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The State-of-the-Art in Building Residential

Location Models

Francesca Pagliara and Alan Wilson

Abstract This chapter provides an overview of the history of modelling residential

location choice. Models of residential mobility typically have developed for

illuminating the nature of location choice at different territorial scales or as part of

an integrated model of land-use and transport. The latter tend to be more comprehen-

sive in nature, though certain other investigations do consider interactions of location

choice with other key decisions, such as work location.

Models presented in this book are described here briefly and are presented here

according to three dimensions: theory and method, i.e. the modelling approach at

the root of the model; categorisation of residential decision makers; and treatment

of space, i.e. continuous, zoning or cells.

1 Introduction

Residential location modelling lies at the heart of one of the grand challenges of

contemporary social science. More than 50% of the world’s population now live in

cities and, in different parts of the world. Effective planning demands a “What if?”

forecasting capability and this can be achieved through the development of

computer models. Since the elements of a city are highly interdependent, this in

turn demands a comprehensive model of a city. Housing, where people live, how

they choose their location – the elements of residential location modelling – is a

critical element of this modelling task. Urban modelling represents a grand chal-

lenge because it can now be recognised as a generic task within the broader field

that is now called complexity science – the science of understanding and modelling
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nonlinear systems. The models presented in this book, therefore, are important for

two reasons: first, they are key building blocks for urban models – and, indeed, in

many instances, they are presented as components of general models; and secondly,

they are exemplars of complexity science.

The models presented here represent the state-of-the-art. However, the ideas

behind them have a long history. There are two main strands in this with a number

of subsidiary elements, both with origins in the Nineteenth Century. There is a third

early Twentieth Century strand which is essentially descriptive geography that we

will note below but then not take further in relation to modelling. The first main

strand is a focus on economics beginning with von Thunen’s famous 1826 model of

agricultural land use – “rings” of different kinds of crops around a market – and an

associated theory of rent. The second is rooted in spatial interaction – mainly

applied to migration or retailing and market areas – by analogy with gravity and

hence the notion of “gravity models” – for example, see Carey (1858), Ravenstein

(1885), Lill (1891) and in the Twentieth Century, Young (1924), Reilly (1929,

1931), Bossard (1932), Stewart (1942), Zipf (1946) and Iklé (1954). These models

were all reviewed by Erlander and Stewart (1990). Neither of these strands, in the

first instance, therefore, focused on residential location and structures. The subsidi-

ary strand was contributed by geographers and sociologists: Burgess (1927) had a

theory of rings but not based on bid rent – rather ecological notions of invasion and

succession. Hoyt (1939) added sectoral differentiation while Harris and Ullman

(1945) noted that expanding towns absorbed smaller towns and villages and that

this added further polycentric structures. This in turn connects urban structure to the

central place theories of Christaller (1933) and Losch (1940) but only indirectly to

the theory of residential location.

Residential location modelling as we now know it dates back to the work of

Alonso (1960, 1964) who laid the foundations for the economic analysis by

applying von Thunen’s key “bid rent” idea to residential location; and to Lowry

(1964) who used spatial interaction principles in his Model of metropolis. Lowry
used a very simple interaction model and earlier, Hansen (1959) had based a

concept of “accessibility” on spatial interaction which was to play a role in many

later models. Authors such as Carrothers (1956), Huff (1964) and Lakshmanan and

Hansen (1965) had developed retail models which, again later, could be converted

into improved residential location models. A variant on the interaction theme

involved casting it in probabilistic form as in the work of Chapin and Weiss

(1968). Alonso’s model underpinned many future economic models while Lowry’s

initiated a host of comprehensive interaction-based models each of which had to

have a residential location models. There were notable pioneering approaches,

initially rooted in the big American transportation studies (e.g. Carroll 1955)

which led to land-use transport models such as Penn-Jersey (Harris 1962). Many

of the earliest of these are excerpted and described in Putman (1979). The models in

this volume have their roots in one of these two strands. There are many histories of

these developments: see for example, Batty (1976, 1994), de la Barra (1989),

Wegener (1994) and Wilson (1998); Bertuglia et al. (1987) is particularly detailed.

Eliasson and Mattson (2000), Iacono et al. (2008), Timmermans (2006) and
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Wegener (2004) are more recent examples, with Hunt et al. (2005) providing a

detailed review of the most recent large-scale operational modelling systems. Each

of these provide routes to many more reviews.

These different perspectives have each been much developed and have to a large

extent been integrated. An impetus for this integration came from Wilson’s (1967,

1970) development of spatial interaction models on an entropy-maximising basis

see also Senior and Wilson (1974). This facilitated the development of more

complex models in which the hypotheses could be represented as constraints.

There are detailed specifications of residential location models in Wilson (1970,

1974) and these models were tested by Clarke and Wilson (1985). Significant

contributions came from Boyce (1978) and Kain (1987). However, the ongoing

modelling task remains a formidable one! The system being modelled is immensely

complicated and this means that researchers building empirical models have to

compromise in various ways. This book offers an extensive range of empirical

models and the various examples illustrate the range of choices that modellers have

made to make their task feasible. It is interesting to summarise the dimensions of

this complexity, how these relate to the roots we have identified and to note how the

authors in this volume have responded to the challenges. We consider three main

dimensions in turn: (1) theory and method; (2) the categorisation of residential

decision makers; and (3) the treatment of space.

1.1 Theory and Method

Many factors can in principle influence residential choice. Lowry rooted his very

simple model in the journey to work and the availability of employment. Access to

services – such as “good” schools – is another interaction based element. Ways

have to be found of characterising the type, quality and price of housing and this

again can generate substantial arrays. Ideally, we need to capture the quality of

different kinds of environment. Hypotheses on all these factors – and more – have

to be incorporated in an underpinning the theory for the model. We have argued that

the two starting points are the economic on the one hand – which has the advantage

of generating surplus measures – spatial interaction modelling on the other. How-

ever, it can be argued, as noted earlier, that the two approaches can be integrated:

the logit model and the entropy-maximising model are very closely related – see

Wilson (2010) for a recent account of this relationship. One way or another,

either the elements of a utility function have to be assembled and combined; or,

equivalently, the components of the attractiveness functions in spatial interaction

models. The spatial interaction formulation handles constraints very well and it is

interesting in a number of these chapters that the importance of constraints has been

recognised in other modelling approaches – for example with the development of

constrained multinomial logit.

There is a particular theoretical issue associated with change – the dynamics.

At any one time, the system of interest is almost certainly not in equilibrium and yet

The State-of-the-Art in Building Residential Location Models 3



it is necessary at times to calibrate models assuming that it is. The representation of

dynamics explicitly is made very complicated by the different “speeds” of the

processes involved. There are elements of the population – ready to move – for

whom the dynamics are “fast”; the developers are operating at the margin and so

also can be considered to be part of a fast dynamics’ process. But the whole system

changes relatively slowly, though at times there will be phase transitions as whole

neighbourhoods change character. It is particularly difficult to model changing land

use. In terms of the spatial interaction formalism a method that can encompass

phase changes and path dependence – cf. Arthur (1989) – was offered in a retail

context by Harris andWilson (1978) and articulated in a residential location context

in Wilson (2000).

A final complication is that the effects of planning and zoning have to be allowed

for.

1.2 Categorisation of Residential Decision Makers

The system is complicated by the variety of players. On the demand side, house-

holds can be characterised on a great variety of dimensions and this can create

unmanageable arrays or model specifications for which there is no hope of assem-

bling the data for effective calibration. On the supply side, the housing stock

evolves slowly: developers can create new estates, householders can modify or

extend their own properties. Housing is the great consumer of urban land and is in

competition with other land uses and so “land” is a third major component of the

system description. The finest level of detail which may be desirable produces

unmanageable arrays and this leads to the possibility of using microsimulation as a

method. This was pioneered by Orcutt (1957) and introduced in a spatial interaction

context by Wilson and Pownall (1976). It is now in common use – see, for example,

Clarke (1996) – and is used in the models in the Chapters on “Household Behaviour

in the Oregon2 Model” by Hunt et al. and “A Microsimulation Model of Household

Location” by Feldman et al.

1.3 Treatment of Space

Space can be treated as continuous or discrete – the latter case involving the

creation of a zone system. In the limit, of course, a system described through a

large number of very small zones mimics continuous space. Economic models,

such as Alonso’s, have tended to use the continuous representation. It is significant,

however, that the translation of Alonso’s work into discrete space by Herbert

and Stevens (1960) was a significant precursor for the ongoing development of

economic models. Interaction-based models nearly always use zone systems

notwithstanding the work of Angel and Hyman (1976) in developing continuous

4 F. Pagliara and A. Wilson



space models. In practice, zone systems connect with available data more easily and

the models are mathematically more tractable.

Cellular systems are a particular form of zone system and can then be connected

to the literature on cellular automata.

When the elements of a residential location model are assembled, many of the

components, more probably than for any other urban submodel, are themselves

variables in other submodels: employment by location, services by location and

transport costs for example. Such problems of interdependence are very difficult to

handle outside the framework of a comprehensive model, and it is not surprising

that most of the models presented here are developed within such a context.

All the models in this book use discrete zone systems, except for the Oregon

model of the Chapter on “Household Behaviour in the Oregon2 Model” by Hunt

et al., which uses a cellular system and the Edmonton model of the Chapter on

“Stated Preference Examination of Factors Influencing Residential Attraction” by

Hunt, which considers individual housing units but only in terms of demand and not

in terms of supply or the UrbanSim model of the Chapter on “Modeling Residential

Location in UrbanSim” byWaddell, which runs on dicrete zones, gridcells, or parcels

depending on the model configuration.

2 Models Described in This Book

The varieties of residential location models presented in this book can be under-

stood against this framework. The framework itself is summarised in Fig. 1.1 and in

Table 1.1, the choices made in relation to the models in this book are indicated.

In the rest of this chapter, we show how the contents of each chapter link to this

framework. Table 1.2 reports the territorial geography of each model and its area of

application.

The authors in this book represent a substantial proportion of the community that

has the capability to build large urban models and to calibrate them empirically. It is

fascinating to see the range of choices that have been made in the interests of

feasibility. The reader will be able to tease out very easily the different ways in

which the authors have characterised systems of interest and many have systemati-

cally reviewed the range of factors which could be incorporated in their models

before almost inevitably, paring down their ideal lists.

There is a spin-off benefit from collecting these chapters together: to be able to

see residential models developed for such a variety of national environments –

covering virtually every continent. Table 1.2 reports the areas of application of the

different models.

Table 1.1 summarises the different models reported into the classification shown

in Fig. 1.1. The discrete choice/(possibly nested) logit model is much the most

popular methodological base – used in the Chapters on “Stated Preference Exami-

nation of Factors Influencing Residential Attraction” by Hunt, “DRAM Residential

Location and Land Use Model: Forty Years of Development and Application” by

The State-of-the-Art in Building Residential Location Models 5



Putman, “The Influence of Accessibility on Residential Location” by Eliasson,

“Modeling Residential Location in UrbanSim” by Waddell and “The Residential

Choice Module in the Albatross and Ramblas Model Systems” by Arentze et al.

There are overlaps in these lists as models that start as spatial interaction models are

converted into logit models for calibration purposes with a range of econometric

methods deployed. The economic basis of the models figures strongly – consider

for example the analysis of surplus in the Chapter on “DRAM Residential Location

and Land Use Model: Forty Years of Development and Application” by Putman.

The notion of bid rents still rates highly showing how Alonso’s wonderful

insights still play a major role (Chapters on “The MUSSA II Land Use Auction

Equilibrium Model” by Martı́nez and Donoso, “The Impact of Transport Policy

on Residential Location” by Pagliara et al. (2002), and “The Influence of Accessi-

bility on Residential Location” by Eliasson). In Chapter “The Influence of Accessi-

bility on Residential Location” by Eliasson and “The Residential Choice Module in

the Albatross and Ramblas Model Systems” by Arentze et al., the economic

analysis is explicitly linked to activity patterns. Many of the models emphasise

their treatment of constraints in interesting ways (Chapters on “DRAM Residential

Location and Land Use Model: Forty Years of Development and Application” by

Putman, “The MUSSA II Land Use Auction Equilibrium Model” by Martı́nez and

Donoso, “Modeling Residential Location in UrbanSim” by Waddell, and “The

Residential Choice Module in the Albatross and Ramblas Model Systems” by

Arentze et al.), including the introduction of constrained multinomial logit models.

At this stage, the modelling of dynamics is typically on an incremental basis –

essentially from one equilibrium to the next, period by period. In the Chapter on

MODELLING
APPROACH

ECONOMIC

SPATIAL
INTERACTION

MATHEMATICAL
ECONOMICS

ECONOMETRICS

� RENT MODELS
� LOGIT MODELS

REGRESSION

� GRAVITY TYPE
� ENTROPY MAXIMISING

TREATMENT
OF SPACE

DECISION-
MAKERS/

RESIDENTS

CONTINUOUS

DISCRETE ZONES

CELLULAR

CATEGORIES

MICROSIMULATION

Fig. 1 Framework
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“The DELTA Residential Location Model” by Simmonds, the notions of “mover

pool” and “mobile population” are introduced in an interesting way. And as we

noted earlier, a number of the models are rooted in a comprehensive framework and

so represent interdependence. Logit models dominate model operationalisation –

but it is interesting to see microsimulation beginning to appear significantly (the

Chapters on “Modeling Residential Location in UrbanSim” by Waddell, “House-

hold Behaviour in the Oregon2 Model” by Hunt et al., and “A Microsimulation

Model of Household Location” by Feldman et al. – the later being a microsimula-

tion version of the Chapter on “The DELTA Residential Location Model” by

Simmonds model). Three of the chapters (“Stated Preference Examination of

Factors Influencing Residential Attraction” by Hunt, “The Impact of Transport

Policy on Residential Location” by Pagliara, and “The Residential Choice Module

in the Albatross and Ramblas Model Systems” by Arentze et al.) use versions of

stated preference methods to obtain their samples for model calibration. Finally, it

will be noted that most of the models have been designed to contribute to the

planning process and some engage explicitly with the zoning issue.

While the models reported here cover the main variety of residential location

models, usually within a comprehensive framework, there are, of course, others that

it has not been possible to include here. These are noted in the various reviews cited

earlier. We note several of these approaches here to help complete the picture.

The MEPLANmodel system (Echenique 2004), and the closely related TRANUS

model system (de la Barra 2001) for developing integrated land use transport

models include explicit representation of residential location. Work on these

model systems, seeking a generalized representation for application in a range of

different contexts, started in the 1980s, drawing on earlier models (Hunt and

Simmonds 1993). These systems use a spatially disaggregated input–output struc-

ture to represent the behaviour of industry sectors and household categories and

their interactions to simulate the spatial distributions of incremental production and

floorspace rents arising from an initial allocation of exogenously generated “basic”

Table 1.2 Models areas of application

Model – short

name

Geographical territory scale Areas of application

Edmonton Urban scale Edmonton, Alberta

DRAM Urban and metropolitan scale Cities and metropolitan areas in USA

DELTA Urban and regional scale Cities and city regions in England, Scotland and

New Zealand; national model of Scotland

MUSSA Urban scale Santiago, Chile

Oxford Urban and regional scale Oxfordshire

TILT Regional scale Stockholm region

UrbanSim Metropolitan scale Cities and metropolitan areas in USA and

Western Europe

Oregon2 U.S.A. state scale State of Oregon

ALBATROSS

RAMBLAS

National scale The Netherlands

SimDELTA Urban and regional scale South/West Yorkshire, England
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components. The quantities of floorspace supply by type by geographic zone are

adjusted in response to floorspace rents. The model system moves through time

from one period to the next. In each period the distributions of incremental

production are re-determined in response to changes in exogenous demand and

floorspace. From one period to the next, the quantities of floorspace are adjusted in

response to the changes in rents.

Households provide labor in response to industry demands at locations selected

in response to wage rates, travel costs and the prices of key inputs, including

residential space. In many specific applications, household expenditures are allocated

among residential space, travel and other goods and services using a Cobb–Douglas

function based on utility-maximizing assumptions. Travel costs are represented using

a composite utility for the range of available mode alternatives between zones, these

developed from a nodes-and-links representation of the available transportation

supply. The list of practical applications of MEPLAN and TRANUS is extensive,

including London, Napoli (Hunt 1994), Bilbao (Geraldes et al. 1978), Sacramento

(Abraham and Hunt 1999), Sweden, Caracas and Mexico City and many others.

The PECAS model system for developing and applying spatial economic

models also includes representation of elements of residential behaviour (Hunt

and Abraham 2003). PECAS stands for “Production, Exchange, Consumption

Allocation System”. It is the name of a generalised framework and associated

software system emerging since the year 2000.and now being used in a range of

practical applications, including San Diego, Sacramento, Los Angeles, Atlanta,

Baltimore and the State of California. (Hunt and Abraham 2005)

PECAS includes a computable general equilibrium structure for representing

how “activities” (including industrial sectors, government and household categories)

locate within the building space provided by developers and how these activities

interact with each other at a given point in time. Flows of “commodities” (including

goods, services, labour and space) going from production activity to consumption

activity are determined according to technology options available to the activities

and allocated from production location to exchange zone and from exchange zone

to consumption location using an extended form of nested and additive logit model

based on random utility theory (Abraham and Hunt 2007). Prices are determined for

each commodity in each exchange zone in order to clear all markets. The actions of

developers in the provision of the space (land and floorspace) consumed by activities

in each zone – including the new development, demolition and re-development that

occurs from one point in time to the next – are determined using a set of joint nested

and continuous logit allocation models in response to relative prices, construction-

related costs and zoning rules that specify allowable uses and intensities (Abraham

and Hunt 2007). The resulting new quantities of space are used in the representation

of the interactions among activities for the next point in time.

Households, as particular categories of activities, select residential locations, life-

styles (as alternative technology options involving varying quantities of commodity

production and consumption, including residential size and type), workplaces

(as exchange locations for selling the labor “commodity”), the locations for other

actions (as exchange locations for consuming other commodities) – all according to
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an extended form of nested and additive logit model whose parameters are calibrated

for each household type as part of the development of a specific model. Households,

as de facto developers when home owners, also determine whether or not to change

the type and/or quantity of residential space from one point in time to the next.

Anas and Liu (2007) report the RELU-TRAN model. This is interesting as an

economic model that is computationally challenging, interesting, and important but

does not conform to linear, quadratic, or other standard nonlinear programming

formulations. Rather, such models require the solution of highly nonlinear equa-

tions systems using non standard and innovative, iterative algorithms that exploit

the special features of those equations. This is the approach that is used to design the

RELU-TRAN algorithm. Numerical solution of models using iterative techniques

has been a goal, though poorly practiced within the field of transportation and land-

use modeling. Meanwhile, iterative numerical methods are gaining broader appli-

cability within economics to solve a variety of problems.

RELU is a dynamic general equilibrium model of a metropolitan economy and

its land use. It equilibrates floor space, land and labor markets, and the market for

the products of industries, treating development (construction and demolition),

spatial interindustry linkages, commuting, and discretionary travel. Mode choices

and equilibrium congestion on the highway network are treated by unifying

RELU with the TRAN algorithm of stochastic user equilibrium. The RELU-TRAN

algorithm’s performance for a stationary state is demonstrated for a prototype con-

sisting of 4-building, 4-industry, 4-labor-type, 15-land-use-zone, 68-link-highway-

network version of the Chicago MSA. The algorithm solves 656 equations in a

special block-recursive convergent procedure by iterations nested within loops and

loops within cycles. Runs show excellent and smooth convergence from different

starting points, so that the number of loops within successive cycles continually

decreases. The tests also imply a numerically ascertained unique stationary equilib-

rium solution of the unified model for the calibrated parameters.

RELU-TRAN is a spatially disaggregated, computable general equilibrium

model based on microeconomic theory and in which economic activity is modeled

at the level of fully interdependent model zones with a link-node transport network.

It treats the stock of buildings in each model zone as changing slowly while other

markets clear instantaneously. The metropolitan economy is treated as open in

a number of ways. Consumers can locate their residences or jobs outside the

metropolitan area, income can originate from outside and a part of assets within

the area can be owned by outsiders, while firms can produce, in part, by paying for

inputs located elsewhere. The model treats interactions between firms and consu-

mers and among firms as purely pecuniary, which are sufficient to generate a pattern

of spatial agglomerations.

Another example model is described in the work of Deal et al. (2005). They

describe the Land-Use Evolution and impact Assessment Model (LEAM) which

uses the STELLA/SME/GIS collaborative environment for the purpose of developing

a Planning Support System (PSS) to generate and evaluate development patterns. It

describes land-use changes across a landscape that result from the spatial and

dynamic interaction among economic, ecological, and social systems in the region.
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In the LEAM approach, groups or individuals who have substantive knowledge

relating to a particular system develop and test separate models of that system.

These contextual sub-models are linked and run simultaneously in each grid cell

of a set of raster-based GIS map(s) to form the main framework of the dynamic

spatial model (LEAM).

Inputs to the model use national land-use data sets (at 30 � 30 m resolution),

census and economic data (readily available and transportable for application to

multiple sites) along with variables relating to impact assessment sub-models (e.g.

habitat, ecoregional inputs, water and energy inputs) to set model parameters.

The products of LEAM model runs are analyses of a series of policy scenarios,

presented as GIS maps or movies that show the transformation of the subject

landscape as a product of policy related inputs. These dynamic visual outputs are

beneficial for testing policy scenarios and raising concerns regarding the impacts of

development, environmental degradation, or conflicting land-use policies. The final

PSS tool will include a simple user interface and transportable data sets for

application to multiple sites.

The economic model in LEAM (LEAMecon) forecasts changes in output,

employment and income over time based on changes in the market, technology,

productivity and other exogenous factors. The resulting economic trend is used as

an input to a dynamic housing market simulation that then feeds into LEAM as

residential land-use change. The agent-based housing model predicts actual houses

built in a given year based on trends in the economy and anticipated demand by

specific population cohorts. The combined economic and housing model serves as a

prime driver of land-use change. Through LEAM, this work connects knowledge in

regional science, housing markets, and spatial land-use analysis.

In the first substantive chapter “Stated Preference Examination of Factors

Influencing Residential Attraction” by Hunt, a Stated Preference (SP) approach

is used to develop a representation of household sensitivities to a range of both local

and urban-level elements of residential locations. Each of a sample of respondents/

residents in the population in Edmonton in Canada was asked to imagine moving

the household to a new home location and to indicate preferences among hypothet-

ical alternatives for this new location, with these alternatives described in terms

of attributes related to the elements of interest, including housing type, mode

specific travel times and costs for work and shopping, air quality, traffic noise,

local street treatments, walking connectivity to local schools, and rent or taxes. The

observations of choice behaviour thus obtained were then used to estimate logit

choice models with utility function parameters indicating the sensitivities to these

attributes. The results are indications about the influences on residential location

and models incorporating representations of these influences.

In the Chapter on “DRAM Residential Location and Land Use Model: Forty

Years of Development and Application”, the Putman DRAM model is presented as

a component of the wider package ITLUP (Integrated Transportation and Land Use

Package), which is arguably the first fully operational transportation-land use

modelling software package. This has its origins in Putman (1983, 1991). It has

now been applied in nearly 30 different metropolitan regions for public agency
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forecasting and policy analysis purposes. Designed on the Lowry framework,

ITLUP offers a network representation that allowed for the incorporation of con-

gested travel times in the distribution of activities. At the core of ITLUP are two

allocation submodels: a household allocation submodel, which is DRAM, and an

employment allocation submodel, EMPAL. Trip generation and distribution func-

tions for the travel forecasting model are developed within DRAM, simultaneously

with household location. Travel times from runs of the travel mode are fed forward

to compute new activity distributions.

An interesting feature of DRAM is the location surplus measure, which defines

the aggregate benefit households receive from the attributes of their chosen resi-

dential zone. The larger the value of location surplus, the more utility households

receive from their choices of residential location. The surplus measures used in

DRAM can be derived by using either of two different methods. Both methods

produce the same location surplus measures and are based on the assumption that

households attempt to maximize utility when choosing residential locations. For the

first method, the DRAM model is interpreted as a multinomial logit model and

the location surplus measure is found by calculating aggregate indirect utility. In the

second approach, the location surplus measure is found by directly integrating

the DRAM travel demand function.

The Chapter on “The DELTA Residential Location Model” by Simmonds

describes the residential component of the DELTA land-use/economic modelling

package. In its core, markets for residential and commercial real estate are repre-

sented, with transportation models linked into the overall model structure. The

model system is divided into processes that represent spaces and those that repre-

sent activities. Processes dealing with activities include household formation and

dissolution, employment growth or decline, location and property markets, and the

employment status of individuals. The model system is designed to be run over a

series of short steps of no more than 1 or 2 years. The main objective in creating this

package has been that of creating a practical tool to forecast urban and regional

change, and in particular to examine the expected impact of transport change; to

provide a land-use/economic model which works in interaction with any appropri-

ate transport model, and can therefore be used to extend relatively conventional

transport models into land-use/transport interaction.

The location sub-model is both the “location and relocation sub-model”, and

the “property market sub-model”. Mobile activities respond to changes in five

variables: accessibility; quality of the local environment in general; quantity of

housing; quality of housing; and the cost or utility of consumption, i.e. of spending

income on housing, travel, and other goods and services.

DELTA is intended to be applied with a detailed classification of households

reflecting household composition, age of household members, working status of

working-age adults in the household, and the socio-economic group to which the

household belongs. An important characteristic of the model is that only a propor-

tion of households make residential choices in any one period. It is assumed that the

main reasons for making a new residential choice are linked to change in one of the

household classification variables, e.g. a change in the household’s composition or
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in its work status. The households in the location model fall into two groups: “pool”

households, which have no previous location within the area, and “mobile” house-

holds, which do have a previous location within the area modelled. Newly formed

households and households resulting from existing households merging (e.g. sin-

gles forming couples) are assumed to make new location decisions and are counted

as “pool” households. “Mobile” households are those which are undergoing other

changes (mainly from couple with children onwards). In addition, a proportion of

non-changing households is assumed to be “mobile” in each period. The numbers of

“mobile” and “pool” households are initially calculated in the household transition

model (which also finds and subtracts the numbers of households which have

dissolved or migrated out of the modelled area altogether). The inter-area migration

model is then applied, before the location model. The migration model predicts

moves of households between areas within the modelled system: these households

are subtracted from the “mobile” and “pool” numbers for the areas they leave, and

added to the “pool” numbers for the areas into which they migrate. Households

migrating from the rest of the world are also added to the “pool” numbers. The main

location equations are weighted incremental logit functions, with slightly different

forms for “pool” and for “mobile” households.

In the Chapter on “The MUSSA II Land Use Auction Equilibrium Model”, the

MUSSA model is described by Martinez and Donoso. It is designed to forecast the

expected location of agents, residents and firms, in an urban area. It presents an

alternative framework for modelling land markets in transportation and land use

models by adopting a modified version of the bid choice framework as it combines

bid rent and discrete choice approaches to land markets by dealing simultaneously

with both sides of an auction in an integrated framework. Real estate is allocated to

the highest bidder by auction and market equilibrium is attained by the condition

that all agents are located somewhere, and therefore supply satisfies demand. This

auctioning process produces rents for each real estate in the market and simulta-

neously defines levels of satisfaction (benefits) to located agents at equilibrium.

A discrete approach is followed for all units of demand and supply: households and

firms are clustered into categories, while land is divided into zones and dwellings

into types; the number of discrete units is defined by the modeller. Consumers’

agents, households and firms, are assumed rational and their idiosyncratic differ-

ences are modelled by a stochastic behaviour.

The place of MUSSA in the context of other land use models can be defined from

a theoretical and historical perspective. A first generation of these models was

designed under the assumption that agents locate as to minimize the travel cost to

other activities, which may be called the maximum access model, where the

transport system has a predominant role. Several models of this class were devel-

oped following either Alonso’s bid-rent approach or Lowry’s gravity – entropy –

approach, or even a combination of these two. A second generation introduced

market elements into the location problem by including rents and good prices, what

we call the linear market model. Rents have been introduced in two ways, using a

hedonic rent function based on average zone attraction indices, or by assuming the

location options are quasi-unique so rents are the result of simulating an auction
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process known as the bid-auction approach. In this case, input–output tables have

been used to incorporate spatially differentiated prices on goods. The third genera-

tion introduces an important amount of complexity into the model by incorporating

an explicit representation of the direct interaction between agents decisions, that is

the interaction that affect behaviour in addition to the price effects. These interac-

tions describe the fact that location options are valued, by all agents and in a

significant degree, by their built environment and the location pattern, usually

called zone attributes.

A significant difference with other land use models is that in MUSSA the

interaction between consumer agents – households and firms – is explicitly

described in agents’ behaviour and solved to attain equilibrium. This model was

renamed as CUBE LAND with application currently being developed in several

cities of USA, Europe and Asia.

The models developed for Oxford (Pagliara et al.) in the Chapter on “The Impact

of Transport Policy on Residential Location” are not integrated into a formal

package. The aim is that of assessing the extent to which transport impacts on

residential location decisions and hence on house prices and that of evaluating the

extent to which transport policy decisions (such as road user charging, work place

parking levies, changes to fuel duties or the provision of light rapid transit systems)

affect housing markets. This was achieved by undertaking two Stated Preference

(SP) experiments in the Greater Oxford area divided into discrete zones, each

with around 100 respondents corresponding to householders disaggregated into

income groups. The aim was to determine the key transport and location factors

that householders take into account when determining their residential location.

It was intended that the choice models developed from the Stated Preference

experiments would be used in conjunction with data on house prices to produce a

bid choice model. However, price data was not available at a detailed enough

level of spatial aggregation to permit calibration of an appropriate bid choice

model. Instead, the SP data was used to develop an Hedonic Pricing (HP) model.

Validation tests indicate that the HP model provides more reliable forecasts of

house prices than the SP model. The HP model was used to provide preliminary

forecasts of the impact of transport improvements on house prices in the Greater

Oxford area.

In the Chapter on “The Influence of Accessibility on Residential Location”,

Eliasson describes the influence of accessibility on the household’s location deci-

sion has been modeled through the use of the comprehensive TILT (Tool for

Integrated analysis of Location and Travel) model. The main theoretical contribu-

tion is an elaborate specification of what it is meant meant by “accessibility” in this

context. This is done by assuming that households, disaggregated into income

groups, make a joint choice of location and activity pattern subject to income and

time constraints. This activity pattern implies a stochastic travel pattern, the

expected value of which is known at the time of location. The locational utility

then consists of four parts: the indirect utility of income and time net of housing cost

and expected total travel time and travel cost, the direct utility of the optimal

activity pattern, the direct disutility of the expected travel pattern and the direct
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utility derived from location characteristics. The locational utility is then used in a

discrete choice model for the choice of residential location.

In the Chapter on “Modeling Residential Location in UrbanSim” Waddell

describes the residential component of UrbanSim, which is a microsimulation

model of land markets, noted as the most widely used model today by Metropolitan

Planning Organizations in the United States. It uses a flexible, modular structure to

implement models that can be adapted to differtent geographic units such as zones,

gridcells or parcels. The model system emphasizes clear behavioural realism, and

attempts to avoid abstract modelling assumptions that are not reflected in observed

behavior.

The UrbanSim model system contains model components representing house-

hold and employment relocation and location choices, and real estate development.

The function of the household location choice model is straightforward, as is the

data structure on which it operates. A list of households, generated using a synthetic

population synthesizer, is represented in the base year database as a table with one

row per household. Each household has a unique identifier, attributes such as

number of persons, income, number of workers, presence of children, and a unique

identifier for its location. As the model system proceeds in the first simulation year,

the demographic transition model adds new households to the household table,

providing their characteristics and a unique identifier, but not a location identifier.

Then the household relocation model simulates the choices of certain households to

move from their current location, and resets the location identifiers of the moving

households to a null value. As a result of these two models, then, the household

table contains some households that have moved into the region, and some that have

been predicted to move within the region. These locating households are selected

by identifying all households in the table that have a null location identifier. This is

the set of households that the location choice model is applied to.

The framework for the household location choice model, like most of the models

in the UrbanSim model system, is a standard choice model. Although more

sophisticated choice model structures can be used, the most common in practice

is the Multinomial Logit Model (MNL). The underlying logic of the model is that

households that are in the market for a location take into consideration their own

characteristics, such as income, and household size, and consider some sampling of

available, vacant housing units and consider their price and characteristics such as

density, age, and accessibility to employment and other opportunities. The relative

attractiveness of these alternatives is measured by their utility. The choice model

then proceeds to compute the probabilities of making a location choice from

the available alternatives, defined as vacant housing units, given the preferences

and budget constraints of locating households. Once location probabilities are

computed, the predicted choices are simulated, using one of the available algo-

rithms to reflect different assumptions regarding how the housing market clears.

The model proceeds in steps. After loading the model specification and coefficients

from input data, the model selects the agents that will be making a choice.

UrbanSim is implemented in the Open Platform for Urban Simulation (OPUS),

and runs on multiple operating systems, using standard desktop or laptop computers.

The State-of-the-Art in Building Residential Location Models 15



Computational performance is efficient, with run times reported for parcel level

model of San Francisco of 2–3 min per simulation year, using a full population for

microsimulation.

In the Chapter on “Household Behaviour in the Oregon2 Model” the Oregon2

model is described by Hunt et al. It uses a set of seven connected modules

representing different components of the full system, each running in turn for

each year of simulation. Two of the modules concern elements of household

behaviour. The household allocations module provides an agent-based microsimu-

lation of each household and each person, simulating the transitions and choices

made by these agents over 1 year. The Land Development Module provides a

representation of space development using 30 m � 30 m grid cells covering the

model area, microsimulating development transitions occurring in each cell over 1

year. It determines changes in developed space over time and in response to

potential policy actions involving pricing, regulation and infrastructure in both

transportation and land use. The Household Allocations (HA) Module provides a

fully disaggregate representation using an agent-based microsimulation of each

household and each person, simulating the transitions and choices made by these

agents over the period of 1 year. The intent is to perform an endogenous determi-

nation of changes in social characteristics, so as to provide a more complete and

consistent representation of demographic changes over time and in response to a

wide range of potential policy actions involving pricing, regulation and infrastruc-

ture in both transportation and land use.

An initial population of households and household members for use in the

simulation, with all attribute values assigned, is synthesized for the year 1990

using a sampling process that draws on a disaggregate sample of actual households

and relevant marginal distributions from the Census.

The state-of-the-art in transportation and land-use modelling is defined by

current research efforts aimed at building comprehensive microsimulation systems

of urban areas, with representation at the level of individual agents (persons,

households, firms, etc.) and simulations of the behaviour of the entire population

of interest. The advantages of adopting such modelling approach for urban sys-

tems are that urban systems are dynamic, with a significant time element and

components changing a different speeds. The behaviours of these systems are

complex, with interacting agents, complex decision-making processes, and signifi-

cant probabilistic elements. Closed-form mathematical and statistical representa-

tions of urban systems often induce large amounts of bias and lead to poor

forecasts. Chapters on “The Residential Choice Module in the Albatross and

Ramblas Model Systems” by Arentze et al. and “A Microsimulation Model of

Household Location” by Feldman et al. deal with this issue. MUSSA, UrbanSim

and Oregon2 present disaggregated households at a level of detail sufficient to

operate them in a static microsimulation format, where a representative sample

is used within a microanalytic framework for short run applications. However, for

long run forecasts, the population should be synthesized or updated to represent

the dynamics of individuals and the environments within which they make

choices.
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In the Chapter by Arentze et al., they describe the residential choice component

in the Albatross and Ramblas model systems. Both models are primarily activity-

based models of transport demand. Their prime goal is to predict activity-travel

patterns and associated traffic flows. The distribution of residential land use, in

terms of households and persons, is exogenously given in the case of Albatross. The

spatial distribution of residential land use plays a double role in the simulation of

activity-travel patterns in both models. First, both models assume the construction

of a synthetic baseline population at the start of the simulation period. To that

effect, the number of individuals and their values on a set of sociodemographics in

each postal area are predicted, reflecting the spatial distribution of residential land

use. This distribution influences the activity agendas and the spatial–temporal

constraints underlying the models. This data can be exogenous to the models,

implying that the relevant distributions should be based on an external model or

data source and the creation of the synthetic population takes places at each

simulation run. Secondly, residential land use is an integral part of the dynamics

in the model systems. In this case, the aging and redistribution of the population,

partly reflecting residential choice behaviour, is internal to the model system. In this

case, a special sub-model or module predicts housing choice behaviour as a

function of sociodemographics, characteristics of the available dwelling stock,

characteristics of the transport network, and possibly activity agendas.

In the Chapter “A Microsimulation Model of Household Location” Feldman

et al. describe the development of SimDELTA, which is a new microsimulation

model of individual and household changes and choices within a land-use/transport

interaction modelling structure as a development of the DELTA model. The

microsimulation components explicitly model changes to members of the sample

over time (rather than, as in many other microsimulation models, generating a

separate sample for each modelled period of the forecast). The microsimulation

modelling is carried out at ward level. The major strength of the model is naturally

its disaggregate and dynamic nature, which means that the user can aggregate the

output at any desired level of household or person characteristics, and that it is

possible to trace individuals, households, jobs and dwellings over time so as to

observe the modelled processes of change at a level of detail that is simply not

possible in other types of model.

These chapters offer a very rich set of models. They are valuable in themselves

and provide the foundation for the next generation of researchers working in this

field. It is an effective representation of the present state-of-the-art.
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Stated Preference Examination of Factors

Influencing Residential Attraction

J.D. Hunt

Abstract The City of Edmonton in Canada conducted a stated preference survey

where over 1,200 respondents were asked to consider tradeoffs involving a wide

range of elements of urban form and transportation, including mobility, air quality,

traffic noise, treatment of neighbourhood streets, development densities and fund-

ing sources such as taxes. Respondents were to imagine moving to a new home

location and to indicate preferences among hypothetical alternatives for this new

location, with these alternatives described in terms of attributes related to the

elements of interest. The observations of choice behaviour thus obtained were

then used to estimate choice model parameters indicating the sensitivities to these

attributes. As such, these parameter estimates provide indications of the relative

importance of the corresponding elements and they also provide insights into the

influences of the specific home location attributes considered. It is these insights

into the influences of home location attributes that is of particular interest in this

book presenting a collection of modelling treatments of household behaviour.

1 Introduction

The City of Edmonton in Canada developed a long-range transportation masterplan

in the mid-1990s, encompassing a wide range of elements of urban form and

transportation, including:

l Mobility
l Air quality
l Traffic noise
l Treatment of neighbourhood streets
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l Development densities and
l Funding sources such as taxes

The study described here was conducted as part of the development of the plan,

in order to improve understanding of the relative importance placed on these

elements by the population and thereby obtain some guidance concerning some

of the tradeoffs to be made in the plan. The intention in this study specifically was

not to consider what would be best for the population; but, rather, to consider the

sensitivities of the population to a specific set of elements addressed in the plan.

A stated preference approach was used, where each of a sample of respondents in

the population was asked to imagine moving to a new home location and to indicate

preferences among hypothetical alternatives for this new location, with these

alternatives described in terms of attributes related to the elements of interest.

The observations of choice behaviour thus obtained were then used to estimate

model parameters indicating the sensitivities to these attributes. As such, these param-

eter estimates provide indications of the relative importance of the corresponding

elements, as required. But they also provide insights into the influences of the specific

home location attributes considered. It is these insights into the influences of home

location attributes that is of particular interest in this book presenting a collection of

modelling treatments of household behaviour.

This chapter is organised into four sections after this introduction covering

survey, analysis approach, results and conclusions.

The analysis approach involved the use of the standard logit model in the

estimation of the indications of sensitivities. This particular form of mathematical

model of discrete choice behaviour enjoys widespread use throughout the model-

ling of household behaviour. Consequently, it is appropriate to include in this first

chapter (of a book about the modelling of household behaviour) a description of the

standard logit model and its application – which is done within the section covering

the analysis approach.

2 Survey

2.1 Survey Interview Design

The hypothetical new home location alternatives considered by respondents were

described in terms of the following attributes:

l Auto drive time to work
l Operating cost for auto trip to work
l Parking cost for auto trip to work
l Transit ride time to work
l Walking distance to bus stop for trip to work
l One-way fare for transit trip to work
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l Auto drive time to shopping
l Operating cost for auto trip to shopping
l Parking cost for auto trip to shopping
l Transit ride time to shopping
l Walking distance to bus stop for trip to shopping
l One-way fare for transit trip to shopping
l Housing type
l Change in housing taxes or rent relative to existing level
l Frequency of noticeably bad air quality
l Nature of traffic noise and disturbance arising from it
l Walking time to local elementary school
l Type of transportation facility to be crossed as part of walk to local elementary

school and nature of any provision for that crossing and
l Type of street in front of dwelling and nature of any traffic calming measures

in street

In order to remove other elements from consideration and thereby negate their

potential impacts, each respondent was also told to assume that all other aspects of

the alternative new home locations were the same as their existing home location.

That is, for example, the respondent was to imagine that each alternative new home

would have the same floor area and money value as the respondent’s existing home

location.

The descriptions of the hypothetical new home alternatives presented to respon-

dents were developed by randomly varying the condition regarding each of the

considered elements, with some degree of control on possible combinations of

conditions in order to avoid inconsistent descriptions. That is, each specific hypo-

thetical home location alternative was created by “bundling together” a randomly

selected drive time to work, a randomly selected money cost for the auto trip to

work, a randomly selected housing type, etc. An example of one restriction on the

possible combinations was that a description could not have both a “collector road”

in front of the dwelling and “none” for the level of traffic noise. Another was

that parking charges remained the same across alternatives in a given interview,

reflecting the invariance of work destinations.

Additional materials were presented to each respondent as part of the interview

in an effort to establish a consistent understanding of the (sometimes fairly

“jargony”) terms being used. Separate single pages of point-form notes were used

to indicate what was meant by the terms “shopping trip for groceries” and “notice-

ably bad air quality”. Photographs (sometimes with additional point-form notes)

were presented depicting the different housing types and indicating the meaning

of local road, collector road, crosswalk, pedestrian bridge, block (as a distance

measure), speed bump, and chicanes.

In each interview, the respondent was asked to participate in four separate stated

preference “games”, with four different hypothetical home location alternatives

considered in each game. In a given game, the respondent was to establish his or her

ranking of the alternatives in order from most to least preferred – which in general
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forced the respondent to make tradeoffs among the more and less preferable

attributes and thereby provide data indicating the relative influences of these

attributes The descriptions of the alternatives were printed on separate sheets of

paper, one for each alternative. Figure 1 shows an example sheet presenting an

alternative.

31401 2

Walk to local elem school: 10 minutes
using crosswalk on collector road

Local air quality: noticeably bad 1 day per year

Municipal taxes or rent: up $125 per month (up $1500 per year)

Street in front of dwelling: local road

Trip to work: By car: 20 minutes in vehicle
$2.00 per day for parking
$0.75 for fuel & user charges (fuel taxes, road tolls)

By transit: 45 minutes in vehicle with no transfers
4 block walk to bus stop
$1.25 fare each way

Trip to shop: By car: 15 minutes in vehicle
$0.50 for parking
$2.00 for fuel & user charges (fuel taxes, road tolls)

By transit: 30 minutes in vehicle with no transfers
1 block walk to bus stop
$1.25 fare each way

Traffic noise: constant faint hum

Dwelling type: single family

Fig. 1 Example sheet showing a hypothetical alternative. The respondent was asked to indicate

preferences among four such alternatives for a new home location in each game by both ranking

the alternatives in order of preference and also rating each alternative on a 0 to 10 scale
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In the first three games the sets of four descriptions were selected randomly from

the full set of available combinations of conditions. In the fourth game a fixed set of

four pre-specified descriptions with specific themes was considered, with the same

fixed set of four considered in all interviews. These four pre-specified descriptions

embodied specific themes emphasizing mobility, money costs, the environment and

children as areas of general concern and had the most attractive conditions for the

relevant elements in each case.

In each game, the four sheets containing the descriptions of the alternatives were

literally set out before the respondent and the descriptions were reviewed by

the interviewer using the point-form notes and photographs as appropriate. The

respondent was then left to consider and physically move around the sheets as part

of the determination of the order of preference among the four alternatives. When

the respondent finally settled on an order of preference, he or she was then asked

to rate each hypothetical alternative on a whole number scale from 0 to 10, where

0 represents “terrible”, 5 represents “neutral” and 10 represents “excellent”. This

acted to confirm the indicated order of preference: if any inconsistency arose

between the indicated order of preference and the 0 to 10 scores, where an alterna-

tive with a higher ranking got a lower score, then the order of preference and the

scoring were revisited until the inconsistency was eliminated. After the four games

of ranking were completed, the respondent was then asked to indicate which one of

the elements had the greatest influence in the ranking process.

It would be a very complex and demanding task to consider and compare

conditions regarding 19 elements across four alternatives. A significant proportion

of respondents might find such a task too difficult and either give up or simply

provide incomplete responses, significantly reducing the accuracy of the results

obtained. In anticipation of this potential difficulty, the number of elements varying

in each of the first three games was reduced by organizing the elements into eight

related groups and holding the conditions for four of these groups constant across

all alternatives. The four groups of elements to be held constant in a given game

were selected randomly as part of the development of the interview. This effec-

tively eliminated these four groups of elements from consideration in that game,

and thereby simplified the ranking task to a manageable level. All 19 elements were

still printed on each sheet so that the full context was still indicated, and thus could

influence the 0 to 10 rating scores. The four groups of varying elements were

presented in bold print in order to allow them to be identified more easily.

The order of presentation of the elements could influence respondents, where

elements at the top of a sheet might receive more attention than those further down

because of respondent fatigue. In order to avoid this effect biasing the results, the

order of presentation of both the groups of elements and the elements within the

groups was selected randomly for each interview.

As part of the interview, the respondent was also asked to provide the following

socioeconomic information:

l Nature of household tenure (own or rent)
l Taxes or rent paid
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l AGE, gender, drivers license status, employment status, workplace location,

frequency of travel to work and mode usually used for travel to work for each

person in the household as appropriate
l Frequency and location of grocery shopping and mode usually used for travel to

grocery shopping as appropriate
l Total number of private vehicles owned by household
l Present dwelling type
l Total household income and
l Nature of any mobility, sight/reading and/or hearing disabilities that might have

influenced the responses provided

2.2 Conducting the Survey

A random listing of 6,000 households in Edmonton was selected from the publicly-

available directory of residential telephone numbers. Several attempts were made

to contact and recruit persons in these households for the survey. In the end, a total

of 1,277 “face-to-face” interviews were successfully completed and the resulting

information coded for analysis.

2.3 Resulting Sample as Representation of Population

In Fig. 2 the sample distribution of household sizes is compared with the

corresponding population distribution – as observed in a 100% sample obtained

in 1993 (City of Edmonton 1993). In Fig. 3 the sample distribution of dwelling

types is similarly compared with the corresponding 1993 population distribution.
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Fig. 2 Comparison of household size distributions in survey sample and population. The survey

sample distribution is close enough to the population distribution in this regard to suggest that the

sample can be taken to be representative of the typical Edmonton resident
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These comparisons indicate that there is a reasonable match between the sample

and the overall population regarding these distributions, with some relatively minor

differences, suggesting that the sample can be taken to be reasonably representative

of the population in discussions of the analysis results.

3 Analysis Approach

Indications of the influences of different attributes for specific groups of households

were established by estimating standard logit models for those households using the

observations obtained in the survey. The resulting parameters estimates for the logit

model indicate the influences of the attributes. This is described below, covering the

basic form of the logit model along with the estimation of the parameter values and

the interpretation of the results.

3.1 Logit Model Form and Statistics

The logit model is a mathematical model that represents the behaviour of indivi-

duals trading off among the attributes of alternatives when selecting one alternative

out of a set of available discrete alternatives (McFadden 1974). It has the following

form for the choice situation considered here:

Pi� ¼ expðUi�ÞP

i

expðUiÞ ; (1)
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Fig. 3 Comparison of dwelling type distributions in survey sample and population. As above, the

survey sample distribution is close enough to the population distribution in this regard to suggest

that the sample can be taken to be representative of the typical Edmonton resident
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where:

i index representing new home location alternatives,

i* a particular new home location alternative,

Pi* probability that new home location alternative i* is selected,

Ui utility value associated with new home location alternative i, expressed in (implied)

hypothetical units called “utils”.

The utility function that ascribes utility values to the new home location alter-

natives has the following general, linear form:

Ui ¼ f1X1i þ f2X2i þ :::þ fnXni þ :::; (2)

where:

N index representing attributes,

Xni value of attribute n for alternative i,

fn utility function parameter associated with attribute n.

The mathematical form of the logit model is relatively simple and convenient to

work with when using empirical data to estimate the values for the parameters, jn,

in the utility function. The statistical properties of the resulting estimates are “well

behaved” (McFadden 1974). Consequently, this formulation is a very attractive

one for modelling choice behaviour and it continues to enjoy widespread use

(McFadden 2007; Train 2003). Variations of this formulation providing more

complex treatments have also been developed (Agresti 2007; Hensher and Green

2003; Koppelman 2006).

When values for the utility function parameters have been estimated, the relative

influences of factors can be determined using ratios among the resulting coefficient

values. For example, if for a given sample the parameter estimate associated with

auto drive time is�2.00 utils per minute and the parameter estimate associated with

transit ride time is�1.00 utils per minute then an increase in auto drive time is twice

as onerous as an equal increase in transit ride time, indicating that auto drive time

has double the impact and that a minute of auto drive time is worth 2 min of transit

ride time for the typical household in the sample.

The significance of differences among estimates can be considered using stan-

dard t-statistics and t-ratios, with the t-ratio being the t-statistic for the estimate’s

difference from 0. When a t-statistic or t-ratio has a value greater than 1.96 in

absolute magnitude, this indicates that there is a less than 5% chance that the

associated difference is due to random effects only (Ang and Tang 1975), and the

difference is said to be “significant”.

The overall model goodness-of-fit can be considered using a goodness-of-fit

index as follows (Ben-Akiva and Lerman 1985):

r2 ð0Þ ¼ 1� Lð�Þ � k

Lð0Þ ; (3)
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where:

K number of coefficients in estimated model,

L(0) log-likelihood for model with zeros for all coefficients,

L(*) log-likelihood for model with estimated coefficients.

This r2(0) index is analogous to the R2 statistic for linear regression in that it

ranges from 0 to 1, with larger values indicating a better fit. It also takes into

account the number of parameters used in the model, favouring more parsimonious

model specifications (Ben-Akiva and Lerman 1985). Note that in this work specifi-

cally the k is omitted from the index as it is a constant across estimations.

A modified form of this goodness-of-fit index, that uses the model with just a full

set of alternative specific constants as the point of comparison, is also often used.

It has the following form:

r2 ðCÞ ¼ 1� Lð�Þ � k

LðCÞ ; (4)

where:

L(C) log-likelihood for model with just a full set of alternative specific constants and zeros for all

other coefficients.

This modified form provides further indication of the fit of the estimated model,

in this case relative to a more informed point of comparison. The model with a full

set of alternative specific constants uses the observed aggregate share selecting each

alternative as the choice probability for the alternative. This is a more informed

model that the one with zeros for all coefficients, which uses the inverse of the

number of available alternatives as the choice probability for each alternative.

Reports of estimation results sometimes include just one or both of r2(0) and

r2(C). In cases where a model with a full set of alternative specific constants is

not applicable, as is the case with the generic hypothetical alternatives considered in

the first three games in the survey conducted for this work, then r2(0) is undefined
and thus not reported. Other modifications to these indices are possible when

the results of logit model estimations are reported: for example, the number of

parameters, k, may not be included in the calculation of the index value, as is the

case in this chapter.

The ALOGIT software package (ALOGIT 2007; Daly 1992) was used to

estimate the parameters in this work. The “exploded logit” (Chapman and Staelin

1982) version of the estimation process was used, consistent with the use of a

ranking process (rather than a single choice process) in the interviews. This

“exploded logit” version makes full use of the ranking indications by attempting

to predict the full ranking of the alternatives in an observation – not just the single,

most preferred alternative.
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The indication of the influence of a given attribute that is provided by the

corresponding parameter estimate is a value that applies for the typical household

for the sample being used. In this sense it is an average or “compromise” value that

expresses a general tendency. The sensitivities of specific households in the sample

to the attribute will most certainly differ from this compromise value. The variation

in sensitivity may be very large – and specific households may feel very differently

than the typical household. Therefore, the indications that are provided should

only be applied in the consideration of general tendencies for large numbers of

households.

4 Results

4.1 Presentation Format

Logit models were estimated for the entire sample and for various different sub-

samples from the survey. The results for some of these estimations are discussed

below, with the numerical values shown graphically in figures included in the text

and also listed in tables included in an appendix.

4.2 All Households

The estimation results for the full sample of all households are shown in Fig. 4 and

also listed in the first column of results in Table 1 of the Appendix.

Figure 4 shows the estimation results using a particular format, grouped and

shaded by the categories of attributes considered. Working from left to right, these

categories are: housing type, air quality, traffic noise, treatment of street in front of

the dwelling, travel conditions to work, travel conditions to shop, and walking

conditions to local elementary school. The bars for the groups show what the

estimation results indicate would be the changes in utility occurring with the

corresponding changes in attributes as either (a) increases (labelled “inc”) or (b)

switches from the relevant reference cases (the ones with zero values listed in the

left-most position for each group).

In Fig. 4, utility values become more negative going up the page, indicating

reductions in attractiveness. Thus, reading some examples from the figure: switch-

ing from “single family” to “duplex” for the dwelling type has about the same

(or perhaps a slightly greater) negative impact on the attractiveness of an alternative

as either changing the frequency of bad air from “never bad” to “bad 1 day per

week” or increasing auto cost for travel to work by about $6 (6 times the bar for

“$1 auto cost inc”).
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The small thin vertical line at the top of each bar in Fig. 4 indicates the standard

error for the statistical estimator of the value of the corresponding bar, thereby

providing an indication of this aspect of the precision of the estimate. The impact of

a $100 per month increase in taxes or rent is shown using a horizontal line rather

than a bar in deference to its potential role as a basis for converting the shown

changes in utility into corresponding changes in money amounts. As such, the

particular format used for Fig. 4, along with the other similar figures included

below, provides a useful graphical depiction of the indications regarding sensitiv-

ities provided by the estimation results.

Returning to the estimation results specifically, all the parameter estimates have

signs consistent with expectations, and all are significantly different from zero

except for those concerning (a) the sensitivity to the “only local roads to cross”

condition regarding the walking trip to the local elementary school and (b) the set of

three constants related to the four specific themes considered in the fourth game of

each interview.
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Fig. 4 Estimation results for sample of all households (1,277 households). The bars show the

changes in utility that would arise with the indicated changes in attributes, with the change for a

$100 per month increase in rent or taxes shown as a line to provide a reference. Changes in

dwelling type away from single family have the greatest impact, followed by increases in traffic

noise away from none, and then increases in the frequency of bad air quality away from never.

