are equiv-
alent notions.

Proposition 69 (Universals define adjunctions) Let G : D — C. If for every object
C of C there exists a universal arrow nc : C — G(F(C)), then:

1. F uniquely extends to a functor F : C — D such thatn : ldc — G o F isa
natural transformation.

2. F is uniquely determined by G (up to unique natural isomorphism), and vice
versa.

3. For each pair of objects C of C and D of D, there is a natural bijection:

Oc.p :C(C,G(D)) =D(F(C),D).
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Proof For 1, we extend F to a functor as follows. Given f : C — C’in C, we
consider the composition

nero f:C — GFC'.

By the universal property of 5, there exists a unique arrow Ff : FC — FC’ such
that the following diagram commutes.

c—2~GFcC

1| Jors

C’?‘ GFC’
c

Note that the above is the naturality diagram for  on C, hence the arrow-map thus
defined for F is the unique candidate that makes 7 a natural transformation.

It remains to verify the functoriality of F. To show that F' preserves composition,
consider g : C' — C”. We have the following commutative diagram,

C f Cl 8 C//
’)Cl Tlc/l \Lﬁc/’
/ 1

GFC GFf GFC GFe GFC

from which it follows that

G(FgoFf)onc=GFgoGFfonc=ncrogof,
S F(gof)=mncrogof=G(FgoFf)onc=FgoFf,

where the last equality above holds because of (1.2). The verification that F pre-

serves identities is similar.

For 2, we have that each FC is determined uniquely up to unique isomorphism,
by the universal property, and once the object part of F is fixed, the arrow part is
uniquely determined.

For 3, we need to define a natural isomorphism 6c p : C(C,G(D)) =
D(F(C), D). Given f : C — GD, 6c p(f) is defined to be the unique arrow
FC — D such that the following commutes, as dictated by universality.
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c—X-GFC

\ lG(f)C,D(f))

GD
Suppose that O¢c p(f) = ¢ ,p(g). Then
f=GOcp(f)onc=GOcp(g)onc=2g-.

Thus 6c¢, p is injective. Moreover, given i : FC — D, by the equational formulation
of uniqueness (1.2) we have:

h=0c,p(Ghonc).

Thus 6c¢ p is surjective. We are left to show naturality, i.e. that the following diagram
commutes, forallz: C’' — Candg: D — D'.

C(h,G
cc, D) —"%0_ccr apy

QC,D \L lac,’D,

/ /

We chase around the diagram, starting from f : C — GD.

D(Fh,g)obc,p(f) =go0cp(f)o Fh
Oc',pr o C(h, Gg)(f) = bc/,p'(Gg o f oh)

Now:
gobc,p(f)oFh=0c p(G(gobc p(f)oFh)onc) by (1.2)
=0c p(GgoGOc,p(f)) o GFhonc) functoriality of G
=6c.p(GgoGOc,p(f))oncoh) naturality of n
=60c/ p(Ggo foh) by (1.2).
|

Proposition 70 (Adjunctions define universals) Ler G : D — C be a functor,
D € Ob(D) and C € Ob(C). If, for any D’ € Ob(D), there is a bijection

¢p 1 C(C,G(D)) =D(D, D)

natural in D’ then there is a universal arrow n : C — G(D).
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Proof Take n : C — G(D) := qu](idD) and, for any g : C — G(D'), take
§:D— D= ¢p(g).
We have that

nat

G(3)on=G(@)o¢p (idp) = ¢/ (2) =¢.
Moreover, forany 4 : D — D',

nat

¢p(Ghon) = ¢p(Gho¢,'(idp)) = ¢p (¢, (h) = h,

where equalities labelled with “nat” hold because of naturality of ¢. [ ]
Corollary 71 Let (F, G, 0) be an adjunction with F : C — D. Then, for each
C € Ob(C) there is a universal arrow n : C — G(F(C)). [ ]

Equivalence of Universals and Adjoints

Thus we see that the following two situations are equivalent, in the sense that each
determines the other uniquely.

e We are given a functor G : D — C, and for each object C of C a universal arrow
from C to G.
e We are given functors F : C — D and G : D — C, and a natural bijection

Oc.p : C(C,G(D)) =ED(F(C), D).

Couniversal Arrows

Let F : C — D be a functor, and D an object of D. A couniversal arrow from F to
D is an object C of C and a morphism

e F(C)— D

such that, for every object C’ of C and morphism g : F(C') — D, there exists a
unique morphism g : C’ — C in C such that g = € o F(g).

Diagrammatically:
C F(C)——=D
A A
_ | |
8, F(g) | o
\ \
c’ F(C)

By exactly similar (but dual) reasoning to the previous propositions, an adjunction
implies the existence of couniversal arrows, and the existence of the latter implies
the existence of the adjunction. Hence,
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Universality = Adjunctions = Couniversality .

Some examples of couniversal arrows:

e A terminal object in a category C is a couniversal arrow from the unique functor
K : C — 1 to the unique object in 1.

e Let A, B be objects of C. A product of A and B is a couniversal arrow from
(Ide,Id¢) : C — C x Cto (A, B).

1.5.3 Limits and Colimits

In the previous paragraph we described products A x B as couniversal arrows from
the diagonal functor A : C — C x C to (A, B). A is the functor assigning (A, A) to
each object A, and (f, f) to each arrow f. Noting that C x C = C2, where C2 is a
functor category, this suggests an important generalisation.

Definition 72 Let C be a category and 7 be another category, thought of as an “index
category”. A diagram of shape T in C is just a functor F : Z — C. Consider the
functor category CZ with objects the functors from Z to C, and natural transforma-
tions as morphisms. There is a diagonal functor

A:C—)CI,

taking each object C of C to the constant functor K¢ : Z — C, which maps every
object of Z to C. A limit for the diagram F is a couniversal arrow from A to F'. A

This concept of limit subsumes products (including infinite products), pullbacks,
inverse limits, etc.

For example, take 7 := 2_, (we have seen this before: 2_, = e
A functor F from 7 to C corresponds to a diagram:

2

f
e X\
E——A__ _B
AA g
h/

i.e. to an equaliser!
By dualising limits we obtain colimits. Some important examples are coproducts,
coequalisers, pushouts and w-colimits.
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Exercise 73 Verify that pullbacks are limits by taking:

T —e—>0<—eo

Limits as Terminal Objects

Consider A : C — CZ and F : T — C. A cone to F is an object C of C and family
of arrows y,

{yi:C— FI}1coba)

such that, for any f : I — J, the following triangle commutes.

Thus a cone is exactly a natural transformation y : AC — F. A morphism of cones
(‘mediating morphism’) (C, y) —> (D, d) is an arrow g : C — D such that each
of the following triangles commutes.

FI
N
C D

We obtain a category Cone(F) whose objects are cones to F' and whose arrows are
mediating morphisms. Then, a limit of F' is a terminal object in Cone(F).

1.5.4 Exponentials

In Set, given sets A, B, we can form the set of functions BA = Set(A, B), which
is again a set, i.e. an object of Set. This closure of Set under forming “function
spaces” is one of its most important properties.

How can we axiomatise this situation? Once again, rather than asking what the
elements of a function space are, we ask instead what we can do with them opera-
tionally. The answer is simple: apply functions to their arguments. That is, there is
a map

evap: B x A—> B suchthat evy g(f,a) = f(a).
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We can think of the function as a “black box”: we can feed it inputs and observe the
outputs.

Evaluation has the following couniversal property. For any g : C x A — B, there
is a unique map A(g) : C — B“ such that the following diagram commutes.

eva B
BAXxA—B

A(g)xida
CxA
In Set, this is defined by:
A@)(c):A— B:=ar> g(ca).

This process of transforming a function of two arguments into a function-valued
function of one argument is known as currying, after H. B. Curry. It is an algebraic
form of A-abstraction.

We are now led to the general definition of exponentials. Note that, for each
object A of a category C with products, we can define a functor

_xA:C—C.

Definition 74 Let C be a category with binary products. We say that C has expo-
nentials if for all objects A and B of C there is a couniversal arrow from _ x A to
B, i.e. anobject B4 of C and a morphism

evA,B:BAxA—>B

with the couniversal property: for every g : C x A — B, there is a unique morphism
A(g) : C — B such that the following diagram commutes.

eV4. B
BAXxA—B

A(g)xidy

CxA A

As before, the couniversal property can be given in purely equational terms, as fol-
lows. For every h : C — B4,

A(eVa poh xida) =h.

Equivalently, C has exponentials if, for every object A, the functor _ x A has a right
adjoint, that is, there exists a functor _A.C—>Canda bijection
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Ap.c:C(C x A, B) —> C(C, BA)

natural in B, C. In that case, ev4 p 1= A’l(idBA).

Exercise 75 Derive _“ and A~! of the above description from ev and A of defini-
tion 74.

Exercise 76 Show that C has exponentials iff, for every A, B, C € Ob(C), there is
an object B4 and a bijection

IR

Oc : C(C x A, B) —> C(C, BY)

natural in C.

Notation 77 The notation B4 for exponential objects is standard in the category
theory literature. For our purposes, however, it will be more convenient to write
A= B.

Exponentials bring us to another fundamental notion, this time for understanding
functional types, models of A-calculus, and the structure of proofs.

Definition 78 A category with a terminal object, products and exponentials is called
a Cartesian Closed Category (CCC). A

For example, Set is a CCC. Another class of examples are Boolean algebras, seen
as categories:

e Products are given by conjunctions A A B. We define exponentials as implica-
tions:

A=B :=—-AVB.
e Evaluation is just Modus Ponens,
(A= B)AA < B
while couniversality is the Deduction Theorem,

CANA<B < C<A=8B.

1.5.5 Exercises

1. Suppose that U : C — D has a left adjoint Fj,and V : D — & has a left adjoint
F>. Show that V o U : C — & has a left adjoint.

2. A sup-lattice is a poset P in which every subset § C P has a supremum (least
upper bound) \/ S. Let P, Q be sup-lattices, and f : P — Q be a monotone
map.
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(a) Show that if f has a right adjoint then f preserves least upper bounds:

FN 9 =\1r@lxesi.

(b) Show that if f preserves least upper bounds then it has a right adjoint g,
given by:

g =\{xeP|fx) <y}

(c) Dualise to get a necessary and sufficient condition for the existence of left
adjoints.

3. Let F : C - D, G : D — C be functors such that F is left adjoint to G, with

natural bijection 6¢ p : C(C, GD) —> D(FC, D). Show that there is a natural
transformation ¢ : F o G — |dp, the counit of the adjunction.
Describe this counit explicitly in the case where the right adjoint is the forgetful
functor U : Mon — Set.

4. Let F : C - Dand G : D — C be functors, and assume F is left adjoint to G
with natural bijection 6.

(a) Show that F preserves epimorphisms.

(b) Show that F is faithful if and only if, for every object A of C, na : A —
G F(A) is monic.

(c) Show that if, for each object A of C, there is a morphism s4 : GF(A) — A
such that n4 o s4 = idGF(A) then F is full.

1.6 The Curry—-Howard Correspondence

We shall now study a beautiful three-way connection between logic, computation
and categories:

Table 1.2 The Curry—Howard correspondence
Computation I

This connection has been known since the 1970s, and is widely used in Com-
puter Science—it is also beginning to be used in Quantum Informatics! It is the
upper link (Logic—Computation) that is usually attributed to Haskell B. Curry and
William A. Howard, although the idea is related to the operational interpreta-
tion of intuitionistic logic given in various formulations by Brouwer, Heyting and
Kolmogorov. The link to Categories is mainly due to the pioneering work of Joachim
Lambek (Table 1.2).
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1.6.1 Logic

Suppose we ask ourselves the question: What is Logic about? There are two main
kinds of answer: one focuses on Truth, and the other on Proof. We focus on the
latter, that is, on:

’ What follows from what ‘

Traditional introductions to logic focus on Hilbert-style proof systems, that is, on
generating the set of theorems of a system from a set of axioms by applying rules of
inference (e.g. Modus Ponens).

A key step in logic took place in the 1930s with the advent of Gentzen-style
systems. Instead of focusing on theorems, we look more generally and symmetri-
cally at What follows from what: in these systems the primary focus is on proofs
from assumptions. We will examine two such kinds of systems: Natural Deduction
systems and Gentzen sequent calculi.

Definition 79 Consider the fragment of propositional logic with logical connec-
tives A and D. The assertion that a formula A can be proved from assumptions
Ay, ..., A, is expressed by a sequent:

Ay, ..., A FA

We use I, A to range over finite sets of formulas, and write I", A for I"'U{A}. Proofs
are built using the proof rules of Table 1.3; the resulting proof system is called the
Natural Deduction system for N,D. A

For example, we have the following proof of D-transitivity.

ADBBOCAFASE ld A SBBS5C.AFA 'dE
A>B,B>C,AFB>C ADBBSC.AFE __ -
D

ADB,BDODC,AFC
ADB,BOCFHADC

Dl

An important feature of Natural Deduction is the systematic pattern it exhibits in the
structure of the inference rules. For each connective (I there are introduction rules,

Table 1.3 Natural deduction system for A,D

Identity Conjunction Implication
g LFEA TFB o LACE intro
T AFA r~arg " T'FASB °
I'AAB A elim I'FADB I'+A i
rFA 1 r'FB - elim
I'AAB A elims

I'-B
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which show how formulas ACIB can be derived, and elimination rules, which show
how such formulas can be used to derive other formulas.

Admissibility
We say that a proof rule

n+a - IEA,
A-B

is admissible in Natural Deduction if, whenever there are proofs of I'; - A; then
there is also a proof of A = B. For example, the following Cut rule is admissible.

I'rA A AFB
I'A-B

Cut

Exercise 80 Show that the following rules are admissible in Natural Deduction.

1. The Weakening rule:

I'B
I'A+-B

2. The Cut rule.
Our focus will be on Structural Proof Theory, that is studying the “space of formal
proofs” as a mathematical structure in its own right, rather than focussing only on

Provability «<— Truth

(i.e. the usual notions of “soundness and completeness”). One motivation for this
approach comes from trying to understand and use the computational content of
proofs, epitomised in the “Curry-Howard correspondence”.

1.6.2 Computation

Our starting point in computation is the pure calculus of functions called the A-
calculus.

Definition 81 Assume a countably infinite set of variables, ranged over by x, y, z
and variants. A-calculus terms, ranged over by t, u, v etc, are constructed from the
following inductive definition.

e Every variable x is a term.
e If 7 and u are terms, then ¢ u is a term (application).
e If x is a variable and 7 is a term, then Ax. ¢ is a term (A-abstraction). A
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The above definition can be given in the following compact form, which will be
followed in similar definitions in the sequel.

VA>x,y,z,...

TE>t,u,v = x | tu | Ax.t
The computational content of the calculus is exhibited in the following examples.
Note that the first example is not part of our formal syntax: it presupposes some

encoding of numerals and successors (Table 1.4).

Table 1.4 Examples of A-terms

Ax.x+1 successor function
AX.X identity function
MAf.oAx. fx application

Mfodx. f(fx) double application

MA.Ag. Ax.g(f(x)) composition and application

What we also note above is the use of parentheses in order to disambiguate the
structure of terms (i.e. the precedence of term constructors). To avoid notational
clutter we also use the following conventions.

e Applications associate to the left. For example, f x y stands for (fx) y.
e The scope of an abstractions goes as far to the right as possible. For example,

Af.(Ox. f(xx)) Ax. f(xx) stands for Af.((Ax.(f(xx)))(Ax.(f(xx)))).

The free variables of a term are those that are not bound by any A; they can be seen
as the assumptions of the term.

Definition 82 The set of free variables of a term ¢, fv(z), is given by:

fv(x) :== {x},
fv(tu) :=1fv() Ufv(u),
fv(x.t) :=fv(e) \ {x}.

The notation Ax.t is meant to serve the purpose of expressing formally

the function that returns t on input x.
Thus, A is a binder, that is, it binds the variable x in the “function” Ax.t, in the same
way that e.g. [ binds x in [ f(x) dx . This means that there should be no difference
between Ax.t and Ax’.t', where ¢’ is obtained from ¢ by swapping x with some fresh

variable x’ (i.e. with some x’ not appearing free in t). For example, the terms

Ax.x and  Ax’.x/
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should be “equal”, as they both stand for the identity function. We formalise this by
stipulating that

Terms are identified up to «-equivalence

where we say that two terms are a-equivalent iff they differ solely in the choice of
variables appearing in binding positions. This is formally defined in two steps, as
follows.

Definition 83 We define variable-swapping on terms recursively as follows.

y ifz=x
(yx)ez := qx ifz=y
z otherwise
yx)etu == ((yx)et)((yx)eu)
x)edrzt == Ay x)e2).((yx)e 1)

Then, a-equivalence, =, is the relation on terms defined inductively by:4

e X =¢ X,
o tu=ot'uift =4t andu =, ',
o Ax.t =y Ax'.t" if, for all y not appearing inz ¢/, (y x) et =4 (y x') o t’. A

Equating terms modulo «-equivalence means that we work with TE/=,, instead of
TE. Henceforth, we will refer to elements of TE/=,, as terms, and to elements of
TE as raw terms. Note that «-equivalence is meaningful only on raw terms.

Exercise 84 Prove the following a-equivalences.

AX.X =¢ AY.Y, AXAY. XY =¢ AY.AX. VX, Xx(Ax.x) =4 x(Ay.y).

Exercise 85 Show that, for all raw terms ¢, ¢’ and variables x, x’, if t =, t’ then
fv(t) =fv(@) and (x x") e t =4 (x x") o t'.

Moreover, show that, for any x, x’ & fv(¢), t =, (x x’)« ¢ . Hence infer that, for
any x’ € fv(t), Ax.t =4 Ax'.(x x) o 1.

From the above exercise we obtain that fv and variable-swapping extend to terms
(i.e. to TE/=,) in a straightforward manner. Moreover, we have that, for any term ¢
and any x’ ¢ fv(z),

Ax.t=Aax".(xx)et.

Since A-abstractions stand for functions, an application of a A-abstraction on another
term should result to a substitution of the latter inside the body of the abstraction.

4 The last clause can be replaced by any of the following:

e ...if, for some y not appearing in ¢/, (y x) e t =4 (y x')« t'.
e ...if, for all y not appearing free inz 1/, (y x) e t =4 (y x')o t.

e ...if, for some y not appearing free in 7 ¢/, (y x) o t =¢ (y x') o 1.
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Definition 86 Define the substitution of a term ¢ for a variable x inside a term induc-
tively by:

t ify=x
t/x| =
ylt/x] ity £ x

(uv)[t/x] := (ult/x])(v[t/x])
(Az.w)[t/x] := Az. (u[t/x]) (%)

where () indicates the condition that z & fv(x 7). A

Note that, due to identification of «-equivalent (raw) terms, it is always possible
to rename bound variables so that condition (x) be satisfied: for example,

(Az.zx)[z/x] = (Ay.yx)[z/x] = Ay.yz

Exercise 87 Show that, for all A-terms u, t, ¢’ and variables x, x’ such that x’ ¢

fv(u) \ {x},
ult/x1[t'/x"T = ul(e[t'/x' D /x].

We proceed to the definition of B-reduction and B-conversion. These are relations
defined on pairs of terms and express the computational content of the calculus.

Definition 88 We take S-reduction, — g, to be the relation defined by:
Ax.t)u —>g tlu/x].
This extends to arbitrary terms as follows. If t — g ¢’ then:
tu—ptu, ut—pgut, ix.t—pgix.t.

We take B-comversion, =g, to be the symmetric reflexive transitive closure of
B-reduction, that is, the equivalence relation induced by:

(Ax.t)u =g tlu/x].

With SB-reduction we obtain a notion of “computational dynamics”. For example:
AL fUfNOx.x+1) —g Ax.x+D((Ax.x + 1) y)
— g (Ax.x+Dy)+1—p(+D+1

Aff(fyNOx.x+1) —g Ax.x+D((Ax.x +1)y)
—3 (Ax.x + 1)(y+ 1) —8 (y+ H+1
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Note that in the sequel we will usually write 8-reduction simply by “—".

1.6.3 Simply-Typed A-Calculus
The “pure” A-calculus we have discussed so far is very unconstrained. For example,
it allows self-application, i.e. terms like xx are perfectly legal. On the one hand, this
means that the calculus very expressive: for example, we can encode recursion by
setting

Y = Af.(x. f(xx)) Ax. f(xx).
We have:

Yt — (Ax.t(xx))Ax.t(xx) — t((Ax.t(xx)) Ax.t(xx)) <— t(Y?)

However, self-application leads also to divergences. The most characteristic exam-
ple is the following. Setting £2 := (Ax.xx) Ax.xx, we have:

Historically, Curry extracted Y from an analysis of Russell’s Paradox, so it should
come as no surprise that it too leads to divergences: setting 7’ to be Ax. f(xx),

Yt — 1t — 1) — 1t (1) — ---

The solution is to introduce types. The original idea, due to Church following Rus-
sell, was that:

Types are there to stop you doing bad things

However, it has turned out that types constitute one of the most fruitful positive ideas
in Computer Science, and provide one of the key disciplines of programming.

Definition 89 Let us assume a set of base types, ranged over by b. The simply-typed
A-calculus is defined as follows.

Type TY> T, U :=b | T—-U|TxU
Term TE> t,u :=x | tu | Ax.t | {t,u) | mu | mu

Typing context I =9 |x:T,I (x does not appear in ")
A typing judgement is a triple of the form

I'+=¢:T,
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Table 1.5 Simply-typed A-calculus for x, —

Variable Product Function
r=t:T F'Fu:U Fix:UkFt: T
Cx:TEx:T I'H({tu):TxU I'Eix.t:U—>T
I'v:TxU r'-t:U0—->T I'tu:U
I'mv:T 'ttu:T
'v:TxU
I'mv:U

which is to be understood as the assertion that term ¢ has the type 7 under the

assumptions that x| has type 71, ..., x; has type Ty, if I = xy : Tq, ..., xx : Tx.
A typed term is a term t accompanied with a type T and a context I, such that the
judgement I" I ¢ : T is derivable by use of the typing rules of Table 1.5. A

Note that contexts are sets, and so x : T, I" stands for {x : T} U I" with x not
appearing in I". As before, terms are identified up to «-equivalence.

From the definition of types we see that the simply-typed A-calculus is a calculus
of functions and products. For example:

b — b — b first-order function type

(b — b) — b second-order function type
Exercise 90 Can you type the following terms?
Ax.xx,  Af.(Qx. f(xx)(Ax. f(xx)).

Exercise 91 (Weakening & Cut) Show that Weakening and Cut are admissible in
the typing system of the simply-typed A-calculus:

r't:T Weak 't T F,x:TI—u:UCt
Tx:UF¢:T "% TFult/x]:U !

We proceed to the rules for reduction and conversion. These are given as in the
untyped case, with the addition of n-rules, which are essentially extensionality prin-
ciples.

Definition 92 We define pB-reduction, —>g, by the following rules, and let
B-conversion, =g, be its symmetric reflexive transitive closure.

(Ax.)u —>pg tlu/x]
m{t,u) —>pt
ot u)y —>pg u

Moreover, n-conversion, =, is the symmetric reflexive transitive relation obtained
by the following rules,
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t o=y Ax.tx x ¢ fv(t), at function types
v =, {mv, mpv) at product types

and A-conversion, =, is the transitive closure of =g U = A

Implicit in the above definition is the fact that n-rules relate typed terms. For
example, t =, Ax.tx has as side condition that ¢ be of function type, i.e. that t be a
typed term I" ¢ : T — U. Now, following our intuitive interpretation of arrows
as functions, we can read this n-rule as:

t is the function returning t (x) to every input x

Note that the above statement is in fact the couniversal property of currying in Set;
we will see more on this in the next sections!

Exercise 93 (Subject Reduction) Show that, for any typed term I" + ¢ : T, if
t —>pg t'then I' - ¢' : T is derivable.

Strong Normalisation

Term reduction results in a normal form: an explicit but much longer expression in
which no more reductions are applicable. Formally, a A-term is called a redex if
it is in one of forms of the left-hand-side of the B-reduction rules, and therefore
B-reduction can be applied to it. A term is in normal form if it contains no redexes.
In the light of the correspondence presented in the next paragraph, a term in normal
form corresponds to a proof in which all lemmas have been eliminated.

Fact 94 (SN) For every term t, there is no infinite sequence of B-reductions:
t—>t)y—>t) —> 1 —> -
The above result states that every reduction sequence leads eventually to a term

in normal form. Note, though, that reduction to normal form has enormous (non-
elementary) complexity.

The Correspondence Between Logic and Computation

Comparing the following two systems,

Natural Deduction System for A,D

Vs ‘ Simply-Typed A-calculus for x,—

we notice that if we equate

>
|
X
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then they are the same! This is the Logic—Computation part of the Curry-Howard
correspondence (sometimes: “Curry-Howard isomorphism”). It works on three lev-

els (Table 1.6):

Table 1.6 Correspondence between logic and computation

Natural deduction system Simply-typed A-calculus
Formulas Types

Proofs Terms

Proof transformations Term reductions

The view of proofs as containing computational content can also be detected in
the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic:

e A proof of an implication A D B is a procedure which transforms any proof of
A into a proof of B.
e A proof of A A B is a pair consisting of a proof of A and a proof of B.

These readings motivate identifying A A B with A x B,and A D B with A — B.
Moreover, these ideas have strong connections to computing. The A-calculus is a
“pure” version of functional programming languages such as Haskell and SML. So
we get a reading of:

‘ Proofs as Programs

1.6.4 Categories

We now have our link between Logic and Computation. We now proceed to com-
plete the triangle of the Curry-Howard correspondence by showing the connection
to Categories.

We establish the link from Logic (and Computation) to Categories. Let C be a
cartesian closed category. We shall interpret formulas (or types) as objects of C. A
morphism f : A — B will then correspond to a proof of B from assumption A,
i.e. aproof of A+ B (atypedterm x : A ¢ : B). Note that the bare structure of a
category only supports proofs from a single assumption. Since C has finite products,
a proof of

Al,...,AkFA
will correspond to a morphism
fiA X+ x Ay — A.

The correspondence is depicted in the Table 1.7.

Moreover, the rules for S- and n-conversion are all then derivable from the
equations of cartesian closed categories. So cartesian closed categories are models
of A,D-logic at the level of proofs and proof-transformations, and of simply typed
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Table 1.7 Correspondence between logic and categories

Axiom F,AFAld m ' XA— A
rcA res f:r—A ¢g:I"'—B
Conjunction r-arg " (f.g): T — AxB
FI—AAB/\E f:I' — AxB
T'FA 1 mof:I — A
FEANB o f:I'— AxB
I'FB 2 mof:I — B
I'A+-B | f:I’'xA— B
Implication @T'FA>B AN T — (A= B)
r-A>B Irea o f:I'—(A=B) g:I'> A
I'FB > evagpolfig): I — B

A-calculus at the level of terms and term-conversions. The connection to computa-
tion is examined in more detail below.

Remark 95 In our translation of Logic sequents there is an implicit ordering of
assumptions: a set of assumptions is mapped to an assumption product,

{A,..., A} — A1 X -+ X A,
In practice, since for any permutation A/l, ..., Al of Ay, ..., A, we have
Al x-~-xA,,'£A/1 x~-~xA;,

such an ordering is harmless.

1.6.5 Categorical Semantics of Simply-Typed A-Calculus

We translate the simply-typed A-calculus into a cartesian closed category C, so that
to each typed term x1 : 71, ..., x¢ : Ty ¢t : T corresponds an arrow

[e] : [Th]) x --- x [Te] — [T]-

The translation if given by the function [_ ] defined below (“‘semantic brackets”).

Definition 96 (Semantic translation) Let C be a CCC and suppose we are given
an assignment of an object b to each base type b. Then, the translation is defined
recursively on types by:

[p] :=b, [T xU]:=[T]x[U]. [T - U]:=[T]=[U],
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and on typed terms by:

[Fx:Tkx:T):=m: '] x[T] — [T]
[[Fl—t:TxU]}:f'[[F]] [[T]]x[U]]

[F+me:T] =[] -5 [T] x [U] = [T]
[F+t:T)=f:['] — [T] [F+u:U]l=g:['] — [U]
8 [7] x U]

[Fyx:Tret:U]=f:[]x[T] — [U]
[FTEax.t: T — U] :=A): '] — (T] = [UD

[F - (tu): T x U] =[] L&

[[FH-T—>U]]= [[Fl—u'T]]zg

[FT+tu:U]:= [[r]] [[T]} = [U]) x [[Tﬂ [[U]] R

Our aim now is to verify that A-conversion (induced by 8- and n-rules) is preserved
by the translation, i.e. that, for any ¢, u,

t=u = [t] =[u].
This would mean that our categorical semantics is sound.

Let us recall some structures from CCC’s. Given f; : D1 — E1, f> : Dy — Ej,
we defined

fix fo={fiom, from): Dy x Dy — E1 X Es,

and we showed that (f1 X f2)o(h1, h2) = (f10h1, fo0h2) . Moreover, exponentials
are given by the following natural bijection.

f:DXxE—F
A(f):D— (E=F)

Equivalently, recall the basic equation:
evo (A(f) xidg) = f,

where A(f) is the unique arrow D — (E = F) satisfying this equation, with
uniqueness being specified by:

Vh:D — (E= F).A(evo (h x idg)) =h.

Naturality of A is then proven as follows.
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Proposition 97 Forany f : Ax B — Candg: A — A,

A(f)og=A(fo(gxidp)).

Proof

A(f)og = Aevo ((A(f)og) x idp))
= A(evo (A(f) x idp) o (g x idp))) = A(f o (g x idp)).

Substitution Lemma

‘We consider a simultaneous substitution for all the free variables in a term.

Definition 98 Let I" = x{ : T}, ..., xx : T . Given typed terms

I'tt:T and I'F4:T;,1<i<k,

we define ¢[t/x] = t[t1/x1, ..., tx/xx] recursively by:
xi[t/x] =1
(i D)[2/x] := 7; (¢[t/x])

(¢, u)[t/x] := (t[t/x], ult/x])
(tw)lt/x] == (¢[t/x]) (ult/x])
(Ax.t)[t/x] := rx.t[t, x/x, x]. A

Note that, in contrast to ordinary substitution, simultaneous substitution can be
defined directly on raw terms, that is, prior to equating them modulo «-equivalence.
Moreover, we can show that:

tlty/xr, oo e /xe) =t /xq] - - [t/ xi]

We can now show the following Substitution Lemma.

Proposition 99 Fort,ty, ..., tx as in the previous definition,

[tltr/x1, - - te/x]] = [t] o {[11] - - - []) -

Proof By induction on the structure of ¢.
(D Ift = x;:

[X,'[t/x]ﬂ = [[t,']] =T; o (Htl]], e, Htk]]) = [[xi]] o (Hll]], e, [[tk]]).
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(2) If t = uv then, abbreviating ([#1], ..., [#%]) to ([t]) we have:

[uvlt/x]] = [(ult/x])(w[t/x])] Defn of substitution
= ev o ([ult/x]], [vit/x]]) Defn of semantic function
=evo ([u] o ([f]), [v] o ([¢f])) Induction hyp.
= eV o ([u], [v]) o ([t]) Property of products
= [uv] o ([t]) Defn of semantic function
B)Ift = Ax.u:

[Ax.ult/x]] = [Ax.(ult, x /x, x])] Defn. of substitution

= A(Jult, x/x, x]]) Defn. of semantic function
= A([u] o ({[t]) x id)) Induction hyp.
= A([u]) o ([f]) Prop. 97
= [rx.u] o ([¢]) Defn. of semantic function
(4,5) The cases of projections and pairs are left as exercise. [ |

Exercise 100 Complete the proof of the above proposition.

Validating the Conversion Rules

We can now show that the conversion rules of the A-calculus are preserved by
the translation, and hence the interpretation is sound. Observe the correspondence
between n-rules and uniqueness (couniversality) principles.

e For B-conversion: [(ux.0)u = tlu/x], mi(t.u) =1, ma{t, u) = u]

[(rx.t)u] = ev o (A([t]), [«]) Defn. of semantics
=evo (A(Jr]) x id) o (id[m], [u]) Property of x
= [t] o (id[ry, [u]) Defn. of A
= [t[x, u/x, x]] Substitution lemma.

[7m1(t, u)] = 71 o [, u)] = 71 o ([£], [u]) =[] -
e For n-conversion: [t = Ax.tx, (mit, mot) = t]

[rAx.tx] = A(evo ([t] x id)) =[t]  Uniqueness equation (=)

[(m1t, m21)] = (1 o [t]), w2 o [¢]) = [1] Uniqueness equation (X)
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1.6.6 Completeness?

It is the case that, in a general CCC C, there may be equalities which are not reflected
by the semantic translation, i.e.

[=[u] yet t#iu.

In the rest of this section, we show how to construct a CCC C, in which equalities
between arrows correspond precisely to A-conversions between terms. We call Cy, a
term model, due to its dependence on the syntax.

Definition 101 We define a family of relations on variable-term pairs by setting
x,t) ~rv (y,u)ifx:TrH¢t:Uandy:TF u:U are derivable and

t = ulx/y].

These are equivalence relations, so we set:

(. Dlru ={(.w) | @0~y (y,u)}

Similarly, (.,#) ~, v (.,u)if1¢ : U and - u : U are derivable and ¢ =, u.
Moreover,

(ol ={G. w0~ v, u}.
A

We denote [(x, t)]r y simply by [x, ¢], and [(., )], y simply by [., ¢] (these are
not to be confused with copairings!). We proceed with C;.

Definition 102 The category C, is defined as follows. We take as set of objects the
set of A-types augmented with a terminal object 1:

Ob(C) = {1} U{T | T aitype}

The homsets of C; contain equivalence relations on typed terms (definition 101), or
terminal arrows t:

Ck(f, ﬁ) = {[x,f]|x: T k¢t :U isderivable }
G, ﬁ) ={[.,t]| Ft:U isderivable }
Cu(A 1) :={1a}

The identities are:

id7 :=[x,x], idq:=r11,
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and arrow composition is defined by:

[x,t]o [y, ul = [y, tlu/x]]
[x,t]o[.,u] :=1[.,tu/x]]

ly.r] ifA=0
[””°““‘h”ﬂ ifA=1
tpoh =1x (h € CL(A, B))

A

Note that, for each variable x’, any arrow [x, ] : T — U can be written in the form
[x', '], since r = (¢[x'/x])[x/x'] and therefore [x, ] = [x/, t[x'/x]].

Proposition 103 C, is a category.

Proof 1t is not difficult to see that id’s are identities. For associativity, we show the
most interesting case (and leave the rest as an exercise):

[x, 1o ([y,ulo[z,v]) =[x, t] o [z, ulv/y]] = [z, t[(u[v/y])/x]1],
([x,tlo [y, ul) o[z, v] = [y, t[u/x]] o [z, v] = [z, t[u/x][v/y]].

By Exercise 87, the above are equal. [ ]
Proposition 104 C, has finite products.

Proof Clearly, 1 is terminal with canonical arrows t4 : A — 1. For (binary) prod-
ucts,1 x A = A x 1 = A. Otherwise, define TETx0 20 by:

TxU:=TxU

=[x, mx] i=1,2
Given T <— v =y Ledl & U,take ([x,t],[x,ul): > T xU:= [x, (t, u)]. Then:
my o ([x, 1], [x, ul) = [y, m1yl o [x, (. u)] Definitions
= [x, 71 (t, u)] Defn of composition
=[x, 1] B-conversion

! 1 [—> U is similar. [ |

Uniqueness left as exercise. The case of 7~"
Proposition 105 C; has exponentials.

Proof We have that 1 = A = A and A = 1 = 1, with obvious evaluation arrows.
Otherwise,

—~—

’ﬂZ

U=
ev

~

=U —
(ﬁ = 7) U—T:= [x, (1x) (2x)]

IS
'ﬂl
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Given [x, t] : VxU— f, take A([x, t]) := [x1, Axa.t[{x1, x2)/x]].
Then,

evo A([x,t]) x id =evo (A([x, t]) o 7y, id o m2)
= evo ([xi, Axa.t[{x1, x2)/x]] o [y, m1y], [y, m2y])
=evo ([y, Axa.t[(m1y, x2)/x]1], [y, m2y])
= [z, m2)(m)] o [y, Axa.t[(m1y, x2)/x], m2)] .

= [y, (mu) (rau)] £ [y, Guxa.t[(mry, x2)/x]) (2y)]

[I=

Ly, t[(m1y, m2y)/x11 = Ly, tly/x1] = [x, t].

Uniqueness left as exercise. The case of [x,#] : 1 x U — T is similar. [ ]
Exercise 106 Complete the proof of the previous propositions.

Hence, C), is a CCC and a sound model of the simply-typed A-calculus. Moreover,
applying our translation from the A-calculus to a CCC (Definition 96) we can show
that we have
[Ir=t:T]) =[x, tlmix/xili=1.n]
where I' = {x; : T1,...,x, : Ty}, x ¢ Iand x : [[/_, T; . Then,
t=\u < ['+t:T)=[+u:T].

This means that our term model is complete.

1.6.7 Exercises

1. Give Natural Deduction proofs of the following sequents.

F(ADB)D((BDC)D(ADCO))
F(AD((ADB)D(ADB)
F({CD>A)DWCD>B)D(CD(AAB)))
F(AD(MBDC)D(ADB)D(ADO0))

In each case, give the corresponding A-term and the corresponding arrow in a
CCCC.

2. For each of the following A-terms, find a type for it. Try to find the “most general”
type, built from “type variables” «, B etc. For example, the most general type for
the identity Ax.x is @ — «. In each case, give the derivation of the type for this
term (where you may assume that types can be built up from type variables as
well as base types).

o Afix. fx
o Ax.Ay.Az.x(yz2)
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AX.AY.AZ.XZY
AX.AY. XYYy
AX.AY. X

Ax.AY. Az.x2(y2)

Reflect a little on the methods you used to do this exercise. Could they be made
algorithmic?

1.7 Linearity

In the system of Natural Deduction, implicit in our treatment of assumptions in
sequents

Ay, ... A FA

is that we can use them as many times as we want (including not at all). In this
section we will explore the field that is opened once we apply restrictions to this
approach, and thus render our treatment of assumptions more linear (or resource
sensitive).

1.7.1 Gentzen Sequent Calculus
In order to make the manipulation of assumptions more visible, we now represent

the assumptions as a list (possibly with repetitions) rather than a set, and use explicit
structural rules to control copying, deletion and interchange of assumptions.

Definition 107 The structural rules for Logic are given in the Table 1.8. A

Table 1.8 Structural rules for logic

I F,A,B,AI—CE h
AFA I B.A,AFC —¢
I''A,AFB I'-B
TArB O™ Tarp ek

If we think of using proof rules backwards to reduce the task of proving a given
sequent to various sub-tasks, then we see that the Contraction rule lets us duplicate
premises, and the Weakening rule lets us discard them, while the Exchange rule
merely lets us re-order them. The Identity axiom as given here is equivalent to the
one with auxiliary premises given previously in the presence of Weakening.

The structural rules have clear categorical meanings in a category C with prod-
ucts. Recalling the diagonal transformation Ap = (idy, id4) and the symmetry
transformation s, p := (w2, m1), the meanings are as follows.
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I'A,B,AFC f:I'xAXxBxA—C
T.B,A,AFC P Fo(idr xsapxida) T xBXxAxA— C
I'A,A+B f:I'xAxA— B

L AFB Com To(dr xAa) T xA— B

r'rB f:I— B

L EB  \eak

I'A+B fom:I'xA— B

In order to analyse Natural Deduction, Gentzen introduced sequent calculi based
on Left and Right rules, instead of Introduction and Elimination rules. These kind
of systems are more adequate for our discussion on linearity.

Definition 108 We define the Gentzen sequent calculus for A,D as the proof sys-
tem obtained by the structural rules (Definition 107) and the rules in Table 1.9 for
connectives. A

For example, the proof of D-transitivity is now given as follows.

ArA'd grg X

AASBRB _-F

ASB.A-B PN crc
A>B ABSCHC _ -t
ASB BSCAFC

ADB,BODCFHADC

Exch
SR

Exercise 109 Show that the Gentzen-rules are admissible in Natural Deduction.
Moreover, show that the Natural Deduction rules are admissible in the Gentzen
sequent calculus.

The Cut rule allows the use of lemmas in proofs. It also yields a dynamics of
proofs via Cut Elimination, that is, a dynamics of proof transformations towards the
goal of eliminating the uses of the Cut rule in a proof, i.e. removing all lemmas and
making the proof completely “explicit”’, meaning Cut-free. Such transformations are
always possible, as is shown in the following seminal result of Gentzen (Hauptsatz).

Fact 110 (Cut Elimination) The Cut rule is admissible in the Gentzen sequent cal-
culus without Cut.

Table 1.9 Gentzen sequent calculus for A,D

Conjunction Implication Cut
I'HA AFB R I'A+-B R A A,AI—BCt
ra-asB " TrasB > I AFB u
I'A,B-C A B,AFC

AL oL

I'AANBFC I'ADB,AFC
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1.7.2 Linear Logic

In the presence of the structural rules, the Gentzen sequent calculus is entirely equiv-
alent to the Natural Deduction system we studied earlier. Nevertheless:

What happens if we drop the Contraction and Weakening rules (but keep the Exchange
rule)?

It turns out we can still make good sense of the resulting proofs, terms and cate-
gories, but now in the setting of a different, ‘resource-sensitive’ logic.

