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Abstract This study attempts to quantify landslide susceptibility in the upper
Putna River basin in the Romanian Carpathians Bend using GIS techniques and
logistic regression. First, a detailed landslide inventory was carried out and a GIS
database was built, comprising potential predictors of landslide occurrence. The
GIS database included 11 quantitative predictors, mostly geomorphometric
parameters, and 4 qualitative predictors which were transformed into quantitative
variables using landslide density approach. The logistic regression analysis,
combined with a stepwise selection of the predictors, showed that landslide
occurrence is best explained by slope inclination class, altitude, soil class, distance
to drainage network and surface geology. The results show that the potentially
unstable terrains, displaying high and very high landslide susceptibility values,
cover an area about 3 times greater than the mapped landslide area.

1 Introduction

Landslides are a very common geomorphic hazard with considerable economic
and ecological consequences. In Romania, significant landslide areas occur in hilly
and mountain regions, especially those underlain by molasse and flysch forma-
tions. The studies carried out to date have tried to explain manifestation, typology
and evolution of landslides as well as the relations between geology and landslide
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distribution. Recent studies attempt to apply new research methods and techniques,
such as landslide susceptibility assessment and appropriate mapping (Micu and
Bălteanu 2009; Bălteanu et al. 2010; Grozavu et al. 2010).

At international level, landslide susceptibility assessment has recently been a
subject of numerous studies; however, the application of this knowledge utilizes
various conceptual and methodological approaches. Several authors provide good
reviews of the recent methodology and evaluations of the subsequent approaches
(Mantovani et al. 1996; Soeters and van Westen 1996; Aleotti and Chowdhury
1999; Guzzetti et al. 1999; Castellanos Abella and Van Westen 2008; Corominas
and Moya 2008; Grozavu et al. 2010).

Generally, landslide susceptibility is defined as a quantitative and qualitative
assessment of the classification, volume (or area) and spatial distribution of
landslides which exist or potentially may occur in an area (Fell et al. 2008).
Therefore, the purpose of landslide susceptibility mapping is to highlight the
regional distribution of potentially unstable slopes based on a detailed study of the
factors responsible for landsliding. Thus, the focus is on the recognition of land-
slide-prone areas achieved by mapping susceptibility.

One of the problems related to the accountability of landslide susceptibility
maps is the lack of standardization in analytical methods (Ayalew et al. 2005) and
consequently, the need for a common language and standard procedures in land-
slide risk zoning (Fell et al. 2008).

This chapter focuses on the evaluation of landslide susceptibility by applying a
logistic regression analysis, to a typical region in the Romanian Carpathians Bend
area. Here, the extension of built-up areas as a consequence of a clear intensifi-
cation of touristic activities during the last two decades has complex, systemic
implications at the local level. Our main goal is to identify, weigh and integrate the
different parameters determining landslide susceptibility and to achieve an ade-
quate spatial model for the study area.

2 Study Area

The studied region is located in the Romanian Carpathians Bend, in the upper
Putna River basin (Fig. 1). The area of the region is 210.15 km2 and the altitude
ranges from 460 to 1,588 m with an average of around 900 m.

Geologically, the study region belongs to the outer flysch, known by its active
tectonics, structural diversity and lithological heterogeneity (Dumitrescu et al.
1970). The geological layers are of Cretaceous (Senonian), Paleogene (Eocene and
Oligocene) and lower Miocene (Aquitanian and Burdigalian) age. They form two
major structural units separated by Tarcău fault: Vrancea Nappe, which appears in
a tectonic window, south from Tarcău fault, and Tarcău Nappe, to the north of the
fault (Fig. 2).
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Fig. 1 Location of the study area

Fig. 2 Schematic lithological and structural map of the study area
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The following main lithofacies occur in the study area (Ichim et al. 1998):

• black shaley flysch (Streiu strata) of Cretaceous age, occurring only in the
Vrancea Nappe, composed by bituminous schistous shales with conglomerates,
marls and limestones,

• marly limestone facies, including Cretaceous Hangu and Leps�a strata and
Paleocene-Eocene lateral variation of Tarcău Sandstone deposits,

• Tarcău Sandstone facies (Paleocene-Eocene), consisting of sandstones with
mica, forming massive beds with thin intercalations of marls,

• bituminous facies with Kliwa sandstone of Oligocene age, composed of thick-
bedded, white quartzouse sandstones with intercalations of conglomerates,
menilites, bituminous marls and disodilic shales,

• shaley sandstone facies with gypsum and salt of Miocene age.

Morphologically, the region is dominated by steep slopes, frequently affected
by intense denudation processes, while flat areas (terraces and floodplains) occupy
minor surfaces (Tufescu 1966; Ichim et al. 1996).

