
Chapter 13
Essentially Non-periodic Processes

Abstract. This chapter describes a possible physical basis for NSTT in case
of essentially non-periodic processes. The physical time is structurised to
match the one-dimensional dynamics of rigid-body chain of identical particles.
Namely, the continuos ‘global’ time is associated with the propagation of
linear momentum, whereas a sequence of non-smooth ‘local’ times describe
behavious of individual physical particles. Such an idea helps to incorporate
temporal symmetries of the dynamics into differential equations of motion
in many other cases of regular or irregular sequences of internal impacts
or external pulses. Since the local times are bounded, a much wider set of
analytical tools becomes possible, wereas matching conditions are generated
automatically by the corresponding time substitution.

13.1 Nonsmooth Time Decomposition and Pulse
Propagation in a Chain of Particles

The periodic version of NSTT employs basis functions generated by the most
simple impact oscillator. This is based the fact that the triangular sine and
rectangular cosine waves capture general temporal symmetries of periodic
processes regardless specifics of individual vibrating systems. Below, a non-
periodic pair of nonsmooth functions is considered, such as the ramp function,

s (t; d) =
1
2

(d+ |t| − |t− d|) (13.1)

and its first order generalized derivative, ṡ (t; d), with respect to the temporal
argument, t; see Figs.13.1 and 13.2, respectively.

Such kind of functions play an important role in signal analyses [74].
Possible physical interpretation of these functions is represented in Fig.

13.3. Namely, the function s (t, d) can be treated as a coordinate of a particle,
say a very small perfectly stiff bead, initially located at the origin x = 0. At
the time instance t = 0, this bead is struck by the identical bead with the
velocity v = 1. After the linear momentum exchange, the reference bead
starts moving until it stopped by the third bead x = d; in our case d = 1.
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Fig. 13.1 The unit slope ramp function at d = 1.0

�1.0 �0.5 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

s�

Fig. 13.2 First derivative of the ramp function

Fig. 13.3 Physical meaning of the ramp function: s(t; 1) describes position of the
bead struck by another bead from the left and moving until it strikes the next bead
of the same mass.

Now, let us consider an infinite chain of the identical perfectly stiff beads
located regularly on a straight line at the points xi (i = 0, 1, ...). No energy
loss is assumed so that any currently moving bead has the same velocity. As
a result, the linear momentum is translated with the constant speed v = 1,
whereas the beads are interacting at the time instances ti = xi. Making the
temporal shift t→ t− ti in function (13.1), gives

si (t) = s (t− ti, di) =
1
2

(di + |t− ti| − |t− ti+1|) (13.2)

where di = ti+1 − ti.
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Due to the unit velocity, function (13.2) can play the role of ‘local’ time for
the bead moving within the interval xi < x < xi+1 during the ‘global’ time
interval ti < t < ti+1. The term “local” means that the temporal variable si

starts at zero when the “global” time, t, has reached the point t = ti.
In other words, the global temporal variable is associated with the linear

momentum, whereas all the local temporal variables are “attached” to the
physical bodies.

For any sequence of time instances, Λ={t0, t1, ...}, the global time, t ∈
[t0,∞), can be expressed through the sequence of local times, {si}, in the
form

t =
∞∑

i=0

(ti + si) ṡi (13.3)

where the derivatives ṡi satisfy the relationship

ṡiṡj = ṡiδij (13.4)

Practically, (13.3) is always a finite sum because temporal intervals of physical
processes always have finite upper bounds.

Equality (13.3) can be easily verified within the arbitrary interval ti < t <
ti+1, by using definitions (13.1) and (13.2), but the set of boundary points Λ
still require some attention. So formally differentiating both sides of equality
(13.3) with respect to t and taking into account (13.4), gives

1 =
∞∑

i=0

ṡi +
∞∑

i=0

(ti + si) [δ (t− ti)− δ (t− ti+1)] (13.5)

=
∞∑

i=0

ṡi + t0δ (t− t0)

where the relationship (ti+1 + si+1(ti+1) − ti − si(ti+1)) = 0 has been used
for calculations.

Therefore, for almost all t > t0, expression (13.5) gives

1 =
∞∑

i=0

ṡi (13.6)

Equality (13.6) holds based on the definition for ṡi as illustrated by Fig. 13.2,
therefore expansion (13.3) also holds for almost all t > t0 at least, and its
time derivative includes no singular functions.