Increases in travel times and costs to work and to shopping have comparatively modest impacts:

the time to drive to work would have to increase by almost 60 min in order to have the same

negative impact as a switch from single family to duplex dwelling type
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The ratio of the parameter estimate for auto time over the parameter estimate for

auto cost is $0.1732 per minute. This is very close to previous estimates of the value

of auto drive time in Edmonton: $0.1767 per minute from 1995 stated preference

carpool use data (McMillan 1996) and $0.1962 per minute from 1991 revealed

preference mode choice data (City of Edmonton 1991). This close match suggests

that the value found here is a reasonably accurate estimate of the actual value of

drive time to work for the population, which supports the idea that the respondents

in this study are reacting to the hypothetical situations in much the same way

Edmontonians have previously in other situations, which adds more general credence

to the full range of results obtained in this study.

Similarly, the ratio of the parameter estimate for transit ride time over the

parameter estimate for transit cost for the trip to work is $0.0619 per minute,

which is reasonably consistent with the corresponding indications obtained in

previous work.

The ratio of the parameter estimate for auto ride time to work over the parameter

estimate for transit ride time to work is 1.94. This indicates that for the typical

Edmonton resident a reduction in auto travel times to work has almost twice the

impact on the attractiveness of residential locations as does an equivalent reduction

in transit ride times to work. A value of 1.54 was obtained for this ratio in a previous

study in Edmonton using revealed preference mode choice data (Hunt et al. 1998)

and has been confirmed in later work (Hunt 2003). Values for this ratio of around

2 are not uncommon in work done elsewhere. Again, this reasonable match between

behaviour in a real situation and behaviour in the corresponding hypothetical

situation considered in this study adds credence to the results obtained in this study.

Respondents were told as part of the interview that it took 1 min to walk 1 block.

This allows the estimation result for the walk to transit for the trip to work

expressed in an amount per block to also be expressed as an amount per minute

as required. The same applies for the result for the walk to transit for the trip to

shopping.

The ratio of the parameter estimate for transit walk access to work over the

parameter estimate for transit ride time to work is 2.83. This is somewhat higher

than the value for this ratio found previously in Edmonton (Hunt 1990), but is

similar to typical values found elsewhere (Ortúzar and Willumsen 1994). This may

be due to sample error or some systematic distortion regarding the responses to

transit walking distances in particular in this study. It is also possible that there are

problems with the value found previously in Edmonton. In any case, this difference

suggests that there should be some relatively greater concern about the results

obtained here and in previous analysis in Edmonton regarding transit walk dis-

tances specifically.

The sensitivity to auto ride time for shopping is very similar to the corresponding

sensitivity to auto ride time for work, with the work-related value being slightly

higher. This is consistent with the idea that there may be additional time pressures

arising because of concerns about required arrival times.

In contrast to the case with auto ride times, the sensitivity to auto cost for

shopping is almost 60% higher in absolute magnitude than the sensitivity to auto
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cost for work, consistent with the notion that shopping travel is relatively more

discretionary than work travel in general and therefore likely to exhibit higher cost

elasticity.

The ratio of the parameter estimate for auto time over the parameter estimate for

auto cost for shopping is $0.1002 per minute. This is lower than the corresponding

value of drive time for the trip to work and is in the range of similar values obtained

work done previously, adding yet further credence to the range of results obtained

here.

These results for the parameter estimates for auto ride time and auto money cost

for both work and shopping together suggest that the difference in value of auto ride

time between work and shopping arises because of a difference in the sensitivity to

money costs, with the sensitivity to drive time remaining comparatively similar.

The ratio of the parameter estimate for transit walk access to shopping over the

parameter estimate for transit ride time to shopping is 5.86. This is much higher

than the corresponding value of 2.83 found for travel to work as indicated above.

The type of shopping trip being considered likely had a substantial influence on this

value in particular. In the interviews, respondents were told to consider a shopping

trip for a week’s worth of groceries for the household. Carrying these groceries for

the walking component of the transit trip would make the corresponding walking

distance or time relatively more onerous, contributing to the higher value obtained.

This implies that the respondents made an effort to follow the interview instruc-

tions, at least in this respect, and that in general they behaved consistently, which is

encouraging. It also means that the values associated with transit walk for shopping

in particular must be interpreted carefully and applied elsewhere with caution.

The ratio of the parameter estimate for auto ride time over the parameter

estimate for transit ride time for shopping is 3.74. This compares with a ratio

of 1.94 for the analogous ratio for travel to work, suggesting that travel time

to shopping has comparatively little impact on the attractiveness of home locations.

This may arise because respondents are less likely to see transit as a viable alter-

native to auto for travel to shopping for a week’s worth of groceries as defined for

the shopping trip, and are therefore less concerned about the associated transit

travel times. In any case, it follows that auto travel times for shopping have a much

greater influence on the attractiveness of residential location than do transit travel

time for shopping.

The ratio of the parameter estimate for transit ride time over the parameter

estimate for transit cost for travel to shopping is $0.0223 per minute. This is a

relatively low value, consistent with expectations for this segment of travel, reflect-

ing the comparatively higher sensitivity to money costs for shopping in general

together with the reduced sensitivity to transit travel times for this situation in

particular as discussed above.

The ratio of the parameter estimate for walk time to the local elementary school

over the parameter estimate for walk time during the transit trip to work is 0.56.

This lower sensitivity for the trip to school is expected to arise because trips to work

are made by adults whereas trips to elementary school concern younger children

with reduced time pressures generally. Respondents were told the walk time to the
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school was for a healthy adult, with the implication that the walk times for children

would be somewhat greater and to the extent that the respondents took this into

account it would act to make the sensitivity to walk time for the trip to school for

children even lower than the value obtained in the estimation. Travel times for trips

to the local elementary school may also have less influence generally because for

many households there are few relevant work locations and many potential school

locations spread throughout the region, reducing distances to schools generally and

thereby making them less important when considering home locations. In any case,

the travel times for trips to work have a much greater impact on the attractiveness of

residential locations – for perhaps a range of reasons.

It is perhaps notable that substantial concerns about risks to children in the

neighbourhood could have produced a high level of sensitivity to walk time for the

trip to school – but that this did not happen. It may be that the typical Edmonton

resident does not feel that such risks are significant in Edmonton generally. How-

ever, it may also mean that those respondents in households where such concerns

are prevalent tend to drive children to school and therefore are relatively uncon-

cerned about walking distances for the trip.

The estimation results for the “walking conditions to local elementary school”

category of attributes indicate the influences (in terms of the differences in utility)

associated with the types of roads or transportation corridors to be crossed and the

facilities provided at the crossing points for the walking trip to the local elementary

school. These differences in utility are expressed relative to the “no roads to cross”

case, which has a fixed utility of zero.

The parameter estimates for all the other crossing situations are negative,

indicating that any switch from having no roads to cross reduces the attractiveness

of the residential location.

The t-ratio is only 1.4 for the parameter estimate for the “only local roads”

condition for the walking trip to school. This suggests the need to cross some local

roads, as opposed to no roads at all, on the way to school has a comparatively weak

and dispersed impact on the attractiveness of residential locations.

The parameter estimate is �0.2251 utils for the “collector road, no pedestrian

bridge” crossing on the walking trip to school. The ratio of this parameter estimate

over the parameter estimate for walk time to school is approximately 7.5 min per

trip, indicating that adding a collector road crossing on the walk to school has the

same impact on the attractiveness of a home location as adding of 7.5 min to the

walk itself. The ratio of this parameter estimate over the parameter estimate for

money cost for the auto trip to work is approximately $2.06 per trip. These ratios

indicate there is a comparatively strong negative impact on the attractiveness of

home locations, perhaps resulting from the perception of increased inconvenience

and exposure to danger arising with the need to cross a collector road. The respon-

dents were told that all such crossings without a pedestrian bridge were at painted

crosswalks with pedestrian-actuated overhead flashing lights. It is expected

that crossings without such facilities would be seen as even more onerous and

have a correspondingly greater negative impact on the attractiveness of residential

alternatives.
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The ratio of the parameter estimate for “collector road with LRT, no pedestrian

bridge” over the parameter estimate for walk time for the trip to school is approxi-

mately 15.6, indicating that adding a collector road with LRT crossing on the walk to

school has the same impact as adding 15.6 min to the walk itself. This is an increase

of 8.1 min, or more than double, relative to the collector road only condition; again,

with a painted crosswalk. The implication is that the addition of an LRT crossing at

grade on the walk trip to the local elementary school has a further large negative

impact on the attractiveness of home locations, perhaps because of concerns about

safety along with concerns about the impact of a light rail corridor on the sense of

neighbourhood integrity.

The impacts of pedestrian bridges rather than painted crosswalks for these

crossings on the walking trip to school are indicated with the parameter estimates

for the “collector road, pedestrian bridge” and the “collector road with LRT,

pedestrian bridge” conditions.

The addition of a pedestrian bridge reduces the negative impact of the collector

road, but the differences in utility values are not statistically significant at the 5%

level. The implication is that a pedestrian bridge on its own, when introduced over a

collector road to be crossed on the walk to school, has a tendency to slightly reduce

the negative impact on the attractiveness of residential locations, but that this is not

a strong effect.

With the LRT included, the addition of a pedestrian bridge reduces the negative

impact by an amount that is statistically significant at the 5% level, indicating

that the introduction of a pedestrian bridge over a collector road with LRT does

have a much more substantial positive impact. In terms of other factors, it has the

same impact as a decrease in walking time of 5.2 min or a decrease in the money

cost for auto travel to work of $1.41 per trip. However, because the parameter

estimate for “collector road with LRT, pedestrian bridge”, is still more negative

than the corresponding parameter estimate for “collector road, no pedestrian

bridge”, the implication is that if LRT is added to a collector road corridor then

the further introduction of a pedestrian bridge will not compensate for the addition

of the LRT, at least with regard to the impact on the walk to the local elementary

school.

The estimation results for the “dwelling type” group of parameters are expressed

relative to the “single family” category, which has a fixed utility component of zero.

The parameter estimates for all the other dwelling types are negative, indicating

that any switch from the single family dwelling type is undesirable, making the

residential alternative less attractive.

The ratio of the parameter estimate for the “townhouse” category over the

parameter estimate for auto travel time to work is approximately 58.9 min. This

indicates that a switch from a single family dwelling to a townhouse is as onerous as

an increase of almost 1 h in the daily trip to work by car for the typical Edmonton

resident. The values for various other ratios concerning switches from “single

family” can be established in a similar manner. For example, the value for the

ratio for the switch from “single family” to “highrise” is nearly 95 min of auto travel

time per trip to work.
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These ratio values may seem high; but they are within the range of commuting

drive times some households in larger cities are observed to accept in order to live

in single family dwellings. The results obtained here indicate that the typical

Edmontonian in the sample has similar attitudes and would behave the same way

if forced to do so – but does not have to because single family alternatives are more

generally available nearer to work. They are also very similar to analogous results

obtained in a similar study performed in 1994 in Calgary, a comparable city also in

Canada about 300 km south of Edmonton (Hunt 1994). Further, these ratios concern

components of utility that apply with all other factors held constant. That is,

everything else apart from housing category and auto travel time is assumed to

remain the same. Various other unattractive aspects associated with being more

than 90 min away from work, such as increased travel costs and reduced shopping

and entertainment opportunities, can be expected to get mixed in and influence

more intuitive attitudes concerning specific amounts of travel time, making these

specific time amounts seem more onerous than they are on their own.

The components of utility for the various housing categories are consistently

more negative with each increase in associated residential density, suggesting that

increasing densities – at least at the micro-scale – act to reduce residential attrac-

tiveness. The changes in utility are relatively large, showing the largest changes

of any of the groups of attributes, indicating that dwelling type, and all the various

things associated with it, have a strong influence on housing preferences.

The estimation results for the “air quality” group of parameters are expressed

relative to the “never bad” category, which has a fixed utility of zero. Not surpris-

ingly, the parameter estimates for all the non-zero frequencies of bad air quality are

negative and become more negative as the frequency increases.

The frequency of bad air going from “never bad” to “bad 1 day per week” has the

same impact as an increase in municipal taxes of about $122 per month, or as an

increase in auto drive time to work of about 52 min per trip.

It is perhaps somewhat surprising to find that there is such a strong feeling about

the air being bad 1 day per year rather than never: it has the same impact on

residential attractiveness as an increase in auto time to work of about 12.9 min per

trip. To some extent it seems more reasonable that such a low frequency of bad air

would have much the same effect as the air never being bad. But a similar level

of sensitivity to the air being bad just 1 day a year was obtained in the above-

mentioned study in Calgary (Hunt 1994). Perhaps the prevailing attitude is that if

the air is worse than certain standards 1 day a year then it is likely to be less than

ideal a number of times. In any case, there is a clear indication that the typical

Edmontonian, like the typical Calgarian, is very sensitive to even very modest

changes in air quality.

The estimation results for the “traffic noise” group of parameters are expressed

relative to the “none” category, which has a fixed utility of zero. As expected, the

parameter estimates are negative for all the cases where there is some degree of

traffic noise.

The relative magnitudes of the parameter estimates for the traffic noise cases

indicate that a constant faint hum of traffic has a somewhat more negative impact
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than does traffic noise that is “sometimes disturbing”, and that “frequently distracting”

traffic noise has the greatest negative impact. Going from “no noise” to “frequently

distracting” traffic noise has the same impact on residential attractiveness as an

increase in the drive time to work of about 71.4 min per day, and an even greater

impact than does going from “air never bad” to “air bad 1 day a week”.

At about the time the interviews were being conducted, a new truck route bylaw

was being developed for the City of Edmonton. The additional media attention this

generated on truck issues, including noise, may have caused some respondents to

be somewhat more sensitive to traffic noise issues than is the case normally. The

results indicated here should be interpreted accordingly.

Overall, the estimation results regarding the two environmental aspects consid-

ered indicate that these aspects can be very important to the typical Edmonton

resident in the context of housing location depending on the extent of change

involved. The relative levels of impact for the different levels of change considered

seem entirely reasonable, which is seen to add further credence to the results.

The estimation results for the “street in front of dwelling” category of attributes

are expressed relative to the “local” category (with no traffic calming treatments),

which has a fixed utility of zero.

The parameter estimate for the “collector” category is �0.6885 utils, indicating

that a change from “local” to “collector” in front of the dwelling has about the same

negative impact on the attractiveness of home alternatives as a switch from “none”

to “constant faint hum” regarding traffic noise. This impact of roads with a

throughput function is perhaps a response to the associated higher levels of possibly

faster traffic and corresponding range of adverse factors.

The parameter estimates for “local with speed bumps” and “local with chicanes”

are both negative, indicating that the introduction of these treatments reduces the

attractiveness of residential locations for Edmontonians. This is perhaps somewhat

surprising. It was expected that traffic calming treatments acting to reduce traffic

speeds would be appreciated on a local road in front of the dwelling and thus would

act to increase the attractiveness of the location; with the general dislike of these

treatments emerging only when encountering them while driving elsewhere. It may

be that the results obtained here arose because respondents were unable to separate

the appeal of such treatments in one context from the dislike of them in another,

with the net effect being negative. It is also possible that some respondents may

have been able to make such a separation, but saw the interview as an opportunity to

send a message regarding these treatments generally. Some may even feel that these

treatments alter traffic characteristics in such a way that traffic is no less and

perhaps even more bothersome: the increased vehicle braking, accelerating and

even bouncing that results from the treatments may be seen to create greater levels

of disturbance that are worse than higher vehicle speeds. Additionally, some may

feel that child safety concerns are not reduced much by these treatments – in fact

there may be increased concerns about greater driver distraction and the potential

for children to be hidden from drivers by horizontal obstructions with chicanes.

Finally, ease of driving conditions in front of the dwelling may indeed be of more

importance than reduced speeds even immediately in front of the dwelling at that
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point specifically. In any case, the results suggest that both speed bumps and

chicanes on the street in front have a net impact reducing the attractiveness of

residential locations.

The parameter estimate for an increase in rent or taxes of $100 is �0.8033 utils,

which is a bit more than the impact of a switch from “none” to “constant faint hum”

regarding traffic noise. Other comparisons can be made regarding the impact of

tax increases, such as moving from a single family dwelling to a walkup, with a

change in utility of �1.6340, is equivalent to increasing taxes by about $200.

As indicated above, the estimated values were not statistically significant for the

three constants representing the differences in utility among the four pre-specified

descriptions considered in the fourth game of each interview. There are only three

such constants whose values are estimated because the fourth (arbitrarily selected a

priori to be the “money costs” theme) is set to zero. Estimating these sorts of

constants is a test of the ability of the full set of estimated parameters to explain the

attitudes to a collection of elements altogether. The implication of these values not

being statistically significant (that is, of the inability to reject the null hypothesis

that they are zero) is that there is no net significance to what is omitted when the rest

of the estimated parameters are used to explain attitudes to the collection of

elements considered, which adds further credence to the results obtained.

4.3 Relative Influence of Elements for All Households

Based on the presentation in Fig. 4, the set of parameter estimates obtained for the

full sample “loosely” suggests that housing type has the greatest influence on

residential attraction, followed by traffic noise, air quality and municipal taxes.

The nature of the road in front of the dwelling follows these. Then changes in auto

travel times to work of 20 min or so – similar to the existing average travel time to

work in Edmonton – and similar changes in walking times to school appear to be the

next most influential after that, followed by other aspects of the walking trip to

school and then by other components of the vehicle trips to work and to shopping.

These rankings of relative influence have an arbitrary component in that they are

based on assumed values for various changes, such as the 20 min change in auto

travel time used in the previous paragraph. The parameter estimations themselves

(as listed in Table 1 of the Appendix) provide much less arbitrary indications –

showing the rates at which various changes are valued and at which tradeoffs

between different combinations of elements are made. That is, rather than merely

indicate that air quality has more or less impact on residential attraction than does

auto travel time to work or municipal taxes, these results indicate that completely

avoiding bad air 1 day per month has the same impact as a decrease in auto travel

time to work of about 27 min per trip or a decrease in municipal taxes of about $63

per month. This is less arbitrary and more precise. Altogether, these parameter

estimates provide utility values for different housing alternatives that can be used to
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evaluate conditions more generally and also to forecast the actions of specific

people and households in the selection of home locations.

Even with the above, it is still useful in some considerations to have some

appreciation of the relative impact of each element independent of its specific

condition. An alternative indication of the relative strength of influence of each

element is available from the results via the t-ratio of the parameter estimate. The

t-ratio provides a rough indication of the relative strength of the influence of the

associated element on the utility for the alternative: if an element has a relatively

strong influence it will tend to increase the magnitude of the associated parameter

estimate relative to its standard error, making the t-ratio greater in absolute magni-

tude. Other factors also influence the t-ratio, which means that it is not an ideal

indication of the relative strength of an element – but there is an overall general

tendency for the t-ratio to be larger in absolute magnitude when the influence of the

element is greater.

In addition, the interviews also included a direct question asking which element

was most influential. Immediately after the ranking of hypothetical home locations,

each respondent was asked to indicate which of the elements was the most influen-

tial in the ranking process.

Figure 5 is a “tornado diagram” that displays the t-ratio and the relative

frequency of being indicated most influential side-by-side for each of the elements.

The order of presentation from top to bottom is based on the relative frequency of

being indicated most influential.

Generally, dwelling type, traffic noise, and municipal taxes or rent are the most

important elements considered, followed closely by air quality and then by a second

tier including walking time to school, auto ride time to work and the nature of the

street in front of the dwelling. This order is broadly consistent with the order based

on the interpretations of the estimation results as presented in Fig. 4 and discussed

above. However, there are some differences towards the bottom of the diagram.

Both of these measures become increasingly unreliable as relative importance

decreases, which means that what can be said about the order of relative importance

for the remaining elements below the nature of the street in front of dwelling is less

definite, apart from the indication that aspects of the trip to work (beyond auto time)

and the walking distance for transit to shopping are the most influential out of this

lower tier. Perhaps most notable is the relatively weak influence of vehicle ride

times to shopping.

4.4 Low Income Households

The estimation results for the sub-sample of 152 households with annual before-tax

incomes less than $20,000 are shown in Fig. 6 (using the same general arrangement

used in Fig. 4) and also listed in the second column of results in Table 1 of the

Appendix.
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The t-ratios are much smaller for these results than they are for the entire sample,

consistent with the much smaller size of this sub-sample and resulting increased

standard errors and associated reduced certainty in the parameter estimates.

The impact of auto travel time to work on the attractiveness of home locations is

lower for this sub-sample. The ratio of the parameter estimate for auto time over the

parameter estimate for auto cost for work is $0.1363 per minute, lower than the

corresponding value of $0.1732 per minute found for the full sample. Obtaining a

lower value for this sub-sample is consistent with the standard economic principle
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transit ride time work

transit walk dist shop

transit fare work

transit walk dist work

auto cost shop

transit fare shop

road crossing local school

auto ride time shop

transit ride time shop

% indicating
most influential

absolute t-ratio
for estimate

Fig. 5 Tornado diagram comparing t-ratio and percent most influential indications. The bars on
either side of the centre line for each element show (on the left) the percent of interviews where the
element was indicated to be the most influential in evaluating alternatives and (on the right) the
absolute value of the t-ratio for the related parameter estimate for the element. Dwelling type,

traffic noise, and municipal taxes or rent had the greatest influences, followed closely by air quality

and then by a second tier including walking time to school, auto ride time to work and the nature of

the street in front of the dwelling. Generally, travel conditions for transit and for trips to shopping

had comparatively less impact on the attractiveness of home locations
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that households with lower incomes tend to have lower values of time, all other

things being equal, adding yet further credence to the range of results obtained here.

The impacts of the money costs of travelling to work and to shopping by transit

on residential attraction are much greater for this sub-sample, as is the impact of

municipal taxes or rent. This suggests that the typical lower income household

tends to be much more sensitive to increases in money costs than does the typical

“all-incomes” household, which is to be expected.

The impacts of changes to various housing types other than “single family” are

reduced for this sub-sample and all roughly the same across the different types

considered. For example, a change from “single family” to “walkup” acts to reduce

residential attractiveness about as much as does an increase in transit cost to work of

about $2.00 per trip. The differences in the parameter estimates among the dwelling

types other than single family must be viewed cautiously, however, because the

standard errors are much larger, indicating that the differences are fairly imprecise

values.

The impacts of changes in air quality and traffic noise for this sub-sample are

very broadly similar to what they are for the full sample. The nature of the street in

front of the dwelling has somewhat less impact and the conditions for the walk to
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Fig. 6 Estimation results for sub-sample of low income households (152 households). The

impacts of money amounts are all much greater than they are for all households, consistent with

expectations. There is little difference among the impacts of dwelling types other than single

family and road types other than local. The small sample size has likely influenced the results to

some extent, with greater standard errors obtained throughout
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the local elementary school appear to have slightly greater impacts. The results

concerning the impact of the need to cross only local roads is somewhat surprising:

the positive estimate for “only local roads” implies that the need to cross some local

roads is preferable to the ability to avoid all road crossings on the way to school. It

is possible that this reflects concern about the personal security of children along

more hidden paths behind houses rather than on the sidewalks of local streets, but it

may also reflect a lack of knowledge generally within this sub-group of neighbour-

hood configurations that allow children to walk to school without crossing any

roads. Again, because the standard errors are relatively larger, the values of the

parameter estimates must be viewed with more caution.

4.5 High Income Households

The estimation results for the sub-sample of 113 households with annual before-tax

incomes more than $100,000 are shown in Fig. 7 and also listed in the third column

of results in Table 1 of the Appendix.

Again, the t-ratios for these results are much smaller than they are for the entire

sample, consistent with the much smaller size of this sub-sample.

The sensitivity to auto travel time to work is greater for this sub-sample than it

is for the full sample. The ratio of the parameter estimate for auto time over the

parameter estimate for auto cost is $0.2092 per minute, higher than the corresponding

value for the full sample, again consistent with the economic principle that those with

higher incomes tend to have higher values of time.

The impact of municipal taxes or rent on the attractiveness of home locations is

lower for this sub-sample than it is for the full sample, consistent with expectations.

The impact of the cost of travelling to work by transit is about the same for this

sub-sample as it is for those in households with incomes less than $20,000 per year

considered immediately above. This is somewhat surprising: it was expected that

transit travel costs to work would have much less of an impact for this sub-sample.

The results concerning the cost of travelling to shopping by transit are also

surprising: a positive parameter estimate was obtained for this sub-sample, indicat-

ing that the typical respondent in this group would prefer to pay more, not less, for

transit to shopping. This is surprising, but it is consistent with the results obtained in

the above-mentioned study done in Calgary (Hunt 1994) which also obtained a

positive coefficient estimate for transit cost to work for the highest income group. It

is hypothesized that these results do not arise because these households want to pay

more themselves and thus find locations with greater transit costs more appealing;

rather they arise because these households want to pay less in taxes. It is expected

that these households tend not to use transit themselves, so they are not concerned

about higher fares per se, but they are worried about the potential tax implications

of higher transit deficits, which leads a significant number of the people in these

households to feel that transit fares – non-work ones in particular – should be

increased in order to reduce transit deficits. It bears noting that this hypothesis is
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highly speculative, and not based on information beyond that presented in the

estimation results.

The impacts of changes to various dwelling types other than “single family” for

this sub-sample are more pronounced than they are for the full sample, but they

follow the same general pattern in that those types associated with higher densities

have a comparatively greater impact. The effect on attractiveness of a change from

“single family” to “highrise” is an exception: it is lower than the impact of a change

from “single family” to “medium density” for this sub-sample whereas it is higher

for the full sample. It may be that a significant proportion of those Edmontonians in
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Fig. 7 Estimation results for sub-sample of high income households (113 households). The

impacts of money amounts are all lower than they are for the full sample. The impacts of dwelling

type, air quality, traffic noise and conditions for the walk to the local elementary school are all

greater. The implied values of travel time (to work at least) are greater, consistent with expecta-

tions. The impact of the money cost for transit to shopping is positive, suggesting that increasing

this fare will act to make housing locations more attractive. This unexpected result is perhaps

caused by concerns within this sub-sample about the tax implications of higher transit deficits.

Again, the small sample size has also likely influenced the results to some extent
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this group imagine luxury-style (perhaps even penthouse) accommodation when

considering the “highrise” housing type, which acts to reduce the overall negative

evaluation of this dwelling type for this group.

The impacts of poorer traffic noise conditions and of reductions in air quality are

generally greater for this sub-sample. This is consistent with the idea that those in

this group will be relatively more concerned about these aspects and correspond-

ingly less concerned about money costs overall. Still, the t-ratios for these parame-

ter estimates are not as high as they are for the full sample, indicating that somewhat

less confidence should be placed in the values found for these parameters.

4.6 Households with Children Under 18-Years Old

The estimation results for the sub-sample of 450 households with at least one

member under 18-years old are shown in Fig. 8 and also listed in the fourth column

of results in Table 1 of the Appendix.

The parameter estimates indicate that the attitudes and sensitivities for this sub-

sample are fairly similar to those for the full sample.

One difference between this sub-sample and the full sample concerns the

impacts of changes in dwelling type from “single family”: types associated with

higher residential densities have greater negative impacts for this sub-sample than

they do for the full sample. The negative impact of a change from single family

dwellings to highrises is particularly dramatic for this sub-sample, which is consis-

tent with expectations for households with children.

Another difference concerns speed bumps and chicanes on the road in front of

the dwelling. The parameter estimates for both are very near zero and highly

insignificant in this case; whereas they are both negative and significant for the

full sample. This suggests that there is some greater level of approval for these

treatments in this sub-sample than is the case with the full sample – where those in

households with children tend to see these treatments in a somewhat more positive

light than do others – such that the net impact of these treatments on residential

attractiveness is neutral rather than negative for the sub-sample.

4.7 Other Sub-samples of Households

The estimation results for various other sub-samples of households are shown in

Tables 2–4 of the Appendix, as follows:

l In Table 2:

– Retired households, with all members over 65 years of age and not working

(140 households)
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– Unemployed households, with all members not working (262 households)

– Employed households, with at least onemember working (1,015 households) and

– Households with no private vehicles (116 households)

l In Table 3:

– Households without children but not retired, with all members over 18-years old

and at least one member working (687 households)

– Households located in the downtown area (176 households)

– Households located in inner city areas (736 households) and

– Households located in suburban areas (625 households)

l In Table 4:

– Households where alternative with environment emphasis most preferred in

fourth game (453 households)
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Fig. 8 Estimation results for sub-sample of households with children (450 households). The

impacts of attributes are very similar to those for the full sample. The negative impacts of

switching to dwelling types other than single family are greater and the impacts of traffic calming

treatments are not as negative
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– Households where alternative with reduced money cost emphasis most preferred

in fourth game (433 households)

– Households where alternative with children emphasis most preferred in fourth

game (121 households) and

– Households where alternative with mobility emphasis most preferred in fourth

game (270 households)

The estimation results for these other sub-samples are largely consistent with

expectations.

For retired households and unemployed households the attributes related to

travel to work have comparatively little impact on residential attractiveness, partic-

ularly for the auto mode. For households with no private vehicles and for retired

households the attributes related to auto travel have relatively little impact – and the

corresponding parameter estimates are all insignificant.

The consistency with results for households located in the downtown area tend

to display attribute influences consistent with greater preferences and/or tolerances

for downtown conditions, such as dramatically reduced aversions to dwelling

types other than single family and much greater sensitivities to attributes of transit

travel. The same applies broadly for inner city and suburban households. It should

also be noted that there is some small amount of overlap between the definitions

of inner city and suburban areas, so that the sum of the total number of households

for the two corresponding sub-samples is greater than the number for the full

sample.

The results for the sub-samples based on the preferences for particular emphases

displayed in the fourth game are also consistent with the displayed preferences.

But there is an element of circularity in these definitions – where the displayed

preference that is the basis for the grouping into a particular sub-sample also

contributes to the estimation results – which does reduce to some extent the strength

of the indications provided in this regard, but only for these sub-samples.

Overall, the consistency with expectations displayed by these results is seen to

provide further credence to the full set of results obtained.

5 Conclusions

5.1 Validity of Results

This study has successfully obtained valid indications of the impacts on residential

attractiveness of a range of elements of urban form and transportation for various

categories of Edmonton residents. The methods applied in the study avoided a
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number of anticipated difficulties as intended. The results are consistent with

the findings of other work done in Edmonton and with standard economic princi-

ples. Furthermore, they match reasonable expectations. All this adds substantial

credence to the results.

The sample of respondents interviewed appears to be a reasonable representation

of the entire population of Edmontonians in spite of the biases inherent in its

selection. There is a fair match between sample and population for some known

characteristics and the attitudes of households are broadly consistent among most of

the different sub-samples considered. Certainly there are differences among differ-

ent sub-groups as indicated above – but the overall general pattern in the results

remains somewhat the same, which can be expected to reduce the impact of

differences between sample and population to some extent. Consequently, the

results for the full sample are considered to be reasonably accurate indications of

the attitudes for the typical Edmonton household, with the caveat that the sample is

not 100% representative and therefore provides indications that could be slightly

distorted. Certainly, it appears that the broad trends in the attitudes for the sample

can be attributed to the population with reasonable confidence.

It should also be noted, as an additional caveat with regard to representation, that

individuals were used to “speak” for households – to respond on behalf of their

households. The potential differences between individuals and households and the

associated issues regarding the representation of distributions for these two groups

were not explored in this work.

As a final general caveat, in all cases the impacts on attractiveness indicated by

the parameter estimates are for a “typical” individual as represented by the full

sample or sub-sample considered. The sensitivities of specific individuals (or

households) will most certainly differ from those determined for this typical

individual. In fact, for example, some households even prefer highrise housing to

single family housing. The values and tradeoff rates indicated here apply at the

overall average level and should in general only be applied in consideration of

broader tendencies for large numbers of Edmontonians.

5.2 Principal Findings

Out of the attributes of urban form and transportation considered, housing type,

traffic noise and municipal taxes or rent have the greatest impacts on residential

attractiveness for the typical household. The preferences for single family dwell-

ings and little traffic noise in particular are very strong and consistent across almost

all sub-groups. The typical household is willing to endure large increases in travel

times and costs to work and shopping in order to stay in a single family dwelling or

maintain low traffic noise, all other things being equal.
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The typical household is also very concerned about municipal taxes and rents.

The strength of this concern is broadly consistent across all groups considered.

There is a much greater sensitivity to money paid in taxes than there is to money

paid to travel to work or shopping.

Air quality is another attribute that has a relatively large impact on residential

attractiveness. The desire for very low frequencies of bad air quality (according

to government standards) is strong enough that the typical resident is willing to

trade off substantial increases in municipal taxes and large increases in travel times

to work in order to obtain these low frequencies of bad air quality, all other things

being equal. This is very consistent across all sub-groups considered.

Walking times to the local elementary school and auto travel times to work have

substantial impacts on the attractiveness of home locations. There is some variation

in the levels of impacts of travel times and in the corresponding values of time, but

overall the time spent travelling to school and work are some of the more influential

attributes out of those considered. For the typical resident a decrease in travel time

work of 1 min has the same impact on the utility of a residential location as a

decrease in municipal taxes of $2.35 per month, all other things being equal. This

provides a standard against which proposed transportation improvements could be

assessed.

The nature of the street in front of the dwelling also has some reasonable impact

on residential attractiveness for the typical resident. The desire for a local road

rather than a collector is reasonably strong and consistent across all the sub-groups

considered.

Auto travel times to work have more of an impact on household attractiveness

than auto costs or transit travel times and costs to work for the typical resident. The

sensitivities to auto travel times to work are roughly twice those to transit travel

times to work. This means that the typical resident would get about twice the

increase in residential utility with a reduction in auto travel times to work as he

or she would with an equivalent reduction in transit travel times to work, all other

things being equal. It also means that improvements to transit travel times to work

must be roughly twice those to auto travel times to work in order to have the same

impact on residential utility for the typical resident.

For the typical resident the money costs for travel to work or shopping have little

impact on residential attractiveness relative to the other attributes elements that

were considered.

As indicated above, the impacts of attributes on residential utility vary substan-

tially across the population. Different sub-samples of households displayed different

sensitivities, broadly consistent with expectations. The practical implication of this

variation is that considerations based on a single set of values for the entire

population are not going to respect this variation and thus are not going to be as

accurate as considerations with different sets of values for different sub-groups of

the population.
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5.3 Further Work

Much further work could be done following on from the work reported here. Some

of the possibilities considered most appropriate are outlined below.

The logit models and associated utility functions whose parameters have been

estimated for the different categories of households could be used as models of

residential location choice forming the basis of a residential allocation process in a

land use model. These models would still have to be calibrated, adjusting the

response characteristics and the aggregate shares to match known aggregate targets.

This is because it is inappropriate to assume that the stated preference behaviour

observed in this work provides valid indications of these aspects. But the trade-off

rates among a wide range of elements for a variety of household types established in

this work could be used directly.

The utility functions established in this work could also be used as the basis of

a framework for policy evaluation. Utility values calculated using these

functions could be used to evaluate the total change in satisfaction arising with

changes regarding any one or more, and even all, of the housing related attributes

considered – for the typical household or even for different types of households.

This change in satisfaction can be expressed in dollar equivalents, thereby

providing the essence of a cost-benefit analysis for policy evaluation. Such an

analysis would include representation of the impacts regarding all of the attributes

considered. For example, the impact on residential location utility of an increase in

traffic noise in a given neighbourhood arising with the development of a new major

road would be combined with the corresponding impact on utility arising with the

improved travel times to work for all households. Thus, one of the criticisms of

partial cost-benefit analysis is avoided in that these impacts are evaluated and

included – at rates based on the indicated preferences of the typical household.

Certainly, the changes in utility values for potential alternative plans would provide

decision-makers with important numerical information regarding these alternatives,

to be considered along with other information in deciding what to do for the future.

The sub-sample definitions based just on the socio-economic characteristics of

the household members are most directly applicable in any further modelling or

analysis work. Those sub-sample definitions based on the decisions of households,

particularly those regarding location decisions, require the “answer” of the modelling

process to be known before the appropriate model for the appropriate sub-group can

be identified, which introduces a circularity that is avoided when definitions based

just on the socio-economic characteristics of the household members are used.

The survey instrument and analysis used here could be similarly applied else-

where, perhaps with modifications respecting differences in language and culture

as appropriate. This would allow the development of a broader understanding of

the sensitivities to attributes of urban form and transportation considered in this
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work – regarding how they vary in other settings and even across cultures, and

thus the extent of any transferability in the associated parameter values. The use of

a common survey instrument and treatment would help remove differences in

results related to differences in conditions, and allow a more thorough consideration

of the sensitivities themselves. The extent to which the within setting variations

(among sub-groups) are greater than the between setting variations could also

be considered – possibly helping develop a more complete understanding of the

role of supply conditions and of sensitivities and attitudes in the development of

urban areas.

The influences of other attributes could also be considered using the process

used in this work. The set of attributes considered here is by no means exhaustive.

A more complete understanding of the sensitivities of the typical household to a

wider range of attributes would further inform both modelling and planning in

various areas. For example, the impacts of road surface conditions, frequency of

traffic lights along roadways, and safety at LRT stations, as examples within the

transportation area, and of different forms of service charges and access to hospi-

tals, libraries and social service programs, as examples within a larger context,

could also be examined. Sensitivity to changes in the contribution to aggregate

greenhouse gases consistent with the Kyoto Protocol could also be considered.

This would provide indications of the tradeoff rates among such attributes If some

of the attributes considered in this work are also considered in any such additional

work, then a set of consistent tradeoff rates concerning the combined group of

attributes can be developed. This would allow the combined impacts of any one or

more, and even all, of the combined groups of attributes to be determined and

compared on a consistent basis as described immediately above. Ultimately, this

could lead to much more complete and consistent both modelling of behaviour

regarding residential location and numerical-based consideration of the preferences

of the population and of the quality of life being provided in the planning work

that is done.
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DRAM Residential Location and Land Use

Model: 40 Years of Development and Application

Stephen H. Putman

Abstract The DRAM residential model was one of the earliest to be developed and

applied, with work beginning in 1971 and with applications in planning agencies

continuing to this day. It was developed with the expectation that it would be

applied together with an employment model (EMPAL), and with both being linked

to a suite of transportation models. This chapter describes the development path of

DRAM as well as those of related issues of model calibration and links to other

models. The author concludes with the argument that while continued theory

development is essential for models such as these, their use as forecasting and

policy analysis tools depends as much upon ease of implementation for agency

users as it does on any improvement in model formulation.

1 Introduction

In the U.S. the DRAM and EMPAL models of household and employment location

and land use, including their successor GIS based model systems METROPILUS

and TELUM, are the most widely applied models of these phenomena ever to be

developed. They have seen use for public agency forecasting and policy analysis

purposes in nearly 30 different metropolitan regions, including eight out of the

country’s ten largest cities. The development of these models began in the 1970s

and continues to the present, via continued interplay between theory and practice. It

would be silly to claim that these were perfect models. They do produce reliable

estimates of long term regional patterns and have the ability to give sensible

responses to many, though obviously not all, policy inputs. Of course other models

have been developed and applied, some of them, too, began as long ago as the

1970s. In addition, it is inevitable that other operational models will be developed in

S.H. Putman
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years to come. Some of these alternative approaches, both developed, and now

being developed, are also presented in this book. DRAM and EMPAL, versions of

which are still in active agency use more than three decades after their initial

development, helped open the way.

In the following pages I provide a description of DRAM and the procedures for

estimation of its parameters. The discussion begins with a description of its

derivation from the principles of household location surplus maximization. The

use of location surplus as an output indicator of policy effects is also described. This

is followed by a discussion of the LANCON submodel’s procedures for calculating

land consumption by locators.

Following this is a description of CALIB, a constrained gradient search proce-

dure, which is used to estimate the equation coefficients in both DRAM and

EMPAL. This procedure calculates maximum likelihood estimates of the equation

coefficients, goodness-of-fit statistics, asymptotic t-tests of the coefficients’ statis-

tical significance, and point elasticities which provide sensitivity information.

This is followed by a section on the several types of constraint procedures which

are incorporated in the model structures, and then by a discussion of inter-model

linkages as well as linkages to transportation models. Finally I give some conclud-

ing thoughts on the underutilization of these models in agency practice, and a new

model system I have developed to address that issue.

2 The Residential Location Model: DRAM

I first began work on these models about 40 years ago. After experimenting with

several functional forms, a spatial interaction structure (SI) was selected. This form

was just emerging at that time as a mathematically consistent structure derived from

entropy maximizing principles. In adapting the model for actual application I added

the notion of a multivariate attractiveness function and a multiparametric travel

cost deterrence function. This idea fell beyond the then current thinking about

SI models, and required the development of new methods of model calibration.

The SI approach did, at that time, provide a nicely structured view of location

models, but it lacked an appropriate grounding in economic theories of activity

location. Further, the use of the multivariate attractiveness term was clearly neces-

sary for satisfactory model application, yet did not seem to have a satisfactory basis

in the model derivations. It was not until several years later that a satisfactory

theoretical underpinning was developed.

It is difficult to sort out which came first, as at that time there was a great flurry of

work, and many informal paper drafts were in circulation. An important paper was

published by Cochrane (1975), in which a “location surplus” notion was developed.

The derivation begins with the assertion that the trips which provide the trip-maker

with the greatest net benefit are the trips that are chosen. The observed trip

distribution pattern is thus indicative of the overall probability of trips being chosen

on that basis. The approach taken to the subsequent derivation of a singly

62 S.H. Putman



constrained SI model involves assuming that the probability of a particular trip-

maker taking a trip from zone A to some other zone B, is the probability that a trip

to zone B offers a surplus, or net benefit, greater than that which could be had from a

trip to any other zone. It is then hypothesized that the probability that a trip to

zone B for any individual trip-maker is the optimal trip (i.e., the trip which will

actually be taken) increases with the number of opportunities for trip satisfaction in

zone B, and decreases with trip cost between zones A and B, since the net benefit is

reduced by greater trip cost.

In proceeding through the derivation of the functional form of the model it is

assumed that the number of zones is large, say 100 or more. It is assumed that the

underlying probability distribution is approximately exponential in the upper tail.

It is shown that it is not necessary to know the actual number of trip possibilities

represented by any trip attracting activity, but rather it is only necessary to assume

that the number of trip possibilities is proportional to some measure of attraction.

The surplus then becomes the difference between the probabilistic utility u,

which is the gross benefit of taking the trip, and a deterministic cost cij of actually
taking the trip. Thus the net benefit, or surplus, from taking the trip is sij ¼ uij � cij ,

and the probability that the surplus will be of some particular value s, given all the

preceding assumptions, is

Fij ðsÞ ¼ exp½�hAj e
�lðs�mþcijÞ� (1)

where Fij(s) is the cumulative distribution function of the “location surplus”

accruing from the optimal trip between zone i and zone j;

h,l,m ¼ constants;

Aj ¼ a measure of the attractiveness of zone j.

With this, we maintain the assumption that the trip chosen by a trip-maker will

be the trip that maximizes his/her personal surplus. The probability that the trip

chosen will be a trip from origin i to a particular zone j is the probability that the

maximum surplus offered by a trip terminating is j is greater than the maximum

surplus offered by a trip terminating in any other zone.

Continuing through the derivation, Cochrane winds up, given Oi trips originating

from zone i, with the expected number of trips from zone i to zone j being given by

Tij ¼ Oi Aj e
�l cijP

j
Aj e�l cij

(2)

which is the usual equation of the singly constrained SI model. Further, the total

surplus for all trips actually made is

ST ¼ 1

l

X
i

Oi ½0:577þ lnðh elm
X
j

Aj e
�l cijÞ� (3)
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Thus beginning with rather innocuous assumptions regarding a utility maximizing

basis for trip-making behaviour a robust economic underpinning can be developed

for a SI model formulation. The relationship of this derivation, which is also called

group-surplus maximization, to a derivation from random utility theory and proba-

bilistic choice models is described in (Wilson et al. 1981).

The actual formulation of DRAM differs from (2) in that the attractiveness

variable Aj is replaced by a multivariate formulation with a Cobb–Douglas func-

tional form, i.e., a product form with each term being an independent variable raised

to a parameter power, as in,

Aj ¼ Xa
1j X

b
2j X

g
3j X

d
4j (4)

where the X1j, X2j, X3j, X4j are attributes of zone j such as available land, household

income, etc., and where a, b, g, and d are empirically estimated parameters.

Thus, in application DRAM is an aggregate form of a multinomial logit model of

location choice. In computational form this yields the functional equivalent of a

modified singly-constrained spatial interaction model. There are two modifications

(1) a multivariate, multiparametric attractiveness function is used, (2) a consistent

balanced constraint procedure is included in the model, allowing zone and/or

locator specific constraints. The model is normally used for up to eight household

categories, defined in terms of income, whose parameters are individually estimated

(Putman 1983). The equation structure currently in use also makes provision for a

lag term which adds stability to the model. This structure is given here:

Nn
i ¼ �n

X
j

Qn
j B

n
j W

n
i c

an
i;j expðbnci;jÞ þ ð1:0� �nÞNT

i;t�1 (5)

where

Qn
j ¼

X
k

ak;nE
k
j (6)

and

Bn
j ¼

X
i

Wn
i c

an
i;j expðbnci;jÞ

" #�1

(7)

and

Wn
i ¼ Lvi

� �qn
xið Þrn Lri

� �sn Y
n0

1þ Nn0
iP

n
Nn
i

0@ 1Abn
n0

(8)
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where

Ek
j ¼ employment of type k (place of work) in zone j

Nn
i ¼ households of type n residing in zone i

NT
i;t�1¼ total households residing in zone i at time t � 1

Lv
i ¼ vacant developable land in zone i

xi ¼ 1.0 plus the percentage of developable land already developed in zone i

Lr
i ¼ residential land in zone i

ak;n ¼ regional coefficient of type n households per type k employee

ci;j ¼ impedance (travel time or cost) between zones i and j

�n; an; bn; qn; rn; sn; bnn0¼ empirically derived parameters

DRAM is also capable of including additional attractiveness variables in the

spatial potential term, (8), of the model. There has been rather little use of this

option in practice, as the inclusion of such variables does require the subsequent
development of a means for their updating in forecast runs of the model. We have,

for example, explored the merits of including residential land value as an additional

attractiveness variable. We found, using rather reliable data, that the inclusion of

land value in addition to household incomes made rather little contribution to the

model’s overall reliability, and brought with it the not insignificant prospect of

having to develop an extension of the model to update the land value variable as a

part of the long term forecasting procedure. In every case, when considering the

addition of variables to this sort of model, one must weigh the possible improve-

ments in model performance to be had from such additions against the cost of

updating those new variables over a 30 year forecast horizon.

3 Location Surplus as an Output Measure from DRAM

Location surplus is a measure of the aggregate benefit households receive from the

attributes of their chosen residential zone. Because household utility can only be

measured on an ordinal scale (i.e., it is not possible to determine the monetary value

of utility), the location surplus measures are interpreted as index numbers. The

larger the value of location surplus, the more utility households receive from their

choices of residential location.

The location surplus measures used in DRAM can be derived by using either of

two different methods. Both methods produce the same location surplus measures

and are based on the assumption that households attempt to maximize utility when

choosing residential locations. For the first method, the DRAMmodel is interpreted

as a multinomial logit model and the location surplus measure is found by calculat-

ing aggregate indirect utility (McFadden 1974; Ben-Akiva and Lerman 1985;

Freeman 1993). In the second approach, the location surplus measure is found by

directly integrating the DRAM travel demand function (Neuburger 1971; Cochrane

1975; Williams 1976).
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Consider first the calculation of location surplus from indirect utility. In DRAM

residential attractiveness is defined in (8). From this, indirect household utility is

defined as:

Vn
ij ¼ ln cij

� �an
exp bncij

� �
Wn

j

h i
(9)

where

Vn
ij ¼ the indirect utility of a type n household that resides in zone i with a head-

of-household employed in zone j,

cij ¼ the travel time between zone i and zone j, and

an , bn ¼ empirically derived parameters.

This definition of indirect utility is for a single household. To find aggregate

location surplus, it is necessary to sum the values of indirect utility for all type n

households.

LSn ¼
X
j

X
k

aknE
k
j

� �
ln

X
i

cij
� �an

exp bncij
� �

Wn
i

" #
(10)

where

LSn ¼ the location surplus for type n households,

akn ¼ regional coefficient of type n households per type k employee

Ek
j ¼ employment of type k (place-of-work) in zone j.

4 Procedures for Calculation of Land Consumption: LANCON

In the combined model EMPAL and DRAM structure the use of land by locating

activities is calculated after completing the calculation of total location demand.

EMPAL calculates location demanded by employers, followed by DRAM’s calcu-

lation of location demanded by households. LANCON takes both these calculated

demands and estimates the actual change in the amount of land, by zone, that will be

used by each of the demand categories. If there has been a decrease in demand by a

particular demand category, then land currently in use by that category is released

into a “pool” of land available for any use. If there has been an increase in demand by

a particular demand category, then the addition of land to use by that category is

calculated. After the calculations are done for each demand category, the sum of land

used is adjusted, by an increase in densities, tomatch the land available for such uses.

The land used by each demand category is estimated in terms of the rate of land

use by a locator in that specific demand category. The calculation, for example, of

the rate of residential land use by new household locators in a specific zone is given

by the following equation:

Lr
i

NT
i

¼ k0
Ld
i

Ld
i þ Lv

i

� �k1
LB
i

Li

� �k2 LC
i

Li

� �k3
N1

i

NT
i

� �k4
N4

i

NT
i

� �k5

Ld
i þ Lv

i

� �k6
(11)
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where

Ld
i ¼ total developed land area of zone i;

Lv
i ¼ vacant developable land in zone i;

LB
i ¼ “Basic” employment land in zone i;

LC
i ¼ “Commercial” employment land in zone i;

N1
i ¼ Number of low income households in zone i;

N4
i ¼ Number of high income households in zone i;

k0, k1, k2, k3, k4, k5 ¼ empirically derived parameters.

5 Model Calibration

The calibration process involves “fitting” the equations of DRAM to the data which

describe a particular region. When I first began to experiment with formulations of

these models, I was unaware of the work done by others to calibrate spatial

interaction models. Their efforts were devoted exclusively to making use of trip

matrices (origin–destination trip data) for calibration of single parameter (usually

the b in a travel function) spatial interaction model formulations. I assumed from

the outset, that it would be necessary to have parameters not only in the travel

function part of the model, but along with the attractiveness variables as well.

Further, given the near complete unavailability of trip matrices for the cities in

which I expected to do my initial model calibrations, it never would have occurred

to me do use the procedures then in use by the spatial interaction modelers. Instead,

I developed what we now call trip-end calibration as compared to the trip matrix

based trip-interchange calibration. Beginning in about 1973 I became the scourge of

various professional conferences as I pressed my colleagues to send me copies of

their urban area data. Over the next 10 years I fit (statistically) the models to

perhaps 40 urban areas while learning how best to do it (Putman 1977, 1980;

Putman and Ducca 1978a, b). Somewhat later we were able to demonstrate that,

for any specific region’s dataset, the mean expected values of the parameters were

identical for both trip-end and trip-interchange calibrations, though the variance, as

would be expected, was somewhat higher for the trip-end procedure due to its

having less information input (Putman and Kim 1984a, b).

To perform calibrations it is necessary to have one or more indicators of

Goodness-of-Fit of the models to the data. The equation structure of DRAM is

intrinsically nonlinear, and the data from which its parameters must be estimated

are not normally distributed. Because of these factors it is not possible to use

conventional regression techniques to calibrate DRAM. The procedure used for

the estimation of parameters is gradient search. In effect, the partial derivatives of a

goodness-of-fit criterion with respect to each specific parameter are calculated. The

values of these derivatives determine the direction of parameter search (Putman

1983). The appropriate goodness-of-fit measure for calibration of DRAM is the
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likelihood function, a measure derived from the notion of maximum likelihood as

developed in econometrics. This measure has the general form:

L ¼
X
i

Ni ln bNi (12)

where L is the computed likelihood measure, N i is the observed value, and N̂i is the
estimated value of the dependent variable. In DRAM the dependent variable would

be households of a particular type located in a particular zone. It is important to note

that in this equation form, the magnitude of L will be conditional on the magnitudes

of the data being used. In a region with millions of households L will be larger than

it will be in a region with hundreds of thousands of households. This means,

unfortunately, that it is not possible to compare the results of analyses of different

data sets, and thus not possible to evaluate the adequacy of one statistical analysis

versus another.

The “Best Fit” is when the difference between the models’ estimate of the

dependent variable and the observed values in the calibration data set is as small

as possible. A perfect fit would be obtained if, for each independent variable

observation, i.e., locator type and zone, the estimated and the observed Ni were

equal. This would give the following “Best Fit” value of likelihood:

Lb ¼
X
i

Ni ln Ni (13)

The “Worst Fit” would be when all values of the dependent variable are

estimated by the mean of that variable. Thus, for example, if the region’s total of

Type 1 households were to be divided by the number of zones to get the mean of

Type 1 households per zone, and all zones were assigned an amount of Type 1

households equal to the mean. This is also known as the uniform distribution

assumption, where the estimated N̂i ¼ the Zonal Mean �N, and gives the following

“Worst Fit” value of likelihood:

Lw ¼
X
i

Ni ln �N (14)

From these two extreme values of likelihood we can, for a particular dataset,

construct a relative measure of goodness-of-fit which is analogous to the more

traditional R2 measure, but which is appropriate to the nonlinear equations of

DRAM and EMPAL, and to the non-normal distributions of the data. This measure

of “Relative” goodness-of-fit is called a likelihood ratio, and takes the following

equation form

f ¼ L� Lw

Lb � Lw

(15)
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The computed value of this Likelihood Ratio,f, has a range such that for a perfect
fit, f ¼ 1.00, and for the worst fit, f ¼ 0.00. Typical results obtained when fitting

DRAM and EMPAL give f ¼ 0.80–0.95. The values taken byf are independent of

the magnitude of the dependent variables and thus it is possible to compare the

calibration results of one locator type to another, or from one region to another.

6 Asymptotic t-Statistics in DRAM Calibrations

In the estimation of nonlinear model parameters it is necessary to develop ways of

assessing their statistical significance. The maximum likelihood estimator, when

correctly calculated, is asymptotically normally distributed with its mean equal

to the true parameter value, and with a covariance matrix which can be calculated

by use of second order partial derivatives. These derivatives are calculated as part

of the parameter estimation procedure, and allow the computation of asymptotic

t-statistics which yield an indication of the statistical significance of the individual

parameters in the models’ equation structures.

7 Location Elasticities for DRAM and EMPAL

Location elasticities measure the sensitivity of household location to changes in the

models’ attractiveness variables. All of the location elasticities are defined for a

single residential zone. For a 1% increase in an attractiveness variable in a specific

zone, the location elasticity measures the resulting percentage change in the number

of households in that zone. For example, suppose that for low-income households in

zone 12 the DRAM location elasticity for residential land is equal to 0.2500. This

means that a 1% increase in residential land in zone 12 will result in 0.25% increase

in the numbers of low-income households in that zone.

