
Chapter 8
Strongly Nonlinear Vibrations

Abstract. This chapter presents analytical successive approximations al-
gorithms for different oscillators with strongly nonlinear characteristics. In
general terms, such algorithms approximate temporal mode shapes of vibra-
tions by polynomials and other simple functions of the triangular sine wave.
In order to develope the algorithms, the triangular wave is introduced into
dynamical systems as a new temporal argument. The corresponding manip-
ulations with dynamical systems are described in the first three sections.
Then the description focuses on the algorithm implementations for different
essentially unharmonic cases including oscillators whose characteristics may
approach nonsmooth or even discontinuous limits.

8.1 Periodic Solutions for First Order Dynamical
Systems

Let us consider a dynamical system described by first-order differential equa-
tion with respect to the vector-function x(t) ∈ Rn,

ẋ = f(x) (8.1)

where f(x) is a continuous vector-function, and the over dot indicates time
derivative.

We consider the class of periodic motions of the period T = 4a. Note that,
in the autonomous case, the period is a priori unknown. Periodic solutions
usually require specific, a priory unknown, initial conditions. Practically, how-
ever, such kind of the specific initial conditions are determined in a backward
way, after some periodic family of solutions is obtained under the assumption
of periodicity. In our case, the assumption of periodicity is imposed automat-
ically by the form of representation for periodic solutions

x = X(τ) + Y (τ)e (8.2)
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196 8 Strongly Nonlinear Vibrations

where τ = τ(t/a) and e = e(t/a) are the standard triangular sine and rect-
angular cosine, respectively, and X(τ) and Y (τ) are unknown components of
the solution.

Substituting (8.2) in (8.1), gives

(Y ′ − aRf ) + (X ′ − aIf )e + Y e′ = 0

where

Rf = Rf (X,Y ) =
1
2
[f(X + Y ) + f(X − Y )]

If = If (X,Y ) =
1
2
[f(X + Y )− f(X − Y )]

Eliminating the periodic singular term e′ = de(t/a)/d(t/a) by means of the
boundary condition for Y (τ), gives the non-linear boundary value problem
on the standard interval, −1 ≤ τ ≤ 1,

Y ′ = aRf (X,Y )
X ′ = aIf (X,Y ) (8.3)

Y |τ=±1 = 0

Note that, the entire interval−1 ≤ τ ≤ 1 is completely covered by a half of the
period, −a ≤ t ≤ a, however, representation (8.2) unfolds the corresponding
fragment on the entire time interval −∞ < t <∞.

8.2 Second Order Dynamical Systems

Consider now the differential equation of motion in the standard Newtonian
form

ẍ+ f(x, ẋ, t) = 0 (8.4)

where x(t) ∈ Rn is a positional vector-function, and the vector-function f is
assumed to be sufficiently smooth and periodic with respect to the explicit
time t with the period T = 4a; the autonomous case, when the period is a
priory unknown, is under consideration as well.

Substituting (8.2) into (8.4), using the differential and algebraic properties
of substitution (8.2), and imposing the boundary (smoothness) conditions,
gives

(X ′′ + a2Rf ) + (Y ′′ + a2If )e = 0

where

Rf =
1
2

[

f

(

X + Y,
X ′ + Y ′

a
, aτ

)

+ f

(

X − Y, − X ′ − Y ′

a
, 2a− aτ

)]

(8.5)
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If =
1
2

[

f

(

X + Y,
X ′ + Y ′

a
, aτ

)

− f
(

X − Y, − X ′ − Y ′

a
, 2a− aτ

)]

(8.6)
This leads to the boundary value problem

X ′′ + a2Rf (X,Y,X ′, Y ′, τ) = 0, X ′|τ=±1 = 0 (8.7)

Y ′′ + a2If (X,Y,X ′, Y ′, τ) = 0, Y |τ=±1 = 0 (8.8)

Let us discuss the form of equations (8.7) and (8.8).
Firstly, despite of the obvious formal complication, equations (8.7) and

(8.8) possess certain symmetries dictated by substitution (8.2). For instance,
introducing the new unknown variables,

U(τ) = X(τ) + Y (τ)
V (τ) = X(τ)− Y (τ)

brings the boundary value problem, (8.7) and (8.8), to the form, in which
the differential equations are decoupled at cost of coupling the boundary
conditions though,

U ′′ + a2f (U, U ′/a, 2a− aτ) = 0
V ′′ + a2f (V, − V ′/a, 2a− aτ) = 0 (8.9)

U ′ + V ′|τ=±1 = 0
U − V |τ=±1 = 0

In case when analytical methods are applied, the differential equations (8.9)
for U(τ) and V (τ) can be usually solved in a similar way. Nevertheless, the
previous boundary value problem, (8.7) and (8.8), may appear to have some
advantages for analyses. For instance, the problem may admit families of
solutions with either Y (τ) ≡ 0 or X(τ) ≡ 0.

Secondly, due to substitution (8.2), the major qualitative property of solu-
tions, such as periodicity, is a priory captured by the new argument, τ . As a
result, the following simplified system can be employed as a generating model
for analytical algorithms of successive approximations

X ′′ = 0 (8.10)
Y ′′ = 0

Indeed, substituting obvious solutions of equations (8.10) in (8.2), gives a
family of nonsmooth periodic motions with respect to the original time pa-
rameter, t,

x(t) = X(0) +X ′(0)τ(t/a) + (Y (0) + Y ′(0)τ(t/a))e(t/a) (8.11)
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Thirdly, from the physical standpoint, linear equations (8.10) describe a
strongly nonlinear (nonsmooth) generating model. In particular, if Y (0) = 0
and Y ′(0) = 0, then vector-function (8.11) describes vibrations of basic vibro-
impact models.

The analytical algorithms developed in few sections below are based on the
idea of approximation of smooth vibrating systems by the basic vibroimpact
models. In other words, the triangular sine wave is assumed to be a domi-
nant component of temporal mode shapes of vibrations. Such an idea indeed
follows the analogy with the quasi harmonic approaches. In particular, the
harmonic balance method approximates vibrating systems by effective har-
monic oscillators regardless types or magnitudes of the system nonlinearities.
This is justified by the fact that Fourier coefficients usually decay in a fast
enough rate so that, for instance, second term can be considered as a small
correction to the first term. The corresponding “small parameter” is therefore
hidden in the iterative procedure itself rather than explicitly present in the
differential equations of motion.

Finally, equations (8.10) make sense due to the temporal substitution t −→
τ(t/a). In terms of the original variables, the corresponding equation, ẍ = 0,
contains too little information about the original system (8.4) and captures
no global properties of the dynamics.

8.3 Periodic Solutions of Conservative Systems

8.3.1 The Vibroimpact Approximation

Let us consider the case of n-degrees-of-freedom conservative system

ẍ+ f(x) = 0 (8.12)

where f(x) is an odd analytical vector-function of the positional vector-
column x(t) ∈ Rn.

A one-parameter family of periodic solutions will be built such that
X(−τ) ≡ −X(τ). Since equation (8.12) admits the group of time transla-
tions then another arbitrary parameter can be always added to the time
variable. Taking into account the symmetry of system (8.12), enables one of
considering the particular case of substitution (8.2)

x(t) = X(τ(t/a)), Y ≡ 0 (8.13)

Based on the conditions assumed, the boundary value problem (8.7) and (8.8)
is reduced to the following one

X ′′ + a2f(X) = 0 (8.14)
X ′|τ=1 = 0
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We seek solutions of the boundary value problem (8.14) in the form of series
of successive approximations

X = X0(τ) +X1(τ) +X2(τ) + ... (8.15)

a2 = h0(1 + γ1 + γ2 + ...) (8.16)

In order to organize the corresponding iterative procedure, it is assumed that

O(‖X i‖)� O(‖X i+1‖)
O(γi+1) � O(γi+2) (8.17)

(i = 0, 1, 2, ...)

where the norm of vector-functions is defined by ‖X‖ =max
τ
‖X‖Rn.

Based on assumptions (8.17), series (8.15) and (8.16) generate the se-
quences of equations and boundary conditions as, respectively,

X0′′ = 0 (8.18)

X1′′ = −h0f(X0) (8.19)

X2′′ = −h0[γ1f(X0) + f ′
x(X0)X1] (8.20)

· · ·
and

(X0′ +X1′)|τ=1 = 0 (8.21)

X2′|τ=1 = 0 (8.22)

· · ·
Note that condition (8.21) includes first two approximations as the only way
to proceed with a non-zero generating solution. In particular, the generating
solution is found from equation (8.18) in the form

X0 = A0τ (8.23)

where A0 ∈ Rn is an arbitrary constant vector, and the oddness condition
has been enforced in order to set to zero another constant vector.

