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Preface 

Last few years have seen rapid acceptance of high-definition television (HDTV) 
technology around the world. This technology has been hugely successful in  
delivering more realistic television experience at home and accurate imaging for 
professional applications. Adoption of high definition continues to grow as con-
sumers demand enhanced features and greater quality of content. 

Following this trend, natural evolution of visualisation technologies will be in 
the direction of fully realistic visual experience and highly precise imaging. How-
ever, using the content of even higher resolution and quality is not straightforward 
as such videos require significantly higher access bandwidth and more processing 
power. Therefore, methods for radical reduction of video bandwidth are crucial for 
realisation of high visual quality. Moreover, it is desirable to look into other ways 
of accessing visual content, solution to which lies in innovative schemes for con-
tent delivery and consumption. 

This book presents selected chapters covering technologies that will enable 
greater flexibility in video content representation and allow users to access content 
from any device and to interact with it. This book is divided into five parts: 

(i) Quality of visual information, 
(ii) Video coding for high resolutions, 
(iii) Visual content upscaling, 
(iv) 3D visual content processing and displaying, 
(v) Accessing technologies for visual content. 

Part I on quality of visual information introduces metrics and examples that are 
basics for evaluation of quality of high-resolution and high-dimensional visual 
data. This part of the book is addressed with three chapters. Chapter 1 introduces 
objective video quality assessment methods. In Chapter 2 the subjective video 
quality is addressed in terms of the quality of experience for specific case - digital 
cinema. Quality of 3D visual data is discussed in Chapter 3, where different qual-
ity metrics are evaluated for application on stereoscopic images. 

The following part addresses the necessary technology that enables wide access 
to high resolution visual data - video compression methods. Chapter 4 brings an 
overview of state-of-the-art in video coding and introduces recent developments in 
ultra-high definition compression. Further details of current video coding  
standards and evaluation of their performance for high definition videos are given 
in Chapter 5. Two systems that support ultra-high definition are presented in  
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Chapters 6 and 7. In addition to the codecs for high resolutions, high frame rate 
videos are addressed in Chapter 8 where the related mathematical modelling 
method is given. 

Methods for creation of content of higher frame rates and higher resolution are 
presented in Part III. Temporal content upscaling is in the focus of Chapters 9 to 
11. Chapter 12 addresses the problem of natural image synthesis from low resolu-
tion images. 

Technologies needed for 3D content creation, processing and displaying are 
presented in Part IV. Chapter 13 investigates the role of colour information in 
solving stereo correspondence problem. 3D object classification and segmentation 
methods are presented in Chapter 14. The techniques for generation and handling of 
videos combined from captured 3D content and computer graphics is proposed in 
Chapter 15. Discussion on this topic continues with Chapter 16 where a new ap-
proach for generation of 3D content is proposed. Chapter 17 brings detailed over-
view of 3D displaying technology, while Chapter 18 focuses on integral imaging. 

Accessing technologies for visual content of high resolution and dimensions are 
presented in Part V. The techniques enabling video streaming with spatial random 
access are presented in Chapter 19. Chapter 20 addresses management of hetero-
geneous environments for enabling quality of experience. Transmission of 3D 
video is in the focus of Chapter 21 which presents a solution designed for wireless 
networks. Methods for retrieval of high-resolution videos are addressed in Chapter 
22. Moreover, in Chapter 23 stereo correspondence methods are addressed in the 
context of video retrieval. 

We believe that this collection of chapters provides balanced set of critical 
technologies that will facilitate development of future multimedia systems sup-
porting high quality of experience. The refreshing perspectives of looking into 
visual data handling presented in this book complement current commercial visual 
technologies. Therefore, this book is essential to those whose interest is in futuris-
tic high-quality visualisation systems. 
 
 
January 2010 Marta Mrak 

Mislav Grgic 
Murat Kunt 
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Osman Serdar Gedik, Engin Türetken, Abdullah Aydın Alatan

Chapter 10
Spatiotemporal Video Upscaling Using Motion-Assisted
Steering Kernel (MASK) Regression . . . . . . . . . . . . . . . . . . . . . . . . . 245
Hiroyuki Takeda, Peter van Beek, Peyman Milanfar

Chapter 11
Temporal Super Resolution Using Variational Methods . . . . . . 275
Sune Høgild Keller, François Lauze, Mads Nielsen

Chapter 12
Synthesizing Natural Images Using Spatial Layout
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Ling Shao, Ruoyun Gao

Part IV: 3D Visual Content Processing and Displaying

Chapter 13
The Use of Color Information in Stereo Vision
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
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Daniel Hofman

Chapter 15
Three-Dimensional Video Contents Exploitation in
Depth Camera-Based Hybrid Camera System . . . . . . . . . . . . . . . 349
Sung-Yeol Kim, Andreas Koschan, Mongi A. Abidi, Yo-Sung Ho

Chapter 16
Improving 3D Visual Experience by Controlling the
Perceived Depth Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
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Part I
Quality of Visual Information



Chapter 1
Automatic Prediction of Perceptual Video
Quality: Recent Trends and Research Directions

Anush K. Moorthy and Alan C. Bovik

Abstract. Objective video quality assessment (VQA) refers to evaluation of the
quality of a video by an algorithm. The performance of any such VQA algorithm
is gaged by how well the algorithmic scores correlate with human perception of
quality. Research in the area of VQA has produced a host of full-reference (FR)
VQA algorithms. FR VQA algorithms are those in which the algorithm has access
to both the original reference video and the distorted video whose quality is being
assessed. However, in many cases, the presence of the original reference video is
not guaranteed. Hence, even though many FR VQA algorithms have been shown to
correlate well with human perception of quality, their utility remains constrained.
In this chapter, we analyze recently proposed reduced/no-reference (RR/NR) VQA
algorithms. RR VQA algorithms are those in which some information about the ref-
erence video and/or the distorting medium is embedded in the video under test. NR
VQA algorithms are expected to assess the quality of videos without any knowledge
of the reference video or the distorting medium. The utility of RR/NR algorithms
has prompted the Video Quality Experts Group (VQEG) to devote resources to-
wards forming a RR/NR test group. In this chapter, we begin by discussing how
performance of any VQA algorithm is evaluated. We introduce the popular VQEG
Phase-I VQA dataset and comment on its drawbacks. New datasets which allow for
objective evaluation of algorithms are then introduced. We then summarize some
properties of the human visual system (HVS) that are frequently utilized in devel-
oping VQA algorithms. Further, we enumerate the paths that current RR/NR VQA
algorithms take in order to evaluate visual quality. We enlist some considerations
that VQA algorithms need to consider for HD videos. We then describe exemplar
algorithms and elaborate on possible shortcomings of these algorithms. Finally, we
suggest possible future research directions in the field of VQA and conclude this
chapter.

Anush K. Moorthy · Alan C. Bovik
Dept. of Electrical and Computer Engineering, The University of Texas at Austin,
Austin, Texas 78712, USA
e-mail: anushmoorthy@mail.utexas.edu, bovik@ece.utexas.edu
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1 Introduction

Imagine this situation - you are given two videos, both having the same content but
one of the videos is a ‘low quality’ (distorted) version of the other and you are asked
to rate the low quality version vis-a-vis the original (reference) video on a scale of
(say) 1-5 (where 1 is bad and 5 is excellent). Let us further assume that we collect
a representative subset of the human populace and ask them the same question, and
instead of just asking them to rate one pair of videos, we ask them to rate a whole
set of such pairs. At the end of the day we now have a set of ratings for each of
the distorted videos, which when averaged across users gives us a number between
1-5. This number represents the mean opinion score (MOS) of that video and is a
measure of the perceptual quality of the video. The setting just described is called
subjective evaluation of video quality and the case in which the subject is shown
both the reference and the distorted video is referred to as a double stimulus study.
One could imagine many possible variations to this technique. For example, instead
of showing each video once, let us show each video twice so that in the first pass the
human ‘decides’ and in the second pass the human ‘rates’. This is a perfectly valid
method of collecting subjective scores and along with a plethora of other techniques
forms one of the possible methods for subjective evaluation of video quality. Each
of these methods is described in a document from the International Telecommuni-
cations Union (ITU) [1] . If only we always had the time to collect a subset of the
human populace and rate each video that we wish to evaluate quality of, there would
have been no necessity for this chapter or the decades of research that has gone into
creating algorithms for this very purpose.

Algorithmic prediction of video quality is referred to as objective quality as-
sessment, and as one can imagine it is far more practical than a subjective study.
Algorithmic video quality assessment (VQA) is the focus of this chapter. Before we
delve directly into the subject matter, let us explore objective assessment just as we
did with the subjective case. Imagine you have an algorithm to predict quality of a
video. At this point it is simply a ‘black-box’ that outputs a number between (say)
1-5 - which in a majority of cases correlates with what a human would say. What
would you imagine the inputs to this system are? Analogous to the double stimulus
setup we described before, one could say that both the reference and distorted videos
are fed as inputs to the system - this is full reference (FR) quality assessment . If one
were to imagine practical applications of FR VQA, one would soon realize that hav-
ing a reference video is infeasible in many situations. The next logical step is then
truncating the number of inputs to our algorithm and feeding in only the distorted
video - this is no reference (NR) VQA . Does this mean that FR VQA is not an in-
teresting area for research? Surprisingly enough, the answer to this question is NO!
There are many reasons for this, and one of the primary ones is that FR VQA is an
extremely difficult problem to solve. This is majorly because our understanding of
perceptual mechanisms that form an integral part of the human visual system (HVS)
is still at a nascent stage [2, 3]. FR VQA is also interesting for another reason - it
gives us techniques and tools that may be extended to NR VQA. Since FR VQA has
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matured over the years, we shall cease talking about it here. The interested reader is
referred to [4, 5], for tutorial chapters on FR VQA .

Thinking solely from an engineering perspective one would realize that there
exists another modality for VQA. Instead of feeding the algorithm with the reference
and distorted videos, what if we fed it the distorted video and some features from
the reference video? Can we extract features from the reference video and embed
them into the video that we are (say) transmitting? If so, at the receiver end we can
extract these reference features and use them for VQA. Such assessment of quality
is referred to as reduced-reference (RR) VQA . RR and NR techniques for VQA
form the core of this chapter.

In describing the RR technique, we have inadvertently stumbled upon the general
system description for which most algorithms described in this chapter are designed.
There exists a pristine reference video which is transmitted through a system from
the source. At the receiver, a distorted version of this video is received whose qual-
ity is to be assessed. Now, the system through which the video passes could be a
compression algorithm. In this case, as we shall see, measures of blockiness and
bluriness are used for NR VQA. In case the system is a channel that drops packets,
the effect of packet loss on quality may be evaluated. These concepts and many oth-
ers are discussed in this chapter. Before we describe recent algorithms, let us briefly
digress into how the performance of an algorithm is evaluated.

2 Performance Evaluation of Algorithms and Databases

At this stage we have some understanding of what a VQA algorithm does. We know
that the aim of VQA is to create algorithms that predict the quality of a video such
that the algorithmic prediction matches that of a human observer. For this section
let us assume that we have an algorithm which takes as input a distorted video (and
some reference features) and gives us as output a number. The range of the output
could be anything, but for this discussion, let us assume that this range is 0-1, where
a value of 0 indicates that the video is extremely bad and a value of 1 indicates that
the video is extremely good. We also assume that the scale is continuous, i.e., all
possible real-numbers between 0 and 1 are valid algorithmic scores. With this setup,
the next question one should ask is, ‘How do we know if these numbers generated
are any good?’. Essentially, what is the guarantee that the algorithm is not spewing
out random numbers between 0 and 1 with no regard to the intended viewer?

The ultimate observer of a video is a human and hence his perception of quality
is of utmost importance. Hence, a set of videos are utilized for a subjective study
and the perceptual quality of the video is captured in the MOS . However, picking
(say) 10 videos and demonstrating that the algorithmic scores correlate with human
subjective perception is no good. We require that the algorithm perform well over a
wide variety of cases, and hence the database on which the algorithm is tested must
contain a broad range of distortions and a variety of content, so that the stability of its
performance may be assessed. In order to allow for a fair comparison of algorithms
that are developed by different people, it is imperative that the VQA database, along
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with the subjective MOS be made publicly available. One such publicly available
dataset for VQA is the popular Video Quality Experts Group (VQEG) FRTV Phase-I
dataset [6] . The VQEG dataset consists of 20 reference videos, each subjected to 16
different distortions to form a total of 320 distorted videos. In [6], a study of various
algorithms was conducted on this dataset and it was shown that none of the assessed
algorithms were statistically better than peak signal-to-noise ratio (PSNR)1! Over
the years, many new FR VQA algorithms which perform well on this dataset have
been proposed [9, 10] . However, the VQEG dataset is not without its drawbacks.

The dataset is dated, since the report of the study was released in the year 2000.
Previous generation compression techniques such as MPEG [11] were used to pro-
duce distortions. Current generations compressions standards such as H.264/AVC
[12] exhibit different perceptual distortions and hence a database that covers the
H.264/AVC compression standard is relevant for modern systems. Further, the
perceptual separation of videos in the VQEG dataset is poor, leading to inconsis-
tent judgments for humans and algorithms. In order to alleviate many such prob-
lems associated with the VQEG dataset, researchers from the Laboratory for Image
and Video Engineering (LIVE) have created two new VQA datasets . The LIVE
databases are now available for non-commercial research purposes; information
may be found online [13, 14]. The LIVE VQA datasets include modern day com-
pression techniques such as the H.264/AVC and different channel induced distor-
tions. Descriptions of the datasets and the evaluated algorithms may be found in
[15] and [16].

Now that we have a dataset with subjective MOS and scores from an algo-
rithm, our goal is to study the correlation between them. In order to do so, Spear-
man’s Rank Ordered Correlation Coefficient (SROCC) [17] is generally used [6].
SROCC of 1 indicates that the two sets of data under study are perfectly correlated.
Other measures of correlation include the Linear (Pearson’s) correlation coefficient
(LCC) and the root-mean-square error (RMSE) between the objective and subjec-
tive scores. LCC and RMSE are generally evaluated after subjecting the algorithms
to a logistic function . This is to allow for the objective and subjective scores to
be non-linearly related. For eg., figure 1 shows a scatter plot between MOS scores
from the VQEG dataset and an FR VQA algorithm [18]. As one can see, the two
are definitely correlated, only that the correlation is non-linear. Transformation of
the scores using the logistic accounts for this non-linearity and hence application of
LCC and RMSE make sense. It is essential to point out that application of the lo-
gistic in no way constitutes ‘training’ an algorithm on the dataset (as some authors
claim). It is simply a technique that allows for application of the LCC and RMSE
as statistical measures of performance. A high value (close to 1) for LCC and a low
value (close to 0) for RMSE indicate that the algorithm performs well.

Having summarized how one would analyze a VQA algorithm, let us move on to
the human visual system whose properties are of tremendous importance for devel-
oping VQA algorithms.

1 Why PSNR is a poor measure of visual quality is described in [7] and [8].
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Fig. 1 Figure showing a
scatter plot between MOS
from the VQEG dataset and
an FR VQA algorithm’s
scores. A non-linear cor-
relation is evident. Figure
also shows a best-fit-line
through the scatter obtained
using the logistic function
proposed in [6].
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3 A Brief Foray into the Human Visual System

You are currently staring at these words on a sheet of paper. Due to acquired fluency
in English, it takes you a fraction of a second to view, process, understand and
proceed along this page. But it is not language alone that guides you along. The
human visual system (HVS) which processes all of the information incident upon
the eye and renders it into a form recognizable by higher areas of the human brain
for cognitive processes to occur has been one of the most actively researched areas
of neuroscience.

The first stage of visual processing in the human are the eyes. This spherical mass
is home to different kinds of photoreceptors - receptors that produce a response when
incident with photons. The response of these receptors is fed through the retinal gan-
glion cells and then to the Lateral Geniculate Neucleus (LGN) which resides in the
thalamus. The LGN is analogous to an ‘active’ switch - receiving and processing both
feed-forward and feedback information. LGN responses are passed on to area V1 of
the primary visual cortex (situated at the back of your head) which then connects to
area V2, V4 as well as area V5/Middle-temporal (MT) and other higher areas in the
brain. This kind of hierarchical structure is common in neural processing.

Each of the above described units is an interesting area of study, however we shall
not pursue them in detail here. The interested reader is referred to [2] for overviews
and descriptions. Here we shall look at these regions of processing using a system-
design perspective. The first stage of processing is the human eye. The eye behaves
akin to a low-pass filter since light at frequencies above 60 cycles per degree (cpd)
are not passed on to the receptors at the back of the eye. Current research indicates
that there are two kinds of photoreceptors - rods and cones, based on their response
characteristics [3]. Rods are generally in use in low-light conditions while cones are
used for vision under well-lit conditions and for color vision. There exist 3 types of
cones and depending upon their response characteristics are classified as Long (L),
Medium (M) and Short (S) wavelength cones. Another very important characteris-
tic of the eye is the fact that not every region in the visual field is perceived with
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the same amount of acuity. For example, stare at any one word in this sentence and
then try (without moving your eye) to read the beginning of this paragraph. You
will notice that even though the word that you are staring at is extremely clear, as
you move away from the word under focus, you start loosing resolution. This is re-
ferred to as foveation . If you haven’t thought about this before, it may come as a
surprise, since the world seems sharp in daily life. This is because the eye performs
an efficient engineering solution (given the contraints). The HVS is designed such
that the when viewing at a scene, the eye makes rapid movements called saccades
interleaved with fixations. Fixations, as the name suggests, refers to the process of
looking at a particular location for an extended period of time. Little to no informa-
tion is gathered during a saccade and most information is gathered during a fixation.
Using this strategy of eye movements where the region of maximum visual acu-
ity (fovea) is placed at one location for a short period of time, and then moved to
another, the HVS constructs a ‘high resolution’ map of the scene.

The reason why we described the process of foveation in some detail is because
for HD videos, foveated video coding can help reduce bandwidth while maintaining
picture quality. Indeed, foveation driven video coding is an active area of research
[19].

VQA systems which seek to emulate the HVS generally model the first stage
of processing using a point-spread-function (PSF) to mimic the low-pass response
of the human eye. The responses from the receptors in the eye are fed to the retinal
ganglion cells. These are generally modeled using center-surround filters, since gan-
glion cells have been shown to possess on-center off-surround structure [2]. Similar
models are used for the LGN. The next stage of the HVS is area V1. The neurons
in V1 have been shown to be sensitive to direction, orientation, scale and so on. A
multi-scale, multi-orientation decomposition is generally used to mimic this. Better
models for V1 involve using multi-scale Gabor filterbanks [9]. Since we are con-
cerned with video, we skip areas V2 and V4 and move on to area V5/MT. This area
is responsible for processing motion information. Motion estimates are of great im-
portance for the human since they are used for depth perception, judging velocities
of oncoming objects and so on. The engineering equivalent of this region is estimat-
ing optical flow [20] from frames in a video. A coarser approximation is block-based
motion estimation [21]. As we shall see most NR VQA algorithms do not use this
information and currently perform only a frame-based spatial computation.

In the HVS, the responses from MT/V5 are further sent to higher levels of the
brain for processing. We do not discuss them here. The interested reader is referred
to [2] for details.

We have now seen how the human visual system works and how algorithms that
seek to evaluate quality akin to a human observer are evaluated. We also listed some
considerations for HD video. Having said that, one should note that any NR/RR
VQA technique that is proposed can be used for quality assessment of HD video.
Additional considerations for HD may improve performance of these algorithms.
In the rest of this chapter we shall discuss RR and NR algorithms for VQA. All
discussed algorithms unless otherwise stated do not utilize color information - i.e.,
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all processing is undertaken using luminance information alone. Color-distortions
and their assessment are interesting areas of research [22].

4 Reduced-Reference Algorithms

Reduced reference (RR) VQA algorithms generally follow a model in which some
amount of information from the source video is embedded in the video being trans-
mitted. This embedded information is recovered at the receiver and compared with
the same information extracted from the received video to assess quality. We clas-
sify these algorithms into two categories - one that relies on inserting a watermark
in each frame and all other techniques including natural scene statistics, multivari-
ate data analysis and so on. Even though some authors claim that the techniques
based on watermarking are NR, based on our definition, embedding information at
the sender in the video stream constitutes a RR scheme.

4.1 Techniques Based on Watermarking

Hidden markers for MPEG quality. Sugimoto et. al. proposed a technique for
measuring MPEG quality based on embedding binary data in videos [23]. A partic-
ular previously agreed upon binary sequence (for example, a series of 1’s or 0’s or
alternating 1’s and 0’s) is first generated. The AC components of each macroblock2

in each frame are computed and its spectrum is spread using a pseudo-random se-
quence (PN) [24]. Embedding is then performed in the frequency domain using a
set of rules based on the quantization parameter. At the receiver a reverse process is
performed and the false detection rate is computed. The authors claim that this rate
is linearly correlated with PSNR and hence with quality.

Tracing watermark and blind quality. A different PN matrix for each frame is
multiplied with the same watermark, and this product is embedded in the mid-band
frequencies from the discrete cosine transform (DCT) of each frame [25]. At the
receiver a reverse procedure is carried out and the average mean squared error be-
tween the transmitted and the original watermark across the video is computed. Even
though correlation with perceived quality is not evaluated, the authors demonstrate
that mean squared error (MSE) correlates with the bit-error rate.

Fu-Zheng et. al. propose a similar method for VQA, however instead of using
the whole frame, they use only certain sub-blocks is alternate frames [26]. Further,
the watermark is weighted based on the quantization parameter and instead of using
MSE, the number of correctly recovered watermark pixels are used as a measure of
degradation. Correlation with PSNR is demonstrated.

2 A macroblock is the default unit of coding for video compression algorithms. Refer to [21]
for details.
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Video Quality Assessment based on Data Hiding. Farias et. al. proposed a VQA
algorithm based on data hiding in [27]. Even though the authors claim that the
method is NR, a method that incorporates any information at the source end which is
utilized at the receiver end for QA, as per our definition, is RR VQA. The proposed
algorithm is based on the technique of water-marking. At the source end, a 8× 8
block Discrete Cosine Transform (DCT) of the frame is performed. A binary mask
is multiplied by an uncorrelated pseudo-random noise matrix, which is rescaled and
added to the medium frequency coefficients from the DCT. A block is selected for
embedding only if the amount of motion (estimated using a block motion estimation
algorithm) exceeds a certain threshold (Tmov). At the receiver end an inverse process
is performed and the mark is extracted. The measure of degradation of the video is
then the total squared error between the original mask and the retrieved mask. The
authors do not report statistical measures of performance as discussed before.

Data hiding in perceptually important areas. Carli et. al. proposed a block-based
spread-spectrum method for RR VQA in [28]. The proposed method is similar to
that in [27], and only differs in selecting where to place this watermark. Regions of
perceptual importance are computed using motion information, contrast and color.
The watermark is embedded only in those areas that are perceptually important,
since degradation in these areas are far more significant. A single video at different
bit-rates is used to demonstrate performance.

Limitations to the use of watermarking include the fact that the use of squared
error (which is generally computed at the receiver as a measure of quality) does
not relate to human perception, and that the degradation of a watermark may not be
proportional to (perceptual) video degradation.

4.2 Other Techniques

Low Bandwidth RR VQA. Using features proposed by the authors in [29], Wolf
and Pinson developed a RR VQA model in [30]. A spatio-temporal (ST) region con-
sisting of 32 pixels × 32 pixels × 1 second is used to extract three features. Further
a temporal RR feature which is essentially a difference between time-staggered ST
regions is also computed. At the receiver the same set of parameters are extracted
and then a logarithmic ratio or an error ratio between the (thresholded) features is
computed. Finally a Minkowski pooling is undertaken to form a quality score for
the video. The authors claim that the added RR information contributes only about
10 kbits/s of information.

Multivariate Data Analysis based VQA. Oelbaum and Diepold utilized a multi-
variate data analysis approach, where the HVS is modeled as a black-box, with some
input features [31, 32]. The output of this box is the visual quality of the video. The
authors utilize previously proposed features for NR IQA including blur , blocking
and video ‘detail’. They also extract noise and predictability based on simple tech-
niques. Edge, motion and color continuity form the rest of the features. Features are
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extracted on a frame-by-frame basis and the mean is utilized for processing. A set of
test videos and multivariate data analysis [33] are used to compute a feature matrix
F. A multiplicative signal correction (MSC) is performed using linear regression to
account for correlations between features to obtain F′. Further, partial least squares
regression (PLSR) is used to map the feature vectors onto subjective ratings. Up to
this point the method described is NR. However, the authors use a quality estimate
from the original video in order to improve NR VQA performance thus creating
a RR VQA algorithm. The authors demonstrate high correlation with human per-
ception. The use of the original video for the NR to RR transition is non-standard.
Further, the innovativeness of the algorithm hinges on the use of multivariate data
analysis, since the features used have been previously proposed in literature.

Neural Network based RR VQA. Le Callet et. al. proposed a time-delay neural
network (TDNN) [34] based RR VQA index in [35]. The algorithms follows the
general description of an RR algorithm, with extracted features borrowed from pre-
vious works - including power of frame differences, blocking and frequency content
measures. Their main contribution is to utilize a TDNN to perform a temporal inte-
gration of these indicators without specifying a particular form for temporal pool-
ing. A small test to evaluate performance is undertaken and decent performance is
demonstrated.

Foveation-based RR VQA. Meng et. al. proposed an algorithm based on features
extracted from spatio-temporal (ST) regions from a video for HD RR VQA [36].
The features extracted and the ST regions are based on the ideas proposed by Wolf
and Pinson [29]. Extracted features from the original video are sent to the receiver
over an ancillary channel carrying RR information. Based on the fact that the hu-
man perceives regions within the fovea with higher visual acuity (a fact that is very
pertinent for HD video), the authors divide the video into foveal, parafoveal and
peripheral regions, where the ST regions are computed with increasing coarseness.
The authors claim that the use of these different regions increases performance,
however, analysis of performance is lacking.

Quality Aware Video. Extending the work in [37] for images, Hiremath et. al.
proposed an algorithm based on natural video statistics for RR VQA in [38].
A video is divided into a group of pictures (GOP) and each frame in the GOP
is decomposed using a steerable pyramid [39] (an overcomplete wavelet trans-
form). Subbands at same orientation and scale but from different frames are then
aligned to obtain H(s, p,t), where s is the scale, p is the orientation (transla-
tion factor for the wavelet) and t represents the frame. The authors then compute
L2(s, p) = ∑2

n=0(−1)n
(N

n

)
log H(s, p, t + nΔ t). The histogram of L2 appears to be

peaked at zeros with heavy tails and this is fitted with a four parameter logistic
function. The four parameters of the fit and the KL divergence [40] between the
fit and the actual distribution for each subband in each GOP form the RR features.
Further, marginal distributions in each subband is fitted using a generalized Gaus-
sian model , which are additional RR features. The RR features are embedded in the
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DCT domain before transmission. At the receiver side, a similar process is under-
taken to estimate the same parameters on the degraded video. The KL divergence
between the original parameters and the distorted parameters is computed and av-
eraged across subbands to form a distortion measure for the video. The proposed
algorithm is not tested on a public dataset, but instead a small set of videos are used
for evaluation.

Representative-Luminance based RR VQA. The essence of the idea proposed by
Yamada et. al. in [41] is to estimate PSNR at the receiver using luminance infor-
mation embedded in the transmitted video stream. Block variance of each 16× 16
block is evaluated and the representative luminance of a frame is chosen from a
subset of the blocks which have variance equal to the median variance of the frame.
The authors claim that this captures the luminance of pixels in the medium fre-
quency range. PSNR is computed at the receiver using this additional information
and is used as the quality metric.

RR VQA based on Local Harmonic Strength. Gunawan and Ghanbari proposed
a RR VQA algorithm in [42] based on local harmonic strength. First a Sobel filter is
used to produce a gradient image [43]. This image is then segmented into blocks and
a harmonic analysis is applied on each of these blocks. Harmonic analysis consists
of applying the 2-D fast Fourier transform (FFT) [44] on a block-by-block basis
and computing the magnitude of the transform at each pixel location. The local har-
monic strength is the sum of the magnitudes of the transform at particular locations
within a block. The local harmonic feature is used as the RR feature. A similar
analysis is performed at the receiver on the distorted video and harmonic gains and
losses are computed as differences between the harmonic features of the reference
and distorted videos. A motion correction factor obtained from the mean of motion
vectors (computed using a block-based motion estimation algorithm) is then applied
to obtain the corrected harmonic gain/loss. The quality measure of the sequence is
a linear combination of these corrected harmonic features. The parameters of the
combination are obtained using a small training set.

Distributed Source Coding based estimation of channel-induced distortion. In
[45], each macroblock in a frame is rasterized (i.e., converted into a vector) x(k) and
then a RR feature vector y is computed, where each entry of the feature vector is

yi = aT x(k)

where a is s pseudo random vector with ||a|| = 1. This vector y is then subjected to
a Wyner-Ziv encoding [40], in order to reduce the bit-rate. At the receiver, a similar
process is carried out using the transmitted pseudo random vector and an estimate of
the mean square error (MSE) is obtained between the transmitted RR feature vector
and the one computed at the receiver. The authors claim that the method estimates
MSE well with a small increase in transmission bit-rate (for the RR features).
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RR Video Structural Similarity. The Structural SIMilarity index (SSIM) was pro-
posed as a FR image quality assessment technique in [46] and extended to VQA in
[47]. Albonico et. al. proposed a RR VQA in [48] where the extracted features were
similar to those proposed for video SSIM. Using 16× 16 blocks the mean μx(i,n)
and standard deviation σx(i,n) for the ith macroblock in the nth frame is computed
at the source and are transmitted as the RR feature vector. At the receiver end, a dis-
tortion estimation is undertaken using the technique described in [49] and reviewed
in the next section to produce D̂(i,n). Further, the mean μx̂(i,n) and standard devia-
tion σx̂(i,n) are estimated at the receiver end from the received frame. A covariance
estimate is then formed as:

σxx̂(i,n) = 0.5× [σx̂(i,n)2 +σx(i,n)2 +(μx̂(i,n)− μx(i,n))2 − D̂(i,n)]

This allows for computation of the SSIM index for each frame. The authors state
that the index estimated in such a fashion fails to match-up to the original SSIM
value and hence a lookup-table based approach is used to eliminate a bias in the
estimated values. The authors claim that this allows for an estimate of the SSIM
index and hence of video quality.

5 No-Reference Algorithms

No-reference algorithms are those that seek to assess quality of a received video
without any knowledge of the original source video. In a general setting, these al-
gorithms assume that the distorting medium is known - for example, compression,
loss induced due to noisy channel etc. Based on this assumption, distortions specific
to the medium are modeled and quality is assessed. By far the most popular distort-
ing medium is compression and blockiness and bluriness are generally evaluated for
this purpose. We classify NR algorithms as those based on measuring blockiness,
those that seek to model the effect of multiple artifacts (for example, blocking and
blurring ) and other techniques based on modeling the channel or the HVS .

5.1 Blockiness-Based Techniques

Blockiness measure for MPEG-2 Video. Tan and Ghanbari [50] used a harmonic
analysis technique for NR VQA which was also used in [42] (for RR VQA). A So-
bel operator is used to produce a gradient image, which is then subjected to a block
FFT . The ratio of sum of harmonics to sum of all AC components within a block is
computed in both horizontal and vertical directions. The phase of harmonics across
the frame are then histogrammed. The authors suggest that a smaller standard devi-
ation in the (empirical) probability density function (PDF) indicates greater block-
iness. Based on certain pre-set thresholds on the harmonic ratio of the magnitudes
and the phase of the harmonics a block is considered to be ‘blocky’. The authors
however test their technique on I and P-frames and state that the method does not
function well for B-frames.
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Detecting blocking artifacts in compressed video. Vlachos proposed an algorithm
based on phase correlation to detect blockiness in MPEG coded SD videos [51]. A
set of sub-sampled images from each frame is cross-correlated to produce a block-
iness measure. The sampling structure chosen is such that each sub-image consists
of a particular pixel from one of the 8×8 block used for MPEG compression. Even
though the authors do not test this measure on a database and use an informal subjec-
tive test for one video, Winkler et. al. compare this measure with two other measures
in [52]. However, Winkler et. al. also choose to use a part of the VQEG dataset to
examine performance. Vlachos’ measure does not seem to perform too well.

Perceptually significant block-edge impairment metric. Suthaharan proposed the
perceptually significant block-edge impairment metric (PS-BIM) in [53] that uses
luminance masking effects to improve performance. The measure is a ratio of two
terms, each of which is expressed as a linear combination of horizontal and verti-
cal blocking measures. The horizontal and vertical blocking measures are weighted
sums of simple luminance differences where the weights are based on luminance
masking effects. The authors used I-frames from coded sequences to demonstrate
performance. No subjective evaluation was undertaken to evaluate performance.

NR blocking measure for adaptive video processing. Muijs and Kirenko compute
a normalized horizontal gradient DH,norm at a pixel as the ratio of the absolute gra-
dient and the average gradient over a neighboring region in a frame of a video [54].
They then sum DH,norm over the rows to produce a measure Sh as a function of the
column. Blocking strength is then a ratio of the mean value of Sh at block bound-
aries to the mean value of Sh at intermediate positions. A small study was used to
evaluate subjective quality and the algorithm was shown to perform well.

5.2 Multiple Artifact Measurement Based Techniques

No-reference objective quality metric (NROQM). Caviedes and Oberti computed
a set of features including blocking, blurring , and sharpness from the degraded
video in order to assess its quality [55]. Blocking is computed as weighted pixel dif-
ferences between neighboring blocks. Ringing 3 is computed using a combination of
edge detection and ‘low-activity’ area detection in regions around edges. Clipping -
saturation at low/high pixel values due to numerical precision - is evaluated based
on grey level values of pixels. Noise is measured using a block-based approach. A
histogram-based approach is utilized to compute contrast and a kurtosis based ap-
proach is used for sharpness measurement. A training set of videos (with subjective
MOS ) is used to set parameters in order to combine these measures into a single
score. A separate set of videos was used for testing and high correlation with human
perception was demonstrated.

3 Ringing artifacts are spurious signals that appear around regions of sharp-transitions. In
images, these are seen as ‘shimmering’ rings around edges.
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Quantifying blockiness and packet-loss. Babu et al. proposed two NR VQA met-
rics - one for blocking and another for packet-loss - in [56]. In essence, a block
is said to be blocky if the edge strength does not have ‘enough’ variance. Overall
blockiness is then the ratio of blocky blocks to total blocks in a frame. To quantify
packet loss binary edge images are formed using row differences and for each mac-
roblock, the measure of packet loss is the sum of the absolute differences between
the edge images. For each frame, a squared sum is then computed as the final mea-
sure. A comparison of the proposed metrics is undertaken with others proposed in
literature, however this comparison does not involve any subjective correlations.

NR VQA based on artifact measurement. Farias and Mitra proposed a metric that
is based on measurement of blockiness , bluriness and noisiness [57]. Blockiness is
measured using a modification of Vlachos’ algorithm [51]. Width of edges (com-
puted using a Canny edge detector) in a frame is used as a measure of blur. For
each of the 8×8 blocks, variances of each of the 9 overlapping 3×3 regions within
a block is computed, and the average of the lowest 4 variances is the block noise
variance. A histogram of these averages is then used to compute a measure of the
frame noisiness. A weighted Minkowski sum of these artifacts is a measure of qual-
ity. Parameters for this sum are estimated using subjective data. Using subjective
data from a small study, the algorithm was shown to perform well.

NR VQA based on HVS. Massidda et. al. proposed an NR metric for blur detec-
tion, specifically for 2.5G/3G systems [58]. They computed blockiness, bluriness
and moving artifacts to evaluate quality. Blockiness is evaluated using 8× 8 non-
overlapping blocks. Within each block they define 4 regions, and sums of horizontal
and vertical edges (obtained using a Sobel filter) are computed over each of these
regions. These values are then collapsed using Minkowski summation to form a sin-
gle value (BSob). Blur is evaluated using the approach proposed in [59]. Mean and
variance of gradients from two consecutive frames are computed and pooled to ob-
tain a measure of moving artifacts-based distortion. The final quality index is is then
a weighted combination of these three artifacts. The authors evaluate the quality in-
dex as a function of the quantization parameter, instead of using subjective scores.

Prototype NR VQA system. Dosselmann and Yang propose an algorithm that es-
timates quality by measuring three types of impairments that affect television and
video signals - noise, blocking and bit-error based color impairments [60]. To mea-
sure noise, each frame is partitioned into blocks and inter-frame correlations be-
tween (a subset of) blocks are computed and averaged to form an indicator for that
frame. Using a spatio-temporal region spanning 8 frames, the variance σ2

η is com-
puted and the noise measure is η = 1−(1−σ2

η )p1 , where p1 is experimentally set to
2048. The final noise metric is an average of 256 such values. An alignment based
procedure is used to quantify blocking. Measurement of channel induced color error
is performed by inspecting the R, G and B values from the RGB color space of a
frame and thresholding these values. Even though these measures are not pooled the
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authors demonstrate how these measures can be incorporated into a system. Corre-
lation with subjective assessment is not studied.

NR VQA based on frame quality measure. Kawayoke and Horita proposed a
model for NR VQA consisting of frame quality measure and correction, asymmet-
ric tracking and mean value filtering [61]. The frame quality measure is simply
neighboring pixel differences with and without edge preservation filtering. This is
histogrammed, pooled and corrected to obtain the final measure. Asymmetric track-
ing accounts for the fact that humans tend to perceive poorer regions with greater
severity than good ones [62]. Finally mean value filtering removes high frequency
ingredients from the measure to produce the quality index. Evaluation on a small
dataset shows good correlation with perception.

5.3 Other Techniques

NR VQA incorporating motion information. Yang et. al. proposed a NR VQA
which incorporates motion information in [63]. Block-based motion estimation is
applied on a low-pass version of the distorted video. Translation regions of high
spatial complexity are identified using thresholds on variance of motion vectors and
luminance values. Using the computed motion vectors for these regions, sum of
squared error is computed between the block under consideration and its motion
compensated block in the previous frame, which is then low-pass filtered to give a
spatial distortion measure. A temporal measure is computed using a function of the
mean of the motion vectors. A part of the VQEG dataset is used to train the algo-
rithm in order to set the thresholds and parameters in the functions. Testing on the
rest of the dataset, the algorithm is shown to correlate well with human perception
of quality.

NR Blur measurement for VQA. Lu proposed a method for blur evaluation to mea-
sure blur caused by video compression and imaging processes [64] . First a low pass
filter is applied to each frame in order to eliminate blocking artifacts. Only a subset
of pixels in a frame are selected on the basis of edge intensity and connectivity for
blur measurement, in order to process only that ‘type’ of blur we are interested in
(for example, blur due to compression as against blur due to a low depth of field).
Blur is then estimated using a combination of an edge image and gradients at the
sample points. The authors demonstrated that their algorithm correlates well with
PSNR and the standard deviation of the blurring kernel for three videos.

NR Fluidity Measure. In this chapter, we have so far discussed NR measures which
generally do not model frame-drops. The measure proposed by Pastrana-Vidal and
Gicquel in [65] covers this important aspect of NR VQA. Other works along the
same lines that we haven’t discussed here include [66], [67] and [68]. In [65] the
discontinuity along the temporal axis, which the authors label fluidity break is first
isolated and its duration is computed. Abrupt temporal variation is estimated using
normalized MSE between luminance components in neighboring frames. Based on
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experimental results, a series of transformations and thresholds are applied to pro-
duce a quality index for the video. A subjective study was carried out and good
correlation with results were demonstrated.

The authors extend the framework proposed in [65] for fluidity measurement in
[69] where a clearness-sharpness metric is introduced to quantify perceptually sig-
nificant blurring in video. The two measures are pooled using a multiplicative term
(in order to account for approximate spatio-temporal separability of the HVS ) and a
final quality metric is produced. A set of videos were used to test the proposed index.

Perceptual Temporal Quality Metric. Yang et. al. compute the dropping severity
as a function of the number of frames dropped using timestamp information from
the video stream [70]. They then segment the video temporally into cuts/segments
[71], and determine the motion activity of each such segment using the average
of (thresholded) motion vectors from that segment. The dropping severity is then
mapped onto a perceptually significant dropping factor based on this motion in-
formation. A temporal pooling using a temporal window based approach is then
undertaken. This value is then subjected to a non-linearity and the parameters are
estimated using a fit to subjective data, with hardcoded thresholds. Further weight-
ing and pooling of this temporal indicator leads to the final quality score. Using a
mix of expert and non-expert viewers, a subjective study was undertaken and good
performance on a small set of videos was demonstrated.

NR VQA based on error-concealment effectiveness. Yamada et. al. defined an
error concealment process to be ineffective for a block if the absolute sum of mo-
tion vectors for that block (obtained from motion vector information in the encoded
video stream) is greater than some threshold [72]. Luminance discontinuity is then
computed at the erroneous regions as the mean of absolute differences between
correctly decoded regions and regions where error concealment has been applied.
Another threshold indicates if this region has been concealed effectively. No eval-
uation with respect to subjective perception is carried out, but effectiveness of the
measures are evaluated on a test-set based on packet-loss ratio and number of im-
pairment blocks.

NR modeling of channel distortion. Naccari et. al. proposed a model for channel
induced distortion at the receiver for H.264/AVC [21] coded videos in [49]. The
model seeks to estimate the mean-squared error between the received and transmit-
ted videos - which can also be expressed as the mean distortion induced by all the
macroblocks in a frame. Hence the quantity they wish to estimate is the distortion
induced by the ith macroblock in frame n - D̂i

n. In order to do this, they consider
two cases depending upon whether the macroblock under consideration was lost or
correctly received. In the former case, the predicted distortion is modeled as a sum
of distortions arising from motion vectors, prediction residuals and distortion prop-
agation. For the latter case, the distortion is simply due to error propagation from
the previous frame. The de-blocking filter in H.264/AVC [21] is further modeled
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using attenuation coefficients. Correlation between estimated channel distortion and
measured channel distortion is estimated for performance evaluation.

NR VQA for HD video. Keimel et. al. proposed an NR VQA algorithm specifi-
cally for HD video [73]. Features extracted for this purpose include blur, blockiness,
activity and predictability using previously proposed methods. Different pooling
strategies are used for each of these features, followed by principal component anal-
ysis (PCA) for dimensionality reduction and partial least squares regression (PLSR)
to map the features to visual quality. A correction factor is then incorporated based
on a low-quality version of the received video to find the final quality score. The
astute reader would have observed that the proposed method is pretty general and
does not specifically address HD video. The proposed algorithm is tested on HD
video however and decent performance is demonstrated.

Video quality monitoring of streamed videos. Ong et. al. model jerkiness between
frames using absolute difference between adjacent frames and a threshold [74]. Pic-
ture loss is similarly detected with another threshold. Blockiness is detected using
using a technique similar to those proposed previously. The test methodology is
non-standard and requires users to identify number of picture freezes, blocks and
picture losses in the videos. Perceptual quality is not evaluated however.

Other techniques for NR VQA include the one proposed in [75] which we do not
explore since a patent on the idea was filed by the authors. Further, many of the met-
rics discussed here were evaluated for their performance using a variety of criteria in
[76, 77]. Hands et. al. provide an overview of NR VQA techniques and their appli-
cation in Quality of Service (QoS) [78]. Kanumri et. al. model packet loss visibility
in MPEG-2 video in [79] to assess quality of video.

6 Conclusion

In this chapter we began with a discussion of video quality assessment and intro-
duced datasets to evaluate performance of algorithms. We then went on to describe
the human visual system briefly. A summary of recent reduced and no reference
algorithms for quality assessment then followed.

We hope that by now the reader would have inferred that NR VQA is a dif-
ficult problem to solve. It should also be amply clear that even though a host of
methods have been proposed (most of which are listed here) there does not seem to
emerge an obvious winner. Our arguments on the use of a common publicly avail-
able dataset for performance evaluation are hence of importance. The reader would
have observed that most authors tend to select a particular kind of distortion that
affects videos and evaluate quality. Any naive viewer of videos will testify to the
fact that distortions in videos are not singular. In fact, compression - which is gen-
erally assumed to have a blocking distortion, also introduces blurring and motion-
compensation mismatches, mosquito noise, ringing and so on [80]. Given that there
exist a host of distortions that may affect a video, one should question the virtue of
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trying to model each individual distortion. Further, if one does choose to model each
distortion individually, a method to study the effect of multiple distortions must be
undertaken. Again, this is a combinatorially challenging problem.

A majority of algorithms seek to model spatial-distortions alone and even though
some methods include elementary temporal features, a wholesome approach to NR
VQA should involve a spatio-temporal distortion model. Further, in most cases a
majority of the design decisions are far removed from human vision processing. It
is imperative as researchers that we keep in mind that the ultimate receiver is the
human and hence understanding and incorporating HVS properties in an algorithm
is of essence. Finally, even though we listed statistical measures to evaluate per-
formance, researchers are working on alternative methods to quantify performance
[81, 82, 83].
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Chapter 2 
Quality of Experience for High Definition 
Presentations – Case: Digital Cinema 

Andrew Perkis, Fitri N. Rahayu, Ulrich Reiter, Junyong You,  
and Touradj Ebrahimi* 

Abstract. World-wide roll out of Digital Cinema (D-Cinema) is pushing the 
boundaries for Ultra High Definition content to all of us – the users. This poses 
new challenges on assessing our perception of high quality media and also under-
standing how quality can impact the business model. We use Quality of Experi-
ence (QoE) as the term used to describe the perception of how usable or good the 
users think the media or services are. In order to understand QoE we explore the 
Human Visual System (HVS) and discuss the impact of HVS on designing a 
methodology for measuring subjective quality in D-Cinema as a use case. Follow-
ing our methodology, we describe our laboratory set up at the NOVA kino – a 440 
seat fully digitized screen in full cinema production 24/7. This setup is used for 
subjective assessment of D-Cinema content, applying a test methodology adopted 
from existing recommendations. The subjective quality results are then used to  
design and to validate an objective metric. Our experiments demonstrate that tradi-
tional quality metrics cannot be adopted in D-Cinema presentations directly. In-
stead we propose a HVS-based approach to improve the performance of objective 
quality metrics, such as PSNR, SSIM, and PHVS, in quality assessment of  
D-Cinema setups. Finally we conclude by discussing how quality impacts the 
business model, using empirical data from a pilot D-Cinema roll out in Norway – 
the NORDIC project. This pilot showed that quality can influence users and create 
more loyalty and willingness to pay a premium if the high quality is used to en-
hance their experience. Examples are the widespread reintroduction of 3D as well 
as alternative content such as music, sports, and business related presentations. 

1   Introduction 

The future world of ubiquitous, interconnected media services and devices can be 
analyzed from two perspectives: the perspective of the media production/delivery 
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chain – the INDUSTRY, and the perspective of the media consumption chain – 
the USER. Behind these two perspectives, there is a technology drive and a busi-
ness drive. The technology drive is to a large extent summarized through efforts 
such as the European framework initiative Networked Media and is thus well cov-
ered through research and development. However, Networked Media is not  
complete without analysis and understanding of business perspectives [1]. In this 
context: 

• The media production/delivery chain represents the business perspectives and 
opportunities as well as the needs for investments. 

• The media consumption chain represents the buyers of the media and thus 
represents the income potential. 

Together, these two perspectives create the media value chain. The relative impor-
tance of each perspective in the media value chain is a chicken and egg problem. 
In our analysis, we choose to put the user at the centre of attention considering that 
the industry is there to serve the user and must understand their needs and percep-
tion in offered products and services. 

The expectations and technical comfort levels of the users have evolved in 
terms of complexity, as users are increasingly embracing advanced technologies 
which fit their lifestyle (leisure, work and education). In this direction, a typical 
user today utilizes an array of digital media providers, services and devices. 

The framework to assess the user’s behavior and the necessary technology 
management is based on assessing the user experience in a consistent way, and 
rewarding the user’s loyalty through innovative packages and new engaging ser-
vices, and content delivered through their device of choice whenever and wher-
ever they want it. These assessments are crucial for the industry and drive their  
innovations and investments in future new digital media and services. 

Under these new conditions, the ultimate measure of media communications 
and the services they offer is how users perceive the performance and especially 
the quality of the media, in technical terms denoted by Quality of Experience 
(QoE). QoE is typically the term used to describe the perception of a specific con-
sumer of a given product or service, in terms of added value, usability, and  
satisfaction. 

In this light, QoE can be defined as the characteristics of the sensations, percep-
tions and expectations of people as they interact with multimedia applications 
through their different perceptual sensors (mostly restricted to vision and hearing 
in today’s audiovisual context). QoE is a combined/aggregated metric that tells if 
Quality is good, acceptable or bad. The impact on the business model is obvious 
although not always taken into consideration. 

A poor QoE will result in unsatisfied users, leading to a poor market perception 
and ultimately, brand dilution. Being able to quantify the QoE as perceived by 
end-users can play a major role in the success of future media services, both for 
the companies deploying them and with respect to the satisfaction of end-users 
that use and pay for the services [2]. 

In our definition, we will view the media sector as consisting of four major  
industries: 
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• The printed media industry (newspapers and magazines) 

• The broadcast industry (radio and TV) 

• The electronic media industry (web, mobile and media on the move) 

• The motion picture industry (cinema) 

Both the electronic media industry and especially the motion picture industry strive 
for High Definition. In this chapter we will focus on the motion picture industry, as 
this at the moment is perceived as producing the highest quality media to users. 

Going to the movies is the end product of a long process involving a complex 
value chain. This value chain has developed and operated in the same manner for 
over 100 years. Innovations have evolved and refined the process. This process in-
cludes a few major revolutions such as going from silent movies to sound and 
more recently being the last of the entertainment industries to go digital [3]. This 
innovation bears in it a revolution and a dramatic change for some of the players 
in the value chain. The innovation itself is technical, which also results in organ-
izational and managerial changes. 

The open question still remains and is whether quality plays a role in the devel-
opment, is an integral part of the business model, and that the focus on the innova-
tion is on the user. 

Digital Cinema (D-Cinema) requires a complete change of infrastructure in all 
screens worldwide. The traditional 35mm film projector needs to be replaced with a 
D-Cinema server and a digital projector. The process of the change is referred to as the 
D-Cinema roll out which results in the exhibitors adopting and starting to use the new 
technology. The way the roll out is done is governed by a business model where the 
actors in the value chain have to agree on a financial model to cover investments, and 
novel organization and business models to deliver the film. The predominant financial 
model used so far is a so called Virtual Print Fee (VPF), where studios pay the exhibi-
tors a contribution towards the investment based on long term agreements to screen 
their digital films. The associated business model has been through setting up busi-
nesses to purchase D-Cinema equipments and to lease them to exhibitors. These busi-
nesses are referred to as 3rd party integrators.  

So far quality has not been used explicitly to drive the roll out, although it is an 
important factor. The motivations for the change are complex and not solely based 
on quality, and not all benefits are seen by the user. 

One of the fundamental problems of D-Cinema is that the exhibitors them-
selves, the owners of the screens, are those in the value chain with the least benefit 
of the digitization. The highest benefits are for the content owners, the studios 
producing the film, and possibly on the end-user, the cinema goers. This means 
that the roll out has to be communicated and motivated between all players in the 
value chain in order for the adoption to take place. It is crucial that the financial 
and business model considers this for D-Cinema to succeed and grasp all players. 
D-Cinema roll out opens for the use of change agents, arenas, people and  
technologies trying to convince and to persuade the exhibitors to change despite 
the fact that the pain is greater than the gain.  
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The rest of this chapter is organized as follows. Section 2 provides an introduc-
tion to the Human Visual System and how this relates to quality metrics and 
evaluations. Section 3 outlines our evaluation set up and methodology for doing 
subjective quality assessments in a real cinema on D-Cinema quality content. Sec-
tion 4 provides our work on developing perceptual image metrics for D-Cinema 
content and correlates the results to the subjective assessment. Section 5 brings us 
back to the business perspective and provides results from the NORDIC  
D-Cinema trial which was run in Norway from 2005 to 2008. 

2   Role of Human Visual System in the Perception of Visual 
Quality  

The Human Visual System (HVS) seldom responds to direct stimulation from a 
light source. Rather, light is reflected by objects and thus transmits information 
about certain characteristics of the object. The reflected ray of light enters the eye-
ball through the cornea. The cornea represents the strongest part of the refracting 
power of the eye, providing about 80% of the total eye's refracting capacity. After 
passing through the cornea and the watery aqueous humor, the photon beam enters 
the inner eye through the pupil, which regulates the amount of light allowed to en-
ter. The lens focuses the light on the sensory cells of the retina [4]. 

The internal layer of the eyeball is made up of a nervous coat called retina. The 
retina covers the inner back part of the eyeball and  is where the optical image is 
formed by the eye's optical system. Here, a photochemical transduction occurs: 
nerve impulses are created and transmitted along the optic nerve to the brain for 
higher cortical processing. The point of departure of that optic nerve through the 
retina does not have any receptors, and thus produces a “blind spot”. The retina 
consists of two different types of light-sensitive cells, rods and cones. There are 
about 6.5 million cones in each eyeball, most of them located in the middle of the 
retina, in a small area about 1.mm in diameter called the fovea or fovea centralis. 
Fovea is the center of the eye's sharpest vision and the location of most color per-
ception, performing in bright light, but being fairly insensitive at lower light lev-
els. Located around the fovea centralis are about 120 million rods. They are 
mainly responsible for vision in dim light and produce images consisting of vary-
ing shades of black and white. The acuity over most of that range is poor, and the 
rods are multiply connected to nerve fibers, so that a single nerve fiber can be ac-
tivated by any one of about a hundred rods. In contrast, cones in the fovea cen-
tralis are more individually connected to nerve fibers [5]. 

The eyeball is situated in the orbital cavity, a location that protects it and pro-
vides a rigid bony origin for the six extrinsic muscles that produce ocular move-
ment. When the visual system focuses on a certain object, then the optical axes of 
both eyes are adjusted toward it. According to Snell and Lemp, the sensation of 
tension in the muscles serves as an indicator of the distance the object is away. 
The direction of a visually perceived object corresponds directly to the position of 
its image on the retina. In the determination of an object's distance to the eye, 
there are a number of potential sources or cues of depth. 
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2.1   Cortical Processing of Stimuli 

The optic nerves, transmitting sensory information from each eye, proceed poste-
rior and medially to unite at the optic chiasm. There, fibers from the nasal halves 
of each retina cross over to the opposite hemisphere. Fibers from the temporal 
halves project to the hemisphere on the same side. The result is that signals from 
the same regions of the visual field are projecting to the same hemisphere; thus, 
the left half of the visual field projects to the right half of retina, which in turn 
sends neural signals to the right hemisphere.  

There is a point-to-point relation between retina, lateral geniculate nucleus, and the 
primary visual cortex. Impulses from the upper and lower halves of the visual field are 
located in different parts of the optic radiation, and consequently also project into dif-
ferent areas of the primary visual cortex V1. This is called retinotopic projection, as the 
distribution of stimulation on the retina is preserved in the cortex. 

The primary visual cortex V1 seems to separate the pattern of light falling on 
the retina into discrete features. Apparently, these are retinal location, orientation, 
movement, wavelength, and the difference between the two eyes. In subsequent 
cortical processing these features are further differentiated. Therefore, the primary 
visual cortex has the task of sorting visual information and distributing it to other, 
more specialized cortical areas. 

Two visual streams have been identified by Ungerleider and Mishkin in 1982 
that originate from the primary visual cortex: the dorsal or parietal stream, and the 
ventral or temporal stream. Apparently, the first correlates more to location, depth 
and movement, whereas the latter is more connected to color, spatial detail and 
form [6, 7]. Goldstein, on the basis of the experiments performed by Ungerleider 
and Mishkin, suggests that perceiving the location of an object is attributed to the 
dorsal stream, whereas the ventral stream determines the object's identity – the 
where and what dimensions of vision [8].  

Although the basic mechanisms of sensory information transmission are well 
understood, a detailed understanding of how visual input is processed and inter-
preted is still missing. Especially the transition from neuronal reaction to percep-
tion, i.e. the process of attaching a meaning to the stimulus, remains unexplained. 
Based on the findings introduced above, it seems that for the perception of visual 
quality, the ventral stream is of higher importance than the dorsal stream. How 
this affects visual perception remains unclear. 

2.2   Perception and Attention 

From experience we know that perceived visual quality is highly context- and 
task-dependent. This is related to the way we generally perceive stimuli: Neisser's 
model of the Perceptual Cycle describes perception as a setup of schemata,  
perceptual exploration and stimulus environment [9]. These elements influence 
each other in a continuously updated circular process (see Fig. 1). Thus, Neisser's 
model describes how the perception of the environment is influenced by back-
ground knowledge which in turn is updated by the perceived stimuli. 
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Fig. 1 Neisser’s perceptual cycle 

In Neisser's model, schemata represent the knowledge about our environment.  
They are based on previous experiences and are located in the long term memory. 
Neisser attributes them to generate certain expectations and emotions that steer our 
attention in the further exploration of our environment. The exploratory process 
consists, according to Neisser, in the transfer of sensory information (the stimulus) 
into the short-term memory. In the exploratory process, the entirety of stimuli (the 
stimulus environment) is compared to the schemata already known. Recognized 
stimuli are given a meaning, whereas unrecognized stimuli will modify the sche-
mata, which will then in turn direct the exploratory process The differences in 
schemata present in the human individual cause the same stimulus to provoke dif-
ferent reactions between subjects. Following Neisser's model, especially new  
experiences (those that cause a modification of existing schemata) are likely to 
generate a higher load in terms of processing requirements for the percepts. 

The schemata therefore also control the attention that we pay toward stimuli. A 
large number of studies have tried to identify and describe the strategy that is ac-
tually used in the human perceptual process. Pashler gives an overview and identi-
fies two main concepts of attention [10]: attention as based on exclusion (gating) 
or based on capacity (resource) allocation. The first concept defines the mecha-
nism that reduces processing of irrelevant stimuli to be attended. It can be re-
garded as a filtering device that keeps out stimuli from the perceptual machinery 
that performs the recognition. Attention is therefore identified with a purely exclu-
sionary mechanism. The second concept construes the limited processing resource 
(rather than the filtering device) as attention. It suggests that when attention is 
given to an item, it is perceptually analyzed. When attention is allocated to several 
items, they are processed in parallel until the capacity limits are exceeded. In that 
case, processing becomes less efficient. 

Neither of the two concepts can be ruled out by the many investigations performed 
up to now. Instead, assuming either, the gating or the resource interpretation, all  
empirical results can be accounted for in some way or other. As a result, it must be 
concluded that both capacity limits and perceptual gating characterize the human  
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perceptual processing. This combined concept is termed Controlled Parallel Process-
ing (CPP). CPP claims that parallel processing of different objects is achievable, but 
optional. At the same time, also selective processing of a single object is possible, 
largely preventing other stimuli from undergoing full perceptual analysis. 

For the evaluation of perceived visual quality in the D-Cinema context this 
means that subjective assessment methodologies and objective metrics found to be 
applicable for other types of visual presentations may not be valid here. In fact, 
screen size and resolution in the D-Cinema context differ greatly from those set-
ups for which recommendations exist. At the same time, it can be assumed that 
cinema goers will expect the highest quality possible (or perceivable), given that 
the industry has claimed to provide exactly this. 

3   Subjective Image Quality Assessment in D-Cinema  

In the field of subjective evaluation, there are many different methodologies and 
rules to design a test. The test recommendations described by the ITU have been in-
ternationally accepted as guidelines for conducting subjective assessments. Rec-
ommendation ITU-R BT500-11 [11] provides a thorough guideline for the testing 
methods and the test conditions of subjective visual quality assessments. Important 
issues in the guidelines include characteristics of the laboratory set up, stimulus 
viewing sequence, and rating scale. Although recommendation ITU-R BT500-11, 
is the guidelines intended for assessing picture quality of traditional television 
broadcast, it still provides relevant guidelines for conducting subjective visual qual-
ity assessment of recent and enhanced services such as internet based multimedia 
applications, HDTV broadcasting, etc. Several issues described in the ITU-R 
BT500-11 are relevant to subjective quality assessment in digital cinema environ-
ment. Another important guideline relevant to this work is recommendation ITU-R 
BT.1686 [12]; it provides recommendations on how to perform on-screen meas-
urements of the main projection parameters of large screen digital imagery applica-
tions, based on presentation of programs in a theatrical environment.  

3.1   Laboratory Set Up  

The evaluation described here has been conducted at a commercial digital cinema 
in Trondheim, Norway. The DCI-specified cinema set up is considered to provide 
ideal viewing conditions. Figure 2 shows a view of the auditorium. Table 1 gives 
the specifications of the movie theatre. 

The digital cinema projector used is a Sony CineAlta SRX-R220 4K projector, 
one of the most advanced projectors in digital cinema installations around the 
world (for more details on this projector see [13, 14]). Projector installation, cali-
bration, and maintenance have been performed by Nova Kinosenter, Trondheim 
Kino AS. Therefore, it did not seem necessary to perform any additional meas-
urement of contrast, screen illumination intensity and uniformity, or any other 
measurements recommended in [12]. 
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Table 1 Specification of the movie theater 

DISPLAY HALL PROJECTOR 

Screen (H x W) 5 x 12 m Number of Seats 440 

Projection Dis-
tance 

19 m 
Number of Wheel-
chair Seats 

3 

WS 1:1.66 Width 18.3 m 

WS 1:1.85 Floor area 348 m2 

Image Format 

CS 1:2.35 Built Year 1994 

Type Sony SRX-
R220 4K 

 

 

Fig. 2 Liv Ullman Auditorium of Nova Kinosenter (NOVA 1) 

In order to reproduce a movie theatre experience, the assessment was con-
ducted in the same conditions as when watching a feature film, i.e. in complete 
darkness. To illuminate the subject’s scoring sheets during the subjective assess-
ment without affecting the projected images perception, small low-intensity lights 
were attached to the clipboard used for voting by each subject. 

The physical dimensions of the screen are 5 meters by 12 meters (H x W); as a 
result the observation at 1H is equal to observation at 5 meters from the screen. To 
get a viewing distance of 1H, subjects must be seated in the front rows of the thea-
tre. However, this location is not optimal because the point of observation is too 
close to the lower border of the screen, and is uncomfortable for the subjects. For 
this reason, a viewing distance of 2H was selected. Consequently, the test sub-
jects’ seats were located in the 6th row from the screen as illustrated by the cross 
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mark in Fig. 3. In order to ensure a centralized viewing position, only five seats 
located in the 6th row from the screen were used by subjects during the evaluation. 
The location of these seats is illustrated by the cross marks in Fig. 4. 

 

Fig. 3 Liv Ullman auditorium of Nova Kinosenter (NOVA 1) (side view) 

 

 

Fig. 4 Liv Ullman auditorium of Nova Kinosenter (NOVA 1) (top view) 
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3.2   Test Materials  

The digital cinema specification [15] provides guidance for selection of test mate-
rials for the subjective assessments’ stimuli. Digital cinema is based on 2K or 4K 
imagery, which is a significantly higher quality in terms of larger pixel counts per 
image when compared to standard and high definition content, respectively. In or-
der to comply with the DCI specifications, the stimuli used in the assessment were 
images taken from the DCI Standard Evaluation Material (StEM) [16]. From 
these, six 2K images were selected. Because we only take into account the lumi-
nance component of images in this study, the luminance component was extracted 
from each image resulting in six gray scale 2K images.  

The subjective assessment was performed by examining a range of JPEG 2000 
compression errors introduced by varying bit rates. In the design of a formal sub-
jective test, it is recommended to maintain a low number of compression condi-
tions in order to allow human subjects an easier completion of their evaluation 
task. Accordingly, 8 different conditions were applied to create 8 processed im-
ages from each source image. The selected conditions covered the whole range of 
quality levels, and the subjects were able to note the variation in quality from each 
quality level to the next. This was verified prior to the subjective quality assess-
ment with a pilot test that involved expert viewers in order to conclude the selec-
tion of the final 8 bit rates. As a result of the pilot test, the selected bit rates were 
in the range of 0.01 to 0.6 bits/pixel. To create 48 processed gray scale images, 6 
source images were compressed using the KAKADU software version 6.0, with 
the following settings: codeblock size of 64x64 (default), 5 decomposition levels 
(default), and switched-off visual frequency weighting. 

3.3   Test Methods and Conditions  

There are several stimuli viewing sequence methods described in Recommenda-
tion ITU-R BT.500-11 [11]. They can be classified into two categories: single 
stimulus (subjects are presented with a sequence of test images and are asked to 
judge the quality of each test image) and double stimulus (subjects are presented 
with the reference image and the test image before they are asked to judge the 
quality of the test image). The presentation method of single stimulus is sequen-
tial, whereas the presentation method of double stimulus can be sequential and  
simultaneous (side by side). The decision on which test method to use in a subjec-
tive assessment is crucial, because it has a high impact on the difficulty of the test 
subjects’ task. The pilot test prior to the main subjective assessment was also con-
ducted to compare sequential presentation and simultaneous presentation. Differ-
entiating between levels of high quality images requires a test method that  
possesses a higher discriminative characteristic. Our pilot test indicated that the 
simultaneous (side by side) presentation had a higher discriminative characteristic 
than the sequential presentation order. Therefore, the subjective quality assess-
ment used the Simultaneous Double Stimulus test method, in which the subjects 
are presented with the reference image and the distorted test image displayed side 
by side on the screen. Figure 5 illustrates the display format in this method. 
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Fig. 5 Display format of Simultaneous Double Stimulus 

The reference image is always shown on the left side of the image and the dis-
torted image is shown on the right side. Test subjects grade the quality of the dis-
torted image on the right hand side by comparing it to the reference image on the 
left. 

The quality scale is the tool that the human subjects utilize to judge and to re-
port on the quality of the tested images. One of the most popular quality scales in 
the subjective quality assessment research field is the 5 point quality level. Here, a 
10 point quality scale was chosen, because the pilot test had shown that eight dif-
ferent quality levels could be clearly differentiated. Also, selecting a finer scale 
seemed to be advantageous due to the higher quality of test images used, in which 
a finer differentiating quality is suitable.   The test used a discrete quality grading 
scale, which implies that the subjects are forced to choose one of the ten values 
and nothing in between. The quality grading scale, which is illustrated in Fig. 6, 
refers to “how good the picture is”.  

The test was conducted as a single session. Each of the 48 processed images 
and the 6 references were presented for a period of 10 seconds; subjects evaluate 
each presented image once.  Subjects then needed to vote on their questionnaire 
sheet before the next image was presented, and they were given 5 seconds to cast 
their vote. The presentation structure of the test is illustrated in Fig. 6. The total 
session length was 15 minutes. Prior to the main session, a training session was 
conducted. Subjects were informed about the procedure of the test, how to use the 
quality grading scale, and the meaning of the designated English term related to 
the distortion scale of the image. During the training session, a short pre-session 
was run in which 19 images were shown to illustrate the range of distortions to be 
expected. The order of the main session was randomized, meaning that the six im-
ages and eight processing levels were randomized completely. Four to five sub-
jects participated at the same time, and six such rounds were needed to include all 
subjects (see next section). The images presentation orders for each six rounds 
were different. 
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Fig. 6 Ten point quality scale and presentation structure of the test 

3.4   Subjects  

A proper evaluation of visual quality requires human subjects with good visual 
acuity and high concentration, e.g. young persons such as university students. 29 
subjects (10 female, 19 male) participated in the evaluation tests performed in this 
work. 27 of them were university students. Some of the subjects were familiar 
with image processing. Their age ranged from 21 to 32 years old. All subjects  
re-ported that they had normal or corrected to normal vision. 

3.5   Subjective Data Analysis  

Before processing the resulting data, post-experiment subject screening was con-
ducted to exclude outliers using a method described by VQEG [17]. In addition to 
using this method, the scores of each subject on reference images were also exam-
ined. As a result, one subject was excluded because he/she showed randomness 
due to scoring low for the quality of reference images. Then the consistency level 
for each of the remaining 28 subjects was verified by comparing his/her scores for 
each of the 48 processed images to the corresponding mean scores of those images 
over all subjects. The consistency level was quantified using Pearson’s correlation 
coefficient r, and if the r value for one subject was below 0.75, this subject was 
excluded [17]. Here, the value of r for each subject was ≥ 0.9. Hence, data from all 
remaining 28 subjects was considered.  

All data was then processed to obtain the Mean Opinion Score (MOS) by aver-
aging the votes for all subjects. Figure 7 illustrates the MOS results. In addition, 
the Standard Deviation and the 95% Confidence Intervals (CI) were computed 
(based on a normal distribution assumption).  

The behavior of a codec is generally content dependent, and this can be ob-
served in Fig. 7. As an example, for the lowest bit rate subjects scored higher for 
Images 1 and 5 when compared to other images; these two images show a close up 
face, which typically has low spatial complexity characteristics. Furthermore, Im-
age 2, which depicts a crowd and has high spatial complexity, tends to have the 
lowest score of all the images except for the highest bit rate. 
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Fig. 7 MOS score vs. bit rate 

4   Objective Image Metrics in D-Cinema  

Although the subjective quality assessment is considered to be the most accurate 
method to evaluate image quality, it is time-consuming. Many objective image 
quality metrics have been proposed. Peak signal-to-noise ratio (PSNR) is a tradi-
tional metric usually used in evaluating the quality of a visual presentation suffer-
ing from compression and transmission errors. However, it was found that its  
performance is not credible for measuring the perceived quality because it does 
not take the characteristics of the human visual system (HVS) into account [18]. 
Subsequently, a number of researchers have contributed significant research in the 
design of image quality assessment algorithms, claiming to have made headway in 
their respective domains. For example, under an assumption that the HVS is 
highly adapted for extraction of structural information from a scene, Wang et al. 
have proposed a structural similarity (SSIM) measure to predict the image quality 
based on luminance, contrast, and structure comparisons between reference and 
distorted images [19]. Additionally, a multi-scale SSIM (MSSIM) measure has 
been proposed based on the SSIM algorithm [20]. MSSIM iteratively applies a 
low-pass filter to reference and distorted images and down-samples the filtered 
images by a factor of 2. At each image scale, the contrast comparison and the 
structure comparison are calculated, respectively. The luminance comparison is 
computed only at the highest scale. An overall MSSIM measure is obtained by 
combining the measures at different scales. 
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Although these objective quality metrics have been validated to be accurate in 
evaluation of quality degradations for normal size images [21], there is no guaran-
tee that they will perform as well for a digital cinema system because of the dif-
ference between conventional visual presentations and visual presentation in a  
digital cinema setup. To our best knowledge, no rigorous analysis of the perform-
ance of objective image quality assessment specific to digital cinema has been 
studied so far. Here, we will study the difference of image quality assessment be-
tween a normal size image and a high-resolution image displayed on a large 
screen, from the viewpoint of the HVS. We will adopt related characteristics of 
the HVS to analyze this difference and propose an HVS-based approach to im-
prove the performance of PSNR and SSIM in image quality assessment for digital 
cinema. In addition, the human vision cannot perceive all distortions in an image, 
especially in those regions with high-frequency, because of the contrast sensitivity 
of the HVS that varies with different frequencies, and the existence of masking ef-
fects [22]. Therefore, a modified PSNR by taking into account the contrast mask-
ing effect and removing the imperceptible distortion from the quality computation 
has been proposed in [23] and will be employed in this study. The experimental 
results with respect to the subjective quality evaluation demonstrate that the pro-
posed approach can evidently improve the performance of existing metrics in  
image quality assessment for digital cinema systems. 

4.1   Visual Characteristics in D-Cinema  and Its Application to 
Image Quality Metrics 

The most significant difference between digital cinema images and traditional im-
ages is that the former have a much higher resolution and are shown on much larger 
screens. Therefore, the quality assessment of the image presentation in a digital 
cinema setup is accordingly different from that in other controlled laboratories on a 
normal size display, such as a TV or computer monitor.  

In the human visual system, eye movement is typically divided into fixation 
and saccades. Fixation is the maintaining of the visual gaze on a single location. 
Saccade refers to a rapid eye movement. Humans do not look at a scene in fixed 
steadiness, instead, the fovea sees only the central 2º of visual angle in the visual 
field and fixed on this target, then moves to another target by saccadic eye move-
ment [24]. Saccades to an unexpected stimulus normally take about 200 millisec-
onds to initiate, and then last about 20-200 milliseconds, depending on their  
amplitude (20-30 milliseconds is typical in reading). In image quality assessment, 
quality evaluation takes place during eye fixation when the fovea can perceive the 
visual stimulus with maximum acuity [25]. Thus, when viewing an image on a 
large screen in the digital cinema, subjects cannot see the entire image at once and 
evaluate distortions in all regions. Even though the fovea might not be able to per-
ceive an entire image simultaneously on a normal size display, we believe the 
situation in this case is significantly different from that in a digital cinema setup. 

Many physiological and psychological experiments have demonstrated that 
human attention is not allocated equally to all regions in the visual field, but  
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focused on certain regions known as salient regions or attention regions [26]. We 
have proposed a visual attention based perceptual quality metric by modeling the 
visual attention based on a Saliency model and visual content analysis [27]. How-
ever, it was found that the visual attention does not have an evident influence on 
the image quality assessment. The NTIA video quality model (VQM) assumes that 
the HVS is more sensitive to those regions with severe distortions [28We firstly 
tested the performance of two image quality metrics: PSNR and SSIM, on image 
quality assessments for normal size images and high-resolution images in a digital 
cinema setup. PSNR is a traditionally used metric based on Mean Square Error 
(MSE), computed by averaging the squared intensity differences between the dis-
torted and reference image pixels, and defined as follows: 

                                               
2
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where P denotes the peak value of the image. Although PSNR does not always 
correlate well with subjective image quality assessment, it is still widely used for 
evaluation of the performance of compression and transmission systems. PSNR 
and MSE are appealing because they are simple to compute, have clear physical 
meanings, and are mathematically convenient in the context of optimization. 

Based on the hypothesis that the HVS is highly adapted for extraction of struc-
tural information, Wang et al. have developed a measure of structural similarity to 
estimate image quality by comparing local patterns of pixel intensities that have 
been normalized for luminance and contrast. The SSIM measure is calculated 
based on three components: luminance, contrast, and structure comparison,  
defined as follows: 
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where μ  and σ  denote mean and standard deviation on the luminance compo-

nent, and C1 and C2 are two small constants to avoid instability when 2 2( )x yμ μ+  or 
2 2( )x yσ σ+  are very close to zero. In addition, the authors of SSIM calculated the 

SSIM measure within a local square window, moving pixel-by-pixel over the en-
tire image. A mean of SSIM indices over all windows is computed after applying 
a circular-symmetric Gaussian weighting function to the reference and the dis-
torted images to eliminate blocking artifacts. 

In this study, we used our subjective quality assessment in Section 4 to evaluate 
the performance of PSNR and SSIM for digital cinema applications. In addition, 
the subjective quality results on JPEG 2000 compressed images with normal sizes 
were extracted from the LIVE image quality dataset [29], where 29 reference im-
ages have been compressed using JPEG 2000 at different bit rates ranging from 
0.028 bits per pixel (bpp) to 3.15 bpp. After calculating the quality values using 
PSNR and SSIM on these distorted images, a nonlinear regression operation be-
tween the metric results (IQ) and the subjective scores (DMOS), as suggested in 
[30], was performed using the following logistic function: 



40 A. Perkis et al.
 

 

                                         1

2 31 exp( ( ))P

a
DMOS

a IQ a
=

+ − ⋅ −
                               (3) 

The nonlinear regression function is used to transform the set of metrics results to a 
set of predicted DMOS values, DMOSP, which are then compared against the actual 
subjective scores (DMOS) and resulted in three evaluation criteria: root mean 
square error (RMSE), Pearson correlation coefficients, and Spearman rank order 
correlation coefficient. RMSE and Pearson correlation express the prediction accu-
racy of a quality metric, and Spearman rank order correlation provides information 
about the prediction monotonicity of the metric [30]. In addition, the reference [30] 
also suggests another criterion, the outlier ratio, that relates to prediction consis-
tency based on standard errors of the subjective quality values. However, the LIVE 
dataset does not provide such standard errors for computing the outlier ratio.  

Table 2 Performance evaluation of PSNR and SSIM in digital cinema setup and LIVE 
dataset 

Digital Cinema LIVE Dataset 
Criteria 

PSNR SSIM PSNR SSIM 

RMSE 1.00 1.13 7.45 5.71 

Pearson 0.914 0.888 0.888 0.936 

Spearman 0.913 0.875 0.890 0.931 

Table 2 gives the performance evaluation of PSNR and SSIM on image quality as-
sessment in our digital cinema setup and LIVE image dataset, respectively. It is 
noticed that the RMSE values are strongly related to score ranges in a subjective 
quality assessment, which is why the RMSE values between the digital cinema 
scenario and LIVE dataset are quite different. However, according to the compari-
son on the correlation coefficients, we can find that the performance of SSIM is 
worse than PSNR. In our opinion, the reason is that subjects do not compare the 
entire structural information between the distorted image and the reference image 
in a digital cinema setup, because the image size is too large. 

According to the above performance comparison of PSNR and SSIM between 
two different scenarios, as well as the analysis of the characteristics of the HVS in 
a digital cinema setup, we think that an image quality metric developed for normal 
size images cannot be adopted as is to predict the image quality in digital cinema 
applications. The main reason is that a subject cannot see an entire image at once 
when he/she evaluates the quality of this image in digital cinema. Thus, we pro-
pose to first divide the image into different blocks, and then perform image quality 
metrics on each block. The overall quality of this image can be derived from the 
metric results in all blocks or parts of the image blocks. In this study, square 
blocks are employed. The block size (S) is determined based on several factors, 
including the human fovea acuity angle (α ), image size (S1), screen size (S2), and 
viewing distance (D), as follows: 
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In the subjective quality assessment introduced in Section 4, the reference and dis-
torted images were shown on the screen simultaneously (Fig. 3), therefore, we 
used the height values of the image and the screen as their sizes S1 and S2. 

The reference and the distorted images have been divided into different blocks 
whose size are S×S, and then PSNR and SSIM values were calculated in each 
block between the reference and the distorted images. Actually, it is unnecessary 
to perform the computations for all blocks. One reason is that some blocks with 
severe distortions may dominate the overall quality of an image [28].  Another 
reason is that subjects usually estimate their judgment of the quality of an image 
based on evaluation of a subset of regions or blocks in that image, and they may 
not have enough time to examine all blocks or regions in a short viewing duration, 
such as 10 seconds in our subjective experiments. Furthermore, we found that sub-
jects paid more attention to those image blocks with higher contrast when assess-
ing the image quality. Hence, the standard deviation in each divided block was 
computed to express the contrast information, and all the blocks were sorted in a 
descending order according to their standard deviation values. Blocks with lower 
contrast levels were excluded from the quality calculation, where a threshold T for 
distinguishing the blocks was set. This threshold (T) was estimated, as in equation 
(5), according to the saccadic and fixation time of eye movement and the viewing 
duration in the subjective quality assessment: 
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=                                               (5) 

where M denotes the number of all divided blocks in an image, 10(seconds) is the 
viewing duration, and 30(milliseconds) is the saccadic and fixation time. 

PSNR and SSIM measures are computed in the candidate blocks between the 
reference and distorted images whose contrast levels exceed the threshold, and 
then mean values of PSNR and SSIM over these blocks were used as the quality 
of that image measured by PSNR and SSIM, respectively. Our experimental re-
sults demonstrate that the performance of this approach is better than the original 
PSNR and SSIM methods.  

As aforementioned, we computed the quality values in those blocks with high 
contrast levels. However, the distortions introduced to image blocks, especially 
the blocks with high contrast levels, are not perceived by the HVS totally, because 
of the contrast sensitivity of the HVS that varies with different frequencies and the 
existence of masking effects. Contrast sensitivity is a measure of the ability to dis-
cern between luminance of different levels in an image. In addition, when an im-
age has high activity, there is a loss of sensitivity to errors in those regions. This is 
the masking effect of the image activity. Many approaches have been proposed to 
model the contrast sensitivity and masking effects in order to compute a visually 
optimal quantization matrix for a given image in compression algorithms. The 
Discrete Cosine Transform (DCT) has usually been used in contrast making due to 
its suitability for certain applications and accuracy in modeling the cortical  
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neurons [31]. In this study, we employ a DCT based approach to model the con-
trast sensitivity function (CSF) and masking effect as in [23]. The quality value is 
computed according to a modified PSNR by excluding the imperceptible distor-
tion because of the contrast sensitivity and masking effect from the computation of 
PSNR. This method is called PHVS, and readers can refer to [23] for details. 

4.2   Performance Evaluation of Image Quality Metrics in 
D-Cinema  

According to the sizes of tested images and the screen in our digital cinema setup, 
as well as the human fovea acuity angle (2º), the block size in this study was set to 
16 according to equation (4), and the threshold T was 10% calculated by equation 
(5). A reference image and its distorted image (JPEG 2000 compressed) were  
divided into different blocks with sizes 16×16. Subsequently, all blocks in the ref-
erence image were sorted in a descending order according to their standard devia-
tions, and 10% of all blocks with highest standard deviations were selected to 
compute the quality of distorted image. A quality value in each candidate block 
was calculated by PSNR, SSIM, or PHVS. The mean of the quality values over all 
the candidate blocks was taken as an overall quality of the distorted image. 

To evaluate the performance of the proposed approach, four evaluation criteria 
were used. As aforementioned, a nonlinear mapping operation in equation (3) was 
performed between the metric results and the subjective DMOS values. RMSE, 
Pearson correlation coefficient, and Spearman rank order correlation coefficient 
can be computed between the mapped metric results and the DMOS values. In ad-
dition to these three criteria, another criterion, outlier ratio relating to the predic-
tion consistency of a metric, can be obtained, because our subjective quality  
experiment provided standard errors of the subjective quality results. The outlier 
ratio is defined as the ratio of the number of outlier point images compared to the 
total number of the tested images, in which an outlier point image is detected if it 
satisfies the following condition: 

                                                 DMOS 2PDMOS SE− > ⋅                                   (6) 

where SE denotes the standard error value. 
In our experiments, the original methods of PSNR, SSIM, and PHVS were per-

formed with respect to the subjective image quality assessment in the digital cin-
ema setup, and four evaluation criteria were computed. To validate the proposed 
approach, we used two methods as follows: 

1) The first method was to divide the image into different 16×16 blocks, and these 
three metrics were computed in all blocks. The mean over all blocks in the image 
was taken as the quality metric for this image. 

2) The image was still divided into different 16×16 blocks in the second method, 
however the metrics were only performed for those blocks with high contrast lev-
els, as described above. The image quality was computed by the mean over these 
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blocks, while the remaining blocks with lower contrast levels were excluded from 
the quality computation. 

Table 3 gives the evaluation results of the original metrics and the above two 
methods. According to the evaluation results, the proposed approach can evidently 
improve the performance of the original metrics in image quality assessment of 
digital cinema, especially for SSIM. The first method can improve the perform-
ance of these metrics, especially for SSIM and PHVS, which indicates subjects 
formulate their judgment on the image quality in a digital setup based on a all 
blocks, rather than the global image. Further, the second method has better per-
formance when compared to the first method. It indicates that subjects pay more 
attention to those image regions with higher contrast levels when assessing the 
image quality. This observation will be useful to develop a quality metric for digi-
tal cinema applications. 

Table 3 Evaluation results of different methods on image quality assessment in digital 
cinema setup 

Original metrics First method Second method 
Criteria 

PSNR SSIM PHVS PSNR SSIM PHVS PSNR SSIM PHVS 

RMSE 1.00 1.13 0.85 1.00 1.00 0.77 0.73 0.53 0.56 

Pearson 0.914 0.888 0.938 0.914 0.913 0.949 0.954 0.976 0.974 

Spearman0.913 0.875 0.941 0.913 0.904 0.952 0.956 0.974 0.976 

Outlier 
ratio 

0.063 0.063 0.021 0.042 0.063 0.021 0.021 0.021 0 

Table 4 Evaluation results of Minkowski summation for spatial pooling  

Criteria PSNR SSIM PHVS 

RMSE 0.71 0.54 0.57 

Pearson 0.958 0.976 0.973 

Spearman 0.961 0.974 0.976 

Outlier ratio 0.021 0.021 0.021 

In the above experiments, we used the direct mean of quality values over the 
blocks. In addition, another pooling scheme, Minkowski summation, is widely used 
in some quality metrics to pool the quality values over different spatial regions, 
such as the perceptual distortion metric (PDM) proposed by Winkler et al. [32]. 
Therefore, we also tested the Minkowski summation with different exponents on 
those blocks with higher contrast levels. The experimental results demonstrated that 
the best performance was achieved when the exponent in the Minkowski summa-
tion was set to 2, and the results indicated that the Minkowski summation can also 
be used in pooling the quality values over different blocks in the proposed  
approach, as shown in Table 4. 
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Finally, we also employed the same approach in this chapter to evaluate these 
three metrics for normal size images using the LIVE image quality database.. We 
tested the JPEG 2000 compression distortion type, as well as three other distortion 
types: Gaussian blur, JPEG compression and white noise. The performance was, 
however, worse than the original methods either for JPEG 2000 compression or 
other distortion types. We believe that the cause is due to the fact that the mecha-
nisms are different when subjects assess the image quality between a normal size 
monitor and a large screen in a digital cinema setup. The future work will be fo-
cused on an in depth analysis of the differences of the visual quality assessment 
between a normal scenario with normal size displays and a digital cinema system, 
and development of more suitable metrics for digital cinema. 

5   Quality as Part of the Business Plan   

For a media presentation to be possible, the most important process is of course 
the creative one, created by the artist and represented by the content provider or 
content aggregator. One of the predominant slogans recently in the media industry 
has been “Content is king”, which, certainly, has been used as one of the driving 
forces for digitization and development of new services and applications. 

Even more recently, following the rapid deployment of wireless services, more 
focus has been put on the delivery. As slogan goes, the novelty is represented by 
“Connectivity is Queen”.  

Our claim, however, is contrary to this, and assumes all providers have one 
goal in common, the satisfied and loyal customer, buying and consuming their 
services and applications regardless of technology, simply meaning that the “User 
is president”. The hypothesis is that a satisfied user gets his/her expectations ful-
filled and that expectations are connected to the experience of the media as repre-
sented by the QoE. Although QoE currently is not an objectively measurable  
parameter, we will assume that this is represented by our broader understanding of 
the term Quality. High quality gives more satisfied customers and a better experi-
ence than poor quality. 

5.1   Case: D-Cinema 

The motivations for D-Cinema were at least three fold: 

• To reduce distribution costs (benefits for studios) 
• To reduce piracy (benefits for studios) 
• To enhance Quality of Experience (benefits for cinema goers – the users) 

Several other motivating factors have become more and more important as the in-
novators and early adopters are implementing D-Cinema. Some of these were 
planned; some again are spin-off innovations. Examples of these are 3D and Other 
Digital Stuff – ODS (Alternative Content).  

D-Cinema roll out has hit a crucial moment in time since reaching the famous 
chasm of diffusion of innovation simultaneously with the global financial crisis. 
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The uncertainty and ambiguity of the Virtual Print Fee as sole financial model for 
overcoming the investments are also somewhat preventing the early majority to 
follow. These are indeed exciting times, and finding the ways of crossing the 
chasm is important as ever. Two technical reinventions are acting as major change 
agents, the rebirth of 3D and the possibility for exhibitors to screen alternative 
content – the so called Other Digital Stuff – ODS. Together they share an optimis-
tic prospect. They embrace the possible realization of a complete transition from 
35mm film to D-Cinema, although slower than formerly anticipated by the foun-
ders of the Digital Cinema Initiative. There are no easy and obvious solutions, 
however, the D-Cinema arenas as well as respected opinion leaders are working 
side by side, utilizing the change agents, to define and communicate the future di-
rection, potentially crossing the chasm. 

Digital Cinema Initiatives, LLC [15] was created in March, 2002, and is a joint 
venture of Disney, Fox, Paramount, Sony Pictures Entertainment, Universal and 
Warner Bros. Studios. DCI's primary purpose is to establish and document volun-
tary specifications for an open architecture for digital cinema that ensures a uni-
form and high level of technical performance, reliability and quality control. 

On July 20, 2005, DCI released its first version of the final overall system re-
quirements and specifications for D-Cinema. Based on many existing SMPTE and 
ISO standards, it explains the route to create an entire Digital Cinema Package 
(DCP) from a raw collection of files known as the Digital Cinema Distribution 
Master (DCDM), as well as the specifics of its content protection, encryption, and 
forensic marking. The specification also establishes standards for the decoder re-
quirements and the presentation environment itself.  

The case study uses results obtained through the NORDIC projects (NORDIC 
and NORDIC 2.0) – Norway’s Digital Interoperability in Cinemas [3]. The 
NORDIC projects brings together Norway's leading experts in the D-Cinema field, 
including Midgard Media Lab at NTNU, telecom and pay-television operator 
Telenor, installation and service company Hjalmar Wilhelmsen, and digital cin-
ema advertising pioneers Unique Promotions/Unique Digital/Unique Cinema  
Systems, as well as major exhibitors and cinemas across Norway. The main 
achievements of the NORDIC projects are the lessons learned in order to provide 
advice to the Norwegian cinema industry on when and how to shift the whole of 
Norway to Digital Cinema. A complete overview of the NORDIC models, results 
and discussions has recently been published [3]. 

Michael Karagosian recognized the chasm for D-Cinema and published it in 
September 2007 [33]. The chasm is well documented by Rogers and Moore and 
follows a fairly classic path, very much comparable to many of the cases reviewed 
by the two authors. D-Cinema is currently facing a situation where we see: 

• A market where there are few or no new customers. This is identified by  
reports from all vendors that sales are down and reports from the D-Cinema 
arenas that the D-Cinema roll out seems to have stalled. This means that not 
everyone is automatically following. 

• The innovators and early adopters still have their D-Cinema equipment and 
films are being screened, but not in the volume foreseen, and 35mm is still 
dominating at most exhibitors. The disappointment of current customers is  
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coming to the surface. This can be identified by discussions on the D-Cinema 
arenas. This shows that not all players have the same understanding of D-
Cinema and its process. There especially seems to be a gap between the stu-
dios, distributors and exhibitors, representing a role each in the value chain. 

• Competition is tightening between the vendors as alliances are building. Ven-
dors from Asia offering more price competitive products are entering the  
market. Classically we would have seen aggressive competition from already 
established products in the market. However, since D-Cinema is new, no exist-
ing products were in the market. 

• The investors are getting worried and some are losing interest. The global fi-
nancial crisis is severely increasing this effect, putting the existing business 
models to their hardest test ever. 

None of these reasons are due to the users’ reaction to D-Cinema. As a matter of 
fact, the NORDIC project has shown that the users make little or no distinction 
whether it’s a digital screening or not. This shows that the perceived quality is sta-
ble and withheld during the digitization. The real advantages are in the added 
functionalities offered by D-Cinema such as 3D and alternative content. 

5.2   Does Quality Matter?  

The ability to move from 2D to 3D screening was once viewed as important as the 
transition from silent to sound movies by the motion picture industry. Although its 
popularity has come and gone, it is definitely back again and seen as one of the 
most important change agents for D-Cinema. 

The revenue upside for 3D is clear. Estimates suggest that exhibitors can charge 
a 20% premium on a ticket for a digital 3D (non-Imax) movie. Like with "Journey 
to the center of the earth" 3D versions also tend to outperform 2D on a per-screen 
basis. And 3D films are viewed as less susceptible to piracy. There is very little 
material and numbers currently available to be able to substantiate such a claim. 
However, Hollywood sees a future, documented by the more than 30 3D produc-
tions in the pipeline and the enormous interest gathering around 3D. 

Other Digital Stuff – the reference term for Alternative Content – covers all 
content screened in a cinema that is not a feature film. This includes advertising, 
live events (sports, music), educational and gaming. ODS has the potential of di-
versifying exhibitor offering and provide new revenue streams. 

As technology, ODS came as the unexpected side effect of reinventions. By 
digitizing screens one realized the huge potential the equipment (server and pro-
jector) pose for other users requiring ultra high definition. The exploitations have 
ranged from Opera to Laparoscopic surgery. 

The D-Cinema business is about creating a digital media asset (the feature or 
motion picture) and screening this on as many screens as possible in order to op-
timize the profit of the studios owning the asset. For more than 100 years a value 
chain consisting of the studios, the distributors and the exhibitors has managed 
this. Digitization has the potential of dramatically changing the value chain, the 
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roles of the players in the value chain, and opens for new business models and 
possibilities. 

D-Cinema began as a purely technological change, but is continuing by involv-
ing all the processes in the motion picture industry affecting the complete value 
chain. The change is destined to transform the whole business of cinema exhibition 
into something different from what we know today. Change agents operating on the 
D-Cinema arena, respected opinion leaders, and the industry itself influence this. 

35mm film is the longest lasting and most universally adopted and used audio-
visual format of all time. Even audio technologies that have found global accep-
tance (78rpms, 45rpm, 33rpm, tapes, CD, DAT, SACD/DAD-A) have never lasted 
as long as the century old cinema standard. While the road to D-Cinema has been 
a long process, it is only correct that the replacement for such a universal medium 
should take great care in crafting something that both surpasses it and finds as 
much universal acceptance. 

D-Cinema completely changes the roles of the players and stakeholders in the 
media value chain. The NORDIC projects have shown that the changes in tech-
nology are manageable and largely solved by achieving interoperability. However, 
the change on the business models is severe and not solved.  

6   Discussions and Conclusions  

Given the potential impact on quality introduced by D-Cinema and the quest for 
quality in the media consumption by most users, the transition from 35 mm to D-
Cinema should happen as soon as possible. The higher quality of D-Cinema at the 
relatively low cost can potentially increase the ticket sales and be the winner in the 
battle for the eyeball – proving quality impacts the business model.  

To assess the quality and utilize the result in the business models we need to be 
able to measure and to model Quality of Experience (QoE). QoE always puts the 
end-user at the centre of attention. This makes QoE research in the D-Cinema en-
vironment a strong change agent for enforcing and necessitating the D-Cinema 
roll out – enhancing the fact that the motion picture industry exists to serve the 
user, the moviegoers. Our quality assessment investigates how humans consume 
and perceive digital media presentation in the cinema environment. The purpose is 
to define objective parameters and models that can lead to a definite answer on 
whether customers are indeed satisfied. 

QoE is affected by several factors including perception, sensations, and expec-
tations of users as they consume digital content presented to them using their per-
ceptual sensors. In D-Cinema the main perceptual sensors are sight and hearing. 
Hence perceived visual quality and perceived audio quality in D-Cinema are inte-
gral in QoE research. Nevertheless, it can be hypothesized that the most interest-
ing and prospective aspect of understanding the perceived visual and audio quality 
in D-Cinema is not by viewing and treating these two factors separately but to-
gether to investigate how perceived quality is influenced by multimodal factors. 
The most striking difference by using a cinema for subjective assessments than 
just regular screens is the impressive sensation caused by the D-Cinema environ-
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ment. Even though some may be content with watching movies on their home 
digital cinema equipment, there are still many moviegoers who buy tickets and 
watch movies loyally in the theatre. For these, watching a movie in the theatre 
provides them with a totally different experience than viewing in their own home. 
The sensation while consuming digital presentation in a darkened large auditorium 
with the large screen contributes greatly to the user experience. Investigating how 
these factors influence the QoE is important. Subjective experiments using human 
subjects are one of the key stages in the QoE research for D-Cinema. In order to 
give realistic results, the subjective experiment must be conducted in a realistic 
environment such as the DCI specified cinema in Trondheim—Nova Ki-
nosenter—to provide the same viewing condition as regular moviegoers have. 
However, it is important to note that subjective experiments using human subjects 
are complex and must be in controlled environments using proper methodologies. 
The data from the subjective experiments is then used as a foundation to develop 
objective models to determine quality in the context of QoE.  

We have presented the subjective test methodology and setup in NOVA 1 using 
characteristics of the HVS that are related to image quality assessment in a D-
Cinema setup. Based on an intensive analysis on the mechanism of image quality 
assessment in a digital cinema setup, we proposed an approach for improving the 
performance of three image quality metrics. The images were divided into differ-
ent blocks with a given size, and metrics were performed in certain blocks with 
high contrast levels. The mean of quality values over these blocks was taken as the 
image quality. The experimental results with respect to the subjective quality re-
sults in the D-Cinema setup and LIVE dataset demonstrated the promising per-
formance of the proposed approach in improving the image quality metrics for 
digital cinema applications.  

Our work in perceived visual quality in D-Cinema is a starting point in QoE re-
search. Our study showed that due to different and unique digital image content 
and viewing conditions of D-Cinema, quality research of D-Cinema especially in 
the context of QoE is not really in the same category as any other application. Our 
future work will study the mechanisms of QoE in D-Cinema in depth. 

The current problem still remains, how do we motivate for a total roll out of D-
Cinema and how can quality contribute in the process. Many stakeholders are try-
ing to influence, ranging from individual to organizations and a few novel rein-
ventions of the technology that were not initially spotted. The most important of 
these are the ability to screen 3D content using the existing D-Cinema equipment. 
In addition, the industry is exploiting how to benefit from the possibility of screen-
ing other digital stuff in times where the screen is not used for traditional film 
screenings. Opinion leaders, experts and the industry itself are constantly commu-
nicating these benefits and using their powers as change agents to finally be able 
to convince and reach the early majority creating a mass market for D-Cinema 
with real competition and inertia. Our hope is that improved QoE will prevail and 
become the most important change agent of them all. 
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Chapter 3 
Quality of Visual Experience for 3D 
Presentation – Stereoscopic Image 

Junyong You, Gangyi Jiang, Liyuan Xing, and Andrew Perkis* 

Abstract. Three-dimensional television (3DTV) technology is becoming increas-
ingly popular, as it can provide high quality and immersive experience to end users. 
Stereoscopic imaging is a technique capable of recoding 3D visual information or 
creating the illusion of depth. Most 3D compression schemes are developed for 
stereoscopic images including applying traditional two-dimensional (2D) compres-
sion techniques, and considering theories of binocular suppression as well. The 
compressed stereoscopic content is delivered to customers through communication 
channels. However, both compression and transmission errors may degrade the 
quality of stereoscopic images. Subjective quality assessment is the most accurate 
way to evaluate the quality of visual presentations in either 2D or 3D modality, 
even though it is time-consuming. This chapter will offer an introduction to related 
issues in perceptual quality assessment for stereoscopic images. Our results are a 
subjective quality experiment on stereoscopic images and focusing on four typical 
distortion types including Gaussian blurring, JPEG compression, JPEG2000 com-
pression, and white noise. Furthermore, although many 2D image quality metrics 
have been proposed that work well on 2D images, developing quality metrics for 
3D visual content is almost an unexplored issue. Therefore, this chapter will further 
introduce some well-known 2D image quality metrics and investigate their capa-
bilities in stereoscopic image quality assessments. As an important attribute of 
stereoscopic images, disparity refers to the difference in image location of an object 
seen by the left and right eyes, which has a significant impact on the stereoscopic 
image quality assessment. Thus, a study on an integration of the disparity informa-
tion in quality assessment is presented. The experimental results demonstrated that 
better performance can be achieved if the disparity information and original images 
are combined appropriately in the stereoscopic image quality assessment. 
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1   Introduction   

Networked three-dimensional (3D) media services are becoming increasingly fea-
sible through the evolution of digital media, entertainment, and visual communica-
tion. Three-dimensional television (3DTV), one of the popular media services, can 
provide a dramatic enhancement in user experience, compared with the traditional 
black-and-white and color television. Although David Brewster introduced the 
stereoscope, a device that could take photographic pictures in 3D, in 1844, it was 
not until 1980s that experimental 3DTV was presented to a large audience in 
Europe. However, although various recent technological developments combined 
with an enhanced understanding of 3D perception have been achieved, many im-
portant topics related to 3D technology are almost unexplored [1]. A networked 
3DTV service consists of an entire chain from content production and coding 
schemes for transmitting through communication channels to adequate displays 
presenting high quality 3D pictures. During this chain, the quality of a 3D presen-
tation may be degraded at each stage. In this chapter, we will focus on perceptual 
quality assessment of visual experience for stereoscopic images. Human factors as 
well as typical artefacts in 3D presentations that may affect the quality of visual 
experience will be reviewed, and we will mainly focus on coding and transmission 
artefacts. To study the relationship between perceived quality and distortion  
parameters for stereoscopic images, a subjective quality assessment has been con-
ducted. Furthermore, accurate metrics which can predict stereoscopic image qual-
ity will be proposed based on two-dimensional (2D) image quality metrics and 
disparity information. 

Before going to the detailed discussions on quality assessment at each stage in 
the chain, understanding the human factors that can affect the quality of visual ex-
perience is necessary. The relationship among some psycho-visual factors, such as 
sensation of depth, perceived sharpness, subjective image quality, and relative 
preference for stereoscopic over non-stereoscopic images, was investigated in [2]. 
The main finding is that viewers usually prefer a stereoscopic version rather than a 
non-stereoscopic version of image sequences, given that the image sequences do 
not contain noticeable stereo distortions, such as exaggerated disparity. Perceived 
depth is rated greater for stereoscopic sequences than that for non-stereoscopic 
ones, whereas perceived sharpness of stereoscopic sequences is rated same or 
lower compared to non-stereoscopic sequences. Subjective rating on stereoscopic 
image quality is influenced primarily by apparent sharpness of image sequences, 
whereas the influence of perceived depth is not evident. As early as in 1993, tech-
nological requirements for comfortable viewing in 3D display were studied [3]. To 
reduce visible image distortion and visual strain, a basic requirement (image size), 
visual noise requirements (disparity range, disparity resolution), and motion paral-
lax (viewpoint sampling, brightness constancy, registration tolerance, and perspec-
tive interpolation) are required. Stelmach et al. [4] found that the sensation of 
depth, image quality and sharpness are affected differently by different spatial 
resolutions and temporally filtering schemes. The overall sensation of depth is not 
affected by low-pass filtering, and larger spatial resolutions usually make more 
contribution to the rating of quality and sharpness. Field averaging and  



Quality of Visual Experience for 3D Presentation – Stereoscopic Image 53
 

 

dropped-and-repeated frame conditions may result in images with poor quality and 
sharpness, even though the perceived depth is relatively unaffected. Ijsselsteijn et 
al. [5] investigated appreciation-oriented measures on perceived quality and natu-
ralness with parameters of displaying duration. The experimental results on 5s 
versus 10s displaying durations demonstrated that there is no significant influence 
of displaying duration on the perceived quality. However, a small yet significant 
shift between the naturalness and quality was found for these two duration condi-
tions. The experimental results with displaying durations ranging from 1s to 15s 
also showed a small yet significant effect of displaying duration on the perceived 
quality and naturalness. Besides, longer displaying durations do not have a nega-
tive impact on the appreciative scores of optimally reproduced stereoscopic im-
ages. However, observers usually give lower judgments to monoscopic images 
and stereoscopic images with unnatural disparity values as displaying duration in-
creases. Meegan et al. [6] were opinion of that the binocular vision assigns a 
greater weight to an un-degraded image than a degraded one. In addition, com-
pared to blockiness, blurring has greater influence on the perceived quality. There-
fore, a quality metric for a stereo-pair images can be developed by assigning a 
greater weight to the un-degraded or less degraded image in a stereo-pair images 
while a smaller weight to the other one. The same rule can be applied to the situa-
tion between blockiness and blurring. These subjective experiments tried to inves-
tigate the physiological process in quality assessment for 3D presentations, and the 
corresponding observations have been used in practical systems already. For ex-
ample, inspired by the work done by Meegan et al., asymmetric coding schemes 
for multi-view videos have been proposed. In addition, effects of camera-base  
distance and JPEG-coding (Symmetric versus Asymmetric) on an overall image 
quality, perceived depth, perceived sharpness and perceived eye-strain were inves-
tigated in [7]. Bounds of an asymmetric stereo view compression scheme by 
H.264/AVC and its relationship with eye-dominance were examined based on a 
user study [8]. 