The location elasticities are static measures of model sensitivity. This means that

when a location elasticity is calculated for a specific attractiveness variable in a

specific zone it is assumed that the values of all other attractiveness variables

remain fixed. In the example above, the only variable that is allowed to change is

the quantity of residential land in zone 12. All of the other attractiveness variables

in zone 12 are assumed to be fixed, as are the attractiveness variables (including

residential land) in all zones other than zone 12. Because they are static measures of

model sensitivity, the location elasticities will change as the values of the DRAM

attractiveness variables change (e.g., the location elasticities for forecast years will

be different from the location elasticities for the base year).

The value of the location elasticity for a specific attractiveness variable and zone

is a function of (1) the value of the calibrated parameter for the attractiveness

variable, (2) the numbers of households or employees in the zone, (3) the magnitude

of the attractiveness variable, and (4) the relative attractiveness of other zones in
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the region. Location elasticities will be larger when the calibrated parameter for

the attractiveness variable is large (in absolute value), the number of households

or employees is small (relative to other zones in the region), or the value of the

attractiveness variable is small (relative to other zones in the region). For more a

more detailed description of the derivation of location elasticities for residential

location models see (Anas 1982) and (Anas and Chu 1984).

Except for travel time, all of the DRAM location elasticities have the same

mathematical function definition. For the percentage of developable land developed

and the household percentage variables, the location elasticities are defined for

changes in one plus the value of the variable. (For example, if the percentage of

developable land developed equals 66%, the DRAM attractiveness variable is equal

to 1.66. A 1% increase in this variable is equal to 0.0166.)

Location elasticity for any attractiveness variable (shown for residential land) is:

enLr
i
¼ @ Nn

i

@ Lr
i

Lr
i

Nn
i

¼
X
j

ð
X
k

ak;n E
k
j Þ

sn

Nn
i

� �
ð pni;j ð1� pni;j ÞÞ

" #
(16)

where

enLr
i
¼ elasticity of type n households to changes in residential land in zone i,

ak;n ¼ a matrix of conversion coefficients of type n households per type k

employees,

Ek
j ¼ employment of type k (place-of-work) in zone j,

sn ¼ the calibrated DRAM parameter for residential land,

Lr
i ¼ residential land in zone i,

pni;j ¼ the probability of a type n household, with an employed head-of-house-

hold in zone j, residing in zone i, and

Nn
i ¼ households of type n residing in zone i.

For DRAM, the location elasticities for travel time are defined for a 1% increase

in the travel time for trips from all employment zones to the specified residential

zone. The equation for the location elasticity for travel time is as follows:

encj: ¼
@ Nn

i

@ cj:

cj:

Nn
i

¼
X
j

ð
X
k

ak;n E
k
j Þ

an

cij

� �
þ bn

� �
ðpni;j ð1� pn

i;jÞÞ
cij

Nn
i

� �" #
(17)

where

encj: ¼ elasticity of type n households to changes in travel times from all

employment zones to residential zone i,

cij ¼ travel time between zones i and j, and

an , bn ¼ the calibrated DRAM parameters for travel time.

The purpose of all this is to provide a means for assessing, without the need for

innumerable model runs, the relative sensitivities of locators to the different

independent variables in the model structure. This knowledge, in turn, provides a
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means for assessing the likely degree of impact of specific policy proposals on

individual locator–zone combinations.

8 The Consistent Imposition of Constraints on Location

Once having calibrated DRAM and done preliminary tests of its forecasts, it is

usually necessary to add additional user knowledge to the model structure. One way

in which this may be done is by the imposition of constraints on location. It is of

prime importance that when constraints are imposed on particular locators in

particular zones, that this does not have the effect of swamping, or overwhelming,

the forecasts of location by that locator type in other zones of the region being

modeled. In DRAM this precaution is taken by use of a model which is a computa-

tional hybrid of “singly constrained” zones which are not constrained, and “doubly

constrained” zones which are constrained. By this means various “out of the

ordinary” locations can be represented, e.g., prohibiting residential location at or

too near an airport, preventing decline of a locator type as a means for representa-

tion of policy incentives which it may otherwise not be possible to represent within

the model structure, or forcing forecast numbers of residents on military bases to

remain at exogenously specified levels. Judiciously applied, constraints inform the

model structures of “anomalies” in reality.

Four types of constraint may be applied to DRAM forecast outputs. The first

type of constraint, Type I, is an absolute constraint on the number of households of

a specified type in a specified zone. The second type of constraint, Type II, is an

absolute constraint on the total households of all types in a specified zone. When a

Type II constraint is imposed on a zone, the procedure scales the unconstrained

households of each type in the zone to sum to the constraint total. If one of the

household types in the zone has already been constrained to a particular value, the

program attempts to maintain that value while scaling the remaining household

types in the zone. The third type of constraint, Type III, is a maximum value for a

particular household type in a specific zone, and only operates when the forecast

of that household type in that zone exceeds the maximum. The fourth type of

constraint, Type IV, is a minimum value for a particular household type in a

specific zone, and only operates when the forecast of that household type in that

zone is less than the minimum. Again, the program tries to avoid violating

previously specified constraints. If, for example Type 1 households have been

scaled with a Type I constraint in zone 14, and then are scaled as a part of a Type II

constraint in zone 39, the imposition of a Type III constraint on Type 1 households

in zone 73 could cause some interactions when the regional control totals were

being enforced. The program constraint procedures attempt to maintain consis-

tency throughout the various possible interactions which can arise with different

combinations of constraints. Note that is possible to impose both maximum and

minimum constraints on a particular locator type in a particular zone thus, in

effect, providing the ability to constrain the location of that activity to fall within a
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predefined range. Finally, we may also impose constraints in terms of densities, by

first calculating the number of households that would result in a particular density

in a zone, and then applying a constraint on the zones households to limit them to

the previously calculated value.

9 Linked Transportation and Land Use Model Runs

In most cases DRAM is run in conjunction with other models. That is, it is linked

“behind” EMPAL, which produces forecasts of employment location, for all
employment types, which are then used by DRAM as an input to its forecasts of

household location. An important facet of the linkage between these models is the

employment-to-household conversion process which provides a direct means for

exogenously forecast changes in regional employment mix to produce a change in

the region’s income distribution. There are other socioeconomic links as well, involv-

ing regional unemployment rates, household size, and employees-per-household,

which provide a means for incorporating some of these important phenomena as

integral and consistent components of the forecasting process.

In addition to the linkage between EMPAL and DRAM, they are typically both

used together as components of an integrated transportation and land use model

system. In the initial development of these models a prototype set of transportation

modeling procedures were developed for system testing purposes. In agency appli-

cation other procedures for travel demand, mode split, and trip assignment are

regularly used. These are typically one or another of the proprietary software

packages. Various applications have combined agency developed models of travel

demand and mode split, with such commercial software packages for trip assign-

ment. While some additional work was necessary to produce seamless links from

EMPAL and DRAM with these packages, my practical experience is that whenever

the agency actually does wish to see the connections made, they are a relatively

straight forward matter. A convex combinations procedure is added to solve the

combined systems for an equilibrium solution (Putman 1991). This is an equilib-

rium between transportation and land use, involving both employment and resi-

dence location and land use, with travel demands (as well as mode split where the

agency has the capability) and trip volumes on transportation network links, and

subsequent loaded, or congested, transportation network characteristics. The proce-

dure is straightforward and usually requires only a few iterations to converge. In

practice, some agencies have found that a partial equilibrium between transporta-

tion and land use will suffice to improve forecasting reliability. The partial equilib-

rium is measured in terms of mean absolute percentage change in activity locations

or network travel characteristics from one system iteration to the next. These days

computation time is often of no importance in either case, but still, it has been

possible to achieve quite good results with, say three iterations rather than the four

or five that might be run to reach equilibrium. It is worth noting for the record that

research by Shen (1995) has proven the existence and uniqueness of the solutions
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obtained (a reassuring result, even though in practice it had previously been

demonstrated that the solutions were computationally stable and unique).

10 Concluding Thoughts

The development of DRAM, and its companion models was originally undertaken

with the intention of bringing the best practical technology into regular agency use.

It has taken a great deal longer than I expected for this to happen. Today, even

though there have been a substantial number of agency users, and even though more

seem to become interested with each passing year, the use of statistically valid

models for producing the land use inputs to travel modeling still is not regular

practice amongst Metropolitan Planning Organizations (MPOs) in the U.S. In part

this is a political matter. Land developers are often closely connected to politicians.

Thus, while transportation modeling is used by virtually all MPOs, the statistically

valid modeling of land use, even though required as input to the transportation

models, is often pushed aside by political considerations. This, however, is not the

sole reason for the underutilization of these methods. Other reasons derive from

both theory and practice.

First, no matter how good or bad the theoretical underpinnings, what is important

in practice is whether a model system is implementable and understandable. It helps

if the underlying theory, albeit often incomplete, is comprehensible to the users.

Often, however, model users in operating agencies are rather less concerned with the

model’s theoretical basis than they are with whether or not it can readily be

calibrated and its outputs adjusted where necessary to meet agencies’ political

constraints. Only after a substantial user community evolves, do the model devel-

opers find it possible to address questions of model improvement. Even then, the

disparities between different agencies’ priorities for model developments and

improvements can sometimes be insurmountable with limited budgets. The size of

the user community in transportation modeling is probably two orders of magnitude

greater than the size of the land use modeling user community. This makes a big

difference in what can and should be done, and the ways in which it may happen.

Second, one of the apparent determinants of the success of a model application is

the extent to which the work is being done by agency staff or by consultants. Rarely

do agency staff have the training necessary to do this work, yet if agency staff are

not intimately involved, there will be issues of credibility of the results within the

agency. At the same time, agency staff who may be inexperienced in the use of

these sorts of models have a difficult adjustment to make between spreadsheet

programs and complex models of socioeconomic phenomena. The fact that it is not

possible to, in effect, simply press a button and get a valid result means that new

users will always have an initial period of frustration. Some simply quit at that

point, with projects going unfinished and the blame being placed on the difficulty of

use and/or inadequate reliability of results. Not too many years ago I was involved

in a project for a city in Florida. The entire effort was plagued by serious data
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availability and reliability issues. It seemed that after considerable struggling, both

the agency staff and their politically motivated external advisory committee had

understood the data issues and the effects on forecasting and policy analysis which

data problems might be expected to have. Then, at the very first public presentation

which I saw of the modeling project results, the opening speaker (an agency staff

member worried about intra-agency political conflicts) walked to the podium and

began his presentation with the sentence: “It doesn’t work.”

After more than 30 years’ experience of straddling the model development –

model application fence, I became convinced that major improvement in planning

practice was not to be had from making the land use models better. After all,

existing models such as DRAM are often able to account for 90% or more of the

variation in household location patterns. Instead of trying to add a few percent more

to the explained variation, it seemed that it would be more effective to try to

decrease the vast number (the majority) of agencies that used no statistically

sound models at all. This led to the development of a new model system, called

METROPILUS, (Putman and Chan 2001) which contains DRAM and EMPAL, and

other programs including calibration procedures, embedded in a GIS environment,

operating behind an extensive graphical user interface (GUI). The principal aim

in its development was to achieve a dramatic reduction in the difficulty ordinarily

encountered in land use model application. This system was quite successful

in allowing agency users to do their own model runs. The system was usually set

up with consultant assistance. Preliminary calibrations were sometimes also done

with consultant assistance. After the initial system had been set up and calibrated

they were able to do this with minimal additional assistance from consultants.

METROPILUS, incorporating DRAM, continues in use by several regional agencies

to this time.

Even so, it still was not “user friendly” enough for some users. The world

had become used to general spreadsheet and database programs, as well as more

specialized applications such as income tax preparation programs, touch screen

computers in convenience stores for ordering sandwiches, and to restaurant waiters

or waitresses placing patron’s meal orders with touch screens. Thus we developed

an even more user friendly system, named TELUM. With this, after the user enters

a few preliminary numbers, a spreadsheet, dimensioned to the user’s region, is

opened. The task of data collection is presented as a structured set of steps, with

software assistance, towards populating this spreadsheet with the region’s data.

Various consistency checks are performed automatically during the user’s progress

towards assembling the required data. The program also checks the consistency of

the links between the database and the geographical data by which it is embedded in

the GIS. On the completion of the data assembly work, statistical analyses of the

data are performed and evaluated by the model system, followed by the running of a

fully automatic procedure which performs the calibration of the models. After this,

the model software rearranges the data along with the statistical analyses, and

notifies the user of the results, while at the same time completing the preparations

necessary for making forecasts using the models. Then, literally at the press of a

button, the system runs the forecasts for the user’s region.
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We designed and constructed this new model system around a knowledge based

systems approach (Pozoukidou 2005). Implementing this kind of automation for a

complex land use modelling system had not been done before, and we had some

work to do to understand the function and use of software wizards and other

artificial intelligence notions. As such, the early version of this model system had

several simplifications over the full form of METROPILUS, including some limits

on numbers of analysis zones and numbers of locator categories. Also, certain

optional procedures available in METROPILUS were temporarily disabled in

TELUM. Even so, the new system, now operational, does a remarkable job of

assisting agency staff, often inexperienced in location modelling work, in performing

this rather complex planning/ analysis activity (Pozoukidou 2006, 2007).

We developed TELUM under contract to the New Jersey Institute of Technology

(NJIT), who subsequently have overseen its deployment. Development of the

TELUM model system, incorporating DRAM, was sponsored by the USDoT, and

TELUM has since been distributed to every MPO in the US. The software and

documentation are available from an NJIT website (NJIT 2009). In pre-release tests

by regional agencies participating in “beta testing,” staff from MPOs for several

mid-sized regions were able to produce statistically reliable, replicable, forecasts

for their agencies’ use, without the need for consulting assistance. Since then

several more agencies have downloaded the software and produced their own

forecasts (Casper et al. 2009). In order to achieve this level of automation a modest

reduction in the models’ flexibility of use has been necessary, but otherwise these

agencies have done, largely on their own, work that has, hitherto, always required

outside consulting assistance and a major budgetary commitment. All told, a half

dozen or so agencies have downloaded and applied the TELUM system in areas

such as Colorado Springs, Little Rock, and Des Moines. The results have been

mixed, some quite satisfactory to their users, some not so. A major issue seems to be

the availability of appropriate data, and the agency staff’s ability to manage data

issues as they arise. Even so, agencies continue to show interest in at least

attempting to use the model for their specific local forecasting and policy analysis

needs. We shall see whether having thus greatly reduced the difficulty of use, land

use models will be more commonly implemented as a part of planning agencies’

forecasting and policy evaluation procedures. This question will be settled not, as

some are wont to say, on whether one model provides a few percent better

goodness-of-fit than does another, but more on a mix of internal agency politics,

regional politics, and the extent to which the whole affair is run by the region’s

moneyed interests.
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The DELTA Residential Location Model

David Simmonds

Abstract This paper describes the residential location component of the

DELTA package. The introduction puts this in context, by very briefly describ-

ing the objectives and scope of the package, and the set of sub-models which it

contains. The second section presents the residential location model itself.

Subsequent sections discuss the calibration of the model, its applications, and

current developments.

1 Objectives and Scope of the DELTA Package

The DELTA land-use/economic modelling package has been developed by David

Simmonds Consultancy since the mid-1990s. The main objectives in creating a new

package were to create a practical tool to forecast urban and regional change, and in

particular to examine the expected impact of transport change; to provide a land-use/

economic model which works in interaction with any appropriate transport model,

and can therefore be used to extend relatively conventional transport models into

land-use/transport interaction; and in doing this, to draw not only upon previous

modelling experience but also upon the wide range of relevant research carried out in

geography, urban economics, etc.

A full description of the thinking behind the original version of the model can

be found in Simmonds (1999). The model as outlined in that paper is essentially the

1995–1996 prototype. For more recent descriptions, see Simmonds and Skinner

(2004) or Simmonds and Feldman (2005).
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2 The DELTA Sub-models

Because land-uses take a long time to respond to transport changes, the land-use

model needs to represent change over time, in contrast with the conventional

approach in transport modelling which describes transport supply and demand as

in equilibrium at one point in time. Another requirement is to recognize that

different processes operate at the urban and at the regional levels: for example,

different factors affect the total economic activity in an area and the location of

employment within it. The model accordingly contains urban processes which

represent changes in or between the individual zones, and regional processes in

which the units are whole travel-to-work areas.

The urban processes represent both changes in buildings and changes in

activities. The processes of physical change are development: the amount of

floorspace by zone and type (residential, retail, office, industrial, plus more

specialised types in some applications). Development is driven by the economic

scenario and the modelled property market, and controlled by inputs measuring

what is allowed by the planning system; and the housing quality model, which

models the way in which an area may decline to slum status, or be revived from

slum to high-quality.

The urban activity sub-models are: the transition model, which represents house-

hold (and hence population) changes in terms of movements through a simplified

lifecycle; the car-ownership model, which predicts the changing proportions of

households by type and zone owning 0, 1 or 2þ cars, mainly in response to

increasing incomes; the location model, which locates or relocates a proportion of

households and of employment in each year, and also models the property market

within which location occurs; and the employment status model, which updates the

work status of residents and the commuting pattern in response to the spatial

changes in households and employment.

At the regional level, there are three models, all of activities: the migration

model moves households between areas; the investment model allocates investment

to areas (taking account of changes in accessibility and property costs); and the

production/trade model (a spatial input–output model) estimates production by

sector and area and the patterns of trade between areas. All the modelled processes

are considered in a fixed sequence within each one year step, as shown in Fig. 1.

However, there are also numerous time lags between the different processes which

are equally or more important to the overall performance of the model. As will be

seen below, the residential location sub-model is affected, with time lags, directly

by all the other urban level components, and indirectly by the regional level

components.
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3 Specification of the Residential Location Model

3.1 Scope of the Residential Location Sub-model

The location sub-model is both the “location and relocation sub-model”, and the

“property market sub-model”. Mobile activities respond to changes in five vari-

ables: accessibility, quality of the local environment in general, quantity of housing;

quality of housing; and the cost or utility of consumption, i.e. of spending income

on housing, travel, and other goods and services.

The accessibility variables are calculated from previous land-uses and from

outputs of the transport model. The environmental variable is in practice also

based on transport model outputs, though it could be more broadly specified. The

quantity of housing is determined partly by vacancy, partly by the completion of

new stock (the development model) and partly by the number of existing occupiers

seeking to move.

Area quality is adjusted by the quality sub-model (see below). Utility of con-

sumption is calculated within this sub-model. Utility of consumption is influenced

by the rent of floorspace in each zone, and therefore has to be recalculated within

each step of the sub-model as rents are iteratively adjusted. The rent adjustment

seeks to equate the total demand for each type of floorspace in each zone (deter-

mined by the number of locating activities and the amount of floorspace each

occupies, both of which are variable) with the amount of floorspace available (the

total stock less that left vacant or occupied by “immobile” activities). DELTA

allows for a variable proportion of the stock to remain vacant. The market mecha-

nism uses a consumption function and rent-adjustment process similar to those in

DELTA components within one time period

Urban model

SPACE

Development
(of floorspace)

Employment
(commuting)

Residential
Quality

Location

Car ownership

transport-influenced

Transition
(Households)

ACTIVITY

ACTIVITY

Reginal
Model

Migration

Regional
Economic

Model

Fig. 1 The DELTA sub-model in one year
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MEPLAN and TRANUS (see Hunt and Simmonds 1993). The critical differences

are that in DELTA they affect only the households and housing that are “in the

market” during this period and they work in an incremental form rather than in a

cross-sectional form. The early applications of DELTA worked with a simple set of

zones in a closed Study Area. From the Trans-Pennine model onwards (see Table 1),

the model works on a number of labour/housing market areas. Households move

between areas primarily through the longer-distance migration process.

3.2 The Households To Be Located

DELTA is intended to be applied with a detailed classification of households

reflecting household composition, age of household members, working status of

Table 1 DELTA applications including residential location

Core area/study Transport modelling

package used

Comments Reference(s)

Edinburgh and Lothian (1)/DELTA

development, EPSRC research

START Urban level model only Simmonds and Still

(1999)

Greater Manchester strategy

planning model (GMSPM)/

various

START Urban level model only Copley et al. (2000),

Whitehead et al.

(2006)

Trans-Pennine corridor/ Strategic

environmental assessment in the

Trans-Pennine Corridor

START Urban/regional model Simmonds and

Skinner (2001)

South &West Yorkshire (SWYSM)/

SWYMMS, Eddington Study

and other projects

START Urban/regional model Simmonds and

Skinner (2002,

2004), Feldman

et al. (2007)

Edinburgh & Lothian (2)/

PROSPECTS

START Urban level model only Minken et al. (2003)

Glasgow & Clyde Valley/ CSTCS,

Clyde Corridor Study, appraisals

of major motorway schemes

TRIPS (CSTM 3A

application)

Urban/regional model;

regional model

covers whole of

Scotland

Edinburgh & Lothian (3)/ New

Transport Initiative

TRAM Urban/regional model;

regional model

covers whole of

Scotland

Simmonds et al.

(2005)

Strathclyde(SITLUM)/ for use by

transport and land-use planning

agencies

STM Urban/regional model;

regional model

covers whole of

Scotland

Aramu et al. (2006)

TELMoS (Transport/Economic/

Land-use Model of Scotland)/

Lowland Scotland

TRIPS Urban/regional model;

regional model

covers whole of

Scotland

Nicoll et al. (2006)

Auckland (New Zealand) EMME/2 Urban level model only

Thames Gateway South Essex STM Urban model with

partial regional

model

Dobson et al. (2007)
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working-age adults in the household, and the socio-economic group to which the

household belongs. An important characteristic of the model is that only a propor-

tion of households make residential choices in any one period. It is assumed that the

main reasons for making a new residential choice are linked to change in one of the

household classification variables, e.g. a change in the household’s composition or

in its work status. All households which are forecast to move from one category to

another – plus a proportion of unchanged households – are assumed to make such a

choice, and hence enter into the location process.

The households in the location model fall into two groups: “pool” households,

which have no previous location within the area, and “mobile” households, which

do have a previous location within the area modelled. Newly formed households

and households resulting from existing households merging (e.g. singles forming

couples) are assumed to make new location decisions and are counted as “pool”

households. “Mobile” households are those which are undergoing other changes

(mainly from couple with children onwards). In addition, a proportion of non-

changing households is assumed to be “mobile” in each period. The numbers of

“mobile” and “pool” households are initially calculated in the household transition

model (which also finds and subtracts the numbers of households which have

dissolved or migrated out of the modelled area altogether). The inter-area migration

model is then applied, before the location model. The migration model predicts

moves of households between areas within the modelled system: these households

are subtracted from the “mobile” and “pool” numbers for the areas they leave, and

added to the “pool” numbers for the areas into which they migrate. Households

migrating from the rest of the world are also added to the “pool” numbers. The task

for the residential location model in each area is therefore to locate:

H(P)pa
h the total “pool” of households type h to be located in area a

and to relocate:

H(M)pi
h the number of mobile households type h initially located in zone i.

3.3 Specification of the Model: Location Equations

The main location equations are weighted incremental logit functions, with slightly

different forms for “pool” and for “mobile” households. The equation to locate

“pool” households in area a to zones i is:

HðLP Þhpi ¼ HðP Þhpa :
Hh

ti :ðFðV ÞHpi =FH
ti Þ:expðDVh

pi ÞP
i2a

Hh
ti :ðFðV ÞHpi =FH

ti Þ:expðDVh
pi Þ

;
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where:

H(LP)pi
h households type h located from the “pool” of locators to zone i during period p,

Hti
h total households type h living in i at time t (the beginning of the modelled period),

F(V)pi
H total available housing floorspace in i during period p,

Fti
H previous occupied housing floorspace in i and

DVpi
h change in the utility of locating in zone i for households of type h locating during

period p.

The hypothesis here is that if there are no changes in floorspace or utility of

location in any zone, the newly-locating households of type h will distribute

themselves in proportion to similar households already located. The model there-

fore assumes that there is a set of unmodelled variables at work, including for

instance details of housing types and area characteristics, which will tend to draw

households of particular types to particular zones. The equivalent equation for

“mobile” households is:

HðLM Þhpi ¼
X
i

HðM Þhpi
( )

HðM Þhpi :ðFðV ÞHpi =FðM ÞHti Þ : expðDVh
pi ÞP

i

HðM Þhpi :ðFðV ÞHpi =FðM ÞHti Þ : expðDVh
pi Þ

;

where the additional variables are:

H(LM)pi
h mobile households type h located to zone i,

F(M)ti
H initial “mobile” housing floorspace, i.e. the space previously occupied by all the

households now classified as “mobile”.

This equation implements the subtly different hypothesis that “mobile” house-

holds will tend to remain where they are unless the floorspace or utility of location

variables change and modify their preferences. This means, for example, that if in

one year a zone attracts a significant number of households of the more stable types,

e.g. households with children, the subsequent history of the zone will be influenced

by the tendency for those households to stay there and eventually to change

(children grow up and leave, adults retire) in situ. Note that the model does not

distinguish between “staying in the same dwelling” and “moving to another dwell-

ing within the same zone”. The following sections explain the variables affecting

location within the above equations.

3.4 Floorspace Variables

The total available housing floorspace in each zone is equal to the current total stock

of built floorspace (inclusive of newly completed developments) minus that occu-
pied by immobile households, i.e. those which are not considering a move in this

time period; floorspace which is being held vacant by landlords; and any other
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floorspace which is being vacated for policy purposes (usually as a preliminary to

demolition and redevelopment). The amount of floorspace held vacant by landlords

depends on the rents being offered, and is adjusted as part of the iterative process

within the residential location model for each year (see Solution process below).
The previous occupied housing floorspace is the quantity of housing occupied by

households in the previous year, i.e. the total stock in the zone at that time less any

which was vacant. The oddly-named category of “mobile” housing floorspace is the

quantity of floorspace initially occupied by households which have been classified

as “mobile”– see above.

3.5 Location Sub-model: Households’ Change in Utility
of Location

The term “change in utility of location” summarises all the explicitly modelled

factors affecting the locational preferences of each household type apart from the

physical quantity of housing floorspace. This term is calculated as:

DVh
pi ¼ yUhp : DUh

Dt;i þ yAhp : DAh
Dt;i þ yQhp : DQh

Dt;i þ yRhp : DRh
Dt;i;

where:

DUDt,i
h change, over a defined past period Dt, in utility of consumption for households

type h locating in zone i,
DADt,i

h similar past change in accessibility of zone i for households type h,
DQDt,i

h similar past change in quality of housing areas in zone i,
DRDt,i

h similar past change in transport-related environmental quality as perceived by

households type h in zone i,
yp

Uh, yp
Ah,

yp
Qh, yp

Rh,

coefficients on the above.

The utility of consumption term (note the difference between utility of consump-

tion and utility of location) represents the utility which households obtain from

spending their incomes given their choice of location. This term therefore depends

on households’ spending preferences, and is to some extent determined by the

household itself. The other three terms – accessibility, environmental quality and

environmental quality – are more in the nature of externalities, i.e. individual

households cannot directly purchase better or worse values of these but must choose

and typically make trade-offs between the levels on offer in different zones. The

following sections explain these four variables in turn. All four variables within the

utility of location term are measured over a past time period Dt, which is different

for different household types. The length of this period is based on the average time

that households of type h have lived in their present dwelling. This value is very low
for young single persons, and much higher for older, more settled households. The

effect of these definitions on response to accessibility change is that impacts of an
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“external” change (e.g. in the transport system) on highly mobile households, such

as those of young single persons, will be felt very rapidly; impacts on less mobile

households will be spread over a number of years. Once the initial, direct impact of

the change in accessibility has been felt, the effect tends to persist through the

incremental formulation of the location model as described above. For example, if

the effect of a transport change is to encourage more young single people (perhaps

of a particular socio-economic group) to live in a particular zone, then subsequent

“cohorts” of similar people will (other things being equal) be correspondingly more

likely to choose to live in that zone.

3.6 Utility of Consumption Variables

DELTA’s treatment of the relationship between households and housing closely

follows the “Martin Centre tradition” (see Simmonds 1994) in assuming that

housing is a continuous variable of which households can choose to occupy larger

or smaller quantities within any one zone. This flexibility subsumes both the choice

of dwelling types within each zone, and the scope for households to adapt housing

to their needs by arrangements such as sub-division, multiple occupation or sub-

letting. DELTA also follows the Martin Centre tradition (and many other urban

models) in assuming that all floorspace is rented rather than purchased. The

quantity of floorspace which a household will choose to occupy, conditional on

choosing to live in zone i, is calculated by maximising a Cobb-Douglas type utility

function:

Uh
ðtþ1Þi ¼ ðahHpi Þa

hH
p : ðahOpi Þa

hO
p ;

where:

api
hH space per household type h in zone i (see calculation below),

api
hO expenditure on other goods and services per household type h in i (see calculation

below),

ap
hH, ap

hO propensity of households type h to spend available income on housing, H, or other
goods and services, O.

Note that the model requires that ap
hS þ ap

hO ¼ 1 for each household type h, i.e.
that all of the modelled income must be spent either on space or on other goods and

services. The model finds the maximum utility of consumption for each type of

household in each zone, given the income of that household type and the current

rent of housing in the zone. Adjustments are made to allow first for the fact that

certain household types enjoy housing subsidies and therefore occupy more space

than they can apparently afford, and secondly for other unmodelled variations in the

base year ratio of households to housing.
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3.7 Accessibility Variables

The accessibility variables used in the residential location model are weighted sums

of a range of more specific accessibility measures. The specific accessibility

measures include accessibility to work opportunities, to shop opportunities and

(in most applications) a range of other measures. Accessibility to work is (again in

most applications) disaggregated by socio-economic group, so that households

classified as “unskilled manual” are influenced only by accessibility to “unskilled

manual” jobs. Each individual accessibility measure is of the form:

Apo
ti ¼ 1

�ltDp
ln

X
j

Wp
tj exp �lDpt gpotij

� �( )
� Kp

 !
;

where:

lt
Dp is the destination choice coefficient for purpose p at time t,

Wtj
p is the measure of opportunities for purpose p in zone j at time t,

gtij
po the generalised cost of a tour from i to j and return, for purpose p and car-ownership level o

at time t,
Kp a constant for purpose p (defined as the logarithm of the base year sum of Wj

p).

The weighting of accessibilities reflects first of all the typical trip-making

frequency of the household type in question. There is one exception in this weight-

ing: households with unemployed members are assumed to have weights based on

the numbers of trips they would make if those unemployed members were actually

in work – i.e. households which are seeking work are influenced by accessibility to

job opportunities in the same way as those which have work. (Their eventual

location of choice will of course be different, because households with fewer or

no employed members have lower budgets to support these preferences.)

The second stage of weighting is simply based on the car-ownership of house-

holds of type h in zone i at each point in time. This treatment of car-ownership in

accessibility is consistent with the assumption that location and car-ownership are

joint choices (though car-ownership can also change for non-relocating house-

holds.) For the model to behave reasonably, it is essential that the measures of

accessibility should reflect the greater accessibility which (except in very unusual

circumstances) will result from greater car-ownership. It is also essential that they

should include walking as a viable mode of transport for short or very short

journeys – without a “walk” option, the advantage of locating close to attractor

land-uses will be understated.

The accessibility terms thus bring into the location model the effects of change

in transport levels of service, changes in the location of the other land-uses with

which households need to interact, and changes in household car-ownership. The

accessibility terms are therefore critical to the impacts of transport on land-use.
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3.8 Environmental Variables

The DELTA package is designed to be capable of interfacing with an environmental

model which would ideally take account of emissions both from transport and non-

transport sources, model the dispersion of pollutants (and all the factors affecting

this) and hence calculate the immissions affecting residents in each location. In

practice, the opportunity to link to such an environmental model has not yet arisen,

and the environmental variables used within DELTA are based directly on the

transport model outputs, without reference to other sources of pollution or to

dispersion. (More sophisticated environmental analysis has been carried out in

some of the studies using, as input, the outputs fromDELTA and from the associated

transport model; see for example Coombe et al. (2001). However, that analysis is not

[yet] fed back into DELTA and is therefore not relevant here.) Two different

approaches to transport–environmental variables have been used: using zonal values

for a range of different indicators, with appropriate weights in each indicator, or

using a single traffic-density measure (passenger-car-unit-Km per Km2) as a proxy

for the range of traffic impacts. The explicit indicators used have typically been

noise, carbon monoxide, oxides of nitrogen and volatile organic compounds. The

advantage of this approach is that it allows different indicators to be given different

weights by household type – for instance, some households may be more sensitive to

noise changes than others. There are however problems in calculating meaningful

zonal values for some of these; and for others there is the problem that it is not

necessarily reasonable to assume that people can respond directly to the level of

concentration of an odourless, colourless gas, however significant it may be in

health terms. We have therefore avoided these issues in some studies by using the

traffic-density measure; this excludes modelling the likelihood that some of the

adverse impacts of road traffic will be reduced by future changes in vehicle

technology, but rightly puts more emphasis on the risk and severance effects of

traffic itself. There are still limitations to the appropriateness of zonal values, but it is

reasonable to assume that risk and severance effects apply throughout residential

areas, not just to the residents of dwellings fronting major roads.

3.9 Quality Variables

The housing quality variable is an index. This index is adjusted in the quality model

to reflect the impact of households and occupation/vacancy on the housing stock

itself. The standard operation of the quality model is that the index tends to rise if

housing in a zone is fully occupied by high-income households, and tends to fall if it

is occupied by low-income households or (worse) left vacant. This is a potentially

important feedback effect, the more so as it can be a positive feedback: if, say, a

transport change has the effect of increasing the proportion of higher-income house-

holds in a lower-quality zone, their presence (and their expenditure) will gradually

improve the quality of the zone and attract yet more higher-income households.
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3.10 Solution Process

The inner operation of the location model in respect of households and housing is to

calculate utility of consumption for each household type in each zone, given the

current rent per unit housing floorspace (in the first iteration, the previous period’s

rent); in doing so, find the amount of space that each household will occupy if it

locates in each zone; calculate the change in utility of location for each household

type in each zone; locate all locatable households; find the total space used by these

households, compare with the available space, and if necessary adjust the rent and

repeat. An additional outer loop adjusts the quantity of housing which is being held

vacant, in response to the changes in rent. This modifies the available floorspace,

and further iterations of the inner loop are then carried out to solve the model with

the modified supply.

4 Calibration and Validation of the Residential Location Model

4.1 Approach

The approach to the residential location model (as to most of DELTA) has been

very much one of designing a sensible model structure and attempting to complete

it (with detailed variable definitions, with some minor variation of functional forms

and with coefficients) in the light of a variety of previous research, supplemented

when and where possible by new calibration. This contrasts with the alternative

approach in which (in the extreme) the model design is strongly influenced and the

coefficients are wholly determined by the results of calibration using data for the

study area in which the model is being applied. More formal calibration of DELTA

has been considered, but opportunities to pursue this to any significant degree are

only now being found. Likewise, formal validation of DELTA’s performance over

time would be desirable, but no opportunity to carry it out has yet been realised.

This section therefore concentrates on identifying the previous research which has

been considered in finalising the various DELTA residential location applications.

4.2 Sources Used

The original Edinburgh prototype was implemented starting with coefficients on

utility of consumption and accessibility estimated as part of an earlier cross-sectional

calibration on data for Bristol. These coefficients were estimated at a relatively

aggregate level, and a process of interpolation and extrapolation was needed to

obtain values for each of the household types in the DELTA model. (It would of

course have been possible simply to apply the more aggregate coefficients to all the
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corresponding household types, but that was considered unnecessarily crude.) That

process provided the two coefficients needed for the residential location model to

work at all within the DELTA framework, i.e. for households to respond both to

changes in accessibility (and hence to transport – necessary for land-use/transport

interaction) and (through the utility of consumption term) to changes in housing rent

(necessary for convergence of the location model itself). Given the relationship

between utility of consumption and households’ expenditure on housing, it is

possible to derive coefficients for any other variables from exogenously researched

willingness-to-pay values for those variables. This approach has been used to obtain

the coefficients for housing quality and for environmental quality. Both of these

variables are defined so that a unit increase in the variable produces a 1% increase in

rent in an average zone. In the case of the housing quality variable, the housing

quality index is defined so as to correspond to this specification. In the case of the

environmental quality variable, theweights on the different components of the variable

(noise, different contaminants, etc) were defined so as to reproduce willingness-

to-pay values.

In the original Edinburgh prototype, the weight on noise was set so that a

localised 1 dBA increase in noise would produce, on average, a given decrease in

rents, on the basis of relationships reported in Tinch (1995). The weights on the

different components of air quality were calculated using two pieces of information.

Firstly the relative toxicity of different emissions was considered as a means of

estimating their relative importance; and secondly, willingness-to-pay for reduction

in “atmospheric pollution” was used to scale the composite environmental variable.

Since the model itself works in terms of utility of consumption, rather than income

itself, the exact transformation is to ensure that a reduction in pollution for which a

household is willing to pay x brings about the same increase in utility of consump-

tion as an increase in income of x.
Much of the information used in determining the environmental coefficients in

the Edinburgh prototype was drawn from Tinch (1995). All of the coefficients

were subsequently revised in the light of results from a DELTA-related Stated

Preference study carried out by the University of Leeds Institute for Transport

Studies (see Wardman et al. 1997). A certain amount of adjustment has been

carried out in subsequent projects in the light of other information; we are

currently considering, for example, the results obtained by Pagliara and Preston

(2003), and hope to make use of results from research being carried out at Napier

University (Edinburgh).

5 Application of the Residential Location Model

5.1 Completed Applications

DELTA residential locationmodels have been implementedwithin land-use/transport

interaction models for Edinburgh (separate projects in 1995/96 and 2001/02); Greater
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Manchester; the Trans-Pennine Corridor; South and West Yorkshire; the Central

Scotland Transport Corridors Study (CSTCS) area (the Glasgow conurbation and

Lanarkshire); Strathclyde (a separate project again focussed on West Central Scot-

land); the whole of lowland Scotland (the Transport/Economic/Land-use Model of

Scotland (TELMoS), replacing the CSTCS model). Table 1 shows the transport

models used in each of these, and references to papers or reports describing the

projects in general. DELTA residential location models have also been implemented

as components of land-use-only models are (without the feedback from transport)

in Harlow (Essex), and Derby; and new LUTI models are being implemented for

South Essex (Tilbury–Basildon–Southend), Auckland (New Zealand), London and

Leicester.

6 Example Results

6.1 Introduction

It would be possible to extract results that showed the operation of the residential

location model in isolation, either from the intermediate outputs within a single

forecasting year or by “switching off” all the other components (as far as this is

logically possible). However, this would not seem particularly informative, and we

have therefore extracted some residential location results from a full DELTA

application.

The results below are taken from initial runs of the SITLUM application, and

were carried out purely to demonstrate the performance of the DELTA model and

not to test real schemes or policy proposals. The results are discussed in terms of

illustrating the model behaviour rather than of policy appraisal.

6.2 Housing Policy Impacts

The results considered here are the impacts of a test in which a substantial

additional supply of housing was permitted in a corridor running eastwards from

the edge of Glasgow City Centre to the periphery of the conurbation. All of the

results are considered in terms of the differences between this test and a Reference

Case without the additional permissions for housing development. This additional

supply was actually introduced into five zones; we concentrate here on the results in

just two of these. No other differences from the Reference Case were input.

Figure 2 shows the take-up of the additional permission for housing. In zone 27

the additional permissions are fully used within 5 years; in zone 147, it takes 11

years for the additional permissions to be fully used. The difference is not that the

absolute increase permitted in zone 147 is greater, but that zone 147 has generally
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lower rents and is a less attractive (profitable) location for housing development; it

therefore attracts a lower share of developers’ activity. Figure 3 shows the impacts

in terms of numbers of households living in the two zones. Note that these (and all

the following results) are impacts on zonal totals, not just the activity in the

additional new development. In terms of households, it can be seen that the initial

change in households closely follows the development of the floorspace. After

2010, however, the gain in households in zone 27 falls off somewhat; this is because

there is some relocation of households from zone 27 to the continuing additional

development in zone 147 (and elsewhere). Figure 4 shows the equivalent in terms of

population. This shows further decline in the impact on zone 27 after the maximum

impact is reached in 2010, and similarly a slightly decline in zone 147 after the
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maximum positive impact in 2016. This is due to the changing mixture of house-

holds in each zone. Figure 5 shows the impacts on housing rents in these two zones.

The present model assumes a high degree of substitutability between alternative

housing locations within each housing market, so an increase in supply tends to

reduce rents throughout each area rather than having a highly localised impact. The

curious result here is that in the first few years, the allocation of the additional

permissions leads to an increase, rather than a decrease, in the housing rent in zone

27, whilst there is an immediate decrease in the rent in zone 147. This arises

because zone 27 is in the Glasgow housing market area whilst zone 147 is in the

Mid/South Lanarkshire area, and the effect of the additional permissions is to divert

housing development from the Glasgow area to the Mid/South Lanarkshire area in

the first years. This means that although the permissions for housing development in
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Glasgow have increased, the supply is slightly reduced for a few years, leading to a

slight and temporary increase in rents. The small scale of the rent impacts reflects

the limited importance of new development compared with the very large second-

hand market.

6.3 Transport Policy Impacts

We also tested the impact of a very dramatic improvement in public transport in the

same corridor to the east of Glasgow. Again, some results are presented to illustrate

the processes at work rather than to assess the (entirely hypothetical) transport

scheme itself.

Figure 6 shows the impacts on population. It can be seen that the profiles of

impact are quite different between the two zones. The gains in zone 27 reaches a

peak after 5 years and then diminishes, whilst those in zone 147 grow more steadily,

only slightly slowing down towards the end of the forecast. The pattern for zone 27

is quite a common one for public transport schemes, where initial impacts tend to be

diluted as car ownership continues to grow and the significance of public transport

is reduced. The pattern for zone 147, which relates to a much smaller initial

population, is atypical because the transport scheme induces some gradual employ-

ment growth which is sufficient to produce more sustained population increases.

Figures 7 and 8 show impacts on two groups within the population: children and the

retired. They show that the proportional increases in numbers of children are

several times greater than the proportional increases in total population. This is

consistent with bus being a more important mode of transport for families with

children than for other mobile households; the bus improvement attracts them

disproportionately (and results in some displacement of other types of households).

The decrease in the number of retired persons is an indirect consequence of this;

0

1

2

3

4

5

6

7

8

2001 2006 2011 2016 2021

%
 C

h
an

g
e 

fr
o

m
 r

ef
er

en
ce

 c
as

e

Year

% Change in Population

27

147

Fig. 6 Impact on population

92 D. Simmonds



families with children mostly contain adults who are some way from retirement,

and hence the number of retired persons is reduced in the short- to medium-term by

the decrease in the “supply” of retirees. It can be seen that decrease in the retired

population is slowing or reversing towards the very end of the forecast, as this effect

wears off.

7 Recent and Current Developments

The preceding sections have described the DELTA residential location model as it

stood in late 2005. This section outlines a number of improvements and variations

which have been pursued since then.

0

5

10

15

20

25

30

2001 2006 2011 2016 2021

%
 C

h
an

g
e 

fr
o

m
 t

h
e 

re
fe

re
n

ce
 c

as
e

Year

% Change in Children

27

147

Fig. 7 Impact on children

–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

2001 2006 2011 2016 2021

%
 C

h
an

g
e 

fr
o

m
 t

h
e 

re
fe

re
n

ce
 c

as
e

Year

% Change in Retired

27

147

Fig. 8 Impact on the retired

The DELTA Residential Location Model 93



7.1 Treatment of Travel Costs

The reader will have noted that the money cost of travel is included in the

generalised costs used in calculating accessibility measures. Changes in the cost

of travel therefore affect the utility of location term through the accessibility

variable, rather than by reducing the utility of consumption resulting from the

expenditure of the household budget. Work is in hand to separate the money cost

of travel from the rest of the accessibility measure, and to make it possible to

subtract the money cost of travel from the household budget. This should have little

effect on residential location itself, but will affect some of the related variables

including the calculated impacts on housing rents.

7.2 Representing Different Categories of New Housing

One development now in use in several applications is to allow the user to specify

that different components of the new housing supply have particular characteristics

– for example, housing intended for low-income families, for young singles or

couples without children, for retired persons. This is implemented by replacing the

previous households and floorspace terms in the original equations (above) with a

term for “expected occupiers”. For existing floorspace, the expected occupiers are

the same as the existing occupiers; for new floorspace, they types of expected

occupiers are defined by the user to represent the different kinds of development

taking place.

7.3 Modelling Short-Distance Moves

The travel-to-work areas defining the upper-level spatial units within which the

residential model operates are in some cases quite large. Empirical evidence

suggests that the distance-deterrent effect on local migration is strong enough to

be significant within these areas, as well as being highly significant as in influence

on moves between such areas, which is already taken into account in the migration

model.

One recent development is to recast the residential location model in terms of

explicit zone-to-zone moves. This applies to households which have an initial

location, i.e. “mobile” households as defined above. The present equation for

mobile households is replaced by a set of equations, each allocating “mobile”

households from one “before” zone to the set of possible “after” zones, and

including a distance-deterrence term varying by household type. Combining this

94 D. Simmonds



with the “expected occupiers” function mentioned above gives the following as the

main location equation for “mobile” households:

HðLMRÞhpoi ¼ HðMÞhpi
HðXAÞhpi:expðDVh

piÞ : d h
poi:k

h
piP

i

HðXAÞhpi:expðDVh
piÞ : dhpoi:khpi

8><>:
9>=>;;

where

HðLMÞhpoi mobile households type h relocated from zone o to zone i;

HðXAÞhpi occupiers type h in zone i “expected” to locate in period p (calculated from floorspace

and floorspace changes)

DVh
pi

change in utility of location for households of type h locating in zone i during period p
(compared with equivalent time-lagged value),

dhpoi a deterrence for households type h relocating from o to i in period p, calculated as a

function of the distance from o to i;

khpi is a correction factor to adjust for spatial bias in the deterrence function.

“Pool” households, which by definition do not have a “before” location within

the area, continue to be allocated as before.

7.4 Other Developments

A new version of the model is under development (as at November 2008) which

will represent housing markets in considerably more detail, segmenting supply into

owner occupied, privately rented and social rented sectors, and using prices rather

than rents for the owner-occupied sector.

A microsimulation version of the household/individual components of the

DELTA package has recently been implemented (see Feldman et al, this volume ).

8 Conclusion

The DELTA package design has proved to provide a flexible context for a wide

range of model developments drawing extensively on recent research results and

associated thinking about urban and regional change. The residential location

component is a critical element in this and one which is directly responsive to

many of the other effects modelled, and indirectly linked to all the others. It is also

one where it is important to take account of the dynamics of change and the ways in

which significant changes in population composition – and hence in travel demand

– may come about with only limited if any change in the physical stock of

buildings.
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We hope to continue developing the model to make better use of knowledge

about residential location, residential property markets and related matters, as well

as to continue using the model in our applied work.
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The MUSSA II Land Use Auction Equilibrium

Model

Francisco Martı́nez and Pedro Donoso

Abstract In this chapter the description of a new version of the MUSSA model is

presented. The supply side of the model leading to new equilibrium problems and a

solution algorithm that enhances the model performance has been significantly

improved. The model is designed to forecast the expected location of agents,

residents and firms, in an urban area. The model stands upon the paradigm of static

market equilibrium.

1 Introduction

MUSSA is a model designed to forecast the expected location of agents, residents

and firms, in the urban area, originally presented by Martı́nez (1996) and improved

in Martı́nez and Donoso (2001).1 This paper describes a new version of MUSSA

model, which has significantly improved the supply side of the model leading to

new equilibrium problem and a solution algorithm that enhances the model perfor-

mance significantly.

The model stands upon the paradigm of static market equilibrium. The location

problem assumes that real estates are allocated to the highest bidder by auctions and

that market equilibrium is attained by the condition that all agents are located

somewhere, therefore, supply satisfies demand. This auctioning process produces

rents for each real estate in the market and simultaneously defines levels of

satisfaction (benefits) to located agents at equilibrium. A discrete approach is

followed for all units of demand and supply: households and firms are clustered
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into categories, while land is divided into zones and dwellings into types; the

number of discrete units is defined by the modeller. Consumers’ agents, households

and firms, are assumed rational and their idiosyncratic differences are modelled by

a stochastic behaviour.

The place of MUSSA in the context of other land use models can be defined from

a theoretical and historical perspective. A first generation of these models was

designed under the assumption that agents locate as to minimize the travel cost

to other activities, which may be called the maximum access model, where the

transport system has a predominant role. Several models of this class where developed

following either the Alonso’s (1964) bid-rent approach or the Lowry’s (1964) gravity

– then entropy – approach, or even a combination of these two. A second generation

introduced market elements into the location problem by including rents and good

prices, what we call the linear market model. Rents have been introduced in twoways,

using an hedonic rent function based on average zone attraction indices, or

by assuming the location options are quasi-unique so rents are the result of simulating

an auction process known as the bid-auction approach. In this case, input–output tables

have been used to incorporate spatially differentiated prices on goods. The third

generation introduces an important amount of complexity into the model buy incor-

porating an explicit representation of the direct interaction between agents decisions,

that is the interaction that affect behaviour in addition to the price effects. These

interactions describe the fact that location options are valued, by all agents and in

a significant degree, by their built environment and the location pattern, usually called

zone attributes. In the economic literature (seeMas-Colell et al. 1995, p 350) this type

of interactions are defined as a multilateral public externality, because it involves

all agents and public or non-rivalrous goods, which we call the location externality.

The significance of this phenomenon to the model formulation is that the built

environment is generated by the solution of the location problem itself, then zone

attributes are endogenous variables. This describes a non-linear location equilibrium

problem, with a large number of endogenous variables whose solution requires more

sophisticated mathematical techniques than previous generations of models.

The advantage of modelling location externalities explicitly is that they describe the

real inherent dynamic of the location process.

A significant difference with other land use models is that in MUSSA the

interaction between consumer agents – households and firms – is explicitly

described in agents’ behaviour and solved to attain equilibrium. We call these

interactions location externalities, which represent local attributes of a location

that depends on the agents’ valuation of neighbour residents and firms’ valuations

of agglomeration economies. These interactions are complex, so normally ignored

or simplified, because they makes each agents’ location choice dependant on all

other agents choices, thus making the calculation of equilibrium a highly complex

mathematical problem, which is solved in MUSSA by ad-hoc algorithms. It is

worth noting the tremendous dynamic in the land use pattern introduced by location

externalities, because each choice affects all other choices and, in theory, the whole

location pattern. We shall see however, that in MUSSA this dynamic is as smooth

as it is observed in reality, but it reflects a real phenomenon.
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A second key difference provides a useful tool for urban planning. The model

represents explicitly the whole set of physical constraints (e.g. land capacity) and

planning regulations that supply must comply with. Additionally, the model allows

the direct simulation of the effects of pricing incentives (taxes or subsidies)

introduced by the modeller. These features provide MUSSA with tools to assess a

large number of issues in urban planning, like the economic impact, i.e. social

benefits/costs, of regulatory and/or pricing scenarios.

Another feature of MUSSA is that all the model parameters are calibrated by

econometric methods, which provides the set of parameters required by functions

that describes the behaviour of demand and supply agents. This procedure max-

imizes the likelihood that choices actually made by agents and observed by the

modeller, are best reproduced by the set of parameters obtained conditional on the

functions specified and the data used. Stated and revealed preferences data may be

used. The main advantage of this methodology is that parameters can be defined as

mutually consistent, considering correlation dependencies.

The improvements made in MUSSA II are significant in order to handle effi-

ciently the non-linearity issue in the context of highly constrained space. The supply

of real state units has changed, from the aggregate deterministic econometric model

of the previous version to a stochastic behaviourally based logit model. Since the

demand side of the original MUSSA was already based on logit models, in the new

version the demand–supply equilibrium is specified as system of logit equations.

Additionally, agents’ behaviour in the land use context is subject to a large

number of constrains, for example households have an income, suppliers produce

real state units subject to non negative profit and to comply with a large number of

planning regulations. In the previous versions of MUSSA these constraints were

modelled as deterministic within a constrained optimization procedure, but because

of the large number of constraints this process meant an unbearable computing

burden in large cities, so the solution algorithm was based on a two levels heuristic.

In the new version the behaviour of agents is constrained as to comply with all

constraints, such that no choice of supply or demand violates constraints. This

approach is implemented in MUSSA II using the constrained logit model (Martı́nez

et al. 2005), where a binomial logit restrains behaviour of agents to their specific

feasible space.2

2 The Consumers’ Behaviour

The goods traded in the market modelled by MUSSA II are real estate properties

differentiated by type (v 2 V) –detached, semidetached, back-to-back house,

department, etc. – by the location zone (i 2 I) and by a vector of attributes

2MUSSA II is specified using the RB&SM model approach of fixed points presented in Martı́nez

and Henrı́quez (2007), except for the constraints on consumers’ and producers’ behaviour, which

has been modified.
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(z ¼ ðzvik; k 2 KÞ) –number of rooms, neighbourhood, access, land lot size, etc. The

model does not restrain the dimensions #V, #I or #K. Consumers are households and

firms classified into clusters (h 2 H), households are classified by socioeconomic

characteristics and firms by industry. Real estate suppliers are also classified into

clusters (j 2 J) according to their differences in production costs.

A fundamental theoretical assumption in MUSSA is that a location in the urban

context is a highly scarce resource because the right to use it (by renting or buying)

provides restricted access to enjoy the neighbour amenities generated by the built

and natural environment. This makes each location a quasi-unique or a differentia-

ble good, which yields a monopoly power to the landowner who obtains maximum

benefit by an auction process that extract the maximum willingness-to-pay from

consumers, as proposed by Alonso (1964). Consumers play in the auction game by

making bids for location options, where bids represent their willingness-to-pay.

Since Solow (1973) and Rosen (1974), the willingness-to-pay is a function analyti-

cally obtained as the inverse in land rents of the correspondent indirect utility

function, conditional on the location choice.

We denote by Vhvi the indirect utility function conditional on the location option

vi. Assuming that each agent “consumes” only one location and has an income yh,
this function can be expressed as Vhvi ¼ Vh yh � rvi; p; zvið Þ. Then, the willingness-
to-pay or bid function, conditional on obtaining a given utility level Uh, is:

Bhvi � Ih � fhðp; zvi;UhÞ; (1)

which represents the maximum value the agent is willing-to-pay for a location

described by zvi, to obtain a utility level Uh given the exogenous yh and prices p.
One can understand this function in the context of choice models by thinking that

the agent considers a constant utility level (taken from market conditions), and

assesses her/his monetary value for each available location option in the city using

this bid function. Thus, it represents the price that would make the agent indifferent

on choosing any alternative location, since the utility level is assumed fixed across

space. An important observation is that from (1), eh ¼ Bhvi þ fhvi represents the

expenditure function in all goods plus location cost if the consumer pays B; this is
relevant for evaluating different land use patterns and it is explained in Martı́nez

(2003). Another observation is that similar bid functions can be derived for firms

directly from their differential profits obtained at different locations.

