
Chapter 3
Nonsmooth Processes as Asymptotic
Limits

Abstract. In this chapter, we consider different physical models generating
both smooth and nonsmooth temporal mode shapes as appropriate conditions
occur. The objective is to bring attention to the fact that nonsmooth pro-
cesses may naturally occur as high-energy asymptotics in different oscillatory
models with no intentionally introduced stiff constraints or external impacts.
In other words, nonsmooth temporal mode shapes may be as natural as sine
waves generated by oscillators under low-energy conditions. Essentially non-
linear phenomena, such as nonlinear beats and energy localization are also
considered. In particular, it is shown that energy exchange between two os-
cillators may possess hidden nonsmooth behaviors.

3.1 Lyapunov’ Oscillator

Let us consider a family of oscillators described by the differential equation

ẍ+ x2n−1 = 0 (3.1)

where n is a positive integer.
In the particular case n = 1 one has the simplest harmonic oscillator.

However, when n > 1 the system becomes essentially nonlinear and cannot be
linearized within the class of vibrating systems. Moreover, as the parameter
n increases, the temporal mode shape of oscillator (3.1) while remaining
smooth is gradually approaching the triangular wave non-smooth limit. In
general, such transition represents a challenging problem from both physical
and mathematical viewpoints. Therefore, it is important to understand some
basic cases, such as oscillator (3.1) and those considered in the next section.
These special cases admit exact solutions, so that it is possible to actually see
how smooth motions are approaching the non-smooth limit. There are also
methodological reasons for considering equation (3.1) as a simple example
of oscillators including both linear and strongly nonlinear cases. It is known
that, for an arbitrary positive integer n, general solution of equation (3.1)
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can be expressed in terms of special Lyapunov’s function [96], [77], [56] such
as snθ and csθ as defined by expressions1

θ =

snθ∫

0

(

1− nz2
) 1−2n

2n dz, cs2nθ + n sn2θ = 1

These functions possess the properties

cs0 = 1, sn0 = 0,
dsnθ
dθ

= cs2n−1θ,
dcsθ
dθ

= −snθ

The period is given by

T = 4
√
n

1∫

0

dx√
1− x2n

= 2
√
π

n

Γ
(

1
2n

)

Γ
(

n+1
2n

)

Now, the general solution of equation (3.1) can be written as

x = Acs
(

An−1t+ α
)

(3.2)

where A and α are arbitrary constants.
Note that the scaling factors A and An−1 are easily predictable based

on the form of equation (3.1). Indeed, equation (3.1) admits the group of
transformations x = Ax̄(t̄), where t̄ = An−1t.

For n = 1 the functions snθ and csθ give the standard pair of trigonomet-
ric functions sin θ and cos θ, respectively. Interestingly enough, the strongly
nonlinear limit n → ∞ also gives a quite simple pair of periodic functions.
Despite some mathematical challenges, this case admits interpretation by
means of the total energy

ẋ2

2
+
x2n

2n
=

1
2

(3.3)

where the number 1/2 on the right-hand side corresponds to the initial con-
ditions x (0) = 0 and ẋ (0) = 1.

Taking into account that the coordinate of the oscillator reaches its am-
plitude value at zero kinetic energy, gives the estimate −n1/(2n) ≤ x (t) ≤
n1/(2n) for any time t. Since n1/(2n) −→ 1 as n −→∞ then the limit motion
is restricted by the interval −1 ≤ x (t) ≤ 1. Inside of this interval, the second
term on the left-hand side of expression (3.3) vanishes and hence, ẋ = ±1 or
x = ±t+ α± , where α± are constants. By manipulating with the signs and
constants one can construct the sawtooth sine τ (t) - triangular wave - since
there is no other way to providing the periodicity condition.
1 Another version of special functions for equation (3.1) was considered in [167].
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So the family of oscillators (3.1) includes the two quite simple cases asso-
ciated with the boundaries of the interval 1 ≤ n <∞. Respectively, one has
the two couples of periodic functions

{x, ẋ} = {sint, cost}, if n = 1 (3.4)

and
{x, ẋ} → {τ(t), τ̇ (t)}, if n→∞ (3.5)

where τ̇ (t) is a generalized derivative of the sawtooth sine and will be named
as a rectangular cosine.

Earlier, the power-form characteristics with integer exponents were em-
ployed for phenomenological modeling amplitude limiters of vibrating elastic
structures [191] and illustrations of impact asymptotics [132], [137]. It should
be noted that such phenomenological approaches to impact modeling are de-
signed to capture the integral effect of interaction with physical constraints
bypassing local details of the dynamics near constraints. Such details first
of all depend upon both the vibrating body and amplitude limiter physical
properties. In many cases, Hertz model of interaction may be adequate to
describe the local dynamics near constraint surfaces [64]. Note that direct
replacement of the characteristic x2n−1 by the Hertzian restoring force kx3/2

in (3.1) gives no oscillator. The equation,

ẍ+ kx3/2 = 0 (3.6)

which is a particular case of that used in [64], must be obviously accompanied
by the condition 0 ≤ x, where x = 0 corresponds to the state at which the
moving body and constraint barely touch each other with still zero interaction
force.

The following modification brings system (3.6) into the class of oscillators
with odd characteristics

ẍ+ ksgn(x)|x|3/2 = 0 (3.7)

However, oscillator (3.7) essentially differs from oscillator (3.1) since equation
(3.7) describes no gap (clearance) between the left and right constraint sur-
faces. In other words models (3.1) and (3.7) still represent physically different
situations. The gap 2Δ with its center at the origin x = 0 can be introduced
in equation (3.7) as follows

ẍ+ k[H(x−Δ)|x−Δ|3/2 −H(−x−Δ)|x+Δ|3/2] = 0 (3.8)

where H means Heaviside unit-step function.
This is a generalization of model (3.7), which is now obtained from (3.8)

by setting Δ = 0. Equation (3.8) can be viewed as a physical impact oscil-
lator that accounts for elastic properties of its components. As compared to
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phenomenological model (3.1), equation (3.8) was obtained on certain phys-
ical basis given by the Hertz contact theory.

Finally, oscillators with power-form characteristics, including their gener-
alizations, can be found in physical literature[26], [121], [58], [60], [98] and
different areas of applied mathematics and mechanics [112], [11], [3], [4], [43],
[107], [5], [34], [6], [63], [193], [48], [108], [164]. In [146], the power-form restor-
ing forces were introduced to simulate the effect of liquid container’ walls on
liquid sloshing impacts; see also review article [66].

3.2 Nonlinear Oscillators Solvable in Elementary
Functions

A class of strongly nonlinear oscillators admitting surprisingly simple exact
general solutions at any level of the total energy is described below. Although
the fact of exact solvability of these oscillators has been known for quite a long
time [78], it did not attract much attention possibly due to the specific form
of the oscillator characteristics with uncertain physical interpretations. It is
clear however that, in a phenomenological way, such characteristics capture
sufficiently general physical situations with hardening and softening behavior
of the elastic forces. For instance, these oscillators were recently used as a
phenomenological basis for describing different practically important physi-
cal and mechanical systems [122], [40], [41]. The hardening characteristic is
close to linear for relatively small amplitudes but becomes infinity growing
as the amplitude approaches certain limits. As a result, the corresponding
temporal mode of vibration changes its shape from smooth quasi harmonic
to nonsmooth triangular wave. In contrast, the softening characteristic be-
haves in a non-monotonic way such that the vibration shape is approaching
the rectangular wave as larger amplitudes are considered.

Earlier, amplitude-phase equations were obtained for a coupled array of
the hardening oscillators [157]. It will be shown below that such oscillators
admit explicit introduction of the action-angle variables within the class of
elementary functions. As a result, conventional averaging procedures become
applicable to a wide range of nonlinear motions including transitions from
high- to low-energy dynamics. In particular, analytical solutions are obtained
under small damping conditions. These solutions show a good match with the
corresponding numerical solutions at any energy level even within the first-
order asymptotic approximation.

Hardening and softening cases of these oscillators are, respectively,

H =
p2

2
+

tan2 x

2
⇒ ẍ+

tanx
cos2 x

= 0 (3.9)

and

H =
p2

2
+

tanh2 x

2
⇒ ẍ+

tanhx
cosh2 x

= 0 (3.10)

where p = ẋ is the linear momentum of the Hamiltonian H .
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Further objectives are to investigate the high-energy asymptotics with
transitions to nonsmooth temporal mode shapes and to show that both of
the above oscillators can play the role of generating systems for regular per-
turbation procedures within the class of elementary functions.
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Fig. 3.1 Hardening characteristic.
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Fig. 3.2 Softening characteristic.