Considering the capture and visualization distortions, we will focus on shoot-
ing, viewing condition and representation related degradation. The geometry rela-
tion-ship between shooting and viewing conditions was formulated. Woods et al. 
[9] analyzed the geometry of stereoscopic camera and display systems to show 
their effect on image distortions such as depth plane curvature, depth non-
linearity, depth and size magnification, shearing distortion, and keystone distor-
tion. In addition, Yamanoue et al. [10] clarified that the shooting and viewing 
conditions and conditions under which the puppet-theater effect and cardboard ef-
fect occur, in geometrical terms. Generally, crosstalk is a significant factor of the 
most annoying distortions in 3D display. Inter-channel crosstalk for the auto-
stereoscopic displays utilizing slanted lenticular sheets was modeled in [11]. Al-
though the cause of most introduced distortions has been studied, their influence 
on the perceived quality is still an unexplored issue. Seuntiens et al. [12] designed 
an experiment to investigate the relevant subjective attributes of crosstalk, such as 
perceived image distortion, perceived depth, and visual strain. The experimental 
results indicated that image distortion ratings show a clear increasing trend when 
increasing crosstalk level and camera base distance. Especially, a higher crosstalk 
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level is visible more clearly in a longer camera base distance. Ratings of visual 
strain and perceived depth increase only when increasing the camera base dis-
tance. However, if the crosstalk level increases, visual strain and perceived depth 
might not change accordingly. Furthermore, Kim et al. [13] has proposed an ob-
jective metric by taking into account both acquisition and display issues. For  
instance, using a multiple cameras structure may cause impairment such as mis-
alignment. The experimental results demonstrated that a depth map is a useful tool 
to find out implied impairments, in which the depth map was obtained by estimat-
ing disparity information from stereoscopic videos. By using the depth map, the 
depth range, vertical misalignment and temporal consistency can be modeled 
separately to exhibit different viewing aspects. They are then integrated into a 
metric by a linear regression, which can predict the levels of visual fatigue. 

Existing work on perceptual quality evaluation for both video-plus-depth and 
multi-view video 3D presentation is mostly focused on assessing the quality deg-
radation caused by compression errors. Currently, most 3D compression schemes 
are developed for stereoscopic images or videos that consist of two views taken 
from a lightly different perspective in a 3D scene. Since one image (target) in a 
stereo-pair images can be restored from the disparity information and the other 
one image (reference), the reference image is in general coded with a traditional 
2D compression scheme whereas the target image can be represented by disparity 
vectors. Stereoscopic coding schemes using the disparity estimation can be classi-
fied into: 1) intensity-based methods and 2) feature-based methods [1]. Although 
many quality metrics for 2D image quality assessment have been proposed, the 
quality models on stereoscopic images have not been widely studied. Hewage et 
al. [14] tested the performance of three quality metrics, including peak signal-to-
noise ratio (PSNR), video quality model (VQM) proposed by NTIA [15], and 
structural similarity model (SSIM) [16], with respect to a subjective quality ex-
periment on a series of coded stereoscopic images. The experimental results dem-
onstrated that VQM is better than other two metrics while its performance is still 
not promising. Similar work has been done in [17]. Four metrics, as well as three 
approaches, called average approach, main eye approach, and visual acuity ap-
proach, were tested for evaluating the perceptual quality of stereoscopic images. 
Further, disparity information was integrated into two metrics for the quality as-
sessment [18]. It was found that the disparity information has a significant impact 
on stereoscopic quality assessment, while its capability has not been studied ade-
quately. In [19], only absolute disparity was used. It was found that added noise 
on the relatively large absolute disparity has greater influence than on other dis-
parity. Subsequently, a metric called stereo sense assessment (SSA) based on the 
disparity distribution was proposed. 

In addition, some special metrics that take into account advantage of the char-
acteristics of 3D images have been proposed. Boev et al. [20] combined two com-
ponents: a monoscopic quality component and a stereoscopic quality component, 
for developing a stereo-video quality metric. A cyclopean image for monoscopic 
quality, a perceptual disparity map, and a stereo-similarity map for stereoscopic 
quality were defined. These maps were then measured using SSIM in different 
scales and combined into a monoscopic quality index and a stereoscopic quality 
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index, respectively. The experimental result demonstrated that the proposed 
method is better than signal-to-noise ratio (SNR). Additionally, an artifact distri-
bution of coding schemes at different depth layers within a 3D image was mod-
eled in a single metric [21]. The metric included three steps. Firstly, a set of 2D 
image pairs were synthesized at different depth layers using an image based ren-
dering (IBR) scheme. Secondly, pixels that can be discerned to belong to each 
depth layer were identified. Finally, the image pairs were masked and the coding 
artifact at each depth layer was evaluated using the multi-scale SSIM. Three cod-
ing schemes were studied including two H.264 based pseudo video coding 
schemes and JPEG 2000. The experimental results showed a high correlation be-
tween the coding artifacts and their distribution in different depth layers. Gorley et 
al. [22] used a new Stereo Band Limited Contrast (SBLC) algorithm to rank 
stereoscopic pairs in terms of image quality. SBLC took into account the sensitiv-
ity to contrast and luminance changes in image regions with high spatial fre-
quency. A threshold for evaluating image quality produced by SBLC metric was 
found to be closely correlated to subjective measurements. Sazzad et al. [23] as-
sumed that perceived distortion and depth of any stereoscopic images are strongly 
dependent on the spatial characteristics in certain image regions, such as edge re-
gions, smooth and texture regions. Therefore, a blockiness index and zero crossing 
rates within these regions in an image were then evaluated. They were finally in-
tegrated into a single value using an optimization algorithm according to subjec-
tive quality evaluation results. With respect to a quality database on JPEG coded 
stereoscopic images, the model performed quite well over a wide rang of image 
contents and distortion levels. 

Transport methods of 3DTV were surveyed from early analog systems to most 
recent digital technologies in [24]. Potential digital transport architectures for 
3DTV include the digital video broadcast (DVB) architecture for broadcast, and 
the Internet Protocol (IP) architecture for wired or wireless streaming. Motivated 
by a growing impact of IP based media transport technologies, Akar et al. mainly 
focused on the ubiquitous Internet by using it as a choice of the network infra-
structure for future 3DTV systems in [24]. To our best knowledge, the quality 
evaluation issues for 3D presentations with transmission errors have almost not 
addressed so far. However, transmission related factors in IP based architecture 
have a non-neglectable impact on the perceived quality of 3D presentations. For 
example, different network protocols, such as Datagram Congestion Control Pro-
tocol (DCCP) and Peer-to-Peer Protocols, different transmission control schemes, 
e.g. effective congestion control, packet loss protection and concealment, video 
rate adaptation, and network/service scalability will definitely affect the quality of 
visual experience. The artefacts introduced by the transmission errors (such as 
packet loss and jitter) are quite different from the coding artefacts (such as blur-
ring). Therefore, an accurate quality metric should also take into account the char-
acteristics of the transmission artefacts.  

Finally, for the video-plus-depth technique, depth image based rendering 
(DIBR) is inevitable and the influence of DIBR on the perceptual quality should 
also be taken into consideration. Although depth perception can provide more 
comfortable experience for end-users, the rendering process of current display 
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technology also introduces degradation on the image quality. Barkowsky et al. 
tried to achieve a trade-off between such increased comfort and the introduced dis-
tortion [25]. However, their experimental results indicated that the distortion 
caused by the depth rendering process is usually greater than the comfort provided 
by the depth perception, especially for certain types of visual contents. Another 
objective metric for DIBR was proposed lately in [26]. This metric consisted of 
Color and Sharpness of Edge Distortion (CSED) measures. The color measure 
evaluated luminance loss of the rendered image compared against the reference 
image. The sharpness of edge distortion measure calculated a proportion of the 
remained edge in the distorted image regarding the edge in the reference image, 
whilst taking into account the depth information. To validate the performance of 
the proposed metric, a subjective assessment of DIBR techniques with five differ-
ent hole-filling methods (Constant color filling, Horizontal interpolation, Region 
of interest filling, Horizontal extrapolation and Horizontal and vertical interpola-
tion) was performed. The experimental results indicated the promising perform-
ance of this metric. 

The rest of this chapter is organized as follows. In Section 2, a subjective quality 
experiment on stereoscopic images is briefly summarized and an analysis on the re-
lationship between the perceived quality and distortion parameters is performed. 
Section 3 introduces some well-known 2D image quality metrics and investigates 
their capabilities in evaluating the stereoscopic image quality; an integration of dis-
parity information into objective quality metrics is proposed based on an intensive 
analysis of the disparity information on stereoscopic quality evaluation. Finally, 
conclusions are drawn in Section 4. 

2   Subjective Stereoscopic Image Quality Assessment   

The quality of a visual presentation that is meant for human consumption (the 
user) can be evaluated by showing it to a human observer and asking the subject to 
judge its quality on a predefined scale. This is known as subjective assessment and 
is currently the most common way to evaluate the quality of image, video, and au-
dio presentations. Generally, the subjective assessment is also the most reliable 
method as we are interested in evaluating quality as seen by the human eye. In this 
section, we will present a subjective quality assessment on stereoscopic images, 
which can be exploited for understanding perception of stereoscopic images and 
providing data for designing objective quality metrics [27]. We mainly focus on 
distortion types introduced by image processing but ignore the influence of a dis-
play device. The relationship between distortion parameters and the perceived 
quality will be investigated, and we will also validate whether PSNR can be used 
in predicting the stereoscopic image quality. 

2.1   Experimental Materials and Methodology 

The source stereo-pair images were collected from the Internet [28]. Ten pairs of 
high resolution and high quality color images that reflect adequate diversity in  
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image contents were chosen. Figure 1 shows parts of the right eye images in the 
data set. For each pair of the source images, the right eye image was distorted with 
four different distortion types that may occur in real-world applications while the 
left eye image was kept undistorted. The distortion types included: 

• Gaussian blurring: The R, G, and B color components were filtered using a cir-
cular-symmetric 2-D Gaussian kernel of standard deviation σB pixels. Three 
color components of an image were blurred using the same kernel, and σB  
values ranged from 0.2 to 100 pixels. 

• JPEG compression: The distorted images were generated by compressing the 
reference images (full color) with JPEG at different bit rates ranging from 0.15 
bits per pixel (bpp) to 3.34 bpp. The compression was implemented by a 
MATLAB’s toolbox function (imwrite.m). 

• JPEG2000 compression: The distorted images were generated by compressing 
the reference images (full color) with JPEG2000 at different bit rates ranging 
from 0.003 bpp to 2 bpp. Kakadu version 2.2 [29] was used to generate the 
JPEG2000 compressed images. 

• White noise: White Gaussian noise with standard deviation σN was added to 
RGB color components of the images after scaling these three color compo-
nents between 0 and 1. The used values of σN were between 0.012 and 2.0. The 
distorted components were clipped between 0 and 1, and then re-scaled to a 
range of [0-255]. 

          

     

Fig. 1 Examples of stereoscopic images (top left: Art; top right: Bowling; bottom left: 
Dwarves; bottom right: Moebius)  
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These distortions reflected a broad range of types of image impairment, from 
smoothing to structured distortion, image-dependent distortions, and random 
noise. The distortion levels covered a wide range of quality degradation from im-
perceptible levels to high levels of impairment. 

A subjective human trial, based on the ITU-R recommendation BT.500 [30], as-
sessed the quality of the generated distorted stereoscopic images against the original 
images. A double-stimulus continuous quality-scale (DSCQS) method for stereoscopic 
image assessment was employed. The DSCQS method was cyclic, in which subjects 
viewed a pair of pictures with same content, i.e. a distorted image and an original im-
age, and were asked to assess the qualities of both two images. The subjects were pre-
sented with a series of stereoscopic image pairs in a random order.  

In the experiment, polarized glasses were worn in order to separate the left and 
right images on a single screen to the appropriate eyes. The experiment was con-
ducted in a dark room, with constant minimal light levels. Twenty non-expert sub-
jects participated in the quality evaluation, whose ages vary from 20 to 25 with a 
mean of 23 years. All the subjects participating in this experiment met the mini-
mum criteria of acuity of 20:30 vision, stereo-acuity at 40 sec-arc, and passed a 
color vision test. The participants were not aware of the purpose of this experi-
ment or that one of the stereo-pair images was undistorted. Before starting the ex-
periment, all the subjects received instructions and completed a training trial of the 
stereo display. This training trial contained four sets of stereo-pair images viewed 
and rated in a same way to that in the actual test, but the results from the training 
trial were not included in the result analysis. The observers then completed the ex-
perimental trials for each distortion category. They were asked to be as accurate as 
possible to judge the image quality. The experiment lasted 50 minutes including 
short breaks after each distortion type. 

In each trial the images were rated on a sliding scale of Excellent, Good, Fair, 
Poor, and Bad. The participants were asked to assess the overall quality of each 
stereo-pair images by filling in an answer sheet. After the quality evaluation for all 
the images was finished, difference mean opinion scores (DMOS) were calculated 
using ITU-R Recommendation BT.500 on a scale of 0-100 as follows. Raw scores 
were firstly converted to raw quality difference scores as following: 

                                               ( )ij iref j ijD R R= −                                                      (1) 

where ijR  denotes the raw score of the j-th stereoscopic image given by the i-th 

subject, and ( )iref jR  denotes the raw quality score assigned by the i-th subject to 

the reference image against the j-th distorted image. Then, the raw difference 
scores ijD  were converted into DMOSj by averaging the raw difference scores. 

2.2   Experimental Results and Analysis 

Two phenomena were observed in the experiment. Firstly, the luminance of the 
stereoscopic display device can affect the eye strain when subjects evaluated im-
age quality. The dominant eye will feel uncomfortable when the luminance values 
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of two projectors are same to each other. This uncomfortableness can be abated by 
turning down the luminance of the dominant projector. Secondly, the difference 
between the resolutions of the stereoscopic images and the stereoscopic display 
device also has influence on the stereoscopic quality assessment. 

Subsequently, we will investigate the relationship between the perceived qual-
ity and the distortion types and parameters. Firstly, the DMOS values on Gaussian 
blurred images are shown in Fig. 2. The perceived quality values of stereoscopic 
images show a decreasing trend as the distortion levels on right view images in-
creasing. But all the DMOS values are below 20 regarding the whole range of 
quality score being from 0 to 100. In our opinion, the stereoscopic image quality 
degradation caused by Gaussian blur is less affected by the poor quality presented 
to the right eye images because subjects pay more attention to the left eye images 
that have no distortion. In addition, no obvious difference between the DMOS 
values on different image contents was found for the blurring distortion.  
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Fig. 2 DMOS values of Gaussian blurred stereoscopic images 
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Fig. 3 DMOS values of JPEG compressed stereoscopic images 
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For the distortion caused by JPEG compression, the fluctuation of the perceived 
stereoscopic image qualities is more drastic than that of the blurring distortion, as 
shown in Fig. 3. The x-axis of Fig. 3 represents the JPEG Q-parameter which de-
termines the quality of the compressed image. In the figure, the quality scores 
show an increasing trend as the bit-rates for right view images increasing, and the 
maximal DMOS value is below 50. According to the figure, we can find that the 
perceived quality of JPEG compressed image is content and texture dependent. 
The smoother areas the image contains, the more blocking artifacts are visible. For 
example, the Bowling image is relatively smoother than other images, as shown in 
Fig. 1, and the perceived distortion on this image introduced by blockiness artifact 
is, therefore, more visible than on other images, as shown in Fig. 3. 

In reference [1], it is stated that for blockiness artifact, the quality of stereo-
scopic images is approximately a mean of qualities of the images presented to the 
left and right eyes; while for blurring artifacts, the image quality is less affected by 
the poor quality presented to one eye because more weight is given to the input 
that has the sharper image, therefore, low-pass filtering (blur) of the images for 
one eye is a more effective method for reducing bandwidth than quantization. 
However, our experiment indicated that the perceived quality of images with 
blockiness artifact is content and texture dependent, and the depth perception de-
grades when the blurring level is increased. Compared with watching the JPEG 
compressed images with a similar perceived quality, all participants felt more eye 
strain and uncomfortable when viewing the blurred images. Thus, the use of low-
pass filtering instead of quantization for processing stereoscopic images is re-
quired to be explored further. 

For white noise distortion, the quality scores show a linear increasing trend as 
the noise added to right eye images increasing and the maximal DMOS value is 
below 50. According to Fig. 4, we can find that the image content and texture in-
formation have no significant influence on the perceived quality. 
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Fig. 4 DMOS values of stereoscopic images with white noise 
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As shown in Fig. 5, the bit rate in JPEG2000 compression schemes has less im-
pact on the perceived quality of stereoscopic images when the bit rate is more than 
a threshold, such as 0.1bpp, and the DMOS values is usually in a range of [0-10]. 
In other words, non-experts usually feel less uncomfortable when watching these 
distorted images. But when the bit rate is less than 0.1bpp, the quality decreases 
dramatically as the bit rate decreasing. In addition, the perceived quality is also 
dependent on image contents. The DMOS value of the Bowling image that con-
tains more smooth areas is smaller than that of other images when the bit-rate is 
fixed. The reason might be that JPEG2000 compression scheme discards higher 
frequency components when encoding images with plenty of texture, compared 
with the images with more smooth areas. 
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Fig. 5 DMOS values of JPEG2000 compressed stereoscopic images 
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Fig. 6 Scatter plot of Art image: DMOS values versus PSNR 
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According to the analysis on the relationship between the perceived stereo-
scopic quality and distortion conditions, the influence of different distortion types 
and image contents on the perceived quality is different. Subsequently, we will 
simply analyze the performance of PSNR on the quality prediction for stereo-
scopic images. Figure 6 and Figure 7 show the mean of DMOS values and 95% 
confidence interval plotted against PSNR (dB) from each distortion type for the 
Art image and Bowling image, respectively. As expected, the PSNR values in-
crease as DMOS values decreasing for both images. However, it is found that the 
difference of the DMOS values of the Art image between the Gaussian blurring 
and JPEG2000 compression is less than that of the Bowling image for the same 
PSNR value. This phenomenon indicates that the performance of PSNR is de-
pendent on the distortion type and image content, and it might not be an appropri-
ate metric for evaluating the quality of stereoscopic images. Therefore, we will 
propose more suitable objective quality metrics for the stereoscopic image based 
on some 2D image quality metrics and the disparity information. The extensive 
analysis on the experimental results above is a fundament work and provides a 
solid basis for designing objective quality metrics. 
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Fig. 7 Scatter plot of Bowling image: DMOS values versus PSNR 

3   Perceptual Stereoscopic Image Quality Metric Based on 2D 
Image Quality Metrics and Disparity Analysis   

Accurately predicting stereoscopic quality is an important issue for improving the 
ability and feasibility of compression and transmission schemes for stereoscopic 
images. Although many 2D image quality metrics (IQMs) have been proposed that 
work well on 2D images, developing quality metrics for 3D presentations is almost 
an unexplored issue. As indicated in Section 2, PSNR is not appropriate for evalu-
ating the quality of stereoscopic images. Therefore, in this section, we will intro-
duce some well-known 2D IQMs and investigate their capabilities in stereoscopic 
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image quality assessment. Furthermore, as disparity is an important attribute of 
stereopsis, we will try to improve the performance of IQMs on stereoscopic image 
quality assessment by integrating disparity information into the IQMs. We will 
mainly focus on the full reference (FR) metrics in this study, which means that the 
undistorted images are required for evaluating the quality of the distorted images. 

3.1   Introduction to 2D Image Quality Metrics 

Over the years, a number of researchers have contributed significant research in 
the design of full reference image quality assessment algorithms, claiming to have 
made headway in their respective domains [31]. In this study, eleven IQMs that 
are summarized in Table 1 were employed and explained in detail as follows. 

Table 1  Descriptions of image quality metrics 

IQM Descriptions 

PSNR Peak signal-to-noise ratio 

SSIM Single scale structural similarity 

MSSIM Multi-scale structural similarity 

VSNR Visual signal-to-noise ratio 

VIF Visual information fidelity 

UQI Universal quality index 

IFC Information fidelity criterion 

NQM Noise quality measure 

WSNR Weighted signal-to-noise ratio 

PHVS Modified PSNR based on HVS 

JND Just noticeable distortion model 

PSNR is a traditionally used metric for visual quality assessment and still 
widely used in evaluating the performance of compression and transmission 
schemes. Although the performance of PSNR is worse than many other image 
quality metrics in certain distortion types and respective domains, it is still appeal-
ing because it is simple to compute, has clear physical meanings, and is mathe-
matically convenient in the context of optimization. 

SSIM (Structural SIMilarity) [15] is to compare structural information between 
the reference and distorted images. Under an assumption that the human visual 
system is highly adapted for extracting structural information from a scene, a simi-
larity measure can be constructed based on luminance comparison, contrast com-
parison, and structure comparison between the reference and distorted images. 

MSSIM (Multi-scale SSIM) [32] is an extension of SSIM. MSSIM iteratively 
applies a low-pass filter in the reference and distorted images and down-samples 
the filtered images by a factor of 2. At each image scale j after j-1 iterations, the 
contrast comparison and the structure comparison are calculated, respectively. The 
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luminance comparison is computed only at the highest scale. The overall MSSIM 
measure is obtained by combining the measures at different scales. 

VSNR (Visual Signal-to-Noise Ratio) [33] operates via a two-stage approach. 
In the first stage, contrast thresholds for detection of distortions in the presence of 
natural images are computed by wavelet-based models of visual masking and vis-
ual summation. The second stage is applied if the distortions are suprathreshold, 
which operates based on low-level visual property of perceived contrast and mid-
level visual property of global precedence. These two properties are measured by 
the Euclidean distance in a distortion-contrast space of multi-scale wavelet de-
composition. VSNR is computed based on a simple linear sum of these distances. 

VIF (Visual Information Fidelity) [34] is to quantify loss of image information 
to the distortion process based on natural scene statistics, the human visual system, 
and an image distortion model in an information-theoretic framework.  

UQI (Universal Quality Index) [35] is similar to SSIM, and it is to model image 
distortions as a combination of three factors: loss of correlation, luminance distor-
tion, and contrast distortion. 

IFC (Information Fidelity Criterion) [36] is a previous work of VIF. IFC is to 
model the natural scene statistics of the reference and distorted images in wavelet 
domain using steerable pyramid decomposition [37].  

NQM (Noise Quality Measure) [38] is a measure aiming at the quality assess-
ment of additive noise by taking into account variation in contrast sensitivity, 
variation in local luminance, contrast interaction between spatial frequencies, and 
contrast masking effects. 

WSNR (Weighted Signal-to-Noise Ratio) [38] is to compute a weighted signal-
to-noise ratio in frequency domain. The difference between the reference image 
and distorted image is transformed into the frequency domain using a 2D Fourier 
transform and then weighted by the contrast sensitivity function. 

PHVS (PSNR based on the Human Visual System) [39] is a modification of PSNR 
based on a model of visual between-coefficient contrast masking of discrete cosine 
transform (DCT) basis functions. This model can calculate the maximal distortion that 
is not visible at each DCT coefficient due to the between-coefficient contrast masking. 

JND (Just Noticeable Distortion) [40] model integrates spatial masking factors 
into a nonlinear additivity model for masking effects to estimate the just notice-
able distortion. A JND estimator applies to all color components and accounts for 
a compound impact of luminance masking, texture masking and temporal mask-
ing. Finally, a modified PSNR is computed by excluding the imperceptible distor-
tions from the computation of the traditional PSNR. 

Because four typical distortion types were adopted in the subjective quality as-
sessment on the stereoscopic images in Section 2, we will also investigate the per-
formance of these IQMs on 2D images with the same distortion types. The source 
2D images and corresponding subjective evaluation results were collected from 
the LIVE image quality database [15, 31, 41], and the distortions are as following: 

• Gaussian blur: The R, G, and B color components were filtered using a circu-
lar-symmetric 2-D Gaussian kernel of standard deviation σB pixels. These three 
color components of the image were blurred using the same kernel. The values 
of σB ranged from 0.42 to 15 pixels. 
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• JPEG compression: The distorted images were generated by compressing the 
reference images (full color) using JPEG at different bit rates ranging from 0.15 
bpp to 3.34 bpp. The implementation was performed by the imwrite.m function 
in MATLAB. 

• JPEG2000 compression: The distorted images were generated by compressing 
the reference images (full color) using JPEG2000 at different bit rates ranging 
from 0.028 bits per pixel (bpp) to 3.15 bpp. Kakadu version 2.2 was used to 
generate the JPEG2000 compressed images. 

• White noise: White Gaussian noise of standard deviation σN was added to the 
RGB components of the images after scaling the three components between 0 
and 1. The same σN was used for the R, G, and B components. The values of 
σN used were between 0.012 and 2.0. The distorted components were clipped 
between 0 and 1, and then rescaled to the range of [0-255]. 

Basically, the distortion types and the generation in the stereoscopic image quality 
assessment are very similar to those in the 2D image quality assessment. There-
fore, these two image data sets and the corresponding subjective assessment re-
sults can provide a fair comparison of the IQMs between the stereoscopic and 2D 
image quality assessments. The performance comparison and analysis will be per-
formed with respect to the LIVE database and the subjective stereoscopic image 
quality experiment described in Section 2, respectively.  

3.2   Performance Analysis of IQMs on 2D and Stereoscopic  
Image Quality Assessment 

We performed the 11 IQMs on the 2D and the stereoscopic images, respectively. 
As some IQMs use the luminance component only, while others can employ the 
color components as well, we transformed all the color images into gray images 
firstly, and then computed the image quality using these IQMs. After obtaining the 
metric results, a nonlinear regression operation between the metric results (IQ) and 
the subjective scores (DMOS), as suggested in [42], was performed using the fol-
lowing logistic function: 

                                          1

2 31 exp( ( ))P

a
DMOS

a IQ a
=

+ − ⋅ −
                              (2) 

The nonlinear regression function was used to transform the set of metric results 
to a set of predicted DMOS values, DMOSP, which were then compared against 
the actual subjective scores (DMOS) and result in two evaluation criteria: root 
mean square error (RMSE) and Pearson correlation coefficient. The evaluation re-
sults of these eleven IQMs on the quality assessment and the LIVE 2D image data 
set are given in Table 2 and 3. According to the evaluation results, some general 
conclusions can be drawn as follows. 
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Table 2 RMSE of IQMs on LIVE data set 

IQM Blurring JPEG JPEG2000 Noise All 

PSNR 9.78 8.43 7.45 2.71 9.60 

SSIM 7.50 5.97 5.71 3.89 8.50 

MSSIM 5.25 5.43 4.84 4.16 7.11 

VSNR 5.94 5.78 5.52 3.35 7.47 

VIF 4.39 6.49 5.13 2.97 6.53 

UQI 5.09 8.46 8.59 5.53 8.77 

IFC 4.99 7.51 7.55 5.50 7.37 

NQM 7.55 6.31 6.00 2.79 7.45 

WSNR 6.30 6.57 6.97 3.52 7.79 

PHVS 6.41 5.81 5.52 2.56 7.71 

JND 5.99 6.87 6.11 3.28 8.83 

Average 6.29 6.69 6.31 3.66 7.92 

Table 3 Pearson correlation coefficients of IQMs on LIVE data set 

IQM Blurring JPEG JPEG2000 Noise All 

PSNR 0.783 0.850 0.888 0.986 0.801 

SSIM 0.879 0.928 0.936 0.970 0.848 

MSSIM 0.943 0.941 0.954 0.943 0.896 

VSNR 0.926 0.932 0.940 0.926 0.885 

VIF 0.960 0.914 0.949 0.960 0.913 

UQI 0.946 0.849 0.848 0.946 0.837 

IFC 0.949 0.883 0.885 0.949 0.888 

NQM 0.877 0.919 0.929 0.877 0.885 

WSNR 0.916 0.912 0.903 0.916 0.874 

PHVS 0.913 0.932 0.940 0.913 0.877 

JND 0.925 0.901 0.927 0.930 0.835 

Average 0.911 0.906 0.918 0.938 0.867 

• The performance of IQMs has significant difference for different distortion 
types. For example, PSNR is suitable for evaluating the quality degradation 
caused by noise, while its performance on blurring distortion is not promising. 
UQI and IFC have excellent performance in predicting the compression  
degradation. 

• Statistically speaking, these IQMs have promising performance on a single dis-
tortion type, while the robustness to the change of the distortion types is not 
very strong. 
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Table 4 RMSE of IQMs on stereoscopic images 

IQM Blurring JPEG JPEG2000 Noise All 

PSNR 1.97 5.97 5.09 2.74 7.64 

SSIM 3.00 7.70 8.91 2.43 9.28 

MSSIM 1.91 4.94 4.97 2.51 7.62 

VSNR 2.58 5.71 5.42 3.54 8.63 

VIF 1.84 4.39 6.45 3.41 7.78 

UQI 1.89 3.96 6.44 4.06 7.13 

IFC 1.78 3.55 6.37 3.98 8.61 

NQM 2.17 3.53 4.23 4.36 8.70 

WSNR 2.02 6.74 6.09 3.85 9.07 

PHVS 2.10 5.62 5.27 2.65 8.06 

JND 2.18 6.97 5.73 3.55 8.58 

Average 2.13 5.38 5.91 3.37 8.29 

Table 5 Pearson correlation coefficients of IQMs on stereoscopic images 

IQM Blurring JPEG JPEG2000 Noise All 

PSNR 0.939 0.882 0.950 0.978 0.795 

SSIM 0.851 0.793 0.824 0.983 0.677 

MSSIM 0.943 0.920 0.948 0.981 0.797 

VSNR 0.893 0.893 0.948 0.962 0.731 

VIF 0.947 0.938 0.916 0.966 0.788 

UQI 0.943 0.950 0.913 0.950 0.825 

IFC 0.951 0.962 0.929 0.954 0.734 

NQM 0.925 0.961 0.963 0.942 0.726 

WSNR 0.935 0.846 0.924 0.955 0.696 

PHVS 0.930 0.896 0.949 0.979 0.769 

JND 0.924 0.836 0.937 0.961 0.738 

Average 0.926 0.898 0.927 0.965 0.752 

Subsequently, we performed the IQMs on the right eye images in the stereo-
scopic image quality assessment, as there were no distortions on the left eye  
images. Table 4 and Table 5 give the evaluation results. In addition, we can use a 
constant as the quality value on the left eye images, e.g. 1, for SSIM, MSSIM, UQI, 
etc. Then, the significance of the interaction effects between the quality values of 
the left eye images, the right eye images, and the overall qualities was tested by 
performing a two-way ANOVA (ANalysis Of Variance) on the results. The results 
of the ANOVA show that the quality of the right eye image dominates the overall 
quality and there is almost no influence of the left eye image on the overall quality. 
In addition, according to the evaluation results, the situation of the performance of 
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these IQMs in evaluating the stereoscopic image quality is similar to that in predict-
ing the 2D image quality. A better IQM on the 2D image quality assessment usu-
ally has better performance on the stereoscopic quality assessment. However,  
according to the averages of different IQMs, as shown in the last rows in the Ta-
bles, the robustness of these IQMs to the change of distortion types in stereoscopic 
image quality assessment is much worse than that in 2D image quality assessment. 
The performance of these IQMs on the entire distortion types in the 2D image qual-
ity assessment is much better than that in the stereoscopic image quality assess-
ment. In our opinion, the reason is that the perceived quality is not only affected by 
image content, but other attributes of stereopsis, such as disparity, have significant 
influence on the quality evaluation of the stereoscopic images as well. 

3.3   Perceptual Stereoscopic Quality Assessment Based on  
Disparity Information 

Human eyes are horizontally separated by about 50-75 mm (interpupillary dis-
tance) depending on each individual. Thus, each eye has a slightly different view 
of the world. This can be easily seen when alternately closing one eye while look-
ing at a vertical edge. At any given moment, the lines of sight of the two eyes 
meet at a point in space. This point in space projects to the same location (i.e. the 
center) on the retinae of the two eyes. Because of different viewpoints observed by 
the left and right eyes however, many other points in space do not fall on corre-
sponding retinal locations. Visual binocular disparity is defined as the difference 
between the points of projection in the two eyes and is usually expressed in de-
grees as the visual angle. The brain uses binocular disparity to extract depth  
information from the two-dimensional retinal images in stereopsis. In computer 
stereo vision, binocular disparity refers to the same difference captured by two dif-
ferent cameras instead of eyes [43]. Generally, one image of stereo-pair images 
can be restored from the disparity and the other one image. Therefore, we believe 
that the disparity between the left and right eye images has an important impact on 
visual quality assessment. In this subsection, we apply the disparity information in 
the stereoscopic image quality assessment [44]. 

In this work, we do not intend to study the estimation methods of disparity map 
between a stereo-pair images and their impact on the quality assessment. We 
chose a belief propagation based method to estimate the disparity map [45]. Be-
cause of the distorted regions, the disparity of the original stereo-pair images is 
different from that of the distorted stereo-pair images, even though the relative po-
sitions of the objects in the image pair do not change at all. Figure 8 shows exam-
ples of an original Art image (right eye), distorted images, and the corresponding 
disparity maps. Because the real objects in the image do not change during the dis-
tortion process, changes between two disparity images (one is original disparity 
and another is the disparity between the left eye image and the distorted right eye 
image) are usually located at those positions where the distortions are clearly visi-
ble, such as noise added regions, regions with blockiness. Consequently, we can 
compare the disparity images to obtain a quality prediction for the distorted stereo-
scopic images. 
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(a) Reference image and disparity 

     
(b) Gaussian blurred image and disparity 

     
(c) JPEG compressed image and disparity  

     
(d) JPEG2000 compressed image and disparity 

Fig. 8. Art: reference, distorted images, and corresponding disparity images 
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Fig. 8 (Cont.) 

     
(e) Distorted image with white noise and disparity 

Table 6 Evaluation results of image quality metrics on disparity images 

Criteria GCC MSE MAD PSNR SSIM MSSIM VSNR 

RMSE 7.11 7.09 7.22 6.86 6.40 6.99 6.85 

Pearson 0.826 0.827 0.820 0.839 0.862 0.832 0.840 

Criteria VIF UQI IFC NQM WSNR PHVS JND 

RMSE 8.31 6.37 8.08 7.94 7.20 6.87 7.59 

Pearson 0.755 0.863 0.769 0.776 0.821 0.839 0.816 

As explained above, the disparity refers to the difference in location of an object 
seen by the left and right eyes. Thus, the disparity images have quite different mo-
dalities compared to the original images, as shown in Fig. 8. Firstly, we tested three 
simple metrics: global correlation coefficient (GCC), mean square error (MSE), 
and mean absolute difference (MAD). We performed the same fitting operation, as 
in Equation (2), between the computed results obtained by these metrics and the 
DMOS values on the whole distortion types, and then the Pearson correlation coef-
ficient and RMSE were calculated. Secondly, we also validated the performance of 
IQMs on the disparity images, even though these IQMs were supposed to be devel-
oped for predicting the quality of natural images. Table 6 gives the evaluation  
results of the Pearson correlation coefficient and RMSE using these metrics.  

According to the evaluation results of the IQMs on the disparity images, the 
performance is much better than that on original images. This observation proba-
bly indicates that the disparity information is more important than the original im-
ages for perceptual quality assessment, even though the disparity does not contain 
any real objects. The big differences between two disparity images usually appear 
in the regions where the distortions are greatly annoying. Thus, even a very simple 
metric on the disparity images, such as MSE, performs better than a complicated 
IQM on the original images. Additionally, we found that SSIM and UQI have the 
best performance within all the IQMs. We believe that this is because these two 
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metrics are based on comparing the structural information, and the disparity can 
express such structural information of the original images.  

Since the disparity images have significant influence on the stereoscopic image 
quality assessment, we naturally suppose that the combination of the disparity im-
ages and the original images can perform better than using either the disparity or 
the original images solely. Subsequently, we used three approaches to combine the 
disparity and original images to compute the stereoscopic image quality. 

Table 7 Evaluation results of global combination between image quality and disparity 
quality on stereoscopic image quality assessment 

IQ 
DQ 

PSNR SSIM MSSIM VSNR VIF UQI IFC NQM WSNR PHVS JND 

GCC 0.869 0.867 0.840 0.830 0.831 0.835 0.836 0.837 0.828 0.833 0.839 

MSE 0.887 0.878 0.838 0.830 0.828 0.844 0.843 0.829 0.847 0.828 0.846 

MAD 0.888 0.899 0.853 0.828 0.825 0.841 0.833 0.829 0.838 0.830 0.851 

PSNR 0.876 0.887 0.848 0.836 0.837 0.847 0.874 0.842 0.840 0.839 0.829 

SSIM 0.858 0.859 0.870 0.862 0.858 0.870 0.861 0.866 0.856 0.859 0.866 

MSSIM 0.857 0.865 0.837 0.832 0.836 0.846 0.853 0.833 0.840 0.834 0.815 

VSNR 0.850 0.842 0.844 0.841 0.837 0.860 0.834 0.838 0.833 0.845 0.863 

VIF 0.817 0.819 0.804 0.741 0.779 0.826 0.730 0.732 0.730 0.766 0.778 

UQI 0.855 0.859 0.865 0.862 0.858 0.868 0.863 0.868 0.855 0.857 0.864 

IFC 0.814 0.807 0.793 0.764 0.775 0.822 0.760 0.762 0.760 0.778 0.780 

NQM 0.847 0.856 0.829 0.770 0.784 0.827 0.774 0.764 0.763 0.796 0.775 

WSNR 0.865 0.878 0.852 0.817 0.831 0.838 0.840 0.821 0.818 0.823 0.818 

PHVS 0.853 0.879 0.845 0.813 0.818 0.843 0.823 0.817 0.813 0.818 0.825 

JND 0.839 0.876 0.827 0.833 0.806 0.852 0.795 0.836 0.827 0.815 0.839 

The first approach, called global combination, was to compute two quality val-
ues of the distorted image and the distorted disparity firstly, denoted as IQ and 
DQ, respectively. IQ was computed by IQMs on the original images, and DQ by 
GCC, MSE, MAD, and the IQMs. Then, an overall quality which was taken as the 
quality of the stereoscopic image was calculated using the following function with 
different coefficients and exponents: 

                                 d e d eOQ a IQ b DQ c IQ DQ= ⋅ + ⋅ + ⋅ ⋅                                   (3) 

In this study, we employed Levenberg-Marquardt algorithm to find the optimum 
parameters in Equation (3). Although the optimum parameters may change if dif-
ferent initial values were used, we found that the highest correlation coefficient 
between OQ and DMOS values is 0.899. For example, one set of the optimum pa-
rameters is a=3.465, b=0.002, c=-0.0002, d=-1.083, and e=2.2. In this experiment, 
we used the direct correlation between OQ and DMOS values while the fitting op-
eration in Equation (2) was not performed because we have performed an  
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optimization operation between OQ and DMOS values in Equation (3). We report 
the highest correlation for different combinations in Table 7 while the correspond-
ing optimum parameters are omitted for the sake of clarity.  

According to the experimental results, it was found that appropriate combina-
tions of the image quality and the disparity quality perform better than using the 
quality of either the original images or the disparity images solely. In addition, we 
also found that the combination of SSIM and MAD, i.e. SSIM was used to compute 
IQ and MAD was used to compute DQ, always obtains the best performance within 
all the possible combinations. Furthermore, SSIM has a promising performance  
in the combinations either for measuring the original image quality or for comput-
ing the disparity image quality. This result indicates that a good metric for predict-
ing the stereoscopic image quality can be developed if appropriate methods are 
found to combine the original image quality and the disparity image quality. 

The second approach is called local combination. Some IQMs, e.g. PSNR 
(based on MSE), SSIM, MSSIM, UQI, PHVS, and JND, compute a quality map 
between the reference image and the distorted image to depict the distribution of 
quality degradation at image pixels directly or indirectly, and the overall quality of 
the distorted image is usually computed as a mean over all the pixels in the quality 
map. Furthermore, we can also compute a quality map of the disparity image 
which can reflect an approximate distribution of the degradation on the distorted 
disparity image. In this study, four methods were used to compute the quality map 
on the disparity image as following: 
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                                          (4) 

where D  and D  denote the original disparity image and the distorted disparity 

image, respectively, and ( , )IMQ D D  denote the quality map using the correspond-

ing IQMs (including PSNR, SSIM, MSSIM, UQI, PHVS, and JND) between the 
original disparity image and the distorted disparity image. After computing the 
quality maps of the original image and the disparity image, Equation (3) was used 
to pool each pixel pair on the quality maps, and then the mean over all pixels was 
taken as the overall quality of the stereoscopic image. Table 8 gives the Pearson 
correlation coefficients between the quality values and the DMOS values by using 
the local combination, where the highest correlation coefficients were reported. 

According to the evaluation results, it was found that the performance im-
provement by using the local combination is not as significant as if the global 
combination was performed. Some combinations even reduced the correlation be-
tween the overall quality values and the subjective DMOS values. However, we 
found that SSIM and UQI algorithms on the original images and disparity images 
have the best performance for local combination, regardless of what kinds of 
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combination are used. For example, let IQM and DQM be quality maps of the 
original image and disparity image computed by UQI and SSIM, respectively, and 

the combination at each pixel pair be OQM IQM DQM IQM DQM= + + ⋅ , 

the Pearson correlation coefficient between the predictive qualities and the subjec-
tive results is 0.899. Therefore, not all metrics are suitable for the local combina-
tion, and an appropriate method is needed to explore the relationship between the 
image quality map and the disparity quality map. 

Table 8 Evaluation results of local combination between image quality map and disparity 
quality map on stereoscopic image quality assessment 

IQ 
DQ 

PSNR SSIM MSSIM UQI PHVS JND 

2( )D D−  0.866 0.832 0.776 0.833 0.837 0.770 

D D−  0.840 0.849 0.743 0.853 0.806 0.803 

22

1
255

D D−−  0.807 0.792 0.815 0.898 0.815 0.795 

PSNR 0.799 0.805 0.786 0.842 0.776 0.782 

SSIM 0.799 0.821 0.800 0.899 0.832 0.816 

MSSIM 0.762 0.801 0.774 0.859 0.769 0.802 

UQI 0.798 0.822 0.831 0.895 0.841 0.839 

PHVS 0.795 0.826 0.804 0.846 0.765 0.728 

JND 0.804 0.823 0.781 0.835 0.774 0.807 

Finally, the third approach was to integrate the local combination into the 
global combination by the following three steps: 

• Two quality maps were computed firstly using appropriate metrics on the origi-
nal image and disparity image, respectively; 

• These two maps were combined locally and the mean was taken as an interme-
diate quality of the distorted image; 

• The final step was to combine the intermediate quality and the quality of the dis-
parity image and then obtained the overall quality of the stereoscopic images. 

In our experiment, the highest correlation coefficient (0.91) was achieved when UQI 
was used in computing the quality maps of the original image and disparity image, and 
the local combination on the quality maps was then combined with the MAD of the 
disparity image again. Figure 9 gives the scatter plot of the subjective DMOS values 
versus the optimum predictive quality values. According to the experiment results, the 
proposed model has better performance on predicting perceptual quality of the stereo-
scopic images with lower impairments than that on the images with higher  
impairments. Therefore, improving the robustness of the quality metric to different 
impairment levels is also an important task in the future work. 
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Fig. 9 Scatter plot of DMOS versus optimum predictive quality values 

In summary, our experiments indicate that 2D IQMs can not be adopted in 
evaluating the stereoscopic image quality directly, and the disparity information 
has a significant impact on the perceived quality. The future work is needed to ex-
plore the relationship between the original image, the disparity information, and 
the quality assessment in depth. 

4   Conclusions   

In this chapter, we have investigated related issues in visual quality assessment for 
3D presentations, especially the stereoscopic image. Typical distortion types on 
3D presentations introduced from content capture, coding schemes, to transmis-
sion through communication channels, and in displaying the 3D presentation on an 
auto-stereoscopic display, were reviewed. We mainly focused on an analysis of 
the quality degradation caused by coding errors. To study the relationship between 
the perceived quality and distortion conditions for the stereoscopic images, a sub-
jective quality assessment was conducted. Four typical distortion types: Gaussian 
blur, JPEG compression, JPEG2000 compression, and white noise, were intro-
duced to some popular stereoscopic images, and the subjective quality evaluation 
was conducted in a controlled laboratory. We performed an intensive analysis on 
the relationship between the perceived quality and distortion conditions on the 
stereoscopic images. It was found that the perceived quality is dependent strongly 
on the distortion type and image content. The performance of PSNR in predicting 
the stereoscopic image quality was evaluated with respect to the subjective results. 
However, it was found that PSNR is not an appropriate metric for the stereoscopic 
image quality assessment. Therefore, we investigated the capabilities of some 
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well-known 2D image quality metrics, including SSIM, MSSIM, VSNR, VIF, 
UQI, IFC, NQM, WSNR, PHVS, and JND model, in the stereoscopic image qual-
ity assessment. The experimental results indicated that 2D image quality metrics 
can not be adopted in evaluating the stereoscopic image quality directly. Further-
more, as an important factor in stereopsis, the disparity was taken into account in 
the stereoscopic image quality assessment. The experimental results demonstrated 
the promising performance by using the disparity information in evaluating the 
stereoscopic quality, and the best performance can be achieved when the disparity 
information and the original image are combined appropriately. 

Although some tentative work on developing objective quality metrics for 
stereoscopic images has been done in the literature and this chapter, we are still a 
long way from 3D quality metrics that are widely applicable and universally rec-
ognized. The future work is to understand the fundamental of 3D presentation im-
pact on the human visual and perceptual system. Determining how to model such 
impact and the relationship between the characteristics of 3D presentations and 
quality assessment is another critical issue for evaluating the quality of visual  
experience in 3D visual presentations. 
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Part II
Video Coding for High Resolutions



Chapter 4 
The Development and Standardization of 
Ultra High Definition Video Technology 

Tokumichi Murakami* 

1   Introduction 

Video technology has evolved from analog to digital and SD (Standard Definition) 
to HD (High Definition). However, to provide a visual representation with high 
quality that satisfies the full range of human visual capabilities it requires further 
advances in video technology. One important direction is ultra high resolution 
video. Although UHD (Ultra High Definition) has already been standardized as a 
video format with spatial resolution 3840x2160 and 7680x4320 in an ITU recom-
mendation (ITU-R BT.1769), actual deployment of UHD services have not yet 
been realized. 

In order to realize UHD video services, the basic technologies that support 
UHD video, such as high quality camera, display, storage and transmission infra-
structure, are indispensable. Presently, these technologies have accomplished re-
markable progress, and the video and the visual equipments with 4Kx2K (4K) or 
8Kx4K (8K) resolutions exceeding HD are shown at many trade shows and exhi-
bitions. Also, several cameras corresponding to 4K have already been announced, 
and there are a variety of displays, such as liquid crystal displays (LCD), plasma 
display panels (PDP) and projectors, which can render 4K video. Moreover, or-
ganic electroluminescence (organic EL) equipped with thinness, power saving and 
high resolution is also promising as a UHD display. Furthermore, the Japan 
Broadcasting Corporation (NHK) has developed a 33 million pixel camera for a 
Super Hi-Vision system with 7680×4320 resolution, and is demonstrating a pro-
jector and a liquid crystal panel with 8K resolution. Thus, the realization of UHD 
video service is within reach. 

                                                           
Tokumichi Murakami 
Mitsubishi Electric Corporation  
Research and Development Center  
5-1-1 Ofuna, Kamakura City, Kanagawa, 247-8501 Japan  
Tel.: +81-467-41-2801  
e-mail: Murakami.Tokumichi@eb.MitsubishiElectric.co.jp  



 

82 T. Murakami
 

High performance video coding technology is another indispensable element to 
realize UHD video. At present, the main standards for video coding are MPEG-2 
and MPEG-4 AVC (Advanced Video Coding)/H.264 (AVC/H.264). However, the 
development of a new video coding technology is necessary for UHD video appli-
cations since the video must be compressed further to be transmitted within cur-
rent systems, while still keeping the high quality of the original source as much as 
possible. In response to such environmental conditions and demands, the stan-
dardization activity of a next generation video coding for UHD video is getting 
underway. 

In this chapter, the history and international standardization of video coding 
technology are described. Then, the fundamental constituent factors of video cod-
ing are introduced. Next, the requirements for the video coding technology  
towards the realization of UHD video are described, and the progress of the sup-
porting UHD video technologies is surveyed. Finally, the challenges toward the 
technical development of a next generation video coding and the view of future 
video coding technology are discussed. 

2   Progress of Digital Video Technique 

Looking back upon the history of video technology, it is evident that video coding 
is one of the most important elements when considering the progress of digital 
video technology. During these two decades, MPEG (Moving Picture Experts 
Group) has occupied a central position in the international standardization of 
video coding technology. In this section, the results of MPEG standardization and 
current activities are surveyed. 

2.1   History of Video Coding 

2.1.1   Before AVC/H.264 
Television broadcasting first started as analog in the 1940s and spread generally 
and widely. In the telecommunications area, video transmission was realized as 
TV phone service at the beginning, which was sending semi-video in addition to 
voice through the telephone line. However, it was not practical at that time to allo-
cate wide range of the bandwidth of the communication line for video transmis-
sion. Although research and development for efficient video transmission were 
conducted during the 1950s and 1960s, most of them were video transmission sys-
tems made use of analog technology.  

In the 1970s, since the digital signal processing began to evolve into practical 
and more matured technology, the hierarchy of the digital telecommunications net-
work was specified in the communications field. In the beginning of 1980s, the 
practical development on high efficiency digital video compression had come ac-
celerated. As a result, innovative video coding technology was introduced into the  
 



 

The Development and Standardization of Ultra High Definition Video Technology 83
 

video conference systems for business use, by KDD, NTT and Mitsubishi etc., in 
Japan. In the middle of 1980s, it became possible to simulate the video coding al-
gorithms more easily with improved workstation capability, and practical research 
was greatly advanced. As it was at the dawn of a new age of digital communication 
line based on Integrated Services Digital Network (ISDN), the development of the 
products of pioneering video conference system was carried out. The CCITT (Con-
sultative Committee for International Telephone and Telegraph), now known as 
ITU-T (International Telecommunication Union – Telecommunication sector), be-
gan to consider and discuss the needs of interconnectivity and interoperability for 
video transmission assuming TV phone, video conference, remote surveillance, etc. 
In 1990, CCITT has recommended H.261 for video coding scheme at the transmis-
sion rate of px64 Kbit/s (p=1, 2, ...) for the communication of video and audio on 
ISDN [1]. In H.261, a hybrid coding system using the combination of motion com-
pensated prediction coding and transform coding was adopted, and many of the 
current video coding systems are derived from the hybrid coding system from 
H.261. In this period, VTR became more widespread in the home because of its 
tendency of lower-pricing. Under such a situation, MPEG, which has been a work-
ing group under ISO/IEC, started the development of an international standard for 
video coding that aimed at consumer appliances in 1988.  

Since the 1980s, the history of video coding technology has been deeply related 
to the international standardization. MPEG specifically aimed at the development 
of audio and video coding methods for CD (Compact Disc) which began to spread 
rapidly with the advent of digital music. MPEG-1 specified the coding of video 
with up to about 1.5 Mbit/s; this standardization was completed in 1993 and was 
adopted for video CD and CD karaoke [2]. 

Subsequently, MPEG-2 was standardized as MPEG-2/H.262 [3, 4] and aimed 
at the coding of SDTV and HDTV; this standardization was completed through 
cooperation between ISO/IEC and ITU-T in 1994. The standardization of MPEG-
2 triggered the roll-out of digital broadcasting. Video coding technology provided 
a means to satisfy constraints on the communication bandwidth and storage capac-
ity for transmitting and storing video, respectively. Until MPEG-2 was standard-
ized, the video was always treated with lower resolution than standard television 
broadcasting. However, with the advent of MPEG-2, video coding technology was 
able to realize high quality video services. In 1995, NHK and Mitsubishi had 
jointly developed an HDTV codec conforming to MPEG-2 specification, and con-
ducted a verification experiment on digital HDTV broadcasting, This became a 
turning point to accelerate digital TV broadcasting. After then, MPEG-2 began to 
be adopted as a video coding scheme for digital broadcasting in Japan, Europe and 
the United States. HDTV digital broadcasting began to be a full-fledged service 
world-widely in early 2000s, and the spread of LCD displays brought the realistic 
video experience of 1920 scanning lines to home. 

On the other hand, the combination of the Internet and PC had grown greatly as 
a platform for multimedia services since Mosaic, which was an Internet browser,  
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first released in 1993. In that period, many proprietary coding methods were de-
veloped outside the conventional standardization organizations. In spite of this 
situation, H.263 [5] and MPEG-4 [6] were still used in many applications. H.263 
was recommended for the transmission of VGA (Video Graphic Array) video 
from tens of Kbit/s to several Mbit/s in 1995. MPEG-4 was a successor of H.263 
and was completed its standardization in 1999. MPEG-4 was utilized for 3G mo-
bile video phones with 64 kbit/s, portable video players with up to 2-3 Mbit/s, as 
well as the animation function of digital still camera, etc. 

In the 2000s, the development of video coding technology progressed rapidly 
due to an increase in processing speed of devices, user demand for higher quality 
and an abundance of video services. AVC/H.264 [7, 8] is the standard which was 
developed based on the coding techniques examined under the H.26L project in 
ITU-T/SG16/Q.6 known as VCEG (Video Coding Experts Group). A collabora-
tive team known as the JVT (Joint Video Team) was formed between MPEG and 
VCEG in 2001. AVC/H.264 which achieved twice as much compression ratio of 
MPEG-2 was standardized in 2003. The AVC/H.264 standard was then adopted as 
the coding method for mobile TV broadcasting called One-seg in Japan and for 
Blu-ray with HD resolution, and continues to extend the scope of its applications. 
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Fig. 1 History of Video Technology (From Visual Communication to Digital Broadcasting) 

2.1.2   After AVC/H.264 
AVC/H.264 continued to be improved for high quality video after the recommen-
dation in 2003. Baseline Profile including 4x4 transform was standardized in 2003  
 



 

The Development and Standardization of Ultra High Definition Video Technology 85
 

and High Profile which employs 8x8 transform and individual quantization matrix 
for HDTV was recommended in 2005. High Profile has been adopted and de-
ployed in home AV equipments including Blu-ray disc players and recorders. In 
2007, some additional coding tools to support high quality video coding were 
added, including the support for coding of video in 4:4:4 format and high defini-
tion levels, according to the proposals from Mitsubishi, etc. [9]. 

In response to this progress in video coding technology, television broadcast-
ing, which is the most familiar video media to the public, has started shifting from 
SDTV to HDTV in a digital form. Video recorders for home use and small hand-
held camcorders are also operated with HDTV quality; such devices realize not 
only a small size but a low price as well. 

Thus, while HD video is becoming the norm, the development of UHD video 
technology such as 4K with 4 times the resolution of HD is progressing steadily. 
Visual equipments with 4K resolution are now being exhibited at shows. Several 
cameras corresponding to 4K resolution have already been announced, and LCD, 
PDP and projectors which can display 4K image can be seen. Moreover, the or-
ganic EL equipped with thinness, power saving and high resolution is also promis-
ing as a display of UHD video. With respect to practical use, digital cinemas with 
4K resolution have been specified and their use for digital cinema including distri-
bution to theaters has already started [10]. Furthermore, NHK is planning for  
advanced television broadcasting with 8K resolution from the year of 2025, and 
already has developed a 33 million pixel camera with 8K resolution and a projec-
tor with 8192x4320 resolution. Video standardization of 4K and 8K resolutions is 
being progressed by ITU-R (Radiocommunications sector) and SMPTE (Society 
of Motion Picture and Television Engineers) which is responsible for production 
standards used by the cinema and television industries. Next-generation video 
coding standards, including UHD video as a target, are also in the process of start-
ing in response to these environmental conditions and expectations. 

In 2009, MPEG invited the public to submit evidence of new video coding 
technologies that fulfill the conditions for UHD video, and evaluated the tech-
nologies considering the emerging application requirements [11]. As a result of 
this study, sufficient evidence was obtained and MPEG is now planning a new 
standardization initiative to meet these goals. The current schedule is to collect 
proposals in 2010, and to recommend an international standard in 2012-2013. 
MPEG and VCEG are likely to cooperate on this activity. 

Thus, information projected on a screen will be diversified in the future when 
UHD video technology for 4K and 8K resolutions is realized. For example, we 
will be able to enjoy realistic and immersive video on a large screen TV that is 
over 100 inches diagonal, and display web browsers simultaneously with UHD 
video contents on the screen. We may also use a photogravure TV of A3 size like 
an album of photographs. 
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Fig. 2 History of Video technology (Nowadays and Future) 

2.2   Technical Standardization for Video Coding 

The history of video coding technology has been deeply related to international 
standardization since the 1980s. Because interoperability is very important for the 
widespread utilization of video contents, it is important that coded video contents 
should conform to an international standard. In the following, international stan-
dards for video coding focusing on MPEG are surveyed. 

2.2.1   International Organizations of Video Coding Standards 
Video coding technology has been playing an important role in the progress of 
video technology and the spread of video contents and applications. Standardiza-
tion organizations responsible for digital video related technologies and their mu-
tual relationships are shown in Fig. 3. 

ISO/IEC and ITU-T are the primary organizations in the world that engage in 
the international standardization of video coding. MPEG is one of the working 
groups, formally known as ISO/IEC JTC1/SC29/WG11, which belongs to a Joint 
committee of ISO (International Standardization Organization), which promulgates 
industrial and commercial standards, and IEC (International Electro-technical 
Commission) which treats international standards for all electrical, electronic and 
related technologies. On the other hand, ITU-T is an international standardization 
organization for telecommunications which was formerly called CCITT, and it has 
been coordinating many standards in the field of telecommunications. 
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Fig. 3 Standardization Organizations and their Relationships 

Among the digital video related standardization organizations, MPEG has been 
and continues to occupy the central position of video coding technology, and 
MPEG standards are considered as one of the essential technologies for digital 
video services. Since its inauguration in 1988, MPEG has standardized MPEG-1, 
MPEG-2/H.262, MPEG-4 and AVC/H.264, and has been promoting the develop-
ment and standardization of multimedia technologies including video coding. 
MPEG standards specifies the technologies to compress video data with compres-
sion ratios in the range from 30:1 to 100:1 as well as the technologies for trans-
mission and storage of video and audio contents, and offers open specifications 
and compatibilities. 

Furthermore, MPEG has cooperated on international standardization of video 
coding with VCEG (Video Coding Experts Group) which is affiliated with ITU-
T/SG16. Experts from both MPEG and VCEG committees formed the JVT (Joint 
Video Team) for the development of AVC/H.264. 

2.2.2   Improvement in Compression Ratio by MPEG 
The compression ratio of video data has improved through MPEG standardization. 
For example, AVC/H.264 can perform twice as much compression ratio as 
MPEG-2. High resolution and multi-channel were attained by the improvement of 
the compression ratio of video coding by MPEG. 
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Fig. 4 MPEG and Digital Video Services 
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Fig. 5 Cooperative Relationship between MPEG and VCEG 
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Fig. 6 Improvement in Compression Ratio by MPEG 

3   Video Coding Technology 

3.1   The Shannon Theory and Video Coding Technology 

Video coding aiming at digital information compression began its development 
from the necessity of transmitting a vast quantity of digital video data through 
communication line with narrow band. Therefore, it is possible to draw an analogy 
between the information and telecommunication model of Shannon [12, 13] and 
the composition of digital video coding transmission system (refer to Fig. 7). In 
the sending side of a digital video transmission system, the analog video signal 
acquired from a camera is digitally sampled and quantized. Format conversion is 
performed using various filters and a sequence of digital images is generated [14]. 
Then, prediction, transform, quantization and entropy coding are applied to the 
image sequence to produce a compressed bitstream (Source Coding) [15]. The 
compressed bitstream then undergoes encryption, multiplexing, error detec-
tion/correction, modulation, etc., and is transmitted or recorded according to the 
characteristic of a transmission line or a recording medium (Channel Coding). On 
the other hand, in the receiving side, the video signal is reproduced by the inverse 
operations performed in the sending side and the video is displayed on a screen. 
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Fig. 7 Video Coding in Shannon’s model 

3.2   Main Components of Video Coding 

Video coding usually consists of four main components including prediction, 
transform, quantization and entropy coding. Prediction reduces relative redun-
dancy exploiting correlation within a picture or across several pictures. The resid-
ual signal that represents the difference between the original and the predicted  
signal is encoded. Transform is a process for energy compaction of the signal to 
reduce the correlation of the symbols. In practice, the signal is transformed from a 
spatial domain to a frequency domain. There are several transforms that have been 
used in typical image and video coding standards including Discrete Cosine 
Transform (DCT) and Discrete Wavelet Transform (DWT). Quantization is a 
technique that reduces the amount of information directly. There are two main 
methods of quantization including Scalar Quantization and Vector Quantization. 
Entropy Coding is a reversible coding method based on statistical characterization 
of the symbols to be encoded. Huffman coding and arithmetic coding are typical 
examples of entropy coding schemes.  

3.2.1   Prediction 
A picture has high correlation between neighboring pixels in both spatial and tem-
poral directions. Consequently, the amount of information can be reduced by the 
combination of the prediction between pixels and the coding of the prediction er-
ror (residual signal). The prediction exploiting spatial correlation within a picture 
is known as Intra prediction, while the prediction exploiting temporal correlation 
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across two or more pictures is known as Inter prediction. A method of further ex-
ploiting correlation between frames is to utilize motion prediction, which is re-
ferred to as Motion Compensated Prediction. Fig. 8 shows the difference of power 
between several signals in a typical video coding system. 
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Fig. 8 Predictive Coding Scheme 

3.2.1.1   Intra Frame Prediction 
Intra Frame Prediction is a prediction technique that uses the neighboring pixels 
within a frame. Three prediction methods including Previous-sample Prediction, 
Matrix Prediction and Plane Prediction are shown as examples of Intra Frame Pre-
diction in Fig. 9. Previous-sample Prediction uses neighboring pixels in the hori-
zontal direction as a prediction pixel, Matrix Prediction uses neighboring pixels in 
both horizontal and vertical directions, and Plane Prediction uses neighboring pix-
els in horizontal direction and subtracts the pixel values at the same positions on 
the former line. 

3.2.1.2   Motion Compensated Prediction 
Motion Compensated Prediction is a technique which creates a prediction image 
that resembles the current image by linear translation of a block within a reference 
picture which is already transmitted and decoded. Compression is achieved by 
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coding the difference between the predicted and original pictures. The principle of 
Motion Compensated Prediction is shown in Fig. 10. 
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Fig. 9 Examples of Intra Frame Prediction 
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Fig. 10 Principle of Motion Compensated Prediction 

Motion Compensated Prediction can reduce the energy of the residual signal 
compared with the simple difference between frames. Fig. 11 shows an example 
that compares the simple difference signal between frames and the Motion Com-
pensated Prediction difference signal. It is clear that the difference signal de-
creases dramatically when Motion Compensated Prediction is utilized. 

Fig. 12 shows an example of the signal characteristics of the original, Intra 
Frame Prediction, Inter Frame Prediction and Motion Compensated Prediction 
pictures of a HDTV picture with their entropy and signal power. It is shown that 
signal power decreases sharply when Motion Compensated Prediction is utilized. 
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Fig. 11 Effect of Motion Compensated Prediction 
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Fig. 12 Characteristics of Picture Signal 

3.2.2   Transform 
Transform is the method of converting an image signal into another signal do-
main, and centralizing signal power to specific frequency bands. There exist DCT 
and DWT for this purpose, which are used in the current picture coding standards. 
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3.2.2.1   DCT 
DCT converts the spatial domain signal into the frequency domain using a win-
dow with fixed width for the transformation. Usually, a picture is divided into 
NxN pixel blocks (N pixels width both horizontal and vertical directions) and the 
transform is performed for each pixel block. The DCT is expressed as follows, 
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On the other hand, the inverse transform (IDCT) reconverts a transformed signal 
to the spatial domain and is expressed as follows, 
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The transform basis patterns of the two dimensional DCT in the case of 8x8 is 
shown as an example in Fig. 13. 

After performing the DCT of a video signal, a significant portion of energy 
tends to be concentrated in the DCT coefficients in the low frequency bands, even 
if there is no statistical deviation in a pixel block itself. Therefore, coding is per-
formed according to the human visual system and the statistical deviation in the 
DCT coefficient domain of an image signal. An example of an image after trans-
formation by DCT is shown in Fig. 14. 

DCT coefficients are encoded by using zigzag scan and run length coding tech-
nique after quantization. Run length coding is a method of coding the combination 
of (number, length) of the same kinds of continuous symbols. Higher power DCT 
coefficients tend to be concentrated in the low frequency bands and the power be-
comes lower, even down to zero, as the frequency increases. The quantized in-
dexes obtained by quantization of the DCT coefficients are scanned in a zigzag 
pattern from the low frequencies (upper left) to the high frequencies (lower right) 
and are rearranged into a one dimensional series. The signal series is expressed as 
a pair of the number of zeros (zero run) and a non-zero value following the zero 
series (level). When the last non-zero value is reached, a special sign called EOB 
(End of block) is assigned to reduce coding signals. By following this process, the 
statistical nature of the signal series can be exploited. Namely, symbols that have a 
large level will typically have a short zero run and symbols that have a long zero 
run are typically associated with a small level. In this way, a variable length code 
can be assigned to the combination of (zero run, level) to be compressed with 
shorter codes assigned to more probable symbols and longer codes assigned to less 
probable ones. The example of a zigzag scan and run length coding adopted in 
MPEG-2 are shown in Fig. 15. 
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Fig. 13 Transform Basis Patterns of Two Dimensional 8x8 DCT 

3.2.2.2   DWT 
DWT is one of the transform methods using the transform basis made by the op-
eration of expanding and moving a function localized in frequency domain. DWT 
allows using windows whose sizes are different according to frequencies, and has 
the feature of high response for both low-frequency and high-frequency portions 
of signals. DWT has also the following features, 

(1) The correspondence for local waveform change is high by using flexible 
transform windows for unsteady signals 

(2) Block noise which is often present in DCT transform does not occur in-
side the window width for the conversion of lowest frequency 

(3) Hierarchical coding can be realized easily. 
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Fig. 14 Example of transformation by DCT 
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Fig. 15 Example of Zigzag Scan and Run Length Coding 

3.2.3   Quantization 
Quantization is a technique of reducing the amount of information directly, and there 
are mainly two methods well-known for video compression, which are Scalar Quanti-
zation and Vector Quantization. Scalar Quantization is an operation of making an in-
put signal correspond to one of k kinds of values which are represented as q1, ..., qk as 
shown in Fig. 17. 
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Fig. 16 Discrete Wavelet Transform 

Input level
x

y

di di+1

0

h0 Quantized step size

qi

Output level
(quantized level)

 

Fig. 17 Example of Scalar Quantization 
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Vector Quantization is an operation which quantizes several samples at the 
same time and expresses them with a representative vector which gives the best 
approximation of the samples [16, 17]. The sources of information which consist 
of many dimensions are quantized by one of the representative points of a multi-
dimension space by Vector Quantization. Therefore, Vector Quantization has the 
following advantages, 

(1) Coding efficiency can be raised by adopting the correlation and the depend-
ency between the vectorized samples in the quantization mechanism. 

(2) Even if the vectorized samples are completely independent, the multi-
dimensional signal space can be divided into its quantized sections. 

(3) Samples can be coded with non-integer word size by assigning a quantized 
represented vector or its codeword. 

The key map and the principle of Vector Quantization are shown in Fig. 18 and 
Fig. 19, respectively. 
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Fig. 18 Key map of Vector Quantization 

3.2.4   Entropy Coding 
Entropy Coding is a method of describing the mode information, motion vector in-
formation, quantized values, etc. as a series of binary signals which consists of 
only 0 and 1 (binarization). The total amount of codes is reducible by assigning 
coded words according to the occurrence probability of symbols. Huffman coding 
and arithmetic coding are typical entropy coding methods used in video coding. 
Huffman coding is a method of designing and using a variable length code table 
which associates symbols and code-words. This method can shorten the average 
code length by assigning short codes to symbols with high occurrence probability 
and long codes to symbols with low occurrence probability. An example of Huff-
man coding is shown in Fig. 20. 
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Fig. 19 Principle of Vector Quantization 
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Fig. 20 Example of generation of Huffman Coding 

Arithmetic coding is a method of coding the divided section of an interval of 
number line and generates a codeword one-by-one according to the occurrence 
probability of symbols. Moreover, the code length of a non-integer bit can be as-
signed to a symbol. The concept of Arithmetic coding is shown in Fig. 21. 

3.2.5   Hybrid Coding Architecture 
The Hybrid Coding Architecture which combines Prediction and Transform tech-
niques is adopted in video coding standards such as H.26x and MPEG. The brock 
diagram of the typical Hybrid Coding Architecture is shown in Fig. 22. 
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Fig. 21 Process of Arithmetic Coding 
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Fig. 22 Brock Diagram of Typical Hybrid Coding Architecture 
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3.3   MPEG Coding Methods 

The features of the major MPEG video coding standards such as MPEG-2, 
MPEG-4 visual and AVC/H.264 are introduced [18, 19]. 

3.3.1   MPEG-2 
MPEG-2 is an international standard that specifies video coding for the purpose of 
digital television broadcasting with high quality. Various coding tools are included 
to support the coding of interlaced video signals. MPEG-2 is used in satellite and 
terrestrial digital broadcastings and recording medias such as DVD, and is the 
mainstream coding method for video at present. The main features of MPEG-2 
video coding are described below. 

First, it adopts a hierarchical structure of video format. That is, MPEG-2 video 
format has a layered structure composed of Sequence, Group of Picture (GOP), 
Picture, Slice and Macroblock (MB) as shown in Fig. 23. 

Picture

Sequence

GOP Group of Picture

Slice

Y0 Y1

Y2 Y3

Cb
Cr

8
16

8 16

8

8

Macroblock

Picture  

Fig. 23 Hierarchical structure of MPEG-2 video format 

Secondly, three kinds of fundamental picture types and various prediction 
methods are adopted for Motion Compensated Prediction. Prediction efficiency is 
increased by adopting forward, backward, and bi-directional predictions. Forward 
prediction is a method of predicting the present frame from the past frame in time. 
Backward prediction is a method of coding the future frame and predicting a past 
frame from it. Bi-directional prediction is a method of using both the past and the 
future frames for prediction. Then, three kinds of pictures such as I, P, and B pic-
tures are defined for using these prediction methods. I pictures are predicted 
within itself and do not refer to any other pictures. P pictures are predicted with 
only forward prediction. B pictures are predicted by choosing the most effective 
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prediction among forward, backward and bi-directional predictions. A classifica-
tion of picture types and the prediction methods of MPEG-2 are shown in Fig. 24. 
This structure makes it possible to realize random access of picture and also im-
proves the coding performance for package media. 

Display order

Coding order

Each arrow is pointed from reference picture to predicted picture.  

Fig. 24 Picture Classification and Prediction Methods 

In addition, prediction with half-pel accuracy is defined in MPEG-2, whereby 
the unit of displacement is expressed with a motion vector pointing to half a pixel 
position (middle position of adjacent pixels). Since the value of half a pixel posi-
tion does not actually exist, it is virtually generated by interpolation from 
neighboring pixels. The concept of half-pel accuracy prediction and the half-pel 
calculation method are shown in Fig. 25 and Fig. 26, respectively. 
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Fig. 25 Half-pel Accuracy Prediction 
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Fig. 26 Half a pixel Calculation Method 

MPEG-2 has adopted various coding tools to support the efficient coding of  
Interlace video signals. First, Frame prediction, Field prediction or Dual prime 
prediction can be selected adaptively in order to perform optimal prediction ac-
cording to the movement of the objects in video as shown in Fig. 27. 
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Fig. 27 Frame/field Adaptive Prediction 
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Moreover, Frame DCT or Field DCT can be chosen adaptively according to the 
video format as shown in Fig. 28. 

Frame DCT

Field DCT

top field
bottom field

MPEG-2 DCT can adaptively performed with frame or field structure block.  

Fig. 28 Frame/field Adaptive DCT 

Furthermore, scanning order can be switched adaptively according to 
frame/field DCT transform as shown in Fig. 29. 
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Fig. 29 Adaptive scan change 
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The composition of MPEG-2 video coding is shown in Fig. 30. 
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Fig. 30 MPEG-2 Video Coding 

3.3.2   MPEG-4 visual 
MPEG-4 visual is an international standard for the purpose of the coding at low bit 
rate for mobile equipments. It is used in mobile devices such as cellular phones 
and portable video players. MPEG-4 mainly performs coding and transmission for 
progressive video signal from QCIF (176 pixels x 144 lines) to VGA (640 pixels x 
480 lines) at lower bit rates of about 1 - 3 Mbit/s. The main features of MPEG-4 
visual are shown below. 

First, Intra Frame Prediction is performed for DC and AC data of transformed 
and quantized coefficients. The entropy of a symbol which should be coded as 
DCT coefficients can be reduced by prediction since the DC coefficient is equiva-
lent to the average value in a block and AC coefficients including low frequency 
harmonics have high spatial correlations. The outline of Intra Frame Prediction in 
MPEG-4 is shown in Fig. 31. 

Next, in addition to half-pel accuracy of Motion Compensated Prediction, 
MPEG-4 also supports quarter-pel accuracy prediction which uses the virtual 
samples between half-pel pixels as a candidate of the prediction. Additionally, a 
16x16 pixel macroblock domain can be equally divided into four 8x8 sub-blocks 
and Motion Compensated Prediction can be adaptively performed in a 16x16 mac-
roblock unit or the unit of an 8x8 sub-block. With this technique, the performance 
of prediction for complicated motions within a macroblock can be improved. Fur-
thermore, three dimensional VLC is performed on the quantization indexes after 
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transform and quantization. This method includes the information (LAST), which 
indicates that the coefficient to be coded is the last non-zero coefficient in a block, 
into the set of (zero run, non-zero value). Then, the set of (LAST, zero run, non-
zero value) is coded. 
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Fig. 31 Intra Frame DC/AC Prediction 
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Fig. 32 Three dimensional VLC 

 



 

The Development and Standardization of Ultra High Definition Video Technology 107
 

The composition of MPEG-4 coding is shown in Fig. 33. 
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Fig. 33 MPEG-4 Visual coding 

3.3.3   AVC/H.264 
The AVC/H.264 standard is specified as MPEG-4 Part 10 by ISO/IEC as well as 
Recommendation H.264 by ITU-T. The improvement in coding efficiency is taken 
into consideration as the top priority when AVC/H.264 standardization was per-
formed. It has been reported that AVC/H.264 has the twice as much compression 
efficiency of MPEG-2. In AVC/H.264, a multi-directional prediction in the spatial 
domain (pixel domain) is adopted as Intra Frame Prediction in order to reduce the 
amount of video information. Several prediction methods are defined for lumi-
nance and chrominance signals; 16x16 and 4x4 intra predictions for luminance are 
introduced below. Intra 16x16 prediction for luminance is a method which 
chooses either of four prediction modes shown in Fig. 34 per macroblock to pre-
dict a 16x16 pixel macroblock. 

On the other hand, Intra 4x4 prediction for luminance divides a 16x16 pixel 
macroblock into 16 blocks which consist of 4x4-pixel blocks and chooses one of 
nine prediction modes as shown in Fig. 35 per block. 

Moreover, an adaptive block size partition is adopted for Motion Compensated 
Prediction of AVC/H.264. Since seven block size partitions including 16x16, 16x8, 
8x16, 8x8, 8x4, 4x8, and 4x4 are defined for Motion Compensation “Prediction, the 
size of prediction can be chosen per macroblock (16x16) or subblock (8x8). In addi-
tion, subblock partitioning can be used for four 8x8 blocks independently. 
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Fig. 34 Intra 16x16 prediction 

 

Fig. 35 Intra 4x4 prediction 

In AVC/H.264, Motion Compensated Prediction can be performed by referring 
two or more reference frames. That is, the frames of the past and the future are 
stored in the frame memory, and can be chosen as reference frames for each block 
partition greater than 8x8 sub-blocks. B slices in AVC/H.264 support prediction 
from two reference pictures and the combination of the two pictures can be freely 
chosen. In contrast to MPEG-2, it is possible to perform bi-prediction even from 
two past pictures or two future pictures. 

In AVC/H.264, 4x4 and 8x8 Integer Transform has been adopted for the con-
version from spatial domain to frequency domain; the integer transform ensures 
that there is no mismatch between encoder and decoder. However, some parts of 
the transform process are included in quantization and de-quantization processing.  
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Fig. 36 Block size partitions of Motion Compensated Prediction 

 

Fig. 37 Multi reference frame prediction 
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Fig. 38 Integer Transform 

In entropy coding of AVC/H.264, high compression is achieved by encoding the 
symbols adaptively and using the knowledge (Context) in connection with coding 
states such as the information on the surrounding block data as well as variable 
length coding of coded symbols directly. Two types of entropy coding methods exist 
in AVC/H.264: Context Adaptive Variable length Coding (CAVLC) and Context 
Adaptive Binary Arithmetic Coding (CABAC). The CAVLC method is based on 
Huffman tables for encoding the symbols and generates contexts adaptively. 
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On the other hand, CABAC converts symbols (coding mode, motion vector, 
transform coefficients, etc.) into a binary code series based on the rule defined by 
the standard (binarization), then chooses an occurrence stochastic model based on 
a context model (context modeling) and finally performs a binary arithmetic cod-
ing based on the selected occurrence stochastic model (binary arithmetic coding). 
In addition, an occurrence stochastic model is updated based on the result of cod-
ing (probability estimation). 
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The composition of AVC/H.264 video coding is shown in Fig. 41. 
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Fig. 41 AVC/H.264 video coding 

3.3.4   Technical Achievements of MPEG Video Standards 
The technical achievments of MPEG-2, MPEG-4 visual and AVC/H.264 are 
summarized in Table 1. 

Table 1 Technical achievements of MPEG Video Standards 
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Coding performance has been improved by the standard evolution of MPEG. 
The improvement of coding performance according to the progress of coding 
methods is shown in Fig. 42. 
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Fig. 42 Improvement of coding performance 

On the other hand, the operation load in terms of complexity of video coding 
continues to increase with the standard evolution of MPEG. By improving Intra 
and Inter prediction accuracy, the complexity of AVC/H.264 encoding process has 
increased by 5 to 10 times compared with that of MPEG-2 or MPEG-4 visual. The 
complexity of the decoding process of AVC/H.264 is double for that of MPEG-4 
visual by adopting context adaptive entropy coding and in-loop deblocking filter. 
However, the progress of semiconductor technology including LSI, processor and 
large scale storage has supported the realization of evolution of video compression 
technology. 

4   Requirement for Quality of UHD Video System 

4.1   Required Specifications for UHD Video Service 

HDTV was realized by MPEG-2 as a digital broadcasting service for the home, 
and HDTV broadcasting has promoted both the thinness and enlargement of tele-
vision displays. Camcorders and video recorders also support HDTV. Since the 
visible difference of video quality between SDTV and HDTV on a large screen 
became clear for users, the merits of HDTV have been validated. When UHD 
video, which is expected as the next generation video service, will be realized, it is 
necessary to improve each parameter, which influences video quality including 
spatial and temporal resolutions, gradation, and color space of HDTV. An illustra-
tion that re-examines the various factors to be qualified into UHD Video is shown 
in Fig. 43. 
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Bit DepthBit Depth
8 bit/pixel8 bit/pixel

1212 16 bit/pixel16 bit/pixel

Color FormatColor Format
4:2:0, 4:2:24:2:0, 4:2:2

4:4:44:4:4

View Point ResolutionView Point Resolution
2 dimension2 dimension

3 dimension3 dimension

 

Fig. 43 Factors to be qualified into UHD Video 

The specifications for UHD formats are planned to be standardized in ITU-R by 
2012. 

In the next section, the requirements about these resolutions and modes of the 
expression are considered, and the increase in the amount of information by ful-
filling the requirements is measured. 

4.1.1   Requirement for UHD Video 

4.1.1.1   Spatial Resolution 
Based on the fact that the angle of resolution of the human visual system is one 
minute degree, an HD image covers about 30 degrees of useful visual field, which 
can be recognized only with eyeball motion and without moving ones head. When 
the viewing angle is extended to 60 degrees of gazing viewing angle in which ob-
jects can be recognized only with little movement of ones head, 4K image can 
cover the angle. Furthermore, when a viewing angle is extended to 100 degrees of 
guidance viewing angle in which the existence of objects within the angle can be 
felt, 8K image can cover the angle. Although the video with 4K and 8K of UHD 
exceeding HD are already standardized as a video format of 3840x2160 and 
7680x4320 in ITU-R Recommendation [20], video services with such resolution 
have not yet been deployed. 

4.1.1.2   Temporal Resolution 
30 fps (frame per second) used by the present television broadcasting was selected 
since it is the limit of the human visual system for flicker detection. However, it is 
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expected that at least 60 fps and up to 120 fps of temporal resolution is probably 
needed for UHD video since the present television broadcasting adopts an inter-
lace signal and 60 fields per second is used in practice. If the temporal interval be-
tween frames is shortened, Motion Prediction of video coding will become more 
effective, and it should result in increased compression efficiency 

1515 3030 5050

Effective
viewing
angle

Gazing viewing
angle

Guidance viewing angle

0

(*)The figure is modified from [21].  

Fig. 44 The information acceptance characteristic within view [21] 

4.1.1.3   Gradation per pixel 
If the gradation per pixel increases, the contrast in the dark portions of a screen can 
be more visible. Moreover, there is also an advantage which can perform high pre-
cision calculations in the filter processing and the sub pixel processing for Motion 
Prediction in video coding. Therefore, the quality improvement of video is ex-
pected to be improved by increasing bit depth from the present 8 bpp to 10-12 bpp. 

4.1.1.4   Color space 
Although the amount of information becomes 1.5-2 times by increasing the color 
sampling format from 4:2:0/4:2:2 to 4:4:4, the possibility to use 4:4:4 format will in-
crease if the compression efficiency of video coding is improved. Since the number 
of the signal elements of 4:2:0 format is one fourth of that of 4:4:4 format for 
chrominance signal, there is a trade-off in quality for video coding. At low bit rates, 
4:2:0 video is preferred over 4:4:4 video since it contains fewer pixels. On the other 
hand, at higher bit rates, 4:4:4 video is preferred over 4:2:0 video. As a result, there 
is a cross-over point on performance between 4:2:0 and 4:4:4 video coding. For ex-
ample, even if the cross-over point between 4:2:0 and 4:4:4 formats occurs at a 
higher bit rate than that of the practical use with existing video coding technology, 
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the realization of high quality video applications with 4:4:4 format will be attained 
since the cross-over point is achieved to shift to a lower rate by the development of a 
new video coding technology with higher coding performance[22]. 

Rate

Quality

BEFORE
AVC/H.264

AFTER 
AVC/H.264

Application operating point

Performance

improvement

HQ source
(4:2:2, 4:4:4)

YUV4:2:0

 

Fig. 45 Recent Progress of Video Coding Technology on Rate-Distortion Characteristic  
[13] 

Moreover, most of video cameras and displays can treat RGB signal directly 
now. Then, if RGB and 4:4:4 formats are treated directly also in video coding, the 
degradation of the quality by means of color conversion does not occur and high 
quality video can be consistently provided. 

4.1.2   The Amount of Information of UHD Video 
Realizing new video expression which fulfills the requirements of UHD video is 
simultaneously accompanied with the steep increase of the amount of information. 
For example, the uncompressed rate of HD video (1920x1080/8bpp/4:2:0/30fps) is 
around 1 Gbit/s. This uncompressed rate increases to 3 to 18 Gbit/s for 4K video 
(3840x2160/8-12bpp/YUV4:2:0-4:4:4/30-60fps) and 12 to 72 Gbit/s for 8K video 
(7680x4320/8-12bpp/YUV4:2:0-4:4:4/30 - 60fps). Even if compared by the same 
bit length (8bpp), video format (4:2:2) and frame rate (30fps), 4K video has 
around four times more information and 8K has about 16 times more information 
than HD. With exponential increase of video data band width, the transmission 
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rate for the interface between display/camera and storage/codec should also be ex-
ponentially increased as shown in Fig. 47. To satisfy the needs of I/O interface for 
4K UHD Video, the standardization of 25Gbps serial optical interface for studio 
use is currently under consideration in SMPTE 32-NF-30. 

Video/Image capture: 
RGB 4:4:4

Video/Image display:
RGB4:4:4

4:4:4 Coding4:4:4 Coding

will be expected for will be expected for 

HQ/HR applicationsHQ/HR applications

Digital Camera (2K/4K/8K)
(4:4:4 format)

Camcorder
(4:4:4 format)

Broadband
Network

Large Capacity Storage

Flat-Panel TV (2K/4K/8K)
(4:4:4 format)

Mobile
(4:4:4 format)

Professional (2K/4K/8K) 
(4:4:4 format)

(*) The figure is modified from [13].  

Fig. 46 High Quality and High Resolution/real-Color Video Applications [13] 
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Fig. 47 Bitrates for UHD Video Source [23] 



 

118 T. Murakami
 

4.2   Expectation for New Video Coding Technology 

In order to utilize the UHD video with 4K and 8K resolutions, it is insufficient to 
use the present standard (AVC/H.264) which was standardized for the purpose of 
the coding video with the resolution up to HD. New video coding technology will 
be required, which compresses video greater while maintaining the high quality of 
an original video as much as possible. New video coding technology has a possi-
bility to change SD/HD video compressed by MPEG-2 or AVC/H.264 into 
HD/UHD video and to exchange the television broadcasting which is the most fa-
miliar video media to the next generation TV. 

5   Progress of Device Technologies Supporting UHD Video 

There are several base technologies such as camera, display, storage, transmission 
system and video coding, which can realize next generation UHD video technol-
ogy. There have been remarkable achievements in these areas until now. There-
fore, we will soon be able to realize UHD video. In the following, the present 
status of camera, display, storage and digital network, is surveyed. 

 

Fig. 48 Device technologies for realizing UHD video 

5.1   Video Capture Device 

Pixel size reduction of the image sensors for digital video cameras, in which high 
speed pick-up is possible, has progressed and the realization of high resolution cam-
eras is ready. 

With regards to consumer cameras, small camcorders that fit in the hand also 
support HDTV resolution with remarkably low price. Moreover, in professional 
use, several cameras with support of 4K resolution have already been announced 
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and cameras with 8K resolution have also been developed. Since digital cinema 
services have started, the development of 4K cameras for digital cinema is pro-
gressing. For example, RED (RED Digital Cinema Camera Company) is manufac-
turing a 4K camera called RED ONE which is equipped with a CMOS sensor of 
12 Mpixel and has the resolution of 4520x2540. DALSA Origin with 4096x2048 
resolution (8 million pixels) has been developed by DALSA and the camera is 
characterized with 16 bit/pixel of high gradation. On the other hand, Octavision 
with 3840x2160 resolution (8 million pixels) has been developed by Olympus. A 
CMOS 4K camera which has a frame rate of 60fps with the resolution of 
3840x2160 has been announced by Victor. Furthermore, an 8K video camera with 
7680x4320 resolution (33 million pixels) captured by a high speed CMOS sensor, 
60fps and 12 bit/pixel has been also announced by the Japan Broadcasting Corpo-
ration (NHK). 
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Fig. 49 Transition of image sensor pixel improvement [24] 

5.2   Display 

Flat panel TVs such as LCD and PDP have been progressing with larger screen 
and higher resolution. These TVs corresponded to the spread of digital contents 
including digital broadcasting. A screen size of the 40 inches has become popular 
and support for full HD resolution which can display images from television 
broadcasting is becoming typical. 
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Fig. 50 Progress of TV screen size in Japan [25] 

 
Moreover, the development of 4K television with 4 times as many pixels com-

pared to full HD is progressing steadily and the possibility of its appearance in the 
home from 2010 to 2012 has also increased. There are trial products of LCD and 
PDP with 4K resolution including 3840x2160 and 4096x2160. The former ex-
pands Full HD twice horizontally and vertically, while the latter corresponds to 
digital cinema resolution. The LCD, PDP and projector which can display 4K 
video have been exhibited at several shows, and some of them are produced com-
mercially. Several examples of 4K displays and 4K/8K projectors are shown in  
Table 2 and Table 3. 
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Table 2 Example of 4K and 8K digital cameras  

Product, Manufacturer Resolution Frame Rate fps notes

RED One 4520 2540
~30(4K)
~60(3K)

~120(2K)

2007~
CMOS, RAW data 
12bit/pixel

DALSA Origin II 4096 2048 ~30

2003~(Origin), 
2007~(Origin )
CCD, RAW data, 
16bit/pixel

Olympus Octavision 3840 2160 24 30
2005~
HDTV CCD, 4 2 2 format

JVC-Victor
3840 2160

60
2009
CMOS, RAW data
12bit/pixel

NHK 7680 x 4320 60
2009~
CMOS, RAW data
12bit/pixel

Vision Research
Phantom 65

4096 x 2440 ~125
2006~
CMOS

 

Table 3 Examples of 4K liquid crystal and plasma display 

Manufacturer Resolution Thickness (inch) System

SAMSUNG 3840 x 2160 82 Liquid Crystal  (2008)

SAMSUNG SDI 4096 x 2160 63 Plasma (2008)

ASTRO design 3840 x 2160 56 Liquid Crystal(2007)

SHARP 4096 x 2160 64 Liquid Crystal (2008)

Panasonic 4096 x 2160 150 Plasma (2008)

NHK+Panasonic 3840 x 2160 103 Plasma (2009)

MITSUBISHI 3840 x 2160 56 Liquid Crystal(2007)
 

On the other hand, organic EL equipped with thinness, power saving and high 
resolution is very promising as a UHD video display. Organic EL displays have 
also been introduced at the various trade shows and some of them are produced 
commercially. Several organic EL displays are shown in Table 5. 
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Table 4 Examples of 4K and 8K Projectors 

Product, Manufacturer Resolution notes

Victor DLA-SH4K 4096 x 2400 D-ILA(2007)

MERIDIAN 4096 x 2400
D-ILA(2009)
House Use

SONY SRX 4096 x 2160 SXRD(2005)

NHK Victor 7680 x 4320 D-ILA(2004)

Victor 8192 x 4320

D-ILA(2009)
RGB
12bit/pixel
60fps

 

Table 5 Examples of organic EL displays 

Product, Manufacturer Resolution Thickness (inch) notes

SAMSUNG 1920 x 1080 31 (2008)

SAMSUNG SDI 1920 x 1080 40 (2005/2008)

LG 1280 x   720 15 0.85mm (2009)

SONY 1920 x 1080 27 10mm(2007)

SONY XEL-1 960 x   540 11
3mm (2007)
¥200,000  

5.3   Storage 

The speed at which storage capacity increases for HDD, SSD and other card type 
storage is remarkable. Storage capacity of a Terabyte has already arrived. Fig. 51 
and Fig. 52 shows the improvement of recoding bit rate and strange density of 
typical storage media. 

In the space of SD memory cards, SDHC with a capacity of 32 GB and a speed 
of 25MB/s has been realized, and SDXC with a capacity of 2 TB and a speed of 
50-300MB/s has also been realized. 

5.4   Digital Network for Communication and Broadcasting 

The performance in the speed of optical line has progressed and some transmis-
sion experiments of the 4K resolution uncompressed video have been also  
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Fig. 51 Trend of Recording bit rate of hard disk and optical disk [26] 
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Fig. 52 Trend of Storage Density of Hard Disk and Optical Disk [26] 
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conducted. In Japan, the commercial service of broadband Ethernet with 1 Gbit/s 
has already been carried out, and a future service of 100 Gbit/s is also planned. 
Furthermore, UHD video will be able to be sent via broadband by NGN. 
 

 

(*) The figure is modified from [27]. 
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Fig. 53 Memory size of SD and SSD [27] 

O
pt

ic
al

 In
te

rf
ac

e 
S

pe
ed

 (
bi

t/s
)

(*) The figure is modified from [28]. 

Moor’s Law

1980 1985 1990 1995 2000 2005 2010

1G

100M

10G

100G

1T

10T

100T

400M

1.6G
2.4G

10G

40G

40G

100G

FE

GE

10GE

40G 273 (10.9T)

(40G 2 2) 160 (25.6T)

WDM

TDM

Ethernet

 
Fig. 54 Advance of optical transmission technology [28] 
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6   Standardization of UHD Video Coding Technology 

6.1   Realization of UHD Video Application 

When UHD video is considered, video coding technology is required to reduce the 
huge amount of information. An improvement in a compression ratio is needed 
while maintaining a high quality and ultra high resolution. Furthermore, from the 
scale and the cost of the video coding technology realized, UHD video technology 
is required to be a system which is more conscious of implementation. UHD video 
requires different inputs and outputs of a sensor and a device compared to present 
systems. Therefore, it is necessary to take the characteristics of those devices into 
consideration. Even if UHD video technology follows the framework of existing 
video encoding methods, its high resolution may change the optimal coding pa-
rameters. This change may result in the replacement of some coding tools in the 
current system. There is also the possibility that techniques which could be real-
ized only in simulation are not able to be utilized in practical codecs because of 
memory integration, calculation complexity and device cost. 

6.2   Next Generation Video Coding Standard 

JVT have moved the principal axis of their activities toward the addition of other 
functionalities such as SVC (Scalable Video Coding) and MVC (Multi-view 
Video Coding) after the standardization of AVC/H.264 High Profile. However, 
since the development of UHD video devices has become remarkable from 2008 
to 2009 and the necessity for UHD video coding was appealed from Japan, the ar-
gument of the standardization of a next generation video coding has become active 
toward the development of HVC (High performance Video Coding) in MPEG 
since April 2009. Then, MPEG invited the public to submit evidence of new video 
coding technologies that fulfill the conditions for UHD video, and evaluated the 
proposed technologies at the meeting in June-July 2009 [11]. As a result of this 
study, MPEG decided to work towards issuing a formal call for proposals and ini-
tiating the development of a new video coding standard. The current plan is to col-
lect proposals in 2009, and to issue an international standard in 2012 or 2013. At 
the same time, VCEG is considering the improvement of video coding efficiency 
and the reduction of the complexity based on AVC/H.264 as KTA (Key Technical 
Areas). KTA has started to be discussed since 2005 and has continued to be added 
new coding tools. Then, the examination of NGVC (Next Generation Video Cod-
ing) was started in 2009, which is assumed to be used for UHD video, HD broad-
casting, HD video conference, mobile entertainment, etc. A draft document de-
scribing the collection of test sequences and the requirement of NGVC was 
created during the Yokohama meeting in April 2009. The requirement was up-
dated and the working title was changed from NGVC to EPVC (Enhanced Per-
formance Video Coding) during the Geneva meeting in July 2009. In addition, the 
cooperation between MPEG and VCEG is likely to be established. The require-
ment conditions of MPEG HVC [29] and VCEG EPVC [30] are shown below. 
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(1) Video coding performance 
To realize 50% reduction of coding bits with subjective quality equivalent 

to AVC/H.264 High Profile. 
(2) Correspondence to a high quality video 

(2.1) Resolution 
    From VGA to 4K (also 8K) 

       (2.2) Chroma format 
           From 4:2:0/4:2:2 to 4:4:4 
       (2.3) Bit length 
           8 - 14 bit per pixel 
       (2.4) Frame rate 

24 - 60 fps or more 
       (2.5) Complexity 
           (i) To be possible of implementation at its standardization period. 
           (ii) To be possible to control the trade off between complexity and  

coding performance. 
           (iii) To be possible of parallel processing. 
 
MPEG HVC and VCEG EPVC are going to publish a joint Call for Proposals 

on the next video coding standard in January 2010, and the target bitrates for UHD 
and HDTV are currently defined as shown in Table 6. 

Table 6 Target bitrates for Call for Proposals on HVC/EPVC 

Class Resolution Frame rate Target bitrate for 
evaluation

A 2560 x 1600p
cropped from 4K

30 [fps] 2.5[Mbps], 3.5[Mbps],
5.0[Mbps], 8.0[Mbps],
14.0[Mbps]

B 1920 x 1080p 24 [fps] 1.0[Mbps], 1.6[Mbps],
2.5[Mbps], 4.0[Mbps],
6.0[Mbps]

50/60 [fps] 2.0[Mbps], 3.0[Mbps],
4.5[Mbps], 7.0[Mbps],
10.0[Mbps]

 

6.3   Challenge toward UHD Video Coding 

6.3.1   Trial to improve AVC/H.264 
Within VCEG, experiments have shown the improvement in video coding per-
formance of AVC/H.264 using KTA and continual improvements of the reference 
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software. Many proposals for Evidence collection of MPEG used the tools ex-
tracted from KTA. Therefore, it can be said that KTA at present is a benchmark 
for the improvement of video coding efficiency. The following tools have been in-
corporated into the KTA software and have been found to yield gains in coding  
efficiency. 

(1) Extension of bit depth 
(2) 1/8-pel accuracy Motion Compensated Prediction 
(3) Prediction direction adaptive transform 
(4) Adaptive prediction error coding 
(5) Adaptive quantization matrix 
(6) Adaptive quantization rounding 
(7) RD optimal quantization 
(8) Adaptive interpolation filter 
(9) High precision interpolation filter 
(10) Adaptive loop filter 

 
The block diagram of encoder with these tools is shown in Fig. 55. 
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Fig. 55 Improvement points of AVC/H.264 

6.3.1.1   Improvement of Coding Performance of KTA 
Some new coding tools that have been incorporated into the KTA software that 
provide improvements in video coding efficiency for motion compensated predic-
tion, transform, loop filter, and Intra prediction, are reviewed below. 

(1) Motion Compensated Prediction 
When generating the motion compensation signal of sub-pixel accuracy, a 
suitable filter can be chosen among several candidates and the interpolation 
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method which increases operation accuracy is used. It is supposed that gains 
of about 4 to 7% of improvement are realized. 

(2) Transform 
The size of a macroblock is expanded to maximum of 64x64, and the trans-
form of several block sizes from 4x4 to 16x16 is available. It is effective for 
high resolution video. It has been claimed that improvements in the range of 
10 to 15% for P picture and 15 to 20% for B picture can be achieved. 

(3) Loop Filter 
The Wiener filter which performs image restoration from a local decoded 
picture using source picture is designed. The filter can be also turned on and 
off for each block to improve the quality of a local decoding picture. Gains 
of about 5 to 10% of improvement have been reported. 

(4) Intra Coding 
Prediction between pixels is alternatively performed from several directions 
in the Intra coding of AVC/H.264. In this tool, transform basis is changed 
according to the directions of the predictions. Improvements of about 7% 
have been shown. 

 
These tools are the improvements to the existing AVC/H.264 framework and keep 
the existing coding architecture. They adopt the approach of changing the range of 
parameters, selecting adaptive case among several candidates and performing the 
optimization which could not be employed by the restriction of practical memory 
and operation scale before. It is said that KTA could provide about 20 to 30% of 
performance improvement relative to AVC/H.264 by adoption of these tools. 

6.3.1.2   Block Size Extension and Non-Rectangle Block Application 
A coding method which extends AVC/H.264 and performs UHD video coding us-
ing block size extension and a non-rectangle block is introduced as an example 
[31]. Macroblock size is extended from 16x16 to 32x32, and accordingly the block 
partitions for motion prediction are expanded to 32x32, 32x16, 16x32 and 16x16. 
When 16x16 block partition is chosen, sub-block partitions of 16x16, 16x8, 8x16 
and 8x8 are also employed. Smaller block partitions of 8x4, 4x8 and 4x4 are not 
used because noise components will become dominant and the essential structure 
information of a picture will become impossible to be expressed efficiently by 
such small blocks in the case of UHD video coding. 

In addition to extension of macroblock size, non rectangle block partitions are 
employed for motion prediction. Although non rectangle block partition was pro-
posed for the purpose of expressing more complicated motion with a short motion 
vector in super low bit rate video coding, it is believed that new partitions will con-
tribute to reducing residual energy by effectively expressing complicated picture 
structures such as object boundaries in UHD video. On the other hand, there are 
some problems such as the increase of the motion detection operations, the increase 
of the shape description information and the necessity of the memory access to 
complicated shape. Then, the simple diagonal partitions shown in Fig. 57 are 
adopted, which can be created with the combination of 16x16 blocks. 
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Fig. 56 Hierarchical division of motion compensated prediction blocks 
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Fig. 57 Diagonal block partition 

Moreover, correlation between pixels in wide range can be used if transform 
size is extended. Then, transform coefficients can be compacted more into the low 
frequency bands. Since it is preferred to not to include block boundaries in a block 
partition, it is effective to change the transform block size according to the block 
partition size for motion prediction. Then, 8x8 and 16x16 block sizes are adopted 
as transform block sizes and switched adaptively according to chosen motion pre-
diction block partition. The above improvements were applied to P picture, and 
the computer simulation was performed using a GOP structure of IPPP. The con-
ditions of the experiment are shown in Table 7. Reference software JM15.1 of 
AVC/H.264 was used as the anchor technique for the quality assessment. More-
over, the test sequences used for the experiment are shown in Fig. 58. Traffic of 
Class A and Kimono1 of Class B of MPEG test sequence (YUV 4:2:0 format and 
8 bpp) were chosen for the experiments. Class A includes sequences with 
2560x1600 resolution that have been cropped from 4096x2048 pictures; in this 
way the quality and compression efficiency of 4Kx2K could be practically evalu-
ated. Class B includes the sequences of Full HD (1920x1080) size. 