Note that the right-hand side of expansion (13.3) can be viewed as an
element of algebra with the basis {si} and multiplication rule (13.4). This
significantly eases different manipulations with the temporal variable (13.3),
for instance
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tn =
∞∑

i=0

(ti + si)
n
ṡi, n = 1, 2, ... (13.7)

or, generally,

x (t) =
∞∑

i=0

x (ti + si) ṡi =
∞∑

i=0

Xi (si) ṡi (13.8)

Since the right-hand sides of (13.7) and (13.8) have the same structure as the
argument t itself, then considering further a general function g, gives

g (x) =
∞∑

i=0

g (Xi) ṡi (13.9)

Now, differentiating (13.8) with respect to time t, and taking into account
that si (ti) = 0 and si−1 (ti) = di−1, gives

ẋ (t) =
∞∑

i=0

X ′
i (si) ṡi +

∞∑

i=0

Xi (si) [δ (t− ti)− δ (t− ti+1)] (13.10)

=
∞∑

i=0

X ′
i (si) ṡi +

∞∑

i=0

[Xi (0)−Xi−1 (di−1)] δ (t− ti)

where X−1 (d−1) = 0.
Therefore, all the δ- pulses are eliminated from (13.10) under condition,

which can be qualified as a necessary condition of continuity for x (t),

Xi (0)−Xi−1 (di−1) = 0 (13.11)

Under condition (13.11), the derivative ẋ (t) has the same algebraic structure
as the function x (t) itself. As a result, transformation (13.3) can be applied to
a general class of dynamical systems. Moreover, in case of impulsively loaded
systems, the sequences of δ-pulses in (13.10) can be utilized for eliminating
the corresponding singularities from dynamical systems.

13.2 Impulsively Loaded Dynamical Systems

Let us consider a dynamical system subjected to an arbitrary sequence of
δ-impulses, applied to the system at time instances Λ = {t0, t1, ...},

ẋ = f (x, t) +
∞∑

i=0

piδ (t− ti) , x (t) ∈ Rn (13.12)

x ≡ 0, t < t0 (13.13)

where f (x, t) is a sufficiently smooth vector-function, pi are vectors charac-
terizing magnitudes and directions of the impulses.
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In particular case, when t0 = 0, and pi = 0 (i = 1, ... ), system (13.12)
and (13.13) becomes equivalent to the following initial value problem

ẋ = f (x, t) (13.14)
x (0) = p0 (13.15)

Below, solution of the initial value problem (13.12) and (13.13) is introduced
in the specific form based on the operator Lie associated with dynamical
system (13.15)

A = f (x, t)
∂

∂x
+
∂

∂t
(13.16)

= f1 (x, t)
∂

∂x1
+ ....+ fn (x, t)

∂

∂xn
+
∂

∂t

It is known, for instance, that the exponent of operator (13.16) produces
temporal shifts as follows

ezAf (x (t) , t) = f (x (t+ z) , t+ z) (13.17)

= f (x, t) +
[

f (x, t)
∂f (x, t)
∂x

+
∂ (x, t)
∂t

]

z +O(z2)

Proposition 6. Solution of the initial value problem (13.12) and (13.13) can
be represented in the form

x (t) =
∞∑

i=0

[ai−1 + pi + F (ai−1 + pi, ti, si (t))] ṡi (t) (13.18)

where ai = x (ti+1) is the sequence of constant vectors determined by the
mapping

a−1 = 0 (13.19)
ai = ai−1 + pi + F (ai−1 + pi, ti, di) ; i = 1, 2, ...

and the function F is defined by

F (x, t, z) =
∫ z

0

ezAf (x, t) dz (13.20)

where A is the operator Lie (13.16).

Proof. Substituting vector analogs of expressions (13.3), (13.8) and (13.10)
into the differential equation of motion (13.12) and taking into account (13.9),
gives

∞∑

i=0

{[X′
i (si)− f (Xi (si) , ti + si)]ṡi+ (13.21)
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[Xi (0)−Xi−1 (di−1)− pi]δ (t− ti)} = 0 (13.22)

The left-hand side of expression (13.22) includes both regular and singular
terms. Moreover, the basis elements ṡi are linearly independent, and all the
δ-pulses are acting at different time instances.. Therefore, equation (13.22)
gives

X′
i (si) = f (Xi (si) , ti + si) (13.23)

Xi (0) = Xi−1 (di−1) + pi = ai−1 + pi (13.24)

where a−1 = 0 and ai = Xi (di) (i = 0, 1, 2, ...).
Equation (13.23) can be represented in the integral form

Xi (si) = Xi (0) +

si∫

0

f (Xi (z) , ti + z)dz (13.25)

Since the variable of integration is limited by the interval 0 ≤ z ≤ si, the
integrand in (13.25) can be approximated by the easy to integrate Maclaurin’s
series with respect to z. Moreover, such a series can be represented in the
convenient form of Lie series based on the fact that Xi (z) are coordinates
of the dynamical system with the operator Lie (13.16). As a result, all the
coefficients of power series are expressed through the “initial conditions” at
z = 0 (t = ti) by enforcing the form of the dynamical system. This eliminates
all high-order time derivatives from the coefficients of the power series. means
of the right-hand side of the dynamical system; no high order derivatives of
the coordinates are included any more into the coefficients of the series.

So, taking into account the notation Xi (si) = x (ti + si), and expressions
(13.17) and (13.20), brings (13.25) to the form

Xi (si) = Xi (0) +

si∫

0

ezAf (x (ti) , ti) dz

= Xi (0) + F (x (ti) , ti, si) (13.26)
= Xi (0) + F (Xi (0) , ti, si)

Substituting now Xi (0) from (13.24) in (13.26), gives

Xi (si) = ai−1 + pi + F (ai−1 + pi, ti, si) (13.27)

Finally, substituting (13.27) in expansion (13.8), gives (13.18). Then, substi-
tuting si = di in (13.27) gives (13.19) and thus completes the proof.

