
Chapter 11
Principal Trajectories of Forced
Vibrations

Abstract. As shown earlier by Zhuravlev (1992) that harmonically loaded
linear conservative systems possess an alternative physically reasonable ba-
sis, which is generally different from that associated with conventional princi-
pal coordinates. Briefly, such a basis determines directions of harmonic loads
along which the system response is equivalent to a single oscillator. The corre-
sponding definition (principal directions of forced vibrations) is loosing sense
in nonlinear case, when the linear tool of eigen vectors becomes inapplicable.
However, it will be shown in this chapter that nonlinear formulation is still
possible in terms of eigen vector-functions of time given by NSTT boundary
value problems. Physical meaning of the corresponding nonlinear definitions
for both discrete and continual models is discussed.

11.1 Introductory Remarks

The theory of linear normal modes defines a natural basis in the configuration
space of linear conservative systems. The corresponding directions are asso-
ciated with a set of independent harmonic oscillators. The number of such
oscillators is infinite, if the original system is continuous. In the later case,
the modal analysis provides reduction of a continuous system to the related
discrete set of harmonic oscillators. As it is known, the normal modes are
defined for a class of unforced systems, therefore only initial conditions select
those oscillators that will be excited during the dynamical process. Practi-
cally, a normal mode regime must be supported by some external loading
due to inevitable energy dissipation. However, the theory does not identify
directly such external forces. Let ψj(y) be, for instance, the jth mode shape
of a beam. Generally speaking, the external loading of the same profile, ψj(y),
will excite not only the jth mode but also some others, unless the mass per
unit length of the beam is constant. From the mathematical viewpoint, this
is due to the mass density, say ρ(y), participating as a weighting factor in
the orthogonality condition
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< ψi(y)ρ(y)ψj(y) >= 0, i �= j (11.1)

The question therefore is what kind of external force must be applied to a
mechanical system in order to generate a normal mode type of motion when
all the system particles coherently vibrate with the same frequency?

Following reference [203], let us consider first the linear case assuming that
the linear n-degree-of-freedom forced system oscillates as a single harmonic
oscillator in such a manner that the coordinates vector x (t) and the force
vector p (t) are collinear to the same constant vector q with a constant length
ratio μ as follows

x = q sinωt, p = μq sinωt (11.2)

In the case of forced vibration, the frequency ω is rather predetermined by the
external loading and therefore should not play the role of eigen-value. It was
shown in [203] that the coefficient of proportionality μ can play such a role
instead. In a regular case, the coefficient μ has exactly n eigen-values, whereas
the vector q determines the corresponding ‘principal directions’ according to
the definition of reference [203].

Note that the principal directions are always orthogonal regardless the
mass matrix of the system. Such an approach therefore determines a new
natural basis for external forces from the standpoint of system considered.
This, of-course, should not be viewed as a substitute for the theory of normal
modes, however, some non-autonomous problems can be naturally solved by
making use of the above complementary basis.

In nonlinear cases, definition (11.2) is unapplicable and the above notion
of principal directions loses its sense. However, it was shown in [136] that
the basic idea still can be generalized by considering trajectories instead of
directions. Also a mixed spatio-temporal consideration must be applied since
spatial and temporal coordinates are not separable in nonlinear cases and
the related vibration and forcing are generally neither harmonic in time not
similar in space.

There are some practically important formulations of the problem for the
case of nonlinear forced vibration, which could be qualified as inverse or
semi-inverse approaches. The related methods select practically reasonable
external forces that generates simple enough dynamics. For example, Har-
vey [57] considered ‘natural forcing functions’ proportional to the non-linear
restoring force of the forced Duffing oscillator.