The results of the experiment show the improvement in efficiency of the mo-
tion compensated prediction and the decrease of addition information such as mo-
tion vector. The amount of coding bits is successfully reduced by 2 to 30% and 
PSNR was improved by 0.1-0.9 dB. The improvement of PSNR and the amount of  
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Table 7 Experimental condition 

Test sequence
(YUV4:2:0, 8bpp)

- Class A: (2560x1600)
Traffic (30 fps)
- Class B: (1920x1080)
Kimono1 (24 fps)

Number of frames
- Class A: 300 frames
- Class B: 240 frames

GOP composition

- IPPP
- I picture interval :
Class A: 28 frames
Class B: 24 frames

MB size

- I picture: 16x16
- P picture
Proposed: 32x32
Anchor: 16x16

Motion compensation prediction

- Motion search method: EPZS
- Motion search range:
128 pixels, 1/4-pixel accuracy

- Intra/Inter switching ON
- Block partition
Proposed: rectangle and diagonal
Anchor: only rectangle

Qp
- Class A: 25, 29, 33, 37 (fixed)
- Class B: 25, 28, 31, 34 (fixed)

R-D optimization ON

Entropy Coding CABAC
 

 
 

coding bits are shown also in Fig 58. Moreover, the improvement of coding effi-
ciency is depicted as a comparison of R-D curve with AVC/H.264 is shown in  
Fig. 59. 

6.3.1.3   Other Possibilities of Performance Improvements for UHD Video 
Coding 

In addition to the improvement of KTA tools and the expansion of the block size 
for UHD video, other possibilities of performance improvement of AVC/H.264 
are assumed as follows. 

(1) Examination of pre filter processing. 
(2) The design of the effective probability table of arithmetic coding in CABAC. 
(3) Adaptation of wavelet transform to Intra picture. 
(4) Dynamic Vector Quantization. 
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(5) Super Resolution Plane Prediction. 
(6) Fractal Coding 
 

BD PSNR [dB] BD RATE [%]

Traffic 0.42 -12.4

Kimono1 0.89 -29.0

(a) Traffic (Class A)

(b) Kimono1 (Class B) (c) Improvement of PSNR and Bitrate  

Fig 58 Test Sequences and Coding performance 
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Fig. 60 Trials of coding performance improvement 

7   Realization of UHD Service and System 

7.1   Realization of UHD Service  

UHDTV service will be realized when the next generation video coding technol-
ogy is accompanied with the progress of the circumference technologies such as 
advanced sensor, display, storage and transmission infrastructure. UHD video sig-
nal compressed by a new video coding standard, which can realize twice as much 
performance as that of AVC/H.264, will be transmitted and delivered through 
wired (NGN) or wireless (3.9/4G. wireless LAN, satellite) lines with high speed 
and ubiquitous. We will be able to enjoy video with high quality and reality by 
means of large screen TV with over 100 inches diagonal and also to enjoy video 
with clearness like a gravure picture by means of organic EL display equipped 
with power saving and flexibility [32]. 

7.2   Another Possibility of Video Coding Technology in Future 

Rather than extensions of the current system, high coding performance and new 
function for next generation video coding may also be derived from different ap-
proaches, e.g., Intelligent Coding as below: 

(1) Intelligent Coding advocated by Harashima et al. in the 1980s has re-
cently attracted attention as an alternative path for future video coding. 

(2) In this technology, a common model is shared by encoder and decoder, 
and the model in the decoder is modified synchronously according to 
the information detected and transmitted by the encoder. 
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(3) Considering the recent progress of computer, network and image-
processing technology, this method could become an interesting candi-
date and an important video coding technology in the future. 
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Fig. 61 Next generation video delivery through the Internet and broadcast service 
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Fig. 62 Integration of graphics and computer vision to video coding [13] 

Now, the performance of GPU has been markedly improved and the drawing of 
8K picture can be performed on PC in real time. Therefore, a hybrid video coding 
method is also considered to combine Intelligent Coding and conventional coding 
to encode, decode and draw pictures using a high speed graphic PC. The future of 



 

134 T. Murakami
 

video technology will spread infinitely if 3-D video technology and Free-
viewpoint television technology are combined with Intelligent Coding and con-
ventional coding technologies. 

8   Summary 

In 1994, MPEG-2 was standardized targeting digital TV services including HDTV 
by merging MPEG-3 standardization activity, then MPEG-4 standard was devel-
oped for video transmission through mobile network. One of the main goals of 
MPEG-4 AVC/H.264 standardization was improving video compression effi-
ciency by two times compared to MPEG-2 to realize internet HDTV broadcasting.  

The development of a new video coding standard supporting up to UHD video 
such as 4K cinema and 8K Super Hi-Vision is now ready to start as a collaborative 
work of ISO/IEC and ITU-T. It will not be far off when people can enjoy the 8K 
resolution video experience through the sheet type organic EL display at home. 
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Chapter 5 
Compression Formats for HD Recording and 
Production 

Joeri Barbarien, Marc Jacobs, and Adrian Munteanu* 

Abstract. As a result of the consumer’s increasing demand for better quality and 
higher resolutions, the transit to television broadcasting in HD, with a resolution of 
at least 1280 x 720 pixels has recently started to take shape. In this respect, an im-
portant challenge is the selection of a suitable format for recording and production 
of HD material. One of the issues is that high definition, unlike standard definition, 
is quite an ambiguous term. In the first phase of HD television broadcasting de-
ployment, two different formats were put forward: 720p50/59.94/60 or 
1080i25/29.97/30. In the first part of this chapter, the benefits and drawbacks of 
both options will be discussed in detail. Besides the choice between 720p and 
1080i, the selection of the video compression format and parameters for HD re-
cording and production is also an important consideration. In this chapter, two 
state-of-the-art intra-only compression formats will be reviewed and compared: 
Motion JPEG 2000 and H.264/AVC Intra. First, an in-depth description of both 
video codecs will be provided. Thereafter, the compression schemes will be evalu-
ated in terms of rate-distortion performance, recompression loss and functionality.  

1   Introduction 

The quality and viewing experience delivered by standard definition (SD) televi-
sion have long been considered satisfactory by most consumers. Recently how-
ever, the demand for better quality and higher resolutions has dramatically  
increased. One of the reasons for this is the significant price drop on LCD and 
plasma televisions capable of displaying high quality, high resolution content. An-
other is the increasing availability of this type of content. This is the result of the 
definitive breakthrough of Blu–ray as the format for storage of high-resolution 
audiovisual material on an optical carrier, at the expense of HD-DVD, and of the 
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success of Sony’s PS3 game console which supports Blu-ray playback. As a con-
sequence of the demand for higher quality and higher resolutions, the transit to 
television broadcasting in high definition (HD), with a resolution of at least 1280 x 
720 pixels has started to take shape. This evolution requires fundamental changes 
to existing file-based television recording, production and distribution processes. 
Due to the increase in resolution, the bandwidth and storage capacity requirements 
grow significantly. For the same reason, the computational resources needed for 
operations such as format conversion and post-processing increase as well.  

An entirely different, but equally important challenge is the selection of a suit-
able format for recording, production and distribution of HD material. While the 
basic signal properties, such as resolution, frame-rate and scanning format (inter-
laced or progressive), are fixed for standard definition television, this is not the 
case for high definition television. A full HD television signal consists of 50, 
59.94 or 60 progressive frames per second, each frame having a resolution of 1920 
by 1080 pixels; this format is typically denoted as 1080p50/59.94/60. However, 
the bandwidth and storage requirements associated with full HD production and 
broadcasting exceed the current capacity of distribution networks and off-the-shelf 
media production and storage systems. To solve this problem, two different alter-
natives have been put forward: 720p50/59.94/60 (1280 x 720 pixels per frame, 50, 
59.94 or 60 progressive frames per second) or 1080i25/29.97/30 (1920 x 1080 
pixels per interlaced frame, 25, 29.97 or 30 interlaced frames per second). In sec-
tion one of this chapter, the benefits and drawbacks of both formats will be dis-
cussed in detail.  

For digital production of SD content, relatively simple, intra-only video com-
pression schemes such as DV25 [1, 2] and D-10 [3] were used. Since such  
standards are exclusively defined for SD material, new compression technology 
suitable for HD television recording and production must be selected.  

For HD acquisition and production, the European Broadcasting Union (EBU) 
recommends to not subsample the luma component horizontally nor vertically, 
and to limit chroma subsampling to 4:2:2 [4]. For mainstream production a bit-
depth of 8 bits per component is advised and for high-end productions a bit depth 
of 10 bits per component is suggested [4]. These requirements cannot be met by 
currently used HD compression formats such as HDCAM and DVCProHD, since 
both formats apply horizontal sub-sampling of the material prior to compression. 
Therefore, the transition to more advanced compression techniques is warranted. 
The final selection of a suitable compression format should take into account sev-
eral different and sometimes contradictory requirements. First of all, to minimize 
the impact of the transition to HD on the bandwidth and storage requirements, the 
selected compression scheme should deliver state-of-the-art compression perform-
ance. Secondly, the quality degradation associated with recompression (decoding 
the compressed material, editing it, and recompressing the modified result), which 
can occur multiple times in a typical production chain, should be minimized. 
Moreover, to reduce the number of recompression cycles, the recording format 
and the production format should ideally be one and the same. Additionally, for 
optimal edit-friendliness and frame-by-frame random access capability, so-called 
long-GOP formats, which make use of temporal motion-compensated prediction, 
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should be avoided. Due to the dependency between frames in such formats, a sig-
nificant delay can occur when the material is randomly accessed. Indeed, decoding 
an arbitrary frame may require the additional decoding of several other frames 
which are directly or indirectly needed to complete the decoding process. In other 
words, an intra-only compression format should be favoured for edit-friendly HD 
recording and production. Finally, for optimal interoperability, the use of open,  
international standards is warranted.  

In this chapter, two state-of-the-art intra-only compression formats for HD re-
cording and production will be reviewed and compared: Motion JPEG 2000 
(ISO/IEC 15444-3:2007/ ITU-T Recommendation T.802: Information technology 
-- JPEG 2000 image coding system: Motion JPEG 2000, ) and H.264/AVC Intra 
(ISO/IEC 14496-10:2009 Information technology -- Coding of audio-visual ob-
jects -- Part 10: Advanced Video Coding / ITU-T Recommendation H.264: Ad-
vanced video coding for generic audiovisual services). Section 3 provides a  
detailed overview of the H.264/AVC standard with an emphasis on Intra-only op-
eration. Similarly, section 4 discusses the Motion JPEG 2000 standard. In section 
5 both compression schemes will be evaluated in terms of rate-distortion perform-
ance, recompression loss and functionality. Finally, in section 6 the conclusions of 
this work are presented. 

2   720p vs. 1080i 

Since full HD production and emission is not yet economically viable, two differ-
ent alternatives are currently being put forward: 720p50/59.94/60 (1280 x 720 
pixels per frame, 50, 59.94 or 60 progressive frames per second) or 
1080i25/29.97/30 (1920 x 1080 pixels per interlaced frame, 25, 29.97 or 30 inter-
laced frames per second). The benefits and drawbacks associated with each alter-
native largely stem from the different characteristics of interlaced and progressive 
video transmission. 

To avoid flickering and to obtain visually smooth motion, a minimum number 
of frames per second needs to be displayed. This minimum frame-rate depends on 
the ambient lighting and on the average luminance of the frames [5]. For televi-
sion, the commonly accepted minimum lies between 50 and 60 frames per second. 
In the early days of analogue television, the bandwidth needed for progressive 
scan transmission, which corresponds to sending 50 or 60 complete frames per 
second, was deemed to be too high. To solve this problem, interlacing was intro-
duced. Interlacing implies recording, transmitting and presenting only half of the 
lines for each frame, thereby effectively halving the pixel count. For each pair of 
consecutive frames, the even-numbered lines of the first frame and the odd-
numbered lines of the second frame are retained. The retained lines of each frame 
form a so-called field. Two consecutive fields are grouped together into one inter-
laced frame. The resulting interlaced video material consists of 50 to 60 fields per 
second or 25 to 30 interlaced frames per second. Because of the inherent inertia of 
the human visual system, the missing lines in a displayed interlaced image are not 
visible because they coincide with the fading lines of the previously projected im-
age, thus retaining the spatial resolution of the original images. On a CRT screen, 
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the after glowing of the layer of phosphorus increases the effect of the inertia. This 
advantageous technological side effect makes interlaced video content look better 
on a classic CRT screen than on a modern LCD or plasma screen. The interlacing 
technique results in a gross bandwidth reduction of 50%. However, this comes at 
the expense of visual artefacts associated with interlacing, including interline twit-
ter, line crawling and field aliasing [5].  

The higher spatial resolution of 1080i seems to be an advantage but this is rela-
tive. First of all, vertical low-pass filtering is typically applied on interlaced video 
in order to suppress interline twitter [5], effectively reducing the vertical resolu-
tion in 1080i. Secondly, it is known that the optical resolution of a human eye lim-
its the ability to distinguish details to an angle of approximately 1 arc minute 
(1/60th of a degree). Within this angle, details cannot be distinguished. It is typi-
cally assumed that in an average living room,  the viewing distance for a television 
set is about 2.7 m [6]. Simple geometry then shows that a screen must be about 85 
cm high to allow the distinction of two neighbouring lines in an image of 1920 by 
1080 pixels. This corresponds to a screen with a diagonal of 1.75 m or 68”. This 
type of screens are currently too cumbersome, heavy and expensive for the aver-
age consumer. In contrast, a vertical resolution of 720 lines for 720p corresponds 
to a screen with a diagonal of 50”, which is more realistic.  

Another advantage of 720p is that it offers a better line refresh rate (50-60 
frames per second times 720 lines versus 50-60 fields per second times 540 lines 
for 1080i). This results in a better viewing experience for fast moving content [7]. 
Motion blur and jitter are less observed with 720p than with 1080i. The fact that 
LCD and plasma screens are inherently progressive further contributes to the ap-
peal of 720p. When offered interlaced video content, such screens have to convert 
it to progressive content before displaying. The quality of this conversion depends 
on the complexity and the processing power, and thus the price of the built-in 
conversion chips. Professional solutions cost about 10.000 Euro per system. Evi-
dently screen manufacturers are forced to use much cheaper, less efficient devices. 
For these reasons, existing 1080i video content should be converted to 720p by 
professional equipment at the broadcast stations prior to distribution, instead of re-
lying on less efficient de-interlacing mechanisms built into current television sets. 

Another advantageous factor for 720p is the content representation efficiency. 
1080i25 content consists of 1920 x 1080 x 25 = 5184106 pixels per second while 
720p50 content consists of 1280 x 720 x 50 = 4608106 pixels per second, corre-
sponding to a difference of more than 10% in favour of 720p. Moreover, subjec-
tive tests by EBU indicate that compressed 1080i25 content needs 20% more  
bit-rate than compressed 720p50 to obtain a comparable visual quality [3]. 

The above arguments indicate that 720p is the best HD format for recording, 
production and distribution. However, 1080i has some practical advantages over 
720p. A first advantage is the better support for 1080i in current production sys-
tems and in (tape-based) cameras, mostly because the format has already been in 
use for some time in the United States and Japan. For the same reason there is a 
larger availability of 1080i content. For example, HD recordings of the last Olym-
pic Games were distributed in the 1080i format. A second advantage is the ability 
to use identical time codes in 1080i as in SD. Time codes are essential for  
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determining the relative place of a frame in a sequence, for editing purposes and 
for synchronizing video and audio. Usage of identical time codes implies that cur-
rent production systems can be easily adapted from SD to HD. 

3   H.264/AVC  

H.264/AVC is a highly efficient video compression standard which was created 
jointly by ITU-T and ISO/IEC. The initial H.264/AVC standard was finalized in 
2003 and focused on video material with 4:2:0 chroma subsampling and a bit-
depth of 8 bits [8]. In a later stage, extensions to support higher resolutions and 
bit-depths and different chroma subsampling options were added under the name 
FRExt (Fidelity Range Extensions). These extensions include an 8x8 DCT trans-
form and intra prediction, support for adaptive transform sizes, custom quantiza-
tion matrices, lossless coding, support for 4:2:2 and 4:4:4 chroma subsampling 
and support for higher bit-depths [9]. 
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Fig. 1 H.264/AVC encoder architecture 

Figure 1 illustrates H.264/AVC’s classical block-based hybrid coding architec-
ture. Each picture is divided into one or more slices, each consisting of a number 
of macroblocks. A macroblock (MB) covers a rectangular picture area of 16x16 
luma samples and, corresponding to this, two rectangular areas of chroma samples 
(when 4:2:0 chroma subsampling is used, two blocks of 8x8 chroma samples). 
Each MB is either spatially (intra) or temporally (inter) predicted and the predic-
tion residual is transform coded. H.264/AVC supports three basic slice coding 
types: I slices, P slices and B slices. H.264/AVC Intra, which is used in our ex-
periments, only allows the use of I slices. I slices are coded without any reference 
to previously coded pictures. Macroblocks in I slices are always spatially pre-
dicted using directional intra-prediction. Intra-prediction can be performed on 
blocks of 4x4, 8x8 and 16x16 samples. Each block is predicted based on 
neighbouring sample values as illustrated in Figure 2 for 4x4 and 16x16 blocks. 
The directional 8x8 intra prediction modes introduced in FRExt are similar in de-
sign to their 4x4 equivalents [8, 9]. Macroblocks in P and B slices can additionally 
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be temporally predicted using variable block size motion-compensated prediction 
with multiple reference frames. The macroblock type signals the partitioning of a 
macroblock into blocks of 16x16, 16x8, 8x16, or 8x8 luma samples. When a mac-
roblock type specifies partitioning into four 8x8 blocks, each of these so-called 
sub-macroblocks can be further split into 8x4, 4x8, or 4x4 blocks, which is  
indicated through the sub-macroblock type. For P-slices, one motion vector is 
transmitted for each block. In addition, the employed reference picture can be in-
dependently chosen for each 16x16, 16x8, or 8x16 macroblock partition or 8x8 
submacroblock. It is signalled via a reference index parameter, which is an index 
into a list of reference pictures that is replicated at the decoder [8, 10]. 
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Fig. 2 Directional intra-prediction modes. (a) 4x4 prediction modes. (b) 16x16 prediction 
modes. [10]. 

In B-slices, two distinct reference picture lists are utilized, and for each 16x16, 
16x8, 8x16 macroblock partition or 8x8 sub-macroblock, the prediction method can 
be selected between list 0, list 1, or bi-prediction. While list 0 and list 1 prediction 
refer to unidirectional prediction using a reference picture of reference picture list 0 
or 1, respectively, in the bi-predictive mode, the prediction signal is formed by a 
weighted sum of a list 0 and list 1 prediction signal. In addition, special modes such 
as direct modes in B-slices and skip modes in P- and B-slices are provided, in 
which motion vectors and reference indexes are derived from previously transmit-
ted information [8]. To reduce the blocking artefacts introduced by the standard’s 
block-based transform and prediction operations, an adaptive deblocking filter is 
applied in the motion-compensated prediction loop [11]. This filter is only effec-
tively turned on for higher values of the quantization parameter QP [11]. 

After spatial or temporal prediction, the resulting prediction error is trans-
formed using an approximation of the discrete cosine transform (DCT), in some 
cases followed by an Hadamard transform on the DC DCT coefficients (Intra 
16x16 prediction mode, chroma coefficient blocks). In the initial version of the 
standard, a 4x4 DCT kernel was used exclusively. Later, during the standardiza-
tion of FRExt, an 8x8 transform kernel was added, which typically provides  
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superior performance in high resolution scenarios [9]. Additionally, the possibility 
of adaptively selecting the transform kernel (4x4 or 8x8) on a macroblock basis 
was also added. The employed transforms consists of two matrix multiplications, 
which can be executed using integer arithmetic, and a scaling operation which in 
principle requires floating point operations. For example, the 4x4 transform is de-
fined as: 
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However, by absorbing this scaling into the quantization process, floating point 
arithmetic is avoided and the transform process becomes an integer-only opera-
tion. In this way, an efficient implementation is obtained and the drift problem that 
occurred in previous video coding standards, as a result of differences in accuracy 
and rounding of the floating-point DCT in the encoder and decoder, is avoided. 
The standard enforces a link between the prediction mode and the size of the 
transform kernel used: If prediction on 4x4 blocks is used, the 8x8 transform ker-
nel cannot be employed as it would cross the boundary of the 4x4 blocks used in 
the prediction, causing high frequency transform coefficients to appear which are 
expensive to code. For more information concerning the transform part of the 
standard the reader is referred to [12]. 

In the next stage, the transform coefficients are quantized. In the initial version 
of the standard, only uniform scalar quantization was supported. FRExt later in-
troduced support for frequency dependent quantization and rounding, by means of 
custom quantization and rounding matrices. The quantization strength is deter-
mined by the quantization step size which can be defined for each macroblock  
using the quantization parameter QP which lies in the range [0,51]. The relation 
between QP and the quantization step size is logarithmic: the quantization step 
size approximately doubles for each increase of QP by 6. As mentioned earlier, 
the quantization and the scaling part of the DCT are combined in a single integer-
valued operation. 

The symbols produced by the encoding process are entropy coded using either 
context-based adaptive variable length coding (CAVLC) or context-based adap-
tive binary arithmetic coding (CABAC [13]). While CABAC exhibits a higher 
computational complexity, it also provides 10 to 15% bit-rate savings compared to 
CAVLC [13, 14]. 

Similar to prior video coding standards, H.264/AVC also supports efficient 
coding of interlaced material. Each interlaced frame can be coded in two ways. 
The subsequent fields can be coded separately (field coding) or the interlaced 
frame, i.e. the collection of two successive fields can be coded in the same way as 
a progressive frame (frame coding). In H.264/AVC, this decision can be made 
adaptively, on a slice basis (PAFF, picture adaptive frame/field coding). If field  
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coding is used, each field is coded in a manner very similar to a progressive frame, 
with a few exceptions: motion compensated prediction uses reference fields in-
stead of reference frames, the zig-zag scan of transform coefficients is altered and 
the deblocking strength is limited when filtering horizontal edges [14]. If frame 
coding is selected, the entire frame is coded in the same way as a progressive 
frame or the decision between frame and field coding can be deferred to the mac-
roblock level. The latter is called macroblock adaptive frame/field coding 
(MBAFF) . In this case, the picture is processed in pairs of macroblocks, i.e. two 
vertically adjacent macroblocks covering a picture region of 16x32 luma samples 
are coded together. Each such pair of macroblocks is then either coded as two 
frame macroblocks or two field macroblocks as illustrated in Figure 3. Since, in 
this way, each frame will be coded as a mixture of frame and field macroblock 
pairs, the derivation of the spatially neighbouring pixel values, motion vectors, 
etc. is significantly complicated. For an in-depth discussion, the reader is referred 
to [8, 14].  

Frame MB pair Field MB pair

 

Fig. 3 Frame vs. field macroblock pair in MBAFF [14] 

4   Motion JPEG 2000 

Motion JPEG 2000 [15] or ITU-T Recommendation T.802 [16] is an intra-only 
video coding standard which has recently been adopted as the standard format for 
digital cinema productions. Motion JPEG 2000 is a part of the JPEG 2000 suite of 
standards, jointly published by ISO/IEC JTC-1 and ITU-T. Essentially, Motion 
JPEG 2000 applies JPEG 2000 Part 1 [17] still-image compression to each frame 
in the video sequence and the resulting compressed bit-stream is wrapped in a file 
format derived from the ISO base media file format [18], which represents timing, 
structure, and media information for timed sequences of media data. As illustrated 
in Figure 4, JPEG 2000 Part 1 encoding is performed in two tiers. In Tier 1, the 
image is first split into rectangular regions called tiles. Typically, when the resolu-
tion of the image is relatively low, a single tile is used for the entire picture. Each 
tile is subsequently transformed to the wavelet-domain using the 2D discrete 
wavelet transform as shown in Figure 5. To obtain the first decomposition level of 
the wavelet transform, the image is first horizontally decomposed by performing  
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low-pass and high-pass filtering (filters h  and g  in Figure 5 respectively) suc-

ceeded by dyadic downsampling on the rows of the original image. The resulting 
image is thereafter vertically decomposed by applying similar operations on its 
columns. The entire operation yields a set of four subbands, each having half of 
the resolution of the original image. The subband resulting from low-pass filtering 
on both rows and columns is called the LL-subband and represents a lower resolu-
tion approximation of the original image. The remaining subbands are referred to 
as the LH, HL and HH subbands (see Figure 5) and respectively contain the high-
frequency horizontal, vertical and diagonal details representing the information 
difference between the original image and the LL-subband. Additional decomposi-
tion levels are computed by performing the aforementioned operations on the  
LL-subband of the previous decomposition level. 

 

Fig. 4 Overview of a JPEG 2000 Part 1 encoder 

 

Fig. 5 Two-dimensional wavelet-transform with 2 decomposition levels 
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Unlike the above description, which defines the wavelet transform as a se-
quence of filtering and subsampling operations, the JPEG 2000 standard specifies 
its supported wavelet transforms in terms of their lifting implementation [19]. A 
lifting implementation of the wavelet transform allows in-place execution, re-
quires less computations and allows for reversible operation, which is needed for 
lossless compression. Two different transforms are supported, i.e. the irreversible 
CDF 9/7 transform and the reversible CDF 5/3 transform [20, 21]. Lossless com-
pression requires the use of the reversible CDF 5/3 transform. For lossy compres-
sion, the CDF 9/7 transform is typically preferred. 

After the transform, the resulting set of coefficients is divided into code-blocks 

iC  which are typically chosen to be 32 by 32 or 64 by 64 coefficients in size. 

Each of these code-blocks is thereafter independently coded using embedded bit-
plane coding. This means that the wavelet coefficients ( ) , 0c i i N≤ <  are coded 

in a bit-plane by bit-plane manner by successive comparison to a series of dyadi-
cally decreasing thresholds of the form 2 p

pT = . A wavelet coefficient ( )c j  is 

called significant with respect to a threshold pT  if its absolute value is larger than 

or equal to this threshold.  

,qT p q M< ≤

,qT p q M< ≤   

Fig. 6 Application of the different coding passes in JPEG 2000 

Encoding starts with the most significant bit-plane M  and its corresponding 

threshold 2M
MT = , with ( )( )( )2

0
log max

i N
M c i

≤ <
⎢ ⎥= ⎢ ⎥⎣ ⎦

. Bit-plane p  of the wavelet 

coefficients in each block is encoded using a succession of three coding passes. 
First, the significance propagation pass codes the significance of the coefficients 
which (i) were not significant with respect to any of the previous thresholds 

,qT p q M< ≤  and (ii) are adjacent to at least one other coefficient which was al-

ready significant with respect to one of the previous thresholds ,qT p q M< ≤ . 

Additionally, when a coefficient becomes significant with respect to pT , its sign is 

also coded. In the magnitude refinement pass, all coefficients that were significant 
with respect to one of the previous thresholds ,qT p q M< ≤  are refined by  
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encoding the binary value on their p -th bit-plane. Finally, in the normalization 

pass, the significance of the remaining previously non-significant coefficients is 
coded. Again, when a coefficient becomes significant with respect to pT , its sign 

is also coded. The application of the coding passes is illustrated in Figure 6.  
The symbols signaling the significance, the signs and the refinements bits for 

different coefficients are coded using a combination of run-length coding and con-
text-based binary adaptive arithmetic coding. For further details, the reader is re-
ferred to [20].  

Since the wavelet coefficients are coded in a bit-plane by bit-plane manner, a 
quantized version of the original wavelet coefficients in each block iC  can be ob-

tained by simply truncating the resulting compressed bit-stream iB . This property 

is exploited in Tier 2 of the codec. In Tier 2, the code-block bit-streams iB  are 

cut-off at a length il , whereby il  is determined such that the requested bit-rate, 

resolution and region of interest are met and the decoder-side distortion is mini-
mized. This is achieved using Lagrangian rate-distortion optimization [20, 21].  

5   Experiments 

In this section, the H.264/AVC Intra and Motion JPEG 2000 coding standards are 
experimentally evaluated. A first series of experiments reports the compression 
performance for the two coding systems applied on 1080i25 and 720p50 video 
material. The employed test material consists of 5 video sequences from the SVT 
test set [22] in 1080i25 and 720p50 formats: "CrowdRun", "ParkJoy", "Duck-
sTakeOff", "IntoTree" and "OldTownCross". All sequences were converted from 
the original SGI format to planar Y’CbCr 4:2:2 video with 10 bits per component 
using the commonly employed conversion tools of [23].  

For H.264/AVC Intra the JM reference software version 12.2 was used [24]. 
Although this is not the latest version available, this option was taken due to erro-
neous operation of more recent versions on 4:2:2, 10 bit video material. For Mo-
tion JPEG 2000 the Kakadu software version 6.1 [25] was used. The employed  
parameter configurations for both codecs are summarized in Table 1 and Table 2 
for 720p50 and 1080i25 material respectively.  

With respect to Motion JPEG 2000, it must be observed that the standard was 
not particularly designed to target interlaced material. In the codec’s normal con-
figuration, all interlaced frames are coded in the same manner as a progressive 
frame, which corresponds to the frame coding mode in H.264/AVC. However, 
field coding can easily be supported by separating the fields of each interlaced 
frame and coding each field as a separate tile (this corresponds to H.264/AVC’s 
field coding mode).  

The results obtained with Motion JPEG 2000 on both frame and field coding 
modes are reported. The compression performance of the two coding systems is 
evaluated by measuring the Peak Signal to Noise Ratio (PSNR) at the following 
bit-rates: 30, 50, 75, 100 Mbit/s. The average PSNR per frame is calculated as  
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Table 1 Encoder settings for 720p50 material 

Motion JPEG 2000 H.264/AVC Intra 

Transform CDF 9/7 Intra prediction 4x4,8x8,16x16 

Transform Levels 6 Transform Adaptive 4x4/8x8 

Codeblock size 64x64 Quantization 
Uniform, standard 
rounding 

Tiles 1 Tile per frame Slices 1 slice per frame 

Tier 2 

Rate control 

Constant 
slope/lambda per 
frame, Logarithmic 
search on Lambda to 
meet rate. 

Rate control 
On,  
RCUpdateMode=1 

Perceptual  
weighting 

Off R-D optimization 
High complexity 
mode 

- - Entropy coding CABAC 

- - Deblocking On 

- - Profile/Level 
High 4:2:2,  
Level 5.1 

 

Table 2 Encoder settings for 1080i25 material 

Motion JPEG 2000 
Frame cod-
ing 

Field coding H.264/AVC Intra 

Transform CDF 9/7 CDF 9/7 
Interlaced 
handling 

Frame coding, 
MBAFF 

Transform Levels 7 6 
Intra 
prediction 

4x4,8x8,16x16 

Codeblock size 64x64 64x64 Transform Adaptive 4x4/8x8 

Tiles 
1 Tile 
 per frame 

2 Tiles per 
frame (1 per 
field) 

Quantization 
Uniform, standard 
rounding 

Tier 2 
Rate control 

See Table 1 See Table 1 Slices 1 slice per frame 

Tier 2 
perceptual  
weighting 

Off Off Rate control 
On,  
RCUpdate-
Mode=1 

- - - 
R-D optimiza-
tion 

High complexity 
mode 

- - - Entropy coding CABAC 

- - - Deblocking On 

- - - Profile/Level High 4:2:2, L 4.1 
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2
b rY C CPSNR PSNR PSNR PSNR′= + + , as we are compressing 4:2:2 video mate-

rial. The PSNR results averaged over each sequence are summarized in Figure 7 
and Figure 8. 
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Fig. 7 Comparison between the compression performance of H.264/AVC and Motion JPEG 
2000 for 720p50 and 1080i25 material (CrowdRun, ParkJoy and DuckTakeOff sequences). 

These results show that for progressive material, the compression performance of 
H.264/AVC Intra is better than that of Motion JPEG 2000 for CrowdRun, ParkJoy 
and OldTownCross. The performance of both coding systems is comparable for 
OldTownCross, while Motion JPEG 2000 outperforms H.264/AVC Intra for the  
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Fig. 8 Comparison between the compression performance of H.264/AVC and Motion JPEG 
2000 for 720p50 and 1080i25 material (OldTownCross and IntoTree sequences) 

DucksTakeOff sequence. We can conclude that, on average, H.264/AVC Intra of-
fers the best coding performance for 720p50 material.  

When looking at the results for 1080i25 material, it becomes clear that the 
frame coding approach for Motion JPEG 2000 is superior to the field coding ap-
proach. This is to be expected since the test material exhibits a relatively high  
correlation between successive fields, which can only be exploited in the frame 
coding mode. When comparing Motion JPEG 2000 frame coding with 
H.264/AVC Intra coding, the performance of H.264/AVC Intra is better for the 
CrowdRun and ParkJoy sequences. The compression performance of both codecs 
is similar for IntoTree and OldTownCross. For the DucksTakeOff sequence, Mo-
tion JPEG 2000 outperforms H.264/AVC Intra. On average, the same conclusion 
as for progressive material can be drawn: H.264/AVC Intra offers better coding 
performance than Motion JPEG 2000. 

In a second series of experiments, the quality degradation (or re-compression 
loss) resulting from successive encoding and decoding of the same video material 
is assessed. In these experiments four encoding-decoding iterations are performed. 
No spatial shifting of the reconstructed signal is applied in between successive it-
erations. The parameter settings from the first experiments are reused. The aver-
age PSNR results after the 2nd and the 4th encoding-decoding cycle are reported in 
Figure 9 - Figure 13. 
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Fig. 9 Recompression loss for CrowdRun sequence 

These results show that using H.264/AVC Intra, significant quality loss is in-
curred during successive encoding-decoding cycles, while the quality obtained us-
ing Motion JPEG 2000 stays more or less constant. This is likely the result of 
H.264/AVCs macroblock-based coding using multi-hypothesis intra-prediction, 
adaptive transform selection and adaptive frame/field coding (interlaced material). 
The mode decision process, which operates based on actual distortion measure-
ments, will likely make different decisions concerning the intra-prediction mode, 
transform or frame/field coding of the current macroblock since the reference used 
in the distortion measurement, i.e. the input frame, is a lower quality version of the 
corresponding input frame in the first encoding cycle. When the same coefficient 
is quantized twice with the same quantization step-size, no additional distortion is 
introduced the second time. However, when different coding options are taken for 
a macroblock, compared to those used in the previous encoding-decoding cycle, 
entirely different transform coefficients result, and additional noise is introduced 
in the quantization stage. Additionally, errors introduced in one macroblock 
propagate to neighbouring macroblocks through the intra-prediction process, con-
tributing to the overall quality degradation. 

The marginal loss incurred during recompression with Motion JPEG 2000 is 
largely due to rounding errors resulting from the irreversible CDF 9/7 wavelet 
transform. The quantization of the wavelet coefficients which is applied in each 
encoding step depends on the estimation of the distortion reduction after each  
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coding pass. This distortion reduction estimate is used to determine the codeblock 
bitstream truncation in Tier 2 of the codec, which directly translates to the quanti-
zation step size. The rounding errors of the transform have a very limited influ-
ence on the distortion estimates, especially for the coding passes performed on the 
higher bit-planes. As a result, quantization of the wavelet coefficients in succes-
sive encoding cycles will be almost identical, causing little additional quality loss.  
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Fig. 10 Recompression loss for ParkJoy sequence 

To conclude this section, a short qualitative evaluation of the functionality and 
the complexity of both coding standards will be presented. Motion JPEG 2000 in-
herently supports resolution and quality scalability. To obtain similar functionality, 
H.264/AVC’s scalable extension [8, 26] must be used, which requires a different 
encoder and decoder. Additionally, Motion JPEG 2000 supports region-of-interest 
(ROI) coding with near-pixel granularity by using the max-shift method [20, 21]. 
ROI can also be supported in AVC by using slice groups, but the granularity is lim-
ited to a single macroblock. (Motion) JPEG 2000 was also designed to deliver 
state-of-the-art lossless compression performance. H.264/AVC can also support 
lossless compression but the performance of this mode is sub-optimal, as it solely 
relies on crude block-based intra-prediction for decorrelation.  

Concerning computational complexity, it is difficult to draw clear conclusions 
as this is highly implementation and platform dependant. Certain is that Motion 
JPEG 2000 has similar complexity for encoding and decoding, while for 
H.264/AVC, the encoder is much more complex than the decoder. In general,  
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Fig. 11 Recompression loss for DucksTakeOff sequence 
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Fig. 12 Recompression loss for OldTownCross sequence 



154 J. Barbarien, M. Jacobs, and A. Munteanu
 

 

 

34.00

35.00

36.00

37.00

38.00

39.00

40.00

41.00

25000000 45000000 65000000 85000000 105000000

P
S

N
R

 (d
B

)

Bit-rate (bits/s)

H.264/AVC Intra Motion JPEG 2000  

35.00

36.00

37.00

38.00

39.00

40.00

41.00

42.00

25000000 45000000 65000000 85000000 105000000

P
S

N
R

 (d
B

)

Bit-rate (bits/s)

H.264/AVC Intra Motion JPEG 2000 Field Motion JPEG 2000 Frame  
720p50, 2nd encoding-decoding cycle 1080i25, 2nd encoding-decoding cycle 

34.00

35.00

36.00

37.00

38.00

39.00

40.00

41.00

25000000 45000000 65000000 85000000 105000000

P
S

N
R

 (d
B

)

Bit-rate (bits/s)

H.264/AVC Intra Motion JPEG 2000  

35.00

36.00

37.00

38.00

39.00

40.00

41.00

42.00

25000000 45000000 65000000 85000000 105000000

P
S

N
R

 (d
B

)

Bit-rate (bits/s)

H.264/AVC Intra Motion JPEG 2000 Field Motion JPEG 2000 Frame  
720p50, 4th encoding-decoding cycle 1080i25, 4th encoding-decoding cycle 

Fig. 13 Recompression loss for IntoTree sequence 

H.264/AVC’s macroblock-oriented processing is considered to be very beneficial 
as it allows to preserve locality of reference, which can lead to improved cache 
usage. Motion JPEG 2000 on the other hand uses a global transform, which makes 
block-based implementation more difficult. However, solutions for this problem 
have been proposed in the literature. An overview is given in [21]. 

6   Conclusions 

In this work, we have investigated formats for the digital representation of HD 
video material. Concerning the choice between 720p and 1080i HD formats, we 
have shown that, from a technical point of view, 720p is clearly superior to 1080i. 
However, in practice, other factors, such as the larger availability of material in 
1080i format and the better support for 1080i in current production equipment, 
may lead to the adoption of the latter format. Besides the choice between 720p and 
1080i, the selection of the video compression format for HD recording and pro-
duction was discussed. We have evaluated two state-of-the-art intra-only compres-
sion formats, Motion JPEG 2000 and H.264/AVC Intra. In terms of compression 
performance, H.264/AVC Intra outperforms Motion JPEG 2000 when recompres-
sion is not considered. However, Motion JPEG 2000 clearly outperforms 
H.264/AVC Intra when applying successive encoding-decoding cycles, typically 
performed in television production. The results have also shown that frame coding 
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clearly offers superior performance over field coding when using Motion JPEG 
2000. In terms of functionality, Motion JPEG 2000 has the advantage of inher-
ently supporting resolution and quality scalability, efficient lossless compression 
and fine-granular region-of-interest coding. H.264/AVC only supports resolution 
and quality scalability when using the SVC extension; also, region-of-interest cod-
ing can be supported through the use of slice groups, but with a limited granular-
ity. H.264/AVC also supports lossless coding, but the compression performance of 
this mode is limited. From a complexity point of view, little conclusions can be 
formulated as this is highly platform and implementation dependant.  
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Chapter 6 
Super Hi-Vision and Its Encoding System 

Shinichi Sakaida* 

Abstract. The Super Hi-Vision (SHV) is an ultra high-definition video system 
with 4,000 scanning lines. Its video format is 7,680×4,320 pixels, which is 16 
times the total number of pixels of high definition television and the frame rate is 
60 Hz with progressive scanning. It has been designed to give viewers a strong 
sense of reality. To make the system suitable for practical use, such as in broad-
casting services, a high-efficiency compression coding system is necessary. There-
fore, we have developed several Super Hi-Vision codec systems based on MPEG-
2 and AVC/H.264 video coding standards. In this chapter, details of these codec 
systems are described and transmission experiments using the codec systems are 
introduced. 

1   Introduction 

Super Hi-Vision (SHV) consists of an extremely high-resolution imagery system 
and a super surround multi-channel sound system [1]. Its video format consists of 
7,680×4,320 pixels (16 times the total number of pixels of high definition televi-
sion (HDTV)) and a 60-Hz frame rate with progressive scanning. It uses a 22.2 
multi-channel sound system (22 audio channels with 2 low frequency effect chan-
nels) and has been designed to give viewers a strong sense of reality. The final goal 
of our research and development of SHV is to deliver highly realistic image and 
sound to viewers’ homes. When SHV becomes applicable as a broadcasting sys-
tem, we will be able to use it for many purposes, such as archival and medical use. 

NHK (Japan Broadcasting Corporation) has developed SHV cameras, projec-
tors, disk recorders, and audio equipment. Several SHV programs have been pro-
duced using these devices, and demonstrations of the programs have attracted 
many visitors at events such as the 2005 World Exposition in Aichi, Japan, as well 
as NAB 2006 (National Association of Broadcasters) in Las Vegas, USA [2] and 
IBC 2006 (International Broadcast Conference) in Amsterdam, Netherlands [1]. 

                                                           
Shinichi Sakaida 
NHK Science and Technology Research Laboratories 
1-10-11, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan 
e-mail: sakaida.s-gq@nhk.or.jp 
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To achieve our final goal of broadcasting SHV programs to homes, a new high-
efficiency compression coding system is necessary. Therefore, we have developed 
several SHV codec systems that are based on MPEG-2 (Moving Pictures Experts 
Group) [3] and AVC (Advanced Video Coding)/H.264 [4] video coding standards. 
It is necessary to conduct transmission tests and to solicit public opinion to en-
courage people to recognize SHV as a broadcasting service. However, this cannot 
be done without an SHV codec. A real-time SHV codec will help people to con-
sider SHV as a functioning broadcasting system. For this reason, we need to de-
velop the codec as soon as possible. In 2006, we successfully conducted the first 
transmission experiment using the MPEG-2-based SHV codec system via gigabit 
IP networks [5]. We then continued to carry out several transmission tests in that 
year. With regard to the AVC/H.264 codec system, we performed the first interna-
tional satellite transmission tests at IBC2008 [6]. 

In this chapter, the outline of our SHV system and details of the SHV codec 
systems are described, and several transmission experiments using the codec sys-
tems are explained in detail. 

2   Super Hi-Vision Systems 

2.1   Video System of SHV 

The specifications of the SHV system are listed in Table 1 and compared with 
those of HDTV. SHV is now the highest resolution TV system available. The ba-
sic parameters of the SHV system are designed to enhance viewers’ visual experi-
ence. There are 7,680 horizontal pixels and 4,320 vertical lines, for approximately 
33 million pixels per frame. This is 16 times the total number of pixels per frame 
of HDTV. The frame rate is 60 Hz progressive, so the total information of SHV is 
32 times that of HDTV, i.e. 16 times spatially and 2 times temporally. 

International standardization process for SHV is currently in progress. The Interna-
tional Telecommunication Union Radiocommunications sector (ITU-R) has been 
studying large-screen digital imagery (LSDI) and extremely high-resolution imagery 
(EHRI) and has produced recommendations for those video systems [7][8]. The Soci-
ety of Motion Picture and Television Engineers (SMPTE) has produced standard 

 
Table 1 SHV and HDTV specifications 

Specifications SHV HDTV 
Number of pixels 7,680 × 4,320 1,920 × 1,080 
Aspect ratio 16 : 9 16 : 9 
Standard viewing distance 
 (H: height of screen) 

0.75H 3H 

Standard viewing angle (horizontal) 100 degrees 30 degrees 
Frame / Field rate 60 Hz / 59.94Hz 60 Hz / 59.94 Hz 
Interlace ratio 1 : 1 1 : 1/2 : 1 
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2036-1, which describes the video formats for ultra high-definition TV (UHDTV) sys-
tem [9]. It corresponds with the ITU-R recommendations. 

NHK has developed key equipment for SHV broadcasting systems, such as 
cameras, display systems, and disk recorders. SHV requires an imaging device and 
display device with 33 million pixels; however, integrated devices with such high 
resolution are not yet available. Thus, the SHV camera uses four panels with 8 
million pixels each for green 1 (G1), green 2 (G2) (dual-green), red (R), and blue 
(B) channels, using the pixel-offset method to increase the effective number of 
pixels both horizontally and vertically. Figure 1 shows the pixel-spatial-sampling 
arrangement in this method. 

 

Fig. 1 Pixel-spatial-sampling arrangement in pixel offset method 

2.2   Audio System of SHV 

The audio format of the SHV system has 22.2 multi-channel sounds as shown in 
Figure 2 and Table 2. The 22.2 multichannel sound system has 3 loudspeaker lay-
ers (top, middle, and bottom), 22 full-bandwidth channels, and 2 low frequency ef-
fects (LFE) channels. It is a three-dimensional audio system, whereas the 5.1 mul-
tichannel sound system specified in ITU-R BS.775-2 is a two-dimensional audio 
system without a vertical dimension [10]. 

The audio sampling frequency is 48 kHz, and 96 kHz can be optionally applied. 
The bit depth is 16, 20, or 24 bits per audio sample. 

International standardization of the 22.2 multichannel sound system is currently 
underway. ITU-R is studying the system parameters for digital multichannel 
sound systems. As mentioned earlier, SMPTE has started the standardization proc-
ess and has already produced standard 2036-2, which describes the audio charac-
teristics and audio channel mapping of 22.2 multichannel sound for production of 
ultra high-definition television programs [11]. 
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Fig. 2 Loudspeaker layout of 22.2 multichannel sound system 

Table 2 Channel maps and labels of 22.2 multichannel sounds 

Channel number Label Name 
1 FL Front left 
2 FR Front right 
3 FC Front centre 
4 LFE1 LFE-1 
5 BL Back left 
6 BR Back right 
7 FLc Front left centre 
8 FRc Front right centre 
9 BC Back centre 
10 LFE2 LFE-2 
11 SiL Side left 
12 SiR Side right 
13 TpFL Top front left 
14 TpFR Top front right 
15 TpFC Top front centre 
16 TpC Top centre 
17 TpBL Top back left 
18 TpBR Top back right 
19 TpSiL Top side left 
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Table 2 (Cont.) 

20 TpSiR Top side right 
21 TpBC Top back centre 
22 BtFC Bottom front centre 
23 BtFL Bottom front left 
24 BtFR Bottom front right 

2.3   Roadmap of SHV 

The provisional roadmap for SHV for the future is shown in Figure 3. NHK Science 
and Technology Research Laboratories (STRL) started the SHV study in 1995, and in 
the following decade made steady progress towards its practical use. We expect to 
launch SHV broadcasting by 2025. The plan is to deliver SHV through a cost-effective 
network to homes, where it will then be recorded onto a home-use receiver. We antici-
pate that experimental SHV broadcasts will start in 2020 using a 21-GHz-band satel-
lite, which is a potential delivery media for high-bit-rate transmissions. The display for 
SHV is another important subject. The widespread use of large, high-resolution flat 
panel displays is remarkable. We assume that SHV displays for home use will be ei-
ther a 100–150-inch large screen display or an A3-sized handheld-type paper-thin dis-
play with extremely high resolution. The SHV system has the potential for use in vari-
ous applications in addition to broadcasting, e.g., art, medical use, security, and 
monitoring. In-theater presentation of sports events, concerts, etc. will be implemented 
before the broadcasting stage. The SHV systems can also be used in non-theater envi-
ronments such as for advertisements, image archive materials and background images 
for program production. 

 

Fig. 3 Roadmap toward achieving SHV broadcasting 

3   Codec Systems 

The data rate of uncompressed SHV signal reaches about 24 Gbps (bits per second). 
For achievement of SHV broadcasting services to homes, compression coding is 
needed to transmit such a huge amount of information. Video codec systems have 
been developed for the efficient transmission and recording of SHV signals. The de-
veloped codec systems consist of a video format converter, video codec, and audio co-
dec. In this section, the video format converter and the video codec are discussed. 
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3.1   Video Format Converter 

To encode SHV signals in the Y/Cb/Cr format, the original SHV signals should first 
be converted for ease of handling. The video format converter converts the 
7,680×4,320 (G1, G2, B and R) format from/into sixteen 1,920×1,080/30 Psf (progres-
sive segmented frame) (Y/Cb/Cr 4:2:2) HDTV size images, where the SHV images 
are divided spatio-temporally. The color format conversion is shown in formula (3.1), 
which is based on ITU-R BT. 709. As previously mentioned, the current SHV signals 
are formatted by the pixel-offset method. Each signal component (G1, G2, B, and R) is 
a quarter of the size of an SHV signal and is arranged in a pixel shift position as shown 
in Figure 1. Since there are two luminance signals Y1 and Y2 after the video format 
conversion, the number of meaningful pixels becomes equal to half the SHV total area 
of 7,680×4,320. Therefore, in the case of conversion to the 16 HD-SDI (high defini-
tion serial digital interface) signals in practice, SHV signals should be spatially divided 
into 8 parts and temporally into 2 parts. Spatial division should have two modes: (a) 
four horizontal parts and two vertical parts (“H” division) and (b) two horizontal parts 
and four vertical parts (“V” division), as shown in Figure 4. The final spatial division 
is shown in Figure 5 and temporal division is shown in Figure 6. A diagram of the total 
codec system including the video format converter is shown in Figure 7. 
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Fig. 4 Spatial division modes 
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Fig. 5 Spatial division 

 

Fig. 6 Temporal division 

 

Fig. 7 Diagram of codec system 

3.2   MPEG-2-Based Codec 

For the first version of the SHV codec, we selected the MPEG-2 coding scheme 
with its proven technology as the base system. The MPEG-2-based video codec 
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consists of 4 sub-codecs for 3,840×2,160 images. A sub-codec contains four sin-
gle-unit MPEG-2 HDTV codecs and a multichannel frame synchronizer as de-
picted in Figure 8. To compress large images that exceed the resolution of HDTV 
by using MPEG-2 video coding, the video format converter divides the SHV im-
age into multiple HDTV units. The HDTV coding conforms to MPEG-2 Main 
Profile and 4:2:2 Profile @ High Level. Since motion vectors in higher resolution 
images are often significantly larger than those in lower resolution images, it is 
necessary to implement motion estimation with a wider search range in the en-
coder. The search vector range of the developed encoder achieves +/− 211.5 pixels 
horizontally and +/− 113.5 lines vertically, exceeding existing common MPEG-2 
encoders. The total coding delay is about 650 ms, which includes the process by 
the encoder, the decoder and the video format converters.  

 

Fig. 8 MPEG-2-based codec system 

The multichannel sound signals can be transmitted in the form of uncompressed 
linear pulse code modulation (PCM) (48-kHz sampling, 24 bits per audio sample). 
In addition to the PCM, Dolby-E codecs with a compression ratio of 1:4 are also 
equipped. They handle 24 audio signal channels for the 22.2 multichannel sound 
system. The coded video and audio signals are multiplexed into four MPEG-2 
transport stream (TS) signals interfaced via DVB-ASI (Digital Video Broadcast-
ing – Asynchronous Serial Interface). 

The MPEG-2 4:2:2 Profile codec system can be used for improving transmis-
sion between the broadcasting stations and storage, since the codec achieves a bit-
rate of 600 Mbps with high image quality. A TS recording device that supports the 
storage of long program material has also been developed. The storage capacity is 
1.2 T bytes, which enables storage of a 4.5-hour-long program that is coded at 600 
Mbps. 

When public IP (Internet Protocol) networks are used for transmission of the 
encoded SHV signals, consideration must be given to jitter and time delay depend-
ing on the transmission path. To synchronize the four TSs generated by the sub-
encoders, the system manages the timing of each video frame by means of a time 
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code and temporal reference in the Group of Pictures (GOP) header of the MPEG-
2 video stream. The sub-encoders communicate with each other via Ethernet and 
their start timing is controlled by a master sub-encoder. At the decoder, the master 
sub-decoder adjusts the display timing of all the sub-decoders and accounts for 
transmission delay by referring to the time code and temporal reference. The de-
coder can cope with the relative delay in the 4 TSs within 15 video frames. All 
HDTV decoders in sub-decoders work synchronously using black burst as a  
reference signal. 

3.3   AVC/H.264-Based Codec 

To achieve lower bit-rate coding for SHV with high-quality images, a codec sys-
tem based on the AVC/H.264 coding scheme has been developed. AVC/H.264 is 
currently the most efficient standard video coding scheme and is widely used in 
various applications, such as broadcasting small images for mobile reception or 
HDTV services via a satellite network. Since there are no AVC/H.264 codecs for 
images as large as SHV format ones, 16 HDTV AVC/H.264 codecs are used to 
construct SHV codecs similar to the MPEG-2-based codecs. 

Each HDTV AVC/H.264 codec conforms to Main Profile @ L4 and will be 
able to handle High Profile in the future. The encoder consists of three field pro-
grammable gate array (FPGA) chips and one digital signal processor (DSP); there-
fore, the encoding process can be modified by replacing the encoder software. One 
HDTV frame is divided into four slices and each slice is processed in parallel. 
Motion estimation, which is conducted on FPGA chips, has two phases: pre-
motion estimation, which is a rough prediction on one whole HDTV frame with 
two-pixel precision, followed by precise estimation on each of the four slices with 
quarter-pixel precision. The DSP chip, used mainly for rate control, administers 
the entire HDTV encoding processing module. The HDTV encoder is 1 rack unit 
(RU) in size and has DVB-ASI output.  

Frame synchronization of the 16 output images is the most important issue of 
the system: therefore, a new synchronization mechanism was developed in which 
one of the 16 encoders becomes a master and the other 15 encoders become 
slaves. To synchronize the presentation time stamp (PTS) / decoding time stamp 
DTS) and program clock reference (PCR) for MPEG-2 TS of the output streams, 
all encoders share the same system date. The master encoder sends to all the other 
encoders a “start” hardware signal and 27-MHz clock so that all the encoders’ date 
counters increment at the same rate. The signal for synchronization is transmitted 
with a daisy-chained connection, and the master encoder automatically detects the 
number of slave encoders using information on the signal. GOP synchronization is 
also achieved. All encoders generate an intraframe when more than N encoders 
detect a scene cut change. The value N is programmable and is usually set to nine. 
When an encoder generates an intraframe independently of the other encoders, it 
will generate the next intraframe at the beginning of GOP to maintain synchroni-
zation with the others encoders. The structure of the synchronization of the en-
coder units is depicted in Figure 9, and the codec systems themselves are shown in 
Figure 10. 
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Fig. 9 Daisy-chained structure of encoder units 

 

Fig. 10 AVC/H.264-based codec system 

An SHV decoder also consists of 16 HDTV decoders. Each HDTV decoder is 1 
RU in size and has the specifications for professional use. One decoder generates a 
signal for synchronization and supplies it to all the equipment including the 15 
HDTV decoders at the decoder side. This construction enables precise synchroni-
zation among the decoded 16 HDTV images. 
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The statistical properties of the SHV source signals are not effectively utilized 
in the current HDTV encoders. A future goal is to share the SHV source informa-
tion between the encoders to improve compression performance further. 

4   Demonstrations and Experiments 

4.1   IP Transmission 

On March 14, 2006, NHK carried out an experimental transmission of SHV using 
the MPEG-2 coding system at bit-rates of 300 and 640 Mbps via gigabit IP net-
works over a distance of 17.6 km. The IP transmission system was also success-
fully demonstrated at NAB 2006 in the US from April 24 to 27 [1] and IBC 2006 
in the Netherlands from September 8 to 12 [2]. 

 
(a) 

 
(b) 

Fig. 11 (a) and (b) Setup and appearance of live transmission experiment 
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Every New Year’s Eve, a popular music show is broadcast from the NHK Hall 
in Tokyo. On December 31, 2006, NHK conducted an experiment on the live relay 
broadcast from Tokyo to Osaka for public viewing of the music program. This ex-
perimental transmission was carried out over 500 km and for about 5 hours. The 
transmitted program was screened at a special theatre in Osaka. The 22.2 mul-
tichannel sound was uncompressed. The video and audio signals were transmitted 
as multiple IP streams, and the difference of the delay between the IP streams was 
negligible enough to be ignored. The total TS bit-rate was 640 Mbps, and the total 
system delay was approximately 700 ms and was dominated by the codec delay. 
Forward error correction (FEC) was not used, but there was no packet loss for the 
duration of the live event. This experiment verified that long distance SHV trans-
mission is feasible. The setup and appearance of the experiment are shown in  
Figure 11. 

In September 2008, the first international SHV live transmission was held from 
London to Amsterdam where IBC 2008 was opened [12]. A camera head and the 
microphones of the SHV system were placed on top of London City Hall. The 
coded SHV signal as an IP packet stream was carried via an international fiber-
optic undersea cable link to Amsterdam. A diagram of the transmission from Lon-
don to Amsterdam is shown in Figure 12. To demonstrate the live nature of the 
link, the scenario was to emulate live news reports from London to Amsterdam 
with two-way interaction between a reporter at City Hall and a presenter in the 
SHV theatre in Amsterdam. The appearances of the demonstration are shown in 
Figure 13. The received picture quality was excellent, enabling the fine details of 
the scene to be visible, and the surround sound quality was also extremely high. 
No bit errors were detected on the link over the five days of the experiment. This 
demonstration showed the possibility of live SHV content being relayed from  
virtually anywhere in the future. 

 

Fig. 12 IP transmission from London to Amsterdam 
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(a) 

 
(b) 

 
(c) 

Fig. 13 (a), (b) and (c) Appearances of international live transmission demonstration 
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4.2   Satellite Transmission 

The AVC/H.264-based SHV codec system developed by NHK was introduced 
and demonstrated at the NHK STRL open house in May 2007. The demonstration 
showed that the codec system has the potential to encode the SHV signal at a bit-
rate of about 128 Mbps. In combination with satellite technologies, it will be pos-
sible to deliver the SHV programs to the home.  

The effectiveness of the AVC/H.264 codec and the satellite technologies were 
demonstrated at IBC 2008 in Amsterdam, where the SHV signals were delivered 
from the uplink station in Turin, Italy over a Ku-band satellite capacity [13]. For 
that first public demonstration of SHV transmission by satellite, DVB-S2 modula-
tion technology was indispensable. The SHV video and audio signals were en-
coded at about 140 Mbps, and the resultant stream was split into two 70-Mbps TS 
streams, transmitted over two 36-MHz satellite transponders using 8PSK (8 Phase 
Shift Keying) 5/6 modulation, and re-combined at the receiver using the synchro-
nization and de-jittering features of DVB-S2. A diagram of the transmission from 
Turin to Amsterdam is shown in Figure 14. The difference of the delay between 2 
received streams was 0.256 ms, and splitting of the streams did not affect the de-
coded signals. The setup and appearance of the transmission experiments are 
shown in Figure 15. 

 

Fig. 14 Satellite transmission diagram 
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(a) 

 
(b) 

Fig. 15 (a) and (b) Setup and appearance of the international transmission experiment 

In May 2009, NHK conducted a live transmission experiment of multichannel 
SHV programs using the WINDS, the Wideband InterNetworking engineering test 
and Demonstration Satellite that was launched in Japan in February 2008. A 
wideband modulator and demodulator that support a bit-rate of 500 Mbps were 
used, and a low-density parity check (LDPC) forward error correction code was 
applied. The transmission was from Sapporo to Tokyo by way of Kashima, as 
shown in Figure 16. The live camera images and multichannel sound were trans-
mitted from Sapporo using gigabit IP to Kashima, then the other two SHV  
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programs were multiplexed in Kashima and relayed via the wideband satellite 
WINDS. The stream was received at NHK STRL in Tokyo, and the decoded im-
ages and sound were presented to the audiences. The appearances of the demon-
stration are shown in Figure 17. 

In the future, a SHV signal may be delivered to the home by Ku- or Ka-band 
satellites using a single high-power 36–72-MHz transponder and high-order 
modulation schemes. 

 

 

Fig. 16 Transmission via IP and satellite from Sapporo to Tokyo 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Super Hi-Vision and Its Encoding System 173
 

 
 

 
(a) 
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Fig. 17 (a) and (b) Appearances of transmission via IP and satellite 

5   Conclusion 

Significant progress has been made toward implementing the practical use of SHV, 
particularly in the development of SHV codecs and transmission systems for con-
tribution and distribution purposes. However, current cameras and displays do not 
have the full resolution of the SHV system because dual-green technology is used. 
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Imaging devices with 33 million pixels were not available when the cameras and 
displays were developed. Another important point is that current display devices 
are projectors, not direct-view displays. Thus, our next research target is the devel-
opment of a full-resolution camera and a direct-view display. We will develop a 
full-resolution camera with three 33-million-pixel image sensors. We expect that 
display manufactures will develop a flat-screen display with the full pixel count. By 
developing such cameras and direct-view displays, we can provide people with 
their first experience of seeing SHV images with full resolution in a home viewing 
environment. We believe this advance will be instrumental for determining the sig-
nal parameters of future broadcasting. Besides developing the cameras and dis-
plays, we are developing compression techniques. These systems and technologies 
can be used for various events, such as cooperative museum exhibitions, live relay 
of sports events on a global scale, and public viewing of SHV programs. 

NHK will continue its tireless research and development efforts in accordance 
with the roadmap aiming to launch SHV broadcasting in 2020 – 2025. 
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Chapter 7
A Flexible Super High Resolution Video
CODEC and Its Trial Experiments

Takeshi Yoshitome, Ken Nakamura, and Kazuto Kamikura

Abstract. We propose a flexible video CODEC system for super-high-resolution
videos such as those utilizing 4k x 2k pixel. It uses the spatially parallel encod-
ing approach and has sufficient scalability for the target video resolution to be en-
coded. A video shift and padding function has been introduced to prevent the image
quality from being degraded when different active line systems are connected. The
switchable cascade multiplexing function of our system enables various super-high-
resolutions to be encoded and super-high-resolution video streams to be recorded
and played back using a conventional PC. A two-stage encoding method using the
complexity of each divided image has been introduced to equalize encoding quality
among multiple divided videos. System Time Clock (STC) sharing has also been
implemented in this CODEC system to absorb the disparity in the times streams are
received between channels. These functions enable highly-efficient, high-quality en-
coding for super-high-resolution video. The system was used for the 6k x 1k video
transmission of a soccer tournament and the 4k x 2k video recoding of SATIO
KIKEN orchestral concert.

1 Introduction

The number of video applications for super-high-resolution (SHR) images has been
increasing in the past few years. SHR video images are 2 - 16 times larger than
HDTV images, and they have 30 - 60 fps. Because of their high quality and the high
level of realism they convey to the viewer, SHR systems[1, 2, 3, 4, 5] are expected to
be platforms for many video applications, such as digital cinema, virtual museums,
and public viewing of sports, concerts and other events. For SHR video applications,
it is important to reduce the network bandwidth, because raw SHR video requires

Takeshi Yoshitome · Ken Nakamura · Kazuto kamikura
NTT Cyber Space Laboratories, NTT Corporation, Japan
e-mail: yoshitome.takeshi@lab.ntt.co.jp,
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very high-speed transmission lines or high-speed disks that operate at 3 - 24 Giga
bit/sec. SHR video compression schemes are thus needed to reduce the transmission
and recording costs.

We have already developed a CODEC system[1] for SHR, it consists of multi-
ple conventional MPEG-2 HDTV CODECs[6] and a frame synchronizer. The main
benefit of this system is its ability to handle SHR video of various resolutions. This
system can adapt to many kinds of SHR images by increasing or decreasing the
number of encoders and decoders used. However, it is difficult to equalize the encod-
ing quality among multiple encoders, and it is also difficult to record and playback
the SHR stream because it consists of separated multiple HDTV streams.

In this chapter, first, we describe the basic idea behind our CODEC system, which
is spatial image division and multiple stream output. Section 3, we explain the video
shift and padding function, which solves the boundary distortion problem caused by
spatial image division. Section 4, we show switchable cascade multiplexing that
enable to increase the flexibility of the combination of SHR video programs in mul-
tiplexing mode. Section 5, we show how to synchronize the multiple outputs in
multiplexing mode and in non-multiplexing mode. Section 6, we explain the strat-
egy of the adaptive bit-allocation in multiplexing mode. Sections 7 and 8 discuss
our evaluations of the CODEC system. A few trials with transmission and recording
using our system are described in Section 9. Section 10 is a brief conclusion.

2 Basic Concept

2.1 Basic Concept of SHR CODEC

SHR image transmission using parallel encoding and decoding architectures con-
sists of several HDTV encoders, a transmission network and several HDTV decoders.
SHR image is represented using several HDTV images in such architectures. An SHR
camera outputs several synchronous HDTV images, and they are input to HDTV en-
coders. In HDTV encoders, all HDTV images are encoded independently and gen-
erated bitstreams are transferred to HDTV decoders through the network. Decoded
images decompressed by the decoders are output to an SHR display system.

2.2 Spatially Parallel SHR CODEC System

This CODEC system adopts the spatial image division and multi-stream output
approach. In spatial image division, the input image is divided into multiple sub-
images and the encoder modules encode them in parallel, as shown in Fig. 1.

This approach is reasonable in terms of cost performance and scalability and
has been used in some HDTV CODEC systems that use multiple SDTV CODEC’s
[6, 8]. We used it when we constructed the SHR CODEC system based on mul-
tiple MPEG-2 HDTV CODEC LSIs. Spatial image division can use a one-stream
output system, in which the sub-streams generated by the encoder modules are re-
constructed into one SHR elementary stream (ES), or it can use a multiple-stream
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output system, where several HDTV streams generated by the encoder modules are
output directly in parallel or multiplexed into one transport stream (TS). We used
the multiple stream output system for SHR communication applications, because
conventional HDTV decoders can decode its output stream, whereas a one-stream
SHR output system needs dedicated SHR decoders. There is an overview of our
CODEC system in Fig. 2. The CODEC has two output modes, i.e., a multiplexing
and a non-multiplexing mode. In the non-multiplexing mode, each encoder module
outputs a constant bit rate (CBR) ES, and this is converted into CBR-TSs which are
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Fig. 2 Overview of SHR CODEC system
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transmitted in parallel. In the multiplexing mode, the pre-encoder analyzes the in-
put images and each encoder module in the main-encoder outputs a variable bitrate
(VBR) ES, and these are multiplexed into one CBR TS. The multiplexing mode has
the advantages of available transmitters and efficient coding. The other advantage
of the multiplexing mode is that it is easy to record and playback the TS because
the TS to be handled is single. However, it is difficult to record and playback in the
non-multiplexing mode due to synchronization problems among multiple TSs.

3 Video Shift and Padding Function

Generally, SHR or over-HDTV image camera systems output divided images by
using conventional HDTV video-signal interfaces, such as HD-SDI’s. There are
1080 active lines in a conventional HDTV system[10]. Here, this system is called
a 1080-HD in this chapter. However, some SHR systems use the old HDTV signal
system[11], where there are 1035 active lines, we call this the 1035-HD.

There are two problems in connecting SHR equipments that has a different num-
ber of active lines. The first is the black line problem. If 1035-HD system signals
are received by a conventional 1080-HD system, the received image data do not
fill the active line, e.g., 1920 x 1035 image data on 1920 x 1080, and the remain-
ing lines are filled with black or zero data. A 3840 x 2160 projector, which uses the
1080-HD system, will display three horizontal black lines on the screen, as shown in
Fig. 3, when the projector is connected to a 3840 x 2070 camera that uses a 1035-HD
system. It seems that an effective solution is to vertically shift the SHR image data
with the SHR projector to overcome this black-line problem; however, this solution
is insufficient rectify to the second problem.

The second problem is distortion caused by mismatch between the image bound-
ary and the DCT block boundary. Because MPEG-2 encoders transform 8 x 8 image
blocks by using DCT and cut off high-frequency components, if the edge of the im-
age and the DCT block boundary do not match, the border will not be sharp and the
image data will be eroded by black data. Thus, coding distortion will be visible at
the boundary of the divided images. Although this problem also occurs at the border
of ordinary coded images, it is more visible in SHR systems because the boundaries
of the divided images are positioned at their center.

The video shift and padding function modules in our encoder system are placed
in front of the encoder modules to solve the mismatch problem. These modules can

Fig. 3 Black line problem
caused by mismatch be-
tween active lines
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Fig. 4 Data flow from SHR camera to SHR projector without and with video shift and
padding function

copy the top and bottom lines of image data onto non-image data areas. There is an
example of a data flow that includes the video shift padding function in Fig. 4 (b).
A data flow without the function is also shown in Fig. 4 (a). In both examples, the
1920 x 2060 pixel images of the SHR camera are output using two 1035-HDSDI
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Fig. 5 Output image with and without our shift and padding function

signals that have five blank lines. In Fig. 4 (a), such 1080-HDSDI signals has been
input to the encoding module directly without the video shift and padding function,
causing boundary mismatch to occur between the edge of the image and the DCT
block. These mismatches appear not only at the top of the active image and also
at its bottom. In Fig. 4 (a), the hatched areas representing the output of the SHR
projector mean that the lines degraded in the video quality. However, in Fig. 4 (b),
our encoder has received a 1035-HD signal using the conventional 1080-HDSDI
system, and has shifted and padded the input image to prevent the coding distortion
mentioned above. In the example in Fig. 4 (b), the shift and padding function cannot
prevent the two mismatches from occurring, which appear at the top and bottom
of the active image at the same time. This is because “1030” is not a multiple of
eight. To make the distortion noise caused by mismatch inconspicuous, the video
shift size has been determined to prevent the mismatch border from being allocated
to the center of SHR image, and to copy the top and bottom lines of the image data
onto the non-image data area. The decoder system does nothing in regard to this
operation because the copied data are aborted later. There are examples of output
images with and without our function in Figs. 5 (a) and (b). Figure 5 (b) indicates
that the video quality is not satisfactory because many viewers may recognize the
horizontal center line caused by the mismatch of the image boundary and DCT block
boundary as previously mentioned. However, it is difficult to find such a line in
Fig. 5 (a). These results demonstrate that video shift and padding prevent image
quality from degrading around the center of the frame because the image border
matches the DCT block.

4 Switchable Cascade Multiplexing Function

Our system is equipped with a switchable cascade multiplexing function to increase
its flexibility in the multiplexing mode. This function of our encoder system is out-
lined in Fig. 6.

The basic concept behind this function is to mix TS packets from two packet
queues, i.e., internal and external queues. The internal queue stores the packets
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Fig. 6 Switchable cascade multiplexing in multiplexing mode

generated in the i-th encoder itself and the external one stores the packets transferred
from the (i-1)th encoder through a high-speed serial cable. The packets in these two
queues are mixed at the multiplexing circuit and the system packet inserter adds
various system layer packets such as the Program Association Table(PAT), Program
Map Table(PMT), Program Clock Reference(PCR), and NULL. The eliminator,
which is located at the front of the external queue rejects unnecessary system-layer
packets and outputs only video and audio packets to the external queue. Packets
from the i-th and (i-1)th encoder’s packets are the output of the i-th encoder. The
cascade multiplexing function of each encoder is switchable to adapt to many types
of SHR images, as shown in Fig. 1. Output of the i-th encoder is the packets from
i-th and (i-1)th encoder’s packets. Table 1. The left of this table shows the relation-
ship between all encoder inputs and the sub-image of the SHR video to be encoded.
The center indicates the cascade multiplexing switch settings of all encoders and
the right lists the SHR streams of all encoder outputs. We can see that the 6Kx1K
stream is output to encoder #3 and the HD stream is output to encoder #4 when all
multiplexing switches except the 3rd encoder’s are turned on. The 4Kx2K stream is
output to encoder #4 when the multiplexing switches of all encoders turn on. This
means many SHR video sizes and many combinations of SHR video programs can
be handled using this switchable cascade multiplexing. Also, every stream can be
recorded and easily played back using a conventional PC with a DVB-ASI interface
card because the stream of each encoder’s output is a single TS consisting of several
ESs.

There is a block diagram of SHR live transmission for two different sites and
local playback using the switchable cascade multiplexing function in Fig. 7. By
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Table 1 Examples of cascade multiplexing switch setting for many kinds of SHR video pro-
grams

HDSDI input Cascade sw setting Stream output
enc.1 enc.2 enc.3 enc.4 enc.1 enc.2 enc.3 enc.1 enc.2 enc.3 enc.4

4k2k on on on - - - 4k2k

6k1k HD1 on on on - - 6k1k 6k1k+HD1
on on off - - 6k1k HD1

4k1k 2k2k on on on - 4k1k - 4k1k+2k2k
on off on - 4k1k - 2k2k

HD1 HD2 on off off - 4k1k HD1 HD2
on off on - 4k1k HD1 HD1+HD2
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Fig. 7 SHR live transmission and local playback of 4k x 1k program and two HDTV pro-
grams

setting three multiplexing switches (Sw1, Sw2, and Sw3) (i.e., On, Off, and On),
the 4Kx1K TS can be transmitted from the camera side to the projector at site A,
and a single TS that consists of two elementary HDTV streams can be transmitted
to the projector at site B. If the setting of the switches is changed to (On, On, and
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On) and the bandwidth of IP network 2 can be increased to 80 Mbps, all streams
including the two HDTV’ streams and the single 4Kx1K stream can be transmitted
to the projector at site B. In addition, a conventional PC can easily record and play
back the transferred SHR stream at low cost.

5 Two Synchronization Schemes

Even if all decoders can input the same PCR packets using the cascade multiplexing
function mentioned above, conventional decoders generate different STCs because
each PLL of conventional decoders is made of different crystal. This indicates the
possibility of sub-images of SHR decoders being displayed without synchroniza-
tion. This CODEC system has two schemes to synchronize channels. The first is a
multiplexing mode that shares a common STC, as seen in Fig. 8.
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Fig. 8 Synchronization achieved by STC sharing in multiplexing mode

To synchronize all input video signals in the encoder system, a 27-MHz sys-
tem clock and an STC value are generated from one of the input video signals
and distributed to the encoders. Each encoder generates a PCR and a Presenting
Time Stamp/Decoding Time Stamp (PTS/DTS) based on the given system clock
and STC value. The decoders consist of one master decoder and several slave de-
coders. The master decoder generates a 27-MHz system clock and an STC from the
received PCRs and distributes the system clock and STC value to the slave decoders.
To deal with deviations in the received timing and to avoid stream buffer under-
flow or overflow, the encoder system generates a PTS/DTS with an adequate timing
margin.
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Fig. 9 Synchronization achieved by sync marker in non-multiplexing mode

The second synchronization method is the sync marker scheme, which is mainly
useful with multiple conventional HDTV encoders and decoders in the non-
multiplexing mode. Many conventional decoders do not have an STC sharing
scheme and cannot deal with ancillary data, such as that in time code information.
Our encoder places a sync marker on the top or bottom of the active line of each
channel of the image, as shown in Fig. 9. The decoded images on the receiving side
are synchronized with a multiple frame synchronizer that we have developed [1].
The benefit of this sync marker scheme is that the latest CODEC can be used for
SHR video compression. We can replace the MPEG-2 CODEC with the latest H.264
CODEC without changing the construction of the SHR system.

6 Rate Control in Multiplexing Mode

We introduced a two-stage encoding system to equalize and improve the encoding
quality of all partial frames. The system consists of pre-encoders, main-encoders,
and a controller, as outlined in Fig. 10. The pre-encoder encodes and analyzes the
input partial frame, and sends encoding parameters such as image complexity and
the number of encoded bits to the controller. All pre- and main-encoders operate in
parallel by receiving a common signal from the controller. Because of the time delay
generated by the frame buffer in front of the main-encoder, the four main-encoders
encode the (N+1)-th frame when the four pre-encoders encode the first frame (N is
GOP size).

The details of this rate control flow are given in Fig. 11 and it consists of five
stages. First, the i-th frame is input to the pre-encoders, and the (i−N)-th frame is
also input to the main-encoders in Stage 1. The reason the main-encoders input a
delayed frame is to improve their own encoding quality. It is well known that scene
changes degrade the encoding quality. If the encoders can detect future alterations
of the image complexity such as scene changes, they can better distribute target
bits to all frames, and minimize the degradation in encoding quality. Large delay
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Fig. 10 Two-stage spatially parallel encoding in multiplexing mode

increases encoding quality and the latency of the CODEC. However, small delay
decreases them. The value of frame delay is determined by a trade off between the
encoding quality and the delay of the CODEC system. We selected one GOP delay
as a good trade-off point. In Stage 2, the pre- and main-encoders encode all partial
frames. After the i-th frame is encoded by the pre-encoders, the controller obtains
complexity Xpi,k and generated bits Si,k of partial frame (i,k) from the k-th pre-
encoder in Stage 3. Then, in Stage 4, the function of “Future X based STEP1()”
calculates the target bits, TAm j, of the (i−N)-th non-separated frame by taking the
complexity of the next N frames into consideration. In other words, this complexity
information on the next N frame enables the controller to determine a precise value
for the target bits of the main-encoder, and the encoding quality of the main-encoder
will thus be superior to that of the pre-encoder. This is why we allocated an N frame
buffer in front of the main-encoder.

The output VBR ES of the main encoders are multiplexed into one CBR TS
through coordinating the multiplex modules in the encoder LSIs. The output bi-
trates of the main-encoders are changed at the same timing, while the bitrate of the
multiplexed TS is held constant. This bit-allocation process enables the overall pic-
ture quality to be kept almost constant, because it updates the rate-distortion models
of all frame parts by using the coding information from all encoders in every frame.
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Two Stage Rate Control ( ) {
N = GOPSIZE;
for ( all frame(i) ){

// Stage.1 : Set parameter for encoder
i = frame number;
for( all encoder(k) ) {

F(i,k) = Partial Frame( Frame(i), k );
set pre encode(input:F(i,k),Tp(i,k));
if ( ( j = i − N ) > 0 )

set main encode(input:F(j,k),Tm(j,k));
}

// Stage.2 : Execute encoding
exec pre encode();
if ( j > 0 ) exec main encode();

/∗ Stage.3 : Read output parameter from encoder ∗/
read pre encode (output:Sp(i,k),Xp(i,k));
if ( j > 0 ) read main encode(output:Sm(j,k));

// Stage.4 : Calculate target bits for pre−encoder
for( all pre encoder(k) )

Tp(i+1,k) = tm5 like STEP1(input: Sp(i,k));

// Stage.5 : Calculate target bits for main−encoder
XAp(i) = ∑kXp(i,k);
SAm(i) = ∑kSm(i,k);
if ( j > 0 ) {

// calculate target bits using next N frame’s complexity
TAm(j+1) = Future X based STEP1(input:

XAp(i),XAp(i-1), .., XAp(i-N),
SAm(i),SAm(i-1), .., SAm(i-N));

for( all main encoder(k) )
Tm(j+1,k) = TAm(j+1) ∗ Xp(j+1,k) / ∑kXp(j+1,k);

}
}
//Frame(i):The i-th frame of SHR video sequence
//Tp(i,k): Target bits for PartialFrame(i,k) in pre-enc(k)
//Tm(i,k): Target bits for PartialFrame(i,k) in main-enc(k)
//Sp(i,k): Generated bits for PartialFrame(i,k) in pre-enc(k)
//Sm(i,k):Generated bits for PartialFrame(i,k) in main-enc(k)
//Xp(i,k): Complexity for PartialFrame(i,k) in main-enc(k)

Fig. 11 Rate control flow in multiplexing mode
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7 Evaluation

This section discusses the results of several simulations that compared the proposed
bit-allocation method with the fixed bit-allocation method. In these simulations,
1920 x 1080 video sequences were divided into four video sequences (960 x 540
pixels each); the total bitrate was 20 Mbps; the coding structure was M=3(IBBP);
and 120 frames were encoded.

First, we compared the bitstreams generated by the two bit-allocation methods:
fixed allocation and the proposed method. The video sequence ”Soccer Action” was
used for both simulations. Table. 2 shows the average frame bits are almost the
same in number for the fixed allocation method and the proposed method. In the
conventional method, the PSNR of the partial frames in the upper parts is 5 dB
less than that of lower parts. In the proposed method, the number of frame bits in
each partial frame in the upper part are almost double the frame bits of the partial
frames in the lower parts, because the proposed method distributes the target bits
proportionally according to the complexity of each partial frames. The proposed
method reduced the difference in PSNR between partial frames to 1.7 dB.

The disparity in PSNR among the four partial frames for the two bit-allocation
methods are depicted in Figs. 12 and 13. The x-axis means the frame number and the
y-axis means the PSNR (dB) in these figures. During frames 90-120, the PSNR of
partial frame #3 is about 2.5 dB lower than that of #1 with the conventional method.
In contrast, the disparity in PSNR among the divided frames decreases to 1.0 dB
with the proposed method.

Table 3 lists the average PSNR and disparity in PSNR for the proposed method
and the fixed bit-allocation method for five standard video sequences. The PSNR
disparity (DSNR) is defined by

DSNR = max(PSNRk=0..3)−min(PSNRk=0..3), (1)

Table 2 Bitstream characteristics with conventional method and proposed method

conventional method
Partial Average partial Average Average
frame position frame bits Quantizing PSNR

(kbit) parameter (dB)
upper left 166.2 58.53 25.80
upper right 165.9 57.45 25.87
lower left 165.4 24.13 30.55
lower right 165.3 24.73 30.36
Average 165.7 41.06 28.19

proposed method
upper left 225.7 38.94 27.14
upper right 227.0 38.86 27.13
lower left 96.4 36.50 29.84
lower right 98.5 36.52 29.75
Average 161.3 37.70 28.48
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where PSNRk is the PSNR of partial frame k. The results for a single encoder using
the conventional method have also been listed for reference. Table 3 shows that the
average PSNR with the proposed method is 0.24 dB higher than that with the fixed
bit-allocation method. The PSNR disparity with the proposed method is 2 dB lower
than that with the conventional method and this is nearly that of the single encoder.
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Fig. 12 PSNR of partial frames with conventional method. ( sequence : “Church” ).
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Fig. 13 PSNR of partial frames with proposed method. ( sequence : “Church”).
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Table 3 Average PSNR and disparity PSNR with conventional method and proposed method

Average of PSNR (dB)
original frame size 1920x1080
num of encoder 4 4 1

method proposed convent. convent.
Church 29.43 29.47 29.57
Whale Show 28.15 27.85 28.41
Soccer Action 28.48 28.19 28.52
Sprinkling 26.00 25.47 26.53
Horse Race 33.40 33.30 33.41
Average 29.09 28.85 29.28

Disparity of PSNR (dB)
method proposed convent. convent.
Church 0.74 1.61 0.80
Whale Show 2.07 5.17 1.91
Soccer Action 2.87 4.86 2.77
Sprinkling 4.71 8.66 4.15
Horse Race 0.79 1.52 0.81
Average 2.23 4.26 2.08

8 Experimental System

We developed an experimental SHR CODEC system[9] based on the system we
have just described. Its specifications are listed in Table. 4.

The encoder for this CODEC system consists of the pre-encoder unit and the
main-encoder unit shown in the photograph in Fig. 14; these units were built with the
same hardware, and only the firmware is different. Both units comply with the 1U
(44 x 482 x 437 mm) rack size, and includes an audio encoder and a multiplexer, and
each has four encoding units that use the new multiple-chip-enhanced 422P@HL

Table 4 Specifications of experimental CODEC system

Video format 1080i(60/59.94i) x 4
720p(60/59.94p) x 4

Video interface HDSDI x 4
Stream interface DVB-ASI x 4

Compression MPEG-2 422P@HL MP@HL
Bit rate 60 - 160 Mbps

Bitrate control CBR for TS
VBR for ES

Power AC 100 - 240 V
Size(mm) 460(W) x 440(D) x 44(H) x 2
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Fig. 14 Photograph of SHR encoding system

Fig. 15 Inside of SHR encoder

MPEG-2 video encoding LSI [7]. There is a photo of the inside of the encoder in
Fig. 15.

We used 100 Base-TX for communication between these encoder units. The host
processor in the pre-encoder unit performed calculations with the bit-allocation
method described in Section. 6, without requiring the use of any external equip-
ment. The SHR decoder consisted of four HDTV decoders, and embodies the STC
sharing. The CODEC system can be adapted to many SHR frame sizes by increas-
ing or decreasing the number of CODEC modules instead of having to design and
manufacture a new SHR encoder and decoder that can only handle one SHR image
resolution.

9 Trial

We carried out live transmission of using a previous version of this system[1] and a
6k x 1k camera[3], we were able to transmit the semifinal game of the 2002 FIFA
World Cup Soccer tournament from the Yokohama International Media Center to
Yamashita Park as a closed-circuit event.
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Fig. 16 Yamashita Park as a closed-circuit event for 2002 FIFA World Cup
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Fig. 17 SHR image transmission system for a 2002 FIFA World Cup

A second example where we used our system was an SHR image recording of
an orchestral concert at the Saito Kinen Festival 2004 [12]. The SHR image was
captured with a 4K x 2K camera [4], as shown in Fig. 18, and was recorded with our
SHR encoder. Four-channel audio streams were recorded without any compression
to maintain high audio quality. There is a photograph of the system, which consisted
of our SHR encoder and the stream recorder, in Fig. 19. The results obtained demon-
strate that the proposed system architecture makes it possible to create high-quality
video encoding systems that have scalability in terms of target video resolution.
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Fig. 18 4Kx2K camera for SKF2004

Fig. 19 SHR codec and local monitor for SKF2004

10 Conclusion

We propose a multi-channel CODEC system for super-high-resolution video. It uses
the spatially parallel encoding approach and has sufficient scalability for the target
video resolution to be encoded. The switchable cascade multiplexing function of
our system enables various super-high-resolutions to be encoded and super-high-
resolution-video streams to be recorded and played back using a conventional PC.
STC sharing absorbs the disparity in the times streams are received between chan-
nels. Two-stage encoding has the ability to equalize the encoding quality of all
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partial frames. These functions enable highly-efficient, high-quality encoding for
super-high-resolution videos. In the future, we intend to change the MPEG-2 cod-
ing LSI of the CODEC system to an H.264 LSI.
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Chapter 8
Mathematical Modeling for High Frame-Rate
Video Signal

Yukihiro Bandoh, Seishi Takamura, Hirohisa Jozawa, and Yoshiyuki Yashima

Abstract. Higher video frame-rates are being considered to achieve more realis-
tic representations. Recent developments in CMOS image sensors have made high
frame-rate video signals, over 1000 [Hz], feasible. Efficient coding methods are re-
quired for such high frame-rate video signals because of the sheer volume of data
generated by such frame rates. Even though it is necessary to understand the statis-
tical properties of these video signals for designing efficient coding methods, these
properties have never been clarified, up to now. This chapter establishes, for high
frame-rate video, two mathematical models that describe the relationship between
frame-rate and bit-rate. The first model corresponds to temporal sub-sampling by
frame skip. The second one corresponds to temporal down-sampling by mean fil-
tering, which triggers the integral phenomenon that occurs when the frame-rate is
downsampled.

1 Introduction

Highly realistic representations using extremely high quality images are becoming
increasingly popular. Realistic representations demand the following four elements:
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Fig. 1 Spatio-temporal resolution of current video formats

high spatial resolution, large dynamic range, accurate color reproduction, and high
temporal resolution. For example, digital cinema[1][2] and Super Hi-Vision TV
(SHV)[3][4] offer digital images with high-resolution. As encoders for such high-
resolution video formats, H.264 codec for SHV [5] and JPEG2000 codec for digital
cinema [6], have been developed. Displays suitable for high-dynamic-range (HDR)
images are being developed [7] [8]. JPEG-XR, an HDR image encoding scheme,
has been approved as international standard/recommendation [9]. Scalable video
coding using tone mapping is one of the approaches being studied for HDR video
encoding [10] [11]. Advanced efforts to achieve accurate color reproduction are be-
ing made within the Natural Vision Project [12]. H.264/AVC Professional profile
supports 4:4:4 color format [13].

In order to create more realistic representations, it is becoming more obvious
that the frame-rate is the next factor that will have to be addressed, as shown in
Figure 1. The current frame-rate (60 [frames/sec] or [fields/sec]) was simply se-
lected as the lowest rate that well suppressed flickering. Unfortunately, suppress-
ing flicker is not directly connected to the representation of smooth movement. We
note that Spillmann found that the gangliocyte of the retina emits up to 300 - 400
[pulses/sec] [14]. Thus, we estimate that the human visual system can perceive light
pulses that are 1/150 - 1/200 [sec] long, i.e. the maximum detectable frame-rate is
150 - 200 [frames/sec] from the biochemical viewpoint.

Over the past decade the video acquisition rate has increased drastically. For ex-
ample, a high-speed HDTV camera that can shoot at 300 [frames/sec] has been
developed [15]. Another development is the high speed imaging system that uses
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large camera arrays [16]. Video technologies that can handle such high frame rates
have been opening up a new era in video applications. The Vision Chip architecture
[17] realizes a high-speed real-time vision system on a integrated VLSI chip, and
has been applied to robotic systems. A real time tracking system that uses a high
speed camera has been studied[18]. In addition, an optical flow algorithm for high
frame rate sequences has been investigated [19].

Since high frame-rate video requires stronger encoding than low frame-rate
video, the statistical properties of high frame-rate video must be elaborated so as
to raise encoding efficiency. In particular, it is important to have an accurate grasp
of the relationship between frame-rate and bit-rate. When the frame-rate increases,
the correlation between successive frames increases. It is easily predicted that in-
creasing the frame-rate decreases the encoded bits of inter-frame prediction error.
However, the quantitative effect of frame-rate on bit-rate has not been fully clari-
fied. The modeling of inter-frame prediction error was tackled by [20]. The deriva-
tion processes are sophisticated and the results are highly suggestive. Regrettably,
however, the model does not consider the effect of frame-rate on prediction er-
ror. Modeling the relationship between frame-rate and bit-rate was addressed by
the pioneering work of [21] . They assume that some asymptotic characteristics
hold, and then inductively generate an interesting model. Unfortunately, however,
the model does not consider the effect of motion compensation on the predic-
tion error. In other words, the model covers the bit-rate of the inter-frame predic-
tion error without motion compensation. It is important to consider the inter-frame
prediction error with motion compensation, since representative video coding al-
gorithms like H.264/AVC and MPEG-2 adopt inter-frame prediction with motion
compensation.

This chapter establishes mathematical models of the relationship between frame-
rate and bit-rate in anticipation of encoding high frame-rate video. These models
quantify the impact of frame-rate on the bit-rate of inter-frame prediction error
with motion compensation. The exact nature of the relationship depends on how
the frame-rate is converted. We consider two frame-rate conversion methods. The
first one is temporal sub-sampling of the original sequences, that is frame skip, as
shown in Figure 2. The shaded rectangles represent frames at each frame-rate and
rectangles enclosed by dotted-line represent the down-sampled frames. Figure 2 (b)
and (c) illustrate the sequences sub-sampled to 1/2 frame-rate and 1/4 frame-rate,
respectively, by subsampling the original sequence shown in Figure 2 (a). The sec-
ond one is a down-sample filter based on average operator. When the open interval
of the shutter in the image pickup apparatus increases, motion blur occurs, which
is known as the integral phenomenon. The integral phenomenon changes the sta-
tistical properties of the video signal. This integral phenomenon can be formulated
as a mean filter. Henceforth, the first model is called temporal sub-sampling and its
output sequences are called temporally sub-sampled sequences. The second model
is called temporal down-sampling and its output sequences are called temporally
down-sampled sequences.
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(a) Original sequence

(b) Sequence sub-sampled to 1/2 frame-rate

(c) Sequence sub-sampled to 1/4 frame-rate

Fig. 2 Conversion of frame-rate (Shaded rectangles are frames at each frame-rate. Rectangles
enclosed by dotted-lines are down-sampled frames)

2 Relationship between Frame-Rate and Inter-frame
Prediction Error

In deriving temporal sub-sampling and temporal down-sampling, this section con-
siders a one-dimensional signal for simplicity. The former is derived in 2.1, and
the latter in 2.2. It is trivial matter to extend the following work to cover two-
dimensional signals.

2.1 Mathematical Model for Temporal Sub-sampling by Frame
Skip

This subsection establishes a mathematical model of the relationship between
frame-rate and bit-rate for temporally sub-sampled sequences generated by frame
skip. Let ft(x) denote a one-dimensional signal at position x in the t-th frame with
X pixels. Let B[i] (i = 1,2, · · · ,X/L) be the segment which is a one-dimensional
region with L pixels and the i-th segment in ft(x). When segment B[i] in ft (x) is
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predicted from the previous frame by using estimated displacement (d̂[i]), the pre-
diction error is given as follows:

σ [i]2 = ∑
x∈B[i]

{ ft(x)− ft−1(x + d̂[i])}2

= ∑
x∈B[i]

{ ft−1(x + d[i](x))− ft−1(x + d̂[i])+ n(x)}2

= ∑
x∈B[i]

{(
d
dx

ft−1(x)
)
ζ [i](x)+φ(x)+ n(x)

}2

Where, ζ [i](x) is displacement estimation error between estimated displacement d̂[i]
and true displacement d[i](x) at position x as follows:

ζ [i](x) = d[i](x)− d̂[i]

φ(x) is the second order remainder term of the Taylor expansion, and n(x) is the
noise element.

Let us consider the summation of σ [i]2 over all segments (B[i] i(= 1,2, · · · ,X/L)).
By using the first order approximation of Taylor expansion and the assumption that
the noise element is zero-mean white noise and is statistically independent of the
video signal, we obtain:

X/L

∑
i=1

σ [i]2 �
X/L

∑
i=1

∑
x∈B[i]

(
d
dx

ft−1(x)
)2

ζ [i](x)2

+ 2
X/L

∑
i=1

∑
x∈B[i]

φ(x)
(

d
dx

ft−1(x)
)
ζ [i](x)

+
X/L

∑
i=1

∑
x∈B[i]

(
n(x)2 +φ(x)2) (1)

In the following, we describe the relationship between displacement and frame-
rate. Based on modeling the non-uniform motion of pixels within a block, we have
the following approximations about displacement estimation error, as a function of
frame-rate F : Let d̂F [i] and dF [i](x) be the estimated displacement of segment B[i]
and the true displacement, respectively, at position x at frame-rate F .

According to the study by Zhen et al. [22], statistically, block matching based
on the sum of squared differences (SSD) criterion will result in displacement that
is most likely to be the displacement of block centers. Let xc[i] be the position of
the center of block B[i]. Therefore, we have the following approximation about es-
timated displacement at frame-rate F = F0:

d̂F0 [i] � dF0 [i](xc[i]) (2)

Additionally, [22] says that the difference in displacement at position x̂ from that
at x̂′ can be modeled as a zero-mean Gaussian distribution whose variance is
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proportional to the square of the distance between these positions. Here, position
x̂ and x̂′ are local coordinates in segment B[i] (i = 0, . . . ,X/L). According, we have
the following statistical model:

E[
{
(dF0 [i](x̂)−dF0[i](x̂′)

}2
] � ĉ2

h(x̂− x̂′)2 (3)

where E[·] is expectation operator and ĉh is constant parameter that depends on
the original video signal. This model gives a good approximation of the ensemble
mean of the difference in displacement (dF0 [i](x̂)− dF0 [i](x̂′)) for every segment
B[i](i = 0, . . . ,X/L).

From the approximation (2) (3), we create the following approximation :

X/L

∑
i=1

∑
x∈B[i]

(dF0 [i](x)− d̂F0 [i])2

�
X/L

∑
i=1

∑
x∈B[i]

(dF0 [i](x)−dF0 [i](xc[i]))2

� c2
h∑
ξ
ξ 2 (4)

where c2
h = X

L ĉ2
h and ξ is x−xc[i]. ξ is a relative coordinate (its origin lies at the center

of segment B[i]). In other words, ξ is the distance from the center of segment B[i].
We consider the relationship between displacements at different frame-rates. We

have the assumption that a moving object exhibits uniform motion across successive
frames. This is a highly plausible assumption for high frame rate video signals. In
this case, object displacement is proportional to the frame interval. In other words,
the displacement is inversely proportional to the frame-rate. It leads to the following
equation

dF [i](x) � F−1

F−1
0

dF0 [i](x) (5)

From the approximation (2) (4) (5), we create the following approximation at frame-
rate F :

X/L

∑
i=1

∑
x∈B[i]

(
dF [i](x)− d̂F [i]

)2

�
X/L

∑
i=1

∑
x∈B[i]

{
F−1

F−1
0

(
dF0 [i](x)− d̂F0[i]

)}2

=

(
F−1

F−1
0

)2 X/L

∑
i=1

∑
x∈B[i]

(
dF0 [i](x)− d̂F0 [i]

)2

� F−2F2
0 c2

h∑
ξ
ξ 2 (6)
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By defining F2
0 c2

h∑ξ ξ 2 as κ1, we have the following approximation:

X/L

∑
i=1

∑
x∈B[i]

ζ [i](x)2 � κ1F−2 (7)

Next, we consider the relationship between ∑X/L
i=1 ∑x∈B[i] ζ [i](x) and frame-rate. Ex-

panding
{
∑X/L

i=1 ∑x∈B[i] ζF [i](x)
}2

, we have

{
X/L

∑
i=1

∑
x∈B[i]

ζF [i](x)

}2

=
X/L

∑
i=1

∑
x∈B[i]

{
ζF [i](x)

}2
+

X/L

∑
i=1

∑
x∈B[i]

∑
x′∈B[i],x′ �=x

ζF [i](x)ζF [i](x′) (8)

where ζF [i](x) is displacement estimation error, defined as follows:

ζF [i](x) = dF [i](x)− d̂F [i]

The first term of equation (8) can be approximated as shown in (6).
About the second term of equation (8), from the Schwarz inequality approach,

we have the following inequality:{
X/L

∑
i=1

∑
x∈B[i]

∑
x′∈B[i],x′ �=x

ζF [i](x)ζF [i](x′)

}2

≤
X/L

∑
i=1

∑
x∈B[i]

{
ζF [i](x)

}2
X/L

∑
i=1

∑
x′∈B[i],x′ �=x

{
ζF [i](x′)

}2

� (
F−2F2

0 c2
h

)2∑
ξ
ξ 2∑

ξ ′
(ξ ′)2

where ξ = x− xc[i] and ξ ′ = x′ − xc[i]. From the above inequalities, we have

X/L

∑
i=1

∑
x∈B[i]

∑
x′∈B[i],x′ �=x

ζF [i](x)ζF [i](x′) � θF−2F2
0 c2

h

√
∑
ξ
ξ 2∑

ξ ′
(ξ ′)2

where θ is a constant in the range -1 to 1.
By inserting the above approximation and approximation (6) into equation (8),

we get {
X/L

∑
i=1

∑
x∈B[i]

ζF [i](x)

}2

� F−2F2
0 c2

h

⎧⎨⎩∑ξ ξ 2 +θ
√
∑
ξ
ξ 2∑

ξ ′
(ξ ′)2

⎫⎬⎭
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Therefore, we have

X/L

∑
i=1

∑
x∈B[i]

ζF [i](x) � F−1γF0ch

√√√√∑
ξ
ξ 2 +θ

√
∑
ξ
ξ 2∑

ξ ′
(ξ ′)2

where γ is 1 or -1. By defining γF0ch

√
∑ξ ξ 2 +θ

√
∑ξ ξ 2∑ξ ′(ξ ′)2 as κ2, we get the

following approximation:

X/L

∑
i=1

∑
x∈B[i]

ζ [i](x) � κ2F−1 (9)

By assuming that the displacement estimation error ζ [i](x) is statistically indepen-
dent of the image intensity derivatives and inserting the above equations into equa-
tion (1), we get the following approximation of prediction error per pixel:

1
X

X/L

∑
i=1

σ [i]2 � α1F−2 +α2F−1 +α3 (10)

where α1,α2,α3 are as follows:

α1 =
κ1

X

X/L

∑
i=1

∑
x∈B[i]

(
d
dx

ft−1(x)
)2

α2 =
2κ2

X

X/L

∑
i=1

∑
x∈B[i]

(
φ(x)

d
dx

ft−1(x)
)

α3 =
1
X

X/L

∑
i=1

∑
x∈B[i]

(
n(x)2 +φ(x)2)

2.2 Mathematical Model of Temporal Down-Sampling by Mean
Filter

In this subsection, we establish a mathematical model of the relationship between
frame-rate and bit-rate for temporally down-sampled sequences with due consid-
eration of the effect of the integral phenomenon associated with the open interval
of the shutter. Let ft (x,δ ) denote a one-dimensional signal at position x in the t-
th frame which was taken with the shutter open in the time interval between t and
t +δ . Pixel values in each frame are quantized with 8 [bits] at any interval of shutter
open. When the shutter open interval is increased to mδ (m is a natural number), the
corresponding signal fmt (x,mδ ) is given by the following equation:

f̄mt (x,mδ ) =
1
m

m(t+1)−1

∑
τ=mt

fτ (x,δ ) (11)
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When segment B[i] in f̄mt (x,mδ ) is predicted from the previous frame by using
estimated displacement (d̂m[i]), the prediction error is given as follows:

X/L

∑
i=1

σ2
m[i] =

X/L

∑
i=1

∑
x∈B[i]

| f̄mt(x,mδ )− f̄m(t−1)(x+ d̂m,mδ )|2

=
X/L

∑
i=1

∑
x∈B[i]

{
f̄m(t−1)(x+dm(x),mδ )− f̄m(t−1)(x+ d̂m,mδ )+n(m)

}2

=
X/L

∑
i=1

∑
x∈B[i]

{
1
m

m−1

∑
j=0

{ fm(t−1)+ j(x+dm(x),δ )− fm(t−1)+ j(x+ d̂m,δ )}+n(m)

}2

=
X/L

∑
i=1

∑
x∈B[i]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
m−1

∑
j=0

d
dx

fm(t−1)+ j(x,δ )

}
m

ζm[i](x)+φ(x)+n(m)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

2

(12)

where φ(x) is the second order remainder term of the Taylor expansion, and n(m)
is the noise element. ζm[i](x) is displacement estimation error between estimated
displacement d̂m[i] and the true displacement dm[i](x) at position x as follows:

ζm[i](x) = dm[i](x)− d̂m[i]

Henceforth, we substitute ft(x) for ft(x,δ ) for simplicity, unless otherwise stated.
By inserting the above equation into equation (7) (9) and using the first order

approximation of the Taylor expansion and the assumption that the noise element is
statistically independent of the video signal, we obtain:

X/L

∑
i=1

σm[i]2 � β1(m)F−2 +β2(m)F−1 +β3(m) (13)

where β1(m), β2(m), β3(m) are as follows:

β1(m) = κ1

X/L

∑
i=1

∑
x∈B[i]

{
1
m

m−1

∑
j=0

d
dx

fm(t−1)+ j(x)

}2

β2(m) = 2κ2

X/L

∑
i=1

∑
x∈B[i]

{
1
m

m−1

∑
j=0

d
dx

fm(t−1)+ j(x)

}
φ(x)

β3(m) =
X/L

∑
i=1

∑
x∈B[i]

{φ(x)2 + n(m)2}

Henceforth, we set

μmt(x) =
1
m

m−1

∑
j=0

fm(t−1)+ j(x)
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β1(m) is expanded as follows:

β1(m) = κ1

X/L

∑
i=1

∑
x∈B[i]

{
d
dx

μmt(x)
}2

� κ1

X/L

∑
i=1

∑
x∈B[i]

{μmt(x)−μmt (x−1)}2

= κ1

X/L

∑
i=1

∑
x∈B[i]

μmt(x)2 +κ1

X/L

∑
i=1

∑
x∈B[i]

μmt(x−1)2 −2κ1

X/L

∑
i=1

∑
x∈B[i]

{μmt(x)μmt(x−1)}

� 2κ1

X/L

∑
i=1

∑
x∈B[i]

μmt(x)2 −2κ1

X/L

∑
i=1

∑
x∈B[i]

{μmt(x)μmt(x−1)}

� κ1
2σ2

s (1−ρ)
m2

{
m− 1−ρ

ρ ∑
i> j

ηi, jρ |d̄i−d̄ j |
}

In the above approximation, we assume that κ1 is statistically independent of μmt(x),
and we use the following homogeneous model

X/L

∑
i=1

∑
x∈B[i]

{ ft(x)}2 = σ2
s

X/L

∑
i=1

∑
x∈B[i]

{ ft(x) ft (x + k)} = σ2
s ρ

k

and the following approximation

X/L

∑
i=1

∑
x∈B[i]

{ ft(x + di(x)) ft (x + d j(x))}

� ηi, j

X/L

∑
i=1

∑
x∈B[i]

{ ft(x + d̄i) ft (x + d̄ j)}

= ηi, jσ2
s ρ |d̄i−d̄ j |

where d̄i and d̄ j are the mean values of dm[i](x) and dm[ j](x) , respectively, and ηi, j

is a parameter to approximate dm[i](x) and dm[ j](x) using mean displacement (d̄i

and d̄ j).
We can assume that ρ is less than but close to one, since ρ is the autocorrelation

coefficient of the image signal. Thus, we have

1−ρ
ρ

� 1.