Notice that oscillators (3.9) and (3.10) complement each other as those
with stiff and soft characteristics represented in Figs. 3.1 and 3.2, respectively.
These oscillators can be represented also in the form

ẍ+ tanx+ tan3 x = 0 (3.11)
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ẍ+ tanhx− tanh3 x = 0 (3.12)

Further analyses of equations (3.11) and (3.12) can be quite easily conducted
by means of substitutions q = tanx and q = tanhx, respectively. Interestingly
enough, oscillators (3.11) and (3.12) without the qubic terms, namely ẍ +
tanx = 0 and ẍ + tanhx = 0, were considered by Timoshenko and Yang
[182]. But, despite of the simplified form, the corresponding solutions were
found to be special functions.

3.2.1 Hardening Case

Consider first stiff oscillator (3.9), whose solution is

x = arcsin
[

sinA sin
(

t

cosA

)]

(3.13)

where A is an arbitrary constant, and another constant is introduced as an
arbitrary time shift t− > t+ const., since the equations admits the group of
temporal shifts.

Therefore, (3.13) represents a general periodic solution of the period T =
2π cosA, and the total energy is expressed through the amplitude A as

E =
1
2

tan2A (3.14)

In zero energy limit, when the amplitude A is close to zero, the oscillator lin-
earizes whereas solution (3.13) gives the corresponding sine-wave temporal
shape. On the other hand, the energy becomes infinitely large as the pa-
rameter A approaches the upper limit π/2. In this case, the period vanishes
while the oscillation takes the triangular wave shape, as it is seen from ex-
pression (3.13). Fig. 3.3 illustrates the evolution of the vibration shape in the
normalized coordinates.

Below, the action-angle variables are introduced in terms of elementary
functions. This enables one of considering non-periodic motions by using
exact solution (3.13) as a starting point of the averaging procedure. For a
single degree-of-freedom conservative oscillator, the action coordinate I is
known to be the area bounded by the system’ trajectory on the phase plane
divided by 2π whereas the angle ϕ coordinate is simply phase angle [8], [124].
In the case of stiff oscillator (3.9), one obtains

I =
1
2π

∮

pdx =
1

cosA
− 1 (3.15)

and,

ϕ =
t

cosA
(3.16)

respectively.
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Fig. 3.3 Normalized temporal mode shapes of the stiff oscillator, Ns(ϕ, α) =
arcsin(α sin ϕ)/ arcsin α.

The original coordinate and the velocity are expressed by the action-angle
variables as follows [158]

x = arcsin

(√
2I + I2

1 + I
sinϕ

)

, p =
(1 + I)

√
2I + I2 cosϕ

√

1 + (2I + I2) cos2 ϕ
(3.17)

In order to observe the convenience of action-angle coordinates, let us chose
the Hamiltonian description of the oscillator. Taking into account expressions
(3.14) and (3.15), and eliminating the amplitude A, gives the total energy
and thus the Hamiltonian in the form

H = I +
1
2
I2 (3.18)

The corresponding differential equations of motion are derived as follows

ϕ̇ =
∂H

∂I
= 1 + I (3.19)

İ = −∂H
∂ϕ

= 0

As it is seen, the differential equation of the oscillator (3.9) takes the linear
form with respect to the action-angle coordinates, and thus possess the exact
general solution

I = I0, ϕ = (1 + I0) t+ ϕ0 (3.20)

where I0 > 0 and ϕ0 are arbitrary constants. By substituting (3.20) in (3.17),
one can express the solution via the original coordinates. The meaning of the
initial action is clear from the energy relationship
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E = I0 +
1
2
I2
0 =

1
2

tan2A (3.21)

Note that the linearity of the Hamiltonian equations is due to the specific
strongly non-linear form of the coordinate transformation (3.17). In other
words, the system nonlinearity has been ‘absorbed’ in a purely geometric way
by the nonlinear coordinate transformation.

As mentioned at the beginning, simplicity of the transformed system and
that of the corresponding solution can be essentially employed for the purpose
of perturbation analysis. Let us consider, however, the differential equation
of motion in the Newtonian form

ẍ+
tanx
cos2 x

= εf (x, ẋ) (3.22)

were ε is a small parameter.
This system is weakly non-hamiltonian. However, it is still possible to

consider expressions (3.17) as a change of the coordinates {x, p} −→ {I, ϕ}
by imposing the compatibility condition dx/dt = p, where x and p must be
taken from (3.17). This gives

ϕ̇ = 1 + I − εf(x, p) sinϕ
(1 + I)

√

(2I + I2) [1 + (2I + I2) cos2 ϕ]

İ =
εf(x, p)

√
2I + I2 cosϕ

√

1 + (2I + I2) cos2 ϕ
(3.23)

where the function f(x, p) must be expressed through the action-angle coor-
dinates by means of (3.17).

For instance, in the case of linear damping, f(x, p) ≡ −p, one obtains

ϕ̇ = 1 + I +
ε cosϕ sinϕ

1 + (2I + I2) cos2 ϕ
(3.24)

İ = −ε (1 + I)
(

2I + I2
)

cos2 ϕ
1 + (2I + I2) cos2 ϕ

At this stage, let us implement just one step of the procedure and evaluate its
effectiveness. Applying the operator of averaging with respect to the phase
variable gives the corresponding first-order averaged system in the linear form

ϕ̇ = 1 + I, İ = −εI (3.25)

Substituting the general solution of system (3.25) in (3.17), finally gives

x = arcsin

{√

2I0 exp (−εt) + I2
0 exp (−2εt)

1 + I0 exp (−εt) sin
[

t+ I0
1− exp (−εt)

ε
+ ϕ0

]}

(3.26)
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where I0 and ϕ0 are arbitrary constants. The corresponding time history
records and phase plane diagrams for different damping coefficients are shown
in Fig. 3.4. Even the first order approximation appears to be perfectly match-
ing with numerical solution for all range of amplitudes. The analytical and
numerical curves can be distinguished only at relatively large magnitudes of
the damping parameter ε. Also, the diagrams show that the temporal mode
shape is gradually changing from the triangular to harmonic as time increases
and thus the amplitude decays.
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Fig. 3.4 The dynamics of the linearly damped stiff oscillator under the initial
conditions I0 = 10 and ϕ0 = 0, and two different damping parameters: ε = 0.2 (on
the left,) and ε = 0.8 (on the right.) Analytical and numerical solutions show a
slight mismatch only on the top right diagram.

3.2.2 Localized Damping

Let us consider the case of nonlinear damping

ẍ+
tanx
cos2 x

+ 2εẋ tan2 x = 0 (3.27)

In this case, the perturbation is given by f(x, p) ≡ −2p tan2 x. Such a damp-
ing is rapidly growing near the boundaries of the interval −π/2 ≤ x ≤ π/2,
but it becomes negligible when the amplitude is small, |x| << 1.
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In the action-angle coordinates, first order averaging gives

ϕ̇ = 1 + I, İ = −εI2

and thus
ϕ = t+

1
ε

ln (1 + εI0t) + ϕ0, I =
I0

1 + εI0t

Using the coordinate transformation (3.17), gives solution

x = arcsin

{√

I0(2 + I0 + 2εI0t)
1 + I0 + εI0t

sin
[

t+
ln(1 + εI0t)

ε
+ ϕ0

]}

(3.28)

where I0 and ϕ0 are arbitrary constants.
Note that the amplitude decay of solutions (3.26) and (3.28) is qualitatively

different. For instance, the amplitude of vibration (3.28) originally decays in a
fast rate and then becomes very slow. In contrast, the amplitude of vibration
(3.26) first decays slowly then the decay rate abruptly increases and then
slows down again.

3.2.3 Softening Case

Let us consider now softening oscillator (3.10), whose exact solution is

x = arc sinh
[

sinhA sin
(

t

coshA

)]

(3.29)

As Fig. 3.5 shows, the high-energy vibration shape approaches the rectangular
wave and thus essentially differs of that observed in the stiff case.

