
Chapter 2
Smooth Oscillating Processes

Abstract. This chapter gives a brief overview of selected analytical methods
for smooth oscillating processes. Most of such methods are indeed quasi-
linear. In other words, the corresponding technical implementations employ
harmonic oscillators as generating models. The description focuses only on
the ideas and technical details that are further combined with non-smooth
methods. As most effective way, procedures of asymptotic integration of the
differential equations of motion bring original systems to such simple form
that further solution becomes straightforward. In particular, the method of
asymptotic integration of the differential equations of motion based on the
Hausdorff equation for operators Lie is reproduced.

2.1 Linear and Weakly Non-linear Approaches

By both practical and theoretical reasons, the quantitative methods of dy-
namics were developed first for smooth processes. As a rule, smooth oscil-
lations can be directly observed under no special conditions. For instance,
projection of any fixed point of a body rotating with constant angular speed,
makes a perfect impression about harmonic oscillations. Interestingly, in 1693,
Leibniz derived the differential equation for sine geometrically by considering
a circle. Much later, original analytical ideas of nonlinear vibrations emerged
from the celestial mechanics considering perturbations of circular orbits of
rigid-body motions rather than any mass-spring oscillators. Robert Hooke
(1635-1703) was probably first who suggested the basic elastic mass-spring
model, whereas Galileo and Huygens were investigating the pendulum. Later,
d’Alambert, Daniel Bernoulli and Euler considered a one-dimensional contin-
ual model of a string. It was found that the vibrating string represents the
infinity of harmonic oscillators corresponding to different mode shapes of the
string. It is well known that a serious discussion arised about whether or not
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the sum of smooth functions, such as sines, can represent a non-smooth shape
of the string. These discussions were finalized by the Fourier theorem.

Let us reproduce the result for a periodic function of time f (t) of the
period T in the complex form

f (t) =
∞∑

k=−∞
ck exp(iωkt) (2.1)

ck =
1
T

∫ T/2

−T/2

f(t) exp(−iωkt)dt, ωk =
2π
T
k

This relation generates a one-to-one mapping between function and its
Fourier coefficients

f(t)←→ {...c−2, c−1, c1, c2, ...} (2.2)

Note that mathematical expressions (2.1) do not necessarily imply that
the periodic process f(t) must be produced by linear systems even though
the right-hand side of (2.1) combines free vibrations of linear oscillators,
in other words - ‘rigid-body rotations’ as discussed in Chapter 1. There-
fore, the Fourier analysis and associated analytical tools provides a ‘linear
language’ for nonlinear systems regardless specifics of algorithm implemen-
tations. Indeed, most quantitative methods for weakly nonlinear periodic mo-
tions, actually estimate Fourier coefficients of the corresponding solutions. As
a result, on one hand, such tools possess a high level of generality. On the
other hand, even ‘elementary’ strongly nonlinear phenomena (as qualified in
Chapter 1) may become quite difficult to describe in terms of the ‘linear lan-
guage.’ Nevertheless, the quantitative theory of nonlinear vibration has been
advanced by new asymptotic techniques developed originally for solving non-
linear differential equations. Most traditional methods are essentially based
on perturbation or averaging methods [50]. Similar results can be obtained
within the theory of Poincare’ normal forms [118], which retains resonance
terms, whereas all non-resonance terms are eliminated by means of a coordi-
nate transformation. Such a normal form is qualified as the simplest possible
form of the equations of motion.

2.2 A Brief Overview of Smooth Methods

2.2.1 Periodic Motions of Quasi Linear Systems

Consider a weakly unharmonic oscillator of the form

ẍ+ ω2
0x = εf(x, ẋ) (2.3)
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where ε is a small parameter, 0 < ε  1, and f(x, ẋ) is smooth enough
function.

Periodic solutions of equation (2.3) can be found by splitting the nonlinear
system into the sequence of linear oscillators by means of the power series

x = x0 + εx1 + ε2x2 + ... (2.4)

The perturbation on the right-hand side of equation (2.3) changes the prin-
cipal frequency of the oscillator so that

ω2 = ω2
0(1 + εγ1 + ε2γ2 + ...) (2.5)

The new frequency is introduced explicitly into the differential equation of
motion by re-scaling the temporal argument

ϕ = ωt (2.6)

As a result, series (2.4) appears to be composed of trigonometric functions
of multiple phases ϕ, 2ϕ, 3ϕ,... .