In line with the discussion at the end of the previous section, solution
(8.23) describes a multi-dimensional vibro-impact oscillator between two ab-
solutely stiff and perfectly elastic barriers such that A0 is the normal vector
to both barriers. Direction of the vector A0 will be defined on the next step of
successive approximations, whereas its length will appear to be coupled with
the parameter h0 by some relationship due to boundary condition (8.21).
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So substituting (8.23) in (8.19) and integrating, gives solution

X1 = A1τ − h0

τ∫

0

(τ − ξ)f(A0ξ)dξ (8.24)

where A1 is another arbitrary constant vector.
Note that the first term in expression (8.24) is similar to generating solu-

tion (8.23) and thus contributes nothing new into the entire solution within
the first two steps of the procedure. Therefore, we take A1 = 0 and then
substitute the combination X0 +X1 in the boundary condition (8.21). This
gives a nonlinear eigen value problem with respect to the vector A0 in the
form

1∫

0

f(A0τ)dτ =
1
h0
A0 (8.25)

Equation (8.25) represents a set of n scalar equations relating the components
of vector A0 and the parameter h0. The combination A0 and 1/h0 will be
interpreted as an eigen vector and eigen value of the nonlinear eigen vector
problem (8.25).

Taking scalar product of both sides of equation (8.25) with A0T , gives

h0 =
A0TA0

A0T
1∫

0

f(A0τ)dτ
(8.26)

where the upper index T stays for transpose operation.
In order to clarify the meaning of expressions (8.25) and (8.26), let us

consider the linear case f(x) ≡ Kx, where K is an n×n stiffness matrix. The
corresponding relationships will differ from those of the exact linear theory
by specific constant factors because the temporal mode shape of vibrations
is not exact but approximated by the triangular sine wave. Nevertheless,
in nonlinear cases, expression (8.26) can provide estimates for amplitude-
frequency response characteristics.

Further, integrating equation (8.20), gives

X2 = A2τ − h0

τ∫

0

(τ − ξ)[γ1f(A0ξ) + f ′
x(A0ξ)X1(ξ)]dξ (8.27)

where A2 is an arbitrary constant vector, and f ′
x( A0ξ ) is the n×n − matrix

of first partial derivatives (Jacobian).
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Then boundary condition (8.22) gives

A2 = h0

1∫

0

[γ1f(A0τ) + f ′
x(A0τ)X1(τ)]dτ (8.28)

where the coefficient γ1 is yet unknown.
In order to determine the coefficient γ1, an additional condition for the

vector A2 can be imposed, for instance, as follows

A0TA2 = 0 (8.29)

This condition means that the vector A2 must be orthogonal to the corre-
sponding vector of the generating solution A0 in order to keep the amplitude
fixed.

Substituting (8.28) in (8.29), gives

γ1 = −
A0T

1∫

0

f ′
x(A0τ)X1dτ

A0T
1∫

0

f(A0τ)dτ
(8.30)

This completes the second step of successive approximations. All the further
steps can be passed in the same way.

In general terms, convergence properties of the above procedure are due
to the following integral operator

F [X ] ≡ a2

⎧

⎨

⎩
τ

1∫

τ

f(X(ξ))dξ +

τ∫

0

ξf(X(ξ))dξ

⎫

⎬

⎭
(8.31)

where

a2 = h0

A0T
1∫

0

f(A0τ)dτ

A0T
1∫

0

f(X)dτ
(8.32)

Based on definition (8.31), the original boundary value problem (8.14) admits
representation in the form X = F [X ]. Therefore, the convergence condition
is

‖F ′
X [X0]δX‖
‖δX‖ < 1 (8.33)

where δX is an arbitrary vector-function from a small enough neighborhood
of X0.
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In the case of linearized system, condition (8.33) leads to the set of in-
equalities ωi/ωj < 1 for all i �= j, where ωj is the eigen frequency of the
linear normal mode, which is chosen to be a generating solution.

8.3.2 One Degree-of-Freedom General Conservative
Oscillator

In the one-degree-of-freedom case with odd characteristic, the boundary con-
dition at τ = 1 is reduced to a single equation, which is sequentially satisfied
by the factor h0 and terms γ1, γ2,... of series (8.16). As a result, the process
of successive approximations therefore eases by setting A0 = A and Ai = 0
for i = 1, 2,... .

Let us introduce notations hi = h0γi and represent series (8.15) and (8.16)
in the form

X = X0(τ) +X1(τ) +X2(τ) + ...

a2 = h0 + h1 + h2 + ... (8.34)

where Xi(τ) are scalar functions of the triangular sine wave τ = τ(t/a).
Due to the reduction of one-dimensional case, all terms of the expansions

are iteratively determined by the explicit relationships. First two steps of the
iterative procedure are coupled by the smoothing boundary condition (8.21)
that provides the leading order smooth estimate for the temporal mode shape
by coupling the parameters, h0 = h0(A), as follows

X0 = Aτ (8.35)

X1 = −h0

τ∫

0

(τ − ξ)f(Aξ)dξ

h0 = A/

1∫

0

f(Aξ)dξ (8.36)

All the next steps of the procedure are passed then in a similar way based
on relationships

Xi = −
i∑

j=1

hj−1

τ∫

0

(τ − ξ)Ri−jdξ

hi−1 = −
i−1∑

j=1

αi−jhj−1 (8.37)

(i = 2, 3, ...)
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where the coefficients and integrands are generated by means of the formal
auxiliary parameter, ε, as follows

αi =

1∫

0

Ridξ/

1∫

0

R0dξ (8.38)

Ri =
1
i!
dif(X0 + εX1 + ε2X2 + · · ·)

dεi
|ε=0

(i = 0, 1, 2, . . .)

The way of using the parameter ε is in compliance with assumptions (8.17).
Respectively, such parameter splits the restoring force according to (8.38) and
then disappears from expressions. The convergence of such iterative series of
successive approximations is illustrated by the following example.

Example 12. Let us consider the oscillator

ẍ+ xm = 0

where m is an odd positive integer. This oscillator was already discussed in
Chapter 3 under the notation m = 2n − 1. Now, applying two iterations
according to the above scheme, (8.36) and (8.37), gives solution

X = A

[

τ − τm+2

m+ 2
+

m

2(m+ 2)

(
τ2m+3

2m+ 3
− τm+2

m+ 2

)

−R3 −R4 − · · ·
]

(8.39)

a2 =
m+ 1
Am−1

{

1 +
m

2(m+ 2)

[

1 +
(m+ 1)2

(m+ 2)(2m+ 3)

]

+ r3 + r4 + · · ·
}

(8.40)

where expressions

0 < Ri(m, τ) <
m |τ |m+2

2i−1(m+ 2)2
(8.41)

0 < ri(m) <
m

2i(m+ 2)

provide estimates for high order terms of the successive approximations. In
particular, expressions (8.41) indicate that series (8.39) and (8.40) may con-
verge quite slowly. However, the asymptotic of large exponents m essentially
improves precision of the truncated series even though first few terms of
the series are included. The temporal mode shapes of different iterations are
shown in Fig. 8.1, whereas Fig. 8.2 illustrates the period as a function of
the number m under the fixed energy in the first iteration only. For com-
parison reason, the exact result and first order approximation according to
the harmonic balance method are also shown in the diagram. In particular,
Fig. 8.1 shows that high-order iterations are localized near the time points
corresponding to amplitude positions of the oscillator. For instance, the first
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Fig. 8.1 The first three terms of iteration (thin lines) and their sum (solid line)
for the temporal mode shape of the oscillator ẍ + x5 = 0.
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Fig. 8.2 The period of the oscillator with power characteristic at different expo-
nents m obtained by three different methods under the total energy E = 2.

iteration X1 just compensates the discontinuities of slope of the generating
solution X0 with a minor effect on the rest of the triangular sine wave. Fur-
ther, Fig. 8.2 confirms that expansion (8.40) gives a better estimate for the
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period than the harmonic balance as the exponent m increases. Note that the
entire series (8.39) and (8.40) are not asymptotic with respect to m or 1/m
in the sense of Poincare, however the series perfectly capture the asymptotic
of impact oscillator as m→∞.

8.3.3 A Nonlinear Mass-Spring Model That Becomes
Linear at High Amplitudes

As another example of conservative oscillator, we consider a single mass vi-
brating system illustrated by Fig. 8.3 and described by the Lagrangian

L =
mẇ2

2
− kl2

(√

1 +
w2

l2
− 1

)2

Here, m is mass, k is the linear stiffness of each spring, l is the length of each
spring at the equilibrium position at which the springs are horizontal, and w
is the particle vertical coordinate.