3 The Equilibrium Problem

In MUSSA II all agents maximize their individual utility (called profit for producers)

subject to a set of constraints in a static context. Consumers are constrained by an

exogenous income and producers by a number of regulations. The equilibrium

conditions are twofold: locations are assigned to the best bidder by an absent
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auctioneer, and all households are located somewhere, with total demand equal to

total supply of real estate options in the city.

The economic static equilibrium problem analyzed inMUSSA II is the following:

CPÞ Max
v;i

ðBhvi � rviÞ 8h
s:t: rvibyh � px

PPÞ
Max
Svij

Svij ðrvi � cvijÞ 8j
s:t:

P

j

Svij 2 Ri
;

EQ1Þ lhvi ¼ argmaxðBhvi
h2H

Þ 8v; i EQ2Þ
X

v2V;i2I
Svi lhvi ¼ �Nh 8h:

The CP problem represents the consumer h’s problem, which chooses a location

that maximizes surplus defined by the difference between the annual willingness to

pay, or bid, (Bh), minus rents (rvi), subject to an available budget yh�px. Here px is
the expenditure in a set of goods x and p is the vector of goods’ prices, assumed

exogenous in the model.3 The real estate annual rent is exogenous for the consumer

but endogenous to the equilibrium yield from an auction.

The PP problem represents the supplier’s j behaviour, who decides how many

real estate options to offer in each submarket (v,i), denoted Svi, by maximizing profit.

Profits are equal to the annual rent charged minus the building plus maintenance

annualized costs (cvij). The supply in each zone i is subject to a set of regulations

Ri ¼ ðRim;m 2 MiÞ, which makes all suppliers’ behaviour interdependent.

The first equilibrium condition (EQ1) represents the auction. Consumers’ bids at

each location (Bhvi) are presented to the auctioneer who assigns each allocation to

the best bidder.4 Thus, lhvi is one is h is the best bidder in location (v,i), zero
otherwise. This best bidder rule is sufficient to assure simultaneously that suppliers

maximize profit from available supply and consumer agents maximize utility or

consumers’ surplus (Martı́nez 1992, 2000). Thus, the location that satisfies condi-

tion EQ1 implies that CP is maximized for all consumers and that real estate

suppliers obtain the highest rent for their stock.

The second equilibrium condition (EQ2) relates to the whole market. Unlike

markets of products where consumers decide how much –if any – they buy of each

good; in this market we assume that all agents consume only one, but also not less

than one location. This means that every agent has to be located somewhere at

equilibrium, provided that there are sufficient location options.

3Note that, theoretically, the consumption vector x is optimal if the willingness to pay function is

derived from the indirect utility function conditional on location choice.
4In the urban land market building properties usually have known common values, for example

provided by real estate agents, so we expect that the auctioneer receives several similar bids,

nevertheless, inevitably the final value is only defined by the auction. On the issue of auctions with

common values see for example the review by McAffe and McMillan (1987).
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The equilibrium yields the land use described by two vectors. The allocation of

agents at alternative real estate options, denoted by vector N ¼ ðNhvi; h 2 H;

v 2 V; i 2 IÞ, such that
P

v;i

Nhvi ¼ �Nh, where �Nh
5 denotes the number of agents in

cluster h exogenously defined; and by the vector of real estate supply

S ¼ ðSvi; v 2 V; i 2 IÞ, such that
P

v;i

Svi ¼
P

h

�Nh ¼ �N:

Equilibrium condition (EQ2) imply that participants in auctions outbid each

other on real estate auctions, up to an equilibrium state that defines the maximum

utility level attainable by each consumer in the market, represented by Uh ¼ U�
h

in (1), which yields bids at equilibrium.

The introduction of externalities represents a phenomenon that induces inherent

instability in the model outcomes. This phenomenon has been widely described in

social sciences (see Schelling 1978) and it is well recognized in game theory that it

leads to complex non-linear mathematical formulations: small changes in initial

conditions may cause dramatic differences in the location pattern and rents. Thus, it

is important to note that bids functions theoretically embed location externalities,

that is, the interaction between activities, by means of vector z in (1). Because the

allocation of residents (neighbourhood quality) and firms (agglomeration econo-

mies) define neighbourhoods’ attributes, then z ¼ z(N,S), it follows that this inter-
action is analytically represented by:

Bhvi � Ih � fhðp; zviðN; SÞ;UhÞ (2)

This dependency represents a technological externality between agents, defined

directly in their utility function, which operates in the urban system in addition to

the pecuniary interaction through land rents.

The equilibrium presented above leads to a complex model of the city econom-

ics, extremely difficult to use for predictions. First, the facts that supply is discrete

(zone system) and differentiable (location externalities), makes the location equi-

librium problem mathematically untreatable for large cities in the deterministic

context presented. Mathematically, it generates a complex non-linear fixed-point

problem that describes a relevant and real urban dynamics introduced by the

explicit representation of location externalities.

In MUSSA II, the approach to tackle this difficulty is to introduce continuity by

transforming the deterministic problem into its probabilistic equivalent, which

smoothes out the discontinuity associated to the agents’ choice process. This

approach has also the advantage of a more realistic model because idiosyncratic

differences among agents within a cluster are represented by stochastic behaviour.

The idiosyncratic variability on agents’ behaviour takes into account the usual

socio-economic and cultural differences of consumers considered in random utility

theory and the variability in information and speculative behaviour in auction

5Overlined variables denote exogenous information required by the model.
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processes; additionally, the idiosyncratic behaviour of real state suppliers describes

differences in information and on strategic behaviour. The model uses the Gumbel

distribution for consumers’ and suppliers’ behaviour, because it provides several

relevant properties that help to solve the equilibrium problem.

4 The Probabilistic Bid-Auction Sub-model

In MUSSAII we conveniently assume the following bid function Bhvi ¼ Ih�
f 1ðUhÞ � f 2ðzviÞ, with good prices assumed as fix parameters and function fh in

(1) assumed additive. This latter assumption implies that the underpinning utility

function is quasi-linear, which imposes relevant theoretical constraints into the

model but with limited effect in real contexts.6 But, it also introduces significant

benefits in calculating the equilibrium, allowing the model to deal with the complex

non-linearities. The assumption yields:

Bhvi ¼ b1h þ b2hviðN; SÞ þ b3 (3)

where the bid function components are: b1h: adjusts utility Uh levels to attain

equilibrium. b2hvi: describes the valuation of property attributes. Some attributes

are exogenous to the location and land use distribution, like rivers, parks, hills, etc.,

and then they are represented by zone attractive parameters in this term. The

complex attributes are those endogenous, which describe location externalities

and are defined by two types of variables. First the distribution of agents’ clusters

in the zone, given by N��i7 that describes attributes like neighbourhood quality by

combining the characteristics of agents located in the zone (all building types) with

the number of agents there located. Second, the building stock supplied in the zone

(all buildings). S
!

�i, which describes the building environment in the zone. b3: is a
term independent of consumers and supply options, which adjusts bids to absolute

levels in the whole market. This component is relevant only in the calculation of

absolute value of rents and bids.

In the case of firms (non-residential activities), their bid function is derived from

the profit function for each economic sector or industry. In this case, it is also

assumed that the bid function is additive, like in (3).

In order to include idiosyncratic variability among consumers within a cluster,

bids are assumed to be random variables: ~Bhvi ¼ Bhvi þ ehvi, with random terms ehvi
distributed Gumbel, identical and independent (IID), justified by Ellickson (1981).

From these assumptions, the (multinomial) probability that one of the �Nh agents

6It merely requires that the utility function is linear in at least one good of the consumption bundle.
7Notation: x�k denotes the vector of all elements of x whose second component is k.
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type h is the highest bidder in (v,i), is yield – conditional on the real estate option

being available – by:

Ph=vi ¼
�Nh expðmBhviÞP

g2H
�Ng expðmBgviÞ ; (4)

where the parameter m is inversely proportional to the variance of the bids. Here

the aggregated version of the multinomial logit probability is utilized, which

includes the correction for different sizes between agents’ clusters, as proposed

byMcFadden (1978). Thus, the expected number of agents h located at (v,i) is given
by Nhvi ¼ SviPh=vi

Then, using (3) in (4), the demand model is:

Nhvi ¼ Svi
Nh expðmðb1h þ b2hviðN��i; S�iÞÞÞ
P

g2H
Ng expðmðb1g þ b2gviðN��i; S�iÞÞÞ

; (5)

where b3 is cancelled out. In a synthetic form this is written as:

Nhvi ¼ Nðb1�;N��i; S�iÞ 8h; v; i: (6)

This equation represents the location fixed point, with the probability variable

both in the right and left hands of an unsolvable equation. It mathematically

describes the interdependence between consumer decisions, i.e. location external-

ities, in which the location of an agent depends on locations of other agents

(households and firms) in the same zone.

Additionally, as a direct result of the auction, the rent of a real estate (v,i) is
determined by the expected value of the highest bid, which thanks to the Gumbel

distribution is the known logsum or – implicit value function – given by:

rvi ¼ 1

m
ln

X

g2H
Ng expðmBgviÞ

 !

þ g
m

(7)

with g the Euler’s constant. Notice that the rent depends on bids Bhvi and these in

turn on the all other variables.

Equation (5) represents the solution of the consumer’s maximizing problem (CP)

and the auction condition (EQ1) simultaneously in a stochastic context. The

solution of the fixed-point (5) yields the agents spatial location pattern conditional

on two state variables: consumers’ utilities (b1) and supply (S). Note that the

complexity of externalities remains in (5) and (5), but unlike the deterministic

case discusses above, the fixed-point problem these equations is treatable, what is

analyzed in detail by Martı́nez and Henrı́quez (2007).
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5 Real Estate Supply Sub-model

The behaviour of real estate suppliers is twofold. First, they seek to obtain the

maximum rents of their real estate stock. Second, for new development, they decide

what combination of building and zone (v,i) would generate the maximum profit,

subject to prevailing market regulations and rents. The first condition is already

fulfilled by the auction mechanism.

There are some theoretical aspects to discuss. An important feature of the supply

market is that it is highly regulated by zoning regulations, affecting both zone and

building type, hence it is plausible that profit may be different by sub-markets

defined by (v,i). A second issue is the heterogeneity of the suppliers, which occurs

when suppliers have different profit functions. This function may be different

depending on various sources of heterogeneity, for example the size of the firm

that may imply different access to technology and generate different supply costs.

Another theoretical aspect is the potential for the presence of scale economies,

within the same firm and zone sub-market, or scope economies (or diseconomies)

across firms and zones. The most general case includes full interdependency

reflected in costs functions denoted as cvij ¼ cjðS��Þ, where production cost depends
on what is supplied everywhere by every developer. Less complex interdependen-

cies are of course likely to occur in real markets. In any case, the supplier must

determine the optimum amount to produce in each sub-market (v,i), which requires
that he/she has to define an optimal vector (S..j).

In order to develop an operational supply model notice that rents are random

variables, hence profits are also random. Moreover, by the property of conservation

of the Gumbel distribution under maximization, rents are random variables with a

Gumbel distribution that preserves the same scale parameter m of the bids functions

defined above. Thus, assuming that costs are deterministic, profits would be

Gumbel distributed IID with the same scale factor as the bids. However, MUSSA

II assumes that profits have a different scale parameter l, thus allowing a more

flexible model that adjusts better to the real behaviour.

In MUSSA II Hence, the expected number of residential supply units type

(v,i), Svi, is given by the aggregated production of each developer, which is given

by the developer share of total production (Sj) times the probability that this unit

type is the maximum profit option for that developer:Svi ¼
P

SjPvi=j. Assuming the

market share given by Pj, and the conditional probability P j
vi/j a multinomial logit,

then:

Svi ¼ �N
X

j

Pj
expðlðrvi � cvijÞÞP

v0i0j
expðlðrv0i0 � cv0i0jÞÞ; (8)

where l is inversely proportional to the profit variance and �N is the total number of

supply units in the urban area, which is given exogenously by the total number of

agents demanding locations.
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Notice that, from the rent equation (7) it can be seen that b3 is cancelled out

in (8). More importantly, rents are functions of bids, then of vector N and S, and
scale and scope economies make costs a function of S; therefore, the reduced form

of the supply model is:

Svi ¼ Sðb1�;N���; S�� Þ; (9)

which represents the fixed-point equation of the non-linear supply model.

Equation (8) represents the solution of the producer’s maximizing problem (PP) in

a stochastic context and without regulations. The solution of the fixed-point (9)

yields the spatial distribution of real estate supply conditional on two state vari-

ables: consumers’ utilities (b1) and consumers’ allocation (N).
Notice that, despite the fact that the fixed-point problems (6) and (9) are written

upon multinomial logit probabilities, they different because the state variables

N and S in (8) are embedded in the rent logsum function (additionally, S is argument

of the cost function). Thus, (9) has a more complex functional form than (6).

Nevertheless, again the probability approach makes the fixed-point problem

(8 and 9) treatable (see Martı́nez and Henrı́quez 2007).

6 Equilibrium

Here we study the supply–demand auction equilibrium (EQ2). This condition in the

stochastic context of our model is expressed by:

X

v2V;i2I
SviPh=vi ¼ Nh 8h (10)

in which equilibrium is verified for each consumer category h and for all of them

simultaneously. This condition is met if b1 verifies that:

b1h ¼ � 1

m
ln

1

Nh

X

vi

Svi expðmðb2hvi � rviÞÞ
 !

; (11)

which is obtained solving (11) for b1h. As b
2(N,S) and rvi(b

1,N,S), this equation can

be written in a reduced form as:

b1h ¼ bhðb1�;P�=��; S��Þ (12)

and constitutes another fixed point, this time in vector b1, whose solution verifies

equilibrium conditions.

The adjustment of b1 represents de adjustment of the utility levels that yield

equilibrium: Under the additive assumption on bids, b1 is negatively related with

108 F. Martı́nez and P. Donoso



utility: the higher the bid for a location the lower the utility obtained (all location

attributes held constant). Then the values obtained from (11) represent an index of

the utilities attained by agents’ clusters at equilibrium. As expected, ceteris paribus

and neglecting second order effects caused by non-linearities, this index increases

with Nh, so utility decreases with population because supply is more demanded;

more supply increases utility while higher rents have the opposite effect.

7 Modelling Constraints on Behaviour

The above models do not yet include the constraints on agents’ behaviour: budget

for consumers and zone regulations (R) for suppliers. The number of constrains that

define a feasible domain for equilibrium variables are very large in real cities,

which constitutes perhaps the highest computational burden for operational models.

MUSSA II uses a novel technique to model all constraints in the system with

high computing performance. The approach is based on the Constrained Multinomial

Logit Model (CML), proposed by Martı́nez et al. (2005). The approach consist on

introducing a cut-off factor in the behaviour function, bid or profits, which has the

property of making these functions tending to minus infinity as long as the attribute

(or attributes) makes the constraint active. The new behaviour function is called the

constrained behaviour function.

To resume how this technique works, consider for example the constrain on bids

of the CP problem, which restrain bids to be positive and not greater than available

income. We define the constrained bid as:

~Bhvi ¼ Bhvi þ 1

m
ln’ni þ eni (13)

with B the unconstrained bid function. We also define ’, a cut-off factor that makes

bids beyond the feasible range to have an extremely high negative value, thus

reducing the probability of making that bid the best bid in the auction. Replacing the

unconstrained by the constrained bid function in (4), yields the feasible probability:

~Ph=vi ¼
�Nhfhvi expðmBhviÞP

g2H
�Ngfgvi expðmBgviÞ : (14)

This new probability function approach zero when is evaluated at bids values out

of the bid domain.

Furthermore, it is also possible to represent a set of constraints. For that the cut-

off factor may be composed by a large number of factors that confine state variables

to live in a multidimensional domain, with upper and lower bounds. That is

’hvi ¼
QK

k¼1

’L
hvik � ’U

nvik, with K the number of regulations applying to choosier h
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on options v,i. This extended approach zero whenever one constraint is hit and it is

useful for example to accommodate the large number of zone regulations that

normally apply to each zone, representing upper and lower bounds.

In MUSSA II the cut-off factor is defined as a binomial logit function. For

example, the mentioned constraint on budget represents an upper bound for rents

affordable for the consumer. In our example the cut-off factor is defined by:

’U
hvi ¼

1

1þ exp ok Bhvi � yh þ rð Þð Þ
! 1 if Bhvi � yhð Þ ! �1
¼ � if Bhvi ¼ yh
! 0 if Bhvi � yhð Þ ! þ1

8
<

:
; (15)

where the parameter o defines the speed of decay of the choice probability (14) as

rents approach budget; r and �are factors that defines the tolerance allowed by the

modeller for violating the bound. Note that this tolerance is strictly positive,

because binomial probabilities are positive and non-zero (except at infinite). This

implies that constraints are complied only up to a minimum probability value �,
which is consistent with the theory of stochastic behaviour since bounds are always

subject to the agent’s perception and choice on whether to comply or not.

Modelling zoning regulations is a fundamental feature of a land use model,

especially in order to make it applicable as a design tool for zoning plans. The

cut-off approach allows the analysis of linear and non-linear constraints, without

limiting the number of regulations included. More details on how the cut-off

technique is formulated and applied can be seen in Martı́nez et al. (2005).

Thus, using appropriate cut-off functions to the above logit functions (5) and (8)

yields consumers’ locations ( ~N) that comply with the budget constraints and real

estate supply (~S) that comply with planning regulations. Once rents are calculated

using constrained bids ( ~B), they also internalize the effect of all constraints, both on
consumers’ and suppliers’ behaviour. It is worth noting that, following Martı́nez

et al. (2005), it is possible to isolate the impact of each individual regulation on

rents, which represents its economic value in the urban market; thus, it allows us to

make an economic assessment for each regulation.

8 The Equilibrium Equation Systems

The MUSSA II’s equilibrium is represented by the simultaneous solution of the

previous set of equations, which together can be written like a macro fixed-point

problem such as:

~Nh=vi ¼ Nh=viðb1�; ~N�=�i; ~S�iÞ 8h; v; i;

~Svi ¼ Sviðb1�; ~N�=��; ~S�� Þ 8v; i; (16)

b1h ¼ bhðb1�; ~N�=��; ~S��Þ 8h;
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which is a system of dependent non-linear equations with dimension [(#Hþ1)

(#V#I)þ(#H)], with the same number of unknown variables. This system yields

the solution vector ðb1�; ~N�; ~S�Þ, that is, the location of consumers, supply of real

state units and relative values for rents and bids; both ~N� and ~S� comply with all

constrains in the system. Note that each fix point is associated with either, interac-

tion between agents (externalities the first one and economies of scale and scope the

second one), or a market clearance condition (the third one).

The solution for equilibrium exists if the logit scale parameters m and l belong to a
real range defined by Martı́nez and Henrı́quez (2007). They show that uniqueness of

the solution is guarantied is scale parameters m and l are sufficiently low, i.e. that bids
and profits do have a minimum idiosyncratic variability. Extensive numerical search

indicates that such variability is usually present in real studies. When such minimum

variability condition does not hold, the solution depends on the initial point because

in this is the case agents’ behaviour tends to be deterministic and probabilities tend to

0 or 1. In real cases studied dispersion is high enough to guarantee uniqueness.

Outputs may be used to perform rigorous economic assessments of land use

scenarios. Benefits may be calculated using income compensated variations as the

variation of bid values associated with scenario’s changes (Martı́nez 2003). Thus,

MUSSA II is a useful tool to obtain economic assessment of planning options such

as: land use regulatory schemes, location pricing policies, transport-accessibility

projects, etc. A particularly interesting application is to assess the social benefit (or

cost) of each planning regulation, therefore dressing the planning process with an

economic viewpoint. It can also be used by the private sector to assess expected profits

from real state investments, land acquisition, location of retail and services, etc.

Some other remarks. First, it may seem that all agents, residents and non residents

are allocated at each forecasting period without dependency to the previous period

allocation. This interpretation is wrong, since it is possible to write the probability

distributions as an incremental multinomial logit (similarly for rents), which makes

evident the inter-temporal dependency in the model. Second, land use variables are

endogenously updated within the equilibrium algorithm, which makes that zone

attraction attributes are endogenous to the model and modified in each forecasting

period. Third, residents’ location behaviour consider multiple attributes, including

access to most relevant activities (work, education, shopping, etc.), which are

defined and calculated as transport users benefits. The trade off between attributes

is defined through the bid functions by their calibrated parameters.

9 Application

The implementation of these algorithms imposes the additional challenge of obtain-

ing a solution for a case of large dimensions. The model was applied to Santiago city,

with 409 zones, 12 building types, 65 household clusters, the latter categorized by

income, family size and car ownership and five firm types. This generates probability

matrices with 145,000 elements that are updated in the fixed-point problem.
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Additionally, the model handles 150,000 regulation constraints. The running time

was 40 min, in a computer with 1.4 GHz and 1 Gb Ram memory. Therefore, despite

the complexity of the interaction involved, including externalities among consumer’s

agents, economies of scale and scope in real state production, equilibrium conditions

and regulation constraints, the model performs highly efficiently.

The model is calibrated using observed cross-section data of residential and non-

residential location, rents and accessibility indices. It is also possible to use stated

preference data or a mix with stated and revealed preferences. The methodology

may be the standard maximum likelihood method for logit models. It is also

possible to calibrate the model considering all the system equations simultaneously.

The best practice will depend on the quality of the data associated to rents,

consumers’ location and real estate supply.

The model forecasts for any future year the urban equilibrium. The basic output

includes:

l Property monthly rents, by building type and zone
l Location distribution of agents or the land use pattern, by cluster
l Buildings’ distribution by zone, including houses of different sizes and types and

building blocks by height levels, which defines density and average heights
l Benefits by agent clusters, which define distribution of welfare across agents
l Planning regulations and their slackness, and an index of their impact on rents

The model requires the following inputs for each forecasting year:

l Accessibility indexes by zone and preferably by cluster.
l Total city households’ population by cluster and total activity for non-residential

agents, also by cluster.
l The initial observation of the land use variables to initiate attributes of the built

environment (by zone): average income of residents, commercial, education and

services floor space.
l The initial observed distribution of real estate supply.
l The set of planning regulations and pricing (tax/subsidy) policies.
l The variables’ set that describes dwelling types, e.g. lot size, floor space and

building type (house or building).

The theoretical formulation of MUSSA II based on fixed point problems has also

been used as component in two new tolls for planning. One tool performs optimiza-

tion of regulation schemes and subsidies, which is presented in Martı́nez and Aguila

(2004). In this case, the modeller provides the objective function and the model

searches the optimal combination of regulations and subsidies. The technique was

first developed to maximize social benefits in the land use market and then applied to

minimize travel CO2 emissions for Santiago city (Donoso et al. 2006).

Another tool is a dynamic model, where time is made explicit in the model as

delays in the production process; the model is discussed in Martı́nez and Hurtubia

(2006). Here auctions perform as in MUSSA II, but supply is assumed to take some

time to be actually offered after the building decision is made; moreover, suppliers

decide facing uncertain future. In this model excess of supply performs cycles
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because building is made in lump sums, which is the typical profile observed in

stock economics.
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The Impact of Transport Policy on Residential

Location

Francesca Pagliara, John Preston and Jae Hong Kim

Abstract The objectives of this chapter are to assess the extent to which transport

impacts on residential location decisions and hence on housing occupancy rates and

house prices and to assess the extent to which transport policy decisions (such as

road user charging, changes to fuel duties or the provision of light rapid transit

systems) affect housing markets. This was achieved by undertaking two Stated

Preference (SP) experiments in the Greater Oxford area. The aim of these experi-

ments was to determine the key transport and location factors that householders

take into account when determining their residential location. These surveys

suggested that householders place high values on transport times and costs but

also value low density developments, access to high quality schools, low noise

levels and developments in small towns/rural areas. Stated Preference data was

used to develop a hedonic pricing (HP) model which suggested much lower impacts

of travel time to work, housing density and school quality on house prices than the

SP choice model. Nonetheless, validation tests indicated that the HP model

provided more reliable forecasts of house prices than the SP model. The HP

model was used to provide preliminary forecasts of the impact of transport

improvements on house prices in the Greater Oxford area.
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1 Introduction

It has been long recognized that transport factors have significant impacts on

residential location. Although there is also an extensive literature on the influence

of transport on residential location and on house prices, most of the previous studies

have been based on revealed preference data. Thus these studies could only show

the changes of transport behavior and impacts on housing markets after provision of

new transport system or implementation of a new transport policy. Such studies are

of significance in terms of evaluation of transport policies in the particular study

region. However, the results of such studies have limitations to be directly applied

to other regions due to differences of transport behavior, spatial patterns and so on

in each region.

In this study, we analyze the trade-off effects between transport factors and

housing price using stated preference data collected from 96 recently moved house-

holds in the Greater Oxford region in the UK. The estimation results of a bid-choice

model and an hedonic model are then applied to examine the impact of different

transport policies (such as a road user charge, changes of fuel duty, and a new

public transport system) on housing markets. This study attempts to reveal not only

the characteristics of consumer’s behavior on residential location choice but also

provides a framework to estimate the scope of funding transport improvements

through various transport policies.

This study is novel in both its methodology, using an advanced discrete choice

approach to calibrate a bid choice model of residential location, and its practical

application, which permits detailed analysis of the impact of changes to the

transport system on the housing markets. This study analyses three major topics

as follows: firstly, individual behavior of residential location choice in terms of the

trade-offs between transport factors and the others is analyzed using a discrete

choice model. Secondly, the impact of transport accessibility on housing price is

investigated through estimations of a bid-choice model and a hedonic price model.

Finally, based on the housing price estimates, the impact of various exogenous

transport policies on housing value is forecasted through a preliminary simulation

method. The models are validated by comparing the forecast housing values with

actual housing prices. It is then applied to examine the impact of different transport

policies on housing markets in general and on property values in particular. The

scope of funding transport improvement is investigated as this could provide an

important long-term solution to transport funding problems.

The structure of this paper is as follows. In the rest of this section, a brief review

of some recent relevant literature as well as the empirical framework are provided.

In Section 2, the empirical models are specified and calibrated. In Section 3, the

simulation models are applied with respect to the introduction of a road user charge,

a fuel duty increase, a fuel duty decrease and the introduction of a new public

transport system, Guided Transit Express. In Section 4, important findings and

policy implications are summarized.
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1.1 Review of Previous Study

There is an extensive literature on the influence of transport on residential location

and therefore on house prices. Much of it is reviewed in Pagliara and Preston

(2002a). Subsequently the Royal Institution of Chartered Surveyors and the Office

of the Deputy Prime Minister (RICS Policy Unit 2002) have published the results of

their study on the relationships between land use, land value and public transport.

This involved a review of about 150 references. The main aim was to identify and

analyze how occupier demand expressed through land values and investment yields

(capital value) varied according to transport provision. In addition, ways in which

better understandings of the impact of transport on property values could be used in

cost benefit appraisal of transport proposals were explored. Similarly, the ways in

which the impacts of transport on property values could be used in appraising land

use planning and urban regeneration proposals were investigated.

Key references reviewed included Walmsley and Perrett (1992) who studied and

reviewed the effects of 14 rapid transit systems in the UK, France, USA and

Canada. They found that in Washington D.C. homes near stations appreciated at

a faster rate than similar homes further away. Similarly, the Tyne and Wear Metro

(TRL 1993) was found to have a localized effect on the housing market in a few

areas, where the attractiveness of housing increased and some redevelopment took

place. In general, properties near the Metro gained and maintained a slightly higher

value compared with properties further away. Cervero and Landis (1995) reported

that evidence from California reveals some degree of capitalization benefits, which

over the long run could be expected to induce clustering around rail stations.

However these impacts cannot be easily generalised. Ingram (1998) reports results

of experience with new subways in Montreal, San Francisco, Toronto andWashing-

ton D.C. He found a very modest effect on metropolitan development patterns.

There was also some evidence of development around stations (Toronto and

Washington). Similarly, there is some evidence of CBD development impacts of

high-speed rail. Banister and Berechman (2000) reviewed impacts of high-speed

rail in Japan. Impacts were found at both the network and local levels. Network

effects relate to the substantial increase in accessibility to key national and inter-

national markets. Another interesting study is the evaluation of the impacts that the

London congestion charge had on property prices both inside and outside the zone

(Zhang and Shing 2006). The congestion charge was introduced in February 2003

to reduce traffic levels in the centre of London. Postcode sector level property prices

for sectors are investigated under the premise that the benefits of transport innova-

tion can be captured by property prices. If housing markets are efficient, residential

property prices should capture all the benefits and costs to commuters that a

location offers. It is found that the gap between property price inside and outside

the zone has actually reduced as a result of congestion charging. Also, after the

implementation of congestion charge, the sensitivity of house prices with respect to

distance from the boundary has fallen for sectors inside the zone relative to sectors

outside the zone. An hedonic pricing model is estimated in the work of Debrezion
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et al. (2006) with the aim of analyzing the impact of railways on house prices in

terms of distance to railway station, frequency of railway services and distance to

the railway line. It has found out that dwellings very close to a station are on

average about 25% more expensive than dwellings at a distance of 15 km or more.

A doubling of frequency leads to an increase of house values of about 2.5% ranging

from 3.5% for houses close to the station to 1.3% for houses further away. In the

study by Hess and Almeida (2007) the impact of proximity to light rail transit

stations on residential property values in Buffalo, New York is assessed, where

light rail has been in service for 20 years, but population is declining and ridership is

decreasing. Hedonic models are constructed of assessed value for residential

properties within half a mile of 14 light rail stations and independent variables

are included that describe property characteristics, neighborhood characteristics

and locational amenities. The model suggests that, for homes located in the study

area, every foot closer to a light rail station increases average property values

by $2.31 (using geographical straight-line distance) and $0.99 (using network

distance). Consequently, a home located within one-quarter of a mile radius of a

light rail station can earn a premium of $1,300–3,000, or 2.5% of the city’s median

home value.

1.2 Empirical Framework

Traditional location theory examines the role of accessibility on house prices. It

states that housing and accessibility to employment centers are jointly purchased in

that those paying higher prices are compensated by the lower costs of commuting to

the central business district (CBD) (So et al. 1996). This is the bid rent approach

that has its origins with Alonso (1964).

An alternative choice approach, particularly associated with Anas (1982), exam-

ines the probability of an individual choosing a particular property as a function of

the characteristics of that property, the characteristics of the individual/household

and characteristics of the neighborhood in which the property is located, including

accessibility. A stated preference (SP) model of this type has been calibrated and is

detailed in Pagliara and Preston (2002b) and Pagliara et al. (2002a). Our empirical

framework is to develop a bid choice model, which is a combination of the choice

model and bid rent approaches. More specifically, we intend to follow the approach

developed by Martinez (2000). That is, we intended to start by estimating the

choice probability that house type v in zone i is bought by individual/household

h, as given by (1):

Pvi=h ¼
exp m0ðWPhvi � rviÞP

v0i02O
exp m0ðWPhv0i0 � rv0i0 Þ (1)

with WP ¼ Willingness to Pay, r ¼ house price (rent).
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The bid probability of house type v in zone i being bought by individual

household h is then given by (2):

Ph=vi ¼
expðmBhviÞP

h0¼H

expðmBh0viÞ ¼ exp m WPhvi � wh � rvi þ gð Þ; (2)

where B is the bid, g is the Euler’s constant and w is the bidder’s surplus, which in a

perfectly competitive model will approximate to zero.

The potential terms in the WP function can be represented as:

WPhvi ¼ b0 þ b1h þ b2vi þ b3hvi: (3)

Notice that, with the choice probability equation, it is impossible to calibrate

constant WPs terms or those associated with attributes that depend only on (i.e.

are constant across) households (b0, b1). Conversely, with the bid probability

equation, constant parameters and linear terms on locations attributes (b0, b2)
cannot be calibrated. Thus in both cases one can only calibrate truncated WP
functions. In the case of bid probability equation (2), we complement the calibra-

tion by adding the rent equation (4):

rvi ¼ E Max
h2H

Bhvi þ ehið Þ
� �

¼ 1

m
ln
X
h2H

exp½m WPhvi � whð Þ� þ g
m
: (4)

Equation (4) allows us to calibrate the terms b0 and b2 in (3). This approach has

been developed in Santiago, Chile, by Martinez (2000) by calibrating (2) and (4)

jointly by several methods (sequential and simultaneous). However, the problem

we encountered in Oxfordshire was that data were only readily available in a highly

aggregate form. For example, our SP surveys only contained sufficient data for

four household types (high/low income, work in city/elsewhere), two household

locations (city/suburb) and two house types (detached/non detached). Similarly,

house price data was only readily available at the postcode district level (e.g. OX1).

As a result, an alternative approach based on hedonic pricing has been applied.

2 Model Calibration and Validation

2.1 Model Specification and Calibration

The starting point was the combination of the two utility functions of two different

SP experiments (one considering access to work, the other considering access to

shops) and then recalibration of the coefficients. The second step was that of

converting the choice model into the bid-choice model in order to get a model,
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which can forecast the property chosen by households. All the attributes considered

in the two SP experiments were important for the understanding of the choices

made by residents in Oxfordshire (Pagliara et al. 2002b; Pagliara and Preston

2002a). However each experiment, used on its own, provided just limited informa-

tion, thus a combination of the two was made. This might be thought of as a form of

integrated choice experiment (Van de Vijvere et al. 1997).

The two different data sets were combined considering respectively the attri-

butes in the second experiment held constant when calibrating the first experiment

and the attributes of the first experiment held constant when estimating the second

experiment. The specification of the SP choice model was as follows:

Pvi=h ¼
exp mðWP�

hvi �rviÞP
j

expmðWP�
hvj �rvjÞ ; (5)

where Pvi/h is the probability of household h choosing property v in zone i,
WP*

hvi is the truncated willingness-to-pay of household h for a property v in zone i.
The independent variables used for the empirical estimation of (5) are defined

and explained in Table 1.

2.2 Estimation Results and Validation

The estimation results are reported in Table 2 for the full data set. All the attributes

are significant and of the expected sign. House price, travel time and cost to work

appear to be important factors influencing residential location choice. The negative

value of the housing density dummy is justified by the fact that people prefer to live

in areas where there is much open land. The negative value of the location dummy

CITY means that the preference is for living away from the city i.e. in country

towns and rural areas – we refer to these locations below as SUBURBAN areas.

Another important factor is travel cost to shops, which is negative and significant,

i.e. people prefer to live close to shopping centers. The positive and highly

Table 1 Variable definition

Variable Definition

HPrice The current market value of the house (in pounds)

TTWork The total time (in minutes) spent making a single trip from the house to the workplace

TCWork The total cost (in pence) spent making a single trip from the house to the workplace

DENS A dummy equal to 1 if the house is in an area with no open land, 0 otherwise

CITY The location within the boundary of Oxford City (OX1, OX2, OX3, OX4)

TCShop The total cost (in pence) spent making a single trip from the house to a large

supermarket

QSCH A dummy, equal to 1 if the house is in an area with good schools, 0 otherwise

NOISE A dummy equal to 1 if the house is in a noisy area, 0 otherwise

DETACH A dummy equal to 1 if the house is detached, 0 otherwise
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significant value of the quality of school dummy means that people prefer to live in

areas with good schools. The negative and significant value of the noise dummy

means that the choice of residence is strongly influenced by the noise level of a

given area. The preference is to live in quiet areas. The positive and significant

value of the detached dummy means that people prefer, all other things being equal,

to live in detached houses.

Households are grouped according to household income and workplace location.

Household income categories (two levels) are low (in our sample less than/equal

£42.50 K per year) and high (greater than £42.50 K per year). Workplace locations

are CITY, i.e. within the boundary of Oxford city (OX1, OX2, OX3, OX4) and

SUBURBAN area (the remaining part), i.e. outside Oxford city (two levels).

Therefore, four categories of households have been identified. Residential zones

are again CITY and SUBURBAN area (two levels) and whether households live in

a detached house or not (two levels). Again four categories have been identified.

Therefore 16 (¼ 4 � 4) different segments have been identified and the estimated

and actual probabilities are reported in Tables 3 and 4. The estimated probabilities

were obtained by operationalising (5) with the coefficient values in Table 2.

The actual probabilities came directly from our surveys.

Table 2 Stated preference

choice model estimation

results

Variable Coefficient (t-value)

HPrice �0.328-E05 (�2.620)

TTWork �0.449-E01 (�9.033)

TCWork �0.660-E02 (�5.125)

DENS �0.498 (�7.593)

CITY �0.291 (�4.027)

TCShop �0.321-E02 (�2.790)

QSCH 0.727 (12.849)

NOISE �0.877 (�14.015)

DETACH 0.323 (3.653)

No. of observations 3,072

L(*) �2,928

L(0) �3,374

r2 0.132

Table 3 Probabilities computation for persons working in city

Income House Type Residence Estimated probability Actual probability

High Detached City 0.33894 7.89E-02

Suburban area 0.24377 0.28947

Non-detached City 0.24654 0.39474

Suburban area 0.17074 0.23684

Low Detached City – –

Suburban area 0.13166 6.67E-02

Non-detached City 0.46091 0.48889

Suburban area 0.40744 0.44444
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For people working in the CITY (Table 3) and choosing a detached house, the

actual probability of residing in a SUBURBAN area is higher for those in the high

income group compared to those in the low income group. The former, thanks to

their budget, can choose to live in a detached house with higher prices. Conversely,

the actual probability of choosing a non-detached house and residing in a SUBUR-

BAN area is higher for those in the low income group. For people working in the

SUBURBAN area (Table 4), the actual probability of residing in the SUBURBAN

area and choosing a detached house is higher for those in the high income group

(although our model’s forecasts do not replicate this). High income group can move

to the CITY. The probability of living in the CITY and choosing a non-detached

house is also higher for the high income group, reflecting their ability to afford more

expensive properties.

2.3 Comparison Between Actual and Estimated Probabilities

The estimated probabilities in Tables 3 and 4 fail to take into account supply side

constraints. For example, the stock of detached houses is limited, particularly in the

CITY. Therefore, in order to derive a bid-rent model from our SP choice model

the following procedure was developed, to reflect the aggregate nature of our data.

The willingness-to-pay is related to utility by the following relation: Uhvi ¼ m
(WPhvi – rvi) and given that the log sum is the appropriate measure of expected

maximum utility the following expression can be computed (for a model calibrated

at the individual level):

bi ¼ 1

ym
ln
X
h

HhShi exp ymWPhið Þ; (6)

where:

I is the zone index,

H is the household type (high/low income, work in city/suburban area),

Hh is the number of households of type h,

Shi is the density of households of type h in zone i,

ym are parameters to be estimated.

Table 4 Probabilities computation for persons working in suburban area

Income House type Residence Estimated probability Actual probability

High Detached City – –

Suburban area 0.28989 0.42857

Non-detached City 0.15119 0.28571

Suburban area 0.55892 0.28571

Low Detached City – –

Suburban area 0.71049 0.16667

Non-detached City 4.51E-02 0.16667

Suburban area 0.19879 0.66667
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Given that the parameter m has been estimated in the SP choice model the

re-scaling parameter y may be estimated from aggregate data, based on the

Berkson-Theil method as follows:

ln
Ph=vi

1� Ph=vi

� �
¼ y Uh=vi �Uh=vj

� �
; (7)

where:

Ph/vi is the probability house and location type vi is chosen by individual h,
Uh/vi is the utility of the chosen alternative for individual h and house and type location type vi,
y is the parameter to be estimated.

From (7), the y coefficient has been obtained as 0.464 with a t-statistic of 4.244.

Hayashi and Doi (1989) found values for a bid MNL (Multinomial Logit) scale

parameter of about one third of the choice MNL scale parameter. This result is

comparable to what we have obtained. From Table 2 we can estimate the willing-

ness to pay as equal to:

WPhvi ¼ (�0.449-E01 TTWork � 0.660-E02 TCWork – 0.498 DENS
– 0.291 CITY – 0.321 TCShop þ 0.727 QSCH – 0.877 NOISE
þ 0.323 DETACH)/0.328 � E05

where 0.328-E05 is the parameter value of the house price attribute. Operational

models recognise that the estimation of utility or willingness-to-pay functions is

subject to inaccuracy in terms of fully describing actual behavior, and best defined as

a stochastic variable. Let us assume that bids are given by Bhni ¼ Bhni + ehni where
Bhni¼WP hni�wh is the deterministic component, ehni is a random error term andwh

is the speculative term that has to be equal for all location options to make sure that

the consumer is indifferent to any option where he or she is the best bidder. A family

of location models can be proposed by assuming different distributions of the

random term. One of the most applied is the Gumbel distribution (Martinez 2000).

Assuming the stochastic terms as independent and identically distributed Gumbel

(IIG) with a scale parameter y, we obtained the following expression for the

expected maximum bid, which directly represents the expected rent at location (ni):

rni ¼ E MAXðBhni þ ehi½ � ¼ 1

ym
ln
X
h2H

exp ymðWPhni �whÞ½ � þ g
ym

; (8)

where g is the Euler’s constant (approximately 0.577) and we assume wh¼ 0.

By applying appropriate weighting parameters (Hh and Shi), house price fore-

casts for our aggregate categories are shown in Table 5. However, the forecasts

systematically under predicted actual prices, with this being particularly evident for

suburban non-detached properties. Moreover, the bid-choice prices that result are

very sensitive to the weighting parameters used. However, it is important to note

that our SP data was collected in April 2002 whilst our actual data was provided

The Impact of Transport Policy on Residential Location 123



from the Land Registry for the period July to September 2002 (from www.proviser.

com). There will have been some increases in house prices between these two dates.

Between mid 2000 and mid 2001 house prices in Oxford rose by 19%, whilst

between mid 2001 and mid 2002 house prices rose by 37%. This suggests that land

prices in our study area could have risen by as much as 12% in the period between

our surveys (in April, 2002) and the mid-term date of the Land Registry data used

(August, 2002). In order to reconcile results, a hedonic pricing (HP) regression has

been undertaken (Rosen 1974). This assumes that house prices are some implicit

(hedonic) function of a bundle of attributes. The data set used is that collected in the

stated preference exercise (3,072 observations) but includes data on the existing

property as well as the two hypothetical properties presented in each scenario and

the option of staying with the existing property is modelled in addition to choosing

the hypothetical properties. An element of revealed preference data is therefore

included in the HP model. The advantages of HP methods include their links with

market data and their widespread application. Disadvantages include assumptions

of identical incomes and preferences for all consumers, no transaction costs and

fixed supply (Tinch 2002).

A linear model was specified, with the explained variable being house price

(in thousands of pounds) and the explanatory variables being the other attributes in

the SP experiment but in addition the number of bedrooms was added as an

attribute. Table 6 reports the estimation results of the hedonic model. Note that

TCWork and TCShop are expressed in pounds rather than pence. Most parameter

values are significant at the 5% level (but note the repeat observations problem will

be at play here), although the TCWork parameter value is only just significant and

Table 5 Comparison between bid-choice prices and actual prices (unit: £)

Residential area House type Bid-choice prices Actual prices % Change

City Detach 362,790 385,000 �5.8

City Non-detach 213,152 255,532 �16.6

Suburban Detach 296,722 293,750 �1.0

Suburban Non-detach 66,227 174,065 �62.0

Table 6 Estimation results

of Hedonic Price Model
Attribute b t-statistic

Constant 83.072 5.296

NBEDROOMS 29.457 11.064

TTWork �1.264 �8.482

TCWork �3.631 �1.975

DENS �16.345 �4.047

TCShop �3.749 �0.921

QSCH 12.567 3.882

NOISE 20.531 4.634

DETACH 105.979 14.137

CITY 29.302 13.023

HIGH_INCOME 54.952 13.023

WORKCITY 14.462 2.295

R2 : 0.276
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the TCShop parameter value is insignificant. The goodness of fit is only modest,

suggesting this model may be affected by multicollinearity. This is a common

problem with HP models and might also explain the implausible sign of the NOISE

parameter value, although this could also reflect model mis-specification. For

example, our model only includes local accessibility measures but locations close

to motorway junctions, although having high noise levels, may also have good long

distance accessibility.

Table 7 reports some marked differences in attribute values obtained from the SP

and HP approaches. The SP valuations of TTWork, QSCH, and DETACH are more

than 10 times greater than the values from the HP model, whilst the SP valuation of

DENS is over 9 times greater than that of the HP model. Moreover, the valuations

of TCWork and TCShop are even more substantially higher in the SP model than

the HP model. This leads to a high value of time estimated in the HP model of

almost 35 pence per minute compared to the much more plausible 8 pence per

minute in the SP experiment.

The Department for Transport’s Transport Economic Note (http://www.roads.

dft.gov.uk/roadnetwork/heta/highway/04.htm) suggests a market price value of

working time for car drivers of 35.1 pence per minute (23.3 pence per minute for

all modes) and 7.5 pence per minute for non-working time (all at 1998 prices). This

suggests that the HP model’s values of time are broadly consistent with values

of working time and the SP model’s values are broadly consistent with values of

non-working time. Around 13% of distance traveled and around 5% of all trips by

car are in the course of work (Source: http://www.webtag.org.uk/webdocuments/

3_Expert/5_Economy_Objective/3.5.6.htm#012 <Accessed 27 February 2007),

and hence we would expect the “true” average values to be closer to the SP than

the HP results, although the HP results may reflect marginal values.

It is also noteworthy that the CITY dummy variable has a negative impact on

house prices in the SP model but a positive influence on house prices in the HP

model. This may suggest that those living in the CITY are less likely to move than

those living in rural areas or country towns. Similarly, the NOISE parameter has a

strong negative effect on house prices in the SP model but a modest positive effect

in the HP model.

The comparisons in Table 7 suggest that the values from the SP model may have

serious upward biases. These are corrected in the HP model by better representing

Table 7 Values (in £) in terms of house price of a unit change in attributes

Attribute SP HP

Attribute values t-statistics Attribute values t-statistics

TTWork �13,680 (2.67) �11,264 (8.48)

TCWork �2,011 (2.37) �36.31 (1.98)

DENS �151,868 (2.42) �16,345 (4.05)

TCShop �978 (2.11) �37.49 (0.92)

QSCH 221,650 (2.47) 12,567 (3.88)

NOISE �267,406 (2.50) 20,531 (4.63)

DETACH 98,538 (2.28) 105,979 (14.14)

CITY �88,807 (2.31) 29,302 (5.64)
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housing characteristics by including a parameter for the number of bedrooms and

thus reducing specification error. It is interesting to note that the one valuation

that was similar in the SP and HP models was the DETACH dummy variable.

Furthermore, the inclusion of the choice of the current property may have led to

a better representation of budget and other constraints and thus reduced non-

commitment bias.

Table 8 presents the resultant forecast prices from the HP model. Compared to

Table 5, there is no longer a systematic under valuation of prices. The main

advantage of the HP approach appears to be the more accurate forecasts of suburban

non-detached housing.

2.4 Application of the Hedonic Price Model to the Study Area

The final stage of the study has involved the application of the model to assess the

impact of transport policy changes on residential location preferences and the

resultant prices. The area under study is the corridor Kidlington–Oxford–Abingdon.

The first step has been that of applying the HP model to the relevant post code

districts, computing the resultant house prices and comparing them with the house

prices in the Land Registry database (www.proviser.com). The aggregate nature of

this analysis should be reiterated. These computations have given the following

results shown by Tables 9 and 10. The sensitivity tests provided by Table 10

involved adjusting the HP model so that the values of time are in line with those

obtained in the SP model. This was done by increasing (in absolute terms) the

parameter values of travel costs to work and to shop to –18.5 from –3.631 and

–3.749 respectively.

The unweighted HP model slightly underestimates house prices on average, as

might be expected given the recent rapid increases (estimated as being as much as

12% between April and August 2002). The last column shows the percentage

change of house prices since 2002.

The re-weighted model underestimates house prices to a greater extent as might

be expected as the impact of transport cost has been increased somewhat artificially.

Both models are reasonably accurate in aggregate, but both versions of the model

have a problem in capturing the premium attached to OX2 (North Oxford)

addresses by people working at the University of Oxford.

Table 8 Comparison between hedonic prices and actual prices (unit: £)

Residential area House type Hedonic prices Actual prices % Change

City Detach 357,662 385,000 �7.10

City Non-detach 216,976 255,532 �15.08

Suburban Detach 293,652 293,750 �0.03

Suburban Non-detach 187,673 174,065 7.81
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3 Model Application and Policy Simulation

The model has been applied by examining the impact of some transport policy

scenarios on the housing market and in particular on house prices. Further details

are given in Pagliara et al. (2002b). Actual travel times and costs to/from each of the

postcode districts have been computed for both car and bus, whilst journey to work

movements have been obtained from the 1991 Census.

In order to evaluate the effect of transport policy changes on residential location

preferences the incremental logit model (Kumar 1980; Preston 1991) has been

applied to calculate the mode shares of travel in the before and after situation.

For the simple two mode situation, the formulation is as follows:

Table 10 (Weighted) Comparison between hedonic prices and actual prices

Area House type Hedonic

prices (£)

Land registry

prices (£) (2002)

D% (2002)

OX1 Detach 289,990 297,125 �2.40

Non-detach 160,844 163,571 �1.67

OX2 Detach 340,789 506,549 �32.72

Non-detach 215,643 292,953 �26.39

OX4 Detach 275,014 307,500 �10.56

Non-detach 146,604 148,686 �1.40

OX5 Detach 274,280 300,083 �8.60

Non-detach 147,556 145,666 1.30

OX13 Detach 225,907 279,286 �19.11

Non-detach 169,330 164,055 3.22

OX14 Detach 215,974 240,740 �10.29

Non-detach 169,397 155,369 9.03

Average 219,277 250,132 �8.30

Table 9 (Unweighted) Comparison between hedonic prices and actual prices

Area House type Hedonic

prices

(£)

Land registry

prices (£)

(2002)

D%
(2002)

Land registry

prices (£)

(2008)

D% Land

registry prices

(2002–2008)

OX1 Detach 307,670 297,125 3.55 529,272 43,861

Non-detach 178,524 163,571 9.14 266,428 38,605

OX2 Detach 355,240 506,549 �29.87 543,881 68,640

Non-detach 226,093 292,953 �22.82 327,603 10,576

OX4 Detach 284,196 307,500 �7.58 426,059 27,826

Non-detach 153,277 148,686 2.96 197,594 24,751

OX5 Detach 280,293 300,083 �6.59 426,906 29,707

Non-detach 157,653 145,666 8.23 169,499 14,060

OX13 Detach 238,246 279,286 14.69 525,800 46,883

Non-detach 172,211 164,055 4.97 155,000 �5,841

OX14 Detach 239,772 240,740 �0.40 356,135 32,402

Non-detach 173,737 155,369 11.82 171,189 92,412

Average 230,576 250,147 �3.44 341,280 23,245

The Impact of Transport Policy on Residential Location 127



P0
C ¼ PC expðU0

C �UCÞ
PC expðU0

C �UCÞ þ PPT expðU0
PT �UPTÞ ; (9)

where:

P0
C(PC) is the proportion of people choosing car in the after (before) situation,

U0
C(UC) is the utility measure of car in the after (before) situation,

PPT is the proportion of people choosing public transport in the before situation,

U0
PT(UPT) is the utility measure of public transport in the after (before) situation.

Four different scenarios have been examined for illustrative purposes. These are

(1) Road User Charge, (2) Fuel Duty Increase, (3) Fuel Duty Decrease and

(4) Introduction of the GTE system.

In order to calculate the proportions in the after situation with the provision of

the new mode of transport (Scenario 4), the extended logit model formulation has

been applied. This has the following formulation:

P0
PT ¼ PPT ½expðU0

NT �UXTÞ þ expðU0
NT �UXTÞ�f

PC expðU0
C �UCÞ þ PPT ½expðU0

NT �UXTÞ þ expðU0
NT �UXTÞ�f

; (10)

where

XT ¼ Existing Public Transport mode (Bus),

NT ¼ New Public Transport Mode (Guided Transit Express),

f ¼ Expected Maximum Utility Parameter Value.

The utility of travel in the before situation is therefore:

U� ¼ ln expUC þf expUXTð Þ: (11)

This can been divided through by the cost parameter in order to derive a

generalised cost measure. Similarly in the after situation, the utility of travel can

be determined as:

U0� ¼ ln expU0
C þfðlnðexpU0

XT þ expU0
NTÞÞ½ �: (12)

A problem with such composite utility terms is that they cannot easily be split

into time and cost changes. Naı̈ve averaging of times and costs will give implausible

results. For example suppose a new public transport mode such as Guided Transit

Express is introduced and which on average has the same speeds as other modes (but

will be faster for some passengers) but fares are slightly higher than the bus.

Averaging would indicate that overall the generalized costs of travel have gone up

and overall travel demand has gone down. However, this is not plausible. Barring

congestion effects, a new transport mode cannot reduce demand, at worst it can have

no effect. The solution to this was to use the proportionate change in generalized

costs (and its component time and cost elements) derived from (11) and (12)
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to adjust both travel time and travel cost. Ideally, our HP model would include the

composite utility terms as explanatory variables but this was not possible with the

data sets used in this project.

Equations (9) and (10) thus determine the impact on modal shares of transport

policy changes. The impacts on travel times and costs are then computed from

(11) and (12) and these are then fed into the HP model (Table 6) to determine the

impact on house prices.

3.1 Road User Charge

In the first scenario, a cordon toll of £1 per day is introduced for those traveling into

or through the city centre (specified as OX1 and OX2). This is similar to the level of

road user charging being considered at the time in cities such as Bristol. It is supposed

that in the city centre there is an increase in speeds equivalent to a decrease of 5 min

of travel time. Tables 11 and 12 report the resultant prices in the two situations,

reflecting a value of time of 35 pence perminute and 7 pence perminute respectively.

The charge of £1 to enter the central area (OX1 and OX2) from OX4, OX5,

OX13, and OX14 has caused a decrease in house prices in the outer areas of

between 2% and 18%, with this decrease in house price being more marked in

the (re)weighted model as expected given the increase in the cost parameter value.

The slight increase in house prices in OX1 and OX2 of between 1% and 6% is due

to the forecast reductions of travel time in those areas. Overall, the unweighted HP

model suggests an average housing price decrease of 1.7%. However, this is

composed of an average 1.8% increase in house prices in the charged area and a

3.4% decrease in the non charged area. A similar pattern has recently been forecast,

using a different methodology, in work in Greater Manchester undertaken as part of

a parallel New Horizons project (David Simmonds Consultancy 2003).

Table 11 (Unweighted) Prices in Scenario 1 (£)

Area House type Before After % Change

OX1 Detach 307,670 311,591 1.26

Non-detach 178,524 181,445 1.61

OX2 Detach 355,240 361,250 1.66

Non-detach 226,093 232,218 2.64

OX4 Detach 284,196 277,080 �2.57

Non-detach 153,277 146,110 �4.91

OX5 Detach 280,293 273,953 �2.31

Non-detach 157,653 151,009 �4.40

OX13 Detach 238,246 232,122 �2.64

Non-detach 172,211 165,311 �4.17

OX14 Detach 239,772 233,001 �2.91

Non-detach 173,737 167,882 �3.49

Average 230,576 227,748 �1.69
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It should be noted that the HP model does not take into account relative

accessibility (in contrast to the bid rent and bid choice approaches) and hence

might understate the differential between charged and non-charged areas. On the

other hand, we have assumed that the revenue raised from road user charging is not

hypothecated into, for example, improvements to local public transport or bettering

the local urban environment. Such hypothecation could reduce the impact on

property prices in the outer area (David Simmonds Consultancy 2003).