A similar idea was implemented by Lyapunov for systems of first-order
equations, for instance

ẋ1 = a11x1 + a12x2 + f1(x1, x2) (2.7)
ẋ2 = a21x1 + a22x2 + f2(x1, x2)

where f1 and f2 are nonlinear functions.
It is assumed that system (2.7) admits first analytical integral and the

corresponding linearized system has only periodic solutions. Then periodic
solutions of (2.7) admit power series expansions with respect to the amplitude
parameter.

There exist at least two extensions of Lyapunov’s theory, such as local and
global approaches to nonlinear normal modes, see for instance [100], [190],
[119].

2.2.2 The Idea of Averaging

Let us illustrate different implementations of the idea of averaging by repro-
ducing some technical details. The following description focuses on such tools
that remains applicable to non-hamiltonian systems.

Following Van-der-Pol’s approach, let us transform system (2.3) by chang-
ing the variables {x, ẋ} → {a, ϕ}:

x = a cosϕ, ẋ = −aω0 sinϕ (2.8)
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As a result, one obtains

ȧ = − ε

ω0
f(a cosϕ,−aω0 sinϕ) sinϕ

ϕ̇ = ω0 − ε

ω0a
f(a cosϕ,−aω0 sinϕ) cosϕ (2.9)

Despite of a formal complexity, system (2.9) has essential advantage due to
different time scales of the new variables. This enables one of eliminating the
fast phase ϕ on the right-hand side of the system by applying the averaging

< · · · >ϕ≡ 1
2π

∫ 2π

0

· · ·dϕ

as follows

ȧ = − ε

ω0
< f(a cosϕ,−aω0 sinϕ) sinϕ >ϕ

ϕ̇ = ω0 − ε

ω0a
< f(a cosϕ,−aω0 sinϕ) cosϕ >ϕ (2.10)

Solutions of system (2.10) are considered then as approximate solutions of
the original system (2.9).

This method was essentially generalized in thirties [28] by incorporating
the Lindstedt-Poincare and Van-der-Pol’s ideas as follows.

Let us consider the general system with one fast phase

ẋ = εX(x, y)
ẏ = ω(x) + εY (x, y) (2.11)

where y and x are scalar and vector variables respectively.
In contrast to (2.9), the frequency in (2.11) depends on the slow vector-

function x. Sometimes, such kind of systems is called essentially nonlinear
since the condition ε = 0 does not make the frequency state independent.
However, if ε = 0 then system (2.11) has no fast phase on the right-hand
side. The problem is to find close to identical transformation

x = q + εu(q, ψ) +O(ε2)
y = ψ + εv(q, ψ) +O(ε2) (2.12)

which eliminates the fast phase entirely from the system by bringing equation
(2.11) to the form

q̇ = εA(q) +O(ε2)
ψ̇ = ω0(q) + εω1(q) +O(ε2) (2.13)
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This problem is solved by substituting expansions (2.12) into equations (2.11)
and enforcing then equations (2.13).

2.2.3 Averaging Algorithm for Essentially Nonlinear
Systems

In order to illustrate the corresponding procedure, let us specify system (2.11)
as follows

l̇ = μR(μl, s, ϕ, θ)
ṡ = μ2S(μl, s, ϕ, θ)
θ̇ = μQ(l, s) + μ2Θ(μl, s, ϕ, θ) (2.14)
ϕ̇ = Ω(μl, s) + μ2G(μl, s, ϕ, θ)

where all the coordinates and functions are scalars, and μ 1.
Such kind of equations may occur when considering ‘essentially nonlinear’

systems under different resonance conditions. This is the reason for using
another notation for small parameter. In resonance cases, original small pa-
rameters are often modified as μ =

√
ε to capture specifics of the dynamics

near resonance surfaces [9], [205].
The basic approximation is obtained from system (2.14) by applying the

averaging procedure directly to the terms of order μ on the right hand side.
This gives,

l̇ = μ < R(0, s, ϕ, θ) >ϕ

θ̇ = μQ(l, s) (2.15)

where s should be considered as a constant.
System (2.15) is easily integrated and the result is known to give an er-

ror of order μ on time intervals of order 1/μ. In many cases however, first
approximation gives incomplete characterizations of systems.

