
Chapter 6
NSTT for Linear and Piecewise-Linear
Systems

Abstract. Remind that the tool of nonsmooth argument substitutions was
introduced first to describe strongly nonlinear vibrations whose temporal
mode shapes are asymptotically close to non-smooth ones. Such cases are
known to be most difficult for analyses because different quasi-harmonic
methods are already ineffective whereas nonsmooth mapping tools are still
inapplicable. It is quite clear however that the non-smooth arguments can
be introduced regardless the strength of nonlinearity or the form of dynam-
ical systems in general. For instance, it is shown in this chapter that the
non-smooth substitutions can essentially simplify analyses of different linear
models with non-smooth or discontinuous inputs. It is also shown that, in
piecewise-linear cases, the nonsmooth temporal transformation provides an
automatic matching the motions from different subspaces of constant stiff-
ness and justifies quasi-linear asymptotic solutions for the specific nonsmooth
case of piece-wise linear characteristics.

6.1 Free Harmonic Oscillator: Temporal Quantization
of Solutions

Introducing the sawtooth temporal argument into the differential equations
of motion may bring some specific features into the corresponding solutions.
For illustrating purposes, let us consider the harmonic oscillator

ẍ+ ω2
0x = 0 (6.1)

First, let us obtain exact general solution of the oscillator (6.1) in terms of
the sawtooth temporal argument by using the substitution

x = X (τ) + Y (τ) e (6.2)
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146 6 NSTT for Linear and Piecewise-Linear Systems

where τ = τ (t/a) and e = e (t/a) are the standard triangular and rectangular
wave functions, respectively.

Substituting (6.2) in (6.1), gives the boundary value problem

a−2X ′′ (τ) + ω2
0X (τ) = 0 (6.3)

a−2Y ′′ (τ) + ω2
0Y (τ) = 0 (6.4)

X ′ (±1) = 0, Y (±1) = 0 (6.5)

By considering the parameter a as an eigen value of the problem, one obtains
the set of eigen values and the corresponding solutions as, respectively,

aj =
jπ

2ω0
(6.6)

and

Xj = sin
(
jπτ

2
+ ϕj

)

, Yj = cos
(
jπτ

2
− ϕj

)

(6.7)

where ϕj = (π/4) [1+ (−1)j] , τ = τ(t/aj), and j is any positive real integer.
Therefore, introducing the sawtooth oscillating time produced the discrete

family of solutions for harmonic oscillator (6.1).
The nature of such kind of quantization is due to the specific temporal

symmetry of periodic motions. In other words, the quantization is associated
with a multiple choice for the period

Tj = 4aj = jT (6.8)

where T = 2π/ω0 is the natural period of oscillator (6.1).
In terms of the original temporal variable t, the number j plays no role for

the temporal mode shape, given by

x (t) = A sin
[
jπ

2
τ

(
2ω0t

jπ

)

+ ϕj

]

(6.9)

+B cos
[
jπ

2
τ

(
2ω0t

jπ

)

− ϕj

]

e

(
2ω0t

jπ

)

where A and B are arbitrary constants, and x(t) is the same harmonic wave
regardless the number j.

In this section, the free linear oscillator was considered for illustrating
purposes. Of course, there is no other pragmatic reason for introducing the
sawtooth time into equation (6.1). The situation drastically changes however
in non-autonomous cases of non-smooth or discontinuous inputs. It is shown
below that, in such cases, the sawtooth time variable can help to facilitate
determining particular solutions. The effect of ‘temporal quantization’ repre-
sented by expression (6.9), which seems to be just identical transformation
in the autonomous case, acquires helpful meaning at the presence of external
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excitations. For instance, according to (6.9) the so-called combination reso-
nances will appear to be an inherent property of oscillators.

6.2 Non-autonomous Case

6.2.1 Standard Basis

Consider the linear harmonic oscillator under the external forcing described
by the linear combination of triangular and rectangular wave functions

ẍ+ ω2
0x = Fτ

(
t

a

)

+Ge

(
t

a

)

(6.10)

where F and G are constant amplitudes, and a is a quarter of the period.
Substituting (6.2) in (6.10), leads to the boundary value problem

a−2X ′′ (τ) + ω2
0X (τ) = Fτ (6.11)

a−2Y ′′ (τ) + ω2
0Y (τ) = G (6.12)

under the boundary conditions (6.5).
In contrast to autonomous case (6.1), the parameter a is known. However,

the equations (6.11) and (6.12) are non-homogeneous, and thus a non-zero
solution exists for any a and can be found in few elementary steps. As a
result, the particular periodic solution of the original equation (6.10) takes
the form

xp (t) = X (τ) + Y (τ) e =
F

ω2
0

{

τ

(
t

a

)

− sin [aω0τ (t/a)]
aω0 cos aω0

}

+
G

ω2
0

{

1− cos [aω0τ (t/a)]
cos aω0

}

e

(
t

a

)

(6.13)

The corresponding general solution is x (t) = A cos (ω0t− ϕ) + xp (t), where
A and ϕ are arbitrary amplitude and phase parameters. Note that solu-
tion (6.13) immediately shows all possible resonance combinations aω0 =
(2k + 1)π/2 or

ω0

Ω
= 2k + 1 (6.14)

where k = 1, 2, 3... , and Ω = 2π/T = π/(2a) is the principal circular fre-
quency of the external forcing.

It is interesting to compare the solution (6.13) with those obtained by
the conventional methods such as Fourier series. So, taking into account
expansion,

τ

(
t

a

)

=
8
π2

∞∑

k=0

(−1)k

(2k + 1)2
sin

(2k + 1)πt
2a

(6.15)
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gives the particular solution of equation (6.10) in the form

xp (t) =
∞∑

k=0

1

ω2
0 −

[
(2k+1)π

2a

]2 × (6.16)

×
[

8F (−1)k

π2 (2k + 1)2
sin

(2k + 1)πt
2a

+
4G (−1)k

π (2k + 1)
cos

(2k + 1)πt
2a

]

Solution (6.16) indicates the same resonance conditions, (6.14). However,
infinite trigonometric series are less convenient for calculations, especially
when dealing with derivatives of the solutions; indeed, differentiation slows
down convergence of series (6.16).

6.2.2 Idempotent Basis

Consider the linear oscillator including viscous damping under the rectangu-
lar wave external loading

ẍ+ 2ζω0ẋ+ ω2
0x = pe

(
t

a

)

(6.17)

The purpose is to obtain periodic (particular) solution with the period of
external loading T = 4a. Recall that the idempotent basis is introduced by
means of the linear transformation (see Chapters 1 and 4)

{1, e} −→ {e+, e−} : e± =
1
2
(1± e) (6.18)

or, inversely, 1 = e+ + e− and e = e+ − e−, where e2± = e± and e+e− = 0.
Now, the periodic solution and external loading are represented in the form

x(t) = U(τ)e+ + V (τ)e− (6.19)
pe = p(e+ − e−)

where e± = e±(t/a), and U(τ) and V (τ) are unknown functions of the tri-
angular wave τ = τ(t/a).