The notion of ‘exact steady state’ was defined by Rosenberg [168] for a
strongly nonlinear single degree of freedom system as a vibration with the
cosine-wave temporal shape of the period of external force. The corresponding
forcing function is determined under some initial conditions. Kinney and
Rosenberg [80] considered systems with many degrees of freedom.
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11.2 Principal Directions of Linear Forced Systems

Let us illustrate first the basic idea of reference [203] by considering the linear
n-degree-of-freedom forced system

M ẍ +Kx = p (ωt) , x (t) ∈ Rn (11.3)

where M and K are constant mass and stiffness n×n -matrixes, respectively;
p (ωt) is a periodic vector-force of the period T = 2π with respect to ωt, and
the upper dot means differentiation with respect to time, t.

Substituting (11.2) in (11.3), gives the eigen-value problem with respect
to the parameter μ and vector q in the form

− ω2Mq +Kq = μq (11.4)

Let q = vs and μ = μs be the sth eigen-vector and eigen-value respectively,
s = 1, ..., n. The eigen-vectors vs are orthogonal and can be normalized by
condition

vT
i vj = δij (11.5)

where δij is the Kronecker symbol.
Therefore, the set of vectors vs determine a natural basis for the case

of forced vibrations. Let, for instance, the external force be p = Q sinωt,
where Q ∈ Rn is an arbitrary constant vector. In this case, the corresponding
steady-state (particular) solution is written as

x =
∑

s

(

vT
s Q

)

μs
vs sinωt (11.6)

Now, let es and ωs be conventional linear normal modes and natural frequen-
cies of the system. (The related eigen-value problem is obtained from (11.4)
by setting μ = 0.) As follows from the linear theory, the normal mode vectors
are orthogonal with respect to the mass matrix M so that the normalization
condition can be represented in the form

eT
i Mej = δij (11.7)

Using the normal mode basis for the above steady-state, gives

x =
∑

s

(

eT
s Q

)

ω2
s − ω2

es sinωt (11.8)

Since the uniqueness theorem holds, expansions (11.6) and (11.8) must rep-
resent the same solution, and therefore,

∑

s

(

vT
s Q

)

μs
vs =

∑

s

(

eT
s Q

)

ω2
s − ω2

es (11.9)
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Let the external force amplitude vector Q be directed along one of the prin-
cipal directions. Then, expansion (11.6) will include only one term, whereas
expansion (11.8) still includes all n terms.

Now, let us consider the case, when the mass matrix is equal to the identity
matrix, M = E. In this particular case, expression (11.4) takes the standard
form of the eigen-value problem for normal modes with respect to the eigen-
value parameter ω2 + μ,

− (ω2 + μ
)

Eq +Kq = 0 (11.10)

As follows from (11.10), the eigen-values of free and forced vibration are
coupled by expression

ω2 + μs = ω2
s , s = 1, ..., n (11.11)

It is seen that each eigen-value of forced vibration, μs = ω2
s − ω2, is a

monotonically decreasing functions of the external frequency ω with only one
zero at ω = ωs.

11.3 Definition for Principal Trajectories of Nonlinear
Discrete Systems

Let us consider the nonlinear case

M ẍ +Kx + εf (x) = p (ωt) , x (t) ∈ Rn (11.12)

where f (x) is an analytic nonlinear vector-function such that f (−x) =−f (x),
ε is a small positive parameter, and the forcing function and matrixes are
defined in equation (11.3).

If ε �= 0, then the concept of principal directions of forced vibrations is
not applicable any more, however it is still possible to consider principal
trajectories instead based on the following

Definition 1. Trajectories of periodic motions of the period T = 2π/ω on
which mechanical system (11.12) behaves as a Newtonian particle in Rn,
namely the external force and acceleration vectors are coupled by the Newton
second law,

mẍ (t) = p (ωt) (11.13)

will be called principal trajectories of forced vibrations.

In equation (11.13), m is a priory unknown effective mass parameter. The
effective mass m and the force p (ωt) must be chosen in order to make equa-
tions (11.12) and (11.13) compatible.