3.2 Fuel Duty Increase

Scenario 2 considers an increase of 10% in fuel duty assuming that the petrol cost is

equal to 70 pence/l and that the fuel duty is equal to 60 pence. Tables 13 and 14

show the prices after this increase. As expected, such an increase has brought a

reduction of house prices everywhere, in this case of between 2% and 13%. Again

this is more marked in the reweighed model. Overall, the unweighted model

suggests an average house price reduction of 3.4%.

3.3 Fuel Duty Decrease

Scenario 3 considers a decrease of 10% in fuel duty, again assuming that the petrol

cost is equal to 70 pence/l and that the fuel duty is equal to 60 pence. Tables 15 and 16

show the resultant house prices after this decrease. In this scenario, house prices

increase everywhere as expected by between 2% and 9%. Overall, the unweighted

model suggests an average house price increase of 3.2%. However, in comparison

with a fuel duty increase, some interesting asymmetries are revealed. This reflects the

non-linear nature of the incremental logit models used to forecast the impact of fuel

duty on mode choice and hence on overall travel times and costs.

Table 12 (Weighted) Prices in Scenario 1 (£)

Area House type Before After % Change

OX1 Detach 289,990 297,123 2.40

Non-detach 160,844 166,444 3.36

OX2 Detach 340,789 348,122 2.11

Non-detach 215,643 229,163 5.90

OX4 Detach 275,014 232,175 �18.45

Non-detach 146,604 125,001 �17.28

OX5 Detach 274,280 241,745 �13.46

Non-detach 147,556 127,122 �16.07

OX13 Detach 225,907 198,122 �14.02

Non-detach 169,330 146,145 �15.86

OX14 Detach 215,974 188,412 �14.63

Non-detach 169,397 207,146 18.22

Average 219,277 208,893 �6.48
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Table 13 (Unweighted) Prices in Scenario 2 (£)

Area House type Before After % Change

OX1 Detach 307,670 300,712 �2.31

Non-detach 178,524 173,204 �3.07

OX2 Detach 355,240 346,041 �2.66

Non-detach 226,093 216,895 �4.24

OX4 Detach 284,196 276,686 �2.71

Non-detach 153,277 146,488 �4.63

OX5 Detach 280,293 272,544 �2.84

Non-detach 157,653 152,268 �3.54

OX13 Detach 238,246 230,620 �3.31

Non-detach 172,211 164,585 �4.63

OX14 Detach 239,772 230,828 �3.87

Non-detach 173,737 169,793 �2.32

Average 230,576 223,389 �3.35

Table 14 (Weighted) Prices in Scenario 2 (£)

Area House type Before After % Change

OX1 Detach 289,990 272,063 �6.59

Non-detach 160,844 153,144 �5.03

OX2 Detach 340,789 330,122 �3.23

Non-detach 215,643 201,075 �7.25

OX4 Detach 275,014 248,126 �10.84

Non-detach 146,604 132,122 �10.96

OX5 Detach 274,280 259,122 �5.85

Non-detach 147,556 137,896 �7.01

OX13 Detach 225,907 199,889 �13.02

Non-detach 169,330 158,015 �7.16

OX14 Detach 215,974 203,166 �6.30

Non-detach 169,397 158,126 �7.13

Average 219,277 204,406 �7.53

Table 15 (Unweighted) Prices in Scenario 3 (£)

Area House type Before After % Change

OX1 Detach 307,670 314,467 2.16

Non-detach 178,524 185,110 3.56

OX2 Detach 355,240 364,179 2.45

Non-detach 226,093 235,033 3.80

OX4 Detach 284,196 296,722 4.22

Non-detach 153,277 160,445 4.47

OX5 Detach 280,293 286,299 2.10

Non-detach 157,653 161,978 2.67

OX13 Detach 238,246 249,191 4.39

Non-detach 172,211 176,156 2.24

OX14 Detach 239,772 249,376 3.85

Non-detach 173,737 178,341 2.58

Average 230,576 238,108 3.21
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3.4 Introduction of the GTE System

Another scenario considered is the provision of the Guided Transit Express (GTE)

system. This system will serve the Kidlington–Oxford–Abingdon corridor studied

for the other scenarios. The aim of our model is to estimate the impact of the system

on house prices. Oxford GTE is a proposal for a guided bus way to allow an express

bus network to connect the city centre to key Park and Ride sites and surrounding

towns. The GTE route involves sections of off-highway (on a guide way) and on-

highway alignment. The concept of a guided bus scheme to link Park and Ride sites

to the north and south of Oxford with the City centre was first proposed in 1994 by

the Oxford Bus Company. At that time, the project was being considered as a

public– private partnership involving the County and City Councils and key private

sector organizations including Oxford’s bus companies, national construction

companies and local business and education establishments.

The intention of the GTE is to provide fast, reliable and congestion free routes

for public transport into the city centre of Oxford from country towns and villages.

The scheme will enable public transport operators to provide a more effective

network of routes and interchange points to serve Oxfordshire County and Oxford

City (CJ Associates 2001). It will help to ease congestion by removing cars from the

roads and routing some existing bus services from the roads into the guide way.

This will also help to improve the quality of the city centre in terms of both air

quality and pedestrian amenity. In addition, by providing additional public transport

services the stress on existing networks will be reduced.

The provision of the GTE will change travel times and costs. It is supposed that

this system will have fares around 10% higher than competing bus services and will

reduce travel times between the areas directly served by the route. Tables 15 and 16

show the forecast house prices after the introduction of the new system.

With the provision of the GTE prices go up everywhere. The increase in house

prices varies between 1% and 7%. This is not surprising since the new system brings

reductions in travel times and makes all areas more accessible. The more accessible

Table 16 (Weighted) Prices in Scenario 3 (£)

Area House type Before After % Change

OX1 Detach 289,990 310,122 6.49

Non-detach 160,844 175,369 8.28

OX2 Detach 340,789 358,889 5.04

Non-detach 215,643 236,728 8.91

OX4 Detach 275,014 299,125 8.06

Non-detach 146,604 159,223 7.93

OX5 Detach 274,280 289,693 5.32

Non-detach 147,556 156,478 5.70

OX13 Detach 225,907 240,102 5.91

Non-detach 169,330 178,690 5.24

OX14 Detach 215,974 233,489 7.50

Non-detach 169,397 179,236 5.49

Average 219,277 232,179 6.66
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is an area the higher are the price increases, with the biggest increases in central

Oxford (OX1), Kidlington (OX5) and Abingdon (OX13 and OX14). The

unweighted model suggests an average house price increase of 3.2%. This is broadly

consistent with the recent RICS (2002) survey. It should be noted that the forecast

increase in house prices is less in the weighted model because the GTE is more

expensive but faster than existing public transport and the weighted model involves

increasing the sensitivity of house prices to travel cost increases (Tables 17 and 18).

4 Conclusions

This study has had a number of findings as follows:

First, the literature review confirmed that the bid choice approach that combines

bid rent and choice models of residential preferences was the most appropriate way

forward.

Table 17 (Unweighted) Prices in Scenario 4 (£)

Area House type Before After % Change

OX1 Detach 307,670 320,348 3.96

Non-detach 178,524 191,200 6.63

OX2 Detach 355,240 363,100 2.16

Non-detach 226,093 233,299 3.09

OX4 Detach 284,196 290,602 2.20

Non-detach 153,277 156,430 2.02

OX5 Detach 280,293 286,739 2.25

Non-detach 157,653 164,510 4.17

OX13 Detach 238,246 246,113 3.20

Non-detach 172,211 180,078 4.37

OX14 Detach 239,772 245,750 2.43

Non-detach 173,737 179,660 3.30

Average 230,576 238,152 3.32

Table 18 (Weighted) Prices in Scenario 4 (£)

Area House type Before After % Change

OX1 Detach 337,035 345,831 2.61

Non-detach 207,889 215,683 3.75

OX2 Detach 393,457 399,396 1.51

Non-detach 264,310 269,249 1.87

OX4 Detach 313,967 319,575 1.79

Non-detach 184,728 188,379 1.98

OX5 Detach 276,222 282,439 2.25

Non-detach 192,497 200,238 4.02

OX13 Detach 249,749 257,711 3.19

Non-detach 203,172 211,577 4.14

OX14 Detach 250,507 256,131 2.24

Non-detach 203,930 210,240 3.09

Average 256,455 263,037 2.70
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Secondly, the SP models of residential choice confirmed the importance of

attributes such as transport times and costs, quality of schools, housing densities

and noise levels. These models produced plausible estimates of the value of non-

working travel time (in relation to travel cost) but appeared to produce implausibly

high valuations of attributes in relation to house costs. We may speculate that this

was due to a combination of different types of bias. Specification bias may have

arisen due to omitted variables, such as those related to house type. Instrument bias

may have arisen due to the unrealistic manner in which some attributes were

represented in the SP experiments. Non-commitment bias may have arisen, as

respondents in SP experiments are not committed to behave in the way they state

in the surveys. In particular, it is difficult to represent budget and other constraints

and the transaction costs associated with residential relocation in a SP experiment.

Thirdly, we found that disaggregate data did not readily exist in our Greater

Oxford case study area to develop a bid choice approach at a meaningful level of

spatial resolution. We are aware that house price data is becoming available at the

postcode sector level (e.g. OX13 – see for example www.upmystreet.com). This

in combination with 2001 Census data and improved transport models offers the

prospects of more disaggregate data in the near future, which we intend to inves-

tigate in follow-up research.

Fourthly, an HP model produced more plausible valuations of the impact of

travel time, quality of schools, housing densities and noise levels on house prices.

However, the impact of travel costs was implausible, although not particularly

statistically robust.

Fifthly, application of the HP model suggests that transport policy changes

appear to have relatively modest impacts on house prices, particularly if more

plausible assessments of the valuation of travel costs are used. The unweighted

HP model suggested road user charging might reduce house prices on average by

around 2%, although this was made up of a reduction of house prices of on average

3% outside the charged area and an increase in house prices of 2% inside the

charged area. A 10% change in fuel duty was found to have a similar overall effect,

leading to an average change in house prices of around 3%, but with the direction of

change being uniform throughout the study area. It was also found that introducing

a new public transport system (Guided Transit Express, now Expressway Oxford)

might increase house prices by around 3% on average, with the greatest increases

being in central Oxford and the outer suburbs (Abingdon and Kidlington) These

changes may be considered modest given the backdrop of an increase in house

prices over the last year of over 30%.

We therefore conclude that transport policy has a small but significant impact on the

housing market. For example, we estimate that our Kidlington–Oxford–Abingdon

corridor has a population of over 190,000 and almost 80,000 residential dwellings.

An average price increase of £7,000 as a result of the Guided Transit Express, would

suggest a windfall gain in the residential property market of over £500 million. This

suggests that there may be substantial scope for fiscal measures that capture such

increases in land values, though it should be noted that such measures would

themselves probably affect the behavior of households and hence of the market.

134 F. Pagliara et al.

http://www.upmystreet.com


Acknowledgements This work was financed by the Department for Transport’s New Horizons

programme. The assistance of the advisory panel (Bill Macmillan of the School of Geography and

Environment, University of Oxford, Peter Headicar of Oxford Brookes University and Ian Walker

of Oxfordshire County Council) is gratefully acknowledged. We are also grateful for important

contributions to this project made by Francisco Martinez and David Simmonds. We also give

thanks to three anonymous referees for their useful comments. All mistakes are, of course, our own.

References

Alonso W (1964) Location and land-use. Harvard University Press, Cambridge

Anas A (1982) Residential location markets and urban transportation. Academic Press, New York

Banister D, Berechman J (2000) Transport investment and economic development. UCL, London

C J Associates (2001) GTE for Oxfordshire Limited Feasibility Study. Internal Report for GTE for

Oxfordshire Limited

Cervero R, Landis J (1995) Development impacts of urban transport: a US perspective.

In: Banister D (ed) Transport and urban development. E&FN Spon, London

David Simmonds Consultancy in collaboration with the Transport Studies Unit, University of

Oxford (2003) Impacts of urban quality on business stage 2: modelling. Technical Note 4. The

impact of environmental improvements on business location decisions, TSU, University of

Oxford, Oxford

Debrezion G, Pels E, Rietveld P (2006) The impact of rail transport on real estate prices: an

empirical analysis of the Dutch housing market. Report, University of Amsterdam, Amsterdam

Hayashi, Y. and Doi, K. (1989) A model for analysing the imputation of consumer’s benefits

to land property values. In: Transport policy, management and technology towards 2001.

Proceedings of the Fifth World Conference on Transport Research, vol 1, pp 303–317

Hess DB, Almeida TM (2007) Impact of proximity to light rail rapid transit on station-area

property values in Buffalo New York. Urban Stud 14:1041–1068

Ingram GK (1998) Patterns of metropolitan development: what have we learned? Urban Stud

35:1019–1035

Kumar A (1980) Use of incremental form of logit models in demand analysis. Transp Res Rec

775:21–27

Martinez FJ (2000) Towards a land-use and transport interaction framework. In: Hensher DA,

Button KJ (eds) Transport modelling. Pergamon, Oxford, pp 145–164

Pagliara F, Preston J (2002a) State-of-the-art technical note 1. Transport and Residential Location

Project. Transport Studies Unit, University of Oxford, Oxford, January

Pagliara F, Preston J (2002b) Stated preference report technical note 2. Transport and Residential

Location Project. Transport Studies Unit, University of Oxford, Oxford, April

Pagliara F, Preston J, Kim JH (2002a) Residential location choice behaviour in Oxfordshire.

In: Proceedings of the European Transport Conference, Cambridge (Also Technical Note 3,

Transport and Residential Location Project, July)

Pagliara F, Preston J, Kim JH (2002b) Application report technical note 5. Transport and

Residential Location Project. Transport Studies Unit, University of Oxford, Oxford, December

Preston J (1991) Demand forecasting for new local rail stations and services. J Transp Econ Policy

25:183–202

RICS Policy Unit (2002) Land value and public transport summary of findings. ODPM/RICS,

London

Rosen S (1974) Hedonic prices and implicit markets: product differentiation in pure competition.

J Pol Econ 82:34–55

So HM, Tse RYC, Ganesan S (1996) Estimating the influence of transport on house prices:

evidence from Hong Kong. Academic papers, University of Hong Kong, Hong Kong

The Impact of Transport Policy on Residential Location 135



Tinch R (2002) Ideas for a case study – Commercial values of urban quality. In TSU and

David Simmonds Consultancy (eds) The effects of urban quality improvements on business

performance: a literature review, expert panel and modelling study, Reference 922, Appendix

C. University of Oxford, Oxford

TRL (Transport Research Laboratory) (1993) The longer term effects of the Tyne andWear Metro.

University of Newcastle, Tyne and Wear

Van de Vijvere Y, Oppewal H, Timmermans HJP (1997) The validity of hierarchical information

integration choice experiments to model residential preferences and choice. Geogr Anal

30:254–272

Walmsley DA, Perrett KE (1992) The effects of rapid transit on public transport and urban

development. HMSO, London

Zhang Y, Shing HF (2006) The London congestion charge and property prices: an evaluation

of the impact on property prices inside and outside the zone. http://mpra.ub.uni-muenchen.

de/4050/

136 F. Pagliara et al.

http://mpra.ub.uni-muenchen.de/4050/
http://mpra.ub.uni-muenchen.de/4050/


The Influence of Accessibility on Residential

Location

Jonas Eliasson

Abstract The focus of this paper is on modeling the influence of accessibility on

the household’s location decision. Our main theoretical contribution is an elaborate

specification of what we should mean by “accessibility” in this context. This is done

by assuming that households make a joint choice of location and activity pattern

subject to income and time constraints. This activity pattern implies a stochastic

travel pattern, the expected value of which is known at the time of location. The

locational utility then consists of four parts: the indirect utility of income and time

net of housing cost and expected total travel time and travel cost, the direct utility of

the optimal activity pattern, the direct disutility of the expected travel pattern and

the direct utility derived from location characteristics. The locational utility is then

used in a discrete choice model for the choice of location.

In the empirical part of the paper, we present methodology and results from

the estimation of TILT, Tool for Integrated analysis of Location and Travel, a land

use-transportation model for the Stockholm region. Among other things, we find

that the attractiveness of a location increases both with the accessibility to work-

places and with the accessibility to different types of service.

1 Introduction

The subject of this paper is modeling the influence of accessibility on a household’s

location decision. Our primary theoretical contribution is an elaborate specification

of what we should mean by “accessibility” in this context. We propose a framework

that integrates a stochastic travel pattern of the discrete choice type in an optimi-

zation model for the joint choice of location and optimal activity pattern. Further,

we show how a non-linear indirect utility function can be introduced in a way that is
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consistent with all the choices involved. On the empirical side, we present

methodology and results from the estimation of an instance of the framework, a

land use-transportation model for the Stockholm region called TILT, Tool for

Integrated analysis of Location and Travel. Apart from being an example of how

the proposed framework can be made operational, we show that accessibility to

workplaces as well as accessibility to service, shopping etc. are all important

determinants of the attractiveness of a location. We also suggest a measure of the

preference for the number of rooms relative to the floorspace.

The theoretical framework of TILT has previously been presented in Eliasson

and Mattsson (2000), together with a number of numerical simulations comparing it

to a standard nested logit model. Although the framework is almost exactly the

same in this paper, the derivation and interpretation of it is different on a number of

points. An earlier version of the framework was presented in Eliasson and Mattsson

(1998). Methodology and results from the estimation of the travel model of TILT

are presented in Eliasson (2000).

In the present paper, we will focus on modeling the location choice of house-

holds, and in particular the connection between travel and location. The outline of

this paper is as follows. In Sect. 1, we place the paper in a context of earlier

contributions in the field of location and transportation modeling. In Sect. 2, we

propose a framework for a household’s joint choice of location and activity/travel

pattern. Section 3 summarizes the estimation of the travel model that underlies

the location model. In Sect. 4 we report and discuss estimation methodology and

results. Section 5 concludes.

1.1 Modeling Household Behavior

Before we begin presenting the model, let us consider for a moment the complexity

of a household’s decision. This will serve as a background, and as a motivation for

the necessity to limit the scope of a model.

A household’s decisions of residential location, workplace, activities and travel

pattern are a inextricably entangled weave of mutual interdependencies and

constraints. Each of these choices is connected to all the others, and each one

consists of not one single choice but a range of options, all depending on each other

and with varying degrees of similarity and substitutability. Moreover, the choices

are subject to a multitude of constraints, such as budget constraints on long and

short term, time constraints and various scheduling constraints.

Depending on what time scale we consider, the nature of these constraints and

interdependencies changes, and it is not even obvious what can be “chosen” and

what is “given”. Is car ownership given or chosen? In the short run, it is given; in the

long run, it is chosen.

If we consider the decisions made during a single day, an individual may have to

be at work at a fixed time in the morning and to pick up children in the afternoon.

Constrained by these activities, and hence subject to a time budget constraint other
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activities have to be scheduled: shopping, cooking, eating, sleeping and so on.

Choosing the location and duration of one of these activities depends on the

location and duration of all the others. There are also dependencies between the

activities. One activity may be necessary in order to carry out another. Two types of

activities may be related in the sense that they are more or less close substitutes for

each other. Most of these choices are also subject to household interactions and

negotiations: Who picks up the children? Who does the shopping?

The choice of activity pattern is made even more complicated by the need to

construct a feasible travel pattern to accommodate these activities. The trips needed

to carry out the activities can then be more or less desirable in themselves, consisting

of anything from waiting in the rain for a bus to taking a walk in the park.

There is also a monetary budget constraint constraining all of these choices,

although it is difficult to specify exactly how. Over the course of a longer time-

period – a year or maybe several years – expenses, savings and income have to be

equal. It is not obvious how this long-term constraint should be translated into

something that applies to a shorter time period – a single day or a week.

Turning to the long time scale, maybe several years, the household may choose

another residential location, workplace and school, whichever applies. The house-

hold itself may change – children are born, grow up and leave home, couples get

married and divorced. The budget constraint is even worse to specify than before,

since it is uncertain what the household’s income and expenses will be in the years

to come. When comparing residential locations, the household has to evaluate the

attractiveness of the location by solving an activity pattern problem of the type we

described above conditional on this location, taking into account the constraints

caused by both the geographical location and the housing expenses. Moreover, this

predicted activity pattern (and the travel pattern associated with it) will not be

known precisely at the time of location. The household has only limited knowledge

of its future preferences, its precise activity and travel alternatives, and its time,

budget and scheduling constraints.

Furthermore, most of the choices we have mentioned above are also dependent

on the choices of other households, either as explicit market processes (e.g. the

housing market) or through externalities (e.g. traffic congestion and location

externalities).

The task of an urban modeler is therefore clearly so difficult that it is almost

ridiculous. What we want to do is to replicate not only one household’s behavior in
terms of residential choice, travel pattern and so on; we want to replicate the

interdependent choices of maybe millions of households. And more than that, we

want to predict not only what they do today, but what they would do under different
circumstances: if their income change, if travel times or travel costs change, if a

new shopping mall opens, if the number of working hours a day changes, if they get

the possibility to telecommute and so on.

This is not “almost” ridiculous – it’s absurd. Nevertheless, we have no choice but

to try. We need information about the consequences of various planning decisions,

decisions ranging from bus timetables and intersection signals to zoning regulations

and road construction. We need information of a type that goes beyond intuition,
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hopes and guesses. Modeling the behavior of the households and individuals is the

best way – and sometimes the only way – we have to get this kind of impact

assessment.

1.2 The Scope of a Model

This background serves as a motivation for two somewhat contradictory reflections.

First, it is necessary to limit the scope of a model. Models with very large scopes,

trying to capture everything from trip scheduling to household formation in one

framework, will run into problems with data availability, validation, estimation and

theoretical and empirical consistency. Second, confining the scope of a model too

much, keeping related choices fixed while focusing on some conditional decision,

will tend to underestimate the effects of a change. Think of a model that predicts

route choice while keeping mode and destination choice fixed. If we use such a

model to predict consequences of a large-scale change in the transportation system,

the impacts of these changes will clearly be underestimated. It also increases the

risk of specifying models that have no clear behavioral underpinning. This is

sometimes called the “statistical fallacy”: to include just about any variable in an

econometric estimation as long as it results in significant parameters. Think of

estimating the probability that an individual will choose a particular residential

location. Clearly, there are many variables affecting this choice, and they can be

included in the estimation in a large number of ways. Some of these ways will be

“consistent”, in the sense that they are compatible with an underlying behavioral

model, and some will not. How we include the explanatory variables will in general

have a considerable impact on the model’s predictions.

The scope of a model should be adjusted according to the questions we want to

analyze. For some questions, it may be necessary to try to capture the precise

scheduling and duration of a household’s activity pattern, while it is sufficient

to treat long-term choices such as residential location and workplace as fixed.

For other questions, choices like activity scheduling and route choice may be

of secondary importance, while the emphasis should be on capturing long-term

processes like household formation and residential relocation.

In this perspective, it is natural to classify different models according to which

choices they keep fixed. For example, the traditional approach of urban economics is

to treat the travel pattern as fixed (often just as a daily car trip to the city center),

while studying the choice of residential location. Conversely, the traditional

approach of transport models is to keep residential location fixed, while studying

the choice of destination, mode and travel route, or often just one or two of these

choices.

Another important classification of models is the way they treat the dynamics in the

system. Some models explicitly model the dynamics, often through a simulation

approach. Other ones model an equilibrium situation to which the system is assumed

to converge, for example traffic network equilibrium models or supply-demand
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equilibrium models. Equilibrium models can often be embedded in a dynamic

framework using discrete time steps. The system is then assumed to converge to

a short-run equilibrium in each time step, while there are long-term processes

changing over time. This approach has for example been used to model housing

markets, where the prices are assumed to be set to make short-run demand equal

short-run supply, while housing stocks change at a much slower rate, driven by the

current market price for housing.

1.3 The Context and Purpose of the Paper

With this perspective as a background, we will now describe the purpose of the

present paper, placing it in a context of more or less similar contributions. As our

focus is on the household’s location choice, we will not consider the housing supply

side, assuming that housing prices and characteristics are given. On the travel side,

we will limit the scope of the model to the choice of destinations, frequencies and

modes for a number of trip types, excluding route choice and trip scheduling.

Excluding trip scheduling means that we will not explicitly model durations and

timing of activities, although it is easily shown that our model is consistent with a

hypothetical underlying model including such considerations.

Reviews of the land use-transportation modeling literature are in ample supply,

for example Hunt et al. (2005), Chang (2006) and Wegener (1994a, b, 1998, 2004).

Here, we will only make a brief summary of how the way accessibility is assumed

to influence the attractiveness of a location has developed over time. The mathe-

matics will be sketchy, merely clarifying the points we wish to make. Formal and

comprehensive treatments of the material presented here can for example be found

in Fujita (1989) (urban economic theory), Anas (1982) (discrete choice location

models), and Ben-Akiva and Lerman (1985) (logit models).

What should we mean by the “accessibility” of a location? A fruitful way to sort

things out is to distinguish between activity pattern and travel pattern.1 An activity
pattern is a vector of activities, like work and shopping, each of which is carried out

at some particular location between two points in time. This activity pattern will

then be associated with a travel pattern, a vector of trips between points in space-

time with some travel mode and along some route. It is the activity that is the source

of utility, i.e. the reason to make a trip at all, either directly or indirectly. For

example, a trip may be caused by the wish to carry out an activity that generates

utility, or to buy something that will generate utility. The trip will be associated with

a generalized cost, consisting of a resource cost, which is the time and cost devoted

to the trip, and a direct disutility. The former stems from the fact that the trip will

1This approach draws on the work by Becker (1965), De Serpa (1971) and Evans (1972). The

“framework” sketched here, though, keeps just the parts of their work that we will need in this

context. One of the main omissions is the interdependencies between different types of activities,

where one activity can be a prerequisite of another.
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decrease the resources (time and money) that can be spent on other consumption and

activities. The latter is associated with characteristics of the trip such as waiting

times, number of changes, car queues and so on, and reflects for example that

waiting time at a bus stop is an inconvenience apart from just the time that is

spent on waiting (which is captured in the resource cost). In some cases, there can

be a direct utility associated with a trip, rather than a disutility; for example, there

are reports of people who enjoy walking. The generalized cost will depend on travel

times, travel costs etc., but also on available income and time and total travel costs

and travel times, which will determine the marginal utilities of time and money.

It is a crucial question how the activity pattern is assumed to generate the travel

pattern. Obviously, there are in general many travel patterns that are compatible

with a given activity pattern. But which of these travel patterns will be chosen? The

standard assumption, which we will use here, is that the travel pattern with the least

generalized cost will be chosen. We will say that the least-cost travel pattern

compatible with a given activity pattern is the travel pattern implied by the activity

pattern.

We can formalize this by letting u1(y,t) be the indirect utility of spending income

y and time t on goods and activities, u2(s) be the utility of an activity pattern s, and

pi the housing cost at location i. Let bi, ti and qi be vectors of the costs, times and

direct disutilities of the possible trips that can be made from location i, and x the

travel pattern implied by s. The “accessibility” of a location i can then be defined to
be the indirect utility of residual income (available income minus housing costs and

total travel costs) and residual time (available time minus total travel times) plus the

utility derived from the optimal activity pattern minus the direct disutility of trips2:

ui ¼ u1 Y � pi � bix; T � tixð Þ þ u2 sð Þ � qix: (1)

bix is the scalar product of travel costs and trips, giving the total travel cost for

the travel pattern. Similarly, tix and qix are the total travel time and total direct

disutility. In many of the contributions we review here, the travel pattern will be

fixed; the activity pattern will almost always be. If they are not, the approach we

described above can be formalized in the following way. Let j(s) be the set of travel
patterns compatible with the activity pattern s.

ui ¼ max
s

max
j2j sð Þ

u1 Y � pi � bij; T � tijð Þ þ u2 sð Þ � qijf g: (2)

This is a two-step optimization: the optimal travel pattern x ¼ j* is chosen

conditional on the activity pattern s, and the activity pattern is chosen to maximize

the locational utility ui.

2The direct utility of the location is omitted here, and with that the influence of other location

characteristics than accessibility. We will for example not treat the possibility to endogenously

determine lot sizes, which was one of the main interests of early urban economics. Neither will we

treat the implications of freely chosen working hours; these are considered to be fixed here.
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We now turn to how earlier studies fit into this framework. The dedicated study

of the interactions between household location, accessibility and land price began

in the 1960s with the contributions by Alonso (1964), Mills (1967) and Muth

(1969). At this early stage, the “activity pattern” was simply to be at work each

day and at home each night, and the travel pattern was merely a daily commuting

trip by car to the workplace in the city center. In the notation above, s (and thus

u2(s)) was fixed, and q was set to zero, leaving only the first term. (In fact, it was

first with Evans (1973) that residual time was included in the indirect utility

function.)

This simple “travel pattern” has later been extended, first to several travel modes,

then to several destinations and then to a general travel pattern (e.g. Jara-Dı́az and

Martı́nez 1999). In these extensions, the travel pattern is to some extent different

depending on location. The focus is still exclusively on the first term of (1), however;

it is left unexplained why the household makes any trips at all, since travel only means

less money and time left for other things.

Most of this tradition was purely theoretical, providing insights rather than

forecasts, and founded on general observations rather than dedicated investigations.

The 1960s also saw the first attempts at operational models, going beyond compara-

tive statistics and pencil-and-paper solutions. These attempts were only mildly

successful, however, both from a theoretical and an empirical point of view. The

introduction chapter in Anas (1982) provides an interesting account of the early

stages of the relationship between the theoretical urban economics school and the

empirically oriented urban modelers.

Anas’ book was also an early application of a new way to model the location

choice, advocating the use of discrete choice models based on random utility
(McFadden 1974). This introduced measurement of accessibility through the

expected generalized travel cost. The early random utility models and the urban

economics models still had in common that the demand for travel was not modeled

endogenously, but with the much more econometrically oriented random utility

models, the third term of ui in (1) – the direct disutility of the trip – was considered.
The expected generalized cost approach can be derived by assuming a linear

indirect utility function u1(y,t) ¼ ly + st. Dropping terms independent of i (since
they cancel out when comparing different locations), the locational utility becomes

ui ¼ �lpi � lbþ stþ qð Þx: (3)

lbþstþq is the vector of generalized costs. The contribution of the random utility

models was now that this generalized cost was supposed to be stochastic. The
assumption is that in addition to the measurable parts of the generalized cost –

travel times, travel costs etc. – there is a random term, unobservable to the modeler.

The accessibility was then measured by the expected generalized cost, which if the

random terms of the generalized cost is assumed to be independently Gumbel

distributed becomes the familiar logsum. This way, a location choice model was

obtained that was consistent with the successful travel models using discrete choice

models.
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There is a caveat here, though. The expected generalized cost approach depends

crucially on the assumption of a linear indirect utility function. It is not evident how

this approach can be extended to a nonlinear indirect utility function. This pitfall

seems to have received less attention than it should. For example, consider a model

of this type:

ui ¼ u1 Y � pið Þ � lbþ stþ qð Þx: (4)

This locational utility consists of a non-linear function of income minus housing

expenses, minus the expected generalized cost (a logsum measure, for example).

This will in general not be consistent, since there is no guarantee that the marginal

indirect utility of money will be the same throughout the model. Another problem

with a nonlinear indirect utility function is how the stochasticity in the underlying

travel model will carry over to the locational utility function. If the travel cost is

stochastic, the travel pattern will be stochastic, and so will the residual income and

time. It is not evident how this stochasticity will carry over to the locational utility

function. A third problem is if we want to consider a travel pattern consisting of

several trips. If the indirect utility function is nonlinear, then the marginal utility of

money will be non-constant. This means that the various travel choices will affect

each other, since they share the same marginal utilities of time and money, and

these marginal utilities will depend on total travel costs and times.

Another issue that seems to have received relatively little attention is the

relationship between the activity pattern and the travel pattern. In almost all

applications, the activity pattern is fixed to be for example five work trips a week,

and perhaps a number of shopping trips. In fact, the most common case is that the

underlying assumptions of a travel pattern are not explicit. Expressed in the terms of

the locational utility (1), the term u2(s) has been neglected.

The main theoretical contribution of this paper is an investigation of all these

issues. We propose a model in which each household makes a joint choice of

location and activity pattern, subject to time and budget constraints. This activity

pattern will then imply a stochastic travel pattern, which is not known deterministi-

cally by the individual. We will see how this approach solves the problems

indicated above.

In the past few years, there has been a growing interest in obtaining models with

a more direct connection between the choice of location and the choice of a travel

pattern, and modeling several trip types in an integrated way. An early and

influential model of this type is NYSIM (Anas 1995), which has been applied in

several studies. In NYSIM, location choice is made conditional on workplace

location. The utility of a location depends on expected generalized travel costs

for work trips and the utility derived from the optimal shopping trip pattern. The

theoretical framework of Jara-Dı́az and Martı́nez (1999) also fits into this line,

although they do not explicitly consider how the spatial distribution of the optimal

activity pattern is obtained. Their paper also fits into another recent trend, which we

also have argued for above, the growing interest in viewing travel as a derived

demand. Rather than modeling trips as a “good”, from which the household derives
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its utility directly, trips are viewed as necessary in order to perform other, utility-

generating (or at least income-generating) activities. That travel should be viewed

as a derived demand is also one of the two main motivations for the development of

activity-based travel models (see Ettema and Timmermans 1997; Axhausen and

G€arling 1992; Algers et al. 2005), the other being the striving to incorporate time-

geographic and scheduling constraints into the travel pattern. Ben-Akiva and

Bowman (1998) combine a location choice model with an activity-based travel

model.

1.4 Price Determination and Location Choice

Before we start to develop the model framework, however, we need to say some-

thing about how we assume that households choose between locations and how we

assume that housing prices are determined. There are primarily three major ways to

do this.

The first way is the discrete choice approach, pioneered by McFadden (1978),

Anas and Moses (1979) and Anas (1982). It has since been used in many opera-

tional models, either as models for joint choice of location, workplace and mode

choice (e.g. Abraham and Hunt 1997), or as an “add-on module” where households

choose location and dwelling type according to a discree choice model, but the

transport-related choices are handled through some sort of accessibility measure

rather than as a joint choice (e.g. Jonsson 2008; Waddell 2002). Here, the house-

holds calculate the locational utility of each possible location, and choose the one

yielding maximum utility. The households view the prices of locations as given,

just as in standard neoclassical economics. The modeler can only observe the

locational utilities up to a constant, which varies across households. The locational

utility is thus assumed to be Ui ¼ ui þ ei, where ui is the locational utility measured

by the modeler, called strict utility, and ei is modeled as a random term, known to

the individual but not to the modeler. The modeler can thus only predict the location

choice probabilities Pn
i(p), the probability that household n chooses location i given

the price vector p. The expected aggregated demand becomes Di(p) ¼ Sn P
n
i(p).

The price vector is then calculated to make demand equal supply (which can also

depend on p). If locations consist of a fixed number of individual dwellings (rather

than zones or some other aggregate), then Sn P
n
i(p)¼ 1 for each i. If households are

identical, this implies that prices are determined such that the strict locational utility

ui(p) is equal for all i.
Urban economics, on the other hand, also assume that households choose their

utility-maximizing location. But instead of working directly with the locational

utility ui, it is inverted to calculate a bid rent r(u,i), defined to be the maximum price

a household could pay for location i and still achieve utility u. Location i is sold to

the highest bidder. Market prices are determined by the equilibrium condition that

no household should be able to be better off by changing location. If households are
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identical, this implies that prices are determined such that the locational utility ui(p)
is equal for all i, just as in the discrete choice approach.

This approach appeared first as a theoretical construct in the theoretical urban

economics tradition, preceding the discrete choice approach. The approach was

then applied in an operational model by Ellickson (1981), and then in a stochastic

formulation by Martı́nez (1996). Martı́nez (1992) showed the consistency between

the discrete choice approach and the bid-rent approach under equilibrium assump-

tions. A similar approach has been used by Waddell (2000, 2002).

In this paper, we will focus exclusively on the demand side, i.e. the household’s

choice of location. We will assume that households take prices as given. However,

the way prices are formed on a competitive land market has implications on the

econometrics. The crucial difference between location choice models and for

example mode or destination choice models is that each of the alternatives is

actually chosen by some household (in equilibrium). This is a significant difference

from, say, mode choice models, where we are able to include alternatives chosen by

nobody by generating them from travel supply data. In fact, were it not for

differences across households such as income and family characteristics, the

observable part of the utility ui would be the same for all residences, assuming

market equilibrium prices. Generalized travel costs and environmental characteris-

tics will be capitalized into housing prices. Thus, it is evident that the explaining

power of the model is largely determined by how finely described the households

are, as opposed to, say, mode choice models, where the travel time and travel cost of

an alternative is often able to explain the observed choices to a large extent.

In passing, we note that the observation that prices are set such that ui is equal
everywhere (if households are identical) is the cornerstone of hedonic price studies,
where the price is explained as a function of the locational attributes. We will not go

into this line of research here; see Rosen (1974) and Wheaton (1977) for its

foundations.

The third way to model the housing market is microsimulation. Here, there is no
assumption of market equilibrium. Instead, the relocation process of individual

households is modeled at the microlevel, as a decision sequence typically consisting

of choosing whether to move, bidding on a new location, and a simulated bar-

gaining process on the price with the seller. Locations and prices are then the total

outcome of all these microlevel simulations. Thus, there is no explicit equilibrium

present, only a large number of individual contracts.

2 An Integrated Framework for Location and Travel Choices

The basic assumption of the model is that, when choosing location, each household

makes a joint choice of location and activity pattern. This activity pattern implies a

stochastic travel pattern. At the time of the location choice, only the expected travel

pattern is known. The choice is subject to time and budget constraints. There are
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two major advantages with treating all of these choices in one coherent framework

compared to treating location and travel decisions as a series of isolated choices.

The first is that this allows the marginal utilities of time, money and different

kinds of trips to depend on the entire activity and travel patterns. This ensures

consistency between the different choices, and also introduces dependencies

between the various choices. For example, increasing the number of leisure

activities at a certain destination, and hence the number of leisure trips there,

might influence other travel and activity choices in several ways. There is less

time and money left to spend on other things, including travel, so the marginal

utilities of time and money will increase. The marginal utility of leisure activities

might decrease, and we might expect that the marginal utility of leisure activities at

this particular destination would decrease more than the marginal utility of leisure

activities in general.

The second advantage is that this introduces an explicit connection between

location and trip generation. It is fairly common that location models introduce

some “accessibility measure” directly into the indirect utility function, but without

specifying what travel pattern a certain accessibility will generate. In other words,
the correspondence between the underlying travel pattern and the accessibility

measure is unclear. Here, we will let the utility of a location depend directly on

the utility of the optimal activity pattern, the indirect utility of residual income and

time and the direct disutilities of the expected travel pattern. This establishes an

explicit connection between the choice of location and the choice of activity and

travel pattern.

For the moment, we do not distinguish between different household segments to

reduce the number of indices. Naturally, many of the functions introduced below can

be different across household segments, where the segmentation can be according to

number of children, number of adults, employment status etc. Throughout the paper,

we will not consider household interactions, but assume that we can model the

household with a representative individual. The number of adults in the household

will, however, influence preferences for type of dwelling (Sect. 4). (Ideally we

should also distinguish between one- and two-worker households, but our data

does not contain information about the employment status of spouses.) (The follow-

ing derivation of the model follows closely that in Eliasson 2000.)

Call the individual’s available income per time period Y and its available time

per time period T. Minimal living costs (taken from the Swedish Consumer Agency

1997), are subtracted from available income Y. For households with two adults, Y is

half of the household income. Working hours are assumed to be fixed, so Y includes

working income, and working hours are subtracted from T – hence, T will be

different for non-workers, part-time workers and full-time workers. y and t are
the residual time and residual income, the time and money devoted to activities and

consumption other than travel and housing expenses. Let u1(y,t) be the indirect

utility function, i.e. the utility of spending y and t.
Our choice alternatives will be individual dwellings rather than zones or house

types. Although accessibility data are generally given on some more aggregate

(zonal) level, we have data on characteristics of the individual dwellings, such as
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floorspace, price and number of rooms. Let Ki be a vector of quality characteristics

describing residence i, such as environmental variables, number of rooms and so on.

Let u3(Ki) be the utility derived from these residence characteristics, and pi the
residential cost (rent or equivalent) per time period.

Theactivitypatternconsistsof frequencies and locations for eachactivityk¼1. . .k.
For example, the activity types we will use in the subsequent application is work,

school, shopping, service, leisure, social and “other”. This categorization can certainly

be refined if needbe. For eachactivity type,wewill distinguish between two sub-types,

location-generic and location-specific activities, and assume that a certain fraction of

the k-activities is location-generic, while the rest of the k-activities are location-

specific.

Intuitively, an activity is location-generic if it does not matter where it is carried

out. Formally, this means that the utility of performing an activity depends only on

the total performed “amount” of this activity, but not on where the activity has been
undertaken. For example: Having made one, say, grocery shopping trip means that

an additional shopping trip might seem less attractive. We might expect, though,

that the attractiveness of a particular destination is virtually independent of the

number of previous shopping trips to that destination.

For location-specific activities, on the other hand, the marginal utility of

performing an activity does depend on where the previous activities have been

carried out. For some activity types – we can think of recreational travel or non-

daily shopping – there is an incentive for variation. Usually, people do not want to

visit the same friend, shoe shop or cinema over and over again.

Let zk be the number of location-generic k-activities, skj the number of location-

specific k-activities in zone j, and u2(s,z) the utility of the activity pattern s ¼ {skj}
and z ¼ {zk}. The total number of k-activities is then zk + Sj s

k
j.
3

The activity pattern (s,z) implies some travel pattern X ¼ {Xk
ljm}, consisting of

trips from zone l to zone j in order to perform activity k. We will describe the

mapping from activities to trips with a vector-valued function Fi(s,z|y,t,B,T,Q).

This mapping depends on residential location i, the residual income and time y and
t, and the vectors of travel costs, times and disutilities B ¼ {Bijm}, T ¼ {Tijm} and

Q ¼ {Qk
ijm}. In its simplest form,Fi can just be one trip per activity, from home to

where the activity is performed; this is the approach we will use here. In more

3Note that we will only model the number and location of activities, not their durations or

scheduling in time. It could very well be argued that for each activity, an amount of time and

money must be spent. In the simplest case, we could introduce constraints requiring that each time

an activity k is carried out, some amount of money pk and time nk must be spent. Such constraints

(or more complicated ones) are called technical constraints, and are sometimes useful in theoreti-

cal frameworks (see e.g. De Serpa 1971, or Evans 1973). However, we seldom or never have

information of the nature of these constraints, and they are almost always very flexible, in the sense

that the money and time spent on an activity can be chosen rather freely. Instead, we assume that

the residual income and time y and t are distributed optimally over activities and goods, and the

resulting utility of this is u1(y,t) + u2(s,z). The dubious assumption is then that these function are

separable. However, the analysis conducted here can easily be extended to the case of inseparable

utility functions.
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elaborate travel models, we can introduce various forms of trip chaining, all the way

up to a full-fledged simulation model, including various time-geographic con-

straints and so on.

Bijm and Tijm are the travel cost and travel time from i to j with mode m. Qk
ijm is

the direct disutility of a k-trip with mode m between i and j. The Qk
ijm:s are

functions of trip characteristics like waiting times, inconveniences like riding a

bicycle on a shopping trip, and socioeconomic characteristics like sex and license

holding. Travel costs, travel times and travel utilities are all assumed to be stochas-

tic, in the sense that they vary a little from trip to trip, and are not completely known

neither to the household nor individuals at the time of the location choice. We will

let uppercase letters denote stochastic variables and lowercase letters their expected

values, i.e. bijm ¼ E(Bijm), tijm ¼ E(Tijm), q
k
ijm ¼ E(Qk

ijm).

This means that while the activity pattern is completely determined at the time

of decision, the travel pattern is not. Instead, the travel pattern X is stochastic from
the individual’s point of view, and the function Fi(s,z|y,t,B,T,Q) is a stochastic

function (in the sense that it depends on the stochastic variables B, T andQ). This is

because the household is assumed to have limited information about future trip

costs, times and direct utilities. Let x be the expected travel pattern E(X). We will

get back to the distributions of these variables in the next section.

This is the activity-travel optimization problem conditional on residence i:

max
y;t;s;z

u1 y; tð Þ þ u2 s; zð Þ � E
X
kljm

Xk
ljmQ

k
ljm

 !
þ u3 Kið Þ

" #
s.t: (5)

yþ pi þ E
X
kljm

Xk
ljmBljm

 !
¼ Y (6)

tþ E
X
kljm

Xk
ljmTljm

 !
¼ T (7)

zkr0 8 k (8)

skjr0 8 j; k (9)

where by definition

X ¼ Fiðs; zjy; t;B;T;QÞ: (10)

The constraints (8)–(9) can of course be replaced by more general maximum/

minimum constraints, if we have data on such constraints. Especially for work trips,

it can be natural to assume that the trip frequency is constrained to a fixed number,

either on the form sworkj ¼ constant if the workplace location is known in advance,

or on the form zwork ¼ constant if it is not.
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2.1 Specifying the Activity-Trip Mapping

We will now describe how the travel pattern X depends on the activity pattern (s,z),

i.e. the mapping X ¼ Fi(s,z|y,t,B,T,Q). Assume that the individual makes one

home-based trip per activity. The crucial assumption is that the choices of mode in

the case of trips to location-specific activities s and the choices of mode and

destination in the case of trips to location-generic activities z are postponed until

the time the trip is about to be made. When the trip is about to be made, the mode

(and destination, in the case of location-generic trips) with the least generalized cost

Cijm
k is chosen. Just as the costs, times and direct travel utilities, the generalized

cost is a stochastic variable, redrawn for each trip the household makes. The

generalized cost for a k-trip between i and j with mode m is defined to be

Ck
ijm ¼ lBijm þ sTijm þ Qk

ijm: (11)

l is the marginal utility of money and s the marginal utility of time. Note that these

are not constant, unless u1(y,t) is a linear function.

For location-specific trips (i.e. trips going to location-specific activities), the trip

maker chooses the mode m with the least generalized cost Cijm
k given origin i,

destination j and trip purpose k. For location-generic trips, the trip maker chooses

the mode m and destination j with the least generalized cost Cijm
k given origin i and

trip purpose k. Since the generalized cost is stochastic, the travel pattern Xijm
k will

also be stochastic. Once we specify the distribution of the generalized costs {Cijm
k},

we can (in principle) obtain choice probabilities Pm|ji
k and Pmj|i

k. With these, we can

write the expected travel pattern as

xkijm ¼ E Xk
ijm

� �
¼ zkPk

jmji þ skj P
k
mjij: (12)

We will let x ¼ {xijm
k} be the expected travel pattern, while X ¼ {Xijm

k} is the

underlying stochastic travel pattern.

The generalized cost can be separated into two components. The first two terms

of (11) constitute the resource cost of the trip. This cost is the decrease in utility

caused by the decrease in time and money available for other consumption and

activities. The less residual amount of time and money the individual or household

has, the higher the marginal utilities l and s be, and the higher will this cost be

perceived. Little residual income can either be caused by low income or by high

expected travel expenses, or a combination of both. Similarly, little residual time

can either be caused by long working hours or by high expected total travel times, or

a combination.

The second type of the cost, the third term of (11), is the direct disutility of a trip,

reflecting that the trip may be a utility or disutility in itself, apart from the time and

money spent.
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Now, we assume that the distributions of the costs, times and direct utilities are

such that the generalized cost for location-specific trips can be written as

Ck
ijm ¼ ckijm þ em; (13)

where em is a negatively Gumbel distributed stochastic variable4 with E(em)¼ 0, and

ckijm ¼ E Ck
ijm

� �
¼ lbijm þ stijm þ qkijm: (14)

cijm
k is called the strict generalized cost, and is the part of the Cijm

k that the modeler

can measure and the individual can predict when choosing location. The random

terms em are assumed to be unobservable to the modeler and unknown to the

individual at the time of the location choice. Once a (k,i,j)-trip is about to be

made, a vector of stochastic terms {em} is drawn.

For location-generic trips, we assume in a similar way that

Ck
ijm ¼ ckijm þ ejm; (15)

where ejm is negatively generalized extreme value distributed with E(ejm) ¼ 0 and

cijm
k was defined in (10).

These choices of distributions mean that we can calculate the choice probabili-

ties in (8). Pm|ji
k becomes a logit choice probability, and Pmj|i

k a nested logit choice

probability5:

Pk
mjji ¼

em
k
2
Wk

mP
m
em

k
2
Wk

m

wk
j e

�mk
1
ckijmP

j

wk
j e

�mk
1
ckijm

(16)

Pk
mjji ¼

e�mk
3
ckijmP

m
e�mk

3
ckijm

; (17)

where

Wk
m ¼ 1

mk1
ln
X
j

wk
j e

�mk
1
ckijm : (18)

4When we say that e is negatively Gumbel distributed, we mean that (�e) is Gumbel distributed.

The same convention is used for the GEV distribution.
5We assume that the generating function in the GEV distribution is chosen such that the nested

logit choice probability is obtained. Details can be found in McFadden (1978). For presentational

purposes, we assume that the nested model has mode choice at the upper level. The structure is of

course determined during estimation. In the present application, mode choice happens to be at the

upper level.
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wj
k is a measure of the relative size of zone j with respect to k-trips. This corrects

for the bias that would otherwise be introduced by the fact that each alternative

destination zone j is in fact an aggregate of several “elemental” destinations, and

that the number of such elemental destinations is different across zones. They are

normalized such that Sj wj
k ¼ 1. We will describe these measures later on.

The expected generalized cost for a location-specific trip becomes

ckij ¼ E min
m

Ck
ijm

n oh i
¼ � 1

mk3
ln
X
m

e�mk
3
ckijm : (19)

The expected generalized cost for a location-generic trip becomes

cki ¼ E min
j;m

Ck
ijm

n o� �
¼ � 1

mk2
ln
X
m

em
k
2
Wk

m : (20)

It can also be shown that

E Xk
ijmC

k
ijm

� �
¼
X
k

zkcki þ
X
jk

skj c
k
ij: (21)

Proving this is straightforward but a bit lengthy. A proof can be found in

Eliasson and Mattsson (2000).

2.2 Solving the Activity-Travel Problem

We will now derive the solution and the optimal value of the activity-travel

problem. The optimal value ui will be the maximal utility that the household can

achieve if choosing location i. The solution will consist of the optimal activity

pattern (s,z), its expected travel pattern x and the money and time (y,t) devoted to

other things than travel.

Assume that all activity types are essential, so we can drop the nonnegativity

constraints (8)–(9). The Lagrangian becomes

L ¼ u1 y; tð Þ þ u2 s; zð Þ þ E
X
jkm

Qk
ijmX

k
ijm

 !

�l yþ pi þ E
X
jkm

BijmX
k
ijm

 !
� Y

( )

�s tþ E
X
jkm

TijmX
k
ijm

 !
� T

( ) (22)
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¼ u1 y; tð Þ þ u2 s; zð Þ � l yþ pi � Yð Þ � s t� Tð Þ
�
X
jk

skj c
k
ij �

X
k

zkcki :

In the last expression, we have used (13) and (21) to collect the expected values

of the travel costs, travel times and direct utilities into the expected generalized

costs ckij and cki.
The optimal conditions become

@L

@y
¼ 0 ) l ¼ @u1 y; tð Þ

@y
(23)

@L

@t
¼ 0 ) s ¼ @u1 y; tð Þ

@t
(24)

@L

@zk
¼ 0 ) @u2 s; zð Þ

@zk
¼ cki 8k (25)

@L

@skj
¼ 0 ) @u2 s; zð Þ

@skj
¼ ckij 8j; k (26)

@L

@l
¼ 0 ) yþ pi þ

X
kmj

zkPk
mjji þ skj P

k
mjji

� �
bijm ¼ Y (27)

@L

@s
¼ 0 ) tþ

X
kmj

zkPk
mjji þ skj P

k
mjji

� �
tijm ¼ T: (28)

Note that the derivatives with respect to the lagrange parameters l and s
(27)–(28) become variants of the original time and budget constraints (7)–(8)

where the expectation values have been replaced by explicit expressions.

Let s*, z* be the optimal activity pattern from (23)–(28), and x* the implied

expected travel pattern (through (12)). Plugging the solution into the objective

function, we obtain ui, the locational utility of i:

ui ¼ u3 Kið Þ þ u1 Y � pi �
X
kmj

bijmx
k�
ijm; T �

X
kmj

tijmx
k�
ijm

 !

þ u2 s�;z�ð Þ þ E
X
kmj

Qk
ijmX

k�
ijm

 !

¼ u3 Kið Þ þ u1 Y � pi �
X
kmj

bijmx
k�
ijm; T �

X
kmj

tijmx
k�
ijm

 !
þ u2 s�;z�ð Þ �

X
k

zk�cki �
X
k

sk�j ckij þ
X
kmj

xk�ijm lbijm þ stijm
� �

:

(29)
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Now, if total travel costs and travel times are small compared to total available

income and time, we can make a Taylor expansion of u1(y,t) around (Y-pi,T), which
gives us

ui � u3 Kið Þ þ u1 Y � pi; Tð Þ þ u2 s�;z�ð Þ �
X
k

zk�cki �
X
k

sk�j ckij

þ
X
kmj

xk�ijm l� @u1
@y

Y � pi; Tð Þ
� 	

bijm þ s� @u1
@t

Y � pi; Tð Þ
� 	

tijm

� �
:

(30)

From the optimality conditions, we know that l ¼ @u1 y;tð Þ
@y and s ¼ @u1 y;tð Þ

@t . If the

travel costs and travel times are small compared to total income and time, then (y,t)
will be close to (Y-pi,T) and consequently l � @u1 Y�pi;Tð Þ

@y and s � @u1 Y�pi;Tð Þ
@t , if u1 is

not highly non-linear for the range of interest. Assuming this, ui simplifies to

ui ¼ u3 Kið Þ þ u1 Y � pi; Tð Þ þ u3 s�; z�ð Þ �
X
k

zk�cki �
X
k

sk�j ckij: (31)

This is the form of locational utility that we will use in our application.

Note that the utility derived from travel has a logical structure: for each activity

type, the utility consists of the utility of the optimal amount of activities minus the

number of activities times their expected generalized cost. For perfectly inelastic

activity frequencies, like perhaps work, only the last term will matter, since the first

one will be constant. Since the expected generalized costs (cki and c
k
ij) are (almost6)

the usual logsum measures, the common approach of just including a workplace

accessibility measure in the form of a logsum can be motivated by the framework

presented here. If we believe that location i is chosen conditional on work place j,
we should use cwij (where “w” means “work”); if we believe that work place is

instead chosen conditional on location, we should use cwi. Using this approach of

course means assuming both that work trip frequency really is inelastic and that we

can neglect the influence of other trip types.