Mathematical Modeling for High Frame-Rate Video Signal 207

Using this inequality, equation (14) can be approximated as follows:

β1(m) � κ1
2σ2

s (1−ρ)
m

Since m is the ratio of downsampled frame-rate F to maximum frame-rate F0, we
have

β1(m) � κ1
2σ2

s (1−ρ)
F0

F

In a similar way, we have

β2(m) � 2κ2γφ(x)

√
2σ2

s (1−ρ)
F0

F

where γ is 1 or −1.
Next, let us consider β3(m). Since we assume that the noise element n(m) is

statistically independent of the video signal, the averaging procedure denoted by
equation (11) reduces n(m) as follows:

n(m)2 =
X/L

∑
i=1

∑
x∈B[i]

n2
0

m

= X
n2

0

F0
F

where, n0 is the noise signal included in the sequence at frame-rate F0.
We have the following approximation of prediction error per pixel:

1
X

X/L

∑
i=1

σ2
m[i] = β̂1F−1 + β̂2F−1/2 + β̂3F + β̂4 (14)

where, β̂1, β̂2, β̂3, and β̂4 are as follows:

β̂1 =
2κ1σ2

s (1−ρ)
XF0

β̂2 =
2κ2γφ(x)

X

√
2σ2

s (1−ρ)
F0

β̂3 =
n2

0

F0

β̂4 =
1
X

X/L

∑
i=1

∑
x∈B[i]

{φ(x)}2

Let us consider the effect of noise components in our models: the third term of
equation (10) and the third term of equation (14). The former is constant i.e.
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independent of frame-rate. The latter increases with frame-rate, i.e. prediction er-
ror may decrease when frame-rate decreases. The reason for this difference is as
follows. When the shutter open interval increases, relative noise power decreases
because of the increase in light intensity. This relative decrease in noise can lead to
a decrease in inter-frame prediction error. Therefore, we understand that the third
term of equation (14) decreases as the frame-rate decreases. On the other hand, that
of equation (10), the relative noise power is independent of frame-rate, since this
model assumes that the shutter open interval is fixed.

3 Evaluation of Proposed Models

3.1 Captured High Frame-Rate Video Signal

The original sequences in the following experiments consisted of 480 frames at
1000 [frames/sec]. Sequences taken with a high speed camera at 1000 [frames/sec]
were output in 24 bit RGB format. The frame interval equaled the shutter speed of
1/1000 [sec]. The video signal was not gamma corrected. We converted the color
format from RGB data to YCbCr data. Y-data with 8 bit gray scale were used in
the rate evaluation experiments. The following three sequences were used; “golf”
was the scene of a golf player swinging his club. “tennis” was the scene of a tennis
player hitting a ball with her racket. “toy” was the scene where the rings of a toy
rotated independently. All sequences were captured without camera work.

In order to identify the relationship between frame-rate and bit-rate, the se-
quences with different frame rates were generated by two down-sampling meth-
ods; temporal sub-sampling and temporal down-sampling. Temporal sub-sampling
is frame-rate conversion using frame-skip as shown in Figure 2, and temporal down-
sampling means frame-rate conversion using the mean filter described in equation
(11). The temporally sub-sampled sequences were utilized for evaluating the model
described by equation (10). The temporally down-sampled sequences were utilized
for evaluating the model described by equation (14).

3.2 Regression Analyses of the Proposed Models

We performed regression analyses in order to verify the validity of the above-
mentioned models. In Figure 3, the dot symbols show the results of rate evaluation
experiments on the original sequences and the temporally sub-sampled sequences
generated by frame-skip, while the solid lines plot the results of the proposed model
given by equation (10). The horizontal axis is the frame-rate [frames/sec] and the
vertical axis is the bit-rate [bits / pixel] which is the entropy of inter-frame predic-
tion error. The parameters (α1,α2,α3) were obtained by least-squares estimation. In
Figure 4, the dot symbols show the results of rate evaluation experiments on the origi-
nal sequences and the temporally down-sampled sequences generated by mean-filter,
while the solid lines plot the results of the proposed model given by equation (14).
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Fig. 3 Relationship between frame-rate and bit-rate of inter-frame prediction error
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The horizontal axis and the vertical axis are the same as those of Figure 3, respec-
tively. The parameters (β̂1, β̂2, β̂3, β̂4) were obtained by least-squares estimation.

We used the following inter-frame prediction with motion compensation for
rate evaluation, since representative video coding algorithms like H.264/AVC and
MPEG-2 adopt inter-frame prediction with motion compensation. Each frame was
divided into blocks, and each block was predicted from its previous frame by motion
compensation. The number of references was one. The block size used for motion
compensation was 16 × 16 [pixels]. The search range of motion estimation was ±
8 [pixels] at 1000 [frames/sec]. The search range decreased according as the frame-
rate increased. For example, we set ± 16 [pixels] at 500 [frames/sec]. The motion
estimation scheme was full search algorithm. The criterion of motion estimation
was the sum of absolute differences (SAD) between current block and reference
block. Namely, selected displacement minimized SAD between current block and
reference block. Figure 5 shows bit-rate of motion vectors of the original sequences
and the temporally sub-sampled sequences, and Figure 6 shows those of the original
sequences and the temporally down-sampled sequences. The horizontal axis is the
frame-rate [frames/sec] and the vertical axis is the bit-rate [bits/pixel] which is the
sum of entropy of the two elements of the motion vector.

As shown in Figure 3, the results of the experiments well agree with the values
yielded by the proposed model. In other words, equation (10) and equation (14) well
model the relationship between the bit-rate of prediction error and frame-rate. Table
1 and table 2 show residual sum of squares (RSS) between the results of rate evalua-
tion experiments, and the theoretical values from the proposed model, as a measure
of the fitness of the proposed model. Table 1 shows the results for the temporally
sub-sampled sequences and Table 2 shows those for the temporally down-sampled
sequences. In these tables, we compare our model with the conventional model in
[21] which is expressed as follows:

I(F) = a1a2(1− exp(−1/(a2F))) (15)

where a1 and a2 are constants that depends on the video signal. In this experiment,
parameters (a1 and a2) were obtained by least-squares estimation. As shown in Table
1 and 2, our model achieved smaller RSS than the conventional model.

Table 1 Residual sum of squares (RSS) of temporally sub-sampled sequences

model RSS RSS RSS
(golf) (tennis) (toy)

proposed 3.39e-03 2.96e-04 2.60e-03
conventional 2.24e-01 1.29e-01 1.62e-01

Table 2 Residual sum of squares (RSS) of temporally down-sampled sequences

model RSS RSS RSS
(golf) (tennis) (toy)

proposed 2.60e-04 6.33e-04 5.46e-03
conventional 1.27e-01 3.09e-01 1.37e-01
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Fig. 5 Relationship between frame-rate and bit-rate of motion vectors
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The superiority of the proposed model over the conventional one is due to the
following reasons. The conventional model is constructed based on the assumption
that the information of inter-frame prediction error converges to zero at infinitely
large frame-rate, i.e. an asymptotic characteristic. The inter-frame prediction is the
frame difference and does not consider motion compensation. Furthermore, the con-
ventional model does not consider the above-described noise elements caused by
thermal noise in the imaging device. Therefore, the fitness of the model degrades
when blocks have large displacements and the effect of the noise elements grows.

From Figure 4(b)(c), we can confirm that the bit-rate of prediction error may de-
crease as the frame-rate increase to approach 500 [fps]; above this frame-rate, the
bit-rate increases. For the case of the temporal down-sampling using the mean filter
described in equation (11), the shutter-open interval increases with the decrease in
the frame-rate. The increase in the shutter-open interval leads to the suppression of
the noise elements caused by the thermal noise in the imaging device and the reduc-
tion of the spatio-temporal high frequency components of down-sampled sequences.
This is why the bit-rate of the sequences generated by the temporal down-sampling
may decrease as the frame-rate increases.

4 Conclusion

In this chapter, we analytically derive two mathematical models that quantify the
relationship between frame-rate and bit-rate. The first model supports temporal
sub-sampling through the frame skip approach. The second one supports temporal
down-sampling realized by a mean filter; it incorporates the integral phenomenon
associated with the open interval of the shutter. By using these models, we can
describe the properties associated with frame-rate, that have not been clarified in
previous studies. We can confirm that the derived models well approximate our ex-
perimental results. These evaluation results support the validity of the assumptions
used in deriving our models.
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Chapter 9
Next Generation Frame Rate Conversion
Algorithms

Osman Serdar Gedik, Engin Türetken, and Abdullah Aydın Alatan

Abstract. There is an increasing trend towards panel displays in consumer electron-
ics, and they are already replacing conventional Cathode Ray Tube (CRT) displays
due to their various advantages. However, the main problem of the panel displays,
namely motion blur, still remains unsolved. This shortcoming should be overcome
efficiently to satisfy increasing demands of viewers such as artifact-free interpo-
lation in dynamic videos. Among many frame-rate up conversion (FRUC) meth-
ods that address this problem, motion-compensated frame interpolation (MCFI)
algorithms yield superior results with relatively less artifacts. Conventional MCFI
techniques utilize block-based translational motion models and, in general, linear
interpolation schemes. These methods, however, suffer from blocking artifacts es-
pecially at object boundaries despite several attempts to avoid them. Region-based
methods tackle this problem by segmenting homogeneous, or smoothly varying,
motion regions that are supposed to correspond real objects (or their parts) in the
scene. In this chapter, two region-based MCFI methods that adopt 2D homography
and 3D rigid body motion models are presented in the order of increasing com-
plexity. As opposed to the conventional MCFI approaches where motion model in-
terpolation is performed in the induced 2D motion parameter space, the common
idea behind both methods is to perform the interpolation in the parameter space of
the original 3D motion and structure elements of the scene. Experimental results
suggest that the proposed algorithms achieve visually pleasing results without halo
effects on dynamic scenes with complex motion.
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1 Introduction

Next generation hold-type panel displays emerged into the consumer market and the
demand for these items is expected to continue growing. In the near future, due to
their compact and aesthetic design, as well as high brightness, the hold type displays
are expected to completely replace Cathode Ray Tube (CRT) displays, with scan-
ning type properties. However, one of the main drawbacks of hold-type displays,
such as Liquid Crystal Displays (LCD) and Electro-Luminescence Displays (ELD),
is the motion blur which is caused by two major reasons [1]:

Long response time of crystal cell: In moving images, pixel luminance changes
between two consecutive frames. Due to its long response time, the luminance
switch can not be finished within one frame period, which leads to the smearing
of object edges.

Constant pixel luminance over the entire frame period (hold-type): Human eye is
apt to move and track the moving objects while the successive frames are displayed.
In hold-type displays, when eyes move, many pixels are displayed on the same reti-
nal position during one frame period, which causes blurred image observed. The
faster the motion is, the more pixels are accumulated at the same retinal position
during one frame period and the more motion-blur is observed.

Therefore, for a better perception quality, the frame rate of the original video sig-
nal is required to be increased. Frame rate up-conversion (FRUC), or scan/field rate
up-conversion, which emerged as a result of this necessity, is a technique of increas-
ing the frame rate of a video signal by inserting interpolated frame(s) in-between
the successive frames of the original signal. The two most commonly used FRUC
techniques are frame repetition and motion compensation based methods. Frame
repetition generally yield inferior results, especially on complex (high depth varia-
tion and clutter) or dynamic (moving objects) scenes. Motion compensation based
approaches yield relatively more elegant results on these scenes with the cost of a
higher computational complexity and provided that accompanying motion estima-
tion and interpolation schemes provide satisfactorily accurate estimates. Although
all the methods in this category perform motion estimation, motion model parameter
interpolation and motion compensation steps, they exhibit a great variety in the way
the three steps are performed. Unlike coding approaches, which simply try to mini-
mize the residual error between adjacent frames, in FRUC algorithms it is crucial to
estimate the correct motion parameters.

2 Related Work

Most of the existing algorithms in the literature utilize block-based motion estima-
tion, [2] - [18], based on the assumption that all the pixels of an individual block
have the same translational motion. One of the key elements in the motion es-
timation for FRUC is the temporal search direction. In addition to the backward
directional motion estimation, which is mostly preferred by video coding tech-
niques, FRUC approaches also utilize forward directional motion estimation, [2],
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bi-directional motion estimation, [8], or an adaptive combination of all three search
directions, [10].

As an integral part of the motion estimation, search patterns with fast convergence
rates and capability of taking into account true object motion should be utilized
in order to interpolate more pleasant inter-frames. Among many algorithms, three
step[14], spiral [6], hexagonal [15], diamond and modified diamond, [16] - [17], are
the most popular search patterns utilized for FRUC. Although, in general, it fails to
estimate correct motion vectors, [13], several techniques utilize full-search method,
[2] - [8].

Mean absolute differences (MAD) ([6, 15, 16]) and sum of absolute differences
(SAD) ([4, 9, 11, 13]) are widely exploited match error criteria in block-based mo-
tion estimation. While SAD avoids division operation, and hence provides com-
putational efficiency over MAD, it does not enforce spatial smoothness. In order
to alleviate this problem, Choi et. al, [3], combine SAD measure with side match
distortion as a way to estimate relatively smooth motion fields.

The main drawback of block based motion estimation and compensation ap-
proaches is that they suffer from blocking artifacts especially occurring at object
boundaries. As an attempt to reduce these artifacts, Ha et al., [2], utilize larger blocks
for motion estimation, whereas the block size is reduced during motion compensa-
tion. In a similar spirit, there are also pixel-based approaches, [20, 21] , which con-
vert block-based motion fields to pixel-based motion fields prior to compensation.
Similarly, [4] adaptively changes motion compensation block size depending on the
size of the objects. Alternatively, a class of methods cope with blocking artifacts
by using overlapping blocks in motion compensation stage [8, 3]. With the same
concern, Lee et al. consider neighboring blocks’ motion trajectories by computing
a weighted average of multiple compensations [19].

Most of the algorithms in the literature employ a two-frame approach for motion
estimation and compensation. Although the utilization of two frames may not ef-
fectively handle the occlusion problem , such an approach is enforced by existing
hardware limitations, caused by the adversity of providing extra storage for multi-
frames. However, there exist algorithms that exploit multiple frames at the cost of
increased complexity [9, 10].

Techniques that are based on translational motion model (such as the ones men-
tioned above) generally rely on the idea of linearly interpolating motion vectors
between the original successive frames [22] - [26]. Alternatively, a higher order
function, such as a polynomial, can be used for the interpolation as proposed in [27].
On the other hand, the interpolation problem becomes more complicated for higher
order parametric motion models (e.g., six-parameter affine and eight-parameter ho-
mography mappings) due to the need for defining a reasonable model parameter
space.

Although blocking artifacts inherent in block-based techniques are intended to
be solved by using previously mentioned techniques, they cannot be avoided com-
pletely at object boundaries, where multiple-motion exists. In an attempt to segment
true object boundaries, region-based FRUC techniques estimate arbitrarily-shaped
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segments with smoothly varying motion fields that are modeled by higher order
parametric models [28, 29].

In this chapter, two region-based FRUC methods with increasing complexity,
namely region-based FRUC by homography parameter interpolation (FRUC-RH)
by Türetken and Alatan [30], and its multi-view extension, region-based multi-view
FRUC by rigid body motion model parameter interpolation (FRUC-RM), are pre-
sented. While both methods utilize a motion segmentation step initially, they mainly
differ in the order of the parametric model incorporated. The common idea behind
both methods is to perform the motion model interpolation step in the parameter
space of the original 3D motion and structure elements of the scene, as opposed
to the conventional FRUC approaches where the interpolation is performed in the
induced 2D motion parameter space. In FRUC-RH, under several practically rea-
sonable assumptions (such as piecewise planar scene model and small angle ap-
proximation of 3D rotation), this procedure simplifies to linearly interpolating a set
of 2D planar perspective motion parameters corresponding to segments, or layers.
Layer support maps at the interpolation time instant(s) are then generated by using
these interpolated motion models and the layer maps of the neighboring successive
frames. On the other hand, FRUC-RM addresses the more general case of arbitrary
scenes by dense reconstructing them prior to motion parameter estimation at the
successive frames. Under rigid body motion assumption, motion model parameters
are estimated using the reconstructed 3D coordinates of the scene. These parame-
ters are then interpolated in the parameter space of the 3D rigid body motion at the
interpolation time instant(s) between the successive frames.

3 Region-Based FRUC by Homography Model Parameter
Interpolation (FRUC-RH)

In this section, a region-based motion compensated frame interpolation method,
which uses segmented motion layers with planar perspective models, is described.
Under several practically reasonable assumptions, it is shown that performing the
motion model interpolation in the homography parameter space is equivalent to in-
terpolating the parameters of the real camera motion, which requires decomposition
of the homography matrix. Based on this reasoning, backward and forward motion
models from the interpolation frame(s) to the successive frames of the original se-
quence are estimated for each motion layer. The interpolated motion models are then
used to warp the layer support maps at the point(s) of interpolation in time. Finally,
new interpolation frame(s) are generated from the two successive frames by taking
into account layer occlusion relations and local intensity similarities.

The method is comprised of four main steps, which are presented in the following
sub-sections: (a) establishing motion layer correspondences, (b) interpolating mo-
tion model parameters in both forward and backward directions, (c) interpolating
layer maps corresponding to middle and previous frames in time, and (d) generating
the interpolated frame.
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Fig. 1 Sample segmentation results for Mobile & Calendar sequence. From left to right,
top row: frames 19, 21 and 23 of the original sequence, bottom row: corresponding motion
segmentation maps.

3.1 Motion Layer Correspondence Establishment

The first step of the proposed method is the estimation of a set of spatial regions
(hereafter referred to as motion layers), in which motion changes smoothly. Layer
segmentation maps for each pair of consecutive frames Ft−1 and Ft , between which
a number of frames {Ft−Δ t1 ,Ft−Δ t2 , . . . ,Ft−Δ tn} (0 < Δ ti < 1 , i = 1, . . . ,n) are to
be interpolated, are extracted by using a variant of the motion segmentation algo-
rithm by Bleyer et al. [31]. Spatial smoothness in layers is enforced by modeling
layer motion by a planar perspective mapping (i.e., eight parameter homography
model). An additional cost term for temporal coherence of motion layers is incorpo-
rated in the original cost function so as to make the layer extraction process robust
to abrupt changes in layer appearances along the temporal axis. Fig. 1 presents sam-
ple motion segmentation results for Mobile & Calendar sequence. Although tem-
poral coherence of motion layers is enforced explicitly, mismatches between layer
boundaries still exist due to several reasons, such as articulated object motion and
object-background appearance similarities. In addition, an object entering or exiting
the scene naturally results in addition or deletion of a layer. Therefore, as required
by the following motion parameter interpolation procedure, motion layers of con-
secutive time instants have to be linked in time.

The correspondences between the estimated motion layers at time instants t − 1
and t are established by mapping the layers and their pair-wise similarity scores to a
bipartite graph. In a bipartite graph G = (U,V,E) with two disjoint sets of vertices
U and V , and a set of edges E , every edge connects a vertex in U and a vertex in
V . The set of layers corresponding to Ft−1 and Ft are mapped to the disjoint sets U
and V with vertices representing the layers and weighted edges representing the pair
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wise layer similarities. The normalized edge weight between a layer Lt−1
i of Ft−1,

and a backward motion-compensated layer Lt,w
j of Ft is defined as

E(Lt−1
i ,Lt,w

j ) =
| Lt−1

i ∩Lt,w
j |

min(| Lt−1
i |, | Lt,w

j |) , (1)

where Lt−1
i ∩Lt,w

j denotes the overlapping region of the layers and | . | denotes the
area of a region. The initial graph constructed with the above similarity weights has
an edge between every layer in U and every layer in V . This redundancy is elimi-
nated by deleting the links having weights below a predefined threshold. However,
the links, whose source or target vertices has only one link left, are retained to ensure
that every vertex is connected to the graph.

3.2 Motion Model Parameter Interpolation

Model parameter interpolation refers to estimating forward and backward motion
models for a set of layers corresponding to the interpolation frames by using the
backward models from Ft to Ft−1. Suppose that only a single frame Ft−Δ t , cor-
responding to time instant t −Δ t (0 < Δ t < 1), is to be interpolated between the
original frames. Given a set of backward layer motion models {Pt

1,P
t
2, . . . ,P

t
n}, rep-

resenting the motion from Ft to Ft−1, model parameter interpolation problem can
be defined as estimating the parameters of forward models {Pt−Δ t

1, f ,Pt−Δ t
2, f , . . . ,Pt−Δ t

n, f }
from Ft−Δ t to Ft and backward models {Pt−Δ t

1,b ,Pt−Δ t
2,b , . . . ,Pt−Δ t

n,b } from Ft−Δ t to

Ft−1. The problem is depicted in Fig. 2 for a single layer. In order to compute
a meaningful parameter set to define the flow between a layer in the frame to be

Fig. 2 Motion model parameter interpolation
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interpolated and the corresponding layers in the two original frames of an input se-
quence, it is useful to express the flow in terms of parameters of induced 3D motion.
Hence, model parameter interpolation for the eight-parameter homography mapping
involves in decomposition of the homography matrix into structure and motion ele-
ments of the captured scene.

Homography model is appropriate for compactly expressing the induced 2D mo-
tion caused by a moving planar scene or a rotating (and zooming) camera captur-
ing an arbitrary scene. Suppose that the observed world points corresponding to an
estimated motion layer lie on a plane. Then, in homogeneous coordinates, two cor-
responding points xt−1 and xt on consecutive frames Ft−1 and Ft , respectively, are
related by

xt−1 = sPtxt , (2)

where Pt is the projective homography matrix of the backward motion field and s is a
scale factor. The projective homography can be expressed in terms of the Euclidean
homography matrix Ht and the calibration matrices Kt−1 and Kt corresponding to
time instants t −1 and t, respectively as follows:

Pt = Kt−1Ht(Kt)−1. (3)

Suppose that the observed world plane has coordinates π = (nT ,d), where n is the
unit plane normal and d is the orthogonal distance of the plane from the camera
center at time t. The Euclidean homography matrix can then be decomposed into
structure and motion elements as follows [32]:

Ht = R− tnT , (4)

where R is the rotation matrix, t is the translation vector of the relative camera
motion td normalized with the distance d (See Fig. 3 for an illustration). Although
several approaches exist to estimate R, t , and n from a given homography ma-
trix [33] - [36], the decomposition increases computational complexity and requires
the internal calibration matrices to be available. It will be shown in the following
paragraphs that the decomposition can be avoided by a series of reasonable assump-
tions. For the time being, let the decomposed parameters be R̂, t̂, and n̂ for the
rotation matrix, the translation vector and the surface normal, respectively.

The rotation matrix can be expressed in the angle-axis representation with a ro-
tation angle θ about a unit axis vector a [32]:

R̂ = I + sin(θ )[ a ]x +(1− cos(θ ))[ a ]2
x , (5)

where [ a ]x is the skew-symmetric matrix of a and I is identity matrix. The unit axis
vector a can be found by solving (R̂− I)a = 0 (i.e., finding null space of R̂− I) and
the rotation angle can be computed using a two argument (full range) arctangent
function [32]:
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Fig. 3 Relative motion of a camera capturing a planar region

cos(θ ) = (trace(R̂)−1)/2,

(6)

sin(θ ) =
1
2

aT

⎡⎣R̂3,2 − R̂2,3

R̂1,3 − R̂3,1

R̂2,1 − R̂1,2

⎤⎦ ,

where R̂i, j is the element in the i-th row and j-th column of the estimated rotation
matrix R̂. Under constant velocity assumption, the decomposed motion parameters,
that is, the rotation angle θ and the translation vector t̂, can be interpolated at a time
instant t −Δ t by a linear model:

θ b = θ Δ t,

t̂b = t̂ Δ t. (7)

In the general case, where the calibration matrices are known or can be estimated,
the backward homography matrix Pt−Δ t

b is computed by plugging the interpolated

motion parameters θ b and t̂b
into Equations 5, 4 and 3, respectively. For the cases

where the calibration is not available, it is reasonable to assume that the amount of
change in focal length between t−1 and t is negligible (i.e. Kt−1 �Kt ). For the sake
of further simplicity, we shall use the small angle approximation of rotation:

R̂ = I +θ [ a ]x . (8)



Next Generation Frame Rate Conversion Algorithms 227

Under these assumptions, the backward projective homography matrix Pt−Δ t
b of

the interpolation frame is reconstructed as

Pt−Δ t
b = Kt(I +θb[ a ]x − t̂bnT )(Kt)−1 = (1−Δ t)I +Δ tPt

b , (9)

which reveals that the homography decomposition is not required under the men-
tioned assumptions. Finally, the forward homography matrix Pt−Δ t

f can be computed
from the available models by the following simple linear transformation:

Pt−Δ t
f = (Pt)−1Pt−Δ t

b . (10)

3.3 Layer Map Interpolation

The interpolation of the motion models is followed by estimation of the correspond-
ing layer support maps at time instants t −1 and t −Δ t. This is achieved essentially
by backward warping the extracted layers (both support maps and intensities) of
Ft to the two previous time instants, and updating the overlapping and uncovered
regions so as to ensure a single layer assignment for each pixel of Ft−Δ t and Ft .
Fig. 4 provides an overview of the layer map interpolation process.

Depth ordering relations of the overlapping layers is extracted by computing a
visual similarity measure between each warped layer and the original frame Ft−1

over the region of overlap. Each pixel of an overlapping region votes for the layer
that gives the minimum sum of absolute intensity differences. Visual similarity of

Fig. 4 Overview of the layer map interpolation process. Top row: warping layer maps at time
instant t (right) to the two previous time instances t − 1 (left) and t −Δ t (middle). Bottom
row: updating the layer assignments on overlapping and uncovered regions of the warped
layers at t −1 (left) and t −Δ t (right). Bottom right: frame t = 337 of the original sequence
Flower Garden.
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a warped layer is then modeled as the number of pixels that vote for the layer. The
warped layers at t − 1 and t −Δ t are updated by assigning the overlapping regions
only to the top layers, which yield the maximum similarity score.

Pixels in the uncovered regions are assigned separately by using the extracted
layers of previous time (t −1). For an uncovered pixel, the set of candidate current
time (t) layer labels corresponding to the previous time layer label at that pixel are
determined by using the estimated layer correspondences. Finally, the uncovered
pixel is assigned to the spatially closest candidate to avoid the creation of discon-
nected support maps and to ensure a maximum level of compactness.

A similar strategy is followed for uncovered pixels of the interpolation frame.
For each pixel of an uncovered region, the candidate layer set is initialized as the
neighboring layers of the region. Each pixel of an uncovered region, is then warped
to the previous time using the interpolated backward motion models of the candidate
layers. If the layer label at the warped location is different for a candidate layer, it is
removed from the set. Finally, as before, the spatially closest layer is selected among
the candidates for each uncovered pixel.

3.4 Middle Frame Interpolation

In the final stage of the algorithm, pixel intensity vectors at the middle, or inter-
polation, frame are estimated from the interpolated layer motion models and the
interpolated layer visibility images. For each pixel of layer i of the middle frame,
corresponding positions in the original frames Ft−1 and Ft are computed using the
previously estimated backward and forward layer motion models Pt−Δ t

i,b and Pt−Δ t
i, f .

The interpolated intensity vector is modeled as a function of the intensities at the
corresponding sub-pixel locations in the original frames Ft−1 and Ft .

Let the intensity vector (and layer label) at an integer pixel location xt−Δ t of the
middle frame Ft−Δ t be denoted as It−Δ t (Lt−Δ t ), and the intensity vectors (layer
labels) at the corresponding sub-pixel locations xt−1 in Ft−1 and xt in Ft are com-
puted to be It−1 (Lt−1) and It (Lt), respectively. For the time being, assume that
at least one of the locations xt−1 and xt falls inside the frame boundaries. Then,
the pixel intensity vector xt−Δ t is determined by the following piecewise linear
function:

It−Δ t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

It−1 : Lt−Δ t = Lt−1, Lt−Δ t �= Lt

It : Lt−Δ t �= Lt−1, Lt−Δ t = Lt

(1−Δ t)It−1 +Δ tIt :
Lt−Δ t = Lt−1, Lt−Δ t = Lt ,
‖ It−1 − It ‖< TI

arg min
I j∈{It−1,It}

‖ Nt−Δ t − I j ‖ : else,

(11)
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where Nt−Δ t is the average intensity in the neighborhood of xt−Δ t and TI is an in-
tensity difference threshold for detecting the disagreement between intensities of
the corresponding original frame locations, and hence, avoiding the formation of
blur and halo effects (i.e. ghosting artifacts around motion boundaries). The above
equation states that if the layer label at a transformed location xt−1 or xt is different
than the layer label at the source location xt−Δ t , then the intensity at the transformed
location should not be taken into account, since the layer is occluded at that point.
All the remaining cases that are not covered by the first three pieces of the function
are mainly caused by the errors in the estimation process and modeling. In these de-
generate cases, smoothness is enforced by using only the intensity that is closer to
the average intensity Nt−Δ t in the neighborhood of the interpolation frame location
xt−Δ t .

Finally, another special degenerate case occurs when both of the transformed
locations fall outside the frame boundaries. A similar strategy can be followed in this
case in order to enforce smoothness in the results. As an example, such boundary
pixels can be interpolated with the intensity values of the closest locations in the
interpolation frame.

3.5 Results

Fig. 5 and Fig. 7 present some sample results of the algorithm tested on several well-
known video sequences, where bicubic interpolation is used in obtaining intensities
at sub-pixel locations. In order to evaluate the performance of the method both qual-
itatively and quantitatively, only odd frames of the inputted sequences are processed
and a single frame corresponding to Δ t = 0.5 is interpolated between each pair of
odd frames. The interpolation frames are then compared with the even frames of the
original sequences both objectively and subjectively.

The algorithm achieves visually pleasing results without apparent blur or halo
effects and with sharpness preserved at object boundaries. For objective evalua-
tion, peak signal-to-noise ratio (PSNR) between the even frames of the original
sequences and the interpolated frames are computed. Fig. 6 provides a comparison
between the proposed method and a simple frame averaging scheme for the Flower
Garden sequence. The plot suggests a significant improvement in PSNR as well as
an enhanced robustness to changes in motion complexity.

It worths noting that the performance of the proposed technique is closely tied to
the quality of the segmentation estimates (both segmentation maps and correspond-
ing motion models). However, the method is observed to be tolerant to changes in
the number of layers, provided that the corresponding motion model estimates are
reasonably accurate.
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Fig. 5 Interpolation results for Mobile & Calendar sequence. From left to right, top row:
frames 34, 36 and 38 of the original sequence, middle row: corresponding interpolated
frames, bottom row: layer support maps corresponding to frames 35, 37 and 39.
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Fig. 6 PSNR curves of the proposed method and frame averaging for Flower Garden
sequence



Next Generation Frame Rate Conversion Algorithms 231

Fig. 7 Sample interpolation results for Flower Garden sequence. From left to right, top row:
frames 318, 320 and 322 of the original sequence, middle row: corresponding interpolated
frames, bottom row: layer support maps corresponding to frames 319, 321 and 323.

4 Region-Based Multi-view FRUC by Rigid Body Motion
Model Parameter Interpolation (FRUC-RM)

The rigid object motion can exactly be modeled by using the Euclidean transforma-
tion, [32]: ⎡⎣Xt

Yt

Zt

⎤⎦= R

⎡⎣Xt−1

Yt−1

Zt−1

⎤⎦+ t , (12)

where [Xt ,Yt ,Zt ]T and [Xt−1,Yt−1,Zt−1]
T represent 3D coordinates of the moving

object between successive frames, R denotes a 3x3 rotation matrix and t is a 3x1
translation matrix.

Although only image coordinates of the moving objects are available in video
sequences, unfortunately, the utilization of (12) requires 3D coordinates of these
moving objects. In order to accomplish such a goal, the calibration of the camera
capturing the scene, which defines the projection of 3D world coordinates onto 2D
pixel coordinates, as well as the depth map of the scene should be known [32]. The
following equation relates pixel coordinates with the world coordinates by the help
of a 3x4 projection matrix, P, as:
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x = PX , (13)

where x denotes the 2D pixel coordinate and X denotes the 3D world coordinate,
respectively.

Once the 3D coordinates of the moving objects are determined, the frames at any
desired time instant could be interpolated by the help of the estimated rotation, R,
and translation, t, matrices.

At this point, the following crucial question arises: Will the depth maps and pro-
jection matrices be available for LCD panels in the homes of consumers? The an-
swer lies behind the fact that 3D display technologies have been progressed dras-
tically in the recent years. The glass-free auto-stereoscopic displays, which create
the perception of the 3rd dimension by presenting multiple views, are expected to
spread into the consumer market in the very near future. These new generation 3D
displays require texture and depth information, referred as N-view-plus-N-depth, of
the displayed scenes. There exists algorithms, such as [37] and [38], for extraction
and transmission of 3D scene information via multiple views; hence, as the Inter-
national Organization for Standardization - Moving Picture Experts Group (ISO-
MPEG) standardization activities are to be completed, depth information as well as
the projection matrices of the cameras will all be available for the next generation
LCD panels. Consequently, one should seek for efficient and accurate frame inter-
polation methods specific to multi-view data. The utilization of conventional frame-
rate conversion algorithms for multi-view video increases the amount of data to be
processed by a factor of 2N. Moreover, conventional techniques mainly exploit 2D
motion models, which are only approximations of the 3D rigid body motion model.

In this section, a frame rate conversion system, which estimates the real 3D mo-
tion parameters of rigid bodies in video sequences and performs frame interpolation
for the desired view(s) of the multi-view set, is presented. The main motivation is
firm belief in the utilization of a true 3D motion model for development of bet-
ter FRUC systems, possibly with much higher frame rate increase ratios. Hence,
in upcoming sections, a completely novel 3D frame-rate up conversion system is
proposed that exploits multi-view video as well as the corresponding dense depth
values for all views and every pixel. The system performs moving object segmenta-
tion and 3D motion estimation in order to perform MCFI. The overall algorithm is
summarized in Fig. 8.

4.1 Depth-Based Moving Object Segmentation

The initial step for the proposed algorithm is the segmentation of the moving rigid
objects, which accounts for independently moving object(s) in the scene. For this
purpose, a depth-based moving object segmentation scheme is utilized. Fig. 9 il-
lustrates typical color and depth frames for Rotating Cube and Akko-Kayo, [43],
sequences.

The depth maps for Akko-Kayo sequence are estimated using the algorithm pro-
posed in [38], whereas those of Rotating Cube are generated artificially. The steps
of this segmentation algorithm are provided below:
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Fig. 8 The overall algorithm FRUC-RM

(a)

(b)

Fig. 9 Color and depth frames for (a) Rotating Cube sequence and (b) Akko-Kayo sequence
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1. For the nth view, the differences between consecutive frames are obtained by
calculating the pixel-wise absolute differences between depth, D, and texture, C,
frames at time instants t −1 and t:

ΔC(i, j) = abs(C(i, j, t −1,n)−C(i, j, t,n)),
ΔD(i, j) = abs(D(i, j, t −1,n)−D(i, j, t,n)). (14)

Then, using these frames, the global segmentation map is calculated as follows:
a pixel at location (i,j) is assigned to background, if satisfies the condition given
by (15), and assigned to foreground otherwise;

ΔC +λΔD < TCD , (15)

where, λ (typically 0.5) and the threshold TCD are constants.
2. After the global segmentation map is obtained, the average background depth

values of depth maps D(i,j,t-1,n) and D(i,j,t,n) are calculated by using the depth
values of background pixels by simple averaging.

3. Finally, the depth values of the pixels at time instants t −1 and t, i.e. D(i,j,t-1,n)
and D(i,j,t,n) are compared to the average background depth values calculated
in Step 2, and the foreground pixels are determined as the pixels having depth
values different from the average depth values by a certain threshold.

Fig. 10 illustrates the obtained global, previous and current segmentation maps for
Akko-Kayo sequence. It should be noted that most of the available multi-view se-
quences have static camera arrays, which lets this simple algorithm yield satisfac-
tory results. In the case that the camera is not stationary, more complex segmen-
tation algorithms such as [39] should be utilized. The static/dynamic camera dis-
tinction can simply be made using the ratio of pixels in motion. Furthermore, when
there are multiple objects in the scene, connected component labeling is crucial for
segmentation.

(a) (b) (c)

Fig. 10 (a) Global, (b) previous and (c) current segmentation maps for Akko-Kayo sequence
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Fig. 11 Matched SIFT features

4.2 3D Motion Estimation

Having segmented foreground objects and the static background, the 3D motion
parameters of the moving objects, namely rotation and translation matrices, are es-
timated by using the features matched between the successive frames of the video
sequence. Scale Invariant Feature Transform (SIFT) algorithm detailed in [40] is
utilized in order to test the proposed multi-view FRUC algorithm. Fig. 11 illustrates
SIFT features from the successive frames of Akko-Kayo sequence.

Once the features on the moving rigid objects are matched, the next step is the cal-
culation of rotation and translation parameters. Fortunately, the depth values of ex-
tracted SIFT features are available for the N-view-plus-N-depth content type; hence,
3D motion estimation step is relatively simple. For this purpose, the initial step is
the determination of the 3D coordinates of the matched features, which is achieved
via the back-projection equation [32]:

X(λ ) = P+x +λC , (16)

where λ is a positive number, C denotes camera center, P+ represents pseudo in-
verse of the projection matrix. The inherent scale ambiguity is solved by using the
known depth of the point, and the exact coordinates are calculated. After determin-
ing the 3D coordinates of the matched features, we solve for R and t in (12) using
Random Sample Consensus (RANSAC) algorithm, [41], in a robust manner in order
to account for outliers in feature matching step:

1. R and t matrices are estimated using quaternion approach, [42]
2. 3D coordinates of the features in the first frame are rotated and translated using

the estimated R and t matrices
3. Euclidean distances between available 3D coordinates of the features in the sec-

ond frame, and the 3D coordinates obtained by rotating and translating those of
features in the first frame are calculated,

4. The number of inliers are obtained by comparing these Euclidean distances by a
threshold,
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5. If the number of inliers is greater than maximum number of inliers, maximum
iteration number is updated [41]

6. The number of iterations is increased by one, and if maximum number of itera-
tions is reached process is terminated. Otherwise, Steps 1-6 are repeated.

The maximum number of iterations, N, is selected sufficiently high in order to en-
sure with a probability, p, that at least one of the random samples of s points is free
from outliers. Suppose e is the probability that any selected data point is an outlier
(hence, w = 1− e is the probability that it is an inlier). Then, N can be obtained as
[41]:

N =
log(1− p)

log(1− (1− e)s)
. (17)

Note that, prior to 3D motion estimation, the depth maps, which are estimated using
[38], are smoothed with a Gaussian filter of 9x9 kernel, in order to compensate for
the erroneously estimated depth regions.

4.3 Middle Frame Interpolation

The final step of the algorithm is the interpolation of the middle frame pixel inten-
sities, which is achieved through interpolation of the estimated 3D motion models
of foreground objects. Although the methods mentioned in this section can be used
to render multiple interpolated frames at any time instant in-between the successive
frames, for simplicity and without loss of generality, we assume that a single middle
frame is to be generated corresponding to time instant t− 1

2 . Basically, all 3D points
on the foreground objects are rotated and translated to time instant t − 1

2 and then
projected to the image plane of the desired view(s) of the multi-view set. In Sect. 4.2,
the 3D motion, i.e. the rotation and translation, parameters are estimated between
the successive frames at the time instants t − 1 and t. Let Rm and tm, respectively,
represent the interpolated 3D rotation matrix and translation vector corresponding
to rigid motion of a foreground object from t − 1 to t − 1

2 . Under constant velocity
assumption of objects between successive frames, the interpolated translation vector
can be determined easily as follows:

tm =
1
2

t. (18)

Similarly, using the angle-axis representation highlighted in Sect. 3.2, the interpo-
lated rotation Rm is written as:

Rm = R

(
θ
2

,a
)

, (19)

where, as defined previously, θ is the rotation angle and a is the rotation axis.
Using Rm and tm, 3D coordinates of foreground objects at t − 1 are rotated and

translated to t − 1
2 by the following relation:
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Ym

Zm

⎤⎦= Rm

⎡⎣Xt−1

Yt−1

Zt−1

⎤⎦+ tm . (20)

The interpolation frame for any desired view of the multi-view set can then be re-
constructed by re-projecting the 3D points onto the corresponding image plane:

[
xm

ym

]
= Pdesired

⎡⎣Xm

Ym

Zm

⎤⎦ . (21)

Intensities corresponding to foreground objects are interpolated by using the Red-
Green-Blue (RGB) values of corresponding pixels at time instant t −1. For interpo-
lating the background regions, the segmentation maps, given in Fig. 10 are exploited
by assigning average RGB values for common background regions and assigning
RGB values from either frame for uncommon background regions. Fig. 12 shows
the resulting interpolated frame of Akko-Kayo sequence.

Due to the rounding effects, some parts of the foreground object remain unfilled;
thus, in order to alleviate such problems, the interpolated frame is post-processed
by a 3x3 median filter. Fig. 13 illustrates the resulting frame after post processing.

So far, 3D coordinates of the foreground objects, and hence, the corresponding
2D pixel locations at the interpolation frame of time instant t − 1

2 are calculated
using the frame at t − 1 via (20) and (21). In order to increase the quality of the
interpolation, bi-directional filling, which utilizes the intensities of frames at time
instants t −1 and t, is employed. For bi-directional interpolation, backward rotation
matrix Rb and translation vector tb transforming 3D foreground coordinates from

Fig. 12 Interpolated frame using 3D motion information
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the frame at t to the frame at t −1 are calculated. After some algebra, Rb and tb can
be obtained in terms of the forward rotation matrix R and the translation vector t as
follows:

Rb = R−1,

tb = −R−1t. (22)

As in the case of forward directional interpolation, interpolated motion parameters
for the desired temporal location are obtained via linear interpolation:

Rb,m = Rb

(
θb

2
,ab

)
,

tb,m =
tb
2

. (23)

For bi-directional interpolation, the 3D coordinates of the foreground objects at the
time instants t − 1 and t are rotated and translated to the time instant t − 1

2 using
forward and backward motion parameters and then projected to the image plane
of a desired view. Intensities at overlapping 2D locations of the middle frame are
found by simply averaging corresponding intensities at the time instants t −1 and t.
Figures 14 and 13 reveals that utilizing bi-directional interpolation instead of only
forward directional interpolation improves the visual quality of the resulting frames
significantly.

Fig. 13 Interpolated frame after post-processing
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Fig. 14 Bi-directionally interpolated frame

Fig. 15 Bi-directionally interpolated frame using conventional method.

For the sake of comparison to the block-based conventional methods, Fig. 15
shows the resulting middle frame interpolated using a conventional FRUC algo-
rithm that utilizes bi-directional motion estimation, [8], with hexagonal search pat-
tern [15]. It is clear that our approach interpolates visually more pleasant frames
without blocking artifacts at object boundaries.
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(a) (b)

Fig. 16 Frames interpolated using (a) the proposed method and (b) the conventional method

Fig. 16 illustrates sample interpolation results for synthetically generated Rotat-
ing Cube sequence using both the conventional method and the proposed method.
The figure reveals that conventional translational motion model is not capable of
handling complex motion types, and hence the interpolated frames are significantly
distorted. On the other hand, the rigid body motion model utilized by the FRUC-RM
algorithm yields qualitatively better frames.

The utilization of 3D motion parameters during frame interpolation enables ren-
dering of any desired number of frames in between the successive frames of the
original multi-view sequences, by the following motion parameter interpolation
scheme:

Ri = R

(
k

n + 1
,a
)

,

ti =
k

n + 1
t, (24)

Rb,i = Rb

((
1− k

n + 1

)
θb,ab

)
,

tb,i =
(

1− k
n + 1

)
tb, k = 1,2, ..,n.

where n denotes the number of frames to be interpolated and k represents the index
of an interpolation frame. Fig. 17 shows three interpolation frames obtained via the
above equations for Rotating Cube sequence.
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(a) (b)

(c) (d)

(e)

Fig. 17 Original frames (a) t −1, (e) t and interpolated frames at time instants (b) t − 5
6 , (c)

t − 3
6 and (d) t − 1

6



242 O.S. Gedik, E. Türetken, and A.A. Alatan

5 Summary

FRUC is an important problem for consumer electronics, especially for improving
the performance of hold-type panel displays. Increasing frame-rates on typical me-
dia content, which often involves dynamic scenes, requires modeling and utilization
of motion field more precisely.

In this chapter, first an overview of the conventional FRUC algorithms that
mainly utilize block-based motion estimation and compensation with translational
motion model is provided. In order to avoid several shortcomings of conventional
methods such as blocking artifacts and failure to robustly model correct object mo-
tion, two region-based FRUC techniques utilizing 2D planar perspective and 3D
rigid body motion models are presented. Both methods rely on the idea of perform-
ing the motion interpolation step in the parameter space of the original 3D motion
and structure elements of the scene. Experimental results show that both methods
yield visually pleasing results without halo effects on dynamic scenes.

Acknowledgements. This work is funded by Vestek R&D Corp., Turkey.
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Chapter 10
Spatiotemporal Video Upscaling Using
Motion-Assisted Steering Kernel (MASK)
Regression

Hiroyuki Takeda, Peter van Beek, and Peyman Milanfar

Abstract. In this chapter, we present Motion Assisted Steering Kernel (MASK) re-
gression, a novel multi-frame approach for interpolating video data spatially, tem-
porally, or spatiotemporally, and for video noise reduction, including compression
artifact removal. The MASK method takes both local spatial orientations and local
motion vectors into account and adaptively constructs a suitable filter at every posi-
tion of interest. Moreover, we present a practical algorithm based on MASK that is
both robust and computationally efficient. In order to reduce the computational and
memory requirements, we process each frame in a block-by-block manner, utilizing
a block-based motion model. Instead of estimating the local dominant orientation
by singular value decomposition, we estimate the orientations based on a technique
similar to vector quantization. We develop a technique to locally adapt the regression
order, which allows enhancing the denoising effect in flat areas, while effectively
preserving major edges and detail in texture areas. Comparisons between MASK
and other state-of-the-art video upscaling methods demonstrate the effectiveness of
our approach.

1 Introduction

Advances in video display technology have increased the need for high-quality and
robust video interpolation and artifact removal methods. In particular, LCD flat-
panel displays are currently being developed with very high spatial resolution and
very high frame rates. For example, so-called “4K” resolution panels are capable
of displaying 2160× 4096 full color pixels. Also, LCD panels with frame rates of
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120[Hz] and 240[Hz] are becoming available. Such displays may exceed the high-
est spatial resolution and frame rate of video content commonly available, namely
1080×1920, 60[Hz] progression High Definition (HD) video, in consumer applica-
tions such as HD broadcast TV and Blu-ray Disc. In such (and other) applications,
the goal for spatial and temporal video interpolation reconstruction is to enhance
the resolution of the input video in a manner that is visually pleasing and artifact-
free. Common visual artifacts that may occur in spatial and temporal interpolation
are: edge jaggedness, ringing, blurring of edges and texture detail, as well as mo-
tion blur and judder. In addition, the input video usually contains noise and other
artifacts, e.g. caused by compression. Due to increasing sizes of modern video dis-
plays, as well as incorporation of new display technologies (e.g. higher brightness,
wider color gamut), artifacts in the input video and those introduced by scaling are
amplified, and become more visible than with past display technologies. High qual-
ity video upscaling requires resolution enhancement and sharpness enhancement as
well as noise and compression artifact reduction.

A common approach for spatial image and video upscaling is to use linear filters
with compact support, such as from the family of cubic filters [1]. In this chap-
ter, our focus is on multi-frame methods, which enable resolution enhancement
in spatial upscaling, and allow temporal frame interpolation (frame rate upconver-
sion). Although many algorithms have been proposed for image and video interpo-
lation, spatial upscaling and frame interpolation (temporal upscaling) are generally
treated separately. The conventional super-resolution technique for spatial upscaling
consists of image reconstruction from irregularly sampled pixels, provided by reg-
istering multiple low resolution frames onto a high resolution grid using motion es-
timation, see [2, 3] for overviews. A recent work by Narayanan et al. ([4]) proposed
a video-to-video super resolution algorithm using a partition filtering technique, in
which local image structures are classified into vertical, horizontal, and diagonal
edges, textures, and flat areas by vector quantization [5] (involving off-line learn-
ing), and prepare a suitable filter for each structure class beforehand. Then, with
the partition filter, they interpolate the missing pixels and recover a high resolution
video frame. Another recent approach in [6] uses an adaptive Wiener filter and has
a low computational complexity when using a global translational motion model.
This is typical for many conventional super-resolution methods, which as a result
often don’t consider more complex motion.

For temporal upscaling, a technique called motion compensated frame interpo-
lation is popular. In [7], Fujiwara et al. extract motion vectors from a compressed
video stream for motion compensation. However, these motion vectors are often
unreliable; hence they refine the motion vectors by the block matching approach
with variable-size blocks. Similar to Fujiwara’s work, in [8], Huang et al. proposed
another refinement approach for motion vectors. Using the motion reliability com-
puted from prediction errors of neighboring frames, they smooth the motion vector
field by employing a vector median filter with weights decided based on the local
motion reliability. In [9, 10], instead of refining the motion vector field, Kang et al.
and Choi et al. proposed block matching motion estimation with overlapped and
variable-size block technique in order to estimate motion as accurately as possible.
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However, the difficulty of the motion-based approach is that, even though the mo-
tion vector field may be refined and/or smoothed, more complex transitions (e.g.
occlusions, transparency, and reflection) are not accurately treated. That is, motion
errors are inevitable even after smoothing/refining motion vector fields, and, hence,
an appropriate mechanism that takes care of the errors is necessary for producing
artifact-free outputs.

Unlike video processing algorithms which depend directly on motion vectors, in
a recent work, Protter et al. [11] proposed a video-to-video super-resolution method
without explicit motion estimation or compensation based on the idea of Non-Local
Means [12]. Although the method produces impressive spatial upscaling results even
without motion estimation, the computational load is very high due to the exhaustive
search (across space and time) for blocks similar to the block of interest. In a related
work [13], we presented a space-time video upscaling method, called 3-D iterative
steering kernel regression (3-D ISKR), in which explicit subpixel motion estima-
tion is again avoided. 3-D ISKR is an extension of 2-D steering kernel regression
(SKR) proposed in [14, 15]. SKR is closely related to bilateral filtering [16, 17] and
normalized convolution [18]. These methods can achieve accurate and robust image
reconstruction results, due to their use of robust error norms and locally adaptive
weighting functions. 2-D SKR has been applied to spatial interpolation, denoising
and deblurring [15, 18, 19]. In 3-D ISKR, instead of relying on motion vectors, the
3-D kernel captures local spatial and temporal orientations based on local covari-
ance matrices of gradients of video data. With the adaptive kernel, the method is
capable of upscaling video with complex motion both in space and time.

In this chapter, we build upon the 2-D steering kernel regression framework
proposed in [14], and develop a spatiotemporal (3-D) framework for processing
video. Specifically, we propose an approach we call motion-assisted steering kernel
(MASK) regression. The MASK function is a 3-D kernel, however, unlike as in 3-D
ISKR, the kernel function takes spatial (2-D) orientation and the local motion tra-
jectory into account separately, and it utilizes an analysis of the local orientation and
local motion vector to steer spatiotemporal regression kernels. Subsequently, local
kernel regression is applied to compute weighted least-squares optimal pixel esti-
mates. Although 2-D kernel regression has been applied to achieve super-resolution
reconstruction through fusion of multiple pre-registered frames on to a 2-D plane
[14, 18], the proposed method is different in that it does not require explicit mo-
tion compensation of the video frames. Instead, we use 3-D weighting kernels that
are “warped” according to estimated motion vectors, such that the regression pro-
cess acts directly upon the video data. Although we consider local motion vectors
in MASK, we propose an algorithm that is robust against errors in the estimated
motion field. Prior multi-frame resolution-enhanced or super-resolution (SR) recon-
struction methods ([2, 3]) often consider only global translational or affine motions;
local motion and object occlusions are often not addressed. Many SR methods re-
quire explicit motion compensation, which may involve interpolation or rounding of
displacements to grid locations. These issues can have a negative impact on accuracy
and robustness. Our proposed method is capable of handling local motions, avoids
explicit motion compensation, and is more robust. The proposed MASK approach is
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capable of simultaneous spatial interpolation with resolution enhancement, tempo-
ral video interpolation, noise reduction, and preserving high frequency components.
Initial results using MASK were presented in [20].

An overview of this chapter is as follows. Firstly, we provide a review of 2-D
SKR in Section 2. Then, we extend 2-D SKR to 3-D SKR and describe the MASK
approach in Section 3. Subsequently, we propose a practical video upscaling algo-
rithm based on MASK in Section 4, proposing further novel techniques to reduce
computational complexity and improve robustness. We present several example re-
sults of our algorithm in Section 5 and conclude in Section 6.

2 Review of Steering Kernel Regression

This section gives an overview of SKR, which is the basis of MASK. We be-
gin with describing the fundamental framework of SKR, called kernel regression
(KR), in which we estimate a pixel value of interest from neighboring pixels using
a weighted least-square formulation. We propose an effective weighting function
for the weighted least-square estimator, called steering kernel function, that takes
not only spatial distances between the samples of interest into account, but also the
radiometric values of those samples.

2.1 Kernel Regression in 2-D

The KR framework defines its data model as

yi = z(xi)+ εi, i = 1, · · · ,P, xi = [x1i,x2i]T , (1)

where yi is a noisy sample at xi (Note: x1i and x2i are spatial coordinates), z(·) is
the (hitherto unspecified) regression function to be estimated, εi is an i.i.d. zero
mean noise, and P is the total number of samples in an arbitrary “window” around a
position x of interest as shown in Fig. 1. As such, the kernel regression framework
provides a rich mechanism for computing point-wise estimates of the regression
function with minimal assumptions about global signal or noise models.

Fig. 1 The data model for the kernel regression framework
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While the particular form of z(·) may remain unspecified, we can develop a
generic local expansion of the function about a sampling point xi. Specifically, if
the position of interest x is near the sample at xi, we have the N-th order Taylor
series

z(xi) ≈ z(x)+{∇∇∇z(x)}T (xi −x)+
1
2
(xi −x)T {Hz(x)}(xi −x)+ · · ·

= β0 +βββ T
1 (xi −x)+βββ T

2 vech
{
(xi −x)(xi−x)T}+ · · · (2)

where ∇∇∇ and H are the gradient (2×1) and Hessian (2×2) operators, respectively,
and vech(·) is the half-vectorization operator that lexicographically orders the lower
triangular portion of a symmetric matrix into a column-stacked vector. Furthermore,
β0 is z(x), which is the signal (or pixel) value of interest, and the vectors βββ 1 and βββ 2
are

βββ 1=
[
∂ z(x)
∂x1

,
∂ z(x)
∂x2

]T

,

βββ 2=
1
2

[
∂ 2z(x)
∂x2

1

, 2
∂ 2z(x)
∂x1∂x2

,
∂ 2z(x)
∂x2

2

]T

. (3)

Since this approach is based on local signal representations, a logical step to take is
to estimate the parameters {βββ n}N

n=0 from all the neighboring samples {yi}P
i=1 while

giving the nearby samples higher weights than samples farther away. A (weighted)
least-square formulation of the fitting problem capturing this idea is

min
{βββn}N

n=0

P

∑
i=1

[
yi −β0 −βββ T

1 (xi −x)−βββ T
2 vech

{
(xi −x)(xi−x)T}−·· ·

]2
KH(xi −x)

(4)
with

KH(xi −x) =
1

det(H)
K
(
H−1(xi −x)

)
, (5)

where N is the regression order, K(·) is the kernel function (a radially symmetric
function such as a Gaussian), and H is the smoothing (2×2) matrix which dictates
the “footprint” of the kernel function. In the classical approach, when the pixels (yi)
are equally spaced, the smoothing matrix is defined as

H = hI (6)

for every sample, where h is called the global smoothing parameter. The shape of
the kernel footprint is perhaps the most important factor in determining the quality
of estimated signals. For example, it is desirable to use kernels with large footprints
in the smooth local regions to reduce the noise effects, while relatively smaller foot-
prints are suitable in the edge and textured regions to preserve the signal disconti-
nuity. Furthermore, it is desirable to have kernels that adapt themselves to the local
structure of the measured signal, providing, for instance, strong filtering along an
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edge rather than across it. This last point is indeed the motivation behind the steer-
ing KR framework [14] which we will review in Section 2.2.

Returning to the optimization problem (4), regardless of the regression order and
the dimensionality of the regression function, we can rewrite it as a weighted least
squares problem:

b̂ = argmin
b

[
(y−Xb)T K(y−Xb)

]
, (7)

where

y = [y1, y2, · · · , yP ]T , b =
[
β0, βββT

2 , · · · , βββ T
N

]T
, (8)

K = diag
[
KH(x1 −x), KH(x2 −x), · · · , KH(xP −x)

]
, (9)

and

X =

⎡⎢⎢⎢⎣
1, (x1 −x)T , vechT

{
(x1 −x)(x1 −x)T

}
, · · ·

1, (x2 −x)T , vechT
{
(x2 −x)(x2 −x)T

}
, · · ·

...
...

...
...

1, (xP −x)T , vechT
{
(xP −x)(xP −x)T

}
, · · ·

⎤⎥⎥⎥⎦ (10)

with “diag” defining a diagonal matrix. Using the notation above, the optimization
(4) provides the weighted least square estimator

b̂ =
(
XT KX

)−1
XT K y =

⎡⎢⎢⎢⎣
WN

WN,x1

WN,x2
...

⎤⎥⎥⎥⎦y, (11)

where WN is a 1×P vector that contains filter coefficients, which we call the equiv-
alent kernel weights, and WN,x1

and WN,x2
are also 1×P vectors that compute the

gradients along the x1- and x2-directions at the position of interest x. The estimate of
the signal (i.e. pixel) value of interest β0 is given by a weighted linear combination
of the nearby samples:

ẑ(x) = β̂0 = eT
1 b̂ = WN y =

P

∑
i=1

Wi(K,H,N,xi−x) yi,
P

∑
i=1

Wi(·) = 1, (12)

where e1 is a column vector with the first element equal to one and the rest equal to
zero, and we call Wi the equivalent kernel weight function for yi (q.v. [14] or [21]
for more detail). For example, for zero-th order regression (i.e. N = 0), the estimator
(12) becomes

ẑ(x) = β̂0 =
∑P

i=1 KH(xi −x) yi

∑P
i=1 KH(xi −x)

, (13)

which is the so-called Nadaraya-Watson estimator (NWE) [22].
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What we described above is the “classic” kernel regression framework, which, as
we just mentioned, yields a pointwise estimator that is always a local linear combi-
nation of the neighboring samples. As such, it suffers from an inherent limitation.
In the next sections, we describe the framework of steering KR in two and three
dimensions, in which the kernel weights themselves are computed from the local
window, and therefore we arrive at filters with more complex (nonlinear) action on
the data.

2.2 Steering Kernel Function

The steering kernel framework is based on the idea of robustly obtaining local sig-
nal structures (e.g. discontinuities in 2-D and planes in 3-D) by analyzing the radio-
metric (pixel value) variations locally, and feeding this structure information to the
kernel function in order to affect its shape and size.

Consider the (2× 2) smoothing matrix H in (5). As explained in the previous
section, in the generic “classical” case, this matrix is a scalar multiple of the iden-
tity. This results in kernel weights which have equal effect along the x1- and x2-
directions. However, if we properly choose this matrix locally (i.e. H → Hi for each
yi), the kernel function can capture local structures. More precisely, we define the
smoothing matrix as a symmetric matrix

Hi = hC
− 1

2
i , (14)

which we call the steering matrix and where, for each given sample yi, the matrix
Ci is estimated as the local covariance matrix of the neighborhood spatial gradient
vectors. A naive estimate of this covariance matrix may be obtained by

Ĉnaive
i = JT

i Ji, (15)

with

Ji =

⎡⎢⎣ zx1(x1) zx2(x1)
...

...
zx1(xP) zx2(xP)

⎤⎥⎦ , (16)

where zx1(·) and zx2(·) are the first derivatives along x1- and x2-axes, and P is the
number of samples in the local analysis window around a sampling position xi.
However, the naive estimate may in general be rank deficient or unstable. Therefore,
instead of using the naive estimate, we can obtain the covariance matrix by using
the (compact) singular value decomposition (SVD) of Ji:

Ji = UiSiVT
i , (17)

where Si = diag[s1,s2], and Vi = [v1,v2]. The singular vectors contain direct infor-
mation about the local orientation structure, and the corresponding singular values
represent the energy (strength) in these respective orientation directions. Using the
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singular vectors and values, we compute a more stable estimate of our covariance
matrix as:

Ĉi = γiVi

[
ρi

1
ρi

]
VT

i = γi

(
ρiv1vT

1 +
1
ρi

v2vT
2

)
, (18)

where

ρi =
s1 +λ ′

s2 +λ ′ , γi =
(

s1s2 +λ ′′

P

)α
. (19)

The parameters ρi and γi are the elongation and scaling parameter, respectively, and
λ ′ and λ ′′ are “regularization” parameters, respectively, which dampen the effect
of the noise and restrict γi and the denominator of ρi from becoming zero. The
parameter α is called the structure sensitivity parameter. We fix λ ′ = 0.1, λ ′′ = 0.1,
and α = 0.2 in this work. More details about the effectiveness and the choice of the
parameters can be found in [14]. With the above choice of the smoothing matrix and
a Gaussian kernel, we now have the steering kernel function as

KHi(xi −x) =

√
det(Ci)
2πh2 exp

{
− (xi −x)T Ci(xi −x)

2h2

}
. (20)

Fig. 2 illustrates a schematic representation of the estimate of local covariance ma-
trices and the computation of steering kernel weights. First we estimate the gradients
and compute the local covariance matrix Ci by (18) for each pixel. Then, for exam-
ple, when denoising y13, we compute the steering kernel weights for each neighbor-
ing pixel with its Ci. In this case, even though the spatial distances from y13 to y1

and y21 are equal, the steering kernel weight for y21 (i.e. KH21(x21 − x13)) is larger

(a) Covariance matrices from local gradients with 3×3 analysis window (b) Steering kernel weights

Fig. 2 A schematic representation of the estimates of local covariance metrics and the steer-
ing kernel weights at a local region with one dominant orientation: (a) First, we estimate the
gradients and compute the local covariance matrix Ci by (18) for each pixel, and (b) Next,
when denoising y13, we compute the steering kernel weights with Ci for neighboring pixels.
Even though, in this case, the spatial distances between y13 and y1 and between y13 y21 are
equal, the steering kernel weight for y21 (i.e. KH21(x21 − x13)) is larger than the one for y1
(i.e. KH1(x1 −x13)). This is because y13 and y21 are located along the same edge.
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Fig. 3 Steering kernel weights for Lena image without/with noise (white Gaussian noise with
standard deviation σ = 25) at flat, edge, and texture areas

(a) Input image (b) The given samples with steering matrices (c) Upscaled image

Fig. 4 Steering kernel regression for image upscaling: (a)Input image. (b)We compute steer-
ing matrices for each pixel and then estimate. Then, estimate the missing position z(x) and
denoise the given pixels yi. The red dashed line is a speculative local orientation. (c)Upscaled
image by steering kernel regression.

than the one for y1 (i.e. KH1(x1−x13)). Moreover, Fig. 3 shows visualizations of the
2-D steering kernel function for noise-free Lena image and a low PSNR1 case (we
added white Gaussian noise with standard deviation 25, the corresponding PSNR
being 20.16[dB]). As shown in Fig. 3, the steering kernel weights (which are the
normalized KHi(xi − x) as a function of xi with x held fixed) illustrate the relative
size of the actual weights applied to compute the estimate as in (12). We note that
even for the highly noisy case, we can obtain stable estimates of local structure.

At this point, the reader may be curious to know how the above formulation
would work for the case where we are interested not only in denoising, but also
upscaling the images. Fig. 4 illustrates a summary of image upscaling by steering
kernel regression. Similar to the denoising case, we begin with computing steer-
ing (covariance) matrices, Ci for all the pixels, yi, from the input image shown in
Fig. 4(a) by (18) as depicted in Fig. 2(a). Once Ci’s are available, we compute

1 Peak Signal to Noise Ratio = 10log10

(
2552

Mean Square Error

)
[dB].
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steering kernel weights by (20). For example, when we estimate the missing pixel
z(x) at x shown as the green box in Fig. 4(b), the steering kernel function gives
high weights to the samples y13 and y17 and a small weight to y12 . This is because
the missing pixel, z(x), most likely lies on the same edge (shown by the red dashed
curve) as y13 and y17 . Next, plugging the steering kernel weights into (11), we com-
pute the equivalent kernel WN and the estimator (12) gives the estimated pixel ẑ(x)
at x. Fig. 4(c) shows the upscaled image by steering kernel regression. In [14], we
introduced an iterative scheme where we recompute Ci from the upscaled image one
more time, and, using the new covariance matrices, we estimate the missing pixels
and denoise the given samples again. However, in this work, to keep the computa-
tional load low, we compute the steering matrices only once from the given samples.

3 Motion Assisted Steering Kernel Regression

SKR estimates an unknown pixel value in a single image by a weighted combina-
tion of neighboring pixels in the same image, giving larger weights to the pixels
along a local orientation. In this section, we develop a multi-frame video upscal-
ing method based on SKR by additionally utilizing local motion vectors, and we
call the resulting method motion-assisted steering kernel (MASK) regression. The
MASK approach is a 3-D kernel regression method in which the pixel of interest is
estimated by a weighted combination of pixels in its spatiotemporal neighborhood,
involving multiple video frames. Hence, we first extend the 2-D kernel regression
framework into a 3-D framework. Then, we present our 3-D data-adaptive kernel,
the MASK function, which relies not only on local spatial orientation but also local
motions. Finally, we describe the process of spatial upscaling and temporal frame
interpolation based on MASK. While we focus on the principles of our approach
in this section, we present a specific algorithm for video processing based on the
MASK method in the next section.

3.1 Spatiotemporal Kernel Regression

For video processing, we define a spatiotemporal data model as

yi = z(xi)+ εi, i = 1, · · · ,P, xi = [x1i,x2i, ti]T , (21)

where yi is a given sample (pixel) at location xi, x1i and x2i are the spatial coor-
dinates, ti is the temporal coordinate, z(·) is the regression function, and εi is i.i.d
zero mean noise. P is the number of samples in a spatiotemporal neighborhood of
interest, which spans multiple video frames.

Similar to the 2-D case, in order to estimate the value of z(·) at point x, given
the above data samples yi, we can rely on a local Nth order Taylor expansion about
x. We denote the pixel value of interest z(x) by β0, while βββ 1, βββ 2, · · · , βββN denote
vectors containing the first-order, second-order, · · · , Nth order partial derivatives of
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z(·) at x, resulting from the Taylor expansion. For example, β0 = z(x) and βββ 1 =
[zx1(x),zx2(x),zt(x)]T .

The unknowns, {βββn}N
n=0, can be estimated from {yi}P

i=1 using the following
weighted least-squares optimization procedure:

min
{βββn}N

n=0

P

∑
i=1

[
yi −β0 −βββ T

1 (xi −x)−βββT
2 vech

{
(xi −x)(xi−x)T}−·· ·

]2
KH3D

i
(xi −x)

(22)
where N is the regression order and K(·) is a kernel function that weights the in-
fluence of each sample. Typically, samples near x are given higher weights than
samples farther away.

A 3-D steering kernel is a direct extension of the 2-D steering kernel defined in
[14]. The 3×3 data-dependent steering matrix H3D

i can be defined as

H3D
i = h

(
C3D

i

)− 1
2 (23)

where h is a global smoothing parameter and C3D
i is a 3×3 covariance matrix based

on the sample variations in a local (3-D) neighborhood around sample xi. We can
construct the matrix C3D

i parametrically as C3D
i = γiRiΛΛΛ iRT

i , where Ri is a 3-D ro-
tation matrix, ΛΛΛ i is a 3-D elongation matrix, and γi is a scaling parameter. We have
found that such an approach performs quite well for spatial upscaling of video [13].
However, this 3-D kernel does not consider the specific spatiotemporal characteris-
tics of video data. In particular, problems may occur in the presence of large object
displacements (fast motion). This may result in either shrinking of the kernel in the
temporal direction, or spatial blurring (as the kernel weights spread across unrelated
data samples), both undesirable effects.

3.2 Motion Assisted Steering Kernel Function

A good choice for steering spatiotemporally is to consider local motion or optical
flow vectors caused by object motion in the scene, in conjunction with spatial steer-
ing along local edges and isophotes. Spatial steering should consider the locally
dominant orientation of the pixel data and should allow elongation of the kernel in
this direction. Spatiotemporal steering should allow alignment of the kernel weights
with the local optical flow or motion trajectory, as well as overall temporal scal-
ing. Hence, we construct our spatiotemporal kernel as a product of a spatial- and
motion-steering kernel, and a kernel that acts temporally:

KMASK ≡ 1
det(Hs

i )
K
(
(Hs

i )
−1Hm

i (xi −x)
)

Kht(ti − t), (24)

where Hs
i is a 3× 3 spatial steering matrix, Hm

i is a 3× 3 motion steering matrix,
Kht(·) is a temporal kernel function, and ht is the temporal smoothing parameter
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which controls the temporal penalization. These data-dependent kernel components
determine the steering action at sample xi, and are described next.

Following [14], the spatial steering matrix Hs
i is defined by:

Hs
i = hs

[
Ci

1

]− 1
2

, (25)

where hs is a global spatial smoothing parameter, and Ci is a 2×2 covariance matrix
given by (18), which captures the sample variations in a local spatial neighborhood
around xi. Ci is constructed in a parametric manner, as shown in (18).

The motion steering matrix Hm
i is constructed on the basis of a local estimate

of the motion (or optical flow vector) mi = [m1i,m2i]T at xi. Namely, we warp the
kernel along the local motion trajectory using the following shearing transformation:{

(x1i − x1) ← (x1i − x1)−m1i · (ti − t)
(x2i − x2) ← (x2i − x2)−m2i · (ti − t) .

Hence,

Hm
i =

⎡⎣ 1 0 −m1i

0 1 −m2i

0 0 0

⎤⎦ . (26)

Assuming a spatial prototype kernel was used with elliptical footprint, this results
in a spatiotemporal kernel with the shape of a tube or cylinder with elliptical cross-
sections at any time instance t. Most importantly, the center point of each such
cross-section moves along the motion path.

The final component of (24) is a temporal kernel that provides temporal penal-
ization. A natural approach is to give higher weights to samples in frames closer to
t. An example of such a kernel is the following:

Kht (ti − t) =
1
ht

exp

(
−|ti − t|2

2h2
t

)
, (27)

where a temporal smoothing parameter ht controls the relative temporal extent of
the kernel. We use the temporal kernel (27) in this section to illustrate the MASK
approach. However, we will introduce a more powerful adaptive temporal weighting
kernel in Section 4.2, which acts to compensate for unreliable local motion vector
estimates.

3.3 Spatial Upscaling and Temporal Frame Interpolation

Having introduced our choice of 3-D smoothing matrix, H3D
i , using Gaussian kernel

for K, we have the MASK function as
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KMASK(xi −x) =
1

det(Hs
i )

K
(
(Hs

i )
−1 Hm

i (xi −x)
)
·Kht (ti − t)

=
1

det(Hs
i )

K

(
(Hs

i )
−1
(

xi −x−
[

mi

1

]
(ti − t)

))
·Kht(ti − t)

=

√
det(Ci)
h2

s h2
t

exp

(
− 1

2h2
s

∥∥∥∥xi −x−
[

mi

1

]
(ti − t)

∥∥∥∥2

Ci

)

·exp

(
−|ti − t|2

2h2
t

)
(28)

where ‖ · ‖2
Cs

i
is weighted squared L2-norm. Figs. 5(a-i)-(a-iii) graphically describe

how the proposed MASK function constructs its weights for spatial upscaling. For
ease of explanation, suppose there are 5 frames at times from t1 to t5, and we upscale

(a-i) 2-D steering kernel weights for each frame (a-ii) Shifting the kernel with local motion vectors

(a-iii) Scaling by the temporal kernel function (b) MASK weights for temporal upscaling

Fig. 5 Schematic representations of the construction of MASK weights: the proposed MASK
weights are constructed by the following procedure (a-i) compute 2-D steering kernel weights
for each frame (with mi = 0 at this moment), (a-ii) shift the steering kernels by the local
motion vectors, and (a-iii) scale the shifted steering kernels by the temporal kernel function.
Fig.(b) shows the weight construction for the estimation of an intermediate frame at time t.



258 H. Takeda, P. van Beek, and P. Milanfar

the third frame (spatial upscaling). When estimating the pixel value at x = [x1,x2, t],
where t = t3, first we compute 2-D steering kernel weights for each frame, as il-
lustrated in Fig. 5(a-i), using the first Gaussian kernel function in (28). Motions are
not taken into account at this stage. Second, having motion vectors, mi, which we
estimate using the optical flow technique with the translational motion model and
the frame at ti=3 as the anchor frame, we shift the steering kernels for each frame
by mi as illustrated in Fig. 5(a-ii). Finally, as in Fig. 5(a-iii), the temporal kernel
function penalizes the shifted steering kernels so that we give high weights to closer
neighboring frames.

Local steering parameters and spatio-temporal weights are estimated at each
pixel location xi in a small region of support for the final regression step. Once
the MASK weights are available, similar to the 2-D case, we plug them into (11),
compute the equivalent kernel WN , and then estimate the missing pixels and denoise
the given samples from the local input samples (yi) around the position of inter-
est x. Similar to (12), the final spatio-temporal regression step can be expressed as
follows:

ẑ(x) =
P

∑
i=1

Wi(x;Hs
i ,H

m
i ,ht,K,N) yi. (29)

The MASK approach is also capable of upscaling video temporally (also called
frame interpolation or frame rate upconversion). Fig. 5(b) illustrates the MASK
weights for estimating an intermediate frame at sometime between t3 and t4. Fun-
damentally, following the same procedure as described in Figs. 5(a-i)-(a-iii), we
generate MASK weights. However, for the motion vector with the unknown inter-
mediate frame as the anchor frame, we assume that the motion between the frames at
t3 and t4 is constant, and using the motion vectors, mi=1,··· ,5, we linearly interpolate
motion vectors m′

i as
m′

i
= mi + m4(t − t3). (30)

Note that when m4 is inaccurate, the interpolated motion vectors for other frames
in the temporal window (m′

i
) are also inaccurate. In that case, we would shift the

kernel toward the wrong direction, and the MASK weights would be less effective
for temporal upscaling. Therefore, one should incorporate a test of the reliability of
m4 into the process, and use vectors mi instead of m′

i
if it is found to be unreliable.

Our specific technique to compute the reliability of motion vectors is described in
Section 4.2.

4 A Practical Video Upscaling Algorithm Based on MASK

In this section, we describe a complete algorithm for spatial upscaling, denoising
and enhancement, as well as temporal frame interpolation, based on the MASK ap-
proach. We introduce several techniques that enable a practical implementation of
the MASK principles explained in the previous section. In particular, we develop
an algorithm with reduced computational complexity and reduced memory require-
ments, that is suitable for both software and hardware implementation.
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Fig. 6 Illustration of video processing based on motion-assisted spatiotemporal steering ker-
nel (MASK) regression

An overview of the proposed video interpolation and denoising algorithm based
on motion-assisted spatiotemporal steering kernel regression is provided in Fig. 6.
The algorithm estimates spatial and motion steering parameters using gradient-
based techniques. Hence, we first compute initial estimates of the spatial and tem-
poral derivatives, e.g. based on classic kernel regression. In this work, we obtain a
quick and robust estimate of the spatial orientation angle (θi), elongation (ρi) and
scaling (γi) parameters at xi by applying a vector quantization technique to the co-
variance matrix obtained from the spatial gradient data. This will be described in
Section 4.3. Motion vectors are estimated using the well-known Lucas and Kanade
method, based on both spatial and temporal gradients in a local region. This is fol-
lowed by computing estimates of the temporal motion reliability (η), and is de-
scribed further in Section 4.2. Given spatial and motion steering parameters, final
MASK regression is applied directly on the input video samples; further details of
this step are provided in Section 4.4.

The following are further salient points for our algorithm based on MASK. We
first summarize them, and then provide details in subsequent subsections.

� Block-by-Block Processing
Since the kernel-based estimator is a pointwise process, it is unnecessary to store
the orientations and motion vectors of all the pixels in a video frame (Hs

i and Hm
i

for all i) in memory. However, strict pixel-by-pixel processing would result in a
large number of redundant computations due to the overlapping neighborhoods
of nearby pixels. In order to reduce the computational load while keeping the
required memory space small, we break the video data into small blocks (e.g.
8×8 pixels), and process the blocks one-by-one.

� Adaptive Temporal Penalization
MASK relies on motion vectors, and the visual quality of output video frames
is strongly associated with the accuracy of motion estimation. Even though our
motion estimation approach is able to estimate motion vectors quite accurately,
the estimated vectors become unreliable when the underlying scene motion and
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camera projection violate the motion model. In practice, errors in motion vectors
are inevitable and it is important to provide a fall-back mechanism in order to
avoid visual artifacts.

� Quantization of Orientation Map
The estimation of spatial orientations or steering covariance matrices Cs

i in (18)
involves singular value decomposition (SVD), which represents significant com-
putational complexity. Instead of using the SVD, we use a pre-defined lookup
table containing a set of candidate covariance matrices, and locally select an
appropriate matrix from the table. Since the lookup table contains only stable
(invertible) covariance matrices, the estimation process remains robust.

� Adaptive Regression Order
A higher regression order (e.g. N = 2 in this chapter) preserves high frequency
components in filtered images, although it requires more computation (11). On
the other hand, zeroth regression order (N = 0) has lower computational cost, but
it has a stronger smoothing effect. Although second order regression is prefer-
able, it is only needed at pixel locations in texture and edge regions. Moreover,
in terms of noise reduction, zeroth order regression is more suitable in flat re-
gions. We propose to adjust the order N locally, based on the scaling parameter
(γi). Consequently, this adaptive approach keeps the total computational cost low
while it preserves, and even enhances, high frequency components.

4.1 Block-by-Block Processing

The overall MASK algorithm consists of several operations (i.e. estimating spatial
and temporal gradients, spatial orientations, and motions as shown in Fig. 6 and
finally applying kernel regression), and it is possible to implement these in, e.g.,
a pixel-by-pixel process or a batch process. In a pixel-by-pixel process, we esti-
mate gradients, orientations, and motions one-by-one, and then finally estimate a
pixel value. Note that most of these operations require calculations involving other
pixels in a neighborhood around the pixel of interest. Since the neighborhoods of
nearby pixels may overlap significantly, frequently the same calculation would be
performed multiple times. Hence, a pixel-by-pixel implementation suffers from a
large computational load. On the other hand, this implementation requires very lit-
tle memory. In a batch process, we estimate gradients for all pixels in an entire
frame and store the results in memory, then estimate orientations of all pixels and
store those results, etc. In the batch implementation, we need a large memory space
to store intermediate results for all pixels in a frame; however, it avoids repeated
calculations. This type of process is impractical for a hardware implementation.

As a compromise, in order to limit both the computational load and the use of
memory, we process a video frame in a block-by-block manner, where each block
contains, e.g., 8× 8 or 16× 16 pixels. Further reduction of the computational load
is achieved by using a block-based motion model: we assume that, within a block,
the motion of all the pixels follow a parametric model, e.g, translational or affine. In
this chapter, we fix the block size to 8×8 pixels and we use the translational motion
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model. A variable block size and the use of other motion models are also possible,
and are the subject of ongoing research.

4.2 Motion Estimation and Adaptive Temporal Penalization

As mentioned, motion estimation is based on the well-known Lucas and Kanade
method [23, 24], applied in a block-by-block manner as follows. Assume we com-
puted initial estimates of the local spatial and temporal derivatives. For example,
spatial derivatives may be computed using classic kernel regression or existing
derivative filtering techniques. Temporal derivatives are computed by taking the
temporal difference between pixels of the current frame and one of the neighbor-
ing frames. Let ẑx1 , ẑx2 and ẑt denote vectors containing (in lexicographical order)
derivative estimates from the pixels in a local analysis window wl associated with
the �-th block in the frame. This window contains and is typically centered on the
block of pixels of interest, but may include additional pixels beyond the block (i.e.
analysis windows from neighboring blocks may overlap). A motion vector ml for
block � is estimated by solving the optical flow equation [ẑx1 , ẑx2 ]m� + ẑt = 0 in
the least-squares sense. The basic Lucas and Kanade method is applied iteratively
for improved performance. As explained before, MASK uses multiple frames in a
temporal window around the current frame. For every block in the current frame, a
motion vector is computed to each of the neighboring frames in the temporal win-
dow. Hence, if the temporal window contains 4 neighboring frames in addition to
the current frame, we compute 4 motion vectors for each block in the current frame.

In practice, a wide variety of transitions/activies will occur in natural video. Some
of them are so complex that no parametric motion model matches them exactly, and
motion errors are unavoidable. When there are errors in the estimated motion vec-
tors, visually unacceptable artefacts may be introduced in the reconstructed frames
due to the motion-based processing. One way to avoid such visible artifacts in up-
scaled frames is to adapt the temporal weighting based on the correlation between
the current block and the corresponding blocks in other frames determined by the
motion vectors. That is to say, before constructing MASK weights, we compute
the reliability (η�) of each estimated motion vector. A simple way to define η� is
to use the mean square error or mean absolute error between the block of interest
and the corresponding block in the neighboring frame towards which the motion
vector is pointing. Once the reliability of the estimated motion vector is available,
we penalize the steering kernels by a temporal kernel Kt , a kernel function of η .
Fig. 7 illustrates the temporal weighting, incorporating motion reliability. Suppose
we upscale the �-th block in the frame at time t using 2 previous and 2 forward
frames, and there are 4 motion vectors, m�,i, between a block in the frame at t and
the 4 neighboring frames. First, we find the blocks that the motion vectors indicate
from the neighboring frames shown as y�,i in Fig. 7. Then, we compute the motion
reliability based on the difference between the �-th block at t and other blocks and
decide the temporal penalization for each neighboring block.
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Fig. 7 A schematic representation of temporal weighting in MASK for upscaling the �-
th block (y�,t ) of the frame at time t. First, we locate the neighboring blocks (y�,i for
i = −2,−1,1,2) indicated by the motion vectors (m�,i). Then, we compute the motion re-
liability (η�,i) based on the difference between the �-th block at t and the neighboring blocks,
and combine the temporal penalization by Kt with the spatial kernel function K.

More specifically, we define η�,Δ t and Kt as

η�,Δ t =

∥∥y�,t −y�,t+Δ t
∥∥

F

M
, (31)

Kht(η�,Δ t) =
1

1 +
η�,Δ t

ht

(32)

where ht is the (global) smoothing parameter, which controls the strength of tempo-
ral penalization, y�,t is the �th block of the frame at time t, t +Δ t is a neighboring
frame, M is the total number of pixels in a block, and ‖ · ‖F is Frobenius norm.
We replace the temporal kernel in (28) by (32). This temporal weighting technique
is similar to the Adaptive Weighted Averaging (AWA) approach proposed in [25];
however, the weights in AWA are computed pixel-wise. In MASK, the temporal ker-
nel weights are a function of radiometric distances between small pixel blocks and
are computed block-wise.

4.3 Quantization of Orientation Map

The computational cost of estimating local spatial steering (covariance) matrices is
high due to the SVD. In this section, using the well-known technique of vector quan-
tization [5], we describe a way to obtain stable (invertible) steering matrices without
using the SVD. Briefly speaking, first, we construct a look-up table which has a cer-
tain number of stable (invertible) steering matrices. Second, instead of computing
the steering matrix by (18), we compute the naive covariance matrix (15), and then
find the most similar steering matrix from the look-up table. The advantages of using
the look-up table are that (i) we can lower the computational complexity by avoid-
ing singular value decomposition, (ii) we can control and trade-off accuracy and
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computational load by designing an appropriate vector quantization scheme with
almost any desired number of steering matrices in the look-up table, and (iii) we
can pre-calculate kernel weights to lower the computational load further (since the
steering matrices are fixed).

From (18), the elements of the spatial covariance matrix Ci are given by the
steering parameters with the following equations:

C j(γ j,ρ j,θ j) =
[

c11 c12

c12 c22

]
, (33)

with

c11 = γ j

(
ρ j cos2 θ j +ρ−1

j sin2 θ j

)
(34)

c12 = −γ j

(
ρ j cosθ j sinθ j +ρ−1

j cosθ j sinθ j

)
(35)

c22 = γ j

(
ρ j sin2 θ j +ρ−1

j cos2 θ j

)
(36)

where γ j is the scaling parameter, ρ j is the elongation parameter, and θ j is the orien-
tation angle parameter. Fig. 8 visualizes the relationship between the steering param-
eters and the values of the covariance matrix. Based on the above formulae, using a
pre-defined set of the scaling, elongation, and angle parameters, we can generate a
lookup table for covariance matrices, during an off-line stage.

During the on-line processing stage, we compute a naive covariance matrix Cnaive
i

(15) and then normalize Cnaive
i so that the determinant of the normalized naive co-

variance matrix det(C̃naive
i ) equals 1.0:

C̃naive
i =

Cnaive
i√

det(Cnaive
i )

=
1
γi

Cnaive
i , (37)

where again γi is the scaling parameter. This normalization eliminates the scaling pa-
rameter from the look-up table and simplifies the relationship between the elements
of covariance matrices and the steering parameters, and allows us to reduce the size
of the table. Table 1 shows an example of a compact lookup table. When the elon-
gation parameter ρi of C̃i is smaller than 2.5, Ĉi is quantized as an identity matrix
(i.e. the kernel spreads equally every direction). On the other hand, when ρi ≥ 2.5,
we quantize Ĉi with 8 angles. Using C̃naive

i , we obtain the closest covariance matrix
C̃i from the table. I.e.,

C̃i = argmin
ρ j ,θ j

∥∥∥C(ρ j,θ j)− C̃naive
i

∥∥∥
F
, (38)

where ‖ · ‖F is the Frobenius norm. The final matrix Ĉi is given by:

Ĉi = γiC̃i. (39)
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Fig. 8 The graphical relationship between the steering kernel parameters and the values of
covariance matrix
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Table 1 A compact lookup table for covariance matrices

c11 c12 c22 ρ j θ j

1.0000 0 1.0000 1.0 0
2.5000 0 0.4000 2.5 0
2.1925 1.0253 0.7075 2.5 1

8π
1.4500 1.4500 1.4500 2.5 2

8π
0.7075 1.0253 2.1925 2.5 3

8π
0.4000 0 2.5000 2.5 4

8π
0.7075 -1.0253 2.1925 2.5 5

8π
1.4500 -1.4500 2.1925 2.5 6

8π
2.1925 -1.0253 0.7075 2.5 7

8π

4.4 Adaptive Regression Order

As mentioned earlier, although the kernel estimator with a higher regression order
preserves high frequency components, the higher order requires more computation.
In this section, we discuss how we can reduce the computational complexity, while
enabling adaptation of the regression order. According to [26], the second order
equivalent kernel, W2, can be obtained approximately from the zeroth order one, W0,
as follows. First, we know that the general kernel estimator (12) can be expressed
as:

ẑ(x) = eT
1

(
XT KX

)−1
XT K y = WN y (40)

where again WN is a 1×P vector containing the filter coefficients and which we call
the equivalent kernel. The zeroth order equivalent kernel can be modified into W2

by

W̃T
2 = WT

0 −κLWT
0 , (41)

where L is Laplacian kernel in matrix form (we use [1,1,1;1,−8,1;1,1,1] as a
discrete Laplacian kernel) and κ is a regression order adaptation parameter. This
operation can be seen to “sharpen” the equivalent kernel, and is equivalent to sharp-
ening the reconstructed image. Fig. 9 shows the comparison between the actual
second order equivalent kernel, W2, and the equivalent kernel, W̃2, given by (41).
In the comparison, we use the Gaussian function for K, and compute the zeroth or-
der and the second order equivalent kernels shown in Fig. 9(a) and (b) respectively.
The equivalent kernel, W̃2, is shown in Fig. 9(c), and Fig. 9(d) shows the horizon-
tal cross section of W0, W2, and W̃2. As seen in Fig. 9(d), W̃2 is close to the exact
second order kernel W2.

There are two advantages brought by (41): (i) The formula simplifies the com-
putation of the second order equivalent kernels, i.e. there is no need to generate the
basis matrix, X, or take inversion of matrices. (ii) Since the effect of the second
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(c) A sharpened 0th order equivalent kernel (W̃2) (d) Horizontal cross sections of the equivalent kernels

Fig. 9 Equivalent kernels given by classic kernel regression: (a) the 0th order equivalent
kernel with the global smoothing parameter h = 0.75, (b) the 2nd order equivalent kernel
(W2) with h = 0.75, (c) a sharpened 0th order equivalent kernel (W̃2) with a 3×3 Laplacian
kernel (L = [1, 1, 1; 1, −8, 1; 1, 1, 1]) and κ = 0.045, and (d) Horizontal cross sections
of the equivalent kernels W0, W2, and W̃2. For this example, we used a Gaussian function
for K(·).

order regression is now explicitly expressed by κLW0 in (41), the formulation al-
lows for adjustment of the regression order across the image, but also it allows for
“fractional” regression orders, providing fine control over the amount of sharpening
applied locally.

We propose a technique to automatically select the regression order parameter
(κ) adaptively as follows. By setting κ near zero in flat regions and to a large value
in edge and texture regions, we can expect a reduction of computational complexity,
prevent amplifying noise component in flat regions, and preserve or even enhance
texture regions and edges. In order to select spatially adapted regression factors, we
can make use of the scaling parameter γi, which we earlier used to normalize the
covariance matrix in (37). This makes practical sense since γi is high in texture and
edge areas and low in flat area as shown in Fig. 10. Because γi is already computed
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Fig. 10 Local scaling parameters (γi) for (a) Barbara image and (b) Boat image. With the
choice of the adaptive regression order κi = 0.01γi (42), the regression order becomes nearly
zero in the areas where γi is close to zero, while in areas where γi is around 5, the resulting
equivalent kernel given by (41) approximately becomes second order.

when computing the steering matrices, no extra computation is required. A good
way to choose the regression factor (κ) locally is to make it a simple function of γi.
Specifically, we choose our adaptive regression factor by

κi = 0.01γi, (42)

where 0.01 is a global parameter controlling the overall sharpening amount. E.g. it is
possible to choose a larger number if a stronger sharpening effect is desired globally.
As shown in Fig. 10, with the choice of the adaptive regression order κi = 0.01γi

(42), the regression order becomes close to zero in the area where γi is close to
zero, while the resulting equivalent kernel given by (41) approximately becomes a
second order kernel in the area where γi is around 5. Setting κ too large results in
overshoot of pixel values around texture and edges. We process color video in the
YCbCr domain and estimate spatial orientations in the luminance component only,
since the human visual system is most sensitive to orientations in the luminance
component.

5 Example Video Upscaling and Denoising Results

In this section, we provide video frames generated by the proposed MASK algo-
rithm as visual illustrations of its performance. We will provide examples of spa-
tial upscaling, temporal frame interpolation, and denoising. We compare MASK to
two other state-of-the-art multi-frame video upscaling methods: Non Local-mean
based super resolution [11] and 3-D iterative spatial steering kernel regression (3-
D ISKR) [13]. The algorithm proposed in [11] consists of multi-frame fusion with
Non Local-mean based weighting, as well as explicit deblurring. 3-D ISKR is an
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(a) Input (b) Cubic interpolation

(c) NL-mean based SR (d) 3-D ISKR

(f) MASK

Fig. 11 Spatial upscaling of Car-phone video sequence: (a) input video frames at time t = 25
(144×176, 30 frames) and (b)-(f) the upscaled frames by single frame bicubic interpolation,
NL-mean based SR [11], 3-D iterative SKR [13], and MASK, respectively.
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algorithm closely related to MASK involving iterative 3-D steering kernel regres-
sion; however, it does not require accurate (subpixel) motion estimation. For 3-D
ISKR and MASK, we set the temporal window of support 5, and NL-based SR ap-
proach searches similar local patches across all the frames in time and the window
of support 21×21 in space.

The first example shown in Fig. 11 is a visual comparison of spatial upscaling
and temporal frame interpolation results, using MASK, NL-mean based SR, and 3-
D ISKR. For this example, we used the Car-phone video sequence in QCIF format
(144× 176 pixels, 30 frames) as input, and spatially upscaled the video with an
upscaling factor of 1 : 3. Fig. 11(a) shows the input frame at time t = 25 (upscaled by
pixel-replication). The upscaled results by single frame bicubic interpolation, NL-
mean based SR, 3-D ISKR, and MASK are shown in Figs. 11(b)-(f), respectively. In
addition, Fig. 12 shows a spatiotemporal upscaling example (both spatial upscaling
and temporal frame interpolation) of the Car-phone sequence by 3-D ISKR and
MASK. For this example, we estimated an intermediate frame at time t = 25.5 as
well as spatially upscaling the intermediate frames with the upscaling factor of 1 : 3.
Comparing to the result by bicubic interpolation, all the adaptive methods, NL-
mean based SR, 3-D ISKR, and MASK, reconstruct high-quality upscaled frames,
although each has a few artifacts: jaggy artifacts on edge regions for NL-mean based
SR and MASK, and overshooting artifact for 3-D ISKR.

The second example is spatio-temporal video upscaling using two color real
video sequences: Spin-Calendar (504×576 pixels, 30 frames) and Texas (504×576
pixels, 30 frames). Fig. 13(a) and 14(a) show an input frame of each sequence at
time t = 5, respectively. Spin-Calendar has relatively simple motions, namely ro-
tations. Texas sequence contains more complicated motions, i.e., occlusion, 3-D
rotation of human heads, and reflection on the helmet. Furthermore, Spin-Calendar

(a) 3-D ISKR (b) MASK

Fig. 12 Spatiotemporal upscaling of Car-phone video sequence: (a) upscaled frames by 3-D
iterative SKR [13] at t = 25.5, and (b) upscaled frames by MASK at t = 25.5. In this example,
we upscale Car phone sequence shown in Fig. 11(a) with the spatial upscaling factor 1 : 3 and
the temporal upscaling factor 1 : 2.
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contains camera noise, while Texas contains significant compression artifacts (e.g.
blocking). Video frames that were spatially upscaled by a factor of 1 : 2 using single
frame bicubic interpolation, 3-D ISKR, and MASK are shown in Figs. 13(b)-(d) and
14(b)-(d), respectively. Also, Figs. 13(e)-(h) and 14(e)-(h) show selected portions of

(a) Input (b) Bicubic interpolation

(c) 3-D ISKR (d) MASK

(e) Input (f) Bicubic interpolation (g) 3-D ISKR (h) MASK

Fig. 13 Spatial upscaling of Spin-Calendar video sequence: (a) the input frame at t = 5, (b)-
(d) the upscaled video frames by bicubic interpolation, 3-D ISKR, and MASK, respectively.
(e)-(h) Enlarged images of the input frame and the upscaled frames by cubic interpolation,
3-D ISKR, and MASK, respectively.
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the input frame, the upscaled frame using single frame bicubic interpolation, 3-D
ISKR, and MASK at a large scale. Next, we estimated an intermediate frame at time
t = 5.5 for both Spin-Calendar and Texas sequences by 3-D ISKR and MASK, and
the results are shown in Fig. 15. The intermediate frames are also spatially upscaled

(a) Input (b) Bicubic interpolation

(c) 3-D ISKR (d) MASK

(e) Input (f) Bicubic interpolation (g) 3-D ISKR (h) MASK

Fig. 14 Spatial upscaling of Texas video sequence: (a) the input frame at t = 5, (b)-(d) the
upscaled video frames by bicubic interpolation, 3-D ISKR, and MASK, respectively. (e)-
(h) Enlarged images of the input frame and the upscaled frames by cubic interpolation, 3-D
ISKR, and MASK, respectively.
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by the same factor (1 : 2). Again, both 3-D ISKR and MASK produce high quality
frames in which camera noise and blocking artifacts are almost invisible while the
important contents are preserved.

(a) 3-D ISKR (b) MASK

(c) 3-D ISKR (d) MASK

(e) 3-D ISKR (f) MASK (g) 3-D ISKR (h) MASK

Fig. 15 Spatiotemporal upscaling of Spin-Calender and Texas video sequences: (a),(c) the
estimated intermediate frames at time t = 5.5 by 3-D ISKR, (b),(d) the estimated intermediate
frames by MASK. The frames are also spatially upscaled with the upscaling factor of 1 : 2.
The images in (e)(f) and (g)(h) are the enlarged images of the upscaled frames by 3-D ISKR
and MASK, respectively.
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6 Conclusion

In this chapter, we presented an extension of steering kernel regression for video
upscaling. Our proposed algorithm is capable of spatial upscaling with resolution
enhancement, temporal frame interpolation, noise reduction, as well as sharpening.
In the proposed algorithm, we construct 3-D kernels based on local motion vec-
tors, unlike our previous work [11, 13]. The algorithm includes motion estimation,
but doesn’t use explicit motion compensation. Instead, the spatio-temporal kernel
is oriented along the local motion trajectory, and subsequent kernel regression acts
directly on the pixel data. In order to avoid introducing artifacts due to motion esti-
mation errors, we examine the motion vectors for their reliability. We apply a tem-
poral weighting scheme, which allows us to suppress data from neighboring frames
in the case of a motion error. Also, we reduce the computational cost of MASK
by using a block-based motion model, using a quantized set of local orientations,
and adapting the regression order. The adaptive regression order technique not only
reduces the computational cost, but also provides sharpening while avoiding noise
amplification.

We have presented several video upscaling examples showing that the MASK
approach recovers resolution, suppresses noise and compression artifacts, and is ca-
pable of temporal frame interpolation with very few artifacts. The visual quality of
the upscaled video is comparable to that of other state-of-the-art multi-frame up-
scaling methods, such as the Non-Local-Means based super-resolution method [11]
and 3-D ISKR [13]. However, the computational complexity of MASK in terms of
processing and memory requirements is significantly lower than these alternative
methods. In order to improve the visual quality of MASK further, it may be nec-
essary to include more accurate motion estimation, for example by using smaller
block sizes (currently 8×8), or extending the motion model, e.g. to an affine model.

References

1. Mitchell, D.P., Netravali, A.N.: Reconstruction Filters in Computer Graphics. Computer
Graphics 22(4), 221–228 (1988)

2. Park, S.C., Park, M.K., Kang, M.G.: Super-Resolution Image Reconstruction: A Techni-
cal Overview. IEEE Signal Processing Magazine 20(3), 21–36 (2003)

3. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and Challenges in Super-
Resolution. International Journal of Imaging Systems and Technology, Special Issue on
High Resolution Image Reconstruction (invited paper) 14(2), 47–57 (2004)

4. Narayanan, B., Hardie, R.C., Barner, K.E., Shao, M.: A Computationally Efficient Super-
Resolution Algorithm for Video Processing Using Partition Filters. IEEE Transactions on
Circuits and Systems for Video Technology 17(5), 621–634 (2007)

5. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Boston (1992)

6. Hardie, R.: A Fast Image Super-Resolution Algorithm Using an Adaptive Wiener Filter.
IEEE Transactions on Image Processing 16(12), 2953–2964 (2007)



274 H. Takeda, P. van Beek, and P. Milanfar

7. Fujiwara, S., Taguchi, A.: Motion-Compensated Frame Rate Up-Conversion Based on
Block Matching Algorithm with Multi-Size Blocks. In: Proc. International Symposium
on Intelligent Signal Processing and Communication Systems, Hong Kong, China (2005)

8. Huang, A., Nguyen, T.Q.: A Multistage Motion Vector Processing Method for Motion-
Compensated Frame Interpolation. IEEE Transactions on Image Processing 17(5),
694–708 (2008)

9. Kang, S., Cho, K., Kim, Y.: Motion Compensated Frame Rate Up-Conversion Using
Extended Bilateral Motion Estimation. IEEE Transactions on Consumer Electronics 53,
1759–1767 (2007)

10. Choi, B., Han, J., Kim, C., Ko, S.: Motion-Compensated Frame Interpolation Using Bi-
lateral Motion Estimation and Adaptive Overlapped Block Motion Compensation. IEEE
Transactions on Circuits and Systems for Video Technology 17(4), 407–416 (2007)

11. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the Non-Local-Means to
Super-resolution Reconstruction. IEEE Transactions on Image Processing 16(2), 36–51
(2009)

12. Buades, A., Coll, B., Morel, J.M.: A Review of Image Denoising Algorithms, with a New
One. In: Proc. Multiscale Modeling and Simulation, Society for Industrial and Applied
Mathematics (SIAM) Interdisciplinary Journal, New Orleans, LA, USA (2005)

13. Takeda, H., Milanfar, P., Protter, M., Elad, M.: Superresolution without Explicit Subpixel
Motion Estimation. IEEE Transactions on Image Processing 18(9), 1958–1975 (1958)

14. Takeda, H., Farsiu, S., Milanfar, P.: Kernel Regression for Image Processing and Recon-
struction. IEEE Transactions on Image Processing 16(2), 349–366 (2007)

15. Takeda, H., Farsiu, S., Milanfar, P.: Robust Kernel Regression for Restoration and Re-
construction of Images from Sparse Noisy Data. In: Proc. International Conference on
Image Processing (ICIP), Atlanta, GA, USA (2006)

16. Tomasi, C., Manduchi, R.: Bilateral Filtering for Gray and Color Images. In: Proc. IEEE
International Conference of Compute Vision, Bombay, India (1998)

17. Elad, M.: On the Origin of the Bilateral Filter and Ways to Improve it. IEEE Transactions
on Image Processing 11(10), 1141–1150 (2002)

18. Pham, T.Q., van Vliet, L.J., Schutte, K.: Robust Fusion of Irregularly Sampled Data Us-
ing Adaptive Normalized Convolution. EURASIP Journal on Applied Signal Processing,
1–12 (2006)

19. Takeda, H., Farsiu, S., Milanfar, P.: Deblurring Using Regularized Locally-Adaptive Ker-
nel Regression. IEEE Transactions on Image Processing 17(4), 550–563 (2008)

20. Takeda, H., van Beek, P., Milanfar, P.: Spatio-Temporal Video Interpolation and Denois-
ing Using Motion-Assisted Steering Kernel (MASK) Regression. In: Proc. IEEE Inter-
national Conference on Image Processing (ICIP), San Diego, CA, USA (2008)

21. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1995)
22. Nadaraya, E.A.: On Estimating Regression. Theory of Probability and its Applications,

141–142 (1964)
23. Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to

Stereo Vision. In: Proc. DARPA Image Understanding Workshop (1981)
24. Stiller, C., Konrad, J.: Estimating Motion in Image Sequences - A Tutorial on Modeling

and Computation of 2D Motion. IEEE Signal Processing Magagine 16(4), 70–91 (1999)
25. Ozkan, M., Sezan, M.I., Tekalp, A.M.: Adaptive Motion-Compensated Filtering of

Noisy Image Sequences. IEEE Transactions on Circuits and Systems for Video Tech-
nology 3(4), 277–290 (2003)

26. Haralick, R.M.: Edge and Region Analysis for Digital Image Data. Computer Graphic
and Image Processing (CGIP) 1(12), 60–73 (1980)



Chapter 11
Temporal Super Resolution Using Variational
Methods

Sune Høgild Keller, François Lauze, and Mads Nielsen

Abstract. Temporal super resolution (TSR) is the ability to convert video from one
frame rate to another and is as such a key functionality in modern video process-
ing systems. A higher frame rate than what is recorded is desired for high frame
rate displays, for super slow-motion, and for video/film format conversion (where
also lower frame rates than recorded is sometimes required). We discuss and detail
the requirements imposed by the human visual system (HVS) on TSR algorithms,
of which the need for (apparent) fluid motion, also known as the phi-effect, is the
principal one. This problem is typically observed when watching video on large and
bright displays where the motion of high contrast edges often seem jerky and unnat-
ural. A novel motion compensated (MC) TSR algorithm using variational methods
for both optic flow calculation and the actual new frame interpolation is presented.
The flow and intensities are calculated simultaneously in a multiresolution setting.
A frame doubling version of our algorithm is implemented and in testing it, we focus
on making the motion of high contrast edges to seem smooth and thus reestablish
the illusion of motion pictures.