Note that, in the linear case, the above definition still gives principal di-
rections of forced vibrations (11.2) after representing the mass parameter as
follows
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m = − μ

ω2
(11.14)

Indeed, substituting expression x (t) = q sinωt in equation (11.13) and taking
into account expression (11.14), gives definition (11.2) in the form p =μx. In
contrast to linear case (11.2), however, definition (11.13) allows non-harmonic
temporal shapes.

Current definition itself does not imply that the system is weakly nonlinear.
However, if the parameter ε is small then explicit solutions can be obtained in
terms of conventional asymptotic expansions as described in the next section.

As mentioned, the notion of principal trajectories seems to relate to the
idea of ‘natural forcing functions’ introduced in [57] for the Duffing oscillator.
Let us consider now a multidimensional case from that point of view.

Applying definition (11.13) to the general nonlinear system

M ẍ + F (x) = p (ωt) (11.15)

and eliminating the acceleration, gives the external forcing vector-function
as a linear transformation of the restoring force in the form,

p (ωt) =
(

E − 1
m
M

)−1

F (x) (11.16)

where the matrix of the transformation includes the effective mass parame-
ter m.

Relationship (11.16) can be viewed as a vector version of the concept of
natural forcing functions.

On the other hand, using the definition for principal trajectories and ex-
cluding the external forcing vector p (ωt) from the equation of motion, gives
an auxiliary free system described by the differential equation of motion

(M −mE) ẍ + F (x) = 0

The idea of transforming the forced problem to a free vibration problem
by imposing the form of excitation was used also in [31] with illustrations on
two degrees of freedom systems based on an essentially different methodology
though.

11.4 Asymptotic Expansions for Principal Trajectories

In order to make equations (11.12) and (11.13) compatible, let us eliminate
the forcing vector-function p (ωt) and thus consider equation

M ẍ +Kx + εf (x) = mẍ (t) (11.17)
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A family of periodic solutions, that give principal directions of linearized
system as ε→ 0, will be considered. Let us represent such solutions (principal
trajectories) in the following parametric form

x = X (τ) (11.18)

where is τ = τ((2ω/π)t) is the triangular sine wave of the period of external
loading, T = 2π/ω.

Substituting (11.18) into (11.17), gives

LX+εf (X) =
(

2ω
π

)2

mX′′ (11.19)

L ≡
(

2ω
π

)2

M
d2

dτ2
+K

under the boundary condition

X′ (τ) |τ=±1= 0 (11.20)

As mentioned above, the temporal and spatial variables generally are not
separable any more in nonlinear cases, therefore it is impossible to obtain an
exact nonlinear version of the eigenvector problem (11.4). As a result, both
temporal and spatial mode shapes must be corrected on each step of the
related asymptotic process as described below.

Remind that the differential operator L in equation (11.19) includes the
frequency parameter ω fixed, whereas the mass m is an eigen value to be
determined.

Let ma and ea(τ) be the eigen value and eigen vector of the linearized
problem, ε = 0, respectively,

Lea = ma

(
2ω
π

)2

e′′a (11.21)

e′a | τ=±1 = 0

where the index a = {s, j} consists of spatial and temporal mode shape
numbers, s = 1, ..., n and j = 1, ..., respectively.

The scalar product of any two vector-functions x = x (τ) and y = y (τ)
will be defined as follows

〈x,y〉 = 1
2

∫ 1

−1

xT ydτ

Let us represent solution of the weakly nonlinear eigen value problem (11.19)
and (11.20) in the following form of asymptotic expansions
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X(τ) = Aea(τ) + εX(1)(τ) +O
(

ε2
)

(11.22)

m = ma + εη1 +O
(

ε2
)

Then substituting (11.22) in (11.19) and (11.20), and matching the coeffi-
cients of the first order of ε, gives equation

LX(1) −
(

2ω
π

)2

maX(1)′′ = −f (Aea) +
(

2ω
π

)2

η1Ae′′a (11.23)

and boundary condition
X(1)′ |τ=±1= 0 (11.24)