As explained above, the generalized costs cki and ckij as well as the optimal trip

frequencies skj and z
k depend on residual time and income, which is defined in (27)

and (28). This is because the time and cost sensitivities in the generalized cost, l
and s, are defined by (23) and (24). This means that not only will households with

less available time T and income Y experience higher generalized costs and lower

optimal trip frequencies; the larger the expected amount of time and money spent

on travel is, the larger the time and cost sensitivities will be. This means that both

having relatively less available time or income and having relatively more expected

travel expenses (in terms of time and/or money) will tend to increase the importance

of good accessibility.

6The difference from the most commonly used “logsum” measures is that the time and cost

sensitivities (l and s) are not constant.
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3 Estimating the Travel Model

The estimation of the travel model is described in detail in Eliasson (2000). Here,

we will only briefly reiterate what is necessary to follow the discussion of the

interaction between the travel model and the location model.

Ideally, the entire model (travel and location choices) should be estimated

jointly. This is perfectly possible in principle, but unfortunately, the data we have

available does not permit this. The data we will use is on one hand the recent

Swedish national travel survey, and on the other hand a recent housing survey for

the Stockholm region. The travel survey contains one-day travel diaries, travel

supply data such as travel times and costs between pairs of zones, and finally

destination supply data such as number of workplaces of different types in each

zone. The housing survey contains detailed data on a number of dwellings, together

with detailed data on the household living in it. Unfortunately, there are key

variables that are only present in one of the data sets, not both. For example,

there are no employment data in the housing survey, neither on employment status

or profession, nor on workplace. Further, the geographical resolution is lower

(sometimes much lower) than in the travel survey, and there is no travel-related

data at all; one could for example have hoped to at least get data on car ownership or

license holding. In the travel survey, the most important missing variables are

housing price and housing characteristics. Income data is also of a much lower

quality than in the housing survey (where it has been taken from national income

tax registers). Altogether, this means that we have basically no other choice than to

estimate the model in two steps.

Another problem was that we could not use precisely the same household

segmentation in the travel model as in the location model, due to missing socio-

economic variables in each of the two data sets. The segmentation used in the travel

model is found in Table 1. The segmentation used in the location model is presented

in the next section.

Average trip frequencies for the seven different trip types and five socio-

economic segments is found in Table 1. The estimation is made in a way that

ensures that average trip frequencies per segment is replicated by the model.

Up to now, we have not specified the functions in the framework. Introducing

household segment index h, we use the following specifications:

u1 y; tð Þ ¼ a ln yþ b ln t (32)

Table 1 Trip frequencies per day and individual

Work School Service Other Social Leisure Shopping Total

Employed 0.939 0.002 0.054 0.341 0.069 0.105 0.061 1.571

At home 0.024 0.002 0.120 0.400 0.089 0.192 0.073 0.899

Students 0.070 0.431 0.034 0.536 0.039 0.067 0.056 1.232

Retired 0.010 0.001 0.073 0.326 0.040 0.182 0.064 0.695

Other 0.068 0.037 0.133 0.408 0.083 0.108 0.063 0.900
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uh2 s; zð Þ ¼
X
k

ghkrk ln zk
� �þX

jk

ghk 1� rk
� �

wk
j ln skj

� �
(33)

uh3 Kið Þ ¼
X
r

yhrkri : (34)

a, b, the yhr:s, the rk:s and the ghk:s are parameters to be estimated. wk
j is a measure

of the relative size or attractiveness (both interpretations are possible) of destination

jwith respect to k-trips, normalized such that Sj w
k
j¼ 1 for all k. kri are the elements

of theKi vector, measuring characteristics such as floorspace, number of rooms and

so on. The rk parameters are mixing parameters, measuring the fraction of k-trips
that are location-generic.

With these specifications, we can solve the expected travel pattern from (23)

to (28):

xkjm ¼ E Xk
jm

� �
¼ gk

1� rk
� �

wk
j

ckij
Pk
mjji þ gk

rk

cki
Pk
mjji: (35)

The strict generalized cost ckijm from (13) becomes

ckijm ¼ a
y
bijm þ b

t
tijm þ qkijm (36)

and the choice probabilities and expected generalized costs are found in (16)–(20).

Note that y and t in (35) are calculated endogenously through the budget constraints
(27)–(28):

y ¼ Y � pi �
X
kmj

zkPk
mjji þ skj P

k
mjji

� �
bijm (37)

t ¼ T � t�
X
kmj

zkPk
mjji þ skj P

k
mjji

� �
tijm: (38)

The direct trip disutilities qkijm are assumed to be linear functions of trip char-

acteristics (waiting times, in-vehicle times etc.) and socioeconomic characteristics

(license holding, sex etc) and include mode- and trip type-specific constants.

These are admittedly simple suggestions. There are two advantages with delib-

erately choosing simple functional forms at this stage, however. First, it makes the

estimation process simpler, both because the functions are linear in their parameters

and because we can obtain analytical solutions to the optimal travel pattern

(23)–(28). Since this is a fairly large and complex model anyway, it seems desirable

to reduce the computational burden and complexity whenever possible, at least in

this first application. Second, showing that the framework works reasonably well

even with such simple functional forms is a convincing argument for the framework
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as such. Certainly, it will work even better with more flexible functional forms, say

Box-Cox, CES or translog functions. This is a natural next step once we have

established the applicability of the approach.

For work and school trips, we assume that the trip frequencies are constant

within a household segment, and equal to gw and gs, respectively. Workplace and

school location is assumed to be chosen conditional on residence location, so this is

not determined when choosing residence7. Since it can be assumed that there is no

real “incentive for variation” over workplaces and schools, work and school trips

should be assumed to be purely location-generic, and we set the mixing parameters

rw ¼ rs ¼ 1. This means that the expected travel pattern for work trips becomes

xworkjm ¼ gwPwork
mjji ; (39)

where Pwork
jm|i is the choice probability from (16). The school trip pattern is

obtained in the same way.

4 Estimating the Location Choice Model

4.1 The Location Choice Probability

The location utility ui was derived above in (31). We assume that we can only

observe ui up to an additive constant ei, which is different even across seemingly

similar households. Using the function specifications above (32)–(34), we obtain

the following expression for a household from segment h:

ui ¼
X
r

yhrkri þ a ln Y � pið Þ

�
X
k

ghkrk ln cki �
X
jk

ghk 1� rk
� �

wk
j ln c

k
ij � ghwcwi � ghscsi þ ei:

(40)

cwi and c
s
i are the expected generalized cost for work and school trips. c

k
i and c

k
ij are

expected generalized costs for location-generic and location-specific discretionary

trip types, respectively.

This particularly simple form comes from choosing the travel utility function

u2(s,z) to be logarithmic, which causes the terms Sk z
kcki and Sjk s

k
jc
k
ij in (31) to be

independent of i, and thus cancel out when comparing different residences i.
From the travel model estimation, we obtain the rk:s and the sizes of the ghk

relative to each other, i.e. we know each ghk up to a multiplicative constant. That we

7It would be interesting to compare this assumption with the opposite one, that location of

residence is chosen conditional on work place. Unfortunately, our data does not permit this,

since the housing survey does not contain data on workplaces.
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only know ghk up to a multiplicative constant is because we cannot separate the

variance of ei from the ghk parameters. It remains to estimate a, gw, gs, the yhr:s and
the scale of the ghk:s.

Assuming that the idiosyncratic term ei is generalized extreme value distributed,

we obtain the following expression for the probability that a household will choose

residence i. Dividing the residences in a number of disjoint sets Ha, we write

Pi ¼ exp m4Uað ÞP
a
exp m4Uað Þ

exp uið ÞP
i2Ha

exp uið Þ ; (41)

where Ua ¼ ln
P
i2Ha

exp uið Þ:
As subsets Ha, we will use rented apartments, owned apartments and houses

(which are always owned). Other divisions are of course possible. In Sweden, the

price on the former apartment type is subject to rent control, while the price of the

latter is set on the open market, operating much like a standard house market. That

the latter apartment type is “owned” is not the whole truth. The legal status of

“owned” apartments in Sweden is a bit complicated; for our purposes, it is sufficient

to know that although the apartment is “owned” in the sense that the contract of the

apartment is bought on an open market, a “rent” is also paid to the “association”

owning the building, covering much of the maintenance costs and often also heating

and water.

4.2 Data and Estimation Methodology

The data on dwellings and residents came from the Swedish Housing Survey,

constituting a representative sample (after weighting) of households and dwellings

in the county of Stockholm. It is thus not a sample of only recent movers, which

might introduce a certain inconsistency in the material since we use the current
prices and accessibilities in the estimation – not their values when the location

choice was taken. We have, however, no data on how long the household has been

living in their dwelling.

There were 919 houses, 1,242 owned apartments and 882 rented apartments in

the data set. Clearly, this is too many alternatives to handle, so we used choice set

sampling to reduce the number of terms in the second denominator of (41).

McFadden (1978) proved that a multinomial logit model with sampled choice

sets gives asymptotically unbiased coefficient estimates, if each sampled alternative

is weighted with its sampling probability, or if alternative-specific constants are

used. We sampled 20 residence alternatives for each observation, chosen to obtain

seven houses, seven owned apartments and seven rented apartments in each choice

set (including the chosen residence). Having the different housing types in different

nests has the additional benefit of eliminating the sampling weights, since they

cancel out in each nest.
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The population are divided into seven different socioeconomic segments.

These are:

Segment number Description

1 Retired, single

2 Working, single, no children

3 Working, single, one or more children

4 Retired, married

5 Working, married, no children

6 Working, married, one child

7 Working, married, two or more children

“Married” is just a shorthand for two-adult households; whether these are

actually married or just living together does not matter. “Working” means that at

least one adult in the household is working, unemployed or studying. “Retired”

means that all adults in the households are retired. There were no retired households

with children in the sample.

After testing several different specifications and variables, we arrived at the

following model derived from (40).

ui ¼ yha þ yfs � floorspace½ � þ yhroom � roomdensity½ �
þ aln Y � pið Þ � G � discr:acc½ � � ghwcwi � ghscsi:

(42)

yha are constants to be estimated, different for the three dwelling types, rented

apartments, owned apartments and houses, and different for each household

segment. The constant for houses was normalized to 0.

“floorspace” is the floorspace in square meters, and yfs is a parameter to be

estimated. We tested letting this be segment-specific, but these differences were not

significant. Y, income, is the available income per month after tax and various

supports, and pi is the average monthly cost for dwelling i. For rented apartments,

this is simply rent per month. For owned apartments, it is the sum of mortgages, rent

and maintenance costs (to the extent these are not covered by rent). For houses, it is

the sum of mortgages and maintenance costs (including heating, water etc.). All

costs were reported by the households themselves and included in the survey data.

“Room density” deserves an explanation. It turned out that the number of rooms

was so correlated with floorspace that we could not estimate both parameters for

floorspace and number of rooms. Instead, we constructed a measure of whether a

dwelling had few or many rooms relative to its floorspace, in an approach somewhat

similar to two-stage least squares. To our knowledge, this way of separating floor-

space and number of rooms has not been proposed before.

First, we estimated a linear regression model, regressing the number of rooms

(#rooms) on floorspace:

#roomsi ¼ a0 þ a1 � floorspacei: (43)
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Then we defined “room density” to be the residuals from this model, i.e.

room density½ �i ¼ #roomsi � ð a0 þ a1 � floorspaceiÞ: (44)

This “relative” room measure was then entered as an explanatory variable, and a

separate parameter for each segment was estimated – the parameter for floorspace

was not significantly different between segments. Two other methods we tried were

using floorspace/#rooms and #rooms/floorspace, but neither of them worked well.

“discr. acc.” is the accessibility of discretionary trips, i.e. all trip types except

work and school trips. As can be seen from (39), this is defined to be

discr:acc ¼ �
X
k

ghkrk ln cki �
X
jk

ghk 1� rk
� �

wk
j ln c

k
ij: (45)

All the parameters in this expression are already obtained from the travel model.

Note from the definition of the generalized costs cki and ckij that these depend on

residual income (available income minus housing and expected total travel

expenses) and residual time (available time minus expected total travel time).

These will therefore be different across households. The parameter G is the same

for all household segments. We tested relaxing this, but this turned out to yield

insignificant parameter values, sometimes with the wrong sign. This was actually

expected, since differences in accessibility preference across household segments

should (theoretically) be captured by the ghk parameters. We also tried to estimate

all the parameters Gghk without constraints, to see if we obtained the same ratios

between ghk as we did from the travel model. Unfortunately, the cki:s and c
k
ij:s were

so correlated across k that this was not possible.
The working trip parameters ghw are assumed to be equal for all household

segments with workers, and zero for others.

4.3 Estimation Results

Results from the estimation are found in the Table 2.

The basic preferences for housing type – rented apartment, owned apartment or

house – per household segment are what we expected (remember that the “house”

constant is normalized to 0). All else being equal, single-adult households (segment

1–3) tend to prefer (or at least live in) rented apartments, followed by owned

apartments and houses last. The “preference” (if we interpret the constants as

preference parameters) for rented apartments over owned ones is especially strong

for segment 3, retired singles. Two-adult households tend to prefer houses,

followed by rented apartments with owned apartments last. Especially couples

with two or more children tend to avoid owned apartments. This indicates that

households from this segment prefer houses if they can afford to buy a dwelling at

all; if they cannot afford to buy, renting an apartment is the only choice.

160 J. Eliasson



That the work trip parameter gw is positive and significant shows that accessi-

bility to jobs indeed has a significant influence on the attractiveness of a location,

which is what we expected. Further, this also holds for G, the parameter measuring

the utility derived from discretionary trips. Including accessibility to other things

than workplaces thus contributes significantly to the model’s explaining power.

However, experimenting shows that including several discretionary trip types in the
location utility function contributes relatively little beyond the first few; once we

have included, say, shopping trips, adding for example service trips increases the

log-likelihood value only marginally. The reason for this is of course that the

generalized costs for service and shopping trips (in this example) are highly

correlated, which is natural since service and shopping establishments tend to locate

near each other. In an urban region where different types of establishments do not

tend to locate close to each other to the same extent as in Stockholm, the

generalized costs will consequently be less correlated – one could for example

imagine a city where shops and leisure establishments (like restaurants and

cinemas) were more geographically separated than in Stockholm.

Zones do not differ much with respect to accessibility to schools: most school

trips are short (within the zone), so school accessibility largely depends merely on

the number of schools within the zone – which in turn is highly correlated with

Table 2 Parameters in the locational utility, Log-likelihood 8,398.51, r2 0.0671
Variable Estimate Std. Error t-ratio

yha Rented apt. segm. 1 2.636 0.54 4.9

yha Owned apt. segm. 1 2.044 0.46 4.4

yha Rented apt. segm. 2 3.009 0.54 5.6

yha Owned apt. segm. 2 2.667 0.49 5.5

yha Rented apt. segm. 3 3.096 0.66 4.7

yha Owned apt. segm. 3 1.372 0.54 2.6

yha Rented apt. segm. 4 �0.076 0.18 �0.4

yha Owned apt. segm. 4 �0.175 0.19 �0.9

yha Rented apt. segm. 5 �0.438 0.14 �3.1

yha Owned apt. segm. 5 �0.820 0.19 �4.4

yha Rented apt. segm. 6 �0.486 0.19 �2.6

yha Owned apt. segm. 6 �1.008 0.25 �4.0

yha Rented apt. segm. 7 �0.343 0.15 �2.3

yha Owned apt. segm. 7 �1.161 0.25 �4.6

Work trips (gw) 0.151 0.05 3.3

Discr. trips (G) 1.029 0.29 3.5

Income (a) 0.587 0.08 7.1

Floorspace (yfs) 0.00418 0.00058 7.2

Room density segm. 1 �0.357 0.09 �3.8

Room density segm. 2 �0.689 0.07 �9.6

Room density segm. 3 0.408 0.14 3.0

Room density segm. 4 0.258 0.08 3.2

Room density segm. 5 0.135 0.05 2.6

Room density segm. 6 0.273 0.08 3.6

Room density segm. 7 0.491 0.06 7.9

Logsum (m4) 0.7579 0.120 6.3
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workplace and population density, and thus correlates with workplace accessibility.

Hence, the school trip parameter ghs did not come out significantly different from

zero, so it was excluded from the model.

That the income parameter a is positive is of course necessary if we want to put

some trust in our model. We just point out that obtaining this result is not entirely

trivial, since the price may be well predicted by the other included variables. We

recall the discussion in the introduction (Sect. 1.4) on the determination of market

prices; were all households identical, we would expect prices to be determined such

that utility was the same everywhere, implying that the price would be perfectly

predicted by the other variables.

Turning to the preferences for rooms and floorspace, we see the expected results.

All segments value more floorspace higher than less, all else being equal. The

differences infloorspace preference betweenhousehold segmentswere not significant,

so we estimated a joint parameter for all segments. The room density, as explained

above, measures the relative preference for many rooms conditional on the amount of

floorspace. A negative parameter thus reveals that the segment prefers fewer rooms

than the average number of rooms implied by the floorspace, and conversely a positive

parameter reveals a preference for more rooms. If we order the segments with the

segment wanting the most rooms first, we get

Segment no. Description Room preference

7 Working, married, �2 children 0.491

3 Working, single, �1 child 0.408

6 Working, married, one child 0.273

4 Retired, married 0.258

5 Working, married, no children 0.135

1 Retired, single �0.357

2 Working, single, no children �0.689

The results seem intuitive, indicating that this way of separating floorspace and

number of rooms in fact captures the room preference the way it should. That

retired have higher room preference than working households probably depends on

that, in many cases, their current dwelling was bought when the now retired

household had children living at home.

5 Conclusions

The focus of this paper is on modeling the influence of accessibility on the house-

hold’s location decision. Our main theoretical contribution is an elaborate speci-

fication of what we should mean by “accessibility” in this context. This is done by

letting the utility of a location consist of four parts: the indirect utility of income and

time net of housing costs and expected total travel times and travel costs, the direct

utility of the optimal activity pattern, the direct disutility of the expected travel

pattern and the direct utility derived from location characteristics. We have also
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shown how a non-linear indirect utility function can be introduced in a consistent

way into the joint activity pattern-location choice problem. Letting the indirect

utility function be non-linear is a prerequisite for the available income and time to

influence the choice of location, activities and travel.

In the empirical part of the paper, we have presented methodology and results

from the estimation of an instance of the framework – TILT, Tool for Integrated

analysis of Location and Travel, a land use-transportation model for the Stockholm

region. TILT is an operational housing demand model, although the presentation

here mainly serves to show that the framework is possible to estimate and yields

the expected results. We found that the attractiveness of a location increased both

with the accessibility to workplaces and with the accessibility to service, shops etc.

Although this was expected, we want to point out that it is fairly common in location

choice models to include only workplace accessibility, a practice that our results

indicate will give biased estimations of location utilities. Further, we demonstrated

the construction of a measure of the relative number of rooms given the floorspace.

Including this measure in the locational utility yielded satisfactory results.
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Modeling Residential Location in UrbanSim

Paul Waddell

Abstract This chapter provides a description of the residential location component

of UrbanSim, drawing on applications of UrbanSim in numerous metropolitan areas.

The first section provides an overview of the UrbanSim system, with particular

attention to the role of the residential location choice model within it. The second

section describes the Open Platform for Urban Simulation, and explains how choice

models in general, and more specifically residential location choice models, are

created in this framework. The third section provides a comparison of recent

applications of the UrbanSim residential location choice framework, along with

lessons learned. The final section summarizes the current status of the model system

and outlines current development efforts.

1 Introduction

This chapter provides a description of the residential location component of

UrbanSim, drawing on applications of UrbanSim in metropolitan areas as diverse

as Amsterdam, Detroit, Paris, Phoenix, Salt Lake City, San Francisco, Seattle and

Z€urich to highlight the evolution of the framework through practical application in

a variety of settings. The first section provides an overview of the UrbanSim

system, with particular attention to the role of the residential location choice

model within it. The second section describes the Open Platform for Urban Simu-

lation, and explains how choice models in general, and more specifically residential

location choice models, are created in this framework. The third section provides a

comparison of recent applications of the UrbanSim residential location choice

framework, along with lessons learned. The final section summarizes the current

status of the model system and outlines current development efforts.
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2 Overview of UrbanSim

UrbanSim was designed initially in the late 1990s to respond to a perceived gap in

operational models to support metropolitan-scale coordination of transportation and

land use planning and analysis (Waddell 2000, 2002; Waddell et al. 2003). Metro-

politan Planning Agencies needed models to assess the consequences of alternative

transportation plans and policies on urban development and travel patterns. Some

wanted to evaluate the effects of land policies such as the use of urban growth

boundaries, or policies to promote transit-oriented development. Most wanted to be

able to address these kinds of policy analysis questions with models that were

behaviorally clear and as transparent as possible, avoiding the problems identified

three decades ago by Lee’s critical assessment of the state of large scale urban

simulation (Lee 1973), and the more general skepticism of “black-box” models that

were so complex that their logic could not be explained to policy-makers or the

public.

The original design of UrbanSim adopted several elements to address these

modeling requirements, and these have remained foundational in the development

of the system over time. These design elements include:

l The representation of individual agents: initially households and firms, and later,

persons and jobs.
l The representation of the supply and characteristics of land and of real estate

development, at a fine spatial scale: initially a mixture of parcels and zones, later

gridcells of user-specified resolution.
l The adoption of a dynamic perspective of time, with the simulation proceeding

in annual steps, and the urban system evolving in a path dependent manner.
l The use of real estate markets as a central organizing focus, with consumer

choices and supplier choices explicitly represented, as well as the resulting

effects on real estate prices. The relationship of agents to real estate tied to

specific locations provided a clean accounting of space and its use.
l The use of standard discrete choice models to represent the choices made by

households and firms and developers (principally location choices). This has

relied principally on the traditional Multinomial Logit (MNL) specification, to

date.
l Integration of the urban simulation system with existing transportation model

systems, to obtain information used to compute accessibilities and their influ-

ence on location choices, and to provide the raw inputs to the travel models.
l The adoption of an Open Source licensing for the software, written originally in

Java, and recently reimplemented using the Python language. The system has been

updated and released continually on the web since 1998 at www.urbansim.org.

Following the original design of UrbanSim, and the implementation of a work-

ing prototype of the model in the Eugene-Springfield metropolitan area (Waddell

1998, 2000, 2002), many of these elements have been adopted by other model

systems, including the Oregon2 model framework and Delta.
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Figure 1 summarizes the overall flow of the model system in a typical applica-

tion, including its inputs and interactions. Note that there are two-way interfaces to

the travel model system, and a one-way interface with external macroeconomic

models that predict the overall pattern of economic growth. In addition, users

specify assumptions such as how comprehensive land use plans will be used to

constrain the patterns of real estate development.

3 The Household Location Choice Model

The UrbanSim model system contains model components representing household

and employment relocation and location choices, and real estate development and

prices has been described in previous papers using a range of specifications and

locations (Waddell 2000, 2002). This chapter, in keeping with the focus of this

volume, focuses on only one component of the model system: household location.
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The function of the household location choice model is straightforward, as is the

data structure on which it operates. A list of households, generated using a synthetic

population synthesizer (Beckman et al. 1996), is represented in the base year

database as a table with one row per household. Each household has a unique

identifier, attributes such as number of persons, income, number of workers,

presence of children, and a unique identifier for its location. As the model system

proceeds in the first simulation year, the demographic transition model adds new

households to the household table, providing their characteristics and a unique

identifier, but not a location identifier. Then the household relocation model

simulates the choices of certain households to move from their current location,

and resets the location identifiers of the moving households to a null value. As a

result of these two models, then, the household table contains some households that

have moved into the region, and some that have been predicted to move within the

region. These locating households are selected by identifying all households in the

table that have a null location identifier. This is the set of households that the

location choice model is applied to.

The framework for the household location choice model, like most of the models

in the UrbanSim model system, is a standard choice model. Although more

sophisticated choice model structures can be used, the most common in practice

is the Multinomial Logit Model (MNL) (see McFadden 1973, Ben-Akiva and

Lerman 1985, or Train 2003 for a thorough description of the model structure

and how it compares to alternatives such as nested or mixed logit).

The underlying logic of the model is that households that are in the market for a

location take into consideration their own characteristics, such as income, and

household size, and consider a sample of available, vacant housing units and their

price and characteristics such as density, age, and accessibility to employment and

other opportunities. The relative attractiveness of these alternatives is measured by

their utility. The choice model then proceeds to compute the probabilities of making a

location choice from the available alternatives, defined as vacant housing units, given

the preferences and budget constraints of locating households. Once location prob-

abilities are computed, the predicted choices are simulated, using one of the available

algorithms to reflect different assumptions regarding how the housing market clears.

The model proceeds in steps as outlined in Fig. 2. After loading the model

specification and coefficients from input data, the model selects the agents that will

be making a choice. As noted earlier, this is done in UrbanSim by selecting all

households who do not have a location identifier, that is, all households that need a

location. Note that the model can be stratified into submodels, reflecting groups of

households defined by some characteristic for which the user wishes to estimate the

model separately. This can be done by income, or household size, number of

workers, or any other household characteristic that the user might use to examine

differences in location behavior. In market research this is often referred to as

market segmentation.

The next step is the determination of the choice set. The universal choice set

defined for this model is the total vacant housing stock. In most metropolitan areas

this can be a very large number of housing units, and would be both behaviorally
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unrealistic to consider, and computationally excessive. A typical household does

not exhaustively examine every unit on the market, as the search costs for doing this

would be prohibitive in time and effort. UrbanSim does not impose the assumption

that they do, and allows users to specify alternative sampling frameworks for the

alternatives to be considered. Options currently include random, weighted, and

stratified sampling. Corrections for the sampling protocol are needed to ensure that

the coefficients of the model are not biased, and UrbanSim contains functionality to

make these corrections.

A major consideration in defining the choice set is the question of spatial scale.

Housing units are ultimately the elemental basis for the residential location choice.

UrbanSim supports modeling residential location choice at the parcel (or building)

level, or at more aggregate units of geography such as gridcells, or traffic analysis

zones, or neighborhoods or other spatial units. The definition of the geographic unit

of analysis is a configuration choice that the user makes in setting up the model

system, and is not hard-coded into the software. Different applications of UrbanSim

have used large districts, zones, gridcells, and buildings.

Once the choosers and the choice set are determined, the model proceeds to

compute the utility for each of the sampled alternatives, for each locating household.

Utility calculations involve computing some variables that describe characteristics

of the alternatives, and other variables describing interactions between household

characteristics and characteristics of alternatives. Alternative characteristics might

include such variables as the residential unit density in the neighborhood, or the
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housing type of the unit, or the access of the location to employment or shopping

opportunities. Interaction variables include measures such as the income of the

household minus the annualized cost (rent) of the housing unit. One point that

bears noting is that household characteristics can only enter a choice model through

interaction terms, since otherwise there would be no variation among alternatives and

there is no way to estimate a coefficient for such a variable.

Once the variables are all computed, the utility is computed as a simple summa-

tion of the products of the variable and coefficient vectors. Given the utility values

for each household and each of their sampled alternatives, and assuming a parti-

cular (Gumbel) distribution for the error term, it is then computationally simple to

predict probabilities using a standard multinomial logit model:

PðiÞ ¼ eVi

PJ

j
eVj

:

Once choice probabilities are computed, the model simulates the choices made

by agents. There are several algorithms that have been implemented in UrbanSim to

reflect alternative assumptions of how the market clearing process works. The most

traditional economic assumption to make is that prices will simply adjust to clear the

market. That is, if more households are predicted to choose houses in scarce

locations then the model would raise the price of those houses, force households

to choose again, and repeat this process until the prices clear the market in the sense

that each vacant housing unit has no more than one household who would choose

that unit. While this is a convenient assumption to make, since it simplifies the

model considerably, it is not necessarily very realistic in short-term housing markets

where disequilibrium may not be uncommon, and transactions costs are high.

There are many frictions in the housing market that make it less than perfectly

liquid, and transactions costs such as the time and effort involved in searching, as

well as the fees to the realtor and financial agents involved. As a result, UrbanSim

has implemented alternative market algorithms. One of these is a capacity-

constrained algorithm that clears the market using a first-come, first-served

approach. When a house is selected by a household, a contract is signed and the

house is taken off the market, making it unavailable for other households, even if

the latter might have bid more. In reality, market clearing is likely to fall some-

where between the pure price adjustment and the lottery market clearing protocols.

A new algorithm implemented in UrbanSim is the constrained choice algorithm

developed by de Palma et al. (2007). This approach recognizes that constraints on

alternatives do exist in real markets, and that imposing an assumption that prices do

all of the work in clearing the market may actually impose a significant bias on the

coefficients of the choice model. Using a revised estimation technique that incor-

porates the effects of availability constraints, this algorithm reduces the bias by

attempting to un-mix the price and constraint effects simultaneously. This approach

has been tested in the Paris housing market, and shows significant differences from
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the more conventional assumptions regarding market clearing that ignore the role of

constraints.

4 Data Structure and Preparation

The data used in UrbanSim can be as detailed as needed or supported by available

data resources, and can therefore vary considerably from one application to another.

The most detailed applications of UrbanSim to date are in San Francisco and in

Seattle, both of which have been recently applied at the parcel and building level.

That is, the unit of analysis for the Household Location Choice Model is the

individual residential building, and the associated parcel on which the building is

located. Information from travel model zones, including accessibility measures, can

be assigned to parcels within a zone, and smaller-scale proximity measures can also

be used. An example of the entity–relationship relating households to buildings,

and buildings to parcels and other spatial units and entities is shown in Fig. 3,

patterned after the San Francisco UrbanSim application, which is integrated with

one of the only operational activity-based travel models. The geographies used in

the San Francisco application are shown in Fig. 4, with Traffic Analysis Zones for

the city, and parcels in a small section.

In the case of such detailedmodels, it is often a question whether the level of detail

is so high that the errors in the data make the model difficult to estimate reasonable

parameters for. Similar concerns are often raised about the computational cost of

running models at this level of detail. We have found that the model estimation can

actually be significantly improved over more aggregate specifications, in spite of

errors in the data. We think this is reflective of the closer match between the model

specification and the actual entities and behavior in the real world.

The model can be configured to run at more aggregate levels of geography. The

most commonly used spatial unit of analysis with UrbanSim is the gridcell, typically

using a resolution of 150 m (see, for example, Waddell 2000, 2002; Waddell et al.

2007a), though some applications have used smaller or larger cell sizes. The gridcell

geography is quite convenient for certain kinds of operations, such as computing

variables that are based on queries of surrounding cells, or for exporting data for

visualization in a GIS environment. In other respects, however, gridcells pose

problems. For example, the true underlying unit of analysis is the parcel, but grid-

cells intersect parcels and therefore cannot represent very directly the real estate

contents of the cell. This process requires rasterization of parcel data, or GIS overlay

operations to combine parcel and gridcell layers using a union operation, and

fractionating the parcels before re-aggregating the parcel fragments into gridcell

summaries. Further, the representation of land policies becomes problematic, due to

the loss of a direct connection to the parcel geography. Nevertheless, this is still a

very popular and widely used approach to specifying locations, and has sufficient

merits to be worth consideration.
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A third level of application that has been tested is the use of aggregate areas or

zones. These could be larger communities such as the 1,300 Communes used in the

application of UrbanSim in Paris (de Palma et al. 2007), or smaller districts such as

Traffic Analysis Zones, or user-defined neighbourhoods. There are merits and

limitations to each of these spatial units of analysis. One thing to note is that it is

Fig. 3 Entity–relationship diagram for an integrated parcel – activity based travel model system
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Fig. 4 Parcels and traffic analysis zones in San Francisco
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easy to use variables representing higher levels of geography in more detailed

spatial models, so a multi-level representation of variables influencing location

choice is straightforward and reasonably common.

The data preparation for the model system usually begins with acquiring the

following data:

l Parcel information from county assessors offices
l Business establishment data from state unemployment insurance records or from

private sources such as InfoUSA
l Census data, including both sample microdata and census tract summary tabula-

tions
l Traffic zone geography and travel model results (travel time skims by mode or

logsums, by time of day and purpose)
l Environmental features
l Travel survey data

In the development of the San Francisco model, these data were readily available

and required modest spatial processing to prepare for use in the model system.

Households were available from a synthetic population generator that combines

microdata samples with tabulations to produce a synthetic baseline population that

is consistent with the census data. The database development for the San Francisco

model application required approximately 6 person-months of effort over an

18-month period. In other applications, the data could require considerable addi-

tional effort, which might suggest adopting a coarser level of analysis.

5 Specification and Estimation

The specification of the Household Location Choice Model in UrbanSim, like the

other choice models in the system, involves creating a specification that includes

the chooser and alternative characteristics to be considered in the model. It also

involves determining whether to stratify the estimation by some characteristic of

the households making location choices. In the San Francisco application, the

model was stratified by the number of workers in the household, reflecting the

hypothesis that there may be significant differences in their locational preferences.

The variables used in the specification for the San Francisco model, and prelimi-

nary results of model estimation are shown in Tables 1 and 2. All the estimation of

choice models in UrbanSim is done using Maximum Likelihood Estimation, with

integrated estimation software developed as part of the system. The estimation time

for the San Francisco models requires less than 30 seconds, and can be iteratively

re-specified and re-estimated in seconds during the process of developing a desired

model specification.

Accessibility is measured using bus and auto modes, by computing the employ-

ment opportunities available within 30 min travel time by each mode in the a.m.

peak. Housing price is estimated by imputing an annual rent from the total per-unit
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assessed value of each residential building. The imputed rent is interacted with

income to reflect a linear disposable income, allowing straightforward economic

welfare analysis (Williams 1977). Income interactions were also included with the

Table 2 Preliminary estimation results from San Francisco

Workers Variable Coeff t-stat

No-workers ln_emp_30_bus 0.203 12.66

ln_households_in_zone 0.291 9.60

ln_inc_avg_inc 0.115 2.58

ln_inc_building_sf_per_unit �0.005 �0.75

ln_inc_minus_cost 0.013 2.26

ln_inc_sector_3_employment_in_zone �0.007 �0.73

ln_residential_units 1.015 73.37

Observations 4,008

Rho-squared 0.28

One Worker ln_emp_30_bus 0.017 0.95

ln_households_in_zone 0.111 2.86

ln_inc_avg_inc 0.425 7.19

ln_inc_building_sf_per_unit 0.001 0.15

ln_inc_minus_cost 0.040 4.78

ln_inc_sector_3_employment_in_zone �0.029 �2.92

ln_residential_units 0.952 56.90

Observations 2,947

Rho-squared 0.17

Two or more workers ln_emp_30_hwy 0.074 1.77

ln_households_in_zone 0.015 0.39

ln_inc_avg_inc �0.013 �0.25

ln_inc_building_sf_per_unit 0.016 2.10

ln_inc_minus_cost 0.064 6.78

ln_inc_sector_3_employment_in_zone �0.055 �5.77

ln_residential_units 0.816 49.85

Observations 3,045

Rho-squared 0.12

Table 1 Variables used in the San Francisco household location choice model

Variable Description

ln_emp_30_bus Natural log of total employment within 30 min by bus

mode in the am peak

ln_emp_30_hwy Natural log of total employment within 30 min by drive

alone mode in the am peak

ln_households_in_zone Natural log of total households in traffic analysis zone

ln_inc_avg_inc Natural log of household income � the zone average

income

ln_inc_building_sf_per_unit Natural log of household income � average square feet

per housing unit on the parcel

ln_inc_minus_cost Natural log of (household income – annual imputed rent)

ln_inc_sector_3_employment_in_zone Natural log of household income � zonal retail

employment

ln_residential_units Natural log of residential units, as a size variable
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zonal average income to identify tendencies for income clustering, and with the

square footage of housing units. A size term is included to account for varying

numbers of units within a building – since the date include single-family buildings,

condominiums, flats, and apartments. This specification is not final, but reflects an

example of how dwelling level attributes (price, square footage, lot size), zone

level attributes (average income, accessibility to employment by different modes,

density), and household attributes (income, number of workers) are reflected in

the specification of the model. It is straightforward to add other variables that draw

on characteristics of the built, social, and economic environment, using simple

expression syntax to define new variables.

These estimation results, while not final, reflect reasonable results and signifi-

cance. The disposable income variable (income – annual rent) was positive and

significant, which is noteworthy since it is not uncommon in discrete choice models

of housing location to find insignificant or even counter-intuitive signs on price

variables, due to omitted variables that are correlated with price. The goodness of fit

is also relatively high for disaggregate, household-level discrete choice models. It is

interesting to note that for households with lower numbers of workers, the bus

access measures dominated the auto measure in the San Francisco area. This is not

perhaps very generalizable to other cities in the U.S. but provides some evidence of

the influence of transit access on residential choices in places with high levels of

transit service.

6 Calibration and Validation

UrbanSim choice models such as the household location choice models involve

very large numbers of alternatives. In the Paris application, there were 1,300

Communes used, and it was possible to enumerate all of them in a choice model.

But generally, it is necessary to sample alternatives rather than enumerate the entire

universal choice set. In the Puget Sound application, there are approximately 1.2

million parcels, for example. With choice models that use random sampling of

alternatives, there are no alternative specific constants being estimated, which

might require calibration in the way that mode choice models, by contrast, typically

require to match aggregate mode shares.

While there are no alternative-specific constants to calibrate in a spatially

detailed location choice model, it is still possible to include dummy variables

reflecting larger districts, to capture unobserved characteristics of areas that might

otherwise bias the predictions in those areas. This is not recommended, in general,

since including such constants excessively can constrain the model and make it less

policy-sensitive, and it is not clear whether or how such constants should change in

the future.

Since UrbanSim is a stochastic microsimulation model, which means there is

random variation arising from the use of random draws to make choices from

probability distributions. Some have raised questions about this simulation

“error” potentially being quite large. In addition there is uncertainty arising from
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errors in the input data, uncertainty in the model parameter estimates, and even

uncertainty in the model structure. It is important to develop ways of handling this

uncertainty in a principled way, and calibrating the uncertainty in the model in ways

that provide more robust capacity to make policy assessments.

Sevcikova et al. (2007) have adapted a Bayesian Melding technique for calibrat-

ing stochastic simulation models such as UrbanSim. The technique was originally

developed by Raftery et al. (1995) for use in deterministic models. The process

requires longitudinal data, but provides a way to rigorously calibrate the uncertainty

in the model system in order to make statistically valid inferences regarding the

results. Due to random variation from the stochastic nature of the model, and other

sources of uncertainty such as input data and parameters, running the model system

multiple times generates a distribution of results. In a properly calibrated model,

run over a period of years, the 90% confidence interval computed from the

distributions of the results should cover the observed data 90% of the time. Our

application of this technique to the Eugene-Springfield model application shows

that if we only account for the random variation in the simulation, the 90%

confidence interval from the results of 15 years of simulation only covers the

observed outcomes in the real world 38% of the time, as shown in Table 3. After

using the Bayesian Melding to calibrate the model system, this coverage increased

to 88%, which reflects a well-calibrated result, using households and employment

by traffic analysis zone as the basis for the calibration. This process of calibration is

computationally expensive, requiring multiple runs of the model system. Our

results achieved a high degree of convergence within approximately 200 runs,

and experiments using much larger numbers of runs (3,000) did not significantly

change the results.

The Bayesian Melding technique has now been applied to the Eugene-Spring-

field application, and work is underway to apply it to the Puget Sound model

application, to support analyses such as the comparison of alternatives for replacing

the earthquake-damaged Alaskan Way Viaduct. Considering the controversy sur-

rounding this project, it is certainly not clear that more informed modelling will

influence the outcome of the political process, but it is worth investigating whether

it could move the debates to a more productive focus.

7 Software Implementation

UrbanSim is currently implemented in the Python programming language, using an

Open Source (GPL) license. It is available for download from the project website at

www.urbansim.org. The software platform is called the Open Platform for Urban

Table 3 Results from

calibration using Bayesian

melding in Eugene-

Springfield Model application

Method Number of cases

missed out of 265

Coverage by 90%

confidence interval

Multiple runs only 163 0.38

Bayesian Melding 31 0.88
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Simulation (OPUS). The decision to convert UrbanSim from Java to Python, and to

develop the OPUS platform, grew out of interactions with research groups devel-

oping transportation and land use models in North America, Europe and Asia, all of

whom needed to develop their own software applications, and found that they were

spending far too much time on developing and debugging software, and far too little

on developing models, applications and new research. An initiative emerged

following a meeting in Toronto in January 2005, to develop an open platform that

could be shared among researchers and practitioners for land use and transportation

model development, allowing people to more easily leverage the work of others and

to make their own investments more effective. The OPUS architecture is intended

to facilitate collaborative development, and contributions of packages by a com-

munity of users and developers.

The UrbanSim development team has led the development of OPUS, and has

ported UrbanSim to it. This effort was completed in 2006, and a new release in 2008

added a flexible Graphical User Interface for creating models, estimating their

parameters, and combining models into model systems that are run on policy

scenarios. An international working group has been established to further develop

and refine OPUS, and to begin to provide a stable, shared laboratory for collabora-

tion, and for rapid development, testing and comparison of alternative algorithms

and models.

The OPUS Architecture is three-tiered, with the Opus Core forming the founda-

tion, a set of OPUS Packages extending this, and a set of external libraries that

provide access to functionality in external systems and languages. OPUS packages

are all implanted in Python, but external libraries may be in C, Cþþ, or Fortran.

Interfaces to a range of databases and flat files are available, including MySQL, MS

SQL Server, Postgres (and PostGIS), SQLite, DBF, CSV, and Tab-delimited ASCII

files. Access to data in ArcGIS is integrated, as well as interaction with the open

source PostGIS system.

8 Conclusions

The household location choice model of UrbanSim has evolved over multiple

applications in the United States and Europe to account for variation in social and

political context as well as in data availability. It has been applied in places as small

as Washtenaw County Michigan, and as large as the Paris Metropolitan area in

France, with 11 million inhabitants. The unit of analysis for location choice has

varied among applications from gridcells to parcels to zones and in Paris, Commu-

nes. UrbanSim and the Open Platform for Urban Simulation have, as a result of the

needs of these applications, been redesigned to provide a highly modular, flexible

framework to support rapid experimentation and development of new models and

approaches, along with the computational performance needed for large-scale

production use.
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As an example of a parcel-level model, results cited in this paper from the San

Francisco model application show that the estimation produces quite significant and

sensible results, and that the goodness-of-fit is quite good for a disaggregate choice

model. Similarly, we found that run times were reasonable, with the Household

Location Choice Model running at the parcel and building level for all of San

Francisco in 5 minutes on a standard desktop computer, and the entire model system

running in approximately one to twominutes per simulated year. The total development

effort for the San Francisco model application, including data compilation and

processing, model specification, creation of the parcel version of the models, and

estimation of the model parameters, was approximately person-months of effort

over 18 months. This reflects significant progress over earlier applications of

UrbanSim, which have generally required substantially greater effort to develop.

This efficiency was due to a combination of excellent data available from the San

Francisco County Transportation Authority and the City of San Francisco Planning

Department, and the modularity of OPUS and UrbanSim allowing rapid develop-

ment of new parcel-level models.

As always, much more remains to be done. Recent research has focused on

improving the capacity to estimate flexible models with interdependent, non-nested

choice dimensions such as residence and workplace (Waddell et al. 2007b). Work is

underway to develop a Graphical User Interface, to improve integration with GIS,

and to develop more documentation and tutorials. Data mining and imputation

methods to ease the task of creating the data needed for the model are being

investigated. Current research projects focus on the integration of activity-based

travel modelling and dynamic traffic assignment, and on the evaluation of complex

land use and transportation policy scenarios with regard to their impacts on travel

behavior, urban form, emissions and air quality.
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Household Behaviour in the Oregon2 Model

J.D. Hunt, J.E. Abraham and T.J. Weidner

Abstract The Oregon2 Model represents the spatial activity system in the State of

Oregon in the United States. It uses a set of seven connected modules representing

different components of the full system, each running in turn for each year of

simulation. Two of the module concern elements of household behaviour. The

Household Allocations Module provides an agent-based microsimulation of each

household and each person, simulating the transitions and choices made by these

agents over 1 year. The Land Development Module provides a representation of

space development using 30 m x 30 m grid cells covering the model area, micro-

simulating development transitions occurring in each cell over 1 year. It determines

changes in developed space over time and in response to potential policy actions

involving pricing, regulation and infrastructure in both transportation and land use.

At the time of writing, the system is not yet complete in that much of the second and

all of the third stages of calibration are still outstanding. But some preliminary

conclusions about the design and development of the model system, and the

treatment of households in particular, can still be offered.
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1 Introduction

This chapter describes the representation of household behaviour in the Oregon2

Model. The first section is this introduction. The second section overviews

the Oregon2Model framework. The third section presents the Household Allocations

(HA) Module, which includes a microsimulation treatment of household and person-

level demographic transitions and relevant location decisions. The fourth section

covers the Land Development (LD)Module, which includes a disaggregate treatment

of residential floorspace development related to household behaviour along with other

types of floorspace. The fifth section discusses issues in parameter estimation

and model calibration. The sixth and final section offers some conclusions.

2 Oregon2 Model Framework

The Oregon2 Model represents the spatial activity system in the State of Oregon

using a set of seven connected modules that cover different components of the full

system. This set of modules and the flows of information among them are shown in

Fig. 1. Each module is run in turn for each year of simulation, starting at the top

(ED) and working around the circle in a clockwise pattern, with the results of

Fig. 1 Oregon2 model system. For each year simulated, each module is run in turn starting with

ED and proceeding clockwise. The results from each module are sent to the data store and thus are

available for subsequent module runs
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particular modules influencing those of other modules run subsequently in the same

year or subsequent years.

The ED and PI Modules use aggregate, equilibrium approaches to identify

solution states. The others use disaggregate, microsimulation approaches to

mimic real-world processes – with the exception of TS, which first identifies an

aggregate, equilibrium solution and then considers each vehicle and person trip

while updating the representation of aggregate conditions to reflect changes arising

with this consideration.

Work on the development of the Oregon2 Model is ongoing at the time of

writing. A working version of each module has been established, and the calibration

of these modules continues, first considering each module separately and then

considering the full system of modules working as a unit.

An Oregon2 Transitional Model has also been developed by substituting more

aggregate treatments of the household behaviour and space development process

(HA and LD Modules) and the assignment process (TS Module). The Transitional

Model focuses the modelling team’s efforts on calibrating and refining a simpler

model that can address pressing state policy questions that needed to be analyzed

before the full Oregon2 model could be calibrated. It is anticipated that further

advancements on the HA and LD Modules described here will continue once the

Oregon2 Transitional Model is calibrated and under application.

3 Household Allocations Module

TheHousehold Allocations (HA)Module provides a fully disaggregate representation

using an agent-based microsimulation of each household and each person, simulating

the transitions and choices made by these agents over the period of 1 year. The intent

is to perform an endogenous determination of changes in social characteristics, so as

to provide a more complete and consistent representation of demographic changes

over time and in response to a wide range of potential policy actions involving pricing,

regulation and infrastructure in both transportation and land use.

3.1 Definitions and Categories

Table 1 shows the attributes of individual households and household members

tracked in the microsimulation, together with the coding for each. In most cases

the coding vectors are those used or adapted from the United States Census (US

Census 1990a).

Locations in space are represented using the system of zones shown in Fig. 2.

These zones are called “alpha zones” in order to distinguish them from other types

of zones used in the Oregon2 Model. A total of 2,951 of these alpha zones cover the

36 Oregon Counties plus 39 halo counties in adjacent states. They vary in size in

rough proportion to population, and about half are in urbanized areas. Those inside
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Table 1 Household and person attributes in HA module. Each household and its members are

described in terms of these attributes, and the states assigned to these attributes can be changed as

part of the consideration of the household and its members in the model

Household attributes Person attributes

Code Description Code Description

HH_ID Household ID HH_ID Household ID

TAZ Alpha Zone 0001-4141 PER_ID Person ID (HH_ID*100 +

PER_ID)

XGRID GridCell Matrix X-Position

XXXXX. X-Position

AGE 00. Less than 1 year

01. 89. Age in years

90. 90 or more years old

YGRID GridCell Matrix Y-Position

YYYYY. Y-Position

SEX 0. Male

1. Female

RHHINC Household income (1990$)

0000000. N/A (GQ/vacant/no income)

�999999.9999999. Total household income

RLABOR Employment status

01. Employed

06. Not in labor force

AUTOS Vehicles (1 ton or less) available

0. N/A (GQ/vacant)

1. No vehicles

2–7. 1–6 vehicles

8. 7 or more vehicles

HOURS Hours worked last week

00. Not employed

20. Part time (not currently

used)

40. Full time

YRMOVED When moved into this house or apartment

00. Moved in current year

x>¼1. Moved x years ago, relative to current

year (add 1 to last year, if not moved)

FERTIL Number of children ever born

00. N/A (less than 10 years/

male)

01. No children

>01. Number of children born

plus 1

UNITS1 Units in Structure:

01. Mobile home (MH) – OR – Rural

Residential Mobile Home (RRMH)

02. One-family house detached (SFD) –OR –

Rural Residential single detached (RRSF)

03. Two-family house attached (AT)

05. Apartments (MF)

YEARSCH Years of Educational

attainment (recoded)

00. No primary school

completed

01–10. 1st –10th grade

11. 11th –12th grade, no

diploma

12. High school grad,

diploma / GED

13–15. Some college, but

no degree

16–17. Associate, Prof.,

BSc degree

18–20. MSc degree

21. PhD / DSc degree

ONEACRE House on 1 acre of land or more:

2. Rural Residential (RRSF or RRMH)

1. Otherwise (SFD, MH, AT, MF)

OCCUP 000. Not Employed

001. Mangrs&Professionals

(1_ManPro)

083. Health workers

(1A_Health)

113. Post secondary

teachers (2_PstSec)

155. Non-P.S. teachers

(3_OthTchr)

163. Other Prof. & Tech.

Ofc (4_OthP&T)

263. Retail sales workers

(5_RetSls)

283. Other Retail&Clerical

Ofc (6_OthR&C)

500. All other (7_NonOfc)

VAC

HOMETAZ

0000. No Secondary Home

0001-4141. Alpha Zone of Secondary Home

WORKTAZ 0001-4141. Alpha Zone of

Work location
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Metropolitan Planning Organizations (MPOs) match the boundaries used in the

corresponding local transportation models; those outside MPOs nest within US

Census block groups.

The model area is also represented using a system of almost a billion 30 m

x 30 m grid cells, each of which contains no more than one category of developed

space, with specific type, age and development intensity, and land, with specific

zoning regulations.

The HA Module uses the subset of these grid cells with residential space as an

inventory of the supply of residential space, and treats this as a fixed supply within a

given year. The LD Module, described below, updates the supply of residential

space between runs of the HA Module, partly in response to the space prices (rents)

established in the HAModule. The LDModule similarly updates the supply of non-

residential space in response to non-residential space prices (rents) established in

the PI Module.

Fig. 2 Oregon2 alpha zone system. A total of 2,951 geographic zones cover the model area, which

includes all of Oregon and a “halo” in adjacent states. These zones are called “alpha zones” to

distinguish them from other types of zones used in the Oregon2 Model
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An initial population of households and household members for use in the

simulation, with all attribute values assigned, is synthesized for the year 1990

using a sampling process that draws on a disaggregate sample of actual households

and relevant marginal distributions from the US Census (Beckman et al. 1996; US

Census 1990a, b).

3.2 Process

In a given run of the module, for a particular year, each household is considered

in turn in a random order. When a household is considered, a series of special sub-

models is used to take the household and its members through possible transitions

and update their attributes accordingly. This series of sub-models is shown in Fig. 3.

Some of these sub-models are rule-based. For example, each person’s age

increases by 1 each year. Most are probabilistic, with Monte Carlo techniques

used to assign states to attribute variables. The selection probabilities are assigned

to possible states based on the attributes of the household and its members and the

states themselves, in most cases using some form of single-level or nested logit

choice model. The use of logit formulations in this way permits the further

representation of changes in user benefits through the calculation of the log-sum

(also called the “inclusive value” or the “expected maximum utility”) over the

range of available alternatives (Williams 1977).

Changes in household and person status, and the possibility of a “non home

anchored job search”, are considered first, followed by changes in residential

location regarding both primary and secondary homes. Then the interactions

among households are processed, followed by auto ownership. Finally, the alloca-

tion of jobs is considered.

Within a particular year interactions occur between households in both (a) the

residential real estate market and (b) the movement of persons out of their existing
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Fig. 3 HAmodule process diagram. For each year simulated, each household and its members are

taken through this process covering demographic transitions, household formation, location and

auto ownership decisions and person job and occupation decisions. Use of residential space and

changes in household membership and associated formation of new households are also tracked
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households and into new households (possibly single person households). These

interactions are resolved by accounting for the departure of households from

existing space and the departure of persons from existing households over a fraction

of the full year, and at the end of this fraction moving households are allocated back

into the available vacated existing space and departing persons into new house-

holds. This is done over a fraction of the full year in order to provide a more

accurate representation of the dwellings available to choose from in the residential

real estate market, and of the speed of price responses in the real estate market.

Currently, six equal-sized fractions are used per year – where 1/6th of the population

is processed in each such fraction – notionally consistent with a 2-month lag between

one household listing a residential space for sale or lease and another household

subsequently occupying the given residence. The use of a fraction other than

1/6th potentially could be considered as part of the later calibration of the model.

Interactions between members of the same household are accounted for within

the individual submodels. One such set of interactions considered explicitly each

year concerns the home location for a household and the job locations for its

members. These interactions are shown diagrammatically in Fig. 4.

Initially, there are a certain number of people with jobs in the prior year (black

circle). Some of these people become unemployed (the area labeled “became

unemployed”) and thus lose both their job and their job location. Other people

previously not employed become employed (the area labeled “became employed”).

As well, some of those people who were employed and remain employed will

undertake a job search (the area labeled “left job location”). At this point there are

a number of people who are to be employed but do not have job locations.

Some of these people are selected to undertake a non-home-anchored job choice

People with jobs last year

Became
unemployedOther

Id job

Became
employed

Joined
new hh

Left job
location

l-d job

Fig. 4 Home and job location interactions. This Venn diagram shows the treatments applied to the

sub-sets of persons with different job and home location situations arising in the simulation
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(ellipse labeled “ld job” for “long distance job”). These people then acquire new

jobs without regard to their current home location.

The households that have undertaken the long distance job search may contain

more than one employed household member whose jobs may now be unsuitable, as

there may be no possible home location within reasonable commute distance to the

set of household jobs.

To correct this, the other people in the household are flagged to do a home

anchored job search from the new household location (the area labeled “other ld

job” for “other long distance job”).