Substituting (6.19) in (6.17), and sequentially eliminating derivatives of
the rectangular wave e(t/a) as described in Chapter 4, gives equations

U ′′ + 2ζωaU ′ + (ωa)2U = pa2

V ′′ − 2ζωaV ′ + (ωa)2V = −pa2 (6.20)

and boundary conditions

(U − V )|τ=±1 = 0
(U ′ + V ′)|τ=±1 = 0 (6.21)
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All the coefficients and right-hand sides of both equations in (6.20) are con-
stant, and the equations are decoupled. As a result, solution of boundary
value problem (6.20) and (6.21) is easily obtained in the form

U(τ) =
p

ω2
− 2p exp(−ατ)
βω2(cos 2β + cosh 2α)

(6.22)

×[cosβ coshα(β cosβτ + α sinβτ) + sinβ sinhα(α cosβτ − β sinβτ)]

V (τ) = − p

ω2
+

2p exp(ατ)
βω2(cos 2β + cosh 2α)

(6.23)

×[cosβ coshα(β cosβτ − α sinβτ) + sinβ sinhα(α cosβτ + β sinβτ)]

where α = ωaζ and β = ωa
√

1− ζ2.
Substituting (6.22) and (6.23) in (6.19), gives closed form particular so-

lution of original equation (6.17). Transition to the original temporal vari-
able is given by the functions τ(ϕ) = (2/π) arcsin[sin(πt/2)] and e(ϕ) =
sgn[cos(πt/2)]. Since the system under consideration is linear, the general
solution of equation (6.17) can be obtained by adding general equation of the
corresponding equation with zero right-hand side. Finally, note that neither
trigonometric expansions nor any integral transforms were involved into the
solution procedure.

6.3 Systems under Periodic Pulsed Excitation

Instantaneous impulses acting on a mechanical system can be modeled ei-
ther by imposing specific matching conditions on the system state vector at
pulse times or by introducing Dirac’s functions into the differential equa-
tions of motion. The first approach deals with the differential equations of a
free system separately between the impulses, therefore a sequence of systems
under the matching conditions are considered. The second method gives a
single set of equations over the whole time interval without any conditions
of matching. In this case however the analysis can be carried out correctly in
terms of distributions, which unfortunately requires additional mathematical
justifications in non-linear cases. Both of the above approaches are actually
employed for different quantitative and qualitative analyses. The analytical
tool, which is described below, on the one hand, eliminates the singular terms
from the equations and, on the other hand, brings solutions to the unit-form
of a single analytic expression for the whole time interval.

6.3.1 Regular Periodic Impulses

Introducing the sawtooth temporal argument may significantly simplify so-
lutions whenever loading functions are combined of the triangular wave and
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its derivatives. For instance, let us seek a particular solution of the first order
differential equation

v̇ + λv = μ

∞∑

k=−∞
[δ (t+ 1− 4k)− δ (t− 1− 4k)] (6.24)

where λ and μ are constant parameters.
For positive λ, equation (6.24) describes the velocity of a particle moving

in a viscous media under the periodic impulsive force. The corresponding
physical model is shown in Fig. 6.1, where the freely moving massive tank
experiences perfectly elastic reflections from the stiff obstacles. By scaling the
variables, one can bring the differential equation of motion of the particle to
the form (6.24), where v (t) = ẋ (t).

Fig. 6.1 If the particle’ mass is very small compared to the total mass of the
tank then the inertia force applied to the particle inside the tank has the periodic
pulse-wise character.

First, note that the right-hand side of equation (6.24) can be expressed
through the generalized derivative of the rectangular wave function as follows

v̇ + λv =
μ

2
ė (t) (6.25)

Now let us represent the particular solution in the form

v (t) = X (τ (t)) + Y (τ (t)) e (t) (6.26)

Substituting (6.26) in (6.25), gives

Y ′ + λX + (X ′ + λY ) e (t) +
(

Y − μ

2

)

ė (t) = 0 (6.27)

Apparently, the elements {1, e} and ė in combination (6.27) are linearly
independent as functions of different classes of smoothness. Therefore,
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Y ′ + λX = 0, X ′ + λY = 0, Y |τ=±1 =
μ

2
(6.28)

In contrast to equation (6.24) or (6.25), boundary value problem (6.28) in-
cludes no discontinuities whereas the new independent variable belongs to
the standard interval, −1 ≤ τ ≤ 1.

Solving the boundary value problem (6.28) and taking into account sub-
stitution (6.26), gives periodic solution of equation (6.24) in the form

v = X + Y e =
μ

2 coshλ
(− sinhλτ + e coshλτ)

or
v =

μ

2 coshλ
exp [−λτ (t) e (t)] e (t) (6.29)

Fig. 6.2 illustrates solution (6.29) for μ = 0.2 and different magnitudes of λ.

Λ � 0.4

Λ � 1.9

0 2 4 6 8
�0.2

�0.1

0.0

0.1

0.2

t

v

Fig. 6.2 The family of discontinuos periodic solutions.

Note that the discontinuous solution v (t) is described by the unit-form
expression (6.29) through the two elementary functions τ (t) and e (t).

6.3.2 Harmonic Oscillator under the Periodic
Impulsive Loading

Let us consider the harmonic oscillator subjected to periodic pulses

ẍ+ ω2
0x = 2p

∞∑

k=−∞
[δ (ωt+ 1− 4k)− δ (ωt− 1− 4k)] (6.30)

where p, ω0 and ω are constant parameters.
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The right-hand side of equation (6.30) can be expressed through first
derivative of the rectangular wave as follows

ẍ+ ω2
0x = p

de (ωt)
d (ωt)

(6.31)

Let us seek a periodic solution of the period T = 4/ω in the form

x (t) = X (τ (ωt)) + Y (τ (ωt)) e (ωt) (6.32)

Substituting (6.32) in (6.31) under the necessary condition of continuity for
x (t), gives

ω2X ′′ + ω2
0X +

(

ω2Y ′′ + ω2
0Y
)

e+
(

ω2X ′ − p) de (ωt)
d (ωt)

= 0 (6.33)

Analogously to the previous subsection, equation (6.33) gives the boundary
value problem

X ′′ +
(ω0

ω

)2

X = 0, Y ′′ +
(ω0

ω

)2

Y = 0 (6.34)

X ′|τ=±1 =
p

ω2
, Y |τ=±1 = 0

Solving boundary value problem (6.34) and taking into account (6.32), gives
the periodic solution of the original equation (6.30) in the form

x = X (τ (ωt)) =
p

ωω0

sin [(ω0/ω) τ (ωt)]
cos (ω0/ω)

(6.35)

where Y ≡ 0.
Solution (6.35) is continuous, but nonsmooth at those times t where

τ (ωt) = ±1. All possible resonances are given by

ω =
2
π

ω0

k
; k = 1, 3, 5, ... (6.36)

where the factor 2/π is due to different normalization of the periods for
trigonometric and sawtooth sines.

Now let us consider the case of viscous damping described by the differen-
tial equation of motion

ẍ+ 2ζẋ+ ω2
0x = p

de (ωt)
d (ωt)

(6.37)

where ζ is the damping factor.
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In this case, the boundary value problem becomes coupled

X ′′ + 2
ζ

ω
Y ′ +

(ω0

ω

)2

X = 0 (6.38)

Y ′′ + 2
ζ

ω
X ′ +

(ω0

ω

)2

Y = 0

X ′|τ=±1 =
p

ω2
, Y |τ=±1 = 0

As a result, the periodic solution has both X and Y components

x = X + Y e =
p

βω2
(

cos2 β cosh2 α+ sin2 β sinh2 α
)

×[coshα cosβ coshατ sinβτ − sinhα sinβ sinhατ cosβτ (6.39)
+ (sinhα cosβτ coshατ sinβ − sinhατ sinβτ coshα cosβ) e]

where τ = τ (ωt), e = e (ωt); α = ζ/ω and β =
√

ω2
0 − ζ2�ω.