Definition 111 Multiplicative Linear logic is a variant of standard logic with linear
logical connectives. The multiplicative connectives for conjunction and implication
are ® and —o. Proof sequents are of the form I" - A, where I" is now a multiset.
The proof rules for ®,—o-Linear Logic, given in Table 1.10, are the multiplicative
versions of the Gentzen rules. A

Multiplicativity here means the use of disjoint (i.e. non-overlapping) contexts. The
use of multisets allows us to omit explicit use of the Exchange rule in our proof
system.

Note that the given system satisfies Cut-elimination, and this leans heavily on the
—oL rule. We could have used instead the following rule,

I'HA—B A A
I'A+B

—E

which is more intuitive computationally, but then cut-elimination would fail. Note,
though, that:

—oL, Cut, Id = —E, Cut, Id.

This is shown as follows.

I A AwBI—AHvBldE A A BI—BIdL
IA—oBFB - B,AI—CCtFI—AwB A—B, AFB E"t
LA —oB AFC u T,AF B u

The resource-sensitive nature of Linear Logic is reflected in the following exercise.

Table 1.10 Rules for ®,—o-linear logic

Conjunction Implication Cut
A A+ B I''A+-B I'-A A, A+ B
rariess ©° rra—s R IAFB Cut
I'A,B-C I'-A B,AFC

QL —oL

I''A®BFC I''A—B,AFC




1 Introduction to Categories and Categorical Logic 71
Exercise 112 Can you construct proofs in Linear Logic of the following sequents?
(Hint: Use the Cut Elimination property.)

e AFA®RA
e (A®RA) —oBFHA-—oB
e FA—o(B—0A)

Related to linear logic is the linear A-calculus, which is a linear version of the
simply-typed A-calculus.

Definition 113 The linear \-calculus is defined as follows.

Type TYST,U 5= b | T —U | TQU
Term TE> t,bu = x | tu | Ax.t | tQu |letzbex®yint

Typing context I' ::= & |x: T,

Terms are typed by use of the typing rules of Table 1.11. Finally, the rules for -
reduction are:

(Ax.t)u —>g tlu/x]
letr@ubex®@yinv —pgvlt/x,u/yl. A
Note here that, again, x : T, I" stands for {x : T} U I" with x not appearing in I".
Note also that Cut-free proofs always yield terms in normal form.

Term formation is now highly constrained by the form of the typing judgements. In
particular,

X1 iAo xk Ak LA

now implies that each x; occurs exactly once (free) in .
Moreover, note that, for function application, instead of the rule on the LHS
below, we could have used the more intuitive rule on the RHS.

I'et:T x:U,AFu:V I't:A—oB AlFu:A
I f:T—oU,AFul[ft/x]:V I''A+tu:B

Table 1.11 Linear A-calculus for ®, —o

't T x:T,A+u:U
Variable cut x:TkHx:T AR ult/x]:U

rEet:T Atu:U rx:T,y:UkFv:V
Linear tensor FAFtQu:TQU rz:TUkletzbex®yinv:V

x:UkFt: T r+tet:T x:U,A+ru:V
Linear function I'FAx.t:U —T I f:T—oUAFulft/x]:V
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As we did in the logic, we can show that the typing systems with one or the other
rule are equivalent.

1.7.3 Linear Logic in Monoidal Categories

We proceed to give a categorical counterpart to linearity by providing a categorical
interpretation of linear logic. Note that CCC’s are no longer adequate for this task
as they contain arrows

Ap:A—> AXA, m:AXxB— A
which violate linearity. It turns out that the right setting is that of symmetric
monoidal closed categories.

Definition 114 A monoidal category is a structure (C, ®, I, a, [, r) where:

C is a category,

® : C x C — C is a functor (tensor),

I is a distinguished object of C (unit),

a, 1, r are natural isomorphisms (structural isos) with components:

aaBc:A®B®C) —> (AQB)®C
i I®A—> A FAiAQT —> A

such that /[y =r; : I ® I — I and the following diagrams commute.

ARU®B) —2~(AQ1)®B (A® B) ® (C ® D)
id®! o AQ® (B®(C®D)) (A®B)®C)®D
id®al Tu@id
A® B AR(B®C)®D) —>(A®(B®C)®D

A
The monoidal diagrams ensure coherence, described by the slogan:
“...‘all’ diagrams involving a, | and r must commute.”
Examples:

e Both products and coproducts give rise to monoidal structures—which are the
common denominator between them. (But in addition, products have diagonals
and projections, and coproducts have codiagonals and injections.)
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e (N, <, +,0) is a monoidal category.

e Rel, the category of sets and relations, with cartesian product (which is not the
categorical product).

e Vect; with the tensor product.

Let us examine the example of Rel in some detail. We take ® to be the cartesian
product, which is defined on relations R : X — X’ and S : ¥ — Y’ as follows.

V(x,y) e X x7, x,y)eX xY.(x,)R®Sx',y) & xRx' A ySy’.

It is not difficult to show that this is indeed a functor. Note that, in the case that
R, S are functions, R ® S is the same as R x § in Set. Moreover, we take each
aa,p.c to be the associativity function for products (in Set), which is an iso in Set
and hence also in Rel. Finally, we take I to be the one-element set, and /4, r4 to
be the projection functions: their relational converses are their inverses in Rel. The
monoidal diagrams commute simply because they commute in Set.

Exercise 115 Verify that (N, <, 4, 0) and Vect; are monoidal categories.

Tensors and Products

As we mentioned earlier, products are tensors with extra structure: natural diago-
nals and projections. This fact, which reflects no-cloning and no-deleting of Linear
Logic, is shown as follows.

Proposition 116 Let C be a monoidal category (C, ®, 1, a,l,r). ® induces a prod-
uct structure iff there exist natural diagonals and projections, i.e. natural transfor-
mations given by arrows

dy:A— AQA, paB:AxXB— A, ga.p:AxB— B,

such that the following diagrams commute.

da,B
A®B (A®B)®(A®B)
id id
4 da o . PA.BRGA,B
IdA®B
A PAA A®A qA,A A A®B

Proof The “only if” direction is straightforward. For the converse, let C be monoidal
with natural projections and diagonals. Then, we take product pairs to be pairs of
the form

qA.B

AL Ao S B,
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Moreover, for any pair of arrows B <L A5 C, define

da f®g
—>

(g =A—>ABA BQC.
Then the product diagram commutes. For example:
d ®
A A AR A /o8 B®C (*) naturality of p
(1) naturality of d
F@idy . (2) hypothesis
Id3®g
f ) fef| BQA () pB.C
PB.A
ida®
AQf )
dg PB.B

B——B®B———=8B
2
idp

For uniqueness, if # : A — B ® C then the following diagram commutes,

A h B®C (1) naturality of d
droc (2) hypothesis
da D dpec o
A®A—o=(BBO®BEC) = B®C
soh = (wyoh,m oh). [ |
SMCC’s

Linear Logic is interpreted in monoidal categories with two more pieces of struc-
ture: monoidal symmetry and closure. The former allows the Exchange rule to be
interpreted, while the latter realises linear implication.

Definition 117 A symmetric monoidal category is a monoidal category (C, ®, I,
a, 1, r) with an additional natural isomorphism (symmetry),

1R

sAB:A®B — BQ®A
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such that sp 4 = sng and the following diagrams commute.

id
AQI—>1@A ARBRC) —>AQ(C®B) —“~(ARC)®B
\il al \Ls@id
A (A®B)QC—>CQA®B)——>(CRAQRB
A

Definition 118 A symmetric monoidal closed category (SMCC) is a symmetric
monoidal category (C, ®, I, a,l, r, s) such that, for each object A, there is a couni-
versal arrow to the functor

_®A:C—C.
That is, for all pairs A, B, there is an object A — B and a morphism
evVap:(A—oB)®A — B

such that, for every morphism f : C ® A — B, there is a unique morphism A(f) :
C — (A — B) such that

evapo(A(f)®idy) = f.
A

Note that, although we use notation borrowed from CCC’s (ev, A), these are differ-
ent structures! Examples of symmetric monoidal closed categories are Rel, Vecty,
and (a fortiori) cartesian closed categories.

Exercise 119 Show that Rel is a symmetric monoidal closed category.

Linear Logic in SMCC'’s

Just as cartesian closed categories correspond to A,D-logic (and simply-typed
A-calculus), so do symmetric monoidal closed categories correspond to ®,—o-logic
(and linear A-calculus).

So let C be a symmetric monoidal closed category. The interpretation of a linear
sequent

Al,...,AkFA
will be a morphism

f1AQ @A — A.
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Table 1.12 Categorical translation of ®,—o-linear logic

AFA idy:A— A

A A, A+ B f:I'— A g:A®A— B
' A+B go(f®idp): I'®A— B

r'-A A+ B f:r— A g:A— B

I''A+-AQ®B fRg:I'®A— AQB

' A,B-C I ®A®B—C

I'AQBFC foarap: T'®(A®B)— C

I' A+-B f:IT®A— B

I'+-A—oB A(f): T — (A — B)

'+A—-oB A+A [:I—(A—oB) g:A—A
I'A+B eVapo(f®g):I'®A— B

To be precise in our interpretation, we will again treat contexts as lists of formulas,
and explicitly interpret the Exchange rule by:

A, B,AF-C fITRARB®A— C
IB,ALAFC fo(dr®spa®idy): T®BR®A®A—> C

The rest of the rules are translated as follows (Table 1.12).

Note that, because of coherence in monoidal categories, we will not be scholastic
with associativity arrows a in our translations and will usually omit them. For the
same reason, consecutive applications of tensor will be written without specifying
associativity, e.g. A1 @ - -- ® A,.

Exercise 120 Let C be a symmetric monoidal closed category. Give the interpreta-
tion of the —o-left rule in C:

'-A B,AFC
I''A— B, AFEC

—o

Exercise 121 Is it possible to translate ®,—-logic into a CCC C? Is this in accor-
dance with linearity of ®,—-logic?

1.7.4 Beyond the Multiplicatives

Linear Logic has three “levels” of connectives, each describing a different aspect of
standard logic:

e The multiplicatives: e.g. ®, —,
e The additives: additive conjunction & and disjunction &,
e The exponentials, allowing controlled access to copying and discarding.



1 Introduction to Categories and Categorical Logic 77

We focus on additive conjunction and the exponential “!”, which will allow us to
recover the ‘expressive power’ of standard A,D-logic.

Definition 122 The logical connective for additive disjunction is &, and the related
proof rules are the following.

r'A TIEB FAFC I Br-C
r-a&B <P Tagsrc® Tagxsrc®

L
A

So additive conjunction has proof rules that are identical to those of standard con-
junction (A). Note though that, since by linearity an argument of type A & B can
only be used once, each use of a left rule for & makes a once-and-for-all choice
of a projection. On the other hand, A ® B represents a conjunction where both
projections must be available.

Additive conjunction can be interpreted in any symmetric monoidal category
with products, i.e. a category C with structure (®, x) where ® is a symmetric
monoidal tensor and X is a product.

f: I — A g:I' — B f:IT®A—C
(f,g):I' — AxB fo(d®m): I'®(AxB)— C

Moreover, we can extend the linear A-calculus with term constructors for additive
conjunction as follows.

F'Ft:A I'Fu:B I'x:Akt:C
'{t,u):A&B TI,z:A&BFletz=(x,—)int:C
I'B-C

I'z:A&BFletz=(—,y)int: C
The B-reduction rules related to these constructs are:

let (t,u) = (x, —)inv —g v[t/x]
let (t,u) = (—, y)inv —g v[u/y].

Finally, we can gain back the lost structural rules, in disciplined versions, by intro-
ducing an exponential bang operator ! which is a kind of modality enabling formulas
to participate in structural rules.

Definition 123 The logical connective for bang is !, and the related proof rules are
the following.

F,AI—B' ‘' A R B Weak 1“,!A,!A|—BC X
I'1AFB ‘T H1A - T 1AF B '@ r1arp o™

Note that 1{A, ..., A} :=1A1,..., 1A,. A
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We can now see the discipline imposed on structural rules: in order for the rules
to be applied, the participating formulas need to be tagged with a bang.

Interpreting Standard Logic

We are now in position to recover the standard logical connectives A, D within
Linear Logic. If we interpret

ADB:=!A—8B
AANB :=A&B

and each A,D-sequent I" - A as !I" - A, then each proof rule of the Gentzen
system for A,D is admissible in the proof system of Linear Logic for ®,—,&,! .
Note in particular that the interpretation

ADB ='A—8B

decomposes the fundamental notion of implication into finer notions—like “splitting
the atom of logic”!

1.7.5 Exercises

1. Give proofs of the following sequents in Linear Logic.

a)FA—oA
b)A—oB,B—oCFA—C
¢)F(A—oB—oC)—o(B—oA—C)
) ARMBROF(AR®B)®C

e) ARBFB®A

For each of the proofs constructed give:

e the corresponding linear A-term,
e its interpretation in Rel.

2. Consider a symmetric monoidal closed category C.

(a) Suppose the sequents 7 - A, I3 + B and A, B, A + C are provable
and let their interpretations (i.e. the interpretations of their proofs) in C be
fi:In— A, fo: I > Bandg: A®Q B® A — C respectively. Find then
the interpretations /1, i, of the following proofs.

Nt D+ A,B,A+C L : NtrA A,B,AI—CC
Y A®B,AI—C? LFB [LBAFC ut
M. AFC ut D, AFC ut

and show that k| = h».
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(b) Suppose now C has also binary products, given by x. Given that the sequents
I'A, '+ Band A, A F C are provable, and that their interpretations in
Care fi: ' > A, b: ' > Band g: A® A — C respectively, find the
interpretations k1, k> of the following proofs.

I'-A I“I—B&R A, AFC &
I'-A&B A&B,AI—CC
r,ArcC

L F-A AAFC
ut I AFC ut

and show that h| = h».

3. Show that the condition /; = r; in the definition of monoidal categories is
redundant.
Moreover, show that the condition id4 ® [p = a4 1. p ora ® idp in the
definition of symmetric monoidal categories is redundant.

1.8 Monads and Comonads
Recall that an adjunction is given by a triple (F, G, 8), with F : C — D and G :

D — C being functors, and 6 a natural bijection between homsets. By composing
the two functors we obtain endofunctors

GoF:C—C, FoG:D—D.

These can be seen as encapsulating the effect of the adjunction inside their domain
category. For example, if we consider the functors

MList : Set — Mon, U : Mon — Set,

then U o MList encodes the free monoid construction inside Set.
The study of such endofunctors on their own right gave rise to the notions of
monad and comonad, which we examine in this section.

1.8.1 Basics

Definition 124 A monad over a category C is a triple (T, n, ) where T is an end-
ofunctor on C and 5 : lde — T, u : T?> — T are natural transformations such that
the following diagrams commute. (Note that 7%:= T o T, etc.).
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T3A%T2A TALTZA
Tua MA Tna . HA
idr 4
2 2
TATTA TAT‘TA

A

We call 7 the unit of the monad, and u its multiplication; the whole terminology
comes from monoids. Let us now proceed to some examples.

e Let C be a category with coproducts and let E be an object in C. We can define
a monad (T, n, u) of E-coproducts (computationally, E-exceptions) by taking
T : C — C to be the functor _ + E, and n, u as follows.

T:=A— A+E, f— f+idg

ma=ADS AL E
[ida+E, ina]

=(A4+E)+E 222 A4+ E

As an injection, 7 is a natural transformation. For p, we can use the properties of
the coproduct. For f : A — B,

Tfous=Tfolidare, il =[Tf oidare, Tf oina] =[Tf, Tf o ina]
=[Tf, (f +idg) o in] = [Tf, iny]
= [idpy+g o Tf, iy o idg] = [idp+E, iN2] o (Tf + idE)
=upoT’f.

The monadic diagrams follow in a similar manner. For example,

pmaopura = paolidraye, im] = [pnaoidrate, pa o ina] = [ra, pa o iny]
= [pa, [(da+g, in2] o in2] = [a, inz]
= [idat+E o pa, iy o idg] = [idatE, iN2] o (na + idE)
=paoTua.

e Now let C be a cartesian closed category and let & be some object in C. We can
define a monad of &-side-effects by taking T to be the functor & = (_ x &), and
n, u as follows.

T':A!—>§=>(AX§),f'_>§:>(indé)
nA:A(Axf;‘ S AxE)

eVe TAxE

ua = A(T(TA) x & TAXE AXS)
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Naturality of n, u follows from naturality of A: forany f : A — A/,

Tf ona = (3;' = f X idg) o A(idAxg) = A(f X idg o idAxg)
= A(idarxg o f x idg) = A(idarxg) o f =naro f,
Mo T2f = A(eV;YAlxg o evEYTA/XE) o Tzf = A(evg_,A/xg 0 €Ve TA'xg © T2f X Idg)
= A(eVEYA/XE oTf x idg o eVé&‘TAXg) = A(f x idg 0 BVg Axe O evg,TAxg)
= (= fxidg)o A(Ve axz 0€VeTaxe) =Tf opa.

The monadic diagrams are shown in a similar manner.
e Our third example employs the functor U : Mon — Set. In particular, we take
T := U o MList and n, u as follows.

T:=X Unew{[xl ..... ERIEI xn € X},
S (g, xnl = L), -, )]

ny =x > [x]

wx = oo X s s s oo s X I [X00s s Xy o X1 - o s Xikny

Naturality of 1, u is obvious—besides, 7 is the unit of the corresponding adjunc-
tion. The monadic diagrams are also straightforward: they correspond to the fol-

lowing equalities of mappings (we use x for xq, ..., xp).
(xnl, ..., ESPTRI AR 1E737 AEE [ 1] —— [xnl, .. il ooy [xx1l, - .-, (%, 11
Tulr IM
[lx11s--., xlnl] ~~~~~ (7S PR xknk]] }T‘ [x11,..., Xlngseens Xkl - xknk]
[0, ey ] e (X1, - 2]

Exercise 125 Show that the E-coproduct monad and the &-side-effect monads are
indeed monads.

Our discussion on monads can be dualised, leading us to comonads.

Definition 126 A comonad over a category C is a triple (Q, ¢, §) where Q is an
endofunctor on C and ¢ : Q — Id¢, 8§ : Q — QZare natural transformations such
that the following diagrams commute.



82 S. Abramsky and N. Tzevelekos

3 8
§
3A 0A 5a ido £0A
2 3 2 A
0 A%Q(SA 0°A QA%QSA 0

A

¢ is the counit of the comonad, and § its comultiplication. Two of our examples from
monads dualise to comonads.

e If C has finite products then, for any object S, we can define the S-product
comonad with functor Q := § x __.

e We can form a comonad on Mon with functor Q := MList o U (and counit that
of the corresponding adjunction).

Exercise 127 Give an explicit description of the comonad on Mon with functor
0 := MList o U described above. Verify it is a comonad.

1.8.2 (Co)Monads of an Adjunction

In the previous section, we saw that an adjunction between Mon and Set yielded a
monad on Set (and a comonad on Mon), with its unit being the unit of the adjunc-
tion. We now show that this observation generalises to any adjunction. Recall that
an adjunction is specified by:

) F
e a pair of functors C =——= D,
G

e foreach A € Ob(C), B € Ob(D), abijection 04 p : C(A, GB) = D(FA, B)
natural in A, B.

For such an adjunction we build a monad on C: the functor of the monad is simply
T := G o F, and unit and multiplication are defined by setting

na:A— GFA:=0" (idpa),
na:GFGFA — GFA :=GOcra.ra(idgra)).
Observe that 7 is the unit of the adjunction.

Proposition 128 Let (F, G, n) be an adjunction. Then the triple (T, n, u) defined
above is a monad on C.

Proof Recall that naturality of & means concretely that, for any f : A — GB,
g:A'—> Aandh: B — B,

GA/’B/(Ghofog) =h09A’B(f)OFg.
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n is the unit of the adjunction and hence natural. We show naturality of j:

GFGFfo up = GOgrp,rp(idgrp) o GFGFf = G(6grp ra(idgra) o FGFY)

0 . .
"L GO rp(idGrs 0 GFf) = GO r(GFf o idGr)

nat.t

=" G(Ff 0 0gra,m(idgr)) = GFfo .

The monoidal condition for  also follows from naturality of 6:

[a o Gm = G(O(idem) o 6(iderem)) = GO(GO(idGra) o idGrGra)
= GO(idm o GO(idom)) = G(6(idgm) o FGO(idGr))
=puaoGFpua.

Finally, for the n-u conditions we also use the universality diagram for n and the
uniqueness property (in equational form).

ta o nGm = GO, m(idGm) o e = idgm ,
ma o GFngm = GO, m (idgra) o GFngea = G(0GEa ra(idGra) o Fgra)

2 GO(idGm o nGm) = GO(Gidra o ngm) = Gidra = GFA .
n

Hence, every adjunction gives rise to a monad. It turns out that the converse is also
true: every monad is described by means of an adjunction in this way. In particular,
there are two canonical constructions of adjunctions from a given monad: the Kleisli
construction, and the Eilenberg-Moore construction. These are in a sense minimal
and maximal solutions to describing a monad via an adjunction. We describe the
former one in the next section.

Finally, note that—because of the symmetric definition of adjunctions—the
whole discussion can be dualised to comonads. That is, every adjunction gives rise
to a comonad with counit that of the adjunction, and also every comonad can be
derived from an adjunction in this manner.

1.8.3 The Kleisli Construction

The Kleisli construction starts from a monad (7', 1, u) on a category C and builds a
category Cr of T-computations, as follows.

Definition 129 Let (7, n, 1) be a monad on a category C. Construct the Kleisli cat-
egory Cr by taking the same objects as C, and by including an arrow fr : A — B
inCr foreach f: A — T B inC. Thatis,

Ob(Cr) := 0b(C),
Cr(A,B):={fr|fe€C(A TB)}.
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The identity arrow for A in Cr is 4.1 , while the composite of f7 : A — B and
g1 : B — Cishr,where:

n=adre s 20 S 70
A

The conditions for Cr being a category follow from the monadic conditions. For
composition with identity, forany f : A — T B,

fronar=WwpoTfona)r =Wpongo flr = fr,
ngrofr=WpoTngo flr=fr.

For associativity of composition, for any f : A — TB, g : B — TC and
h:C—TD,

(hrogr)ofr=WpoThog)rofr=(upoT(upoThog)o f)r
=(upoTupoT*hoTgo f)r=(upourpoThoTgo f)r
=(upoThopucoTgo flr =hro(grofr).

Let us now proceed to build the adjunction between C and Cr that will eventually

give us back the monad 7. Construct the functors F : C — Cr and G : Ct — C as
follows.

F=A— A, (f:A—= B)—~ ((npo f)7r:A— B),
G=A—TA, (fr:A—> B)r—> (upoTf:TA— TB).

Functoriality of F, G follows from the monad laws and the definition of C7. More-
over, for each A, B € Ob(C), construct the following bijection of arrows.

Oa5:C(A, TB) —> Cr(A,B) = f +> fr

To establish that (F, G, 0) is an adjunction we need only show that € is natural in
A,B.Sotake f: A— TB,g: A" — Aand hy : B— B’. We then have:

Oa,p(G(hr)o fog) =0a p(up oTho fog)=(upoTho fog)r
=hro(fog@) r=hro(upoTfonaogr
=hrofromaog)r=hrobap(f)okFg.

The final step in this section is to verify that the monad (T’, n’, 1) arising from
this adjunction is the one we started from. The construction of 7’ follows the recipe
given in the previous section, that is:

e 7' :C — C := G o F.Thus, T' maps each object A to T A, and each arrow
f:A—> BtoupoTnaoTf =TFf.
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o yiA— TA=070,(dT) =60 (ar) =14

o 1y :T?A — TA:=GOgrara(idS),) =Go(idra) = puaoTidra = jua.

Thus, we have indeed obtained the initial (T, n, u).

The Kleisli Construction on a Comonad

Dually to the Kleisli category of a monad we can construct the Kleisli category of a
comonad®—and reobtain the comonad through an adjunction between the Kleisli
category and the original one. Specifically, given a category C and a comonad
(Q, &, 8) on C, we define the category Cp as follows.

Ob(Cp) := 0b(C)
Co(A,B):={fo | f€C(QA, B)}
ide) =€4.0

800 fo:=(g0Qfoda)g
The Kleisli category of a comonad will be of use in the next sections, where comon-

ads will be considered for modelling bang of Linear Logic. We end this section by
showing a result that will be of use then.

Proposition 130 Let C be a category and (Q, ¢, 8) be a comonad on C. If C has
binary products then so does Cg.

Proof Let A, B be objects in C, Co. We claim that their product in Cg is given by
(A x B, p1, p2), where

p1:=(Q(A><B)i>A><BT—>A)AQ

and similarly for p,. Now, for each fo : C — Aand go : C — B, setting
(f0,8.0):=(f g .0 wehave:

p1o(fo,80)=(moegoQ(f g)od)g=(m10(f g)oeod)g=fog,
and similarly p; o (f 0, 8.0) = g.¢ - Finally, forany h o : C — A x B,

(prohg,paohg)={(m1og0Qhod,moco0Qhod)g=(moh,moh)g
=hyo.
n

Exercise 131 Show that the Kleisli category Co of a comonad (Q, ¢, §) has a ter-
minal object when C does.

5 In some texts, this is called a coKleisli category.
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1.8.4 Modelling of Linear Exponentials

In this section we employ comonads in order to model the exponential bang oper-
ator, !, of Linear Logic. Let us start by modelling a weak bang operator, !, which
involves solely the following proof rules.

IA-B . 1BFA .
I AFB . 1BEA

'R

x L X ~ !
I'''!A+B !BH!A

Observe that, compared to ! , 1 is weak in its Right rule, and it also misses Contrac-
tion and Weakening.

Let us now assume as given a symmetric monoidal closed category C along with
a comonad (Q, ¢, §) on C. As seen previously, C is a model of (®—o)-Linear Logic.
Moreover, (C, Q) yields a model of (®—oi)—Linear Logic by modelling each for-
mula 1A by QA (i.e. Q applied to the translation of A). The rules for weak bang are
then interpreted as follows.

f:IT'®A— B f:O0B— A
foldr®es: I'® QA — B Qf odp: QOB — QA

‘We know that arrow-equalities in C correspond to proof-transformations in the proof
system. Thus, the comonadic law g4 0 84 = idga = Qe4 0 84 corresponds to
the following transformations.

~ = Id ~— = Id
1AF1A . 1AF1A . AFA &
~ IR ~ ~ L A .
' 1 ] 1 1AFA .
TARIA - HARIA S AR A o
1A-TA 1AF'A 1AFA

Exercise 132 Find a proof-transformation corresponding to the comonadic law
Spa08s=084084.

In order to extend our translation to the general !R rule, we need arrows in C of
the form

Q’A1® - ® 0%, — Q(QAI®---® 0A,).

Hence, we need to impose (a coherent) distributivity of the tensor—either binary
(®) or nullary (I)—over the comonad Q. This can be formalised by stipulating that
Q be a symmetric monoidal endofunctor.

Definition 133 Let (C,®,1,a,l,r,s) and (C',Q',I',a’,l',r’,s’) be symmetric
monoidal categories. A functor F : C — (' is called symmetric monoidal if there
exist:

e amorphismmg: I’ - F(I),
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e anatural transformationm, : F( ) Q' F(_) - F(_®_),

such that the following diagrams commute.

e
FA® (FB® FC) —2". FA® F(B® C) F(A® (B® C))

(FAQ' FB)® FC F(A® B)® FC F(A®B)®C)

ma

mr®'id m3
- id®'mgo , , my FA® B
FAQ' I FAQ FI FAQ FB (A® B)
,J\L \Lmz S,\L lFs
FA<———F(A®]I) FB® FA—_—>F(B®A)

We may write such an F as (F, m). Moreover, if (F,m), (G,n) : C — (' are
(symmetric) monoidal functors then a natural transformation ¢ : F — G is called
monoidal whenever the following diagrams commute.

I — oy FA® FB—"2 >~ F(A® B)
no \L¢ ¢®/¢\L l(b
GI GA® GB G(A® B)

nj

A

For example, the identity functor is symmetric monoidal. Moreover, if ' and G are
symmetric monoidal functors then so is G o F. Other examples are the following.

e The constant endofunctor K;, which maps each object to I and each arrow to
id;, is symmetric monoidal with structure maps:

mo: Il — I:=id;, my:IQI —1:=rp.

e The endofunctor ® o (ld¢, Id¢), which maps each object A to A ® A and each
arrow f to f ® f, is symmetric monoidal with:

mo:l — IQ®I := rl_l, my = (A®z?)®(1?®3) — (A®l?)®(f|\®3),

the latter given by use of structural transformations.

Exercise 134 Verify that if F : C — D, G : D — &£ are symmetric monoidal
functors then sois G o F.

Definition 135 A comonad (Q, ¢, §) on a SMCC C is called a monoidal comonad
if Q is a symmetric monoidal functor, say (Q, m), and &, § are monoidal natural
transformations. We write Q as (Q, &, §, m). A
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Now let us assume C is a SMCC and (Q, ¢, §, m) is a monoidal comonad on C.

The coherence of m, with a, expressed by the first diagram of symmetric monoidal
functors, allows us to generalise mqo and m» to arbitrary arities and assume arrows:

m,:0A1Q - -QQA, — QA1 ®---®A,).
We can give the interpretation of the Right rule for bang as follows.

f:0Bi® ---® 0B, — A
Of omuo(p ® --®dp,):0B1®---® 0B, — QA

Contraction and Weakening

Our discussion on the categorical modelling of linear exponentials has only touched
the issues of Right and Left rules. However, we also need adequate structure for
translating Contraction and Weakening.

FIAAL B g
riArB oW s p Ve

For these rules we can use appropriate (monoidal) natural transformations. For Con-
traction, we stipulate a transformation with componentsd4 : QA — QAR QA ,i.e.

d:Q— ®0(0,0).
For Weakening, a transformation with components e4 : QA — 1, i.e.
e: Q0 — Kj.
Although the above allow the categorical interpretation of the proof-rules, they do
not necessarily preserve the intended proof-transformations. For that, we need to

impose some further coherence conditions, which are epitomised in the following
notion.

Definition 136 Let C be a SMCC. A monoidal comonad (Q, ¢, §, m) on C is called
a linear exponential comonad if there exist monoidal natural transformations

d:0— ®0{(0,0), e: 00— Kj,

such that:

(a) for each object A, the triple (QA, da, eq) is a commutative comonoid in C,
i.e. the following diagrams commute,
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0A— " 0A®0A 0A da 0A® QA

d .
lQAT \ \LSQA,QA dA\L ldA@ldQA

A A A A A
I1® QA P 0AR® QA 0AR® QO W(Q ® 0A)® 0

(b) for each object A, the following diagrams commute.

$ )
QA—A>Q2A QA—A>Q2A

€A l l Qep da l 9

I——>=0] QA®QA 0°A® Q°A — > Q(QA® QA)

o 3A®34
) 8

S T

1 QA® QA 0’°A ® Q%A

S54R854

We write Q as (Q, &,8,m,d, e). A

Exercise 137 Express what it means concretely for d, e to be monoidal natural
transformations.

Exercise 138 Give the categorical interpretation of Contraction and Weakening in a
SMCC C with a linear exponential comonad.

Including Products

We now consider the fragment of Linear Logic which includes all four linear con-
nectives we have seen thus far, i.e. ® —o !&, and their respective proof rules
(see definitions 122, 123). The categorical modelling of (® —o !&)-Linear Logic
requires:

e a symmetric monoidal closed category C,
e a linear exponential comonad (Q, ¢, 8, m, d, e) on C,
e finite products in C.

The above structure is adequate for modelling the proof rules as we have seen pre-
viously. Moreover, it provides rich structure for the Kleisli category Cp. The next
result and its proof demonstrate categorically the ‘interpretation’ of ordinary logic
within Linear Logic given by:

A= B=!A—-8B.
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Proposition 139 Let C be a SMCC with finite products and let (Q, €, 8, m, d, e) be
a linear exponential comonad on C. Then:

(a) The Kleisli category Cg has finite products.
(b) There exists an isomorphism i : Q1 — I and a natural isomorphism j : Q(_ X

)= 00)®00).
(c) Cg is cartesian closed, with the exponential of objects B, C being QB —o C.

Proof Part (a) has been shown previously (Proposition 130, Exercise 131), and part
(b) is left as exercise. For (c), we have the following isomorphisms:

Co(Ax B,C)=C(Q(A X B),C) definition of Cg
=ZC(QA® 0B, 0) part (b)
=C(QA, QB — () monoidal closure of C
=Co(A, QOB — C) defn of Cp.

Concretely, we obtain 84 : Co(A x B, C) = Co(A, QB — C) by:

0a:=(fo:AXB — C)r—> (A(foj;‘B)),Q
0, =(80:A— QB - C)r— (A" (9) 0 jan)o-
Clearly, 04 is a bijection. In order to establish couniversality of the exponential, we

need also show naturality in A (see Exercise 76). So take fo : A x B — C and
h.o : A' - A.Note first that the following commutes.

0(A x B) —2~ 04 x B) —222 (04 x 0B) ()

| j

Q0A® QOB Q%A ® 0°B

)
Note also that, for any h,gQ : A; — A;inCp, i = 1,2, we have:

, hyxh
hig % ha.g = (Q(A] x Ay 2270 oAl x gay 2 4« A),

Thus, noting that idfg) =¢B.0,

04 (foohg xidS?) = (A(f o Q(h x &0 (Qm1, Q12)) 08 oi ™),

= (A(f o Q(h x &) 0 Q(Qm1, Qm2) 050 j7 ) ,

D (A(foQhxe)oj! 08®9)) ,

—~



1 Introduction to Categories and Categorical Logic 91

=(A(foj! th®nga®5))vQ
=(A(foj ' o(Qhod) ® id)).Q
=(A(foj o Qhod) ,=04(fp)oho

as required. |

Exercise 140 Show part (b) of Proposition 139. For the defined j, show commuta-
tivity of (x).

1.8.5 Exercises

1. We say that a category C is well-pointed if it contains a terminal object 1 and, for
any pair of arrows f, g : A - B,

f#g = Jh:1—> A foh#goh.

Let now C be a well-pointed category with a terminal object 1 and binary coprod-
ucts, and consider the functor G : C — C given by:

G=Ar— A+1, f— f+id;.

IfC(1,1+ 1) = {iny, inp} with in; # iny, show that if (G, n, 1) is a monad on
C then, for each object A:

iny ida+1,in2]

nm=A—A+1, qu(A+1)+1[—>A+1.

2. Let C be a SMCC and let (Q, &, §) be a comonad on C.

(a) Suppose that the sequents A+ Band !B - C are provable and let
f: QA — Bandg: OB — C be their interpretations (i.e. the interpreta-
tions of their proofs) in C. Find the interpretations of the sequent 1A+ 1C
which correspond to each of the following proofs and show that the two
interpretations are equal.

: I—B?R :
fAl—B?R ?BD—C? 1AF1B incCut
1AF1B 1BHIC | 1A C .

~ = Cut ~ ~ 'R
1AF1C 1AF1C

(b) Find the interpretations in C of the following proofs; are the interpretations
equal?



92 S. Abramsky and N. Tzevelekos

Id d

e |
1AFTA iL 1AFA iR
WAFIA . TAFTA
~ ~~ 'R ~ L
NARITA MNAERITA

3. Show that a symmetric monoidal category C has finite products (given by ®, I,
etc.) iff there are monoidal natural transformations

d:lde — ®o (ld¢, lde), e:lde — Ky,
such that the following diagram commutes, for any A € Ob(C).

rA

A AR

T X T )
la eA®idy
IeA ids®es A®A

A Review of Sets, Functions and Relations

Our aim in this Appendix is to provide a brief review of notions we will assume in
the notes. If the first paragraph is not familiar to you, you will need to acquire more
background before being ready to read the notes.

Cartesian Products, Relations and Functions

Given sets X and Y, their cartesian product is
XxY={x,y)|xeX ANyeY}.

A relation R from X to Y, written R : X — Y, isasubset R C X x Y. Given such
a relation, we write (x, y) € R, or equivalently R(x, y). We compose relations as
follows:if R: X — Yand S:Y — Z,thenforallx € Xandz € Z:

R;S(x,z) =3y e Y.R(x,y) A S(yv,2).

A relation f : X — Y is a function if it satisfies the following two properties:

o (single-valuedness): if (x, y) € f and (x,y’) € f,theny = y'.
e (totality): forall x € X, forsome y € ¥, (x,y) € f.

If f is a function, we write f(x) = yor f : x — y for (x,y) € f. Function
composition is written as follows: if f : X - Yandg:Y — Z,

go f(x)=g(f(x)).

It is easily checked that g o f = f; g, viewing functions as relations.
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Equality of Functions

Two functions f, g : X — Y are equal if they are equal as relations, i.e. as sets of
ordered pairs. Equivalently, but more conveniently, we can write:

f=g < VxeX f(x)=gx).

The right-to-left implication is the standard tool for proving equality of functions
on sets. As we shall see, when we enter the world of category theory, which takes a
more general view of “arrows” f : X — Y, for most purposes we have to leave this
familiar tool behind!

Making the Arrow Notation for Functions and Relations Unambiguous

Our definitions of functions and relations, as they stand, have an unfortunate ambi-
guity. Given a relation R : X — Y, we cannot uniquely recover its “domain” X
and “codomain” Y. In the case of a function, we can recover the domain, because of
totality, but not the codomain.

Example Consider the set of ordered pairs {(n, n) | n € N}, where N is the set
of natural numbers. Is this the identity function idy : N —> N, or the inclusion
function inc : N < Z, where Z is the set of integers?

We wish to have unambiguous notions of domain and codomain for functions,
and more generally relations. Thus we modify our official definition of a relation
from X to Y to be an ordered triple (X, R, Y), where R € X x Y. We then define
composition of (X, R,Y) and (Y, S, Z) in the obvious fashion, as (X, R; S, Z).
We treat functions similarly. We shall not belabour this point in the notes, but it
is implicit when we set up perhaps the most fundamental example of a category,
namely the category of sets.

Size

We shall avoid explicit discussion of set-theoretical foundations in the text, but we
include a few remarks for the interested reader. Occasionally, distinctions of set-
theoretic size do matter in category theory. One example which does arise in the
notes is when we consider Cat, the category of “all” categories. Does this category
belong to (is it an object of) itself, at the risk of a Russell-type paradox? The way
we avoid this is to impose some set-theoretic limitation of size on the categories
gathered into Cat. Cat will then be too big to fit into itself. For example, we can
limit Cat to those categories whose collections of objects and arrows form sets in
the sense of some standard set theory such as ZFC. Cat will then be a proper class,
and will not be an object of itself. One assumption we do make throughout the
notes is that the categories we deal with are “locally small”, i.e. that all hom-sets
are indeed sets. Another place where some technical caveat would be in order is
when we form functor categories. In practice, these issues never (well, hardly ever)
cause problems, because of the strongly-typed nature of category theory. We leave
the interested reader to delve further into these issues by consulting some of the
standard texts.
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B Guide to Further Reading

Of the many texts on category theory, we shall only mention a few, which may be
particularly useful to someone who has read these notes and wishes to learn more.

The short text [10] is very nicely written and gently paced; it is probably a little
easier going than these notes. A text which is written with a clarity and at a level
which makes it ideal as a next step after these notes is [5]. A text particularly useful
for its large number of exercises with solutions is [1].

Another very nicely written text, focussing on the connections between cate-
gories and logic, and especially topos theory, is [4], recently reissued by Dover
Books. A classic text on categorical logic is [6]. A more advanced text on topos
theory is [9].

The text [8] is a classic by one of the founders of category theory. It assumes
considerable background knowledge of mathematics to fully appreciate its wide-
ranging examples, but it provides invaluable coverage of the key topics.

A stimulating text on the correspondence between computation and logic is [3];
it is out of print, but available online. A more recent text on this topic is [11].

The 3-volume handbook [2] provides coverage of a broad range of topics in cat-
egory theory. The book [7] is somewhat idiosyncratic in style, but offers insights by
one of the key contributors to category theory.
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Chapter 2
Physics, Topology, Logic and Computation:
A Rosetta Stone

J. Baez and M. Stay

Abstract In physics, Feynman diagrams are used to reason about quantum pro-
cesses. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology. Namely, a linear operator behaves
very much like a “cobordism”: a manifold representing spacetime, going between
two manifolds representing space. This led to a burst of work on topological quan-
tum field theory and “quantum topology”. But this was just the beginning: similar
diagrams can be used to reason about logic, where they represent proofs, and com-
putation, where they represent programs. With the rise of interest in quantum cryp-
tography and quantum computation, it became clear that there is extensive network
of analogies between physics, topology, logic and computation. In this expository
paper, we make some of these analogies precise using the concept of “closed sym-
metric monoidal category”. We assume no prior knowledge of category theory, proof
theory or computer science.

2.1 Introduction

Category theory is a very general formalism, but there is a certain special way that
physicists use categories which turns out to have close analogues in topology, logic
and computation. A category has objects and morphisms, which represent things
and ways to go between things. In physics, the objects are often physical systems,
and the morphisms are processes turning a state of one physical system into a state
of another system—perhaps the same one. In quantum physics we often formalize
this by taking Hilbert spaces as objects, and linear operators as morphisms.
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Sometime around 1949, Feynman [63] realized that in quantum field theory it is
useful to draw linear operators as diagrams:

This lets us reason with them pictorially. We can warp a picture without changing
the operator it stands for: all that matters is the topology, not the geometry. In the
1970s, Penrose realized that generalizations of Feynman diagrams arise throughout
quantum theory, and might even lead to revisions in our understanding of spacetime
[84-87]. In the 1980s, it became clear that underlying these diagrams is a powerful
analogy between quantum physics and topology! Namely, a linear operator behaves
very much like a “cobordism”—that is, an n-dimensional manifold going between
manifolds of one dimension less:

String theory exploits this analogy by replacing the Feynman diagrams of ordinary
quantum field theory with 2-dimensional cobordisms, which represent the world-
sheets traced out by strings with the passage of time. The analogy between operators
and cobordisms is also important in loop quantum gravity and—most of all—the
more purely mathematical discipline of “topological quantum field theory”.