The area is drained by the east-flowing Putna River and its main tributaries:
Leps�a, Gres�u and Tis�it�a.

The region is characterized by a high variety of hydrogeological conditions, due
to the diverse lithology, with springs occurring on valley bottoms and slopes
(Ichim et al. 1998).

Geological conditions, geomorphometric parameters, climate characteristics
and human activities, especially construction on slopes, favor slope processes such
as landslides. Large-scale mass movements can also be triggered by powerful
earthquakes and the Romanian Carpathians Bend area is well-known for its high
seismicity. For example, after the March 1977 earthquake, the volume of the
material mobilized on slopes was 20–50 times greater than a multi-year average
(Bălteanu 1979).

3 Methods and Materials

3.1 Methodological Review

Various methods for landslide susceptibility assessment can be encountered in the
scientific literature. Qualitative methods, such as ranking and rating (Anbalagan
1992) or analytical hierarchy process, AHP (Barredo et al. 2000; Ayalew et al.
2005; Komac 2006), are simple and rely on subjective assessment. Quantitative
methods, such as bivariate statistical analyses, BSA (Yin and Yan 1988; Binaghi
et al. 1998) or multivariate statistical analyses, MSA (Carrara et al. 1991), are
based on complex mathematical concepts. These initial efforts were followed by
many multivariate statistical studies based on the application of multiple regres-
sion and discriminant analysis. Among these, logistic regression is a frequently
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used method, considered particularly suitable as it reduces the subjectivity in the
landslide susceptibility analysis (e.g. Aleotti and Chowdhury 1999; Malczewski
1999; Süzen and Doyuran 2004a, b; Van Westen et al. 2006; Thiery et al. 2007;
Nefeslioglu et al. 2008; Van Den Eeckhaut et al. 2010).

A third category of methods providing good results in landslide susceptibility
analysis is represented by hybrid methods, including index-based methods, such as
BSA ? AHP (Ayalew et al. 2004) and training-based methods, such as
BSA ? Neural Networks (Lee et al. 2004; Borgogno Mondino et al. 2009).

3.2 Materials, Database and Methodological Approach

The primary input data consisted of ortophotos, 1:5,000 topographic maps,
1:100,000 geological map and 1:100,000 soil map. Based on this input, a landslide
causative factors database was built in GIS environment, including the following
information layers:

• geology, soil, land use (as qualitative variables),
• Digital Elevation Model (DEM) derived from 1:5,000 topographic maps at a

resolution of 5 9 5 m,
• geomorphometric parameters (slope angle, slope height, slope aspect, mean

curvature, plan curvature, profile curvature, wetness index, modified catchment
area),

• distance to drainage network, distance to roads.

The data on geology, soil and land use were digitized from the respective maps
and terrains with particular parameters were grouped into 5 susceptibility classes
(very low, low, medium, high and very high) according to their susceptibility for
landsliding. Next, these classes were intersected with landslide polygons and
landslide density for each class was computed (Bai et al. 2010). In this manner,
qualitative variables were transformed into quantitative variables and further used
as predictors in the logistic regression approach.

We also tested the use of landslide density for slope inclination classes, taking
into account that the relation between landslide distribution and slope inclination is
not linear, with most of the landslides occurring on moderately steep slopes (7–20o).

The other potential predictors (DEM, slope aspect, mean curvature, plan cur-
vature, profile curvature, wetness index, distance to drainage network and roads)
were used as continuous variables.

The susceptibility mapping started with the preparation of a landslide inventory
map. We identified 198 landslides with the total area of 2,326.06 ha covering
11.07 % of the study area. The inventory was performed by means of large-scale
mapping, using topographic maps (1:25,000, 1:5,000), orthophotos and field
surveys for validation of landslide areas. Landslides were classified according to
their activity into active landslides, semi-active landslides (the most frequent ones)
and stabilized landslides (recently forested).
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Useful information regarding the typology, stage of landslide evolution and the
relations between geology and landslide distribution in the region is provided by
Ichim et al. (1996) and Ursu (2006). The first category distinguished by these
authors comprises the old and large landslides with a dominant translational
character, which affect the in situ geological structures, reaching depths up to
80–90 m. The second category includes shallow landslides with a rotational
character, which affect surface deposits. Most of the landslides belong to this
category, but they have a small extent and represent approximately 20 % of the
total landslide area. Our analysis also takes into account the sections affected by
rocky landslides and soil landslides, encountered along steep slopes.

Descriptive statistics for landslide area and the potential predictors are given in
Table 1.

Spatial analysis was performed using TNTmips 6.9 software and ArcGIS 9.3
software, while statistical analysis was carried out using Excel 2003 and XLSTAT
2010 software.