In terms of the dimensionless coordinate x = w/l and phase ϕ =
(2k/m)1/2t, the corresponding differential equation of motion takes the form

d2x

dϕ2
+ x− x√

1 + x2
= 0 (8.42)

Then, applying substitution (8.13) as x = X(τ) and τ = τ(ϕ/a), leads to the
boundary problem

X ′′ = −h
(

X − X√
1 +X2

)

≡ −hf(X)

X ′|τ=1 = 0 (8.43)

where h = a2.

l l

w�t�

Fig. 8.3 The system which becomes weakly non-linear at large amplitudes.
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First two steps of the successive approximation procedure give

X0 = Aτ

h0 =

(

1
2
−
√

1 + A2 − 1
A2

)−1

and

X1(τ) = − h0

2A2

[
1
3
(Aτ)3 + 2Aτ −Aτ

√

1 + (Aτ)2 − arcsinh(Aτ)
]

(8.44)

γ1 =
h0

A3

[
6A+A3

12
+

9A−A3

6
√

1 +A2
−
(

1 +
1√

1 +A2

)

arcsinh(A)
]

Interestingly enough, this model is essentially nonlinear at small amplitudes,
but it becomes linear as the amplitudes are infinitely large. Indeed, taking
the corresponding limits, shows that

X1

A
→ −1

5
τ5, h0A

2 → 8, γ1 → 3
10

as A→ 0 (8.45)

and
X1

A
→ −1

3
τ3, h0 → 2, γ1 → 1

6
as A→∞ (8.46)

The asymptotic (8.45) obviously corresponds the nonlinear oscillator, whereas
the limit case (8.46) associates with the harmonic oscillator. Nevertheless,
solution (8.44) is valid for both large and small amplitudes. Both limit cases
follow from equation (8.42). In the case of small amplitudes, |x|  1, by using
the estimate (1 + x2)−1/2 ∼ 1− x2/2 in equation (8.42), we obtain

d2x/dϕ2 + x3/2 = 0 (8.47)

In the case of large amplitudes, it follows even from Fig. 8.3 that the distance
between the spring fixed ends becomes negligible if as compared to l. As
a result, the mechanical model becomes effectively close to a mass-spring
oscillator of mass m with a single spring of stiffness 2k. In terms of the
differential equations of motion, we also obtain the corresponding limit from
exact equation (8.42) by assuming that, during ‘most of the time of vibration
cycle,’ |x| � 1 and thus

√
1 + x2 ∼ |x|. As a result, equation (8.42) is replaced

by
d2x/dϕ2 + x− sgn(x) = 0 (8.48)

where the term sgn(x) has to be neglected due to the same condition |x| � 1
that gives the standard linear oscillator.

Alternatively, the discontinuous term in equation (8.48) can be saved and
then considered as a perturbation of the harmonic oscillator. Note that equa-
tion (8.48) admits another form as follows
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d2x/dϕ2 + sgn(x)(|x| − 1) = 0 (8.49)

The restoring force characteristic of oscillator (8.49) represents a particular
case of the characteristic, p(x) = sgn(x)f(|x|), which is considered later in
this chapter.

8.3.4 Strongly Non-linear Characteristic with a
Step-Wise Discontinuity at Zero

Let us consider the case of symmetric exponentially growing restoring force
characteristic with a step-wise discontinuity at zero such that

f(x) =
{

exp(x) for x > 0
− exp(−x) for x < 0 (8.50)

Although force (8.50) has no certain value at the point x = 0, this still can
play the role of equilibrium position. From the physical standpoint, this is
equilibrium of a small bead at the bottom of V -shaped potential well. The
local dynamics in a small neighborhood of such type of equilibria is considered
later in this chapter; see the text to Fig. 8.13.

It follows from (8.50) that f(−x) = −f(x). Therefore, periodic motions of
the corresponding oscillator can be described by the function x =
X(τ), where X(−τ) = −X(τ) and τ = τ(t/a). In terms of these NSTT
variables, the oscillator of a unit mass is described by the boundary value
problem

X ′′ + h exp(X) = 0, X ′|τ=1 = 0 for τ ∈ (0, 1]
X ′′ − h exp(−X) = 0, X ′|τ=−1 = 0 for τ ∈ [−1, 0) (8.51)

where h = a2.
This problem is exactly solvable, and solution that satisfies the continuity

of state condition at τ = 0 has the form

X±(τ) ≡ Aτ ± 2 ln (1 + exp(−A)) (8.52)

∓2 ln
(

1 +
h

2h0
exp(±Aτ −A)

)

where X+ and X− are taken for positive and negative subintervals of τ ,
respectively, and

h = 2h0 =
2A2

exp(A)[1 + exp(−A)]2
(8.53)

Note that both the differential equation of oscillator and its solution admit
unit form representations as, respectively,

ẍ+ sgn(x) exp(|x|) = 0 (8.54)
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and

X = sgn(τ)
(

A|τ | + 2 ln
(

1 + exp(−A)
1 + (h/(2h0)) exp(A|τ | −A)

))

(8.55)

The parameter h is obtained from equation

X ′|τ=1 = 0 (8.56)

or

1− h

h0

(

1 +
h

2h0

)−1

= 0 (8.57)

This exactly solvable case can play the role of a majorant for evaluation of
convergence properties of successive approximations. For that reason, we in-
troduce a formal ‘small’ parameter, ε = 1, and represent solution of equation
(8.57) in the form

h = 2h0 = εh0

(

1− ε

2

)−1

(8.58)

Taking into account (8.58), brings (8.55) to the form

X = sgn(τ)
(

A|τ |+ 2 ln
(

1− (ε/2) (1− exp(−A))
1− (ε/2) (1− exp(A|τ | −A))

))

(8.59)

It can be shown by direct calculations that the power series expansions of
(8.58) and (8.59) with respect to ε lead to the same series as those obtained
by means of the iterative procedure introduced in this section for a general
one-degree-of-freedom oscillator. Moreover, the structure of expression (8.58)
suggests that considering the modified series,

h =
εh0

1− ελ1 − ε2λ2 − ... (8.60)

leads to the exact value h already on the second step of the procedure. This
fact can be employed for other cases in order to improve efficiency of the
successive approximation series (8.16). For instance, according to the idea of
Padè transform [19], the following equality must hold in every order of ε

εh0

1− ελ1 − ε2λ2 − ... = εh0(1 + εγ1 + ε2γ2 − ...) (8.61)

This is equivalent to

(1 + εγ1 + ε2γ2 − ...)(1− ελ1 − ε2λ2 − ...) = 1 (8.62)

Taking the product of series on the left-hand side of (8.62) and consider-
ing different orders of ε, generates a sequence of equations for the coefficients
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λ1, λ2, ... . Then, substituting the corresponding solutions in (8.60), gives a
particular case of Padè transform of (8.16) in the form

h =
εh0

1− εγ1 − ε2(γ2 − γ2
1)− ... (8.63)

In many cases, expansion (8.63) appears to be more effective than (8.16). Note
that it is also possible to organize the successive approximations procedure
by using expansion (8.60) instead of (8.16).

8.3.5 A Generalized Case of Odd Characteristics

This subsection deals with some generalization of the standard one-degree-
of-freedom conservative oscillator

ẍ+ f(x) = 0 (8.64)

where f(x) is a smooth odd characteristic,

f(−x) = −f(x) (8.65)

It was shown in this chapter that periodic solutions of the oscillator (8.64)
admit the form x = X(τ), where

X(−τ) = −X(τ) (8.66)

and, in addition, X(τ)τ ≥ 0 for −1 ≤ τ ≤ 1.
We consider now the following class of oscillators

ẍ+ sgn(x)f(|x|) = 0 (8.67)

In the case of odd characteristic, f(x), oscillator (8.67) is equivalent to the
original one (8.64). The extension is due to the fact that the oscillator (8.67)
always has an odd characteristic regardless whether or not the function f(x)
itself is odd. In general case, however, the characteristic sgn(x)f(|x|) may
appear to be nonsmooth at the equilibrium point x = 0. As a result, direct
implementation of iterative procedures with high-order derivatives of oscilla-
tor’ characteristics becomes quite limited. Nevertheless, as illustrated below,
the group properties of equation (8.67) can help to effectively build solution
of equation (8.67) based on solution of equation ẍ + f(x) = 0 for x > 0 by
ignoring the point x = 0.

Obviously, if P (x) is the potential energy of oscillator (8.64), then P (|x|) is
the potential energy corresponding to oscillator (8.67). The following example
explains why equation (8.67) covers a broader class of oscillators than (8.64).

Example 13. ẍ+sgn(x)|x|3/2 = 0 is an oscillator, but ẍ+ x3/2 = 0 is not; see
also Chapter 3 for the related discussion.
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Based on the transition from equation (8.64) to equation (8.67) and the
general symmetry properties (8.65) and (8.66), we introduce the following
representation for periodic solutions of equation (8.67)

x = sgn(τ)X(|τ |) (8.68)

Such an extension enables one to obtain ‘closed form’ analytical solutions
for a large number of oscillators by a simple adaptation of already known
solutions, X(τ), for different cases of smooth characteristics.

Example 14. Applying transformation (8.68) to solution (8.39), which was
derived for the power form characteristic xα with an odd positive exponent
α = m, gives

X = Asgn(τ)
[

|τ | − |τ |
α+2

α+ 2
+

α

2(α+ 2)

( |τ |2α+3

2α+ 3
− |τ |

α+2

α+ 2

)]

(8.69)

where τ = τ(t/a) and the expansion (8.40) for a2 requires only the replace-
ment m → α. Expansion (8.69) represents an approximate solution of the
equation

ẍ+ sgn(x)|x|α = 0 (8.70)

where the notation α substitutes m in order to emphasize that the new expo-
nent can take any positive real value, such as even, odd, rational or irrational.
Figs. 8.4 and 8.5 illustrate solution (8.69) compared to numerical solution for
two different exponents α and the same parameter A = 1. As both figures
show, the analytical and numerical solutions are in a better match under the
large exponent α due to the influence of vibroimpact asymptotic, α→∞.
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Fig. 8.4 Analytical and numerical solutions of the modified oscillator shown by
continuous and dashed lines respectively.
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Fig. 8.5 Analytical and numerical solutions of the generalized oscillator under the
large exponent α.