Based on solution (3.29), the action-angle coordinates are introduced by
means of expressions

x = arc sinh

(√
2I − I2

1− I sinϕ

)

, p =
(1− I)√2I − I2 cosϕ
√

1− (2I − I2) cos2 ϕ
(3.30)

where
I = 1− 1

coshA
(3.31)

Nevertheless, all the analytical manipulations are analogous to those in the
stiff case. For instance, taking into account (3.31), gives the total energy as
a function of the action coordinate

E =
1
2

tanh2A = I − 1
2
I2 (3.32)
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Fig. 3.5 Normalized temporal mode shapes of the soft oscillator,
Nh(ϕ, α) =arcsinh(α sin ϕ)/arcsinh α.

In the presence of viscous damping,

ẍ+
tanhx
cosh2 x

= −εẋ (3.33)

one obtains, compare to (3.25),

ϕ̇ = 1− I, İ = −εI (3.34)

and general solution of the original equation takes the form

x=arc sinh

{√

2I0 exp (−εt)− I2
0 exp (−2εt)

1− I0 exp (−εt) sin
[

t−I0 1− exp (−εt)
ε

+ϕ0

]}

(3.35)
The corresponding time history records and phase plane diagrams are shown
in Fig. 3.6 for different damping coefficients. The first order approximation
appears to perfectly match the corresponding numerical solution for all range
of amplitudes, unless the initial action I0 approaches the magnitude 1. As
follows from expressions (3.32), this magnitude corresponds to the maximum
value of the total energy of the oscillator. Note that the energy of the hard-
ening oscillator has no maximum.

3.3 Nonsmoothness Hiden in Smooth Processes

In this section, we consider nonlinear beats phenomena as another source of
nonsmooth behavior that brings certain physical meaning to oscillator (3.22).
Note that nonlinear beats became of growing interest just few decades ago
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Fig. 3.6 The dynamics of the linearly damped softening oscillator under the initial
conditions I0 = 0.5, ϕ0 = 0, and two different damping parameters: ε = 0.2 (on
the left,) and ε = 0.8 (on the right.) Analytical and numerical curves practically
coincide.

from different viewpoints of physics and nonlinear dynamics [84], [59], [99],
[188], [88]. Interestingly enough, phase variables of interacting oscillators with
close natural frequencies may show non-smoothness of temporal behavior
during the beating [59], for instance similar to that of a vibro-impact process
[101], [104].

3.3.1 Nonlinear Beats Model

Consider two linearly coupled Duffing oscillators

ẍ1 +Ω2x1 = −β(x1 − x2)− αx3
1 ≡ f1

ẍ2 +Ω2x2 = −β(x2 − x1)− αx3
2 ≡ f2 (3.36)

where α and β are nonlinearity and linear coupling parameters, respectively.
Let us introduce complex coordinates Aj(t) and Āj(t) as follows

xj =
1
2
[Aj exp(iΩt) + Āj exp(−iΩt)]

ẋj =
iΩ

2
[Aj exp(iΩt)− Āj exp(−iΩt)] (3.37)

where j = 1, 2.
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Convenience of using the complex amplitudes for linear and nonlinear
mode analyses have been known for a long time [131], [174]. In physical
literature though, complex amplitudes are introduced more often as vectors
rotating on complex phase planes of oscillators, but the resultant equations
are usually similar to those obtained below. Expressions (3.37) implement
indeed a complex version of the parameter variation method based on the so-
lution of the corresponding linear system. The related compatibility condition
is imposed in the form

dAj

dt
exp(iΩt) +

dĀj

dt
exp(−iΩt) = 0 (3.38)

By substituting (3.37) in (3.36) and taking into account (3.38) gives

dAj

dt
=

1
iΩ

exp(−iΩt)fj (3.39)

Assuming that the coupling and nonlinearity parameters are sufficiently small
and averaging the right-hand side with respect to Ωt, gives

Ȧ1 =
βi

2Ω

(

A1 − A2 +
3α
4 β

A2
1 Ā1

)

(3.40)

Ȧ2 =
βi

2Ω

(

−A1 +A2 +
3α
4 β

A2
2 Ā2

)

Further, following work [104], a slowly rotating subcomponent on the complex
plane is eliminated by means of substitution

Aj = ψj(t) exp
(
iβ

2Ω
t

)

(3.41)

Substituting (3.41) into (3.40), gives

ψ̇1 = − βi

2Ω

(

ψ2 −
3α
4 β

ψ2
1 ψ̄1

)

(3.42)

ψ̇2 = − βi

2Ω

(

ψ1 −
3α
4 β

ψ2
2 ψ̄2

)

This system has two integrals as follows

K = ψ1 ψ̄1 + ψ2 ψ̄2 (3.43)
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G = ψ1 ψ̄2 + ψ2 ψ̄1 −
3α
8 β

(

|ψ1|4 + |ψ2|4
)

(3.44)

Integral (3.43) admits substitution

ψ1 =
√
K cos

[
1
2
θ(t) +

π

4

]

exp[i δ1(t)] (3.45)

ψ2 =
√
K sin

[
1
2
θ(t) +

π

4

]

exp[i δ2(t)]

Substituting (3.45) in (3.42) and (3.44), gives

G = −K cosΔ cos θ − 3K2 α

32 β
(3− cos 2 θ) = const. (3.46)

Δ̇ = − β

Ω
cosΔ tan θ +

3K α

8Ω
sin θ (3.47)

θ̇ =
β

Ω
sinΔ (3.48)

where Δ = δ2 − δ1 + π.
It will be shown below that the phase variable θ, which determines the

process of energy flow between the oscillators, is described by the oscillator
(3.22).

Equations (3.47)-(3.48) are similar to those obtained in [101], [104], where
it was noticed that temporal shapes of the phase variables θ andΔmay resem-
ble the behavior of the state variables of impact oscillator. This observation
seems to be important since it is hard to expect any “impact oscillators” in
weakly nonlinear systems of type (3.36).

Below, the corresponding ‘conservative oscillator’ admitting the impact
limit will be explicitly obtained and analyzed by using the methodology de-
scribed in the previous section. However, the approach below deals with a
general class of nonlinear restoring force characteristics admitting power-
series expansions. It will be shown also that equations (3.47)-(3.48) can be
derived by introducing the standard set of amplitude-phase variables and
applying then the traditional one fast phase averaging technique.

3.4 Nonlinear Beat Dynamics: The Standard
Averaging Approach

Let us consider two identical linearly coupled oscillators

ü1 + b(u1 − u2) + p(u1) = 0
ü2 + b(u2 − u1) + p(u2) = 0 (3.49)
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where b is the coupling stiffness per unit mass, and p(u) is the restoring force
characteristic, which is assumed to be an analytic function that admits a
power series expansion.

Assuming that the system has equilibrium at zero and introducing the
notation

Ω2 = b+ k

ε = b/Ω2 = b/(b+ k) (3.50)
f(u) = [(b+ k)/b][p(u)− ku]

where f(u) is a nonlinear component of the characteristic, and k=p’(0).
Note that the power series expansion for f(u) starts from at least second

degree of u. Therefore, the order of magnitude of the function f(u) can be
manipulated by making appropriate assumptions as to the magnitude of the
total energy of the system.

Taking into account the above notations and introducing the velocities
v1(t) and v2(t) brings the original system to the form

u̇1 = v1

u̇2 = v2

v̇1 = −Ω2u1 + ε[Ω2u2 − f(u1)] (3.51)
v̇2 = −Ω2u2 + ε[Ω2u1 − f(u2)]

As ε → 0, the system degenerates into two identical harmonic oscillators
whose total energies are conserved of-course since neither damping nor exter-
nal loading are present. At non-zero ε, the oscillators become non-linear and
interact with each other in such a way that one of the oscillators is loaded by
the force proportional to the displacement of another oscillator. Since system
(3.51) is still perfectly symmetric and conservative, it is reasonable to assume
a relatively slow periodic energy exchange between the oscillators. In order
to describe this process in physically meaningful terms, let us introduce new
set of variables as follows {u1, v1, u2, v2}− > {K,ϕ, δ1, δ2}:

u1 =
√
K cosϕ cos(Ωt+ δ1)

v1 = −
√
KΩ cosϕ sin(Ωt+ δ1)

u2 =
√
K sinϕ cos(Ωt+ δ2) (3.52)

v2 = −
√
KΩ sinϕ sin(Ωt+ δ2)

In case ε = 0 and constant {K,ϕ, δ1, δ2}, expressions (3.52) gives an ex-
act general solution of system (3.51). Therefore, relationships (3.52) simply
implement the idea of parameter variations; the corresponding differential
equations will be given below.
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Now, in order to track the oscillator energies during the vibration process,
let us use quantities

E1 =
1
2
(v2

1 +Ω2u2
1) =

1
2
Ω2K cos2 ϕ

E2 =
1
2
(v2

2 +Ω2u2
2) =

1
2
Ω2K sin2 ϕ (3.53)

and
E0 = E1 + E2 =

1
2
Ω2K (3.54)

Besides, expressions (3.53) and (3.54) clarify the physical meaning of the
variables K and ϕ participating in transformation (3.52), where other two
variables, δ1 and δ2, are phases of the vibrating oscillators. In particular, K
is proportional to the total energy of the decoupled and linearized oscillators,
whereas the phase ϕ characterizes the energy split between the oscillators. In
case ε = 0, the energy parameter K will have small temporal fluctuations due
to coupling and nonlinear terms in (3.51). Nevertheless expressions (3.53) and
(3.54) still will be used as the energy related quantities for characterization
of the energy exchange process between the oscillators.