In order to illustrate the basic stages of second approximation, consider
the first equation only. It is sufficient for illustration of the procedure, which
is sequentially applied in the same way to other equations.

Let us represent the first equation of system (2.14) in the form

l̇ = μ < R(0, s, ϕ, θ) >ϕ +μ[R(0, s, ϕ, θ)− < R(0, s, ϕ, θ) >ϕ] (2.16)
+μ2lR′

μl(0, s, ϕ, θ) +O(μ3)

Following the idea of averaging, one eliminates the second term on the right-
hand side by means of the coordinate transformation

l = q + μf(q, s, ϕ, θ) (2.17)
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Then, substituting (2.17) into (2.16), gives

q̇ + μ

(
∂f

∂q
q̇ +

∂f

∂s
ṡ+

∂f

∂ϕ
ϕ̇+

∂f

∂θ
θ̇

)

= μ < R(0, s, ϕ, θ) > ϕ+ μ[R(0, s, ϕ, θ)− < R(0, s, ϕ, θ) > ϕ] (2.18)
+μ2qR′

μl(0, s, ϕ, θ) +O(μ3)

Now the fast phase ϕ is eliminated from the equation in first order of μ by
taking into account (2.14) and imposing condition

∂f

∂ϕ
Ω(0, s) = R(0, s, ϕ, θ)− < R(0, s, ϕ, θ) >ϕ (2.19)

Further, f(q, s, ϕ, θ) is independent of q because the terms of order μ on the
right-hand side of equation (2.18) are independent of q. As a result, equation
(2.18) takes the form

q̇ = μ < R(0, s, ϕ, θ) > ϕ+ μ2qR′
μl(0, s, ϕ, θ) (2.20)

−μ2

(
∂f

∂ϕ
qΩ′

μl(0, s) +
∂f

∂θ
Q(q, s)

)

+O(μ3)

Since the fast phase ϕ is eliminated from the terms of order μ then the
averaging procedure is applied to the terms of order μ2 analogously to the first
stage of the method. As follows from (2.19), < ∂f/∂ϕ >ϕ=< ∂f/∂θ >ϕ= 0,
therefore after the averaging, equation (2.20) takes the form

q̇ = μ < R(0, s, ϕ, θ) >ϕ +μ2 < qR′
μl(0, s, ϕ, θ) >ϕ +O(μ3)

or
q̇ = μ < R(μq, s, ϕ, θ) >ϕ +O(μ3) (2.21)

The second approximation therefore is obtained by applying the operator of
averaging to original equation (2.14). Note however that the meaning of the
coordinate q is now different. Namely, the original coordinate l is expressed
through the new coordinate q by relationship (2.17), which due to (2.19)
takes the form

l = q +
μ

Ω(μq, s)

ϕ∫

0

(R(μq, s, ϕ, θ)− < R(μq, s, ϕ, θ) >ϕ)dϕ +O(μ2) (2.22)

In this expression, the variable μq was put back into the expression R in-
stead of zero. Although such a manipulation has no effect on the order of
approximation, the new form is in a better match with the form of equation
(2.21).

Expressions (2.21) and (2.22) summarize the averaging procedure in second
order of μ.
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Note that the case of multiple fast phases turns out to be more complicated
in many respects due to the well known problem of small denominators.

2.2.4 Averaging in Complex Variables

In the physical literature, vibration problems are usually considered in terms
of complex variables [89]. The idea of using the complex variables may be
suggested by the standard manipulations of the variation of constants for
oscillator (2.3) as follows.