1 Background

TSR is most asked for in displaying low frame rate recordings on high frame rate
displays, but is also needed both for super slow-motion (super ≡ high quality) and
for combining different frame rate recordings into one common frame rate program.
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(a) (b) (c)

Fig. 1 a True frame from a sequence where the square moves diagonally, b bad TSR by
frame interpolation, and c good motion compensated TSR (variational in this case).

In terms of number of frames per second (fps) created from a given input, TSR is not
just an upscaling, but also a downscaling. This means we will have to create entirely
new frames even if we downscale in time, and thus we use the term TSR also for
downscaling (although the term ’super resolution’ implies a higher resolution). Both
spatial super resolution and TSR are ill-posed sampling problems.

Upscaling in time is widely needed as most displays (projectors, plasma, LCDs
and CRTs) have higher frame refresh rates than the frame rate used when recording
the displayed material. All cinematographic movies are for instance shot at 24 fps,
while practically all displays today have refresh rates of at least 50 Hz. The higher
display frequencies are necessary to stop the perceived image sequence from flick-
ering. In the human visual system (HVS), any part of a scene projected onto the
retina away from the fovea (center of a focus) is subject to flicker as these regions
of the retina are highly sensitive to flickering.

To increase the frame rate, many flat panel TV-sets and most PC displays do not
use real TSR but just repeat the same frame once or twice, and in cinemas every
frame is shown again two or three times to avoid flicker. At small viewing angles
(the part of the field of view covered by the screen) frame repetition works fine most
of the time, but at larger viewing angles motion will start to appear jerky. The phi-
effect—the effect of perceiving a sequences of still images as motion pictures—is
halted [1]. The problem is typically seen around high contrast edges in motion as
edges are the major information perceived and processed in lower level vision. The
archetype example of jerky motion is a horizontal camera pan, e.g. in well lit interior
scenes or exterior shots of houses and cities.

There are three different methods for frame rate conversion: a) frame repetition,
b) frame averaging and c) motion compensated interpolation. Frame repetition is
the simplest and does not create any artifacts from bad temporal interpolation, but
the motion portrayal stays unnatural. When conversion ratio it not integer, e.g. 24
to 60 fps, frames will be repeated a different number of time adding some nonlinear
jumps to the motion, possibly increasing the unnaturalness of the motion. Frame
averaging, where the two nearest known frames are weighed by the inverse of their
distance to the new frame, yields double exposure-like images in case of motion



Temporal Super Resolution Using Variational Methods 277

as shown in Fig. 1(b). Frame averaging will to a certain extent smooth motion as
compared to frame repetition, but the blending is an undesired artifact.

Better results are obtained when one computes the 2D optic flow between known
frames and then compensate for the motion in the new frame: Only when know-
ing the flow one can truly create the data in moving regions of the frame. This is
motion compensated frame rate conversion, which we denote temporal super reso-
lution, TSR. Variational frameworks offer methods for computing both dense and
accurate flow fields and high quality motion compensated intensity interpolation to
get optimal TSR results as seen in Fig. 1(c).

1.1 Frame Rate Requirements

We will focus on the frame rate requirements of humans viewers as our TSR algo-
rithm is aimed at application in video processors in broadcast or home entertainment
systems where pleasing human viewers is the final goal. The properties of the hu-
man visual system guides what minimum frame rates should be used to keep the
viewing experience pleasing. The two main requirements are:

• The phi-effect should be obtained to create apparent living pictures with natural
motion portrayal.

• Flickering should be avoided when displaying image sequences.

The phi-effect is the effect of recording and showing a set of still images so fast
after each other that any motion in the depicted scene appears real and natural as the
HVS will interpolate the simplest (linear) motion between the frames [1]. To create
the phi-effect, the frame rate has to high enough for the HVS to perceive all motion
as natural in spite of this interpolation.

Flickering occurs on when an image is not updated often enough, that is the
update frequency (frame refresh rate) is so low that the eye senses flicker.

Determining the exact minimum required frame rate of image sequences is a
difficult, multi-parameter problem (in HVS properties and viewing conditions) but
the consensus is that more than 50 fps is needed to fulfill the requirements above.
However, it ultimately depends on the tracking done in the eye of the viewer. The
rise of 100 Hz TV in Europe and no 120Hz in the US and Asia indicates that 60
Hz might suffice for TVs. Flicker can be avoided by frame repetition, but to get the
phi-effect—perceived smooth and natural motion—motion compensated frame rate
conversion is necessary.

1.2 Blur Acceptance in Human Vision

Blur is a very common artifact in image sequences, but depth of focus blur and
motion blur is accepted by viewers and in de-noising of images blur is often the
side effect, but is preferred over local, high contrast artifacts like noise, block effect
(JPEG and MPEG material) as edges (high contrast) is the key input to the HVS.
Doing TSR in a wrong or incomplete way will most likely create artifacts in the
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new, interpolated frames. Using a motion compensated variational method, blur will
be the most likely artifact. Thus we need to know (if possible) how much blur is
acceptable to the human visual system.

Judging generally and objectively how unsharp we can allow parts (say every
other frame) of an image sequence to be, is still an open question. Vision research
does not offer an answer as the boundary between sharp and blurred in human per-
ception is still sought for in more limited sub-problems, e.g. in [2] where the authors
try to find out when blur becomes bothersome on simple stationary text/characters.
In [3] (Burr and Morgan) and [4] (Morgan and Benton) it is shown experimentally
that moving objects often appear sharp to the HVS, not because some mechanism
removes blur, but because the HVS is unable to decide whether the object is really
sharp or not. Even though we do not get an answer to our question off blur accep-
tance from vision research, we do get helping pointers: It seems we can allow for
some blur when doing temporal super resolution and still get subjectively good re-
sults (evaluation by the HVS of the viewers). In [5] Chen et al. shows that motion
blur in LCD displays can be reduced by inserting blurred frames between frames
that are enhanced correspondingly in the high frequencies. The safest way towards
optimal TSR is, however, to make the new frames in the output as sharp as possible.

1.3 Related Work

Temporal interpolation of signals is not new, it has been done for a long time for
1D signals in signal processing, but these methods cannot be applied to frame rate
conversion due to the presence of motion.

In medical imaging interpolation of new frames or volumes of a time sequence
of 2D or 3D scans are of interest, mainly in lung (respiratory gated) and heart (heart
gated) imaging. The work by Ehrhardt et al. in [6] is a typical and recent exam-
ple, where temporal super resolution in heart gated imaging is performed using an
accurate flow algorithm, but with simple motion compensated interpolation of in-
tensities along the flow lines to get the new frames. In the field of video processing
there are several TSR patents, e.g. [6, 7, 8], mostly doing flow calculation (good or
bad) followed by some simple, non-iterative averaging along the flow. TSR is also
done in integrated circuits (ICs) as described by de Haan in [9] using 8× 8 block
matching flow with a median filter for motion compensated interpolation (see [10]
for details). In a recent paper [11] by Dane and Nguyen motion compensated inter-
polation with adaptive weighing to minimize the error from imprecise or unreliable
flow is presented. This elaborate scheme is surely needed as the flow used in [11] is
the MPEG coding vectors, typically prediction error minimizing vectors, which can
be very different from the optical flow.

In [12] Karim et al. focus on improving block matching flow estimation for mo-
tion compensated interpolation in low frame rate video and no less then 16 refer-
ences to other TSR algorithms are given. An overview of early work on motion
compensated temporal interpolation in general (TSR, coding, deinterlacing etc.) is
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given by Dubois and Konrad in [13] where they state that even though motion tra-
jectories are often nonlinear, accelerated and complex, a simple linear flow model
will suffice in many cases. In [14] Chahine and Konrad state that complex motion
modeling can improve objective results (PSNR). The work by Brox et al. [15] shows
how variational optic flow algorithms can model and compute complex flows.

A problem, somewhat more complex than the interpolation of new frames, is
trying to create a new arbitrary viewpoint 2D sequence from a multi-camera record-
ing of a scene as done by Vedula et al. in [16]. The TSR used in that work is flow
computations using the method from [17] followed by simple intensity interpola-
tion. Shechtmanet al. [18] use a multiple camera approach to TSR (and spatial SR)
where all the cameras are assumed to be close spatially, or the scene assumed planar,
allowing simple registration to replace flow computation. This technique can not be
used on standard single camera recordings of film/television/video.

Using patches to represent salient image information is well-known [19, 20] and
an extension to spatiotemporal image sequences as video epitomes is presented and
used for TSR by Cheung et al. in [21]. It is unclear from [21] if video epitome TSR
can handle more than simple and small motion, and its learning strategy is (still)
computationally very costly.

1.4 Motion Compensated Frame Rate Conversion
with Simultaneous Flow and Intensity Calculations

The traditional approach to temporal super resolution is to first compute the flow of
the sequence and then interpolate the intensity values in the new frames. The sim-
plest TSR methods use linear interpolation along the flow trajectories; they weigh
each of the two original input frame contribution inversely by their distance to the
new frame being interpolated. Simple TSR gives perfect results if the computed flow
field is always reliable and precise, but this is rarely the case. Thus a fall back option
is needed, often to simple temporal averaging with no use of motion information.
Dane and Nguyen e.g. reports 4–42% fall back in [11].

When interpolating or warping the flow computed between two known frame into
any new frame(s) positioned between them, it will not always be so that there is a
flow vector in all pixel positions of the new frame(s). A fall back as above could be
used, but one could also fill in neighboring flow vectors hoping they will be correct.
This is a very complex strategy as seen in [8]. Without knowing the intensities of the
new frame(s), it is impossible to know if the guessed flow is correct, but to get the
intensities we need to know the flow! This case of two unknowns each depending
on the other is truly a hen–egg problem.

In order to work around this problem, we use an approach that aims at recovering
both the image sequence and the motion field simultaneously. In actual computa-
tions, a pure simultaneous approach might become very complex and instead we
use an iterative procedure: Given an estimate of the image sequence, we can update
the estimate of the motion field, and given an estimate of the motion field, we can
produce a new estimate of the image sequence. This procedure is embedded into a
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multiresolution framework, which is common approach in motion calculations (to
enable computation of large flows).

1.5 Benchmarking in Testing

When presenting a new solution to a problem, any claims of improved results or
performance should be supported by a reasonable validation of the claims. In most
cases the other methods used to compare ones own method to are rather simple,
as authors often have to balance the effort between improving one’s own method
and implementing other advanced methods for comparison. A common benchmark
for testing TSR algorithms would make it easy to compare performances and re-
sults, but none exist. Even with a data set for benchmarking generally agreed upon,
the question of how to evaluate the results remains—should it be done objectively
and/or subjectively and what exact method(s) of evaluation should be used.

1.6 Outline

The rest of this chapter is organized as follows. In the next section, a generic energy
formulation for TSR is proposed, and we study in more details the case of frame
doubling proposing two algorithms. Then in Section 3 we evaluate our two frame
doubling methods through a series of experiments before drawing our conclusions
in section 4.

2 Energy Minimization Formulation

We use a probabilistic formulation to get to our energy formulation. This formu-
lation was first proposed in [22] for image sequence inpainting and then used for
deinterlacing in [23] and well as video (spatial) super resolution in [24].

2.1 Variational Temporal Super Resolution

We assume we are given an “degradation process” D which produces a “low-
resolution” observed output from an hypothetical high-resolution input, as well as
such a low resolution observation u0. Following [22], the probability that a high-
resolution input u and motion field v produces the output u0 via D, p(u,v|u0,D), is
factored as

p(u,v|u0,D) ∝ p(u0|u,D)︸ ︷︷ ︸
P0

p(us)︸ ︷︷ ︸
P1

p(ut |us,v)︸ ︷︷ ︸
P2

p(v)︸︷︷︸
P3

. (1)

where us and ut are the spatial and temporal distribution of intensities respectively.
On the left hand side we have the a posteriori distribution from which we wish to
extract a maximum a posteriori (MAP) estimate. The right side terms are: P0, the
image sequence likelihood, P1 the spatial prior on image sequences, P3 the prior on
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motion fields, and P2 a term that acts both as likelihood term for the motion field
and as spatiotemporal prior on the image sequence. In the case of frame doubling,
D consists in “forgetting every second frame”. It becomes a linear map of a bit more
complex form for different frame rate ratios, typically a projection and inverting it
is generally ill-posed.

In this work we do not consider noise contamination between the “ideal” u and
the observed u0, i.e. we do not try to denoise u0. The likelihood term P0 is then a
Dirac distribution

p(u0|u,D) = δDu−u0 .

We use a Bayesian to variational rationale à la Mumford [25], E(x) = − log p(x),
to transform our MAP estimation into a continuous variational energy minimization
formulation, taking into account the form of the likelihood term

arg.min
(u,v),Du=u0

E(u,v) = E1(us)+ E2(us,ut ,v)+ E3(v) (2)

(using the same notation for discrete and continuous formulations). Then assuming
some mild regularity assumptions, a minimizing pair (u,v) must satisfy the condi-
tion ∇E(u,v) = 0 where∇ is the gradient, and the solution expressed by the coupled
system of equations {

∇uE(u,v) = 0 , Du = u0

∇vE(u,v) = 0 .
(3)

This system can be considered simultaneous when alternatingly updating the guesses
on solutions to ∇uE = 0 and ∇vE = 0 down through the multiresolution pyramid as
discussed in Sect. 1.4. We thus minimize both the flow and intensity energy on each
level of the pyramid as we iterate down through it.

We now discuss the choice of the actual terms in the energy (2). The term E0

has already been described above: its function is to preserve input frames unaltered
whenever they are at the position of an output frame.

The term E2 is important as it models the consistent temporal transport of infor-
mation into the new frames along the flows (forward and backward). It acts both
as a prior on the intensities and as the likelihood of the motion field. We derive it
from the classical brightness constancy assumption (BCA) which assume intensity
preservation along the motion trajectories. We in fact use its linearized version, the
optic flow constraint (OFC) ∇u · v + ut = 0, where ∇ denotes the spatial gradient
(∂x,∂y)t used first in [26], but we punish a regularized 1-norm form of it, not the
(original) quadratic ones. In the sequel, we write

∇u ·v+ ut = Lvu

often referred to as the Lie derivative of u along v (although, it should, more cor-
rectly be along the spatiotemporal extension (vt ,1)t of v).

The term E3 is the prior on the flow. It serves the purpose of filling in good
estimates of flow vectors in smooth regions from accurate values calculated where
salient image data is available (edges, corners etc. giving nonzero image gradients).
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To insure that flow discontinuities are preserved, we use a regularized form of the
Frobenius norm of the Jacobian of v [27].

The term E1 ensures spatial regularity of the recreated frames. We use a smooth
form of the classical total variation ROF model [28]. It is especially useful when
the motion estimates are unreliable. Assuming nevertheless that we can reliably
estimate motion most of the time, this term should have a limited influence, by
means of giving it a small weight.

The detailed energy formulation we use thus is

E(u,v) = λ1

∫
Ω
ψ(|∇u|2)dx︸ ︷︷ ︸

E1

+λ2

∫
Ω
ψ(|Lvu|2)dx︸ ︷︷ ︸

E2

+λ3

∫
Ω

(
ψ(|∇3v1|2 + |∇3v2|2)

)
dx︸ ︷︷ ︸

E3

, Du = u0 (4)

where Ω is the entire image sequence domain, ∇3 = (∂x,∂y,∂t)T is the spatiotem-
poral gradient, and the λ ’s are positive constants weighing the terms with re-
spect to each other. v1 and v2 are the x- and y-components of the flow field, i.e.
v = (v1,v2)T . (In the implementation we use a double representation of the flow
field in the forward and backward directions respectively. In theory and in the con-
tinuous domain they are one and the same, but is split in practice—mainly due to
discretization.) ψ(s2) =

√
s2 + ε2 is an approximation of the | · | function as the lat-

ter is non-differentiable at the origin. ε is a small positive constant (10−8 in our
implementation).

Splitting the energy (4) accordingly in an intensity and a flow part, we get this
energy to be minimized for the intensities

Ei(u) = λs

∫
Ω
ψ(|∇u|2)dx︸ ︷︷ ︸

E1

+λt

∫
Ω
ψ(|Lvu|2)dx︸ ︷︷ ︸

E2

, Du = u0 (5)

where λs = λ1 and λt = λ2 in (4). For the flow we need to minimize

E f (v) = λ2

∫
Ω
ψ(|Lvu|2)dx︸ ︷︷ ︸

E2

+λ3

∫
Ω

(
ψ(|∇v1|2)+ψ(|∇v2|2)

)
dx︸ ︷︷ ︸

E3

. (6)

In order to improve quality, the BCA in E2 could be supplemented with the gradient
constancy assumption (GCA) proposed first by Brox et al. in [15] for optical flows
only. The GCA assumes that the spatial gradients remain constant along trajectories,
and can be written as (

uxx uxy

uxy uyy

)
v+∇ut = 0.
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We use the more compact form Lv∇u = 0. It will improve the quality of the flow
to add it to E f (v) in (6), but as shown in [29], the added complexity only pays off
in a minimal quality improvement if it is added to the intensity energy Ei(u) in (5).
Adding the GCA to E2 for the flow in E f (v), gives

E f
2 (v) =

∫
Ω

(
λ2ψ(|LVu|2 + γ |LV∇u|2)

)
dx (7)

where γ is a positive constant weight. If we set γ = 0 in our implementation, we
are back at (6) and thus we are able to test both with and without GCA for the flow
energy in one joint implementation.

2.2 Implementation of TSR: Frame Doubling

To test our ideas we have chosen to implement a frame rate doubler, but implement-
ing solutions for other conversion rates would be easy. Frame doubling here means
that the projection D forgets every second frame. We may decompose the domain Ω
as the domain of known frames K and its complementΩ\K. The constraint Du = u0

becomes
u|K = u0.

2.2.1 Euler-Lagrange Equations and Their Solvers

To minimize the intensity and flow energies given in (5), (6) and (7) we derive and
solve the associated Euler-Lagrange equations. Let us start with the flow energy
minimization: After exchanging the E2-term of the flow energy in (6) with the E2-
term from (7) to incorporate to option of using GCA, the flow Euler-Lagrange equa-
tion is derived. It is implemented numerically along the lines given by Brox et al. in
[15] and by Lauze in [22, 30] and minimized iteratively by repeated linearizations
of it, each linear equation being solved by a Gauss-Seidel solver.

Details on the computation of the gradient of the intensity energy (5) can be found
in [22] (details on discretization in [24]), and we here recall the final result:

∇uEi = −λs∇2 · (A(u)∇u)−λt∇3 · (B(u)(Lvu)V) (8)

where V = (vT ,1)T is the spatiotemporal extension of v, ∇2· is the 2-dimensional
divergence operator, while ∇3· is the 3-dimensional one and the coefficients A(u)
and B(u) are, respectively

A(u) = ψ ′(|∇u|2), B(u) = ψ ′(|Lvu|2).

In order to solve (8) numerically, we again use a fixed point approach: At each fixed
point iteration, A(u) and B(u) are computed from the estimated values of u and v
and thus frozen. Equation (8) then becomes linear. It is discretized and solved here
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too by Gauss-Seidel relaxation. Only the discretization of Lvu is somewhat non
standard. It uses the OFC/BCA approximation

Lvu ≈ u(x + v,t + 1)−u(x, t)

which gives rise to a numerical intensity diffusion along trajectories with correction
for the potential trajectories divergence. Details can be found in [29].

2.2.2 Algorithm

Before detailing our frame doubling algorithm, here it is in overview (leaving out
the special initialization at the top level):

At each level from the top, coarse to fine, for k = levels until k = 1

1. Calculate the forward and backward flows, v f
0 and vb

0, of the resized origi-
nal input sequence u0,k minimizing (6) with/without E2 from (7).

2. Initialize new frames: u(x,t,k) = resize[u(x, t,k−1)] in the domain D.
3. Initialize forward and backward flows of new frames:

v(x,t,k) = resize[v(x,t,k−1)] in the domain D.
4. Calculate the flows v f and vb of the output sequence u minimizing (6)

with/without E2 from (7).
5. Calculate new frames in u|D by minimizing (5).

In our multiresolution settings, on each level k of the pyramid, we first compute
the forward and backward flows, v f

0 and vb
0, of the original input sequence u0 (re-

sized to the size of the current level), minimizing (6) (including E2 from (7) to give
the option of using GCA or not) with the resized input sequence u0 simply replac-
ing u. (E f (v) is minimized over the domain K instead of over Ω .) This is to have
a highly reliable anchor point flow when calculating the flows v f and vb of the full
output sequence. At the given level of the pyramid, k, we then initialize intensities
and the flows of the new frames by resizing the intensities and flows calculated at
the above coarser level k + 1. Then we calculate the flows from these initializations
by minimizing either (6) or (7) (w/o GCA). Next we calculate u at level k by mini-
mizing the energy (5) knowing v f and vb and using the resized intensities from level
k+1 as initialization of u in the new frames, just as when calculating v f and vb. The
resizing function (resize) used is given in [31].

The use of a multiresolution schemes is considered essential when doing varia-
tional flow calculations. In TSR, calculating both flow and intensities at each level
solves the hen–egg problem of what comes first in a new frame: The flow or the
intensities. Thus we iteratively improve first one and then the other to get simulta-
neous computations and optimize our solution using a small scale factor between
levels to get optimal initializations.
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2.2.3 Initialization

At the coarsest level at the top of the pyramid we do not have a k + 1 level to
initialize our data from and thus have to use temporal initialization (inferior to k +1
initialization). For the flow calculation we have chosen to do frame averaging of
both flow and intensities. If the new frame is located at time n and the two know
frames are at times n± 1/2 then v(x,n) =

(
v0(x,n− 1/2)+ v0(x,n + 1/2)

)
/2 and

u(x,n) =
(
u0(x,n− 1/2)+ u0(x,n + 1/2)

)
/2. Even though the flow we compute

at the top level is (almost) of subpixel size due to the downscaling, we still use
it to re-initialize the intensities by simple interpolation along the flow u(x,n) =(
u0(x + vb,n−1/2)+ u0(x+ v f ,n + 1/2)

)
/2 before we minimize Ei(u).

3 Experiments

We have implemented our frame doubling algorithm in such a way that we can test
it in two versions: With and without the gradient constancy assumption on the flow.
With GCA on the flow, we expect the most correct results as both flow and intensities
are subject to minimal blurring. Without GCA on the flow, a more blurred flow is
expected and thus also a more blurred intensity output.

The tests conducted have focused on the major problem of having too low a frame
rate in image sequences: Unnatural, jerky motion, which is typically most promi-
nent when the camera pans on scenes containing high contrast (vertical) edges. By
doubling the frame rate we will aim at reestablishing the phi-effect. The images
sequences chosen for testing all have the problem of perceived jerky, unnatural mo-
tion. The sequences are a mix of homemade and cutouts of real world motions pic-
tures on standard PAL 25 fps DVDs originating from film. All inputs and results
discussed are also given as video files (*.avi) online at: http://image.diku.
dk/sunebio/TSR/TSR.zip [32]. The shareware AVI video viewer/editor Vir-
tualDub is included in the material, and we would like to stress the importance of
viewing the results as video: The effects, artifacts and improvements discussed are
mainly temporal and not seen in stills.

3.1 Parameters

There are eleven parameters to tune in our algorithm and we have focused on op-
timizing the output quality, not speed (yet). Through extensive empirical parameter
testing we have optimized two sets of parameters for variational frame doubling
TSR; with and without GCA in the flow. The settings found to be optimal are given
in Table 1 for both versions of our algorithm. We see that settings for the intensity
energy minimization is the same for both algorithm versions, but the given values
proved optimal with both flow energy minimizations. The temporal to spatial dif-
fusion weight ratio, λt :λs, is high, favoring temporal diffusion, which ensures that
spatial diffusion is only used when temporal information is highly unreliable. Low-
ering the ratio from 50:1 to 20:1 gave similar results when evaluating on video, but
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Table 1 Optimal parameter settings for variational TSR. The eleventh parameter of the algo-
rithms is the convergence threshold set to 10−7 in all tests.

Flow without GCA Flow with GCA

Multiresolution Scale factor 1.04 1.04
Levels 55 or 75 55 or 75

Flow Fixed point iterations 10 5
Relaxation iterations 40 20
λ3 in (6) 30 100
λ2 in (7) 1 1
γ in (7) 0 100

Intensities Fixed point iterations 5 5
Relaxation iterations 10 10
λs in (5) 1 1
λt in (5) 50 50

judging from stills, there where minor degradations, thus we recommend λt :λs =
50:1.

The number of flow iterations needed are higher than the number of intensity
iterations needed, which illustrates the larger complexity of flow calculations.

Table 1 also shows that without GCA in the flow we need more iterations to get
optimal flows. This is because fewer point give reliable flow information when only
evaluating brightness constancy, which increases the need for flow diffusion by the
regularization term on the flow, E3 in (6). The E3-term is weighed 30 times over
BCA when we do not use GCA, but is given the same weight as GCA when GCA
is used (with the BCA nearly neglected due to the λ2:γ = 1:100 ratio).

The number of levels in the multiresolution pyramid is set to either 55 or 75
depending on the frame size of the given image sequence with a 1.04 (coarse to fine)
scale factor between the levels. The low scaling factor ensures good information
transfer down through the pyramid, but increasing it would give a speedup (the
effect on quality have not been thoroughly investigated).

We also conducted experiments using zero as initial values for both flows and
intensities in the new frames at the top level. Given the many levels we use, the
error introduced was corrected down through pyramid, showing great robustness
against bad initializations.

3.2 Evaluation Methodology

As the human visual system is the final judge when evaluating the enhancement
achieved, we will focus on subjective results (although we have not used a stan-
dardized and complex evaluation as described in [33]). To give a broader valida-
tion, we have also given objective results. Still images are an borderline accept-
able and easy way to evaluate the quality of frame doubling, but it is imperative to
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evaluate on video to judge if the motion portrayal has become natural during real-
time playback.

In our tests we have doubled frame rates from 25 to 50 fps, which should enable
viewing the video examples in the online material [32] on any modern PC screen
at refresh rates of 50 Hz or 100 Hz, whereas viewing at other rates above 50 Hz
might add some jerkiness from frame repetition (by the graphics/video card and/or
playback software). Comparing the 25 fps input sequences in [32] with the 50 fps
results should however clearly illustrate the difference in quality (e.g. using Virtual-
Dub included in [32]).

As objective measures we have used the mean square error (MSE) and the peak
signal to noise ratio (PSNR). Using the notations given in Sect. 2, the MSE and
PSNR are

MSE =
1
N ∑Ω

(u−ugt)2 PSNR = 10log10

(
2552

MSE

)
(9)

where u is the frame doubled output and ugt is the ground truth. We sum over all
pixels of the sequence (also the old frames from the input that are not changed in
the output). PSNR is measured relative to the maximum grey value, 255.

3.3 Frame Doubling Results

We generally do not discuss frame repetition results as they are identical to the input.
Thus any description of the input also fits on the corresponding frame doubling
output.

In Fig. 2 results for the sequence Square is given. Square has 50×50 frame
size, is 5 frames long in the input and 9 frames in the output. The 10× 10 square
moves diagonally down to the right. The speed of the square is 2 pixels/frame in the
output.

Frame averaging creates a double, semitransparent square as seen in Fig. 2(b).
Variational TSR perfectly recreate the square with GCA on the flow as seen in
Fig. 2(d), but not without GCA (shown in Fig. 2(c)). When watched as video [32],
the square is not perceived as unsharp in the result without GCA and the motion has
become fluent as compared to the input and the result looks identical to TSR with
GCA. The motion in the frame averaging output is jerky and has a clear trail of the
square.

The flows computed by the variational TSR algorithm on Square are shown in
Figs. 2(e)–(h). A (dis)occlusion trail can be seen in the flows, which in the non-GCA
version gives some artifacts ( Fig. 2(c)). We also see an nice filling in of the flow (by
the E3-term) in the center of the completely uniform square (image gradient zero,
which gives no flow locally from the BCA and GCA). Even though it is very hard
to detect visually in the flow fields, the flow field of the GCA version is closer to the
correct magnitude and direction at the corners of the square, yielding better intensity
result as seen in Fig. 2(d).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Frame doubling of the 50×50 sequence Square. a Original frame 3 (5 in the output).
The new frame 6 of the output created by b frame averaging, c variational TSR without GCA,
and d variational TSR with GCA. Optic flows computed by variational TSR: e backward from
frame 6 to 5 without GCA, f forward from frame 6 to 7 without GCA, g backward from frame
6 to 5 with GCA, and h forward from frame 6 to 7 with GCA. In this color representation, the
hue value gives the flow direction as coded on the boundary and the intensity gives the flow
magnitude (normalized in [0.5–1]).

The sequence Cameraman Pan is a pan (10 pixel/frame in the input) across
the image Cameraman in a 130× 100 window. On the sequence Square, frame
averaging was performing bad but not unacceptable. On Cameraman Pan the per-
formance of frame averaging is unacceptably bad as Fig. 3(b) illustrates. Artifacts
this bad are clearly visible when viewing the result as video [32] and the motion
seems, if possible, even more jerky than the motion in the 25 fps input. The motion
of the two variational TSR outputs are much smoother and appears very natural. In
Figs. 3(c) and 3(d) it is also seen how the new frames produced with variational
TSR are very similar to the original frame shown in Fig. 3(a). The only difference
is a slight smoothing, which is only seen in the stills.

Some minor (dis)occlusion errors occur at the frame boundaries of Cameraman
Pan when details leave or enter the frame, which are only spotted during video
playback if one looks for them, or happens to focus on that particular part of the
frame. The cause of this problem is our use of Neumann boundary condition: When
a flow vector points out of the frame, we use Neumann BC to spatially find a re-
placement value in side the frame. This creates a high magnitude temporal gradient
if the replacement pixel (in the neighboring frame) is very different from the pixel
currently being processed, resulting in increased spatial diffusion (which is often
unreliable).

The sequence Building is a 284×236 cutout of a PAL DVD (telecined from
film). The scene chosen has a camera tilt down a building with discrepancies from
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(a) (b)

(c) (d)

Fig. 3 Frame doubling of the 130×100 sequence Cameraman Pan. a original frame 5 (9
in the output). New frame 10 by b frame averaging, c variational TSR without GCA, and d
variational TSR with GCA.

uniform global translational motion due to the depth of the scene and variations in
the motion of the camera. Frame averaging on Building blurs the new frames
quite a lot as can be seen in Fig. 4(b). During video playback [32] this blurring
is not sensed, but the motion is as jerky as in the input. The lamps seen inside
the building seems to flicker as they are blurred to middle grey in the new frames.
These artifacts make the frame averaging result very annoying to watch. The motion
portrayal in the two variational TSR results is natural and no flickering occurs. As
seen in Figs. 4(c) and 4(d) the new frames are a bit smoothed when compared to
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(a) (b)

(c) (d)

Fig. 4 Frame doubling of the 284×236 sequence Building. a original frame 1. New frame
2 by b frame averaging, c variational TSR without GCA, and d variational TSR with GCA.

the original frames, but this is not noticeable in the videos (which in some sense
supports the results in [5] on alternating between sharp and blurred frames without
loss of overall perceived sharpness).

The sequence Control Panel is taken from the same movie as Building
and has a fast camera pan and complex motion (the person walking behind the con-
trol panel and being tracked by the camera pan). Results are given in Fig. 5 and
as videos in [32]. As with Building the frame averaging result still has jerky
motion and flickering and the new frames are also blurry, while TSR w/o GCA pro-
duce only slightly blurred frames and have overall natural motion. When looking
at single frames as stills, it becomes clear that the complexity of the motion with
many and fast (dis)occlusion is too much for our variational optic flow scheme in
its current version (both with and without GCA). As with the boundary problems
in Cameraman Pan the problems might be spotted during video playback if the
attention of the viewer happens to get focussed on just that region. Whether that will
happen in a very dynamic scene like Control Panel is hard to say. We discuss
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(a) (b)

(c) (d)

Fig. 5 Frame doubling of the 256×220 sequence Control Panel. a original frame 4 (7
in the output). New frame 8 by b frame averaging, c variational TSR without GCA, and d
variational TSR with GCA.

how our flow scheme can be improved to possibly handle more complex motion in
Sec. 3.4.

The sequence Boat (320× 306 cutout) taken from another PAL DVD has an
even faster pan than Control Panel and object motion as well. The motion is
very stuttering when the 25 fps input sequence is played back (Boat25fps.avi
from [32]) and Boat has the most unnatural motion of all the sequences we have
run tests on. Again the frame averaging result is of poor quality as seen in Fig 6(b)
and the video (BoatFrameAv50fps.avi), and again the two variational TSR
schemes produce high quality results, only slightly smoothed (Figs. 6(c) and 6(d))
but with natural motion portrayal as seen in the videos. Repeated watching of the
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(a) (b)

(c) (d)

Fig. 6 Frame Doubling on the 320×306 sequence Boat. a Original frame 2, now frame 3
of the double frame rate output, new frame 4 by b frame averaging, c variational TSR without
GCA, and d variational TSR with GCA.

variational TSR results on Boat gives a sense of a slight stutter in the motion,
indicating that 50 fps is not enough on this and other sequences with similar motion.

3.3.1 Objective Evaluation

Table 2 gives objective results for four of the test sequences evaluated subjectively in
the previous section. For the real sequences Building and Control Panelwe
have created ground truth sequences by taking out every other frame of the inputs
and used these shortened sequences as frame doubling inputs, and for the artificial
ones we have simply created the ground truth frames. On the real sequences this
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Table 2 Objective evaluation of the four frame doubling methods in test: Frame repetition,
frame averaging and variational TSR without/with GCA. MSE and PSNR scores are given for
the four test sequences Square, Cameraman Pan, Building and Control Panel.

Square Cameraman Building Control
Pan Panel

Frame repetition MSE 158.4 1887.9 462.5 1369.8
PSNR 26.13 15.37 21.48 16.76

Frame averaging MSE 82.54 1208.3 287.8 849.9
PSNR 28.96 17.31 23.54 18.84

TSR without GCA MSE 13.05 39.47 13.82 76.59
PSNR 36.97 32.17 36.73 29.29

TSR with GCA MSE 8.97 107.9 16.44 96.87
PSNR 38.60 27.80 35.97 28.27

means larger panning/tilting motions from frame to frame as we now do 12.5 to 25
fps frame doubling. Since frame repetition is not really worth comparing with other
results in stills, and since its motion portrayal is the same as in the input, we left it
out of the subjective evaluation but have included it here as it is the most widely use
method for frame rate up-conversion.

As the results in Table 2 show, our variational TSR algorithms outperforms frame
averaging as it was also the case in the subjective evaluation. It is also no surprise
that in the presence of motion, frame repetition is clearly the objectively worst per-
forming frame doubling algorithm. Whether it is subjectively worse than frame av-
eraging is however a question up for debate because of the double exposure in new
frame in frame averaging, which introduces additional artifacts.

Returning to the far better variational TSR frame doublers, the use of GCA
helps in the case of object motion. Variational TSR with GCA gives the best ob-
jective result on Square, which corresponds well with the subjective results. For
the two sequences Cameraman Pan and Building dominated by global mo-
tions, the non-GCA version is objectively better than the GCA version, which
can be explained by the GCA version tending to overfit the flows. The boundary
problems in Cameraman Pan are judged from the objective result worse in the
GCA version. On Control Panel the non-GCA version produces a smoother
flow field and thus the intensity output is also somewhat smoother, which helps
dampen the problems with wrong flow estimations of the complex flow in Control
Panel.

From our combined tests results, we can conclude that variational TSR with-
out GCA performs slightly better or the same as TSR with GCA in cases where
the sequences are dominated by global flow (camera motion). It is clear that our
motion compensated variational TSR frame doublers are producing outputs far su-
perior to the outputs from the simple methods frame averaging and frame repetition.
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Variational TSR needs to be benchmarked against other motion compensated TSR
algorithms to show its full potential.

3.4 Discussion: Improving Variational Optic Flow
for Motion Compensated Methods

Scenes with complex motion can cause problems even to advanced optic flow algo-
rithms. It is important to have a robust motion compensated algorithm that switches
off temporal input when flows are unreliable, but the limitations of the human vi-
sual system will also help in optimizing the algorithm: In scenes with complex
motion the HVS will not be able to track all the motions and thus we might get
away with producing suboptimal outputs. Still, optimal results require precise and
reliable flows, but the modeling of e.g. accelerations, whirls and transparent mo-
tions is still complex. Variational methods are getting better and better at this,
while e.g. block matching motion estimation will fail by its basic motion modeling
assumptions.

The problems we see with changes motion magnitude and directions (accelera-
tion) e.g. in Control Panel is most likely due to the fact that we use a 3D local
spatiotemporal prior on the flow, E3 in (6), reported to give better flow results than a
purely spatial 2D prior on sequences with slow temporal changes (e.g. Yosemite)
in [15, 34]. In [24] we showed that the problem might be solved by processing the
sequence in very short bites (2–4 frames) but a more robust solution would be to
consider spatiotemporal sequences as 2D+1D instead of the unnatural 3D, separat-
ing space and time, but still linking them together (naturally) along the optic flow
field. Alternatively, a flow acceleration prior could be added to the variational for-
mulation of our problem.

4 Conclusion

In this chapter we have discussed the requirements put on the design of temporal
super resolution algorithms by the human visual system, and have presented a novel
idea of simultaneous flow and intensity calculation in new frames of an image se-
quence. A novel variational temporal super resolution method has been introduced,
and it has been implemented and tested for the subproblem of frame rate doubling.
Our results showed that the use of the gradient constancy assumption gives no major
improvements on the image sequence output, but as indicated in our discussion, it
might do so as variational optic flow modeling improves.

Even though the new variational TSR algorithms do not always create perfect
new frames, they do provide high quality 50 fps video from 25 fps video without
noticeable artifacts during video playback, thus reestablishing the phi-effect in the
troublesome case of high contrast edges in motion. The framework presented also
has the potential to be used for other frame rate conversions than frame rate dou-
bling, the problems of implementation being mainly of practical character.



Temporal Super Resolution Using Variational Methods 295

References

1. Matlin, M.W., Foley, H.J.: Sensation and Perception, 4th edn. Allyn and Bacon, Boston
(1997)

2. Ciuffreda, K.J., Selenow, A., Wang, B., Vasudevan, B., Zikos, G., Ali, S.R.: Bothersome
blur: A functional unit of blur perception. Vision Research 46(6-7), 895–901 (2006);
E-published December 6 2005

3. Burr, D.C., Morgan, M.J.: Motion deblurring in human vision. Proceedings of the Royal
Society B: Biological Sciences 264(1380), 431–436 (1997)

4. Morgan, M.J., Benton, S.: Motion-deblurring in human vision. Nature 340, 385–386
(1989)

5. Chen, H.F., Lee, S.H., Kwon, O.J., Kim, S.S., Sung, J.H., Park, Y.J.: Smooth frame inser-
tion method for motion-blur reduction in LCDs. In: IEEE 7th Workshop on Multimedia
Signal Processing, pp. 581–584 (2005), ieeexplore.ieee.org
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Chapter 12 
Synthesizing Natural Images Using Spatial 
Layout Information 

Ling Shao and Ruoyun Gao* 

Abstract. We propose an algorithm for synthesizing natural images consisting of 
composite textures in this chapter. Existing texture synthesis techniques usually fail 
to preserve the structural layout of the input image. To overcome this drawback, a 
target image which contains the layout information of the input is used to control 
the synthesis process. With the guidance of this target image, the synthesized output 
resembles the input globally and is composed of the original textures. For images 
composed of textured background and a non-textured foreground object, 
segmentation is first applied on the main object and texture synthesis is used on the 
background texture. In comparison to other synthesis methods, the proposed 
solution yields significantly better results for natural images. 

1    Introduction 

Texture synthesis has experienced great development in the past two decades, and 
manifested its significance in rendering synthetic images. By reproducing visual 
realism of the physical world, it is used to create texture of any size. The goal of the 
texture synthesis can be stated as follows: given a texture sample, synthesize a new 
texture that, when perceived by a human observer, appears to be generated by the 
same underlying stochastic process [4]. 

Texture synthesis techniques are mainly divided into two groups: parametric and 
non-parametric. Parametric texture synthesis usually only works for simple and 
regular textures. Non-parametric or example-based texture synthesis can deal with a 
wide variety of texture types, from regular to stochastic. Among example-based 
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texture synthesis methods, the works of Efros and Leung [1] and Wei and Levoy [2] 
have been influential. Both methods are pixel-based, and Wei and Levoy’s method 
is basically an improved and more efficient version of [1]. The algorithm 
synthesizes an image in a raster scan order and for each unfilled pixel it does a full 
search in the sample image to find a pixel whose neighbourhood matches the best to 
the filled neighbourhood of the unfilled pixel. Tree-structured Vector Quantisation 
is used to significantly speed up the search process. Ashikhmin [3] presented a 
constrained search scheme in which only shifted locations of neighbourhood pixels 
of the current unfilled pixel are used for matching. Patch-based texture synthesis is 
proposed by Efros and Freeman [4] and Kwatra et al. [5]. These techniques are 
usually more effective for structured textures and are faster than pixel-based 
methods. 

The above mentioned synthesis methods do not consider the structural layout in 
the input sample. Therefore, the output image would look very different to the input 
globally though is composed of the same textures. For the purpose of image scaling, 
the proposed algorithm can capture both the texture elements and the global layout 
of the input. For an image composed entirely of texture, we use a target image 
which has the same size as the output to guide the synthesis process. For an image 
composed of both a foreground object and the background texture, foreground 
object is segmented and treated differently to the background texture.  

In the remainder of this chapter, we will first describe in Section 2 the Image 
Quilting algorithm introduced by Efros and Freeman [4] and use it as a benchmark for 
our proposed method. In Section 3, a novel synthesis algorithm particularly for 
natural composite textures is introduced and compared with state-of-the-art 
techniques. The texture synthesis technique based on foreground object segmentation 
is presented in Section 4. Finally, we conclude this chapter in Section 5. 

2   Image Quilting 

The Image Quilting (IQ) algorithm [4] is an efficient method to synthesize textures, 
taking the place of pixel based algorithms which are slow and unreliable. The IQ 
algorithm finds the best matched patches within certain error tolerance, called 
candidate blocks, from the input texture, and randomly selects one of the candidates 
to stitch with the existing patches of the output image. The stitching is implemented 
by finding the minimum error boundary cut in the overlap region. In this case, the 
IQ algorithm guarantees the smoothness of the output image. Generally, the image 
quilting algorithm works as follows: 

• Go through the image to be synthesized in the raster scan order in steps of one 
block (minus the overlap). 

• For every location, search the input texture for a set of blocks that satisfy the 
overlap constraints (above and left, see Fig. 1) within certain error tolerance. 
Randomly pick one such block. 
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Fig. 1 The three blocks indicated in the input texture are the candidate blocks. The block in 
the output image is under processing. 

Completed portion (grey) 
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• Compute the error surface between the newly chosen block and the old blocks at 
the overlap region. Find the minimum cost path along this surface and make that 
the boundary of the new block. Paste the block onto the texture.  

• Repeat the above steps until the whole image is completed. 

The minimal cost path through error surface of two overlapping blocks B1 and B2, 
is calculated as follows. Taking the vertical overlaps for example, the error surface 

is defined as (B
ov
 1- B

ov
 2 )2 (B

ov
 1  and B

ov
 2   indicate the overlap regions). To find the 

minimal vertical cut through this surface we traverse the error function e(i,j) and 
compute the cumulative minimum error E for all paths:       

E(i,j) = e(i,j) + min(E(i-1,j-1), E(i-1),j, E(i-1,j+1))                             (1) 

In the end, the minimum value of the last row in E will indicate the end of the 
minimal vertical path though the surface and one can trace back and find the path of 
the best cut. Similar procedure can be applied to horizontal overlaps. Fig. 1 gives an 
intuitive outline of the IQ algorithm. 

The sizes of the block and overlap are chosen by the user, and the block size must 
be big enough to capture the relevant structures in the texture, but small enough so 
that the interaction between these structures is left up to the algorithm. The size of 
the overlap is usually chosen to be 1/6 of the size of the block in the original image 
quilting algorithm. But in our implementation, we assign it to be 1/4 of the block 
size. The error is computed using the L2 norm on pixel values. The error tolerance is 
set to be within 1.1 times the error of the best matching block. 

In IQ, the patch matching method is SSD (sum of squared difference), but this 
method is computationally expensive (on the order of hours) if SSD computation is 
carried out literally. However, it can be accelerated by Fast Fourier Transform 
(FFT) [6]. 

2.1   Discussion 

The IQ algorithm is a milestone of the development of texture synthesis. With such 
a simple idea, it works extremely well for a wide range of textures. For regular 
textures, see Fig. 2(a), 2(b), the patterns of the input textures are monotonously 
repetitive, and the output images naturally preserve the repeatability of the input 
images and give satisfying results. For irregular textures, see Fig. 2(c), since the 
input texture is stochastic and no specific layout to preserve, this algorithm also 
works well. 

However, IQ has limitations in synthesizing textures consisting of an 
arrangement of small objects. These textures are commonly available in the real 
world. Fig. 2(d) depicts the result of IQ for a natural image composing two  
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(a) (b) 

(c) 
(d) 

 

Fig. 2 Results of the IQ algorithm. Top ones are inputs and bottom ones are outputs. 

distinctive textures. Although this output is smooth, yet it is not what we desire. We 
want the output image not only to have a larger size but also to have the similar  
layout as the input image. For the image quilting algorithm, it does not take the 
layout information into account. To solve this problem, we propose a new algorithm 
in Section 3. 
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Output image (initialized by the target image) 

Fig. 3 Illustration of one patch in the new algorithm. Comparing to image quilting, our 
method uses the whole block instead of just the overlap region to match all the possible 
blocks from the input. 

 

Completed portion (grey) 
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3   Texture Synthesis for Natural Images 

Based on the image quilting algorithm, our idea is to utilize a target image which 
has the same size as the desired output image and contains the layout information as 
the input. In the IQ algorithm, the error surface of searching for the best match patch 
is calculated in the region of the overlap, which has the size of 40 x 10 pixels in our 
implementation. For the sake of the layout information, we simply upscale the input 
image to be the same size as the output image, and use it as the target image for 
controlling the synthesis process. 

In the original IQ algorithm, only the overlap region as indicated in Fig. 1 is used 
to find good matches in the input texture. Since we want our new algorithm to be 
constrained by the target image, the match window is a whole block consisting of 
the overlap region from the completed portion and the remaining region from the 
target image, as illustrated in Fig. 3. The synthesis process starts with the target 
image as the initialization of the output. For the first patch in the top-left corner, the 
match window in the output image contains all the pixels from the target image, 
because no completed portion is available yet. Similar as IQ, a specified error 
tolerance is set to find several good matches from which a randomly selected patch 
is copied into the corresponding location in the output. Minimum error boundary 
cut is also adopted on the overlap regions to make the transitions between patches 
smooth. Fig. 4 depicts an example of finding of the minimum error boundary cuts. 
The process for finding good matches from the input texture is repeated until all the 
pixels in the output image are updated. 

 

 

 
(a) Input image (b) Target image (c) Zoom-in synthesis process 

Fig. 4 Illustration of updating patches in the proposed algorithm. From left to right shows (a) 
the input image, (b) the target image and (c) a zoom-in synthesis process of the top-left part 
of (b), and the white curves illustrate the found minimum error boundary cuts. 
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Since the target image is the layout constraint of the input, the output should 
follow its feature information, such as color, structure and luminance etc. In Fig. 5, 
we compare synthesis results generated by different methods. Clearly, the proposed 
method captures much better structural layout for composite textures.  

(a) 

(b) 

(c) 

(d) 

 

Fig. 5 Each column from top to bottom shows (a) the input texture, (b) result of image 
quilting without finding the minimum boundary cut, (c) result of image quilting and (d) result 
of the proposed algorithm, respectively. 
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4   Texture Synthesis Based on Segmentation 

The method described in the previous section can only be applied on images totally 
composed of textures. For objects, it does not make sense to use texture synthesis 
techniques for image up-scaling. Therefore, for images composed of both texture 
and object, we first use Intelligent Scissors [7] to outline the main object, and then 
obtain a mask image to indicate where the object is. In the second step, we input 
both the original image and the mask image to do the texture synthesis using 
modified IQ. After this step we obtain the upscaled background. At last, we enlarge 
the main object twice indicated by the mask image and stick it to the synthesized 
background. Refer to Fig. 6 for a schematic diagram of the method. 

Input 

Mask 

Input 

Mask 

Background 

   Object 

Tex. Syn. 

Up-scaling 

Merge    Output 

 

Fig. 6 Diagram of the proposed approach based on object segmentation 

In our approach we want the synthesized output image to be twice as large as the 
input. During the synthesis procedure, we use the mask image to differentiate the 
area of object and the area of the textured background. Fig. 7 shows an example of 
the algorithm. Firstly, texture synthesis as described in Section 3 is used to 
synthesize the background texture (Fig.2 (c)). Then, an image up-scaling technique, 
such as Bicubic interpolation, is adopted to resize the foreground object. The 
upscaled object is finally merged with the synthesized background and the joint 
boundary is smoothed to remove noticeable artifacts.  

In the blending step, we use the seamless cloning method proposed in [8] to 
merge the object with the background smoothly and naturally. Different from the 
original seamless cloning [8], which replaces certain features of one object by 
alternative features, we dilate the object area in the mask map and apply the 
seamless cloning only in this dilated area. Therefore, the sharpness of the main 
object can be preserved better. 
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Fig. 8 illustrates the results of the proposed method with and without boundary 
blending. The output after using the seamless cloning (Fig.3 (b)) has a smoother 
boundary and looks more natural. More synthesized results using the algorithm  
 

 

(a).Input (b).Mask 

(c).Background (d).Output  

Fig. 7 Example of the synthesis process 

 
(a).Without boundary blending (b).With boundary blending 

Fig. 8 Comparison of output with and without boundary blending 
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based on object segmentation are depicted in Fig. 9. We can see that the foreground 
objects are up-scaled and the background textures are synthesized from the original 
textures in the input images. 

 

Fig. 9 Other experimental results 
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5   Conclusion 

In this chapter, a texture synthesis algorithm particularly for composite textures is 
proposed. The algorithm takes a sample texture image as input and outputs a larger 
image filled with the same texture from the sample. The synthesis process is 
controlled by a target image which has the same size as the output image and yields 
a similar layout as the input. Due to the guidance of the target image, the output 
image looks similar as the input globally and is composed of the same texture. The 
proposed texture synthesis method can produce much more pleasant-looking results 
for natural images than state-of-the-art texture synthesis techniques. For images 
composed of both a non-texture foreground object and a textured background, an 
additional object segmentation step is applied to differentiate the foreground from 
background. Controlled texture synthesis is used for the background texture and 
normal image up-scaling techniques are utilized on the foreground object to 
preserve the scale of the object. 
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Chapter 13
The Use of Color Information in Stereo Vision
Processing

Wided Miled and Béatrice Pesquet-Popescu

Abstract. Binocular stereovision is the process of recovering the depth informa-
tion of a visual scene, which makes it attractive for many applications like 3-D
reconstruction, multiview video coding, safe navigation, 3-D television and free-
viewpoint applications. The stereo correspondence problem, which is to identify the
corresponding points in two or more images of the same scene, is the most impor-
tant and difficult issue of stereo vision. In the literature, most of the stereo match-
ing methods have been limited to gray level images. One information that has been
largely neglected in computational stereo algorithms, although typically available in
the stereo images, is color information. Color provides much more distinguishable
information than intensity values and can therefore be used to significantly reduce
the ambiguity between potential matches, while increasing the accuracy of the re-
sulting matches. This would largely profit to stereo and multiview video coding,
since efficient coding schemes exploit the cross-view redundancies based on a dis-
parity estimation/compensation process. This chapter investigates the role of color
information in solving the stereo correspondence problem. We test and compare
different color spaces in order to evaluate their efficiency and suitability for stereo
matching.

1 Introduction

Research on multiview technologies has been widely enhanced recently, covering
the whole media processing chain, from capture to display. A multiview video sys-
tem consists in generating multiple views by capturing from different viewpoints the
same scene via a set of multiple cameras. By presenting the corresponding image

Wided Miled · Béatrice Pesquet-Popescu
TELECOM ParisTech, TSI Department, 46 rue Barrault, 75634 Paris Cédex 13, France
e-mail: miled@telecom-paristech.fr, pesquet@telecom-paristech.fr
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of two slightly different views to the left/right eye, the viewer perceives the scene
in three dimensions. Such a 3-D scene representation enables functionalities like
3-D television (3DTV) [1] and free viewpoint video (FVV) [2]. While 3DTV of-
fers depth perception of program entertainments without wearing special additional
glasses, FVV allows the user to freely change his viewpoint position and view-
point direction around a 3-D reconstructed scene. Efficient coding of stereo and
multi-view video data, as well as their associated depth or disparity maps, is crucial
for the success of 3DTV and FVV systems. Powerful algorithms and international
coding standards achieve high compression efficiency by exploiting the statistical
dependencies from both temporal and inter-view reference pictures via motion and
disparity compensated prediction [3]. When processing stereo or multiview video
sequences, the most important and difficult step is to find an accurate correspon-
dence between points in images taken from different viewpoints. This procedure,
often referred to as the stereo correspondence problem, leads to the computation of
the disparity map, which represents the displacement between the considered scene
views. Several approaches have been developed for solving the stereo correspon-
dence problem. A good survey of the various strategies is addressed in [4]. Methods
that produce dense disparity maps are preferred in computer vision to those which
yield sparse displacement results based on the matching of extracted salient features
from both images, such as edges, corners or segments. Indeed, methods computing
only sparse matches cannot be considered in many applications of stereo, such as
view synthesis and 3-D reconstruction. Stereo algorithms that produce dense dispar-
ity maps can be classified in local or global optimization methods. Local methods, in
which the disparity at each pixel only depends on the intensity values within a local
window, perform well in highly textured regions, however they often produce noisy
disparities in textureless regions and fail in occluded areas. Global methods formu-
late stereo matching in terms of an energy functional, which is typically the sum of
a data term and a smoothness term, and solve the problem through various mini-
mization techniques. In recent years, global optimization approaches have attracted
much attention in the stereo vision community due to their excellent experimental
results [4]. Many global stereo algorithms have, therefore, been developed dealing
with ambiguities in stereo such as occlusions, depth discontinuities, lack of texture
and photometric variations. These methods exploit various constraints on dispar-
ity such as smoothness, visibility, view consistency etc., while using efficient and
powerful optimization algorithms. However, they are mostly limited to gray level
images, although color information is typically available in the stereo images.

Color images provide more useful information than gray value images. There-
fore, using color information in the matching process helps reducing the ambiguity
between potential matches and improves the accuracy of disparity maps. Recently, a
number of approaches dealing with color stereo matching have been proposed in the
literature, showing that the matching results have been considerably improved when
using the color information instead of gray value information. Furthermore, it has
been recognized from prior color evaluation studies conducted in [5, 6, 7] that the
accuracy of color stereo matching highly depends on the selection of the appropriate
color space. In particular, luminance-chrominance systems, such as YCrCb and Luv



The Use of Color Information in Stereo Vision Processing 313

spaces, have been shown to produce more favorable results than the commonly used
RGB color space since they are very close to human perception [7].

The organization of this chapter is as follows. Section 2 provides necessary back-
ground on stereo vision. Gray level based stereo methods are also presented. The
most used color spaces are addressed in Section 3, along with a survey of color
based stereo methods. Finally, some comparisons are drawn in Section 4 before
concluding the chapter by Section 5.

2 Stereo Vision Basics

Stereo vision is the process of extracting three dimensional information from two or
multiple cameras, which is the same process that works in human visual systems to
achieve depth perception. By identifying in two images pixels locations that corre-
spond to the same 3-D position, we compute the disparity map which can be used to
recover the 3-D positions of the scene elements via a simple triangulation process,
given knowledge about the camera configurations. So, the primary task of stereo vi-
sion algorithms is to obtain pixel matches, which is known as the correspondence or
stereo matching problem. This section is devoted to presenting stereo vision basic
concepts, necessary to understand the stereo correspondence problem.

2.1 The Pinhole Camera Model

The image formation process can be modeled using a pinhole camera system, as il-
lustrated in Fig. 1. This model, which transforms a spatial 3-D point in a 2-D image
point under perspective projection, is the most commonly used camera model. All
of the rays departing from a scene object pass through a small hole, called center of
projection or optical center, and form the inverted image on the screen. The pinhole

Optical axis

Object

Retinal plane

Focal plane

C Π

f

c

Fig. 1 The pinhole camera model
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camera model is defined by its center of projection C, which corresponds to the po-
sition of the camera, and the retinal plane where points in three-dimensional space
are projected onto. The distance from the center of projection to the image plane is
called focal length. A point M with coordinates (X ,Y,Z) in three-dimensional space
is projected onto a point m with coordinates (x,y) on the retinal plane by the inter-
section of this latter with the ray (CM). This projection is defined by the following
linear equation

λ (x y 1)T = P (X Y Z 1)T , λ ∈ R
� (1)

where P is the perspective transformation matrix which depends upon the camera
parameters.

2.2 The Stereo Camera Setup

We consider now the case of binocular stereovision, where two images, commonly
referred as left and right images, are acquired by two cameras observing the same
scene from two different positions. Each camera is characterized by its optical center
and a perspective transformation matrix. The stereo camera system is assumed to be
fully calibrated, i.e. the camera parameters as well as the positions and orientations
of the cameras are known. Both cameras capture the scene point M whose projec-
tions, m and m

′
, onto the left and right images are given by the intersection of the

lines (CM) and (C
′
M) with the corresponding image planes. Using the perspective

transformation (1), we can derive

m = P M , (2)

m
′
= P

′
M , (3)

where P and P
′

are the left and right camera projection matrices, respectively. Sup-
pose that the origin is located at the left camera, projection matrices are given by:

P = A(I3 0) and P
′
= A

′
(R t) , (4)

where A and A
′

are the internal camera parameters and R and t are the rotation and
translation operating between both cameras.

2.2.1 Epipolar Geometry

Epipolar geometry describes the geometrical relation between two images of the
same scene, taken from two different viewpoints. It is independent of scene struc-
ture, and only depends on the internal cameras parameters [8]. Epipolar geometry
establishes a geometric constraint between a point in one image and its correspond-
ing in the other image, resulting in a very powerful restriction in correspondence
estimation. Let two images be taken by two left and right cameras with optical cen-
ters C and C

′
, respectively. The point C projects to the point e

′
in the right image,
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Epipolar plane Πe

right epipolar line
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left epipolar line
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Fig. 2 Epipolar geometry

and the point C
′

projects to the point e in the left image (see Fig. 2). The two points
e and e

′
are the epipoles and the lines through e and e

′
are the epipolar lines. Let a

space point M be projected on m and m
′

respectively in the left and the right image
planes. The camera centers, the space point M and its image projections are coplanar
and form the plane Πe, called epipolar plane. The projections of this plane into the
left and the right image are respectively the epipolar lines lm and lm′ . The epipolar
constraint states that the optical ray passing through m and M is mapped into the
corresponding epipolar line lm′ in the right image plane and therefore that m

′
must

lie on lm′ . Reciprocally, m necessarily lies on the homologous epipolar line lm which

represents the projection of the optical ray of m
′

onto the left image plane. In terms
of a stereo correspondence algorithm, due to this epipolar constraint, the search of
corresponding points m and m

′
does not need to cover the entire image plane but

can be reduced to a 1D search along the epipolar lines.

2.2.2 Parallel Cameras Geometry

The parallel camera configuration uses two cameras with parallel optical axes. In
this configuration, the epipoles move to infinity and the epipolar lines coincide with
horizontal scanlines. The matching point of a pixel in one view can then be found
on the same scanline in the other view. In a general camera setup, a technique called
rectification [9] is used to adjust images so that they are re-projected onto a plane
parallel to the baseline, as in the case of a parallel camera setup.

Consider a point M in the 3-D world with coordinates (X ,Y,Z), Z being the
distance between the point M and the common cameras plane. Let the coordinates
of points m and m

′
, projections of M on the left and right image planes, be (x,y) and

(x
′
,y

′
), respectively. By applying Thales theorem in similar triangles of Fig. 3, we

can derive
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Fig. 3 Reconstruction of the depth coordinate via triangulation
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x
′

f
=

X −B
Z

, and
y
′

f
=

Y
Z

, (6)

where B is the horizontal distance between the two cameras’ optical centers, called
the baseline distance and f is the focal length of the cameras. It is obvious that y and
y
′

are identical, which constitutes the advantage of the parallel camera setup. The
disparity d corresponding to the horizontal displacement between corresponding
pixels is defined as

d = x− x
′
.

Once the correspondence problem is solved, the reconstruction of a point’s depth
can then be accomplished via triangulation, as shown in Fig. 3. Indeed, the depth Z
is simply derived by combining Eqs. (5) and (6)

Z =
B f

x− x′ =
B f
d

. (7)

From the above equation, we conclude that disparity is inversely proportional to
depth. A disparity map that records the disparity for each image point is therefore
sufficient for a complete three-dimensional reconstruction of the scene.

2.3 The Stereo Correspondence Problem

Although epipolar geometry helps reducing the computationnal load of searching
corresponding points, the stereo correspondence problem still remains a difficult
task due to several factors. This includes
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Photometric variations: it is quite reasonable to assume that homologous points
in the left and right views have identical intensity values. This assumption, com-
monly referred to as the brightness constancy assumption, is sometimes violated
in practice due to varying shadows, illumination changes and specular reflections.
Thus, although commonly used, this hypothesis may lead to incorrect disparity
estimates and consequently may reduce the efficiency of depth recovery.

Untextured regions: image areas which contain little or repetitive textures result
in ambiguities in the matching process caused by the presence of multiple possi-
ble matches of very similar intensity patterns.

Depth discontinuities: the presence of discontinuities causes occlusions, which
are points only visible in one image of the stereo pair, making the disparity as-
signment very difficult at object boundaries.

In order to overcome these ambiguities and make the problem more tractable, a
variety of constraints and assumptions are typically made. The most commonly used
constraints are related to the following factors:

Smoothness: this assumption imposes a continuous and smooth variation in the
uniform areas of the disparity field. It is motivated by the observation that natural
scenes consist of objects with smooth surfaces. It holds true almost everywhere
except at depth boundaries.

Uniqueness: states that a pixel of one view can have, at most, one corresponding
pixel in the other view. This constraint is often used to identify occlusions by
enforcing one-to-one correspondences for visible pixels across images.

Ordering: constrains the order of points along epipolar lines to remain the same.
The advantage of using this assumption is that its application allows for the ex-
plicit detection of occlusions. However, it does not always hold true, especially
for scenes containing thin foreground objects.

2.3.1 A Survey of Stereo Vision Methods

There is a considerable amount of literature on the stereo correspondence problem.
An extensive review is addressed by Scharstein and Szeliski in [4]. The authors
identify four steps that characterize stereo algorithms. These are:

(i) matching cost computation,

(ii) cost aggregation,

(iii) optimization,

(iv) disparity refinement.

In the analysis below, we focus on the optimization component and classify stereo
algorithms as local, progressive, cooperative or global optimization methods.
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Local approaches

Local (or window-based) approaches are based on the similarity between two sets
of pixels. These methods are very popular for their simplicity and have been widely
used in computer vision for applications such as image registration, motion estima-
tion, video compression etc. In stereo correspondence, matching pixels consists in
comparing the neighborhood of the point for which a correspondence needs to be
established with the neighborhood of potential corresponding points located on the
associated epipolar line in the other image. Using a predefined search range, the
matching score for a pixel (x,y) at each allowed disparity d is derived by compar-
ing the intensity values of the window centered at (x,y) of the first view against the
window centered at the position (x + d,y) of the second image. Commonly used
matching measures include sum of absolute differences (SAD), sum-of-squared-
differences (SSD) and normalized cross-correlation (NCC). This latter measure is
insensitive to affine transformations between intensity images, which makes it ro-
bust to illumination inconsistencies that may occur between both views.

The choice of an appropriate window size and shape is crucial for window-based
local methods. Indeed, the use of windows of fixed size and shape may lead to er-
roneous matches in the most challenging image regions. In less-textured regions,
small windows do not capture enough intensity variations to make reliable match-
ing, whereas large windows tend to blur the depth boundaries and do not capture
well small details and thin objects. The different approaches for adaptive/ shiftable
windows [10, 11, 12] attempt to solve these problems by varying the size and shape
of the window according to the intensity variation. The work in [13] uses a multiple
window method where a number of distinct windows are tried and the one providing
the highest correlation is retained.

Progressive approaches

Progressive methods first establish correspondences between points that can be
matched unambiguously and then iteratively propagate the results of these matched
pixels on neighboring pixels [14, 15, 16]. The advantage of these approaches is their
computational cost, since they generally avoid a computationally expensive global
optimization. However, they propagate errors if an early matching point was not
well matched. The method of Wei and Quan [14] attempts to overcome this prob-
lem by matching regions derived from color segmentation. Since regions contain
richer information than individual pixels, the likelihood of early wrong matches is
reduced.

Cooperative approaches

Cooperative approaches make use of both local and global methods. They first cal-
culate a three dimensional space (x,y,d) where each element corresponds to the
pixel (x,y) in one reference image and all possible disparities d. A cooperative al-
gorithm is initialized by computing, for all possible matches, a matching score using
a local method. These initial matching scores are then refined by an iterative update
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function based on the uniqueness and smoothness assumptions. Cooperative meth-
ods have shown to give strong results in various publications. However, limitations
include the higher computational effort compared to local methods and the depen-
dence on a good initialization. Furthermore, depth boundaries tend to be blurred,
since rectangular support regions are employed. Zhang and Kambhamettu [17] try
to overcome these problems by using image segmentation to estimate an appropriate
support window and ensure that the initial matches are correct.

Global approaches

Global approaches formulate stereo matching in terms of a global energy function,
which consists of two terms and takes typically the following form:

E(d) = Edata(d)+λ Esmooth(d) . (8)

The first term measures the distance between corresponding pixels, while the sec-
ond one enforces the smoothness of the disparity field and λ is a positive constant
weighting the two terms. Several different energy minimization algorithms have
been proposed to solve Eq. (8). The most common approach is dynamic program-
ming, which uses the ordering and smoothness constraints to optimize correspon-
dences in each scanline. The matching costs of all points on a scanline describe the
disparity search space. Finding the correct disparities is akin to finding the minimum
cost path through this space. The most significant limitation of dynamic program-
ming is its inability to enforce smoothness in both horizontal and vertical directions.
The work of [15] proposes a way to cope with this problem while maintaining the
dynamic programming framework. Recently, powerful algorithms have been devel-
oped based on graph cuts [18, 12] and belief propagation [19] for minimizing the
full 2-D global energy function. The idea is to cast the stereo matching problem as a
pixel labelling problem to find the minimum cut through a certain graph. Variational
approaches have also been very effective for minimizing Eq. (8) via an iterative
scheme derived from the associated Euler-Lagrange differential equations [20, 21].
However, these techniques often are computationally demanding and they require
a careful study for the discretization of the associated partial differential equations.
Besides, they require the determination of the Lagrange parameter λ which may be
a difficult task. The latter problem becomes even more involved when a sum of reg-
ularization terms has to be considered to address multiple constraints, which may
arise in the problem. The work in [22] attempts to overcome these difficulties by for-
mulating the stereo matching problem in a set theoretic framework. Each available
constraint is then represented by a convex set in the solution space and the intersec-
tion of these sets constitutes the set of admissible solutions. An appropriate convex
quadratic objective function is finally minimized on the feasibility set using an effi-
cient block-iterative algorithm which offers great flexibility in the incorporation of
a wide range of complex constraints.
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3 The Use of Color Information in Stereo Vision

Nowadays, most digital cameras enable the acquisition of color images. The use of
color images becomes, therefore, more and more common in image processing and
computer vision. In this section, an investigation of the efficiency of color informa-
tion as an aid in solving the stereo correspondence problem is described.

3.1 Color Spaces

Color is an important attribute of visual information. Human color perception relies
upon three distinct types of photoreceptor cells in the retina, called cones. Similarly,
color images require three numbers per pixel position to represent color accurately.
The model chosen to represent color in a 3-D coordinate system is described as a
color space. The selection of an appropriate color space is of specific importance in
many applications, including stereo matching. The color spaces that are most used
can be distinguished into four categories [23]:

• Primary systems: RGB and XYZ;
• luminance-chrominance systems: Luv, Lab, YCrCb;
• Perceptual system: HSV;
• Statistical independent component systems: I1I2I3 and H1H2H3.

3.1.1 Primary Color Systems

Primary systems rely on the use of the three primary colors : Red, Green and Blue.
The most common system in this category is the RGB space, as its three coordinates
are the reference colors in almost all the image acquisition processes. In this addi-
tive color space, a color image is represented with three numbers that indicate the
relative proportions of Red, Green and Blue. Any color can be created by combining
Red, Green and Blue values in varying proportions. The three components of this
primary system are highly correlated and dependent on the luminance information.
However, two colors may have the same chrominance, but a different luminance.
To consider only the chrominance information, coordinates can be normalized as
follows:

r =
R

R + G+ B
, g =

G
R + G+ B

, b =
B

R + G+ B
.

The advantage of this new color representation is that it is invariant to affine changes
in illumination intensity. In 1931, the international lighting commission (CIE) [24],
recommended the XYZ color system. While the RGB space is not able to represent
all the colors in the visible spectrum, any perceived color can be described mathe-
matically by the amounts of the three color primaries X, Y and Z. These coordinates
can be computed by using the following transformation matrix [5]
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Y
Z

⎞⎠=

⎛⎝ 0.607 0.174 0.201
0.299 0.587 0.114
0.000 0.066 1.117

⎞⎠⎛⎝ R
G
B

⎞⎠ . (9)

The Y component is intentionally defined to match closely to luminance, while X
and Z components give color information. As this system is a linear combination
of the RGB components, it inherits all the dependencies on the imaging conditions
from the RGB color system. Furthermore, it is commonly considered as a system of
transition from RGB to another color system and rarely used directly.

3.1.2 Luminance-Chrominance Systems

Luminance-chrominance systems divide color into one luminance component and
two chrominance components. The main advantage of these color models is that
the luminance and the chrominance information are independent. Thus, the lumi-
nance component can be processed without affecting the color contents. Among the
mostly used luminance-chrominance systems, we mainly distinguish between the
perceptually uniform systems Luv and Lab [25], proposed by CIE, and the YCrCb

system devoted for television and video transmission. Perceptual uniformity of Luv
and Lab color systems means that the Euclidean distance between two colors in
these spaces models the human perception of color differences. Chrominance com-
ponents are (u,v) for the Luv space, and (a,b) in Lab. Both color spaces are derived
from the XYZ color space, as follows:

L =

⎧⎪⎨⎪⎩ 116
(

Y
Yn

) 1
3 −16, if Y

Yn
> 0.01

903.3
(

Y
Yn

) 1
3
, otherwise,

(10)

u = 13 L (u
′ −u

′
n), where u

′
=

4X
X + 15Y + 3Z

, (11)

v = 13 L (v
′ − v

′
n), where v

′
=

9Y
X + 15Y + 3Z

, (12)

a = 500
(

f

(
X
Xn

)
− f

(
Y
Yn

))
, (13)

b = 200
(

f

(
Y
Yn

)
− f

(
Z
Zn

))
, (14)

where f (t) =

{
t

1
3 , if t > 0.008856

7.787 t + 16
116 , otherwise.

Here Yn = 1.0 is the luminance, and Xn = 0.312713 and Yn = 0.329016 are the
chrominances of the white point of the system. The values of the L component are



322 W. Miled and B. Pesquet-Popescu

in the range [0;100], u component in the range [−134;220], and v component in the
range [−140;122]. The a and b component values are in the range [−128;127].

The YCrCb color model is the basic color model used in digital video applications
[26]. The luminance component Y can be computed as a weighted average of Red,
Green and Blue components. The color difference, or chrominance, components
(Cr,Cb) are formed by subtracting luminance from Blue and Red. The equations for
converting an RGB image to YCrCb color space are given by:

Y = 0.299R + 0.587G+0.114B ,

Cr = 0.564 (B−Y), (15)

Cb = 0.713(R−Y) .

The details information in a digital image are mainly present in the image luminance
component. Therefore, one can take advantage of the high sensibility of the human
visual system to the luminance variation than to the chrominance variation, to rep-
resent the Cr and Cb components with a lower resolution than Y. This reduces the
amount of data required to represent the chrominance information without having
an obvious effect on visual quality.

3.1.3 The Perceptual HSV System

The HSV (hue, saturation, value) color system, introduced by Smith [27], models
the human perceptual properties of hue, saturation, and value. It was developed to
be more intuitive in manipulating color and was designed to approximate the way
humans perceive and interpret color. Hue defines the basic color and is specified
by an angle in degrees between 0 and 360. Saturation is the intensity of the color.
Its values run from 0, which means no color saturation, to 1, which is the fullest
saturation of a given hue at a given illumination. Value is the brightness of the color.
It varies with color saturation and ranges from 0 to 1. The transformation from RGB
to HSV is accomplished through the following equations [5]:

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π , if R = G = B

arccos
1
2 ((R−G)+(R−B))√

(R−G)2+(R−B)(G−B)
, if B ≤ G

2π− arccos
1
2 ((R−G)+(R−B))√

(R−G)2+(R−B)(G−B)
, otherwise,

(16)

S =
{

0, if R = G = B

1− 3min(R,G,B)
R+G+B , otherwise,

(17)

V =
R + G+ B

3
. (18)

3.1.4 The Statistical Independent Component Systems

In primary systems, the three components are highly correlated because they have
in common the luminance information. To overcome this limitation, statistical
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independent systems were proposed, using the principal component analysis that
allows for uncorrelated components. The two commonly used systems are:

• The system I1I2I3 of Ohta et al. [28] defined by

I1 =
R + G+ B

3
,

I2 =
R−B

2
, (19)

I3 =
2G−R−B

4
.

• The system H1H2H3 whose components are given by

H1 = R + G,

H2 = R−G, (20)

H3 = B− R + G
2

.

Both color spaces are a linear transformation of the RGB system.

3.2 A Survey of Color Based Stereo Methods

It is known that, in the human visual system, binocular vision is a key element of
the three-dimensional perception: each eye is a sensor that provides to the brain its
own image of the scene. Then, the spatial difference between the two retinal images
is used to recover the three-dimensional (3-D) aspects of a scene. The experiment
conducted in [29] on nine subjects demonstrate that the amount of perceived depth
in 3-D stimuli was influenced by color, indicating therefore that color is one of
the primitives used by the visual system to achieve binocular matching. This study
confirms that color information may be used to solve the stereo matching problem.
Different techniques proposed until now to deal with color stereo matching will be
presented below. We will first describe color-based local methods and then we will
focus our attention on global methods.

3.2.1 Local Approaches

We exposed in Section 2.3.1 the principle of local approaches to solve the corre-
spondence problem based on gray level stereo images. The main idea is to perform
a similarity check between two equal sized windows in the left and right images. A
similarity measure between the pixel values inside the respective windows is com-
puted for each disparity d within a search range Ω , and the disparity providing the
minimum value is regarded as the optimal disparity value. The correlation measure
is defined for gray value images as follows:
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Cg(Fl,Fr,d) = ∑
p∈B

ϕ
(
Fl(p), Fr(p−d)

)
, (21)

where Fl and Fr are the gray levels of the left and right correlation windows, B is
the support of the correlation window and ϕ is a similarity measure.

A number of different approaches have been proposed in the literature to extend
window-based correlation methods taking into account color information available
in the stereo images. In [30], Mühlmann et al. proposed a real time and efficient im-
plementation for correlation-based disparity estimation from color stereo images. A
combination of a hierarchical block matching technique with active color illumina-
tion is presented in [31]. To improve the quality of the matching results, especially
in homogenous regions, the authors proposed to project a color code onto the scene.
Al Ansari et al. [32] proposed a new region based method for matching color im-
ages based on the fact that regions contain much richer information than individual
pixels. To guarantee a high similarity between corresponding regions, a color-based
cost function that takes into account the local properties of region boundaries is
used. Other color stereo techniques have been proposed in [33, 34]. It appears form
this first review that there are two ways of incorporating color information into a
stereo algorithm:

(1) Compute the correlation separately with each of the color components and then
merge the results. In this case, the correlation measure becomes

Cc(Fl ,Fr,d) = χ
(

Cg(F
(1)
l ,F(1)

r ,d),Cg(F
(2)
l ,F(2)

r ,d),Cg(F
(3)
l ,F(3)

r ,d)
)

, (22)

where F(k),k ∈ {1,2,3}, represents the kth color channel in the selected color
system, Cc is the color correlation, Cg is the gray level correlation defined in (21)
and χ ∈ {min,max,median,mean} is the fusion operator. In [33], the fusion was
performed by means of a weighted barycenter operator. It is clear that this first
approach does not take advantage of all the color information because the color
channels are considered separately. In addition, it is computationally inefficient
since the matching is done several times.

(2) The second approach is to compute the correlation directly with colors. Here,
in order to use color information, an appropriate metric has to be selected to
measure color differences on the chosen color space. Some metrics have been
proposed by Koschan [5], and generalized to Lp norm in [35], as follows

Dp(Fl ,Fr) =
( 3

∑
k=1

(F(k)
l −F(k)

r )p
)1/p

. (23)

Notice that this norm is not suitable for the HSV color space. Assuming that the
coordinates of two color images are Fl = (Hl ,Sl,Vl) and Fr = (Hr,Sr,Vr), the
color difference on this space can be defined by [5]:
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DHSV (Fl,Fr) =
√

(DV )2 +(DC)2, (24)

with DV = |Vl −Vr|,
and DC =

√
(Sl)2 +(Sr)2 −2SlSr cos(θ ),

where θ =
{ |Hl −Hr| if |Hl −Hr| ≤ π

2π−|Hl −Hr| if |Hl −Hr| > π .

The correlation measure can now be easily extended to color images by using a
color difference measure that is suitable for the selected color space:

Cc(Fl,Fr,d) = ∑
p∈B

Dm

(
Fl(p), Fr(p−d)

)
, (25)

where Dm is defined by (23) or (24) if the HSV color space is chosen.

3.2.2 Global Approaches

In recent years, global approaches have attracted much attention in the stereo vision
community due to their excellent experimental results. These methods formulate
stereo matching in terms of an energy function, which is typically the sum of a
data term and a smoothness term, and solve the problem through various minimiza-
tion techniques. Extension to color of gray based global approaches has involved in
most cases the energy function. Alvarez and Sánchez [36] proposed a generaliza-
tion of their work presented in [20], where they applied a PDE-based method for
disparity estimation, by modifying the cost function so that to include all the three
color components. The extended set theoretic variational approach proposed in [37]
minimizes a global objective function, which is the sum of intensity differences
over the three color channels, subject to three convex constraints. Disparity range
and total variation regularization constraints proposed for gray value images remain
available. However, the Nagel-Enkelmann constraint, which involves the left stereo
image, has been extended to color images. The color evaluation study for global
approaches, addressed in [7], investigates the role of color in stereo energy func-
tions, believing also that real progress in global stereo matching can be achieved
by improving the energy function rather than by investigating on the optimization
component. Notice that for color based global approaches, the common idea is to
estimate the disparity using jointly all the three color components, which is physi-
cally plausible since disparity must be consistent across channels. The data fidelity
function that computes the color dissimilarity between a pixel p in one view and its
matching point p−d in the second view can be defined by

Edata(d) =
3

∑
k=1
∑
p∈S

Dm

(
I(k)
l (p)− I(k)

r (p−d)
)

, (26)
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where S ⊂ N is the image support and Dm is the color difference function that mea-
sures the distance between two points in the color space. It is defined by (23) or (24)
as in the gray level case.

The second major approach to incorporate color information in global stereo
methods is to use a segmentation algorithm that decomposes the image into homo-
geneous color regions [18, 38, 39]. Disparity smoothness constraint is then enforced
inside each color segment, assuming that discontinuities only occur on the bound-
aries of homogeneous color segments. The use of color segmentation makes global
stereo algorithms capable of handling large untextured regions, estimating precise
depth boundaries and propagating disparity information to occluded regions. The
comparative study conducted in [4] shows that these algorithms, based in general
on graph cuts and belief propagation, are among the best performing. However,
these methods require precise color segmentation that is very difficult when dealing
with highly textured images.

4 Comparisons and Discussion

The previous survey on color based stereo methods has indicated that color informa-
tion improves the estimation of binocular disparity to recover the three-dimensional
scene structure from two-dimensional images. In addition, we have noticed that a
large variety of color spaces exists, which raises the question which color system to
use to solve the stereo matching problem. In this section, we will give some insights
about the suitability of a color space for this application. From an intuitive point of
view, a color system should exhibit perceptual uniformity, meaning that distances
within the color space should model human perceptual color differences. Moreover,
to achieve robust and discriminative image matching, color invariance is another
important criterion. Indeed, stereo images are taken from different viewpoints and
may be subject to photometric variations. The RGB color system is not perceptual
uniform and depends on the imaging conditions and viewing direction. Therefore,
RGB is not suitable for matching images taken under illumination variations. The
luminance-chrominance systems are very close to human perception and are ex-
pected to achieve good performances. The color space I1I2I3 can also offer suitable
color features for stereo matching. The components I2 and I3 are invariant to the
intensity variations and so systematic errors between the left and right images can
be reduced. Moreover, since the color components of this system are statistically
independent, color information can be fully used in the matching process.

To argue the above analysis, we made a comparison of two stereo algorithms
which are among the most efficient in the literature: the convex variational approach
based on the total variation (TV) regularization [37] and the global optimization al-
gorithm (GC) of Kolmogorov and Zabih [40] based on graph-cuts. Four different
color models RGB, Luv, Lab, I1I2I3 are evaluated along with the gray level image
representation and three stereo pairs taken from the Middlebury Database are con-
sidered (see Fig. 4). These stereo pairs have complex scene structures, wide disparity
ranges and large occluded regions. As ground truth fields are available, results are
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Fig. 4 Left images (Top) of the considered stereo pairs and corresponding ground truth im-
ages (Down). From left to right: Teddy, Baby, Dolls.

Table 1 Comparative results using different color spaces and the gray level representation

Color space
(TV) based method (GC) based method

Teddy Dolls Baby Teddy Dolls Baby
MAE Err MAE Err MAE Err MAE Err MAE Err MAE Err

RGB 0.493 122 0.353 71 0.513 72 0.693 204 0.823 192 0.581 232

Luv 0.431 111 0.271 82 0.441 41 0.611 111 0.752 192 0.653 211

I1I2I3 0.472 122 0.322 103 0.492 72 0.632 142 0.661 181 0.602 243

Lab 0.564 175 0.454 155 0.734 144 0.825 255 0.894 245 0.944 264

Gray 0.575 134 0.485 114 0.915 205 0.794 153 0.925 204 1.065 264

evaluated quantitatively using two error measures: the mean absolute error (MAE)
between computed and ground truth fields and the percentage of bad matching pix-
els (Err) with absolute error larger than one pixel. The overall results are shown in
Table 1, where the rank of the color spaces according to their MAE and Err errors
is also indicated in red. As we can see, the precision of the matching has generally
been improved when using the color information. The mean absolute error was sig-
nificantly reduced when using the Luv, RGB and I1I2I3 color spaces. However, no
significant changes in the results have been noticed when using the Lab color space
instead of the gray value information.

In Fig. 5, we show the disparity maps computed by the (TV) and (GC) based
methods for the three stereo pairs, using gray values and the RGB and Luv color
spaces. The obvious utility of color information in solving the stereo matching prob-
lem could be noticed when comparing the results of the gray value based matching
and the color based matching. Indeed, many matching errors are reduced by using
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Gray levels RGB Luv Gray levels RGB Luv
(TV) based method (GC) based method

Fig. 5 Disparity maps of the (TV) and (GC) based methods applied on Teddy, Dolls and
Baby stereo pairs

the color information. Especially, we notice that the most precise results have been
generally obtained by using the luminance-chrominance Luv space, which seems to
be a suitable color space for stereo matching.

5 Conclusion

In sum, in this chapter has described a preliminary investigation into the utility of
color information in solving the stereo correspondence problem. The results of this
investigation strongly indicate that using color information can significantly im-
prove the precision of color stereo matching, especially when a suitable color sys-
tem is chosen. We found that the luminance-chrominance Luv color space offers the
best performances. We also shown that the RGB space, which is the most popular
color model in stereo matching, only achieves average results.
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Chapter 14 
3D Object Classification and Segmentation 
Methods 
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and Daniel Hofman* 

Abstract. Future multimedia high-quality systems will be, among all, based on 
improving 3D visual experience. To raise 3D visual content quality and interactiv-
ity it is necessary to enable segmentation and classification of content which in-
volves dividing the scene into meaningful sub-regions with the same attributes. 
Partitioning the image into grouping objects has various different applications in a 
wide variety of areas, since distinctive features in raw images may appear unclear 
to the human eyes. Segmentation can be defined as the identification of meaning-
ful image components. It is a fundamental task in image processing providing the 
basis for any kind of further high-level image analysis. There are many different 
ways of segmenting the 3D image, all of which can be considered as a good seg-
mentations, depending on objects of interest on an image, and to a large extent, the 
user’s own subjectivity. Key issues in this chapter include different techniques for 
segmentation of 3D object based on classification on different regions and shapes.  

1   Introduction 

In segmentation of an image, it is important to define the image features which 
will be the basis for segmentation. The term image feature refers to two possible 
entities: a global property of an image (e.g. the average grey level, an area in a 
voxel global feature); or a part of the image with some special properties (e.g. a 
circle, a line, or a textured region in an intensity image, a planar surface in a range 
image local feature). 3D image segmentation is, however, a difficult process, as it 
depends on a wide variety of factors such as the complexity of image content, the 
objects of interest or the number of classes required. While one mode of grouping 
may successfully segment the image into meaningful sub-regions, the same mode 
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of grouping may not work for another image. For this reason here are proposed 
different segmentation and classification techniques. 

First part of this chapter involves 3D shape estimation algorithms based on 
edge and corner detection and surface extraction. Second part describes threshold-
ing and a voxel context modelling as a base for classification. Third part describes 
neural network techniques and paradigms for 3D segmentation and classification. 
In a results section, segmentation and classification processes are described on 
practical segmentation of experimental volumetric neurodata. As a conclusion last 
part of this chapter provides some thoughts about future work and possible  
improvement of described methods. 

2   Shape Estimation 

The process of content segmentation and classification of 3D image begins with 
the detection and location of features in the input images that represent detectable 
parts of the image and that are meaningful. Detectable means that there must exist 
some algorithm that could detect a particular feature, otherwise this feature is not 
usable. Detectable parts of 3D image can be defined by using of 3D edge detection 
and 3D corners detection algorithms. Feature detection and extraction is an inter-
mediate step and not the goal of the system [1]. Techniques that locate boundary 
voxels use the image gradient, which has high values at the edges of objects.  

Meaningful features in the input images denote, in sense of human visual ex-
perience, the features that are associated to interesting scene elements and present 
some useful information for human perception. Typical examples of meaningful 
features are sharp intensity variations created by the contours of the objects in the 
scene, or image regions with uniform grey levels, for instance images of planar 
surfaces. Sometimes the image features that are looked for are not observably as-
sociated to any part or property of the scene, but reflect particular arrangements of 
image values with desirable properties. Meaningful image component can be  
identified in segmentation process described in Section 3. 

2.1   3D Edge Detection 

Edge points or simply edges, are voxels at or around which the intensity values of 
image (grey levels) undergo a sharp variation. An edge which represents an object 
boundary on an image is defined by the local voxel intensity gradient and can be 
computed by gradient components. According to this statement, the main problem 
in edge detection is locating the edges in a given image corrupted by acquisition 
noise. Main sharp variations correspond not only to significant contours, but also 
to image noise results in spurious edges [2]. These edges should be suppressed by 
the edge detection algorithm. 

The main reason for taking interest in edges is generating the contours of object 
to segment it from the scene. The contours of potentially interesting scene elements  
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such as solid objects, marks on surfaces, shadows, and other image contours which  
are often the basic elements for calibration, motion analysis and recognition, all 
generate intensity edges and can be detected from chains of edge points. Edge de-
tection can be considered as a two-step process. Before edge localization it should 
be taken the noise smoothing process that suppresses as much of the image noise as 
possible, without destroying the true edges. In the absence of specific information 
about type of noise, it is usually assumed that the noise is white and Gaussian. Af-
ter noise smoothing edges can be enhanced and localized. This process is done by 
designing a filter responding to edges whose output is large at edge voxels and low 
elsewhere, so that edges can be located as the local maxima in the filter's output 
and deciding which local maxima in the filer's output are edges and which are just 
caused by noise. This involves thinning wide edges to one voxel width and estab-
lishing the minimum value to declare a local maximum an edge (thresholding). 

The Canny edge detector is at the moment the most widely used edge detection 
algorithm in multimedia systems. Constructing a Canny detector requires the for-
mulation of a mathematical model of edges and noise and synthesizing the best fil-
ter once models and performance criteria are defined. Edges of intensity images 
can be modelled according to their intensity values and profiles. For most practical 
purposes, a few models are sufficient to cover all interesting edges. Description of 
regular Canny 2D edge detector can be found in [3]. 

The edge detection operator returns a value for the first derivative in horizontal 
and vertical direction. The depth dimension (the third dimension) can be achieved 
by modifying a regular Canny 2D detector. The edge gradient of a 3D image ob-
ject G can be determined by computing the magnitude gradient components 

x

G
Gx ∂

∂= ,
y

G
Gy ∂

∂=  and 
z

G
Gz ∂

∂=  for each voxel v(x,y,z) and can be displayed 

as an image which intensity levels are proportional to the magnitude of the local 
intensity changes [4]. The second step is to estimate the edge strength with 

222),,( zyxd GGGzyxe ++=  as well as the orientation of the edge normal.  

As shown in Fig. 1, the orientation of edge normal is specified by angles θ and 
ϕ  that can be computed by equations 
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Weighted summations of the voxel intensities in local neighbourhoods can be 
listed as a numerical array in a form corresponding to the local image neighbour-
hood. The output of a gradient based edge detection is a binary image indicating  
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Fig. 1 3D orientation representation 

where the edges are in order to decide whether an edge has been found, computing 
of gradient components is followed by a threshold operation on a gradient. More 
about thresholding can be found in Section 1. 

Although that Canny 3D edge detection is computationally fast and easy to im-
plement because no a-priori information about image features is needed, the object 
is often not well defined because detected edges do not surround and enclose the 
object completely. To form boundaries that enclose the object, a postprocessing 
step of grouping edges and linking them into one single boundary is required. 
Since the peaks in the first-order derivative correspond to zeros in the second -
order derivative, the Laplacian operator (which approximates the second deriva-
tive) can be used to detect edges [4]. The Laplacian operator 2∇  of a function 
f(x,y,z) is defined as  

2
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The Laplacian operator can be approximated digital images by an N x N x N con-
volution mask in each direction. The image edges are denoted with voxel positions 
where Lapalcain operator has zero value. 
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2.2   3D Corner Detection 

Corners are easier to define in mathematical terms than edges, but they do not 
necessarily correspond to any geometric entity of the observed scene [5]. Corners 
detection of 3D object can be computed over matrix S that characterizes the  
structure values and is defined as 
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where the sums are taken over the neighbourhood Q of a generic voxel v. The so-
lution is building the eigenvalues of S and their geometric interpretation as  
described in [4] for two dimensions. Matrix S is symmetric, and can therefore be 
diagonalized as: 
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where 1λ , 2λ  and 3λ  are the eigenvalues. If neighbourhood Q of v is perfectly 

uniform (e.g. image intensity is completely same in Q) image gradient compo-
nents Gx, Gy and Gz vanish everywhere and eigenvalues are 0321 === λλλ . Now 

assume that Q contains the corner of a black cube against a white background: as 
there are three principal directions in Q, it is expected that 0321 ≥≥≥ λλλ and the 

larger the eigenvalues, the stronger (higher contrast) their corresponding image 
lines. Obviously, the eigenvectors describe the edge directions, and the eigenval-
ues the edge strength. A corner is identified by three strong edges, and as  

321 λλλ ≥≥  it is a location where the smallest eigenvalue, 3λ  is large enough. In 

general terms, at corner voxels the intensity surface has three well-defined, dis-
tinctive directions, associated to eigenvalues of S, all of them significantly larger 
than zero [3]. If only one of them is not large enough ( τλ <3 , where τ  is thresh-

old) that voxel is not the corner voxel. 
The procedure for locating the corners is as follows [6]. The input is formed by 

an image G and two parameters: the threshold τ  on 3λ , and the linear size of a 

cube window (neighbourhood), for example 2N + 1 voxels, where N is usually be-
tween 2 and 5. First the image gradient is computed over the entire image G, and 
then for each voxel v is formed the matrix S over a (2N + 1) × (2N + 1) × (2N + 1) 
neighbourhood Q of v. In the next step 3λ , the smallest eigenvalue of S, is com-

puted. If τλ >3  the coordinates of v are saved into a list of possible corner voxels 

L. The list L is then sorted in decreasing order of 3λ . The sorted list is scanned top 

to bottom: for each current point v, all points which belong to the neighbourhood 
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of v and appear further on in the list are deleted. The output is a list of corner vox-
els for which τλ >3  and whose neighbourhoods do not overlap.  

2.3 Surface Extraction  

After edge and corners detection, it is necessary to determine surface of inbound 
object. Many 3D objects can be conveniently described in terms of the shape and 
position of the surfaces they are made of. Surface-based descriptions are used for 
object classification and motion estimation in the compression process [7]. This 
section presents a method of finding patches of various shapes which compose the 
visible surface of an object adapted to 3D.  

For a given range image G, the goal is to compute a new image registered with 
G and with the same size in which each voxel is associated with a local shape 
class selected from a given kernel shapes. To solve this problem, two tools are 
needed: a dictionary of kernel shape classes and an algorithm determining which 
shape class gives the best approximation of the surface at each voxel. 

2.3.1   Estimating the Local Shape 
To estimate surface shape at each voxel, a local definition of shape is needed. The 
method called HK segmentation, described in [8], partitions a range image into re-
gions of homogeneous shape, called homogeneous surface patches. The local sur-
face shape can be classified using the sign of the mean curvature H and of the 
Gaussian curvature K. 

In the Table 1, concave and convex are defined with respect to the viewing direc-
tion: a hole in the range surface is concave and its principal curvatures negative. At 
cylindrical points, one of the two principal curvatures vanishes, as, for instance, at 
any point of a simple cylinder or cone. At elliptic points, both principal curvatures 
have the same sign, and the surface looks locally like either the inside of a bowl  
(if concave) or the tip of a nose (if convex). At hyperbolic points, the principal cur-
vatures are nonzero and have different signs; the surface is identified as a saddle. 

This classification is qualitative in the sense that only the sign of the curvatures, 
not their magnitude, influences the result. This offers some robustness, as sign can 
often be estimated correctly even when magnitude estimates become noisy. 

Table 1 Surface patches classification scheme 

K H Local shape class 

0 0 plane 

0 + concave cylindrical 

0 - convex cylindrical 

+ + concave elliptic 

+ - convex elliptic 

- any hyperbolic 
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The basic HK segmentation algorithm works as follows: the input is a raw im-
age G and a set of six kernel shape labels { }61 ,, ss K , associated to the classes of 

Table 1. The first and second order gradients of the input image, Gx, Gy, Gz, Gxy, 
Gxz, Gyz, Gxx, Gyy and Gzz should be computed first. The expressions of H and K are 
evaluated at each image point, with signs from Table 1. The Gaussian curvature 
operator K for 3D images can be computed as [6]: 
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Mean curvature H of a 3D image can be extended from a 2D expression as [6]: 
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After computing the H and K, the shape image L can be computed by assigning a 
shape label li to each voxel, according to the rules in Table 1. The output is the 
shape image L. In order to be used by subsequent tasks, the output of segmentation 
algorithm can be converted into a list of symbolic patch descriptors. In each de-
scriptor, a surface patch is associated with a number of attributes which may in-
clude a unique identifier position of the patch centre, patch area, information on 
normals and curvature contour representations, and pointers to neighbour patches. 
Closed form surface models (e.g. quadrics) are fitted to the surface patches ex-
tracted by the HK segmentation, and only the model’s coefficients and type  
(e.g. cylinder, cone) are stored in the symbolic descriptors.  

3   3 D Image Segmentation and Classification 

The main goal of the segmentation process is to divide an image into subregions 
(also called subvolumes) that are homogenous with respect to one or more charac-
teristics or features. There is a wide variety of segmentation techniques and proc-
esses depending on the input data. Computer segmentation is desirable to perform, 
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but difficult to achieve, as the complex cognitive abilities can hardly be trans-
ferred to computer programs. That is why there is no one standard segmentation 
technique that can produce satisfactory results for all image applications. The 
definition of the goal of segmentation varies according to the goal of the study and 
type of data. Different assumptions about the nature of the analyzed images lead to 
the use of different techniques. These techniques can be classified into two main 
categories: region segmentation techniques that look for the regions satisfying a 
given homogeneity criteria, and edge-based techniques that look for edges be-
tween regions with different characteristics [9]. Thresholding is a region-based 
method in which a threshold is selected and an image is divided into groups of 
voxels with values less than the threshold and groups of voxels with values greater 
than or equal to the threshold.  

3.1   Thresholding 

Since segmentation requires classification of voxels, it is often treated as a pattern-
recognition problem and addressed with related techniques. The most intuitive ap-
proach for segmentation is global thresholding, when only one threshold based on 
the image histogram is selected for the entire image. If the threshold depends on 
local properties of some image regions, it is called local. If local thresholds are se-
lected independently for each voxel (or groups of voxels), thresholding is called 
dynamic and adaptive. 

For images that have biomodal histogram (i.e. grey levels grouped into two 
dominant sets, object and background), the object can be extracted from the back-
ground by a simple operation that compares image values with the threshold value 
τ . Suppose an image G(x,y,z) with a histogram shown on the Fig. 2. The thresh-
old image L(x,y,z) is defined as 
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zyxG
zyxGzyxL . (10) 

The result of thresholding is a binary image, where voxels with threshold value 1 
correspond to objects, while voxels with value 0 correspond to the background. 
There are a number of selection methods for threshold τ  based on classification 
model that minimizes the probability of an error. With the semiautomated version, 
an expert (operator) selects two voxels – one inside an object and one from the 
background. By comparing the distribution of voxel intensities in the circular re-
gions around the selected voxels, the threshold is calculated automatically. It cor-
responds to the least number of misclassified voxels between two distributions. 
The result of the thresholding operation is displayed as a contour map and super-
imposed on the original image. If needed, the operator can manually modify any 
part of the border.  

If an image contains just two types of regions, objects with uniform intensity 
values and a contrasting background, in most cases good segmentation is obtained 
when the background area and the objects are minimally sensitive to small varia-
tions of the selected threshold level. In this case global thresholding can be  
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Fig. 2 An example of biomodal histogram with the selected threshold τ  

applied. The object area L(x,y,z) and the background B(x,y,z) are functions of the 
threshold τ . Therefore, the threshold level that minimizes either τddL  or 

τddB  is often a good choice, especially in the absence of operator guidance and 

when prior information on object locations is not available.  
Global thresholding fails if there is a low contrast between the object and the 

background, if the image is noisy, or if the background intensity varies signifi-
cantly across the image. In this case adaptive thresholding can be applied. Adap-
tive thresholding is locally-oriented and is determined by splitting an image into 
subvolumes and by calculating thresholds for each subvolume, or by examining 
the image intensities in the neighbourhood of each voxel. The splitting method di-
vides an image into rectangular overlapping subvolumes the histograms are calcu-
lated for each subimage. The subvolumes used should be large enough to include 
both object and background voxels. If a subvolume has a biomodal histogram, 
then the minimum between the histogram peeks should determine a local thresh-
old. If a histogram is unimodal, the threshold can be assigned by interpolation 
from the local thresholds found for nearby images. In the final step, a second in-
terpolation is necessary to find the correct thresholds for each voxel. Although lo-
cal thresholding is computationally more expensive, it is generally very useful for 
segmenting objects from a varying background, as well as for extraction of  
regions that are very small and sparse. 
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3.2   Context Modelling and Classification of 3D Objects 

Once the borders and surface shape of object are determined, next step to analyze 
is object context (i.e. voxel labels). Suppose a 3D image object G ≡ Nx × Ny × Nz 
voxels. Assume that this image contains K subvolumes and that each voxel v is 
decomposed into a voxel object o and a context (label) l. By ignoring information 
regarding the spatial ordering of voxels, we can treat context as random variables 
and describe them using a multinomial distribution with unknown parameters πk. 
Since this parameter reflects the distribution of the total number of voxels in each 
region, πk can be interpreted as a prior probability of voxel labels determined by 
the global context information.  