From the wide variety of methods potentially useful for quantifying landslide
susceptibility, we chose a multivariate statistical approach based on the application
of the logistic regression model. This method links the presence/absence of a
phenomenon to a set of quantitative or qualitative variables, generating a con-
tinuous spatial probability model:

P ¼ 1
1þ e�z

ð1Þ

Table 1 Descriptive statistics for landslide area and potential predictors

Variables Minimum Maximum Mean Standard
deviation

Landslide area (ha) 0.014 524.555 11.748 56.872
DEM (m) 459.22 1588.09 899.39 165.76
Slope inclination (degree) 0 68.483 19.974 10.143
Slope height (m) 0.39 377.93 40.21 42.74
Slope aspect (degree) 0.15 359.99 176.36 98.57
Modified catchment area (ha) 0.0025 227.329 0.701 5.073
Curvature (rad/m) - 0.053 0.045 0.00 0.008
Plan curvature (rad/m) - 0.036 0.039 0.00 0.005
Profile curvature (rad/m) - 0.047 0.034 0.00 0.005
Wetness index 4.184 17.465 8.187 1.766
Distance to roads (m) 0 3881 617 619
Distance to drainage (m) 0.03 1064.3 172.8 160.1
Geology class (landslide density) 0.547 1.259 1.027 0.249
Soil class (landslide density) 0.116 1.754 1.057 0.315
Land use class (landslide density) 0.651 2.040 1.058 0.436
Slope class (landslide density) 0.154 1.976 1.025 0.694
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where P is the probability of an event (landslide) to occur, which varies from 0 to 1
on an S-shaped curve, computed on the basis of a linear combination (z) of pre-
dictors (x1… xn):

z ¼ b0 þ
Xn

i¼1

bi � xi ð2Þ

where b0 is the intercept of the model and bi are the regression coefficients.
In order to extract predictors’ values from a raster layer, a total number of 3,999

equally distanced grid points were generated for the landslide and landslide-free
areas (Fig. 3). For the reason of preserving the relative equality of the two point
samples, required by the nature of the statistical analysis, the density of points
inside landslide area is markedly higher than in the landslide-free area.

4 Results and Discussion

A comparison of the logistic regression models analyzing landslide densities in
either continuous slope inclination values or slope inclination classes indicated that
the latter model explains greater proportion of the variance. The stepwise selection

Fig. 3 Locations of grid points inside and outside the landslide area
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of the predictors eliminated slope height, modified catchment area, plan and mean
terrain curvature. According to the standardized regression coefficients (Table 2),
landslides occurrence is best explained by slope inclination class, altitude, soils
(soil class), distance to drainage network, and geology (Fig. 4), with land use,
profile curvature, wetness index, distance to roads and terrain aspect being less
significant predictors.

The logistic regression analysis showed that the spatial distribution of landslide
occurrence probability is determined by the following combination of linear
relationships:

Z ¼ �1:659� 3:813E�03 � DEM þ 7:069E�04 � ASPECT þ 37:714 � PROFILEC

þ 5:502E�02 �WETNESS� 1:406E�04 � DIST ROADSþ 1:846E�03 � DIST DRAINAGE

þ 1:107 � GEOLOGY þ 1:287 � SOILþ 0:478 � LAND USE þ 1:058 � SLOPE CLASS

The outcome of the application of the logistic regression equation in GIS
environment is displayed in Fig. 5. Considering the high complexity of the ana-
lyzed mountainous area, the quality regression parameters indicate a fairly good
model using a cutoff value of 0.5 (Tables 3 and 4). The percentage of correctly
classified points is 74.93 % in the landslide area and 70.74 % in the landslide-free
area, while the overall prediction accuracy of the model is 72.84 %, with an area
under the Receiver Operating Characteristic (ROC) curve of 0.802.

Landslide susceptibility was classified into five classes (very low, low, medium,
high and very high susceptibility), using the natural breaks (Jenks) method
(Fig. 6). The method identifies significant changes in the histogram distribution

Table 2 Standard regression coefficients of the logistic regression model using slope classes
instead of slope continuous values

Predictors Standardized
regression
coefficients

Standard error Wald chi square Pr [ chi square

DEM -0.348 0.025 189.572 \ 0.0001
Slope heighta 0.000 0.000
Slope aspect 0.038 0.021 3.519 0.061
Modified catchment areaa 0.000 0.000
Curvaturea 0.000 0.000
Plan curvaturea 0.000 0.000
Profile curvature 0.098 0.022 19.431 \ 0.0001
Wetness 0.053 0.024 4.821 0.028
Distance to roads -0.048 0.027 3.222 0.073
Distance to drainage 0.163 0.021 59.189 \ 0.0001
Geology 0.152 0.021 50.701 \ 0.0001
Soil 0.221 0.024 85.279 \ 0.0001
Land use 0.114 0.022 26.149 \ 0.0001
Slope inclination classes 0.406 0.025 255.324 \ 0.0001

a Variables excluded from the model by the stepwise selection procedure are shown in italics
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Fig. 4 Distribution in the study area of the main predictors used for deriving landslide
susceptibility index: a slope classes, b DEM, c soil classes, d distance to drainage network,
e surface geology
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and sets class breaks which best group similar values and maximize the differences
between classes.