If ε = 0 then general solution of equation (2.3) is represented in the com-
plex form

x =
1
2
[A exp(iω0t) + Ā exp(−iω0t)] (2.23)

where A and Ā are arbitrary complex conjugate constants.
The velocity is

ẋ =
iω0

2
[A exp(iω0t)− Ā exp(−iω0t)] (2.24)

If ε �= 0 then the constants are assumed to be time dependent whereas ex-
pressions (2.23) and (2.24) are considered as a change of the state variables

{x, ẋ} → {A, Ā} (2.25)

under the compatibility condition

dA

dt
exp(iω0t) +

dĀ

dt
exp(−iω0t) = 0 (2.26)

By solving equations (2.23) and (2.24) with respect to A one obtains

A =
1
iω0

exp(−iω0t)(ẋ + iω0x) (2.27)

Similar kind of complex amplitudes is used in both physics [89] and nonlinear
mechanics [102].

Now equation (2.3) gives

dA

dt
=

ε

iω0
exp(−iω0t)f (2.28)

where f = f(x, ẋ) is expressed trough (2.23) and (2.24).
Equation (2.28) is still exactly equivalent to (2.3). If the parameter ε is

small then the amplitude A is slow, and one can apply the averaging
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dA

dt
=

ε

2πi

2π/ω0∫

0

exp(−iω0t)fdt (2.29)

On theoretical point of view, complex amplitudes may bring some conve-
nience compared to the traditional Van-der-Pol variables. Firstly, until the
certain stage of manipulations, it is usually possible to keep only one equation
since another one is its complex conjugate. Secondly, such a symmetry of the
equations helps sometimes to reveal interesting features of the dynamics.

Note that the above manipulations remain valid in degenerated cases of
multiple degrees of freedom systems. For instance, equation (2.3) can be
interpreted as a vector equation with the scalar factor ω2

0 .

2.2.5 Lie Group Approaches

The one-parameter Lie1 group approaches are motivated by the idea of
matching the tool and the object of study as explained in works [201]
and [204]. Briefly, it is suggested to seek transformation (2.12) among so-
lutions of dynamical systems rather than the class of the arbitrary nonlinear
transformations.

Original materials and overviews of the mathematical structure of Lie
groups, Lie algebras and Lie transforms with applications to nonlinear dif-
ferential equations can be found in [38], [61], [22], [95], [35].

An essential ingredient of this version is the Hausdorff formula, which
relates the Lie group operators of the original and new systems, and the
operator of coordinate transformation. According to [202] and [204], most of
the averaging techniques just reproduce this formula, each time implicitly,
during the transformation process. But, there is no need of doing this, since
it is reasonable to start the transformation using Hausdorff’s relationship.
The corresponding algorithms therefore enable one of optimizing the number
of manipulations for high-order approximations of asymptotic integration.

The theory of Lie groups deals with a set of transformations. In other
words, some dynamical system ẏ = f(y, ε) is transformed into its simplest
form ż = g (z, ε) by means of a coordinate transformation y → z produced
by solution z = z(y, ε) of the third dynamical system

dz
dε

= T (z, ε) , z |ε=0= y

where the choice for vector-function T (z, ε) depends upon desired properties
of the transformed system.
1 Marius Sophus Lie ( 1842-1899 ), Norwegian mathematician; different mathe-

matical objects are named after him, for instance, groups, operators, algebras,
and series.
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As mentioned, one of the advantages of the group formulation is that it
specifies a general class of near identical transformations. Specifically, one
should select the expression z = z(y, ε) among solutions of a dynamical sys-
tem, but not among all classes of the near identical transformations. Another
basic advantage is that all manipulations of the scheme can be done in linear
terms of the monomial Lie group operators. Moreover, the result of trans-
formation in general terms of operators is well-known and is given by the
Hausdorff formula.

The description below presents all the stages starting with the traditional
Newtonian form of the differential equations of motion as implemented in
[147]. The original system will be reduced to its normal form by Poincare.

In terms of the principal coordinates qk, a nonlinear dynamical system
of n-degrees of freedom may be described by a set of n + 1 autonomous
differential equations written in the standard form

q̈k + ω2
kqk = εFk(q1, ..., qn+1, q̇1, ..., q̇n+1); k = 1, ..., n+ 1 (2.30)

where an overdot denotes differentiation with respect to time t, ε is a small
parameter, and an external excitation has been replaced by the coordinate
qn+1. The functions Fk include all nonlinear terms and possibly parametric
excitation terms, and ωk are the principal mode frequencies. It is assumed
that the functions Fk admit Taylor expansions near zero.