Meanwhile, quite separately, logicians had begun using categories where the
objects represent propositions and the morphisms represent proofs. The idea is that
a proof is a process going from one proposition (the hypothesis) to another (the
conclusion). Later, computer scientists started using categories where the objects
represent data types and the morphisms represent programs. They also started using
“flow charts” to describe programs. Abstractly, these are very much like Feynman
diagrams!

The logicians and computer scientists were never very far from each other.
Indeed, the “Curry—Howard correspondence” relating proofs to programs has been
well-known at least since the early 1970s, with roots stretching back earlier
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[36, 37, 56]. But, it is only in the 1990s that the logicians and computer scientists
bumped into the physicists and topologists. One reason is the rise of interest in
quantum cryptography and quantum computation [29]. With this, people began to
think of quantum processes as forms of information processing, and apply ideas
from computer science. It was then realized that the loose analogy between flow
charts and Feynman diagrams could be made more precise and powerful with the
aid of category theory [3].

By now there is an extensive network of interlocking analogies between physics,
topology, logic and computer science. They suggest that research in the area of com-
mon overlap is actually trying to build a new science: a general science of systems
and processes. Building this science will be very difficult. There are good reasons
for this, but also bad ones. One bad reason is that different fields use different ter-
minology and notation.

The original Rosetta Stone, created in 196 BC, contains versions of the same text
in three languages: demotic Egyptian, hieroglyphic script and classical Greek. Its
rediscovery by Napoleon’s soldiers let modern Egyptologists decipher the hiero-
glyphs. Eventually this led to a vast increase in our understanding of Egyptian
culture.

At present, the deductive systems in mathematical logic look like hieroglyphs
to most physicists. Similarly, quantum field theory is Greek to most computer sci-
entists, and so on. So, there is a need for a new Rosetta Stone to aid researchers
attempting to translate between fields. Table 2.1 shows our guess as to what this
Rosetta Stone might look like.

Table 2.1 The Rosetta Stone (pocket version)

Category theory Physics Topology Logic Computation
Object System Manifold Proposition Data type
Morphism Process Cobordism Proof Program

The rest of this paper expands on this table by comparing how categories are used
in physics, topology, logic, and computation. Unfortunately, these different fields
focus on slightly different kinds of categories. Though most physicists don’t know it,
quantum physics has long made use of “compact symmetric monoidal categories”.
Knot theory uses “compact braided monoidal categories”, which are slightly more
general. However, it became clear in the 1990s that these more general gadgets are
useful in physics too. Logic and computer science used to focus on “cartesian closed
categories”—where “cartesian” can be seen, roughly, as an antonym of “quantum”.
However, thanks to work on linear logic and quantum computation, some logicians
and computer scientists have dropped their insistence on cartesianness: now they
study more general sorts of “closed symmetric monoidal categories”.

In Sect. 2.2 we explain these concepts, how they illuminate the analogy between
physics and topology, and how to work with them using string diagrams. We assume
no prior knowledge of category theory, only a willingness to learn some. In Sect. 2.3
we explain how closed symmetric monoidal categories correspond to a small frag-
ment of ordinary propositional logic, which also happens to be a fragment of
Girard’s “linear logic” [47]. In Sect. 2.4 we explain how closed symmetric monoidal
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categories correspond to a simple model of computation. Each of these sections
starts with some background material. In Sect. 2.5, we conclude by presenting a
larger version of the Rosetta Stone.

Our treatment of all four subjects—physics, topology, logic and computation—is
bound to seem sketchy, narrowly focused and idiosyncratic to practitioners of these
subjects. Our excuse is that we wish to emphasize certain analogies while saying no
more than absolutely necessary. To make up for this, we include many references
for those who wish to dig deeper.

2.2 The Analogy Between Physics and Topology

2.2.1 Background

Currently our best theories of physics are general relativity and the Standard Model
of particle physics. The first describes gravity without taking quantum theory into
account; the second describes all the other forces taking quantum theory into
account, but ignores gravity. So, our world-view is deeply schizophrenic. The field
where physicists struggle to solve this problem is called quantum gravity, since it
is widely believed that the solution requires treating gravity in a way that takes
quantum theory into account.

Table 2.2 Analogy between physics and topology

Physics Topology

Hilbert space (n — 1)-Dimensional
(system) manifold (space)

Operator between Cobordism between
Hilbert spaces (n — 1)-dimensional
(process) manifolds (spacetime)

Composition of Composition of
operators cobordisms

Identity operator  Identity cobordism

Nobody is sure how to do this, but there is a striking similarity between two of the
main approaches: string theory and loop quantum gravity. Both rely on the analogy
between physics and topology shown in Table 2.2. On the left we have a basic
ingredient of quantum theory: the category Hilb whose objects are Hilbert spaces,
used to describe physical systems, and whose morphisms are linear operators, used
to describe physical processes. On the right we have a basic structure in differential
topology: the category nCob. Here the objects are (n—1)-dimensional manifolds,
used to describe space, and whose morphisms are n-dimensional cobordisms, used
to describe spacetime.

As we shall see, Hilb and nCob share many structural features. Moreover, both
are very different from the more familiar category Set, whose objects are sets and
whose morphisms are functions. Elsewhere we have argued at great length that this
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is important for better understanding quantum gravity [11] and even the foundations
of quantum theory [12]. The idea is that if Hilb is more like nCob than Set, maybe
we should stop thinking of a quantum process as a function from one set of states
to another. Instead, maybe we should think of it as resembling a “spacetime” going
between spaces of dimension one less.

This idea sounds strange, but the simplest example is something very practical,
used by physicists every day: a Feynman diagram. This is a 1-dimensional graph
going between 0-dimensional collections of points, with edges and vertices labelled
in certain ways. Feynman diagrams are topological entities, but they describe lin-
ear operators. String theory uses 2-dimensional cobordisms equipped with extra
structure—string worldsheets—to do a similar job. Loop quantum gravity uses 2d
generalizations of Feynman diagrams called “spin foams” [10]. Topological quan-
tum field theory uses higher-dimensional cobordisms [14]. In each case, processes
are described by morphisms in a special sort of category: a “compact symmetric
monoidal category”.

In what follows, we shall not dwell on puzzles from quantum theory or quantum
gravity. Instead we take a different tack, simply explaining some basic concepts
from category theory and showing how Set, Hilb, nCob and categories of tangles
give examples. A recurring theme, however, is that Set is very different from the
other examples.

To help the reader safely navigate the sea of jargon, here is a chart of the concepts
we shall explain in this section:

categories

‘ monoidal categories ‘

braided closed
monoidal categories monoidal categories
symmetric closed braided compact
monoidal categories monoidal categories monoidal categories
: . closed symmetric compact braided
cartesian categories . . . .
monoidal categories monoidal categories
cartesian compact symmetric
closed categories monoidal categories

The category Set is cartesian closed, while Hilb and nCob are compact symmetric
monoidal.
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2.2.2 Categories

Category theory was born around 1945, with Eilenberg and Mac Lane [40] defin-
ing “categories”, “functors” between categories, and “natural transformations”
between functors. By now there are many introductions to the subject [35, 78, 81],
including some available for free online [21, 50]. Nonetheless, we begin at the
beginning:

Definition 1 A category C consists of:

e a collection of objects, where if X is an object of C we write X € C, and
e for every pair of objects (X, Y), asethom(X, Y) of morphisms from X to Y. We
call this set hom(X, Y) a homset. If f € hom(X, Y), then we write f: X — Y.

such that:

e for every object X there is an identity morphism 1x: X — X;

e morphisms are composable: given f: X — Y and g: Y — Z, there is a com-
posite morphism gf: X — Z; sometimes also written g o f.

e an identity morphism is both a left and a right unit for composition: if f: X —
Y,then flx = f =1y f; and

e composition is associative: (hg) f = h(gf) whenever either side is well-defined.

Definition 2 We say a morphism f:X —7Y is an isomorphism if it has an inverse—
that is, there exists another morphism g: Y— X such that gf = 1y and fg = ly.

A category is the simplest framework where we can talk about systems (objects)
and processes (morphisms). To visualize these, we can use “Feynman diagrams”
of a very primitive sort. In applications to linear algebra, these diagrams are often
called “spin networks”, but category theorists call them “string diagrams”, and that
is the term we will use. The term “string” here has little to do with string theory:
instead, the idea is that objects of our category label “strings” or “wires”:

X

and morphisms f: X — Y label “black boxes” with an input wire of type X and an
output wire of type Y:

X

©

Y
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We compose two morphisms by connecting the output of one black box to the input
of the next. So, the composite of f: X — Y and g: ¥ — Z looks like this:

is our notation for both h(gf) and (hg) f. Similarly, if we draw the identity mor-
phism 1x: X — X as a piece of wire of type X:

then the left and right unit laws are also implicit.
There are countless examples of categories, but we will focus on four:

Set: the category where objects are sets.

Hilb: the category where objects are finite-dimensional Hilbert spaces.
nCob: the category where morphisms are n-dimensional cobordisms.
Tang,,: the category where morphisms are k-codimensional tangles.
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As we shall see, all four are closed symmetric monoidal categories, at least when
k is big enough. However, the most familiar of the lot, namely Set, is the odd man
out: it is “cartesian”.

Traditionally, mathematics has been founded on the category Set, where the
objects are sets and the morphisms are functions. So, when we study systems
and processes in physics, it is tempting to specify a system by giving its set of
states, and a process by giving a function from states of one system to states of
another.

However, in quantum physics we do something subtly different: we use cate-
gories where objects are Hilbert spaces and morphisms are bounded linear oper-
ators. We specify a system by giving a Hilbert space, but this Hilbert space is not
really the set of states of the system: a state is actually a ray in Hilbert space. Simi-
larly, a bounded linear operator is not precisely a function from states of one system
to states of another.

In the day-to-day practice of quantum physics, what really matters is not sets
of states and functions between them, but Hilbert space and operators. One of the
virtues of category theory is that it frees us from the “Set-centric” view of traditional
mathematics and lets us view quantum physics on its own terms. As we shall see,
this sheds new light on the quandaries that have always plagued our understanding
of the quantum realm [12].

To avoid technical issues that would take us far afield, we will take Hilb to be
the category where objects are finite-dimensional Hilbert spaces and morphisms are
linear operators (automatically bounded in this case). Finite-dimensional Hilbert
spaces suffice for some purposes; infinite-dimensional ones are often important, but
treating them correctly would require some significant extensions of the ideas we
want to explain here.

In physics we also use categories where the objects represent choices of space,
and the morphisms represent choices of spacetime. The simplest is nCob, where the
objects are (n — 1)-dimensional manifolds, and the morphisms are n-dimensional
cobordisms. Glossing over some subtleties that a careful treatment would discuss
[90], a cobordism f: X — Y is an n-dimensional manifold whose boundary is the
disjoint union of the (n — 1)-dimensional manifolds X and Y. Here are a couple of
cobordisms in the case n = 2:

X

EQf

Y

We compose them by gluing the “output” of one to the “input” of the other. So, in
the above example gf : X — Z looks like this:
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X
| I
gf
z

Another kind of category important in physics has objects representing collec-
tions of particles, and morphisms representing their worldlines and interactions.
Feynman diagrams are the classic example, but in these diagrams the “edges” are
not taken literally as particle trajectories. An example with closer ties to topology is
Tangy,.

Very roughly speaking, an object in Tang;, is a collection of points in a
k-dimensional cube, while a morphism is a “tangle”: a collection of arcs and circles
smoothly embedded in a (k + 1)-dimensional cube, such that the circles lie in the
interior of the cube, while the arcs touch the boundary of the cube only at its top
and bottom, and only at their endpoints. A bit more precisely, tangles are “isotopy
classes” of such embedded arcs and circles: this equivalence relation means that
only the topology of the tangle matters, not its geometry. We compose tangles by
attaching one cube to another top to bottom.

More precise definitions can be found in many sources, at least for k = 2, which
gives tangles in a 3-dimensional cube [46, 64, 90, 99, 107, 111]. But since a picture
is worth a thousand words, here is a picture of a morphism in Tang,:

Sl
\,71 f

(s
AT

Note that we can think of a morphism in Tang; as a 1-dimensional cobordism
embedded in a k-dimensional cube. This is why Tang; and nCob behave similarly
in some respects.

Here are two composable morphisms in Tang;:
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X Y

and here is their composite:

V4

Since only the tangle’s topology matters, we are free to squash this rectangle into a
square if we want, but we do not need to.

It is often useful to consider tangles that are decorated in various ways. For exam-
ple, in an “oriented” tangle, each arc and circle is equipped with an orientation. We
can indicate this by drawing a little arrow on each curve in the tangle. In applications
to physics, these curves represent worldlines of particles, and the arrows say whether
each particle is going forwards or backwards in time, following Feynman’s idea that
antiparticles are particles going backwards in time. We can also consider “framed”
tangles. Here each curve is replaced by a “ribbon”. In applications to physics, this
keeps track of how each particle twists. This is especially important for fermions,
where a 27 twist acts nontrivially. Mathematically, the best-behaved tangles are both
framed and oriented [14, 99], and these are what we should use to define Tang;,. The
category nCob also has a framed oriented version. However, these details will barely
matter in what is to come.

It is difficult to do much with categories without discussing the maps between
them. A map between categories is called a ‘functor’:

Definition 3 A functor F: C — D from a category C to a category D is a map
sending:

e any object X € C to an object F'(X) € D,

e any morphism f: X — Y in C to a morphism F(f): F(X) - F(Y)in D,

in such a way that:
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e [ preserves identities: for any object X € C, F(1x) = 1r(x);
e F preserves composition: for any pair of morphisms f: X — Y, g: Y — Zin
C,F(gf) =F@@F(f).

In the sections to come, we will see that functors and natural transformations
are useful for putting extra structure on categories. Here is a rather different use
for functors: we can think of a functor F: C — D as giving a picture, or “repre-
sentation”, of C in D. The idea is that ' can map objects and morphisms of some
‘abstract’ category C to objects and morphisms of a more “concrete” category D.

For example, consider an abstract group G. This is the same as a category with
one object and with all morphisms invertible. The object is uninteresting, so we
can just call it e, but the morphisms are the elements of G, and we compose them
by multiplying them. From this perspective, a representation of G on a finite-
dimensional Hilbert space is the same as a functor F: G — Hilb. Similarly, an
action of G on a set is the same as a functor /': G — Set. Both notions are ways
of making an abstract group more concrete.

Ever since Lawvere’s 1963 thesis on functorial semantics [75], the idea of func-
tors as representations has become pervasive. However, the terminology varies from
field to field. Following Lawvere, logicians often call the category C a “theory”, and
call the functor F': C — D a “model” of this theory. Other mathematicians might
call F an “algebra” of the theory. In this work, the default choice of D is usually the
category Set.

In physics, it is the functor F: C — D that is called the “theory”. Here the
default choice of D is either the category we are calling Hilb or a similar category
of infinite-dimensional Hilbert spaces. For example, both “conformal field theories”
[95] and topological quantum field theories [8, 9] can be seen as functors of this
sort.

If we think of functors as models, natural transformations are maps between
models:

Definition 4 Given two functors F, F’': C — D, a natural transformation
a: F = F’ assigns to every object X in C a morphism ay: F(X) — F'(X)

such that for any morphism f: X — Y in C, the equation ay F(f) = F'(f) ax
holds in D. In other words, this square commutes:

F(f)
FX) — F)

F'(X) W F'(Y)

(Going across and then down equals going down and then across.)
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Definition 5 A natural isomorphism between functors F, F': C — D is a natural
transformation o : F = F’ such that ax is an isomorphism for every X € C.

For example, suppose F, F': G — Hilb are functors where G is a group, thought
of as a category with one object, say e. Then, as already mentioned, F and F’ are
secretly just representations of G on the Hilbert spaces F(e) and F’(e). A natural
transformation o : F = F’ is then the same as an intertwining operator from one
representation to another: that is, a linear operator

A: F(e) = F/(o)
satisfying
AF(g) = F'(9)A

for all group elements g.

2.2.3 Monoidal Categories

In physics, it is often useful to think of two systems sitting side by side as forming a
single system. In topology, the disjoint union of two manifolds is again a manifold
in its own right. In logic, the conjunction of two statement is again a statement.
In programming we can combine two data types into a single “product type”. The
concept of “monoidal category” unifies all these examples in a single framework.

A monoidal category C has a functor ®: C x C — C that takes two objects X
and Y and puts them together to give a new object X ® Y. To make this precise, we
need the cartesian product of categories:

Definition 6 The cartesian product C x C’ of categories C and C’ is the category
where:

an object is a pair (X, X’) consisting of an object X € C and an object X' € C’;
a morphism from (X, X’) to (Y, Y’) is a pair (f, f) consisting of a morphism
f: X — Y and a morphism f': X' — Y’;

composition is done componentwise: (g, g)(f, /) = (gf. &' f));

identity morphisms are defined componentwise: 1(x x) = (1x, Lx/).

Mac Lane [77] defined monoidal categories in 1963. The subtlety of the defi-
nition lies in the fact that (X ® Y) ® Z and X ® (Y ® Z) are not usually equal.
Instead, we should specify an isomorphism between them, called the “associator”.
Similarly, while a monoidal category has a “unit object” I, it is not usually true that
I ® X and X ® I equal X. Instead, we should specify isomorphisms / ® X = X
and X ® I = X. To be manageable, all these isomorphisms must then satisfy certain
equations:

Definition 7 A monoidal category consists of:

e acategory C,
e a tensor product functor ®: C x C — C,
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e a unit object / € C,
e a natural isomorphism called the associator, assigning to each triple of objects
X,Y, Z € C an isomorphism

axyz (XQ@Y)®Z > X® (Y QZ),

e natural isomorphisms called the left and right unitors, assigning to each object
X e C isomorphisms

Ix:1®X > X
v X®1I = X,

such that:
e forall X,Y e C the triangle equation holds:

Xoney — X | vouen

rxm ‘/X(}bly

e forall W, X, Y, Z € C, the pentagon equation holds:

(WeX)eeZz

Wl Z

WeXeY)eZ

WX Y®2 aAw xeY,Z

We(XeY)®2)

Lweaxyz

WX ((Y®2Z)

awx,yez

When we have a tensor product of four objects, there are five ways to paren-
thesize it, and at first glance the associator lets us build two isomorphisms from
WR XY ®Z)to(WR X)R®Y)Q® Z. But, the pentagon equation says these
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isomorphisms are equal. When we have tensor products of even more objects there
are even more ways to parenthesize them, and even more isomorphisms between
them built from the associator. However, Mac Lane showed that the pentagon iden-
tity implies these isomorphisms are all the same. Similarly, if we also assume the
triangle equation, all isomorphisms with the same source and target built from the
associator, left and right unit laws are equal.

In a monoidal category we can do processes in “parallel” as well as in “series”.
Doing processes in series is just composition of morphisms, which works in any
category. But in a monoidal category we can also tensor morphisms f: X — Y and
f': X’ — Y’ and obtain a “parallel process” f ® f': X @ X' - ¥ ® Y'. We can
draw this in various ways:

X X’ X 1% Xex’
O Q- TH - D
Y Y’ v v Yoy’

More generally, we can draw any morphism
f:X1Q ®@Xyn > Y1® @Yy
as a black box with n input wires and m output wires:

Xy X, X3

Y, Y,

We draw the unit object I as a blank space. So, for example, we draw a morphism
f: I — X as follows:

By composing and tensoring morphisms, we can build up elaborate pictures resem-
bling Feynman diagrams:
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Y; Yy

The laws governing a monoidal category allow us to neglect associators and uni-
tors when drawing such pictures, without getting in trouble. The reason is that Mac
Lane’s Coherence Theorem says any monoidal category is “equivalent”, in a suitable
sense, to one where all associators and unitors are identity morphisms [77].

We can also deform the picture in a wide variety of ways without changing the
morphism it describes. For example, the above morphism equals this one:

X, X, X; X,

z

Y Y, Y3 Yy

Everyone who uses string diagrams for calculations in monoidal categories starts
by worrying about the rules of the game: precisely how can we deform these pic-
tures without changing the morphisms they describe? Instead of stating the rules
precisely—which gets a bit technical—we urge you to explore for yourself what is
allowed and what is not. For example, show that we can slide black boxes up and
down like this:

Xl X2 Xl X2 Xl X2
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For a formal treatment of the rules governing string diagrams, try the original papers
by Joyal and Street [59, 60] and the book by Yetter [111].

Now let us turn to examples. Here it is crucial to realize that the same category
can often be equipped with different tensor products, resulting in different monoidal
categories:

e There is a way to make Set into a monoidal category where X ® Y is the cartesian
product X x Y and the unit object is any one-element set. Note that this tensor
product is not strictly associative, since (x, (v, z)) # ((x,y), z), but there’s a
natural isomorphism (X x Y) x Z = X x (Y x Z), and this is our associator.
Similar considerations give the left and right unitors. In this monoidal category,
the tensor product of f: X — Y and f': X’ — Y’ is the function

Fxf:XxX >YxY
(x, x") = (), f1&xD).

There is also a way to make Set into a monoidal category where X ® Y is the
disjoint union of X and Y, which we shall denote by X + Y. Here the unit object
is the empty set. Again, as indeed with all these examples, the associative law
and left/right unit laws hold only up to natural isomorphism. In this monoidal
category, the tensor product of f: X — Y and f': X’ — Y’ is the function

f+f:X+X -Y+Y
fx) ifx € X,
v {f’(x) ifx e X'.

However, in what follows, when we speak of Set as a monoidal category, we
always use the cartesian product!

e There is a way to make Hilb into a monoidal category with the usual tensor
product of Hilbert spaces: C" @ C™ = C™™. In this case the unit object / can be
taken to be a 1-dimensional Hilbert space, for example C.

There is also a way to make Hilb into a monoidal category where the tensor
product is the direct sum: C" @ C™ = C"*" In this case the unit object is the
zero-dimensional Hilbert space, {0}.
However, in what follows, when we speak of Hilb as a monoidal category, we
always use the usual tensor product!

e The tensor product of objects and morphisms in nCob is given by disjoint union.

For example, the tensor product of these two morphisms:
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is this:

XeoX

&

e The category Tang; is monoidal when k > 1, where the the tensor product is
given by disjoint union. For example, given these two tangles:

X

TN -

sl

their tensor product looks like this:

XoX

The example of Set with its cartesian product is different from our other three
main examples, because the cartesian product of sets X x X’ comes equipped with
functions called “projections” to the sets X and X:

X L xxx L x
Our other main examples lack this feature—though Hilb made into a monoidal cat-
egory using @ has projections. Also, every set has a unique function to the one-

element set:

Ix: X —> 1.
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Again, our other main examples lack this feature, though Hilb made into a monoidal
category using @ has it. A fascinating feature of quantum mechanics is that we make
Hilb into a monoidal category using ® instead of @, even though the latter approach
would lead to a category more like Set.

We can isolate the special features of the cartesian product of sets and its projec-
tions, obtaining a definition that applies to any category:

Definition 8 Given objects X and X’ in some category, we say an object X x X’
equipped with morphisms

XL xxx L.y

is a cartesian product (or simply product) of X and X’ if for any object Q and
morphisms

0
f v
X / \X’

there exists a unique morphism g: Q@ — X x X’ making the following diagram
commute:

7 f'

X ~—— xxx ——X

p

(That is, f = pg and f' = p’g.) We say a category has binary products if every
pair of objects has a product.

The product may not exist, and it may not be unique, but when it exists it is unique up
to a canonical isomorphism. This justifies our speaking of “the” product of objects
X and Y when it exists, and denoting it as X x Y.

The definition of cartesian product, while absolutely fundamental, is a bit scary
at first sight. To illustrate its power, let us do something with it: combine two mor-
phisms f: X — Y and f': X’ — Y’ into a single morphism

Fxf:XxX -¥YxY.
The definition of cartesian product says how to build a morphism of this sort out of

a pair of morphisms: namely, morphisms from X x X’ to Y and Y’. If we take these
tobe fpand f'p’, we obtain f x f':
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X x X’

fxf

’

Y «~— Y xY — Y

Next, let us isolate the special features of the one-element set:

Definition 9 An object 1 in a category C is terminal if for any object QO € C there
exists a unique morphism from Q to 1, which we denote as !p: QO — 1.

Again, a terminal object may not exist and may not be unique, but it is unique up
to a canonical isomorphism. This is why we can speak of ‘the’ terminal object of a
category, and denote it by a specific symbol, 1.

We have introduced the concept of binary products. One can also talk about n-
ary products for other values of n, but a category with binary products has n-ary
products for all n > 1, since we can construct these as iterated binary products. The
case n = 1 is trivial, since the product of one object is just that object itself (up
to canonical isomorphism). The remaining case is n = 0. The zero-ary product of
objects, if it exists, is just the terminal object. So, we make the following definition:

Definition 10 A category has finite products if it has binary products and a terminal
object.

A category with finite products can always be made into a monoidal category by
choosing a specific product X x Y to be the tensor product X ® Y, and choosing a
specific terminal object to be the unit object. It takes a bit of work to show this! A
monoidal category of this form is called cartesian.

In a cartesian category, we can “duplicate and delete information”. In general,
the definition of cartesian products gives a way to take two morphisms f;: Q — X
and f>: Q — Y and combine them into a single morphism from Q to X x Y. If we
take O = X = Y and take f] and f> to be the identity, we obtain the diagonal or
duplication morphism:

Ax: X - X x X.

In the category Set one can check that this maps any element x € X to the pair
(x, x). In general, we can draw the diagonal as follows:
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Similarly, we call the unique map to the terminal object
Ix: X —>1

the deletion morphism, and draw it as follows:

Note that we draw the unit object as an empty space.

A fundamental fact about cartesian categories is that duplicating something and
then deleting either copy is the same as doing nothing at all! In string diagrams, this
says:

We leave the proof as an exercise for the reader.

Many of the puzzling features of quantum theory come from the noncartesian-
ness of the usual tensor product in Hilb. For example, in a cartesian category, every
morphism

is actually of the form
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In the case of Set, this says that every point of the set X x X’ comes from a point of
X and a point of X’. In physics, this would say that every state g of the combined
system X ® X' is built by combining states of the systems X and X’. Bell’s theorem
[20] says that is not true in quantum theory. The reason is that quantum theory uses
the noncartesian monoidal category Hilb!

Also, in quantum theory we cannot freely duplicate or delete information. Woot-
ters and Zurek [110] proved a precise theorem to this effect, focused on duplication:
the “no-cloning theorem”. One can also prove a “no-deletion theorem”. Again, these
results rely on the noncartesian tensor product in Hilb.

2.2.4 Braided Monoidal Categories

In physics, there is often a process that lets us “switch” two systems by moving
them around each other. In topology, there is a tangle that describes the process of
switching two points:

In logic, we can switch the order of two statements in a conjunction: the statement
“X and Y is isomorphic to “Y and X”. In computation, there is a simple program
that switches the order of two pieces of data. A monoidal category in which we can
do this sort of thing is called “braided”:

Definition 11 A braided monoidal category consists of:

e a monoidal category C,
e a natural isomorphism called the braiding that assigns to every pair of objects
X, Y e C an isomorphism

bxﬁy:X@Y—)Y@X,

such that the hexagon equations hold:
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a)_(1 byy® 1,
Xo(rez) —% xeyyez L yex)ez

by yez ayxz

(YOZ)OX ~S— YO (ZOX) +—— YE(X®2Z)
ayzx y®@bxz

axyz Iy®by,
(X0Y)8Z — % X0¥®Z) —> X(Z®Y)

bxg Y.z a;},lz,y

Z2(XOY) ~+—— (ZOX)QY <+——— (X®Z)BY
4zxy xz® ly

The first hexagon equation says that switching the object X past Y ® Z all at once
is the same as switching it past ¥ and then past Z (with some associators thrown in
to move the parentheses). The second one is similar: it says switching X ® Y past
Z all at once is the same as doing it in two steps.

In string diagrams, we draw the braiding by y: X ® ¥ — Y ® X like this:

X& Y
\

We draw its inverse b;(lY like this:
X / Y

This is a nice notation, because it makes the equations saying that bx y and b;ly
are inverses “topologically true”:
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Here are the hexagon equations as string diagrams:
X / Y®Zz X \( Y) V4
Y®Zz X Y V4 \ X
Xey z XY \ z

V4 XYy Z \X Y

For practice, we urge you to prove the following equations:

X?jY X\(Y

X\Y V4 X Y\ z
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If you get stuck, here are some hints. The first equation follows from the naturality
of the braiding. The second is called the Yang-Baxter equation and follows from
a combination of naturality and the hexagon equations [61, 62].

Next, here are some examples. There can be many different ways to give a
monoidal category a braiding, or none. However, most of our favorite examples
come with well-known “standard” braidings:

e Any cartesian category automatically becomes braided, and in Set with its carte-
sian product, this standard braiding is given by:

bxy : XxY —>YxX
(x,y) = (y,x).

e In Hilb with its usual tensor product, the standard braiding is given by:

bxy : X®Y —->7YR®X
XQYy H y®ux.

e The monoidal category nCob has a standard braiding where by y is diffeomor-
phic to the disjoint union of cylinders X x [0, 1] and ¥ x [0, 1]. For 2Cob this

braiding looks as follows when X and Y are circles:

XeyY
' @
bX,Y

e The monoidal category Tang,; has a standard braiding when k > 2. For k = 2
this looks as follows when X and Y are each a single point:

Y®X

X®Y

Y®X
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The example of Tang, illustrates an important pattern. Tang, is just a category,
because in 0-dimensional space we can only do processes in “series”: that is, com-
pose morphisms. Tang; is a monoidal category, because in 1-dimensional space we
can also do processes in “parallel”: that is, tensor morphisms. Tang, is a braided
monoidal category, because in 2-dimensional space there is room to move one
object around another. Next we shall see what happens when space has 3 or more
dimensions!

2.2.5 Symmetric Monoidal Categories

Sometimes switching two objects and switching them again is the same as doing
nothing at all. Indeed, this situation is very familiar. So, the first braided monoidal
categories to be discovered were “symmetric” ones [77]:

Definition 12 A symmetric monoidal category is a braided monoidal category
where the braiding satisfies by y = b;]X

So, in a symmetric monoidal category,

or equivalently:

Any cartesian category automatically becomes a symmetric monoidal category,
so Set is symmetric. It is also easy to check that Hilb, nCob are symmetric monoidal
categories. So is Tang, for k > 3.

Interestingly, Tang; “stabilizes” at k = 3: increasing the value of k beyond this
value merely gives a category equivalent to Tangs. The reason is that we can already
untie all knots in 4-dimensional space; adding extra dimensions has no real effect.
In fact, Tang, for k > 3 is equivalent to 1Cob. This is part of a conjectured larger
pattern called the “Periodic Table” of n-categories [14]. A piece of this is shown in
Table 2.3.

An n-category has not only morphisms going between objects, but 2-morphisms
going between morphisms, 3-morphisms going between 2-morphisms and so on up
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Table 2.3 The periodic table: conjectured descriptions of (n + k)-categories with only one
Jj-morphism for j < k

n=0 n=1 n=2
k=0 Sets Categories 2-Categories
k=1 Monoids Monoidal Monoidal
categories 2-categories
k=2 Commutative Braided Braided
monoids monoidal monoidal
categories 2-categories
k=3 © Symmetric Sylleptic
monoidal monoidal
categories 2-categories
k=4 © < Symmetric
monoidal
2-categories
k=35 < ¢ <
k=6 < ¢ <

to n-morphisms. In topology we can use n-categories to describe tangled higher-
dimensional surfaces [15], and in physics we can use them to describe not just
particles but also strings and higher-dimensional membranes [14, 16]. The Rosetta
Stone we are describing concerns only the n = 1 column of the Periodic Table. So,
it is probably just a fragment of a larger, still buried n-categorical Rosetta Stone.

2.2.6 Closed Categories

In quantum mechanics, one can encode a linear operator f: X — Y into a quantum
state using a technique called “gate teleportation” [51]. In topology, there is a way
to take any tangle f: X — Y and bend the input back around to make it part of
the output. In logic, we can take a proof that goes from some assumption X to some
conclusion Y and turn it into a proof that goes from no assumptions to the conclusion
“X implies Y. In computer science, we can take any program that takes input of
type X and produces output of type Y, and think of it as a piece of data of a new
type: a “function type”. The underlying concept that unifies all these examples is
the concept of a ‘closed category’.

Given objects X and Y in any category C, there is a set of morphisms from X
to Y, denoted hom(X, Y). In a closed category there is also an object of morphisms
from X to Y, which we denote by X —o Y. (Many other notations are also used.) In
this situation we speak of an “internal hom”, since the object X —o Y lives inside
C, instead of “outside”, in the category of sets.

Closed categories were introduced in 1966, by Eilenberg and Kelly [41]. While
these authors were able to define a closed structure for any category, it turns out that
the internal hom is most easily understood for monoidal categories. The reason is
that when our category has a tensor product, it is closed precisely when morphisms
from X ® Y to Z are in natural one-to-one correspondence with morphisms from Y
to X —o Z. In other words, it is closed when we have a natural isomorphism
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hom(X ®Y,Z) = hom(Y, X — Z)
fef

For example, in the category Set, if we take X ® Y to be the cartesian product X x Y,
then X —o Z is just the set of functions from X to Z, and we have a one-to-one
correspondence between

e functions f that eat elements of X x Y and spit out elements of Z
and
e functions f that eat elements of ¥ and spit out functions from X to Z.

This correspondence goes as follows:

FOG) = fx, ).

Before considering other examples, we should make the definition of “closed
monoidal category” completely precise. For this we must note that for any category
C, there is a functor

hom: C°? x C — Set.

Definition 13 The opposite category C°P of a category C has the same objects as
C, but a morphism f: x — y in C° is a morphism f: y — x in C, and the
composite gf in C°P is the composite fg in C.

Definition 14 For any category C, the hom functor
hom: C? x C — Set

sends any object (X, Y) € C°? x C to the set hom(X, Y), and sends any morphism
(f, g) € C° x C to the function

hom(f, g): hom(X, Y) — hom(X’,Y")
h+— ghf

when f: X’ — X and g: Y — Y’ are morphisms in C.

Definition 15 A monoidal category C is left closed if there is an internal hom
functor

—:CPxC—>C

together with a natural isomorphism c called currying that assigns to any objects
X,Y, Z € C abijection

cx.y.z: hom(X ® Y, Z) = hom(X,Y —o Z)
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It is right closed if there is an internal hom functor as above and a natural isomor-
phism

cx.y.z:hom(X ® Y, Z) = hom(Y, X —o Z).

The term “currying” is mainly used in computer science, after the work of Curry
[36, 37]. In the rest of this section we only consider right closed monoidal cate-
gories. Luckily, there is no real difference between left and right closed for a braided
monoidal category, as the braiding gives an isomorphism X ® ¥ = Y ® X.

All our examples of monoidal categories are closed, but we shall see that, yet
again, Set is different from the rest:

e The cartesian category Set is closed, where X —o Y is just the set of functions
from X to Y. In Set or any other cartesian closed category, the internal hom
X —o Y is usually denoted YX. To minimize the number of different notations
and emphasize analogies between different contexts, we shall not do this: we
shall always use X —o Y. To treat Set as left closed, we define the curried version
of f: X x Y — Z as above:

FOO) = fx, ).

To treat it as right closed, we instead define it by

FO@) = f(x, ).

This looks a bit awkward, but it will be nice for string diagrams.

e The symmetric monoidal category Hilb with its usual tensor product is closed,
where X —o Y is the set of linear operators from X to Y, made into a Hilbert
space in a standard way. In this case we have an isomorphism

X oY=EX"QY

where X™* is the dual of the Hilbert space X, that is, the set of linear operators
f: X — C, made into a Hilbert space in the usual way.
e The monoidal category Tang, (k > 1) is closed. As with Hilb, we have

X oYZ=EX"QY

where X* is the orientation-reversed version of X.
e The symmetric monoidal category nCob is also closed; again

X oYZ=X*"QY

where X* is the (n — 1)-manifold X with its orientation reversed.

Except for Set, all these examples are actually “compact”. This basically means
that X —o Y is isomorphic to X* ® ¥, where X™* is some object called the “dual”
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of X. But to make this precise, we need to define the ‘dual’ of an object in an arbi-
trary monoidal category.

To do this, let us generalize from the case of Hilb. As already mentioned, each
object X € Hilb has a dual X* consisting of all linear operators f: X — I, where
the unit object / is just C. There is thus a linear operator

ex  XQX* = 1
xQf = fx)

called the counit of X. Furthermore, the space of all linear operators from X to
Y € Hilb can be identified with X* ® Y. So, there is also a linear operator called the
unit of X:

ix:l - X*®X
c— cly

sending any complex number ¢ to the corresponding multiple of the identity
operator.

The significance of the unit and counit become clearer if we borrow some ideas
from Feynman. In physics, if X is the Hilbert space of internal states of some parti-
cle, X* is the Hilbert space for the corresponding antiparticle. Feynman realized that
it is enlightening to think of antiparticles as particles going backwards in time. So,
we draw a wire labelled by X* as a wire labelled by X, but with an arrow pointing
‘backwards in time’: that is, up instead of down:

(Here we should admit that most physicists use the opposite convention, where time
marches up the page. Since we read from top to bottom, we prefer to let time run
down the page.)

If we draw X™* as X going backwards in time, we can draw the unit as a cap:

X ﬂ X
and the counit as a cup:

X U X
In Feynman diagrams, these describe the creation and annihilation of virtual
particle-antiparticle pairs!
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It then turns out that the unit and counit satisfy two equations, the zig-zag
equations:

X

Verifying these is a fun exercise in linear algebra, which we leave to the reader. If we
write these equations as commutative diagrams, we need to include some associators
and unitors, and they become a bit intimidating:

lx®ix N a;(,l)(*,)( .
XQ — > X® X ®X) — X®X )®X
rx \ex(@lx
X I1®X
lX
. W@l ® w AX XXk #
I — X X)X — X ®(X®X)
Iy {1)(;*@%(
e o x*@1

But, they really just say that zig-zags in string diagrams can be straightened out.
This is particularly vivid in examples like Tang; and nCob. For example, in
2Cob, taking X to be the circle, the unit looks like this:
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while the counit looks like this:

€x

In this case, the zig-zag identities say we can straighten a wiggly piece of pipe.
Now we are ready for some definitions:

Definition 16 Given objects X* and X in a monoidal category, we call X* a right
dual of X, and X a left dual of X*, if there are morphisms

ix: I > X*"®@X

and

ex: X®@X* -1,
called the unit and counit respectively, satisfying the zig-zag equations.

One can show that the left or right dual of an object is unique up to canonical
isomorphism. So, we usually speak of “the” right or left dual of an object, when
it exists.

Definition 17 A monoidal category C is compact if every object X € C has both a
left dual and a right dual.

Often the term “autonomous” is used instead of “compact” here. Many authors
reserve the term “compact” for the case where C is symmetric or at least braided;
then left duals are the same as right duals, and things simplify [46]. To add to the
confusion, compact symmetric monoidal categories are often called simply “com-
pact closed categories”.

A partial explanation for the last piece of terminology is that any compact
monoidal category is automatically closed! For this, we define the internal hom on
objects by

X —oY=X"QY.

We must then show that the % operation extends naturally to a functor x: C —
C, so that —o is actually a functor. Finally, we must check that there is a natural
isomorphism

hom(X ® Y, Z) = hom(Y, X* ® Z)
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In terms of string diagrams, this isomorphism takes any morphism

and bends back the input wire labelled X to make it an output:

Now, in a compact monoidal category, we have:

But in general, closed monoidal categories don’t allow arrows pointing up! So for
these, drawing the internal hom is more of a challenge. We can use the same style of
notation as long as we add a decoration—a clasp—that binds two strings together:

Only when our closed monoidal category happens to be compact can we eliminate
the clasp.

Suppose we are working in a closed monoidal category. Since we draw a mor-
phism f: X ® Y — Z like this:
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we can draw its curried version f: ¥ — X —o Z by bending down the input wire
labelled X to make it part of the output:

Note that where we bent back the wire labelled X, a cap like this appeared:

XmX

Closed monoidal categories don’t really have a cap unless they are compact. So, we
drew a bubble enclosing f and the cap, to keep us from doing any illegal manipu-
lations. In the compact case, both the bubble and the clasp are unnecessary, so we
can draw f like this:

An important special case of currying gives the name of a morphism f: X — Y,
f1l—-X-—oY.
This is obtained by currying the morphism
fri: IQX — Y.

In string diagrams, we draw " f ' as follows:
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In the category Set, the unit object is the one-element set, 1. So, a morphism from
this object to a set Q picks out a point of Q. In particular, thename"f ': 1 - X —o
Y picks out the element of X —o Y corresponding to the function f: X — Y. More
generally, in any cartesian closed category the unit object is the terminal object 1,
and a morphism from 1 to an object Q is called a point of Q. So, even in this case,
we can say the name of a morphism f: X — Y is a pointof X —o Y.