The finite mixtures distribution for any voxel object can be obtained by writing 
the joint probability density of o and l and then summing the joint density over all 
possible outcomes of l, i.e., by computing ( ) ( )∑= l vv lopop , , resulting in a sum 

of the following general form [4]: 
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where ov is the grey level of voxel v, pk(ov)s are conditional region probability 

density functions with the weighting factor πk, if πk > 0, and ∑
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Index k denotes one of subvolumes K. The whole object can be closely ap-
proximated by an independent and identically distributed random field O. The cor-
responding joint probability density function is 
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where [ ]Goooo ,...,, 21= , and Oo∈ .  

Disadvantage of this method is that it does not use local neighbourhood infor-
mation in the decision. To improve this, the following should be done. Let Q be 
the neighbourhood of voxel v with an N×N×N template centred at voxel v. An in-
dicator function ( )wv llI ,  is used to represent the local neighbourhood constraints, 

where lv and lw are labels of voxels v and w, respectively with Qwv ∈, . The pairs 

of labels are now either compatible or incompatible, and the frequency of 
neighbours of voxel v, which has the same label values k as at voxel v, can be 
computed as: 
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where lQ denotes the labels of the neighbours of voxel v. Since )(v
kπ  is a condi-

tional probability of a region, the localized probability density function of grey-
level ov at voxel v is given by: 
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Assuming grey values of the image are condition-independent, the joint probabil-
ity density function of o, given the context labels l, is 

( ) ( )∏∑
= =

=
G

v

K

k
vk

v
k oploP

1 1

)(| π  (15) 

where ( )Gvll v ,...,1; == . 

Instead of mapping the whole data set using a single complex network, it is 
more practical to design a set of simple class subnets with local mixture clusters, 
each of which represents a specific region of the knowledge space. It can be as-
sumed that there is more data classes with more class clusters. Since the true clus-
ter membership for each voxel is unknown, cluster labels of the data can be treated 
as random variables. There is a difference between the mixture model for model-
ling the voxel image distribution over the entire image where the voxel objects are 
scalar valued quantities, whereas here a mixture distribution within each class is 
assumed and the class index in the formulation and modelling of the feature vector 
distribution is specified. Also, all data points in a class are identically distributed 
from a mixture distribution. 

3.3   Neural Network Based Segmentation 

In previous sections there are described different algorithms based on threshold-
ing, region growing, edge detection or voxel classification based on kernels. Neu-
ral networks with applications to various stages of image processing can also be 
addressed to solve the image segmentation problem [10, 11]. This method in-
volves mapping the problem into a neural network by means of an energy func-
tion, and allowing the network to converge so as to minimize the energy function. 
The iterative updating of the neuron states will eventually force the network to 
converge to a stable and preferably valid state, with the lowest energy. The final 
state should ideally correspond to the optimum solution.  

The neural network model for the 3D object, with size zyx NNN ×× , segmen-

tation problem can be described with CNNN zyx ×××  neurons, where C is num-

ber of classes, i.e. regions on which the scene is segmented. As previous described 
methods, this method of segmentation also uses spatial information and is thus 
image-size dependent. To optimize the algorithm in terms of the computational 
time and resources when the image size or the number of classes required is large, 
neural network based segmentation method can employ the grey level intensities 
distribution instead of spatial information, and thus has the advantage of being im-
age-size independent, using fewer neurons and therefore requiring lesser computa-
tional time and resources. Such method uses O neurons representing O grey levels 
and C classes of subvolumes, so the neural network consisting of O×C neurons, 
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with each row representing one grey level of the image and each column a particu-
lar class. Values of voxel object ivo ,  are represented by one neuron and defined 

with 

⎩
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o i
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,  (16) 

Each row should consist of only one ‘1’, and the column which this ‘1’ falls under 
will indicate that particular grey level class iC . The connection strength between 

two neurons ivo ,  and jwo ,  (where neuron jwo ,  represents some other voxel object 

that is element of grey level class jC ) is denoted as Wvi,wj. A neuron in this net-

work would receive input from all other neurons weighted by Wvi,wj. Mathemati-
cally, the total network input to the neuron (v,i) is given as [12]  
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The neuron with the largest net-input in the same row is declared as the winner, 
according to winner-takes-all rule [13] , and the updating of all neurons in the 
same row is as follows: 
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All network states upon convergence will be valid, i.e., no grey levels will be clas-
sified into two or more different classes, and each grey level will be assigned a 
class. 

The implementation of the neural network in 3D object segmentation on grey 
level intensity classes is as follows. At input O grey levels of an image and the 
number of classes C must be defined. Initializing of  the neural network is done by 
randomly assigning one ‘1’ per row, and setting the rest of neurons in the same 
row to ‘0’. Same procedure is done for all other rows, while ensuring that there is 
at least one ‘1’ per column. The next step is loop done for O times: one row is 
randomly chosen and Netv,i is calculated to all neurons in the same row and a win-
ner-takes-all rule is applied to update all neuron states within the same row. After 
performing the whole loop, one epoch is constituted and algorithm is repeating 
from initialization step until convergence, i.e. until the network state, V = (ov,i), for 
previous epoch is the same as for the current epoch. 

4   Results 

Experimental input volumetric neurodata are shown in Fig. 3 and aim is to seg-
ment it into subvolumes. The segmentation and classification procedure is shown 
in Fig. 4. Main task is to detect and isolate brain mass and separate it from the 
background. First, region properties are detected. Region properties are denoted  
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Fig. 3 Experimental input volumetric neurodata 

with the anatomical location (voxel location) and accurate intensity values. Neu-
rodata can be segmented into three main tissue types, i.e. initial regions of interest: 
grey matter, white matter and cerebro-spinal fluid. Regions of interest are set  
according to intensity values.  

To detect the subvolumes it is necessary to use one of the segmentation tech-
niques. This work introduces the usage of automated image segmentation tech-
niques, based on the modified Canny edge and corner detection along with global 
thresholding techniques, since segmentation requires the classification of voxels 
and it is done based on kernel shapes. The strategy of edge-based segmentation is 
to find object boundaries and segment regions enclosed by the boundaries. Sepa-
rating head from background is accurate enough because there is a great intensity 
difference between voxels associated to the skull, which represents the boundary, 
and those from the background. Results of edge and corner detection are shown in 
Fig. 5. As a final step of the segmentation, head voxels inside the boundary are la-
belled and prepared for classification step.  
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Fig. 4 Segmentation and classification procedure 

In classification step, after removing parts of no interest, aim is to isolate the 
brain mass and segment it into grey matter, white matter and cerebro-spinal fluid. By 
assigning each voxel to an intensity class and each intensity class to a tissue class, all 
the voxels of the 3D data set can be attributed to a tissue class and local shapes can 
be estimated. It first extracts a set of features from the input database and then de-
signs a neural network classifier for the specific detection task using those features. 
Results of brain segmentation and classification are shown in Fig. 6. 
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Fig. 5 Edge and corner detection of experimental volumetric neurodata 
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Fig. 6 Results of brain segmentation and classification 

5   Conclusion 

Segmentation is an essential analysis function for which numerous algorithms 
have been developed in the field of image processing. Segmentation can also be 
used as an initial step for visualization and can improve presentation content qual-
ity and interactivity. Typically, segmentation of a 3D object is achieved either by 
identifying all voxels that belong to an object or by locating those that form its 
boundary. The former is based primarily on the intensity of voxels, but other at-
tributes, such as texture, that can be associated with each voxel, can also be used 
in segmentation.  

Building more sophisticated models of regions, allows more direct and interest-
ing questions to be asked at the voxel level, as well as improving quality of visual 
experience. Such segmentation and classification processes can obtain detecting 
and visualizing regions of high interest (in this example: brain) and other regions 
of small interest (in this example: skull and noisy background). This is very  
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important step in achieving high-quality visual experience in future multimedia 
content quality and interactivity improvement. 

Object modelling and segmentation is also very important in motion estimation 
and prediction when several matched shapes can appear in one object, so the mo-
tion can be tracked for each shape separately. Depending on the number of kernel 
shapes and the match precision, motion prediction can be improved as well as con-
tent quality and interactivity in visual experience of 3D motion objects. 
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Chapter 15 
Three-Dimensional Video Contents Exploitation 
in Depth Camera-Based Hybrid Camera System 

Sung-Yeol Kim, Andreas Koschan, Mongi A. Abidi, and Yo-Sung Ho* 

Abstract. Video-plus-depth is an image sequence of synchronized color and depth 
images. As importance of video-plus-depth increases as an essential part of the 
next-generation multimedia applications, it is crucial to estimate accurate depth  
information from a real scene and to find a practical framework to use the immer-
sive video in industry. In this chapter, we introduce a hybrid camera system  
composed of a stereoscopic camera and a time-of-flight depth camera to generate 
high-quality and high-resolution video-plus-depth. We also handle a hierarchical 
decomposition method of depth images to render a dynamic 3D scene represented 
by video-plus-depth rapidly. Finally, we present a method to generate streamable 
3D video contents based on video-plus-depth and computer graphic models in the 
MPEG-4 multimedia framework. The MPEG-4-based 3D video contents can sup-
port a variety of user-friendly interactions, such as free viewpoint changing and 
free composition with computer graphic images.  

1   Introduction 

As immersive multimedia services are expected to be available in the near future 
through a high-speed optical network, a three-dimensional (3D) video is recog-
nized as an essential part of the next-generation multimedia applications. As one 
of 3D video representations, it is widely accepted that an image sequence of syn-
chronized color and depth images, which is often called as video-plus-depth [1], 
provides the groundwork for the envisaging 3D applications. For a practical use of 
the immersive video in future interactive 3D applications, such a 3D TV [2], it is 
very important to estimate accurate depth information from a real scene.  

In order to obtain reliable depth data, a variety of depth estimation algorithms 
have been presented in the fields of computer vision and image processing [3]. 
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However, accurate measurement of depth information from a natural scene still 
remains problematic due to the difficulty of depth estimation on textureless, depth 
discontinuous and occluded regions. 

In general, we can classify depth estimation methods into two categories: active 
depth sensing and passive depth sensing. Passive depth sensing methods calculate 
depth information indirectly from 2D images [4]. Contrarily, active depth sensing 
methods employ physical sensors for depth acquisition, such as laser sensors, infrared 
(IR) sensors [5], or light pattern sensors [6]. Although current direct depth estimation 
tools are expensive and produce only low-resolution depth images, they can obtain 
more accurate depth information in a shorter time than passive depth sensing methods.  

We can obtain depth images from a natural scene in real time using an IR-based 
time-of-flight (TOF) depth camera, such as Z-Cam, developed by 3DV Systems, 
Ltd. [7] or NHK Axi-vision HDTV camera [8]. The depth camera simultaneously 
captures color images and the associated depth images by integrating a high-speed 
pulsed IR light source with a conventional video camera. The ATTEST project 
has shown us a possibility of realizing a 3D TV system using a depth camera [9]. 
In addition, 3D contents generated by a depth camera were demonstrated for fu-
ture broadcasting [10]. 

In spite of these successful activities using a depth camera, we still suffer from 
handling depth information captured by current depth cameras due to their inherent 
problems. The first problem is that a depth image captured by the depth camera 
usually includes severe noise. This noise usually occurs as a result of differences in 
reflectivity of IR sensors according to color variation in objects. The second prob-
lem is that the measuring distance of the depth camera to get depth information 
from a real scene is limited. In practice, the measuring distance is approximately 
from 1m to 4m. Thus, we cannot obtain depth information from far objects. The 
last problem is that the current depth camera can only produce low-resolution 
depth images. Most depth cameras usually have a resolution of less than 320×240 
depth pixels due to many challenges in real-time distance measuring systems. The 
maximum image resolution of depth images acquired by Z-Cam is 720×486. 

In order to solve these built-in problems, we introduce a system to generate 
high-quality and high-resolution video-plus-depth by combining a high-resolution 
stereoscopic camera and a low-resolution depth camera, called a depth camera-
based hybrid camera system or a hybrid camera system shortly [11]. There are 
three questions to be addressed in this chapter related to the hybrid camera system: 

1) How can we obtain high-quality and high-resolution video-plus-depth us-
ing a hybrid camera system? 

2) How can we render consecutive 3D scenes generated by high-resolution 
video-plus-depth rapidly using a mesh representation? 

3) How can we stream 3D video contents including video-plus-depth data and 
computer graphic images? 

In this chapter, we first introduce a method to obtain high-quality and high-resolution 
video-plus-depth using a hybrid camera system [12]. The hybrid camera system pro-
vides region-of-interest (ROI) enhanced depth images by regarding depth information 
captured by a depth camera as ROI depth information on the left image captured by a 
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stereoscopic camera. Then, we handle a scheme to render a dynamic 3D scene repre-
sented by video-plus-depth using meshes, called hierarchical decomposition of depth 
images [13]. In the hierarchical decomposition, we create three disjoint layers from a 
depth image according to the existence of edge information: regular mesh, boundary, 
and feature point layers. Finally, we present a method to generate streamable 3D video 
contents based on video-plus-depth in the MPEG-4 multimedia framework. Since  
traditional multimedia frameworks merely deal with efficient coding issues and syn-
chronization problems between video and audio, we pay attention to the MPEG-4 mul-
timedia framework that supports streaming functionality for various media objects and 
provides flexible interactivity. 

The rest of this chapter is organized as follows. Section 2 introduces a hybrid 
camera system and a depth estimation method using the hybrid camera system. 
Section 3 describes a hierarchical decomposition method to render a dynamic 3D 
scene with video-plus-depth. Section 4 presents MPEG-4-based 3D video contents 
generation. The performance of generated video-plus-depth and its 3D video con-
tents is shown in Section 5. The chapter is concluded in Section 6. 

2   Video-Plus-Depth Generation 

2.1   Hybrid Camera System 

We introduce a hybrid camera system combining a number of video cameras and a 
depth camera. The video camera set can be single, stereoscopic, or multiview 
cameras. In this work, we set up a hybrid camera system composed of a HD 
stereoscopic camera and a SD depth camera, Z-Cam. Figure 1 shows the hybrid  

 

Depth Camera

Stereo Video Camera

Sync. Generator

PC 1PC 2PC 3

Left Image Right Image

Color Image Depth  Image

 

Fig. 1 Depth camera-based hybrid camera system 
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camera system and its output images. Notably, each camera is connected to a per-
sonal computer equipped with a video capturing board, and a clock generator is 
linked to the cameras to provide synchronization signals constantly. Table 1 shows 
the specification of the hybrid system. 

Table 1 Specification of the hybrid camera system 

Device Specification Detail 

Stereo Camera Output Format NTSC or PAL(16:9 ratio, High Definition) 

Depth Range 0.5 to 7.0m (In practice, 1.0 to 4.0m) 

Field of View 40 degrees Depth Camera 

Output Format 
NTSC or PAL(4:3 ratio, Standard Defini-
tion) 

Sync. Generator Output Signal SD/HD Video Generation 

In the hybrid camera system, we capture four synchronized 2D images in each 
frame: left and right images from the stereoscopic camera, and color and depth 
images from the depth camera. In order to clearly explain the methodology, we 
define image terminologies used in the rest of this chapter as follows.  

• Left image: a color image captured by the left camera. 
• Right image: a color image captured by the right camera. 
• Color image: a color image captured by the depth camera. 
• Depth image: a depth image captured by the depth camera. 
• ROI depth image: a spatially-extended depth image from a depth image 

captured by the depth camera. 
• ROI enhanced depth image: the final depth image combining a ROI depth 

image and its background depth image. 

Color and depth images naturally have the same resolution (720×480) as the depth 
camera. On the other hand, the other images have the same resolution 
(1920×1080) as the HD stereoscopic cameras. 

Since we are employing two different types of cameras to construct the hybrid 
camera system, it is necessary to calculate relative camera information using cam-
era calibration. In order to carry out relative camera calibration, we measure the 
projection matrices Ps, Pl, and Pr of the depth, left and right cameras induced by 
their camera intrinsic matrices Ks, Kl, and Kr, rotation matrices Rs, Rl, and Rr, and 
transition matrices ts, tl, and tr, respectively. Then, the left and right images are 
rectified by rectification matrices induced by the changed camera intrinsic matri-
ces Kl ′ and Kr′, the changed rotation matrices Rl′ and Rr′, and the changed transi-
tion matrices tr′. Thereafter, we convert rotation matrix Rs and the transition matrix 
ts of the depth camera into the identity matrix I the zero matrix O by multiplying 
inverse rotation matrix Rs

-1 and subtracting the transition matrix itself. Hence, we 
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can redefine the new relative projection matrices for the left and right cameras on 
the basis of the depth camera as Eq. 1.  
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where Ps′, Pl′, and Pr′ indicate the modified projection matrices of the depth, left, 
and right cameras, respectively.  

2.2   Depth Calibration  

In practice, depth information obtained from the depth camera has three critical 
problems. The first problem is that the captured depth images are very noisy. The 
acquired depth images usually contain quantization errors and optical noise, 
mainly due to the reflectivity or color variation of objects. The second problem is 
that depth data on shiny and dark surface regions can be lost or the boundary of 
color images does not match well with its depth images. The depth camera does 
not capture shiny and dark surfaces well, such as black leather and black hair. Es-
pecially, for a 3D human actor it often causes the loss of hair region. In addition, 
when we calibrate the depth camera using an auto calibration tool, it does not 
guarantee an exact match between the boundaries of both images. The last prob-
lem is that the measured depth information by a depth camera is not equal to the 
real one. Even though the distance from the depth camera to the object is constant, 
depth information obtained by a depth camera depends on the capturing environ-
ment. In general, the depth camera system has its own depth calibration tool, but it 
is very poorly calibrated. Figure 2 shows the problem of raw depth image. 

Raw Depth Image from Depth Camera Optical Noises

No Depth Existence

Boundary Mismatching
 

Fig. 2 Noisy depth image 
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In order to reduce optical noise and boundary matching in raw depth images, a 
novel method was introduced for depth image enhancement [14]. For noise reduc-
tion, a newly-designed joint bilateral filtering method was presented. The bilateral 
filter reduces the noise while preserving important sharp edges. By applying the 
joint bilateral filter onto the raw depth image, we can reduce the artifact in it. 
Formally, for some position p of the synchronized color image I′ and depth image 
I′′, the filtered value Jp is represented by Eq. 2. 

( ) ( ) ( ) qqprqpr
q

s
p

p IIIGIIGqpG
k

J ′′−′′⋅′−′⋅−= ∑
Ω∈

21

1  (2) 

where Gs, Gr1,and Gr2 are the space weight, color difference in the color image and 
depth difference in the depth image at the position p and q, respectively. The term of Ω 
is the spatial support of the weight Gs, and the term of Kp is a normalizing factor.  

For lost depth region recovery, especially, to recover the lost hair region in human 
modeling, a novel modeling algorithm was developed using a series of methods in-
cluding detection of the hair region, recovery of the boundary, and estimation of the 
hair shape [15]. In addition, in order to fix the boundary mismatches between color 
and depth information, we compensate the boundary of a human actor using a digital 
image matting technique considering color and depth information at the same time. 
Figure 3 shows one of the results of the depth image enhancement. 

Raw depth image Noise removal Hair region recovery Boundary matching  

Fig. 3 Depth image enhancement 

Finally, in order to calibrate measured depth data into real ones, we check the 
depth of the planar image pattern within the limited space by increasing the dis-
tance (10cm) from the image pattern to the depth camera [16]. Since we already 
know the camera parameters of each camera, the real depth values are calculated by 
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where K is the focal length of the video camera, B is the baseline distance between two 
video cameras. Dn(px, py) is the real depth value corresponding to the measured dispar-
ity value dn(px, py) at pixel position (px, py) in the image pattern depth image. 

Thereafter, we generate a mapping curve between real depths and measured 
depths from the depth camera and find the fitting curve using the cubic equation 
y=a+bx+cx2+dx3. The cross small rectangular points on the x−y plane are formed 
by the measured depths x and real depths y that minimizes the sum of squared dis-
tances to these points. 

2.3   Depth Image Generation 

Since the measuring distance of the depth camera is approximately from 1m to 
4m, we cannot obtain depth information from far objects. In the video-plus-depth 
generation, we regard the near objects captured by the depth camera as an ROI or 
a foreground. First, we move the depth data captured by the depth camera to the 
world coordinate, and then reproject the warped depth data onto the image plane 
of the left camera. 

When Ds(psx, psy) is the depth information at the pixel position (psx, psy) in the 
depth image, we can regard the pixel ps (psx, psy, Ds(psx, psy)) as a 3D point. The 
corresponding point pl of the left image is calculated by  

ssll pPPp ⋅⋅= −1'  (4) 

where Pl′ and Ps
-1 are the relative projection matrix of the left camera and the in-

verse relative projection matrix of the depth camera, respectively.  
Figure 4 shows an initial ROI depth image that is overlapped onto the left image. 

When we compare the original depth image with it, we can notice that the body region 
is extended to fit with the spatially high-resolution left image. We can also notice that 
holes occur in the initial ROI depth image due to the warping operation. 

Initial ROI depth image

Original depth image

3D image warping

 

Fig. 4 Generation of initial ROI depth image 



356 S.-Y. Kim et al.
 

 

ROI of the left image and the initial ROI depth image do not match correctly on 
the region of ROI boundaries. The main reason of the mismatch is the slight incor-
rectness of the camera calibration. We solve the mismatch problem using image 
segmentation for the left image. In order to correctly detect ROI of the left image, 
we overlap the color-segmented left image onto the initial ROI depth image. Then, 
we measure the color segment set for ROI from color segments of the left image by 
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where R(si) indicates whether the ith color segment si of the color segmented left 
image is included in ROI of the left image or not. When R(si) is 1, the correspond-
ing color segment is included in the color segment set for ROI. The term of n(si) is 
the total count of pixels in si, and n(A(si)) is the total count of pixels on the region 
of initial ROI depth image A(si) that is matched with the region of si. Figure 5(a) 
and Figure 5(b) show the left image and its color segment set for ROI,  
respectively. 

(c) ROI depth image

(b) Color segment set for ROI

(d) ROI enhanced depth image

(a) Left image

 

Fig. 5 ROI enhanced depth image generation 

After ROI detection, we refine the initial ROI depth image from the color seg-
ment set by eliminating outside pixels on the former with comparison to the letter. 
Then, we fill holes in the ROI depth image with the pixels generated by linearly 
interpolating with their neighboring pixels [17]. The hole-filling algorithm is per-
formed by the unit of a color segment applying 
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where R(x, y)k is the interpolated pixel value at the hole position (x, y) of the kth 
color segment in the initial ROI depth image R using the valid neighboring pixel 
value R(x+i, y+j)k in the kth color segment. The term n is the valid number of pix-
els within a W×W window. Since the hole-filling algorithm is performed in each 
color segment, the valid depth pixels in its neighboring segments will not affect 
the holes in the color segment. Figure 5(c) shows an ROI depth image. 

Finally, we obtain the background depth image applying a stereo matching algo-
rithm, such a belief propagation method [18]. Then, we combine the background 
depth image with the ROI depth image to generate an ROI enhanced depth image. 
Figure 5(d) shows the ROI enhanced depth image. The pair consisting of the left 
image and its ROI enhanced depth image becomes a frame of video-plus-depth.  

3   Hierarchical Decomposition of Depth Images 

For rendering a 3D scene with video-plus-depth data, we employ depth image-
based rendering using meshes [19]. In this chapter, we introduce the hierarchical 
decomposition of depth images to represent a dynamic 3D scene represented by 
video-plus-depth. In the hierarchical decomposition, we decompose a depth image 
into three layers: regular mesh, boundary, and feature point layers. The main bene-
fit of hierarchical decomposition is to maintain geometric regularity by using 3D 
shape patterns induced by these three layers so that we can reconstruct a 3D sur-
face rapidly.  

First, we extract edge information by applying the Sobel filter to a depth image 
vertically and horizontally. The reason using a depth image instead of its color im-
age for edge extraction is that it is not disturbed by lights or surroundings. There-
after, we divide the region of the depth image uniformly into pixel blocks or grid 
cells. According to the existence of edge information in a grid cell, we divide the 
depth image [4] into regions of edges and regions without edges, as shown in  
Fig. 6. The region of edges is the set of grid cells that includes edge information, 
referred to as edge-grid cells; similarly, the region without edges is the set of grid 
cells excluding edge information, referred to as no-edge-grid cells. 

We define the size of a grid cell as 2m×2n resolution, such as 16×16, 8×8, or 
16×8. Once we choose the size of a grid cell, we should maintain it for each depth 
image during the hierarchical decomposition. In addition, we should be careful to 
select the size of a grid cell, because it is inversely proportional to the amount of 
distortion of generated 3D scenes. We usually set the size of a grid cell as 4×4 or 
8×8. 

A regular mesh layer is obtained by downsampling the depth image. When the 
size of a grid cell is p×q, the regular mesh layer is generated by downsampling its 
depth image with the horizontal sampling rate p and the vertical sampling rate q. 
In other words, we gather the four depth pixels at the corner of each grid cell to  
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Grid cell

No-edge-grid cell

Edge-grid cell

Edge extractionDepth image
 

Fig. 6 Edge-grid cell and no-edge grid cell 

make regular mesh layers in each frame. Figure 7(a) shows the rendering result of 
the wire frame mode and the rendering result for a 3D surface. However, it is not 
enough for the surface of a 3D scene, because there are serious distortions in the 
region of edges as shown in the rendering result. 

A boundary layer includes depth pixels in the edge-grid cell. In order to regu-
larly extract depth pixels, we employed four quad-tree modes and a full modeling 
mode. After uniformly dividing each edge-grid cell into four sub-grid cells, we use 
the full modeling mode when more than two sub-grid cells include edges. Other-
wise, one of the quad-tree modes is selected according to the location of the sub-
grid cell that includes edges. Table 2 shows the full modeling mode and four 
quad-tree modes in the boundary layer: up-left, up-right, down-left, and down-
right quad-tree modes. Here, we extracted 10 depth pixels in the quad-tree mode 
and 21 depth pixels in the full modeling mode. It should be noted that we can han-
dle serious distortions, holes, close to the region of edges due to the difference of 
depth values in the boundary layer. For preventing holes, additional processing is 
required to fill out them, as shown in Table 2. 

A boundary layer is used to refine a 3D surface generated by a regular mesh 
layer for the region of edges. Since most of the serious distortions are mainly oc-
curred in their areas, we should deal with the region of edges carefully. Figure 
7(b) shows the rendering result of the wire frame mode for a 3D surface with both 
layers and its rendering result for a 3D surface. 

A feature point layer includes depth pixels in the no-edge-grid cell. While we 
deal with the region of edges to generate a boundary layer in each frame, feature 
point layers is to handle the region of no edges. Feature point layers are used to 
enhance the visual quality of the region of no edges in the 3D scene. In order to 
determine the influential depth pixels in the no-edge-grid cells, scores of all pixels 
in the no-edge-grid cell are estimated using a maximum distance algorithm. The 
most influential depth pixels are then gathered into the 1st feature point layer. 
Likewise, the second influential depth pixels are also gathered into the 2nd feature 
point layer; this process is repeated for all subsequent points. Figure 7(c) shows 
the wire frame for the final surface generated by regular mesh, boundary, and fea-
ture point layers. We can notice the visual quality of the 3D surfaces is enhanced 
by adding the depth information in feature point layers. 
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(b) Boundary layer

(a) Regular mesh layer

(c) Feature point layer  

Fig. 7 3D scene rendering using hierarchical decomposition 

Table 2 shows the number of feature points, the number of triangles, and the 
shape of the reconstructed 3D surface for grid cells according to layers. In the ta-
ble, we consider only four feature point layers and the shape of surface generated 
from them is dependent on the location of their depth pixels. When a grid cell has 
a regular mesh layer only, we create the 3D surfaces with only 2 triangles. For the 
other no-edge-grid cells, of which is represented by the regular mesh and feature 
points layers, we generate the 3D surface using from 4 to 10 triangles with from 5 
to 8 depth pixels extracted from the regular mesh and feature point layers. For 
edge-grid cells represented by quad-tree modes in the boundary layer, we generate 
the 3D surface using 20 triangles with 14 depth pixels extracted from the regular 
mesh and boundary layers. For edge-grid cells represented by the full modeling 
mode, we generate the 3D surface using 44 triangles with 25 depth pixels from a 
regular mesh and boundary layers. 

Likewise, we can generate a dynamic 3D scene rapidly by assigning regularly-
predefined 3D shape patterns according to layers into the grid cells in each frame. The 
generated 3D surface by hierarchical decomposition is covered by the corresponding  
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Table 2 Generation of 3D surface 

Layer Mode # of depth pixels # of triangles Shape of surface 

Regular mesh - 4 2 
 

Up-left 14 20 
 

Down-left 14 20 
 

Up-right 14 20 
 

Down-right 14 20 
 

Boundary 

Full modeling 25 44 
 

1st layer 5 4 
 

2nd layer 6 6 
 

3rd layer 7 8 
 

Feature 
Points 

4th layer 8 10 
 

 
color image using texture mapping. As a result, we can realize a fast rendering system 
to support 3D video contents based on video-plus-depth in real time. 

4   MPEG-4-Based 3D Video Contents Exploitation 

In order to deliver 3D video contents, a multimedia framework is needed. Tradi-
tional multimedia frameworks, such as MPEG-1 and MPEG-2, merely deal with 
efficient coding issues and synchronization problems between video and audio. In 
addition, they do not provide any framework to support interactive functionalities 
to users. Hence, we direct attention to the MPEG-4 multimedia framework [20] 
that supports streaming functionality for a variety of media objects and provides 
flexible interactivity.  

In this chapter, we design a new node for a depth image sequence in the 
MPEG-4 system to provide a practical solution to stream 3D video contents while 
supporting a variety of user-friendly interactions. Figure 8 illustrates the overall 
system architecture to generate the 3D video contents based on video-plus-depth 
in the MPEG-4 multimedia framework. 

At the sender side, we generate high-resolution video-plus-depth using the hy-
brid camera system as introduced in Section 2. Video-plus-depth is then spatio-
temporally combined with other multimedia, such as audio and computer graphics 
models, using the MPEG-4 Binary Format for Scene (BIFS). The MPEG-4 BIFS 
is a scene descriptor that contains the spatio-temporal relationship between each 
multimedia object and some interactivity information. The video-plus-depth data 
are compressed by two video coders; one for color image sequence and the other  
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Fig. 8 3D Video Contents Generation 

for depth image sequence. Other multimedia data and the scene description infor-
mation are compressed by their coders, respectively. These compressed bitstreams 
are multiplexed into one bitstream in the MPEG-4 system.  

At the client side, we extract video-plus-depth, scene description information, 
and other multimedia data from the transmitted bitstream by their decoders. 
Thereafter, we construct 3D scenes from video-plus-depth using the hierarchical 
decomposition method as introduced in Section 3. Other multimedia data are 
combined with the dynamic 3D scene by referring the scene description informa-
tion. Finally, we can experience various interactions with the immersive content. 

A major difference in MPEG-4, with respect to previous audio-visual stan-
dards, is the object-based audio-visual representation model. In the MPEG-4 mul-
timedia framework, an object-based scene is built using individual objects that 
have relationships in space and time. Based on this relationship, the MPEG-4 sys-
tem allows us to combine a variety of media objects into a scene. The MPEG-4 
BIFS defines how the objects are spatio-temporally combined for presentation. All 
visible objects in the 3D scene are described within the Shape node in MPEG-4 
BIFS. The Shape node should have both appearance and geometry information; 
the appearance is expressed by the color image sequence through a MovieTexture 
node.  

However, although the geometry should be expressed by the depth image se-
quence, MPEG-4 BIFS does not support a node related to this geometry. There-
fore, we design a new node representing the depth image sequence, referred to as a 
DepthMovie node. A new DepthMovie node that can be stored in the geometry 
field is designed as follows. 
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DepthMovie  
{ 
   field   SFVec2f      fieldOfView      0.785398 0.785398 
   field   SFFloat       nearPlane 10 
   field   SFFloat       farPlane 100 
   field   SFBool       orthographic TRUE 
   field   SFTextureNode  texture NULL 
} 
 
The upper four fields of the DepthMovie node are the same as the fields of the 

DepthImage node [21] that indicates the camera parameters. The texture field can 
store a depth image sequence as geometry through a MovieTexture node that usu-
ally indicates the 2D video. Then, the corresponding color image sequence is stored 
on the texture field of the Appearance node. In this way, these nodes can describe a 
3D surface. Following shows an example describing video-plus-depth using the 
DepthMovie node. In this example, “colorVideo.h264” and “depthVideo.h264” are 
the compressed versions of color and depth image sequences, respectively. 

 
Shape  
{  
     appearance Appearance{  
          texture MovieTexture { url “colorVideo.h264” }   
     }  
     geometry DepthMovie {  
          texture MovieTexture { url “depthVideo.h264”}     
    }  
}  
 
In general, computer graphic models are represented by the mesh structure and 

described using predefined nodes in MPEG-4 BIFS. The MPEG-4 BIFS data includ-
ing scene description information and computer graphic model data are coded by the 
BIFS encoder provided by the MPEG-4 system. Thereafter, the compressed video-
plus-depth and MPEG-4 BIFS bitstreams are multiplexed into a MP4 file that is de-
signed to contain the media data by the MPEG-4 representation. The MP4 file can 
be played from a local hard disk and over existing IP networks. Hence, users can en-
joy the 3D video contents in the context of a video-on-demand concept. 

5   Experimental Analysis 

5.1   Evaluation of Depth Accuracy 

For this experiment, as shown in Fig. 1, we set up a hybrid camera system with 
two HD cameras (Canon XL-H1) as a stereoscopic camera and one Z-Cam as a 
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depth camera. The measuring distance of the depth camera was from 1.75m to 
2.15m and the baseline distance between HD left and right cameras was 20cm. For 
test images, we captured BEAR and ACTOR images using the hybrid camera sys-
tem. Especially, since the BEAR images included a scene that a big yellow bear 
doll embraced a small yellow bear doll, they were good to evaluate depth accuracy 
of ROI enhanced depth image generated by hybrid camera system. Figure 9 shows 
the test images. 

(a) BEAR images

(b) ACTOR images

Left image Right image Color image Depth image

Left image Right image Color image Depth image

 

Fig. 9 Test images 

For comparison with the previous depth estimation methods, we estimated ROI 
depth images of left images by applying the state-of-the-arts stereo matching 
methods, which are belief propagation [18], graph cuts [22], dynamic program-
ming [23], and scan-line optimization [3]. For background depths, we only used 
SAD method based on color segmentation. We have also made a ROI ground truth 
depth image of BEAR images by projecting the depth data acquired by a 3D laser 
range finder [24] onto the camera plane of the left camera. Figure 10 shows the 
ground truth depth image and the results of depth estimation for BEAR images. 

As objective evaluation methodology, we used two quality measures based on 
known ground truth data [3]: the root-mean squared error RE and the percentage of 
bad matching pixels BA. Here, bad matching means that the depth value is differ-
ent from the corresponding ground truth depth value by more than one pixel value. 
Table 3 shows the result of RE, BA, and the BA difference between the stereo 
matching algorithms and the hybird camera method, BDiff. 

When we compared the accuracy of ROI depths generated by the hybrid cam-
era system with belief propagation, which was the best among previous methods, 
our method was more accurate by approximately 2.1 for RE and 11.2 % for BA than 
belief propagation for BEAR images.  
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(b) Belief propagation (c) Graph cuts

(e) Scanline optimization(d) Dynamic programming (f) Hybrid camera system

(a) Ground truth

 

Fig. 10 Results of depth estimation for BEAR image 

Table 3 ROI depth quality evaluation 

Methods RE BA BDiff 

Belief gropagation 26.5 50.1% +11.2% 

Graph cuts 62.1 83.3% +44.4% 

Dyanaimc programimg 46.1 76.7% +37.8% 

Scanline optimization 67.7 79.5% +40.6% 

Hybrid camera system 24.4 38.9% - 

(c) Belief propagation

(b) Dynamic programming

(d) Hybrid camera system

(a) Ground truth

 

Fig. 11 3D scene reconstruction on ROI of BEAR images 
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Figure 11 shows the results of 3D scene reconstruction on ROI of BEAR im-
ages using hierarchical decomposition. When we subjectively compare the scenes 
with the one generated with the ground truth for BEAR images, the 3D scene gen-
erated by our method more closely resembled the original scene than other meth-
ods. Especially, the regions of the big bear doll’s leg and the small bear doll in the 
original scene were much similar with ours. Hence, we subjectively notice that  
the depth image obtained by the hybrid camera has more reliable depth data than 
the other methods. Figure 12 shows the result of depth estimation with the 
ACTOR images and the side view of its 3D scene reconstruction. We could notice 
that the regions of a table and a hat marked by circles were reconstructed into 3D 
scenes better from depth information generated by the hybrid camera system than 
the other methods.  

(a) Belief propagation

(b) Graph cuts

(c) Dynamic programming

(d) Hybrid camera system  

Fig. 12 Results of depth estimation for ACTOR image 

5.2   3D Video Contents Generation 

In this example, we have created 3D video contents with the main theme of a 
home-shopping channel scenario using the hybrid camera system in the MPEG-4 
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multimedia framework. Figure 13 depicts each stage to create the 3D home-
shopping contents for future broadcasting.  

Depth camera data

Video-plus-depth

…

…

Computer graphic models

Streamable 3D video contents

MPEG-4 system

Hybrid camera system

 

Fig. 13 3D home-shopping contents generation 

In the 3D home-shopping contents, the geometric and photometric information 
of a home-shopping host had been derived from video-plus-depth data generated 
by the hybrid camera system. The video-plus-depth information was encoded by 
two H.264/AVC coders [25]. In order to render the home-shopping host into a 3D 
scene, we used hierarchical decomposition of depth images. The advertised prod-
uct, a sofa, and the background of the home-shopping channel stage were repre-
sented by computer graphic models. The sofa was represented by a 3D mesh 
model composed of 4,774 vertices and 2,596 triangular faces. All computer 
graphic models were encoded by a MPEG-4 BIFS coder.  

In this experiment, it was possible to stream the 3D home-shopping contents 
through a network after setting up a streaming server [26]. Moreover, since we 
successfully represented a real and natural object, a home-shopping host, with 
video-plus-depth and rapidly rendered it into a dynamic 3D scene, we could serve 
the immersive contents to users and support a variety of interactive functionality 
in the MPEG-4 multimedia framework.  

As shown in Fig. 14(a), the home-shopping contents could provide a 3D view 
to users by freely reallocating the position of a virtual camera in 3D space. In ad-
dition, as shown in Fig. 14(b), since the home-shopping host based on video-plus-
depth data was described by a newly-designed MPEG-4 BIFS node DepthMovie, 
the natural 3D actor could be easily combined with computer graphic images, a  



Three-Dimensional Video Contents Exploitation 367
 

 

 

(b) Free composition with computer graphics

(a) Free viewpoint changing

(c) Haptic interaction
 

Fig. 14 User interactions 

sofa and a subtitle, described by existing MPEG-4 BIFS nodes. Furthermore, as 
shown in Fig. 14(c), when the sofa included haptic information represented by a 
bump map, we could feel its surface property wearing a haptic device using a hap-
tic rendering algorithm [27]. The home-shopping video clip is available in the web 
site. (http://www.imaging.utk.edu/people/sykim/). 

6   Conclusions  

We addressed three problems in this chapter. First, we introduced a depth camera-
based hybrid camera system to generate high-quality and high-resolution video-
plus-depth. With the hybrid camera system, we intended to minimize inherent 
technical problems in current depth cameras and generate reliable depth informa-
tion. Second, we talked about a hierarchical decomposition technique to render a 
3D dynamic scene with video-plus-depth data. Finally, as one of possible applica-
tions of the hybrid camera system, we introduced a method to generate streamable 
MPEG-4-based 3D video contents for the future home-shopping channel. The 3D 
video contents including video-plus-depth and computer graphics images could 
support various user-friendly interactions. We believe that the 3D video contents 
exploitation system can present new directions for further researches related to in-
teractive 3D multimedia applications. 
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Chapter 16
Improving 3D Visual Experience by Controlling
the Perceived Depth Distortion

Jessica Prévoteau, Sylvia Chalençon-Piotin, Didier Debons, Laurent Lucas,
and Yannick Remion

Abstract. A fundamental element of stereoscopic and/or autostereoscopic image
production is the geometrical analysis of shooting and viewing conditions in order
to obtain a qualitative 3D perception experience. Starting from the usual multiscopic
rendering geometry and the classical off-axis coplanar multipoint 3D shooting ge-
ometry, we firstly compare the perceived depth with the shot scene depth, for a cou-
ple of shooting and rendering devices. This yields a depth distortion model whose
parameters are expressed from the geometrical characteristics of shooting and ren-
dering devices. Then, we explain how to invert these expressions in order to design
the appropriate shooting layout from a chosen rendering device and a desired ef-
fect of depth. Thus, thanks to our scientific know-how, we based our work on the
link between the shooting and rendering geometries, which enables to control the
distortion of the perceived depth. Finally, thanks to our technological expertise, this
design scheme provides three patented shooting technologies producing qualitative
3D content for various kinds of scenes (real or virtual, still or animated), complying
with any pre-chosen distortion when rendered on any specific multiscopic technol-
ogy and device as specified previously.
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1 Introduction

Extending visual content with a third dimension, or capturing a dynamic scene in 3D
and generating an optical duplicate of it in real-time, has been a dream over decades.
All components (hardware and software) related to this viewing experience are col-
lectively referred to as three-dimensional television (3DTV). Often presented as the
next evolution of television, this new area of research holds tremendous potential
for many applications in entertainment, telepresence, medicine, visualization and re-
mote manipulation to name just few. From a technological point of view, creating the
illusion of a real environment, is necessary condition over the whole 3DTV chain,
including 3D image acquisition, 3D representation, compression, transmission,
signal processing and interactive rendering. We now have numerous multiscopic
rendering systems with or without glasses. Different technologies support all these
systems; stereoscopy with colorimetric or temporal mixing such as anaglyph [1, 2],
occultation and polarization [3], for example for projections with glasses as in some
movie theaters; autostereoscopy [4, 5] such as parallax barrier and lenticular lens; or
again for 3D advertising billboards, autostereoscopic displays or lenticular printing.

Fig. 1 From shooting to
rendering process: the dif-
ferent rendering modes and
kinds of scenes (real or vir-
tual, still or animated) to be
shot.
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As shown in Figure 1, the different rendering modes and kinds of scenes to be
shot are well-known, but all these systems need content; up to now, there has been no
3D shooting system specifically designed to acquire a qualitative 3D content. Some
works [6, 7, 8, 9] present efficient algorithms for stereoscopic display to obtain a
3D content from a 2D-plus-depth content. Their global and common idea lies in
the slight difference between the right view and the left view. So, they generate
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the right eye image by a transformation of the left eye image conforming to the
stereo disparity and then they reduce the processing cost for stereoscopic displays.
The main disadvantage of these methods lies in the lack of information in occluded
areas which is impossible to overcome in a generic way. Yet, to comply with our
demand of qualitative 3D content we focus on multi-shooting technologies.

Other works [10, 11] have been published in the general case of multi-cameras.
They define the projective relations between the images shot by multi-cameras in
order to calibrate the different cameras and then to reconstruct the 3D shot scene
from these multiple views. There is no link with any viewing device since the target
is a reconstruction module. In our case, flat multiscopic viewing requires a simpli-
fied shooting layout also called “rectified geometry”. Moreover the control of the
viewer’s 3D experience implies to connect shooting and viewing geometries in or-
der to model and set the geometrical distortions between shot and perceived scenes.

Furthermore, some works have been done to improve the control of the viewer’s
3D experience in stereoscopy and computer graphics fields [12, 13]. They usually
compare shooting and viewing geometries in order to choose a shooting layout fit-
ting a given depth range in virtual space to the “comfortable” depth range of the
display. We believe that choices that can be made in the shooting design may be
richer than a simple mapping of depth and could differ for each observation posi-
tion in the multi-view case. This requires a detailed model and a precise analysis
of possible distortions for the multiscopic shooting/viewing couple. Indeed, such a
model will provide the characteristics of shooting which will generate the chosen
distortions on the chosen viewing device. If some authors have described the trans-
formation between the shot and the real scene [12] in the stereoscopic case, none
of them has been interested in producing an analytic multi-observer and reversible
model allowing to pilot the shooting for all kinds of possible distortions. Thus, we
suggest a solution to produce 3D content according to the chosen rendering mode
and the desired depth effect.

Additionally, it is important to consider limits of the human visual system upon
the perceived quality of stereoscopic images. Some publications on human fac-
tors [14, 15, 16] have studied in detail the issue of viewer comfort for stereoscopic
displays. All these studies lead to a similar conclusion: the amount of disparity in
stereoscopic images should be limited so as to be within a defined comfortable
range. The main reason given for this is that the human visual system normally
operates so that the convergence of the eyes and the focus are linked. For all stereo-
scopic displays this relationship is thought to be stressed by requiring the viewers
eyes to converge to a perceived point much deeper than the display plane while still
being required to focus on the display plane itself. Limiting disparity ensures that
the viewers perceived depth is controlled and the convergence/accommodation link
is not stressed.

So we’ll explain how to model and quantify the depth distortion from given ren-
dering and shooting geometries and also from a chosen rendering device and a de-
sired depth effect and how to design the appropriate shooting layout.
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This chapter introduces a complete analysis of the geometrical quality of 3D
content based on distortion analysis by linking shooting and viewing geometries.
Starting from previous related knowledge (i.e., viewing and shooting geometries),
we’ll show remaining the problems and model the possibilities of depth distortions
between the scene perceived by a viewer and the scene shot initially. Next, we will
present a shooting layout design scheme ensuring a desired depth effect (controlled
depth distortion or perfect depth effect) upon a pre-determined rendering device.
Finally, we will introduce derived shooting technologies (which are patent pending)
complying with this scheme and thus achieve qualitative 3D content on the previ-
ously given rendering device: 3D computer graphics software and 3D devices. We
will present these prototypes and some of their results.

2 Previous Related Knowledge

2.1 Viewing

3D image rendering, with or without glasses, is known to require “stereoscopic”
or “autostereoscopic” devices. All these devices make a spatial, colorimetric and/or
temporal mixing over a single region of interest (ROI area physically filled by the
displayed image on the rendering device) of n×m so-called “initial images” of one
scene shot from several distinct viewpoints. These systems allow to optically and/or
temporally separate the images reaching each eye of one or more viewers. In case
of stereoscopic systems, both images are emitted in a single optical beam indepen-
dently of the viewer’s position in this beam [1, 2, 17]. However, autostereoscopic
systems separate the images in several distinct optical beams, organized for exam-
ple, in horizontal “range” of n images (n≥ 2 and m = 1) [4, 5]. We can also imagine
optical beams organized in both horizontal and vertical ranges. Then we dispose of
a matrix disposition of n×m optical beams (n≥ 2 and m≥ 2), each one transporting
a different image. Thus, all known devices broadcast alternately and/or simultane-
ously n×m images (n ≥ 2 and m ≥ 1) within one or several optical beams in such a
way that both eyes of a correctly-placed viewer get different consistent images (i.e.,
initial images and not combinations of them). Thereby the viewer’s brain rebuilds
his depth perception by stereoscopy [18]. Even if the human visual system has a
tolerance as for epipolar alignment, ideal positions within this tolerance correspond
in particular to the eyes line which has to be parallel to the display’s rows. Despite
this human tolerance, we calculate our images in such a way that they have a perfect
epipolar alignment for a well-placed eyes line.

So let’s analyse the geometry of these devices the “viewing geometry” (Fig. 2)
which will constrain the compatible shooting layout.

A 3D rendering device mixes n×m images sharing out a ROI of dimension W
(width) and H (height). Each image (image’s index i = (i1, i2) ∈ {1,n}×{1,m}) is
supposed to be “correctly” visible (without much mixing with others) at least from
the chosen preferential position Ei. These positions are aligned upon m lines par-
allel to the rows of the ROI located at distance di2 , i2 ∈ {1, ...m}, from the device
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Fig. 2 The viewing geometry

ROI. The preferential positions Ei are placed on those lines according to their sec-
ond index i2 in order to guarantee that a viewer whose binocular gap is bi2 (often
identical to human medium binocular gap 65 mm, but possibly different according
to the expected public: children, etc.), with the eyes line parallel to the device rows,
would have his right eye in Ei and his left eye in Eli . The right eye in Ei would
catch image number i, while the left eye in Eli would catch image number li know-
ing that li = i− (qi2,0) with qi2 being the gap between the indexes of images which
compose the visible consistent stereoscopic couples with binocular gap bi2 at dis-
tance di2 . Hence, associated left and right eye preferential positions Eli and Ei verify
Ei = Eli + bi2x and ei = eli + bi2 .

We also define the lines positions vertically (because viewers of various sizes use
the device) by pi2 which represents the “overhang”, i.e., the vertical gap of eyes po-
sitioning compared with the ROI center CS. If we don’t know pi2 , we use a medium
overhang corresponding to a viewer of medium size, which has to be chosen at de-
sign stage. Assuming ui and uli are stereoscopic homologous for images i and li,
their perception by the right and left eye of a viewer from Ei and Eli leads this spec-
tator’s brain to perceive a 3D point u. The viewing geometry analysis is expressed
thanks to a global reference frame r = (CS,x,y,z ≡ x× y), chosen at the ROI center
CS, with x parallel to its rows and turned towards the right of the spectators, and y
parallel to its columns and turned towards the bottom.

2.2 Shooting

In order to “feed” such devices with 3D content, we need sets of n×m images
from a single scene acquired from several distinct and judicious viewpoints and with
specific projective geometry as the rendering upon flat multiscopic devices involves
coplanar mixing of these images. This major issue is well known in multiscopy.

The image viewing is achieved according to distorted pyramids whose com-
mon base corresponds to the device ROI and the tops are the viewer’s eyes or
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Ei positions. Given that vision axes are not necessarily orthogonal to the observed
images area (ROI), the viewing of these images induces trapezoidal distortion if we
don’t take into account this slanted viewing during the shooting. This has an im-
mediate consequence in order to achieve depth perception. If the trapezoidal distor-
tions are not similar for the two images seen by a spectator, the stereoscopic match-
ing by the brain is more delicate, or even impossible. This reduces or cancels the
depth perception. This constraint, well-known in stereoscopy, is called the “epipolar
constraint”.

Solutions (also called toe-in camera model) of convergent systems have been pro-
posed [19, 20], but such convergent devices manifest the constraint presented above.
So, unless a systematic trapezoidal correction of images is performed beforehand
(which might not be desirable as it loads down the processing line and produces a
qualitative deterioration of the images) such devices do not afford to produce a qual-
itative 3D content. As demonstrated by [14, 21], we must use devices with shooting
pyramids sharing a common rectangular base (off-axis camera model) and with tops
arranged on a line parallel to the rows of this common base in the scene. For example
Dodgson et al. use this shooting layout for their time-multiplexed autostereoscopic
camera system [22].

Thus, aiming axes are necessarily convergent at the center of the common base
and the tops of the shooting pyramids must lie on m lines parallel to the rows of
the common base. Figure 3(a) shows a perspective representation of such a shooting
geometry. This figure defines the layout of the capture areas (CAi), and the cen-
ters (Ci) and specifies a set of parameters describing the whole shooting geometry
completely. Figures 3(b) and 3(c) show top and full-face representations of this
geometry, respectively.

The shooting geometry analysis is expressed using a shooting global reference
frame R = (CP,X ,Y,Z ≡ X ×Y) centered at the desired convergence point CP
(which is also the center of the common base CB of the scene) and oriented in
such a way that the first two vectors of the reference frame are parallel to the main
directions of the common base CB of the scene and so, parallel to the main direc-
tions of the capture areas. The physical size of CB is Wb and Hb. Furthermore, the
first axis is supposed to be parallel to the rows of the capture areas and the second
axis is supposed to be parallel to the columns of these areas.

The n×m pyramids, representative of a shooting layout, according to the princi-
ples explained before to resolve the known issue, are specified by:

• an optical axis of Z direction,
• optical centers Ci (i.e.: principal points) aligned on one or more (m) line(s) par-

allel to the rows of the common base (so on X direction) and
• rectangular capture areas CAi.

These capture areas must be orthogonal to Z, so parallel between them and parallel
to CB and to centers lines (which are defined by their distances from CB, Di2 along
Z, Pi2 along Y and ci along X). These capture areas are also placed at distances
fi along Z, βi along Y and αi along X from their respective optical center Ci. Their
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physical size is given by wi and hi. They are centered on points Ii in such a way
that lines IiCi defining the axes of sight are convergent at CP. The centers Ci and
Cli must be on the same “centers line” and with a spacing of Bi (Ci = Cli + BiX and
ci = cli + Bi).
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(c) Full-face view

Fig. 3 Implied shooting geometry
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Such a shooting layout is necessary to obtain a depth effect on a multiscopic
device. Nevertheless, its does not ensure that the perceived scene will not be dis-
torted compared with the shot scene. Non distortion implies that viewing pyramids
are perfect counterparts of shooting pyramids (i.e., have exactly the same opening
and main axis deviation angles in both horizontal and vertical directions). In case
of pyramids dissimilarity, the 3D image corresponds to a complex distortion of the
scene acquired initially. This can be desirable in some applications to carry out some
special effects, as it can be undesirable in others. This requires, that shooting and
viewing must be designed in a consistent way whether we desire a depth distortion
or not. Let’s now model those distortion effects generated by a couple of shooting
and viewing geometries.

3 Distortion Analysis and Model

In this section, we consider that we use perfect sensors and lenses, without any
distortion. This assumption implies some issues which will be presented for each
derived technology.

Thanks to the previous analysis of the shooting and viewing geometries, and
assuming that pixels Ui and Uli from shot images are displayed at ui and uli positions
of the ROI, we can link the coordinates (X ,Y,Z), in reference frame R, of point U
of the scene, shot by the sensors defined previously, with the coordinates (xi,yi,zi)
in reference frame r, of its counterparts u seen by an observer of the viewing device
placed in a preferential position (right eye in Ei and left eye in Eli).

Assuming that the scene point U is visible on image number i, its projection Ui

verifies:

CiUi =
− fi

Z + Di2
CiU i ∈ {1,n}×{1,m} (1)

Knowing that Ii, centers of CAi, verifies:

CiIi =
− fi

Di2
CiCP i ∈ {1,n}×{1,m} , (2)

The relative position of the scene point U’s projections in the various images are
expressed as:

IiUi =
fi

Z + Di2

⎡⎢⎣−X −Z ci
Di2

−Y + Z
Pi2
Di2

0

⎤⎥⎦
R

i ∈ {1,n}×{1,m} (3)

As the images are captured behind the optical centers, the projection reverses
up/down and left/right axes, and the implicit axes of the images are opposite of those
of the global shooting reference frame R. Moreover, the images are then scaled on
the whole ROI of the rendering device. This relates Ui projections of U to their
“rendered positions” ui on the ROI:
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CSui|r = −
⎡⎣ W

wi
H
hi

1

⎤⎦ Iiui|R ∀i (4)

Remarking that fiWb = Di2wi and fiHb = Di2hi, ui is expressed in reference frame
r as:

ui|r =
Di2

Z + Di2

⎡⎢⎢⎣
(

X + Z ci
Di2

)
W
Wb(

Y −Z
Pi2
Di2

)
H
Hb

0

⎤⎥⎥⎦ ∀i (5)

By this time, and assuming U was visible on both images li and i, we notice that uli
and ui lie on the same row of the ROI. This fulfills the epipolar constraint and thus
permits stereoscopic reconstruction of u = [xi,yi,zi]

t
r from Eli and Ei according to:

uliui =
zi

zi + di2
bi2x, which yields zi and (6)

Eiu =
zi + di2

di2
Eiui, which then gives xi,yi (7)

Thus, after some calculus, the relation between the 3D coordinates of the scene
points and those of their images perceived by a viewer may be characterized under
homogeneous coordinates by:

ai

⎡⎢⎢⎣
xi

yi

zi

1

⎤⎥⎥⎦=

⎡⎢⎢⎢⎣ki2

μi γi 0
ρμi δi 0

1 0

0 0
ki2 (εi−1)

di2
εi

⎤⎥⎥⎥⎦∗

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ (8)

The above equation can be seen as the analytic distortion model for observer posi-
tion i which matches the stereoscopic transformation matrix given in [12]. As such
this model clearly exhibits the whole set of distortions to be expected in any multi-
scopic 3D experience, whatever the number of views implied or the very nature of
these images (real or virtual). It shows too that these distortions are somehow inde-
pendent from one another and may vary for each observer position i. The following
detailed analysis of this model and its further inversion will offer a novel multiscopic
shooting layout design scheme acting from freely chosen distortion effects and for
any specified multiscopic rendering device.

The above model exhibits some new parameters quantifying independent dis-
tortion effects. Those parameters may be analytically expressed from geometrical
parameters of both shooting and rendering multiscopic devices. Their relations to
geometrical parameters and impact on distortion effects are now presented:

• ki2 control(s) the global enlarging factor(s),

ki2 =
di2

Di2
(9)



380 J. Prévoteau et al.

• εi control(s) the potential nonlinear distortion which transforms a cube into a pyra-
mid trunk according to the global reducing rate ai = εi + ki2 (εi −1) Z

di2
possibly

varying along Z,

εi =
bi2

Bi

Wb

W
(10)

• μi control(s) width over depth relative enlarging rate(s), or the horizontal/depth
anamorphose factor,

μi =
bi2

ki2 Bi
(11)

• ρ control(s) height over width relative enlarging rate(s), or the vertical/horizontal
anamorphose factor,

ρ =
Wb

Hb

H
W

(12)

• γi control(s) the horizontal“shear” rate(s) of the perceived depth effect,

γi =
cibi2 − eiBi

di2Bi
(13)

• δi control(s) the vertical ”shear” rate(s) of the perceived depth effect by an ob-
server whose overhanging position complies with what is expected,

δi =
pi2Bi −Pi2bi2ρ

di2Bi
(14)

Thus we have defined the depth distortion possibilities using the previously estab-
lished shooting and viewing geometries. Moreover, this model makes the quantify-
ing of those distortions possible for any couple of shooting and viewing settings by
simple calculus based upon their geometric parameters.

4 Shooting Design Scheme for Chosen Distortion

One can use any multiscopic shooting device with any multiscopic viewing device
while giving an effect of depth to any well-placed viewer (3D movie theater for
example) but section 3 shows that distortions will not be similar for each couple of
technologies. In this section, we will design the shooting geometry needed to obtain
a desired distortion on a given viewing device: whether perfect depth or chosen
distortion effect of a shot scene.

Knowing how distortions, shooting and viewing parameters are related, it be-
comes possible to derive the shooting layout from former distortion and viewing
choices.
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We will describe two shooting layout design schemes complying to this use of
the distortion model:

• a generic scheme allowing for a precise control of each distortion parameter and
• a more dedicated one of huge interest as it is focused on “non distortion” or

“perfect depth”, allowing the user to control of global enlarging factor(s) ki2 as
any other distortion parameter is set to its “non distortion value”.

4.1 Controlled Depth Distortion

To define the shooting layout using this scheme, we control global enlargement (by
ki2 ) and 4 potential depth distortions:

1. when εi �= 1, a global nonlinearity which results in a deformation of the returned
volume onto a “pyramid trunk” (as ai varies along Z axis) (cf. Fig. 4(b)),

(a) Perfect depth effect (b) εi �= 1

(c) γi �= 0 (d) μi �= 0 et ρ �= 0

in-screen effect
out-screen effect

Fig. 4 Illustration of the different distortions according to each parameter. For each couple,
the image on the left corresponds to the top view of the real scene whereas the right one
corresponds to the top view of the viewed scene.
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2. when γi �= 0, a sliding or “horizontal shear” of the returned volume according to
the depth (cf. Fig. 4(c)),

3. when δi �= 0 and/or when the actual overhanging position of the observer dif-
fers from the optimal one, a sliding or “vertical shear” of the returned volume
according to the depth and

4. when μi �= 1 and/or ρ �= 1, an anamorphose producing uneven distortions of the
3 axis (X versus Z for μi and Y versus X for ρ) (cf. Fig. 4(d)).

The depth controlled-distortion is obtained by adjusting the enlarging factor(s) ki2
and the distortion parameters εi (and so ai = εi ∗ ki2 (εi −1)/di2), μi, ρ , γi and δi.
This latter condition on δi is more delicate because it depends on the height of the
viewer which inevitably affects the effective position towards the device. So the
chosen vertical sliding δi can be reached only for an observer whose overhanging
position is defined in the viewing settings for this observation position.

Thus, given the viewing settings and the desired distortion parameters, the shoot-
ing parameters can be calculated as follows:

Pi2 = (pi2 − δidi2)/(ki2ρμi) Di2 = di2/ki2
Wb = Wεi/(ki2μi) Hb = Hεi/(ki2ρμi)

ci = (ei + γidi2)/(ki2μi)

fi imposed or chosen, individually ∀i ∈ {1...n}×{1...m} ,
by lot ∀i2 ∈ {1...n} or on the whole.

wi = Wb fi/Di2 = W fiεi/(μidi2)
hi = Hb fi/Di2 = H fiεi/(μiρdi2)

αi = ci fi/Di2 = fi (ei + γidi2)/(μidi2)
βi = Pi2 fi/Di2 = fi (pi2 − δidi2)/(μiρdi2)

(15)

This depth controlled-distortion scheme allows to obtain the parameters of a shoot-
ing layout producing desired 3D content for any rendering device and any depth
distortions combination.

4.2 Perfect Depth Effect

A particular case of the depth controlled-distortion is a perfect depth effect (depth
perception without any distortion compared with the depth of the shot scene). To
produce a perfect depth effect (whatever the enlarging factor(s) ki2 ), we should
configure the shooting in order to avoid the 4 potential distortions. This is ob-
tained by making sure that the distortion parameters verify εi = 1, μi = 1, ρ = 1,
γi = 0 and δi = 0 (cf. Fig. 4(a)). The latter condition δi = 0 is more delicate,
as it can be assured only for an observer complying to the defined overhanging
position.



Improving 3D Visual Experience by Controlling the Perceived Depth Distortion 383

In case of shooting for perfect depth effect, the shooting parameters can be cal-
culated as below:

Pi2 = pi2/ki2 Di2 = di2/ki2
Wb = W/ki2 Hb = H/ki2

ci = ei/ki2

fi imposed or chosen, individually ∀i ∈ {1...n}×{1...m} ,
by lot ∀i2 ∈ {1...n} or on the whole.

wi = Wb fi/Di2 = W fi/di2
hi = Hb fi/Di2 = H fi/di2

αi = ci fi/Di2 = ei fi/di2
βi = Pi2 fi/Di2 = pi2 fi/di2

(16)

This particular case is very interesting for its realism i.e. in order to convince fi-
nanciers or deciders, it may be important to give the real volumetric perception of a
building, or a mechanical piece, in a computer aided design (CAD) application, or
medical visualization software, in a surgical simulation application.

5 Derived Shooting Technologies

This work is the result of a collaboration between a research laboratory and a
company. In this context and thanks to these design schemes, we have created 3
different technologies to shoot 3D scenes: multi-viewpoint computer graphics soft-
ware, photo rail and camera system. These products have been developed under
the “3DTV Solutions” brand and patents are pending for each of them. We have
developed 3 solutions to obtain qualitative photo or video content for any relevant
kind of scene, still or animated, real or virtual. We use anaglyph to illustrate our
results even if their viewing on paper or 2D screen media is not optimum because
the images have been calculated to be rendered on specific devices.

5.1 3D Computer Graphics Software

Thanks to the previous shooting design scheme, we are able to place the virtual sen-
sors around a standard monocular camera according to the chosen viewing device
in order to obtain the desired depth effect. In this case, virtual cameras are perfect
and there is no issue with distortions due to sensors or lenses.

Thus we have developed plugins and software (3DVizCAD, 3DVizMED and
3DTricks) to visualize and handle in real-time files from CAD software such as
AutoCAD, Archicad, Pro/Engineer, etc. as well as medical data, such as MRI. We
are going to apply this technology to other virtual scenes. In those software pieces,
we choose the rendering device parameters and the desired depth effect, and the soft-
ware computes and uses its virtual shooting layout. It is possible to record different
rendering devices and depth effect distortions so as to switch easily between these
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(a) One temporal frame: a set of 8 images

(b) Anaglyph of images 3 and 41

Fig. 5 Image synthesis of a jet engine

devices and these distortions. Those pieces of software currently handle scenes up
to 7 million polygons at interactive rate. Figure 5 shows an example of images of a
jet engine part shot as the software was tuned to achieve a perfect depth effect on an
autostereoscopic parallax display 57”1 (optimal viewing distance 4.2m).

We have also provided existing 3D software with a new functionality of stereo-
vision: wrapping graphics stream for multiview rendering. For example, let us men-
tion Google Earth (cf. Figure 6) which could be transformed into a virtual tourism
application by means of stereo-vision. This way all the tools offered by this appli-
cation, like land use impact analysis or location-based data representation, will be
improved in their realism and relevance.

1 The 3D content has been produced for autostereoscopic display. Obviously, it can only
be experimented with the chosen device and in no way upon 2D media such as paper or
conventional display. Nevertheless, anaglyph helps the reader to notice the depth effect on
such 2D media.
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(a) Statue of Liberty, New-York. (b) New-York.

(c) The Dome, New-Orleans. (d) Corcovado, Rio de Janeiro.

Fig. 6 Different anaglyph views of 3D models included in Google Earth1

5.2 3D Devices

These devices are complying with the scheme to produce qualitative 3D content
on a given rendering device and ensuring a desired depth effect. The goal of these
devices is to shoot different real scenes, such as photos of still or animated scenes
as well as video of animated scenes. For this, we have created two types of devices:
photo rail and camera system.

By using the photo rail (Fig. 7(a)) with its controlling software it is possible to
control both the usual operations of a professional digital camera and its movement
along a linear axis parallel to its sensor rows. This allows us to carry out any shooting

(a) Photo rail (b) First camera system (c) Second camera system

Fig. 7 3D Devices
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configuration whatever the chosen depth distortion settings and viewing device if we
crop the needed capture area CAi in each digital photo in order to comply with the
needed shooting geometry. With this photo rail, there is a possibility of distortion
due to the digital camera, but distortions will be consistent for all images and will
be of negligible magnitude, as it is professional equipment. We have not tried to
correct those possible distortions but such a task could be done easily.

Thanks to the previous shooting design method, we know how to create a camera
system containing several couples of lenses and image sensors in order to produce
simultaneously the multiple images required by an autostereoscopic display with a
desired depth effect. As these couples are multiple, their induced distortions can be
different. We have introduced a couple-by-couple process of calibration/correction
based upon the model by Zhang [23]. We have already produced two prototypes
of camera system delivering multi-video stream in real-time (25Hz). Their layout
parameters have been defined for no distortion of specific scenes (see below) and set
at manufacturing. The first camera system (Fig. 7(b)) allows to shoot a life size scene
(ratio ki = 1) of the bust of a person to be viewed on an autostereoscopic parallax
display 57” (optimal viewing distance 4.2m). The second camera system (Fig. 7(c))
enables to shoot small size objects (in the order of 10-20 cm) and to display them
on an autostereoscopic lenticular display 24” (optimal viewing distance 2.8m) with
an enlargement factor set to ki = 1,85. According to numerous viewers both novice
and expert, the 3D perception is really good.

For example, Figure 8 illustrates the shooting of a room in “Musée Automobile
Reims Champagne” [24] in Reims with a perfect depth effect for autostereoscopic
parallax display 57” (optimal viewing distance 4.2m). We made a 3D shooting of a
big hall with a significant depth1.

5.3 Combination of Real and Virtual 3D Scenes

The work reported in this chapter is included in an overall project, which carries the
combination of real and virtual 3D scenes. Then, one speaks about 3D augmented
reality. This could be applied to autostereoscopic displays in a straightforward way
by adding virtual objects on each image. However it is much more interesting to use
the depth information of the real scene so that virtual objects could be hidden by
real ones. To that end, it is necessary to obtain one depth map for each view. The
particular context of images destined to autostereoscopic displays allows working
on a simplified geometry: no rectification is needed, epipolar couples are horizontal
lines of same rank and disparity vectors are thus aligned along the abscissa. The aim
is to obtain a good estimation of depth in any kind of scene, without making any
assumption about its content. In our project, Niquin et al. [25] have been working
on this subject and have presented their first results on accurate multi-view depth
reconstruction with occlusions handling. They have worked on a new approach to
handle occlusions in stereovision algorithms in the multiview context using images
destined to autostereoscopic displays. It takes advantage of information from all
views and ensures the consistency of their disparity maps. For example, Figure 9
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(a) One temporal frame: a set of 8 images

(b) Anaglyph of images 3 and 41

Fig. 8 The shooting in “Musée Automobile Reims Champagne” in Reims

Fig. 9 3D augmented reality image resulting from Niquin’s works [25], the real scene is a
room in “Palais du Tau” with courtesy of Monum1
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illustrates the shooting of a room in “Palais du TAU” [26] in which we had a virtual
rabbit1.

6 Conclusion

This work models geometrical distortions between the shot scene and its multiscop-
ically viewed avatar. These distortions are related to geometrical parameters of both
the shooting and rendering devices or systems. This model enables quantitative ob-
jective assessments on the geometrical reliability of any multiscopic shooting and
rendering couple.

The formulas expressing distortion parameters from geometrical characteristics
of the shooting and rendering devices have been inverted subsequently in order to
express the desirable shooting layout yielding a chosen distortion scheme upon a
chosen rendering device. This design scheme a priori insures that the 3D experi-
ence will meet the chosen requirements for each expected observer position. Such
a scheme may prove highly valuable for applications needing reliable accurate 3D
perception or specific distortion effects.

From this design scheme we have produced several shooting technologies en-
suring the desired depth effect upon a pre-determined rendering device. The pro-
posed shooting technologies cover any needs of multi-viewpoint scene shooting
(real/virtual, still/animated, photo/video).

This work proposes several perspectives. We are developing a configurable cam-
era with flexible geometric parameters in order to adapt to a chosen rendering de-
vice and a desired depth effect. Thus, we could test different depth distortions for
the same scene. Moreover, we could produce qualitative 3D content for several ren-
dering devices from a single camera box.

We will need to do some experiments on a demanding subject as we have to
validate that the perception is geometrically conform to our expectations. This will
require a significant panel of viewers but also to define and set up the perception test
which will permit to precisely quantify the distances between some characteristic
points of the perceived scene.
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7. Güdükbay, U., Yilmaz, T.: Stereoscopic View-Dependent Visualization of Terrain Height
Fields. IEEE Transactions on Visualization and Computer Graphics 8(4), 330–345
(2002)

8. Yilmaz, T., Gudukbay, U.: Stereoscopic urban visualization based on graphics processor
unit. SPIE: Optical Engineering 47(9), 097005 (2008)

9. Sheng, F., Hujun, B., Qunsheng, P.: An accelerated rendering algorithm for stereoscopic
display. Computers & graphics 20(2), 223–229 (1996)

10. Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The
Laws That Govern The Formation of Images of A Scene and Some of Their Applications.
MIT Press, Cambridge (2001)

11. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Uni-
versity Press, Cambridge (2000)

12. Jones, G.R., Lee, D., Holliman, N.S., Ezra, D.: Controlling Perceived Depth in Stereo-
scopic Images. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems VIII,
San Jose, CA, USA (2001)

13. Held, R.T., Banks, M.S.: Misperceptions in stereoscopic displays: a vision science per-
spective. In: APGV 2008 Proceedings of the 5th symposium on Applied perception in
graphics and visualization, Los Angeles, CA, USA (2008)

14. Woods, A.J., Docherty, T., Koch, R.: Image distortions in stereoscopic video systems. In:
Proc. SPIE Stereoscopic Displays and Applications IV, San Jose, CA, USA (1993)
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390 J. Prévoteau et al.

21. Yamanoue, H.: The Differences Between Toed-in Camera Configurations and Parallel
Camera Configurations in Shooting Stereoscopic Images. In: IEEE International Confer-
ence on Multimedia and Expo., pp. 1701–1704 (2006)

22. Dodgson, N.A., Moore, J.R., Lan, S.R.: Time-multiplexed autostereoscopic camera sys-
tem. In: Proc. SPIE Stereoscopic Displays and Virtual Reality Systems IV, San Jose, CA,
USA (1997)

23. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

24. Musée Automobile Reims Champagne,
http://www.musee-automobile-reims-champagne.com/ (accessed Oc-
tober 29, 2009)

25. Niquin, C., Prévost, S., Remion, Y.: Accurate multi-view depth reconstruction with oc-
clusions handling. In: 3DTV-Conference 2009 The True Vision - Capture, Transmission
and Display of 3D Video, Postdam, Germany (2009)

26. Palais du Tau, http://palais-tau.monuments-nationaux.fr/ (accessed
October 29, 2009)

http://www.musee-automobile-reims-champagne.com/
http://palais-tau.monuments-nationaux.fr/


 

 

Chapter 17 
3D Visual Experience 

Péter Tamás Kovács and Tibor Balogh* 

Abstract. The large variety of different 3D displaying techniques available today 
can be confusing, especially since the term “3D” is highly overloaded. This chap-
ter introduces 3D display technologies and proposes a categorization that can help 
to easily grasp the essence of specific 3D displays that one may face, regardless of 
the often confusing and ambiguous descriptions provided by manufacturers. Dif-
ferent methods for creating the illusion of spatial vision, along with the advantages 
and disadvantages will be analyzed. Specific examples of stereoscopic, autos-
tereoscopic, volumetric and light-field displays emerging or already available in 
the market are referenced. Common uncompressed 3D image formats preferred by 
each display technology are also discussed. 

1   Introduction 

The chapter will go through the main technologies used for implementing 3D dis-
plays using the four top level categories of the “3D display family tree” created by 
the 3D@Home Consortium, Steering Team 4 [1]. It will take a different approach 
from that of the family tree detailing the main categories based on selected driving 
technologies that the authors think the most important. Other categorizations of 
3D displays might exist, hopefully this one helps to understand the main trends 
and easily grasp the technology underlying different 3D displays.  

The chapter strictly focuses on technologies that generate spatial vision, so it 
does not cover for example displays that project a floating 2D image using a fres-
nel lens, or displays that project 2D images on some surface(s). 

2   Stereoscopic Displays 

Stereoscopic displays [2,3] simulate 3D vision by showing different images to the 
eyes. The two images are either shown on a traditional 2D display, projected onto 
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a special surface, or projected separately to the eyes. Stereoscopic displays by 
definition all require some kind of eyewear to perceive 3D (otherwise they are 
called autostereoscopic, as seen later). Separation of the two images, correspond-
ing to the left and right eye happens either time-sequentially, or by means of dif-
ferentiating wavelength or polarization.  

2.1   Time Sequential Separation 

In the time sequential case, left and right images are displayed on LCD or PDP or 
projected one after the other, and then separated by shutter glasses that block  
incoming light to one eye at a time, alternating the blocked eye with the same fre-
quency as the display changes the images. Such shutter glasses are usually imple-
mented with LCDs, which become transparent and opaque synchronized with the 
display. Several companies provide shutter glasses based 3D solutions including 
LG [4], Panasonic [5], Toshiba [4], eDimensional [6] and NVIDIA[9], projectors 
with high refresh rate for stereoscopic operation [7,8], and NVIDIA also provides 
a stereo driver to use the glasses with PC games [9]. A stylish NVIDIA shutter 
glass can be seen in Fig. 1, with the IR sensor used for synchronization in the 
frame of the glasses. 

 

Fig. 1 NVIDIA 3D Vision Glasses. Image courtesy of NVIDIA Corporation. 

2.2   Wavelength Based Separation 

Wavelength based separation is achieved by tinting the left and right images using 
different colours, overlaying the two and displaying the resulting 2D image. Sepa-
ration is done by glasses with corresponding colour filters in front of the eyes, as 
done in the well known red-blue or red-green glasses. This method of creating 



3D Visual Experience 393
 

 

stereoscopic vision is often referred to as the anaglyph method. The main advan-
tage of anaglyph is that all signals and displaying requirements match 2D display-
ing requirements, thus existing storage, transmission and display systems can 
readily be used to show 3D imagery, only coloured glasses are needed (which is 
inexpensive, and often packaged together with an anaglyph “3D” DVD). This is 
possible because the left and right images are overlapped and separated by means 
of colour differences. A sample anaglyph image is shown in Fig. 2 where the two 
differently tinted overlapped images are clearly visible. This causes the main dis-
advantage of this technology, that is, colours are not preserved correctly, and 
ghosting artefacts are also present. Because of its simplicity, anaglyph stereo-
scopic videos are appearing on YouTube, and also hundreds of games support 
anaglyph mode using NVIDIA 3D Vision™ Discover. 

 

Fig.2 Anaglyph image. Image courtesy of Kim Scarborough. 
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A similar method better preserving colours apply narrow-band colour filters, 
separating the left and right images with wavelength triplets biased in a few 10 nm 
range, less visible to human perception [10]. 

2.3   Polarization Based Separation 

Polarization based separation exploits the possibility of polarizing light and filtering 
them with polar filters. The two images are projected through different polarization 
filters onto a surface that reflects light toward viewers, keeping the polarization of 
the incoming light (mostly) unmodified. Viewers wearing glasses with the respec-
tive filters in front of the eyes can then perceive a stereoscopic view. A popular  
example of this technology can be experienced in most 3D cinemas [11,12]. 

Light can be polarized either linearly or circularly. In the first case, the left and 
right images pass through two perpendicular linear polarizers and then projected 
onto a surface. The reflected images then pass through the respective polarizing 
filters that are embedded into glasses, separating the left and right images. The 
downside of linear polarization is that the image degrades when a user tilts her 
head, as separation does not work as intended with this orientation. Circular po-
larization overcomes this problem being invariant to head tilt. In this case one im-
age is polarized with clockwise, the other with counter-clockwise direction.   

The advantage of the polarization based stereoscopic technique is that it keeps 
image colours intact (unlike anaglyph), with glasses that are relatively cheap, how-
ever the overall brightness is challenged and some cross-talk is always present. 

One way of generating a pair of polarized images is by using two projectors, 
one projecting the left eye image with a polarizing filter in front of it, the other 
projecting the right eye image with orthogonal polarization [13,14]. There is also a 
single-projector technique, in which a rotating polarizator wheel or an LCD po-
larization modulator is used in the projector to change the direction of polarization 
of every second frame [15]. One needs a special projection screen to reflect polar-
ized images, as surfaces used for 2D projection do not maintain the polarization of 
the reflected light. Previously silver screens have been used, now specialized ma-
terials are available for this purpose [16]. Polarized stereo images can also be cre-
ated using two LCD monitors with perpendicular polarization arranged with a pas-
sive beamsplitter (half-mirror) at a bisecting angle between the displays. The 
resulting stereo image pair can be seen directly with polarizing glasses [17,18], as 
shown in. Fig. 3.  

Another approach to create polarized images is using a patterned micro-
polarizer sheet (also called x-pol or micro-pol), which is placed on the surface of a 
2D LCD panel. The sheet is aligned with the rows on the LCD panel so that pixels 
in the even row will be polarized clockwise, pixels in the odd row will polarized in 
reverse, as shown in Fig. 4. Providing corresponding line interleaved stereoscopic 
images for the display will result in a 3D effect when using circularly polarized 
glasses (although with resolution reduced by half). Some manufacturers providing 
such displays are LG [4] and Zalman [19], but 3D laptops using this technology 
also appeared from Acer [20]. 
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Fig. 3 Polarization based stereoscopy using two flat screens. Image courtesy of Planar Sys-
tems, Inc. 

 

Fig. 4 Principle of micro-polarization. Image courtesy of Zalman Tech Co., Ltd. 
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2.4   Discussion of Stereoscopic Systems 

Stereoscopic techniques are definitely the simplest and cheapest, thus the most 
widespread methods to generate 3D vision. On the other hand, they come with 
several drawbacks. A stereo image with glasses provides correct 3D images only 
from a single point of view. Observing the same image from other locations re-
sults in distorted views, which is most visible while moving in front of the screen, 
when the image ”follows” the viewer. Although this limitation can be overcome 
by tracking the position / orientation / gaze of the user and updating images in re-
sponse to movements [21], some latency will inherently be introduced [22], sig-
nificantly compromising immersiveness and limiting the correct view to a single 
(tracked) user. This and other missing 3D cues result in effects like discomfort, 
sea sickness, nausea and headache which make them inconvenient for long-term 
use according to some users [23].  

One possible explanation comes from neuroscientists’ research in the field of 
human perception of 3D. They found that showing each eye its relevant image is 
not enough for the brain to understand the 3D space [24]. For getting the 3D pic-
ture of the environment, humans rely on two main visual cues: the slightly differ-
ent image seen by each eye and the way the shape of an object changes as it 
moves. A brain area, the anterior intraparietal cortex (AIP), integrates this infor-
mation [25]. With a stereoscopic display the image becomes 3D, but as soon the 
brain thinks that it does see a 3D image, it starts working like in a normal 3D 
world, employing micro head movements to repeatedly and unconsciously check 
the 3D model built in our brain. When an image on a stereo display is checked and 
the real 3D world mismatches the 3D image, the trick is revealed. Presumably the 
AIP cortex never got used to experience such 3D cue mismatch during its evolu-
tion and this produces glitches which result in unwanted effects. 

2.5    Stereoscopic 3D Uncompressed Image Formats 

Stereoscopic displays need two images as input (left eye and right eye image), 
which seems to be simple, yet various formats exist. The most straightforward so-
lution is having two different images making up a 3D frame (see Fig. 5.), but this 
requires double bandwidth compared to the 2D case. 

Another common approach uses an image and a corresponding depth image of-
ten called 2D + Depth (see Fig. 6.), which may consume less bandwidth depend-
ing on the bit depth of the depth map, but needs metadata to map depth informa-
tion to the 3D context, and still consumes more than a 2D image. 

The 2D + Delta format stores the left (or right) video stream intact, and adds 
the stereo disparity or delta image that is used to reconstruct the other view. The 
advantage is that compressed Delta information can be embedded into an MPEG 
stream in a way that does not affect 2D players, but provides stereoscopic infor-
mation to compatible 3D decoders [26]. 

To make the transition from 2D to 3D easier, broadcasters and manufacturers 
preferred stereoscopic image formats that can be fit into a 2D frame compatible  
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Fig. 5 Left-right image pair. Image courtesy of NXP Semiconductors. 

 

Fig. 6 Image plus depth map. Image courtesy of NXP Semiconductors. 

format, in order to defer the upgrade of the transmission infrastructure. Some ex-
amples of such formats include frame doubling, side-by-side, interleaved and 
checkerboard, which can be seen in Fig. 7. 

The frame doubling approach uses a single 2D stream to transmit alternating 
left and right images, halving the effective frame rate. This is the most suitable 
format for shutter-glass based systems and 3D projectors using rotating polarizers.  

Side-by-side places the left and right images next to each other. This either re-
quires doubled horizontal resolution, or halves the horizontal resolution of left and 
right images, fitting them in the original 2D image size. A very similar image con-
figuration is over/under. 

Interleaving places rows of the left view into even lines, and rows of the right 
view into odd lines (or the same reversed). As with side-by-side, two possibilities 
are doubling image size and keeping the resolution of the images or halving the 
resolution of the component images to fit them into a 2D frame with the same size. 
Interleaving can also work in a vertical configuration. This representation is the 
best choice for a 3D display based on micro-polarizers.  
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Fig. 7 Stereoscopic image formats (from left to right, top to bottom): Frame doubling, Side-
by-side, Interleaved and Checkerboard. Image courtesy of NXP Semiconductors. 

The checkerboard format mixes pixels of the left and right images so that they 
alternate in one row, and alternate the reverse way in the next row. This makes 
better interpolation of the missing pixels possible when reconstructing the left and 
right images. This representation is used by Texas Instruments DLPs.  

The High-Definition Multimedia Interface (HDMI) supports stereoscopic 3D 
transmission starting from version 1.4 of the HDMI specification. It defines com-
mon 3D formats and resolutions for supporting 3D up to 1080p resolution and 
supports many 3D formats including frame doubling, side-by-side, interleaving 
and 2D+depth. There are two mandatory 3D formats defined, which must be sup-
ported by all 3D display devices: 1080p@24Hz and 720p@50/60Hz [27].  

2.6   Multi-user Stereo and CAVE Systems 

A common extension of stereoscopic projection systems is using them in CAVEs 
[28] that use three to six walls (possibly including the floor and ceiling) as stereo-
scopic 3D projection screens. The users entering the CAVE wear glasses for 
stereoscopic viewing, one of them (commonly referred to as “leader” or “driver”) 
wearing extra equipment for tracking. Since the stereo pairs are generated for a 
single point of view that of the driver, using stereoscopic 3D for multiple users is 
problematic, as only the driver will perceive a correct 3D image, all others will see 
a distorted scene. Whenever the driver moves, the images are updated, thus all 
other users will see the scene moving (according to the movement of the driver), 
even is they stay at the same place not doing any movements, resulting in disturb-
ing effects. Stereoscopic CAVEs are widely used for providing immersive 3D ex-
perience, but unfortunately carry all the drawbacks of stereoscopic systems. 
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2.7   Head Mounted Displays 

A head mounted display [29] is a display device worn on the head or as part of a 
helmet that has a small display optic in front of both eyes in case of a binocular 
HMD (monocular HMDs also exist but unable to produce 3D images). A typical 
HMD has two small displays with lenses embedded in a helmet or eye-glasses. 
The display units are miniaturized and may include CRT, LCDs, LCOS, or OLED. 
Some HMDs also allow partial see-through thus super-imposing the virtual scene 
on the real world. Most HMDs also have head tracking functionality integrated. 
From the 3D vision point of view, they are equivalent to glasses based systems. 
HMD manufacturers include Cybermind [30], I-O [31], Rockwell Collins [32], 
Trivisio [33], Lumus [34]. 

3   Autostereoscopic Displays 

Autostereoscopic displays provide 3D perception without the need for wearing 
special glasses or other head-gear, as separation of left / right image is imple-
mented using optical or lens raster techniques directly above the screen surface. In 
case of two views, one of the two visible images consists of even columns of pix-
els; the second image is made up of odd columns (other layouts also exist). The 
two displayed images are visible in multiple zones in space. If the viewer stands at 
the ideal distance and in the correct position he or she will perceive a stereoscopic 
image (sweet spot). Such passive autostereoscopic displays require the viewer to 
be carefully positioned at a specific viewing angle, and with her head in a position 
within a certain range, otherwise there is a chance of the viewer being in the 
wrong position (invalid zone) and seeing an incorrect image. This means that the 
viewer is forced to a fixed position, reducing the ability to navigate freely and be 
immersed. 

To overcome the problem of invalid zones head and/or eye tracking systems 
can be used to refresh the images whenever the viewer is about to enter such a 
zone and experience an incorrect 3D image [35]. Even though there could be la-
tency effects, such a system provides the viewer with parallax information and it 
is, therefore, a good solution for single user applications. Multi-user extensions of 
this technique are also developed [36]. 

Some autostereoscopic displays show stereoscopic 3D (consisting of two im-
ages), others go beyond that and display multiview 3D (consisting of more than 
two views). Multiview displays [37] project different images to multiple zones in 
space. In each zone only one image (view) of the scene is visible. The viewer’s 
two eyes are located in different zones, seeing different images thus 3D perception 
is enabled. When the user moves, entering different zones will result in different 
views, thus a somewhat limited horizontal motion parallax effect is achieved. As 
the number of views ranges from 4 to 9 in current multiview displays, the transi-
tion to adjacent zones is discrete, causing „jumps” as the viewer moves. Multiview 
displays allow multiple simultaneous viewers, restricting them, however, to be 
within a limited viewing angle. The image sequences are periodically repeated in 
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most multi-view displays, thus enabling more diamond shaped viewing positions 
at the expense of invalid zones in between. 

Autostereoscopic displays typically use parallax barrier, lenticular sheet or 
wavelength selective filter which divide the pixels of the underlying, typically 
LCD display into two or more sets corresponding to the multiple directions. 

3.1   Parallax Barrier 

Parallax barrier [38] is an array of slits spaced at a defined distance from a high 
resolution display panel. The parallax effect is created by this lattice of very thin 
vertical lines, causing each eye to view only light passing through alternate image 
columns, allowing the well-positioned viewer to perceive stereoscopic 3D, as 
shown In Fig. 8. Parallax barrier-based displays typically show stereoscopic 3D 
made up of two images, but with the proper choice of distance and width of the 
slit multi-view effect can be provided. Parallax barrier systems are less efficient in 
terms of light output, thus the image gets darker than in 2D, especially in case of 
multiple views. 

Parallax barrier displays are making their way to mobile devices, as they can be 
easily implemented in small size. One example is a 3.07” size WVGA 3D LCD  

 

 

Fig. 8 Principle of parallax barrier based stereoscopic vision 
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from Masterimage with an integrated, configurable parallax barrier layer on top of 
the LCD (2D, portrait 3D, landscape 3D). Such displays make the manufacturing 
of 3D-enabled handheld devices like the Hitachi Wooo H001 possible [39]. 

Parallax barrier display manufacturers include Spatial View [40], Tridelity [41] 
and NewSight [42]. 

3.2   Lenticular Lens 

Lenticular lens [37] based displays, which are the most common for implementing 
multiview 3D, use a sheet of cylindrical lens array placed on top of a high resolu-
tion LCD in such a way that the LCD image plane is located at the focal plane of 
the lenses. The effect of this arrangement is that different LCD pixels located at dif-
ferent positions underneath the lenticular fill the lenses when viewed from different 
directions. Provided these pixels are loaded with suitable 3D image information, 
3D effect is obtained in which left and right eyes see different but matching infor-
mation, as shown in Fig. 9. Both parallax barrier and lenticular lens based 3D dis-
plays require the user to be located at a specific position and distance to  

 

 

Fig. 9 Principle of lenticular lens based stereoscopic vision 
 



402 P.T. Kovács and T. Balogh
 

 

correctly perceive the stereoscopic image, as incorrect positioning results in incor-
rect images reaching the eye. A major disadvantage of lenticular lens based sys-
tems is their inability to use the displays in 2D with full resolution. 

Lenticular 3D display manufacturers include Alioscopy [43], Philips (now re-
tired from 3D display business) [44], NEC [4] and Tridelity [41].  

Since both parallax barrier and lenticular lens based displays require a flat 
panel display underneath, the size of these 3D displays is always limited by the 
maximum size of such panels manufactured. As of November 2009, the maximum 
size is slightly more than 100 inches diagonal. Since tiling such displays is not 
seamless, these technologies are not scalable to arbitrary large sizes. 

3.3   Wavelength Selective Filters 

Another possible implementation is using wavelength selective filters for the 
multi-view separation. The wavelength-selective filter array is placed on a flat 
LCD panel oriented diagonally so that each of the three colour channels corre-
spond to a different direction,  creating the divided viewing space necessary for 
3D vision. A combination of several perspective views (also combining colour 
channels) is displayed. The filter array itself is positioned in front of the display 
and transmits the light of the pixels from the combined image into different direc-
tions, depending on their wavelengths. As seen from the viewer position different 
spectral components are blocked, filtered or transmitted, separating the viewing 
space into several zones where different images can be seen [45]. 

3.4   Multiview 3D Uncompressed Image Formats 

Common image formats used by multi-view displays include multiple images on 
multiple links, 2D+Depth (described earlier), 2D+Depth with two layers, and the 
extension of frame-doubling, side-by-side and interleaving to the multi-view case. 

Using multiple links, the same number of display interfaces are provided as 
many views the display have (possibly combined with side-by-side or similar, re-
ducing the number of links needed). When used for multi-view, the 2D + Depth 
approach is often criticized for missing parts of the scene behind occluded objects. 
This effect is somewhat reduced by using two layers, that is 2D + Depth + Oc-
cluded 2D + Occluded depth, what Philips calls Declipse format. An example 3D 
image in Declipse format can be seen in Fig. 10. 

Frame doubling, side-by-side and interleaving (either horizontal or vertical), as 
described at stereoscopic displays can be naturally extended for using with multi-
ple views. However, if the resolution of the image is to be kept, even more signifi-
cant reduction in the resolution of the component images is required. We have to 
note that in case of multi-view displays, the resolution of the individual views is 
divided anyway as it cannot have more pixels than the underlying LCD panel. 
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Fig. 10 2D image + depth + occluded image + occluded depth. Image courtesy of Philips 
Electronics N.V. 

As a general rule for multi-view systems, the resolution seen in a direction is 
equal to the native resolution of the underlying display panel divided by the num-
ber of views. 

4   Volumetric Displays 

Volumetric displays use a media positioned or moved in space on which they pro-
ject/reflect light beams so they are scattered/reflected from that point of space. 
The media used is generally a semi-transparent or diffuse surface. Among volu-
metric displays there are exotic solutions like the laser induced plasma explosions 
[46]. In general they are less conform to displaying conventions and in most cases 
follow the “looking into” instead of “looking out” philosophy. 

One possible solution is a moving screen on which different perspectives of the 
3D object are projected. A well known solution [47] is a lightweight screen sheet 
that is rotated at very high speed in a protecting globe and the light beams from a 
DLP microdisplay are projected onto it. Such a display is shown in Fig. 11. Em-
ploying proper synchronization it is possible to see 3D objects in the globe [48]. 
Such systems can be considered time-multiplexing solutions, where number of the 
displayable layers or voxels is determined by the speed of the projection compo-
nent. A similar solution is the usage of rotated LED arrays as the emissive coun-
terpart of the reflective moving media. 

Another technique in volumetric display technology is using two or more LCD 
layers as a projection screen, creating the vision of depth. Deep Video Imaging 
and PureDepth [49] produced a display consisting two LCDs. The depth resolution  
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Fig. 11 Perspecta volumetric display from Actuality. Image courtesy of Actuality Systems, 
Inc. 

equals 2, enabling special foreground-background style content only, which is 
hard to qualify as 3D. The DepthCube display [50]  from LightSpace Technolo-
gies shown in Fig. 12 has 20 layers inside. The layers are LCD sheets that are 
transparent / opaque (diffuse) when switched on/off, and are acting as a projection 
screen positioned in 20 positions. Switching the 20 layers is synchronized to the 
projection engine, inside which an adapting optics is keeping the focus.  

Disadvantages of volumetric displays are scalability and the ability to display 
occlusion, since the light energy addressed to points in space cannot be absorbed 
by foreground pixels. The problem of occlusion has been recently solved by using 
an anisotropic diffuser covering a rapidly spinning mirror [51]. As of advantages, 
both vertical and horizontal parallax is provided by principle. 

The natural data format for volumetric displays is layered images (in the layered 
case) or image sequence showing the scene from all around (in the rotating case). 
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Fig. 12 DepthCube volumetric display. Image courtesy of LightSpace Technologies Inc 

5   Light Field Displays 

5.1   Integral Imaging 

Integral imaging [52] 3D displays use a lens array and a planar display panel. 
Each elemental lens constituting the lens array forms each corresponding elemen-
tal image based on its position, and these elemental images displayed on the panel 
are integrated forming a 3D image. Integral imaging can be though of as a 2D ex-
tension of lenticular lens based multiview techniques, providing both horizontal 
and vertical parallax. Real-time generation of integral images from live images has 
been demonstrated [53]. 

Its disadvantages are narrow viewing angle and reduced resolution. The view-
ing angle within which observers can see the complete image is limited due to the 
restriction of the area where each elemental image can be displayed. Each elemen-
tal lens has its corresponding area on the display panel. To prevent image flipping 
the elemental image that exceeds the corresponding area is discarded optically in 
direct pick up method or electrically in computer-generated integral imaging 
method. Therefore the number of the elemental images is limited and observers 
outside the viewing zone cannot see the integrated image.  

5.2   Holographic Displays 

Pure holographic systems [54] have the ability to store and reproduce the proper-
ties of light waves. Techniques for creating such holographic displays include the 
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use of acusto-optic material and optically addressed spatial light modulators [55]. 
Pure hologram technology utilises 3D information to calculate a holographic pat-
tern [56], generating true 3D images by computer control of laser beams and a 
system of mirrors. Compared to stereoscopic and multi-view technologies the 
main advantage of a hologram is the good quality of the generated 3D image. 
Practical application of this technology today is hampered by the huge amount of 
information contained in the hologram which limits its use to mostly static 3D 
models, in limited size and narrow viewing angle.  

5.3   HoloVizio Type Light-Field Displays 

Such displays follow hologram geometry rules, however direction selective light emis-
sion is obtained by directly generating the light beams instead of interference. In this 
way the huge amount of redundant information present in a hologram (phase, speckle) 
is removed and only those light beams are kept which are needed to build up the 3D 
view. Each point of the holographic screen emits light beams of different colour and 
intensity to the various directions in a controlled manner. The light beams are gener-
ated through a specially arranged light modulation system and the holographic screen 
makes the necessary optical transformation to compose these beams into a 3D view. 
The light beams cross each other in front of the screen or they propagate as if they 
were emitted from a common point behind the screen, as shown in Fig. 13. With 
proper control of the light beams viewers see objects behind the screen or floating in 
the air in front of the screen just like with a hologram.  

 

Fig. 13 Principle of HoloVizio light-field displays 
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The main advantage of this approach is that, similarly to the pure holographic 
displays, it is able to provide all the depth cues for multiple freely moving users 
within a reasonably large field of view. Being projection based and using arbitrary 
number of projection modules, this technique is well scalable to very high pixel 
count and display size, not being limited to the resolution of a specific display 
technology (like the ones using a single LCD panel). 2D compatibility is implic-
itly solved here, as light rays making up a 2D image are also easy to emit without 
any reconfiguration. These systems are fairly complex because of the large num-
ber of optical modules and the required driving/image generation electronics. 

The natural data format for this kind of display is the light field [57] that is pre-
sent in a natural 3D view. HoloVizio 3D displays are an implementation of this 
technology [58, 59]. 

6   Conclusion 

Very different ideas have been used so far to achieve the goal of displaying realis-
tic 3D scenes, the ultimate goal being a virtual 3D window that is indistinguish-
able from a real window. Most implementations of the approaches mentioned have 
found their specific application areas where they perform best, and they are gain-
ing an ever growing share in visualization. 3D data is already there in a surpris-
ingly large number of industrial applications, still visualized in 2D in most cases.  

As for home use, the natural progression of technology will bring the simplest 
technologies to the mainstream first, and with advances in technology, cost effec-
tiveness and increased expectations regarding 3D will eventually bring more ad-
vanced 3D displays currently only used by professionals to the homes. 
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Chapter 18 
3D Holoscopic Imaging Technology for Real-
Time Volume Processing and Display 

Amar Aggoun* 

Abstract. 3D holoscopic imaging is employed as part of a three-dimensional im-
aging system, allowing the display of full colour images with continuous parallax 
within a wide viewing zone. A review of the 3D holoscopic imaging technology 
from the point of view optical systems and 3D image processing including 3D im-
age coding, depth map computation and computer generated graphics is discussed.  

1   Background 

Content creators always look for new forms and ways for improving their content 
and adding new sensations to the viewing experience. High Definition video has 
been the latest innovation in the area of content enrichment. 3D is the next single 
greatest innovation in film-making. There has been a trend in cinema in producing 
films with 3D enriched content such the latest animated adventure film “Beowulf”. 

Many different approaches have been adopted in attempts to realise free view-
ing 3D displays [1, 2]. Several groups [3, 4] have demonstrated stereoscopic 3D 
displays, which work on the principle of presenting multiple images to the viewer 
by use of temporal or spatial multiplexing of several discrete viewpoints to the 
eyes. This is achieved using either colour, polarisation or time separation tech-
niques requiring special glasses or by creating separate optical paths to provide di-
rectional selectivity in respect of the viewed images. Some sophisticated systems 
additionally provide eye-tracking capability to allow the viewer to move position. 
Considerable effort has been invested in providing electronic stereoscopic displays 
suitable for entertainment and NHK Japan and Sony demonstrated a stereoscopic 
TV system using both 2 and 6 views in the early 1990’s. Since this time autos-
tereoscopic 3D displays are now being launched on the market by several compa-
nies worldwide such as Philips and Sharp, for use in niche applications. Multiview 
autostereoscopic content is captured using several cameras which renders 3D auto-
stereoscopic video production very difficult. More recently, a combination of  
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conventional 2D video capture with depth map generation have been used for the 
capture of multiview auto-stereoscopic 3D content. However, the display of mul-
tiview autostereoscopic 3D content relies upon the brain to fuse two disparate  
images to create the 3D sensation. A particularly contentious aspect for entertain-
ment applications is the human factors issue. For example, in stereoscopy the 
viewer needs to focus at the screen plane while simultaneously converging their 
eyes to locations in space producing unnatural viewing [5, 6]. This can cause eye-
strain and headaches in some people. Consequently content producers limit the 
depth of scene to be viewed to minimise this problem. The transmission of stereo-
scopic content in Korea and Japan during the 2002 World Cup showed that fast 
moving action caused nausea in some viewers.  With recent advances in digital 
technology, some human factors which result in eye fatigue have been eliminated. 
However, some intrinsic eye fatigue factors will always exist in stereoscopic 3D 
technology [4, 7]. Furthermore, due to the lack of perspective continuity in 2D 
view systems, objects in the scene often lack solidity (cardboarding) and give rise 
to an ‘unreal’ experience. 

Creating a truly realistic 3D real-time viewing experience in an ergonomic and 
cost effective manner is a fundamental engineering challenge. Holographic tech-
niques demonstrate true 3D and are being researched by different groups in an ef-
fort to produce full colour images with spatial content [7, 8, 9]. Holography is a 
technology that overcomes the shortcomings of stereoscopic imaging and offers 
the ultimate 3D viewing experience, but their adoptions for 3D TV and 3D cinema 
are still in its infancy. Holographic recording requires coherent light which makes 
holography, at least in the near future, unsuitable for live capture.  