Following the idea of perturbations for eigen-value problems [83], let us rep-
resent solution of equation (11.23)

X(1) =
∑

b�=a

a
(1)
b eb(τ) (11.25)

where b = {r, i} is a double index, a(1)
b are yet unknown constant coefficients,

and boundary condition (11.24) is automatically satisfied.
Let us assume the following normalization condition for the eigen vector-

functions

〈e′a(τ), e′b(τ)〉 =
{

0, b �= a
1, b = a

(11.26)

Substituting (11.25) in (11.23) and taking into account (11.26), determines
the coefficients a(1)

b and η1. As a result, expansions (11.22) give first-order
asymptotic solution

X = Aea + ε
( π

2ω

)2∑

b�=a

〈eb, f (Aea)〉 eb

mb −ma
+O

(

ε2
)

(11.27)

m = ma − ε
( π

2ω

)2 〈ea, f (Aea)〉
A

+O
(

ε2
)

As follows from the form of solution (11.27), all the coefficients are uniquely
determined under the condition that ma �= mb for a �= b. The possibility of
degeneration, namely ma = mb for a �= b, depends on the inner properties
of the system and the frequency parameter ω. The related examples were
considered earlier [136], [141].

11.5 Definition for Principal Modes of Continuous
Systems

Let us consider a one-dimensional elastic system whose vibration is described
by some function u = u(t, y). For certainty reason, let us consider a
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non-linear string of the length l under external distributed loading described
by the partial differential equation and boundary conditions

Lu+εf [u] = p(ωt, y), 0 < y < l (11.28)

u(t, 0) = u(t, l) = 0 (11.29)

L ≡ ρ(y) ∂
2

∂t2
− T ∂2

∂y2
(11.30)

where L is the differential self-adjoint operator of linear string, ρ(y) is a mass
per unit length parameter, T is a constant tensile force, f [u] is a nonlinear
operator acting in the corresponding function space of configurations, ε is
a small parameter, and p(ωt, y) is the external forcing function, which is
assumed to be 2π-periodic with respect to ωt.

Now keeping in mind expressions (11.28) through (11.30), let us introduce

Definition 2. Periodic forced vibrations of a continuous system, in which
the system motion is equivalent to a particle in the function space of config-
urations described by the second Newton law,

σ
∂2u(t, y)
∂t2

= p(ωt, y) (11.31)

will be called a principal mode of forced vibration.

In one-dimensional cases, σ is a priory unknown effective mass per unit length.
Substituting (11.31) in (11.28), gives the following partial differential equa-

tion for principal modes of forced vibrations

Lu+εf [u] = σ
∂2u

∂t2
(11.32)

Introducing the triangular wave time substitution as τ = τ((2ω/π)t) and
u(t, y) = U(τ, y), gives

LU+εf(U) =
(

2ω
π

)2

σ
∂2U

∂τ2

L ≡
(

2ω
π

)2

ρ(y)
∂2

∂τ2
− T ∂2

∂y2
(11.33)

The boundary conditions are formulated for both temporal and spatial vari-
ables as

U (τ, 0) = U (τ, l) = 0 (11.34)

and,
∂U (τ, l)
∂τ

|τ=±1= 0 (11.35)

respectively.
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In this case, the scalar product of two functions U = U(τ, y) and V =
V (τ, y) from the configuration space can be defined as

〈U,V 〉 =
1
2l

∫ 1

−1

∫ l

0

UV dτdy (11.36)

Further, a weakly nonlinear asymptotic procedure can be developed analo-
gously to the above discrete case.


	Principal Trajectories of Forced Vibrations
	Introductory Remarks
	Principal Directions of Linear Forced Systems
	Definition for Principal Trajectories of Nonlinear Discrete Systems
	Asymptotic Expansions for Principal Trajectories
	Definition for Principal Modes of Continuous Systems