Something similar works for Hilb, though this example is compact rather than
cartesian. In Hilb, the unit object 7 is just C. So, a nonzero morphism from / to any
Hilbert space Q picks out a nonzero vector in Q, which we can normalize to obtain
a state in Q: that is, a unit vector. In particular, the name of a nonzero morphism
f: X — Y gives a state of X* ® Y. This method of encoding operators as states is
the basis of “gate teleportation” [51].

Currying is a bijection, so we can also uncurry:

¢xly 7 hom(Y, X — Z) = hom(X ® Y, Z)

Since we draw a morphism g: ¥ — X —o Z like this:

we draw its “uncurried” version g: X ® ¥ — Z by bending the output X up to

become an input:
Y
i ‘

()

z

Again, we must put a bubble around the “cup” formed when we bend down the wire
labelled Y, unless we are in a compact monoidal category.
A good example of uncurrying is the evaluation morphism:

evyy: X® (X —oY)— Y.
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This is obtained by uncurrying the identity

ly_oy: (X —oY)—> (X —oY).
In Set, evy, y takes any function from X to Y and evaluates it at any element of X

to give an element of Y. In terms of string diagrams, the evaluation morphism looks
like this:

In any closed monoidal category, we can recover a morphism from its name using
evaluation. More precisely, this diagram commutes:

-
X®I+~— x

1X®7*J Jf

X@(X—Y)— Y
eVX,Y

Or, in terms of string diagrams:

We leave the proof of this as an exercise. In general, one must use the naturality of
currying. In the special case of a compact monoidal category, there is a nice picture
proof! Simply pop the bubbles and remove the clasp:
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The result then follows from one of the zig-zag identities.

In our rapid introduction to string diagrams, we have not had time to illustrate
how these diagrams become a powerful tool for solving concrete problems. So, here
are some starting points for further study:

e Representations of Lie groups play a fundamental role in quantum physics, espe-
cially gauge field theory. Every Lie group has a compact symmetric monoidal
category of finite-dimensional representations. In his book Group Theory, Cvi-
tanovic [38] develops detailed string diagram descriptions of these representation
categories for the classical Lie groups SU(n), SO(n), SU(n) and also the more
exotic “exceptional” Lie groups. His book also illustrates how this technology
can be used to simplify difficult calculations in gauge field theory.

e Quantum groups are a generalization of groups which show up in 2d and
3d physics. The big difference is that a quantum group has compact braided
monoidal category of finite-dimensional representations. Kauffman’s Knots and
Physics [65] is an excellent introduction to how quantum groups show up in
knot theory and physics; it is packed with string diagrams. For more details on
quantum groups and braided monoidal categories, see the book by Kassel [64].

e Kauffman and Lins [66] have written a beautiful string diagram treatment of the
category of representations of the simplest quantum group, SU,(2). They also
use it to construct some famous 3-manifold invariants associated to 3d and 4d
topological quantum field theories: the Witten—Reshetikhin—Turaev, Turaev—Viro
and Crane-Yetter invariants. In this example, string diagrams are often called
“g-deformed spin networks” [101]. For generalizations to other quantum groups,
see the more advanced texts by Turaev [107] and by Bakalov and Kirillov [17].
The key ingredient is a special class of compact braided monoidal categories
called “modular tensor categories”.

e Kock [70] has written a nice introduction to 2d topological quantum field theories
which uses diagrammatic methods to work with 2Cob.

e Abramsky, Coecke and collaborators [2—4, 31, 33, 34] have developed string dia-
grams as a tool for understanding quantum computation. The easiest introduction
is Coecke’s “Kindergarten quantum mechanics” [32].
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2.2.7 Dagger Categories

Our discussion would be sadly incomplete without an important admission: nothing
we have done so far with Hilbert spaces used the inner product! So, we have not yet
touched on the essence of quantum theory.

Everything we have said about Hilb applies equally well to Vect: the category of
finite-dimensional vector spaces and linear operators. Both Hilb and Vect are com-
pact symmetric monoidal categories. In fact, these compact symmetric monoidal
categories are “equivalent” in a certain precise sense [78].

So, what makes Hilb different? In terms of category theory, the special thing is
that we can take the Hilbert space adjoint of any linear operator f: X — Y between
finite-dimensional Hilbert spaces, getting an operator f7: ¥ — X. This ability to
‘reverse’ morphisms makes Hilb into a ‘dagger category’:

Definition 18 A dagger category is a category C such that for any morphism
f: X — Y in C there is a specified morphism f7: ¥ — X such that

enH' =r'g
for every pair of composable morphisms f and g, and
fH' =7
for every morphism f.

Equivalently, a dagger category is one equipped with a functor ¥: C — C°P that is
the identity on objects and satisfies (f7)" = f for every morphism.

In fact, all our favorite examples of categories can be made into dagger cate-
gories, except for Set:

e There is no way to make Set into a dagger category, since there is a function from
the empty set to the 1-element set, but none the other way around.

e The category Hilb becomes a dagger category as follows. Given any morphism
f: X — Y in Hilb, there is a morphism f¥: ¥ — X, the Hilbert space adjoint
of f, defined by

(fTy, ¢) = (W, f9)

forallp € X,y €Y.

e For any k, the category Tang, becomes a dagger category where we obtain
fT: Y — X byreflecting f: X — Y in the vertical direction, and then switching
the direction of the little arrows denoting the orientations of arcs and circles.

e For any n, the category nCob becomes a dagger category where we obtain
fT: Y — X by switching the input and output of f: X — Y, and then switching
the orientation of each connected component of f. Again, a picture speaks a
thousand words:
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X Y

Y X

In applications to physics, this dagger operation amounts to “switching the future
and the past”.

In all the dagger categories above, the dagger structure interacts in a nice way
with the monoidal structure and also, when it exists, the braiding. One can write a
list of axioms characterizing how this works [2, 3, 97]. So, it seems that the ability to
“reverse” morphisms is another way in which categories of a quantum flavor differ
from the category of sets and functions. This has important implications for the
foundations of quantum theory [12] and also for topological quantum field theory
[14], where dagger categories seem to be part of larger story involving “n-categories
with duals” [15]. However, this story is still poorly understood—there is much more
work to be done.

2.3 Logic
2.3.1 Background

Symmetric monoidal closed categories show up not only in physics and topology,
but also in logic. We would like to explain how. To set the stage, it seems worthwhile
to sketch a few ideas from twentieth-century logic.

Modern logicians study many systems of reasoning beside ordinary classical
logic. Of course, even classical logic comes in various degrees of strength. First
there is the “propositional calculus”, which allows us to reason with abstract propo-

sitions X, Y, Z, ... and these logical connectives:
and A
or V
implies =
not -—
true T
false L

Then there is the “predicate calculus”, which also allows variables like x, y, z, .. .,
predicates like P(x) and Q(x, y, z), and the symbols “for all” (V) and “there exists”
(3), which allow us to quantify over variables. There are also higher-order systems
that allow us to quantify over predicates, and so on. To keep things simple, we
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mainly confine ourselves to the propositional calculus in what follows. But even
here, there are many alternatives to the “classical” version!

The most-studied of these alternative systems are weaker than classical logic:
they make it harder or even impossible to prove things we normally take for granted.
One reason is that some logicians deny that certain familiar principles are actually
valid. But there are also subtler reasons. One is that studying systems with rules
of lesser strength allows for a fine-grained study of precisely which methods of
reasoning are needed to prove which results. Another reason—the one that concerns
us most here—is that dropping familiar rules and then adding them back in one at
at time sheds light on the connection between logic and category theory.

For example, around 1907 Brouwer [53] began advocating “intuitionism”. As
part of this, he raised doubts about the law of excluded middle, which amounts to a
rule saying that from ——X we can deduce X. One problem with this principle is that
proofs using it are not “constructive”. For example, we may prove by contradiction
that some equation has a solution, but still have no clue how to construct the solution.
For Brouwer, this meant the principle was invalid.

Anyone who feels the law of excluded middle is invalid is duty-bound to study
intuitionistic logic. But, there is another reason for studying this system. Namely:
we do not really lose anything by dropping the law of excluded middle! Instead,
we gain a fine-grained distinction: the distinction between a direct proof of X and
a proof by contradiction, which yields merely —=—X. If we do not care about this
distinction we are free to ignore it, but there is no harm in having it around.

In the 1930’s, this idea was made precise by Godel [49] and Gentzen [104]. They
showed that we can embed classical logic in intuitionistic logic. In fact, they found
a map sending any formula X of the propositional calculus to a new formula X°,
such that X is provable classically if and only if X° is provable intuitionistically.
(More impressively, this map also works for the predicate calculus.)

Later, yet another reason for being interested in intuitionistic logic became appar-
ent: its connection to category theory. In its very simplest form, this connection
works as follows. Suppose we have a set of propositions X, Y, Z, ... obeying the
laws of the intuitionistic propositional calculus. We can create a category C where
these propositions are objects and there is at most one morphism from any object X
to any object Y: a single morphism when X implies Y, and none otherwise!

A category with at most one morphism from any object to any other is called
a preorder. In the propositional calculus, we often treat two propositions as equal
when they both imply each other. If we do this, we get a special sort of preorder: one
where isomorphic objects are automatically equal. This special sort of preorder is
called a partially ordered set, or poset for short. Posets abound in logic, precisely
because they offer a simple framework for understanding implication.

If we start from a set of propositions obeying the intuitionistic propositional cal-
culus, the resulting category C is better than a mere poset. It is also cartesian, with
X AY as the product of X and Y, and T as the terminal object! To see this, note that
any proposition Q has a unique morphism to X A'Y whenever it has morphisms to X
and to Y. This is simply a fancy way of saying that Q implies X A Y when it implies
X and implies Y. It is also easy to see that T is terminal: anything implies the truth.
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Even better, the category C is cartesian closed, with X = Y as the internal hom.
The reason is that

X AYimpliesZ iff YimpliesX = Z.
This automatically yields the basic property of the internal hom:
hom(X ® Y, Z) = hom(Y, X — Z).

Indeed, if the reader is puzzled by the difference between “X implies Y’ and X =
Y, we can now explain this more clearly: the former involves the homset hom(X, Y)
(which has one element when X implies Y and none otherwise), while the latter is
the internal hom, an object in C.

So, C is a cartesian closed poset. But, it also has one more nice property, thanks to
the presence of v and L We have seen that A and T make the category C cartesian;
Vv and L satisfy exactly analogous rules, but with the implications turned around, so
they make C°P cartesian.

And that is all! In particular, negation gives nothing more, since we can define
—X to be X = 1, and all its intuitionistically valid properties then follow. So,
the kind of category we get from the intuitionistic propositional calculus by tak-
ing propositions as objects and implications as morphisms is precisely a Heyting
algebra: a cartesian closed poset C such that C°P is also cartesian.

Heyting, a student of Brouwer, introduced Heyting algebras in intuitionistic logic
before categories were even invented. So, he used very different language to define
them. But, the category-theoretic approach to Heyting algebras illustrates the con-
nection between cartesian closed categories and logic. It also gives more evidence
that dropping the law of excluded middle is an interesting thing to try.

Since we have explained the basics of cartesian closed categories, but not said
what happens when the opposite of such a category is also cartesian, in the sections
to come we will take a drastic step and limit our discussion of logic even further.
We will neglect v and _L, and concentrate only on the fragment of the propositional
calculus involving A, T and =.

Even here, it turns out, there are interesting things to say—and interesting ways
to modify the usual rules. This will be the main subject of the sections to come. But
to set the stage, we need to say a bit about proof theory.

Proof theory is the branch of mathematical logic that treats proofs as mathe-
matical entities worthy of study in their own right. It lets us dig deeper into the
propositional calculus by studying not merely whether or not some assumption X
implies some conclusion Y, but the whole set of proofs leading from X to Y. This
amounts to studying not just posets (or preorders), but categories that allow many
morphisms from one object to another.

In Hilbert’s approach to proof, there were many axioms and just one rule to
deduce new theorems: modus ponens, which says that from X and “X implies ¥
we can deduce Y. Most of modern proof theory focuses on another approach, the
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“sequent calculus”, due to Gentzen [104]. In this approach there are few axioms but
many inference rules.

An excellent introduction to the sequent calculus is the book Proofs and Types
by Girard, Lafont and Taylor, freely available online [48]. Here we shall content
ourselves with some sketchy remarks. A “sequent” is something like this:

Xi,...,.XptHY1,...,Y,

where X; and Y; are propositions. We read this sequent as saying that all the propo-
sitions X;, taken together, can be used to prove at least one of the propositions Y;.
This strange-sounding convention gives the sequent calculus a nice symmetry, as we
shall soon see.

In the sequent calculus, an “inference rule” is something that produces new
sequents from old. For example, here is the left weakening rule:

Xi,...,.XmEYL,...,Y,
Xi,oo o, X, AEY, .Y,

This says that from the sequent above the line we can get the sequent below the
line: we can throw in the extra assumption A without harm. Thanks to the strange-
sounding convention we mentioned, this rule has a mirror-image version called
right weakening:

Xi,...,.XmEY, ..., Y,
Xi,...,. X EY1, ..., Y, A

In fact, Gentzen’s whole setup has this mirror symmetry! For example, his rule
called left contraction:

Xi,..,. X, A,AEY, ..., Y,
Xi,...,. X, AEY, ..., Y,

has a mirror partner called right contraction:

Xi,....XuEY1,..., YW, A A
Xi,...,. X EY1, ..., Y, A

Similarly, this rule for “and”

Xi,....,.Xm, AEY, ..., Y,
Xt,.. 0, X, ANBEY,....Y,

has a mirror partner for “or’:

Xi,...,.XpbHY1,..., Y, A
Xt,...,.XmEY1,....Y,,AVB
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Logicians now realize that this mirror symmetry can be understood in terms of the
duality between a category and its opposite.

Gentzen used sequents to write inference rules for the classical propositional
calculus, and also the classical predicate calculus. Now, in these forms of logic we
have

Xi,ooo, X FY1, .., Y,
if and only if we have
XiN--ANXpyFEYIV-- VY,

So, why did Gentzen use sequents with a list of propositions on each side of the -
symbol, instead just a single proposition? The reason is that this let him use only
inference rules having the “subformula property”. This says that every proposition
in the sequent above the line appears as part of some proposition in the sequent
below the line. So, a proof built from such inference rules becomes a “tree” where
all the propositions further up the tree are subformulas of those below.

This idea has powerful consequences. For example, in 1936 Gentzen was able
prove the consistency of Peano’s axioms of arithmetic! His proof essentially used
induction on trees (Readers familiar with Godel’s second incompleteness theorem
should be reassured that this sort of induction cannot itself be carried out in Peano
arithmetic.)

The most famous rule lacking the subformula property is the ‘cut rule’:

Xi,...,. XpuEHY,.... Y, A Xomt1seoos Xny AEYiq1,..., Y
Xi,...,. X, FY1,..., Y,

From the two sequents on top, the cut rule gives us the sequent below. Note that the
intermediate step A does not appear in the sequent below. It is “cut out”. So, the cut
rule lacks the subformula property. But, one of Gentzen’s great achievements was
to show that any proof in the classical propositional (or even predicate) calculus
that can be done with the cut rule can also be done without it. This is called ‘cut
elimination’.

Gentzen also wrote down inference rules suitable for the intuitionistic proposi-
tional and predicate calculi. These rules lack the mirror symmetry of the classical
case. But in the 1980s, this symmetry was restored by Girard’s invention of “linear
logic” [47].

Linear logic lets us keep track of how many times we use a given premise to
reach a given conclusion. To accomplish this, Girard introduced some new logical
connectives! For starters, he introduced ‘linear’ connectives called ® and —o, and
a logical constant called /. These act a bit like A, = and T. However, they satisfy
rules corresponding to a symmetric monoidal category instead of a cartesian closed
category. In particular, from X we can prove neither X ® X nor /. So, we cannot
freely “duplicate” and “delete” propositions using these new connectives. This is
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reflected in the fact that linear logic drops Gentzen’s contraction and weakening
rules.

By itself, this might seem unbearably restrictive. However, Girard also kept the
connectives A, = and T in his system, still satisfying the usual rules. And, he
introduced an operation called the “exponential”, !, which takes a proposition X and
turns it into an “arbitrary stock of copies of X”. So, for example, from !X we can
prove 1, and X,and X ® X, and X ® X ® X, and so on.

Full-fledged linear logic has even more connectives than we have described here.
It seems baroque and peculiar at first glance. It also comes in both classical and
intuitionistic versions! But, just as classical logic can be embedded in intuitionistic
logic, intuitionistic logic can be embedded in intuitionistic linear logic [47]. So, we
do not lose any deductive power. Instead, we gain the ability to make even more
fine-grained distinctions.

In what follows, we discuss the fragment of intuitionistic linear logic involving
only ®, — and /. This is called “multiplicative intuititionistic linear logic” [52,
91]. It turns out to be the system of logic suitable for closed symmetric monoidal
categories—nothing more or less.

2.3.2 Proofs as Morphisms

In Sect. 2.2 we described categories with various amounts of extra structure, starting
from categories pure and simple, and working our way up to monoidal categories,
braided monoidal categories, symmetric monoidal categories, and so on. Our treat-
ment only scratched the surface of an enormously rich taxonomy. In fact, each kind
of category with extra structure corresponds to a system of logic with its own infer-
ence rules!

To see this, we will think of propositions as objects in some category, and proofs
as giving morphisms. Suppose X and Y are propositions. Then, we can think of a
proof starting from the assumption X and leading to the conclusion Y as giving a
morphism f: X — Y. (In Sect. 2.3.3 we shall see that a morphism is actually an
equivalence class of proofs—but for now let us gloss over this issue.)

Let us write X F Y when, starting from the assumption X, there is a proof
leading to the conclusion Y. An inference rule is a way to get new proofs from old.
For example, in almost every system of logic, if there is a proof leading from X to
Y, and a proof leading from Y to Z, then there is a proof leading from X to Z. We
write this inference rule as follows:

XHY Y+-7
X+Zz

We can call this cut rule, since it lets us “cut out” the intermediate step Y. It is a spe-
cial case of Gentzen’s cut rule, mentioned in the previous section. It should remind
us of composition of morphisms in a category: if we have a morphism f: X — Y
and a morphism g: ¥ — Z, we get a morphism gf: X — Z.
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Also, in almost every system of logic there is a proof leading from X to X. We can
write this as an inference rule that starts with nothing and concludes the existence
of a proof of X from X:

XEX

This rule should remind us of how every object in category has an identity mor-
phism: for any object X, we automatically get a morphism 1y: X — X. Indeed,
this rule is sometimes called the identity rule.

If we pursue this line of thought, we can take the definition of a closed symmetric
monoidal category and extract a collection of inference rules. Each rule is a way to
get new morphisms from old in a closed symmetric monoidal category. There are
various superficially different but ultimately equivalent ways to list these rules. Here
is one:

XkY Y-Z

XEFX ® XE 7 (0)
W X vez o Wl—(X®Y)®Z()
WRYFX®Z WEX® Y ®Z)
XHioY XFY®I
“xrr " ~~xrr "
WEXer XQYFZ
WErex YEX oz ©

Double lines mean that the inverse rule also holds. We have given each rule a name,
written to the right in parentheses. As already explained, rules (i) and (o) come from
the presence of identity morphisms and composition in any category. Rules (®),
(a), (1), and (r) come from tensoring, the associator, and the left and right unitors
in a monoidal category. Rule (b) comes from the braiding in a braided monoidal
category, and rule (c) comes from currying in a closed monoidal category.

Now for the big question: what does all this mean in terms of logic? These rules
describe a small fragment of the propositional calculus. To see this, we should read
the connective ® as “and”, the connective —o as “implies”, and the proposition / as
“true”.

In this interpretation, rule (c) says we can turn a proof leading from the assump-
tion “Y and X to the conclusion Z into a proof leading from X to “Y implies Z”.
It also says we can do the reverse. This is true in classical, intuitionistic and linear
logic, and so are all the other rules. Rules (a) and (b) say that “and” is associative
and commutative. Rule (1) says that any proof leading from the assumption X to the
conclusion “true and Y can be converted to a proof leading from X to Y, and vice
versa. Rule (r) is similar.

What do we do with these rules? We use them to build “deductions”. Here is an
easy example:
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©)

X —oYFX—oY |
)

X@X oY)FY

First we use the identity rule, and then the inverse of the currying rule. At the end,
we obtain

X® (X —-Y)FY.

This should remind us of the evaluation morphisms we have in a closed monoidal
category:

evyy: X® (X —oY)— Y.
In terms of logic, the point is that we can prove Y from X and “X implies Y. This

fact comes in handy so often that we may wish to abbreviate the above deduction as
an extra inference rule—a rule derived from our basic list:

(ev)
XQ(X —ooY)FHY

This rule is called modus ponens.
In general, a deduction is a tree built from inference rules. Branches arise when
we use the (o) or (®) rules. Here is an example:

(i)
AQBRCFARB) ®C (;)

(A®B)QCFA®(B®C) AR(B®C)FD
(AQB)@ C+ D

(o)
Again we can abbreviate this deduction as a derived rule. In fact, this rule is
reversible:

AR(BRC)FD
(A BY® CF D

(@)

For a more substantial example, suppose we want to show
X —oY)QY —2Z)FX — Z.

The deduction leading to this will not even fit on the page unless we use our abbre-
viations:

XX =1y & Y—oZI—Y—oZE;) -
XX oY) o Z2)FYQR Y — Z) YWY —o2)-Z

XX —oY)QY —o2)+-Z
X@((X -YV)®Y —o2Z)FZ

(X -oY)®Y o Z)F X —oZ

-1

©
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Since each of the rules used in this deduction came from a way to get new mor-
phisms from old in a closed monoidal category (we never used the braiding), it
follows that in every such category we have internal composition morphisms:

oxyz: (X —oY)®Y —<Z) > X — Z.
These play the same role for the internal hom that ordinary composition
o: hom(X, Y) x hom(Y, Z) — hom(X, Z)

plays for the ordinary hom.

We can go ahead making further deductions in this system of logic, but the really
interesting thing is what it omits. For starters, it omits the connective “or” and the
proposition “false”. It also omits two inference rules we normally take for granted—
namely, contraction:

XkY

T o =
XFYQ®Y

and weakening:

XEY

!
xr71 "

which are closely related to duplication and deletion in a cartesian category. Omit-
ting these rules is a distinctive feature of linear logic [47]. The word “linear” should
remind us of the category Hilb. As noted in Sect. 2.2.3, this category with its usual
tensor product is noncartesian, so it does not permit duplication and deletion. But,
what does omitting these rules mean in terms of logic?

Ordinary logic deals with propositions, so we have been thinking of the above
system of logic in the same way. Linear logic deals not just with propositions, but
also other resources—for example, physical things! Unlike propositions in ordinary
logic, we typically can’t duplicate or delete these other resources. In classical logic,
if we know that a proposition X is true, we can use X as many or as few times as
we like when trying to prove some proposition Y. But if we have a cup of milk, we
can’t use it to make cake and then use it again to make butter. Nor can we make it
disappear without a trace: even if we pour it down the drain, it must go somewhere.

In fact, these ideas are familiar in chemistry. Consider the following resources:

H, = one molecule of hydrogen
0> = one molecule of oxygen
H> O = one molecule of water

We can burn hydrogen, combining one molecule of oxygen with two of hydrogen to
obtain two molecules of water. A category theorist might describe this reaction as a
morphism:
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[ 0@ (H® Hy) > H,0 ® HyO.
A linear logician might write:
0, ® (H, ® Hy) - H,0 @ H,O

to indicate the existence of such a morphism. But, we cannot duplicate or delete
molecules, so for example

Hy l7H, ® H,
and
Hy H1
where [ is the unit for the tensor product: not iodine, but “no molecules at all”.

In short, ordinary chemical reactions are morphisms in a symmetric monoidal
category where objects are collections of molecules. As chemists normally conceive
of it, this category is not closed. So, it obeys an even more limited system of logic
than the one we have been discussing, a system lacking the connective —o. To get
a closed category—in fact a compact one—we need to remember one of the great
discoveries of twentieth-century physics: antimatter. This lets us define Y —o Z to
be “anti-Y and Z”:

Y -Z=Y*Q®Z.

Then the currying rule holds:

Y@XFHZ

XFY*"®Z
Most chemists don’t think about antimatter very often—but particle physicists do.
They don’t use the notation of linear logic or category theory, but they know per-

fectly well that since a neutrino and a neutron can collide and turn into a proton and
an electron:

vRnk pQe,
then a neutron can turn into a antineutrino together with a proton and an electron:
nFv*® (pRe).

This is an instance of the currying rule, rule (c).
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2.3.3 Logical Theories from Categories

We have sketched how different systems of logic naturally arise from different types
of categories. To illustrate this idea, we introduced a system of logic with inference
rules coming from ways to get new morphisms from old in a closed symmetric
monoidal category. One could substitute many other types of categories here, and
get other systems of logic.

To tighten the connection between proof theory and category theory, we shall
now describe a recipe to get a logical theory from any closed symmetric monoidal
category. For this, we shall now use X I Y to denote the set of proofs—or actually,
equivalence classes of proofs—Ileading from the assumption X to the conclusion Y.
This is a change of viewpoint. Previously we would write X + Y when this set of
proofs was nonempty; otherwise we would write X J-Y. The advantage of treating
X kY as a set is that this set is precisely what a category theorist would call
hom(X, Y): a homset in a category.

If we let X + Y stand for a homset, an inference rule becomes a function from a
product of homsets to a single homset. For example, the cut rule

XHY Y+-Z7
X+Z

(o)

becomes another way of talking about the composition function
ox,y,z: hom(X,Y) x hom(Y, Z) — hom(X, Z),
while the identity rule

xrx

becomes another way of talking about the function
ix: 1 - hom(X, X)

that sends the single element of the set 1 to the identity morphism of X. (Note: the
set 1 is a zero-fold product of homsets.)

Next, if we let inference rules be certain functions from products of homsets to
homsets, deductions become more complicated functions of the same sort built from
these basic ones. For example, this deduction:

=5 O
XRQIFXQ®I © @

XQIFX ey o
XQDRYFX®Y
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specifies a function from 1 to hom((X®1)®Y, X®Y'), built from the basic functions
indicated by the labels at each step. This deduction:

®

(i) IQYFrI®Y (r) O]
XeheYrXghey QY FY XEX
XRDQYrFXeI®Y) XUV FX®Y

X@DHRYFX®Y ©

gives another function from l tohom(X ® ) ® Y, X ® Y).

If we think of deductions as giving functions this way, the question arises when
two such functions are equal. In the example just mentioned, the triangle equation
in the definition of monoidal category (Definition 7):

axry
Xehev » XeUeY)
r)m ‘%Y
XXy

says these two functions are equal. Indeed, the triangle equation is precisely the
statement that these two functions agree! (We leave this as an exercise for the
reader.)

So: even though two deductions may look quite different, they may give the same
function from a product of homsets to a homset if we demand that these are homsets
in a closed symmetric monoidal category. This is why we think of X — Y as a
set of equivalence classes of proofs, rather than proofs: it is forced on us by our
desire to use category theory. We could get around this by using a 2-category with
proofs as morphisms and “equivalences between proofs” as 2-morphisms [93, 94].
This would lead us further to the right in the Periodic Table (Table 2.3). But let
us restrain ourselves and make some definitions formalizing what we have done
so far.

From now on we shall call the objects X, Y, ... “propositions”, even though
we have seen they may represent more general resources. Also, purely for the sake
of brevity, we use the term “proof” to mean “equivalence class of proofs”. The
equivalence relation must be coarse enough to make the equations in the following
definitions hold:

Definition 19 A closed monoidal theory consists of the following:

e A collection of propositions. The collection must contain a proposition /, and if
X and Y are propositions, then soare X ® Y and X — Y.

e For every pair of propositions X, Y, a set X I Y of proofs leading from X to Y.
If f e XFY,then wewrite f: X — Y.

e Certain functions, written as inference rules:
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XkHY Y27

XX ® XE7Z (o)
WEX YRz WExenez
a
WerFX®Z WFX® Y ®Z)
Xriey XFY®I
“~rr “~rr "
X®YFZ
YEX oz ¢

A double line means that the function is invertible. So, for example, for each
triple X, Y, Z we have a function

oxyz: XFY)x ¥ FZ) - (X+2Z)
and a bijection
cxyz: X®YFZ) - YHX —2).

e Certain equations that must be obeyed by the inference rules. The inference rules
(o) and (i) must obey equations describing associativity and the left and right
unit laws. Rule (®) must obey an equation saying it is a functor. Rules (a), (1),
(r), and (c) must obey equations saying they are natural transformations. Rules
(a), (), (r) and (®) must also obey the triangle and pentagon equations.

Definition 20 A closed braided monoidal theory is a closed monoidal theory with
this additional inference rule:

WEX®Y
WEYex

We demand that this rule give a natural transformation satisfying the hexagon equa-
tions.

Definition 21 A closed symmetric monoidal theory is a closed braided monoidal
theory where the rule (b) is its own inverse.

These are just the usual definitions of various kinds of closed category—
monoidal, braided monoidal and symmetric monoidal—written in a new style. This
new style lets us build such categories from logical systems. To do this, we take the
objects to be propositions and the morphisms to be equivalence classes of proofs,
where the equivalence relation is generated by the equations listed in the definitions
above.

However, the full advantages of this style only appear when we dig deeper into
proof theory, and generalize the expressions we have been considering:

XkFY
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to “sequents” like this:
X,...,. X, FY.
Loosely, we can think of such a sequent as meaning
X1® - --X, Y.

The advantage of sequents is that they let us use inference rules that—except for the
cut rule and the identity rule—have the “subformula property” mentioned near the
end of Sect. 2.3.1.

Formulated in terms of these inference rules, the logic of closed symmetric
monoidal categories goes by the name of “multiplicative intuitionistic linear logic”,
or MILL for short [52, 91]. There is a “cut elimination” theorem for MILL, which
says that with a suitable choice of other inference rules, the cut rule becomes redun-
dant: any proof that can be done with it can be done without it. This is remark-
able, since the cut rule corresponds to composition of morphisms in a category. One
consequence is that in the free symmetric monoidal closed category on any set of
objects, the set of morphisms between any two objects is finite. There is also a
decision procedure to tell when two morphisms are equal. For details, see Trimble’s
thesis [105] and the papers by Jay [58] and Soloviev [100]. Also see Kelly and Mac
Lane’s coherence theorem for closed symmetric monoidal categories [67], and the
related theorem for compact symmetric monoidal categories [68].

MILL is just one of many closely related systems of logic. Most include extra
features, but some subtract features. Here are just a few examples:

e Algebraic theories. In his famous thesis, Lawvere [75] defined an algebraic the-
ory to be a cartesian category where every object is an n-fold cartesian power
X x --- x X (n > 0) of a specific object X. He showed how such categories
regarded as logical theories of a simple sort—the sort that had previously been
studied in “universal algebra” [26]. This work initiated the categorical approach
to logic which we have been sketching here. Crole’s book [35] gives a gentle
introduction to algebraic theories as well as some richer logical systems. More
generally, we can think of any cartesian category as a generalized algebraic
theory.

e Intuitionistic linear logic (ILL). ILL supplements MILL with the operations
familiar from intuitionistic logic, as well as an operation ! turning any proposition
(or resource) X into an “indefinite stock of copies of X”. Again there is a nice
category-theoretic interpretation. Bierman’s thesis [24] gives a good overview,
including a proof of cut elimination for ILL and a proof of the result, originally
due to Girard, that intuitionistic logic can be be embedded in ILL.

e Linear logic (LL). For full-fledged linear logic, the online review article by Di
Cosmo and Miller [39] is a good place to start. For more, try the original paper
by Girard [47] and the book by Troelstra [106]. Blute and Scott’s review article
[25] serves as a Rosetta Stone for linear logic and category theory, and so do the
lectures notes by Schalk [91].
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e Intuitionistic Logic (IL). Lambek and Scott’s classic book [73] is still an excel-
lent introduction to intuitionistic logic and cartesian closed categories. The
online review article by Moschovakis [83] contains many suggestions for further
reading.

To conclude, let us say precisely what an “inference rule” amounts to in the setup
we have described. We have said it gives a function from a product of homsets to
a homset. While true, this is not the last word on the subject. After all, instead of
treating the propositions appearing in an inference rule as fixed, we can treat them
as variable. Then an inference rule is really a “schema” for getting new proofs from
old. How do we formalize this idea?

First we must realize that X + Y is not just a set: it is a set depending in a
functorial way on X and Y. As noted in Definition 14, there is a functor, the “hom
functor”

hom: C°? x C — Set,

sending (X, Y) to the homset hom(X, Y) = X F Y. To look like logicians, let us
write this functor as .

Viewed in this light, most of our inference rules are natural transformations. For
example, rule (a) is a natural transformation between two functors from C°? x C 3
to Set, namely the functors

W, XY, ) »WHXQY)®Z

and
W. XY, ) - WEX® (Y ®2Z).
This natural transformation turns any proof
fTW>(XQY)®Z
into the proof
axyzf:W—->XQ(Y®Z).

The fact that this transformation is natural means that it changes in a systematic
way as we vary W, X, Y and Z. The commuting square in the definition of natural
transformation, Definition 4, makes this precise.

Rules (1), (r), (b) and (c) give natural transformations in a very similar way. The
(®) rule gives a natural transformation between two functors from C°P x C x C°P x C
to Set, namely

W, XY, Z)—» WkEX) x (Y 2Z)

and

W, X, Y, Z)» WQYFXQ®Z.
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This natural transformation sends any element (f, g) € hom(W, X) x hom(Y, Z)
to f®g.

The identity and cut rules are different: they do not give natural transformations,
because the top line of these rules has a different number of variables than the bot-
tom line! Rule (i) says that for each X € C there is a function

ix:l > XFX

picking out the identity morphism 1x. What would it mean for this to be natural in
X? Rule (o) says that for each triple X, Y, Z € C there is a function

o XFY)Yx YFHZ) - X+ Z.

What would it mean for this to be natural in X, ¥ and Z? The answer to both ques-
tions involves a generalization of natural transformations called “dinatural” trans-
formations [77].

As noted in Definition 4, a natural transformation «: F = G between two func-
tors F, G: C — D makes certain squares in D commute. If in fact C = Cfp x C»,
then we actually obtain commuting cubes in D. Namely, the natural transformation
« assigns to each object (X1, X7) a morphism a, x, such that for any morphism
(fi: Y1 — X1, f2: X2 — Y») in C, this cube commutes:

Gllyy /)
G(Y, X)) G(Y, Yy)
aY, X, Qy sy,
G(fi; Ixy) G(fi. 1y
F(1Yy, f)
F(Y(,X5) F(Y,.Y,)
Ffi 1x,) (), 1y,)
G(lx,, f2)
G(X},X,) G(X}, Y5)
aXyp, Xp aXy, ¥y
F(xy, )
F(X1,X) F(X},Y,)

If C; = C3, we can choose a single object X and a single morphism f: X — Y
and use it in both slots. As shown in Fig. 2.1, there are then two paths from one
corner of the cube to the antipodal corner that only involve « for repeated arguments:
thatis, ax x and ay y, butnot ax y or ay, x. These paths give a commuting hexagon.
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G(Y,X) G, Y)
Qyy
F(ly,
F(Y,X) n)) - F(Y,Y) G(f, 1)
Gy, '
Ffly G, X) i G(X,Y)
ax x
A
FX,X) FX,Y)

Fig. 2.1 A natural transformation between functors F, G: C°? x C — D gives a commuting cube
in D for any morphism f: X — Y, and there are two paths around the cube that only involve «
for repeated arguments

This motivates the following:

Definition 22 A dinatural transformation «: F = G between functors
F,G: C° x C — D assigns to every object X in C a morphism ax: F(X, X) —
G(X, X) in D such that for every morphism f: X — Y in C, the hexagon in
Fig. 2.1 commutes.

In the case of the identity rule, this commuting hexagon follows from the fact that
the identity morphism is a left and right unit for composition: see Fig. 2.2. For the
cut rule, this commuting hexagon says that composition is associative: see Fig. 2.3.

YrY
ly
y
1 1 1 —of
L]
XFX Sfo- XrY
—_—

]X fo]X:]Yof

}

Fig. 2.2 Dinaturality of the (i) rule, where f: X — Y. Here o € 1 denotes the one element of the
one-element set
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XFz

ho(fog)

/

X+ W) x (Y FZ) (fo=ly2) (XFY) x (YF2Z) .

(g.h) (fog.h)

(leW,_of) X+Z erZ X+Z
(hof)og (hof)og=ho(fog)

/

XFW)x(WF2Z)
(g:hof)

Fig. 2.3 Dinaturality of the cut rule, where f: W - Y, g: X > W, h: Y - Z

So, in general, the sort of logical theory we are discussing involves:

e A category C of propositions and proofs.

e A functort: C°? x C — Set sending any pair of propositions to the set of proofs
leading from one to the other.

e A set of dinatural transformations describing inference rules.

2.4 Computation

2.4.1 Background

In the 1930s, while Turing was developing what are now called “Turing machines”
as a model for computation, Church and his student Kleene were developing a dif-
ferent model, called the “lambda calculus” [30, 69]. While a Turing machine can be
seen as an idealized, simplified model of computer hardware, the lambda calculus
is more like a simple model of software.

By now the are many careful treatments of the lambda calculus in the literature,
from Barendregt’s magisterial tome [18] to the classic category-theoretic treatment
of Lambek and Scott [73], to Hindley and Seldin’s user-friendly introduction [55]
and Selinger’s elegant free online notes [96]. So, we shall content ourselves with a
quick sketch.

Poetically speaking, the lambda calculus describes a universe where everything
is a program and everything is data: programs are data. More prosaically, everything
is a “A-term”, or “term” for short. These are defined inductively:
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e Variables: there is a countable set of “variables” x, y, z, ... which are all terms.
e Application: if f and ¢ are terms, we can “apply” f to ¢ and obtain a term f (¢).
e Lambda-abstraction: if x is a variable and ¢ is a term, there is a term (Ax.z).

Let us explain the meaning of application and lambda-abstraction. Application
is simple. Since “programs are data”, we can think of any term either as a program
or a piece of data. Since we can apply programs to data and get new data, we can
apply any term f to any other term # and get a new term f (¢).

Lambda-abstraction is more interesting. We think of (Ax.z) as the program that,
given x as input, returns ¢ as output. For example, consider

(Ax.x(x)).

This program takes any program x as input and returns x(x) as output. In other
words, it applies any program to itself. So, we have

(Ax.x(x))(s) = s(s)

for any term s.

More generally, if we apply (Lx.t) to any term s, we should get back ¢, but with
s substituted for each free occurrence of the variable x. This fact is codified in a rule
called beta reduction:

(Ax.t)(s) = t[s/x]

where #[s/x] is the term we get by taking ¢ and substituting s for each free occur-
rence of x. But beware: this rule is not an equation in the usual mathematical sense.
Instead, it is a “rewrite rule”: given the term on the left, we are allowed to rewrite it
and get the term on the right. Starting with a term and repeatedly applying rewrite
rules is how we take a program and let it run!

There are two other rewrite rules in the lambda calculus. If x is a variable and ¢
is a term, the term

(Ax.t(x))

stands for the program that, given x as input, returns ¢ (x) as output. But this is just
a fancy way of talking about the program ¢. So, the lambda calculus has a rewrite
rule called eta reduction, saying

(Ax.t(x)) =t.

The third rewrite rule is alpha conversion. This allows us to replace a bound
variable in a term by another variable. For example:

(Ax.x(x)) = (Ay.y(y)

since x is “bound” in the left-hand expression by its appearance in “Ax”. In other
words, x is just a dummy variable; its name is irrelevant, so we can replace it
with y. On the other hand,
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(Ax.y(x)) # (Ax.z(x)).

We cannot replace the variable y by the variable z here, since this variable is “free”,
not bound. Some care must be taken to make the notions of free and bound variables
precise, but we shall gloss over this issue, referring the reader to the references above
for details.

The lambda calculus is a very simple formalism. Amazingly, starting from just
this, Church and Kleene were able to build up Boolean logic, the natural numbers,
the usual operations of arithmetic, and so on. For example, they defined “Church
numerals” as follows:

(Af.(Ax.x))

(Af.(hx. f(x)))

A f.Gx. f(f (X))
Af-Qx. fOf(f(x)))))

0
1
2
3

and so on. Note that f is a variable above. Thus, the Church numeral 7 is the pro-
gram that “takes any program to the nth power”: if you give it any program f as
input, it returns the program that applies f n times to whatever input x it receives.

To get a feeling for how we can define arithmetic operations on Church numerals,
consider

1g.3(2(9)).

This program takes any program g, squares it, and then cubes the result. So, it raises
g to the sixth power. This suggests that

1g.3(2(g)) = 6.

Indeed this is true. If we treat the definitions of Church numerals as reversible
rewrite rules, then we can start with the left side of the above equation and grind
away using rewrite rules until we reach the right side:

(28-3(2(8)) = (Ag.3((Af.(Ax.f(f(x)))))(&)) def. of 2
= (Ag.3(Ax.g(g(x)))) beta
= (Ag.-(Af-(Ax. f(f(f () (Ax.g(g(x)))) def. of 3
= (Ag.(Ax.(Ax.g(g(x))) ((Ax.g(g(x)))((Ax.g(g(x)))(x))))) beta
= (Ag.(Ax.(Ax.g(g(x)))((rg.g(g(x)))(g(g(x)))))) beta
= (Ag.(Ax.(Ax.g(g(x)))(g(g(g(g(x))))))) beta
= (Ag.(Ax.g(g(g(g(g(g(x)))N)) beta
=6 def. of 6

If this calculation seems mind-numbing, that is precisely the point: it resembles the
inner workings of a computer. We see here how the lambda calculus can serve as a
programming language, with each step of computation corresponding to a rewrite
rule.