In order to conduct the transition to the new variables, let us substitute
(3.52) in (3.51) and then solve the set of equations with respect to the deriva-
tives as follows

K̇ = −εKΩ sin 2ϕ sin(2Ωt+ δ1 + δ2) +
2ε
√
K

Ω

×{f [
√
K cosϕ cos(Ωt+ δ1)] cosϕ sin(Ωt+ δ1)

+f [
√
K sinϕ cos(Ωt+ δ2)] sinϕ sin(Ωt+ δ2)}

ϕ̇ =
ε

2
Ω[sin(δ1 − δ2)− cos 2ϕ sin(2Ωt+ δ1 + δ2)]− ε√

KΩ

×{f [
√
K cosϕ cos(Ωt+ δ1)] sinϕ sin(Ωt+ δ1)

−f [
√
K sinϕ cos(Ωt+ δ2)] cosϕ sin(Ωt+ δ2)} (3.55)

δ̇1 = −εΩ cos(Ωt+ δ1) cos(Ωt+ δ2) tanϕ

+
ε√
KΩ

cos(Ωt+ δ1) secϕf [
√
K cosϕ cos(Ωt+ δ1)]

δ̇2 = −εΩ cos(Ωt+ δ2) cos(Ωt+ δ1) cotϕ

+
ε√
KΩ

cos(Ωt+ δ2) cscϕf [
√
K sinϕ cos(Ωt+ δ2)]

System (3.55) is still an exact equivalent to system (3.49) and represents a
standard dynamic system with a single fast phase, ψ = Ωt. As a next natural
stage, let us apply the direct averaging to the right-hand side of (3.55) with
respect to the fast phase ψ:
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K̇ = 0
ϕ̇ =

ε

2
Ω sin(δ1 − δ2)

δ̇1 = −ε
2
Ω cos(δ1 − δ2) tanϕ+

ε

Ω
F1(K,ϕ) (3.56)

δ̇2 = −ε
2
Ω cos(δ1 − δ2) cotϕ+

ε

Ω
F2(K,ϕ)

where the residue theorem has been applied so that

F1(K,ϕ) =
1√

K cosϕ
1
2π

∫ 2π

0

f(
√
K cosϕ cosψ) cosψdψ

=
1√

K cosϕ
Res{f [

√
K cosϕ

1
2
(z +

1
z
)]

1
2
(z +

1
z2

)}

F2(K,ϕ) =
1√

K sinϕ
1
2π

∫ 2π

0

f(
√
K sinϕ cosψ) cosψdψ

=
1√

K sinϕ
Res{f [

√
K sinϕ

1
2
(z +

1
z
)]

1
2
(z +

1
z2

)}

First equation in (3.56) shows that the energy parameter K introduced in
(3.54) remains averagely constant regardless the magnitude of coupling and
nonlinearity parameter ε. This gives a justification for using quantities (3.53)
and (3.54) for describing the energy exchange between the oscillators: in-
deed, neither the coupling nor nonlinear stiffness in (3.51) can accumulate
the energy during one vibration cycle.

Further complete description of the dynamics can be conducted in terms
of the two phase shift parameters, Δ(t) and θ(t), introduced as follows

δ2 = δ1 +Δ− π
ϕ =

1
2
θ +

1
4
π (3.57)

Substituting (3.57) in (3.56) and introducing the slow time parameter t1 =
εΩt, gives

dθ

dt1
= sinΔ

dΔ

dt1
= − cosΔ tan θ + F (θ) (3.58)

where
F (θ) =

1
Ω2

[F2(K,
1
2
θ +

1
4
π)− F1(K,

1
2
θ +

1
4
π)]

It can be shown that system (3.58) has the integral

G = − cosΔ cos θ + h(θ) = const. (3.59)
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where
h(θ) = −

∫

F (θ) cos θdθ (3.60)

Now let us show that system (3.58) can be reduced to a single strongly
nonlinear oscillator with respect to the coordinate θ. Taking time derivative
of both sides of the first equation in (3.58) and eliminating from the result
dΔ/dt1 and cosΔ by means of the second equation in (3.58) and the integral
of motion, (3.59), respectively, gives

d2θ

dp2
+

tan θ
cos2 θ

= R(θ) (3.61)

where p = |G|t1 = ε|G|Ωt is a new slow temporal argument, θ = θ(p) and

R(θ) = G−2

{

h(θ)[2G− h(θ)]
tan θ
cos2 θ

− [G− h(θ)]
F (θ)
cos θ

}

(3.62)

Equation (3.61) represents a principal equation describing the energy ex-
change in the coupled set of oscillators (3.49) through the phase shift (3.57).

Note that the right-hand side in (3.61) is due to only nonlinearity associ-
ated with the nonlinear stiffness f(u); see relationships (3.50) and (3.51).

In case R(θ) = 0, equation (3.61) has exact analytical solution

θ(p) = arcsin
[

sin θ0 sin
(

p

cos θ0

)]

(3.63)

where θ0 is the amplitude of θ, whereas another constant can be introduced
as an arbitrary temporal shift, which is admitted by equation (3.61).

Generally speaking, it is still possible to find implicit solutions of equation
(3.61) in terms of quadratures for nonzero R(θ). In most cases, however, the
corresponding expressions appear to be technically complicated for analy-
ses. Therefore secondary asymptotic approaches to oscillator (3.61) may be
reasonable for understanding its behaviors.

For illustrating purposes, let us consider the example when the nonlinear
stiffness in (3.50)-(3.51) consists of cubic and fifth-degree terms

f(x) = α3x
3 + α5x

5 (3.64)

In this case, integration in (3.60) gives

h =
K(6α3 + 5Kα5)

32Ω2
cos2 θ (3.65)

whereas equation (3.61) takes the form

d2θ

dp2
+

tan θ
cos2 θ

= μ sin 2θ (3.66)
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where

μ =
K2(6α3 + 5Kα5)2

2048G2Ω4
(3.67)

Substituting (3.57) in (3.53), gives the corresponding energy values versus
phase θ:

E1 =
1
4
KΩ2(1 − sin θ)

E2 =
1
4
KΩ2(1 + sin θ) (3.68)

3.4.1 Asymptotic of Equipartition

For sufficiently small amplitudes of θ, equation (3.66) can be reduced to the
following Duffing equation

d2θ

dp2
+ (1− 2μ)θ +

4
3
(1 + μ)θ3 = 0 (3.69)

As follows from (3.68) on physical point of view, the equilibrium point θ = 0
corresponds to equal energy distribution between the oscillators (3.49). So
when the linear stiffness is positive 1 − 2μ > 0, equation (3.69) describes
periodic energy exchange between the oscillators (3.49) provided that the
initial energy distribution is close to equal and the cubic approximation for
the characteristic is justified. The period of the energy exchange process can
be easily estimated based on the corresponding solution of equation (3.69).
However, the linear stiffness becomes negative when

μ >
1
2

(3.70)

Condition (3.70) says that the equal energy distribution may become unstable
if the parameter μ is sufficiently large. As a result, system (3.69) can stay in
one of the two new stable equilibrium positions so that a larger portion of the
total energy is localized on one of the two identical oscillators (3.49). Note
that the equilibrium points of system (3.69) correspond to nonlinear normal
mode regimes. The phase-plane diagrams of oscillator (3.66) are shown in
Figs. 3.7, 3.8, and 3.9 for different magnitudes of μ. It is seen how two more
equilibria occur when μ exceeds the critical value (3.70).