The Poincare normal form theory deals with sets of first-order differential
equations written in terms of normal form coordinates. In this case it is
convenient to transform the n + 1 second-order differential equations (2.30)
into n+ 1 first-order differential equations plus their conjugate set. This can
be done by introducing the complex coordinates

yk = q̇k + iωkqk (2.31)

qk =
1

2iωk
(yk − ȳk), q̇k =

1
2
(yk + ȳk) (2.32)

Introducing the transformation (2.31) into the equations of motion (2.30),
gives

q̈k + ω2
kqk =

d

dt
(q̇k + iωkqk)− iωk(q̇k + iωkqk) =

=
dyk

dt
− iωkyk = εFk(y1, ..., yn+1; ȳ1, ..., ȳn+1)

or
ẏk = iωkyk + εFk(y1, ..., yn+1; ȳ1, ..., ȳn+1) (2.33)

and the corresponding complex conjugate (cc) set of equations, where the
functions Fk(y1, ..., yn+1; ȳ1, ..., ȳn+1) are obtained by substituting (2.32) in
the right hand side of equation (2.30). These terms can be represented in the
polynomial form
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Fk =
∑

|σ|=2,3,...

F σ
k y

m1
1 · · · ymn+1

n+1 ȳl1
1 · · · ȳln+1

n+1 (2.34)

where the Taylor coefficients are

F σ
k =

1
σ!

∂|σ|Fk

∂ym1
1 · · · ∂ymn+1

n+1 ∂ȳl1
1 · · · ∂ȳln+1

n+1

|y=0

and multiple-index notations have been introduced as follows

σ = {m1, ...,mn+1, l1, ..., ln+1}
|σ| = m1 + · · ·+mn+1 + l1 + · · ·+ ln+1

σ! = m1! · · ·mn+1!l1 · · · ln+1!

Equations (2.33) correspond to the standard form, which is ready for analysis
in terms of Lie group operators.

To apply the theory of the Lie groups we rewrite equations (2.33) in the
form

ẏ = Ay, A = A0 + εA1 (2.35)

where y = (y1, ..., yn+1; ȳ1, ..., ȳn+1)T , and

A0 =
n+1∑

k=1

iωkyk
∂

∂yk
+ cc and A1 =

n+1∑

k=1

Fk
∂

∂yk
+ cc (2.36)

are operators of linear and nonlinear components of the system, respectively.
In order to bring the equations of motion to their simplest (Poincare) form,

we introduce the coordinate transformation y→ z in the Lie series form

y = e−εUz = z−εUz+
ε2

2!
U2z− ... (2.37)

where z =(z1, ..., zn+1; z̄1, ..., z̄n+1)
T , and the operator of transformation U

is represented in the power series form with respect to the small parameter ε

U = U0 + εU1 + · · · (2.38)

The coefficients of this series are

Uj =
n+1∑

k=1

Tj,k
∂

∂zk
+ cc (2.39)

where
Tj,k = Tj,k (z1, ..., zn+1; z̄1, ..., z̄n+1) (2.40)

are unknown functions to be determined.
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One of the advantages of this process is that the inverse coordinate trans-
formation to the form (2.37) can be easily written as

eεUy = z (2.41)

where one should simply replaces z with y in the operator of transformation,
U .

If ε = 0, transformation (2.37) becomes identical, y = exp (0) z = z. In
this case, equation (2.35) has already the simplest linear form and there is
no need to transform the system. For ε �= 0 transformation (2.37) converts
the system (2.35) into the following one:

ż = Bz (2.42)

where the new operator B is given by the Hausdorff formula [22]:

B = A+ ε [A,U ] +
ε2

2!
[[A,U ] , U ] + ... (2.43)

where [A,U ] = AU − UA is the commutator of operators A and U .
An optimized iterative algorithm for high-order solutions of equation (2.43)

was suggested in [202] and [204]. In order to illustrate just the leading order
terms of asymptotic expansions, let us follow the direct procedure though.
Substituting the power series expansions for A and U given by relations (2.35)
and (2.38) into (2.43) gives

B = A0 + ε (A1 + [A0, U0]) (2.44)

+ε2
(

[A0, U1] + [A1, U0] +
1
2!