0 2 4 6 8
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Fig. 6.3 Response of the damped harmonic oscillator under the periodic impulsive
excitation for p = 0.1, ζ = 0.5, ω0 = 4 and ω = 0.2 (low-frequency pulses.)

Figs. 6.3 through 6.5 illustrate qualitatively different responses of the sys-
tem when varying the input frequency. In different proportions, the responses
combine properties of the harmonic damped motion and the non-smooth mo-
tion due to the impulsive loading. For instance, when ω >> ω0 and ω >> ζ,
the system is near the limit of a free particle under the periodic impulsive
force. In this case, the boundary value problem is reduced to

X ′′ = 0, Y ′′ = 0; X ′ |τ=±1=
p

ω2
, Y |τ=±1= 0 (6.40)
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Fig. 6.4 System response on ‘resonance’ pulses ω = (2/π)ω0 = 2.5465.
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Fig. 6.5 Response on high-frequency pulses; ω = 6.

This gives the triangular temporal shape of the motion, x = pτ (ωt) /ω2,
which is approached by the time history record on Fig. 6.5.

Finally, let us consider N -degrees-of-freedom system

M ÿ +Ky = p
de (ωt)
d (ωt)

(6.41)

where y (t) is N -dimensional vector-function, p is a constant vector, M and
K are constant N ×N mass and stiffness matrixes respectively.
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Let {e1, ..., eN} and ω1,...,ωN be the normal mode basis vectors and the
corresponding natural frequencies, respectively, such that

Kej = ω2
jMej, eT

kMej = δkj

for any k = 1, ..., N and j = 1, ..., N .
Introducing the principal coordinates xj (t),

y =
N∑

j=1

xj (t) ej (6.42)

gives a decoupled set of impulsively forced harmonic oscillators of the form
(6.31),

ẍj + ω2
jx

j = pj de (ωt)
d (ωt)

(6.43)

where pj = eT
j p.

Therefore, making use of solution (6.35) for each of the oscillators (6.43)
and taking into account (6.42), gives

y =
N∑

j=1

(eT
j p)ej

ωωj

sin [(ωj/ω) τ (ωt)]
cos (ωj/ω)

(6.44)

The corresponding resonances are determined by the condition

ω =
2
π

ωj

k

where k = 1, 3, 5, ... and j = 1, ..., N .

6.3.3 Periodic Impulses with a Temporal ‘Dipole’
Shift

Let us consider the impulsive excitation with a dipole shift of pulse times. In
this case, the right-hand side of equation (6.25) can be expressed by second
derivative of the saw-tooth function with some incline described the param-
eter γ as shown in Fig. 6.6

v̇ + λv = p
∂2τ (ωt, γ)
∂ (ωt)2

= p
∂e (ωt, γ)
∂ (ωt)

(6.45)

=
2p

1− γ2

∞∑

k=−∞
[δ (ωt+ 1− γ − 4k)− δ (ωt− 1 + γ − 4k)]
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Fig. 6.6 Basic NSTT asymmetric wave functions.

Based on the NSTT identities introduced in Chapter 4, periodic solutions of
equation (6.45) still can be represented in the form

v = X (τ) + Y (τ) e (6.46)

where τ = τ (ωt, γ) and e = e (ωt, γ); see Fig. 6.6 for graphic illustrations.
Substituting (6.46) in equation (6.45), gives

ωαY ′ + λX + [ω (X ′ + βY ′) + λY ] e+ (ωY − p) ∂e(ωt, γ)
∂(ωt)

= 0 (6.47)

where α = 1/
(

1− γ2
)

, β = 2γα, and the identity e2 = α+βe has been taken
into account.

Equation (6.47) is equivalent to the boundary-value problem

ω (X ′ + βY ′) = −λY
ωαY ′ = −λX (6.48)

ωY |τ=±1 = p

The corresponding solution is

Y =
p

ω

[

cosh
(

γ
λ

ω

)
cosh

(
λ
ω τ
)

cosh λ
ω

+ sinh
(

γ
λ

ω

)
sinh

(
λ
ω τ
)

sinh λ
ω

]

exp
(

γ
λ

ω
τ

)

X = −ωα
λ
Y ′ (6.49)

where the X-component is defined by differentiation due to the second equa-
tion in (6.48).
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6.4 Parametric Excitation

In this section, two different cases of parametric excitation are consid-
ered based on relatively simple linear models. Piecewise-constant and im-
pulsive excitations are described by means of the functions e(ωt, γ) and
∂e(ωt, γ)/∂ (ωt), respectively. There are at least two reasons for using NSTT
as a preliminary analytical step. First, NSTT automatically gives conditions
for matching solutions at discontinuity points. Second, due to the automatic
matching through the NSTT functions, the corresponding solutions appear
to be in the closed form that is important feature when further manipulations
with the solutions are required by problem formulations.

6.4.1 Piecewise-Constant Excitation

Let us consider the linear oscillator under periodic piecewise-constant
excitation

ẍ+ ω2
0 [1 + εe(ωt, γ)]x = 0 (6.50)

where ω0, ω, γ and ε are constant parameters.
We will seek periodic solutions with the period of excitation T = 4/ω in

the form
x = X (τ) + Y (τ) e (6.51)

where τ = τ(ωt, γ) and e = e(ωt, γ).
As follows from the form of equation (6.50), the acceleration ẍ may have

step-wise discontinuities due to the presence of the function e(ωt, γ), whereas
the coordinate x (t) and the velocity ẋ (t) must be continuous. So neither
velocity ẋ (t) nor acceleration ẍ (t) can include Dirac δ-functions.

Taking first derivative of (6.51), gives

ẋ (t) =

[

αY ′ + (X ′ + βY ′)e+ Y
∂e(ωt, γ)
∂ (ωt)

]

ω (6.52)

where the last term, that consists of the periodic sequence of δ-functions,
must be excluded by imposing the boundary condition for Y -component

Y |τ=±1= 0 (6.53)

Under condition (6.53), the second derivative takes the form

ẍ (t) = ω2[α(X
′′

+ βY
′′
)] + ω2[βX

′′
+ (α+ β2)Y

′′
]e

+ω2(X ′ + βY ′)
∂e (ωt, γ)
∂ (ωt)

(6.54)

In this case, the singular term, which is underlined in (6.54), is eliminated by
condition
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(X ′ + βY ′) |τ=±1= 0 (6.55)

Substituting (6.51) and (6.54) in the differential equation of motion (6.50)
and taking into account the algebraic properties, brings the left-hand side of
the equation to the algebraic form {· · ·} + {· · ·}e. Then, setting separately
each of the two algebraic components to zero, gives the set of differential
equations for X (τ) and Y (τ) in the following matrix form

[
α αβ
β α+ β2

] [
X
Y

]′′

+ r2
[

1 αε
ε 1 + βε

] [
X
Y

]

= 0 (6.56)

where r = ω0/ω.
Further, any particular solution of linear differential equations with con-

stant coefficients (6.56) can be represented in the exponential form
[
X
Y

]

= B

[
1
μ

]

exp (λτ) (6.57)

where B, μ and λ are constant parameters.
Substituting (6.57) in (6.56), leads to a characteristic equation which two

pairs of roots determined by the relationships

λ2 =
[

− (1− γ) ε− (1− γ)2
]

r2 ≡ ±k2 (6.58)

λ2 =
[

(1 + γ) ε− (1 + γ)2
]

r2 ≡ ±l2

where signs of the notations ±k2 and ±l2 depend on the parameters ε
and γ.