New households are created by joining up those people who left existing

households. These people may already be employed with jobs in locations

that are too far apart for there to be a suitable home location. To correct this,

just one of the employed persons in each newly joined household retains the current

job and corresponding job location, and the other employed people in the

household are flagged to do a home anchored job search (the area labeled “joined

new hh”).

At this point, households with more than one employed household member may

have more than one assigned job location, but only if all of those job locations

existed from the previous year. Newly created households, or households that have

undertaken a long distance job search, will have no more than one assigned job

location, with other household workers flagged for a home-based job search.

This set of assigned job locations then serves to inform the home location

choices. A household is more likely to move if its home is a long way away from

this set of jobs, and a household is more likely, all other things being equal, to move

to a new home location close to this set of jobs.

The four white areas in Fig. 4 consist of employed people who do not have job

locations assigned to them from the previous time period or from the non-home-

anchored job choice model. These people will perform a home anchored job search

at the end of the process, after their households have had a chance to consider their

home locations and, possibly, move to other locations in the model area.

3.3 Primary Home Choice Structure

The entire choice model concerning primary homes is incorporated in a combina-

tion of the sub-models; the overall structure of this entire choice model is shown in

Fig. 5.

In Fig. 5, solid lines indicate two-way relationships, where the lower level

choices are conditional on the higher level choices and where the log-sum values

for the lower level choices feed back up to influence the higher level choices.

Dashed lines indicate one-directional relationships, where the lower level choices

are conditional upon the higher level choices, but the higher level choices are not

influenced by the log-sum values for the lower level choices.
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3.4 Job Choice Structure

The flow of conditional choices and the calculation of composite utilities are such

that the entire job choice model has a nested logit structure as shown in Fig. 6.

Job location changes are done at the person level, with the type of job change

(top level of nesting structure) and the non-home-anchored searches being done

before the home choices, and the home-anchored searches being done after home

choices. Thus the alternatives in the home-anchored search could have different

utility values when they are being evaluated to calculate the log-sum for the higher

level of nesting than the values they will have later if they are evaluated again to

select a particular job location.

Considering the HA sub-models in detail, as shown in Fig. 3:

In-migration. This is applied once at the start of each current year. It creates

the list of households in-migrating to the model area in that year, by randomly (with

replacement) selecting households from an in-migrating subset of the 1990 PUMS

sample of households, including all those households that moved to Oregon

home
anchored

search

non-home
anchored

search

No job
location change

zone

Fig. 6 Job choice model nesting structure. The probabilities that individuals move to new jobs,

using either home-anchored or a non-home-anchored search processes, are influenced by the

log-sum (composite) utilities for the relevant sets of job alternatives

stay move leave

zone

dwelling type

workplace 
dependency

floorspace quantity
grid cell

Fig. 5 Primary home choice

structure. The combination

of sub-models considering the

aspects of home choice results

in a set of conditional choice

models, some (non-dashed)

of which are linked in a

nested logit structure
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between 1985 and 1990. The number of in-migrating employed people by industry

and the number of in-migrating retired and unemployed households are targets that

are reached by selecting enough households of appropriate types. Each selected

household is added to the primary home moving pool as long as adding it to the

population does not cause any targets to be exceeded. Households continue to be

selected until all the targets are reached.

Aging. This is applied to each person and each household. The age of each

person is increased by one. For those people who are students, the number of years

at school is also increased by one. The number of years at the current home location

is increased by one for each household.

Deaths. This is applied to each person, selecting between the live and die

possibilities for the current model period. Age and gender influence the probability

that a given person dies. A table of annual death probabilities for different age and

gender categories from Oregon Vital Statistics Reports (Oregon Department of

Human Services 1998) is used for the Monte Carlo process.

Births. This is applied to each woman with age between 10 and 49 years

inclusive. It determines the resulting number of babies born, if any, and their

genders through a four-step Monte Carlo process using fixed probabilities. In the

first step each woman is assigned a married / non-married status, where the

probability of marriage is a fixed non-zero value when there is at least one male

of age in the woman’s household and zero otherwise. In the second step each

woman is assigned a “give birth”/“not give birth” status for this time period,

based on her age, number of previous babies, and marriage status as assigned in

the first step. In the third step each woman assigned the “give birth” status in the

second step is assigned a number of babies for this birth, drawing from “1”, “2” and

“3” based on the woman’s age. In the fourth step each baby born is assigned a

gender, with a fixed probability of the baby being male. The probabilities at each

step are based on National and Oregon Vital Statistics Reports (National Center for

Health Statistics 1999, 2000; Oregon Department of Human Services 1995).

Work and school status. This is applied to each person in each time period. It

assigns the person a work status (either “worker” or “non-worker”) and a school

status (either “student” or “non-student”) for the time period in a single joint

process. A logit model is used to assign the probabilities to the alternatives for

the Monte Carlo process, with the utility functions for the alternatives including

the person’s age, gender, education level, previous work (and occupation) and

school status, household size, presence of children in the household, and log-sum

calculated from the home anchored job search model, based on data from the Panel

Survey of Income Dynamics (PSID) (University of Michigan 1981–1993).

Occupation. There are two versions of the occupation choice sub-model. One is

the “transition occupation choice” version, which is applied to each person who is

currently assigned an occupation to determine if there is a change in occupation.

The other is the “open occupation choice” version, which is applied to each person

who is not currently assigned an occupation. The “open occupation choice” version

is used the same year a person switches from “non-worker” to “worker” status by

the work and school status sub-model, regardless of whether or not the person was,
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in some year prior to the previous year, assigned “worker” status. Both versions

assign each person an occupation status from the eight categories listed in Table 1.

The factors influencing the probability that a given status is assigned include the

person’s age, gender, education level, current occupation (for the “transition occupa-

tion choice” version), presence of children in household and household size, and

utilities indicating the labor market conditions for the various occupations near the

zone containing the person’s household as determined in the PI Module. In both

versions, a logit model is used to assign probabilities to the occupation status

alternatives for the Monte Carlo process. The utility functions for the “open occu-

pation choice” version do not include constants for transition between occupation

status alternatives, otherwise the same alternative specific constants are used in both

versions. Parameters are estimated using data from both the US Census (US Census

1990b) and the PSID (University of Michigan 1981–1993).

Leave household. This is applied to each person in a household with more than

one member. The person is assigned to either “leave” or “stay” in the current

household. A Monte Carlo process is used with the selection probabilities deter-

mined using a logit model. The utility functions for the alternatives include the

person’s age, level of educational attainment, work status, person school status

presence of children in household and household size, with parameters estimating

using the PSID data (University of Michigan 1981–1993). Any person assigned to

“leave” is then added to the join household pool, and thus is considered in the

household joining sub-model.

Joining households. This is applied to the set of persons currently in the join

household pool in each time period. It places persons from this pool into new

households, thereby removing them from the pool, continuing until the pool is

empty. The resulting new households are then added to the primary home moving

pool, and thus considered in the primary home location sub-model. Currently, the

model does not allow individuals to join existing established households formed

initially in prior years, but rather only joins together persons who left other house-

holds thereby always forming new households of types consistent with observa-

tions. The process starts by forming a random order list of the persons currently in

the join household pool. Then, a household category is selected randomly from an

exogenously specified set of new household categories, and with specified selection

probabilities. These household categories indicate the composition of candidate

new households in terms of numbers of members, their genders and age ranges.

Starting at the top of the random order list of persons currently in the join household

pool and working down the list in order, each person is checked to see if he or she

fits within the candidate new household. If the person does fit, then he or she is

placed in the candidate new household and the process continues down the person

list seeking to fill the remaining places in the candidate new household. Once all the

places in the candidate new household have been filled, then the persons placed in it

are removed from the person list and the candidate new household becomes a new

household. The process then selects another household category and starts again at

the top of the person list seeking to fill the places in the next candidate new

household. If the end of the person list is reached before all the places in the
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candidate new household have been filled, then the candidate new household is no

longer considered and all of the persons that have been placed in it so far are not

removed from the person list. The process then selects another household category

and starts again at the top of the person list. This continues until the person list is

empty. In order for the process to be able to finish, the set of new household

categories must include a sub-set of categories that spans all the possible forms of

one-person households. Otherwise, the process could get caught in an infinite loop

where only one person remains in the person list.

Job change. This is applied to each person currently assigned “worker” status

by the work and school status sub-model, implying that the person has a current

job. It determines if the person changes jobs, and in some cases also updates the

jobs holdings for the other members of the person’s household, as discussed

above (Fig. 4). Each person is assigned to one of the following categories

regarding job holdings: “keep current job”, “switch to new job with a home-

anchored search” or “switch to new job with a non-home anchored search”. This

is done using a logit model with utility functions that include age, occupation,

household composition, as well as log-sums from the job location choice model.

When a person is assigned to the “switch to new job with home-anchored search”

category, this person is placed in the home-anchored job search pool, and thus is

considered in the home-anchored job search sub-model. When a person is

assigned to the “switches to new job with non-home-anchored search” category,

then this person is placed in the non-home-anchored job search pool, and thus is

considered in the non-home-anchored job search sub-model. In this case the

person is considering new jobs that are beyond reasonable commuting distance

from the current primary home location. As discussed above, other members of

the household who are currently assigned “worker” status by the worker and

school status sub-model are assigned to, “switch to new job with home-anchored

search”, and are considered in the home-anchored job search sub-model after the

new home location has been identified. The data used in estimation were drawn

from the US Census (US Census 1990b) and the PSID (University of Michigan

1981–1993). The factors influencing the probability that a given job holdings

category is assigned include the person’s age, occupation, household composition,

and composite utility functions (log-sums) from the home anchored job location

choice sub-model and the non-home-anchored job location choice sub-model.

Probabilities for the Monte Carlo process are assigned to the alternative categories

using a logit model. The utility functions for the two “switch to new job”

alternatives include composite utilities for the jobs over the full set of zones.

This places the job change, the home-anchored job search and the non-home-

anchored job search sub-models within a formal nested logit structure as indicated

in Fig. 5 and discussed above.

Home-anchored (h-a) job search. This is applied to each person in the home-

anchored job search pool. It assigns a new job to the person, specifically assigning

an alpha zone that contains the location of the job. The factors influencing the

probability that a given alpha zone is assigned are the comparative ease of traveling

from the home location, the distribution of wage rates and the relative size of
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employment for the person’s occupation category in each alpha zone. A logit model

is used to assign probabilities to these alternatives for the Monte Carlo process.

Non-home-anchored (n-h-a) job search. This is applied to each person in the

non-home-anchored job search pool. It assigns a new job location to the person,

specifically assigning an alpha zone that contains the location of the job. The

probabilities for the alpha zones used in the Monte Carlo process are based on a

logit model, with the same utility function for each zone as in the home-anchored

job search above, excluding the ease of travel from the current home location.

Household income. This is applied to each household each year. It assigns a total
annual before tax income to the household. The factors influencing the assigned value

include household attributes (workers by occupation, students, pre-school children,

unemployed, retired) and the unit prices for labor for the relevant occupations in the

zones containing the workplace locations for each worker in the household. In this

process, those household members who are both “student” and “worker” are treated

according to just their worker attributes; and those who are both “non-student” and

“non-worker” are designated either “unemployed” or “retired” using a Monte Carlo

process with probabilities that vary by age according to the Census PUMS data (US

Census 1990a). Then, the total household income is determined by summing the

contributions made by the members of the household according to their status in these

categories, with a randomly varying amount also added.

Primary home move. This is applied to each household currently assigned a

primary home location zone and dwelling type. It determines whether the house-

hold “moves” or “stays” (remains in the same dwelling) and if it “moves”, whether

or not it moves out of the study area. A Monte Carlo process is used, with the

selection probabilities determined using a nested logit model. Household composi-

tion, accessibilities to current workplaces, distance to previous home location,

distribution of vacant residential space, and residential space prices all influence

the utility values for the alternatives. More specifically, the utility functions for the

“stays” and “moves” alternatives are consistent with the corresponding utility

functions for the primary home location sub-model described below. The same

values are used for the matching parameters. The utility function for the “stays”

category is the utility function for a specific location choice alternative (the location

currently assigned the household), with the zonal size term removed. The utility

function for the “moves” category is the composite utility for the full set of location

choice alternatives. This places the primary home move and primary home location

sub-models together within a consistent nested logit structure. When a household is

assigned the “moves” category, it is added to the primary home moving pool, and

thus is considered in the primary home location sub-model.

Primary home location. This is applied to each household in the primary home

moving pool. It jointly assigns the household primary home an alpha zone that

contains the home location and a dwelling type from among the six categories listed

in Table 1. The factors influencing this joint assignment are the same as those acting

in the primary home move sub-model. A Monte Carlo process is used to select

the alpha zone and dwelling type, with the selection probabilities for the joint

alternatives determined using a nested logit model where the components of utility
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of a given dwelling type in a given zone include a representation of ease of travel to

assigned workplaces (as a log-sum over the available modes of transport to work,

calculated by the PT module), the distance to the previous home location (if any),

the quantities of vacant residential space of the dwelling type in the zone (a size

term), and the residential space prices. These are in a nested logit model, so that

alternatives that share a common dwelling type can be more similar (i.e. have a

smaller expected size of the stochastic term of the utility) than alternatives that

share a common zone, and households will be more willing to change zones than

dwelling type with a calibrated parameter. The logit model was estimated using

data from the Oregon Travel Behavior Survey (Oregon Department of Transporta-

tion 1994, 1996).

Primary home dwelling size. This is applied to each primary home assigned a

location zone and dwelling type in the primary home location choice sub-model in

that year. It determines the resulting number of rooms and quantity of residential

space for the primary home using a two-step process. In the first step, the home is

assigned a number of rooms (as a continuous value, not as an integer) using a linear

equation where the independent variables are the dwelling type, the number of

workers in the household, the household income, the number of children under

18-years old in the household and the residential space price in the location zone.

In the second step, the home is assigned a quantity of residential floorspace (in square

feet) according to the number of rooms value assigned in the first step and using a

function that performs a linear interpolation between specified quantities of space

for integer numbers of rooms, with these quantities varying by dwelling type.

The data used to estimate the equations used in these two steps were drawn from

the US Census PUMS (US Census 1990b) and the American Housing Survey

(US Census 2002).

Secondary home decision. This is applied to each household in the study area,

assigning the household a secondary (or vacation) home status from the “has second

home” and “does not have second home” alternatives. This is done using a Monte

Carlo process with a binary logit model assigning the selection probabilities to the

two alternatives. One of the attributes of the utility function for the “has second

home” alternative is whether the household had a secondary home in the previous

year – establishing the representation that households with secondary homes in

1 year are more likely to have them in the next year. For a household that had a

secondary home in the past year and is assigned to have a secondary home in the

current year, there is a further determination regarding whether the household

retains the current secondary home or vacates it and obtains a new one. This is

done using a Monte Carlo process with fixed probabilities for the two possibilities.

Whenever a household is determined to vacate a secondary home (regardless of

whether or not to obtain a new one) the floorspace for the vacated home is added to

the floorspace inventory at the end of the sub-timestep. Those households deter-

mined to obtain new secondary homes are added to the secondary home moving

pool, so they are considered in the secondary home location sub-model. At the time

of writing, the utility functions for the “has second home” and “does not have

second home” alternatives include only a few variables related to characteristics of
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the household; an expansion to add further representation of the influences of other

relevant factors is part of planned future improvements to the model regarding the

treatment of secondary homes.

Secondary home location. This is applied to each household in the new secon-

dary home pool. It assigns the household secondary home to an alpha zone. A

Monte Carlo process is used to select the zone, with the selection probabilities for

each alternative zone determined using a utility function that includes the price of

available floorspace in the zone, the distance from the zone to the household

primary home location, and a zonal constant reflecting the quantity of vacation

homes available in the zone. Currently, only single-family dwelling types are used

for secondary homes in the model; an expansion to consideration of other dwelling

types is part of planned future improvements to the model regarding the treatment

of secondary homes.

Secondary home dwelling size. This is applied to each secondary home assigned

a location zone in the secondary home location sub-model in that year. It deter-

mines the number of rooms and quantity of floorspace (in square feet) using the

same process used in the primary home dwelling size sub-model as described

above.

Primary and secondary home grid cell allocation. This is applied to each home

(either primary or secondary) assigning a location zone in that year. It determines

the specific grid cell where the home is situated within the location zone it has been

assigned. There is an ongoing accounting of the quantity of vacant residential space

in each grid cell. The grid cell for the home is selected using a Monte Carlo process,

where the selection probability for each cell is proportional to the amount of vacant

residential space in the grid cell relative to all the other grid cells of that space type

in the zone. The home is then allocated to the grid cell and the quantity of vacant

residential space in the cell is reduced by the quantity of residential space assigned

to the home in the relevant dwelling size sub-model. Once the quantity of vacant

residential space goes negative in a given grid cell, then that grid cell is no longer

available in the grid cell allocation process. There is also an ongoing accounting of

the total quantity of vacant residential space in each zone, done separately from the

accounting of vacant residential space in each grid cell. The primary and secondary

home location sub-models described above use these zonal-level total quantities,

which ensures that the total quantity of available floorspace in a zone will not go

negative even though the quantity of available floorspace in some of its constituent

grid cells do go negative. This is done because the grid cells are too small to impose

on them the condition that they must contain an integer number of dwelling units.

The accounting of integer numbers of dwelling units must be done at a higher level

of aggregation – currently at the level of the alpha zones.

Residential space price update. This is applied to each non-zero quantity of each
type of residential floorspace in each alpha zone once in each sub-timestep.

It makes a one-step adjustment to the unit price in reaction to the vacancy rate

relative to a reference vacancy rate value, increasing when the vacancy rate is lower

than the reference value and decreasing when the vacancy rate is higher than the

reference value, with the provision that the unit price is not allowed to go negative.
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The specific size of the one-step adjustment is a function of the values of the

vacancy rate and the unit price and a parameter whose value is determined as part

of calibration (Hunt et al. 2003; Khan et al. 2002).

Auto ownership. This is applied to each household in the current year, deter-

mining the number of private automobiles owned by the household. Specifically,

the household is assigned one of the following alternatives regarding the number of

automobiles owned: “0”, “1”, “2” or “3+”. A Monte Carlo process is used, with a

logit model used to assign the selection probabilities to the alternatives. The utility

functions for the alternatives include attributes of the household, such as the

number of persons and workers, income, housing type (expressed as “single family

unit” or “not single family unit”), level of transit accessibility and previous number

of automobiles owned (Portland Metro 2000).

4 Land Development Module

The Land Development (LD) Module provides a representation of the development

of space using the system of 30 m x 30 m grid cells covering the model area,

microsimulating development transitions occurring in each cell over the period of 1

year. Analogous to the situation with the HA Module, the intention with the LD

Module is to perform an endogenous determination of changes in developed space

over time and in response to a wide range of potential policy actions involving

pricing, regulation and infrastructure in both transportation and land use.

The LDModule considers the full range of possible development types (residential,

non-residential), consistent with representation of the full range of activities

provided by the Oregon2 Model. This consideration of the full range of possible

development types is described here, but with a focus on the residential component

consistent with household behaviour being the topic of this chapter.

4.1 Definitions and Categories

Table 2 shows the attributes of individual grid cells tracked in the microsimulation,

together with the coding for each. Each grid cell is treated as homogeneous, with

only one value for each attribute of the grid cell.

4.2 Process

In a given run of the module, for a particular year, each grid cell is considered in

turn starting in the southwest corner and working east and north through the entire

model area.
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Table 2 Grid cell attributes in LD and HA modules. The 30 m x 30 m grid cells covering the

model area are described in terms of these attributes, and the states assigned to these attributes can

be changed as part of the consideration of the grid cell in the model

Code Description

AZone Alpha Zone

DEVTYPE Development type

0 UNDEV

1 UNDEVFor (Non-logging forestlands)

2 UNDEVAg (Non-productive Ag lands)

11 MH (Mobile home residential)

12 MF (Multi-family residential)

13 AT (Attached residential)

14 SFD (Single-family residential)

15 RRMH (Rural res. mobile home>¼1 acre/unit)

16 RRSFD (Rural res. single family >¼1 acre/unit)

21 FLR accommodation

22 FLR depot

23 FLR government support

24 FLR grade-school

25 FLR heavy industry

26 FLR hospital

27 FLR institutional

28 FLR light industry

29 FLR office

30 FLR retail

31 FLR warehouse

32 FLR agriculture (productive Ag/range/mining lands)

33 FLR logging (logging timberland)

41 TP (Oregon2 transportation network ROW)

42 Water

43 Outside study area

SQFT Existing building space (except for Ag/Log lands in land sqft)

NODE_ID XXXX Nearest network node (Fnode)

DEVELOPED XX Summary land classification

01 Urban developed

02 Urban undeveloped

11 Rural developed

12 Rural undeveloped

13 Rural protected

DIST2DEV Distance to nearest urban developed grid cell (1/4 mile ring midpoint, up to

maximum 15,000 ft)

YRBUILT XXXX Year of building construction

SBW SBW 3-Digit site Prep cost factors where:

S¼ Slope B¼ Depth to bedrock W¼ Depth to water table

1. 0–10% 1. 0–1800 1. 0–600

2. 10–15% 2. 18–3000 2. 6–180

3. 15–25% 3. 30–3600 3. 18–3000

4. 25–35% 4. Over 360 4. 30–3600

5. Over 35% 5. Over 360

ZONING 100 ureslo Urban low density residential

101 uresmed Urban medium density residential

102 uresmdh Urban medium high density residential

(continued)
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Grid cells with zoning regulations that do not permit any development

(a comparatively large proportion of the total) are skipped. When a grid cell is

considered, a series of sub-models takes the cell through possible changes in

development and updates its attributes accordingly. This series of sub-models is

shown in Fig. 7.

The first LD sub-model (“change in development”) determines if a change in the

development of the cell occurs, including a change from undeveloped to some

initial development. Then, in cases where there is to be a change, further sub-

models are used to determine what the new development type is to be (“update

development type”) and how much of it there is to be (“update development

quantity”). The age of construction (YRBUILT) for the development of the cell is

then updated, and the process moves on to consideration of the next cell.

Table 2 (continued)

Code Description

103 ureshi Urban high density residential

104 umix Urban mixed use

105 umixhi Urban mixed use high-density (Portland CBD)

106 ucom Urban commercial

107 uindlt Urban light industrial

108 uind Urban any industrial

109 upub Urban public (including schools, parks)

110 uoth Urban other use

111 ubigany Urban big city any use (halo only)

112 uany Urban small city any use

200 rres Rural residential – low density

201 rcntr Rural center – low density mixed use

202 rcom Rural commercial

203 rind Rural industrial

204 rpub Rural public use (including schools, parks)

205 rreserve Indian reservation, Military, DOE, COE, BOR

206 roth Rural other

207 rany Rural unincorporated cities any use

300 rfor Forest lands (logging allowed)

301 ragfor Agriculture, logging, range, mining lands

302 rag Agriculture lands

303 rrange Range lands

304 rmine Mining lands

400 xrec Protected recreation land

401 xagfor Protected agriculture, mining and forest land

402 xcons Protected natural areas and conservation zones

403 xhalo Protected rural land (halo only)

404 xother Protected other

405 xother2 Not resolved (slivers without data, protect)

500 xwater Water

600 xtp Major transportation ROW

GRIDFEE Development Fee Scheme

XXX Fee/subsidy scheme
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The distance to existing development (DIST2DEV) for each grid cell is updated

separately after the development simulation has been run for all cells.

The age of construction and distance to development is updated using a rule-

based approach. Monte Carlo techniques are used to determine the results for the

other sub-models. The selection probabilities for the possible new conditions for the

first (“change in development”) and the second (“update development type”) sub-

models are based on a two-level nested logit model with a structure as shown in

Fig. 8.

The utility functions in this nested logit model include the net revenue values for

the alternative development decisions, calculated by subtracting amortized (re-)

development costs from estimated revenues based on current rents identified in the

HA (residential) and PI (non-residential) modules. The selection probabilities for

the third model, concerning the different quantities of new development (“update

development quantity”), are based on a uniform distribution across all quantities

from 0 to the maximum allowable developed space accorded under the zoning for

the cell.

change
in

development

development
allowed

next
cell yesyes

no

update
development

type

update
development

quantity

set year
of updated

development

no

Fig. 7 LD module process diagram. For each year simulated, each grid cell is taken through this

process covering aging of existing development and possible changes in development

change no
change

new
types

additional of
existing type

Fig. 8 Change in

development and updated

development type choice

model nesting structure. The

probabilities for changes in

development and the resulting

updated (new or existing)

types are calculated using a

two-level nested logit model
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Each grid cell is considered independently. Interactions between grid cells occur

through the rents calculated in the other modules based on the interaction between

floorspace supply and floorspace demand.

Considering the LD sub-models in detail:

Change in development. This is applied to each grid cell where the zoning

regulations permit change. It determines if the developed space in the cell is to

change or remain the same for that year. It uses the first stage (upper level) of the

nested logit model with the structure shown in Fig. 8, which includes the log-sum

for the full set of allowable development states for the cell as an indication of the

expected maximum utility for the “change” alternative. The “lower level” utility

functions for these allowable development states include, among other things,

the corresponding unit rents as determined in the PI Module for the alpha zone

containing the cell, less the corresponding unit construction costs amortized into

monthly amounts. The utility function for the “no change” option includes the unit

rent for the existing space type in the cell and a term representing the impact of the

age of the existing structure to account for the lower appeal (and lower rents and

rent-ability) and higher maintenance costs generally associated with older struc-

tures. A Monte Carlo process is used to select between the “change” and “no

change” options, with the selection probabilities determined using the first stage

(upper level) logit model.

Updated development type. This is applied in each case where the grid cell is

assigned the “change” option as described immediately above. It determines which

of the allowable development states results from the change. It uses the second

stage (lower level) of the nested logit model with the structure shown in Fig. 8. The

“new types” alternatives all involve demolition of the existing space and construc-

tion of new space of a particular type – as allowed by the zoning regulations. The

“additional of existing type” alternative represents the option of adding more

floorspace of the current type, to more intensely develop the cell without demolish-

ing the existing space – again, as allowed by the regulations. The utility functions

for these allowable development options include the corresponding unit rents as

determined in the PI Module for the alpha zone containing the cell, less the

corresponding unit construction costs amortized into monthly amounts. The unit

construction cost for a given development type in a cell includes five terms (a) a site

preparation fee based on a weighted scaling of slope, depth to bedrock and water

table characteristics; (b) a building construction cost varying by development type;

(c) a fee (or subsidy, as a negative fee) specific to the location and (d) a fee

(or subsidy) specific to the development type and zoning and (e) servicing costs

varying by the development type, the current servicing at the location and the

distance to existing services. Also included in these utility functions are both

(a) terms that represent the effects of model-area-wide and zonal-level vacancy

rates and associated uncertainties regarding future revenue streams for different

development states and (b) alternative specific constants for different development

states, that can be used to calibrate the rate of development by space type in the

entire model overall. The construction costs and rents are calculated based on

the maximum allowable intensity of the cell; in more recent developments of the
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framework in Baltimore (Hunt et al. 2007) the construction costs and rents effects

are calculated as an integration over the continuous logit model used for the

development quantity decision, which provides for more realistic development

patterns if high intensities are allowed but are not realistic due to nonlinear

increases in construction costs (or decreases in market rents) with intensity.

Again, a Monte Carlo process is used to select one development type option,

with the selection probabilities determined using the first stage (upper level) logit

model.

Updated development quantity. This is applied in each case where the grid cell is
assigned the “change” option, immediately after the updated development type

model has been applied. It determines the quantity (and thus the intensity) of

development within a grid cell resulting with the change in development. For

new construction, the maximum allowable floor area ratio (FAR) specified in the

zoning rules is used as an upper bound on a uniform distribution with the lower

bound set at zero. A value for the SQFT grid attribute is then selected from this

uniform distribution. For additional construction (when the “additional of existing

type” option is selected), the upper bound is the same as for new construction, but

the lower bound is the previous value of the SQFT grid attribute for the cell.

In recent developments in a similar model in Baltimore (Hunt et al. 2007), a

continuous logit formulation is used, where each infinitesimal intensity option

has a utility. This provides additional flexibility and also provides more consistent

integral-logsum measures for the development type decision.

Year of construction. This is applied to each grid cell with development occur-

ring in the current year. If there is a change in development and the updated type is

new, then the age of construction is reset to the current year. If there is a change in

development and the updated type is additional of the existing type, then the age of

construction is set to the average of the year of the existing development and the

current year weighted by the corresponding quantities.

To ease the computational burdens for the HA and PI Modules, the LD Module

updates a database of the developed grid cells – about 25 million out of the

810 million cells covering the entire model area – which allows the HA and PI

modules to ignore the vast majority of the grid cells – all those containing the

undeveloped land.

5 Parameter Development and Model Calibration

The values for the parameters in the HA and LD Modules are established jointly

with the rest of those in the entire Oregon2 model using a three-stage process as

illustrated in Fig. 9.

In the first stage, values are developed for certain “S1” parameters. It is unlikely

that S1 parameter values will be adjusted as the development and calibration work

progresses. In some cases, statistical methods are used to estimate appropriate

S1 parameter values; in others, only a single observation is available and direct
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methods are used. At this point in the process, it is not necessary that the entire

module be run: the components sub-models of the module are being “assembled”

and the outputs of the module are not yet being considered.

In the second stage, initial values are established for all the parameters in the

module other than the S1 parameters, called the “S2” parameters, considering the fit

of the module in isolation. This fit concerns specified targets for outputs from the

module, so the module needs to be run in order for it to provide these outputs. Thus,

a full set of required inputs for the module needs to be developed, including all

those provided by other modules and all those provided exogenously.

In the third stage, the initial values established for certain sets of the S2

parameters are revisited – for all of the modules simultaneously, considering the

fit of all modules together, with the full Oregon2 model running, so that inputs to

the modules are coming from the other modules in the way they would for a

complete model run.

A Bayesian process is used to some extent, to make maximum use of any prior

knowledge on parameter values (Abraham 2000). In the estimation of the S3

parameters, the goodness of fit measure guiding the process includes – along with

the comparison of module outputs with targets – a comparison of the current values

with those determined in the second stage, which amounts to using the results from

the second stage as the Bayesian prior distributions for the S3 parameters con-

sidered in the third stage (Bard 1974). The initial tradeoffs between matching the

S2

likelihood

combinedmodel system

mod

observed
targets

observed
targets

inputs

inputs

S3

observed
behavior

combinedmodel system

S1

combined model system

module

Fig. 9 Approach in development of module parameters. The values for parameters are established

in a 3-stage process. In the first stage, the values for the “S1” parameters are determined using

external data and statistical methods and remain largely fixed through the rest of the calibration. In

the second stage, the values for the “S2” parameters for each module are determined using the fit of

the module against targets. In the third stage, the values for the “S3” parameters, which are a

selected subset of the “S2” parameters, are determined jointly for all modules using the fit of all

modules against targets
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various different types of targets and respecting previously established parameter

values are guided by (in part notional) estimates of the amount of error in each

target and the confidence intervals ideally established during earlier estimations but

in some cases based on perceptions. Ultimately, the purpose and use of the model is

considered and the tradeoffs between different types of fit and different prior

knowledge adjusted accordingly.

Ideally, all parameter values would be revisited at each stage, but this is too

open-ended and thus impractical with regard to the resource requirements. An

increasing number of parameter values are fixed at each stage, which is from a

Bayesian perspective identical to putting an infinite weight on the prior knowledge

for that variable.

A weight sensitivity matrix (Abraham 2000) is used to explore the remaining

lack-of-fit for the entire model, which can help identify the parameters to focus on

in the third stage, which may lead to small changes in the details of the model

design and specification.

At the time of writing, the entire system as described is operational and much of

the “S1” parameters have been established, but work on the “S2” parameters has yet

to begin in earnest.

6 Conclusions

The disaggregate microsimulation treatment of households in the Oregon2 model –

as accomplished with the set of seven interconnected modules in the entire system,

and with the HA and LD Modules in particular – provides a representation of the

changes in demographics and in developed residential space occurring over time

and in response to a wide range of potential policy actions involving pricing,

regulation and infrastructure in both transportation and land use. At the time of

writing, the system is not yet complete in that much of the second and all of the third

stages of calibration are still outstanding. But some preliminary conclusions about

the design and development of the modelling system, and the representation of

households in particular, can still be offered.

The entire framework is clearly an ambitious attempt to incorporate explicit

representation of a very extensive range of elements of the entire spatial economic

system. Much has been done “from scratch” in the design, the development of

software code and in the amassing of the relevant data. And a considerable

calibration effort still remains. It still seems to be the case that, overall, the

development of the framework is an appropriate undertaking given the very large

potential implications of the policy development that can be expected to benefit

from the results. The sponsors of the work are to be lauded for recognizing and

supporting this long-term view – going well beyond what is typically the case in this

regard. But, even with this long-term view, it is increasingly apparent that a staged

approach to development is appropriate, providing interim results that can be used

before the full system is ready enabling model development to be driven in part, in
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response to the policy questions and applications of interest. Indeed, pressure to

respond to analysis needs within a shorter timeframe led to the development of the

Oregon2 Transitional Model, with its more aggregate treatments, discussed above.

The Transitional Model has undergone sensitivity testing (Weidner et al. in press)

and is beginning to be used for policy analysis.

Perhaps not surprisingly, the run time for the full Oregon2 simulation is an

important factor. Some of the modules run very quickly, in a matter of minutes. But

the PT module, simulating the activities and trip making behaviour of over five

million persons, takes about 3 h to run each year, even after some concerted effort at

streamlining the code and parallelization across multiple computers. The HA

Module takes a similar amount of time, although it has yet to receive much attention

directed at making it run faster. The LD Module requires less time – after the initial

work preparing the information for the almost one billion grid cells is done. For a

simulation over a multiple number of years, the total run time can become un-

acceptably large. In order to reduce this total run time, the transport models,

including the PT Module, can be run for only certain years, perhaps for 1 year

out of every three or five, with the results saved and used as the inputs for the other

modules in all intervening years.

The relevant data for the HA and LD Modules have been available, drawing on

the US Census, the Panel Survey of Income Dynamics, the Oregon Travel Behavior

Survey, Oregon Vital Statistics Reports, and the American Housing Survey. As is to

be expected, there have been issues of compatibility for data from different sources

collected at different times. Nevertheless, the available data have been enough to

produce reasonable behaviour in each of the submodels except for those relating to

second homes. In some cases datasets for Oregon were too small or unavailable, as

in the use of the American Housing Survey sample for the entire US, and the use of

the PSID data. The success with these data sources reflects the fact that, except in

the case of secondary homes, the nature of the available data was taken into account

in the design of the model.

The system of grid cells has given rise to practical challenges because of its very

large number of cells. Yet this level of resolution is required if the system is to

support some of the policy analysis as intended. Much of the computational burden

is reduced by completely ignoring the 68% of grid cells that do not allow any future

development (large regions of undeveloped areas, such as in the Cascade Moun-

tains), and by blocking together (and considering in groups) the 19% of grid cells

that only allow land-intensive agricultural and forestry development. The initial

work to “fill” all of the grid cells with the pertinent information for the starting year,

and to deal with the inconsistencies and discrepancies in the components of

information from different sources at this level of resolution, was so substantial

that it was a large part of the reason efforts were diverted to develop an interim

version of the model without the grid cells and with more aggregate treatments of

land development and household demographics (Abraham et al. 2005).

Some submodels are still overly simple. For instance, the intensity of develop-

ment decision in the model is a simple uniform allocation, while in the real world

this decision rests on the willingness-to-pay for lower intensity floorspace on the
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demand side (related to such things as the amenity value of associated undeveloped

land, the distance to neighbors, and a higher value of ground floorspace) and the

additional construction costs associated with higher intensity on the supply side.

It is thought that the willingness-to-pay for lower intensity should, eventually, come

from future enhancements in the floorspace demand models in HA and PI. It may

turn out, however, that more realistic intensity of development decisions can be

simulated through a modified supply side representation in LD that would be much

simpler, but not as behavioural, as a demand side representation in HA and PI.

From a transport modelling perspective, the primary purpose of the HA and LD

Modules is to forecast the changes in the distribution and location of population.

They are influenced by transportation system attributes both directly and indirectly.

Direct influences include the travel conditions for the implied movement between

homes, workplaces and second homes in the utility functions for primary home

choice, home-anchored job search, and secondary home choice. Indirect influences

include the relationships between floorspace demands, supplies and prices across

space and the differences in these demands arising because of the relative accessi-

bilities and the varying sensitivities of different activities to these accessibilities –

ultimately incorporating the establishment of the full activity system, including the

full range of job opportunities and wage rates, as represented in the rest of the

modelling system.

In a dynamic time-series simulation like the Oregon2 model, every attribute

value used as an input in each time step needs to be considered and possibly updated

in every time step. That is, more specifically, all the person and household attributes

used in the models of travel and transport (in the PT and TS Modules) need to be

considered and possibly updated in each time step – which is part of the reason why

the HA and LD Modules address so many attributes in their various sub-models;

requiring a substantial amount of demographic transition modelling that, in and of

itself, is not directly related to any of the transportation-related policy issues that

might be considered with the model. An alternative approach avoiding much of this

demographic modelling, in cases where the intent is to develop a modelling system

for addressing transportation policy only, would be to keep household attributes

other than location fixed over time and only forecast location changes for jobs and

housing. This would be much simpler than the approach adopted here. It would

suffer by missing a primary reason that local (neighbourhood) demographics

change – the aging and changing of lifestyle of existing residents.

The HA and LD Modules interact with each other over time primarily through

the markets for the different types of residential floorspace. The development of

these two Modules in parallel as process-oriented microsimulations forced con-

sideration of the temporal dynamics of the joint system represented by the two

Modules without resorting to the use of a full short-run equilibrium framework. The

resulting approach – where supply and demand are linked via prices, with these

prices updated in the direction towards but not all the way to equilibrium based on

excess demand – has be found to provide realistic looking patterns in aggregate

over the long term in trials of a small test system. This approach might be extended

in the future to other longer term supply–demand interactions, including the labor
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markets. If the 1-year time step is abandoned (in favor of, say, a discrete event

simulation approach with all modules operating simultaneously) the approach

could also be applied to shorter-term supply–demand interactions, such as the

demand for link travel.

With the explicit treatment of household and land development processes at the

individual grid cell level in the HA and LD Modules, it is possible to draw on

knowledge of these processes available from other research work in ways not

possible with more aggregate (and thus more synthetic) representations: household

location and auto ownership decisions can be tied to individual, mode-specific

accessibilities; land development decisions can be influenced by local prices and

area-wide vacancy rates. Nevertheless, at many points during the design and

development of these modules it became clear that knowledge of the relevant

decision-making processes is very limited.

Throughout the entire modelling system there is extensive use of Monte Carlo

processes with logit choice models. This is not based on any strong conviction

among the developers that in the real world decision-makers use the process of

full-information, compensatory trade-off assessment of discrete alternatives that

underlies the logit formulation. In fact, the expectation among the developers is that

the actual decision-making behavioural mechanisms are simple, rule-based search

processes with severely limited information. Yet lack of knowledge about the

specifics of the actual behavioural mechanisms, about the nature of any search

processes that might be involved, led the developers to “fall back” on that with

which they were more familiar – the logit model and the use of the probabilities it

provides within a Monte Carlo approach. In the longer term, as more understanding

of the actual behavioural mechanisms is developed, to the extent that these are

based on simple rules and limited knowledge, a greater use of explicit representa-

tion of these mechanisms can be expected not only to provide a greater fidelity in

representation but also to reduce the amount of information processing and thus to

reduce the time it takes for the modules to run.

At this point, the next steps to be done are to calibrate the modelling system

using the process described above, and to apply the resulting model in the analysis

of policy in Oregon. Then it will be possible to gain more complete and valid

insights into the extent that the entire system, including its representation of

household behaviour, helps provide better guidance in policy development. Many

different enhancements are possible, but it is more appropriate to pursue the

completion of the system first, in order to demonstrate and test its functionality

and ability to analyze policy.
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The Residential Choice Module in the Albatross

and Ramblas Model Systems

Theo Arentze, Harry Timmermans and Jan Veldhuisen

Abstract The focus of this chapter is on the residential choice component in the

Albatross and Ramblas model systems. Both models are primarily activity-based

models of transport demand. Their prime goal is to predict activity–travel patterns

and associated traffic flows. The distribution of residential land use, in terms of

households and persons, is exogenously given.

Most progress to date in terms of actual software development has been com-

pleted in the context of Ramblas. It contains a module for modelling residential

choice behaviour that is used to predict the choice of residential zone for people

moving house and newcomers in the housing market. Simultaneously, the proper-

ties of the dwelling stock are updated. Residential preferences measured in theNa-

tional Housing Survey are matched against vacant dwellings in the market. These

preferences are measured using a compositional stated preference approach, but

alternatively any conjoint preference approach could be used in principle.

1 Introduction

The aim of this chapter is to summarize research activities of the Urban Planning

Group of the Eindhoven University of Technology related to the modelling of

residential choice behaviour. These research activities have been developed along

two separate lines of research. First and most importantly, residential choice has

been an important domain of application to elaborate conjoint preference and

choice models that confusingly have been called stated preference models in the

transportation literature. Starting in the early 1980s (Veldhuisen and Timmermans

1984), the reliability and validity of conjoint preference models was tested and this

interest evolved into a continuous stream of research activities that extended and
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improved this modelling approach. Originally, one of the key problems in develop-

ing conjoint preference models of residential choice was how to include the many

attributes that influence the residential choice decision. The hierarchical informa-

tion approach, originally developed for preference tasks (Louviere 1984), was

generalized to hierarchical conjoint choice models (Timmermans 1989; Louviere

and Timmermans 1990). Later, an improved method, named integrated choice

experiments, was introduced in the literature (Oppewal et al. 1994), and this method

was tested to model residential choice behaviour (Van de Vijvere et al. 1997). Other

extensions concerned the development of a context-dependent conjoint choice

model of residential choice behaviour (Timmermans and van Noortwijk 1995),

and a model incorporating the similarity between attributes (Timmermans et al.

1996). Finally, the modelling approach was generalised to the modelling of group

preferences and group/family choice as opposed to individual choice behaviour,

and it has been argued that residential choice behaviour might be better viewed as

a group/family decision than an individual decision (Timmermans et al. 1992;

Molin et al. 1999).

In addition to such research focusing on a particular type of behaviour, such as

residential choice, the Urban Planning Group has been active in developing

integrated models. Examples of such models are the activity-based models

Albatross and Ramblas. The latter model can best be viewed as a modern version

and extension of “A Regional Location Model”, which was developed in the mid

1970s (Veldhuisen and Kapoen 1977). This model allocates different land use

across space and was similar in scope and objectives as the conventional land use

– transport models. It differed in that the allocation of residential land use was not

based on observed behaviour but rather on people’s measured preferences. In the

late 1990s, the model was revitalised and given the new acronym Ramblas. As will

be discussed later in more detail, the transport component was new, being based

on observed activity–travel patterns. In addition, micro-simulation using readily

available empirical data was employed. It is a data-driven model, there is no

attempt to interpret and generalise the data in terms of some underlying theory.

In contrast, Albatross is theory-driven. The model was originally developed for

the Dutch Ministry of Transport and is best viewed as a rule-based, computational

process model of transport demand. A series of rules is used to predict which

activities will be conducted where, when, for how long, with whom, and the

transport mode involved. Residential land use is an exogenous variable in the

model. However, as part of the Amadeus research programme (Timmermans et al.

2002), partly completed, partly ongoing and planned work on Albatross includes

spatial population forecasts as a function of among other housing plans, and fore-

casts of land uses, including residential land use. The two activity-based models,

which will remain different in the way they model activity–travel patterns, will

likely share much of the way in which residential choice is treated. Therefore, the

two models are discussed simultaneously in the present chapter.

The chapter is organised as follows. First, we will discuss in more detail the

motivation, underlying principles, scope and structure of Ramblas, followed by a

similar discussion of the Albatross model system. Next, we will discuss the way in
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which components that were developed to model residential choice can be

incorporated in the models. This discussion involves how a baseline synthetic

population is derived from data on the distribution of dwellings in the study area

and how housing choice of movers and newcomers is modelled. Finally, we will

draw some conclusions and briefly discuss plans for future research.

2 Ramblas

To give an appropriate framework for the discussion of the residential choice

module, we first briefly summarize the core of both models: the simulation of

activity–travel patterns. Ramblas has been developed to explore the possibilities

of developing a micro-simulation model that uses nationally available, easy acces-

sible, official statistics only, and that is based on simple and easy to comprehend

principles as opposed to specific modelling techniques. The model has been devel-

oped primarily to estimate the intended and unintended consequences of planning

decisions related to land use, building programs and road construction. Its main

purpose is to predict the spatial distribution of individuals’ activities and related

traffic flows, given a forecasted spatial distribution of dwellings, households, firms,

and the transport network.

Assume that a list of individuals with a set of characteristics is given. Later, we

will discuss in more detail how this is done. For each individual, an activity agenda

is created for some specific day of the week by matching the socio-demographic

profile of each individual to nationally available data on time use. Individuals are

classified according to 26 segments, based on gender, age, employment status and

education, and five types of municipalities. An activity agenda is created by

identifying the relevant segment and drawing at random an activity pattern from

the national database of that segment. Seven types of activities are distinguished:

work, child care, shopping, personal/medical care, school or study, social partici-

pation and social contacts.

For each out-of-home activity, transportation mode choice is simulated by

drawing at random from the corresponding conditional probability distributions,

created from the national time use survey. Once activity agendas and transportation

modes are known, the next step in the micro-simulation addresses the problem of

how this agenda is executed in space. In the case of the work activity, it is assumed

that the travel time observed in the diary constitutes the time people are willing to

travel to work, given the transportation mode involved. Destination choice for the

work activity is simulated by drawing at random without replacement a job location

from the total number of available jobs in the region, which is delimited by this

maximum travel time. In the case of school, it is assumed that children going to

elementary schools invariably choose the school nearest to their home. For students

going to secondary schools, it is assumed that their action space is defined by an

area of 45 min of bicycling time. Schools are drawn at random from this action

space. The same principle is used for students going to schools of higher education,
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but in this case the distribution of employment in higher education is used as the

distribution from which the school is sampled. The latter principle is also used to

simulate destination choice for shopping and services. The destination is drawn

at random from the distribution of employment in the relevant sectors. As for

social activities, the distribution of the population rather than the distribution of

employment is used as the distribution from which the destination is sampled.

The above simulation process results in an origin and destination, plus a

simulated transportation mode, for each trip. If the transport mode involves the

car, route choice behaviour is also simulated, assuming that individuals take the

shortest route, in terms of travel time. These trips are loaded onto the network. The

“speed-flow” method is used to calculate the required travel time. Given the arrival

time at the destination, the departure time is then calculated. The simulation process

thus results in an estimate of traffic flows on the network for every moment of the

day.

3 Albatross

The purpose of Albatross is to predict which activities will be conducted where,

when, for how long, with whom, and the transport mode involved. Thus, its

objectives are quite similar to those underlying Ramblas. It does however involve

more choice aspects, and more (personal, household, spatio-temporal and institu-

tional) constraints. Route choice is not an integral part of the model yet, but should

be handled by another model, but an innovative approach is currently under

development (Arentze and Timmermans 2003). The model system has been devel-

oped for the Dutch Ministry of Transport, Public Works and Water Management in

the context of a research and development programme that aims at exploring new

ideas and methodologies for transport planning.

Although the two models share this common purpose, they represent extreme

examples of activity-based models at the opposites of the spectrum. Ramblas is

primarily data-driven. Distributions and conditional probabilities observed in

national data sources are used to simulate activity–travel behaviour at the local

level, at best correcting for known local data. This is no attempt to capture any

structure in this data in terms of an underlying theory or algebraic or rule-based

model. In contrast, Albatross is theory-rich, and represents an attempt to extract

context-dependent choice rules from activity–travel diary data, collected specifi-

cally for developing the model, to simulate activity–travel patterns.

The core of the model is a scheduling agent, which generates a schedule for each

individual and each day and consists of two components. The first component

generates an activity skeleton consisting of fixed activities and their exact start

time and duration. Given the skeleton, the second component then determines the

part of the schedule related to flexible activities to be conducted that day, their

travel party, duration, time-of-day and travel characteristics. Both components use

the same location model component determining the location of activities. All three
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components assume a sequential decision process in which key choices are made

and pre-defined rules delineate choice sets and implement made choices in the

current schedule.

The skeleton model determines activity patterns on a continuous time scale.

It consists of several sub-processes including: determining the pattern of sleep

activities, determining the pattern of the primary work/school activity, determining

the pattern of secondary, fixed activities and determining the location of each fixed

activity episode. The model chooses the end time of the morning sleep episode and

the start time of the evening sleep episode. The primary work/school activity has

maximally two episodes and a minimum duration of 1 h per episode. The pattern

is defined by decisions about the number of episodes, start time, duration(s) and

inter-episode time. Work/school activities with shorter duration are treated as a

separate category of secondary fixed activities in the next step.

The location component chooses locations in descending order of priority of

fixed activities. For each activity, the choice set consists of all 4PCA’s (four

position postal code area, if which approximately 4,000 exist) in the Netherlands.

First, the model chooses the municipality and next a 4PCA within the chosen

municipality. At both levels, the model determines a choice by increasingly

narrowing down the choice set in a number of steps. For the choice of municipality

at the highest level, the first decision determines whether the activity (episode) is

conducted within or outside the home municipality of the individual. If the last

option is chosen, the choice of a municipality follows from a choice of an order and
distance band. Five orders are distinguished based on population size. Given the

order, the choice of a distance band follows. The combination of order and distance

band tends to reduce choice sets strongly. If there are still multiple alternati-

ves left, the model selects a municipality semi-randomly. For the choice of a

zone (i.e., a 4PCA) within the chosen municipality a similar logic is used.

All other choice facets are also modelled using a decision table formalism for

choice rules. This set of decision tables is partly linked in the sense that the

outcomes of one or more previous decision tables in the assumed scheduling

model are input to subsequent tables. The complete Albatross system consists of

1,687 choice rules to simulate activity–travel patterns. Full details of the model are

provided in Arentze and Timmermans (2000, 2003).

4 Treatment of Residential Choice Behaviour

The spatial distribution of residential land use plays a double role in the simulation

of activity–travel patterns in both models. First, both models assume the construc-

tion of a synthetic baseline population at the start of the simulation period. To that

effect, the number of individuals and their values on a set of sociodemographics in

each postal area are predicted, reflecting the spatial distribution of residential land

use. This distribution influences the activity agendas and the spatial–temporal

constraints underlying the models. This data can be exogenous to the models,
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implying that the relevant distributions should be based on an external model or

data source and the creation of the synthetic population takes places at each

simulation run.

Secondly, residential land use is an integral part of the dynamics in the model

systems. In this case, the aging and redistribution of the population, partly reflecting

residential choice behaviour, is internal to the model system. In this case, a special

sub-model or module predicts housing choice behaviour as a function of socio-

demographics, characteristics of the available dwelling stock, characteristics of the

transport network, and possibly activity agendas.

4.1 Creation of a Synthetic Baseline Population at t ¼ 0
Reflecting the Spatial Distribution of Residences

A synthetic population is represented in both systems in terms of a multiway

attribute frequency table. Known demographics for the study area, based on official

statistics, define the marginals of the table and the sample the initial cell propor-

tions. The models determine cell proportions that are consistent with both sources

of data. Every cell in the table represents a unique combination of attribute levels.

If N is the number of cells of the multiway table for zone i and Wij the number of

households in cell j, the system generates N households with multiplication factors

Wij. Thus, the population of zone i is represented by a N-vector Wi, 8i.
The set of attributes and attribute levels that describe the synthetic population are

those used in the model to simulate activity–travel pattern. In addition, household

attributes are chosen such that individuals can be derived. The two models differ in

terms of the specific methodology and data sources that are used to create this

baseline population.

Monte Carlo simulation is used in Ramblas. It starts with the population matrix

according to age (in years), gender and marital status available for each municipal-

ity of the Netherlands, using data published by the Central Bureau of Statistics. This

matrix includes the vector of married women. Using the National Housing Survey,

household characteristics are added to each married woman by drawing at random

from the set of households that have a woman of the same age. This procedure

results in number of married men and a set of children by age and gender. These

simulated numbers differ from the given population matrix and are therefore

corrected to fit the observed number of married men according to age and the

children according to age and gender. The correction is based on known distribu-

tions of married men by the age of the spouse and those of children by the age of the

mother. The surplus of men in every class, respectively children, is reallocated at

random to other age cohorts and gender (in the case of children). The case of other

household types is straightforward.

The creation of synthetic populations in Albatross differs in a number of regards.

First, in addition to age, gender and marital status, household type (single non-worker,
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single worker, double non-workers, double one-worker, double two workers),

socio-economic class (very low household income, low, average, high), number

of cars in household, availability of car for person (is capable of using car), and

work status of person are used. Secondly, these socio-demographic profiles are not

explicitly linked to housing characteristics. Thirdly, whereas Ramblas is based on

the National Time Use Survey and The National Housing Survey, Albatross used

the National Travel Survey and the Population Data of the Ministry of Transport.

These differences reflect the idiosyncracies of the models and the principal’s need

to use a common data set for different projects.

In addition, Albatross uses a more formal approach to create the synthetic

baseline populations. Instead of Monte Carlo simulation, iteratively proportional

fitting is used to create multi-way tables. IPF assumes an I1 � I2 � ... � Im table

with initial cell counts mi1:::imand marginal counts C1ði1Þ;C2ði2Þ; :::;CmðimÞ as given,
where Ij represents the number of levels of the j-th attribute, ij is the i-th level of the
j-th attribute, mi1:::im is the count in cell i1 � i2 � ... � im andCjðijÞ is the total count
of the ij-th level of the j-th attribute in the target population. Adjustment of a cell

count mi1:::imgiven marginal count CjðijÞ is according :

m0
i1::::im

¼ mi1::::im

CjðijÞP
i1:::ij�1;ijþ1:::im

mi1::::im

: (1)

This operation is repeated for every margin and every cell until convergence is

reached. Although the actual method differs, the two approaches will yield the same

results, within some margin, as long as the Monte Carlo simulation is based on the

proportionality assumption.

The difference in choice of method reflects the specific purpose of the model.

The main advantage of the IPF-method is that it is easy to derive the multi-way

table that is consistent with some correlation structure, allowing the creation of a

synthetic population that is consistent with an assumed future population according

to some scenario.

Households need to be allocated to the existing dwelling stock. In both models,

households are spatially allocated to the existing dwelling stock given the following

constraints (1) for each zone i the number of dwellings equals the number of

households and (2) the allocation is consistent with a dwelling-type � household-

type matrix. The dwelling stock in zone i is represented by a Q-vector Vi represent-

ing the distribution across Q dwelling types. The allocation step results in a new

N � Q dwelling occupancy matrix, say Zi.

Again, the two models differ in terms of the methodology used to this effect.