Note that condition (3.70) is obviously necessary but not sufficient to guar-
antee that the localization will actually occur. Necessary and sufficient con-
ditions will be discussed below.

In order to determine the initial state of oscillator (3.66) and its parame-
ter μ, let us consider transformation (3.52) at t = 0. With no loss of generality,
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Fig. 3.7 Periodic energy exchange case, μ = 0.2.
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Fig. 3.8 Energy trapping bifurcation, μ = 0.5

one can select δ1(0) = 0. Then, taking into account expressions (3.57), (3.53)
and (3.54), gives

u1(0) =
√
K cos

(
π

4
+
θ(0)
2

)

v1(0) = 0

u2(0) = −
√
K cosΔ(0) sin

(
π

4
+
θ(0)
2

)

(3.71)

v2(0) =
√
KΩ sinΔ(0) sin

(
π

4
+
θ(0)
2

)
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Fig. 3.9 Super-critical energy trapping diagrams, μ = 0.9

and

θ(0) = − arcsin
[
E1(0)− E2(0)
E1(0) +E2(0)

]

Δ(0) = − arctan
[
v2(0)
Ωu2(0)

]

K =
2
Ω2

[E1(0) + E2(0)] (3.72)

G = − cosΔ(0) cos θ(0) +
K(6α3 + 5Kα5)

32Ω2
cos2 θ(0)

where

E1(0) =
1
2
[

v2
1(0) +Ω2u2

1(0)
]

E2(0) =
1
2
[

v2
2(0) +Ω2u2

2(0)
]

Since the initial velocity of the first oscillator is fixed v1(0) = 0 then the
system initial state is determined by the three quantities K, θ(0), and Δ(0);
see (3.71). Alternatively, one can specify u1(0), u2(0) and v2(0) and then find
K, θ(0), and Δ(0) from (3.72).

3.4.2 Asymptotic of Dominants

As the amplitude of θ is getting closer to π/2 then the phase θ oscillations
acquire nonsmooth temporal shapes. Expression (3.63), for instance, shows
that, at amplitudes near π/2, the energy exchange phase will be close to
the triangular wave shape with a relatively small wave-length. In this case,
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Duffing equation (3.69) seems to be not an adequate model. So assuming that
μ is sufficiently small, let us introduce action-angle variables as described
earlier in reference [158]

θ = arcsin

(√
2I + I2

1 + I
sinφ

)

θ′ =
(1 + I)

√
2I + I2 cosφ

√

1 + (2I + I2) cos2 φ
(3.73)

Substituting (3.73) in (3.66) under the compatibility condition θ′ = dθ/dp,
gives still exact equivalent of oscillator (3.66)

dI

dp
= μ

I(2 + I)
(1 + I)2

sin 2φ

dφ

dp
= 1 + I − 2μ

(1 + I)3
sin2 φ (3.74)

Note that the coordinate transformation (3.73) still would be valid for general
case (3.61) although with different to (3.74) result. In contrast to (3.66),
system (3.74) is weakly nonlinear with a very simple solution at μ = 0.

In [158], the direct averaging was applied to the right-hand side of (3.74)
in order to obtain the first-order solution. The idea of averaging can be also
implemented as asymptotic integration of system (3.74) by means of the
coordinate transformation

I = J − μ J(2 + J)
2(1 + J)3

cos 2ψ +O(μ2)

φ = ψ − μ (J2 + 2J − 2)
4(1 + J)4

sin 2ψ +O(μ2) (3.75)

Transformation (3.75) is obtained from the condition eliminating the fast
phase ϕ from the terms of order μ on the right-hand side in such a way that
the new system takes the form

dJ

dp
= O(μ2)

dψ

dp
= 1 + J − μ

(1 + J)3
+O(μ2) (3.76)

System (3.76) is easily integrated as follows

ψ =
[

1 + J − μ

(1 + J)3

]

p (3.77)

where J = const.
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Then the reversed chain of transformations back to (3.73) is applied. So-
lution (3.73) through (3.77) appears to have a good match with the corre-
sponding numerical solution when μ << 1/2; see (3.70) for interpretation.
The solution can work well even under condition (3.70), but the correspond-
ing initial conditions must keep the oscillator out of the triple equilibria
region. The oscillators’s motion within such region is better approximated by
Duffing’s equation (3.69). On physical point of view, the applicability loss for
solution (3.73) through (3.77) is due to the energy localization phenomenon,
which is not captured by the above solution despite of its strong nonlinearity.
Indeed, the term, which is responsible for occurring the triple equilibria is
ignored in the leading-order approximation.

3.4.3 Necessary Condition of Energy Trapping

On physical point of view, necessary condition of localization is the presence
of triple equilibrium positions of oscillator (3.66) within the basic interval
−π/2 < θ < π/2, which is provided by condition (3.70). However, to guar-
antee the energy localization, the initial conditions must keep the oscillator
within one of the two branches of the separatrix loop. Let us bring both of
the above conditions to the explicit form.

Necessary condition. For simplicity reason, let us consider the case of cubic
nonlinearity and introduce two dimensionless parameters

ν =
3E0α3

8Ω4
(3.78)

and

ζ =
(
ΔE0

E0

)2

(3.79)

where E0 = E1(0) + E2(0) is the total initial energy defined by (3.54), and
ΔE0 = E1(0) − E2(0), so that ν estimates the weight of nonlinearity in the
system dynamics, whereas

√
ζ is the initial energy disbalance per total initial

energy E0.
Calculating the constants K and G from (3.72) and making algebraic ma-

nipulations, eventually brings the necessary condition of localization (3.70)
to the form

− ζν√
1− ζ < cosΔ(0) <

(2 − ζ)ν√
1− ζ (3.80)

Let us recall that condition (3.80) provides the presence of two stable equi-
librium position of oscillator (3.66) near the origin (θ, dθ/dp) = (0, 0) which
itself becomes unstable. However (3.80) does no guarantee that oscillator
(3.66) is in the neighborhood of a stable equilibrium condition.
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3.4.4 Sufficient Condition of Energy Trapping

Now let us define that the energy localization takes place whenever the initial
conditions keep oscillator (3.66) within one of the two separatrix loops sur-
rounding the stable equilibrium points. A manifold of such initial conditions
is obtained from first integral of oscillator (3.66) as follows

(
dθ

dp

)2

+ tan2 θ + μ cos 2θ < μ (3.81)

Taking into account equation (3.58), dθ/dp = |G|−1 sinΔ, and calculating
the left - hand side of (3.81) at p = 0, gives

ζ[cosΔ(0)− ν
√

1− ζ]2 + sin2Δ(0) < ζν2 (3.82)

Note that both conditions (3.80) and (3.82) include the same set of param-
eters, such as the initial phase shift from the out-of-phase mode, Δ(0), the
parameter characterizing the initial energy distinction between the oscilla-
tors, ζ, and the parameter characterizing the total energy and thus strength
of nonlinearity, ν.

3.5 Transition from Normal to Local Modes

The transient mode localization phenomenon is considered in a mechanical
model combined of a simply supported beam and transverse nonlinear springs
with hardening characteristics. Two different approaches to the model reduc-
tion, such as normal and local mode representations for the beam’s center
line, are discussed. It is concluded that the local mode discretization brings
advantages for the transient localization analysis. Based on the specific co-
ordinate transformations and the idea of averaging, explicit equations de-
scribing the energy exchange between the local modes and the corresponding
localization conditions are obtained. It was shown that when the energy is
slowly pumped into the system then, at some point, the energy equipartition
around the system suddenly breaks and one of the local modes becomes the
dominant energy receiver. The phenomenon is interpreted in terms of the
related phase-plane diagram which shows qualitative changes near the image
of out-phase mode as the total energy of the system has reached its critical
level. A simple closed form expression is obtained for the corresponding crit-
ical time estimate. The text below is an update of recent publication by the
author [159].