Let us consider the case of negative signs, when the following condition
holds

− (1− γ) < ε < (1 + γ) (6.59)

Due to condition (6.59), the stiffness coefficient in equation (6.50) is always
positive, whereas (6.58) gives λ = ±ki and λ = ±li. As a result, the general
solution of equations (6.56) takes the form

X = B1 sin kτ +B2 cos kτ +B3 sin lτ +B4 cos lτ
Y = μ1 (B1 sin kτ +B2 cos kτ) + μ2 (B3 sin lτ +B4 cos lτ) (6.60)

where B1,...,B4 are arbitrary constants, and

μ1 = − 1
α

αk2 − r2
βk2 − εr2 and μ2 = − 1

α

αl2 − r2
βl2 − εr2

Substituting (6.60) in boundary conditions (6.53) and (6.55), gives the ho-
mogeneous set of four linear algebraic equations with respect to the arbitrary



6.4 Parametric Excitation 159

constants. Setting the corresponding determinant to zero, gives condition for
non-zero solutions in the form

[μ1 (1 + βμ2) l cos k sin l − μ2 (1 + βμ1) k cos l sin k]

× [μ1 (1 + βμ2) l cos l sin k − μ2 (1 + βμ1) k cos k sin l] = 0 (6.61)

0 2 4 6 8 10
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8
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10
�
Ε

Fig. 6.7 Instability zones for piecewise constant parametric excitation when
γ = 0.7

One the parameter plane, ε−r, equation (6.61) describes the family of curves
separating stability and instability zones as shown in Fig. 6.7, where the
instability zones are shadowed.

6.4.2 Parametric Impulsive Excitation

Let us consider the case of parametric impulsive excitation whose temporal
shape is given by first derivative of the basic function, e (ωt, γ),

ẍ+ ω2
0

[

1 + ε
∂e (ωt, γ)
∂ (ωt)

]

x = 0 (6.62)

This case was considered in [138] based on the saw-tooth transformation of
time. In particular, it was shown that the periodic solutions of the period
T = 4/ω exists under the condition
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p2 =
2r2

(

1− γ2
)2 sin2 2r

cos 4r − cos 4γr
(6.63)

where r = ω0/ω and p = εr2.
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Fig. 6.8 ‘Collapse’ of the instability zones at γ = 1/5: each fifth zone is missing;
here and below, only the upper half-plane is shown due to the symmetry.
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Fig. 6.9 γ = 1/2: each second zone is missing.

The dependence of p on r for fixed γ has the branched zone-like structure
which is typical for different cases of parametrically excited oscillators.

Interestingly enough, different subsequences of zones may disappear as the
parameter γ varies. For instance, if γ = 1/5 then each fifth zone is missing
and, if γ = 1/2 then each second zone is missing; see Figs. 6.8 and 6.9,
respectively. Such an effect was discussed in [138].
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6.4.3 General Case of Periodic Parametric Excitation

Below, the problem formulation only is discussed for the case of periodic
parametric loading with both regular and singular components. It is assumed
that there are two discontinuities and singularities on each period located at
the same points. The differential equation of motion is represented in the
vector form

ẍ+
[

Q (τ) + P (τ) e+ p
∂e

∂ϕ

]

x = 0 (6.64)

where x(t) ∈ Rn is the coordinates vector-column,τ = τ (ϕ, γ), e = e (ϕ, γ),
ϕ = ωt is the phase variable, p is a constant n × n matrix, and Q (τ (ϕ, γ))
and P (τ (ϕ, γ)) are periodic matrixes of the period T = 4 with respect to
the phase ϕ.

In equation (6.64), the first two terms of the coefficient can repre-
sent any periodic function q (ϕ) with step-wise discontinuities on Λ =
{t : τ (ϕ, γ) = ±1}. In case the original function q (ϕ) is continuous, one has
P = 0 on Λ.

Let us represent periodic solutions of the period T = 4 in the form (6.51).
Substituting (6.51) in equations (6.64), taking into account the equality

e2 = α+βe, the necessary condition of continuity of the vector function x (t),
(6.53), and using (6.52) and (6.54) gives equations

ω2 (αX ′′ + αβY ′′) +QX + αPY = 0
ω2
[(

α+ β2
)

Y ′′ + βX ′′]+ PX +QY + βPY = 0 (6.65)

and the boundary condition
[

ω2 (X ′ + βY ′) + pX
] |τ=±1= 0 (6.66)

where, in the case of fixed sign of impulses, the matrix p should be provided
with the factor sgn(τ).

Together with (6.53), relations (6.65) and (6.66) represent a boundary-
value problem for determining the vector functions X and Y and the corre-
sponding conditions for existence of periodic solutions.

Note that substitution (6.51) in equation (6.64) generates the specific term
e∂e/∂ϕ. Let us show that, within the theory of distributions, this terms can
be interpreted as follows

e
∂e

∂ϕ
=

1
2
β
∂e

∂ϕ
(6.67)

First, note that, at this point, the relationship (6.67) is a result of formal
differentiation of both sides of the relation e2 = α + βe with respect to the
phase ϕ. To justify (6.67), let us assume that ω = 1 so that ϕ ≡ t and consider
expression (6.53) locally, near the point t = 1− γ, which is a typical point of
the entire set of discontinuity points Λ = {t : τ (t) = ±1}.
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Generally speaking, the ‘product’ f(t)δ(t) requires the function f(t) to be
at least continuous at t = 0. However, it is possible to provide the left-hand
side of (6.67) with a certain meaning due to the fact that both terms of the
product are generated by the same sequence of smooth functions.

In order to illustrate the above remark and prove equality (6.67), let us
consider a family of smooth functions {δε (t)} such that

ε∫

−ε

δε (t) dt = 1 (6.68)

for all positive ε, and δε (t) = 0 outside the interval −ε < t < ε.
Therefore, in terms of weak limits, δε (t)→ δ (t) as ε→ 0.
Now, sequences of smooth functions approximating e and ∂e/∂t in the

neighborhood of point t = 1− γ can be chosen as, respectively,

eε =
1

1− γ −
β

γ
θε (t− 1 + γ) and

∂eε

∂t
= −β

γ
δε (t− 1 + γ) (6.69)

where θε (t) =
t∫

−∞
δε (ξ) dξ and −1 + γ < t < 3 + γ.

Based on the above definitions for eε and ∂eε/∂t, one has eε → e and
∂eε/∂t→ ∂e/∂t as ε→ 0 in the interval −1 + γ < t < 3 + γ.

Substituting (6.69) in equality (6.67) instead of e and ∂e/∂ϕ, reduces the
problem to the proof of identity

θεδε =
1
2
δε (6.70)

as ε→ 0.
For simplicity reason, let us move the origin to the point t = 1 − γ and

show that the left-hand side of (6.70) gives δ (t) /2 as ε → 0 in the sense of
weak limit.