Ramblas again uses Monte Carlo simulation. The residential preference of a

household for type of dwelling is drawn at random from the National Housing

Survey, given the household sociodemographics and these preferences are matched

to housing characteristics. Households are allocated at random to dwellings that

qualify. Households that are not allocated (mainly unmarried young adults) are

assumed to share a dwelling. In contrast, for determining Zi, Albatross uses an
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Iterative Proportional Fitting method, whereby initial cell proportions are based on

observed residential preferences and marginals are given by Vi. Consequently, the

resulting matrix is consistent with preferences at the dwelling type level and

distribution Vi. Note that accessibility is not a variable, influencing the allocation

of household across space. One of the reasons for this is that accessibility has

consistently found to be a relatively unimportant factor in the residential choice

decision (Molin and Timmermans 2003).

4.2 Dynamic Residential Choice Behaviour

When the models are used as explained above, they are applied in a static fashion.

Exogenous data is used to prepare the synthetic population that in turn constitutes

the necessary input to the simulation of activity–travel patterns. This approach

would suffice if the aim of the model application is to predict the cross-sectional

implication of land use or transport policy on any given point in time. If, however,

the goals would be to trace the policy effects over time, then either the above

procedures should be repeated for the sequence of year in the forecasting period,

using exogenous data, or an internal accounting and residential choice module is

required. Ramblas has been fully developed in this regard, the implementation in

Albatross is in progress.

Such a module requires both an accounting system, simulating the transitions

between household types, and data, reflecting planning measures related to the

construction and demolition of dwellings. Users of the models can provide the latter

information, but theNewMap Foundation also collects such data for TheNetherlands.

Thus, let there be given Vi,t 8 t based on a given scenario of housing development

programs to be realized at the end of t. A housing development program specifies new

construction and demolition and is specified for every zone i in terms of a dVi,t such

that Vi,t+1 ¼ Vi,t þ dVi,t 8 t.
Transitions between household types can be conceptualised (the actual algo-

rithms are based on micro-simulation and agent technology) in terms of a transition

matrix. This matrix is a (N þ 1) � (N þ 1) matrix, whereby N is the number of

cells in multiway table Wj. The extra row represents the new households of type j,
the extra column the dissolution of existing households of type j and the remaining

N � N cells the transition of household type j to household type j’. If M represents

the N � N transition matrix, the distribution of household types at t þ 1 may be

found by: Wj,tþ1 ¼ Wj,t � M.

To simulate residential mobility for the simulated individual households, the

National Housing Survey is used to determine the number of households searching

for a new residence at t þ 1 as is denoted as wVi,tþ1. This number includes new

households and existing households, wishing to change residential zone or dwelling

type. For each zone, the stock of vacant dwellings is determined. The vacant stock is

defined as Ai,tþ1 ¼ Li,t þ sVi,t þ wVi,tþ1 (all terms are defined as Q-vectors),
where L is a surplus, sV the mutation of the dwelling stock during time period

216 T. Arentze et al.



[t, t þ 1] and wV are households searching for a new dwelling. Note that the last

term preliminary “removes” people that are searching for a new dwelling from their

current homes.

The total demand for dwellings, wVi,tþ1, and the total supply of dwellings, Ai,tþ1,

is known as a result of the previous steps. In the final step, the model simulates

the allocation of households in array wVi,tþ1 to the vacant dwelling. Those in array

wVi,tþ1 who are not successfully allocated “return” to their current dwelling. The

result of this step is a new dwelling occupancy pattern Zi,tþ1 and non-occupancy

pattern Li,tþ1.

Ramblas uses data on residential preferences of the various household types

from the National Housing Survey and Monte Carlo simulation techniques to

reallocate households. A multinomial logit model is used to predict the probability

that a moving household prefers a housing type as a function current housing type,

type of municipality and size of the household. Note again that transport considera-

tions do not play a role in relocating households.

4.3 Reflection and Future Work

It may be relevant to put this discussion in a broader framework. As discussed in

detail in Timmermans et al. (1994) a variety of self-explicated compositional,

decompositional and hybrid stated preference methods are available to measure

residential preferences. Unless one arguably dramatically restricts the number of

influential attributes, it is impossible to estimate individual-level utility functions.

Consequently, the very popular multinomial logit (MNL) model is typically esti-

mated at the segment or aggregate level. Now, if an aggregate model is used to

simulate individual behaviour, implicitly or explicitly it is assumed that the sample

is homogeneous. This would mean that although we have developed a summarising

function to represent the data, which looks impressive, by definition the predictive

error will, ceteris paribus, be larger as no account was taken of the heterogeneity in

residential preference. If the range in the estimated part-worth utilities of a particu-

lar attribute in a conjoint experiment is equal to zero, it either means that the

attribute is not important or that the preferences of sub-samples counterbalance

(or some combination of these). One way of incorporating heterogeneity in the

simulation would be to sample from the error distribution, but of course this would

potentially bring the simulation very close to the original data.

There is also the issue of validity. If we accept that the MNL is a reasonable

model to estimate residential preference/utility functions using experimental design

data (although as discussed in the introduction we have developed more advanced,

less rigorous models), this does not necessarily mean that the MNL is also a

reasonable model to simulate the residential decision making and choice process

beyond the experimental task in the real world. In fact, it might be argued there is a

significant discrepancy between the experimental task of choosing between two

attribute profiles and choosing a house in the real world. Individuals often have
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limited and imperfect knowledge about choice alternatives in real world markets,

their choice is risky as others might buy the candidate house, the choice set changes

on a minute-by-minute basis, and the housing search process involves time, effort

and cost, implying that individuals and households may act sub-optimally and

accept a dwelling that does not maximise their utility. If this argument is accepted,

the MNL may be too simple and a more sophisticated model may be required.

The composition of choice sets constitutes another operational and theoretical

problem. The predictions of the MNL model will depend on the size and composi-

tion of the choice set. The choice set may consist of thousands of alternatives,

creating not only operational problems, but choice sets of that size are unrealistic. In

reality, movers likely consider only a few options. Moreover, the IIA property

underlying the MNL model will not be satisfied, questioning the validity of the

approach to estimate MNL models in conjoint choice experiments and applying

these models to predict residential choice behaviour and articulating the need to

develop and explore alternative modelling approaches, that better mimic the actual

decision making process.

Given these considerations and the computational process nature of Albatross,

the following module is currently considered to be implemented. A distinction is

made between the decision to become engaged in search for a new dwelling, spatial

search and choice. As for becoming active, we assume that people may become

active when they wish to start a new household, are dissatisfied with the current

dwelling, change work location, enter a new life cycle and mimic moving peers in

their social network. The last factor is included to account for a mechanism whereby

a wish to move is triggered bymoves of peers of the household under concern. These

events may be related. That is to say, changing work location, entering a new life

cycle or social mechanisms may induce dissatisfaction with the current dwelling.

We define dissatisfaction as a household’s expectation that a change of residence

can improve residential utility. Therefore, degree of dissatisfaction is not only a

function of attributes of the current dwelling, but also of a household’s assessment of

the current housing market within the relevant segment. Thus, the criterion here is

not disutility, but marginal utility (possible improvement). A positive marginal

utility is not a sufficient condition for triggering search. Inertia and the assessed

effort involved in searching and movement create a threshold. Moreover, housing

markets are not static, but change over time. If the disutility of staying is compen-

sated by the increase of expected utility of entering the market at some later moment

in time, a rational household will remain passive until that moment.

Given these considerations, the condition triggering search in its most generic

form can be written as:

max T Umove
T �

Z T

t

UstayðtÞdt
� �

>c; (2)

where T is the time moment of becoming awake, Umove
T is the expected utility of

moving at time T, t is (continuous) time,UstayðtÞ is marginal disutility of staying and
c is a threshold determined by inertia, uncertainty and effort involved in searching
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and moving. The integral assumes continuous time. In a discrete-time formulation,

the integral symbol is replaced by a sigma. For finding appropriate equations for

each of these terms, economic theory (of investment decisions) is relevant in as far as

bounded rationality is taken into account. It is also worth noting that dissatisfaction

as conceptualised here also covers cases where a willingness to move is activated

solely by existing supply (i.e., by seeing a house of one’s dream by accident).

Such an event would raise Umove in (2) and increase the probability of moving.

Once an individual or household has become active, a process of (spatial) search

is triggered. Like any behavioural model of choice-set formation, a two-staged

process is assumed:

Prði 2 IÞ ¼ Prði 2 KÞ Prði 2 <Þ; (3)

where i is an index of houses on offer, I is the choice-set of the (awakened)

household under concern, K is the known set of houses on offer and < is the

consideration set generically defined by means of a set of elimination rules.

The first term on the RHS of (3) is a function of a set of factors determining the

probability that an offer reaches the household passively (e.g., through spatial

interaction, social interaction, media, professional advisers) or actively (search in

a strict sense). It is assumed that:

Prði 2 KÞ ¼ f ðA;=; SÞ; (4)

where A is the current action space of the household (defined as a set of locations),

= the social network in which the household takes part (defined as a bi-directional

graph) and S the search space (defined as a set of locations). Hence, the first two

terms correspond to a passive mode and the last term to an active mode of search.

Action space comprises all the activity locations and travel routes of (individuals

within) the household and, therefore, is known by the system. S can be defined by

means of a set of screening rules selecting locations that meet some preferred

characteristics that follow from the choice model. Obviously, A and S may overlap

and the overlapping subset will have an increased probability. On the other hand,

social network = should take into account differential probability of exchanging

information between actors in the system as a function of sharing activity locations

and sharing socio-economic and life-style characteristics. This is more difficult to

derive, but the activity-based approach brings the problem closer to a solution.

Once= is established, the system merges sets K across the actors connected through

the network. Note that by its communicative nature, the social network is a

potentially very rich source of information in the system as well as reality.

The previous components determine the moment when a household becomes

engaged in active search and the consideration set of houses on offer resulting from

it. The residential choice model determines the probability of choosing i 2 I in two
steps:

PrðijIÞ ¼ Pr maxi2I UðXiÞf g>Ustayð Þ Pr UðXiÞ>UðXjÞ; 8j 6¼ i
� �

; (5)
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where Xi is a vector of attributes of house on offer i, U(l) is a utility function and

Ustay is the utility of not moving. The first term on the RHS represents the probability

of a positive move decision and the second term the probability of choosing i. Note
that the utility of moving may not be equal to maxi2I UðXiÞf gð Þas the former is

based on expectations and the latter on evaluation of actual houses on offer.

An example of a possible implementation is a nested-logit model:

PrðijIÞ ¼
exp 1

m ln
P

i mVi

� �
exp 1

m ln
P

i mVi

� �
þ exp Vstayð Þ

exp Við ÞP
i exp Við Þ (6)

or:

PrðijIÞ ¼
exp Vi þ 1

m ln
P

i mVi

� �
exp

P
i Vi þ 1

m ln
P

i mVi

� �
þ exp

P
i Vi þ Vstay

� � (7)

where V are the structural components of U and m is a scale parameter to be

estimated. However, given the other agent in Albatross, decision tables which

match residential preferences against the characteristic of the vacant dwellings

are more appealing. Moreover, decision tables easily represent thresholds, substitu-

tions and veto criteria, which are difficult to incorporate in algebraic, utility-

maximising models.

The choice of attributes Xi is critical and include dwelling attributes, neighbour-

hood characteristics, relative location vis-à-vis nodes of the multimodal transport

network, vis-à-vis work/school location, vis-à-vis centres for shopping/recreation/

leisure, vis-à-vis nodes of the social network, and the social structure of neighbour-

hood. Given a classification of households based on typical activity-programs,

household-type specific parameters determine the relative importance associated

with the location attributes and, therefore, the compromise the household is willing

to make regarding the activity program. Social-network and social-structure

constructs also play an important role in the dynamics of the system. Note that the

integration of land use and transport thus goes beyond simply treating the calcula-

tion travel times in the transport model as input to the residential choice model.

Competition between searching households is a final factor that is taken into

account in allocating households to vacant dwellings. Collectively, the previous

steps determine the set of candidate households for each specific house on offer.

Under perfect market conditions, the price mechanism would bring demand and

supply together. In n-to-1 markets (n demanders, 1 supplier), a bidding process

would settle equilibrium price. However, at least the Dutch housing market is far

from perfect in an economic sense. In the social sector the market is regulated,

whereas in the free sector a “first one first considered” rule tends to dominate.

Willingness to accept a price (by the demander) or a bid (by the supplier) is

typically influenced by urgency of a purchase. Therefore, an imperfect bidding-

process model is developed for this part of the system.
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5 Conclusions and Discussion

This chapter has discussed the residential choice component in the Albatross and

Ramblas model systems. The discussion should have made it clear that at the

present stage of development, both models are primarily activity-based models of

transport demand, and not integrated land use – transport models. Their prime goal

is to predict activity–travel patterns and associated traffic flows. The distribution of

residential land use, in terms of households and persons, is exogenously given.

Based on the available data sources, a set of tools has however been developed to

create synthetic populations that serve as input to the models.

Having said that, work is on its way to further elaborate these models and predict

dynamic residential choice behaviour. Much of this work can be based on previous

work of the authors and their co-workers. Most progress to date in terms of actual

software development has been completed in the context of Ramblas. It contains a

module for modelling residential choice behaviour that is used to predict the choice

of residential zone for people moving house and newcomers in the housing market.

Simultaneously, the properties of the dwelling stock are updated. Residential

preferences measured in the National Housing Survey are matched against vacant

dwellings in the market. These preferences are measured using a compositional

stated preference approach, but alternatively any conjoint preference approach,

mentioned in the introduction, could be used in principle. To capture the heteroge-

neity in residential preferences, estimated utility functions should be segment-

specific or the micro-simulation should incorporate the inherent heterogeneity.

Work in progress as part of the Albatross system uses this information plus

information about pressure in individuals’ activity–travel patterns, and a set of other

events to simulate dynamic residential choice. It represents an attempt to replace

the rather rigorous assumptions underlying the utility-maximising and welfare-

maximising multinomial and nested logit models by a computational process

model that is based on imperfect and limited information, spatial and non-spatial

search in dynamic housing markets and a suboptimal market clearing process in

non-equilibrium.

While we argue that this development is theoretically appealing, it does not

necessarily result in improved prediction. In that regard, the extreme differences

between the data-driven Ramblas model and the theory-driven Albatross model

would make a comparison of the predictive performance of these models very

interesting.
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AMicrosimulation Model of Household Location

Olga Feldman, Roger Mackett, Emma Richmond, David Simmonds

and Vassilis Zachariadis

Abstract This chapter describes the development of a new microsimulation model

of individual and household changes and choices within a land-use/transport inter-

action modelling structure.

The major strength of the model is naturally its disaggregate and dynamic

nature, which means that the user can aggregate the output at any desired level of

household or person characteristics, and that it is possible to trace individuals,

households, jobs and dwellings over time so as to observe the modelled processes of

change at a level of detail that is simply not possible in other types of models.

1 Introduction

This chapter describes the development of a new microsimulation model of indi-

vidual and household changes and choices within a land-use/transport interaction

modelling structure. The work was carried out by David Simmonds Consultancy

(DSC) in collaboration with MVA Consultancy, University College London and the

University of Leeds School of Geography, under a commission from the UK

Department for Transport (DfT). Further developments are being considered, so

inevitably the chapter is limited to describing the model at a particular point in time.
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The Chapter is organized as follows. In subsequent sections the following

aspects of the model are discussed. Section 2 discusses the choice of modelling

approach. Section 3 describes the area covered by SWYSimM.

Section 4 focuses on the aggregate components of SimDELTA. Section 5

describes the static components of the microsimulation modelling, that is, the

creation of the initial microdata for the base year, and the sources used in this,

whilst Sect. 6 describes the overall structure of the dynamic model and the design of

the microsimulation components. Section 7 draws some conclusions on the status

and possible applications and future developments of the model.

2 The Choice of Modelling Approach

The decision to develop a microsimulation-based model arose both from the

DfT Specification and our own thinking, in particular our earlier “New Look at

Multi-Modal Modelling” for the Department (Simmonds et al. 2001). The general

arguments in favour of highly disaggregate modelling are well established. There is

however a continuing debate in many areas about the relative merits of what is

sometimes called “econometric” disaggregate modelling, on the one hand, and

strict microsimulation on the other (see, for example, Bowman and Ben-Akiva

1997). Both techniques work on samples of individual decision-makers (persons or

households). The essential difference is seen in their modelling of choices between

discrete alternatives (e.g. between modes, or between residential zones):

l In the “econometric” approach, each modelled decision maker will have a

non-zero probability of choosing each available alternative, and these probabil-

ities are used directly as the results of the model – so each modelled individual is

assumed to spread out across the available alternatives for each choice.
l In the microsimulation process, whilst the same probabilities may be calculated

(sometimes in exactly the same way), each modelled individual is allocated to

one single alternative.

Another important difference is that microsimulation often uses Monte Carlo

simulation methods. In this case, random numbers are used in the process of

“deciding” which of the available alternatives the decision-maker will choose,

given the calculated probabilities. This means that if the model is rerun with

different random numbers, the results of the model will be different. This raises a

number of issues about the practice of using such a model, and about the interpre-

tation of the results. (Note that where the microsimulation works on deterministic

rules, these issues do not arise, except in so far as the base data is itself typically a

microsimulation output with a random component.)

“Econometric” approaches to disaggregate modelling have been used exten-

sively in transport modelling, and were identified in the “New Look” work as

representative of the state-of-the-art techniques for application of the conventional

“four-stage model” approach. Microsimulation approaches are used extensively in
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traffic modelling, especially at the most detailed levels, though here too there

are issues about the use and interpretation of Monte Carlo results (see Feldman

and Maher 2004).

Household location modelling has for some time tended to move towards micro-

simulation rather than econometric disaggregate modelling. The key examples

are IRPUD (Wegener 1982), MASTER (Mackett 1990, 1992, 1993), UrbanSim

(Waddell 1998; Waddell et al. 2003) and the TLUMIP model of Oregon (see chapter,

“Stated Preference Examination of Factors Influencing Residential Attraction” by

Hunt). The reasons for this trend to microsimulation are:

l The possibility of relating to the range of other microsimulation work on

household and individual change over time.
l The problems that arise, both conceptually and practically, with econometric

models where a moving household will be distributed in small fractions across

many locations – it is much easier to design and build a model where one

household moves from one initial location to one new location.
l The possibility of building explicit consideration of available information,

information-gathering and search processes into microsimulation; most practical

forms of econometric choice modelling (i.e. logit models) assume perfect

knowledge of all available alternatives.
l The availability of increased computing power.

Given this background, and the requirement to focus on modelling households

and individuals (rather than employment, firms or development processes), our

approach to the development of this model was that

l The overall structure would remain that of our existing DELTA models (see

chapter, “The DELTA Residential Location Model”), but with the household/

person processes being rebuilt as microsimulation models, exploiting the modu-

lar structure of DELTA.
l The microsimulation components should explicitly model changes to members

of the sample over time (rather than, as in many other microsimulation models,

generating a separate sample for each modelled period of the forecast).
l The microsimulation modelling would be carried out at ward level (see below).
l The default designs for the additional elements of microsimulation modelling

would be based on those from the earlier MASTER model (making use of

lessons learned from the MASTER projects).
l The model would be tested on the South and West Yorkshire areas, making use

of existing DELTA and transport models there so as not to have to build these

anew.
l The emphasis would be on getting a working model up and running, and on

identifying the needs for further research (and possibly new surveys) from the

model implementation and testing processes.

The decision to build the model was important. Wards in England are small

electoral and statistical units, those in South and West Yorkshire having an average

of about 5,000 households each. The pre-existing land-use model of the area was
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implemented using zones which were generally groups of wards. The new model

was therefore designed to operate on a rather finer spatial system but not to operate

at a micro-spatial (parcel or fine grid cell) level. Hence, although the model operates

on lists of dwellings, the location of dwellings is not currently defined below the

ward level.

The term “microsimulation modelling” generally covers all of the possibilities of:

l The processes of generating a micro-level (individual household and/or person)

data consistent with a given aggregate data set (whether observed, as in Census

tables, or forecast by an aggregate method such as cohort-survival population

forecasting)
l Modelling the impacts of changes by analysis within such a micro-level dataset

(e.g. to look at the impacts of job losses/gains on the microsimulated population

at a particular point in time) and
l Modelling changes over time by applying microsimulation techniques to the

processes of change at the household/person level

It is worth emphasising at this point that the objective of the present project was

to develop a fully dynamic microsimulation model in which all of the processes

affecting households and their members would be modelled as changes over time –

i.e. the focus is on the last of the possibilities listed above. The project therefore

split into two main stages: the generation of the initial sample of households and

household members (a process referred to as the static model), and the implemen-

tation of the dynamic model proper, forecasting changes over time.

The new modelling package has been given the name SimDELTA. The choice of

the South and West Yorkshire case study area for the initial application of Sim-

DELTA allowed the modelling to be based on the existing South and West

Yorkshire Strategic Model (SWYSM – see Simmonds and Skinner 2004; Feldman

et al. 2007). SWYSM was originally developed for the South and West Yorkshire

Multi-Modal Study; that study also involved the building of more detailed, generally

ward-level, highway and public transport models which were used to provide

transport inputs to the new microsimulation modelling. This first application of

SimDELTA has been named SWYSimM.

3 The SWYSimM Area

The SWYSimM area is a subset of that modelled in SWYSM (see Fig. 1). The

definition of the SWYSimM area took account of the work on Functional Areas and

Regions which MVA Consultancy and DSC carried out for DfT in an earlier

preparatory study (Feldman et al. 2005b). The Functional Area analysis provided

a catalogue of possible zoning systems at different levels of aggregation. At any

chosen level, the Functional Areas are areas of relatively high self-containment in

the travel-to-work patterns. The SWYSimM application covers five large areas

covering virtually all of the South and West Yorkshire areas and some adjoining
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territory; these are represented at ward level, giving 283 microsimulation zones.

The rest of the SWYSM modelled area forms a set of 18 external zones for

SWYSimM. These cover the rest of the South and West Yorkshire plus the larger

adjoining areas of Greater Manchester, Humberside, Lincoln, Nottingham, Derby,

Stoke, East Lancashire and Yorkshire. In these external zones population is still

modelled at the aggregate rather than microsimulation level using the standard

DELTA package.

4 The Aggregate Components of SimDELTA

Before launching into the discussion of the microsimulation components of Sim-

DELTA, it is useful just to identify the parts of the overall model which remain at

the aggregate level. These are

l The transport modelling
l The modelling of longer-distance migration
l The modelling of employment location and
l The modelling of non-residential development

The interface from the microsimulation model to the aggregate level is a simple

one of aggregating microsimulation outputs and superimposing them on the aggre-

gate model. The interface from the aggregate sub-models to the microsimulation

involves:
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l Calculating zonal accessibilities (from the transport model outputs and the land-

use forecasts) by microsimulation zone.
l Converting the aggregate migration model outputs into probabilities to be

applied by Monte Carlo simulation at appropriate stages in the microsimulation

modelling.
l Converting the aggregate employment forecasts into redundancy rates and/or

synthetic microdata representing new jobs.

The microsimulation is inserted into the standard DELTA sequence as shown in

Fig. 2. Note that the intention is that the forecasting of housing development should

also remain in the aggregate modelling, which means that an interface would be

needed to turn changes in dwellings stock into microdata on new dwellings (or into

instructions to demolish a proportion of existing dwellings). This has not yet been
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are numerous other flows between DELTA components and databases
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implemented, and the SWYSimM runs to date have all been undertaken with

exogenously prepared micro-level inputs for changes in housing stock.

5 Static Model Implementation

Whilst the focus of the project was on the modelling of household changes over

time, i.e. the dynamic modelling, the initial static modelling was an essential part of

the work programme because, as usual, it was necessary to generate a dataset from

which the dynamic modelling would operate. The static modelling itself involved

two stages. The first was the generation of an initial synthetic microdata set, based

on data from the regional Sample of Anonymised (household) Records (SARs), to

produce a synthetic 100% sample of households and persons for each zone (ward)

closely matching the characteristics of the zone’s population as shown by the

published (aggregate) Census tables. The second stage involved the addition of

further variables to this data; this was necessary partly as a result of the process of

synthesizing zonal data from a regional sample (even if the SARs contained data on

individuals’ workplaces, this data would not be valid for the synthetic data based

upon the SARs sample), and partly because some required variables were not

available in the SARs data at all.

The initial generation of the synthetic microdata was carried out by a combina-

torial optimisation method called simulated annealing, which has been widely used

in other static spatial microsimulation applications (see for example Ballas 2001;

Ballas et al. 2004; Williamson et al. 1998). The starting point was the simulated

annealing modelling method used in ULSG’s SimLeeds project (Ballas 2001). This

was applied so as to select household records (with repetition) from the relevant

regional sub-set of the 1991 Household SARs which would match the observed

population of each zone as reported in the 1991 Small Area Statistics tables. Both

sets of data were derived from the 1991 UK Census of Population.

The simulated annealing procedure in the SimDELTA context can be sum-

marised as involving the following steps, applied independently for each zone

(ward):

l Taking a random sample of N microdata household records from the overall set

of microdata, by sampling with replacement, where N is the number of house-

holds in the zone.
l Tabulating the characteristics of the sampled microdata.
l Comparing these with the chosen tables of observed Census data for the zone

and assessing the goodness of fit of the sample data to the observed data.
l Randomly replacing some of the cases in the sampled microdata and repeating

the above two steps.

The last three steps are repeated until a sample of microdata is found for the zone

which produces a satisfactory match to the tables of observed data for the zone.

If any replacement of cases results in a significantly worse goodness of fit, the
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replacement is generally reversed and a different random replacement is attempted.

As the simulation progresses and (hopefully) the goodness-of-fit improves, the

number of records selected for swapping at one time decreases. This allows faster

change early in the process, whilst proceeding more cautiously once the fit has

improved significantly. The static model also employs a restart method which is

applied if the model fails to find a satisfactory solution within the maximum

permitted iterations; in this case, the simulated annealing process begins again

with a wholly new initial sample of records. The simulation is complete when the

total relative error is less than a specified target. For further detail of the simulated

annealing process, see Feldman et al. (2005a).

Two key points should be noted about the initial generation of the synthetic data.

The first is that the simulated annealing process is itself a microsimulation model

with a highly significant random element, and hence the synthetic population that

results is probably only one of many possible populations which could be generated

with similar levels of goodness of fit to the observed data. The amount of computing

necessary to produce just one synthetic population meant that has not yet been

possible to explore the consequences of working with different but equally appro-

priate populations. The potential for detectable variation amongst such possible

populations depends in part on the number of different variables in the datasets and

the number of these variables which are considered in considering the goodness of

fit resulting from the simulated annealing. This leads to the second point, which is

that the simulated annealing process can only practically test goodness of fit against

a few out of the dozens of univariate or bivariate tables available for each ward in

SAS. The present exercise used ten tables, covering many but not all of the possible

dimensions of the data; different tables were given different weightings in assessing

goodness of fit.

The second stage of the static modelling adds

l The socio-economic group of persons of potential working age or above who do

not have a socio-economic group in the SARs data.
l Further detail of economic status, if this is insufficiently defined in the SARs

data.
l Whether the individual holds a (car) driving licence.
l The workplace and wage or salary of each working individual in his/her current

job (if any).
l Household income (taking account of individual earnings and of benefits,

pensions etc).

All of these are implemented using Monte Carlo simulation to apply appropriate

distributions. In the case of the workplace, the distribution is taken from the Census

Travel-to-Work tables, which are available at ward level. This second stage of the

static modelling also:

l Identifies which households consist of persons sharing (i.e. have no other

relationship that would cause them to wish to live together) and which of these

consist of students at their term-time addresses and
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l Produces the initial list of single/separated/widowed/divorced women which

constitutes the set of potential partners for the couple-formation modelling in

the first year of the dynamic model

All of the variables set up in the static modelling are modified over time within

the dynamic model. The static modelling is therefore used only in the base year.

6 Dynamic Model Implementation

The output of the static microsimulation model provides the input for the dynamic

microsimulation model, which has been run from 1991 to 2011. Much of the work

concentrated on the period 1991–2001 in order to compare results with data from

the 2001 Census of Population.

The overall structure of the model is broadly similar to the other microsimulation

models mentioned earlier in that it starts with demographic changes to individuals,

then deals with changes in household composition, and finally with employment

and household location/relocation, on the assumption that the later processes are

generally more dependent on the earlier ones. This structure is illustrated in Fig. 3.

Note that except for the couple-formation element of the household composition

stage, the model can be run for one household at a time.

6.1 Individual Demographics and Other Changes

Ageing. The aging process is straightforward. The age of each person is increased

by 1 each year.

Survival. The probability of an individual surviving the year is a function of age
and gender, based on official actuarial statistics.

Birth/multiple birth. Births are modelled using birth rates by 5-year age group,

ethnicity, and the mother’s couple status. There is a constant probability that a birth

will produce twins (the possibility of triplets or more is ignored). The gender of the

child is fixed using probabilities for the ratio of males to females. The attributes of a

new-born child are set as follows: age is zero, sex is determined probabilistically,

couple status is single, ethnicity and location are those of the mother. All the other

personal characteristics are undefined. In the next simulation period, the new

individual is simulated along with the other individuals in the household.

Socio-economic status. All adult persons within the model were assigned one of

the four socio-economic groups aggregated from the greater detail in the Census,

namely,

l Seg1 – professional and managerial.
l Seg2 – junior professional, non-manual supervisor, etc.
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l Seg3 – skilled manual.
l Seg4 – semi-skilled and non-skilled manual.

This was based on their SARs socio-economic group where applicable or

generated using Monte Carlo simulation if their SARs socio-economic group was

“not applicable” or “not adequately described” Every child is automatically attributed

the socio-economic group 0 – non-defined until reaching working age (16 years). On

completing education every college graduate enters the market with socio-economic

group 2 while any other person enters the market with socio-economic group 4.
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We use Monte Carlo simulation to allow people to move to other socio-economic

groups throughout the rest of their working life. The probabilities in this process

depend on age, sex and their current socio-economic group. Persons search for

employment compatible with their socio-economic groups; if this is not available

they expand their search accordingly. Applicant acceptance is also conditional by the

job/worker socio-economic group match.

Educational status. Education attributes in the UK census data are based on

“level of highest qualification” values for persons over 16 years old. Persons under 16

have no relevant education attribute. Information for newly processed persons is

accordingly updated in the model based on his/her education status (student at 18,

student at 21, etc.). The model also allows persons to become students at older ages.

Entering/re-entering labour market. Each person in the model is assigned one of

11 possible economic statuses (not applicable, employee full time, employee part

time, self-employed with employees, self-employed without employees, govern-

ment scheme, unemployed, student, permanently sick, retired, other inactive). Once

the person is employed, he or she normally stays employed but can change job,

become retired, become permanently sick, become redundant or become “other

inactive”. To address withdrawal from the market due to family related matters,

mothers have a probability of becoming “other inactive” after the birth of a child;

they then have a probability of re-entering the labour market based on their socio-

economic group and the age of their youngest child. Other persons whose economic

status is inactive (but not students) have a fixed probability of re-entering the labour

market.

Redundancy: Within an apparently static situation, jobs are usually being lost

due to the decline/closure of individual firms/establishments, whilst an equal

number of similar jobs are being created due to the growth of other firms/establish-

ments in the same zone and sector. To represent the effects of job losses, the model

has to apply redundancy probabilities which are calculated in the aggregate micro-

simulation interface. If a worker is made redundant, he/she will not be able to seek

another job in the same year (unless he/she changes household and the new

household is considered later that year).

Retiring from labour market: Probability of retirement is defined as a function of

age and gender, with most men retiring around age 65 and women around 60. At

age 75 all people who are still employed retire. For each worker who retires the

number of vacant jobs in the model increases by one. In principle, some people who

are retired may choose to re-enter the labour market but we are not considering such

movements.

Acquiring/losing driving licence. Probabilities of obtaining or losing a driving

licence (according to age and sex) are applied to all people over 17.

Becoming permanently sick. Any economically active person may at any time

become permanently sick. In this case the person leaves his or her job and the job

market permanently. The probabilities of becoming permanently sick are based on

age, sex and socio-economic group.

Moving to institution. Persons aged 65 and over have a probability of moving

into institutional accommodation. In some cases, this is a temporary move; the
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model allows for a small proportion to return to their previous dwelling within

1 year; the remainder are assumed to remain within institutional accommodation for

the rest of their lives. They therefore leave the household population; if they were

living alone, their dwelling becomes available to another household.

6.2 Household Changes

Couple formation and marriage: A “male-dominant” model is implemented

whereby “couple formation” is treated as a male choosing a partner from a list of

eligible females. The probabilities of the male seeking a partner, and of a female

being eligible, are input as a function of age and existing couple status. A new

couple can be married or be cohabiting: cohabiting couples may later marry. We

assume that partners are usually found within the area of residence however there is

a low probability that partners are found in different locations. The model allows for

migration of people who do form couples with persons from other regions such that

one of the partners moves to the location of the other partner. Monte Carlo

simulation is used to identify who is moving. The model does not so far form

new same-sex couples.

Separation: The divorce and separation of married and cohabiting couples is

modelled using probabilities based on age and whether married or cohabiting.

Absence from households: There are probabilities that young people will leave

their parents’ home (e.g. to study) and then come back after a number of years.

Student only and shared households: The model allows for unrelated people to

form shared households, and for these households to dissolve or reform over time.

Obtaining/losing car: The SWYSM land use model has a car ownership sub-

model which works entirely in terms of the zonal probabilities of a household of a

particular type owning no car, one car or two-plus cars. These probabilities are

input to SWYSimM and used to generate the probabilities for individual households

of acquiring an additional car or giving up a car.

Household income: The household income is simulated as the sum of the

incomes of each member of the household. Working persons contribute their

wages, while the unemployed, retired and permanently sick contribute pensions

and benefits. Children contribute through benefits and tax policies. Mature students

involved in further education are considered to retain the wage of their last job.

Housing affordability: Households form budgets for buying or renting based on

their tenure preferences, the values of the housing markets and the characteristics of

available housing stock. In case of renting, household budgets are formed as a

proportion of the household gross income which varies between 25 and 35%.

Buying budgets are based on a number of parameters including savings, net

household income, outstanding mortgages from previous acquisitions and previous

type of tenure. Savings are calculated each year for every household after subtract-

ing costs of living (transport costs, foods and goods costs, taxing costs etc) and

housing costs (rent or mortgage) from annual housing income. Outstanding
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mortgages are passed on each year after subtracting a sum equal to a set proportion

of the household annual income. The buying budget is formed by adding savings

and – in case of owning one – the current dwelling’s value after subtracting

outstanding mortgages. Households also add to their budgets a new mortgage

based on their current net income and the current multiplying factor. In the case

of outstanding mortgage the value of the mortgage is decreased. Students and non

earner households are not eligible to get a new mortgage, while sharer and student

households cannot change their tenure preference to owner-occupied.

6.3 Employment

Job supply. The job supply, in terms of full and part time jobs, for the people living

in the microsimulation Study Area and working in the microsimulation Study Area

or in the microsimulation external zones are output from the SWYSM model. Jobs

contain attributes such as current wage and location.

Main earner:We have introduced this concept as the main earner, or earners, in

a household could have a strong influence on household decision making especially

with respect to location. The main earner is the person who is likely to be the main

income-earner of the household – although he or she may be unemployed at a

particular point in time. The new definition is intended to avoid problems with the

inconsistency of “head of households” and “household reference person” in the

1991 and 2001 UK Censuses. We assume that in any household with just one

economically active person that person is the main earner. If a households contains

a couple (married or cohabiting) who are both economically active, of equal socio-

economic group and in white-collar or skilled manual level occupation, we assume

this to be a dual-career household and that the members of the couple are joint main

earners.

In all other households containing more than one economically active person, we

take the oldest person in or seeking full-time employment as the main earner. If no

one is in or seeking full-time employment, we simply take the oldest person.

Job and workplace choices: Unemployed persons, those entering the labour

market for the first time and those returning to it after a break (maternity leave)

look for a job in areas sorted according to the areas’ utilities. Utility is calculated

according to the generalised cost to travel from the current area of residence and the

number of suitable available jobs in that area. Each agent “applies” for a specified

number of jobs in each area and searches only in a specified number of areas.

Unemployed persons unsuccessful in finding a workplace that suits their prefer-

ences, are likely to decide to search for jobs of other socioeconomic groups or other

economic types (part-time instead of full-time and vice versa). If an application is

accepted the unemployed agent accepts and stops job seeking.

Seek-to-change-job process: The process followed by an agent that already

occupies a job is fairly similar to the one for the unemployed and agent’s entering/

re-entering the labour market. However in this case areas are also sorted according to
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the distance from the current work location. After a job application has been

accepted, the employed agent compares the proposed wage to their current. If the

wage is lower the new job is rejected.

Accept/reject candidate, accept/reject job: Probabilities are applied to decide

whether the job is offered to the potential worker and whether it is accepted. The

probabilities depending on how closely their profile matches the attributes of the

job.

Wages: Each working person is assigned a specified annual wage based on their

characteristics (e.g. age, socio-economic group, gender etc) and the job they

occupy.

6.4 Household Location

Housing stock: The change in the number of dwellings over the period 1991–2001

is an exogenous input to SWYSimM model, as it was to SWYSM. For later years

the changes in housing stock are forecast within DELTA.

Each dwelling is assigned a tenure depending on whether it is owner occupied,

privately rented or rented from a local authority or housing association. All dwell-

ings continue to be of the same tenure as in the initial database or retain the same

tenure they were initially assigned.

Four dwelling types are modelled: detached, semi-detached, terraced and flat. In

the synthetic database each dwelling belongs to one of these four types (from SARS

1991). The dwellings also differ by the dwelling sizes (number of rooms). Currently

we do not have information on the number of new dwellings built by dwelling type

and the number of rooms, so a “cloning” process is used: a dwelling in the current

database is randomly chosen and its characteristics are copied to the new dwelling.

Seek to move:After budget formation, households seeking to move search within

their preferred areas for a vacant house matching their preferences (tenure and

budget) and sized within their size tolerance (usually one room tolerance). In order

to avoid futile searches, households seeking relocation check whether their budget

is over the expected minimum budget for a house of the required size in an area

before searching it. Households search a fixed number of appropriate areas and if

they are unsuccessful in finding a property, look for alternative tenure types before

giving up. Unsuccessful external in-migrants are deleted, i.e. assumed not to

migrate into the modelled area.

If a household finds a suitable vacant dwelling it marks it as a potential target. In

the event that a household finds more than one suitable dwelling it always prefers

the one closer to its budget in order to maximise utility. Areas are sorted based

on their utility based on area deprivation, distance for current area of residence,

general accessibility of target area and generalised cost of target area to main-

earners work place.

Housing tenure choice: Household’s choice of tenure is influenced by the supply
of dwellings of each tenure type. Households unable to find accommodation of their
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preferred tenure within their budget constraints can switch to a different tenure

type.

Dwelling choice. The dwelling that is chosen by a moving household or individ-

ual must fit the required characteristics. Households moving due to high room stress

(too many people per room) can only move to a more suitable (lower room stress)

property. If none are available they have to wait.

Housing prices or rents: The household location model requires “asking prices”

to be set for owner-occupied dwellings which are being sold, and “asking rents”

for dwellings which are being let. The rents are modelled as fractions of the sale

price. The sale price is calculated using a hedonic price model based on:

l The price of a typical dwelling of a particular type in this zone (this data is

available to 2005, beyond 2005 the 2005 price is used and the inflation index is

applied).
l The location constant of this zone in this year.
l The cumulative inflation rate of housing prices from the base year.
l The average price of a room according to dwelling type in the base year.
l The size difference in terms of number of rooms from the average for each

dwelling type.
l The market change indicator which reflects demand and supply.

Location choice: A price or rent-based location model is implemented. House-

holds trade off desirable housing, location and accessibility characteristics against

price or rent, and price or rent are adjusted over time in response to changes in the

balance between supply and demand.

Household location/relocation and migration: The overall model sequence is

presented in Fig. 3. Job choice for main earners may occur before residential

relocation (i.e. change of job by the main earner can lead to household relocation);

job choice for others (and possibly for main earners) is considered after household

relocation (in the next year).

Before considering either change of job or change of dwelling, we test whether

the household is going to migrate (make a longer-distance relocation necessarily

involving a change of job(s)). If so, then they disappear from their existing area –

and may reappear elsewhere in the model as migrants into another area.

For households which have not migrated, we consider possible job changes by

main earners (which could have a strong influence on household decision of

whether/where to relocate), household relocation, and possible job changes by

other household members.

For households with one main earner, we first test whether he/she is seeking a

new job (i.e. whether he/she is employed and seeking to change job, or is currently

unemployed). If so then we model work-related choices for that person and then we

model relocation choices for the household, which will be influenced by the job

location. Then (whether or not relocation results) we model work-related choices

for any other workers or unemployed persons in the household. If the main earner is

not seeking a new job, we model location choices. If relocation occurs, we model

job choices for all working members of the household; if relocation does not occur
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then we model whether-to-change job for the other working members of the

household (if any other than main earner exist).

For households with two main earners, i.e. dual career households, we

l For each of the main earners test whether he/she is seeking a new job (i.e.

whether he/she is employed and seeking to change job, or is currently unem-

ployed).
l If both are seeking a new job, then randomly choose one of them to make work-

related choices before relocation choices, allowing the other one to make

work-related choices afterwards (whether or not relocation occurs).
l If only one is seeking a new job, he or she is limited to doing this after relocation

choices have been considered.

As with single-main-earner households, main earners in two-main-earner

households who do not seek a change of job before considering relocation but

who do then relocate are tested next year again to see if they then wish to seek a

change of job. (Those who do not relocate are not tested again.)

6.5 Completion of the Microsimulation

The final step of the dynamic microsimulation is to generate output to update data

for further analysis, for the production of summary outputs to pass to the aggregate

(DELTA) components of SimDELTA, and as the starting point for the dynamic

microsimulation model in the following year. Some summary information on

changes to households and persons is produced as a matter of routine, but since

households, persons and dwellings all have individual identifiers, further longitudi-

nal analysis can readily be carried out by merging datasets for different years using

standard software such as SPSS.

7 Conclusions

The present situation (July 2007) is that the SWYSimM application of SimDELTA

is operational and producing reasonable results overall. Further work is ongoing to

test it in more detail and to demonstrate its value when compared to simpler models

or to complex aggregate models such as the original SWYSM. Further work is

looking in particular at some of the implications of the variability of results from

Monte Carlo simulation and at how this can be managed in application of the

model.

The major strength of the model is naturally its disaggregate and dynamic

nature, which means that the user can aggregate the output at any desired level of

household or person characteristics, and that it is possible to trace individuals,
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households, jobs and dwellings over time so as to observe the modelled processes of

change at a level of detail that is simply not possible in other types of model.

The model is potentially of substantial value as the basis for a wide variety of

further work, though this has to be qualified by saying that any such possibilities

would be subject to further calibration and testing of the model and of the particular

model features which are most important to the application in question. The main

difficulty in implementing the model is the complexity of model calibration. This

involves hundreds of model parameters which often need to be calibrated simulta-

neously. It is very easy to get trapped in a never-ending circular process fixing one

problem only to find a new one somewhere else. Therefore, as a strategy for

calibration, it was essential to break the process into a series of logical, sequential

steps.

The most obvious of the possibilities for further development is to continue the

process of model calibration by further and more formal development of non-

compensatory and rule-based location and job choice models. The formal calibra-

tion and validation of these would almost certainly require new surveys and the

development of new calibration methods, or at a minimum the application of some

non-conventional calibration methods. Note that the rationale for pursuing non-

compensatory and/or rule-based models is not necessarily to suggest that such

models should replace conventional compensatory (e.g. logit) choice models in

applied modelling practice. It might well be that (apart from research application)

the non-conventional models would be best used to inform other modelling by

using their results as “data” to be used to calibrate conventional models. (This

would amongst other things resolve the problem of how to use the multiple

forecasts produced by microsimulation models – they would produce multiple

datasets all of which would form multiple sets of “observations” feeding into the

calibration process.)

The model could also be used to generate an artificial sample for analysis of

transition/formation/dissolution patterns, complementing the limited and small

sample information available from analysis of British Household Panel Survey

(BHPS). BHPS has only a 5,000-household sample and has particular problems in

dealing with additions to/departures from the main sample. In addition, the micro-

simulation model can forecast these rates for the future on the basis of a detailed,

person-level demographic model. In using household transition rates as the main

element of demographic modelling in DELTA, we have never claimed that the

application of these rates is a sufficient demographic model in itself; we have

always adjusted the rates so that the model reproduces more detailed population

and household forecasts. The SimDELTA design provides a means of generating

such forecasts and directly obtaining the corresponding transition rates. As in any

demographic forecasting, of course, the results will be sensitive to assumptions

about migration to and from the rest of the world, which, as noted earlier, are input

to the aggregate modelling in SimDELTA as in the standard DELTA model.

Both the base dataset and the SimDELTA forecasts could be used as a 100%

household/population sample for use in other work, e.g. as input to activity-based

travel modelling or microsimulation-based car-ownership modelling. This ought to
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be superior to the conventional approach (in various forms of disaggregate transport

modelling) of taking a base year sample population and reweighting it to match the

forecast year total population, in that all of the variables should be systematically

updated.

The modelling work described here has the important potential to contribute to

understanding the consequences of planning policy and, potentially, to forecasting

the impacts of possible future policies.
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Conclusions

Francesca Pagliara and David Simmonds

Abstract This chapter reports the models presented in the previous chapters,

comparing them through the identification of some criteria. The latter are factors

influencing residential choice; the treatment of dynamics; issues of interdependence

and representation of planning policies or zoning controls. The final point is to

stress the variety of ways in which residential location modeling (and urban

modeling more generally) is advancing. It includes both continuing refinements

to model packages which have a long history, and wholly new developments, and

demonstrates the very different ways in which the subject is being addressed.

1 Introduction

This book has attempted to draw together a selection of recent work which is

reasonably representative of the range of approaches being taken to modelling

residential location within the context of developing land-use/transport interaction

(LUTI) models. This concluding chapter does not attempt to draw conclusions in

the conventional sense of attempting to decide what is right or wrong, good or bad,

nor does it try to provide a summary description of all of the models considered

in this book. All that we attempt to do is to offer some overall comments guided by

the different dimensions of modelling which Professor Wilson identified in his

Foreword, and some thoughts about how the development of similar models may

evolve in future.
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For brevity we refer to the models or projects described in the previous chapters

by the short names listed in the Table 1 reported in the Chapter on “The State-of-

the-art in Building Residential Location Models”.

In these comments we try to keep in mind that the models described range from

one-off projects to software packages with multiple and differing applications. We

would emphasise again that this chapter is not intended as a summary of all the

models represented in this book; hence if a particular model is not mentioned in

discussion of a particular modelling characteristic or feature, it does not mean that

the model does not have that characteristic or feature, nor does it imply any

criticism of the model in that respect.

2 The Representation of the System

All of the models considered are explicitly spatial, as an essential condition for

empirical analysis or forecasting of residential location. There is however a consid-

erable range of spatial detail, and a distinction between the conventional zone-

based models and those (UrbanSim, Oregon2) which operate on much smaller grid

cells. The latter group are, almost be definition, microsimulation models – though

as demonstrated by SimDELTA not all microsimulation models of household

location work at the grid cell level. We consider some of the implications of

microsimulation further below.

The need to disaggregate households, primarily on socio-economic criteria, is a

common feature of the models considered. Within the aggregate models, the

number of household categories varies widely, from eight in standard DRAM

applications to over a hundred socio-economic/composition/employment status

combinations in some DELTA applications. Microsimulation models which simu-

late the individual persons within households, as well as the household collectively,

can to some extent avoid the need to define household categories in their actual

location processes, though typically it is still necessary for model coefficients to

relate to pre-determined categories.

In most models the total number of households to allocate across zones is

exogenously prepared and specified as an input – though in forecasting applications

this number is by definition itself a forecast and must come from some other form of

model. In the DELTA case there is an intermediate stage in that household changes

(formations, changes in composition and dissolutions) are calculated within the

model, but using a household change model calibrated to match the results of more

conventional demographic models at the study–total level. In Oregon2 and Sim-

DELTA, the formation of households to locate is fully incorporated into the overall

system and is driven primarily by the microsimulation of demographic changes

(births, deaths, couple formation and dissolution) affecting the modelled popula-

tion over time. In contrast, in UrbanSim the new households to be located by

the microsimulation process in each year are synthesized to match aggregate

demographic inputs.
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2.1 Factors Influencing Residential Choice

Representation of the availability of housing is obviously central to the representa-

tion of residential choice in the most-developed countries where the vast majority

of moves are into previously-owned dwellings or dwellings built speculatively by

developers. Different factors would apply in economies where significant numbers

of households have to create their own “informal” housing. DRAM is an exception

amongst the models reported here in that its main supply variable is land rather than

housing. Within the other models, the treatment of housing supply varies very

considerably, from a single quantity of housing floor space in the DELTA applica-

tions through numbers of dwellings by type in many of the models. Tenure appears

in some (e.g. TILT) but not all. The microsimulation models (Oregon2, UrbanSim

and SimDELTA) inherently have the potential to consider significantly more detail,

such as the number of rooms in an individual simulated dwelling, which is a key

variable in SimDELTA. Whilst clearly more detail about housing supply should

improve the residential location model itself, the addition of such detail implies the

need to supply that detail (by zone and for each modelled year) in the forecasting

process; as the DRAM paper points out, this can create issues both of practicality

and of accuracy; this leads to the development of other sub-models to update all the

other variables used (as for example in DELTA and MUSSA).

The influence of transport is present in each model in terms of travel to work

(Calgary-Edmonton, DRAM, Oxford, TILT, UrbanSim, SimDELTA), travel to

shopping (Calgary-Edmonton, Oxford), travel to school (Calgary-Edmonton,

TILT), and less directly in accessibility measures (DELTA, SimDELTA).

Many other variables are considered to have an impact on residential location

choice like air quality, street in front of dwelling (Calgary-Edmonton) quality

of schools, noise (Oxford), room density (TILT), or zonal quality (DELTA), and

neighbourhood characteristics (Albatross, Ramblas). Where fewer variables are used

there is a tendency tomakemore use of the previously located numbers of households

by category to imply values for influences which are not made explicit, either by an

incremental formulation of the model (DELTA) which assumes that unmodelled

variables remain constant, through other comparable formulations (MUSSA)

or through the explicit inclusion of previous numbers of households (DRAM).

2.2 The Treatment of Dynamics

In the cases of the Edmonton-Calgary and Oxford models, they represent a state at a

base year and therefore they are strictly cross-sectional. All of the other models

involve at least some time-lagged terms. DRAM allocates population according to

zone attractiveness calculated through period t values and based on zone-to-zone

travel costs and the distribution of employment for period t þ 1. In the case of

DELTA, the time-lagged terms are combined with indirect use of a rent term,
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reflecting the balance of supply and demand in each forecast year, which therefore

takes account of the changing demand for the stock of housing.

2.3 Issues of Interdependence

Most of the models calculate the probabilities that households will locate in each

zone conditional on the household worker being employed in a particular zone;

there is therefore a residential location process for each household type and for each

work zone. In these cases, the implications for residential location of households

having more than one worker are unclear. In the case of DRAM and the model for

Oxfordshire, the location of jobs is itself endogenous to the model. The main

exception to the general pattern is DELTA, which at the local level works on the

basis that accessibility to work is just one of the characteristics influencing house-

hold location, and has a separate area-level migration process which draws workers

towards areas with better work opportunities.

2.4 Representation of Planning Policies or Zoning Controls

In general, planning policies and zoning controls act as controls both on the processes

of development and on the occupation of the resulting buildings. The processes of

development and the physical supply of buildings for housing are essentially outside

the scope of this book – authors were asked to focus on the processes by which

households are located within a given housing stock. “Planning” policies in the

conventional sense do not generally seek to control which households live in

which dwellings. However, most Western societies have a range of “housing” or

“social” policies which control the use of some housing and influence the use of the

stock in general. These include, in particular, the provision of “social housing” which

provides subsidised accommodation for households meeting certain criteria, and tax

regimes which influence household preferences (sometimes by omission, for exam-

ple by taxing capital gains on most forms of investment but not on owner-occupied

housing). The ability to represent these kinds of policies requires first of all a

distinction of housing by tenure, at least so as to define whether households are

renting or buying their dwelling, and a substantial disaggregation of households by

income/employment and age characteristics. Aggregate models such as DRAM or

DELTA are consequently very limited in what they can do to represent such policies

explicitly (though some of their consequences can be introduced implicitly, for

example through the use of constraints as in the DRAM case. More fully dynamic

models such as SimDELTA have the greatest scope in this respect, because the

process of maintaining a household “history” over time allows for consideration of

variables such as the outstanding value of the mortgage (housing loan) which an

owner– occupier household owes on its dwelling.
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Another example is represented by Albratoss and Ramblas where both models

are primarily activity-based models of transport demand, and not integrated land

use – transport models. Their prime goal is to predict activity–travel patterns and

associated traffic flows. The distribution of residential land use, in terms of house-

holds and persons, is exogenously given. Based on the available data sources, a set

of tools has however been developed to create synthetic populations that serve as

input to the models.

2.5 Closing Observations

Our final point is to stress the variety of ways in which residential location

modelling (and urban modelling more generally) is advancing. It includes both

continuing refinements to model packages which have a long history, and wholly

new developments, and demonstrates the very different ways in which the subject is

being addressed.

One common misconception amongst some other groups of modellers is that

LUTI modelling has advanced over the past three decades only by increasing

disaggregation of the models originally developed in the “first generation” of opera-

tional models. The material presented in this volume, though selective and dealing

only with one aspect of LUTI modelling, is more than sufficient to disprove this

belief.

Another rather more sophisticated and more debateable view is that the historic

trend in LUTI modelling is one of ever-increasing sophistication with large-scale

microsimulation modelling as the ultimate approach. Whilst it is true that modelling

a real 100% sample of households, persons and dwellings would clearly be an

ultimate level of disaggregation, and that we can approximate this by modelling a

comparable synthetic sample, the practical issues raised by microsimulation mean

that it may not be themost desirable approach for application to forecasting in policy-

and decision-making contexts. The points made in Putman’s DRAM paper about the

usability of models being a major determinant of their practical value remain highly

valid. The most sophisticated models may therefore make more indirect contribu-

tions to the growing use of LUTI models in planning and government.

As editors we have been privileged to spend some time reading in detail about

some of the work being done by our colleagues around the globe, and have been

impressed yet again by the level of intellectual and practical effort being devoted to

this form of modelling. This is only a partial picture; some of those invited to

contribute to this particular volume were unable to participate, and we know that

there are many others working in this area or on closely related models whom we

were simply not able to consider. Like any such book in this age, this one will

inevitably be out of date even before it appears in print; we would very seriously

urge readers to seek updated information before relying on this book as describing

either the state of the art in general or the state of any one model in particular.

Despite these limitations, however, we very much hope that the book will be of
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value as a snapshot of the range of activity in this field, and that it will encourage

others to join us in working on this perennially fascinating topic.
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