The common feature of the algorithms and examples of this section is that
generating solutions for successive approximations are represented by trian-
gular sine waves of proper amplitudes and periods. Such generating solutions
belong to the ‘real’ component of the hyperbolic ‘number,’ x = X + Y e. In
contrast, the next section introduces algorithms of successive approximations
based on the ‘imaginary’ component. It will be seen that these two approaches
have different physical contents.

8.4 Periodic Motions Close to Separatrix Loop

In this section, the classic mathematical pendulum is considered as an ex-
ample, although the developed algorithm may be applicable to other cases
of one degree-of-freedom systems with multiple equilibrium positions. So we
illustrate the algorithm based on the differential equation of motion

ẍ+ sinx = 0 (8.71)

It is assumed that the pendulum oscillates inside the separatrix loop around
the stable equilibrium (x, ẋ) = (0, 0) in between two physically identical
unstable saddle-points (x, ẋ) = (±π, 0). The separatrix loop also represents
trajectory of the system with the total energy

Es ≡
π∫

0

sinxdx = 2 (8.72)
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The pendulum remains close to the separatrix loop in the area of periodic
motions if the total energy E is within the range

0 < 1− E

Es
<< 1 (8.73)

Let us show that, under condition (8.73), a successive approximation solution
can be derived from the particular case of boundary value problem (8.7) and
(8.8). Such particular case is given by setting X ≡ 0 so that

x(t) = Y (τ(t/a))e(t/a) (8.74)

Substituting (8.74) in equation (8.71) and following the NSTT procedure,
yields

Y ′′ = −a2 sinY (8.75)

and
Y |τ=1 = 0, Y (−τ) ≡ Y (τ) (8.76)

We seek solution of the boundary value problem, (8.75) and (8.76), in the
form of series of successive approximations

Y = π + εY1 (τ) + ε3Y3 (τ) + ε5Y5 (τ) + ... (8.77)

a2 = p2/
(

1− ε2λ2 − ε4λ4 − ...
)

(8.78)

where ε = 1 is an auxiliary “parameter” that helps to organize the iterative
process.

According to the formal expansion (8.77), the generating solution is rep-
resented by the rectangular cosine of the amplitude π, x(t) = πe(t/a), which
is a step-wise discontinuous function. Such temporal mode shapes occur near
the separatrix loop in the natural time scale of the pendulum because the
system spends most of the time during one period near the unstable equi-
librium positions x = π and its physically identical, x = −π. Therefore,
expansion (8.77) is designed to be a high-energy expansion near the unstable
equilibrium, rather than around the stable equilibrium position, x = 0.

Substituting expansions (8.77) and (8.78) into the equation (8.75) and
collecting terms with the same power of ε, leads to the sequence of equations

d2Y1

dτ2
− p2Y1 = 0 (8.79)

d2Y3

dτ2
− p2Y3 = p2

(

λ2Y1 − 1
6
Y 3

1

)

(8.80)

d2Y5

dτ2
− p2Y5 = p2

[
(

λ2
2 + λ4

)

Y1 − λ2

6
Y 3

1 +
1

120
Y 5

1 + λ2Y3 − 1
2
Y 2

1 Y3

]

(8.81)

...



8.4 Periodic Motions Close to Separatrix Loop 213

Further, the family even solutions of equation (8.79) can be represented in
the form

Y1 = −Acosh pτ
cosh p

(8.82)

where A is an arbitrary constant accompanied by the factor − cosh−1 p, which
is convenient for further calculations due to the relationship Y1(1) = −A.
In particular, this provides the same order of magnitude for the arbitrary
constant A as the parameter p and period T = 4a both go to infinity.

Further procedure is formally similar to the standard Poincare-Lindstedt
algorithm for nonlinear conservative oscillators with positive linear stiffness.
For example, substituting (8.82) into the right part of the equation (8.80),
gives a ‘resonance term’ on the right-hand side of the equation, which is pro-
portional to cosh pτ . This generates ‘hyperbolic secular terms’ of the form
τ cosh pτ and τ cosh pτ in the particular solution of equation (8.80). Occur-
rence of such terms can be prevented, however, analogously to the Poincare-
Lindstedt method by setting

λ2 =
A2

8 cosh2 p
(8.83)

As a result, the particular solution of equation (8.80) takes the form

Y3 =
A3 cosh 3pτ
192 cosh3 p

(8.84)

At the next stage, equation (8.81) gives solution

Y5 =
A5

4096 cosh5 p

(

cosh 3pτ − 1
5

cosh 5pτ
)

(8.85)

under the condition

λ4 = − 3A4

512 cosh4 p
(8.86)

Substituting (8.82) through (8.83) in (8.77) and (8.78), and setting ε = 1,
gives approximate solution

Y = π − A cosh pτ
cosh p

+
A3 cosh 3pτ
192 cosh3 p

(8.87)

+
A5

4096 cosh5 p

(

cosh 3pτ − 1
5

cosh 5pτ
)

and

h = p2

(

1− A2

8 cosh2 p
+

3A4

512 cosh4 p

)−1

(8.88)

where τ = τ (t/a) and a =
√
h.
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The truncated series of successive approximations (8.87) and (8.88) de-
pend upon two parameters, A and p, coupled by the boundary (continuity)
condition (8.76) as follows

A = π +
A3 cosh 3p
192 cosh3 p

+
A5

4096 cosh5 p

(

cosh 3p− 1
5

cosh 5p
)

(8.89)

Equation (8.89) should be interpreted as implicit function A = A(p) near
the point A = π. Therefore, expansions (8.87) and (8.88) represent a one-
parameter family of periodic solutions with the parameter p.
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Fig. 8.6 Analytical and numerical solutions of the period T=8.5 (p=2) shown by
solid and thin lines, respectively.

Note that the equation (8.71) admits the group of time translations. As
a result, another arbitrary parameter, say t0, is introduced by substitution
t→ t+ t0.

Figures 8.6 and 8.7 show that the analytical and numerical solutions are
matching better for larger periods as the system trajectory becomes closer to
the separatrix loop.

8.5 Self-excited Oscillator

This section illustrates the case when both X and Y components of solutions
participate in the iterative process.

In particular, we consider periodic self-sustained vibrations described the
differential equation of motion

ẍ+ g(x)ẋ+ f(x) = 0 (8.90)
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Fig. 8.7 Analytical and numerical solutions of the period T=24.5 (p=6) shown by
the solid and thin lines, respectively.

where f(x) and g(x) are analytic functions, such that (Lienard’ conditions)

a) G(x) =
x∫

0

g(u)du is an odd function such that G(0) = G(±μ) = 0 for some

μ > 0,
b) G(x) → ∞ if x → ∞, and G(x) is a monotonously increasing function

for x > μ,
c) f(x) is an odd function such that f(x) > 0 for x > 0.

The above conditions guarantee that system (8.90) has a single stable limit
cycle. In this case, the boundary-value problem (8.7) and (8.8) takes the form

X ′′ = −a2Rf − a (RgY
′ + IgX

′) ≡ −εFX , X ′|τ=±1 = 0 (8.91)
Y ′′ = −a2If − a (IgY ′ +RgX

′) ≡ −εFY , Y |τ=±1 = 0

where the period of limit cycle T = 4a is unknown, expressions Rf and If
as well as Rg and Ig are obtained by applying (8.5) and (8.6) to each of the
functions f(x) and g(x), and notations εFX and εFY are introduced with the
formal factor ε = 1 for further convenience.