First, the area bounded by θεδε is
∫ ε

−ε

θεδεdt =
∫ ε

−ε

θε
dθε

dt
dt =

1
2
θ2ε |ε−ε=

1
2

Then, let φ (t) belongs to the class of continuous testing functions, which
is usually considered in the theory of distributions. By definition, in some
ε-neighborhood of the point t = 0, one has | φ (t)−φ (0) |< 2η, where η is as
small as needed whenever ε is sufficiently small. Therefore,

|
∫ ε

−ε

θε (t) δε (t)φ (t) dt− 1
2
φ (0) |≤

∫ ε

−ε

θε (t) δε (t) | φ (t)− φ (0) | dt ≤ η



6.5 Input-Output Systems 163

In other words,
∫ ε

−ε

θε (t) δε (t)φ (t) dt→ 1
2
φ (0)

as ε→ 0.
This completes the proof.

6.5 Input-Output Systems

The input-output form of dynamical systems may be convenient for different
reasons, for instance, when dealing with control problems. In many linear
cases, input-output systems are represented in the form of a single high order
equation

an
dny

dtn
+ ...+ a1

dy

dt
+ a0y = bm

dmu

dtm
+ ...+ b1

du

dt
+ b0u (6.71)

where u = u(t) and y = y(t) are input and output, respectively, and an, ... ,
a1, a0, bm, ... ,b1, b0 are constant coefficients.

For illustration purposes, a two-degrees-of-freedom model as shown in
Fig. 6.10 is considered, although the general case (6.71) can be handled in
the same way.

Fig. 6.10 Two mass-spring model.

Eliminating x2(t) from the system, gives a single higher-order equation
with respect to the another coordinate, x1(t), in the form

m1
d4x1

dt4
+ c1

d3x1

dt3
+ (k1 + k2 +

m1

m2
k2)

d2x1

dt2
+

c1
m2

k2
dx1

dt
+
k1k2

m2
x1

=
d2F1

dt2
+
k2

m2
F1 (6.72)

System (6.72) is a particular case of (6.71), where n = 4 and m = 2.
Let us consider the step-wise discontinuous periodic function F1(t) =

u(t) = e(ωt) and represent equation (6.72) in the form
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a4
d4y

dt4
+ ...+ a1

dy

dt
+ a0y = b2ω

2e′′ + b1ωe
′ + b0e (6.73)

where ′ ≡ d/d(ωt), and all the coefficients and variables are identified by
comparing (6.72) to (6.73).

The right-hand side of equation (6.73) contains discontinuous and singular
functions, therefore equation (6.73) must be treated in terms of distributions.
Nevertheless, let us show that, on the manifold of periodic solutions, equation
(6.73) is equivalent to some classic boundary-value problem.

Let us represent the output in the form

y(t) = X(τ) + Y (τ)e (6.74)

where τ = τ(ωt) and e = e(ωt).
When differentiating expression (6.74) step-by-step one should eliminate

the singular term e′ in the first two derivatives by sequentially setting bound-
ary conditions as follows

dy

dt
= (Y ′ +X ′e)ω, Y |τ=±1 = 0 (6.75)

d2y

dt2
= (X ′′ + Y ′′e)ω2, X ′|τ=±1 = 0

However, it is dictated by the form of the input in (6.73), that the singular
terms e′ and e′′ must be preserved on the next two steps given by

d3y

dt3
= (Y ′′′ +X ′′′e+ Y ′′e′)ω3 (6.76)

d4y

dt4
= (X(4) + Y (4)e+X ′′′e′ + Y ′′e′′)ω4

The fourth-order derivative in (6.76) takes into account the equality ee′ = 0,
which easily follows from (6.53) in the symmetric case β = 0.

Substituting (6.75) and (6.76) in (6.73), and considering {1, e, e′, e′′} as a
linearly independent basis, gives equations

a4ω
4XIV + a3ω

3Y ′′′ + a2ω
2X ′′ + a1ωY

′ + a0X = 0 (6.77)
a4ω

4Y IV + a3ω
3X ′′′ + a2ω

2Y ′′ + a1ωX
′ + a0Y = b0

under the boundary conditions at τ = ±1:

Y = 0, X ′ = 0 (6.78)

ω2Y ′′ =
b2
a4

, ω3X ′′′ =
1
a4

(

b1 − a3

a4
b2

)

In contrast to equation (6.73), the boundary value problem (6.77) and (6.78)
does not include discontinuous terms any more.
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Although the number of equations in (6.77) is doubled as compared to
(6.73), such a complication is rather formal due to the symmetry of the
equations. Indeed, introducing the new variables, U = X+Y and V = X−Y ,
decouples system (6.77) in such a way that the corresponding roots of the
characteristic equations differ just by signs. (Besides, this fact reveals the
possibility of using the idempotent basis for decoupling the resultant set
of equations as discussed in Chapter 4 and will be discussed later in this
chapter.) In addition, the type of the symmetry suggests that X(τ) and Y (τ)
are odd and even functions, respectively. This enables one of reducing the
general form of solution to a family of solutions with four arbitrary constants

X =
2∑

j=1

[

Aj cosh
(αj

ω
τ
)

sin
(
βj

ω
τ

)

+Bj sinh
(αj

ω
τ
)

cos
(
βj

ω
τ

)]

(6.79)

Y =
2∑

j=1

[

Aj sinh
(αj

ω
τ
)

sin
(
βj

ω
τ

)

+Bj cosh
(αj

ω
τ
)

cos
(
βj

ω
τ

)]

+
b0
a0

where αj ± βji are complex conjugate roots of the characteristic equation

a4p
4 + ...+ a1p+ a0 = 0 (6.80)

The assumption that both of the roots are complex reflects the physical mean-
ing of the example, however other cases would lead to even less complicated
expressions.

Finally, substituting (6.79) in (6.78) gives a linear algebraic set of four
independent equations with respect to four constants: A1, A2, B1 and B2.
Although the corresponding analytical solution is easy to obtain by using the
standard Mathematica

R©
commands, the result is somewhat complicated for

reproduction. Practically, it may be reasonable to determine the constants by
setting the system parameters to their numerical values moreover that only
numerical solution are often possible for characteristic equations.

6.6 Piecewise-Linear Oscillators with Asymmetric
Characteristics

Piecewise-linear oscillators are often considered as finite degrees-of-freedom
models of cracked elastic structures [32],[2],[192], but may occur also due to
specific design solutions. In many cases, the corresponded periodic solutions
can be combined of different pieces of linear solutions valid for two different
subspaces of the configuration space [33], [75], [192]. In this section, it will
be shown that the nonsmooth transformation of time results in a closed form
analytical solution matching both pieces of the solution automatically by
means of elementary functions.
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6.6.1 Amplitude-Phase Equations

Let us consider a piece-wise linear oscillator of the form

mq̈ + k[1− εH(q)]q = 0 (6.81)

where H(q) is Heaviside unit-step function, m and k are mass and stiffness
parameters, respectively, and |ε| 
 1.

Therefore, k− = k and k+ = k(1 − ε) are elastic stiffness of the oscillator
for q < 0 and q > 0, respectively.

The exact general solution of oscillator (6.81) can be obtained by satisfying
the continuity conditions for q and q̇ at the matching point q = 0, where the
characteristic has a break. Such approaches are often facing quite challenging
algebraic problems, however, as the number of degrees of freedom increases
or external forces are involved. This is mainly due to the fact that times of
crossing the point q = 0 are a priory unknown.

In this section, it will be shown that, applying a combination of asymp-
totic expansions with respect to ε and nonsmooth temporal transformations,
gives a unit-form solution for oscillator (6.81) with a possibility of general-
ization on the normal mode motions of multiple degrees-of-freedom systems.
In particular, the nonsmooth temporal transformation:

1) provides an automatic matching the motions from different subspaces
of constant stiffness, and

2) justifies quasi-linear asymptotic solutions for the specific nonsmooth
case of piece-wise linear characteristics.