According to this classification, 31.3 % of the study region (nearly 6,600 ha),
falls into high and very high susceptibility classes. Considering that about 25 % of
this area could be misclassified (Table 4), there still remain about 4,900 ha cor-
rectly classified. Comparing this value to the actual extent of landslides (2,326 ha)
indicates the occurrence of about 2,600 more hectares of the terrain showing high
and very high susceptibility for landsliding.

However, comparing our results to those from a previous study that used the
same approach for a cuesta front area in the Moldavian Plateau (Grozavu et al.
2010) indicates that the logistic regression is less appropriate for mountainous
areas, mainly due to the non-linearity of the relations between landslide occurrence
and quantitative and qualitative terrain characteristics.

Fig. 5 Distribution of the landslide susceptibility index in the study area

Table 3 Quality parameters
of the logistic regression
model

Quality parameters Values

-2 Log(Likelihood) 4,337.806
R2 (McFadden) 0.218
R2 (Cox and Snell) 0.260
R2 (Nagelkerke) 0.307
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Table 4 Numbers and percentages of correctly classified points

From\to 0a 1a Total % correct

0b 1,407 582 1,989 70.74 %
1b 504 1,506 2,010 74.93 %
Total 1,911 2,088 3,999 72.84 %
a points corresponding to predicted landslide-free (0) and landslide area (1)
b points corresponding to actual landslide-free (0) and landslide area (1)

Fig. 6 Classes of the landslide susceptibility index for the study area: a spatial distribution,
b classification method, c histogram of landslide susceptibility classes
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5 Conclusions

This study has indicated that logistic regression approach is an adequate tool for
the evaluation of landslide susceptibility and that the application of GIS techniques
facilitates data processing and spatial visualization of the results.

Application of this model to a complex mountainous environment, character-
ized by a high structural diversity and lithologic heterogeneity and constituting a
favorable context for slope processes, reveals that over 30 % of the 210 km2

region (about three times more than the mapped landslide area) displays high and
very high susceptibility for landsliding.

The model indicates that present and future landslides are mainly determined by
slope inclination class, altitude, soil classes, distance to drainage network and
geology.

Considering the spatial resolution (i.e. 5 9 5 m) of the classified landslide
susceptibility map obtained from logistic regression, this model may be a tool for
landslide susceptibility analysis at a large scale.

The study also emphasizes the importance of a correct characterization of the
processes leading to landsliding for producing reliable susceptibility zonation map.

The resulting map allows delineating zones where precaution measures should
be implemented, establishing standards and requirements for the use of land on
and around slopes that are likely to fail and, also, assessing the risk that a proposed
use of land will affect the slope stability of the studied area.
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Bălteanu D, Chendes� V, Sima M, Enciu P (2010) A country-wide spatial assessment of landslide
susceptibility in Romania. Geomorphol 124:102–112

Binaghi E, Luzi L, Madella P (1998) Slope instability zonation: a comparison between certainty
factor and fuzzy dempster-shafer approaches. Nat Hazards 17:77–97

Borgogno Mondino E, Giardino M, Perotti L (2009) A neural network method for analysis of
hyperspectral imagery with application to the Cassas landslide (Susa Valley, NW-Italy).
Geomorphol 110:20–27

Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and
statistical models in evaluating landslide hazard. Earth Surf Proc Landf 16:427–445

Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by
multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba.
Geomorphol 94:453–466

Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning
purposes. Eng Geol 102:193–213
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Micu M, Bălteanu D (2009) Landslide hazard assessment in the Bend Carpathians and

Subcarpathians, Romania. Z Geomorphol 53(3):49–64
Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of

tectonic Kelkit Valley (eastern Black Sea region of Turkey). Geomorphol 94:410–418
Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner

KA, Schuster RL (eds) Landslides: Investigation and Mitigation. Transport Research Board
Special Report 247, National Research Council, Washington, DC

Süzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using
geographical information systems: a method and application to Asarsuyu catchment, Turkey.
Eng Geol 71:303–321

Süzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility
assessment methods: multivariate versus bivariate. Env Geol 45:665–679

Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility
assessment by bivariate methods at large scales: application to a complex mountainous
environment. Geomorphol 92:38–59

Tufescu V (1966) Subcarpat�ii. Editura S�tiint�ifică, Bucharest
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