We seek solution of the boundary value problem (8.91) in the form of series
of successive approximations

X = X0(τ) + εX1(τ) + ε2X2(τ) + · · · (8.92)
Y = Y0(τ) + εY1(τ) + ε2Y2(τ) + · · ·

a = q0 + εq1 + ε2q2 + · · · (8.93)
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Further solution procedure can be simplified by taking into account the sym-
metry properties X(−τ) ≡ −X(τ) and Y (−τ) ≡ Y (τ) due to the above
conditions (a) through (c). Substituting (8.92) and (8.93) into (8.91) and
matching the coefficients of the respective powers of ε, gives the following
sequence of boundary value problems

X ′′
0 = 0 (8.94)

Y ′′
0 = 0, Y0|τ=1 = 0

X ′′
1 = −FX,0, (X0 +X1)′|τ=1 = 0

Y ′′
1 = −FY,0, Y1|τ=1 = 0 (8.95)

X ′′
i+1 = −FX,i, X ′

i+1|τ=1 = 0
Y ′′

i+1 = −FY,i, Yi+1|τ=1 = 0 (8.96)
(i = 1, 2, ...)

where

FX,i =
1
i!
diFX

dεi
|ε=0, FY,i =

1
i!
diFY

dεi
|ε=0 (8.97)

Note that zero-order and first-order approximations are coupled through the
boundary condition for X-component in (8.95), whereas no boundary condi-
tion is imposed on X0 in (8.94). This specific represents a formalization of
the physical assumption regarding the dominating component in the tempo-
ral mode shape of vibration, which is assumed to be close to the sawtooth
sine rather than rectangular cosine. As a result, the generating system (8.94)
gives solution

X0 = Aτ , Y0 ≡ 0 (8.98)

where A is an arbitrary constant.
Substituting (8.98) in the right-hand side of equations (8.95) and integrat-

ing, yields

X1 = −q20
τ∫

0

(τ − ξ)f(Aξ)dξ, Y1 = −Aq0
τ∫

0

(τ − ξ)g(Aξ)dξ (8.99)

Then, substituting (8.99) in the boundary conditions in (8.95), gives the
following two equations for parameters q0 and A

q20

1∫

0

f(Aξ)dξ = A,

1∫

0

(1− ξ)g(Aξ)dξ = 0 (8.100)
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Relationships (8.98) through (8.100) complete first basic steps of the iterative
procedure. Further iterations are organized then in a similar way as follows

Xi+1 = −
τ∫

0

(τ − ξ)FX,i(ξ)dξ, Yi+1 = −
τ∫

1

dζ

ζ∫

0

FY,i(ξ)dξ (8.101)

1∫

0

FX,i(ξ)dξ = 0; i = 1, 2, .... (8.102)

Note that the boundary conditions for Yi+1 are satisfied automatically due
to the lower limit of the outer integral in (8.101), whereas the boundary con-
ditions for Xi+1 generates equations (8.102) for determining the coefficients
of series (8.93). Practically, high-order approximations can be obtained by
using computer systems of symbolic manipulations.

Example 15. Consider the self-excited oscillator with the power form stiffness
of the degree m = 3,

ẍ+ (bx2 − 1)ẋ+ x3 = 0

In this case, g(x) = bx2 − 1 and f(x) = x3. Conducting elementary integra-
tions in (8.100), gives the algebraic system

1
4
q20A

3 = A,
1
12
q0A

(

6− bA2
)

= 0

with non-trivial solution

q0 =

√

2b
3

, A =

√

6
b

As a result, integrating (8.99), yields

X1 = −
√

6
b

τ5

5
, Y1 = τ2 − τ4

All further steps of the procedure are conducted according to the same scheme
(8.101) and (8.102). For instance, first two steps of the procedure give ap-
proximate solution

x =

√

6
b
{τ − τ5

5
+

1
3150

[105τ9 + 900τ7b− 21τ5(70b+ 9) + 350τ3b]}

+(1− τ2){τ2 − 1
420

[20− 43τ2 + 20τ4 + 216τ6]}e

and the period

T = 4a = 8

√

b

6

(

1 +
3
20

)
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Two more steps of the procedure correct the above expression for the period
as follows

T =4a=8

√

b

6

(

1+
3
20

+
2960b+ 2121

50400
+

7367360b2 + 4554992b+ 8659035
605404800

)

Figs.8.8 and 8.9 show limit cycle trajectories described by the analytical so-
lutions in one and two iterations, respectively. For comparison, the numerical
solution for transition to the limit cycle is also presented. Then, Fig. 8.10
illustrates dependence of the quarter of period parameter, a = T/4, versus
the quantity b−1/2, which can be viewed as an estimate for the amplitude of
limit cycle.
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Fig. 8.8 Trajectories of numerical solution and the one iteration analytical limit-
cycle solution.

8.6 Strongly Nonlinear Oscillator with Viscous
Damping

This section describes the successive approximation procedure combined with
the asymptotic of small energy dissipation that leads to a slow amplitude
decay. The scheme of the algorithm is closed to that was introduced earlier
in [137].
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Fig. 8.9 Trajectories of numerical solution and approximate (two iterations) ana-
lytical limit-cycle solution.
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Fig. 8.10 Illustration of convergence of the iterative procedure on the parameter
plane.
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So consider a strongly nonlinear oscillator under the viscous damping

ẍ+ 2μẋ+ f(x) = 0 (8.103)

where f(x) is an odd function such that xf(x) ≥ 0, and 0 < μ << 1.
The idea of two variable expansions will be employed below in combination

with the sawtooth time substitution. Let us assume that τ(ϕ) is a ‘fast’ time
scale, whose phase ϕ depends on the ‘slow’ time scale t0 = μt according to
the following differential equation

ϕ̇ = ω(t0) (8.104)

where the right-hand side is a priory unknown.
Let us represent unknown solution of equation (8.103) in the form

x = x(ϕ, t0) = X(τ(ϕ), t0) + Y (τ(ϕ), t0)e(ϕ) (8.105)

Substituting (8.105) in equation (8.103), and imposing ‘smoothness condi-
tions,’

Y |τ=±1 = 0,
∂X

∂τ
|τ=±1 = 0 (8.106)

gives two partial differential equations

ω2 ∂
2X

∂τ2
= −Rf − μH ∂Y

∂τ
− μ2LX

ω2 ∂
2Y

∂τ2
= −If − μH ∂X

∂τ
− μ2LY (8.107)

where, as follows from (8.5) and (8.6),

Rf = Rf (X,Y ) =
1
2
[f(X + Y ) + f(X − Y )]

If = If (X,Y ) =
1
2
[f(X + Y )− f(X − Y )]

and two linear differential operators are introduced

H ≡ 2ω
(

1 +
∂

∂t0

)

+
dω

dt0
(8.108)

L ≡ ∂2

∂t02
+ 2

∂

∂t0

Note that the fast and slow temporal scales are associated with different
physical processes developed in the system. The slow energy dissipation pro-
cess is represented by the explicit small parameter μ, but there is no explicit
parameter associated with perturbations of the triangular sine wave, which
is supposed to be a generating solution of the iterative process. However, as
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discussed earlier in this section, introducing the sawtooth temporal argument,
implies that the entire right-hand side of system (8.107) is small. Otherwise,
the triangular sine wave cannot be considered as a dominating component of
the temporal mode shape of oscillations. Recall that, in a similar way, select-
ing the harmonic wave as a dominating solution in quasi harmonic approaches
implies that nonlinearities are small regardless system’ parameters. Therefore,
iterative procedure for boundary value problem (8.106) and (8.107) should
incorporate two different procedures, as those described above in this sec-
tion, and a proper asymptotic procedure related to the dissipation process.
Once again, the quasi-harmonic methods face similar situation when dealing
with weakly nonlinear systems under small damping conditions. For instance,
if being applied to such cases, the method of multiple scales accounts for
both unharmonicity and dissipation, after appropriate assumption regarding
the relation between non-linearity and damping parameters has been made.
Very often though, such parameters are assumed to be of the same order of
magnitude. As to the boundary value problem (8.106) and (8.107), similar
assumption can be introduced by providing the terms Rf and If , and the
parameter μ with the same formal ‘small factor’ ε = 1. Then, the multiple
scales or two variables expansions can be organized by using the auxiliary
parameter ε [137]. In the case of linear oscillator, such an algorithm recovers
the exact solution of the linear differential equation of motion however in the
specific form

x = X(τ, t0) = C
ω exp(−t0)
√

ε(1− εμ2)
sin

[√

ε(1− εμ2)
ω

τ(ωt)

]

(8.109)

and

ω2 =
ε(1− εμ2)

4 arcsin2
√

ε/2

where C is an arbitrary constant, and another arbitrary constant can be
introduced through the arbitrary time shift.

Note that solution (8.109) includes no Y -component because, at every
stage of the iterative process, it appears to be possible to satisfy condition

H(∂X/∂τ) = 0 (8.110)

Therefore, the second equation of system (8.107) is satisfied by setting Y ≡ 0.
Practically, condition (8.110) generates the common factor exp(−t0) for all
successive approximations.

In general nonlinear case, however, it is rather impossible to satisfy condi-
tion (8.110) at every stage of the process, but it still works for leading order
approximate solutions.

Example 16. Consider the weakly damped oscillator of the m degree power
form restoring force characteristic
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ẍ+ 2μẋ+ xm = 0 (8.111)

At this stage, the exponent m is an odd positive number. (It will be shown
later that a broader class of power characteristics can also be considered.)
Note that, for this kind of oscillators, whether or not the damping is small
depends on the level of amplitude and the exponent m. This is due to the
fact that, under small enough amplitudes, the elastic force becomes negli-
gible regardless the magnitude of damping. By assuming that the influence
of damping is negligible during one cycle of vibration, one can use expres-
sions (8.40) for estimations of magnitudes of damping and elastic forces. As
a result, the condition of ‘small damping’ derives in the form

μ2  1
4
(m+ 1)Am−1 (8.112)

One step of the procedure gives approximate solution [137]

x = Cexp
( −4μt
m+ 3

)(

τ − τm+2

m+ 2

)

(8.113)

where τ = τ(ϕ) and the phase variable is approximated by

ϕ = ϕ∞

[

1− exp
(

−2μ
m− 1
m+ 3

t

)]

(8.114)

ϕ∞ =
1
2μ

m+ 3
m− 1

C(m−1)/2

√

2(m+ 1)

Interestingly enough, the above approximate solution predicts that the oscil-
lator makes only a finite number of waves as m > 1 and t → ∞.
Figs. 8.11 and 8.12 illustrate damped responses of the oscillator with two
different degrees of nonlinearity, m = 3 and m = 7, respectively. As follows
from the diagrams, the approximate analytical solution and numerical one
are matching relatively well, especially at higher exponent, m = 7. In partic-
ular, this justifies the idea of using the sawtooth wave in strongly nonlinear
cases, when the oscillator becomes close to the standard vibroimpact model.