Let us clarify the above two remarks. Introducing the notation ω2 = k/m,
brings equation (6.81) to the standard form of a weakly non-linear oscillator

q̈ + ω2q = εω2H(q)q (6.82)

The non-linear perturbation on the right-hand side of oscillator (6.82) is a
continuous but non-smooth function of the coordinate q. Since the major
algorithms of quasi-linear theory assume smoothness of non-linear pertur-
bations, then such algorithms are not applicable in this case unless appro-
priate modifications and extensions have been made. Even though deriving
first-order asymptotic solutions usually require no differentiation of charac-
teristics, dealing with two pieces of the solution may complicate any further
stages.

Let us show that combining quasi-linear methods of asymptotic integra-
tion, such as Krylov-Bogolyubov averaging, with nonsmooth temporal trans-
formations results in a closed form analytical solution for piece-wise linear
oscillator (6.81). Note that oscillator (6.81) plays an illustrative role for the
approach developed below. Then a more complicated case will be considered.

At this stage, let us introduce the amplitude-phase coordinates {A(t), ϕ(t)}
on the phase plane of oscillator (6.81) through relationships
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q = A cosϕ
q̇ = −ωA sinϕ (6.83)

The following compatibility condition is imposed on transformation (6.83)

Ȧ cosϕ−A sinϕϕ̇ = −ωA sinϕ (6.84)

Substituting (6.83) in (6.82) and taking into account (6.84), gives

Ȧ = −1
2
εωAH(A cosϕ) sin 2ϕ

ϕ̇ = ω − εωH(A cosϕ) cos2 ϕ (6.85)

The right-hand sides of equations (6.85) are 2π-periodic with respect to the
phase variable, ϕ. Therefore, nonsmooth transformation of the phase variable
applies through the couple of functions

τ = τ(2ϕ/π) and e = e(2ϕ/π) (6.86)

Assuming that A ≥ 0 and taking into account the obvious identities,

sinϕ = sin(πτ/2)
cosϕ = cos(πτ/2)e

H(A cosϕ) = (1 + e)/2 (6.87)
e2 = 1

brings (6.85) to the form

Ȧ = −1
4
εω(1 + e)A sinπτ (6.88)

ϕ̇ = ω − 1
2
εω(1 + e) cos2

πτ

2
(6.89)

Note that the right-hand sides of (6.88) and (6.89) are nonsmooth but contin-
uous with respect to the phase ϕ since the step-wise discontinuities of the rect-
angular cosine e(2ϕ/π) are suppressed by the factors sinπτ and cos2(πτ/2),
respectively.

6.6.2 Amplitude Solution

Let us show that equation (6.88) has an exact 2π-periodic solution with
respect to the phase variable, ϕ.

According to the idea of NSTT, any periodic solution can be represented
in the form

A = X(τ) + Y (τ)e (6.90)

where τ and e are defined by (6.86).
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Substituting (6.90) in (6.88) and taking into account (6.89), gives boundary-
value problem

(X − Y )′ = 0
(X + Y )′

X + Y
= −επ

4
sinπτ

1− ε cos2 πτ
2

(6.91)

Y |τ=±1 = 0 (6.92)

where ′ ≡ d/dτ .
Solution of the boundary value problem, (6.91) and (6.92), is obtained by

elementary integration. Then representation (6.90) gives

A(ϕ) = α[1 + ζ(τ)] − α[1− ζ(τ)]e (6.93)

ζ(τ) = (1− ε cos2
πτ

2
)−1/2

where τ = τ(2ϕ/π), e = e(2ϕ/π), and α is an arbitrary positive constant.
Note that solution (6.93) exactly captures the amplitude in both subspaces

q < 0 and q > 0. However, the temporal mode shape and the period essen-
tially depend on the phase variable ϕ described by equation (6.89).

Generally speaking, the phase equation (6.89) admits exact integration,
but the result would appear to have implicit form. Alternatively, it is shown
below that solution for the phase variable can be approximated by asymptotic
series in the explicit form

ϕ = φ− 1
8
ε[πτ + (1 + e) sinπτ ]

− 1
128

ε2{4(2− cosπτ)(πτ + sinπτ) (6.94)

−[4πτ(1 + cosπτ) − 8 sinπτ + sin 2πτ ]e}+O(ε3)

where τ = τ(2φ/π), e = e(2φ/π), and

φ = ω[1− 1
4
ε− 3

32
ε2 +O(ε3)]t (6.95)

Note that the functions τ and e in (6.93) and (6.94) depend on the different
arguments.

6.6.3 Phase Solution

In this subsection, a second-order asymptotic procedure for phase equations
with non-smooth periodic perturbations is introduced. If applied to equation
(6.89), the developed algorithm gives solution (6.94).
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Let us consider some phase equation of the general form

ϕ̇ = ω[1 + εf(ϕ)] (6.96)

where f(ϕ) is a 2π-periodic, nonsmooth or even step-wise discontinuous func-
tion, and ε is a small parameter, |ε| 
 1.

Using the basic NSTT identity for f(ϕ), brings equation (6.96) to the form

ϕ̇ = ω + εω{G[τ(2ϕ/π)] +M [τ(2ϕ/π)]e} (6.97)

where the functions G(τ) and M(τ) are expressed through f(ϕ).
Note that the class of smoothness of the periodic perturbation in equa-

tion (6.97) depends on the behavior of functions G(τ) and M(τ) and their
derivatives at the boundaries τ = ±1. If, for instance, M(±1) �= 0 then the
perturbation is step-wise discontinuous whenever τ(2ϕ/π) = ±1.

Let us introduce the asymptotic procedure for equation (6.97). Note that,
in case ε = 0, the right-hand side of equation (6.97) is constant. So, following
the idea of asymptotic integration, let us find phase transformation

ϕ = φ+ εF1(φ) + ε2F2(φ) + ... (6.98)

where functions Fi(φ) are such that the new phase variable also has a constant
temporal rate even though ε �= 0.

In other words, transformation (6.98) should bring equation (6.97) to the
form

φ̇ = ω(1 + εγ1 + ε2γ2 + ...) (6.99)

where γi are constant coefficients to be determined together with Fi(φ) during
the asymptotic procedure.

Note that the procedure, which is described below, has several specific
features due to the presence of nonsmooth periodic functions. In particu-
lar, high-order approximations require a non-conventional interpretation for
power series expansions; see the next subsection for the related remarks.
Other modifications occur already in the leading order approximation.

Substituting (6.98) into equation (6.97), then enforcing equation (6.99)
and collecting the terms of order ε, gives

F ′
1(φ) = G(τ) + eM(τ)− γ1 (6.100)

where the triangular and rectangular waves depend now on the new phase
variable φ as τ = τ(2φ/π) and e = e(2φ/π), respectively.