3D Holoscopic imaging (also referred to as Integral Imaging) is a technique 
that is capable of creating and encoding a true volume spatial optical model of the 
object scene in the form of a planar intensity distribution by using unique optical 
components [10, 12, 18]. It is akin to holography in that 3D information recorded 
on a 2-D medium can be replayed as a full 3D optical model, however, in contrast 
to holography, coherent light sources are not required. This conveniently allows 
more conventional live capture and display procedures to be adopted. Further-
more, 3D holoscopic imaging offers fatigue free viewing to more than one person 
independently of the viewer’s position. With recent progress in the theory and mi-
crolens manufacturing, holoscopic imaging is becoming a practical and prospec-
tive 3D display technology and is attracting much interest in the 3D area [7, 12, 
20]. It is now accepted as a strong candidate for next generation 3D TV [7]. 

2   3D Holoscopic Content Generation 

The first 3D holoscopic imaging method was “Integral Photography”. It was first 
proposed by G. Lippmann [10] in 1908. To record an integral photograph 
Lippmann used a regularly spaced array of small lenslets closely packed together in 
contact with a photographic emulsion as shown in figure 1a.  Each lenslet views the 
scene at a slightly different angle to its neighbour and therefore a scene is captured 
from many view points and parallax information is recorded. After processing, if 
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the photographic transparency is re-registered with the original recording array and 
illuminated by diffuse white light from the rear, the object will be constructed in 
space by the intersection of ray bundles emanating from each of the lenslets as 
shown in figure 1b. It is the integration of the pencil beams, which renders 3D 
holoscopic imaging (integral imaging) unique and separates it from Gaussian imag-
ing or holography. The biggest drawback, however, to the Lippmann method was 
that replay of the reconstructed images were pseudoscopic, or depth reversed, 
where the foreground becomes the background and vice versa, as shown in figure 
1b. H. E. Ives was the first to recognize the problem in 1931 [11], and proposed a 
secondary exposure solution to invert the depth. This is known as a “two step” 
method, where a secondary exposure of the original photographic plate through an-
other lens sheet was made. He demonstrated this solution by using a secondary ar-
ray of pin-hole apertures. This proposal does not constitute an effective solution for 
the pseudoscopic to orthoscopic conversion problem. This is because the two-step 
recording introduces significant amounts of noise, due to degradation in the sam-
pling caused by aberrations in the lenses.  Since, optical and digital techniques to 
convert the pseudoscopic images to orthoscopic images have been proposed by 
several researchers [12, 18, 20]. 
 
 

 

Fig. 1 Recording and replay of the Integral Photography 

An optical configuration necessary to record one stage orthoscopic 3D holo-
scopic images has been proposed by Davies et. al. [12-16] and is shown in figure 
2. This employs a pair of microlens arrays placed back to back and separated by 
their joint focal length, which produces spatial inversion. The arrangement allows 
a pseudoscopic image to be transferred such that it can straddle a separate mi-
crolens recording array (close imaging).  The recording micro-lens array can be 
put anywhere in the transferred image space to allow the desired effect to be 
achieved freely: The object can be entirely inside of the display, outside of the 
display, or even straddling the display. The space transfer imaging scheme offers 
the flexibility of recording the object at a desired depth. 
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Fig. 2 3D Holoscopic Imaging camera optical system 

The system uses an additional lens array, which images the object space around 
the plane of the microlens combination. This arrangement has been termed a two-
tier optical combination.  Effectively the first macro array produces a number of 
pseudoscopic, laterally inverted, images around the double microlens screen. This 
image is transmitted effectively negating the sign of the input angle such that each 
point in object space is returned to the same position in image space. The ar-
rangement performs pseudo phase conjugation, i.e. transfer of volumetric data in 
space. The image is transmitted with equal lateral longitudinal magnification, and 
the relative spatial co-ordinates, are preserved i.e. there is no inversion in the re-
corded image and no scale reduction in depth. 

 

 
Fig. 3 3D Holoscopic image sensor 
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It is possible to capture 3D Holoscopic images electronically using an image 
sensor. This form of capture requires a high resolution image sensor together with 
specialised optical components to record the micro-images fields produced by pre-
cision micro-optics (see figure 3). The two-tier system shown in figure 2 has been 
used for the capture of the 3D holoscopic images used in this work.  The ob-
ject/scene is recorded on a film placed behind the recording microlens array 
through a rectangular aperture. The recorded data is then scanned using a high 
resolution scanner. The aperture greatly affects the characteristics of the micro-
images recorded. Since each micro-image is an image of the object seen through 
the aperture independently, its shape and size is determined by the aperture. If the 
field of a sub-image is fully covered by the image, it is said to be fully-filled, oth-
erwise it is said to be under-filled or over-filled. 

The system will record live images in a regular block pixel pattern. The planar 
intensity distribution representing a 3D holoscopic image is comprised of 2D array 
of M×M micro-images due to the structure of the microlens array used in the cap-
ture and replay. The resulting 3D images are termed omnidirection 3D holoscopic 
images and have parallax in all directions. The rectangular aperture at the front of 
the camera and the regular structure of the hexagonal microlenses array used in 
the hexagonal grid (recording microlens array) gives rise to a regular ‘brick struc-
ture’ in the intensity distribution as illustrated in Figure 4.  

    
(a)      (b) 

Fig. 4 (a) Example of the nature of sub-image field. (b) Magnified section. 

Unidirectional 3D holoscopic images are obtained by using a special case of the 
3D holoscopic imaging system where 1D cylindrical microlens array is used for 
capture and replay instead of a 2D array of microlenses. The resulting images con-
tain parallax in the horizontal direction only. Figure 5(a) shows an electronically 
captured unidirectional 3D holoscopic image and figure 5(b) shows a magnified 
section of the image. The M vertically running bands present in the planar inten-
sity distribution captured by the 3D Holoscopic imaging camera are due to the 
regular structure of the 1D cylindrical microlens array used in the capture process.  
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(a)                                               (b) 

Fig. 5 An electronically captured unidirectional 3D holoscopic image a) Full. b)  
Magnification. 

Other optical techniques proposed for the pseudoscopic to orthoscopic conver-
sion by using a convergence lens as a substitute to the image transfer screen in 
figure 2 [17]. However, due to the non-constant lateral magnification of the con-
verging lens, the reconstructed image appears clearly distorted.   

Among digital methods proposed for pseudoscopic to orthoscopic conversion, 
Okano et. al. [18-19] demonstrated a system which captures the micro-images us-
ing a microlens array in front of a high resolution video camera and electronically 
inverts the each micro-image at the plane of capture. Although the image is ac-
ceptable the presentation reduces the parallax angle for close points in the scene. 
Another digital technique for pseudoscopic to orthoscopic conversion has been 
proposed by Martinez-Corral et. al. [20]. However, to avoid typical aliasing prob-
lems in the pixels mapping, it is necessary to assume that the number of pixels per 
lenslet is a multiple of the number of lenslets. This makes the number of pixels per 
micro-image very large (order of 100s) and renders the procedure impractical for 
many 3D display applications.  

3   Computer Generation of 3D Holoscopic Images 

In recent years several research groups have proposed techniques for generating 
3D holoscopic graphics [27-35].  However, most of the work concentrated on re-
producing the various physical setups using computer generation software pack-
ages.  To produce computer generated 3D holoscopic image content a software 
model capable of generating rendered orthoscopic 3D holoscopic images is 
needed. The general properties of projective transformations were used in a vari-
ety of methods which evolved from micro-images containing spherical aberra-
tions, defocus and field curvature to micro-images generated using an approach 
which alleviated many problems associated with the previous attempts. The  
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greatest hurdle to overcome is not the production of the computer generated 3D 
holoscopic images themselves but the computational overhead required to attain 
real-time speeds on high-resolution displays. 3D holoscopic images are by defini-
tion the re-integration of multiple disseminated intensity values to produce the at-
tribute of all-round viewing. To view a complete replayed volumetric scene from 
any arbitrary viewing position and hence mimic the original scene exactly with 
depth and parallax requires a high sampling rate that is dependent upon the scene 
depth. Small pixel sizes are required to hold a satisfactory depth without compro-
mising viewer comfort and to generate a large enough display inevitably equates 
to a very high number of calculated intensity values for each frame. Adding to the 
complexities is the increased computations required when using spherical or  
hexagonally packed microlens arrays that generate 3D holoscopic images with 
omni-directional parallax. A less computationally severe option is to use semi-
cylindrical lens arrays that generate unidirectional 3D holoscopic images with  
parallax in horizontal direction. 

There has been a small amount of work that focused on the efficiency of the 
execution time required for the generation of photo realistic 3D Holoscopic im-
ages.  One of the techniques reported in literature is based on parallel group ren-
dering [33] where rather than rendering each perspective micro-image; each group 
of parallel rays is rendered using orthographic projection. A slightly modified ver-
sion termed viewpoint vector rendering was later proposed to make the rendering 
performance independent of the number of the micro-images [34]. In this method 
each micro-image is assembled from a segmented area of the directional scenes. 
Both techniques are based on rasterization rendering technique and hence do not 
produce photo-realistic images.  

A technique used to generate fast photo-realistic 3D Holoscopic images was re-
ported by Youssef et. al. [35]. The technique of accelerating ray tracing is to  
reduce the number of intersection tests for shadow rays using a shadow cache al-
gorithm. The image-space coherence is analysed describing the relation between 
rays and projected shadows in the scene rendered. Shadow cache algorithm has 
been adapted in order to minimise shadow intersection tests in ray tracing of 3D 
Holoscopic images. Shadow intersection tests make the majority of the intersec-
tion tests in ray tracing. The structure of the lenses and the camera model in the 
3D Holoscopic image ray-tracing affects the way primary rays are spawned and 
traced as well as the spatial coherence among successive rays. As a result various 
pixel-tracing styles can be developed uniquely for 3D Holoscopic image ray trac-
ing to improve the image-space coherence and the performance of the shadow 
cache algorithm. Examples of grouping of pixels tracing styles are shown in  
figure 6. Acceleration of the photo-realistic 3D Holoscopic images generation us-
ing the image-space coherence information between shadows and rays in 3D holo-
scopic ray tracing has been achieved with up to 41% of time saving [35]. Also, it 
has been proven that applying the new styles of pixel-tracing does not affect the 
scalability of 3D Holoscopic image ray tracing running over parallel computers. 
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(a)                                                        (b) 

Fig. 6  (a) Grouping in the horizontal direction. (b) Grouping using adjacent lenses. 

4   3D Object Segmentation 

Research on depth extraction from multi-view imaging systems has been exten-
sive. However, the depth extraction from 3D holoscopic imaging systems is still in 
its infancy. The first reported work is that of Manolache et. al. [36], where the 
point-spread function of the optical recording is used to describe the associated in-
tegral image system and the depth estimation task is tackled as an inverse prob-
lem. In the practical case, the image inverse problem proves to be ill posed and the 
discrete correspondents are ill conditioned due to the inherent loss of information 
associated with the model in the direct process. Therefore, the method can only be 
applied on simulation using numerical data [37, 41].  

A practical approach for obtaining depth by viewpoint image extraction and dis-
parity analysis was explored and presented by Wu, et. al. [37]. The viewpoint im-
age was formed by sampling pixels from different micro-images rather than a 
macro block of pixels corresponding to a microlens unit. Each “viewpoint image” 
presented a two-dimensional (2D) parallel recording of the 3D scene from a  
particular direction. Figure 7 graphically illustrates how the viewpoint images are 
extracted. 

Figure 8 shows one example of unidirectional 3D holoscopic image and the ex-
tracted viewpoint images.  The number of pixels of the formed viewpoint image 
(along horizontal direction) will depend on the size of the 3D holoscopic image. In 
the typical case described in figure 8, where the pitch size of the microlens sheet is 
600 µm and the image has a size of 12cm, there will be 200 pixels in one formed 
viewpoint image along the horizontal direction. Assuming that the intensity distri-
bution has been sampled so that each micro-image comprises 8 pixels in the hori-
zontal direction. This results in eight viewpoint images being extracted as shown 
in figure 8b. 
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Fig. 7. Illustration of viewpoint image extraction (For simplicity, assume there are only 
four pixels under each microlens.  Pixels in the same position under different microlenses, 
represented by the same pattern, are employed to form one viewpoint image.) 

 
                   (a) 
 

 
                                         (b) 

Fig. 8 (a) One captured Unidirectional 3D Holoscopic image and (b) the extracted view-
point images (b) (The images have been scaled for illustration purpose) 
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Object depth was calculated from the viewpoint image displacement using a 
depth equation, which gave the mathematical relationship between object depth 
and correspondence viewpoint image displacement.  To improve the performance 
of the disparity analysis, an adaptation of the multi-baseline technique taking ad-
vantage of the information redundancy contained in multiple viewpoint images of 
the same scene was used [37]. The idea of viewpoint image extraction on 3D  
object reconstruction was also reported by Arimoto and Javidi [38]. 

The 3D holoscopic imaging requires only one recording in obtaining 3D infor-
mation and therefore no calibration is necessary to acquire depth values. The 
compactness of using 3D holoscopic imaging in depth measurement was soon at-
tracting attention as a novel depth extraction technique [39, 40]. In the conven-
tional stereo matching system, the quantization error is increased with the object 
depth and a considerable quantization error will be caused when the object depth 
is large. While different to the conventional stereo vision method, the quantization 
error obtained from the extracted viewpoint images is maintained at a constant 
value and irrelevant with the depth [37, 40]. To take the advantage of both, Park, 
et. al. proposed a method for extracting depth information using a specially de-
signed lens arrangement [40].  A drawback of the work reported in [37, 38, 39, 40] 
is that the window size for matching has to be chosen experimentally. In general, a 
smaller matching window gives a poor result within the object/background region 
while a larger window size gives a poorer contour of the object. 

More recently, a method was reported which addresses the problem of choosing 
an appropriate window size, where a neighbourhood constraint and relaxation 
technique is adapted by considering the spatial constraints in the image [41]. The 
hybrid algorithm combining both multi-baseline and neighborhood constraint and 
relaxation techniques with feature block pre-selection in disparity analysis has 
been shown to improve the performance of the depth estimation [41]. 

Another method which uses a blur metric-based depth extraction technique was 
proposed [42]. It requires the estimation of plane objects images using the compu-
tational 3D holoscopic imaging reconstruction algorithm. The algorithm was 
shown to extract the position of a small number of objects is well defined situa-
tions. However, the accuracy of the depth map depends on the estimation of the 
blur metric which is prone to large errors, as these metrics are sensitive not only to 
the threshold used to classify the edges, but also to the presence of noise. The 
scope of the 3D holoscopic imaging application also has been further extended to 
3D object recognition [43, 44]. 

5   3D Holoscopic Image Compression 

Due to the large amount of data required to represent the captured 3D holoscopic 
image with adequate resolution, it is necessary to develop compression algorithms 
tailor to take advantage of the characteristics of the recorded 3D holoscopic im-
age.  The planar intensity distribution representing 3D holoscopic image is com-
prised of 2D array of micro-images due to the structure of the microlens array 
used in the capture and replay. The structure of the recorded 3D holoscopic image 
intensity distribution is such that a high cross correlation in a third domain, i.e.  
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between the micro-images produced by the recording microlens array, is present. 
This is due to the small angular disparity between adjacent microlenses. In order 
to maximise the efficiency of a compression scheme for use with the 3D holo-
scopic image intensity distribution, both inter and intra micro-image correlation 
should be evaluated.  

In the last decade, a lossy compression scheme for use with 3D holoscopic im-
ages, making use of a three dimensional discrete cosine transform (3D-DCT) has 
been developed [45, 46]. It was shown that the performance with respect to com-
pression ratio and image quality is vastly improved compared with that achieved 
using baseline JPEG for compression of 3D holoscopic image data.  More recently 
a wavelet-based lossy compression technique for 3D holoscopic images was re-
ported [47]. The method requires the extraction of different viewpoint images 
from the 3D holoscopic image. A single viewpoint image is constructed by ex-
tracting one pixel from each micro-image, then each viewpoint image is decom-
posed using a two dimensional discrete wavelet transform (2D-DWT). The lower 
frequency bands of the viewpoint images are assembled and compressed using a 
3D-DCT followed by Huffman coding.  It was found that the algorithm achieves 
better rate-distortion performance, with respect to compression ratio and image 
quality at very low bit rates when compared to the 3D DCT based algorithms [47]. 

The 3D wavelet decomposition is computed by applying three separate 1D 
transforms viewpoint images. The spatial wavelet decomposition on a single 
viewpoint is performed using the biorthogonal Daubechies 9/7 filter bank while 
the inter-viewpoint image decomposition on the sequence is performed using the 
lifting scheme by means of the 5/3 filter bank [48]. All the resulting wavelet  
coefficients from the application of the 3D wavelet decomposition are arithmetic 
encoded. 

5.1   Preprocessing of 3D Holoscopic Images 

Prior to computation of the forward DWT, different viewpoint images are ex-
tracted from the original 3D Holoscopic image. The viewpoint image comprises 
pixels of the recorded object scene corresponding to a unique recording direction 
as discussed in section 4. The post-processing stage at the decoder essentially un-
does the effects of pre-processing in the encoder. The original nominal dynamic 
range is restored and each pixel from each reconstructed viewpoint image is put 
back into its original position within the microlens to reconstruct the whole 3D 
holoscopic image. The intensity distribution of an omnidirectional 3D holoscopic 
image consists of an array of micro-images as shown in figure 4. The intensity dis-
tribution is sampled so that each micro-image comprises (8×7) pixels. Since a 
viewpoint image is obtained by extracting one pixel from each micro-image pro-
vided by the 2D array arrangement, a total of 56 different viewpoint images are 
constructed. It is important to point out that the viewpoint image is different from 
the traditional 2D image. It is a parallel projection recording of the 3D space 
rather than a perspective projection as in the common 2D recording. 
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5.2   2D WDT Based Compression Algorithm 

The general structure of the 2D wavelet based compression algorithm is shown in 
Figure 9. The input to the encoding process is a 3D holoscopic image. Prior to 
computation of the 2D DWT, different viewpoint images are extracted from the 
original 3D holoscopic image. The viewpoint image components are then decom-
posed into different decomposition levels using a 2D WDT. The 2-D transform is 
performed by two separate 1-D transforms along the rows and the columns of the 
viewpoint image data, resulting in four frequency subbands.   

The lowest frequency subband is a coarse scale approximation of the original 
viewpoint image and the rest of the frequency bands are detail signals. The 2D 
transform can be applied recursively to the lowest frequency subband to obtain 
decomposition at coarser scales. In [47] a two-level of decomposition was applied 
by means of the Daubechies 9/7 filter. 

 
 

 

Fig. 9 The general structure of the proposed scheme: (a) Encoder, (b) Decoder 

After decomposition of the viewpoint images using the 2D-DWT (Figure 10(a)), 
the resulting lowest frequency subbands are assembled as shown in Figure 10(b) 
and compressed using a 3D-DCT. This will achieve de-correlation within and be-
tween the lowest frequency subbands from the different viewpoint images. The 3D 
DCT is performed on an 8×8×8 volume. Hence, the 56 lowest frequency subbands 
are assembled together, giving seven groups of eight viewpoint images each. The 
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size of the lowest frequency subbands for all 3D holoscopic test images used here 
are a multiple of 8×8, which simplifies the computation of the 3D-DCT transform. 
Hence blocks of 8×8 pixels from eight successive view point images are grouped 
together to form an 8×8×8 volume as input to the 3D-DCT unit.  The coefficients 
resulting from the application of the 3D-DCT are passed to a Huffman encoder 
while all the other coefficients are passed to an arithmetic encoder. 

 

 

 

Fig. 10 (a) 2-levels 2D-DWT on viewpoint images, (b) Grouping of the lower frequency 
bands into 8×8×8 blocks 

5.3   Proposed Compression Algorithm 

The 56 extracted viewpoint images are DC level shifted. Then, a forward 1D 
DWT is applied on the whole sequence of viewpoint images. This results in 28 
low frequency bands and 28 high frequency bands. The same procedure is then re-
peated on the resulting 28 low frequency bands only. This leads to 14 low fre-
quency bands and 14 high frequency bands. The procedure is repeated to the low 
frequency bands at each decomposition level until only two low frequency bands 
are reached. The procedure is depicted in Figure 11 for five levels of inter-
viewpoint image decomposition. Next, a forward 2-levels 2D DWT on the last two 
low frequency bands is carried out. After quantization, all the resulting quantized 
samples are Arithmetic encoded. Finally, the decoder undoes all these operations 
allowing the reconstruction of the intensity distribution. 

Prior to Arithmetic coding, de-correlated sub-image groups resulting from ap-
plication of the spatial decomposition on the last two low frequency bands, are  
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Fig. 11 Inter-viewpoint image decomposition of an input sequence of fifty-six viewpoint 
images 
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presented to a dead-zone scalar quantizer [47, 48]. The remaining fifty-four high 
frequency bands are quantized using a uniform scalar quantizer with a step-size 
varying from Δ=1 to Δ=70. After coding, the resulting coded bit stream is sent to 
the decoder. The optimal reconstruction bias used in the dequantization process is 
r=0.4. In the next section, the results of the 3D DWT based algorithm are pre-
sented and compared to those of previously experimented 2D DWT scheme on 
omnidirectional 3D holoscopic image data. 

5.4   Simulation Results and Discussions 

The 3D DWT based compression algorithm has been implemented for simulation 
using the several 3D holoscopic test images. The performance of the encoder and 
decoder was measured in terms of the Peak Signal to Noise Ratio (PSNR) and the 
compression achieved expressed in bits per pixel (bpp). Figure 12 shows plots of 
PSNR versus bit rate for the proposed scheme and the previously experimented 
2D DWT based model. From Figure 12, it can be seen that the 3D DWT based al-
gorithm shows a higher improvement in PSNR for all bit rate values compared to 
the previous reported 2D DWT based scheme [47]. Table 1 shows bit rate values 
resulting from both methods simulated for a typical quality requirement. As we 
can see from Table 1, 1.42 dB are gained at 0.1 bpp and an improved performance 
by an average of 0.94 dB (average of PSNR values at 0.1, 0.2, and 0.3 bpp) is 
achieved by the proposed compression algorithm when compared to the previ-
ously experimented 2D DWT based scheme. 
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Fig. 12 Performance of the proposed 3D DWT based compression algorithm and the 2D 
DWT based scheme for compression of 3D Holoscopic images 
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Table 1 Summary of performance of both compression schemes tested on 3D holosopic 
image 

Encoder 

 

Peak Signal to Noise Ratio (dB) 

        0.1 bpp            0.2 bpp               0.3 bpp 

Proposed 3D DWT based al-
gorithm 

34.09 35.67 36.52 

2D DWT based algorithm 
[47] 

32.67 34.91 35.87 

6   Conclusions 

A review of 3D Holoscopic imaging technology is provided from the point of 
view of 3D content capture, computer generation, depth computation and 3D con-
tent coding.  3D Holoscopic imaging technology is receiving a lot of interest in re-
cent years and is a candidate for consideration for several applications including 
3D TV in terms of human factors, cost of conversion of studios, production of 
content, decoders and current cost of display technology. A 3D discrete wavelet 
based compression scheme is discussed in more details to show that dedicated al-
gorithms are required to take full advantage of the data structure inherent in 3D 
holoscopic images and hence achieve the best possible performance. 
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Chapter 19
Video Streaming with Interactive Pan/Tilt/Zoom

Aditya Mavlankar and Bernd Girod

Abstract. High-spatial-resolution videos offer the possibility of viewing an
arbitrary region-of-interest (RoI) interactively. The user can pan/tilt/zoom while
watching the video. This chapter presents spatial-random-access-enabled video
compression that encodes the content such that arbitrary RoIs corresponding to dif-
ferent zoom factors can be extracted from the compressed bit-stream. The chapter
also covers RoI trajectory prediction, which allows pre-fetching relevant content in a
streaming scenario. The more accurate the prediction the lower is the percentage of
missing pixels. RoI prediction techniques can perform better by adapting according
to the video content in addition to simply extrapolating previous moves of the input
device. Finally, the chapter presents a streaming system that employs application-
layer peer-to-peer (P2P) multicast while still allowing the users to freely choose
individual RoIs. The P2P overlay adapts on-the-fly for exploiting the commonali-
ties in the peers’ RoIs. This enables peers to relay data to each other in real-time,
thus drastically reducing the bandwidth required from dedicated servers.

1 Introduction

High-spatial-resolution digital video will be widely available at low cost in the near
future. This development is driven by increasing spatial resolution offered by digi-
tal imaging sensors and increasing capacities of storage devices. Furthermore, there
exist algorithms for stitching a comprehensive high-resolution view from multiple
cameras [1, 2]. Some currently available video-conferencing systems stitch a large
panoramic view in real-time [3]. Also, image acquisition on spherical, cylindrical
or hyperbolic image planes via multiple cameras can record scenes with a wide
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field-of-view while the recorded data can be warped later to the desired viewing
format [4]. An example of such an acquisition device is [5].

Imagine that a user wants to watch a high-spatial-resolution video that exceeds
the resolution of his/her display screen. If the user were to watch a downsampled
version of the video that fits the display screen then he/she might not be able to
view local regions with the recorded high resolution. A possible solution to this
problem is a video player that supports interactive pan/tilt/zoom. The user can thus
choose to watch an arbitrary region-of-interest (RoI). We refer to this functional-
ity as interactive region-of-interest (IRoI). Figure 1 shows screen-shots of a video
player supporting IRoI. Such a video player could also offer to track certain objects,
whereby the user is not required to control pan and tilt, but could still control the
zoom factor.

Some practical scenarios where this kind of interactivity is well-suited are: in-
teractive playback of high-resolution video from locally stored media, interactive
TV for watching content captured with very high detail (e.g., interactive viewing
of sports events), providing virtual pan/tilt/zoom within a wide-angle and high-
resolution scene from a surveillance camera, and streaming instructional videos cap-
tured with high spatial resolution (e.g., lectures, panel discussions). A video clip that
showcases interactive viewing of soccer in a TV-like setting can be seen here [6].

Consider the first example mentioned above, i.e., playback from locally stored
media. In this case, the video content is encoded offline before storing it on the rele-
vant media, for example, a high-capacity portable disk. Note that the RoI trajectory
is not known while encoding the content. An RoI trajectory is determined each time
a user watches the video with interactive pan/tilt/zoom. This leads us to two design
choices; 1) the video player can be designed to decode the entire high spatial resolu-
tion while displaying only the RoI or 2) the adopted compression format could allow
decoding only relevant regions, possibly with some overhead. Depending on the res-
olution of the video and the hardware capability of the player, the first design choice
might be prohibitive. Other application scenarios mentioned above entail streaming
from a remote source. In most cases, streaming the full spatial extent of the video
to a user can be ruled out due to prohibitive bandwidth requirement. If RoI-specific
portions can be streamed to the remote user, the RoI dimensions could be adapted to
suit the available data rate for communication apart from the user’s display screen
as noted above.

Now let us consider the difficulty of employing a standard video encoder in the
streaming scenario. A standard video encoder generally does not provide efficient
spatial random access, i.e., the ability to extract regions from the compressed bit-
stream. The video streaming can be for live content or for pre-stored content. For live
content, the server can crop out an RoI sequence on-the-fly considering the user’s
pan/tilt/zoom commands and compress it as a video sequence using standard video
encoding. The load of encoding might get prohibitively large with increasing num-
bers of users. Pre-stored content might not be stored in raw format implying that the
server has to decode the high-spatial-resolution video prior to cropping the RoI se-
quence. Not only does the load of encoding increase, but if multiple users watch the
content asynchronously then even the decoding load at the server increases. On the
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other hand, if a spatial-random-access-enabled video coding scheme is employed,
the server needs to encode the recorded field-of-view only once, possibly with mul-
tiple resolution layers to support different zoom factors. The encoding load can thus
be upper-bounded both for live content as well as pre-stored content irrespective of
the number of users.

Fig. 1 Screen-shots of a video player supporting interactive pan/tilt/zoom. Apart from dis-
playing the RoI, the video player can display a thumbnail overview to aid navigation in the
scene. The player could also offer to track certain objects, for example, the soccer ball and/or
the soccer players. In the tracking mode, the user is not required to control pan and tilt, but
could still control the zoom factor.
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In addition to limiting the encoding load, if the streaming bandwidth required
from the server can also be limited then the streaming system can scale to large
numbers of users. This chapter presents a solution that can be employed when sev-
eral users are synchronously watching arbitrary regions of a high-spatial-resolution
video. It hinges on employing application-layer peer-to-peer (P2P) multicast for de-
livering the streams to the users. The solution exploits the commonalities in the
peers’ regions such that they relay data to each other in real-time. This allows lim-
iting the bandwidth required at the server by making use of the forwarding capac-
ities of the peers. The main challenge is that user-interaction determines real-time
which regions are commonly wanted by which peers. The P2P overlay needs to
adapt quickly and in a distributed manner, i.e., peers take most of the action nec-
essary for acquiring the data they need, without much central intervention. Larger
dependence on central intervention represents another hurdle in scaling. The sec-
ond challenge is that peers can switch off randomly, taking away the resources they
bring with them.

Ideally, the changing RoI should be rendered immediately upon user input; i.e.,
without waiting for new data to arrive. If the client would delay the rendering until
new data arrive, the induced latency might hamper the experience of interactivity. In
both client-server unicast streaming as well as P2P multicast streaming, predicting
the user’s navigation path ahead of time helps pre-fetch relevant sub-streams. The
more accurate the RoI prediction the lower is the percentage of pixels that have to
be error-concealed.

This chapter is organized as follows. Section 2 provides a sampling of interactive
streaming systems found in the literature. The goal is to highlight the challenges
as well as earlier proposed approaches for providing random access, enabling pre-
fetching and P2P design for other interactive applications that are similar in spirit to
IRoI video. Section 3 discusses several approaches for providing spatial random ac-
cess within videos. It elaborates one video coding scheme in particular. This scheme
builds a multi-resolution pyramid comprising slices. It is shown how background ex-
traction can be used to improve the coding efficiency of such a scheme. The trade-off
in choosing the slice size is also analyzed. The slice size can be chosen to strike the
right balance between storage requirement and transmission bit-rate. Section 4 de-
scribes variants of pre-fetching schemes. In one of the variants, the RoI prediction
is based on analyzing the motion of objects in the video in addition to extrapolat-
ing moves of the input device. RoI prediction can be carried out at the client, at
the server or collectively. Section 5 presents the P2P multicasting system in which
peers can control their individual RoIs. Key aspects of the design are presented that
enable peers to receive and relay respective regions despite the challenges outlined
above.

2 Related Work

This section draws on interactive streaming systems found in the literature. A brief
survey of the challenges in designing such systems and the solutions found in
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the literature sets the stage for the discussion on video streaming with interactive
pan/tilt/zoom appearing in later sections. The later sections particularly aim at build-
ing a system that scales to large numbers of users.

2.1 Coding for Random Access

Images. Remote image browsing with interactive pan/tilt/zoom is very similar in
spirit. It is generally used for high-resolution archaeological images, aerial or satel-
lite images, images of museum exhibits, online maps, etc. Online maps provide
about 20 zoom levels. The image corresponding to each zoom level is coded into
tiles. Generally, the images corresponding to different zoom levels are coded inde-
pendently. This so-called Gaussian pyramid fails to exploit redundancy across zoom
levels but provides easy random access. The server accesses the tiles intersecting the
selected view and sends these tiles to the user. Generally, after a zoom operation, the
relevant part from the current zoom level is interpolated to quickly render the newly
desired view. As the tiles from the new zoom level arrive, the graphics become
crisper. Note that this cursory rendering based on earlier received data might not be
possible for some portions due to lack of received data.

Interactive browsing of images using JPEG2000 is explored in [7, 8]. This
leverages the multi-resolution representation of an image using wavelets. This repre-
sentation is not overcomplete unlike the Gaussian and Laplacian pyramids that gen-
erate more coefficients than the high-resolution image. JPEG2000 encodes blocks
of wavelet transform coefficients independently. This means that every coded block
has influence on the reconstruction of a limited number of pixels of the image. More-
over, the coding of each block results in an independent, embedded sub-bitstream.
This makes it possible to stream any given block with a desired degree of fidelity.
A transmission protocol, called JPEG2000 over Internet Protocol (JPIP), has also
been developed. The protocol governs communication between a client and a server
to support remote interactive browsing of JPEG2000 coded images [9]. The server
can keep track of the RoI trajectory of the client as well as the parts of the bit-stream
that have already been streamed to the client. Given a rate of transmission for the
current time interval, the server solves an optimization problem to determine which
parts of the bit-stream need to be sent in order to maximize the quality of the current
RoI.

Video. The video compression standard H.264/AVC [10, 11] includes tools like
Flexible Macroblock Ordering (FMO) and Arbitrary Slice Ordering (ASO). These
tools were primarily created for error resilience, but can also be used to define an
RoI prior to encoding [12]. The RoI can either be defined through manual input
or through automatic content analysis. Slices corresponding to the RoI (or multiple
RoIs) can be encoded with higher quality compared to other regions. Optionally, the
scalable extension of H.264/AVC, called SVC [13, 14], can be used for adding fine
or coarse granular fidelity refinements for RoI slices. The user experiences higher
quality for the RoI if the refinement packets are received. The RoI encoding param-
eters can be adapted to the network and/or the user [15]. Note that these systems
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transmit the entire picture while delivering the RoI with higher quality. Among the
class of such systems, some employ JPEG2000 with RoI support and conditional
replenishment for exploiting correlation among successive frames [16]. Parts of the
image that are not replenished can be copied from the previous frame or a back-
ground store.

In our own work, we have proposed a video transmission system for interactive
pan/tilt/zoom [17]. This system crops the RoI sequence from the high-resolution
video and encodes it using H.264/AVC. The RoI cropping is adapted to yield effi-
cient motion compensation in the video encoder. The RoI adjustment is confined to
ensure that the user does not notice the manipulation and experiences accurate RoI
control. The normal mode of operation for this system is streaming live content but
we also allow the user to rewind and play back older video. Note that in the second
mode of operation, the high-resolution video is decoded prior to cropping the RoI
sequence. Although efficient in terms of transmitted bit-rate, the drawback is that
RoI video encoding has to be invoked for each user, thus limiting the system to few
users. This system targets remote surveillance in which the number of simultaneous
users is likely to be less than other applications like interactive TV.

Video coding for spatial random access presents a special challenge. To achieve
good compression efficiency, video compression schemes typically exploit correla-
tion among successive frames. This is accomplished through motion-compensated
interframe prediction [18, 19, 20]. However, this makes it difficult to provide ran-
dom access for spatial browsing within the scene. This is because the decoding of
a block of pixels requires that other reference frame blocks used by the predictor
have previously been decoded. These reference frame blocks might lie outside the
RoI and might not have been transmitted and/or decoded earlier.

Coding, transmission and rendering of high-resolution panoramic videos using
MPEG-4 is proposed in [21, 22]. A limited part of the entire scene is transmitted to
the client depending on the chosen viewpoint. Only intraframe coding is used to al-
low random access. The scene is coded into independent slices. The authors mention
the possibility of employing interframe coding to gain more compression efficiency.
However, they note that this involves transmitting slices from the past if the current
slice requires those for its decoding. A longer intraframe period entails significant
complexity for slices from the latter frames in the group of pictures (GOP), as this
“dependency chain” grows.

Multi-View Images/Videos. Interactive streaming systems that provide virtual fly-
around in the scene employ novel-view generation to render views of the scene
from arbitrary viewpoints. With these systems, the user can experience more free
interactive navigation in the scene [23, 24, 25]. These systems typically employ
image-based rendering (IBR) which is a technique to generate the novel view from
multiple views of the scene recorded using multiple cameras [26, 27]. Note that in
these applications, the scene itself might or might not be evolving in time. Trans-
mitting arbitrary views from the multi-view data-set on-the-fly also entails random
access issues similar to those arising for transmitting arbitrary regions in interac-
tive pan/tilt/zoom. Interframe coding for compressing successive images in time as
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well as from neighboring views can achieve higher compression efficiency but can
lead to undesirable dependencies for accessing random views. There exists a large
body of works that employs hybrid video coding for compressing multi-view data-
sets [28, 29, 30, 31, 32]. These studies highlight the trade-off in storage requirement,
mean transmission bit-rate and decoding complexity. Recently, an analytical frame-
work was proposed for optimizing the coding structure for coding multi-view data-
sets [33]. The framework allows multiple representations of a picture, for example,
compressed using different reference pictures. The optimization not only finds the
best coding structure but also determines the best set of coded pictures to transmit
corresponding to a viewing path. The framework can accommodate constraints like
limited step-size for view switching, permitting view switching only during certain
frame-intervals and capping the length of the burst of reference frames that are used
for decoding a viewed frame but are not themselves displayed. The framework can
minimize a weighted sum of expected transmission bit-rate and storage cost for
storing the compressed pictures.

The video compression standard H.264/AVC defines two new slice types, called
SP and SI slices. Using these slice types, it is possible to create multiple repre-
sentations of a video frame using different reference frames. Similar to the solu-
tions described above, the representation to be streamed is chosen according to the
reference frames available at the decoder. However, the novelty is that the recon-
struction is guaranteed to be identical. This drastically reduces the total number of
multiple representations required to be stored. SP frames have been used for in-
teractive streaming of static light fields [34, 35]. Another solution to the random
access problem associated with multi-view data-sets is based on distributed source
coding (DSC) [36, 37]. In this solution, an interframe coded picture is represented
using enough parity bits which leads to an identical reconstruction irrespective of
the reference frame used by the decoder. This implies that multiple representations
are not required to be stored, however, the number of parity bits is determined by
the reference frame having the least correlation to the frame to be coded. Similar to
some prior work based on hybrid video coding for multi-view data-sets mentioned
above, recent work based on DSC also explores the trade-off between transmission
bit-rate and storage requirement [38].

2.2 Navigation Path Prediction

A simple user-input device, for example a computer mouse, typically senses po-
sition. More sophisticated devices like game-controllers can also measure velocity
and/or acceleration. Studies on view trajectory prediction have been conducted in
the context of Virtual Reality [39] and networked multi-player video games [40].
A common navigation path prediction technique, dead reckoning, predicts the fu-
ture path by assuming that the user maintains the current velocity. The velocity
can be either read from the input device or computed from successive position
measurements.
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In their work on interactive streaming of light fields, the authors predict the (x,y)
mouse co-ordinates based on dead reckoning and translate these into the view-
point [41]. The use of a Kalman filter for head movement prediction in scenarios
where head movements can control the application have been proposed in [42]. In
prior work on dynamic light fields, six Kalman filters have been used for predict-
ing the 3-D co-ordinates and the 3 Euler angles that define the viewpoint [43, 44].
The viewpoint and the rendering algorithm together determine the number of views
that need to be streamed to the client. The authors mention two possible system
design choices. Viewpoints exceeding the bit-rate threshold can be disallowed or
those viewpoints can be rendered with lower quality by not streaming all the views
demanded by that viewpoint. The authors also note that if the streaming system al-
lows tuning into a view-stream only during certain frame-intervals, one can choose
an appropriately long prediction lookahead and tune into new view-streams before-
hand to avoid missing the join opportunities.

2.3 Multicasting

Multicasting can drastically reduce the bandwidth required from dedicated media
servers. IP multicast, specified decades ago [45], allows sending an IP datagram to
a group of hosts identified by a single IP destination address [46]. Hosts may join
and leave a multicast group at any time. This requires multicast-capable routers that
replicate packets as required. Even though IP multicast is extremely efficient at dis-
tributing data to multiple interested receivers, most routers on the Internet keep this
functionality turned off due to reasons related to security, billing and the size of
the data-structures to be maintained by the router. Nevertheless, the bandwidth con-
servation benefits of IP multicast have resulted in rising deployment for corporate
communications and, more recently, IPTV service.

The seminal work on receiver-driven layered multicast (RLM) [47] focuses on
video streaming without interactive pan/tilt/zoom. The authors propose compressing
the multimedia signal in hierarchical layers and letting individual receivers choose
the layers to join. Receiving more layers leads to better quality. Each layer is deliv-
ered using a different multicast group. Note that if a receiver joins too many layers
and creates congestion on a link then packets can be dropped indiscriminately from
all layers affecting received quality, possibly for multiple receivers that share the
congested link. A receiver performs regular tests to decide if it should unsubscribe
already joined layers or subscribe new layers. “Shared learning” among receivers
can reduce the number of tests and hence the convergence time.

Recently, the RLM framework was adapted for interactive dynamic light field
streaming [43]. Depending on the chosen viewpoint, the client decides which views
and consequently which multicast groups to subscribe. The latency for joining a
new multicast group is generally low with IP multicast [48]. As in the case of RLM,
it is the client’s responsibility to avoid congestion on intermediate links. The source
does not adapt transmission to curtail congestion; it keeps transmitting IP datagrams
to the multicast groups’ addresses.
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Contrary to network-layer IP multicast, P2P streaming implements the multicas-
ting logic in software at the end-hosts rather than routers inside the network [49].
Unlike IP multicast, the application-layer software can be widely deployed with lit-
tle investment. Although the P2P approach generally results in more duplication of
packets and inefficient routing compared to IP multicast, the benefits outweigh the
inefficiencies. The source as well as each peer can respond to local retransmission
requests as well as perform sophisticated packet scheduling to maximize the expe-
rience of downstream peers [50].

P2P streaming systems can be broadly classified into mesh-pull vs. tree-push sys-
tems [51]. The design of mesh-pull systems evolved from P2P file-sharing systems.
In these systems, a peer advertises the chunks of data that it has and complies with
requests to relay chunks to other peers. Tree-push systems, on the other hand, dis-
tribute data using one or more complementary trees. After finding its place inside a
distribution tree, a peer generally persists to keep its association with the parent and
its children and relays data without waiting for requests from children. Generally,
tree-push systems result in fewer duplicate packets, lower end-to-end delay and less
delay-jitter [52, 53]. These traits are beneficial for interactive streaming systems
where select sub-streams of the coded content are required on-the-fly. A tree-based
P2P protocol has been recently proposed for interactive streaming of dynamic light
fields [54, 55]. Early results demonstrate the capability of the system to support
many more users with the same server resources as compared to traditional unicast
client-server streaming [55].

3 Spatial-Random-Access-Enabled Video Coding

We have proposed a spatial-random-access-enabled video coding scheme, shown
in Fig. 2, in our earlier work [56]. The coded representation consists of multiple
resolution layers. The thumbnail video constitutes a base layer and is coded with
H.264/AVC using I, P and B pictures. The reconstructed base layer video frames
are upsampled by a suitable factor and used as prediction signal for encoding video
corresponding to the higher resolution layers. Each frame belonging to a higher
resolution layer is coded using a grid of rectangular P slices. Employing upward
prediction from only the thumbnail enables efficient random access to local regions
within any spatial resolution. For a given frame-interval, the display of the client
is rendered by transmitting the corresponding frame from the base layer and few P
slices from exactly one higher resolution layer. Slices are transmitted from the reso-
lution layer that corresponds closest to the user’s current zoom factor. At the client’s
side, the corresponding RoI from this resolution layer is resampled to correspond to
the user’s zoom factor. Thus, smooth zoom control can be rendered despite storing
only few dyadically spaced resolution layers at the server. Note that the encoding
takes place once and generates a repository of slices. Relevant slices can be served
to several clients depending on their individual RoIs. The encoding can either take
place live or offline beforehand.
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Fig. 2 The thumbnail video constitutes a base layer and is coded with H.264/AVC using
I, P and B pictures. The reconstructed base layer video frames are upsampled by a suitable
factor and used as prediction signal for encoding video corresponding to the higher resolution
layers. Higher resolution layers are coded using P slices.

With the above-mentioned coding scheme, the thumbnail is transmitted continu-
ously. As shown in Fig. 1, the video player can display it to aid navigation. More-
over, the thumbnail can be used for error concealment, in case parts of the RoI do not
arrive in time. Ideally, the video delivery system should react to the client’s changing
RoI with as little latency as possible. The described coding scheme enables access
to a new region, with an arbitrary zoom factor, during any frame-interval instead of
having to wait for the end of a GOP or having to transmit extra slices from previous
frames. The coding scheme described above uses H.264/AVC building blocks, but
it is neither AVC-compliant nor SVC-compliant.

Compliance with State-of-the-Art Video Compression Standards. Current
video compression standards provide tools like slices but no straightforward method
for spatial random access since their main focus has been compression efficiency of
full-frame video and resilience to losses. SVC supports both slices as well as spa-
tial resolution layers. Alas, SVC allows only single-loop decoding whereas upward
prediction from intercoded base-layer frames implies multiple-loop decoding, and
hence is not supported by the standard. If the base layer frame is intercoded, then
SVC allows predicting the motion-compensation residual at the higher-resolution
layer from the residual at the base layer. However, interframe prediction dependen-
cies across slices belonging to a high-resolution layer hamper spatial random access.
Note that the motion vectors (MVs) can be chosen such that they do not point outside
slice boundaries. Also note that instead of SVC, AVC can be employed separately
for the high-resolution layers and the MVs can be similarly restricted to eliminate
inter-slice dependencies. However, this is very similar to treating the slices as sep-
arate video sequences. An obvious drawback is the redundancy between the high-
resolution slices and the base layer. A second drawback is that after RoI change, a
newly joined slice can only be decoded starting from an intracoded frame. However,
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if the video player stops displaying the thumbnail video, the transmission of the base
layer can be discontinued.

Coding Slices with Multiple Representations. Prior work on view random ac-
cess, mentioned in Sect. 2.1 employs multiple representations for coding an image.
Similarly, we can use multiple representations for coding a high-resolution slice.
This will allow us to use interframe coding among successive high-resolution layer
frames and transmit the appropriate representation for a slice depending on the slices
that have been transmitted earlier. For some representations, the MVs can be al-
lowed to point outside slice boundaries. Note that this might lower the transmission
bit-rate but more storage will be required for multiple representations. The benefit
of the scheme in Fig. 2 is that knowing the current RoI is enough to decide which
data need to be transmitted unlike the case of multiple representations where the
decision is conditional on prior transmitted data.

Improvement Based on Background Extraction. Now let us see how the coding
scheme from Fig. 2 can be improved for higher coding efficiency without employ-
ing multiple representations. Although the coding scheme of Fig. 2 enables efficient
random access, upward prediction using the reconstructed thumbnail frames might
result in substantial residual energy for high spatial frequencies. We propose cre-
ating a background frame [57, 58] for each high-resolution layer and employing
long-term memory motion-compensated prediction (LTM MCP) [59] to exploit the
correlation between this frame and each high-resolution frame to be encoded [60].
The background frame is intracoded. As shown in Fig. 3, high-resolution P slices
have two references to choose from, upward prediction and the background frame. If
a transmitted high-resolution P slice refers to the background frame, relevant I slices
from the background frame are transmitted only if they have not been transmitted

-Resolution layer n

Background frame

Upsampled,
reconstructed thumbnail

RoI

Rate-distortion
optimized reference 

selection

P slices

I slices
Long-term reference 

buffer

Fig. 3 Each high-resolution layer frame has two references to choose from, the frame ob-
tained by upsampling the reconstructed thumbnail frame and the background frame from the
same layer in the background pyramid.
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earlier. This is different from prior work [61] employing a background pyramid, in
which the encoder uses only those parts of the background for prediction that exist
in the decoder’s multi-resolution background pyramid. In [61], the encoder mim-
ics the decoder which builds a background pyramid out of all previously received
frames. Note that the camera is likely to be static in such applications since a moving
camera might hamper the interactive browsing experience. Background extraction
is generally easier with a static camera. Background extraction algorithms as well
as detection and update of changed background portions have been previously stud-
ied, for example in [62]. Note that the improved coding scheme entails transmitting
some I slices from the background frame that might be required for decoding the
current high-resolution P slice. Nevertheless, the cost of doing this is amortized
over the streaming session. Bit-rate reduction of 70–80% can be obtained with this
improvement while retaining efficient random access.

Optimal Slice Size. Generally, whenever tiles or slices are employed, choosing the
tile size or slice size poses the following trade-off. On one hand, a smaller slice size
reduces the overhead of transmitted pixels. The overhead is constituted by pixels
that have to be transmitted due to the coarse slice grid but are not used for rendering
the display. On the other hand, reducing the slice size worsens the coding efficiency.
This is due to increased number of headers and inability to exploit correlation across
the slices. The optimal slice size depends on the RoI display dimensions, the dimen-
sions of the high-spatial-resolution video, the content itself and the distribution of
the user-selected zoom-factor. Nevertheless, we have demonstrated in prior work
that stochastic analysis can estimate the expected number of transmitted pixels per
frame [56]. This quantity, denoted by ψ (sw,sh), is a function of the slice width, sw

and the slice height, sh. The average number of bits per pixel required to encode
the high-resolution video frame, denoted by η (sw,sh), can also be observed or esti-
mated as a function of the slice size. The optimal slice size is the one that minimizes
the expected number of bits transmitted per frame,

(sopt
w ,sopt

h ) = arg min
(sw,sh)

η(sw,sh)×ψ (sw,sh) . (1)

The results in our earlier work show that the optimal slice size can be determined
accurately without capturing user-interaction trajectories [56]. Although the model
predicts the optimal slice size accurately, it can underestimate or overestimate the
transmitted bit-rate. This is because the popular slices that constitute the salient ob-
jects in the video might entail high or low bit-rate compared to the average. Also, the
location of the objects can bias the pixel overhead to the high or low side, whereas
the model uses the average overhead. Note that the cost function in (1) can be re-
placed with a Lagrangian cost function that minimizes the weighted sum of the
average transmission bit-rate and the incurred storage cost. The storage cost can be
represented by an appropriate constant multiplying η (sw,sh).
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4 Pre-fetching Based on RoI Prediction

The rationale behind pre-fetching is lowering the latency of interaction. Imagine
that frame number n is being rendered on the screen. At this point, the user’s RoI
selection up to frame n has been observed. The goal is to predict the user’s RoI at
frame n + d ahead of time and pre-fetch relevant slices.

Extrapolating the Navigation Trajectory. In our own work [63, 64], we have
used an autoregressive moving average (ARMA) model to estimate the velocity of
the RoI center:

vt = αvt−1 +(1−α)(pt − pt−1), (2)

where, the co-ordinates of the RoI center, observed up to frame n, are given by pt =
(xt ,yt) for t = 0,1 . . . ,n. The predicted RoI center co-ordinates p̂n+d = (x̂n+d , ŷn+d)
for frame n + d are given by

p̂n+d = pn + dvn, (3)

suitably adjusted if the RoI happens to veer off the extent of the video frame. The
prediction lookahead, d frames, should be chosen by taking into account network
delays and the desired interaction latency. The parameter α above trades off respon-
siveness to the user’s RoI trajectory and smoothness of the predicted trajectory.

Video-Content-Aware RoI Prediction. Note that the approach described above is
agnostic of the video content. We have explored video-content-aware RoI predic-
tion that analyzes the motion of objects in the video to improve the RoI predic-
tion [63, 64]. The transmission system in this work employs the multi-resolution
video coding scheme presented in Sect. 3. The transmission system ensures that
some future thumbnail video frames are buffered at the client’s side. Figure 4 il-
lustrates client-side video-content-aware RoI prediction. Following are some ap-
proaches explored in [63]:

1. Optical flow estimation techniques, for example the Kanade-Lucas-Tomasi (KLT)
feature tracker [65], can find feature points in buffered thumbnail frames and
track the features in successive frames. The feature closest to the RoI center in
frame n can be followed up to frame n + d. The location of the tracked feature
point can be made the center of the predicted RoI in frame n+d or the predicted
RoI can be chosen such that the tracked feature point appears in the same rel-
ative location. Alternatively, a smoother trajectory can be obtained by making
a change to the RoI center only if the feature point moves more than a certain
distance away from the RoI center.

2. Depending on the chosen optical flow estimation technique, the above approach
can be computationally intensive. An alternative approach exploits MVs con-
tained in the buffered thumbnail bit-stream. The MVs are used to find a plausible
propagation of the RoI center pixel in every subsequent frame up to frame n+d.
The location of the propagated pixel in frame n+d is deemed to be the center of
the predicted RoI. Although the MVs are rate-distortion optimized and might not
reflect true motion, the results are competitive to those obtained with the KLT
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Fig. 4 Video-content-aware RoI prediction analyzes motion in the buffered thumbnail video
frames. The video transmission system ensures that some thumbnail video frames are sent
ahead of time. Although not shown in the figure, RoI prediction can alternatively be per-
formed at the server. In this case, the server can analyze motion in the high-resolution frames,
however, the available trajectory history might be older than current due to network delays.
Also, the load on the server increases with the number of clients.

feature tracker [63]. The work in [66] is related in spirit, although the context,
mobile augmented reality, is different. In this work, MVs are used to track mul-
tiple feature points from one frame to the next while employing homography
testing to eliminate outliers among tracked feature points. The algorithm also
considers the case of B frames.

3. One can employ multiple RoI predictors and combine their results, for example,
through a median operation. This choice guarantees that for any frame-interval,
if one of the predictors performs poorly compared to the rest, then the median
operation does not choose that predictor. In general, the more diversity among
the predictors the better.

Compared to the video-content-agnostic schemes, the gain obtained through video-
content-aware RoI prediction is higher for longer prediction lookahead d [63].
Moreover, unlike the above approaches that are generic, the motion analysis can
be domain-specific [64]. For example, for interactive viewing of soccer, certain
objects-of-interest like the ball, the players, the referees, etc. can be tracked and
their positions can drive the RoI prediction.

In the approaches above, the user actively controls the input device and the goal
of the system is to predict the future path as accurately as possible. In another mode
of operation, the system offers to track a certain object-of-interest for the user such
that it relieves navigation burden. In this case, a user-selected trajectory might not
be available for comparison or as trajectory history input. In this mode, the goal of
the algorithm is to provide a smooth trajectory without deviating from the object.

Figure 5 reproduces a result from [64] that shows the tracking of a soccer
player over successive frames of the thumbnail video. The algorithm is based on
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(a) Background frame (b) Frame number 600

(d) Frame number 1200(c) Frame number 1000

Fig. 5 (a) Background frame. (b)–(d) Example of player tracking. Tracked player is high-
lighted for better visibility. The frames belong to the decoded thumbnail video having resolu-
tion 640×176 pixels. Note that a player is typically less than 5 pixels wide in the thumbnail
video.

background subtraction and blob tracking using MVs. Note that a player is typically
less than 5 pixels wide in the thumbnail video. Alternatively, the server can process
the high-resolution video or the tracking information can be generated through hu-
man assistance and trajectories of certain objects-of-interest can be conveyed to the
clients to aid their pre-fetching modules.

5 P2P Multicasting for Interactive Region-of-Interest

From the perspective of allowing the system to scale to large numbers of users, it
is important to limit both the encoding load as well as the bandwidth required at
the server. The video compression approach presented in Sect. 3 limits the encoding
load on the server irrespective of the number of users. The goal of this section is to
limit the bandwidth required from dedicated servers. We assume that several users
are concurrently watching the video, however, each user enjoys independent control
of the region to watch. In this section, we review our IRoI P2P streaming system,
first introduced in [67, 68], that can achieve P2P live multicast of IRoI video.

5.1 System Architecture

We employ the compression scheme from Sect. 3, illustrated in Figs. 2 and 3, for
compressing the thumbnail video and the high-resolution layers. IRoI P2P aims to
exploit overlaps among the users’ RoIs. Figure 6 shows overlaps among RoIs of
three users. The P2P protocol builds on top of the Stanford Peer-to-Peer Multicast
(SPPM) protocol [69, 50] which operates in tree-push manner. SPPM was origi-
nally developed for P2P video streaming without any pan/tilt/zoom functionality.
Nevertheless, we can leverage SPPM for building and maintaining distribution trees
in a distributed manner. Each high-resolution slice, also called enhancement layer
slice, is delivered using a separate set of multicast trees. Similarly, multiple com-
plementary multicast trees deliver the thumbnail video, called the base layer. Each
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Fig. 6 Example illustrating RoIs of three users within the multi-resolution video representa-
tion. The slices shown shaded are commonly wanted by more than one user and represent the
“overlaps” exploited by the IRoI P2P system.

peer subscribes the base layer at all times and additionally some enhancement layer
slices that are required to render the RoI. Peers also dynamically unsubscribe slices
that are no longer required to render the RoI. The RoI prediction lookahead accounts
for the latency in joining new trees as well as the playout delay that is employed to
mitigate delay jitter among the high-resolution slice packets.

5.2 P2P Protocol

The server maintains a database of slices that each peer is currently subscribed to.
Whenever the RoI prediction indicates a change of RoI, the peer sends an RoI-switch
request to the server. This consists of the top-left and bottom-right slice IDs of the
old RoI as well as the new RoI. In response to the RoI-switch request, the server
sends a list of potential parents for every new multicast tree that the peer needs to
subscribe. Corresponding to every multicast tree, there is a limit on the number of
peers the server can directly serve, and the server includes itself in the list if this
quota is not yet full. The server also updates its database assuming that the peer will
be successful in updating its subscriptions. After receiving the list from the server,
the peer probes potential parents for every new multicast tree it needs to join. If
it receives a positive reply, it sends an attach request for that tree. If it still fails
to connect, the peer checks for positive replies from other probed peers and tries
attaching to one of them. Once connected to any multicast tree corresponding to a
slice, the peer checks if it has previously received the corresponding background I
slice. If it has not then the peer obtains the background I slice from one of the peers
in the list or the server.
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When the RoI prediction indicates a change of RoI, the peer waits a while be-
fore sending leave messages to its parents on trees that its RoI no longer requires.
This ensures that slices are not unsubscribed prematurely. On the other hand, the
peer sends leave messages to its children immediately but keeps forwarding data
as long as it receives data from its parent. Upon receiving leave messages, the re-
spective children request potential parents’ lists from the server for the respective
multicast trees and try finding new parents. The delay in unsubscribing is chosen
such that the children experience a smooth handoff from old parent to new parent.
In rare cases, a child peer takes longer than the handoff deadline to find a new parent
and experiences disruption on that tree. The cumulative distribution function (cdf)
of slice subscription durations shown in Fig. 7 indicates how long peers attach to
a multicast tree. For the shown example, there are two high-resolution layers apart
from the thumbnail video. The RoI is 480×240 pixels whereas the highest resolu-
tion layer is 2560× 704 pixels. The total number of slices, counting the thumbnail
video as one slice and counting slices of the two high-resolution layers, is 382. Each
peer subscribes about 24 slices on average corresponding to about 1.1 Mbps bit-rate,
whereas the collective bit-rate of all the slices is about 14.1 Mbps.

In addition to leaving multicast trees gracefully, peers can also switch off alto-
gether leading to ungraceful departures. If a child peer does not receive data for a
particular tree for a timeout interval, it assumes that the parent is unavailable and
tries to rejoin the tree by enquiring about other potential parents. To monitor the on-
line status of parents, peers send Hello messages regularly to their parents and the
parents reply back. Since most tree disconnections are graceful and occur due to RoI
change, the interval for sending Hello messages can be large to limit the protocol
overhead. Similar to SPPM, a loop-avoidance mechanism on individual distribution
trees ensures that a descendant is not chosen as a parent [69, 70, 71, 72, 50]. For
additional details on peer state transitions and timeouts associated with sending and
receiving control messages, the reader may refer to [73].

The server advances the base layer transmission slightly compared to the trans-
mission of the enhancement layer slices. This way peers can buffer some base layer

Fig. 7 Cumulative distribu-
tion function (cdf) of slice
subscription durations for
the Soccer sequence. The
cdf is computed from 1000-
second-long user-interaction
trajectories of 100 peers.
Peer lifetimes themselves
are exponentially distributed
with an average of 90 sec-
onds. The average slice
subscription duration for
this sequence is about 16.5
seconds.
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frames as well as request retransmissions of lost base layer packets. The stringent la-
tency constraint associated with interactive RoI makes retransmissions of enhance-
ment layer packets difficult. Recall that the base layer can be used to fill in missing
parts while rendering the RoI. The error-concealed parts might appear blurry but the
user experiences low-latency RoI control.

5.3 Protocol Performance

A simulation with 100 peers was carried out by implementing the IRoI P2P protocol
within the NS-2 network simulator. The shape of the cdf of peer uplink capacities
was modeled after the one presented in [74], however, the average of the peer uplink
capacities was set to 2 Mbps, slightly higher than the 1.7 Mbps average reported
in [74]. A single tree was built per slice. The average upper bound of PSNR among
the peers was 41.9 dB. This corresponds to the hypothetical case when each peer
receives all the slices that it needs. The average lower bound of PSNR among the
peers was 30.6 dB assuming that the base layer is successfully received. The lower
bound corresponds to the case when no high-resolution slices are received by the
peers and the RoI is rendered only using the base layer. The average PSNR was
found to be 38.6 dB, indicating that peers receive most of the enhancement layer
slices required to render respective RoIs.

Figure 8 shows the trace of received, required, and missing slices collectively
for the 100 peers. The percentage of missing slices is about 8.3%. The server was
limited to directly serve up to 3 peers per multicast tree. Note that without such a
limit, the server’s capacity might be exhausted and the system might not be able to
supply a new slice that no peer currently subscribes. Interestingly, the average num-
ber of slices with non-zero fan-out is only about 172 indicating that all slices are
not streamed all the time. The load on the server was about 13.7 Mbps which is less
than the 14.1 Mbps bit-rate of the multi-resolution representation. Another simula-
tion was carried out in which two multicast trees were built per slice delivering odd
and even frames respectively. The percentage of missing slices remained roughly the

Fig. 8 Trace of received,
required and missing slices
shown collectively for 100
peers watching the Soccer
sequence. The percentage of
missing slices is about 8.3%.
The server was limited to
directly serve up to 3 peers
per multicast tree. One
multicast tree was built per
slice. Note that due to the
unsubscription delay, peers
can receive more slices than
required.
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same, however, it was observed that for about 65% missing slices, the corresponding
slice from the previous frame was available. This allows error-concealment using
pixels from the previous frame in most cases, thus maintaining high spatial reso-
lution, which is important for virtual pan/tilt/zoom. The picture quality was better
even though the average PSNR improved by only about 0.05 dB. In experiments
with other high-spatial-resolution video sequences, the average PSNR improved by
about 1–2 dB compared to single tree per slice. The protocol overhead due to control
messages was observed to be between 5–10% of the total traffic.

5.4 Server Bandwidth Allocation

The slices hosted by the server constitute a set of P2P multicast streams which
generally vary in popularity. A framework for server bandwidth allocation among
multiple P2P multicast streams has been proposed in a related thread of our re-
search [68, 75]. The framework accommodates multiple multicast trees per stream
and can take into account the popularity, the rate-distortion operating point as well
as the peer churn rate associated with each stream. The framework allows minimiz-
ing different metrics like mean distortion among the peers, number of frame-freezes
overall, etc. When the available server bandwidth is scarce, it is very important to
judiciously allocate rate to the most important slices. For the above example with
100 peers and 2 trees per slice, the server capacity was set to 10 Mbps and the limits
on the numbers of direct children associated with the multicast trees were computed
by minimizing expected mean distortion. Note that the 10 Mbps server capacity
is less than the 14.1 Mbps bit-rate of the multi-resolution representation. The opti-
mized rate allocation among the slices was compared against a heuristic scheme that
sequentially allocates rate to slices with ascending slice IDs, stopping when the ca-
pacity exhausts. The optimized rate allocation resulted in about 21% missing slices
whereas the heuristic scheme resulted in about 82% missing slices.

6 Conclusions

Interactive pan/tilt/zoom allows watching user-selected portions of high-resolution
video even on displays of lower spatial resolution. In this chapter, we have reviewed
the technical challenges that must be overcome for watching IRoI video and possi-
ble solutions. From the gamut of solutions, we have elaborated those that facilitate
scaling to large numbers of users.

In the remote streaming scenario, the transmission of the entire high-resolution
video is generally not possible due to bandwidth limitations. Broadly speaking,
there are two approaches to provide a video sequence as controlled by the user’s
pan/tilt/zoom commands. The RoI video sequence can either be cropped from
the raw high-resolution video and encoded prior to transmission or the adopted
compression format can allow easy extraction of the relevant portions from the
compressed representation. The first approach possesses the drawback that RoI
video encoding has to be performed for each user separately. Additionally, if the
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high-spatial-resolution video is not available in the raw format and the users watch
the sequence asynchronously, the high-spatial-resolution video has to be decoded
before cropping the RoI sequence for each user.

Spatial-random-access-enabled video compression limits the load of encoding to
a one-time encoding of the video, possibly with multiple resolution layers to support
continuous zoom. This is beneficial for streaming both live content as well as pre-
stored content to multiple users. Even when the video is played back from locally
stored media, a different RoI trajectory has to be accommodated each time a user
watches the content. Spatial random access allows the video player to selectively de-
code relevant regions only. This chapter presents a spatial-random-access-enabled
video coding scheme in detail that allows the receiver to start decoding a new re-
gion, with an arbitrary zoom factor, during any frame-interval instead of having to
wait for the end of a GOP or having to transmit extra slices from previous frames.
Background extraction can be used with such a coding scheme to reduce transmis-
sion bit-rate as well as the size of the stored video. We also show how to choose the
slice size to attain the right balance between storage and mean transmission bit-rate.

Pre-fetching helps to reduce the latency of interaction. Irrespective of whether
pre-fetching is employed or not, having a base layer helps render missing parts of
the RoI. This way, the system can always render the RoI chosen by the user, thus
offering accurate and low-latency RoI control. The chapter presents several RoI
prediction techniques for pre-fetching. Some techniques are employed at the client,
some at the server and some are distributed between the server and the client. For
example, the server can send the trajectories of key objects in the video to the clients
to aid their RoI prediction modules.

This chapter also shows how to use P2P streaming to drastically reduce the band-
width required from the server for supporting increasing numbers of users. It is cru-
cial for this approach that the P2P overlay reacts quickly to the changing RoIs of the
peers and limits the disruption due to the changing relationships among the peers.
The IRoI P2P protocol presented in this chapter makes sure that a child-peer experi-
ences smooth transition from old parent to new parent when the old parent willfully
unsubscribes a multicast tree that is no longer required for its RoI. Typically, when
users choose regions from a high-spatial-resolution video, some regions are more
popular than others. It is very important, especially when the server has limited
bandwidth, to judiciously allocate the available rate among the regions streamed by
the server.

Spatial-random-access-enabled video coding plays an important role in the P2P
distribution system. It simplifies the peer’s task of choosing which multicast trees
to join on-the-fly. A scheme based on multiple representations coding of the slices
might further reduce the download rate required by each peer. However, such a
scheme might reduce the degree of overlaps and affect the gains possible from the
P2P approach apart from requiring more storage space at the server. The IRoI P2P
system presented in this chapter assumes that peers watch the video synchronously.
If peers can watch any time-segment, i.e., rewind and fast-forward then the rele-
vant data could still be retrieved from each others’ cache. Since storage is becom-
ing cheaper, the cache size employed by the peers for storing previously received
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content can be assumed to be reasonably large. Such kind of “time-shifted P2P
streaming” can be looked upon as the temporal counterpart of the spatial freedom
provided by pan/tilt/zoom. A system providing both functionalities would be a nat-
ural extension of the system presented here.

Acknowledgements. Fraunhofer Heinrich-Hertz Institute (HHI), Berlin, Germany gener-
ously provided the Soccer sequence.
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Chapter 20 
End-to-End Management of Heterogeneous 
Environments Enabling Quality of Experience 

Christian Timmerer, Maria Teresa Andrade, and Alberto Leon Martin* 

Abstract. End-to-end support for Quality of Service (QoS) or Quality of Experi-
ence (QoE) has been broadly discussed in the literature. Many technologies have 
been proposed, each focusing on specific aspects for providing QoS/QoE guaran-
tees to the end user. However, the integrated management of the end-to-end chain 
preserving QoS/QoE in heterogeneous environments is still an aspect insuffi-
ciently addressed to date, regardless the fact that it significantly impacts the  
overall quality of the service paid by the end-user. In this chapter we propose an 
integrated management supervisor that takes into account the requirements from 
all stakeholders along the multimedia content delivery chain. It provides an end-
to-end management solution enabling QoS/QoE to the end user. Furthermore, we 
describe a QoS/QoE model which allows one to measure the perceptual quality of 
video transmissions by exploiting metrics from different layers (service, applica-
tion and network) in an interoperable way. As such we are able to keep the quality 
as experienced by the end user at a satisfactory level, even when facing adverse 
delivery conditions, without cost-intensive subjective tests. Therefore, we propose 
a detailed QoS/QoE model for video transmission following the philosophy of the 
ITU-T's E-model for audio, and show how this can be translated into interoperable 
description formats offered by the MPEG-21 Multimedia Framework, as a contri-
bution to balance the current network neutrality debate among its key players. 
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1   Introduction 

Many different technologies are currently being used to enable end-to-end Quality 
of Service for advanced multimedia services [1]. However, for the most part, these 
technologies are neither integrated within an interoperable framework nor provide 
a means to effectively manage the end-to-end multimedia delivery chain. As such, 
their scope of use is limited to specific applications or situations. Thus, there  
exists a need for solutions based on an interoperable multimedia framework  
supporting the end-to-end management of heterogeneous contents, networks, and 
terminals while enabling Quality of Service (QoS), or even Quality of Experience 
(QoE), for the end user. 

This topic is also linked with network neutrality [2], which shall not provide  
restrictions on content, sites, or platforms, on the kinds of equipment that may be 
attached, and on the modes of communication allowed, as well as one where com-
munication is not unreasonably degraded by other communication streams. In 
general, network neutrality is already provided in a sense that telecommunications 
companies rarely offer different (QoS/QoE) rates to broadband and dial-up Inter-
net consumers. However, there are no clear legal restrictions against allowing  
certain service providers to intentionally slow-down peer-to-peer (P2P) communi-
cations or to perform deep packet inspection in order to discriminate against P2P, 
FTP and online games, instituting a cell-phone style billing system of overages, 
free-to-telecom value-added services, and anti-competitive tying (i.e., "bundling").  

Quality of Experience (QoE) [3, 4], some times also known as Quality of User 
Experience, is a subjective measure from the user’s perspective of the overall 
value of the service provided. Although QoE is perceived as subjective, it is the 
only measure that counts for customers of a service. Being able to measure it in a 
controlled manner helps operators to understand what may be wrong with their 
services. A framework that can be used for this purpose is the MPEG-21 multime-
dia framework, which enables the transparent and augmented use of multimedia 
resources across a wide range of networks, devices, user preferences, and commu-
nities [5]. In particular, MPEG-21 provides means for the transaction of Digital 
Items (i.e., multimedia resources and metadata within a standardized structure) 
among Users and whose functions can be categorized into six categories: declara-
tion (and identification), digital rights management, adaptation, processing, sys-
tems, and miscellaneous aspects (i.e., reference software, conformance, etc.). 

In this chapter we describe an architecture for the integrated management of the 
end-to-end multimedia delivery chain that utilizes the MPEG-21 multimedia 
framework [6], and that enables QoS/QoE for the end-user by adopting cross-layer 
techniques [7]. As this architecture has been developed in the course of the 
ENTHRONE II project [8], it is referred to as the ENTHRONE Integrated Man-
agement Supervisor (EIMS). Furthermore, we describe a QoS/QoE model ena-
bling one to measure the perceptual quality of video transmissions by exploiting 
metrics from different layers (service, application and network) in an interoperable 
way. As such we are able to keep the quality as experienced by the end user at a 
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satisfactory level, even when facing adverse delivery conditions, without cost-
intensive subjective tests. 

The remainder of this chapter is organized as follows. The high-level architec-
ture of ENTHRONE for end-to-end management enabling QoS/QoE is described 
in Section 2. This section also highlights the cross-layer QoS adaptation concept. 
Section 3 describes the EIMS with its functional building blocks and interfaces. 
Finally, Section 4 describes how to measure the QoS/QoE for an MPEG-21-based 
cross-layer multimedia content adaptation, and Section 5 concludes the chapter. 

2   Architecture and Overall Concept 

2.1   End-to-End Management Enabling QoS/QoE 

The ENTHRONE high-level architecture for end-to-end management enabling 
QoS is given in Fig. 1 which comprises three layers: 

The top layer is the supervision layer which role is to manage and to monitor 
the services that participate in the content delivery chain. It is implemented by the 
ENTHRONE Integrated Management Supervision (EIMS), which uses MPEG-21  
 

 

 

Fig. 1 ENTHRONE high-level architecture for end-to-end management enabling QoS 
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interfaces to the components at the underlying service delivery layer. The EIMS is 
composed of several subsystems that can be grouped in three main classes: 

• QoS/QoE-based service management and multimedia content adaptation; 
• Metadata management and content search; and 
• Multicast, service monitoring, content caching, and content distribution net-

works, specified as enhanced features. 

The end-to-end management performed by the EIMS relies on functionality avail-
able in the delivery layer to actually provide QoS/QoE to the end user throughout 
the service lifecycle. This middle layer thus comprises all functionalities required 
for a proper content delivery, with end-to-end management enabling QoS. An 
adapter is the implementation, in hardware or software, of some of this functional-
ity. Fig. 1 shows the main adapters but this is not intended to be exhaustive. 

The business layer (bottom) specifies the concerned actors in the end-to-end 
QoS/QoE service delivery chain. Each actor relies on the services of one or more 
components of the delivery layer. This chapter focuses on the top layer and does 
not detail further the other two layers. 

2.2   Cross-Layer QoS/QoE Adaptation Concept 

The ENTHRONE solution for QoS/QoE support is based on the concept of 
MPEG-21-enabled cross-layer adaptation. The idea behind this concept is to per-
form coordinated actions across several levels and layers along the end-to-end 
content delivery chain. The concept of MPEG-21-enabled cross-layer adaptation 
can be divided in the following three steps: 

1. The ENTHRONE Cross-Layer Model (EXLM): The EXLM provides means 
for describing the relationship between QoS/QoE metrics at different levels – 
i.e., perceived QoS (PQoS/QoE), application QoS (AppQoS), and network 
QoS (NQoS) – and layers – i.e., according to the well-known ISO/OSI refer-
ence model – which may cooperate to improve the ability of applications to 
ensure certain objectives, such as QoS/QoE guarantees, power savings, users 
preferences, etc. This also includes the definition of optimization criteria. 

2. The instantiation of the EXLM by utilizing MPEG-21 metadata: Description 
formats (i.e., tools) as specified within MPEG-21 Digital Item Adaptation 
(DIA) [9] are used to instantiate the EXLM for a specific use case scenario, 
e.g., Video-on-Demand or conversional services. In particular, the Adaptation 
QoS (AQoS) description tool is used as the main component to describe the 
relationship between constraints, feasible adaptation operations satisfying 
these constraints, and associated utilities (qualities) [10]. The Usage  
Environment Description (UED) tools are used to describe the context where 
Digital Items are consumed in terms of network conditions, terminal capabili-
ties, user preferences, and conversion capabilities. Finally, the Universal  
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Constraints Description (UCD) tools are used to express limitation and opti-
mization constraints that apply to these context conditions. 

3. The Cross-Layer Adaptation Decision-Taking Engine (XL-ADTE): The XL-
ADTE is part of an EIMS subsystem which provides the optimal parameter 
settings for media resource engines (e.g., encoder, transcoder, streaming 
server, etc. which are collectively referred to as television and multimedia 
(TVM) processors), according to the EXLM by processing the metadata com-
pliant to MPEG-21 DIA. In other words, the XL-ADTE is a generic (soft-
ware) module that solves optimization problems [11] expressed by using 
MPEG-21 DIA-based metadata according to the EXLM. 

3   ENTHRONE Integrated Management Supervisor (EIMS) 

3.1   Architecture Overview 

The ENTHRONE Integrated Management Supervisor (EIMS) enables the de-
ployment of multimedia services allowing for end-to-end management with 
QoS/QoE support across heterogeneous environments. Therefore, the EIMS pro-
vides a set of management subsystems, i.e., EIMS Managers, with predefined 
functionalities and interfaces – based on Web Services and interoperable payload 
formats – which enable the construction of ENTHRONE-based services according 
to the requirements of various scenarios. 

 
 

 

Fig. 2 Overview of the ENTHRONE Integrated Management Supervision (EIMS)  
architecture 
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An overview of the architecture of the EIMS is depicted in Fig. 2 highlighting 
the key EIMS Managers and its main interfaces. Note however, that due to space 
constraints it is not possible to describe in detail every EIMS Manager and every 
interface shown in the figure and, thus, for further details the interested reader is 
referred to [12]. 

The different EIMS subsystems cooperate among them, implementing func-
tionality to: 

• receive and process user requests, contacting various sources of content to find 
useful results for the user queries; 

• determining the restrictions imposed by the context of usage by collecting rele-
vant contextual metadata; 

• selecting the best source(s) of content which are able to provide the content in a 
format that suits the sensed restrictions; 

• determine the actual service parameters to pass to the source of the content; and 
• subscribing to the required resources to support the selected service. 

3.2   End-to-End QoS Manager 

The aim of the End-to-End QoS Manager (E2E-QoS-Mngr) is to provide the best 
Digital Item configuration towards the content consumer taking into account vari-
ous information coming from different business actors along the delivery chain. 
This information is ideally represented as MPEG-21 compliant metadata and en-
capsulated within the Digital Item Declaration which will be configured according 
to the requirements of the content consumer. The various metadata assets are 
briefly described in the following: 

• The Digital Item Declaration (DID) comprising the content variations from 
which the E2E-QoS-Mngr may choose. The DID provides a representation of 
the Digital Item compliant to MPEG-21 Part 2 [13] and is usually provided by 
the content provider (CP). 

• The characteristics of the available television and multimedia (TVM) proces-
sors which may be selected by the E2E-QoS-Mngr based on the network char-
acteristics or conditions (i.e., the information from the provider-to-provider 
Service Level Specification (pSLS)) between the content consumer and the 
various TVMs. The TVMs are described by a unified description model featur-
ing MPEG-7 and MPEG-21 tools and is generally referred to as TVM Resource 
Function (TVMRF) [14]. 

• The capabilities and network information from the terminal of the content con-
sumer, including the class of service for the requested multimedia service. This kind 
of information is described in a format compliant to MPEG-21 DIA UED tools. 

The E2E-QoS-Mngr implements a process of automated construction of a possibly 
suitable sequence of TVMs for a given set of multimedia content variations and a 
set of environmental requirements as described in [15]. 
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The output of the E2E-QoS-Mngr is a DID configured with the chosen content 
variation including the location of the selected TVMs and the corresponding QoS 
characteristics of the actual multimedia content. 

3.3   Service Manager 

The Service Manager (SrvMngr) is responsible for service management and can 
be further divided into four subsystems with distinguished functionalities: 

• The Customer Service Manager (CustSrvMngr) acts as a central component 
which provides the actual service towards the customer by implementing the 
service logic according to the service requirements. It instantiates other EIMS 
managers and coordinates the information flow within the EIMS. 

• The Network Service Manager (NetSrvMngr) is responsible for managing net-
work connectivity services used to transport the multimedia content with the 
requested QoS/QoE guarantees from its source to its consumers through several 
established pSLSs. Specifically, it encompasses the functionalities for service 
planning, provisioning, offering and fulfillment of the connectivity service, in a 
multi-domain context. The NetSrvMngr also strongly interacts with the Service 
Monitoring as described in the next bullet. 

• Service Monitoring (ServMon) provides a means for monitoring the service 
with the aim to keep track of the end-to-end QoS level of a particular service 
[16]. Service monitoring is mainly provided within the network on aggregated 
streams and within the CustSrvMngr for a particular service stream. Therefore, 
service monitoring provides means for mapping network QoS (NQoS) – moni-
tored on aggregated streams within the core network – to perceived QoS 
(PQoS/QoE) that is relevant on a per stream level [17]. 

• The Terminal Device Manager (TDM) enables the management of heterogene-
ous end-user devices in terms of capturing the capabilities of the terminal, 
PQoS probe configuration including handling its alarms, and license handling 
[18]. 

3.4   Adaptation Manager 

The Adaptation Manager (AdaptMngr) aims to provide adaptation decisions  
according to dynamically varying context conditions coming from various sources 
across service and network layers. Thus, the adaptation manager hosts the Cross-
Layer Adaptation Decision-Taking Engine (XL-ADTE) – see also Section 2.2 – 
and steers exactly one TVM (in a possible chain of TVMs). That is, the E2E-QoS-
Mngr selects one (or more) TVM(s) during the service request and basically  
establishes the QoS-enabled end-to-end multimedia service. The role of the 
AdaptMngr is actually to configure each TVM involved within the chain. Fur-
thermore, it adjusts this configuration according to possible changing usage envi-
ronment properties, dynamically received from ServMons and the TDM through 
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the CustSrvMngr. Finally, it may provide updates for the various QoS probes 
along the multimedia service delivery chain. 

3.5   Metadata Manager 

The EIMS Metadata Manager is responsible for performing metadata related tasks 
within the scope of the EIMS. These tasks include: 

• Aggregation and enrichment of metadata from different metadata sources; 
• Contextual metadata collection from and retrieval by different EIMS compo-

nents; and 
• Metadata conversion between different formats. 

For further details of this EIMS subsystem the interested reader is referred to [19]. 

3.6   Search Manager 

The Search Manager supports searching of Digital Items and browsing of DIDs in 
the DID database via a well-defined interface. The search and browsing is based 
on the data model specifically developed within ENTHRONE [20] and adopts the 
query format as defined by MPEG [21].  

The data model supports high-level and low-level features associated to au-
dio-visual content. That is, the Search Manager provides the following main 
functionalities: 

• Search by making use of high-level features (e.g., keywords) as well as low-
level features (e.g., color, shape, etc.); 

• Relevance feedback by the user, through the submission of user’s annotations 
upon browsing or consuming the content; 

• Query by relevance feedback where feedback provided by users, who previ-
ously annotated Digital Items, is considered in the search process.  

3.7   Multicast Manager 

The Multicast Manager is responsible for all the tasks related to the management 
of multicast communication services in ENTHRONE. That is, the multicast over-
lay network and possibly the cross-layer multicast agent, which takes advantage of 
IP multicast in the last core network domain towards the customer [22]. The tasks 
that the Multicast Manager carries out can be grouped in two main categories: 

• The overlay network configuration and administration, which includes the 
definition of so-called E-Nodes (i.e., a network component that is part of the 
multicast tree which performs packet forwarding and replication) as well as  
the subscription and invocation of contracts within network provides (pSLSs). 
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• The handling of multicast service requests, which includes the subscription and 
invocation of a multicast customer subscription (cSLA) in order to enable an 
end user to consume a particular QoS-enabled multicast stream. 

3.8   Caching and CDN Manager 

The Caching and CDN Manager (CCDNMngr) is the EIMS subsystem responsible 
for all the tasks related to supporting caching and CDNs in ENTHRONE. The aim 
of the CCDNMngr is to transparently supplement existing EIMS functionality by 
providing alternative content sources that will either improve the performance of 
the content streaming or improve the robustness and scalability of the architecture. 

Within ENTHRONE, CDNs are considered to be a discrete entity holding 
complete, static copies of content and are managed either within a Service Pro-
vider (via the EIMS CCDNMngr) or externally by a separate entity. In contrast, 
Caching Nodes are managed as semi-autonomous standalone entities that dynami-
cally cache portions of content. The main functionalities of the CCDNMngr in-
clude to: 

• manage the provisioning of the content, i.e., inject content into the CDN or up-
load content to the local caches; 

• manage the placement of content in different CDN Nodes including collecting 
statistics used as input to the content placement algorithms; 

• manage the cache policy which tunes the performance of Caching Nodes (cach-
ing method, replacement policy, etc) based on content usage statistics; and 

• select a Caching Node and/or CDN Node to stream/deliver content in response 
to a consumer request, taking into account different factors such as the con-
sumer location and the state of the nodes. 

3.9   Summary 

The EIMS defines a set of management subsystems, i.e., EIMS Managers, with 
predefined functionalities and interfaces. The functionalities pertain to: 

• the end-to-end QoS including QoE; 
• the actual service for managing the customer needs, networks, terminal devices, 

and the monitoring thereof; 
• the adaptation of the service according to the usage environment context; 
• the aggregation and collection of metadata (including the conversion between 

different formats); 
• the search for appropriate Digital Items; 
• multicasting including IP multicast within the last core network domain to-

wards the customer; and, finally, 
• caching and content distribution networks. 
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The interfaces between the EIMS managers have been defined in a generic way 
and implemented as traditional Web Services. However, these management ser-
vices are just the foundation enabling end-to-end QoS/QoE and the management 
thereof. The next section will describe means how to effectively measure QoE and 
its mapping to standardized description formats enabling interoperability among 
the involved entities. 

4   Measuring Quality of Experience for MPEG-21-Based  
Cross-Layer Multimedia Content Adaptation 

4.1   Introduction 

The requirement to access multimedia content such as video and audio streams 
during everyday's life is omnipresent. Research and standardization efforts around 
to what is commonly known as Universal Multimedia Access (UMA) has gained 
momentum and offer a rich set of tools enabling such an access from a technologi-
cal point of view. However, most of these techniques exclude the human end user 
who is actually the source of the above mentioned requirements and ultimately 
wants to consume multimedia content independent of his/her context. The issues 
resulting from a more user-centric perspective are collectively referred to as Uni-
versal Multimedia Experience (UME) [23] where the user takes a center stage. 

An important aspect with regard to UME is to measure the quality experienced 
by the user in an objective way and to signal the required quality metrics by stan-
dardized, i.e., interoperable, description formats. As the objective measures may 
require quality metrics coming from various layers (i.e., service, application, and 
network) we propose to adopt cross-layer interactions, especially when transmit-
ting multimedia content over wireless channels [24]. 

Therefore, we propose a QoS/QoE model enabling to measure the perceptual 
quality of video transmissions taking into account quality metrics coming from 
different layers and following the philosophy of the ITU-T's E-model for audio. In 
order to enable interoperability among the involved parties – mainly the service 
provider and the content consumer – we propose to adopt description formats (i.e., 
tools) from the MPEG-21 DIA standard (introduce earlier already). In particular, 
we demonstrate how our QoS/QoE model can be instantiated using MPEG-21 
DIA tools enabling a generic metadata-driven decision-taking component to de-
termine which parameters of the content needs to be adjusted and how in order to 
provide a satisfactory quality experienced by the end user. 

4.2   Probing Quality of Service 

For audio streams, in 1996 the European Telecommunications Standards Institute 
(ETSI) and the ITU-T published a model that estimates the perceived quality  
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experimented by users in phone calls. This model (E-model) is based on the prem-
ise that: "Psychological factors on the psychological scale are additive". The E-
model takes into account factors such as packet loss, delay, and others like the 
equipment impairment and the packet loss robustness factors that depends on the 
codec used in the connection, as described by the recommendation ITU-T G.113. 

When we are dealing with video streams, there are multiple parameters that can 
change between two videos even if they are coded with the same codec. Most of 
up-to-date codecs define different profiles with several resolutions, frames per 
second, bit rates, etc. Some approaches have used automatic measures of the video 
quality based on the Peak Signal to Noise Ratio (PSNR) [25]. However, it is im-
possible to have the original picture at the destination and, therefore, the PSNR 
can only be used to extract some parameters of the Mean Opinion Square (MOS) 
in function of the packet loss. 

If we analyze the PSNR picture by picture, it does not take into account the 
transition between pictures, and the human perception is very sensitive to this 
transitions. Thus, this method does not give a good perceptual approach of a video 
sequence. Other solutions such as the Video Quality Metric (VQM) offer an ob-
jective quality approach to help in the design and control of digital transmission 
systems [26]. In [27] appears a study which takes into account the perceptual im-
pression of packet loss, variation in the frame rate and synchronization with the 
audio signal. Finally, a more sophisticated study considering the opinion of the us-
ers is also explained in [25]. 

4.3   An Interoperable QoS Model for Video Transmission  
Exploiting Cross-Layer Interactions 

4.3.1   QoS Probes and Mapping 

In our study we made an analysis of the perceptual quality for video transmission 
with different ranges of parameters. The video sequences have encoded using 
AVC/H.264 with a frame rate from 6.25 to 25 frames per second. The video 
bandwidth used is between 150 and 1500 kbps, and finally, we introduced simu-
lated random packet loss up to 10%. With all this ranges we build a huge reposi-
tory of videos with some of their parameters modified. In this way, we can  
observe not only the effect on the subjective quality of the video (QoE) when 
varying only one parameter, but also can simultaneously study the cumulative ef-
fect on the quality of several of them (QoS).  

A public survey [28] has been distributed in order to include as wide and hetero-
geneous audience as possible in both, internal and external approach, in a national 
and European environment. Each person watched a minimum of 10 videos randomly 
selected from the repository and rated the quality of the video between a value of 1 
for a bad quality and 5 for a perfect quality. From this evaluation and the corre-
sponding content parameters, we were able to derive the formulas as presented in the 
subsequent sections (bottom-up) to be used in a video transmission system. 



468 C. Timmerer, M.T. Andrade, and A.L. Martin
 

 

4.3.2   Impact of Packet Loss 

For loss distribution we have used a Bernoulli model. All the packet loss intro-
duced in the videos were made assuming random losses distributed over an uni-
form probability density function which means that all the packets have the same 
probability to be dropped. 

In the real world, packet dropping used to appear in the form of bursts of ran-
dom length. A burst is a period with a high density of losses with independent 
probability which produces a larger distortion than isolated losses. Other models 
like Gilbert and Markov describe state models that transition between gap (good) 
states and bad (burst) states which have high or low density of independent losses. 
For this reason when we calculate the quality in short intervals, the packet loss 
density distribution can be considered uniform even if we are inside a burst. 

The first step to process all the gathered data was to remove the atypical quali-
ties, i.e., those values that are too different from the majority. These atypical data 
can be explained due to mistakes made during the input of the data, the videos 
were watched in non-optimum conditions, the user had a bad day, etc. We con-
sider atypical (outliers values) all the data that were deviated from the mean more 
than 3/2 of the standard deviation. Then we found the equations that fit the curves 
described by the data clouds as shown in Fig. 3. 

The equation that minimizes the mean error among all the opinions (once we 
discard all the atypical data) for the different values of the analyzed bandwidth is 
shown in Equation (1). 

 
f150 l( ) =

0.06914 l2 +1.545 l +1.719

l + 0.447

f300 l( ) =
0.1343 l2 + 2.061 l + 2.041

l + 0.4721

f600 l( ) =
0.1591 l2 + 2.333 l + 2.342

l + 0.5274

f900 l( ) =
0.1757 l2 + 2.496 l + 2.5

l + 0.5391

f1500 l( ) =
0.21 l2 + 2.73 l + 3.012

l + 0.6336

 
(1) 

4.3.3   The Impact of Bandwidth 

Another factor that can influence in the video stream quality is the bandwidth, for 
this reason, many bandwidth rates has been studied. In order to obtain a model that 
fits all the curves generated (one for each bandwidth) we calculated the equations 
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Fig. 3 MOS vs. Packet Loss for 900 kbps 

that describe the different constant parameters from Equation (1) as shown in 
Equation (2). 

 
f L l( ) =

P1 l2+ P2 l + P3
l + Q1

l 0,10[ ]%   (2) 

The values of the constants P1, P2, P3, and Q1 for the different bit rates analyzed 
when represented describe increasing/decreasing curves that can be easily ap-
proximated (cf. Equation (3)). 



470 C. Timmerer, M.T. Andrade, and A.L. Martin
 

 

 

P1 br( ) = 0.1387 e
2.721 br

10,000 + 0.2823 e
8.885 br

1,000

P2 br( ) = 2.154 e
1.584 br

10,000 2.125 e
7.8 br

1,000

P3 br( ) =1.95 e
2.887 br

10,000 1.307 e
9.414 br

1,000

Q1 br( ) =
1.75 br3

1010
4.327 br2

107
+
4.19 br

104
+ 0.3876

 (3) 

This way we can describe the relationship between the bit rate and the packet loss 
and how they influence in the obtaining of the quality perceived by the users as 
shown in Equation ( 4 ). 

 
f L l,br( ) =

P1 br( ) l2+ P2 br( ) l + P3 br( )

l + Q1 br( )
  (4) 

4.3.4   The Impact of Frame Rate 

An interesting study in how the quality perception changes as a function of the 
frame rate is shown in [29]. This study categorizes the media streams using three 
parameters: temporal nature of the data (i.e., soccer match vs. interview), audio 
(auditory) and visual content. Based on this categorization the watchability of the 
media streams is analyzed for all the possible combinations and making a classifi-
cation based on the perception of the users between 1 and 7 (where 7 is the best 
quality). 

We extrapolated this study to the case of a video on demand scenario where the 
video sequences have a high temporal nature. Considering that 30 fps has the best 
quality (i.e., 7) and normalizing the values, we can see the degradation factor that 
suffers the media rating in function of its frame rate in Fig. 4. 

The equation that describes the curve of degradation of quality in function of 
the frame rate and minimizes the mean quadratic error is shown in Equation ( 5 ) 
where fps is the number of frames per second. 

 
fR fps( ) =

0.00102 fps2+ 1.164 fps + 1.704

fps + 5.714
fps 5,30[ ]   (5) 

The curves that describe the different frame rates studied were calculated using an 
initial curve obtained – as explained in Section 4.3.2 – and the degradation factor 
of Equation ( 5 ) were applied. In order to check the accuracy of the proposed 
equation, the different curves have been compared with the data obtained from the 
real users as is shown in Fig. 5. 



End-to-End Management of Heterogeneous Environments Enabling QoE 471
 

 

 

Fig. 4 Degradation of Quality based in Frame Rate 

 

 

Fig. 5 Frame Rate Model Comparison 
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4.3.5   Impact of Delay 

 The delay is important when a high interactivity is required, e.g., video confer-
ence, whereas in scenarios like video streaming where a buffer space is created 
and as long as the data can be downloaded as fast as it is used up in playback, the 
influence of this parameter will practically disappear. Therefore, we have not fur-
ther considered this factor. 

4.3.6   Model Proposed 
The quality perceived by the user will be obtained mainly from the values of the 
bit rate and of the packet loss within the network, this maximum value will be in-
fluenced by the frame rate of the video proportionally. Therefore, the final formula 
used to obtain the perceived quality of a video streaming is shown in Equation (6). 

 MOS l,br , fps( ) = f L l,br( ) f R fps( )

l 0,10[ ]%

br 150 ,1500[ ] kbs

fps 5, 30[ ]

  (6) 

4.3.7   Adding MPEG-21 Support Enabling Interoperable Cross-Layer 
Interactions 

In order to provide interoperability when well established layers are broken up, 
we propose to utilize MPEG-21 DIA tools for describing functional dependen-
cies between the layers. In particular, QoS mappings as described in Section 3.1 
– possibly ranging across well-defined network layers – are instantiated with the 
MPEG-21 DIA tools introduced in Section 2.2. In this section we will show how 
the proposed QoS model as defined in Equation ( 6 ) can be instantiated using 
interoperable description formats according to the three-step approach described 
in [7]. 

The functional dependencies of the MOS function are described using MPEG-
21 DIA AdaptationQoS' stack functions, i.e., XML-based reverse polish notation 
(RPN), given a range of possible content frame rate and bit-rate combinations (ex-
pressed via a so-called look-up table) with the objective to maximize the MOS. 
The context in which the multimedia content is consumed is characterized through 
the packet loss measured at the receiving terminal and communicated towards the 
multimedia content providing entity using an MPEG-21 DIA UED. In addition to 
the UED, the constraints of the probe – as indicated by Equation ( 6 ) – are ex-
pressed by an MPEG-21 DIA UCD utilizing limitation constraints which are at-
tached to the UED. 

Excerpts of the aforementioned interoperable descriptions are shown in  
Listing 1. Note that the complete descriptions can be found elsewhere [30]. 
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Listing 1 MPEG-21 DIA Description Excerpts 

AdaptationQoS Stack Function for MOS (aqos.xml): 
<!-- Stack Function for MOS calculation --> 
<Module xsi:type="StackFunctionType" iOPinRef="MOS"> 
  <StackFunction> 
    <Argument xsi:type="InternalIOPinRefType" 
       iOPinRef="F_FRAMERATE"/> 
    <Argument xsi:type="InternalIOPinRefType" 
       iOPinRef="F_PACKETLOSS"/> 
    <!-- multiply --> 
    <Operation operator=":SFO:18"/> 
  </StackFunction> 
</Module> 

UCD maximizing the MOS (ucd_provider.xml): 
<OptimizationConstraint optimize="maximize"> 
  <Argument xsi:type="ExternalIOPinRefType" 
     iOPinRef="aqos.xml#MOS"/> 
</OptimizationConstraint> 

UED (ued.xml): 
<Network xsi:type="NetworkType"> 
  <NetworkCharacteristic xsi:type="NetworkConditionType"> 
    <AvailableBandwidth average="1500000"/> 
    <Error packetLossRate="0.03"/> 
  </NetworkCharacteristic> 
</Network> 

UCD for probe constraints (ucd_probe.xml): 
<!-- packet loss <= 0.1 (10%) --> 
<LimitConstraint> 
  <Argument xsi:type="SemanticalRefType" 
      semantics=":AQoS:6.6.5.8"/> 
  <Argument xsi:type="ConstantDataType"> 
    <Constant xsi:type="FloatType"> 
      <Value>0.1</Value> 
    </Constant> 
  </Argument> 
  <Operation operator=":SFO:38"/> 
</LimitConstraint> 

 
 

The AdaptationQoS excerpt provides the multiplication of the functions repre-
senting the MOS vs. Packet Loss and bit rate equation (cf. Equation (4)) and the 
frame rate model (cf. Equation (5)) respectively. Both functions are also repre-
sented as stack functions demonstrating the modular usage of this tool. The maxi-
mization of the MOS is indicated by an optimization constraint referencing the 
MOS IOPin of the AdaptationQoS description. The UED excerpt describes a net-
work with 1500 kbps available bandwidth and three percent packet loss. Finally, 
the probes' UCD excerpt defines that only those packet losses smaller than 10 per-
cent are allowed. 
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Once these descriptions are available, they can be fed into an adaptation deci-
sion-taking engine (ADTE). In our work we rely on an existing implementation 
[11]. In particular, the implementation is generic in a sense that the core is inde-
pendent of the actual description format and solves a mathematical optimization 
problem by restricting the solution space in order that the limitation and optimiza-
tion constraints are fulfilled. In our example, the ADTE will assign values to the 
AdaptationQoS' IOPins, which can be used to adjust the bit-rate and frame rate ac-
cording to the measured packet loss while maximizing the MOS. 

5   Conclusions 

In this chapter we have proposed an architecture allowing for the end-to-end man-
agement of heterogeneous environments enabling QoS/QoE. On top of this archi-
tecture the ENTHRONE Integrated Management Supervisor (EIMS) specifies 
subsystems (i.e., EIMS Managers) providing various functionalities required for 
modern end-to-end media delivery chains featuring a cross-layer QoS/QoE adap-
tation concept. Although cross-layer interactions violate the traditional protocol 
hierarchy and traditional isolation model, interoperability is preserved through the 
adoption of standardized description formats based on MPEG-7 and MPEG-21. 
Additionally, the interfaces to the EIMS Managers are defined using Web Services 
and interoperable payload formats, also based on MPEG-7 and MPEG-21. 

The second part of this chapter focuses on the problem on how to measure 
QoS/QoE degradations at the terminal as perceived by the user without requiring 
cost-intensive subjective test. Therefore, a detailed QoS/QoE model for video 
transmission is proposed following the philosophy of the ITU-T's E-model for au-
dio and taking into account the impact on frame rate, bandwidth, and packet loss. 
In order to use this model within the EIMS architecture we demonstrated its trans-
lation into interoperable description formats compliant to MPEG-21. 
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Chapter 21 
Quality-Driven Coding and Prioritization of 
3D Video over Wireless Networks 

Sabih Nasir, Chaminda T.E.R. Hewage, Zaheer Ahmad, Marta Mrak, 
Stewart Worrall, and Ahmet Kondoz* 

Abstract. The introduction of more affordable and better quality 3D displays has 
increased the importance of designing efficient transmission systems for 3D video 
services. For achieving the best possible 3D video quality, it is necessary to take 
into account human perception issues to avoid potentially disturbing artifacts. 
These perception issues are considered in the design of the cross layer video adap-
tation and transmission system proposed in this work. One of the most popular 
formats for representing 3D video is color plus depth, where a 2D color video is 
supplemented with a depth map. The depth map represents the per pixel distance 
from the camera and can be used to render 3D video at the users terminal. The 
proposed scheme uses this depth information to segment the video into foreground 
and background parts. The foreground and background are then coded as separate 
video streams, whose data is prioritized according to its influence on video quality 
at the decoder. Received video quality is estimated by modeling the effect of 
packet loss and subsequent concealment. A home gateway scenario with IEEE 
802.11e is simulated. The proposed 3D video distribution system exploits the dif-
ferent priority access classes to achieve high quality 3D video even with signifi-
cant levels of packet loss, and high network loads. The simulations show that 
gains in PSNR of 1-3dB can be achieved, depending on the amount of activity 
within a particular video sequence. Subjective results are also obtained to demon-
strate that the performance improvements are perceptible. 

1   Introduction 

Transmission of video data over wireless links such as Wi-Fi has seen rapid growth in 
recent years. With the provision of 3D video content and advances in 3D video  

                                                           
Sabih Nasir . Chaminda T.E.R. Hewage . Zaheer Ahmad . Marta Mrak . Stewart Worrall . 
Ahmet Kondoz 
Centre for Vision, Speech and Signal Processing 
University of Surrey, Guildford, GU2 7XH, UK 
e-mail: {s.nasir,e.thushara,zaheer.ahmad,m.mrak,s.worrall, 
a.kondoz}@surrey.ac.uk 



478 S. Nasir et al.
 

displays [1, 2], a new era of 3D video has started. On one hand, new methods are be-
ing proposed to generate 3D video content in different forms, and on the other hand 
compression techniques for 3D video data are being developed [3, 4]. In the enter-
tainment sector, 3D video is being used in filming, 3D video animation, and games. In 
the security sector, surveillance companies and authorities are using 3D video cameras 
to capture and analyze 3D video of sensitive locations such as airports, railway sta-
tions, public gatherings, office buildings, and car parks. High definition 3D images are 
also used in medical research facilities to aid analysis. 

Recently, 3D home cinema for entertainment has become a reality. Service 
providers and high-tech industry leaders are making alliances to provide consum-
ers with high quality, yet affordable in-home 3D entertainment [5]. A large num-
ber of TV users are already enjoying stereoscopic 3D content. The growth in sales 
volume of 3D LCDs, and 3D enabled DLP HDTVs is already attracting the inter-
est and attention of many of the key players in video communications. A typical 
home entertainment scenario will have 3D high definition viewing devices, broad-
band connection for delivering multimedia content form the server to the user’s 
premises, and Wireless Local Area Network (WLAN) for transmission of video 
and other data to various terminals inside the home. 

Video data transmission over wireless networks has always been a challenging 
problem due to the highly variable nature of wireless networks. Packets may be 
dropped during transmission or may only reach the destination after significant de-
lay. The effects of errors propagate into succeeding frames in almost every form 
of video coding process. Various schemes exist in the literature that mitigate the 
effects of errors during transmission of 2D video data [6, 7]. However, the trans-
mission of compressed 3D video data still needs to be analyzed for various wire-
less conditions. In this work, 3D video transmission over wireless networks is 
considered in a home entertainment scenario.  