8.6.1 Remark on NSTT Combined with Two
Variables Expansion

In general, the iterative process of sawtooth expansions and the averaging
procedure can be separated. Moreover, the stage of sawtooth time substitu-
tion does not impose any specific method of analyses. So let us apply the two
variables method directly to the nonlinear boundary value problem (8.106)
and (8.107) by means of the asymptotic series

X = X0(τ, t0) + μX1(τ, t0) + μ2X2(τ, t0) + · · ·
Y = Y0(τ, t0) + μY1(τ, t0) + μ2Y2(τ, t0) + · · · (8.115)
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Fig. 8.11 Approximate analytical and numerical solutions of the damped oscillator
with cubic power form characteristic.

Fig. 8.12 Approximate analytical and numerical solutions of the damped oscillator
with the seven-th degree power form characteristic.
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and

ω = ω0(t0) + μω1(t0) + μ2ω2(t0) + · · ·
H = H0 + μH1 + μ2H2 + ... (8.116)

where Hi = 2ωi

(

1 + ∂/∂t0
)

+ dωi/dt
0.

Substituting (8.115) and (8.116) into (8.106) and (8.107) and matching
coefficients of like powers of μ, gives, in particular,

ω2
0

∂2X0

∂τ2
= −R(0)

f (X0, Y0),
∂X0

∂τ
|τ=±1 = 0

ω2
0

∂2Y0

∂τ2
= −I(0)

f (X0, Y0), Y0|τ=±1 = 0 (8.117)

and

ω2
0

∂2X1

∂τ2
= −R(1)

f (X0, Y0, X1, Y1)− 2ω0ω1
∂2X0

∂τ2
−H0

∂Y0

∂τ
∂X1

∂τ
|τ=±1 = 0

ω2
0

∂2Y1

∂τ2
= −I(1)

f (X0, Y0, X1, Y1)− 2ω0ω1
∂2Y0

∂τ2
−H0

∂X0

∂τ
(8.118)

Y1|τ=±1 = 0

where R(0)
f , R(1)

f , ... and I(0)
f ,I(1)

f , ... are determined by the expansions

R = R
(0)
f + μR

(1)
f + μ2R

(2)
f + ...

I = I
(0)
f + μI

(1)
f + μ2I

(2)
f + ...

By taking into account the assumptions on f(x) in equation (8.103), one can
represent solution of problem (8.117) in the following general form

X0 = X0(τ, A, ω0), Y0 ≡ 0 (8.119)

where A = A(t0) is an arbitrary function of the slow time scale, which is
coupled with the frequency ω0 through the boundary condition

∂X0(τ, A, ω0)
∂τ

|τ=1 = 0 (8.120)

In general, this relationship determines the implicit function ω0 = ω0(t0).
Now substituting solution (8.119) in (8.118), gives equations

ω2
0

∂2X1

∂τ2
+ f ′(X0)X1 = −2ω0ω1

∂2X0

∂τ2
(8.121)



8.6 Strongly Nonlinear Oscillator with Viscous Damping 225

and

ω2
0

∂2Y1

∂τ2
+ f ′(X0)Y1 = −H0

∂X0

∂τ
(8.122)

Let us consider equation (8.122). The best choice would be achieved by setting
the right-hand side to zero and therefore making possible the solution Y1 ≡ 0
which is consistent with zero-order solution (8.119) and provides a better
smoothness property of the corresponding solution at this stage; see condition
(8.110). Note that the right-hand side cannot be always made zero for any
τ unless the zero-order solution admits separation of the variables t0 and
τ. However, it is still possible to ‘minimize’ the right-hand side of equation
(8.122) by making it orthogonal to solution of the corresponding homogeneous
equation, ∂X0/∂τ , in other words,

1
2

1∫

−1

∂X0

∂τ
H0

∂X0

∂τ
dτ ≡

〈
∂X0

∂τ
H0

∂X0

∂τ

〉

= 0 (8.123)

Taking into account the expression H0 = 2ω0

(

1 + ∂/∂t0
)

+ dω0/dt
0 and

condition (8.123), gives

ω0

〈(
∂X0

∂τ

)2
〉

= C exp(−2t0) (8.124)

where C is an arbitrary constant.
It can be shown that the ‘minimization condition’ (8.123) occurs also in a

rigorous mathematical way based on the boundary conditions for Y1; at least,
this can be easily verified in the linear case f(x) ≡ x.

8.6.2 Oscillator with Two Nonsmooth Limits

Consider the following generalization of equation (8.111)

ẍ+ 2μẋ+ sgn(x)|x|α = 0 (8.125)

where α is a non-negative real number; see the comments to equation (8.70).
In this case, zero-order solution (8.119) can be obtained in the form (8.69),

x(t) = A(t0)sgn(τ(ϕ)) (8.126)

×
[

|τ(ϕ)| − |τ(ϕ)|α+2

α+ 2
+

α

2(α+ 2)

( |τ(ϕ)|2α+3

2α+ 3
− |τ(ϕ)|α+2

α+ 2

)]

ϕ̇(t) = ω0(t0), t0 = μt
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where the functions A(t0) and ω0(t0) are coupled by relation (8.40) as follows

ω0 =
1
a

=
A(α−1)/2

√
α+ 1

{

1 +
α

2(α+ 2)

[

1 +
(α+ 1)2

(α+ 2)(2α+ 3)

]}−1/2

(8.127)

Equations (8.127) and (8.124) admit exact solution

A = C exp
(

− 4μt
3 + α

)

, ϕ = ϕ∞

[

1− exp
(

−2μ
α− 1
α+ 3

t

)]

(8.128)

where C is a new arbitrary constant and

ϕ∞ =
1
2μ

α+ 3
α− 1

C(α−1)/2(2 + α)
√

2(3 + 2α)
√

(α+ 1) (7α3 + 31α2 + 47α+ 24)
(8.129)

It follows from expressions (8.128) and (8.129) that the linear system α = 1
plays the role of a boundary between the two strongly nonlinear areas

N0 = {α : 0 ≤ α << 1} and N∞ = {α : 1 << α <∞} (8.130)

In other words, we show that α = 1 separates two qualitatively different
regions of the dynamics determined by the influence of different nonsmooth
limits of the potential well; see Fig. 8.13 for illustration. In particular, if α > 1
then the phase variable ϕ has the finite limit ϕ∞ as t → ∞. In contrast, if
α < 1 then the phase with its temporal rate are exponentially growing, as
the amplitude decays and the system approaches the bottom of the potential
well. The physical meaning of this effect is most clear from the limit case
α→ 0, which is discussed below.

Figs. 8.14, 8.15 and 8.16, 8.17 illustrate solution (8.126) through (8.129)
for large and small exponents α, respectively. The diagrams suggest quite a
good match with numerical solution in both branches of the exponent (8.130).
The numerical solutions shown by dashed lines were obtained by the stan-
dard solver NDSolve built in Mathematica

R©
. Fig. 8.14 also shows that some

divergence between the curves occurs when the amplitude is decreased to the
level about A = 0.6. Below this level, the condition of small damping (8.112)
is not guaranteed any more. In contrast, the curves are in a better match
for smaller amplitudes if α < 1, see Fig. 8.16. In this case, the amplitude
decay just strengthens condition (8.112). The phase plane diagrams shown
in Figs. 8.15 and 8.17 have qualitatively different shapes as dictated by the
influence of different nonsmooth limits of the potential well, see Fig. 8.13. Let
us show now that solution (8.126) captures both nonsmooth limits α → 0
and α→∞.

For a physically meaningful transition to the limits, let us express the
arbitrary parameter C through the initial velocity v0 = ẋ|t=0,
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C =

[

v2
0 (α+ 1)

(

7α3 + 31α2 + 47α+ 24
)

2(α+ 2)2(2α+ 3)

]1/(α+1)

and consider the two different cases.
1) As α→∞, the solution (8.126) through (8.129) gives

x = τ(ϕ) (8.131)

ϕ =
v0
2μ

[1− exp (−2μt)]

Solution (8.131) exactly describes the system motion in the square potential
well.