According to the conventional averaging procedure, the constant γ1 is se-
lected to achieve zero mean on the right-hand side of equation (6.100) and
thus provide periodicity of solution, F1(φ). In the algorithm below, the peri-
odicity is due to the form of representation for periodic solutions, whereas the
operator of averaging occurs automatically from the corresponding conditions
of smoothness that is boundary conditions for the solution components.
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So we seek solution of equation (6.100) in the form

F1(φ) = U1(τ) + eV1(τ) (6.101)

Substituting (6.101) in (6.100) and following the NSTT procedure, gives the
boundary-value problem

U ′
1(τ) =

π

2
M(τ)

V ′
1(τ) =

π

2
[G(τ) − γ1] (6.102)

V1(±1) = 0

Note that there are two conditions on the function V1(τ) described by the
first-order differential equation in (6.102). However, there is a choice for γ1,
which is to satisfy one of the two conditions. As a result, solution of boundary-
value problem (6.102) is obtained by integration in the form

U1(τ) =
π

2

∫ τ

0

M(z)dz

V1(τ) =
π

2

∫ τ

−1

[G(z)− γ1]dz (6.103)

γ1 =
1
2

∫ 1

−1

G(τ)dτ

Further, collecting the terms of order ε2, gives

F ′
2(φ) = G2(τ) + eM2(τ) + P2(τ)e′ − γ2 (6.104)

where

M2(τ) =
2
π

[U1(τ)G′(τ) + V1(τ)M ′(τ)]−M(τ)γ1

G2(τ) =
2
π
U1(τ)M ′(τ) −G(τ)γ1 + γ2

1 (6.105)

P2(τ) =
2
π
U1(τ)M(τ)

e′ ≡ de(2φ/π)/d(2φ/π)

In contrast to first-order equation (6.100), equation (6.104) includes the sin-
gular term P2(τ)e′ produced by the power series expansion of the perturba-
tion in equation (6.97). If the perturbation is smooth then P2(±1) = 0 and
such singular term disappear; see the example below for illustration. Never-
theless, the second-order approximation remains valid even in discontinuous
case, when P2(±1) �= 0.
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So let us represent solution of equation (6.104) in the form

F2(φ) = U2(τ) + eV2(τ) (6.106)

Then, substituting (6.106) in (6.104), gives boundary-value problem

U ′
2(τ) =

π

2
M2(τ)

V ′
2(τ) =

π

2
[G2(τ) − γ2] (6.107)

V2(±1) =
π

2
P2(±1)

In contrast to (6.102), boundary-value problem (6.107) has, generally speak-
ing, non-homogeneous boundary conditions for V2. These conditions com-
pensate the singular term e′ from differential equation (6.104). As a result
equations (6.107) are free of any singularities and admit solution analogously
to first-order equations (6.102),

U2(τ) =
π

2

∫ τ

0

M2(z)dz

V2(τ) =
π

2

∫ τ

−1

[G2(z)− γ2]dz +
π

2
P2(−1) (6.108)

γ2 =
1
2

∫ 1

−1

G2(τ)dτ +
1
2
[P2(−1)− P2(1)]

Now, we return to the illustrating model. In particular case (6.89), one has

G(τ) ≡M(τ) ≡ −1
2

cos2
πτ

2
(6.109)

and

G(±1) = M(±1) = 0
G′(±1) = M ′(±1) = 0 (6.110)
G′′(±1) = M ′′(±1) = −π2/4

where ′ ≡ d/dτ .
First two lines of conditions (6.110) provide continuity for the right hand

side of (6.97) and its first derivative at those ϕ where τ(2ϕ/π) = ±1. As
follows from (6.105), for this class of smoothness one has P2(±1) = 0 and
thus no singular terms occur in the first two steps of asymptotic procedure.
Finally, taking into account (6.109) and (6.110) and conducting integration
in (6.103) and (6.108), brings solution (6.98) to the form (6.94) and (6.95).
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6.6.4 Remarks on Generalized Taylor Expansions

Nonsmoothness of the triangular sine is similar to that function |t| has at
zero. So let us consider its formal power series

|t+ ε| = |t|+ |t|′ε+
1
2!
|t|′′ε2 + ... (6.111)

where ε > 0 and −∞ < t <∞, and prime indicates Schwartz derivative.
It is clear that equality (6.111) has no regular point-wise meaning. For

instance, equality (6.111) is obviously not true on the interval −ε < t < 0.
In addition, the right-hand side of (6.111) is uncertain at t = 0, whereas the
left-hand side gives ε. Nevertheless, let us show that equality (6.111) admits
a generalized interpretation and holds in terms of distributions. Let ψ(t) be
a test function in terms of the distribution theory, more precisely, ψ(t) is
infinitely differentiable with compact support that is identically zero outside
of some bounded interval. Integrating by parts and then shifting the variable
of integration, gives

∫ ∞

−∞

(

|t|+ |t|′ε+
1
2!
|t|′′ε2 + ...

)

ψ(t)dt

=
∫ ∞

−∞
|t|
[

ψ(t)− ψ′(t)ε+
1
2!
ψ′′(t)ε2 − ...

]

dt (6.112)

=
∫ ∞

−∞
|t|ψ(t− ε)dt =

∫ ∞

−∞
|t+ ε|ψ(t)dt

Therefore, equality (6.111) holds in the integral sense of distributions.

0 10 20 30 40
t

-2

-1

0

1

2

q

Fig. 6.11 Second-order asymptotic and numerical solutions shown by solid and
dashed lines, respectively
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Fig. 6.11 compares analytical solution (6.83), (6.93) and (6.94) shown by
the solid line and numerical solution shown by the dashed line. As expected,
the amplitude show the perfect match, whereas some phase shift develops
after several cycles.

6.7 Multiple Degrees-of-Freedom Case

Let us consider a multiple degrees-of-freedom piecewise-linear system of the
form

Mẍ+Kx = εH(Sx)Bx (6.113)

where x(t) ∈ Rn is a vector-function of the system coordinates, M is a mass
matrix, H denotes the Heaviside unit-step function, S is a normal vector to
the plane splitting the configuration space into two parts with different elastic
properties, so that the stiffness matrix is K when Sx < 0 and K − εB when
Sx > 0. It is assumed that the stiffness jump is small, |ε| 
 1.

The number of possible iterations of the classic perturbation tools usually
depends on a class of smoothness of the perturbation. The perturbation term
on the right-hand side of (6.113) is continuous but nonsmooth. Therefore, only
first-order asymptotic solution can be obtained within the classic theory of
differential equations. Moreover, the piecewise character of the perturbation
complicates the form of the solution due to the necessity of matching the
different pieces of the solution.

Fig. 6.12 Two degrees-of-freedom piecewise-linear system as a model of a rod with
a small crack.

However, we show that the idea of nonsmooth time transformation gives
a unit-form solution by automatically matching the pieces of solution in two
different configuration subspaces with different stiffness properties.

Let seek a 2π-periodic normal mode solution of (6.113) with respect to the
phase ϕ in the form

x(ϕ) = Aj cosϕ+ εx(1)(ϕ) +O(ε2)

ϕ = ωj

√

1 + εγ(1) +O(ε2)t (6.114)
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where ωj and Aj are arbitrary eigen frequency and eigen vector (normal
mode) of the linearized system:

(−ω2
jM +K)Aj = 0; j = 1,...,n (6.115)

Substituting (6.114) in (6.113), taking into account (6.87) and (6.115) in the
first order of ε, gives

ω2
jM

d2x(1)

dϕ2
+Kx(1) =

[
1
2
BAj + (

1
2
BAj + γ(1)KAj)e

]

cos
πτ

2
(6.116)

where τ = τ(2ϕ/π), e = e(2ϕ/π), and the relationship (1 + εγ(1))−1 =
1− εγ(1) +O(ε2) has been used.