152 J. Baez and M. Stay

Of course, we got the answer 6 because 3 x 2 = 6. Generalizing from this
example, we can define a program called “times” that multiplies Church numerals:

times = (Aa.(Ab.(Ax.a(b(x))))).
For example,
times(3)(2) = 6.

The enterprising reader can dream up similar programs for the other basic operations
of arithmetic. With more cleverness, Church and Kleene were able to write terms
corresponding to more complicated functions. They eventually came to believe that
all computable functions f: N — N can be defined in the lambda calculus.

Meanwhile, Godel was developing another approach to computability, the theory
of “recursive functions”. Around 1936, Kleene proved that the functions definable in
the lambda calculus were the same as Godel’s recursive functions. In 1937 Turing
described his “Turing machines”, and used these to give yet another definition of
computable functions. This definition was later shown to agree with the other two.
Thanks to this and other evidence, it is now widely accepted that the lambda calculus
can define any function that can be computed by any systematic method. We say it
is “Turing complete”.

After this burst of theoretical work, it took a few decades for programmable com-
puters to actually be built. It took even longer for computer scientists to profit from
Church and Kleene’s insights. This began around 1958, when McCarthy invented
the programming language Lisp, based on the lambda calculus [80]. In 1965, an
influential paper by Landin [74] pointed out a powerful analogy between the lambda
calculus and the language ALGOL. These developments led to a renewed interest
in the lambda calculus which continues to this day. By now, a number of com-
puter languages are explicitly based on ideas from the lambda calculus. The most
famous of these include Lisp, ML and Haskell. These languages, called “functional
programming languages”, are beloved by theoretical computer scientists for their
conceptual clarity. In fact, for many years, everyone majoring in computer science
at MIT has been required to take an introductory course that involves programming
in Scheme, a dialect of Lisp. The cover of the textbook for this course [1] even has
a big A on the cover!

We should admit that languages of a different sort—"“imperative programming
languages”—are more popular among working programmers. Examples include
FORTRAN, BASIC, and C. In imperative programming, a program is a series of
instructions that tell the computer what to do. By constrast, in functional program-
ming, a program simply describes a function. To run the program, we apply it to
an input. So, as in the lambda calculus, “application” is a fundamental operation
in functional programming. If we combine application with lambda abstraction, we
obtain a language powerful enough to compute any computable function.

However, most functional programming languages are more regimented than the
original lambda calculus. As we have seen, in the lambda calculus as originally
developed by Church and Kleene, any term can be applied to any other. In real life,
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programming involves many kinds of data. For example, suppose we are writing a
program that involves days of the week. It would not make sense to write

times(3) (Tuesday)

because Tuesday is not a number. We might choose to represent Tuesday by a num-
ber in some program, but doubling that number doesn’t have a good interpretation:
is the first day of the week Sunday or Monday? Is the week indexed from zero or
one? These are arbitrary choices that affect the result. We could let the programmer
make the choices, but the resulting unstructured framework easily leads to mistakes.

It is better to treat data as coming in various “types”, such as integers, floating-
point numbers, alphanumeric strings, and so on. Thus, whenever we introduce a
variable in a program, we should make a “type declaration” saying what type it is.
For example, we might write:

Tuesday : day

This notation is used in Ada, Pascal and some other languages. Other notations are
also in widespread use. Then, our system should have a “type checker” (usually part
of the compiler) that complains if we try to apply a program to a piece of data of the
wrong type.

Mathematically, this idea is formalized by a more sophisticated version of the
lambda calculus: the “typed” lambda calculus, where every term has a type. This
idea is also fundamental to category theory, where every morphism is like a black
box with input and output wires of specified types:

X

9

Y

and it makes no sense to hook two black boxes together unless the output of the first
has the same type as the input of the next:

X

9

®

VA
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Indeed, there is a deep relation between the typed lambda calculus and carte-
sian closed categories. This was discovered by Lambek in 1980 [72]. Quite roughly
speaking, a “typed lambda-theory” is a very simple functional programming lan-
guage with a specified collection of basic data types from which other more com-
plicated types can be built, and a specified collection of basic terms from which
more complicated terms can be built. The data types of this language are objects in
a cartesian closed category, while the programs—that is, terms—give morphisms!

Here we are being a bit sloppy. Recall from Sect. 2.3.3 that in logic we can build
closed monoidal categories where the morphisms are equivalence classes of proofs.
We need to take equivalence classes for the axioms of a closed monoidal category to
hold. Similarly, to get closed monoidal categories from computer science, we need
the morphisms to be equivalence classes of terms. Two terms count as equivalent if
they differ by rewrite rules such as beta reduction, eta reduction and alpha conver-
sion. As we have seen, these rewrites represent the steps whereby a program carries
out its computation. For example, in the original “untyped” lambda calculus, the
terms times(3)(2) and 6 differ by rewrite rules, but they give the same morphism.
So, when we construct a cartesian closed category from a typed lambda-theory, we
neglect the actual process of computation. To remedy this we should work with a
cartesian closed 2-category which has:

e types as objects,
e terms as morphisms,
e equivalence classes of rewrites as 2-morphisms.

For details, see the work of Seely [93, 94], Hilken [54], and Melliés [79]. Someday
this work will be part of the larger n-categorical Rosetta Stone mentioned at the end
of Sect. 2.2.5.

In any event, Lambek showed that every typed lambda-theory gives a cartesian
closed category—and conversely, every cartesian closed category gives a typed
lambda-theory. This discovery led to a rich line of research blending category theory
and computer science. There is no way we can summarize the resulting enormous
body of work, though it constitutes a crucial aspect of the Rosetta Stone. Two good
starting points for further reading are the textbook by Crole [35] and the online
review article by Scott [89].

In what follows, our goal is more limited. First, in Sect. 2.4.2, we explain how
every “typed lambda-theory” gives a cartesian closed category, and conversely. We
follow the treatment of Lambek and Scott [73], in a somewhat simplified form.
Then, in Sect. 2.4.3, we describe how every “linear type theory” gives a closed
symmetric monoidal category, and conversely.

The idea here is roughly that a “linear type theory” is a programming language
suitable for both classical and quantum computation. This language differs from the
typed lambda calculus in that it forbids duplication and deletion of data except when
expressly permitted. The reason is that while every object in a cartesian category
comes equipped with “duplication” and “deletion” morphisms:
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Ax: X - X ®X, Ix: X —> 1,

a symmetric monoidal category typically lacks these. As we saw in Sect. 2.2.3, a
great example is the category Hilb with its usual tensor product. So, a programming
language suitable for quantum computation should not assume we can duplicate all
types of data [29, 110].

Various versions of “quantum” or “linear” lambda calculus have already been
studied, for example by Benton, Bierman de Paiva and Hyland [22], Dorca and van
Tonder [108], and Selinger and Valiron [98]. Abramsky and Tzevelekos sketch a
version in their paper in this volume [6]. We instead explain the ‘linear type theories’
developed by Simon Ambler in his 1991 thesis [7].

2.4.2 The Typed Lambda Calculus

Like the original “untyped” lambda calculus explained above, the typed lambda
calculus uses terms to represent both programs and data. However, now every term
has a specific type. A program that inputs data of type X and outputs data of type ¥
is said to be of type X —o Y. So, we can only apply a term s to a term ¢ of type X if
s is of type X —o Y for some Y. In this case s(¢) is a well-defined term of type Y.
We call X — Y a function type.

Whenever we introduce a variable, we must declare its type. We write ¢ : X to
mean that 7 is a term of type X. So, in lambda abstraction, we no longer simply
write expressions like (Ax . ¢). Instead, if x is a variable of type X, we write

(Ax:X.1).

For example, here is a simple program that takes a program of type X — X and
“squares” it:

Of X —o X.0x 1 X. F(f(X)).

In the original lambda calculus, all programs take a single piece of data as input.
In other words, they compute unary functions. This is no real limitation, since we
can handle functions that take more than one argument using a trick called “cur-
rying”, discussed in Sect. 2.2.6 This turns a function of several arguments into a
function that takes the first argument and returns a function of the remaining argu-
ments. We saw an example in the last section: the program “times”. For example,
times(3) is a program that multiplies by 3, so times (3)(2) =6.

While making all programs compute unary functions is economical, it is not
very kind to the programmer. So, in the typed lambda calculus we also introduce
products: given types X and Y, there is a type X x Y called a product type. We
can think of a datum of type X x Y as a pair consisting of a datum of type X and
a datum of type Y. To make this intuition explicit, we insist that given terms s : X
and ¢ : Y there is aterm (s, ) : X x Y. We also insist that givenatermu : X X Y
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there are terms p(u) : X and p’(u) : Y, which we think of as the first and second
components of the pair . We also include rewrite rules saying:

(p(u), p'(u)) =u forallu : X x Y,
p(s, 1) =g forall s: X and ¢:Y,
p'(s,t) =t foralls:X andz:Y.

Product types allow us to write programs that take more than one input. Even
more importantly, they let us deal with programs that produce more than one output.
For example, we might have a type called “integer”. Then we might want a program
that takes an integer and duplicates it:

duplicate : integer —o (integer x integer)
Such a program is easy to write:
duplicate = (Lx :integer. (x, x)).

Of course this a program we should not be allowed to write when duplicating infor-
mation is forbidden, but in this section our considerations are all “classical”, i.e.,
suited to cartesian closed categories.

The typed lambda calculus also has a special type called the “unit type”, which
we denote as 1. There is a single term of this type, which we denote as (). From
the viewpoint of category theory, the need for this type is clear: a category with
finite products must have not only binary products but also a terminal object (see
Definition 10). For example, in the category Set, the terminal object can be taken as
any one-element set, and () is the unique element of this set. It may be less clear why
this type is useful in programming. One reason is that it lets us think of a constant
of type X as a function of type 1 —o X—that is, a “nullary” function, one that
takes no arguments. There are some other reasons, but they go beyond the scope of
this discussion. Suffice it to say that Haskell, Lisp and even widely used imperative
languages such as C, C4+ and Java include the unit type.

Having introduced the main ingredients of the typed lambda calculus, let us give
amore formal treatment. As we shall see, a “typed lambda-theory” consists of types,
terms and rewrite rules. From a typed lambda-theory we can get a cartesian closed
category. The types will give objects, the terms will give morphisms, and the rewrite
rules will give equations between morphisms.

First, the types are given inductively as follows:

Basic types: There is an arbitarily chosen set of types called basic types.
Product types: Given types X and Y, there is a type X x Y.

Function types: Given types X and Y, there is a type X — Y.

Unit type: There is a type 1.

There may be unexpected equations between types: for example we may have a type
X satisfying X x X = X. However, we demand that:
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e If X=X andY =Y'thenX xY =X xY'.
e If X=X andY =Y thenX oY =X —VY.

Next we define terms. Each term has a specific type, and if ¢ is a term of type X
we write ¢ : X. The rules for building terms are as follows:

e Basic terms: For each type X there is a set of basic terms of type X.

e Variables: For each type X there is a countably infinite collection of terms of
type X called variables of type X.

e Application: If f : X —o Y and ¢ : X then there is a term f(¢) of type Y.

e Lambda abstraction: If x is a variable of type X and ¢ : Y then there is a term
(Ax:X .t)of type X — Y.

e Pairing: If s : X and ¢ : Y then there is a term (s, 1) of type X x Y.

e Projection: If ¢ : X x X' then there is a term p(z) of X and a term p’(¢) of
type X'.

e Unit term: There is a term () of type 1.

Finally there are rewrite rules going between terms of the same type. Given
any fixed set of variables S, there will be rewrite rules between terms of the same
type, all of whose free variables lie in the set S. For our present purposes, we only
need these rewrite rules to decide when two terms determine the same morphism
in the cartesian closed category we shall build. So, what matters is not really the
rewrite rules themselves, but the equivalence relation they generate. We write this
equivalence relation as s ~s ?.

The relation ~s can be any equivalence relation satisfying the following list
of rules. In what follows, ¢[s/x] denotes the result of taking a term ¢ and replacing
every free occurence of the variable x by the term s. Also, when when we say ‘term’
without further qualification, we mean ‘term all of whose free variables lie in the
set S”.

e Type preservation: If 1 ~g ¢’ then ¢ and ¢’ must be terms of the same type, all
of whose free variables lie in the set S.

e Beta reduction: Suppose x is a variable of type X, s is a term of type X, and 7 is
any term. If no free occurrence of a variable in s becomes bound in ¢[s/x], then:

Ax:X.1)(s) ~s tls/x].
e Eta reduction: Suppose the variable x does not appear in the term f. Then:
Ax:X. fx)~s f.

e Alpha conversion: Suppose x and y are variables of type X, and no free occur-
rence of any variable in r becomes bound in ¢[x/y]. Then:

Ax:X.t) ~s (Ay: X .t[x/y]).
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Application: Suppose ¢ and ¢’ are terms of type X with ¢ ~g ¢/, and suppose that
f:X — Y. Then:

f@) ~s f@).

e Lambda abstraction: Suppose ¢ and ¢’ are terms of type Y, all of whose free
variables lie in the set S U {x}. Suppose that f ~ gy} ¢’. Then:

(Ax:X.t) ~5 Ax:X.t)
e Pairing: If u is a term of type X x Y then:

(pw), p'(w)) ~s u.

e Projection: if s is a term of type X and ¢ is a term of type Y then:

p(s,t) ~s s
p'(s,t) ~s t.

e Unit term: If 7 is a term of type 1 then:

t~s 0.

Now we can describe Lambek’s classic result relating typed lambda-theories to
cartesian closed categories. From a typed lambda-theory we get a cartesian closed
category C for which:

e The objects of C are the types.

e The morphisms f: X — Y of C are equivalence classes of pairs (x, ¢) consisting
of a variable x : X and a term ¢ : Y with no free variables except perhaps x. Here
(x, 1) is equivalent to (x, ¢’) if and only if:

I~ t'[x/x'].

e Given a morphism f: X — Y coming from a pair (x,¢) and a morphism
g:Y — Z coming from a pair (y, u) as above, the composite gf: X — Y
comes from the pair (x, u[t/y]).

We can also reverse this process and get a typed lambda-theory from a cartesian
closed category. In fact, Lambek and Scott nicely explain how to construct a cat-
egory of category of cartesian closed categories and a category of typed-lambda
theories. They construct functors going back and forth between these categories
and show these functors are inverses up to natural isomorphism. We thus say these
categories are “equivalent” [73].
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2.4.3 Linear Type Theories

In his thesis [7], Ambler described how to generalize Lambek’s classic result from
cartesian closed categories to closed symmetric monoidal categories. To do this,
he replaced typed lambda-theories with “linear type theories”. A linear type theory
can be seen as a programming language suitable for both classical and quantum
computation. As we have seen, in a noncartesian category like Hilb, we cannot freely
duplicate or delete information. So linear type theories must prevent duplication or
deletion of data except when it is expressly allowed.

To achieve this, linear type theories must not allow us to write a program like
this:

(Ax:X.(x,x)).
Even a program that “squares” another program, like this:

Af: X — X (XL f(f(X)))),

is not allowed, since it “reuses” the variable f. On the other hand, a program that
composes two programs is allowed!

To impose these restrictions, linear type theories treat variables very differently
than the typed lambda calculus. In fact, in a linear type theory, any term will contain
a given variable at most once. But linear type theories depart even more dramati-
cally from the typed lambda calculus in another way. They make no use of lambda
abstraction! Instead, they use “combinators”.

The idea of a combinator is very old: in fact, it predates the lambda calculus.
Combinatory logic was born in a 1924 paper by Schonfinkel [92], and was redis-
covered and extensively developed by Curry [36, 37] starting in 1927. In retrospect,
we can see their work as a stripped-down version of the untyped lambda calculus
that completely avoids the use of variables. Starting from a basic stock of terms
called “combinators”, the only way to build new ones is application: we can apply
any term f to any term ¢ and get a term f(¢).

To build a Turing-complete programming language in such an impoverished
setup, we need a sufficient stock of combinators. Remarkably, it suffices to use
three. In fact it is possible to use just one cleverly chosen combinator—but this
tour de force is not particularly enlightening, so we shall describe a commonly used
set of three. The first, called 7, acts like the identity, since it comes with the rewrite
rule:

I(a)=a

for every term a. The second, called K, gives a constant function K (a) for each
term a. In other words, it comes with a rewrite rule saying

K(a)(b) =a
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for every term b. The third, called S, is the tricky one. It takes three terms, applies
the first to the third, and applies the result to the second applied to the third:

S(a)(b)(c) = a(c)(b(c)).

Later it was seen that the combinator calculus can be embedded in the untyped
lambda calculus as follows:

I = (Ax.x)
K = (Ax.(Ay.x))
S = (Ax.(Ay.(Az.x (D) ((2))))).

The rewrite rules for these combinators then follow from rewrite rules in the
lambda calculus. More surprisingly, any function computable using the lambda
calculus can also be computed using just /, K and S! While we do not need
this fact to understand linear type theories, we cannot resist sketching the proof,
since it is a classic example of using combinators to avoid explicit use of lambda
abstraction.

Note that all the variables in the lambda calculus formulas for 7, K, and S are
bound variables. More generally, in the lambda calculus we define a combinator to
be a term in which all variables are bound variables. Two combinators ¢ and d are
extensionally equivalent if they give the same result on any input: that is, for any
term ¢, we can apply lambda calculus rewrite rules to c(¢) and d(¢) in a way that
leads to the same term. There is a process called “abstraction elimination” that takes
any combinator in the lambda calculus and produces an extensionally equivalent
one built from 7, K, and S.

Abstraction elimination works by taking a term r = (Ax.u) with a single lambda
abstraction and rewriting it into the form (Ax.f(x)), where f has no instances of
lambda abstraction. Then we can apply eta reduction, which says (Ax.f(x)) = f.
This lets us rewrite ¢ as a term f that does not involve lambda abstraction. We shall
use the notation [[u]], to mean “any term f satisfing f(x) = u”.

There are three cases to consider; each case justifies the definition of one combi-
nator:

1. t = (Ax.x). We can rewrite this as t = (Ax.I(x)),sot = [[x]]lx = 1.

2. t = (Ax.u), where u does not depend on x. We can rewrite this as t = (Ax.
Ku)(x)), sot = [[ullx = K(u).

3. t = (Ax.u(v)), where u and v may depend on x. We can rewrite this as t =
(Ax.(([[ullxx)([[v]]xx)) or ¢ = (Ax.S([[ully)([[v]])(x)), so t = S([[ullx)
([[v]]x)-

We can eliminate all use of lambda abstraction from any term by repeatedly using
these three rules “from the inside out”. To see how this works, consider the lambda
term r = (Ax.(Ay.y)), which takes two inputs and returns the second. Using the
rules above we have:
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(Ax.(Ay.y)) = (x.(Ay.[Iy]ly ()

= (Ax.(Ay.1(y))

= (\x.D)

= (Ax.[[IT]e(x))

= (Ax.K(I)(x)

= K(I).

We can check that it works as desired: K(I)(x)(y) = I(y) = y.

Now let us return to our main theme: linear type theories. Of the three combi-
nators described above, only [/ is suitable for use in an arbitrary closed symmetric
monoidal category. The reason is that K deletes data, while S duplicates it. We can
see this directly from the rewrite rules they satisfy:

K(a)(b) =a
S(a)(b)(c) = a(c)(b(c)).

Every linear type theory has a set of “basic combinators”, which neither duplicate
nor delete data. Since linear type theories generalize typed lambda-theories, these
basic combinators are typed. Ambler writes them using notation resembling the
notation for morphisms in category theory.

For example, given two types X and Y in a linear type theory, there is a tensor
product type X ® Y. This is analogous to a product type in the typed lambda
calculus. In particular, given a term s of type X and a term ¢ of type Y, we can
combine them to form a term of type X ® Y, which we now denote as (s ® ). We
reparenthesize iterated tensor products using the following basic combinator:

assocxyz: (X ®Y)®Z > XQ X ® Z).
This combinator comes with the following rewrite rule:
assocx y.z(s @) @u) = (s ® (t @ u))

foralltermss : X,¢t: Y andu : Z.

Of course, the basic combinator assocy y,z is just a mildly disguised version
of the associator, familiar from category theory. Indeed, all the basic combinators
come from natural or dinatural transformations implicit in the definition of “closed
symmetric monoidal category”. In addition to these, any given linear type theory
also has combinators called “function symbols”. These come from the morphisms
particular to a given category. For example, suppose in some category the tensor
product X ® X is actually the cartesian product. Then the corresponding linear type
theory should have a function symbol

Ax: X - X®X

which lets us duplicate data of type X, together with function symbols
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PiX®X— X, PiXeX—->X

that project onto the first and second factors. To make sure these work as desired,
we can include rewrite rules:

A(s) =(6®s)
pis®t) = s
Pist)y= 1t

So, while duplication and deletion of data is not a “built-in feature” of linear type
theories, we can include it when desired.

Using combinators, we could try to design a programming language suitable for
closed symmetric monoidal categories that completely avoid the use of variables.
Ambler follows a different path. He retains variables in his formalism, but they
play a very different—and much simpler—-role than they do in the lambda cal-
culus. Their only role is to help decide which terms should count as equivalent.
Furthermore, lambda abstraction plays no role in linear type theories, so the whole
issue of free versus bound variables does not arise! In a sense, all variables are free.
Moreover, every term contains any given variable at most once.

After these words of warning, we hope the reader is ready for a more formal
treatment of linear type theories. A linear type theory has types, combinators,
terms, and rewrite rules. The types will correspond to objects in a closed symmet-
ric monoidal category, while equivalence classes of combinators will correspond to
morphisms. Terms and rewrite rules are only used to define the equivalence relation.

First, the set of types is defined inductively as follows:

Basic types: There is an arbitarily chosen set of types called basic types.
Product types: Given types X and Y, there is a type (X ® Y).

Function types: Given types X and Y, there is a type (X — Y).

Trivial type: There is a type /.

There may be equations between types, but we require that:

e f X=X andY =Y then X®Y =X QY.
e If X=X andY =Y'thenX oY =X —VY'.

Second, a linear type theory has for each pair of types X and Y a set of com-
binators of the form f: X — Y. These are defined by the following inductive
rules:

e Given types X and Y there is an arbitrarily chosen set of combinators f: X — Y
called function symbols.

e Given types X, Y, and Z we have the following combinators, called basic com-
binators:

—dy: X —> X

—assocyyz: ( X®@Y)®Z > XQ (Y ®Z)
— unassocxyz: X®@ (Y ®Z) - (X®Y)®Z
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— braidyy: X®Y - Y ®X
—lefty: I® X — X

— unlefty: X > I ® X

— righty: I® X - X

— unrighty: X - I ® X
—evalyy: X®@ (X —Y)—>Y

e If f: X —> Yandg:Y — Z are combinators, then (g o f): X — Z is a com-
binator.

o If f: X —> Yandg: X' — Y’ are combinators,then (f ® ¢): XX - Y QY’
is a combinator.

e If f: X®Y — Z is a combinator, then we can curry f to obtain a combinator
fiY = (X — 2).

It will generally cause no confusion if we leave out the subscripts on the basic com-

binators. For example, we may write simply “assoc” instead of assocy y, z.
Third, a linear type theory has a set of terms of any given type. As usual, we write

t : X to say that 7 is a term of type X. Terms are defined inductively as follows:

e For each type X there is a countably infinite collection of variables of type X. If
X is a variable of type X then x : X.

e Thereisaterm 1 with 1: /.

e Ifs: Xandr:Y, thenthereisaterm (s ® ) with (s ® ) : X ® Y, as long as no
variable appears in both s and ¢.

e If f: X — Y isacombinator and 7 : X then there is a term f(¢) with f(¢) : X.

Note that any given variable may appear at most once in a term.

Fourth and finally, a linear type theory has rewrite rules going between terms of
the same type. As in our treatment of the typed lambda calculus, we only care here
about the equivalence relation ~ generated by these rewrite rules. This equivalence
relation must have all the properties listed below. In what follows, we say a term is
basic if it contains no combinators. Such a term is just an iterated tensor product of
distinct variables, such as

Z®(x®y) ®w)).
These are the properties that the equivalence relation ~ must have:

o If r ~ ¢ then r and ' must be terms of the same type, containing the same
variables.
e The equivalence relation is substitutive:

— Given terms s ~ s’, a variable x of type X, and terms 7 ~ ¢’ of type X whose
variables appear in neither s nor s’, then s[z/x] ~ s'[t'/x].

— Given a basic term ¢ with the same type as a variable x, if none of the variables
of t appear in the terms s or s/, and s[¢/x] ~ s'[¢/x], then s ~ s’.

e The equivalence relation is extensional: if f: X—Y, g:X—VY andeval(t ® f) =
eval(t ® g) for all basic terms 7 : X, then f = g.
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e We have:

— id(s) ~ s

= (g0 f)ls) ~ g(f(s))

- (f®1~ (f(s)®g))
— assoc((s P Pu) ~ (s (t®u))
— unassoc(s @ t Qu)) ~ ((s®t) ®u)
— braid(s ® 1) ~ (t ® s)

— left(l ®s) ~s

— unleft(s) ~ (1 ® s)

— right(1 ® s) ~ s

— unright(s) ~ (1 ®s)

—eval(s® f(1) ~ f(s®1)

Note that terms can have variables appearing anywhere within them. For exam-
ple, if x, y, z are variables of types X, Y and Z,and f: Y ® Z — W is a function
symbol, then

braid(x @ f(y ® 2))

is a term of type W ® X. However, every term ¢ is equivalent to a term of the form
cp(t)(vp(t)), where cp(r) is the combinator part of 1 and vp(¢) is a basic term
called the variable part of 7. For example, the above term is equivalent to

braid o (id ® (f o (Id ®id))) (x ® (y ® 2)).
The combinator and variable parts can be computed inductively as follows:

If x is a variable of type X, cp(x) =id: X — X.

cp(l) =id: I — 1.

For any terms s and ¢, cp(s ® 1) = cp(s) ® cp(¢).

For any term s : X and any combinator f : X — Y, cp(f(s)) = f ocp(s).
If x is a variable of type X, vp(x) = x.

vp(l) = 1.

For any terms s and ¢, vp(s ® ) = vp(s) ® vp(?).

For any term s : X and any combinator f: X — Y, vp(f(s)) = vp(s).

Now, suppose that we have a linear type theory. Ambler’s first main result is this:
there is a symmetric monoidal category where objects are types and morphisms
are equivalence classes of combinators. The equivalence relation on combinators is
defined as follows: two combinators f, g: X — Y are equivalent if and only if

f@) ~ g

for some basic term ¢ of type X. In fact, Ambler shows that f(t) ~ g(¢) for some
basic term ¢ : X if and only if f(¢) ~ g(¢) for all such basic terms.

Ambler’s second main result describes how we can build a linear type theory
from any closed symmetric monoidal category, say C. Suppose C has composi-
tion O, tensor product e, internal hom —e, and unit object . We let the basic types of
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our linear type theory be the objects of C. We take as equations between types those
generated by:

o =1
e AeB=AQ®B
e A~ «B=A-—oB

We let the function symbols be all the morphisms of C. We take as our equivalence
relation on terms the smallest allowed equivalence relation such that:

lax) ~ A

(g0 fHx) ~ g(f(x)
(feg)x®y) ~ (f(x) ®g(y)
apBc((x®y)®z) ~ (x®(y®2)
bap(x®y) ~ (y ®x)
lA(1®x)~x

ra(x ®1) ~ X

VA B(X® f(y) ~ f(x®y)

Then we define

e id=1

® assoc =a

e unassoc =g~ !
e braid =b

o left=1

o unleft =/"!

e right=r

o unleft = r~!

e cval =ev

e gof=g0Or

and we’re done!

Ambler also shows that this procedure is the “inverse” of his procedure for turn-
ing linear type theories into closed symmetric monoidal categories. More precisely,
he describes a category of closed symmetric monoidal categories (which is well-
known), and also a category of linear type theories. He constructs functors going
back and forth between these, based on the procedures we have sketched, and shows
that these functors are inverses up to natural isomorphism. So, these categories are
“equivalent”.

In this section we have focused on closed symmetric monoidal categories. What
about closed categories that are just braided monoidal, or merely monoidal? While
we have not checked the details, we suspect that programming languages suited to
these kinds of categories can be obtained from Ambler’s formalism by removing
various features. To get the braided monoidal case, the obvious guess is to remove
Ambler’s rewrite rule for the ‘braid’ combinator and add two rewrite rules corre-
sponding to the hexagon equations (see Sect. 2.2.4 for these). To get the monoidal
case, the obvious guess is to completely remove the combinator “braid” and all
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rewrite rules involving it. In fact, Jay [57] gave a language suitable for closed
monoidal categories in 1989; Ambler’s work is based on this.

2.5 Conclusions

In this paper we sketched how category theory can serve to clarify the analogies
between physics, topology, logic and computation. Each field has its own concept
of “thing” (object) and “process” (morphism)—and these things and processes are
organized into categories that share many common features. To keep our task man-
ageable, we focused on those features that are present in every closed symmetric
monoidal category. Table 2.4, an expanded version of the Rosetta Stone, shows some
of the analogies we found.

Table 2.4 The Rosetta Stone (larger version)

Category Theory Physics Topology Logic Computation
Object X Hilbert space X Manifold X Proposition X Data type X
Morphism Operator Cobordism Proof f: X — Y Program
f:X—>Y f:X—=>Y f:X—=>Y f:X—->Y
Tensor product of Hilbert space of  Disjoint union of Conjunction of Product of data
objects: X ® ¥ joint system: manifolds: propositions: types: X ® Y
XY X®Y XQY
Tensor product of Parallel processes: Disjoint union of Proofs carried out Programs
morphisms: f®g cobordisms: in parallel: executing in
fes feg feg parallel: f ® ¢
Internal hom: Hilbert space of  Disjoint union of Conditional Function type:
X —oY “anti-X and Y”:  orientation- proposition: X —oVY
X*®Y reversed X and X —oY
V:X*®Y

However, we only scratched the surface! There is much more to say about cate-
gories equipped with extra structure, and how we can use them to strengthen the ties
between physics, topology, logic and computation—not to mention what happens
when we go from categories to n-categories. But the real fun starts when we exploit
these analogies to come up with new ideas and surprising connections. Here is an
example.

In the late 1980s, Witten [109] realized that string theory was deeply connected
to a 3d topological quantum field theory and thus the theory of knots and tangles
[71]. This led to a huge explosion of work, which was ultimately distilled into a
beautiful body of results focused on a certain class of compact braided monoidal
categories called “modular tensor categories” [17, 107].

All this might seem of purely theoretical interest, were it not for the fact that
superconducting thin films in magnetic fields seem to display an effect—the “frac-
tional quantum Hall effect”—that can be nicely modelled with the help of such
categories [102, 103]. In a nutshell, the idea is that excitations of these films can act
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like particles, called ‘anyons’. When two anyons trade places, the result depends on

A X

So, collections of anyons are described by objects in a braided monoidal cat-
egory! The details depend on things like the strength of the magnetic field; the
range of possibilities can be worked out with the help of modular tensor categories
[82, 88].

So far this is all about physics and topology. Computation entered the game
around 2000, when Freedman, Kitaev, Larsen and Wang [43-45] showed that certain
systems of anyons could function as “universal quantum computers”. This means
that, in principle, arbitrary computations can be carried out by moving anyons
around. Doing this in practice will be far from easy. However, Microsoft has set
up a research unit called Project Q attempting to do just this. After all, a working
quantum computer could have huge practical consequences.

But regardless of whether topological quantum computation ever becomes prac-
tical, the implications are marvelous. A simple diagram like this:

\

\

can now be seen as a quantum process, a tangle, a computation—or an abstract
morphism in any braided monoidal category! This is just the sort of thing one would
hope for in a general science of systems and processes.
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Chapter 3
Categories for the Practising Physicist

B. Coecke and E.O. Paquette

Abstract In this chapter we survey some particular topics in category theory in a
somewhat unconventional manner. Our main focus will be on monoidal categories,
mostly symmetric ones, for which we propose a physical interpretation. Special
attention is given to the category which has finite dimensional Hilbert spaces as
objects, linear maps as morphisms, and the tensor product as its monoidal structure
(FdHilb). We also provide a detailed discussion of the category which has sets as
objects, relations as morphisms, and the cartesian product as its monoidal structure
(Rel), and thirdly, categories with manifolds as objects and cobordisms between
these as morphisms (2Cob). While sets, Hilbert spaces and manifolds do not share
any non-trivial common structure, these three categories are in fact structurally very
similar. Shared features are diagrammatic calculus, compact closed structure and
particular kinds of internal comonoids which play an important role in each of
them. The categories FdHilb and Rel moreover admit a categorical matrix calculus.
Together these features guide us towards topological quantum field theories. We also
discuss posetal categories, how group representations are in fact categorical con-
structs, and what strictification and coherence of monoidal categories is all about.
In our attempt to complement the existing literature we omitted some very basic
topics. For these we refer the reader to other available sources.

3.1 Prologue: Cooking with Vegetables

Consider a “raw potato”. Conveniently, we refer to it as A. Raw potato A admits
several states e.g. “dirty”, “clean”, “skinned”, ... Since raw potatoes don’t digest
well we need to process A into “cooked potato” B. We refer to A and B as kinds or

types of food. Also B admits several states e.g. “boiled”, “fried”, “baked with skin”,
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“baked without skin”, . . . Correspondingly, there are several ways to turn raw potato
A into cooked potato B e.g. “boiling”, “frying”, “baking”, to which we respectively
referas f, f' and f”. We make the fact that each of these cooking processes applies
to raw potato A and produces cooked potato B explicit via labelled arrows:

A-L.B AL, B AL, B,

Sequential composition. A plain cooked potato tastes dull so we’d like to pro-
cess it into “spiced cooked potato” C. We refer to the composite process that consists

of first “boiling” A N B and then “salting” B —&, Cas
AL o
We refer to the trivial process of “doing nothing to vegetable X as
Ix
X — X.

Clearly we have ly 0o £ = £ o 1x = £ for all processes X 5, Y. Note that there
is a slight subtlety here: we need to specify what we mean by equality of cooking

processes. We will conceive two cooking processes X Ly and X —» ¥ as
equal, and write £ = ¢, if the resulting effect on each of the states which X admits
is the same. A stronger notion of equality arises when we also want some additional
details of the processes to coincide e.g. the brand of the cooking pan that we use.
Let D be a “raw carrot”. Note that it is indeed very important to explicitly dis-
tinguish our potato and our carrot and any other vegetable such as “lettuce” L in
terms of their respective names A, D and L, since each admits distinct ways of
processing. And also a cooked potato admits different ways of processing than a
raw one, for example, while we can mash cooked potatoes, we can’t mash raw ones.
We denote all processes which turn raw potato A into cooked potato B by C(A, B).
Consequently, we can repackage composition of cooking processes as a function

—0—:CX,Y)xCY,2) — CX, 2).

Parallel composition. We want to turn “raw potato” A and “raw carrot” D into
“carrot-potato mash” M. We refer to the fact that this requires (or consumes) both

A and D as A @ D. Refer to ‘frying the carrot’ as D I E Then, by
AeD I BoE
we mean “boiling potato A” while “frying carrot D” and by
CRF —— M

we mean “mashing spiced cooked potato C and spiced cooked carrot F.
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Laws. The whole process from raw components A and D to “meal” M is

f®h g®k
_—

BRE2X CoF -2+ M = Ag D ~2W880(/eh

A®D M,
where “peppering the carrot” is referred to as E K F.We refer to the list of the
operations that we apply, i.e. (f while i, g while k, x), as a recipe. Distinct recipes
can yield the same meal. The reason for this is that the two operations “and then”
(i.e. — o —) and “while” (i.e. — ® —) which we have at our disposal are not totally
independent but interact in a certain way. This is exemplified by the equality

(@M o(f®lp)=(f®lp)o(la®h) (3.1

on cooking processes, which states that it makes no difference whether “we first boil
the potato and then fry the carrot”, or, “first fry the carrot and then boil the potato”.

Equation (3.1) is in fact a generally valid equational law for cooking processes,
which does not depend on specific properties of A, B, D, E, f nor h.

Of course, chefs do not perform computations involving Eq. (3.1), since their
“Intuition” accounts for its content. But, if we were to teach an android how to
become a chef, which would require it/him/her to reason about recipes, then we
would need to teach it/him/her the laws governing these recipes.

In fact, there is a more general law governing cooking processes from which
Eq. (3.1) can be derived, namely,

(8o f)®(koh)=(®k)o(f®h). (3.2)

That is, “boiling the potato and then salting it, while, frying the carrot and then
peppering it”, is equal to “boiling the potato while frying the carrot, and then, salting
the potato while peppering the carrot”.! A proof of the fact that Eq. (3.1) can be
derived from Eq. (3.2) is in Proposition 2 below.

Logic. Equation (3.2) is indeed a logical statement. In particular, note the remark-
able similarity, but at the same time also the essential difference, of Eq. (3.2) with
the well-known distributive law of classical logic, which states that

Aand (Bor C) =(Aand B) or (Aand C). 3.3)

For simple situations, if one possesses enough brainpower, “intuition” again
accounts for this distributive law. Ot the other hand, it needs to be explicitly taught
to androids, since this distributive law is key to the resolution method which is the
standard implementation of artificial reasoning in Al and robotics [58]. Also for
complicated sentences we ourselves will need to rely on this method too.

1'n the light of the previous footnote, note here that this law applies to any reasonable notion of
equality for processes.
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The (o, ®)-logic is a logic of interaction. It applies to cooking processes, phys-
ical processes, biological processes, logical processes (i.e. proofs), or computer
processes (i.e. programs). The theory of monoidal categories, the subject of this
chapter, is the mathematical framework that accounts for the common structure of
each of these theories of processes. The framework of monoidal categories moreover
enables modeling and axiomatising (or “classify”) the extra structure which certain
families of processes may have. For example, how cooking processes differ from
physical processes, and how quantum processes differ from classical processes.

Pictures. We mentioned that our intuition accounts for (o, ®)-logic. Wouldn’t it
be nice if there would be mathematical structures which also “automatically” (or
“implicitly””) account for the logical mechanisms which we intuitively perform?
Well, these mathematical structures do exist. While they are only a fairly recent
development, they are becoming more and more prominent in mathematics, includ-
ing in important “Fields Medal awarding areas” such as algebraic topology and
representation theory—see for example [53, and references therein]. Rather than
being symbolic, these mathematical structures are purely graphical. Indeed, by far
**F*the*** coolest thing about monoidal categories is that they admit a purely pic-
torial calculus, and these pictures automatically account for the logical mechanisms
which we intuitively perform. As pictures, both sides of Eq. (3.2) become:

Hence Eq. (3.2) becomes an implicit salient feature of the graphical calculus and
needs no explicit attention anymore. This, as we will see below, substantially sim-
plifies many computations. To better understand in which manner these pictures
simplify computations note that the differences between the two sides of Eq. (3.2)
can be recovered by introducing “artificial” brackets within the two pictures:

1 [k

I |
L
o/ \ma) T3 - o
Y

)
®
ol

\

A detailed account on this graphical calculus is in Sect. 3.3.2.
In the remainder of this chapter we provide a formal tutorial on several kinds of
monoidal categories that are relevant to physics. If you’d rather stick to the informal
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story of this prologue you might want to first take a bite of [20, 21].> Section 3.2
introduces categories and Sect. 3.3 introduces tensor structure. Section 3.4 studies
quantum-like tensors and Sect. 3.5 studies classical-like tensors. Sect. 3.6 introduces
mappings between monoidal categories (= monoidal functors), and natural transfor-
mations between these, which enable to concisely define topological quantum field
theories. Section 3.7 suggests further reading.

3.2 The 1D Case: New Arrows for Your Quiver

The bulk of the previous section discussed the two manners in which we can com-
pose processes, namely sequentially and in parallel, or more physically put, in time
and in space. These are indeed the situations we truly care about in this chapter.
Historically however, category theoreticians cared mostly about one-dimensional
fragments of the two-dimensional monoidal categories. These one-dimensional frag-
ments are (ordinary) categories, hence the name category theory. Some people will
get rebuked by the terminology and particular syntactic language used in category
theory—which can sound and look like unintelligible jargon—resulting in its unfor-
tunate label of generalised abstract nonsense. The reader should realise that initially
category theory was crafted as “a theory of mathematical structures”. Hence sub-
stantial effort was made to avoid any reference to the underlying concrete models,
resulting in its seemingly idiosyncratic format. The personalities involved in crafting
category theory, however brilliant minds they had, also did not always help the cause
of making category theory accessible to a broader community.

But this “theory of mathematical structures” view is not the only way to conceive
category theory. As we argued above, and as is witnessed by its important use in
computer science, in proof theory, and more recently also in quantum informatics
and in quantum foundations, category theory is a theory which brings the notions
of (type of ) system and process to the forefront, two notions which are hard to cast
within traditional monolithic mathematical structures.

We profoundly believe that the fact that the mainstream physics community has
not yet acquired this (type of) systems/process structure as a primal part of its theo-
ries is merely accidental, and temporary, . . . and will soon change.