2) When α→ 0, expressions (8.126) through (8.129) are reduced to

x = v2
0 exp

(

−4
3
μt

)

τ(ϕ)
(

1− |τ(ϕ)|
2

)

(8.132)

ϕ =
3

2μv0

[

exp
(

2
3
μt

)

− 1
]

where the identity sgn[τ(ϕ)]|τ(ϕ)| ≡ τ(ϕ) has been taken into account.
If, in addition μ = 0, then solution (8.132) also exactly describes the

system dynamics with another nonsmooth limit of the potential energy, |x|,
as shown in Fig. 8.13. However, if μ �= 0 then substituting solution (8.132)
into the differential equation of motion gives an error O(μ2). In terms of first-
order asymptotic solutions, the error of order μ occurs on the time period of
order 1/μ. Therefore, solution (8.132) exactly captures the carrying shape of
the vibration, but gives only asymptotic estimate for the exponential decay.

Fig. 8.13 Potential energy representation for the two limit oscillators.
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Fig. 8.14 Temporal mode shape of the vibration for α ∈ N∞, C = 1.5 and μ =
0.04; here and below, the dashed line represents numerical solutions.
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Fig. 8.15 Phase plane diagram for α ∈ N∞.

Note that the error of solution (8.126) is due to the error of the iterative
procedure for elastic vibrations and the error of asymptotic for energy dissi-
pation. As shown above, the error of successive approximations vanishes as
either α→∞ or α→ 0, but the error of asymptotic vanishes only as α→∞.

Finally, let us discuss the qualitative difference of the dynamics in the pa-
rameter intervals N0 and N∞. As follows from equation (8.128), for α ∈ N0,
the phase of vibration and the corresponding frequency are exponentially in-
creasing in the slow time scale μt . The physical meaning of this phenomenon
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Fig. 8.16 Temporal mode shape of the vibration for α ∈ N0, C = 2.5 and μ = 0.04.

Fig. 8.17 Phase plane diagram for α ∈ N0.

becomes most clear in the limit case α = 0. In this case, according to solution
(8.132), the amplitude and frequency are, respectively

A(μt) =
v2
0

2
exp

(

−4
3
μt

)

and ϕ̇ =
1
v0

exp
(

2
3
μt

)

=
1

√

2A(μt)
(8.133)

Expressions (8.133) describe increasingly rapid vibrations -‘dither’- near the
corner of the potential energy |x| as the amplitude approaches zero. This
result is confirmed by the much earlier analysis of the corresponding conser-
vative case [78]. In contrast, when α ∈ N∞, the oscillator makes a limited



230 8 Strongly Nonlinear Vibrations

number of cycles such that the phase ϕ remains bounded for any time t.
Again, the most clear interpretation is obtained in the limit case α → ∞,
when, as follows from (8.131), the phase variable ϕ(t) represents the total
distance passed by the particle by time t, and ϕ̇ = v is the absolute value
of the velocity. Since the barriers are perfectly elastic the particle reflects
with no energy loss, the velocity v (t) remains continuous function of time
described by the linear differential equation v̇ + 2μv = 0 or ϕ̈ + 2μϕ̇ = 0.
Under the initial conditions ϕ(0) = 0 and ϕ̇(0) = v0, one obtains exactly
solution (8.131).

In conclusion, the explicit analytical solution for a class of strongly nonlin-
ear oscillators with viscous damping is introduced. Two different nonsmooth
functions involved into the solution are associated with two different nons-
mooth limits of the oscillator. As a result, the solution is drastically simplified
to give the best match with numerical tests if approaching any of the two
limits.

8.7 Bouncing Ball

In this section, we consider a small ball of mass m falling under the gravity
force onto a horizontal plane. In addition to the gravity, the ball is subjected
to the linear damping with the coefficient c. Impacts with the plane are in-
elastic with the restitution coefficient κ. The vertical coordinate z(t) therefore
is described by the following equations of motion

mz̈ = −mg − cż (z �= 0) (8.134)
ż+ = −κż− (z = 0)

where ż− and ż+ are velocities right before and immediately after the impact,
respectively.

Let h be a natural spatial scale of the system. This can be, for instance,
the maximal height that has been reached by the ball during the very first
cycle. Introducing the coordinate transformation z = h|x| and re-scaling the
time as t =

√

h/gp, brings equations (8.134) to the form [204]

d2x

dp2
+ 2μ

dx

dp
+ sgnx = 0 (8.135)

(
dx

dp

)

+

−
(
dx

dp

)

−
= (1− κ)

(
dx

dp

)

−

where

μ =
1
2
c

m

√

h

g
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In the particular case κ = 1, solution (8.132) becomes applicable to equation
(8.135). Then, returning back to the original notations of equation (8.134),
gives

z(t) = C exp
(

− 2c
3m

t

)[

|τ(ϕ)| − 1
2
τ2(ϕ)

]

(8.136)

ϕ(t) =
√
g

C

3m
c

[

exp
( c

3m
t
)

− 1
]

where C is a new arbitrary constant.
If C = ż2

0/g then solution (8.136) satisfies the specific initial conditions
z(0) = 0 and ż(0) = ż0. One more arbitrary constant can be introduced by
shifting the time, t− > t + t0, that would allow to consider non-zero initial
height of the ball.

In order to compare solution (8.136) with numerical solution, let us repre-
sent equation (8.134) in the form

ż = u

u̇ = −g − c

m
u (8.137)

where u+ = −κu− whenever z = 0.
Further, introduce new unknown state variables {s, v} according to [73]

z = ssgn(s)
u = sgn(s)[1 − ksgn(sv)]v (8.138)

k =
1− κ
1 + κ

Applying (8.138) to (8.137), gives1

ṡ = [1− ksgn(sv)]v (8.139)

v̇ = − c

m
v − g

1− k2
[sgn(s) + ksgn(v)]

As compared to (8.137), system (8.138) automatically accounts for the veloc-
ity jump condition at z = 0. In other words, transformation (8.138) makes the
strong nonlinearity (due to non-elastic impacts) explicitly present in (8.139).
From the standpoint of numerical procedures, such a transformation enables
one of using built-in solvers of different packages with no impact conditioning
at z = 0.

Note that, in the particular case κ = 1 (k = 0), system (8.139) becomes
equivalent to (8.135). In this particular case, the direct numerical integration
of equations (8.139), using the NDSolve procedure built in Mathematica

R©

1 Note that differentiation of sgn-functions will produce Dirac’s delta-functions
with effectively zero factors however.
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package, gives solution in a perfect match with analytical solution (8.136);
see Fig.8.18.

Let us assume now that the energy loss happens only due to impact in-
teractions of the ball with the plane z = 0. The question is whether or not
solution (8.136) can still be adapted by interpreting the parameter c as some
“effective damping coefficient,” such that the energy loss between two impacts
is equal to that happens in one impact.

analytical, numerical
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z

Fig. 8.18 NSTT analytical and direct numerical solutions for the height of bounc-
ing ball under the linear dissipation condition; m = 1.0, c = 0.5, z(0) = 0 and
ż(0) = 1.0.

Assuming that the damping is small enough and using the classical
parabolic approximation for the ball height during one cycle, z(t) = −gt2/2+
v0t, yields

ceff

∫ 2v0/g

0

ż2dt =
2ceffv

3
0

3g
=

1
2
m(1− κ2)v2

0

or
ceff =

3mg
4v0

(1− κ2) (8.140)

Expression (8.140) shows that, in this case, effective linear damping cannot
be introduced on the entire time interval since the “initial velocity” v0 de-
creases from cycle to cycle. Choosing v0 = ż(0) in (8.140), provides a good
enough match between analytical (8.136) and numerical solutions during first
few cycles of the motion, as follows from Fig. 8.19. Then, the divergence
between the curves accelerates. The result can be improved by using some
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Fig. 8.19 NSTT analytical solution with effective damping corresponding to the
coefficient of restitution κ = 0.97, and direct numerical solutions for the height of
bouncing ball; the parameters are: m = 1.0, c = 0.0, z(0) = 0 and ż(0) = 1.0.
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Fig. 8.20 NSTT analytical solution with effective damping adjusted by “variable
initial velocity,” and direct numerical solutions for the height of bouncing ball; the
parameters are: m = 1.0, c = 0.0, κ = 0.97, z(0) = 0 and ż(0) = 1.0.

estimate for the “initial velocity” decay based on solution (8.136), where the
effective damping is still constant, however. This one-step iteration gives

c̃eff = ceff exp
(ceff

3m
t
)

(8.141)

Fig. 8.20 shows a better match between numerical and analytical solutions
achieved due to modification (8.141).
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8.8 The Kicked Rotor Model

The so-called kicked rotor model is introduced in physics as a relatively sim-
ple essentially nonlinear model for chaotic behavior of systems, where one
variable may be either bounded or unbounded in phase space [95], [20], [71].
The kicked rotor is described, in some units, by the Hamiltonian

H =
1
2
I2 +K cos θ

∞∑

n=−∞
δ (t− n) (8.142)

where I is the angular momentum, θ is the conjugate angle, and K is the
stochasticity parameter that determines qualitative features of the dynamics.