3.6 System Description

The model under investigation represents a simply supported elastic beam
of length l with two masses attached to the beam and connected to the base
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Fig. 3.10 The mechanical model admitting both normal and local mode motions;
all the springs have hardening restoring force characteristics.

by nonlinear springs; see Fig. 3.10. The corresponding differential equation
of motion and boundary conditions are, respectively,

ρA
∂2w

∂t2
+ EI

∂4w

∂y4
= f1(t)δ(y − y1) + f2(t)δ(y − y2) (3.83)

and

w(t, y)|y=0,l = 0,
∂2w(t, y)
∂y2

|y=0,l = 0 (3.84)

where

fi(t) = −f [w(t, yi)]− c∂w(t, yi)
∂t

−m∂2w(t, yi)
∂t2

; i = 1, 2 (3.85)

are transverse forces applied to the beam from masses attached at the two
points y = y1,2.

It will be assumed that the model is perfectly symmetric with respect to
y = l/2 so that the springs are attached at points
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y1 = l/3 and y2 = 2l/3 (3.86)

Below we consider the case of the hardening restoring force characteristics
of the springs and show that, under appropriate conditions, a slow energy
in-flow leads to the localization of vibration modes. As a result, the system
energy is spontaneously shifted to either the left or right side of the beam
- the symmetry break. The adiabatically ‘slow’ energy increase means that
the energy source has a minor or no direct effect on the mode shapes. For
simulation purposes, such an energy in-flow is provided by the assumption
that the viscous damping coefficient c is sufficiently small and negative; the
physical basis for such an assumption was discussed in [158], [157]. This
remark, which is substantiated below by the corresponding numerical values
of the parameters, is important to follow, otherwise the phenomenon, which
is the focus of this paper, may not be developed. In contrast, the dissipation
(c > 0) can lead to a spontaneous dynamic transition from local to normal
modes, when the total energy reaches its sub-critical level.

Note that the presence of Dirac δ-functions in equation (3.83) requires
a generalized interpretation of the differential equation of motion in terms
of distributions [166]. The corresponding compliance is provided by further
model reduction based on the Bubnov-Galerkin approach, which actually
switches from the point-wise to integral interpretation of equations.

3.7 Normal and Local Mode Coordinates

Normal mode coordinates. Let us evaluate two possible ways to discretizing
the model (3.83). In this paper, the reduced-order case of two degrees-of-
freedom is considered, when the conventional normal mode representation
for the boundary value problem (3.83) - (3.84) is

w(t, y) = W1(t) sin
πy

l
+W2(t) sin

2πy
l

(3.87)

Substituting (3.87) in (3.83) and applying the standard Bubnov-Galerkin
procedure, gives, after dropping the time arguments,

Ẅ1 + ζ̄Ẇ1 + λ2W1 + F (W1 +W2) + F (W1 −W2) = 0 (3.88)
Ẅ2 + ζ̄Ẇ2 + 16λ2W2 + F (W1 +W2)− F (W1 −W2) = 0

where

ζ̄ =
3c

3m+Alρ
, λ2 =

π4EI

l3(3m+Alρ)
(3.89)

and

F (z) =
√

3
3m+Alρ

f

(√
3

2
z

)

(3.90)

are constant parameters and a re-scaled restoring force function, respectively.
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Equations (3.88) are decoupled in the linear terms related to the elastic
beam centre line, whereas the modal coupling is due to the spring nonlinear-
ities included in F (z).

Local mode coordinates. Alternatively, the model can be discretized by
introducing the ‘local mode’ coordinates determined by the spring locations

ui(t) = w(t, yi); i = 1, 2 (3.91)

Taking into account (3.86) and (3.87), and substituting in (3.91) reveals sim-
ple links between the normal and local coordinates as

u1 =
√

3
2

(W1 +W2), u2 =
√

3
2

(W1 −W2) (3.92)

or, inversely,

W1 =
√

3
3

(u1 + u2), W2 =
√

3
3

(u1 − u2) (3.93)

Substituting (3.93) in (3.87), gives the ‘local mode expansion’ for the beam’s
centre line

w(t, y) = u1(t)ψ1

(πy

l

)

+ u2(t)ψ2

(πy

l

)

(3.94)

where the local mode shape functions are
[

ψ1 (x)
ψ2 (x)

]

=
√

3
3

[

1 1
1 −1

] [

sinx
sin 2x

]

(3.95)

Both normal and local mode shape functions are shown in Figs. 3.11 and 3.12,
respectively. Transformation (3.95) can be generalized for a greater number of
modes. Note that functions (3.95) satisfy the following ortogonality condition

∫ π

0

ψi (x)ψj (x) dx =
π

3
δij (3.96)

where δij is the Kronecker symbol.
However, the differential equations of motion for u1(t) and u2(t) are ob-

tained directly by substituting (3.93) in (3.88) and making obvious algebraic
manipulations that gives

ü1 + ζ̄ u̇1 + (λ2/2)(17u1 − 15u2) +
√

3F (2u1/
√

3) = 0 (3.97)

ü2 + ζ̄ u̇2 − (λ2/2)(15u1 − 17u2) +
√

3F (2u2/
√

3) = 0

This kind of discretization seems to be similar to that given by the finite
element approaches.
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Fig. 3.11 Normal mode shape functions; here and below dashed lines correspond
to second mode.
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Fig. 3.12 Local mode shape functions.

Further, equations (3.97) are represented as a set of first order equations

u̇1 = v1

u̇2 = v2

v̇1 = −ω2u1 + ε[ω2u2 − ζv1 − p(u1)] (3.98)
v̇2 = −ω2u2 + ε[ω2u1 − ζv2 − p(u2)]

where

ω =

√

2k +
17
2
λ2, k = F ′(0), ε =

15
2

(
λ

ω

)2

, ζ =
ζ̄

ε
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and

p(ui) =
√

3
ε

[

F

(

2
√

3
3
ui

)

− 2
√

3
3
kui

]

= βu3
i

are new constant parameters and the nonlinear component of the spring
characteristic; it is assumed that the damping coefficient and the nonlinear
component are small enough to provide the order of magnitude ζ = O(1) and
p(ui) = O(1).

For calculation purposes, the spring characteristic is taken in the form
F (u) = u+ (4/3)u3 which brings the nonlinearity parameter β to the form

β =
64ω2

135λ2
(3.99)

Equations (3.97), and analogously (3.98), possess advantages for transient
analysis because the corresponding linearized system has the same natu-
ral frequencies and the nonlinear components are decoupled. As a result,
the one-frequency perturbation tool becomes applicable. The corresponding
amplitude-phase variables are introduced as follows

ui = αi(t) cos[ωt+ δi(t)] (3.100)
vi = −ωαi(t) sin[ωt+ δi(t)]
(i = 1, 2)

Substituting (3.100) in (3.98) and applying the averaging procedure with
respect to the fast phase z = ωt, gives

α̇1 = −ε
2
[ζα1 + ωα2 sin(δ1 − δ2)]

α̇2 = −ε
2
[ζα2 − ωα1 sin(δ1 − δ2)]

δ̇1 = −εω
2
α2

α1
cos(δ1 − δ2) +

3εβ
8ω

α2
1 (3.101)

δ̇2 = −εω
2
α1

α2
cos(δ1 − δ2) +

3εβ
8ω

α2
2

The result of the work of [157] as well as further analysis show that the
localization may occur as the system vibrates in the out-of-phase mode,
u1(t) ≡ −u2(t). In order to investigate the dynamics near the out-of-phase
vibration mode, let us introduce three new variables s, ρ and θ,

α1 = −s(t) + ρ(t)
α2 = s(t) + ρ(t) (3.102)
δ2 = δ1 +Δ(t)
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where s and ρ characterize the amplitudes of the out-of-phase and in-phase
modes, respectively, and Δ is a phase shift between the local modes so that
the variables ρ and Δ describe small deviations from the out-of-phase mode.

Substituting (3.102) in (3.101), linearizing the result with respect to ρ and
Δ and then eliminating the phase variable Δ, gives

ρ̈+ εζρ̇+ ε2
(

ω2 +
1
4
ζ2 − 3

4
βs2

)

ρ = 0 (3.103)

whereas the equation obtained for s gives the solution

s = s0 exp
(

−1
2
εζt

)

(3.104)

In the case |ζ| 
 1, equation (3.103) describes an oscillator with a slow vary-
ing frequency. Making the frequency ‘frozen’ enables one of the determining
roots of the corresponding ‘characteristic equation’

k1,2 = ε

(

−1
2
ζ ± i

√

ω2 − 3
4
βs2

)

(3.105)

If the viscosity is negative, ζ < 0, then equations (3.103) through (3.105)
qualitatively describe the transition to the local mode as the system energy
increases. In particular, expression (3.105) shows that when the amplitude of
the out-phase mode, which is associated with s, becomes large enough then
the amplitude of the in-phase mode, ρ, looses its oscillatory character and
grows monotonically.