3.2.1 Categories
We will use the following syntax to denote a function:

f:X—>YuixHy

2 Paper [20] provided a conceptual template for setting up the content of this paper. However, here
we go in more detail and provide more examples.
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where X is the set of arguments, Y the set of possible values, and
Xy

means that argument x is mapped on value y.
Definition 1 A category C consists of

1. A family3 |C| of objects ;

2. Forany A, B € |C|, aset C(A, B) of morphisms, the hom-set,;

3. Forany A, B,C € |C|, and any f € C(A, B) and g € C(B, C), a composite
gofeC(A,QC),ie., forall A, B, C € |C]| there is a composition operation

—0—:C(A,B)xC(B,C) - C(A,C) = (f,9) > go f,

and this composition operation is associative and has units, that is,

i. forany f € C(A, B), g € C(B,C) and h € C(C, D) we have
ho(gof)=(hog)o f;

ii. for any A € |C|, there exists a morphism 14 € C(A, A), called the identity,
which is such that for any f € C(A, B) we have

f=foly=1gof.

A shorthand for f € C(A, B) is A S, B. As already mentioned above, this
definition was proposed by Samuel Eilenberg and Saunders Mac Lane in 1945 as
part of a framework which intended to unify a variety of mathematical constructions
within different areas of mathematics [33]. Consequently, most of the examples of
categories that one encounters in the literature encode mathematical structures: the
objects will be examples of this mathematical structure and the morphisms will
be the structure-preserving maps between these. This kind of categories is usually
referred to as concrete categories [5]. We will also call them concrete categorical
models.

3.2.2 Concrete Categories

Traditionally, mathematical structures are defined as a set equipped with some oper-
ations and some axioms, for instance:

3 Typically, “family” will mean a class rather than a set. While for many constructions the size of
|C| is important, it will not play a key role in this paper.
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— A group is a set G with an associative binary operation —e — : G x G — G and
with a two-sided identity 1 € G, relative to which each element is invertible, that
is, for all g € G there exists g~! € Gsuchthatge g ! =g leg = 1.
Similarly we define rings and fields. Slightly more involved but in the same
spirit:

— A vector space is a pair (V, K), respectively a commutative group and a field,
and these interact via the notion of scalar multiplication, i.e.amap V x K — V
which is subject to a number of axioms.

It is to these operations and axioms that one usually refers to as structure.
Functions on the underlying sets which preserve (at least part of) this structure are
called structure preserving maps. Here are some examples of structure preserving
maps:

— group homomorphisms, i.e. functions which preserve the group multiplication,
from which it then also follows that the unit and inverses are preserved;

— linear maps, i.e. functions from a vector space to a vector space which preserve
linear combinations of vectors.

Example 1 Let Set be the concrete category with:

1. all sets as objects,

2. all functions between sets as morphisms, that is, more precisely, if X and Y are
sets and f : X — Y is a function between these sets, then f € Set(X, Y),

3. ordinary composition of functions, thatis, for f : X — Yand g : Y — Z we
have (g o f)(x) := g(f(x)) for the composite go f : X — Z, and,

4. the obvious identities i.e. 1x(x) := x.

Set is indeed a category since:

— function composition is associative, and,
— for any function f : X — Y we have (ly o f)(x) = f(x) = (f o lx)(x).

Example 2 FdVecty is the concrete category with:

finite dimensional vectors spaces over K as objects,

all linear maps between these vectors spaces as morphisms, and
ordinary composition of the underlying functions, and,

identity functions.

S

FdVecty is indeed category since:

— the composite of two linear maps is again a linear map, and,
— identity functions are linear maps.
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Example 3 Grp is the concrete category with:

groups as objects,

group homomorphisms between these groups as morphisms, and,
ordinary function composition, and,

identity functions.

bl

Grp is indeed category since:

— the composite of two group homomorphisms is a group homomorphism, and,
— identity functions are group homomorphisms.

Example 4 (elements) Above we explained that mathematical structures such as
groups typically consist of a set with additional structure. In the case of a category
we have a collection of objects, and for each pair of objects a set of morphisms.
The “structure of a category” then consists of the composition operation on mor-
phisms and the identities on objects. So there is no reference to what the individual
objects actually are (e.g. a set, a vector space, or a group). Consequently, one would
expect that when passing from a mathematical structure (cf. group) to the corre-
sponding concrete category with these mathematical structures as objects (cf. Grp),
one looses the object’s “own” structure. But fortunately, this happens not to be the
case. The fact that we consider structure preserving maps as morphisms will allow
us to recover the mathematical structures that we started from. In particular, by only
relying on categorical concepts we are still able to identify the “elements” of the
objects.
For the set X € |Set| and some chosen element x € X the function

ex i {x} > X x> x,

where {x} is any one-element set, maps the unique element of {x} onto the chosen
element x. If X contains n elements, then there are n such functions each corre-
sponding to the element on which * is mapped. Hence the elements of the set X are
now encoded as the set Set({x}, X).

In a similar manner we can single out vectors in vectors spaces. For the vector
space V € |FdVectk| and some fixed vector v € V the linear map

ey  K—>Vile—v,

where K is now the one-dimensional vector space over itself, maps the element
1 € K onto the chosen element v. Since e, is linear, it is completely characterised
by the image of the single element 1. Indeed, e, (o) = ey(a- 1) = a-e,(1) =« - v,
that is, the element 1 is a basis for the one-dimensional vector space K.

Example 5 Pos is the concrete category with:

1. partially ordered sets, that is, a set together with a reflexive, anti-symmetric and
transitive relation, as objects,
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2. order preserving maps, i.e. x <y = f(x) < f(y), as morphisms, and,
3. ordinary function composition, and identity functions.

An extended version of this category is Pre where we consider arbitrary pre-ordered
sets, that is, a set together with a reflexive and transitive relation.

Example 6 Cat is the concrete category with*:

1. categories as objects,
2. so-called functors between these as morphisms (see Sect. 3.2.6), and,
3. functor composition, and identity functors.

3.2.3 Real World Categories

But viewing category theory as some kind of metatheory about mathematical struc-
ture is not necessarily the most useful perspective for the sort of applications that
we have in mind. Indeed, here are a few examples of the kind of categories we truly
care about, and which are not categories with mathematical structures as objects and
structure preserving maps as morphisms.

Example 7 The category PhysProc with

1. all physical systems A, B, C, ... as objects,

2. all physical processes which take a physical system of type A into a physical
system of type B as the morphisms of type A —— B (these processes typically
require some finite amount of time to be completed), and,

3. sequential composition of these physical processes as composition, and the pro-
cess which leaves system A invariant as the identity 14.

Note that in this case associativity of composition admits a physical interpretation: if
we first have process f, then process g, and then process £, it doesn’t matter whether
we either consider (g o f) as a single entity after which we apply %, or whether we
consider (h o g) as a single entity which we apply after f. Hence brackets constitute
superfluous data that can be omitted i.e.

hogof:=ho(gof)=(hog)o f.

Example 8 The category PhysOpp is an operational variant of the above where,
rather than general physical systems such as stars, we focus on systems which can be
manipulated in the lab, and rather than general processes, we consider the operations
which the practising experimenter performs on these systems, for example, applying
force-fields, performing measurements etc.

4 In order to conceive Cat as a concrete category, the family of objects should be restricted to the
so-called “small” categories i.e., categories for which the family of objects is a set.
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Example 9 The category QuantOpp is a restriction of the above where we
restrict ourselves to quantum systems and operations thereon. Special processes
in QuantOpp are preparation procedures, or states. If Q denotes a qubit, then
the type of a preparation procedure would be I —— Q where I stands for
“unspecified”. Indeed, the point of a preparation procedure is to provide a qubit
in a certain state, and the resources which we use to produce that state are typ-
ically not of relevance for the remainder of the experimental procedure. We can
further specialise to either pure (or closed) quantum systems or mixed (or open)
quantum systems, categories to which we respectively refer as PurQuantOpp and
MixQuantOpp.

Obviously, Example 9 is related to the concrete category which has Hilbert
spaces as objects and certain types of linear mappings (e.g. completely positive
maps) as morphisms. The preparation procedures discussed above then correspond
to “categorical elements” in the sense of Example 4. We discuss this correspondence
below.

While to the sceptical reader the above examples still might not seem very useful
yet, the next two ones, which are very similar, have become really important for
Computer Science and Logic. They are the reason that, for example, University of
Oxford Computing Laboratory offers category theory to its undergraduates.

Example 10 The category Comp with

1. all data types, e.g. Booleans, integers, reals, as objects,

2. all programs which take data of type A as their input and produce data of type B
as their output as the morphisms of type A —— B, and,

3. sequential composition of programs as composition, and the programs which
output their input unaltered as identities.

Example 11 The category Prf with

—_

. all propositions as objects,

2. all proofs which conclude from proposition A that proposition B holds as the
morphisms of type A — B, and,

3. concatenation (or chaining) of proofs as composition, and the tautologies “from

A follows A” as identities.

Computer scientists particularly like category theory because it explicitly intro-

duces the notion of fype: an arrow A N B has type A —— B. These types
prevent silly mistakes when writing programs, e.g. the composition g o f makes no

sense for C —%—+ D because the output — called the codomain — of f doesn’t
match the input — called the domain — of g. Computer scientists would say:

“types don’t match”.
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Similar categories BioProc and ChemProc can be build for organisms and bio-
logical processes, chemicals and chemical reactions, etc.’ The recipe for producing
these categories is obvious:

Name | Objects | Morphisms
some area of science ‘corresponding systems ‘corresponding processes

Composition boils down to “first f and then g happens” and identities are just
“nothing happens”. Somewhat more operationally put, composition is “first do f
and then do g” and identities are just “doing nothing”. The reason for providing both
the “objectivist” (= passive) and “instrumentalist” (= active) perspective is that we
both want to appeal to members of the theoretical physics community and members
of the quantum information community. The first community typically doesn’t like
instrumentalism since it just doesn’t seem to make sense in the context of theories
such as cosmology; on the other hand, instrumentalism is as important to quantum
informatics as it is to ordinary informatics. We leave it up to the reader to decide
whether it should play a role in the interpretation of quantum theory.

3.2.4 Abstract Categorical Structures and Properties

One can treat categories as mathematical structures in their own right, just as groups
and vector spaces are mathematical structures. In contrast with concrete categories,
abstract categorical structures then arise by either endowing categories with more
structure or by requiring them to satisfy certain properties.

We are of course aware that this is not a formal definition. Our sheepish excuse
is that physicists rarely provide precise definitions. There is however a formal defi-
nition which can be found in [5]. We do provide one below in Example 24.

Example 12 A monoid (M, e, 1) is a set together with a binary associative operation
—eo—MxM-—>M

which admits a unit—i.e. a “group without inverses”. Equivalently, we can define a
monoid as a category M with a single object *. Indeed, it suffices to identify

o the elements of the hom-set M (%, *) with those of M,
e the associative composition operation

5 The first time the 1st author heard about categories was in a Philosophy of Science course, given
by a biologist specialised in population dynamics, who discussed the importance of category theory
in the influential work of Robert Rosen [59].
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— o — : M(x, %) x M(x, x) = M(x, %)

with the associative monoid multiplication e, and
e the identity 1, : * — = with the unit 1.

Dually, in any category C, for any A € |C|, the set C(A, A) is always a monoid.

Definition 2 Two objects A, B € |C| are isomorphic if there exists morphisms f €
C(A,B)and g € C(B, A) suchthat go f = 14 and f o g = 1. The morphism f
is called an isomorphism and f~! := g is called the inverse to f.

The notion of isomorphism known to the reader is the set-theoretical one, namely
that of a bijection. We now show that in the concrete category Set the category-
theoretical notion of isomorphism coincides with the notion of bijection. Given
functions f : X — Y and g : ¥ — X satisfying g(f(x)) = x forall x € X
and f(g(y)) = y forall y € Y we have:

o f(x1) = f(x2) = g(f(x1)) = g(f(x2)) = x1 = x2 s0 f is injective, and,
e forall y € Y, setting x := g(y), we have f(x) = y so f is surjective,

so f is indeed a bijection. We leave it to the reader to verify that the converse also
holds. For the other concrete categories mentioned above the categorical notion of
isomorphism also coincides with the usual one.

Example 13 Since a group (G, e, 1) is a monoid with inverses it can now be equiv-
alently defined as a category with one object in which each morphism is an isomor-
phism. More generally, a groupoid is a category in which each morphism has an
inverse. For instance, the category Bijec which has sets as objects and bijections as
morphisms is such a groupoid. So is FdUnit which has finite dimensional Hilbert
spaces as objects and unitary operators as morphisms. Groupoids have important
applications in mathematics, for example, in algebraic topology [17].

From this, we see that any group is an example of an abstract categorical struc-
ture. At the same time, all groups together, with structure preserving maps between
them, constitute a concrete category. Still following? That categories allow several
ways of representing mathematical structures might seem confusing at first, but it is
a token of their versatility. While monoids correspond to categories with only one
object, with groups as a special case, similarly, pre-orders are categories with very
few morphisms, with partially ordered sets as a special case.

Example 14 Any preordered set (P, <) can be seen as a category P:

e The elements of P are the objects of P,

e Whenever a < b for a, b € P then there is a single morphism of type a — b,
that is, P(a, b) is a singleton, and whenever a £ b then there is no morphism of
type a — b, that is, P(a, b) is empty.

e Whenever there is pair of morphisms of types a —— b and b —— ¢, that is,
whenever ¢ < b and b < c, then transitivity of < guarantees the existence of a
unique morphism of type a —— ¢, which we take to be the composite of the
morphisms of typea — band b — c.
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e Reflexivity guarantees the existence of a unique morphism of type a — a,
which we take to be the identity on the object a.

Conversely, a category C of which the objects constitute a set, and in which there
is at most one morphism of any type i.e., hom-sets are either singletons or empty, is
in fact a preordered set. Concretely:

The set |C| are the elements of the preordered set,

We set A < B if and only if C(A, B) is non-empty,

Since C is a category, whenever there exist morphisms f € C(A, B) and g €
C(B, C), that is, whenever both C(A, B) and C(B, C) are non-empty, then there
exist a morphism go f € C(A, C), so C(A, C) is also non-empty. Hence, A < B
and B < Cyields A < C, so < is transitive.

Since 14 € C(A, A) we also have A < A, so < is reflexive.

Hence, preordered sets indeed constitute an abstract category: its defining property
is that every hom-set contains at most one morphism. Such categories are some-
times called thin categories. Conversely, categories with non-trivial hom-sets are
called thick. Partially ordered sets also constitute an abstract category, namely one
in which:

e every hom-set contains at most one morphism;
e whenever two objects are isomorphic then they must be equal.

This second condition imposes anti-symmetry on the partial order.

Let {*} and @ denote a singleton set and the empty set respectively. Then for
any set A € |Set|, the set Set(A, {x}) of all functions of type A — {x} is itself a
singleton, since there is only one function which maps all @ € A on %, the single
element of {x}. This concept can be dualised. The set Set(¥J, A) of functions of type
() — A is again a singleton consisting of the “empty function”. Due to these special
properties, we call {x} and ¥ respectively the terminal object and the initial object
in Set. All this can be generalised to arbitrary categories as follows:

Definition 3 An object T € |C]| is terminal in C if, for any A € |C]|, there is only
one morphism of type A —— T. Dually, an object L € |C] is initial in C if, for
any A € |C|, there is only one morphism of type L — A.

Proposition 1 If a category C has two initial objects then they are isomorphic. The
same property holds for terminal objects.

Indeed. Let L and 1’ both be initial objects in C. Since L is initial, there is a
unique morphism f such that C(L, 1’) = {f}. Analogously, there is a unique
morphism g such that C(L’, 1) = {g}. Now, since C is a category and relying
again on the fact that | is initial, it follows that go f € C(L, L) = {1, }. Similarly,
gof e C(Ll',L) = {1/} Hence, L >~ 1’ as claimed. Similarly we show that
T~T.

Example 15 A partially ordered set P is bounded if there exist two elements T and
1 such that for all a € P we have 1. < a < T. Hence, when P is viewed as a
category, this means that it has both a terminal and an initial object.
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The next example of an abstract categorical structure is the most important one
in this paper. Therefore, we state it as a definition. Among many (more important)
things, it axiomatises “cooking with vegetables”.

Definition 4 A strict monoidal category is a category for which:

1. objects come with monoid structure (|C|, ®,1) i.e, forall A, B, C € |C]|,

ARMBR®C)=(AQ®B)®C and IQRA=A=AQI,
2. for all objects A, B, C, D € |C| there exists an operation

—®—-:CA, B)xC(C. D) > CARC.BRD): (f.e9)~> [®¢g
which is associative and has 17 as its unit, that is,0

f®E®N=(f®g®h and L1®f=f=[f®I,

3. for all morphisms f, g, h, k with matching types we have
(8o f)®(koh)=(g®k)o(f®h), (3.4)

4. for all objects A, B € |C| we have

la®1lp =1lags- (3.5)

As we will see in Sect. 3.6.1, the two equational constraints Egs. (3.4) and (3.5)
can be conceived as a single principle.

The symbol ® is sometimes called the tensor. We will also use this terminology,
since “tensor’” is shorter than “monoidal product”. However, the reader should not
deduce from this that the above definition necessitates ® to be anything like a tensor
product, since this is not at all the case.

The categories of systems and processes discussed in Sect. 3.2.3 are all exam-
ples of strict monoidal categories. We already explained in Sect. 3.1 what — ® —
stands for: it enables dealing with situations where several systems are involved. To
a certain extent — ® — can be interpreted as a logical conjunction:

A ® B := system A and system B
f ® g := process f and process g .

There is however considerable care required with this view: while

ANA=A,

6 Note that this operation on morphisms is a typed variant of the notion of monoid.
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in general
ARA#A.

This is where the so-called linear logic [36, 61] kicks in, which is discussed in
substantial detail in [4].
For the special object I we have

AQI=A=1I®A

since it is the unit for the monoid. Hence, it refers to a system which leaves any
system invariant when adjoined to it. In short, it stands for “unspecified”, for “no
system”, or even for “nothing”. We already made reference to it in Example 9 when
discussing preparation procedures. Similarly, 17 is the operation which “does noth-
ing to nothing”. The system I will allow us to encode a notion of state within arbi-
trary monoidal categories, and also a notion of number and probabilistic weight—
see Example 27 below.

Example 16 Now, a monoid (M, e, 1) can also be conceived as a strict monoidal
category in which all morphisms are identities. Indeed, take M to be the objects,
e to be the tensor and 1 to be the unit for the tensor. By taking identities to be the
only morphisms, we can equip these with the same monoid structure as the monoid
structure on the objects. Hence it satisfies Eq. (3.5). By

(Taola)®@(Ipolp) =14®@1p = lags = lagolagp = (1a®1p)o(1a®1p)

eq. (3.2) is also satisfied.

3.2.5 Categories in Physics

In the previous section, we saw how groups and partial orders, both of massive
importance for physics, are themselves abstract categorical structures.

e While there is no need to argue for the importance of group theory to physics
here, it is worth mentioning that John Slater (cf. Slater determinant in quantum
chemistry) referred to Weyl, Wigner and others’ use of group theory in quantum
physics as der Gruppenpest, what translates as the “plague of groups”. Even in
1975 he wrote: As soon as [my] paper became known, it was obvious that a great
many other physicists were as disgusted as I had been with the group-theoretical
approach to the problem. As I heard later, there were remarks made such as
“Slater has slain the Gruppenpest”. I believe that no other piece of work I have
done was so universally popular. Similarly, we may wonder whether it are the
category theoreticians or their opponents which are the true aliens.

e Partial orders model spatio-temporal causal structure [56, 64]. Roughly speaking,
if a < b then events a and b are causally related, if a < b then they are time-like
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separated, and if @ and b don’t compare then they are space-like separated. This
theme is discussed in great detail in [49].

e The degree of bipartite quantum entanglement gives rise to a preorder on bipartite
quantum states [52]. The relevant preorder is Muirheads’ majorization order [51].
However, multipartite quantum entanglement and mixed state quantum entan-
glement are not well understood yet. We strongly believe that category theory
provides the key to the solution, in the following sense:

bipartite entanglement  multipartite entanglement

some preorder ~ some thick category

We also acknowledge the use of category theory in several involved subjects in
mathematical physics ranging from topological quantum field theories (TQFTs) to
proposals for a theory of quantum gravity; here the motivation to use category theory
is of a mathematical nature. We discuss one such topic, namely TQFT, in Sect. 3.6.5.

But the particular perspective which we would like to promote here is categories
as physical theories. Above we discussed three kinds of categories:

e Concrete categories have mathematical structures as objects, and structure pre-
serving maps between these as morphisms.

e Real world categories have some notion of system as objects, and corresponding
processes thereoff as morphisms.

e Abstract categorical structures are mathematical structures in their own right;
they are defined in terms of additional structure and/or certain properties.

The real world categories constitute the area of our focus (e.g. quantum physics,
proof theory, computation, organic chemistry, . ..), the concrete categories consti-
tute the formal mathematical models for these (e.g., in the case of quantum physics,
Hilbert spaces as objects, certain types of linear maps as morphisms, and the tensor
product as the monoidal structure), while the abstract categorical structures consti-
tute axiomatisations of these.

The latter is the obvious place to start when one is interested in comparing the-
ories. We can study which axioms and/or structural properties give rise to certain
physical phenomena, for example, which tensor structures give rise to teleportation
(e.g. [2]), or to non-local quantum-like behavior [24]. Or, we can study which struc-
tural features distinguish classical from quantum theories (e.g. [27, 26]).

Quantum theory is subject to the so-called No-Cloning, No-Deleting and No-
Broadcasting theorems [7, 54, 69], which impose key constraints on our capabilities
to process quantum states. Expressing these clearly requires a formalism that allows
to vary types from a single to multiple systems, as well as one which explicitly
accommodates processes (cf. copying/deleting process). Monoidal categories pro-
vide the appropriate mathematical arena for this on-the-nose.

Example 17 Why does a tiger have stripes and a lion doesn’t? One might expect
that the explanation is written within the fundamental building blocks which these
animals are made up from, so one could take a big knife and open the lion’s and
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the tiger’s bellies. One finds intestines, but these are the same for both animals. So
maybe the answer is hidden in even smaller constituents. With a tiny knife we keep
cutting and identify a smaller kind of building block, namely the cell. Again, there
is no obvious difference between tigers and lions at this level. So we need to go
even smaller. After a century of advancing “small knife technology” we discover
DNA and this constituent truly reveals the difference. So yes, now we know why
tigers have stripes and lions don’t! Do we really? No, of course not. Following in
the footsteps of Charles Darwin, your favorite nature channel would tell you that the
explanation is given by a process of type

prey  predator @ environment — dead prey ® eating predator

which represents the successful challenge of a predator, operating within some
environment, on some prey. Key to the success of such a challenge is the preda-
tor’s camouflage. Sandy savanna is the lion’s habitat while forests constitute the
tiger’s habitat, so their respective coat blends them within their natural habitat.
Any (neo-)Darwinist biologist will tell you that the fact that this is encoded in the
animal’s DNA is not a cause, but rather a consequence, via the process of natural
selection.

This example illustrates how monoidal categories enable to shift the focus from
an atomistic or reductionist attitude to one where systems are studied in terms
of their interactions with other systems, rather than in terms of their constituents.
Clearly, in recent history, physics has solely focused on chopping down things into
smaller things. Focussing on interactions might provide us with a complementary
understanding of the fundamental theories of nature.

3.2.6 Structure Preserving Maps for Categories

The notion of structure preserving map between categories—which we referred to
in Example 6—wasn’t made explicit yet. These “maps which preserve categorical
structure”, the so-called functors, must preserve the structure of a category, that is,
composition and identities. An example of a functor that might be known to the
reader because of its applications in physics, is the linear representation of a group.
A representation of a group G on a vector space V is a group homomorphism from
G to GL(V), the general linear group on V, i.e.,, amap p : G — GL(V) such that

p(g1eg2) =p(gi)op(g) forall gi,8€G, and, p)=1yv.
Consider G as a category G as in Example 13. We also have that GL(V) C

FdVectyk (V, V) (cf. Example 2). Hence, a group representation p from G to GL(V)
induces “something” from G to FdVecty:

R
p:G— GL(V) ~» G —5 FdVecty .



190 B. Coecke and E.O. Paquette

R
However, specifying G —% FdVectyk requires some care:

o Firstly, we need to specify that we are representing on the general linear group of
the vector space V € FdVectik. We do this by mapping the unique object * of G
on V, thus defining a map from objects to objects

R, 1 |G| — |[FdVectg| :: x — V.
e Secondly, we need to specify to which linear map in
GL(R, (%)) C FdVectg (R, (), R, (*))

a group element

g€G(x*x)=G
is mapped. This defines a map from a hom-set to a hom-set, namely
Ry 1 G(*, ) — FdVectg (R, (%), Ry(%)) 1 g — p(g).

The fact that p is a group homomorphism implies in our category-theoretic con-
text that R, preserves composition of morphisms as well as identities, that is, R,
preserves the categorical structure.

Having this example in mind, we infer that a functor must consist not of a single
but of rwo kinds of mappings: one map on the objects, and a family of maps on the
hom-sets which preserve identities and composition.

Definition S Let C and D be categories. A functor
F:C—D
consists of:

1. A mapping
F:|ICl—> DA~ F(A);

2. Forany A, B € |C|, a mapping
F:C(A,B) - D(F(A), F(B)) :: f— F(f)

which preserves identities and composition, i.e.,

i. forany f € C(A, B) and g € C(B, C) we have

F(go f)=F(goF(f),
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ii. and, for any A € |C| we have
F(1a) = 1Fa).

Typically one drops the parentheses unless they are necessary. For instance, F (A)
and F(f) will be denoted simply as FA and Ff.

Consider the category PhysProc of Example 7 and a concrete category Mod
in which we wish to model these mathematically by assigning to each process a
morphism in the concrete category Mod. Functoriality of

F : PhysProc — Mod

means that sequential composition of physical processes is mapped on composi-
tion of morphisms in Mod, and that void processes are mapped on the identity
morphisms. From this, we see that functoriality is an obvious requirement when
designing mathematical models for physical processes.

Example 18 Define the category Matg with

1. the set of natural numbers N as objects,
2. all m x n-matrices with entries in K as morphisms of type n —— m, and
3. matrix composition, and identity matrices.

This example is closely related to Example 2. However, it strongly emphasizes that
objects are but labels with no internal structure. Strictly speaking this is not a con-
crete category in the sense of Sect. 3.2.2. However, for all practical purposes, it can
serve as well as a model as any other concrete category. Therefore, we can relax our
conception of concrete categories to accommodate such models.

Assume now that for each vector space V € |FdVectk|, we pick a fixed basis.
Then any linear function f € FdVectk (V, W) admits a matrix in these bases. This
“assigning of matrices” to linear maps is described by the functor

F : FdVecty — Matyg

which maps vector spaces on their respective dimension, and which maps linear
maps on their matrices in the chosen bases. Importantly, note that it is the functor F
which encodes the choices of bases, and not the categorical structure of FdVect.

Example 19 In Matc, if we map each natural number on itself and conjugate all the
entries of each matrix we also obtain a functor.

We now introduce the concept of duality which we already hinted at above. Sim-
ply put, it means reversal of the arrows in a given category C. We illustrate this
notion in term of an example. Transposition of matrices, just like a functor, is a
mapping on both objects and morphisms which:

i. preserves objects and identities,
ii. reverses the direction of the morphisms since when the matrix M has type
n — m, then the matrix M7 has type m — n, and
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iii. preserves the composition ‘up to this reversal of the arrows’, i.e. for any pair of
matrices N and M for which types match we have

(NoM)T =MT oNT .

So transposition is a functor up fo reversal of the arrows.

Definition 6 A contravariant functor F : C — D consists of the same data as a
functor, it also preserves identities, but reverses composition that is:

F(gof)=FfoFg,

In contrast to contravariant functors, ordinary functors are often referred to as
covariant functors.

Definition 7 The opposite category C? of a category C is the category with

e the same objects as C,
e in which morphisms are “reversed”, that is,

feC(A B) & feC?(B,A),

where to avoid confusion from now on we denote f € C?(B, A) by f,
e identities in C? are those of C, and

fPog?=1(g0)7.

Contravariant functors of type C — D can now be defined as functors of type
C — D. Of course, the operation (—)? on categories is involutive: reversing the
arrows twice is the same as doing nothing. The process of reversing the arrow is
sometimes indicated by the prefix “co”, indicating that the defining equations for
those structures are the same as the defining equations for the original structure, but
with arrows reversed.

Example 20 The transpose is the involutive contravariant functor
T : FdVect}! — FdVecty

which maps each vector space on the corresponding dual vector space, and which
maps each linear map £ on its transpose f7 .

Example 21 A Hilbert space is a vector space over C with an inner-product
(=, —=):HxH—>C.

Let FdHilb be the category with finite dimensional Hilbert spaces as objects and
with linear maps as morphisms. Of course, one could define other categories with
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Hilbert spaces as objects, for example, the groupoid FdUnit of Example 13. But as
we will see below in Sect. 3.3.3, the category FdHilb as defined here comes with
enough extra structure to extract all unitary maps from it. Hence, FdHilb subsumes
FdUnit. This extra structure comes as a functor, whose action is faking the adjoint
or hermitian transpose. This is the contravariant functor

1 : FdHilb” — FdHilb
which:
1. is identity-on-object, that is,
1 : |[FdHilb”?| — |FdHilb| :: H — H,
2. and assigns morphisms to their adjoints, that is,
f : FAHilb” (H, K) — FAHilb(C, H) == f — f7.
Since for f € FdHilb(H, ) and g € FdHilb(/C, £) we have:

=1y and (o) =fTogl

we indeed obtain an identity-on-object contravariant functor. This functor is more-
over involutive, that is, for all morphisms f we have

f“:f.

While the morphisms of FdHilb do not reflect the inner-product structure, the latter
is required to specify the adjoint. In turn, this adjoint will allow us to recover the
inner-product in purely category-theoretic terms, as we shall see in Sect. 3.3.3.

Example 22 Define the category Functc p with

1. all functors from C to D as objects,
2. natural transformations between these as morphisms (cf. Sect. 3.6.2), and,
3. composition of natural transformations and corresponding identities.

Example 23 The defining equations of strict monoidal categories, that is,
(g0 )@ koh)=(g®k)o(f®h) and 14Q®1lp=lags, (3.6)
to which we from now on refer as bifunctoriality, is nothing but functoriality of a

certain functor. We will discuss this in detail in Sect. 3.6.1.

Example 24 A concrete category, or even better, a Set-concrete category, is a cat-
egory C together with a functor U : C —> Set. The way in which we construct
this functor for categories with mathematical structures as objects is by sending
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each object to the underlying set, and morphisms to the underlying functions. So we
forget the extra structure the object has. Therefore the functor U is typically called
forgetful. For example, the category Grp is a concrete category for the functor

(G,e,1) > G
U : Grp —> Set ::
fe=f

which “forgets” the group’s multiplication and unit, and morphisms are mapped on
their underlying functions. More generally, a D-concrete category is a category C
with a functor U : C — D.

Example 25 The TQFTs of Sect. 3.6.5 are special kinds of functors.

3.3 The 2D Case: Muscle Power

We now genuinely start to study the interaction of the parallel and the sequential
modes of composing systems, and operations thereon.

3.3.1 Strict Symmetric Monoidal Categories

The starting point of this Section is the notion of a strict monoidal category as
given in Definition 4. Such categories enable us to give formal meaning to physical
processes which involve several types, e.g. classical and quantum as the following
example clearly demonstrates.

Example 26 Define CQOpp to be the strict monoidal category containing both clas-
sical and quantum systems, with operations thereon as morphisms, and with the
obvious notion of monoidal tensor, that is, a physical analogue of the tensor for
vegetables that we saw in the prologue. Concretely, by A ® B we mean that we
have both A and B available to operate on. Note in particular that at this stage
of the discussion there are no Hilbert spaces involved, so ® cannot stand for the
tensor product, but this does not exclude that we may want to model it by the tensor
product at a later stage. In this category, non-destructive (projective) measurements
have type

Q— X®0

where Q is a quantum system and X is the classical data produced by the measure-
ment. Obviously, the hom-sets

CQOpp(Q, Q) and CQOpp(X, X)

have a very different structure since CQOpp(Q, Q) stands for the operations we
can perform on a quantum system while CQOpp(X, X) stands for the classical
operations (e.g. classical computations) which we can perform on classical systems.
But all of these now live within a single mathematical entity CQOpp.
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The structure of a strict monoidal category does not yet capture certain important
properties of cooking with vegetables. Denote the strict monoidal category con-
structed in the Prologue by Cook.

Clearly “boil the potato while fry the carrot” is very much the same thing as “fry
the carrot while boil the potato”. But we cannot just bluntly say that in the category
Cook the equality

h@ f=f®h

holds. By plain set theory, for this equality to be meaningful, the two morphisms
h ® f and f ® h need to live in the same set. That is, respecting the structure of a
category, within the same hom-set. So

f®h h®f
R R

A®D BRF and D®A F®B
need to have the same type, which implies that
A®D=DQR®A and BRF=FQ®B 3.7

must hold. But this completely blurs the distinction between a carrot and a potato.
For example, we cannot distinguish anymore between “boil the potato while fry the
carrot”, which we denoted by

f®h
_—

A®D B®F,

and “fry the potato while boil the carrot”, which given Eq. (3.7), we can write as

A®D=DRA L FeB=B®F.

So we basically threw out the child with the bath water.
The solution to this problem is to introduce an operation

oAp:A®D — DQ®A
which swaps the role of the potato and the carrot relative to the monoidal tensor.

The fact that “boil the potato while fry the carrot” is essentially the same thing as
“fry the carrot while boil the potato” can now be expressed as

o ro(f®h)=(Mh® flooap.

In our “real world example” of cooking this operation can be interpreted as physi-
cally swapping the vegetables [21]. An equational law governing “swapping” is:

0B,A00A,B = lagn.
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Definition 8 A strict symmetric monoidal category is a strict monoidal category C
which moreover comes with a family of isomorphisms

{A@BﬂiB®A)ABewﬂ

called symmetries, and which are such that:
e forall A, B € |C| we have O'XIB =0pB.4,and

e forall A, B,C, D € |C| and all f, g of appropriate type we have

ocpo(f®8 =(E®flooas. (3.8)

All Examples of Sect. 3.2.3 are strict symmetric monoidal categories for the
obvious notion of symmetry in terms of “swapping”.
We can rewrite Eq. (3.8) in a form which makes the types explicit:

A®B— 2" _BeoA (3.9)
f®g g f
C®D—, ——>D®C

This representation is referred to as commutative diagrams.

Proposition 2 In any strict monoidal category we have
1A®
ARB—"5 - A@D (3.10)
f®1p f®lp

C®B———CQ®D
c®g

Indeed, relying on bifunctoriality we have:

(f®Ip)o(1a®g =(fola)®Upog)
I
f®g
[l
(Icof®(golp)=Uc®go(fQ1B).
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The reader can easily verify that, given a connective — ® — defined both on objects
and morphisms as in items 1 & 2 of Definition 4, the four equations

(fola)®(pog)=f®g=(pof)®(golc) (3.11)
(8®1p)o(f®1p) =(g0 /)R 1p (3.12)
(14®go(1a® f)=14@ (o f), (3.13)

when varying over all objects A, B, C, D € |C| and all morphisms f and g of
appropriate type, are equivalent to the single equation

(o f)®(koh)=(g®k)o(f®h) (3.14)

when varying over f, g, h, k. Egs. (3.12), (3.13) together with
1a®1p =1lags

is usually referred to as — ® — being functorial in both arguments. They are indeed
equivalent to the mappings on objects and morphisms

1g®—-):C—C and (-®15):C— C
both being functors, for all objects A, B € |C| — their action on objects is
Ia®@—-)uXH—ARX and (—®1) = X— X®B.

Hence, functoriality in both arguments is strictly weaker than bifunctoriality
(cf. Example 23), since the latter also requires Eq. (3.11).

3.3.2 Graphical Calculus for Symmetric Monoidal Categories

The most attractive, and at the same time, also the most powerful feature of strict
symmetric monoidal categories, is that they admit a purely diagrammatic calculus.
Such a graphical language is subject to the following characteristics:

e The symbolic ingredients in the definition of strict symmetric monoidal structure,
e.g. ®, 0, A, I, f etc., or any other abstract categorical structure which refines it,
all have a purely diagrammatic counterpart ;

e The corresponding axioms become very intuitive graphical manipulations ;

e And crucially, an equational statement is derivable in the graphical language
if and only if it is symbolically derivable from the axioms of the theory.

For a more formal presentation of what we precisely mean by a graphical calculus
we refer the reader to Peter Selinger’s marvelous paper [63] in these volumes.
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These diagrammatic calculi trace back to Penrose’s work in the early 1970s, and
have been given rigorous formal treatments in [35, 38, 39, 62]. Some examples
of possible elaborations and corresponding applications of the graphical language
presented in this paper are in [25, 26, 23, 45, 63, 65, 67, 68].

The graphical counterparts to the axioms are typically much simpler then their
formal counterparts. For example, in the Prologue we mentioned that bifunctoriality
becomes a tautology in this context. Therefore such a graphical language radically
simplifies algebraic manipulations, and in many cases trivialises something very
complicated. Also the physical interpretation of the axioms, something which is
dear to the authors of this paper, becomes very direct.

The graphical counterparts to strict symmetric monoidal structure are:

The identity 11 is the empty picture (= it is not depicted).
The identity 1,4 for and object A different of I is depicted as

— A morphism f : A —— B is depicted as

B

A

— The composition of morphisms f : A —— B and g : B —— C is depicted by
locating g above f and by connecting the output of f to the input of g, i.e.

— The tensor product of morphisms f : A —— B and g : C —— D is depicted
by aligning the graphical representation of f and g side by side in the order they
occur within the expression f ® g, i.e.



3 Categories for the Practising Physicist 199
B D
A C

oup:A®B —> B® A

— Symmetry

is depicted as

— Morphisms
Yv:l— A , ¢:A—1 and s:1—>1

are respectively depicted as
N
A
A : :

The diamond shape of the morphisms of type I —— I indicates that they arise when

composing two triangles:

Example 27 In the category QuantOpp the triangles of respective types | —— A
and A —— I represent states and effects, and the diamonds of type I —— I can
be interpreted as probabilistic weights: they give the likeliness of a certain effect to
occur when the system is in a certain state. In the usual quantum formalism these
values are obtained when computing the Born rule or Luders’ rule. In appropriate
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categories, we find these exact values back as one of these diamonds, by composing

a state and an effect [22, 63].

The equation

f®eg=(®lp)o(1a®g =(Up®g o(f®Ic)

established in Proposition 2 is depicted as:

te-Ta el

In words: we can “slide” boxes along their wires.
The first defining equation of symmetry, i.e. Eq. (3.9), depicts as:

D4 4B
[ O
A C

i.e., we can still “slide” boxes along crossings of wires. The equation
oB,AcoAB=1lag,

which when varying A, B € |C] states that

—1
Op,B =9B.A,

depicts as
A B
B A =
A B
A B

Suppose now that for any three arbitrary morphisms

f:A—s A |, g:B—> P and h:C —C’

in any strict symmetric monoidal category, one intends to prove that

(3.15)

(3.16)
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(op.c® f)o(g®oac)o(oap®h)
=hQoxp)o(Ca,c®lp)o(lay®op c)o(fR®g®Ic)

always holds. Then, the typical textbook proof proceeds by diagram chasing:

1A®B®h UA~B®]C’
A®BQ®C ARBRC —=BQARQC’
oa,B®lc 1pgA®h
14®g®lc BR®ARC 8®l g’
g®lagc
UAYB/®IC lprga®h
AQB ®C BARQC BRARQC
f®lB’®C lp®f®lc 1pr®oa,c 1pr®0 4 ¢
UA’,B’®1C 15 ®h®14
ARB ®C B ®A®C BRCRA—B QC' ®A
lA/®aB’,C GB/,A®C/ lB/®UA’,C 1B’®C®f lB/®C’®f
IB/®/1®1A/

ARCRB BRCRA —BC A
OA’,C‘®1B/ GB’,C@A’/ GB/VC‘®1A/ op @y
CRA®B CRB A ——C' QB ® A

1C®GA’,B’ h®lB’®A’

One needs to read this “dragon” as follows. The two outer paths both going from
the left-upper-corner to the right-lower-corner represent the two sides of the equality
we want to prove. Then, we do what category-theoreticians call diagram chasing,
that is, “pasting” together several commutative diagrams, which connect one of the
outer paths to the other. For example, the triangle at the top of the diagram expresses
that

(0a,B®1c)o(lagp ®h) = (1pga ® h) o (04,3 ®1¢),

that is, an instance of bifunctoriality. Using properties of strict symmetric monoidal
categories, namely bifunctoriality and Eq. (3.9) expressed as commutative diagrams,
we can pass from the outer path at the top and the right to the outer path on the left
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and the bottom. This is clearly a very tedious task and getting these diagrams into
LaTeX becomes a time-consuming activity.

On the other hand, when using the graphical calculus, one immediately sees that

¢ B A ¢ B A

/][9]

A B C A B C

must hold. We pass from one picture to the other by sliding the boxes along wires
and then by rearranging these wires. In terms of the underlying equations of strict
symmetric monoidal structure, “sliding the boxes along wires” uses Egs. (3.9) and
(3.15), while “rearranging these wires” means that we used Eq. (3.9) as follows:

Indeed, since symmetry is a morphism it can be conceived as a box, and hence we
can “slide it along wires”.

In a broader historical perspective, we are somewhat unfair here. Writing equa-
tional reasoning down in terms of these commutative diagrams rather than long lists
of equalities was an important step towards a better geometrical understanding of
the structure of proofs.