The sequence of pulses in (8.142) can be expressed through the sawtooth
sine τ = τ (2t− 1) in the form,

∞∑

n=−∞
δ (t− n) = −1

2
τ (2t− 1) τ ′′ (2t− 1) (8.143)

where primes denotes differentiation with respect to the entire argument of
a function, 2t− 1.

Note that the only role of the first multiplier, τ (2t− 1), on the right-hand
side is to provide pulses with the same sign.

Therefore, (8.142) takes the form

H =
1
2
I2 − 1

2
Kτ (2t− 1) τ ′′ (2t− 1) cos θ (8.144)

The corresponding differential equation of motion is

θ̈ = −1
2
Kττ ′′ sin θ (8.145)

We seek a family of solutions with the period T = 2 by introducing the
sawtooth time argument τ ,

θ = θ(τ) (8.146)

Substituting (8.146) in (8.145), gives

d2θ

dτ2
= −

(
1
8
Kτ sin θ +

dθ

dτ

)

τ ′′

Eliminating the singular term τ ′′, leads to the boundary condition

dθ

dτ
|τ=±1 = −1

8
Kτ sin θ|τ=±1 (8.147)



8.9 Oscillators with Piece-Wise Nonlinear Restoring Force Characteristics 235

and the differential equation
d2θ

dτ2
= 0 (8.148)

The boundary-value problem (8.147) and (8.148) admits solution

θ = Aτ (2t− 1) +B (8.149)

where A and B appear to be coupled by the set of equations

A = −1
8
K sin(A±B) (8.150)

or
A = −1

8
K sinA cosB (8.151)

and
cosA sinB = 0 (8.152)

In particular, equation (8.151) show that the number of periodic solutions of
the period T = 2 is growing as the parameter K increases.

8.9 Oscillators with Piece-Wise Nonlinear Restoring
Force Characteristics

Consider the case of asymmetric restoring force characteristics described by
two pieces of smooth monotone increasing functions f(x) and g(x) of which
one or both may be nonlinear (Fig. 8.21)

F (x) =
{

f(x), −∞ < x < x1

g(x), x1 < x <∞ (8.153)

It is assumed that the entire characteristic F (x) is at least continuous in the
interval −∞ < x < ∞, in other words, the following matching condition
holds

f(x1) = g(x1) (8.154)

and f(0) = 0.
Expression (8.153) admits the unit form

F (x) = f(x) + [g(x)− f(x)]H(x − x1) (8.155)

where H indicates the unit-step Heaviside function.
Let us outline analytical procedure for periodic solutions of equation

ẍ+ F (x) = 0 (8.156)
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Fig. 8.21 Asymmetric piece-wise nonlinear restoring force characteristic.

Introducing the triangular wave temporal argument τ = τ(t/a) with un-
known scaling parameter a and making the substitution x = X(τ) in equation
(8.156), gives boundary value problem

X ′′ + hF (X) = 0 (8.157)

X ′|τ=±1 = 0 (8.158)

where, as usually, h = a2 = (T/4)2.
Following the physical reasoning discussed in Introduction and the second

section of this chapter, we seek solution in the form of successive approxima-
tion series with no explicit small parameter

X = X0(τ) +X1(τ) +X2(τ) + ... (8.159)
h = h0 + h1 + ...

where the generating solution X0(τ) obeys the differential equation X ′′
0 (τ) =

0 and therefore describes the dynamics of a two-parameter family of free
impact oscillators with arbitrary amplitudes A0 and the origin shift as follows

X0(τ, τ1, A0) = x1 +A0(τ − τ1) (8.160)

The idea behind approximation (8.160) is to choose its parameters in order to
make the motion x(t) = X0(τ(t/a)) in ‘some sense’2 close to that of oscillator
(8.156). The form of (8.160) implies that the system is at the matching point
whenever τ = τ1.

Next term of series (8.159) is found then from the equation X ′′
1 =

−h0F (X0) in the integral form

2 Note that the harmonic balance analogy of generating solution (8.160) would be
x(t) = A sin ωt + B.
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X1(τ, τ1, A0, A1) = A1(τ − τ1)− h0

τ∫

τ1

(τ − ξ)F (X0(ξ, τ1, A0))dξ (8.161)

where the combination of arbitrary constants is similar to that in generating
solution (8.160).

Since X1(τ1, τ1, A0, A1) = 0 then τ = τ1 corresponds to the matching
point x = x1 in first two terms of the successive approximations, (8.160) and
(8.161),

X = x1 + (A0 +A1)(τ − τ1)− h0

τ∫

τ1

(τ − ξ)F (X0(ξ, τ1, A0))dξ (8.162)

Therefore, after the first correction to generating solution (8.160), we have
three arbitrary constants A0, A1and τ1, and one still unknown parameter h0

related to the period of free vibration. Now, substituting (8.162) in boundary
conditions (8.158), gives

A0 +A1 − h0

1∫

τ1

F (X0(τ, τ1, A0))dτ = 0

A0 +A1 + h0

τ1∫

−1

F (X0(τ, τ1, A0))dτ = 0 (8.163)

where the variable of integration ξ has been formally replaced by τ .
Equations (8.163) are equivalent to

1∫

−1

F (X0(τ, τ1, A0))dτ = 0 (8.164)

1∫

τ1

F (X0(τ, τ1, A0))dτ = h−1
0 (A0 +A1) (8.165)

If no more iterations are planned then we set A1 = 0, because the correspond-
ing term contributes nothing qualitatively new into the approximate solution.
In this case, equation (8.164) is used to express τ1 through another constant
A0 and the matching point coordinate x1. Then, equation (8.165) provides
the link between the parameters of amplitude A0 and period T = 4

√
h0.

The next step of iteration employs the parameter A1, however. The form
of differential equation for the next step of procedure is analogous to (8.20),
where γ1h0 = h1. Therefore, on the next step, the general solution is given
by



238 8 Strongly Nonlinear Vibrations

X2 = −h1

τ∫

τ1

(τ − η)F (X0(η, τ1, A0))dη (8.166)

−h0

τ∫

τ1

(τ − η)F ′(X0(η, τ1, A0))X1(η, τ1, A0, A1)dη +A2(τ − τ1)

where zero lower limit of integration providesX2(τ1) = 0, and the prime indi-
cates derivative with respect to the entire argument, F ′(X0) ≡ dF (X0)/dX0.

Note that the characteristic F (x) is, generally speaking, nonsmooth at the
matching point x1 so that the derivative F ′(x) may not exist at x = x1. Al-
though integration of step-wise discontinuous functions is still possible, the
current procedure is designed to avoid calculating derivatives of the char-
acteristic at the point x1. For that reason, the lower limit of integration in
(8.166) is associated with the non-smoothness point by expression (8.160).
In addition, as follows from (8.161), the uncertainty F ′(x1) in the integrand
is suppressed by zero factor X1(τ1) = 0. Obviously, on the next step of iter-
ation, this factor will accompany the second derivative F ′′(x1), whereas the
first derivative acquires the factor X2(τ1).

Now, applying boundary conditions (8.158) to (8.166), yields

−h1

1∫

τ1

F (X0(τ, τ1, A0))dτ

− h0

1∫

τ1

F ′(X0(τ, τ1, A0))X1(τ, τ1, A0, A1)dτ +A2 = 0 (8.167)

h1

τ1∫

−1

F (X0(τ, τ1, A0))dτ

+ h0

τ1∫

−1

F ′(X0(τ, τ1, A0))X1(τ, τ1, A0, A1)dτ +A2 = 0 (8.168)

Substracting the both sides of equation (8.167) from (8.168) and taking into
account equation (8.164), gives

1∫

−1

F ′(X0(τ, τ1, A0))X1(τ, τ1, A0, A1)dτ = 0 (8.169)
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Then, taking into account (8.165), brings equation (8.167) to the form

1∫

τ1

F ′(X0(τ, τ1, A0))X1(τ)dτ = −h1h
−2
0 (A0 +A1) + h−1

0 A2 (8.170)

If no more iterations needed, then we set A2 = 0 in expression (8.166) and
equation (8.170). Further, substituting (8.161) in (8.169), gives equation for
A1, whereas (8.170) gives equation for h1. This completes two steps of suc-
cessive approximations, although the algebraic problem still persists, and its
complexity depends on the functions f(x) and g(x).


	Strongly Nonlinear Vibrations
	Periodic Solutions for First Order Dynamical Systems
	Second Order Dynamical Systems
	Periodic Solutions of Conservative Systems
	The Vibroimpact Approximation
	One Degree-of-Freedom General Conservative Oscillator
	A Nonlinear Mass-Spring Model That Becomes Linear at High Amplitudes
	Strongly Non-linear Characteristic with a Step-Wise Discontinuity at Zero
	A Generalized Case of Odd Characteristics

	Periodic Motions Close to Separatrix Loop
	Self-excited Oscillator
	Strongly Nonlinear Oscillator with Viscous Damping
	Remark on NSTT Combined with Two Variables Expansion
	Oscillator with Two Nonsmooth Limits

	Bouncing Ball
	The Kicked Rotor Model
	Oscillators with Piece-Wise Nonlinear Restoring Force Characteristics