As a result, one of the local mode increases its amplitude, whereas another
one decays; see expressions (3.102). This is an onset of the dynamic transition
to a localized mode. The corresponding critical time follows from explicit
solution of (3.104) and (3.105)

t∗ =
1
ε|ζ| ln

4ω2

3βs20
(3.106)

In order to provide numerical evidence for the dynamic transition from nor-
mal to local mode vibrations, let us introduce an indicator of the energy
partition calculated as

P =
E1 − E2

E1 + E2
=

⎧

⎨

⎩

−1 if E1 = 0 and E2 �= 0
0 if E1 = E2

1 if E1 �= 0 and E2 = 0
(3.107)

where Ei = (v2
i + ω2u2

i )/2 is the total energy of i-th oscillator under the
condition ε = 0.
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Quantity (3.107) is varying within the interval −1 ≤ P ≤ 1. The ends
of the interval obviously correspond to the local modes, whereas its center
P = 0 corresponds to the normal modes.

The time history of the energy partition (3.107) is illustrated by Fig. 3.13.
The following parameters were taken for numerical simulations: λ = 0.05,
ζ̄ = −0.002, k = 1.0, ω =

√

2k + (17/2)λ2 = 1.4217, β = 32/(9ε) = 383.29,
ε = 15(λ/ω)2/2, and therefore ζ = ζ̄/ε = −0.2156. The initial normal mode
amplitudes at zero velocities are W1(0) = 0.0001 and W2(0) = −0.003. The
critical time estimate based on expression (3.106) t∗ = 3474.29 is in quite a
good match with Fig. 3.13.
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P

Fig. 3.13 ‘Sudden’ transition from normal to local mode vibration as the system
energy has reached its critical value.

3.8 Local Mode Interaction Dynamics

Let us introduce new variables, K, θ and Δ, as follows

α1 =
√

K(t) cos
[
1
2
θ(t) +

π

4

]

α2 =
√

K(t) sin
[
1
2
θ(t) +

π

4

]

(3.108)

Δ = δ2 − δ1 + π (3.109)

Further, considering the local mode total energies Ei under no interaction
condition, and taking into account (3.100), (3.108) and (3.110), gives

Ei =
1
2
(v2

i + ω2u2
i ); i = 1, 2 (3.110)
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E = E1 + E2 =
1
2
ω2(α2

1 + α2
2) =

1
2
ω2K (3.111)

ΔE = E1 − E2 =
1
2
ω2(α2

1 − α2
2) = −1

2
ω2K sin θ (3.112)

The variable K therefore is proportional to the total energy of the degen-
erated system, whereas the phase angle θ characterizes the energy partition
between the local modes (3.107) as follows

P =
ΔE

E
= − sin θ (3.113)

The third variable (3.109) describes the phase shift in the high-frequency
vibrations between the local modes so that Δ = 0 corresponds to the out-
phase motions of the masses attached to the beam; note the difference with
(3.102).

Differentiating (3.109), (3.111) and (3.112), and enforcing equations (3.101),
gives

dκ

dt1
= − ζ

ω
κ

dθ

dt1
= sinΔ (3.114)

dΔ

dt1
= − cosΔ tan θ + κ sin θ

where t1 = εωt is a new temporal argument, and

κ =
3β
8ω2

K (3.115)

In the conservative case, ζ = 0, the first equation in (3.114) gives the energy
integral κ = const, whereas another two equations admit the integral

G = − cosΔ cos θ +
1
4
κ cos 2θ = const (3.116)

This particular case matches the results obtained for a linearly coupled set of
Duffing’s oscillators in [101], and later reproduced in [158] however by means
of different complex variable approaches. In particular, it was shown in [158]
that the last two equations in (3.114) are equivalent to a strongly nonlinear
conservative oscillator

d2θ

dt21
+G2 tan θ

cos2 θ
= 0 (3.117)

as κ→ 0.
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Oscillator (3.117) appears to be exactly solvable with general solution

θ = arcsin[sin θ0 sin(|G|t1/ cos θ0)] (3.118)

where θ0 is the amplitude and another arbitrary constant can be introduced
as a temporal shift.

As already mentioned in this chapter, oscillator (3.117) was considered
in [78] and [122] as a phenomenological model for quite different kinds of
problems. Since no direct physical meaning of such a unique ‘restoring force
characteristic’ was found, the fact of exact solvability not attracted much
attention for quite a long time.

In the case κ �= 0, but still ζ = 0, some perturbation occurs on the right-
hand side of (3.117); the corresponding perturbation tool based on the action-
angle variables was introduced in [158].

Let us show now that equations (3.114) can describe the transition to local
modes under the assumption of small negative viscosity

|ζ/ω| 
 1 and ζ < 0 (3.119)

Under condition (3.119), the factor κ in the third equation of (3.114) can
be viewed as a slowly growing quasi constant. In this case, making κ ‘frozen’
and linearizing the last two equations in (3.114) near the equilibrium (θ,Δ) =
(0, 0), gives

d2θ

dt21
+ (1− κ)θ = 0 (3.120)

Note that small θ and Δ bring the original system close to the out-of-phase
vibration mode as follows from (3.113) and (3.109). When the growing en-
ergy parameter κ passes the critical point κ = 1, the type of equilibrium
is changing from a focus to a saddle point and thus the variable θ becomes
exponentially growing. Practically, however, the exponential growth will be
suppressed by the nonlinearity. As a result two limit phase trajectories (sep-
aratrix loops) occur around two new stable equilibrium points. These two
points represent two new stable modes of the original system - local modes.
The phase plane diagrams for sub- and super-critical energy levels are shown
in Figs. 3.14 and 3.15, respectively. Note that the equilibrium subjected to
such qualitative change corresponds to the out-of-phase vibration mode of
the model, whereas another two equilibrium points, (θ,Δ) = (0,±π), corre-
spond to the same in-phase mode and remain stable. Therefore, out-of-phase
vibrations appear to be less favorable to energy equipartition as the energy
reaches its critical level. Note that links between localization and specifics
of phase trajectories was discussed also in [101] based on the system of two
coupled Duffing oscillators. In particular, the limit phase trajectories were
interpreted as nonlinear beats of infinitely long period, keeping the energy
near one of the two oscillators.
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Fig. 3.14 Phase plane structure at undercritical system energy, κ = 0.5.
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Fig. 3.15 Phase plane structure at postcritical system energy, κ = 1.5.



3.9 Auto-localized Modes in Nonlinear Coupled Oscillators 85

As follows from expression (3.113), the growth of θ increases the energy
unbalance between the local modes, and that is onset of the mode localization.
The corresponding critical time, at which the localization begins, is obtained
from (3.115) as follows

3β
8ω2

K0 exp (ε |ζ| t∗) = 1 =⇒ t∗ =
1
ε |ζ| ln

8ω2

3βK0
(3.121)

As follows from (3.102) and (3.111), K0 = 2(s20 +ρ2
0) therefore, under the

condition ρ2
0 
 1, expressions (3.106) and (3.121) give the same result.

Note that the developed analytical approach, describing the local mode
interaction in terms of the energy and phase variables, appears to be inde-
pendent of the individual features of the illustrating model and this can be
used in other similar cases.

Compared to publications [101] and [158] introducing the same set of de-
scriptive variables, K, θ and Δ, current approach has distinctive features as
follows:

1) Instead of general mass-spring models, the elastic beam supported by
nonlinear springs is considered in this work. This provides clear geometrical
interpretations for both the normal and local modes through the correspond-
ing shape functions of the beam centre line.

2) Instead of using a quite complicated system reduction in terms of com-
plex coordinates, it is shown that the same result can be achieved by means of
the traditional set of amplitude-phase variables and one-frequency averaging
procedure.

3) The non-conservative case is considered in order to describe qualitative
changes in the dynamics as the total energy of the system adiabatically in-
creases or decreases. Based on such a generalization, new quantitative and
qualitative results are obtained.

In particular, explicit expressions have been obtained for the critical time
at which onset of the localization occurs. The phenomenon is explained in
terms of the related phase-plane diagram subjected to a qualitative change
(center-saddle transition) as the total energy of the system reaches its critical
level.