3.3.3 Extended Dirac Notation

Definition 9 A strict dagger monoidal category C is a strict monoidal category
equipped with an involutive identity-on-objects contravariant functor

t:CP?—C,

that is,

e A" = Aforall A €|C|, and
e [T = f for all morphisms f,
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and this functor preserves the tensor, that is,
fe' =reg. (3.17)

We will refer to B AR A as the adjoint to A . B. A strict dagger symmetric
monoidal category C is both a strict dagger monoidal category and a strict symmet-
ric monoidal category such that

. |
OA,B =048

Definition 10 [2] A morphism U : A —— B in a strict dagger monoidal category
C is called unitary if its inverse and its adjoint coincide, that is, if

ur=u-'.

Let Y, ¢ : 1 —— A be “elements” in C. Their inner-product is the “scalar”
(@ly) =0 oy : T—1.

So in any strict monoidal category we refer to morphisms of type
I— A
as elements (cf. Example 4), to those of type
A—1
as co-elements, and to those of type
I—1

as scalars. As already discussed in Example 27 in the category QuantOpp these
corresponds respectively to states, effects and probabilistic weights.

Even at this abstract level, many familiar things follow from Definition 10. For
example, we recover the defining property of adjoints for any dagger functor:

(ffovig)=(fTov)og
=Wof)og
=y o(fod)
= (Y| fog)



204 B. Coecke and E.O. Paquette
From this it follows that unitary morphisms preserve the inner-product:
({Uoy|Uog)=(U"oUoy)|¢)

(UTo U)oy |¢)
(W | ).

Importantly, the graphical calculus of the previous section extends to strict dagger
symmetric monoidal categories. Following Selinger [63], we introduce an asymme-

try in the graphical notation of the morphisms A L+ B asfollows:

o

:
Then we depict the adjoint B I, Aof A . B as follows:

£ o
|

that is, we turn the box representing f upside-down. All this enables interpreting
Dirac notation [31] in terms of strict dagger symmetric monoidal categories, and in
particular, in terms of the corresponding graphical calculus:

| v> ~ _|%> ~ \%/ .
<o ~ (s ~ 2
2N

<olvp ~ oH ~ T
X ) )

The latter notation merely requires closing the bra’s and ket’s and performing a 90°
rotation.” Summarising we now have:

7 This 90° rotation is merely a consequence of our convention to read pictures from bottom-to-top.
Other authors obey different conventions e.g. top-to-bottom or left-to-right.
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[ Dirac | matrix strict -SMC | picture |

(@] (¢1 ... Pn) A—1

b 4
N'd
LN

(o)) ((.'_Jl e Bn) [ — A —=

@Il ;| (... 6a)a 212 4

In particular, note that in the language of strict dagger symmetric monoidal cate-
gories both a bra-ket and a ket-bra are compositions of morphisms, namely ¢ o
and ¥ o ¢' respectively. What the diagrammatic calculus adds to standard Dirac
notation is a second dimension to accommodate the monoidal composition:

T
ch -

monoidal tensor

composites

The advantages of this have already been made clear in the previous section and will
even become clearer in Sect. 3.4.1.

Concerning the types of the morphisms in the third column of the above table,
recall that in Example 4 we showed that the vectors in Hilbert spaces H can be
faithfully represented by linear maps of type C — H. Similarly, complex numbers
¢ € C, that is, equivalently, vectors in the ‘one-dimensional Hilbert space C’, can
be faithfully represented by linear maps

sc:C—>C:ulc,

since by linearity the image of 1 fully specifies this map.

However, by making explicit reference to FdHilb and hence also by having
matrices (morphisms in FdHilb expressed relative to some bases) in the above
table, we are actually cheating. The fact that Hilbert spaces and linear maps
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are set-theoretic based mathematical structures has non-trivial “unpleasant” impli-
cations. In particular, while the ®-notation for the monoidal structure of strict
monoidal categories insinuates that the tensor product would turn FdHilb into a
strict symmetric monoidal category, this turns out not to be true in the “strict” sense
of the word true.

3.3.4 The Set-Theoretic Verdict on Strictness

As outlined in Sect. 3.2.5, we “model” real world categories in terms of concrete
categories. While the real world categories are indeed strict monoidal categories,
their corresponding models typically aren’t.

What goes wrong is the following: for set-theory based mathematical structures
such as groups, topological spaces, partial orders and vector spaces, neither

ARMBR®C)=(ARB)®C nor IQA=A=AQI
hold. This is due to the fact that for the underlying sets X, Y, Z we have that
(., (y,2) #((x,y),2)  and  (kx) Fx # (x, %)

so, as a consequence, neither

XXX XxZ)y=(XxY)xZ nor {x}xX=X=Xx{x}
hold. We do have something very closely related to this, namely

XXx Y xZ)~(XxY)xZ and {*}x X >X>~X x {*}.
That is, we have isomorphisms rather than strict equations. But these isomorphisms
are not just ordinary isomorphisms but so-called natural isomorphisms. They are
an instance of the more general natural transformations which we will discuss in
Sect. 3.6.2.8 Meanwhile we introduce a restricted version of this general notion of
natural transformation, one which comes with a clear interpretation.

Consider a category C that comes with an operation on objects
-®—:|C|x|C|—=|C|:(A,B)—~> A®B, (3.18)

and with for all objects A, B, C, D € |C| we also have an operation on hom-sets

—-®-:CA,B)xC(C,D) - C(ARC,B®D) = (f,e)—~ f®g. (3.19

8 Naturality is one of the most important concepts of formal category theory. In fact, in the found-
ing paper [33] Eilenberg and MacLane argue that their main motivation for introducing the notion
of a category is to introduce the notion of a functor, and that their main motivation for introducing
the notion of a functor is to introduce the notion of a natural transformation.
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Let
A(-xl7~--9-xnscls-~-acm) and E(-xlv-“sxnaclvu-vcm)

be two well-formed expressions built from:

- —,

brackets,

variables x1, ..., x,,

and constants Cy, ..., C,, € |C|.

Then a natural transformation is a family

§AY....An

{AALL . A, C1, o, C) E(A1, .., An, C1, s C) | A1,y Ay € C

of morphisms which are such that for all objects Ay, ..., A,, By, ..., B, € |C|and
all morphisms A1 BN By, ..., A, LN B,, we have:

A(Ar, .., Ap, Cy, o, )

E(A1, ..., Ap, C1, ..., Cp)

A(f1ses fusdepselew) E(f1y fuslepsslem)

A(Bl,..., Bn’ Cl’---,cm) E(Blv-“ﬂ Bn»Cl,m, Cm)

€B).....Bn
A natural transformation is a natural isomorphism if, in addition, all these mor-

phisms £4,, .. 4, are isomorphisms in the sense of Definition 2.
Examples of such well-formed expressions are

IR (®z) and x®y)®z
and the corresponding constraint on the morphims is

®AB,C

AQ(B®C) (A®RB)®C (3.20)
f@(geh) (Fo9)8h

/ / / /7 / /
A®BOC) (= (A®BI®C

If Diagram (3.20) commutes for all A, B, C, A’, B, C’, f, g, h and the morphisms

o= {OlA,B,C | A,B,C (S C}



208 B. Coecke and E.O. Paquette

are all isomorphisms, then this natural isomorphism is called associativity. Its name
refers to the fact that this natural isomorphism embodies a weaker form of the strict
associative law A ® (B ® C) = (A ® B) ® C. A better name would actually be
re-bracketing, since that is what it truly does: it is a morphism—which we like to
think of as a process—which transforms type A ® (B ® C) into type (A ® B) ® C.
In other words, it provides a formal witness to the actual processes of re-bracketing
a mathematical expression. The naturality condition in Diagram (3.20) formally
states that re-bracketing commutes with any triple of operations f, g, h we apply to
the systems, and hence it tells us that the process of re-bracketing does not interfere
with any non-trivial processes f, g, h—almost as if it wasn’t there.
Other important pairs of well-formed formal expressions are

x and c®x x and x®c

and, if I is taken to be the constant object, the corresponding naturality constraint is

I®A —=AQ®I (3.21)

A A————
l nef J el
B B

4>I®B B®I

The natural isomorphisms X and p in Diagrams (3.21) are called left- and right unit.

In this case, a better name would have been left- and right introduction since they

correspond to the process of introducing a new object relative to an existing one.
We encountered a fourth important example in Definition 8, namely

xRy and y®x,

for which Diagram (3.9) is the naturality condition. The isomorphism o is called
symmetry but a better name could have been exchange or swapping.

Example 28 The category Set has associativity, left- and right unit, and symmetry
natural isomorphisms relative to the Cartesian product, with the singleton set {x} as
the monoidal unit. Explicitly, setting

Fxf:XxX Y xY (1) (f&x), f &)
for f: X — Y and f’': X’ — Y/, these natural isomorphisms are
axyz: XX Y xZ)—> (XxY)xZ:(x,(,2) ((x,¥),2)
Ax X > ¥} x X x> (% x) px X > X x{x} x> (x,%)

oxy : X xY =Y xX:u:(xy = (x)



3 Categories for the Practising Physicist 209

The reader can easily verify that Diagrams (3.9), (3.20) and (3.21) all commute.
Showing that bifunctoriality holds is somewhat more tedious.

Definition 11 A monoidal category consists of the following data:

1. acategory C,

2. anobject] € |C],

3. abifunctor — @ —, that is, an operation both on objects and on morphisms as in
prescriptions (3.18) and (3.19) above, which moreover satisfies

(gof)®(k0h)=(g®k)0(f®h) and 1A®IB:1A®B

for all A, B € |C| and all morphisms f, g, &, k of appropriate type, and
4. three natural isomorphisms

a={A®(B®C) LS (A® BY®C | A, B,C € |C|},
A:{Aﬂ»I®A|Ae|C|} and p:{A&A®I|Ae|C|},
hence satisfying Eqs. (3.20) and (3.21), and such that the Mac Lane pentagon

(A® B)® (C® D) (3.22)
A®(B®(C®D)) (A®B)®C)®D

14Qu— a_®lp

AQR((B®C)®D) (A®B®C)®D

o—

commutes for all A, B, C, D € |C|, that also

1 A
A®B 2% A0 (1 B) (3.23)

®ALB
pa®lp

(AR ®B
commutes for all A, B € |C]|, and that
M=p1. (3.24)

A monoidal category is moreover symmetric if there is a fourth natural isomorphism

c={A®B 25 B®A|A,Bec|C|},
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satisfying Eq. (3.9), and such that

A®B 2% BeA (3.25)

oB.A
lags

A®B

commutes for all A, B € |C]|, that

A—AIeA (3.26)

®
\ lm
pA

AQI
commutes for all A € |C|, and that
o O(A®B).C
A®(B®C) A®B)®C —C®(A®B) (3.27)
1A®UB,C\L la
A®((C®B)—, (A®C)® B (CRA)R®B
- oA,c®lp

commutes for all A, B, C € |C]|.

The set-theoretic verdict on strictness is very hard! The punishment is grave: a
definition which stretches over two pages, since we need to carry along associativity
and unit natural isomorphisms, which, on top of that, are subject to a formal over-
dose of coherence conditions, that is, Egs. (3.22), (3.23), (3.24), (3.25), (3.27). They
embody rules which should be obeyed when natural ismorphisms interact with each
other, in addition to the naturality conditions which state how natural isomorphisms
interact with other morphisms in the category. For example, Eq. (3.26) tells us that
if we introduce I on the left of A, and then swap I and A, that this should be the
same as introducing I on the right of A. Equation (3.26) tells us that the two ways
of re-bracketing the four variable expressions involved should be the same.

The idea behind coherence conditions is as follows: if for formal expressions
A(Ay, ..., Ay, Cr,...,Cyp) and E(Ay, ..., Ay, Cq, ..., Cp) there are two morphisms

A(A1, . Ap, C oo Co) L2 B(A1, . A, C1. ... C)

which are obtained by composing the natural isomorphisms «, o, A, p and 1 both
with —® — and — o —, then f = g —identities are indeed natural isomorphisms, for
the formal expressions A(A) = E (A) = A. That Egs. (3.22), (3.23), (3.24), (3.25),
(3.27) suffice for this purpose is in itself remarkable. This is a the consequence of
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MacLane’s highly non-trivial coherence theorem for symmetric monoidal categories
[50], which states that from this set of equations we can derive any other one.

If it wasn’t for this theorem, things could have been even worse, potentially
involving equations with an unbounded number of symbols.

Juiiiiiiviviviviviiiiii g

. sometimes miracles do happen:

Theorem 1 (Strictification [50] p.257) Any monoidal category C is categorically
equivalent, via a pair of strong monoidal functors G : C — D and F : D — C,
to a strict monoidal category D.

The definitions of categorical equivalence and strong monoidal functor can be
found below in Sect. 3.6.3. In words, what this means is that for practical purposes,
arbitrary monoidal categories behave the same as strict monoidal categories. In par-
ticular, the connection between diagrammatic reasoning (incl. Dirac notation) and
axiomatic reasoning for strict monoidal categories extends to arbitrary monoidal
categories. The essence of the above theorem is that the unit and associativity iso-
morphims are so well-behaved that they don’t affect this correspondence. In the
graphical calculus, the associativity natural isomorphisms becomes implicit when

we write
If\g:l

The absence of any brackets means that we can interpret this picture either as

TIIT:

That is, it does not matter whether in first order we want to associate f with g, and
then in second order this pair as a whole with 4, or whether in first order we want to
associate g with 4, and then in second order this pair as a whole with f.

So things turn out not to be as bad as they looked at first sight!

Example 29 The category Set admits two important symmetric monoidal structures.
We discussed the Cartesian product in Example 28. The other one is the disjoint
union. Given two sets X and Y their disjoint union is the set

X+Y:={x1)|xeX}U{(1.2)]yeY)
This set can be thought of as the set of all elements both of X and Y, but where the

elements of X are “coloured” with 1 while those of Y are “coloured” with 2. This
guarantees that, when the same element occurs both in X and Y, it is twice accounted
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forin X + Y since the “colours” 1 and 2 recall whether the elements in X + Y either
originated in X or in Y. As a consequence, the intersection of {(x, 1) | x € X} and
{(y,2) | y € Y} is empty, hence the name “disjoint” union.

For the disjoint union, we take the empty set J as the monoidal unit and set

/. / rL )G D e (fx), D
f+f:X+X >Y+Y "{(x,Z)r—>(f’(x),2)

for f : X — Y and f' : X’ — Y’. The natural isomorphisms of the symmetric
monoidal structure are

x, D ((x,D, 1)
axyz X+ +2Z2)-> X+N+Z:23 (x,1D),2) = ((x,2),1) .
((x,2),2) = (x,2)
Ax : X —>0+X x> (x,2) ox  X—>X+0:x— (x,1)
oxy X+Y—=>Y+X:u(x,i)— (x,3-10)

One again easily verifies that Diagrams (3.20), (3.21) and (3.9) all commute. Show-
ing that bifunctoriality holds is again somewhat more tedious.

Example 30 The category FdVecty also admits two symmetric monoidal structures,
provided respectively by the tensor product ® and by the direct sum .

For the tensor product, the monoidal unit is the underlying field K, while the
natural isomorphisms of the monoidal structure are given by

av, v Vi@ (Va®@V3) = (Vig V)@ Vv @ 0 @v") = (v @v") @v”
Av:V—>KQVive 1®u pv:VoVReKiv— 1l
oy, Vi@V VoV nv v v ev.

Note that the inverse to Ay is
A;l KQV->VikQui>k-v.

The “scalars” are provided by the field K itself, since it is in bijective correspon-
dence with the linear maps from K to itself. We leave it to the reader to verify that
this defines a monoidal structure.

On the other hand, the monoidal unit for the direct sum is the 0-dimensional
vector space. Hence this monoidal structure only admits a single “scalar”. The fol-
lowing subsection discusses scalars in more detail.

Definition 12 A dagger monoidal category C is a monoidal category which comes
with an identity-on-objects contravariant involutive functor

i:CP—C
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satisfying Eq. (3.17), and for which all unit and associativity natural isomorphisms
are unitary. A dagger symmetric monoidal category C is both a dagger monoidal
category and a symmetric monoidal category, in which the symmetry natural iso-
morphism is also unitary.

Example 31 The category FdHilb admits two dagger symmetric monoidal struc-
tures, respectively provided by the tensor product and by the direct sum. In both
cases, the adjoint of Example 21 is the dagger functor.

Example 32 As we will see in great detail in Sects. 3.4.2 and 3.5.4, the category Rel
which has sets as objects and relations as morphisms also admits two symmetric
monoidal structures, just like Set: these are again the Cartesian product and the dis-
joint union. Moreover, Rel is dagger symmetric monoidal relative to both monoidal
structures with the relational converse as the dagger functor. This is a first very
important difference between Rel and Set, since the latter does not admit a dagger
functor for either of the monoidal structures we identified on it.

Example 33 The category 2Cob has 1-dimensional closed manifolds as objects, and
2-dimensional cobordisms between these as morphisms, it is dagger symmetric
monoidal with the disjoint union of manifolds as its monoidal product and with
the reversal of cobordisms as the dagger. This category will be discussed in great
detail in Sect. 3.4.3.

Of course, in FdHilb the tensor product ® and the direct sum & are very different
monoidal structures as exemplified by the particular role each of these plays within
quantum theory. In particular, as pointed out by Schrodinger in the 1930s [60], the
tensor product description of compound quantum systems is what makes quantum
physics so different from classical physics. We will refer to monoidal structures
which are somewhat like ® in FdHilb as quantum-like, and to those that are rather
like @ in FdHilb as classical-like. As we will see below, the quantum-like tensors
allow for correlations between subsystems, so the joint state can in general not be
decomposed into states of the individual subsystems. In contrast, the classical-like
tensors can only describe “separated” systems, that is, the state of a joint system can
always be faithfully represented by states of the individual subsystems.

The tensors considered in this paper have the following nature:

Category Classical-like Quantum-like Other (see §3.4.3)

Set X +
Rel + X
FdHilb ® ®
nCob +

Observe the following remarkable facts:

e While x behaves “classical-like” in Set, it behaves “quantum-like” in Rel, and
this despite the fact that Rel contains Set as a subcategory with the same objects
as Rel, and which inherits its monoidal structures from Rel.
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e There is a remarkable parallel between the role that the pair (b, ®) plays for
FdHilb and the role that the pair (4, x) plays for Rel.

e In nCob the direct sum even becomes “quantum-like”—a point which has been
strongly emphasized for a while by John Baez [9].

All of this clearly indicates that being either quantum-like and classical-like is
something that involves not just the objects, but also the tensor and the morphism
structure.

Sections 3.4 and 3.5 provide a detailed discussion of these two very distinct kinds
of monoidal structures, which will shed more light on the above table.

To avoid confusion concerning which monoidal structure on a category we are
considering, we may specify it e.g., (FdHilb, ®, C).

3.3.5 Scalar Valuation and Multiples

In any monoidal category C the hom-set S¢ := C(I, ) is always a monoid with
categorical composition as monoid multiplication. Therefore we call Sc the scalar
monoid of the monoidal category C. Such a monoid equips any monoidal category
with explicit quantitative content. For instance, if C is dagger monoidal, scalars can
be produced in terms of the inner-product of Definition 10.

The following is a fascinating fact discovered by Kelly and Laplaza in [41]: even
for “non-symmetric” monoidal categories, the scalar monoid is always commuta-
tive. The proof is given by the following commutative diagram:

‘1 = ~1®1 1®1 ) — {
A &

I = =1l st ) — R
K s@Ill 11t t

I m— - 1®1 11 —— I

Equality of the two outer paths both going from the left-lower-corner to the right-
upper-corner boils down to equality between:

o the outer left/upper path which consists of 7 os, and the composite of isomorphism
I ~ I ® I with its inverse, so nothing but 1y, giving all together ¢ o s, and
o the outer lower/right path, giving all together s o 7.

Their equality relies on bifunctoriality (cf. middle two rectangles) and naturality of
the left- and right-unit isomorphisms (cf. the four squares).
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Diagrammatically commutativity is subsumed by the fact that scalars do not have
wires, and hence can ‘move freely around in the picture’:

& ®
® &

This result has physical consequences. Above we argued that strict monoidal
categories model physical systems and processes thereon. We now discovered that
a strict monoidal category C always has a commutative endomorphism monoid Sc.
So when varying quantum theory by changing the underlying field K of the vector
space, we need to restrict ourselves to commutative fields, hence excluding things
like “quaternionic quantum mechanics” [34].

:@@:

Example 34 We already saw that the elements of Sramil,o,C) are in bijective cor-
respondence with those of C, in short,

S(ranimb,e.c) = C.

In Set however, since there is only one function of type {*} — {*}, namely the
identity, S(set, ,{+}) 1S a singleton, in short,

Scset, », (+)) = (%} -

Thus, the scalar structure on (Set, x, {x}) is trivial. On the other hand, in Rel there
are two relations of type {«} — {x}, the identity and the empty relation, so

SRel,x.(+h =B,

where B are the Booleans. Hence, the scalar structure on (Rel, x, {*}) is non-trivial
as it is that of Boolean logic. Operationally, we can interpret these two scalars as
“possible” and “impossible” respectively. When rather considering & on FdHilb
instead of ® we again have a trivial scalar structure, since there is only one linear
map from the O-dimensional Hilbert space to itself. So

S(raHilb,®,C) = {*} .

So scalars and scalar multiples are more closely related to the “multiplicative” tensor
product structure than to the “additive” direct sum structure. We also have

Smcob,+.m = N.

In general, it is the quantum-like monoidal structures which admit non-trivial scalar
structure. This might come as a surprise to the reader, given that for vector spaces
one typically associates these scalars with linear combinations of vectors, which are
very much “additive” in spirit.
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The right half of commutative Diagram (3.28) states that

>~ st >~

I®I I®I

sot=1

We generalize this by defining scalar multiples of a morphism A . B as

sefi=A w1042, 19B =+ B.
These scalars satisfy the usual properties, namely
(teg)o(sef)=(ros)e(gof) (3.29)
and
(sef)®(reg)=(sot)e(f®E), (3.30)

cf. in matrix calculus we have

bi1 b12 ajranz \\ _ bi1 b2\ (an anz
(y <b21 bzz)) (x (azl azz)) - <<b21 bzz) (azl azz))
and
<x (011 6112)) o (y b1 b1 ~ xy an an') o b1 by
a1 an bo1 by a1 an bay by '

Diagrammatically these properties are again implicit and require ‘artificial’ brackets
to be made explicit, for example, Eq. (3.29) is hidden as:

/@Tli@ﬂa
\@/D%@E

Of course, we could still prove these properties with commutative diagrams. For
Eq. (3.29) the left-hand-side and the right-hand-side are respectively the top and the
bottom path of the following diagram:
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11®1
1® B 1915 1® B
y A®1p alels 1®g
A~I®A I®D)®B I C~C
GW w;g /
PI®LA Al'®le
I®I A I®I C
Iehe (s®@1)®(gof) Iehe

where we use the fact that 1 o s = A LS (s ® t) o p1. The diamond on the left
commutes by naturality of p;. The top triangle commutes because both paths are
equal to ligp as A1 = p1. The bottom triangle commutes by Eq. (3.15). Finally, the
right diamond commutes by naturality of Ajy.

3.4 Quantum-Like Tensors

So what makes ® so different from @ in the category FdHilb, what makes x so
different in the categories Rel and Set, and what makes x so similar in the category
Rel to ® in the category FdHilb?

3.4.1 Compact Categories

Definition 13 A compact (closed) category C is a symmetric monoidal category in
which every object A € |C| comes with

1. another object A*, the dual of A,
2. a pair of morphisms

I A*@A and A®A" 4.1,

respectively called unit and counit,

which are such that the following two diagrams commute:

1
A—"" A9l —1TM Ag At e A) 3.31)
1a QA A% A
A 19 A (A® A") ® A

)‘Xl €A®14
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A R1 4%
A 1@ ar N (A @ A) @ A (3.32)
1 —1
A* Fpx A A%
A* ; A*QI A*® (A R® A"
¥ 14+ ®€q

In the case that C is strict the above diagrams simplify to

MO o A@A* (333)

1A®@na \ \ ]A* KeEp
A

ARQA* Q@A ————

Definition 13 can also be expressed diagrammatically, provided we introduce some
new graphical elements:

e As before A will be represented by an upward arrow:

A

On the other hand, we depict A*, the dual object to A, either by an upward arrow
labelled by A*, or by a downward arrow labelled A:

A* A

e The unit n4 and counit €4 are respectively depicted as

N 2t

e Commutation of the two diagrams now boils down to:
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counit counit

When expressed diagrammatically, these equational constraints admit the simple
interpretation of “yanking a wire”. While at first sight compactness of a category
as stated in Definition 13 seems to be a somewhat ad hoc notion, this graphical
interpretation establishes it as a very canonical one which extends the graphical
calculus for symmetric monoidal categories with cup- and cap-shaped wires. As
the following lemma shows, the equational constraints imply that we are allowed to
‘slide’ morphisms also along these cups and caps.

Lemma 1 Given a morphism f : A —— B define its transpose to be
ff = ®ep)o(las®@ f®1p)o(na ®1p) : B — A™.

Diagrammatically, when depicting the morphism f as

then its transpose is depicted as

Anticipating what will follow, we abbreviate this notation for f* to

With this graphical notation we have:

44l

that is, we can “slide” morphisms along cup- and cap-shaped wires.
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The proof of the first equality simply is

The proof for the second equality proceeds analogously.

Example 35 The category FdVectg is compact. We take the usual linear algebraic
dual space V* to be V’s dual object and the unit to be

n
nv:K—>V*®V::lr—>Zﬁ®ei
i=1

where {e;}7_, is abasis of V and f; € V* is the linear functional such that f;(e;) =
8;,j forall 1 < i, j < n. Finally, we take the counit to be

n
i

ev: VRV > K:ue® fj—> file).

We leave it to the reader to verify commutation of Diagrams 3.31 and 3.32. Two
important points need to be made here:

e The linear maps ny and ey do not depend on the choice of the basis {e;};_;. It
suffices to verify that there is a canonical isomorphism

FdVectx (V, V) —> FdVectx (K, V* @ V)

which does not depend on the choice of basis. The unit y is the image of 1y
under this isomorphism and since 1y is independent of the choice of basis it
follows that ny does not depend on any choice of basis. The argument for €y
proceeds analogously.

e There are other possible choices for ny and €y which turn FdVectk into a com-
pact category. For example, if f : V — V is invertible then

Ny =Uy=® flony  and €}, =€y o(f ' ®lys)

make Diagrams (3.31) and (3.32) commute. Indeed, graphically we have:
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Example 36 The category Rel of sets and relations is also compact relative to the

Cartesian product as we shall see in detail in Sect. 3.4.2.

Example 37 The category QuantOpp is compact. We can pick Bell-states as the
units and the corresponding Bell-effects as counits. As shown in [2, 20], compact-
ness is exactly what enables modeling protocols such as quantum teleportation:

Alice Bob Alice Bob

Y{/‘ S
hid il

where the trapezoid is assumed to be unitary and hence, its adjoint coincides with
its inverse. The classical information flow is (implicitly) encoded in the fact that the
same trapezoid appears in the left-hand-side picture both at Alice’s and Bob’s side.

Given a morphism f : A —— B in a compact category, its name

I’fT

12+ A*®B
and its coname
A®B*
are defined by:
Lyx®f
A*® A"+ A*®B I
Lfa
nA g and €8
| A® B* —— B ® B*

f®lpx
Following [2] we can show thatfor f : A —— Bandg: B — C
Ao (Lfa®1c)o(14® g Nopa=gof

always holds. The graphical proof is again trivial:
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In contrast a (non-strict) symbolic proof goes as follows:

of
A § c
XA ACI/
Result
14Q7g™ ®1
AR A28 A®B*@C — 128l 1®C
\1A® B 1 ppp*®g f®lprgc 63®lc/7
_ AN P
f el AQR B*®B B B*®C II®g 8
~_ 7
f®lprgp lpxgp®8
S
%

Bol 13Q@np BeB 8 €p®lp le B
% Compactness /\t_x
B B
1p

Both paths on the outside are equal to g o f. We want to show that the pentagon
labelled “Result” commutes. To do this we will “unfold” arrows using equations
which hold in compact categories in order to pass from the composite g o f at the
left/bottom/right to AEI o(Lfu®I1Ic)o(14® g™ o pa. This will transform the
tautology g o f = g o f into commutation of the pentagon labelled ‘“Result”. For
instance, we use compactness to go from the identity arrow at the bottom of the
diagram to the composite AEI o(ep®1p)o(1p®@np) o pp. The outer left and right
trapezoids express naturality of p and A. The remaining triangles/diamonds express

bifunctoriality and the definitions of name/coname.
The scalar €4 o0 04+ 4 0 N4 : K — K depicts as

A

and when setting

o
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O

Example 38 In FdVectk the V-labelled circle stands for the dimension of the vector
space V. By the definitions of ny and €y, the previous composite is equal to

Y fien =Y ;=) 1=dim(V).
ij ij i

it becomes an ‘A-labelled circle’

Definition 14 A dagger compact category C is both a compact category and a dag-
ger symmetric monoidal category, such that for all A € |C|, €4 = 771_‘ 0 T4 A*.

Example 39 The category FdHilb is dagger compact.

3.4.2 The Category of Relations

‘We now turn our attention to the category Rel of sets and relations, a category which
we briefly encountered in previous sections. Perhaps surprisingly, Rel possesses
more “quantum features” than the category Set of sets and functions. In particular,
just like FdHilb it is a dagger compact category.

A relation R : X — Y between two sets X and Y is a subset of the set of all their
ordered pairs, that is, R € X x Y. Thus, given an element (x, y) € R, we say that
x € X relates to y € Y, which we denote as x Ry. The set

R :={(x,y) | xRy}

is also referred to as the graph of the relation.

Example 40 For the relation “strictly less than” or “<” on the natural numbers, we
have that 2 relates to 5, which is denoted as 2 < 5 or (2,5) € < € N x N. For the
relation “is a divisor of” or “|” on the natural numbers, we have 6|36 or (6, 36) €
| € N x N. Other examples are general preorders or equivalence relations.

Definition 15 The monoidal category Rel is defined as follows:
e The objects are sets.
e The morphisms are all relations R : X — Y.
e ForRy: X — Yand Ry : Y — Z the composite Ryo R C X x Z is
Ry o Ry :={(x, z) | there exists a y € Y such that xRy and yR,z}.

Composition is easily seen to be associative. For X € |Rel| we have

Ix :={(x,x) | x € X}.



224 B. Coecke and E.O. Paquette

e The monoidal product of two sets is their Cartesian product, the unit for the
monoidal structure is any singleton, and for two relations R; : X; — Y7 and
Ry : X» — Y, the monoidal product Ry X R C X1 X Xo —» Y1 x Yo is

Ri x Ry = {((x, x"), (v, ) | xR1y and x'R2y"} € (X1 x X2) x (Y1 x Y2).

‘We mentioned before that Set was contained in Rel as a “sub-monoidal cate-
gory”. In Rel, the left- and right-unit natural isomorphisms respectively are

Ax ={(x,(xx)) | x e X} and px :={(x, (x,%)|x e X},
and the associativity natural isomorphism is

axy,z == {((x, (y,2), (x,y),2) |[xe X,yeYandz € Z}.
These relations are all single-valued, so they are also functions, and they are the
same functions as the natural isomorphisms for the Cartesian product in Set. Let us

verify the coherence conditions for them:

(i) The pentagon

Wx(XxYXZ) —oWxX)Xx (Y XZ) —=(WxX)xY)xZ

lxa_l Ta_xl

Wx (XxY)x Z) Wx(XxY)xZ

indeed commutes. The top part
g_oa_ Wx(Xx¥xZ) > (WxX)xY)xZ
is by definition a subset of
Wx(XxxZ2))x(WxX)yxY)x2Z).
Unfolding the definition of relational composition we obtain
a_oa_ = {((w, (x, (. 2))s (", x7), ¥, 2" | 3w, %), (v, ) st
(w, (x, (v, 2Ne((w', x1), (v, 2)) and (W', x), (', 2N (", x"), ¥y, z”)} )
which by the definition of « simplifies to

a_oa_ = {((w, (x, (y,2))), (w,x),y),z2) |weW,xeX,yeY,zeZ}.
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The bottom path yields the same result, hence making the pentagon commute.
For the remaining diagrams we leave the details to the reader.
(i) The triangle

1 A
X xY 2% % (%) x V)

ax («},Y
pxxly

(X x{x})h) xY
commutes as both paths are now equal to

{((x, ), ((x,%),y)) |x € Xand y € Y}.

As x is symmetric in Set we also expect Rel to be symmetric monoidal. For any X
and Y € |Rel|, the natural isomorphism

ox,y :={((x,y),(y,x)) |x € Xand y € Y}

also obeys the coherence conditions:

(i) The two triangles

A
xxy Xy xx XL ) x X
\ J/ay.x , X J/JMX
XxY X x {x}

commute since both paths of the left triangle are equal to
{((x, ), (x, ) |x € Xand y € Y},
while the paths of the right triangle are equal to
{(x, (x, %) | x € X}.
(i) The hexagon

o O(XxY),Z

XXYxZ)——(XxY)xZ—Zx(XxY)

lxxo'y.zl \Lﬂl

XXx(UZXxY)—>XxZ)yxY—>(ZxX)xY
UX,yXIZ

o
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commutes since both paths are equal to

{((x, (v,2), ((z,x),y)) |[x € X,y e Yand z € Z}.
So Rel is indeed a symmetric monoidal category as expected. Rel shares many com-
mon characteristics with FdHilb, one of them being a T-compact structure. Firstly,

Rel is compact closed with self-dual objects that is, X* = X for any X € |Rel|.
Moreover, for any X € |Rel| let

nx : {x} > X x X :={(x, (x,x)) | x € X}
and
ex X x X = {x} ={((x,x),%) | x € X}.

These morphisms make

1
X 2 X o 2 X (X x X)
1x a_

X~—{xX=—XxX)x X
)\;{1 exxly

and its dual both commute. Indeed:
(a) The composite
(Ix xnx)opx: X > X x (X x X)
is the set of tuples
{(, (&, (", 2"} S X x (X x (X x X))

such that there exists an (x””, x) € X x {x} with

xpx %) and (X", %) (Ix x nx) (¢, (27, %)

By definition of p and 1y, and of the product of relations, this entails that x, x””
and x’ are all equal. Moreover, by definition of 5y, and of the product of relations,

we have that x” and x”” are also equal. Thus,

(I1x x nx) o px = {(x, (x, ", x"))) | x,x" € X}.
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(b) Hence the composite
do((Ix xny)op): X > (X xX)x X

is
ao((Ix x nx)op)={(x, ((x,x),x") | x,x" € X}.

(c) The composite
(ex X Ix)o(xo(lxy xnx)op): X — {¥} x X

is a set of tuples

{(x, (¢, X)) S X x ({%} x X)
such that there exists an ((x”, x"”), x"") € (X x X) x X with
x (@o(Ix x nx)op) (x",x"),x"") and ((x",x"),x") (ex x 1x) (x,x).

By the computation in (b) we have that x = x” and x”” = x””. By definition

of €x, 1x and the product of relations we have x” = x”’ and x”” = x’. All this

together yields x = x” = x” = x””” = x’ and hence

(ex ® Ix) o (o (Ix ®@nx) o p) ={(x, (x,x) | x € X}.

(d) Post-composing the previous composite with the natural isomorphism )&1 yields
a morphism of type X — X, namely

Ayl o(ex®@lIx)oao(ly ®nx)op={(x.x)|x€X)
which is the identity relation as required.

Commutation of the dual diagram is done analogously. From this, we conclude that
Rel is compact closed. The obvious candidate for the dagger

T : Rel”” — Rel
is the relational converse. For relation R : X — Y its converse R” : ¥ — X is
R”:={(y,x) | xRy}.
We define the contravariant identity-on-objects involutive functor

t:Rel —> Rel :: R — RY.
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Note that the adjoint and the transpose coincide, that is,
R*=(lx xey)o(lx x R x ly)o(nx x 1y) = R'

which the reader may easily check. Finally, we verify that Rel is dagger compact:
e The category Rel is dagger monoidal:

(i) From the definition of the monoidal product of two relations
Ry :={(x,y) xRy} and Ry:={(x",y)|x'Ry’}
we have that
(Ri x R)' = {((,)), (x, ) | xRiy and x'Ray'} = R} x R}.

(i) The factthata™ = a1, AT =271, pT = p~ ' and 6" = o~ is trivial as the
inverse of all these morphisms is the relational converse.

e The diagram

commutes since from

ex = {((x,x), %) | x € X}
follows

ey = {(, (x,0) | x € X}
and hence o o €|, = €|, =
x = €x = X

So Rel is indeed a dagger compact category.

3.4.3 The Category of 2D Cobordisms

The category 2Cob can be informally described as a category whose morphisms, so-
called cobordisms, describe the “topological evolution” of manifolds of dimension
2 — 1 = 1 through time. For instance, consider some snapshots of two circles which
merge into a single circle, with time going upwards:
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j—-_—
()
=0
OO
()
O

Passing to the continuum, the same process can be described by the cobordism

Thus, we take a cobordism to be a (compact) 2-dimensional manifold whose bound-
ary is partitioned in two. We take these closed one-dimensional manifolds to be the
domain and the codomain of the cobordism. Since we are only interested in the
topology of the manifolds, each (co)domain consists of a finite number of closed
strings.

Definition 16 The category 2Cob is defined as follows:

e Each object is a finite number of closed strings. Hence each object can be equiv-
alently represented by a natural number n € N:

OO 3
[ — 2
= 1

0

e Morphisms are cobordisms M : n — m taking n € N (strings) tom € N
(strings), which are defined up to homeomorphic equivalence. Hence, if a cobor-
dism can be continuously deformed into another cobordism, then these two
cobordisms correspond to the same morphisms.

e For each object n, the identity 1, : n — n which is given by n parallel cylinders:
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e Composition is given by “gluing” manifolds together, e.g.

ST

is a composite
MoM:2—2
where the cobordism M’ : 1 — 2 is glued to M : 2 — 1 along the object 1.
e The disjoint union of manifolds provides this category with a monoidal structure.

For example, if M : 1 — 0and M’ : 2 — 1 are cobordisms, then the cobordism
M+ M :142— 0+ 1 depicts as:

e The empty manifold O is the identity for the disjoint union.
e The twist cobordism provides symmetry. For example, the twist

Tig:14+41—=>1+1

53

Tom m—+n—n+m

is depicted as

The generalisation to

for any m, n € N should be obvious.
e The unit and counit

n:0—>1+1 and €e:1+41 -0

of the compact structure on 1 are the cobordisms
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N and £

We recover the equations of compactness as

SRR

which hold since all cobordisms involved are homeomorphically equivalent. The
generalisation of the units to arbitrary n is again obvious:

These together with corresponding counits are easily seen to always satisfy the
equations of compactness.
e The dagger consists in ‘flipping’ the cobordisms, e.g. if M : 2 — 1 is

then MT: 1 > 2is

Clearly the dagger is compatible with the disjoint union which makes 2Cob a
dagger monoidal category. It is also dagger compact since oy,1 o EI’ is

&5 - e

which is again easily seen to be true for arbitrary n.

Obviously, we have been very informal here. For a more elaborated discussion
and technical details we refer the reader to [9, 10, 42, 66]. The key thing to remember
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is that there are important ‘concrete’ categories in which the morphisms are nothing
like maps from the domain to the codomain.

Note also that we can conceive—again somewhat informally—the diagrammatic
calculus of the previous sections as the result of contracting the diameter of the
strings in 2Cob to zero. These categories of cobordisms play a key role in topologi-
cal quantum field theory (TQFT). We discuss this topic in Sect. 3.6.5.

3.5 Classical-Like Tensors

The tensors to which we referred as classical-like are not compact. Instead they
do come with some other structure which, in all non-trivial cases, turns out to be
incompatible with compactness [1]. In fact, this incompatibility is the abstract incar-
nation of the No-Cloning theorem which plays a key role in quantum information
[30, 69].

3.5.1 Cartesian Categories

Consider the category Set with the Cartesian product as the monoidal tensor, as
defined in Example 28. Given sets A|, A; € |Set|, their Cartesian product A x Aj
consists of all pairs (x1,x2) with x; € A; and x; € Aj. The fact that Cartesian
products consist of pairs is witnessed by the projection maps

T Ai XAy = A (x,x2) > x1 and mp i Aj XAy — Ao i (X1, Xx2) — X2,

which identify the respective components, together with the fact that, in turn, we
can pair x1 = mi(x1,x2) € Ar and xp = ma(x1,x2) € Aj back together into
(x1,x2) € A1 x Ay, merely by putting brackets around them. We would like to
express this fact purely in category-theoretic terms. But both the projections and
the pairing operation are expressed in terms of their action on elements, while cat-
egorical structure only recognises hom-sets, and not the internal structure of the
underlying objects. Therefore, we consider the action of projections on hom-sets,
namely

w0 —:Set(C, A; x Ap) — Set(C,Ay) :: f—>mo f
and

w0 —:Set(C, A; x Ap) — Set(C, Ay) :: f—> mpo f,
which we can combine into a single operation ‘decompose’

AlLA
CIZ

dec :Set(C, A1 x Az) — Set(C, A1) x Set(C, Ap) :: f+> (w10 f,m20f),
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together with an operation ‘recombine’
Ap, Ay | .
recc"? : Set(C, Ap) x Set(C, A2) — Set(C, A1 x Az) = (f1, f2) = (f1. f2)
where

(f1, f2) : C = Ay x Az 2 c = (f1(0), f2(0)) .