Solution (13.18) and (13.19) should be viewed as a semi-analytic solution,
since some numerical tool is required for calculating the discrete mapping
(13.19). The central role here belongs to the function s (t; d) (13.1), which is
automatically matching all the neighboring pieces of the solution.
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Note that the distances di between times Λ are not necessary small, how-
ever, the precision of the solution can be improved by increasing the number
of terms of the Lie series ezAf (x, t) with respect to z, rather than reducing
the distances di.

13.2.1 Harmonic Oscillator under Sequential
Impulses

In order to estimate precision of the above procedure, let us consider the
particular case in which function (13.20) can be calculated exactly in the
closed form due to the presence of exact analytical solution in between the
pulses Λ.

The differential equation of motion on the entire time range is

ẍ+ 2ζωẋ+ ω2x =
∞∑

i=0

piδ (t− ti) (13.28)

In this case, the function f (x, t) in equation (13.12) becomes

f (x) =
(
x2

−2ζωx2 − ω2x1

)

(13.29)

Using the identity ezAf (x (t) , t) = f (x (t+ z) , t+ z) and the exact analytical
solution of the corresponding free oscillator, gives both components of the
vector-function (13.20) in the form

F1 (x; z) =

(

e−z ζ ω cos(z
√

1− ζ2 ω) +
ζe−z ζ ω

√

1− ζ2
sin(z

√

1− ζ2 ω)− 1

)

x1

+
e−z ζ ω

ω
√

1− ζ2
sin(z

√

1− ζ2 ω)x2

F2 (x; z) = − ωe
−z ζ ω

√

1− ζ2
sin(z

√

1− ζ2 ω)x1 (13.30)

+

(

e−z ζ ω cos(z
√

1− ζ2 ω)− ζ e−z ζ ω

√

1− ζ2
sin(z

√

1− ζ2 ω)− 1

)

x2

In this particular case, properties of mapping (13.19) depend on the following
determinant

J =
∣
∣
∣
∣

1 + ∂F1/∂x1 ∂F1/∂x2

∂F2/∂x1 1 + ∂F2/∂x2

∣
∣
∣
∣

= e−2di ζω (13.31)

Let us introduce the relative error

δ = |J − Jappr| /J (13.32)
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where Jappr is an approximate determinant based on the Lie series expansion
(13.17).

Figs. 13.4 and 13.5 show diagrams for the relative error δ versus the dis-
tance d between any two neighboring impulse times when the highest order
terms kept in Lie series (13.17) are O(z2) and O(z3), respectively.

0.0 0.2 0.4 0.6 0.8
0.000

0.005

0.010

0.015

0.020

0.025

0.030

d

Δ

Fig. 13.4 Relative error of the determinant based on the truncated Lie series
including terms of order O(z2).

Fig. 13.5 Relative error of the determinant based on the truncated Lie series
including terms of order O(z3).

As follows from the diagrams, precision of the discrete mapping essentially
depends on both the distance between pulse times and the number of terms
kept in the Lie series. As a result, the error due to a large distance can be
reduced by increasing the number of terms in the Lie series.
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13.2.2 Random Suppression of Chaos

A specific case of the Duffing oscillator with no linear stiffness under sine
modulated random impulses was considered in [142]. The corresponding dif-
ferential equation of motion is represented in the form

ẍ+ ζẋ+ x3 = B sin t
∞∑

i=0

δ (t− ti) (13.33)

where ζ is a constant linear damping coefficient, and B is the amplitude of
modulation.

Distances between any two sequential impulse times are given by

di = ti+1 − ti =
π

12
(1 + βηi)

where ηi are random real numbers homogeneously distributed on the interval
[−1, 1], and β is a small positive number, 0 < β  1.

Introducing the state vector x = (x, ẋ)T ≡ (x1, x2)
T , brings system (13.33)

to the standard form (13.12), where

f (x) =
(
x2

−ζx2 − x3
1

)

, pi =
(

0
B sin ti

)

Note that oscillator (13.33) represents of-course a modified version of the
well known oscillator, ẍ + ζẋ + x3 = B sin t, considered first by Ueda [186]
as a model of nonlinear inductor in electrical circuits - the Ueda circuit. In
particular, the result of work [186], as well as many further investigations of
similar models, reveal the existence of stochastic attractors often illustrated
by the Poincare diagrams [113]. Similar diagrams obtained under non-regular
snapshots can be qualified as ‘stroboscopic’ diagrams.

The results of the computer simulations described in [142] show that some
irregularity of the pulse times can be used for the purposes of a more clear ob-
servation of the system orbits in the stroboscopic diagrams. When repeatedly
executing the numerical code, under the same input conditions, such a small
disorder in the input results some times in a less noisy and more organized
stroboscopic diagrams. However, such phenomenon itself was found to be a
random event whose ‘appearance’ depends on the level of pulse randomization
as well as the number of iterations.
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