3.9 Auto-localized Modes in Nonlinear Coupled
Oscillators

Below, the term ‘auto-localized’ means that the system itself may come into
the nonlinear local mode regime and stay there regardless initial energy dis-
tribution among its particles. As follows from the Poincare’s recurrence the-
orem, such phenomena are rather impossible within the class of conservative
systems [9]. However, interactions between the system particles can be de-
signed in specific ways in order to achieve desired phenomena. It is assumed



86 3 Nonsmooth Processes as Asymptotic Limits

that such a design can be implemented practically by using specific elec-
tric circuits and possibly mechanical actuators. On macro-levels, the auto-
localization may help to optimize vibration suppression.

Some results from the previous publication [155] are reproduced below
after some notation modifications in order to make the description coherent
with the current text. Let us consider an array of N harmonic oscillators
such that each of the oscillators interacts with only the nearest neighbors.
The corresponding differential equations of motion are of the form

ẍj +Ω2xj = β(xj−1 − 2xj + xj+1)+

+ α[(Ej − Ej−1)Ej−1 − (Ej+1 − Ej)Ej+1]ẋj (3.122)

Ej =
1
2
(ẋ2

j +Ω2x2
j ); j = 1, ..., N (3.123)

where Ej = Ej(t) is the total energy of the j-th oscillator under the boundary
conditions of fixed ends E0(t) ≡ EN+1(t) ≡ 0, and Ω, β, and α are constant
parameters of the model.

On the right-hand side of equation (3.122), two groups of terms describe
coupling between the oscillators. If α = 0 then the only linear coupling re-
mains. In this case, under special initial conditions, N different coherent pe-
riodic motions i.e. linear normal modes, can take place. It is well known that
any other motion is combined of the linear normal mode motions, whereas the
energy is conserved on each of the modes the way it was initially distributed
between the modes. In other words, no energy localization is possible on
individual particles if α = 0.

Another group of terms, including the common factor α, has the opposite
to linear elastic interaction effect. These nonlinear terms are to simulate pos-
sible ‘competition’ between the oscillators, in other words, one-way energy
flow to the neighbor whose energy is lager. Such kind of interaction domi-
nates when the total system energy is large enough to essentially involve high
degrees of the coordinates and velocities.

For future analysis let us introduce the complex conjugate variables
{Aj (t) , Āj (t)} into equations (3.122) according to relationships (3.37) and
(3.38). In term of the complex amplitudes, the total energy of individual
oscillator (3.123), excluding the energy of coupling, takes the form

Ej =
1
2
Ω2AjĀj =

1
2
Ω2 |Aj |2 (3.124)

When β = α = 0 the system is decomposed into the N uncoupled oscillators,
and one has a constant solution in the new variables. In general case, substi-
tuting (3.37) in (3.122), taking into account (3.38), and applying averaging
with respect to the phase z = Ωt, gives the following set of equations (the
complex conjugate set is omitted below)
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Ȧj = − iβ

2Ω
(Aj−1 − 2Aj +Aj+1)+

+
αΩ4

8

[(

|Aj |2 − |Aj−1|2
)

|Aj−1|2 −
(

|Aj+1|2 − |Aj |2
)

|Aj+1|2
]

Aj (3.125)

Let us consider first, the simplest model of two coupled oscillators (N = 2).
In this case, system (3.125) is reduced to

Ȧ1 = − iβ

2Ω
(A2 − 2A1) +

αΩ4

8

(

|A1|2 − |A2|2
)

|A2|2A1 (3.126)

Ȧ2 = − iβ

2Ω
(A1 − 2A2) +

αΩ4

8

(

|A2|2 − |A1|2
)

|A1|2A2

Despite of the presence velocities ẋj in the original equations (3.122), sys-
tem (3.126) still has the integral

K = |A1|2 + |A2|2 = 2(E1 + E2)/Ω2 = const.

As a result, the dimension of system’ phase space is reduced by introducing
the angular variables ϕ1(t), ϕ2(t) and ψ(t),

A1 =
√
K cosψ exp(iϕ1), A2 =

√
K sinψ exp(iϕ2) (3.127)

where the angle ψ determines the energy distribution between the oscillators
as follows

tanψ =
|A2|
|A1| =

√

E2

E1
(3.128)

0 ≤ ψ < π/2

Substituting (3.127) into (3.126) and considering separately real and imagi-
nary parts, gives

ϕ̇1 =
β

Ω
− β

2Ω
tanψ cos (ϕ2 − ϕ1)

ϕ̇2 =
β

Ω
− β

2Ω
cotψ cos (ϕ2 − ϕ1) (3.129)

ψ̇ = − β

2Ω
sin (ϕ2 − ϕ1)− 1

32
αK2Ω4 sin 4ψ

Introducing the phase shiftΔ = ϕ2−ϕ1 and new temporal variable p = Ωt/β,
gives

dΔ

dp
= − cot 2ψ cosΔ (3.130)

dψ

dp
= −1

2
(sinΔ+ λ sin 4ψ)
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Fig. 3.16 Low energy transition to the nonsmooth limit cycle; numerical solution
obtained for the following system parameter and initial conditions: λ = 0.2; Δ(0) =
0.0, Ψ(0) = π/4 + 0.1.

where λ is a dimensionless parameter linked with the total energy of both
oscillators as follows

λ =
αK2Ω5

16β
=
Ωα

4β
(E1 + E2)2 (3.131)

System (3.130) is periodic with respect to both phase coordinates Δ and ψ,
as a result, its phase plane has periodic cell-wise structure. Let us consider
just one cell,

R0 =
{

−π
2
< Δ <

π

2
, 0 < Ψ <

π

2

}

(3.132)

including the equilibrium (critical) point

(Δ,ψ) = (0, π/4) (3.133)

As follows from (3.127) and (3.128), at point (3.133), both oscillators vibrate
in-phase with the same energy, E1 = E2. Linearized (near (3.133)) system
(3.130) has the following couple of roots of characteristic equation

r1,2 = λ± i
√

1− λ2 (3.134)
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Fig. 3.17 Low energy transition to the “impact” limit cycle of phase variables at
λ = 0.2.

Expression (3.134) determines the ‘low energy’ interval 0 < λ < 1 with a
qualitatively similar system behavior. Equilibrium point (3.133) is unstable
for positive λ while no other equilibrium points exist within the rectangular
(3.132). As a result, the system trajectory is eventually attracted to the
boundary of rectangular R0 (3.132) as shown in Figs. 3.16 and 3.18. This is
a periodic limit cycle whose period is found in a closed form,

P = 2

π/2∫

0

dψ

1− λ sin 4ψ
− 2

0∫

π/2

dψ

1 + λ sin 4ψ
=

2π√
1− λ2

(3.135)

where the horizontal pieces of the boundary ∂R0 have zero contribution as
those passed momentarily by the system (3.130). This is confirmed also by
the diagrams in Figs. 3.17 and 3.19 showing step-wise jumps of the variable
Δ(p) in steady state limits.
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Fig. 3.18 Transition to the nonsmooth limit cycle under the energy level approach-
ing its critical value; the numerical solution obtained for the following system pa-
rameter and initial conditions: λ = 0.8; Δ(0) = 0.0, Ψ(0) = π/4 + 0.1

Expression (3.135) shows that P → ∞ as λ → 1. The infinity long pe-
riod means that there is only one-way energy flow in the system, in other
words, the energy is eventually be localized on one of the oscillators. The
corresponding total critical energy value is determined by substituting λ = 1
in (3.131). This gives

E1 + E2 = 2

√

β

Ωα
= E∗ (3.136)

If E1 + E2 < E∗ then periodic energy exchange with the period T = βP/Ω
takes place, but no localization is possible. Therefore, in order to be localized
on one of the oscillators, the total system energy must be large enough.

Interestingly enough, the transition to localized mode of this model hap-
pens through non-smooth limit cycle along which the dynamics of phase vari-
ables, Ψ and Δ, resembles the behavior of coordinate and velocity of impact
oscillator2; see Figs. 3.17 and 3.19.

2 As already mentioned, the possibility of ‘vibro-impact dynamics’ of phase vari-
ables was noticed later in [101] when considering another model of nonlinear
beats.
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Fig. 3.19 Transition to the “impact” limit cycle of phase variables at λ = 0.8.
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