Since the function x(1)(ϕ) is sought to be 2π-periodic with respect to ϕ,
we represent it in the form

x(1) = X(τ) + Y (τ)e (6.117)

This gives the boundary-value problem

(
2ωj

π

)2

MX ′′ +KX =
1
2
BAj cos

πτ

2
, X ′|τ=±1 = 0 (6.118)

(
2ωj

π

)2

MY ′′ +KY =
(

1
2
BAj + γ(1)KAj

)

cos
πτ

2
(6.119)

Y |τ=±1 = 0

Representing the corresponding solution in terms of the normal mode coor-
dinates

X =
n∑

i=1

AiXi(τ), Y =
n∑

i=1

AiYi(τ) (6.120)

and taking into account M -orthogonality of the set of eigen vectors, gives

(
2ωj

π

)2

X ′′
i + ω2

iXi = βij cos
πτ

2
, X ′

i|τ=±1 = 0 (6.121)

(
2ωj

π

)2

Y ′′
i + ω2

i Yi = (βij + γ(1)κij) cos
πτ

2
, Yi|τ=±1 = 0 (6.122)

where
βij =

1
2
AiBAj

AiMAi
, κij =

AiKAj

AiMAi
(6.123)

are dimensionless coefficients.
Note that despite of the similar representation for solution (6.114),

there is a noticeable difference between the classic Poincare-Lindshtedt
method and current procedure due to (6.117). Namely, according to the
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Poincare-Lindshtedt method, the frequency correction term γ(1) is to
kill the so called secular terms in the asymptotic expansions. In our case,
the secular terms appear to be periodic due to the ‘built in’ periodicity of the
new temporal argument. However, periodicity of solutions is provided by the
existence of solutions of the boundary-value problems, such as (6.121) and
(6.122). Due to the linearity, the existence of solutions allows the direct veri-
fication. So if i �= j then both problems (6.121) and (6.122) are solved in the
standard way with no presence of γ(1) because κij = 0. The corresponding
solution is given by

Xi =
βij

ω2
i − ω2

j

(

cos
πτ

2
− ωj

ωi
cos

πωiτ

2ωj
csc

πωi

2ωj

)

(6.124)

Yi =
βij

ω2
i − ω2

j

cos
πτ

2
(6.125)

In the particular case i = j, problem (6.121) still has a solution, but problem
(6.122) generally speaking does not. Fortunately, in this case, we have κjj �= 0
and thus the problem is set to have the trivial solution by condition

γ(1) = −βjj

κjj
(6.126)

Therefore,

Xj =
πβjj

4ω2
j

(

τ sin
πτ

2
+

2
π

cos
πτ

2

)

(6.127)

Yj = 0 (6.128)

So expressions (6.117), (6.120), and (6.124) through (6.128) completely de-
termine the first order approximation x(1)(ϕ).

Let us consider the example of mass-spring model

m1ẍ1 + (k1 + k2)x1 − k2x2 = εk1H(x1)x1 (6.129)
m2ẍ2 − k2x1 + (k2 + k3)x2 = 0

Equations (6.111) can be represented in the form (6.113), where

M =
[

m1 0
0 m2

]

, K =
[

k1 + k2 −k2

−k2 k2 + k3

]

, B =
[

k1 0
0 0

]

x =
[
x1

x2

]

, S =
[

1 0
]

In this case, the first-order asymptotic solution for the in-phase (j = 1) and
out-of-phase (j = 2) takes the form, respectively,
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x1 = e cos
πτ

2
+
επ

16

(
2
π

cos
πτ

2
+ τ sin

πτ

2

)

+O(ε2)

x2 = e cos
πτ

2
− εk1

8k2

[

e cos
πτ

2
+ cos

πτ

2
(6.130)

−
(

1 + 2
k2

k1

)−1/2

cos

(√

1 + 2
k2

k1

πτ

2

)

/ sin

(√

1 + 2
k2

k1

π

2

)]

+O(ε2)

ϕ =

√

k1

m

√

1− ε

4
+O(ε2)t

and

x1 = −e cos
πτ

2
+
εk1

8k2

[

e cos
πτ

2
+ cos

πτ

2
−
(

1 + 2
k2

k1

)

× cos

(

πτ

2
/

√

1 + 2
k2

k1

)

/ sin

(

π

2
/

√

1 + 2
k2

k1

)]

+O(ε2) (6.131)

x2 = e cos
πτ

2
+

εk1π

16(k1 + 2k2)

(
2
π

cos
πτ

2
+ τ sin

πτ

2

)

+O(ε2)

ϕ =

√

k1 + 2k2

m

√

1− εk1

4(k1 + 2k2)
+O(ε2)t

where it is assumed that m1 = m2 = m. Solutions (6.130) and (6.100) show
that a bi-linearity may have quite different effect on different modes. In par-
ticular, solution (6.130) reveals the possibility of internal resonances, when

sin
(
πω2

2ω1

)

= 0,
ω2

ω1
=
√

1 + 2
k2

k1
(6.132)

If, for instance, the system is close to the frequency ratio ω2/ω1 = 2 then the
in phase mode may be affected significantly by a crack even under very small
magnitudes of the parameter ε. In contrary, solution (6.100) has the denom-
inator sin[(π/2)ω1/ω2], which is never close to zero because 0 < ω1/ω2 < 1.
Therefore, in current asymptotic approximation, the influence of crack on the
out-of phase mode is always of order ε provided that k2/k1 = O(1).

The influence of the bilinear stiffness on inphase mode trajectories in the
closed to internal resonance case is seen from Fig. 6.13, where both analytical
and numerical solutions are shown for comparison reasons. The frequency ra-
tio ω2/ω1 = 2.0025 is achieved by conditioning the spring stiffness parameters
as follows k2 = (3/2)k1 + 0.005.
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Ε � 0Ε � 0.01
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Fig. 6.13 The influence of a small “crack” ε = 0.01 on the in-phase mode tra-
jectory near the frequency ratio ω2/ω1 = 2; the dashed line shows the numerical
solution, and the thin solid line corresponds to the perfect (linear) case ε = 0.

6.8 The Amplitude-Phase Problem in the Idempotent
Basis

Recall that the idempotent basis is given by e+ = (1+e)/2 and e− = (1−e)/2
so that e2+ = e+, e2− = e− and e+e− = 0. Equations (6.88) and (6.89)
therefore take the form

Ȧ = −1
2
εωe+A sinπτ (6.133)

ϕ̇ = ω − εωe+ cos2
πτ

2
(6.134)

Let us represent the amplitude as a function of ϕ in the form

A(ϕ) = X+(τ)e+ +X−(τ)e− (6.135)

where e+ = e+(2ϕ/π), e− = e−(2ϕ/π) and τ = τ(2ϕ/π).
Substituting (6.135) in (6.133) and taking into account (6.134), gives

2
π

(X ′
+e+ −X ′

−e−)(ω − εωe+ cos2
πτ

2
) = −1

2
εωe+(X+e+ +X−e−) sinπτ
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or

(1− ε cos2
πτ

2
)X ′

+ = −π
4
εX+ sinπτ

X ′
− = 0 (6.136)

under the boundary condition

(X+ −X−)|τ=±1 = 0 (6.137)

The boundary-value problem (6.136) and (6.137) admits exact solution so
that (6.135) gives finally

A(ϕ) = α[(1− ε cos2
πτ

2
)−1/2e+ + e−] (6.138)

where α is an arbitrary positive constant.
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