[[A0, U0] , U0]
)

+ ...

A simple calculation gives

B =
n+1∑

k=1

{iωkzk + ε [Fk + (A0 − iωk)T0,k]} ∂

∂zk
+O

(

ε2
)

+ cc (2.45)

where the terms of order ε2 have been ignored, Fk = Fk |y→zand A0 =
A0 |y→z.

The above relationships show that a transformation of the system

ẏ = Ay→ ż = Bz

can be considered in terms of operators A→ B. In order to bring the system
into its normal form, one must eliminate as many nonlinear terms as possible
from the transformed system such that the system dynamic characteristics
are preserved. It follows from (2.45) that all nonlinear terms of order ε could
be eliminated under the condition
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Fk + (A0 − iωk)T0,k = 0

Representing the unknown functions in the polynomial form

T0,k =
∑

|σ|=2,3,...

T σ
0,kz

m1
1 · · · zmn+1

n+1 z̄l1
1 · · · z̄ln+1

n+1 (2.46)

and taking into account (2.34), gives

Fk + (A0 − iωk)T0,k =
∑

|σ|=2,3,...

(

F σ
k + iΔσ

kT
σ
0,k

)

zm1
1 · · · zmn+1

n+1 z̄l1
1 · · · z̄ln+1

n+1

where

Δσ
k = (m1 − l1 − δ1k)ω1 + ...+ (mn+1 − ln+1 − δn+1,k)ωn+1 (2.47)

To reach zero-th coefficient of the monomial zm1
1 · · · zmn+1

n+1 z̄l1
1 · · · z̄ln+1

n+1 , one
must put

T σ
0,k = i

F σ
k

Δσ
k

under the condition that Δσ
k �= 0.

If Δσ
k = 0 for some k and σ then the corresponding nonlinear term can-

not be eliminated from the transformed equation since it is qualified as a
resonance term.

Finally, the result of transformation is summarized as follows.
The original set:

ẏk = iωkyk + ε
∑

|σ|=2,3,...

F σ
k y

m1
1 · · · ymn+1

n+1 ȳl1
1 · · · ȳln+1

n+1 (2.48)

The transformation of coordinates:

yk = zk − ε
∑

|σ|=2,3,...
Δσ

k �=0

i
F σ

k

Δσ
k

zm1
1 · · · zmn+1

n+1 z̄l1
1 · · · z̄ln+1

n+1 +O
(

ε2
)

(2.49)

The transformed set:

żk = iωkzk + ε
∑

|σ|=2,3,...
Δσ

k=0

F σ
k z

m1
1 · · · zmn+1

n+1 z̄l1
1 · · · z̄ln+1

n+1 +O
(

ε2
)

(2.50)

Equations (2.50) represent the normal form of the system, where the sum-
mation is much simpler than that in the original set (2.48). Namely, the
summation in (2.50) contains only those terms that give rise to resonance
while the first term on the right hand side stands for the fast component of the
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motion. The fast component of the motion can be extracted by introducing
the complex amplitudes ak (t) as follows

zk = ak(t) exp(iωkt) (2.51)

Substituting (2.51) into (2.50) and taking into account the resonance condi-
tion, Δσ

k = 0, gives

ȧk = ε
∑

|σ|=2,3,...
Δσ

k=0

F σ
k a

m1
1 ...a

mn+1
n+1 āl1

1 ...ā
ln+1
n+1 + O

(

ε2
)

(2.52)

System (2.52) describes the dynamics in terms of slowly varying amplitudes
and, as a result, reveals global properties of the dynamics in a much easier
way then the original system. After solution of system (2.52) is obtained, the
coordinate transformations (2.51) and (2.49) can interpret the result in terms
of the original coordinates.
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