Video data passes through a number of network layers during its distribution. Re-
cent research findings, [8], have demonstrated that sub optimal perceptual quality is 
achieved if encoding algorithms at higher level layers do not consider the techniques 
applied at the lower level layers, e.g. scheduling, routing, etc. However, adapting the 
coding and transmission strategies jointly across the layers helps in maintaining a con-
sistently high quality at the receiving end. Various cross layer design approaches have 
been suggested for optimization of 2D video transmission. A weighted fair scheduling 
algorithm based on adaptive rate control is presented in [9]. An adaptive cross layer 
video multicast streaming algorithm for multi-rate WLANs has been proposed in [10], 
which optimizes the data rate at the physical layer for every multicast receiver accord-
ing to its perceived channel conditions. However, these schemes have not considered 
any of the content attributes for optimization. 

Our main objective is to design a cross layer optimisation approach in order to 
achieve efficient 3D video transmission over wireless networks. It is assumed that in 
most videos, objects closer to the camera are more important for perceptual quality 
compared to those that lie farther away in the video scene. Two reasons can be given 
for this assumption. First, objects closer to the camera may be rendered so that they 
appear in front of the display, and will thus draw most of the viewers attention. Sec-
ondly, objects closer to the camera undergo more warping during the 3D stereoscopic 
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rendering process. Any errors, such as blocking and mismatch between color and 
depth map structures, will therefore be magnified for objects closer to the camera. The 
proposed solution uses the depth information for image segmentation at the application 
layer, and then at the transmission layer, objects are prioritized depending on their per-
ceptual importance in the scene. Fig. 1 presents one such example. The background 
object in left image has been quantized by twice the factor as used for quantization in 
the right image. However, both images appear to have almost similar visual quality. 

 

        

Fig. 1 Visual attention example. Left image has twice as coarsely quantized background 
object as in right image. 

The chapter is structured as follows. Section 2 presents background information 
about the issues addressed in the design of the proposed solution. In section 3, a 
cross layer design for optimized 3D video communication is proposed. Section 4 
gives experiments details and results. Conclusions are provided in Section 5. 

2   3D Video Transmission 

There are numerous formats to represent 3D video, and one of the most popular is 
video plus depth. This format is described in the MPEG-C, Part 3 standard, and is 
used in a number of commercially available 3D displays [5]. The basic principles 
for coding of 2D video can be applied to 3D videos. However, 3D video presents 
new challenges for transmission as it carries extra depth information along with 
color and texture. The depth information is required for content rendering at the 
3D viewable display devices. This section discusses different aspects of the 3D 
video transmission system and highlights the perceptual based optimization possi-
bilities for 3D video content transmission over WLAN. 

2.1   3D Video Fundamentals  

According to the classification of MPEG-3DAV (Motion Picture Expert Group-
3D Audio Visual), three scene representations of 3D video have been identified, 
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namely Omni-directional (panoramic) video, interactive multiple view video (free 
viewpoint video) and interactive stereo video [11]. Stereoscopic video is the sim-
plest form of 3D video and can be easily adapted in communication applications 
with the support of existing multimedia technologies. Stereoscopic video renders 
two views for each eye, which facilitates depth perception of the scene. There are 
several techniques to generate stereoscopic video content including dual camera 
configuration, 3D/depth-range cameras and 2D-to-3D conversion algorithms [12]. 
Stereoscopic capture using a stereo camera pair is the simplest and most cost ef-
fective way to obtain stereo video, compared to other technologies available in the 
literature. In this case, depth information can be extracted from the video obtained 
form stereo camera setup. The latest depth-range camera generates a color image 
and a per-pixel depth image of a scene. An example of the color and the depth im-
age is shown in Fig. 2. This depth image with its corresponding color image can 
be used to generate two virtual views for the left and right eye using the Depth-
Image-Based Rendering (DIBR) method described in [13]. The depth information 
is essentially required for 3D content display; therefore, it is always transmitted 
along with the color information for 3D video communication.  

 

 

                                       

Fig. 2 Interview sequence a) Colour image, b) Per-pixel depth image. The depth images are 
normalized to a near clipping plane Znear and a far clipping plane Zfar. 

The two virtual views for an image of 8 bits per pixel color depth are generated 
using (1). 
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Here, Npix and xB are the number of horizontal pixels of the display and eye separa-
tion, respectively. The depth value of the image is represented by the N-bit value 
m. knear and kfar specify the range of the depth information respectively behind and 
in front of the picture, relative to the screen width Npix. D represents the viewing 
distance. 
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2.2   Perceptually Optimized Coding 

The perceptual importance of scene elements can be utilized to code and transmit 
video content more efficiently. For example, the foreground objects of a video 
frame can be coded with finer details than the background information. Perceptu-
ally optimized coding methods (e.g. ROI) are a common topic in 2D video coding 
research, and can provide improved perceptual quality at reduced bitrates. For ex-
ample, the dynamic bit-allocation methods proposed in [14] and [15] utilize the 
response of the human visual system to allocate bits for block-based and object-
based coding strategies respectively. Mixed-resolution coding of stereoscopic vid-
eo is also based on the response of the human visual system (e.g. the binocular 
suppression theorem [16]). Reduced temporal-spatial coding of the right image 
sequence has achieved overall bit-rate reduction, with no effect on the perceived 
quality of stereoscopic video [17]. Therefore, the response of the human visual 
system can be utilized to encode 2D/3D video more efficiently. Consequently, 
compression schemes have been designed that use coarsely compressed depth im-
ages [18] and reduced resolution depth images [19] in order to optimize bit-rate. 

The transmission of 3D video in particular can be prioritized based on the per-
ceptual importance of each component. For example, in the case of color plus depth 
3D video, the color image sequence which is directly viewed by the human viewers 
can be sent over a more protected channel than the depth sequence. However the 
selection of priority levels should be made after careful observation of their effect 
on the reconstructed quality of 3D video. For example, human perception is used to 
decide the transmission strategy for 3D objects in [20]. In the presented framework, 
3D video content is divided into segments, which are then coded and transmitted 
based on their individual perceptual importance to achieve enhanced visual quality 
at the receiving end. Perceptual importance is derived for these segments (back-
ground objects, foreground objects and depth information) by their expected trans-
mission distortion and corresponding distance from the viewing point. 

2.3   Quality of Service for Wireless Local Area Networks 

In order to enable wireless transmission of 3D videos in home environments, a 
new standard IEEE 802.11e [21] is used. It has been selected because it provides 
the Quality-of-Service (QoS) support for demanding multimedia applications with 
stringent requirements. IEEE 802.11e supports two medium access mechanisms, 
namely, controlled channel access and contention-based channel access, referred 
to as Enhanced Distributed Channel Access (EDCA). EDCA provides the MAC 
layer with per-class service differentiation. QoS support is realized with the intro-
duction of Traffic Categories (TCs) or Access Classes (ACs). With this approach, 
frames are delivered through multiple back off instances within one station. The 
implementation of legacy Distributed Coordination Function (DCF) and EDCA 
with different traffic classes and independent transmission queues are shown in 
Fig. 3. The priority levels for each TC can be differentiated based on the parame-
ters selected for Contention Window (CW) size (e.g. CWmin, CWmax), Arbitrary  
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Inter Frame Space (AIFS) number and re-transmission limit [22]. Depending on 
the traffic class assigned, the particular traffic will undergo different packet-
dropping probabilities and delay constraints. Therefore, the proposed transmission 
solution with IEEE 802.11e assigns higher priority for important parts of the video 
bit-stream whereas less important components are assigned a lower priority traffic 
class. 

TC0

Transmission 
attempt 

backoff

AIFS 
CW 

Transmission attempt 

Mapping to Access Category 
Legacy: 

one priority 

TC1 TC2 TC3

Lower priority Higher priority

backoff

AIFS(3)
CW(3) 

backoff

AIFS(2)
CW(2) 

backoff

AIFS(1)
CW(1) 

backoff  

AIFS(0)  
CW(0) 

Virtual Collision Handler 

 

Fig. 3 Virtual back off of Traffic Categories (TCs) with DCF (left) and EDCA (right)  
methods 

2.4   Robust Transmission 

Generic error resilience techniques and channel protection schemes can make the 
video data more resilient to channel degradations. If they are separately optimized, 
the performance gain is limited. A significant improvement in performance has 
been demonstrated by the use of adaptive optimization of source and channel 
codes as in joint source-channel coding approaches [23]. 

These techniques can be divided into two areas: channel-optimized source  
coding and source-optimized channel coding. In the first approach, the channel-
coding scheme is fixed and the source coding is designed to optimize the perform-
ances. In the case of source-optimized channel coding, the optimal channel code is 
derived for a fixed source code. The application of source optimized channel cod-
ing for video transmission in error prone propagation environments is considered 
in [24, 25]. However, the derivation of optimal channel coding at the physical link 
layer for fixed source coding at the application layer requires modification of all  
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underlying network protocol layers in order to avoid redundancy for efficient re-
source utilization [25]. This problem can be resolved by partitioning of video bit 
stream and prioritizing its parts by sending them via multiple bearers with differ-
ent characteristics, such as different channel coding, and modulation schemes. In 
order to implement such approach, it is necessary to separate the encoded bit 
stream optimally into a number of sub-streams, such as in [26].  

Joint source-channel coding principles have been adopted here for achieving 
optimized transmission. Different segments of the 3D video bit stream are priori-
tized to provide maximum security to the most vulnerable parts. The encoded data 
is separated into a number of sub-streams based on the relative importance of dif-
ferent video packets, which is calculated using the estimated perceived distortion 
of packets at the encoder. The importance level has a further biasing factor of 
depth information related to that particular object. The next section explains the 
proposed prioritization algorithm. 

3   Cross-Layer Design for Optimized 3D Video Transmission` 

Cross layer design techniques for jointly adapting the coding/transmission tech-
niques across all network layers have demonstrated considerable performance 
gains for multimedia applications over wireless networks [8]. This approach is fol-
lowed in this work for optimized transmission of 3D video content over WLAN.   

3.1   Design of Cross Layer Video Communications System 

In a typical home entertainment scenario, a group of users may simultaneously ac-
cess a variety of services, e.g. VoIP, data downloads, and video streaming. The 
WLAN router selects the appropriate channel for transmission of voice, video or 
data packets. Such a home WLAN enabled environment is shown in Fig. 4. 3D 
videos are available at the source server. The objective is to prioritize data across 
various layers of transmission chain for optimized 3D video content (color plus 
depth) transmission. A segmentation module extracts background and foreground 
information from the 3D video color stream. In order to separate the foreground 
from the background for streaming application, we need faster segmentation solu-
tion. Details of the segmentation process used in this work are provided in the next 
subsection.  

Segmented data is then prioritized based upon its estimated distortion at the re-
ceiver. The distortion estimation module calculates optimal QP values for the 
three streams (the depth stream, the background object stream and the foreground 
object stream) for different network conditions to minimize distortion. The mod-
ule also performs mapping of each video packet into one of the streams at the ap-
plication layer level according to their expected distortion, and the error rate of the 
communication channel over which they are to be transmitted. The selection pro-
cedure is discussed in subsection 3.3. 
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One important aspect of this cross layer design is that the information of depth is 
also considered for the prioritization process. The distortion cost for an object that is 
farther from the camera or the viewing point in a video scene is adjusted according to 
its depth value. This allows prioritization of packets that are closer to the viewing point 
as they are assumed to contribute more to the perceived visual quality. 

In the home entertainment scenario, the transcoder receives three segmented, 
encoded video streams. The transcoder also receives feedback from the WLAN 
transmitter about the channel conditions. The function of transcoder is to tune the 
data rate of the three streams based upon the channel condition. It changes the 
quality of the video by selecting the appropriate QP value from the available QP-
distortion set table. This table information is received by the transcoder in the 
form of signaling form the source provider. The transcoder operates at the com-
pressed domain level to avoid excessive complexity burden as suggested in [27]. 
Existing transcoders can modify the QP with very minor degradation in quality 
compared to directly compressing the video at the modified QP. 

                                           

 

 

 

  

Fig. 4 Schematic diagram of the proposed cross layer multimedia transmission system for 
the home entertainment environment 
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3.2   3D Video Object Segmentation for Packet Prioritization 

Shape information is necessary to separate foreground and background objects in 
the scene. In the case of color plus depth video, joint segmentation of the color 
and depth map can be performed to generate the shape information. The study car-
ried out in [28] describes the generation of shape information using joint segmen-
tation of color plus depth images in cluttered backgrounds or with low quality  
video input. In the presented work, a simple segmentation algorithm is applied to 
generate shape data based on the threshold levels of the depth map sequence. 
Depth pixel values greater than the mean pixel value of that depth map frame, Dav 
are set to the maximum pixel value of 255. Otherwise the pixel value is set to 0. 
The shape information generated by using this method is noisy. Therefore, objects 
which contain few pixels are removed and merged with surrounding area. 

3.3   Quality-Driven Coding 

A video object is made of rectangular or arbitrarily shaped sets of pixels of the 
video frame, capable of representing both natural and synthetic content types, e.g. 
a talking person without the background, or any graphics or text [29]. The source 
video frame may therefore, consist of a number of video objects, each of which 
can be separately encoded and transmitted into separate sub streams in an object 
based video coding scenario.  

Paarticular optimization schemes, depending on the underlying network proto-
cols, can be applied to separate the object’s sub streams for prioritized communi-
cation. For instance, UEP could be used if different priority sub-carriers would be 
available for transmission of sub streams. The 802.11e protocol, for multimedia 
transmission with different QoS over WLAN, supports traffic classes with differ-
ent priority levels, as described in section 2.3. 

Video objects are prioritized on the basis of their expected distortion estimates 
and their relative depth in the scene. Each of the segmented objects is parsed at the 
packet level for estimating the distortion expected during its transmission. Let the 
input video sequence consists of M video frames. Each video frame is separated 
into L number of objects. Each object is coded separately using its own segmenta-
tion mask and is divided into N number of video packets. If expected distortion 
due to the corruption of nth packet of mth frame of lth video object is α(l, m ,n), then 
the total expected distortion E(Dl,m,n) of the mth frame becomes 
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The optimization problem is to minimise E(Dl,m,n). This is achieved by reformatting 
the bit-streams according to their importance. Based on the distortion estimates 
coupled with depth information, each packet is assigned an importance level In, 
which is used to reallocate packets with higher importance to channel with higher 
protection and vice-versa. The importance factor is calculated by multiplying the 
expected distortion estimate for a packet with its cumulative depth factor, CD.  
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( )nmlCDnmlIn ,,),,( ⋅= α . (3) 

The cumulative depth factor represents the proportional effect of depth perception 
for every packet under the assumption that significant focal attention of the viewer 
is received by nearer objects in the video scene as compared to distant objects. It 
reduces the importance level of distant objects to give priority to nearer objects. It 
is calculated as follows. 
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where Dav is the average depth of the pixels in that packet. The depth threshold va-
riable, Dth prioritizes the content according to its depth information. The optimal 
value for this variable is related to the average depth of the whole video frame, 
which would differ from sequence to sequence. However, it has been observed 
from experiments that pixels with depth values less than 70 do not contribute sig-
nificantly to perceptual quality; hence a threshold value of 70 would be a good  
estimate for sub optimal separation of video packets. It must be noted that depth 
information represents the distance of a pixel from the viewing point calibrated in 
gray scale levels. The scale values range from 255 for nearest point to 0 for far-
thest point. The distortion estimation model is discussed in the next section.  

3.4   Optimized Transmission and Decoding  

This section describes the estimation of the distortion due to corruption of data in 
a video packet during its transmission. 

The video quality is affected by the quantisation distortion E(QD) and channel 
distortion. Channel distortion is composed of concealment distortion and distor-
tion caused by error propagation over frames coded using temporal prediction. 
Concealment distortion depends on the concealment techniques applied at the de-
coder. If errors in the video data are concealed with concealment data from the 
previous frames, then it is called temporal concealment and distortion caused by 
such a scheme is called as temporal concealment distortion E(DT). Errors can 
propagate in two ways, either in the temporal direction or in the spatial direction. 
Frame to frame error propagation through motion prediction and temporal con-
cealment is called temporal domain error propagation ftp. The distortion estimation 
model used in this work has similarities with the method proposed in [30]. How-
ever, the distortion induced due to error propagation is calculated differently and 
an adaptive intra refresh technique [31] is used to minimize the error propagation 
factor, where a fixed number of macroblocks in every P frame are randomly se-
lected and ‘intra’ coded.  Previous research has suggested that spatial error con-
cealment is less important than the temporal error concealment [32] so in this 
work only temporal concealment is considered.  
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Taking the video packet as the base unit, the expected frame quality can be 
written as: 

( )⎟
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where E(Ql,m) is the expected quality of mth frame of the lth object, E(Dl,m,n) is the 
expected distortion of nth video packet and N is the total number of video packets. 
g is a constant defined by the color depth and by the size of given composite video 
frame, g = c2 ⋅ w ⋅ h, where c is the color depth factor, w and h are the width and 
height of the video frame, respectively. E(Dl,m,n) can be written as: 

( ) ( ) ( ) ( ), , , , , ,, , ( , , )Q e T tp
l m n l m n l m nE D E D l m n E D f l m nρ= + ⋅ +

. (6) 

Calculation of each term shown in (6) depends on the implemented concealment 
techniques, and the applied video coding scheme and its parameters. Quantization 
distortion is computed from the squared difference of original and reconstructed 
luminance values for every macroblock in the particular video packet.  

The probability ρe(l, m, n) of receiving a video packet with errors depends on 
the channel’s Bit Error Rate (BER) and size of the video packet. If ρb is the BER 
of the transmission channel then ρe(l, m, n) is given as:  

( ) ( )nmlpbe bnml ,,)1(1,, ρρ −−=
 (7) 

where pb represents the size of the packet in bits.  
The extent of temporal concealment distortion depends on the algorithm used 

for the temporal concealment. Here a simple concealment approach is followed, 
where macroblocks in the corrupted video packet are replaced by data of the cor-
responding macroblocks of the previous frame. For the estimation it is assumed 
that the neighbouring video packets and reference frames are received correctly.  

Therefore, the concealment distortion is given as: 

nmlnml
T

nml YYDE ,1,,,,, )( −′−=
 (8) 

which is the squared difference of the luminance components of macroblocks of 
reconstructed part of current frame Ym, n and the same spatial area in the previous 
frame Y’m - 1, n. 

The temporal error propagation due to MB mismatch between adjacent video 
frames is quantified by the term ftp(l, m, n) in (3), which is computed as: 
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where K is the total number of macroblocks in the frame. The summation in (9) 

represents the error propagation through the MBs. mFbtp
mp )1(1 ρ−−=  quantifies 

the fraction of distortion of the mth reference video frame, which should be consid-
ered in the propagation loss calculation and Fm is the size of the frame area  
contained in the observed packet.  

Packets are then distributed on the basis of the estimated distortion to the re-
spective bit-streams. Packets with higher expected distortion are put on the sub-
channel with higher protection. 

4   Experimental Results 

This section explains the experimenting environment used to verify the model pre-
sented in the earlier sections and their results. 

4.1   Experimental Setup 

The performance of the proposed scheme has been tested using a simulated 
WLAN environment, implemented with the Network Simulator 2 (NS-2) plat-
form. NS-2 is a widely used open source network simulation tool developed at the 
UC Berkley [33]. The specific version used for these experiments has been built 
upon version 2.28 with an 802.11e EDCA extension model implemented [34]. 

A wireless scenario with six nodes is considered. Four different Access Classes 
(AC), namely AC_VO, AC_VI, AC_BE, and AC_BK are employed for voice, 
video, best-effort and background traffic respectively. The AC_VO has the highest 
access priority whereas AC_BK class traffic has the least access priority. The 3D 
video streaming from Access Point (AP) to Node 2 is carried over three traffic 
flows, one each for the higher priority stream, the lower priority stream and the 
depth information. After considering the perceptual importance of each 3D video 
stream, they are allocated to the AC_VO, AC_BE, and AC_BK access classes. 
Due to the allocation of different access priorities for 3D video streams, they are 
subjected to different Average Packet Loss Rates (Av PLRs). The services used by 
each node and their access classes are listed in Table 1. 
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Table 1 Data streams over WLAN and their priority classes 

 

Stream Service Access Class (AC) 

1 Voice (flows from AP to Node 1) AC_VO 

2 Foreground object stream of 3D video (flows from AP to 
Node 2 over UDP) 

AC_VI 

3 Background object stream of 3D video (flows from AP to 
Node 2 over UDP) 

AC_BE 

4 Depth map stream of 3D video (flows from AP to Node 2 
over UDP) 

AC_BK 

5 2D video streaming (flows from AP to Node 3 over UDP) AC_VI 

6 FTP stream with 1500 byte MTUs (flows from Node 4 to 
Node 5 over TCP) 

AC_BE 

7 FTP stream with 256 byte MTUs (flows from Node 5 to 
Node 6 over TCP) 

AC_BK 

 

 
Different prioritization levels for each class are obtained through changing the 

Contention Window (CW) parameters such as CWmin, CWmax and CWoffset of each 
station. A total simulation time of 30 seconds is considered. The resultant Av 
PLRs for each of the video streams is presented in Table 2. 

Table 2 Packet loss rates for each testing point 
 

Obj/Case A B C D E 

Depth 0.10 0.15 0.20 0.30 0.40 

Obj 1 0.01 0.01 0.05 0.05 0.05 

Obj 2 0.10 0.15 0.20 0.30 0.40 
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Video sequences are encoded using the MPEG-4 MoMuSys codec, which sup-
ports binary shape coding. Four standard 3D test sequences ‘Orbi’, ‘Interview’, 
‘Ballet’ and ‘Break dance’ have been used for experiments. The ‘Orbi’ and ‘Inter-
view’ sequences are of standard definition (720 x 576) resolution, while the ‘Bal-
let’ and ‘Break dance’ sequences are of high definition (1024 x 768) resolution. 
For these last two multi-view sequences, the fourth camera view and the corre-
sponding depth map computed from stereo are utilized in this experiment [35].  

Each sequence is segmented into foreground and background objects, using the 
segmentation technique discussed in section 3B, and each object is encoded sepa-
rately. The prioritization module then estimates the expected distortion and the 
packet allocation to individual bit streams is changed accordingly. In the WLAN 
scenario, each stream is classified as a separate traffic flow from the access point 
to the receiver. Experiments have been conducted for a range of channel condi-
tions and quality is compared with standard MPEG-4 object based video coding. 

4.2   Performance Evaluation 

The algorithm’s performance is shown in terms of average frame PSNR vs 
AvPLR in Fig. 5. 90 frames of the ‘Orbi’ and ‘Interview’ sequence, and 70 frames 
of the ‘Ballet’ and ‘Break dance’ sequence have been used to make one test se-
quence of each type. Each point of the graph has been taken as the average of 30 
runs of the decoder for each sequence. Each sequence consists of three sub bit 
streams, one for the depth information and the other two for prioritized objects. 
The streams are transmitted on different transmission flows. Av PLRs for each 
flow in different test cases is shown in Table 2.  

The performance gain for the ‘Break dance’ and ‘Ballet’ sequences is signifi-
cantly higher than other sequences, which is due to the nature of the video content. 
The ‘Interview sequence’, for example, has very little movement in it and the gen-
eral perception of the sequence is static, which, therefore, leaves very little room 
for optimization. This is demonstrated by fairly high PSNR values even for very 
high packets error rates for the non prioritized streams as well. The ‘Break dance’ 
sequence on the other hand has very quick movement in it and video quality is 
highly vulnerable to transmission errors. A significant gain in performance is ob-
served with this sequence, which makes the scheme suitable for use with sensitive 
data transmission. 

The QP values used for QP optimization are 12, 16, and 20 for the background 
object, and 12, 14, and 16 for the foreground object. The optimal value of QP for 
each object is used to encode that particular frame. The QP values used for stan-
dard MPEG-4 that is used in comparison are 10 for I frames and 12 for P frames.  

Fig. 6 shows selected frames from simulations with test case E. The selected 
frames provide a visual indication of the differences seen in the objective results. 
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a)                                                                                           b) 
  

c)                                                                                             d)  

Fig. 5 Performance comparison for test sequences a) ‘Interview’. b) ‘Break dance’. c) 
'Orbi', d) 'Ballet'. 
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a) 

      
b) 

      
c) 

     
d) 

Fig. 6 Subjective performance comparison for test sequences a) ‘Interview’, b) ‘Break 
dance’, c) 'Orbi', d) 'Ballet' (frames taken for test case E) – left image shows normal object 
based coding, while right hand column shown the effect of the proposed scheme. 
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4.3   Subjective Quality Results 

To determine whether the performance gains shown in the objective results are sig-
nificant, the quality of the proposed method has been evaluated subjectively for the 
‘Interview’ sequence. This sequence is chosen for subjective tests because the gains 
in objective quality are the lowest of the four tested sequences. The test used the 
single stimulus method described in ITU-R BT.1438 recommendation, which spec-
ify the quality evaluation procedure for stereoscopic video applications. A 42” Phil-
ips multi-view auto-stereoscopic display was used in the experiment to display the 
stereoscopic material to 16 subjects. Subjects rated the test sequences for the over-
all perceived image quality. The Mean Opinion Scores (MOS) have been calculated 
for each test sequence after averaging the opinion scores across all subjects.  

Table 3 shows the subjective test result for the proposed prioritization scheme 
compared to the non-prioritized case. The MOS difference is greater than the 95% 
Confidence Interval (CI). This shows that a perceptible difference in quality can 
be observed with the proposed technique, even for sequences that exhibit a small 
gain in objective quality. 

Table 3 Subjective Comparison for the Interview Sequence for Test Case A, D 

 Un Prioritized ± CI Prioritized ± CI 

Err Free 3.59 ± 0.392 3.59 ± 0.392 

Case A 2.67 ± 0.324 3.54 ± 0.352 

Case D 2.06 ± 0.308 2.83 ± 0.376 
 

5   Conclusions 

A novel object based prioritization scheme for optimized transmission of 3D color 
plus depth video content over wireless networks is proposed in this work. A 3D 
home entertainment scenario is considered and an efficient channel resource allo-
cation scheme is implemented for improved visual quality. Video content is seg-
mented into video objects, based on the depth map, and the expected distortion is 
then calculated at the video packet level using the conventional 2D distortion pa-
rameters plus the effective contribution of depth information to distortion for each 
object.  Data prioritization is achieved by rearranging the video packets into  
different bit streams, according to estimates of their distortion. These bit streams 
are then transmitted over prioritized communication links with different QoS fa-
cilities supported by the WLAN communication standard, IEEE 802.11e. The ex-
periments carried out to evaluate the proposed scheme have demonstrated  
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significant quality improvement by providing PSNR gain of 1-3dB at higher error 
rates for test sequences with rapid motion content. The proposed scheme is quite 
generic in implementation and can be adapted for use with the latest coding stan-
dards, as well for enhanced perceptual video quality. 
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Chapter 22
Scalable Indexing of HD Video

Jenny Benois-Pineau, Sandrine Anthoine, Claire Morand,
Jean-Philippe Domenger, Eric Debreuve, Wafa Bel Haj Ali, and Paulo Piro

Abstract. HD video content represents a tremendous quantity of information that all
types of devices can not easily handle. Hence the scalability issues in its processing
have become a focus of interest in HD video coding technologies. In this chapter, we
focus on the natural scalability of hierarchical transforms to tackle video indexing
and retrieval. In the first part of the chapter, we give an overview of the transforms
used and then present the methods which aim at exploring the transform coefficients
to extract meaningful features from video and embed metadata in the scalable code-
stream. Statistical global object-based descriptor incorporating low frequency and
high-frequency features is proposed. In the second part of the chapter, we introduce
a video retrieval technique based on a multiscale description of the video content.
Both spatial and temporal scalable descriptors are proposed on the basis of multi-
scale patches. A statistical dissimilarity between videos is derived using Kullback-
Leibler divergences to compare patch descriptors.

1 Introduction

HD video content represents a tremendous quantity of information that cannot be
handled by current devices without adapting the processing chain. There is thus a
need to develop new content-based indexing methods adapted to 1) the high qual-
ity and complexity of the HD video content and 2) the fact that such a content
will be accessed through heterogeneous networks. In particular, scalability is a most
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desirable property in the developed technology. It stands for the adaptability of the
data encoding and delivery process to different temporal and spatial resolutions that
may be imposed by specific network properties. It has become a focus of interest in
HD video coding technologies which led to coding standards such as SVC, H.264
or (M)JPEG2000 [1] and is also of interest in post-processing technologies. Hier-
archical transforms (e.g. wavelet transforms) are not only efficient tools to describe
and compress video content but they also naturally yield a scalable description of
this content. They are thus natural candidates to help defining scalable indexing
methods.

In this chapter, we present the first research works on scalable HD video in-
dexing methods in the transformed domain. The first method extracts information
directly from the compressed video-stream while the second deals with raw data.
The standards in video coding (e.g. SVC etc.) indeed use a hierarchical transform
to compress the data. The design of descriptors directly extracted from this domain
thus ensures the scalability of the proposed method while allowing for a coherent
and fast processing of the data. In this framework, we propose two video indexing
and retrieval methods.

The first part of the chapter focuses on indexing in the compressed domain. We
give an overview of the transforms used and then present the methods which aim
at exploring the transform coefficients to extract from the video stream, at different
levels of decomposition, meaningful features such as objects [2] or visual dictionar-
ies [3]. The resulting descriptors will be used for video partitioning and retrieval.
First we will introduce a system based on Daubechies wavelets and designed for
joint indexing and encoding of HD content by JPEG2000-like encoders. Here we
will present an overview of emerging methods such as [3] and develop our previous
contributions [2, 4].

In the second part of this chapter, we describe a video indexing method that
builds up on a hierarchical description of the decoded data. Spatial and respectively
temporal descriptors of the video content are defined, that rely on the coherence of
a wavelet description of the key-frames and respectively the motion of blocks in the
video. The method builds on the redundancy of the descriptors (induced, in part,
by the transform used which is the Laplacian pyramid) to statistically compare two
videos. The invariance properties of the descriptors as well as the statistical point of
view allow for some robustness to geometric and radiometric alterations.

2 HD Content Indexing in the Compressed Domain

2.1 Scalable Compression Standards

The scalability of a representation of the video content is the property which
has been introduced in multimedia standards since MPEG2. It means that various
temporal and spatial resolutions of a video stream and also different qualities of
videos can be decoded from the same code-stream. In the first case, this is a tem-
poral scalability, in the second, spatial scalability and finally, the SNR scalability is
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concerned. Two latest standards designed for HD video and film content have this
property: H.264 and motion JPEG2000 known as (MJPEG2000 [1]. While H.264
has been designed for HD TV and continues the principles of previous standards
in the sense that the transform used (Integer Block Transform) is a variation of a
DCT, which does not have the property of scalability, (M)JPEG2000 standard has
this property naturally, due to the scalable nature of the transform used: the Discrete
Wavelet Transform (DWT).

(M)JPEG2000 is a part of JPEG2000 standard for motion sequences of images.
Nevertheless, contrary to H. 264 it does not contain motion information, each frame
being encoded in an intra-frame mode by JPEG2000. In the following, we give the
insights to JPEG2000 standard [5].

2.1.1 (M)JPEG2000 Standard

Initiated in march 1997 and becoming international ISO standard in December
2000, the standard JPEG2000 exhibited a new efficiency with regard to specifi-
cally high-resolution (HD) images. The specifications of DCI (Digital Cinema Ini-
tiative, LLC [6]) made (M)JPEG2000 the digital cinema compression standard.
(M)JPEG2000 is the extension of the standard JPEG2000 for videos: each frame
in the video sequence is considered separately and encoded with JPEG2000. Fur-
thermore (M)JPEG2000 is becoming the common standard for archiving [7] cultural
cinematographic and video heritage with the greater quality/compression compro-
mise than previously used solutions. The JPEG2000 standard follows the ideas ini-
tially proposed in MPEG4 [8] for object-based coding, namely the possibility to
encode more precisely Regions of Interest (ROI) in each frame or in a single im-
age. The industrial reality in the usage of this advanced feature in JPEG2000 turned
to be pretty much the same as with MPEG4. Despite the very rich research work
proposing various methods for extraction of ROI (e.g. [9, 10]), the most commonly
used JPEG2000 limits to encoding the whole frame. More precisely, an image frame
is modeled as a set of tiles on which the coding process performs independently as
depicted in Figure 1, a frame being considered as a single tile.

The core of the standard is the DWT which in case of lossy compression is real-
ized by High-Pass and Low-Pass filters designed for zero-mean signals. This is why
the Level offset is necessary at the pre-processing step. Furthermore, the standard
operates on YCrCb color system, hence if the source is in RGB, a linear transform
has to be applied. Then the resulting frame undergoes the DWT which we describe
below. The transform coefficients are quantized to reduce the quantity of informa-
tion and entropic coding known as EBCOT (Embedded Block Coding with Opti-
mized Truncation) is performed on these quantized values. At the first step (Tier 1)
context modeling is realized, at the second step (Tier 2) the bit allocation for output
bit stream is performed.

The decoder proceeds in an inverse order to decode the original frame. In the
lossy scheme the original pixel values cannot be recovered, but the quantization
matrix is designed in a way to take into account psycho-visual properties of Human
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Fig. 1 Simplified Block-
Diagram of JPEG2000
frame encoding without
ROI

Pre-processing :  
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Visual System (Part 2 of the standard). Hence the degradations on decoded HD
video frames could not be perceived.

As most of digital HD content is now available in compressed form, the com-
pressed data are very much attractive to use directly for analysis and indexing pur-
poses. This was the case for instance in [11], where the Rough Indexing paradigm
was proposed to fulfill all mid-level indexing tasks such as camera motion identi-
fication, scene boundary detection and meaningful object extraction from MPEG2
compressed streams. The motivation of the earlier work in compressed domain was
mainly in saving computational power and re-using already available low-resolution
information. In the case of JPEG2000, this is the hierarchical nature of DWT which
is in the focus, as it can allow analysis and indexing of image content at various
spatial resolutions. Hence in order to give understanding of the data in the com-
pressed domain to be used for this purpose we will briefly introduce the DWT used
in JPEG2000 standard.

2.1.2 DWT in JPEG2000

We will first limit ourselves to the presentation of Wavelet Transform in the 1D
continuous case. A wavelet is a waveform function localized and sufficiently regular.
These properties are expressed by the following

ψ ∈ L1 ∩L2 and
∫ +∞

0

|FT [ψ ](ω)|2
|ω | dω =

∫ 0

−∞
|FT [ψ ](ω)|2

|ω | dω < +∞ (1)

Where L1 is the space of integrable functions on R and L2 is the space of square-
integrable functions on R, FT [ψ ] is the Fourier transform of ψ and ω is the fre-
quency. From this unique function called “mother wavelet” it is possible to build
a basis for analysis of a function f from inner product space L2 by translation and
scaling of the mother wavelet:

ψh,τ(t) =
1√
h
ψ
(

t − τ
h

)
, h ∈ R

+, τ ∈ R (2)

The analysis of f consists in computing the coefficients wf (h,τ) of the projection
of f :
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wf (h,τ) =
∫

R

f (t)ψh,τ(t)dt, (3)

where ψ is the complex conjugate of ψ . The synthesis can be performed under
conditions of admissibility in Eq. (1) as

f (t)
L2=

1
Kψ

∫
R+×R

f (t)ψ f (h,τ)
dhdτ

h2 (4)

where Kψ is the common value of the integrals in Eq. (1). Under certain conditions
it is possible to built an orthonormal wavelet basis. Nevertheless, the basis functions
are often difficult to construct. Hence bi-orthogonal wavelets are considered such
that two bases, the direct B = {ei} and the dual B̃ = {ẽi}, satisfying condition of
duality (ei, ẽ j) = δi j, serve for analysis and synthesis respectively.

In JPEG2000, bi-orthogonal wavelets are used. Image and video compression are
applied to the discrete signals, hence instead of continuous case, a discrete wavelet
transform (DWT) has to be performed. In this transform the wavelets are defined on
discretely sampled space, for instance a dyadic case can be considered with

h = 2k,τ = l2k,(k, l) ∈ Z
2 (5)

This transform allows re-covering good approximations converging to f

f (t) = ∑
k∈Z

∑
l∈Z

wf (2k, l2k) ψ2k,l2k(t) (6)

Mallat [12] showed that the DWT could be computed with a bank of filters. This
is the way the DWT is realised in JPEG2000 with Daubechies filters. Figure 2
depicts the analysis process applied to an image where the arrows correspond to
the sub-sampling by a factor of 2 and squares depict discrete convolution opera-
tion.The resulting subbands are denoted as LL for low-pass filtering results on lines
and columns, LH for consecutive low and high-pass filtering, HL for filtering in the
inverse order and HH for two consecutive high-pass filtering steps. The subbands
HL, LH and HH are called ”High Frequency” (HF) subbands while LL is called
”Low Frequecy” (LF)subband.

Fig. 2 One level wavelet
analysis on an image in
JPEG2000 standard

LH

LL1

LH1 

HL1 

HH1 

LL

H

H
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Table 1 Coefficients of 9/7 Daubechies filters

Analysis Filters Synthesis Filters
i Low-Pass Filter High-Pass Filter i Low-Pass Filter High-Pass Filter
0 0.6029490182363 1.115087052 0 1.115087052 0.6029490182363
± 1 0.2668641184428 -0.591271763114 ± 1 -0.591271763114 0.2668641184428
± 2 -0.07822326652898 -0.05754352622849 ± 2 -0.05754352622849 -0.07822326652898
± 3 -0.01686411844287 0.09127176311424 ± 3 0.09127176311424 -0.01686411844287
± 4 0.02674875741080 ± 4 0.02674875741080

Fig. 3 An example of 2-
level wavelet decomposition
of and HD Video Frame.
LABRI corpus

The coefficients of Daubechies analysis /synthesis filters 9/7 used for lossy com-
pression are given in table 1. The decomposition process can be re-iterated on the LL
subband thus resulting in a wavelet pyramid with K decomposition levels. Figure 3
contains an example of 2-level decomposition of an HD 1080p video frame.

Hence, if the HD video is encoded in the JPEG2000, the wavelet pyramid
obtained after a partial decoding and de-quantizing of wavelet coefficients with-
out inverse transform contains low-frequency and high-frequency information at
several levels. In the following we will present its exploitation in the scalable index-
ing and retrieval of video content.

2.2 Scalable Extraction of Low and Mid-level Features from
Compressed Streams

In the overall set of problems to be resolved in the task of video indexing one can
distinguish:

- temporal partitioning, linear or non-linear, into semantically homogeneous se-
quences such as video shots and video scenes. This partition can be used for
various tasks such as generation of video summaries [13], video retrieval with
query-by-clip scenarios or query by key-frame, navigation in video content.
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- spatio-temporal partitioning, that is extraction of meaningful objects from video
in order to detect events of interest related to objects or to realize object-based
queries on video databases [14].

In the first case, the key feature to be extracted from video is represented by shot
boundaries which are considered as a “mid-level” semantic feature compared to
high level concepts appealing to human-like interpretation of video content. A shot
is a sequence of frames corresponding to one take of the camera. Very vast literature
has been devoted to the problem of shot boundary detection in the past. This was
the subject of TRECVid competition [15] in 2001–2007 and various industrial solu-
tions have come from this intensive research. Shot boundaries are the most natural
metadata which can be automatically generated and allow for a sequential naviga-
tion in a coded stream. Scene boundaries correspond to the changes of the content
with more semantic interpretation, they delimit groups of subsequent shots which
convey the same editing ideas. In the framework of scalable indexing of HD video
we wish to analyze a new trend for efficient video services: embedded indexing in
Scalable Video coding. This is namely one of the focuses of JPSearch initiative [16]:
embedding of metadata into the data encoded in the JPEG2000 standard. Hence the
latest research works link content encoding and indexing in the same framework be
it images or videos [3].

2.2.1 Embedded Mid Level Indexing in a Scalable Video Coding

The coding scheme [3] inspired by JPEG2000 scalable architecture allows a joint
encoding of a video stream and its temporal indexing such as shot boundaries in-
formation and key pictures at various quality levels. The proposed architecture of
scalable code-stream consists of a sequences of Groups of Pictures (GOPs) corre-
sponding to a video shot and containing its proper source model which at the same
time represents a content descriptor.

The video stream architecture is depicted in Figure 4. The authors propose using
Vector Quantization (VQ) to build a visual code-book VC for the first key-picture
of each shot. Here the encoding follows a traditional scheme in VQ coding: the
key-picture is split into blocks forming vectors in the description space. Then an
accelerated K-means algorithm is applied resulting in a VC of pre-defined dimen-
sion. The key-picture is then encoded with this code-book and the error of vector
quantization is encoded using a JPEG2000 encoder. For all following key-pictures,
the code-book obtained is applied for their encoding. If the coding distortion for a
given key-picture Ii j in the shot Si encoded with VCi is higher than a pre-defined

Fig. 4 Temporal decompo-
sition of a video stream
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threshold, then it means that Ii j cannot be efficiently encoded with VCi and hence
most probably belongs to the next shot. The visual code-book VCi is entropy-
encoded and embedded in the code stream. All the B-frames of a given GOP are
encoded applying a conventional motion estimation and compensation method.

In this approach, the visual code-book plays two roles: on the one hand, it is used
for decoding the key frame; on the other hand, it is a low-level content descriptor.
Indeed, in their previous work [17] the authors showed that visual code-books are
good low-level descriptors of the content. Since this pioneer work visual code books
have been applied in specific video description spaces [18] and become very popular
in visual content indexing [19].

Assuming the visual content to be quantized using a VC, the similarity between
two images and/or two shots can be estimated by evaluating the distortion intro-
duced if the role of two VC is exchanged. The authors propose a symmetric form:

φ(Si,S j) =
∣∣DVCj (Si)−DVCi(Si)

∣∣+ ∣∣DVCi(S j)−DVCj (S j)
∣∣ , (7)

where DVCj (Si) is a distortion of encoding a shot (or key-frame) Si with the visual
code-book DVCj .

Visual distortion is understood as for usual case of VQ encoding:

DVCj (Si) =
1
Ni

Ni

∑
p=1

||vp − c j(vp)||2 (8)

Here vp is the visual vector representing a key-frame pixel block, Ni is the number
of blocks in the key-frame (or whole shot Si), c j(vp) is the vector in a code-book
closest to vp in the sense of Euclidean distance.

The symmetric form in Eq. (7) is a good measure of dissimilarity between shots.
Hence the temporal scalability of video index can be obtained by grouping shots on
the basis of Eq. (7).

Thus two scalable mid-level indexes are implicitly embedded in a scalable code-
stream: the two different code-books for the subsequent groups of GOPs indicate a
shot boundary, a scene boundary can be obtained when parsing and grouping shots
with Eq. (8).

On the other hand decoding of visual code-books and representation of key-
frames only with code-words supplies the base level of spatial scalability. The en-
hancement levels can be obtained by scalable decoding of VQ error on key-frames.

This scheme is very interesting for the HD content: a quick browsing does not
require decoding full HD, but only the base layer can be used to visualize the frames.
Reduced temporal resolution can also be achieved when parsing.

2.2.2 Object-Based Mid-level Features from (M)JPEG2000 Compressed
Stream

Object-based indexing of compressed content remains one the most difficult prob-
lems in the the vast set of indexing tasks be it Low Definition, Standard Definition
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or High Definition video and film content. The main stream research in indexing
and retrieval of video content nowadays avoids the complex, ill-posed “chicken and
egg” problem of extracting meaningful objects from video. It focuses on local fea-
tures such as SIFT descriptors proposed by Lowe [20]. Hence, in the paper entitled
“Unsupervised Object Discovery: A comparison”, [21], where the authors search
for images containing objects, one can read “Images are represented using local fea-
tures”. Pushing this reasoning to its extreme end, we come to the famous cat illusion
and make a “bottom-up” effort in visual content understanding. At the same time,
the strong effort of the multimedia research community related to the elaboration
of MPEG4, MPEG7 [22] and JPEG2000 (part 1) standards was devoted to the de-
velopment of automatic segmentation methods of video content to extract objects.
Here the approach is just the contrary: first an Entity has to be extracted and then
a description (sparse, dense, local or global) of it can be obtained. The results of
these methods, e.g. [23, 24, 25], while not always ensuring an ideal correspondence
of extracted object borders to visually observed contours, were sufficiently good for
fine-tuning of encoding parameters and for content description.

Hence, we are strongly convinced that the paradigm consisting of segmenting
objects first and then representing them in adequate feature spaces for object based
indexing and retrieval of video remains the promising road to the success and a
good alternative for local modeling of content by feature points. In the context of
scalable HD content, the object extraction process has to be adapted to the multiple
resolutions present in code-stream. It has to supply mid-level, object-based features
corresponding to each resolution level.

In [26] we proposed a full solution for mid-level global feature extraction for
generic objects in (M)JPEG2000 compressed content by an approach operating di-
rectly on the Daubechies 9/7 pyramid of a HD compressed stream. The underlying
assumptions of the method are as follows : i) we suppose that generic objects can be
“discovered” in video when the magnitude of object local ego-motions sufficiently
differs from the global motion, that of the camera ii) the high-frequency information
contained in HF subbands at each level of the wavelet pyramid can be efficiently re-
used for delimiting objects boundaries, iii) both LF and HF subbands are necessary
to convey global object features.

According to our indexing paradigm, the first step consists of extraction of
objects from a compressed stream. The overall strategy follows fruitful ideas of
cooperative motion-based and color-based spatio-temporal video object segmenta-
tion [11]. Here the areas of local motion have to be identified in video frames first.
They form the so-called motion masks Mk

t at the lowest resolution level (k = K−1)
of K-level Daubechies pyramid. Then a color-based segmentation of the low fre-
quency LLk subband has to be fulfilled on the whole subband. Finally motion
masks and segmentation map are merged by majority vote resulting in object masks
Ok

t = {Ok
t,i, i = 1..n(k)}, k = K−1. Objects at the top of the pyramid corresponding

to the lowest scalability level are thus extracted.
The object masks obtained are then projected on the higher resolution levels us-

ing the wavelet location principle (see Figure 5) allowing for establishing direct
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Fig. 5 Location principle in
Daubechies Pyramid

correspondences between a coefficient of the current level and four coefficients at
the lower level.

Then the projected segmentation is refined using motion masks obtained at lower
level and low and high-frequency coefficients contained in the subbands of the cur-
rent level of the pyramid.

Colour segmentation of LL subband at the top of the pyramid is performed by
a known morphological approach. Its application does not really differ from previ-
ously studied morphological segmentation by a simplified watershed adapted to low
resolution version of compressed video frames [11].

It is in the detection of motion masks and refinement of the segmentation across
wavelet pyramid, that the nature of wavelet subbands is truly used. Hence we will
focus on these aspects in the following.

Motion estimation in the Wavelet domain

The problem of motion estimation in the wavelet domain has been extensively stud-
ied for the development of motion-compensated wavelet encoders [26]. Due to the
shift variant nature of DWT, direct band-to-band motion estimation by classical
Block Matching (BM) fails to give sufficiently reliable information when used on
the lower resolution levels, especially for the HF subbands. Several methods have
been developed to limit the effects of the shift-variance of the wavelet transform.
One of the possible approaches was to estimate motion on the LL subband and
motion-compensate HF subbands with the estimated vectors. In order to limit the
shift-variance, the matching is done between the current frame and the translated
versions of the reference frame in wavelet domain [27], other approaches consist
of estimating motion in Overcomplete DWT (ODWT) without sub-sampling [28].
Nevertheless in JPEG2000, the Daubechies pyramid is already imposed by the stan-
dard. Hence for the sake of separation of motion masks from the background motion,
the estimation between the LL subbands of each level of the pyramid and regular-
ization with robust global motion estimation is proposed.

The first step consists in estimating motion vectors on the block-basis on the
lowest k− th resolution level minimizing “Mean Absolute Difference” criterion in
Eq. (9) when initializing them by zero motion.
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MADB(dx,dy) =
1
|B| ∑

(x,y)∈B

∣∣LLY K(x,y, t)−LLY K(x + dx,y + dy,t −dt)
∣∣ (9)

Here LLY K is the Y -component of the low frequency subband and B is the consid-
ered block. Estimation with pixel accuracy turns to be better, than half pixel because
of shift-variance of wavelets. Then the global affine six parameters motion model is
estimated by robust weighted least squares:{

dx(x,y) = a1 + a2x + a3y
dy(x,y) = a4 + a5x + a6y

. (10)

The outliers with regard to this model with weak weights w(B) form the motion
mask MK

t at the top of the pyramid and serve for extraction of objects OK
t . When

estimating the model of Eq. (10) the coefficients of the HF subbands are used in
order to a priori exclude “flat areas” in a subband LL, which are not reliable for
motion estimation. Here the standard deviation vector σ(B) = (σLH ,σHL,σHH)T

is computed for each block. If its norm ||σ(B)||∞ is less than a level-dependent
threshold Thk

σ , then the block is considered as “flat”.
The projection of motion vectors to initialize the estimator at the lower levels

of the pyramid is realized with location principle on the subband LL diadycally
increasing block size and vector magnitudes. The outlier blocks, projected with this
scheme are then split into smaller blocks in order to keep precise motion estimation
in areas with proper motion. The motion model of Eq. (10) re-estimated at each
level of the pyramid allows for improvement of PSNR measured on non-outliers up
to 8% on average.

In filtering of outliers from blocks which follow the model of Eq. (10), the abso-
lute difference between optimal values of MAD obtained when a block is compen-
sated with its original vector and with Eq. (10) is computed. If it is greater than a
threshold T hk

MAD , than the “proper” motion of a block is confirmed. Otherwise, it
is incorporated in the set of the blocks following the global motion, the same test
is made for flat blocks. Figure 6 depicts the results of this filtering at the second
resolution level of a Daubechies pyramid. The upper row represents the LL subband
at level 2, the mid-raw is the result of outlier rejection by weighted least squares,
the lower row is the result of filtering.

The merged motion masks and segmentation map at the top of the pyramid form
extracted objects (see an example in Figure 7).

To form a scalable object-based descriptor, it is necessary to get extracted objects
at all levels of the pyramid. The object masks extracted from the top of the pyramid
have to be projected and refined at each level. If the projection across pyramid levels
is naturally guided by wavelet location principle (Figure 5), fitting of object bound-
aries to the LL subband content at the lower pyramid levels is a problem per se. It
is natural try to use already available contour information in HF subbands. This can
be done in the framework of Markov Random Field (MRF) modeling.
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Fig. 6 Results of filtering of flat blocks and outliers. Sequence “Claire” c©LABRI.

Fig. 7 Object extraction at the top of the pyramid by merging frame segmentation and motion
masks. Sequence “Lancé trousse” c©LABRI.

MRF based adjustment of object borders with LL and HF subbands

When projected between two successive levels of the pyramid, one wavelet coef-
ficient of a higher W k(i, j) level in each subband is transformed into four coef-
ficients W k−1(2i,2 j), W k−1(2i,2 j + 1), W k−1(2i + 1,2 j), W k−1(2i + 1,2 j + 1) of
lower level. To avoid this aliasing in resulting object border a morphological erosion
of the projected mask is performed thus defining an uncertainty area. Then pixel-
coefficients in it are assigned according to the minimal energy adapting the classical
MRF formulation with Maximal A posteriori Probability (MAP) criterion. Gaussian
multivariate distribution of LL coefficients in each segmented region is supposed.
For a coefficient in LL subband at position p the label l is assigned according to the
minimum of the energy:

l(p) = arg min
l∈[1,L]

(
U1(l, p)+U2(l, p)

)
(11)

The first potential U1 expresses the Gaussian assumption of distribution of the coef-
ficients in LL subband:
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U1(l, p) = (pLL − μl)TΣ−1
l (pLL − μl) (12)

with μl the mean color vector of a region and Σl its covariance matrix.
The second potential usually stands for regularity of segmentation maps. In the

context of scalable segmentation in the wavelet domain it is completed with the
contrast values expressed by HF coefficients:

U2(l, p) = ∑
c∈Cp

A
(
1− δ (l, l(c))+ (2δ (l, l(c))−1) |HF |cn

)
(13)

Here c are the cliques in the 8-connected neighborhood and |HF|cn is the normalized
HF coefficient from HL, LH or HH subband accordingly to the direction of the
clique (horizontal, vertical or slant), A is a constant and δ is the Kronecker symbol.

Hence after such an adjustment at each level of the pyramid, meaningful ob-
jects are extracted. An illustration is given in Figure 8. Contrary to the main-stream
approaches describing objects by local (e.g. SIFT) features, a global statistical de-
scriptor of objects at each level of the pyramid is proposed. This descriptor is a pair
of LL and HF histograms of wavelet coefficients extracted on object masks. For
each object Ot,i the descriptor is denoted by

Ht,i =
{

hk
LL(Ot,i),hk

HF(Ot,i), k = 0, . . . ,K −1
}

(14)

Here hk
LL is a normalized joint histogram of color wavelet coefficients of LLk sub-

band and hk
HF is a normalized joint histogram of mean values of three coefficients in

HF subbands. The descriptor therefore contains both LL and HF parts. A complex
question of histogram quantization is resolved from general statistical considera-
tions. The Sturges rule [29] is used relating the number of wavelet coefficients in
the object mask and the number of bins in the resulting histogram b:

bk = 1 + log2(|Ok
i |) (15)

Fig. 8 Object extracted at
various resolution levels in
LL subbands of a wavelet
pyramid. Sequence “Lancé
trousse” c©LABRI accord-
ing to [26].
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The similarity measure for this descriptor is a linear combination of metrics for
histogram comparison (e.g. Bhattacharya coefficient):

ρk
sb(Ot,i,Ot, j) =∑

x

√
hk

sb(Ot,i)(x) hk
sb(Ot, j)(x) (16)

Here sb stands for LL or HF and x is the bin index. Finally, the similarity measure
is expressed as

ρ(Ot,i,Ot, j) = αρLL +(1−α)ρHF (17)

2.3 On Scalable Content-Based Queries

A vast literature is devoted to image retrieval in large databases and much work
on video retrieval is being done. In our previous work we specifically focused on
retrieval of objects in video content [14]. In this chapter two questions in the object-
based framework: query by clip and scalable queries are addressed.

The retrieval scenario considered consists of searching for a clip in a HD video
database containing a query object. This scenario can for instance be used for detec-
tion of a fraudulent post-production, where an object is extracted from a video clip
frame by frame and inserted into the background extracted from another sequence.

Let us consider a clip CDB in a video database (DB). A set of objects masks
ODB = {Ot,i,t = t0,t0 + Δ t, ...} is extracted for each object at each level of the
wavelet pyramid. The histogram features HDB are computed and stored as metadata.

Let us then consider a query clip CQ and histogram features HQ of objects ex-
tracted from this clip. The user is invited to select an image It∗ ∈ CQ in which the
object extraction result is visually the most satisfactory.

We consider both mono-level and cross-level search. In the case of mono-level
search, the descriptor Hk

Q at a given pyramid level k is compared to all the descriptors
available in the DB at the same level. We call this query a “mono-level” query.
Hence, a clip from the DB is the response to the query clip for a given resolution
if at least one of its frames is a “good” response to the query. The “goodness” of
a response is measured in comparison with a given threshold. This scenario is well
adapted to the scalable script in the case when the query is not transmitted with
full-resolution.

The “cross-level” search consists in comparison of a query descriptor extracted at
a chosen resolution level k with descriptors in DB extracted at a specified resolution
level. First of all, this type of query is interesting for a “light” processing at a client
side. The query object can be extracted on low resolution levels of wavelet pyramid
while the high resolution descriptors in the DB will be used for retrieval at server
side. Inversely, if the high-resolution descriptors are available in the original clip
(e.g. stored in the video archive), it can be compared with a low-resolution collection
of videos when searching for a fraudulent low-quality video.

In [26] main stream retrieval consisting of matching of SIFT descriptors extracted
on object masks and the global descriptor, i.e. a pair of wavelet histograms are
compared. It turns out, that firstly the HF histogram is necessary (0 < α < 1 in
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Eq. (17)). Secondly, histogram-based descriptor turns out to be more efficient both
in mono-level and cross-level retrieval. Figures 9 and 10 depict the curves of inter-
polated average precision on HD video database produced in the framework of the

Mono-level 4 - 4 Mono-level 4 - 4

Mono-level 2 - 2 Mono-level 2 - 2

Mono-level 0 - 0 Mono-level 0 - 0
a) b)

Fig. 9 Examples of mono-level queries. According to [26]. a) global object descriptors, b)
SIFT descriptors)(Figure continued on Fig. 10).
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Cross-level 4 - 0 Cross-level 4 - 1

Cross-level 0 - 4 Cross-level 0 - 3

Cross-level 1 - 4 Cross-level 1 - 3

Fig. 10 Examples of cross-level queries. According to [26]. (Continuation of Fig. 9)

ICOS-HD French national research project1 which contains affine-transformed ver-
sions of 17 HD video clips of 3 seconds. Two scenarii were designed, one with
a fraudulent object and one with various sequences containing the same object.
These two scenarios differ in the expected answers to the queries as summarized in

1 ICOS-HD (Scalable Joint Indexing and Compression for High-Definition Video Content)
is a research project funded by ANR-06-MDCA-010-03 (French Research Agency).
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Table 2 Summarization of scenarios 1 and 2 settings

Scenario 1 Scenario 2
Aim Finding all the copies of an object in

a DataBase
Finding objects similar to an object
in a DataBase

Query

Examples of an-
swers to the query

Examples of
non-answer to the
query

table 2. (The detailed description of this corpus is presented in the following Section
of this chapter.)

Both in case of manually and automatically extracted object masks the global
histogram-based descriptors are more efficient in object-based queries. The methods
of joint scalable coding/indexing or indexing on already encoded scalable stream
presented in this chapter open an exciting perspective for efficient indexing of HD
content. Indeed, the full HD resolution is not necesserily needed for fast browsing,
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summarizing and retrieval of HD video content. According to the architecture of
emerging information systems containing HD video, various levels of granularity
can be accessed, indexed and retrieved. Wavelets, the hierarchical transform widely
used for actual and future scalable HD standards is an excellent basis for this.

3 HD Content Indexing Using Patch Descriptors in the Wavelet
Domain

In this part of the chapter, we present a method for comparing HD video seg-
ments statistically using a sparse multiscale description of the content. This de-
scription is both spatial and temporal and relies on the following concepts: 1) a
sparse and multiscale transform of the video content; 2) a local patch description
obtained by grouping spatially or temporally coherent pieces of information; 3)
the multiple occurrences of similar patches throughout the video lead to a global
statistical description of the video content that is robust to the usual geometric
or radiometric video transformations. The comparison of these descriptors is nat-
urally done in a statistical fashion. The global dissimilarity proposed is a weighted
combination of Kullback-Leibler divergences between the probability densities of
the different kinds of patches. The estimation of the dissimilarity is done non-
parametrically in a k-th nearest neighbor context, which enables us to cope with
the high-dimensionality of the probability density functions at stake. This method is
designed to compare short video segments (e.g. Groups of Pictures (GOPs) of eight
frames), with the understanding that to compare larger videos we sum up the dissim-
ilarities between their consecutive GOPs. In the sequel, we describe how to extract
the video description from GOPs and how to estimate the proposed dissimilarity.
Finally, we report results obtained on content-based queries experiments.

3.1 Sparse Multiscale Patches and Motion Patches Descriptors

Our description of a GOP extracts separately a spatial information relative to the
scene and a temporal information relative to the motion within the GOP. The spa-
tial information is extracted from the first frame of the GOP while the temporal
information is extracted from the motion of blocks throughout the GOP.

3.1.1 Spatial Descriptors: Sparse Multiscale Patches (SMP)

A structure in an image I can be identified by the coherence (or correlation) of the
multiscale coefficients of I around a particular location p and a particular spatial
scale k. A patch of the sparse multiscale patches (SMP) description of an image
I [30, 31] is a group of multiscale coefficients that vary simultaneously in presence
of a spatial structure: these are coefficients of all color channels that are neighbors
across scale and location.

More precisely, we write wIc

k,p for the multiscale coefficient of channel c of image
I at scale k and location p (this would be the dot product of channel c of image
I with a waveform of scale k centered at location p). With the detail coefficients
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Fig. 11 Building a patch of
multiscale coefficients, for a
single color channel image

(i.e band-pass or high-pass subbands of the multiscale transform), we build inter-
channel and interscale patches. To do so, in each color channel, we first group the
coefficients of closest scale and location (see Fig. 11):

wIc

k,p =
(
wIc

k,p,w
Ic

k,p+(1,0),w
Ic

k,p−(1,0),w
Ic

k,p+(0,1),w
Ic

k,p−(0,1),w
Ic

k−1,p

)
; (18)

and then build interchannel patches WI
k,p by concatenating the patches of the three

color channels (YUV):
WI

k,p =
(
wIY

k,p,w
IU

k,p,w
IV

k,p

)
. (19)

With the approximation coefficients (i.e the low-pass subband of the multiscale
transform), we build interchannel and intrascale patches by concatenating across
channels the 3 by 3 neighborhoods of the low-frequency coefficients (making
patches of length 27). We denote by WI

k,p either a low-pass or a high-pass or band-
pass patch. We use the Laplacian pyramid as the multiscale transform of the images
for its low redundancy and near invariance properties.

The multiscale patches description obtained is the set of all patches WI
k,p for all

scales k and locations p. It is said to be sparse because 1) the set of patches of large
energy (sum of squared coefficients) is a small subset of the set of all multiscale
patches {WI

k,p}0≤k≤K−1,p∈Z and 2) this small subset describes well the content of
the image (this is a sparsity property inherited from the sparsity of the multiscale
decomposition: a small group yields a good representation). We select the so-called
sparse multiscale patches by thresholding the energy level at each scale k and thus
obtain spatial descriptors of a frame of the video (see Section 3.3 for specific values
of thresholds).

3.1.2 Temporal Descriptors: GOP Motion Patches (GOP-MP)

To capture the motion information in a GOP, we also use the concept of patches built
on coherent information. Here, the coherence is sought through time: the patches are
made of motion vectors that follow motion through the GOP. One patch of the GOP
Motion Patches (GOP-MP) description captures the temporal coherence within the
GOP at a particular location p = (x,y) by encoding the motion of the block centered
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Fig. 12 Building a motion
patch

at p = (x,y) (the size of the blocks corresponds to the lowest scale of the multiscale
decomposition used for the spatial description). More precisely, for a GOP of n
consecutive frames f1, . . . , fn, we compute the following motion patches for each
block of center (x,y):

m(x,y)=
(
x,y,u1,2(x,y),u2,3(x,y), . . . ,un−1,n(x,y)

)
(20)

where un−1,n(x,y) is the apparent motion of the block centered at (x,y) from frame
fn−1 to frame fn (see Fig. 12). The motion vectors u are computed via a diamond-
search block matching algorithm. For each GOP studied, we compute the motion
patches m(x,y) for each block (x,y). Note that we include in the motion patch its
location (x,y) so that each patch has length 2n (which is 16 for GOPs of 8 frames).

As is the case for spatial patches, in fact only a few motion patches effectively de-
scribe motion (sparsity). Thus, we select the significant motion patches by a thresh-
olding that keeps only the patches having the largest motion amplitude (sum of
squares of the u components in Eq. (20)). (The threshold value used in Section 3.3 is
zero: the motion patches kept are those for which the motion amplitude is non-zero).

3.2 Using the Kullback-Leibler Divergence as a Similarity
Measure

3.2.1 Motivation and Expression

As mentioned in Section 3, the comparison between two HD video segments is
performed by statistically measuring the dissimilarity between their respective sets
of (spatial and temporal) descriptors within the successive GOPs. Indeed, the scale
and location of the descriptors extracted in each segment will not match in general
even if the segments are visually similar. Therefore, a dissimilarity based on one-
to-one distance measures is not adequate. Instead, it is more appropriate to consider
each set of descriptors as a set of realizations of a multidimensional random vari-
able characterized by a particular probability density function (PDF), and to mea-
sure the dissimilarity between these PDFs. Because the descriptors were defined in
high-dimensional spaces, PDF estimation is problematic. The k-th nearest neighbor
(kNN) framework provides interesting estimators in this context [32, 33, 34]. First,
they are less sensitive to the curse of dimensionality. Second, they are expressed
directly in terms of the realizations. Besides a PDF estimator, a consistent, asymp-
totically unbiased entropy estimator has been proposed [35, 36, 37]. To compare two
PDFs in this framework, entropy-based measures then appear as a good option. We
chose the Kullback-Leibler divergence because it proved to be successful in similar



Scalable Indexing of HD Video 517

applications [38, 39]. Since the descriptors are heterogenous (SMPs, low-frequency
patches, and motion patches), several such divergences will be combined.

Let us assume that the two video segments to be compared are both composed of
a single GOP. One of them will be referred to as the query and denoted by GQ, the
other one as the reference, GR. The dissimilarity D between GQ and GR is defined
as

D(GQ,GR) = αs Ds(GQ,GR)︸ ︷︷ ︸
spatial term

+αt Dt(GQ,GR)︸ ︷︷ ︸
temporal term

(21)

where ⎧⎨⎩
Ds(GQ,GR) = ∑

0≤k≤K−1

DKL
(

pk(GQ)||pk(GR)
)

Dt(GQ,GR) = DKL
(

pm(GQ)||pm(GR)
) . (22)

The positive parameters αs and αt allow us to tune the relative influence of the
spatial and temporal terms. The scale k = 0 is the coarsest scale of the decomposition
corresponding to the low-pass subband. pk(G), respectively pm(G), denotes the PDF
underlying the SMPs or low-frequency patches {WI

k,p, p}, respectively the motion
patches {mp, p}, extracted from the GOP G. Finally, DKL denotes the Kullback-
Leibler divergence.

The term of scale k in the sum Ds can be interpreted as a measure of how dissim-
ilar local spatial structures are at this scale in the respective key frames of GQ and
GR. Overall, Ds indicates whether some objects are present in both frames. Since the
motion patches group together motion vectors and their respective location, the tem-
poral term Dt not only tells about how the motions throughout the GOPs compare;
it also tells (roughly) whether similar shapes move the same way in both GOPs.

Let us now see how the Kullback-Leibler divergences involved in the definition
of D can be conveniently estimated from a set of realizations.

3.2.2 Estimation in the kNN Framework

Estimation of the Kullback-Leibler divergence between two PDFs p and q when
these PDFs are known only through two respective sets of realizations U and V ap-
parently requires prior estimation of the PDFs. Because the realizations are vectors
of high-dimension (18 for high-pass and band-pass SMPs, 27 for low-pass patches,
and 16 for motion patches), PDF estimation is afflicted with the curse of dimen-
sionality [34]. Assuming that an accurate parametric model of the PDFs can be
built anyway (for example, a mixture of Gaussians), an analytic expression of the
divergence in terms of the model parameters exists only for some restricted cases
such as mixtures composed of a unique Gaussian. Alternatively, an entropy esti-
mator written directly in terms of the realizations has been proposed in the kNN
framework [35, 36, 37]. Then, the Kullback-Leibler divergence being the difference
between a cross-entropy and an entropy, the divergences DKL involved in (22) can
be expressed as functions of the sets of patches {WI

k,p, p}, for each scale k, and
{mp, p}.
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To give an intuition of the kNN entropy estimator, let us mention that it can be
considered as the combination of the kNN PDF estimator p̂ with the Ahmad-Lin
entropy approximation HAL [40]⎧⎪⎪⎪⎨⎪⎪⎪⎩

p̂(x) = ∑
w∈W

1

|W |vdρd
k (W,x)

δ
[|x−w| < ρk(W,x)

]
HAL(W ) = − 1

|W | ∑w∈W
log p(w)

(23)

where x is an element of R
d , W is a set of d-dimensional realizations whose un-

derlying PDF is p, |W | is the cardinality of W , vd is the volume of the unit ball in
R

d , ρk(W,x) is the distance between x and its k-th nearest neighbor among the ele-
ments of W , and δ (B) is equal to 1 if B is true and zero otherwise. Replacing p in
HAL with p̂ leads to a (biased) kNN-based entropy estimator close to the unbiased
version proposed in [35, 36, 37].

Subtracting the kNN entropy estimation from the kNN cross-entropy estimation
leads to the following kNN Kullback-Leibler estimation:

DKL(U ||V ) = log
|V |

|U |−1
+

d
|U | ∑u∈U

logρk(V,u)− d
|U | ∑u∈U

logρk(U,u) . (24)

3.3 Scalable Content-Based Queries with Patches Descriptors

In this section we assess the quality of the proposed GOP dissimilarity measure for
the retrieval problem. The experiments were performed on video sequences from
the ICOS-HD project database. After a brief description of the database, we analyze
retrieval results based on spatial frame descriptors alone, temporal/motion descrip-
tors alone, and both sets of descriptors combined together.

3.3.1 ICOS-HD Video Database

The ICOS-HD project provides a large database of both original full HD videos and
edited versions. Each original sequence contains 72 Full HD frames (1920× 1080
pixels) and has been manually split up into clips, such that the boundary between
the clips roughly corresponds to a relevant motion transition. In addition, common
geometric and radiometric deformations were applied to the original HD video se-
quences, thus obtaining different versions of each video clip.

For these experiments, we used ten video sequences (see some thumbnails in
Figure 13). The deformations we considered are scaling and quality degradation by
high JPEG2000 compression, for a totla of four different versions of each video clip:

• original Full HD (1920×1080 pixels), referenced as 1920 in the figures;
• two rescaled versions (960×540 pixels), referenced as 960;
• two JPEG2000 coded versions (low and very low quality) referenced as jpeg-q1

and jpeg-q10.
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Fig. 13 Thumbnails of
two video sequences. Left:
“Man in Restaurant”, and
right: “Street with trees
and bicycle”. Original HD
sequences c©Warner Bros
issued from the Dolby 4-4-4
Film Content Kit One.

As explained in Section 3.1, we used GOPs of 8 consecutive frames as basic units of
video information to extract spatial and temporal descriptors for each clip. The spatial
SMP descriptors were extracted from the first frame of each GOP using five resolution
levels of the Laplacian pyramid as well as the low-frequency residual. The thresholds
were set to keep 1/6 of the patches at each scale, except for the lowest one where all
patches were used. The temporal descriptors were extracted using a diamond-search
block matching algorithm to estimate inter-frame motion vectors on 16×16.

3.3.2 Spatial Dissimilarity

We consider the task of retrieving the GOPs most similar to a query GOP. Hence all
transformed versions of the query GOP itself are expected to be ranked first by the
dissimilarity measure defined above. The dissimilarity measure D between a query
GOP GQ and a reference GOP GR as defined in Eq. (21) is a combination of a spatial
term Ds taking into account only spatial features and a temporal term Dt defined over
temporal features. While the spatial descriptors are essentially useful for comparing
statistical scene information of two video pieces, motion descriptors are expected to
highlight similarities based on dynamical patterns like the movement of objects or
persons in a scene. In order to appropriately choose the weighting factors α1 and α2

in Eq. (21), we studied the spatial and temporal parts of the measure separately first.
Firstly we considered only the spatial descriptors (α1 = 1, α2 = 0) to retrieve

similar GOPs. The SMP descriptors prove to be crucial for distinguishing GOPs
of the same video sequence as the query from those belonging to different video
sequences. The results obtained are shown in Figure 14. In this figure each curve
shows the dissimilarity between a fixed query GOP and all GOP from 2 clips of
the same sequence and one clip of a different sequence in all possible versions. The
query GOP is the first GOP of the first clip of either “Man in Restaurant” or “Street
with Bicycle an Trees”. A particular reference GOP is identified by the sequence,
clip and version indicated in the middle rectangles of the figure, and by the GOP
label on the x-axis, the 9 GOPs of a particular clip being ordered chronologically.

Even when frame transformations are applied - either rescaling and very lossy
compression - all GOPs originating from the same video sequence sequence are far
more dissimilar to the query. These results confirm that SMP descriptors are relevant
for retrieving video scenes that share overall visual similarity with a query scene,
and show in particular that the spatial part of the measure is robust to scaling and
very lossy compression (spatial scalability).
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Fig. 14 GOP retrieval based on spatial descriptors. The query is GOP 1 from clip 1 of version
960 of “Man in Restaurant” (plain curve) or “Street with Trees and Bicycle” (dotted curve).

3.3.3 Temporal Dissimilarity

We now analyze the dissimilarity measure of Eq. (21) using only motion descriptors
(α1 = 0, α2 = 1). Since the different clips of each sequence in our database differ
from each other mainly with respect to motion information, this measure is expected
to discriminate GOPs of different clips of the same video sequence. This is confirmed
by the experimental results shown in Figure 15, which show the motion dissimilarity
between a fixed query GOP and all GOPs of the two clips of the same sequence as
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Fig. 15 GOP retrieval based on motion descriptors. The query is GOP 1 from clip 1 of version
960 of “Man in Restaurant” (plain curve) or “Street with Trees and Bicycle” (dotted curve).
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Table 3 Mean and variance of the spatial and temporal dissimilarities

Spatial term Spatial term Temporal term
(across scenes) (within a scene)

Mean 122.8 12.1 3.7
Standard deviation 1.7 4.7 2.5

well as a clip of a different sequence in all versions (same labeling of the reference
GOPs as for Fig. 14). As expected, the GOPs from the same sequence as the query
and that are close in time to the query have far smaller dissimilarity values than those
originating from the second clip. As previously, we note that the temporal part of the
measure is robust to scaling and lossy compression (spatial scalability).

3.3.4 Spatio-Temporal Dissimilarity

Considering that the spatial term of the dissimilarity is able to differentiate video
scenes and the temporal term allows us to characterize different motions within a
single sequence, we expect that the combination of the two will enable us to glob-
ally compare two clips whether there are from the same sequence or not. The typ-
ical ranges and variances of the spatial and temporal similarities are quite different
(see Table 3). As seen from the previous experiments, the spatial term is not dis-
criminative within a scene but shows a clear discontinuity marking the difference
between scenes, while the temporal term differentiates GOPs within a video. We
thus rescale the temporal term to ensure that on average it modulates the spatial
term within a scene without breaking the discontinuity across scenes. To do so, we
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Fig. 16 GOP retrieval combining spatial (weight α1 = 1) and temporal (weight α2 = 10)
dissimilarities. The query is GOP 1 from clip 1 of version 960 of “Man in Restaurant” (plain
curve) or “Street with Trees and Bicycle” (dotted curve).
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set α1 = 1, α2 = 10. The results displayed in Fig. 16 indeed show that the two clips
within a sequence are discriminated independently of which degradation is applied
to the reference GOP.

4 Conclusion and Perspectives

This chapter has presented an overview of two frameworks for scalable video in-
dexing based on hierarchical decomposition. The first deals directly with the video
content in the compressed domain, i.e. the domain defined by the given compres-
sion standard, while the second relies on a hierarchical decomposition of the de-
coded data. Both approaches have their own advantages and drawbacks. Techniques
working in the compressed domain provide potentially faster processing since basic
features such as the motion vectors are readily available; however, the features are
computed so as to achieve the best quality-versus-compression ratio trade-off and
might not ideally serve the purpose of indexing. Techniques processing decoded
data, on the other hand, give full freedom to design ad-hoc multiscale descriptors;
however they are significantly computationally slower due to the full decoding fol-
lowed by the chosen hierarchical decomposition. Both approaches open an exciting
perspective for efficient processing of HD content such as indexing but also fast
browsing, summarizing and retrieval of HD video content by exploiting the various
levels of granularity that can be accessed in new information systems.
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Chapter 23
Stereo Correspondence in Information Retrieval

Huiyu Zhou and Abdul H. Sadka

Abstract. Stereo correspondence is a very important problem in information re-
trieval. Optimal stereo correspondence algorithms are used to generate optimal dis-
parity maps as well as accurate 3-D shapes from 2-D image inputs. Most established
algorithms utilise local measurements such as image intensity (or colour) and phase,
and then integrate the data from multiple pixels using a smoothness constraint. This
strategy applies fixed or adaptive windows to achieve certain performance. To build
up appropriate stereo correspondences, a global approach must be implemented in
the way that a global energy or cost function is designed by considering template
matching, smoothness constraints and/or penalties for data loss (e.g. occlusion).
This energy function usually works with optimisation methods like dynamic pro-
gramming, simulated annealing and graph cuts to reach the correspondence. In this
book chapter, some recently developed stereo correspondence algorithms will be
summarised. In particular, maximum likelihood estimation-based, segment-based,
connectivity-based and wide-baseline stereo algorithms using descriptors will be
introduced. Their performance in different image pairs will be demonstrated and
compared. Finally, future research developments of these algorithms will be pointed
out.

1 Introduction

Digital video cameras are widely used in our community, and the quantity of digital
videos has significantly increased up to date. For the reuse and storage purpose,
consumers have to retrieve a video from a large number of multimedia resources. To
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seek similar videos from a definite database, information retrieval systems have been
established with promising performance in searching accuracy and efficiency, e.g.
[1]. Many of these established systems attempt to search for videos that have been
annotated with metadata a priori (e.g. [2]). Nevertheless, there are still a significant
number of footages that have been recorded but not ever used [3]. These footages
normally have not been properly annotated, and hence the retrieval can only be
carried out according to the video contents rather than the annotated information.

Of the generic video contents, the need for the ability to retrieve 3-D models
from databases or the Internet has gained dramatic prominence. Content-based 3-D
model retrieval currently remains a hot research area, and has found its tremendous
applications in computer animation, medical imaging, and security. To effectively
extract a 3-D object, shape-based 3-D modelling (e.g. [4]) and similarity or dissimi-
larity (or distance) computation (e.g. [5]) are two of the main research areas. In this
chapter, we review the algorithms that have been recently developed for the recon-
struction of 3-D shapes from 2-D video sequences. This work is inspired by the fact
that the estimation of 3-D shapes critically affects the retrieval quality of 3-D mod-
els. We believe that the introduction to these summarised approaches here will be
used to effectively facilitate the application of 3-D model retrieval in the databases
or Internet. However, this potential application is beyond the scope of the current
report and omitted in the current report.

One of the commonly used strategies to recover 3-D shapes is the use of multiple
view reconstruction. For example, Bartoli and Sturm [6] used Plucker coordinates
to represent the 3-D lines in the scope of maximum likelihood estimation, and then
they proposed an orthonormal representation to challenge the bundle adjustment
problem. Zhou et al. [7] conducted co-planarity checks using cross-ratio invariants
and periodic analysis of the triangular regions. Klaus et al. [8] presents a segment-
based method to extract the regions of homogeneous colours, followed by local
window based matching, plane fitting and disparity assignment. Similar approaches
have been introduced in [9], [10]. Sun et al. [11] reported a stereo mathcing algo-
rithm using Bayesian belief propagation. The stereo problem was solved by taking
into account the three Markov random fields: a smooth field for depth/disparity, a
line process for depth discontinuity and binary process for occlusion. An iterative
RANSAC plane fitting strategy reported in [12] shows a maximum likelihood es-
timation approach. This technique enables one to obtain the best plane fitting to
the generated 3-D points automatically rather than using empirical criteria, which is
determined according to a limited number of image samples.

Regarding the non-linear surface reconstruction from motion, Laurentini reported
the visual hull as the largest volume consistent with the contours that have been ob-
served from several viewpoints [13]. This approach ignores the small details but
capture the approximate shape of the scene. Roy and Cox [14] introduced a method
using the graph flow theory to generalise the purely 1-D dynamic programming
technique to the 2-D problem raised by disparity maps. Kolmogorov and Zabih
[15] a graph cuts based general theory tp disparity maps in the multi-view con-
text. Narayanan et al. [16] reconstructed several depth maps that are aggregated into
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a single structure. Hoff and Ahuja [17] constructed a disparity map by gathering the
information of a few quadratic patches.

From the next section, we are going to briefly summarise several important es-
tablished stereo matching algorithms. The performance of these schemes will be
demonstrated in the evaluation section, where the characteristics of each algorithm
can be clearly observed. First of all, we start from a flat surface detection algorithm
[12] where an improved random sampling census algorithm is integrated for bet-
ter estimates of planar surfaces. A segment based stereo matching algorithm using
belief propagation and self adapting dissimilarity measure will be introduced [8].
Afterwards, a connectivity based stereo matching algorithm is introduced. This ap-
proach integrates the stereo correspondence with shape segmentation in order to
reach higher accuracy than the classical approaches. Finally, a wide baseline stereo
corresponding algorithm using local descriptors is presented. Evaluation of these es-
tablished algorithms will be provided before conclusions and future work are given.

2 Maximum Likelihood Estimation for Flat Surface Detection

This planar determination algorithm starts with corner feature detection using two
neighboring frames in a monocular video sequence. Given the epipolar geometry
constraint, we then build up dense matching between these two groups of points of
interest using the sum squared of differences (SSD) correlation method. Assuming
a calibrated camera (used to collect this sequence), we then compute a depth map,
based on the estimated disparity map. If there is only one single flat surface in the
scene (this constraint can only be satisfied in a small image region in many appli-
cations), we can launch a RANSAC algorithm [18] to fit a plane to the available
three-dimensional points. This RANSAC operation is iterated in an expectation-
maximisation context for seeking global minimal errors, which is the main con-
tribution of our work. The algorithmic flowchart is illustrated in Fig. 1. Note that
the proposed strategy works in the presence of motion parallax. To retrieve planes
from uncalibrated scenes, a fast multiple-view reconstruction strategy, based on the
algorithm presented here, will be explored in a future work.

2.1 Estimation of a Depth Map

Before a plane fitting scheme starts, 3-D point sets need to be generated based on
the 2-D image inputs. Of two neighboring images, we consider the later image is
the shifted one from the previous image. Given a shift (�x,�y) and an image point
(x,y) in a previous frame, the auto-correlation function for similarity check across
frames is defined as c(x,y) =∑W [I(xi,yi)− I(xi +�x,yi +�y)]2, where I(·) denotes
the image function and (xi,yi) are the image points in the window W (Gaussian)
centred at (x,y). The shifted image can be approximated by a Taylor expansion as

follows, I(xi +�x,yi +�y) ≈ I(xi,yi)+ [Ix(xi,yi), Iy(xi,yi)]
[�x
�y

]
, where Ix(·) and

Iy(·) denote the partial derivations along x and y, respectively. Eventually, we have
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Fig. 1 Flowchart of the maximum likelihood estimation based flat surface detection
algorithm

c(x,y) = [�x,�y]C(x,y)
[�x
�y

]
, where C(x,y) represents the intensity structure of

the local neighborhood. Let λ1 and λ2 be two eigenvalues of matrix C(x,y). A corner
point can be detected if min(λ1,λ2) is larger than a pre-defined threshold.

Once holding the points of interest, we then apply the sum squared of differences
correlation method to match these corner features. Using the matched features, we
exploit the well-established epipolar constraints to further refine the correspondence
of features. The camera parameters are then used for recovering the scene geometry
[7]. As an example, Fig. 2(a) and (b) show the original images superimposed by the
extracted corner features using the Harris corner detector [19], (c) is the disparity
map and (d) refers to the estimated depth map according to the relationship: D =
f d/z, where D is depth to be computed, f focal length, d introcular distance and z
estimated disparity.

2.2 Iterative RANSAC Planar Surface Detection

RANSAC planar estimation is supposed to effectively work in the presence of data
outliers. This method starts from fitting a plane to a set of 3 points (considered as
inliers) randomly selected from the matched corner features. Other image points are
then evaluated using the Euclidean distances between these 3-D points and the fitted
plane. If the points fall in a pre-defined region, then they will be classified as inliers.
Otherwise, the points will be removed from the consideration of coplanarity. These
steps are repeated until a count limit is reached. In a classical RANSAC plane fitting
approach, the iteration is terminated by either a user-specified number or the number
of outliers falling below a pre-defined threshold. This heuristic trick cannot handle
general situations, where either under- or over-estimation usually appears.
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(a) (b)

(c) (d)

Fig. 2 Estimation of disparity and depth maps: (a) and (b) feature extraction, (c) disparity
map and (d) depth map

We here intend to find a strategy to achieve maximum likelihood estimation to the
flat surfaces. Let N independent samples be represented as X = x1, ..., xN (N ≥ 30
denoting a part of the overall image points), the probability density function p(x)
(Euclidean distance between the selected 3-D points and the fitted plane) and a
Gaussian exits as N (x,θ ,r), where θ and r stand for a fraction of the inliers of
the estimated plane and the relationship between the samples and the inliers, re-
spectively. To obtain a maximum likelihood estimation of θ and r, we can max-
imise the likelihood function ΠN

i=1 p(xi). The object function can be generalised
as f (θ ,r) = ∑N

i=1ωiN (xi,θ ), where ωi are weight factors and will be determined
when we carry out similarity measurements. Based on the Jensen’s inequality, we

have an alternative object function as log f (θ ,r) ≥ ∑N
i=1 log

(
ωiN (xi,θ ,r)

qi

)qi
, where

qi is a non-negative constant that satisfies ∑N
i=1 qi = 1.
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Considering the current estimation θk and rk (k indicates current state), we iterate
the following E and M stages via the expectation-maximisation (EM) algorithm
[20]:

(1) E-stage: Assuming that θk and rk are fixed, we expect to obtain qi that max-
imises the right hand side of the object function. The solution is expressed as:
qi = ωiN (xi,θk,rk)

∑N
i=1ωiN (xi,θk,rk)

.

(2) M-stage: Considering qi as constants, we maximise the right side of the ob-
ject function with respect to θ and r. The inlier fraction θ is solved by θk+1 =
∑N

i=1 xiωiN (xi,θk,rk)
∑N

i=1ωiN (xi,θk,rk)
, where r is updated according to the following equation rk+1 ∝

∑N
i=1 qi(xi −θk)(xi −θk)T . This E-M iteration will terminate if and only if |θ̄m+1 −

θ̄m| is less than a pre-defined threshold (θ̄m denotes an averaged θ in group m). In
other words, the difference between two distributions instead of two consecutive
samples is used as a stopping criterion.

(a) (b)

Fig. 3 Estimated ground planes (in red color and hereafter) by (a) the improved RANSAC
method, and (b) a classical RANSAC technique with the constraint where the number of
outliers falls below a pre-defined threshold.

Fig. 3 illustrates the estimated ground planes, highlighted by red color, using two
different techniques. It is observed that the proposed scheme leads to more accurate
coplanar determination. For example, Fig. 3(a) shows that the points on the stones
(in the image centre) have been correctly identified to be over the ground plane
by the proposed approach. At the same time, the classical RANSAC plane fitting
approach fails to do so (Fig. 3(b)). This indicates that the proposed algorithm can be
used to accurately recover 3-D shapes from 2-D image pairs.
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2.3 Case Study

We conduct a few more experiments to demonstrate how the iterative RANSAC
plane fitting scheme performs in the extraction of flat surfaces, particularly ground
planes. The performance of the proposed method is compared to that of the classical
RANSAC plane fitting scheme with the constraint where the number of outliers falls

Fig. 4 Four test pairs and their corresponding disparity maps, where 1st- and 2nd-column are
original images and 3rd-column is the disparity map
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below a pre-defined threshold. Four image pairs and their corresponding disparity
maps have been obtained and illustrated in Fig. 4. The proposed algorithm has been
able to outline the actual planar areas.

We further demonstrate the performance of the proposed algorithm in planar sur-
face detection that usually is the measure of corresponding accuracy. Fig. 5 illus-
trates two neighboring image frames of a test sequence namely “campus”, superim-
posed by the detected corner features (see Fig. 5(a) and (b)). It exhibits in Fig. 5(c)
and (d) that the proposed RANSAC plane fitting scheme results in optimal outcomes
of flat surface fitting. For example, Fig. 5(c) shows that using the proposed method
we are able to correctly identify most points on the ground. Fig. 5(d) denotes a sig-
nificant number of points on the buildings have been incorrectly classified to be on
the ground plane by the classical technique. Meanwhile, the points on the ground
plane shown on Fig. 5(d) are less dense than those of Fig. 5(c), which is an issue in
the classical RANSAC method.

(a) (b)

(c) (d)

Fig. 5 Examples of the estimated ground plane in sequence “campus” by two different meth-
ods: (a) and (b) feature extraction, (c) outcome of the proposed method, and (d) outcome of
the classical method
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3 Segment Based Stereo Matching

Segment based methods normally consist of four steps to obtain the estimated sur-
faces, whose algorithm is illustrated in Fig. 6. First of all, the regions of homoge-
neous colour are detected by using a colour segmentation algorithm. This is fol-
lowed by a local window based matching method that is utilised to estimate the
disparities across two groups of image points. A plane fitting is then applied to gen-
erate disparity planes that indicate the feature points. Finally, an optimal disparity
plane is obtained using a greedy optimisation algorithm.

Fig. 6 Flowchart of the segment based stereo matching algorithm
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3.1 Colour Segmentation

Considering a pair of colour images that can be used to extract a 3-D structure, we
mainly focus on the region edges where most likely embed depth discontinuities. To
extract homogeneous regions mean shift based colour segmentation [21] is applied
to search for a maxima in a density function. This process is demonstrated in Fig. 7,
where (a) and (b) are original colour images, and (c) is the colour segmentation by
mean shift.

(a) (b) (c)

Fig. 7 Colour images and the segmentation by mean shift: (a) Left image, (b) right colour
and (c) segmentation result

A surface comprises a number of patches that can be represented by a dispar-
ity plane: d = c1x + c2y + c3, where (x,y) refers to image pixel coordinates, and
(c1,c2,c3) are used to determine a disparity d. Without further process, the available
disparity planes will be redundant and sometimes appear to be “noisy”. A number of
approaches can be used to reduce the noise. Klaus et al. [8] utilised a self-adapting
dissimilarity measure that integrates the sum of absolute intensity differences (SAD)
and a gradient based measure which is defined as

FSAD(x,y,d) = ∑
(i, j)∈N(x,y)

I1(i, j)− I2(i+ d, j) (1)

and

FGRAD(x,y,d) = ∑
(i, j)∈Nx(x,y)

|�x I1(i, j)−�xI2(i+ d, j)|

+ ∑
(i, j)∈Ny(x,y)

|�y I1(i, j)−�yI2(i+ d, j)|, (2)

where N(x,y) is a 3×3 window surrounding position (x,y). Nx(x,y) is a window
without the rightmost column, Ny(x,y) is a window without the lowest row, �x is
the forward gradient to the right and �x is the forward gradient to the left.

An optimal weight ω between FSAD and FGRAD can be used to maximise the
number of reliable correspondences that are handled by a cross-checking scheme in
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line with a winner-take-all strategy (the disparity is determined in the presence of
the lowest matching cost). The dissimilarity measure finally can be produced using
the following formula:

F(x,y,d) = (1−ω)×FSAD(x,y,d)+ω×FGRAD(x,y,d). (3)

3.2 Estimation of Disparity Planes

Once the disparity planes have been processed, then we may find appropriate dis-
parity planes to represent the scene structure. A robust solution is applied to esti-
mate the parameters. First of all, the horizontal slant is computed using the reliably
estimated disparities that fall in the identical line. The derivation ∂d

∂x is conducted
and used to determine the horizontal slant by applying convolution with a Gaussian
kernel.

Secondly, the vertical slant is calculated using a similar way to the above ap-
proach. Thirdly, the determined slant is used to obtain a robust estimation of the
centre of the disparity pitch. The disparity map obtained according to the previous
descriptions is not good enough in terms of accuracy. A matching procedure for
each “segment to plane” assignment is used as follows:

FSEG(S,Pe) = ∑
(x,y)∈S

F(x,y,d), (4)

where Pe is a disparity plane that defines the disparity d. This equation is iteratively
used to find the segments with the minimum matching cost, and all the segments go
over this process.

The final stage of this segment based stereo matching is to search the solution to
the segment-to-disparity plane assignment. This in fact is a minimisation problem
that satisfies

E( f ) = Edata( f )+ Esmooth( f ), (5)

where {
Edata( f ) = ∑s∈R FSEG(s, f (s))
Esmooth( f ) = ∑∀(si,s j)∈SN | f (si) �= f (s j))Ω(si,s j)

(6)

where f is a labeling function, SN is a set of adjacent segments and Ω is a discon-
tinuity penalty. An optimal labeling with minimum energy is approached using the
Loopy belief propagation algorithm [22]. This optimisation is illustrated in Fig. 8,
where (a) indicates the pixel disparity map and (b) is the optimisation of (a). To
further demonstrate the performance of the colour segment based stereo approach,
we use three pairs of images for the estimation of disparity maps, which is revealed
in Fig. 9. It is observed that this proposed algorithm can effectively handle the sce-
narios that possess less clutters but fails in complex scenes.
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(a) (b)

Fig. 8 Disparity maps: (a) pixel-wise, and (b) final disparity map

Fig. 9 Three test pairs and their corresponding disparity maps, where 1st- and 2nd-column
are original images and 3rd-column is the disparity map
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4 Connectivity Based Stereo Correspondence

Corresponding two images of a scene involves the selection of local metric, e.g.
intensity or colour. However, image matching only based on the available local
information will not be enough. This is due to the fact that colour repetition and
redundancy exit everywhere. To reduce the effects of this uncertainty, the pixel
characteristics must be used along with additional assumptions or constraints, e.g.
continuity or smoothness. Prior knowledge of these constraints can be dominant in
the estimation of patches. For example, depth discontinuities (edges or connective
parts of inhomogeneous regions) will be determined if and only if smoothness is
enforced. This also brings an interesting question, “has a shape anything to with
the stereo correspondence”? The answer is yes. In fact, if we know where to find a
shape, then the segmentation and correspondence of the associated image areas will
be achieved without any problem, and vice versa. Unfortunately, this kind of prior
knowledge is unavailable in all the time.

To effectively solve this problem, Ogale and Aloimonos [23] treat the disparity
map of a real scene as a piecewise continuous function, where the images are de-
scribed with the minimum possible number of pieces (segmentations). This piece-
wise continuous function is approximated by piecewise consistency. The role of
shape in establishing correspondence is also discussed in their report. Particularly,
the relation of the image correspondence and the segmentation is un-separated. The
authors also emphasize on the geometric effects that were raised regarding the cor-
respondence of a horizontally slanted surface. This is because the uniqueness con-
straint used to find the one-to-one correspondence does not hold in the presence of
horizontally slanted surfaces and hence one against many matches will be observed.

The proposed algorithm presented in [23] is summarised as follows, given that
the two images has shifts σx ∈ {σ1,σ1, ...,σk}:

Step 1: Shift the left image IL horizontally by σx and then generate a new image
I′L. Then match I′L with IR.

Step 2: Investigate the closeness of the pixel (x, y) and its vertical neighbor
(x, y−1).

Step 3: Build up connected components using the vertical connections from
Step 2.

Step 4: Determine the weights of the connected components.
Step 5: If the connected components surrounding the image pixel cause larger

shifts, then the estimated left/right disparity maps must be updated by taking into
account the uniqueness constraint.

One simple scanline algorithm was used to deal with the horizontal slant that leads
to the violation of the uniqueness constraint in the correspondence. Assume that we
have a pair of scanlines IL(x) and IR(x). Horizontal disparities �L(x) are assigned
to the left scanline within RANGLE OF [�1,�2], and �R(x) to the right scanline
with the range [−�1,−�2. The left scanline consists of the functions mL(x) and
dL(x) and the right scanline has the functions mR(x) and dR(x). Two image points
xL and xR must satisfy the following formula:
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Fig. 10 Four test pairs and their corresponding disparity maps, where 1st- and 2nd-column
are original images and 3rd-column is the disparity map.

xR = mL(xL) · xL + dL(xL), (7)

and
xL = mR(xR) · xR + dR(xR). (8)

Since
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mR(xR) = 1

mL(xL)

dR(xR) = − dL(xL)
mL(xL)

(9)

Therefore, the disparity map can be estimated as follows:{�L(xL) = (mL(xL)−1) · xL + dL(xL)
�R(xR) = (mR(xR)−1) · xR + dR(xR) (10)

where the functions ml and mR are the horizontal slants that enable line segments on
two scanlines to match.

In the occurance of the horizontal slants, we shall have a developed algorithm for
the disparity estimation:

Step 1. For all mL ∈ M, �L ∈ [�1,�2],
(a) Stretch IL by mL to get I′L.
(b) Define a range for dL using the given range for �L.
(c) For every dL, match I′L and IR. Then find connected matching segments and

their sizes; update correspondence map while enforcing the uniqueness constraint.
Step 2. For all mR ∈ M, �R ∈ [−�2,−�1],
Similar approaches to the above.
3. mL = mR = 1
(a) For every dL ∈ [�1,�2], match IR and IL and find connected matching seg-

ments and their sizes; update correspondence map using the uniqueness constraint.

If there is any vertical slant in the view, similar approaches to the case of horizontal
slants can be considered. It is worthy to point out that when a higher order model of
shapes is met, there will not be any established algorithm for this sort of problems
yet. To demonstrate the performance of this connectivity based stereo correspon-
dence algorithm, Fig. 10 denotes 4 pairs of images and their disparity maps. Is is
observed that the performance of this connectivity based approach cannot be main-
tained due to the image clutters.

5 Wide Baseline Stereo Correspondence Using Local
Descriptors

A number of short baseline stereo matching algorithms have been established with
reasonable performance [24],[25],[26]. Due to the large distance and orientation
change wide baseline stereo matching is more challenging and many application
problems are related to this wide baseline issue.

The developed wide baseline methods intend to use small correlation windows
or point-wise similarity measures [15],[27]. But these algorithms abruptly loose
their capability in the presence of light changing [28]. Local image descriptors, e.g.
SIFT [29] and GLOH [30], have been commonly used in dense matching, where
the matching process can be efficiently and effectively achieved. For example, [31]
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reported the propagation of the disparity maps of the matched features to their
neighbours.

Tola et al. reported a new approach based on the local descriptors [28]. This
strategy comes up with a new descriptor that retains the robust features of SIFT and
GLOH. The descriptor is then used for dense matching and view-based synthesis
using stereo-pairs. The kernel of the technique is that computational complexity can
be significantly reduced without sacrificing the performance by convolving orienta-
tion maps to compute the histogram bin values.

A vector here is made of values from the convolved orientation maps located on
concentric circles centered at the pixel location. Let h∑(u,v) be the vector at (u,v)
after the convolution by a Gaussian kernel of standard deviation ∑:

h∑(u,v) = [G∑
1 (u,v), ...,G∑

8 (u,v)]T , (11)

where G∑
1 (u,v), ...,G∑

8 (u,v) are the convolved orientation maps. These vectors are
normalised to unit norm h̃ so that they represent the pixels near occlusions as correct
as possible. The propsoed descriptor D(u0,v0) for location (u0,v0) is then defined as
a concatenated h vectors:

D(u0,v0)= [h̃T
∑1

(u0,v0), h̃T
∑1

(l1(u0,v0,R1)), ..., h̃T
∑1

(lN(u0,v0,R1)), ..., h̃T
∑3

(lN(u0,v0,R3))]T ,
(12)

where l j(u,v,R) is the location with distance R from (u,v) in the j direction that has
N values. Once these feature have been obtained using the descriptors, similarities
across images will be measured using the graph-cut-based reconstruction algorithm
presented in [32]. An occlusion map is used to handle occlusions using EM and
binary masks that have been redefined to enforce the spatial coherence of the occlu-
sion map. Fig. 11 shows an example where shadows may affect the estimation of the
disparity maps. But in this example, the proposed algorithm handles this situation
well and the shadow area has not been false-positive. In Fig. 12, the proposed al-
gorithm leads details (human statues) to being explicitly separated. Finally, Fig. 13
demonstrates that three images can be combined to improve the outcome generated
using two images.

Fig. 11 Test triples and the corresponding depth map, where 1st- and 2nd-column are original
images and 3rd-column is the depth map
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Fig. 12 Three test images and the corresponding depth map, where the bottom right is the
depth map and the remainder refers to the original images

6 Evaluation of Different Methods

In the previous sections, we briefly summarised the principles and characteristics
of a few classical and typical stereo matching algorithms. To evaluate their perfor-
mance in information retrieval, we in this section compare these algorithms using
the RUSHES database that was designed for video retrieval [3]. This database con-
sists of 134 raw videos and has about 14 hours’ length in total, provided by Span-
ish communication group Euskal Irrati Telebista (EITB). The videos used in this
database include various contents, e.g. interviews, football matches, aerial views,
shopping and rowing, etc. 3064 key frames have been extracted from the overall
videos.

To illustrate the comparisons we here use exemplar image pairs taken from the
database. Fig. 14 shows five image pairs that denote different image backgrounds.
For example, 1st row shows an aerial view of a building from a helicopter, while
row 4 reveals shots from a moving hand-held video camera. These scenes are chal-
lenging to the existing stereo correspondence algorithms in the sense that a number
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Fig. 13 Three test images and the corresponding depth map, where the bottom right is the
depth map and the remainder refers to the original images

of objects appear in the background as well as the foreground. The algorithms in-
volved in the comparison comprise (1) Zhou’s algorithm [12], (2) Klaus’s algorithm
[8], (3) Ogale’ algorithm [23] and (4) Tola’ algorithm [28].

Fig. 15 illustrates the outcomes of different stereo matching algorithms. For ex-
ample, it has been observed from row 1 that Klaus’s algorithm allows the building’s
details to be significantly presented. However, we observe that Zhou’s and Tola’ al-
gorithms have the best performance in row 3’s outcomes due to the explicit details.
In the row, the human shapes can be noticed in the extracted disparity map by Zhou’s
algorithm, while the other algorithms seems to loose details. These comparison re-
sults demonstrate that the behaviors of individual algorithms may vary in different
images. Therefore, more broad and further studies on better performance of stereo
reconstruction are necessarily required in the community.
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Fig. 14 Illustration of exemplar test image pairs from the RUSHES database
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Fig. 15 Performance comparison of various stereo correspondence algorithms in the
RUSHES image pairs, where rows are the outputs of rows shown in Fig. 14 and columns
indicate the results of Zhou’s, Klaus’s, Ogale’s and Tola’s algorithms.
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7 Conclusions and Future Work

We have summarised several techniques for effective stereo correspondence from
2-D images. These systems can reasonably deal with the common problems such as
wide-baseline, clutters, and light changing. In the maximum likelihood estimation
approach, flat surfaces are extracted from the scenes by analysing the video content,
e.g. correspondence and 3-D recovery. An iterative RANSAC plane fitting scheme
was also presented. In the segment based stereo algorithm, the image patches look
neat in most cases. This is due to the colour segmentation before the disparity maps
are estimated. In the connectivity based scheme, the stereo correspondence is inte-
grated with shape segmentation. The shape segmentation is used to enhance the per-
formance of estimating the disparity maps. The last one is the wide-baseline stereo
strategy incorporating local descriptors. This algorithm can effectively handle some
significant wide-baseline cases. In spite of their success, these systems also reveal
their weakness in certain circumstances. One of the disadvantages is that, in many
cases, the local noise still evidently appears and somehow affects the structure rep-
resentation of the scene or objects. This weakness may be tackled if prior knowledge
of these details can be used after necessary training of a local classifier.
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