In this form we have

A1, Az A1,Az
dec o recy " = ISet(C, A1) xSet(C, A)

and
A1, A A1,Az
recc e} decc = 1Set(C,A1 xA3)
Al,A2 Ar,Az : : :
so dec. and rec,, are now effectively each others inverses. In the light of

Example 4, setting C := {x}, we obtain

Al,Ap

dec(*)

/\.
Set({x}, A; x Ap) Set({x}, A1) x Set({x}, A2).,
- 0

Al,Ap
rec{*}

which corresponds to projecting and pairing elements exactly as in the discussion at
the beginning of this section. All of this extends in abstract generality.

Definition 17 A product of A| and A, € |C] is a triple which consists of another
object A1 x As € |C] together with two morphisms

7'[1:A1XA2—>A1 and 7T2:A1XA2—>A2,

and which is such that for all C € |C| the mapping

(mpo—,mo—):C(C,A| x Ay) - C(C, A)) x C(C, Ay) (3.34)
admits an inverse (—, —)c, A,,A,-
Below we omit the indices C, Ay, A2 in (—, —)c,A;,4,-

Definition 18 (Cartesian category) A category C is Cartesian if any pair of objects
A, B € |C| admits a (not necessarily unique) product.

Proposition 3 If a pair of objects admits two distinct products then the carrier
objects are isomorphic in the category-theoretic sense of Definition 2.
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Indeed, suppose that A and A, € |C| have two products A} x A and A1 X Aj
with respective projections

7wt Al X Ap — A; and n}:A1®A2—>Aj.
Consider the pairs of morphisms
(m{,m5) € C(A1 ® Az, A1) x C(A| X Az, Ay)
and
(1, m2) € C(A1 x Az, A1) x C(A] x A2, Ap).
By Definition 17 we can apply the respective inverses of

(mo—,m0—) and (my

o—,mp0—)
to these pairs, yielding morphisms in
C(A1 XAy, A1 x Ay) and C(A] x A2, A1 X Ay),
say f and g respectively, for which we have
my=mof, mh=mof, m=mnjog and m =m)og.
Then, it follows that
(771 © 14,RA,- T3 0 14,®a,) = (10 fyma0 f) = (wjogo fmyogo f),
and applying the inverse to (7] o —, 75 0 —) now gives 14,4, = go f. An analogue
argument gives f o g = 14,xa, so f is an isomorphism between the two objects
A1 X Ay and A| X A, with g as its inverse.

The above definition of products in terms of “decomposing and recombining
compound objects” is not the one that one usually finds in the literature.

Definition 19 A product of two objects A| and A; in a category C is a triple con-
sisting of another object A x A; € |C| together with two morphisms

w1 Al X Ap — A; and mp: A| X Ap — Aj,

and which is such that for any object C € |C|, and any pair of morphisms

C I Arand C _f, A in C, there exists a unique morphism C —— Aj X A

such that

fi=mof —and  fr=mo f.
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We can concisely summarise this universal property by the commutative diagram

SR

Al%AleQ%

It is easy to see that this definition is equivalent to the previous one: the inverse

(—, =) to (;r1 o —, m> o —) provides for any pair (f1, f2) a unique morphism f :=
(f1, f_z) which is such that (;r; o f, 72 o f) = (f1, f2). Conversely, uniqueness of
C . Ay X Aj guarantees (7] o —, mp o —) to have an inverse (—, —), which is

obtained by setting ( f1, f2) := f.
For more details on this definition, and the reason for its prominence in the liter-

ature, we refer to [4] and standard textbooks such as [5, 50].

Proposition 4 If a category C is Cartesian, then each choice of a product for each
pair of objects always defines a symmetric monoidal structure on C with A ® B :=
A x B, and with the terminal object as the monoidal unit.

Proving this requires work. First, for f : Ay — Byand g : Ap — By let
fXg:Alx Ay — B x By
be the unique morphism defined in terms of Definition 19 within

Al X Ay

/ y

Bl%leBzéBz

Then it immediately follows that the diagrams

A< Arx A2 A (3.35)

B <—— By x Bzﬁ-Bz
a1 T
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commute. From Definition 17 we know that for any #,
(myoh,myoh)="h, (3.36)
and, in particular, this entails
(1, m2) = (w1 01a;xA,, T2 0 1a;xA4,) = LayxA,- (3.37)
Using Eq. (3.36) for A —/~ B, B —%+ C and B —~ D we have

(. h)o f=(mio({g,h)o f),m20({(g, h)o [))
:<(7TlO(gvh»Ofv(jTZO(g’h))of)
=(go f.hof).

Using this, for A —f> B, A . C,B LN D and C LI E , we have

(hxk)o(f g = (hom, kom) o(f g)
= (homo(f. g).komo (f. g)
=(hof,kog)’,

where (—, —)’ is the pairing operation relative to (7] o —, 7} o —). In a similar
manner the reader can verify that — x — is bifunctorial.

To support the claim in Proposition 4 we will now also construct the required
natural isomorphisms, and leave verification of the coherence diagrams to the reader.
Let !4 be the unique morphism of type A —— T. Setting

Aa =4, 14):A—> T x A
we have

(!B, 1g)o f={po filpo f)={(la, fola)=(7x f)o(la, la),

so we have established commutation of

AA
A——TxA

7| |1

B——TxB
AB

that is, A is natural. The components are moreover isomorphisms with 7 as inverse.
The fact that 75 o A4 = 14 holds by definition, and from
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T )

T TxA A
T ITx14 14
T - Tx A ; A
T Ho)
and the fact that by the terminality of T we have
'Txa =lTom =lgom
it follows that
Tx A
! 1
A2 7 vomai o) N2
v
T - TxA - A
Ty (o)

commutes, so by uniqueness, it follows that (!4 o 72, 14 o) =!T X 14, and hence
(la,1a)omr = (laom, laom) =T x1g =17 x1g =17xa.

Similarly the components p4 := (14, !4) also define a natural isomorphism.
For associativity, let us fix some notation for the projections:

AT Ax(BxC) -+ BxC and B<"— BxC —2»C.
We define a morphism of type A x (B x C) — A x B within

A X (BxC)

1 ’ 7y om)
(1,7 0m2)

%
A A X B B

" "
T

and we define a4 g ¢ within
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A X (BxC)

(1] 0m2) mhomy

({1, 7w{om2) 7y 0712)

\
AXB<=——(AXB)xC—>C

n "
T (o)

Naturality as well as the fact that the components are isomorphisms relies on unique-
ness of the morphisms as defined above and is left to the reader.
For symmetry, the components 04,5 : A x B — B X A are defined within

A X B
™ (m2,71) &
Y
B ; BxA - A
Ty T

where again we leave verifications to the reader.

3.5.2 Copy-Ability and Delete-Ability

So how does all this translate in term of morphisms as physical processes? By a
uniform copying operation or diagonal in a monoidal category C we mean a natural
transformation

A:}Aﬂ»A®A|Ae|C|}.

The corresponding commutativity requirement

a—>1 o p
AAl lAB
AR A Iy B®B

expresses that “when performing operation f on a system A and then copying
it”, is the same as “copying system A and then performing operation f on each
copy”. For example, correcting typos on a sheet of written paper and then Xerox-
ing it is the same as first Xeroxing it and then correcting the typos on each of the
copies.
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The category Set has
{ax : X > X xX x> (x,x) | X €[Set|}

as a uniform copying operation since we have commutation of

x=fx)

X Y

x> (x,x) S = (f (), f(x))

XXX ST Yy

Example 41 1s there a uniform copying operation in FdHilb? We cannot just set
AMH H>HOIH: Y=Yy

since this map is not even linear. On the other hand, when for each Hilbert space H
a basis {|i)}; is specified, we can consider

{a:H—>H®H: i)~ [i)® i) | H € [FdHilb]|} .

But now the diagram

[0) — |0) ® |0)
1—1x1
1) — 1) ®|1)
C>CoC o mmmemrm 20 Ca0)

fails to commute, since via one path we obtain the (unnormalized) Bell-state
1= 10)®10) + (1) ® 1),
while via the other path we obtain an (unnormalized) disentangled state
L= (10) + (1) ® (|0} + [1)) .

This inability to define a uniform copying operation reflects the fact that we cannot
copy (unknown) quantum states.

Example 42 Let us now turn our attention to Rel and, given that every function is
also a relation, consider the family of functions which provided a uniform copying
operation for Set. In more typical relational notation we have
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ax ={x,(x,x)) [x e X} T X x (X xX).
However, the diagram

{(+,0),(x, D}

{) {0, 1}
{6 (50} {0.0.0)).(1.(1.1))
{Cre. )} = {5} x {) {0, 1} x {0, 1}

{G,0), G, D}x{(x,0), (x, 1)}
fails to commute, since via one path we have
{(+,(0,0)), (x, (I, 1)} = {x} x {(0,0), (1, D)},
while the other path yields
{(+,(0,0)), (x, (0, 1)), (x, (1,0)), G+, (1, 1)} = {*} x ({0, 1} x {0, 1})..

Note here in particular the similarity with the counterexample that we provided for
the case of FdHilb, by identifying

10) ®[0) + 1) ® [1) «<— {(0,0), (1, 1)}
(10) + 1) @ (10) + 1)) «— {0, 1} x {0, 1}.

Example 43 Similarly, the cobordism

is not a component of a uniform copying relation
{Ay:n—>n+n|neN},
since in

Ag
———0+0

0
Ml M+M
1



3 Categories for the Practising Physicist 241

where M : 0 — 1is

the upper path gives

VAV

while the lower path gives

The category Set admits a uniform copying operation as a consequence of being
Cartesian. We indeed have the following general result.

Proposition 5 Each Cartesian category admits a uniform copying operation.

Indeed, let

Ap = (14, 14a)

and let A I, B be arbitrary. Then we have

(Ig,1g)o f=(lpofilpofy=(fola, fola)=(fx [f)o(la la),
so A is a natural transformation, and hence a uniform copying operation.

In fact, one can define Cartesian categories in terms of the existence of a uniform
copying operation and a corresponding uniform deleting operation

5=|A&I|Ae|0|},
for which the naturality constraint now means that

f

A—8B
15
I

commutes. There are some additional constraints such as “first copying and then
deleting results in the same as doing nothing”, and similar ones, which all together
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formally boil down to saying that for each object A in the category the triple
(A, aa, &) has to be an internal commutative comonoid. We will define the con-
cept of internal commutative comonoid below in Sect. 3.5.7.

Example 44 The fact that the diagonal in Set fails to be a diagonal in Rel seems to
indicate that in Rel the Cartesian product does not provide a product in the sense of
Definition 17. Consider

{*} X {#) ———

where () stands for the empty relation. Since {*} x {x} = {(x, %)} is a singleton
there are only two possible choices for 1 and 75, namely the empty relation and
the singleton relation {((x, %), x)} C {(*, %)} x {x}. Similarly there are also only
two candidate relations to play the role of f. So since 7| o f = {J either 771 or f has
to be ¥ and since > o f = 14} neither 72 nor f can be . Thus 7y has to be the
empty relation and > has to be the singleton relation. However, when considering

{*} X {#} ——

1> has to be the empty relation and 71 has to be the singleton relation, so we have
a contradiction. Key to all this is the fact that the empty relation is a relation, while
it is not a function, or more generally, that relations need not be toral (total = each
argument is assigned to a value). On the other hand, when showing that the diagonal
in Set was not a diagonal in Rel we relied on the multi-valuedness of the relation
{(x,0), (%, 1)} C {x} x {0, 1}. Hence multi-valuedness of certain relations obstructs
the existence of a natural diagonal in Rel, while the lack of totality of certain rela-
tions obstructs the existence of faithful projections in Rel, causing a break-down of
the Cartesian structure of x in Rel as compared to the role it plays in Set.

3.5.3 Disjunction vs. Conjunction

As we saw in Sect. 3.5.1, the fact that in Set Cartesian products X x Y consist of
pairs (x, y) of elements x € X and y € Y can be expressed in terms of a bijective
correspondence
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Set(C, A1 x Az) ~ Set(C, A1) x Set(C, A,).

One can then naturally ask whether we also have that

Set(A| x Aa, C) = Set(Aj, C) x Set(As, C) .
The answer is no. But we do have
Set(A] + Ay, C) >~ Set(Aq, C) x Set(Az, C).
where A1 + A3 is the disjoint union of two sets A| and Aj, that is, we repeat,
Ar+ Az = {0, 1) [ x1 € A1} U {(x2,2) | x2 € A2}
This isomorphism now involves injection maps
11:A1 > A1+ Ay x> (x1,1) and 1: Ay > A1+ Ay i xo > (x2,2)
They embed the elements of A; and A, within Aj+A». Their action on hom-sets is

—oty:Set(A; + A2, C) = Set(A,C) s f > foy
—oty:Set(A] + Ar, C) — Set(A2,C) it f+— fou,

which converts a function that takes values on all elements that either live in A or
A», into two functions, one that takes values in A, and one that takes values in A».
We can again recombine these two operations in a single one

codect™ : Set(A| + A, C) — Set(Ay, C) x Set(As, C) :: f = (fouy, fou)
which has an inverse, namely
corecg™ 2 : Set(Ay, C) x Set(Az, C) — Set(A1 + Az, C) :: (fi. f2) P> [f1. fal

where

x = fi(x) iff x € A

[fl’fZ]:Al+A2_)C::{foz(X)iﬁxeAz :
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The binary operation [—, —] on functions now recombines two functions f] and f>
into a single one. We have an isomorphism

odecA1A2
wa’ccl*}

/\
Set(A; + Ay, C) Set(A1, C) x Set(Az, C).
-~

AlAy
L()VEL(*)

Note that while [ f1, f2] produces an image either for the function f; or the function

J2, in contrast { f1, f2) produces an image both for the function f; and the function
f>. In operational terms, while the product allows to describe a pair of (classical)
systems, the disjoint union allows to describe a situation where we have either of
two systems. For example, it allows to describe the branching structure that arises
as a consequence of non-determinism.

Definition 20 A coproduct of two objects A and A; in a category C is a triple
consisting of another object A| 4+ Aj € |C| together with two morphisms

t1:Al —= A1 +Ay and 1:Ay — A+ Ay,
and which is such that for all C € |C| the mapping
(—ot, —ow): C(A + A2, C) — C(Ay, C) x C(A2,C)

admits an inverse. A category C is co-Cartesian if any pair of objects A, B € |C|
admits a (not necessarily unique) coproduct.

As in the case of products, we also have the following variant:

Definition 21 A coproduct of two objects A} and A, in a category C is a triple
consisting of another object A| + A, € |C| together with two morphisms

t1: Ay —= Aj+Ay and 1p: Ay — A1+ Ay,

and which is such that for any object C € |C|, and any pair of morphisms
Al Sy C and A, 2, C in C, there exists a unique morphism A + A3 I, C

such that

f1=fOL] and f2=fOL2.

We can again represent this in a commutative diagram:
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SR

Al —— = A+ Ay = A2

As a counterpart to the diagonal which we have in Cartesian categories we now
have a codiagonal, with components

Vai=[la,14]:A+A —> A.

Example 45 As explained in Example 14, we can think of a partially ordered set P
as a category P. In such a category products turn out to be greatest lower bounds or
meets, and coproducts turn out to be least upper bounds or joins. The existence of
an isomorphism

codecfl'a2
T
P(a; +az, ¢) P(ai, ¢) x P(az, ¢) ,
-~

ajy.a
C()rC’C,_‘l 2

given that P(a; + ay, ¢), P(ay, ¢) and P(as, c¢) and hence also P(ay, ¢) x P(az, ¢)
are all either singletons or empty, means that P(a; + a3, ¢) is non-empty if and only
if P(a;, ¢) x P(ay, ¢) is non-empty, that is, if and only if both P(ay, c¢) and P(as, c)
are non-empty. Since non-emptiness of P(a, b) means that a < b, we indeed have

alt+ar<c < a1<c&ay<c

S0 a; + ap is indeed the least upper bounds of a; and a;. So Definition 21 provides
us with a complementary but equivalent definition of least upper bounds. In

V¢
A
/s.t. < then v s.t. >\
ap) ———=——a 1+ <—>——ay,

we now have that the existence of ¢; and ¢, assertthata; < aj+a andap < aj+as,
S0 aj + ap is an upper bound for a; and a;, and whenever there exists an element
¢ € P whichis such that botha; < cand ay < c hold, then we have thata;+a> < c,
so aj + ap is indeed the least upper bound for a; and a;.
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Dually to what we did in a category with products, in a category with coproducts
we can define sum morphisms f 4 g in terms of commutation of

4 2

Ay A+ A As
f f+sg g
B By + B, B,

! ’
4 )

and we have

holf,gl=1[ho f,hog]l and [f,glo(h+k)=[foh,gok].

From this we can derive that coproducts provide a monoidal structure.
We already hinted at the fact that while a product can be interpreted as a con-
junction, the coproduct can be interpreted as a disjunction. The distributive law

A and (B or C) = (A and B) or (A and C)

of classical logic incarnates in categorical logic as the existence of a natural isomor-
phism wich effectively ‘distributes’, namely

dista,B,c
—

{Ax (B+C) (AxB)+(AxC)|A,B,Ce|C|}.

Shorter, we can write
AXxB+C)~(AxB)+(AxC(C).

This of course requires the category to be both Cartesian and co-Cartesian.
Such an isomorphism does not always exist, as the following example illustrates.

Example 46 Let H be a Hilbert space and let L(7{) be the set of all of its (closed,
in the infinite-dimensional case) subspaces, ordered by inclusion. Again this can be
thought of as a category L. It has an initial object, namely the zero-dimensional
subspace, and it has a terminal object, namely the whole Hilbert space itself. This
category is Cartesian with intersection as product, and it is also co-Cartesian for

VAW =X eLH)|V.WCX],
that is, the (closed) linear span of V and W. However, as observed by Birkhoff

and von Neumann in [15], this lattice does not satisfy the distributive law. Take for
example two vectors ¥, ¢ € H with ¢ L . Then we have
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span(y + ¢) N (span(yr) + span(¢)) = span(y +¢) Nspan(y, ¢) = span(y +¢),

while since

(span(y + @) Nspan(y)) and  (span(y + ¢) N span(e))

only include the zero-vector 0, we have

(span(y + @) N span(y)) + (span(y + @) Nspan(¢)) =0,

and as a consequence

span(y + @) N (span(yr) + span(¢))
i
(span(y + @) N span(y)) + (span(y 4 ¢) N span(¢)) .

Recall that an isomorphism consists of a pair of morphisms that are mutually
inverse. So a natural isomorphism consists of a pair of natural transformations. In a
category which is both Cartesian and co-Cartesian one of the two components of the
distributivity natural isomorphism always exists, namely the natural transformation

04.B.C

{(AxB)+(AxC) —> Ax(B+C)|A,B,C e|C]},
which we conveniently denote by
(AxB)+(AxC)~Ax(B+0C).
Indeed, by the assumption that the category is both Cartesian and co-Cartesian there

exist unique morphisms f and g such that

T il

f
AXB?—(AXB)—}—(AXC)TAXC

and
B+C
Loy A Lp072
8
AxB—Ll>(AxB)+(A><C)<TA><C
commute, namely f := [y, 1] and g := [¢1 o 7y, 12 o m2], and hence there also

exists a unique morphism 64 g ¢ such that
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(Ax B)+ (A x C)

! GA.B,C\
\

A<——F AXB+CO)—(—>B+C
commutes, namely
0a,8.c = (. g) = (lm1, 1], [t1 o M2, 12 0 2]} .
The collection
0 ={0a,8.c | A, B,C € |C|}
is moreover a natural transformation since given
(fx)+(fxh:(AxB) +(AxC) — (A xBY+ (A xC),
using the various lemmas for products and coproducts, we have that

([mry, 711, [ o 75, ty o myl) o ((f X g) + (f X h))
= ([ry. ] o ((f x @) + (f x b)), [{) om), th0oms] o ((f x &)+ (f x h)))
=([mj o (f xg),mo(f xm][tjomyo(fxg)tyomol(f xh))
=([fom, fom]l [{jogom,th)ohom])
= (folm,ml (g+h)oly om,z0m])
= (f x (g +h)o{lm,m], [t1 o072, 12 0 712]),

which results in commutation of

h
(A x B)+ (A x C) ~ LD hr By + (A x €

QA.B‘C QA’.B’,C/

Ax (B+C) o A’ x (B +C')

If this natural transformation is an isomorphism we have a distributive category.

Example 47 From the above it follows that in any lattice we have

(a@anb)y+@nc)<anbd+ec).
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Below we will see that also the so-called orthomodular law can be given a purely

category-theoretic form, so Birkhoff-von Neumann style quantum logic can be
entirely casted in purely category-theoretic terms.

3.5.4 Direct Sums

Example 48 The direct sum V @ V' of two vector spaces V and V' is both a product
and a coproduct in FdVecty . Indeed, consider matrices

71 = (IwlOw,w)  and 7y = Ow wilw),
where 1y denotes the identity on U and Oy ¢ is a matrix of 0’s of dimension

dim(U) x dim(U’). Let M : V — W and N : V — W’ also be represented as
matrices. The unique matrix P which makes

Y
wWaoew

M

N
Therefore @ is a product. The dual is obtained by transposing the matrices in this
diagram. Setting ¢; for the transpose of m; the diagram

w

] 2

commute is

t 2

w

W@W/ W/

(M|N)

\
\%

commutes. This shows that W @ W’ is indeed also a coproduct. Moreover, the zero-
dimensional space is both initial and terminal.

Example 49 In the category Rel we can extend the disjoint union to morphisms. For
any two relations R; : X — X' and Ry : Y — Y’ we set

Ri+ Ry = {((x, D), ', 1) [ xRix}U{((3,2), (', 2) | yR2Y'} -
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We define injection relations ¢y : X — X + Y andp : Y — X 4+ Y tobe

t={0, (x, 1) [xeX} and v :={(,(.2)]yeY}

and the copairing relation [Ry, R;]: X +Y — Z to be
[R1, R2] :={((x,1),2) | xRiz} U{((y,2),2) | yRaz}.

One easily verifies that all these data define a coproduct. We define projection rela-
tions as the relational converse of the injection relations, that is,

7 :={((x,1),x) |x € X} and m:={((»,2),y)|y€eTY}

One easily verifies that this defines a product. So the diagrams expressing the prod-
uct properties are converted into the diagrams expressing the coproduct properties
by the relational converse. Since for any X € |Rel| there is only one relation of type

- X and X—=0

it follows that the empty set is both initial and terminal. All of this makes the disjoint
union within Rel very similar to the direct sum in FdVecty.

Definition 22 A category C is enriched in commutative monoids if each hom-set
C(A, B) is a commutative monoid

(C(A, B),+,04,8),
and if for all f € C(A, B), all g1, g» € C(B,C) and all h € C(C, D) we have

(g1+g)of=(g1of)+(g20f) Op,co f=0ac
ho(gi+g)=(hog)+ (hog) hoOpc=0gp.

Example 50 The category FdVectk is enriched in commutative monoids. The
monoid operation is addition of linear maps and the unit is the zero linear map.
Also the category Rel is enriched in commutative monoids. The monoid operation
is the union of relations and the unit is the empty relation.

Definition 23 The direct sum or biproduct of two objects A1, A; € |C| is a quintu-
ple consisting of another object A; @ Ay € |C| together with four morphisms

5 %)

/\ /_\
Aq A1 ® A As
\_/ \_/
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satisfying
mpotp = lg, maoip =1, 7011 =044, 7otp2=04,4, (3.38)
and
tom +unom =104, -

When setting

Sii lAi i=j
Y 04 i #

then Eq. (3.38) can be rewritten as
Tjolj = 5,’j .

Note that Definition 3.38 does not explicitly require that A; @ A» is both a product
and a coproduct. In particular, it does not make any reference to other objects C as
the definitions of product and coproduct do.

Definition 24 A zero object is an object which is both initial and terminal.

If a category C has a zero object, then for each pair of objects A, B € |C| we can
construct a canonical zero map by relying on the uniqueness of morphism from the
initial object to B and from A to the terminal object:

04,8
T
AHH! OHEI! B.

One can show that if a category with a zero object is enriched in commutative
monoids, that these unique morphisms must be the units for the monoids.

Definition 25 A biproduct category is a category with a zero object in which for any
two objects Ay and A, a biproduct (A1 & As, 1, T2, L1, 12) IS speciﬁed.9

One can show that the above definition is equivalent to the following one, which
does make explicit reference to products and coproducts [37].

9 There is no particular reason why we ask for biproducts to be specified while in the case of Carte-
sian categories we only required existence. This is a matter of taste, whether one prefers “being
Cartesian” or “being a biproduct category” to be conceived as a “property a category possesses” or
“some extra structure it comes with”. There are different “schools” of category theory which have
strong arguments for either of these. Each of these have their virtues and therefore we decided to
give an example of both.
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Definition 26 Let C be both Cartesian and co-Cartesian with specified products and

coproducts, and let L and T respectively denote an initial and a terminal object of
C. Then C is a biproduct category if:

1. the (unique) morphism | —— T is an isomorphism,
2. setting

the morphism
[{14,,04,,45), (04,4, Lay)] : A1 + Ay — A X Ap

is an isomorphism for all objects A, A, € |C]|.

In fact, any morphism
A1+ Ay L+ B x B,
is fully characterised by four ‘component’ morphisms, namely
fiji=miofou for i=1,2,
since

f=Uf1, 200, (2, 22)].

Indeed,

(i1, 2,10, (1.2, f2,2)]
=[mio(fou),mo(fou)), (mo(fown)mo(fon))]
=[fou, fou]
= folu, ]
=f.

Therefore it makes sense to think of f as the matrix

| f11 fi2
f= <f2,l fz,z) '
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Using this, condition 2 in Definition 26 can now be stated as the requirement that
la; Oapa,
044, 1a,

Example 51 In FdVecty the direct sum @ is a biproduct. We have

is an isomorphism.

1
mou=mon| =(lwlOww) <0W‘,}VW> = lw.

We also have

mon=m ol = (lwlOw.w) (O‘IVWW/) = Oy w.
The two remaining equations are obtained in the same manner.
Example 52 In Rel the disjoint union + is a biproduct. The morphism
mpo: X—>X+Y > X
is a subset of X x X. The composite of
={&x,x, D)) |xeX} and m1={((x,1),x)]|x e X}
is {(x, x) | x € X} = 1x. The morphism
wio:Y—>X+Y > X

is a subset of X x Y, namely the set of pairs (x, y) such that there exists a (x, z) € (»
and (z, x) € 1. But there are no such elements z since the elements of X are labeled
by 1 and those of Y by 2 within X + Y. Thus, we obtain the empty relation Oy, x.

3.5.5 Categorical Matrix Calculus

By Definition 26 each biproduct category is Cartesian, hence by Proposition 4 it
carries monoidal structure. We show now that from Definition 26 it indeed follows
that each hom-set C(A, B) in a biproduct category C is a monoid, with

fre =A% A0a L% pop Y B

and with 04 p as the unit. Indeed, let f : A — B and consider

f@OA,B Va
—_—

f4+0ap=4 2% ApalP4 pgp B.
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The equality f 4+ 04 p = f can be shown via the commutation of

(3.39)

In the above diagram, all subdiagrams correspond to definitions, except for the
square at the bottom. To show that it commutes, consider

7] )

A A®O0 0 (3.40)
f f@®00,0 00,0
\
B - B&®O0 - 0
M8 T

Since this is a product diagram, f @0g g is the unique morphism making it commute.
Moreover, the diagram

T 19}
A<—APO———0

\m

A
7 7 04®0,0

B

A

8 T

commutes, so it follows that L’l o f o also makes Diagram (3.40) commute. Thus,

fEBOo,():L/lofon’]
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by uniqueness, that is, the square at the bottom of Diagram (3.39) also commutes.

To establish 04 p + f one proceeds similarly.
We also have to show that

(f+e)+h=f+@E+h.

This is established in terms of commutation of the diagram

A 1 @ v
A2 a0 e ue Yo e s Y -5
k\\ %
AP A QA AA OB.B.B B® B
(A@A)@A (BEB B)® B

where a4 4,4 is defined as in Proposition 4. The central square commutes by defi-
nition. We now show that the left triangle also commutes. We have

((m1, o), myom) o (ly ®Ag) oAy

(1, m{ om2), wy o 72) o (1a, (14, 14))

(i, my oma) o (14, (14, 14)), w5 02 0 (14, (14, 14)))

myo(la, (14, 14)), w1 0mp 0 (1a, (14, 14))), 15 02 0 (14, (14, 14)))
La, 1a), 14)
=(Aa®la)oAs.

(
(
(«
(«

The right triangle is also easily seen to commute.
This addition moreover satisfies a distributive law, namely

(f+goh=(foh)4+(goh) and ho(f+g) =(hof)+(hog). (3.41)

One usually refers to this additive structure on morphisms as enrichment in monoids.
We leave it up to the reader to verify these distributive laws. A physicist-friendly
introduction to enriched category theory suitable for the readers of this chapter is
[16]. An inspiring paper which introduced the concept is [46].

We now show that from Definition 26 it also follows that for

Q =tiom:AlP A — A1 B A
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withi = 1, 2 we have

D Qi=1laea,- (3.42)

i=1,2

Indeed, unfolding the definitions we have

Z Qi = Va4, 0 (L1 071) B (12 0712)) 0 Ap 04,
i=1,2

= Va,04, 0 (L1 ®12) o (11 D 72)) 0 Apy @4,
= (Vao94, 0 (1 ® 12)) o (1 ® 2) 0 Aaje4,)

and using the fact that a biproduct of morphisms is at the same time a product of
morphisms we obtain

(M1 ®m) o Ag = (1 0la@a,, 20 La@a,) = (1, m2) = 1a,04, -
Analogously, one obtains that
Vao (1 @) =144,

and the composite of identities being again the identity, we proved the claim.

Definition 27 A dagger biproduct category is a category which is both a dagger
symmetric monoidal category and a biproduct category for which the monoidal ten-
sor and the biproduct coincide, and with ¢; = n;f for all projections and injections.

These dagger biproduct categories were introduced in [2, 22, 62] in order to
enable one to talk about quantum spectra in purely category-theoretic language. Let

AlEBAQ—U>B

be unitary in a dagger biproduct category. By the corresponding projector spectrum
we mean the family {P;}; of projectors

PV =UoQoU":B— B.

Proposition 6 Binary projector spectra satisfy

ZPiUZIB.

i=1,2

This result easily extends to more general biproducts A; & ... & A,, which
can be defined in the obvious manner, and which allow us in addition to define
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n-ary projector spectra too. In FdHilb, this n-ary generalisation of Proposition 6
corresponds to the fact that

i=n

D Pi=1ly  where (P}

is the projector spectrum of an arbitrary self-adjoint operator. More details on this
abstract view of quantum spectra are in [2, 22, 62].

Now, consider two biproducts A1 @ ...®H A, and B; & ... & By, each with their
respective injections and projections. As already indicated in the previous section,
with each morphism

A®.. A B .. ®B,
we can associate a matrix

JTIOfOLI ﬂlofotn

Tmofoull...mtmo folt,

Moreover, these matrices obey the usual matrix rules with respect to composition
and the above defined summation. Indeed, for composition, the composite go f = h
also has an associated matrix with entries

/’l[j znio(fog)otj.
By Eq. (3.42) we have

hij=mio(fog)ot;
mio(folog)oy;

:nio<fo<2/ronr’>og)otj

= E miofol,omogol;j
r

:Z(mofot/r)o(nr/ogotj)
=Zfirogrj
B

from which we recover matrix multiplication. For the sum, using the distributivity
of the composition over the sum, one finds that for individual entries in f 4 g we
have
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mio(f+got=(miof+mog)ot
miofotLj+mogol;
fij + 8ij

which indeed is the sum of matrices.

Example 53 We illustrate the concepts of this section for the category Rel. Some-

what unfortunately, the disjoint union bifunctor and the monoidal enrichment oper-

ation share the same notation +. But since their type are essentially different, i.e.
tensor + : Rel(X,Y) x Rel(X', Y') - Rel(X + X', Y +Y")

and

monoid + : Rel(X, ¥) x Rel(X, ¥) — Rel(X, Y)

respectively, this should not confuse the reader.

e The sum Ry + Ry : X — Y of two relations is, by definition, the composite

x2S xpxftly y Wy,

The relation Ay consists of all ordered pairs
{(x,(x, 1) | x e X}U{(x, (x,2)) | x € X}.
Thus the composite (R + R») o Ay is then, by definition, the set
{(e, O, D) [x Ry} UL, (0, 2) [ X Ray'}
Using the definition of copairing Vy := [1y, 1y] we obtain
{(e, ) T xRy} U{(, y) 1 X' Ray'}
that is,
Ri+ Ry ={(x,y) | xRiy or xRyy}.
e Relations
Ox: X4+Y—>X—>X+Y and Qy:X+Y—>Y > X+Y
are defined as txy o wy and ty o y respectively, that is,

Ox ={((x, ), (x, D) |x e X} and Qy={((y.2),(y,2)|ye’}.
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Using the definition of the sum we obtain

Ox + 0y ={((x, 1), (x,1)) | x€e X}U{((y,2),(,2))|yeY)
={((z,1),(z,1)) | (z,i) e X +7Y}
= lx4y

as required. It is easily seen that this generalises to an arbitrary number of terms
in the biproduct.

e The matrix calculus in Rel is done over the semiring (= rig = ring without
inverses) B of Booleans. Indeed, there are two relations between {*} and itself,
namely the empty relation and the identity relation. These will respectively be
denoted by 0 and 1. The semiring operations arise from composing and adding
these relations, which amounts to the semiring multiplication and the semiring
addition respectively. By Eq. (3.41), we have distributivity, and we then easily
see that we indeed get the Boolean semiring:

0-0=0 0-1=0 1-1=1 0+0=0 0+1=1 14+1=1

— contra the two-element field where we have 1 4+ 1 = 0 — so the operations
— - —and — + — coincide with the Boolean logic operations:

SN and + ~ V.
A relation R : {a, b} — {c, d} can now be represented by a 2 x 2 matrix, e.g.
#=(10)
when aRc, bRc and aRd (and not bRd). Similarly, R : {c,d} — {e, f, g} is
10
R=1]11
01
when cRe, cRf,dRf and d Rg. Their composite
R'oR = {(a,e), (a, [), (b,e), (b, f), (a, &)}

can be computed by matrix multiplication:

}‘1’ <11)_
01 10
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For a relation R” : {a, b} — {c, d} represented by the matrix

01

01/’
that is, ={(, ), (b,d)}, the sum R + is given by
hat is, R” = {(b, ¢), (b, d)}, th R+ R” is given b

{(a,c), (b, c), (a, )} U{(b,c), (b,d)} = {(a, D), (a,0), (b,0), (b,d)},

which indeed corresponds to the matrix sum
11 01 11
(0)+ (1) =(1)
3.5.6 Quantum Tensors from Classical Tensors

Interesting categories such as FdHilb and Rel have both a classical-like and a
quantum-like tensor. Obviously these two structures interact. For example, due to
very general reasons we have distributivity natural isomorphisms

AQMBBHC)~2(ARB)D(ARC) and A®R0~0

both in the case of FdHilb and Rel. We can rely on so-called closedness of the
®-structure to prove this, something for which we refer to other sources. Another
manner to establish this fact for the cases of FdHilb and Rel, is to observe that the
®-structure arises from the é@-structure.

Let C be a biproduct category and let X € C be such that composition commutes
in C(X, X). Define a new category C|X as follows:

e The objects of C|X are those objects of C which are of the form X & ... @ X.
‘We denote such an object consisting of n terms by [n].
e Forall n,m € N we set C|X([n], [m]) := C([n], [m]).

Note that we can represent all morphisms in C([#], [m]) by matrices, and hence also
those in C|X([n], [m]). Now we define a monoidal structure:

o [ =X

o [n]®[m] :=[n xm]

e Forall f € C([n], [m]) and g € C([n'], [m']) we define
f®geClX(n]l®I[n'], [ml®[m')

to be the morphism with matrix entries

(f ®&,in.g.jy = fijogij -
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We leave it to the reader to verify that this provides C|X with a symmetric monoidal
structure. Note that commutativity of C(X, X) is necessary, since otherwise we
would be in contradiction with the fact that the scalar monoid in a monoidal
category is always commutative — cf. Section 3.3.5. With these definitions
we have:

(M@ (m] @ [k]) = ([n]@[m]) @ (n]®[k])  and  [n]®[0] =~ [0].

Indeed, note first that since [n] =16 - - - @ I we have
———

[n] ® [m] >~ [n + m]

where [n +m] =1 - - - @ 1. Therefore,
———

n+m

[n] ® (Im] @ [k]) =~ [n] ® [m + k]
~ [nx (m+k)]
=[(n xm)+ (nxk)]
~[nxm]d[n x k]
~ ([n] ® [m]) @ ([n] ® [k]).

Moreover,

[n] ® [0] = [n x O]
= [0].

Example 54 In FdHilb there is one non-trivial object H such that FdHilb(H, H)
is commutative, namely C. The category FdHilb|C has Hilbert spaces of the form
C®" with n € N as objects, linear maps between these as morphisms, and the tensor
product as the monoidal structure. This category is said to be categorically equiva-
lent (a notion which we define later) to FdHilb. The only difference is that FdHilb
contains for each n € N many isomorphic Hilbert spaces of dimension n, while in
FdHilb|C there is exactly one Hilbert space of dimension 7.

Example 55 In Rel it is the non-trivial object {x} for which Rel({*}, {*}) ~ B is
commutative. We obtain a category with objects of the form

{x} 4+ ...+ {x},
that is, a n-element set for each n € N, with relations between these as morphisms,

and with the Cartesian product as the monoidal structure. Again we have that Rel|B
is categorically equivalent to Rel.
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We can endow C|X with compact structure. Set:

o [n]* :=[n]
e Let np,) € C|X{, [n]* @ [n]) be the morphism with matrix entries

M, =1 and M), j#i,1 :=0r1.
o Letep,) € C|X([n] ® [n]*,]) to be the morphism with matrix entries
(e, =11 and (e 1,6, j#i) :==O0r1-
To see that this indeed defines a compact structure, observe that the identity of [#] is

7 ifi=j

L =8ij = {OLI otherwise

Using this, we find that

(Iny ® 0D G, k), @,1) = i © N(j k)1

and

(€tn1 @ LinD (1,0, (k). D) = €1,(j.k) © 8il-

We can now verify the equations of compactness by computing the composite—say
e—of the two preceding morphisms using matrix calculus, i.e.

emm = Y€1 © L)) tm), (0.0 (Lt ® M) (61,0, 1) -
J.k,1

Note that the indexation over j, k and [ has two different bracketings in the above
sum. By definition of the identity, unit and counit, the term e, ,) will be 1; only
if j = k = [, which entails that e(,, »y = §;,;, the identity. Since the objects are
self-dual the other equation holds too.

Robin Houston proved a surprising result in [37] which to some extent is a
converse to the above. It states that when a compact category is Cartesian (or co-
Cartesian) then it also has direct sums.

3.5.7 Internal Classical Structures

In [2] unitary biproduct decompositions of the form

U:A— 10...01
————

n
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were used to encode the flow of classical data in quantum informatic protocols.
In FdHilb such a map indeed singles out a basis. Explicitly, via the correspondence
between vectors in Hilbert space H and linear maps of type C — H, the linear maps

(Uloy :C>Hl|i=1,...,n)
define a basis for H, namely
(i) =W o)D) |i=1,...,n}.
These basis vectors are then identified with outcomes of measurements.

But there is another way to encode bases as morphisms in a category, one for
which we only need to rely on the tensor structure, and hence we can stay in the
diagrammatic realm of Sect. 3.3.2. If we have a basis

B:={liy|li=1,...,n}
of a Hilbert space H then we can consider the linear maps

S:H—>HQH::|i)r>[ii) and e: H—>C: i)~ 1.

These two maps indeed faithfully encode the basis B since we can extract it back
from them. It suffices to solve the equation

8(ly) = 1¥) ® [¥)

in the unknown |v/). Indeed, the only |1)’s for which the right-hand-side is of the
form |¢) ® |¢’) are the basis vectors. For any other ¥ = ), o; |i) we have that

Sy =Y aili) ®1i),
i
that is, we obtain a genuinely entangled state.
The pair of maps (6, €) satisfies several properties e.g.
B®1ly)od=(1®8od:H—->HOHH:: i) |iii)

and

€@ 1) o8 =1y ®e)0d =1y i)~ |i)

establishing it as an instance of the following concept in FdHilb:

Definition 28 Let (C, ®, ) be a monoidal category. An internal comonoid is an
object C € |C| together with a pair of morphims

CRC 221,
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where § is the comultiplication and € the comultiplicative unit, which are such that

8

C———C®C C
5 ch@na and P 5 S
commute.

Example 56 The relations
S={(x,(x,x) | xe X} T X x (X xX)
and
e={(x,*%) | x € X} C X x {x}

define an internal comonoid on X in Rel as the reader may verify. We could refer to
these as the copying and deleting relations.

The notion of internal comonoid is dual to the notion of internal monoid.
Definition 29 Let (C, ®, I) be a monoidal category. An internal monoid is an object
M e |C] together with a pair of morphisms

MM L M <1,

where w is the multiplication and e the multiplicative unit, which are such that

M MM M
" L@ and /MT \\
commute.

The origin of this name is the fact that monoids can equivalently be def