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Hamiltonian Chaos willi a Cola-Atom in an
O~tiacrL3ffice

Abstract We consider a basic model of the lossless interaction between a moving
2=level atom anil a stanoing-wave single-moilelaser fielo:-Classical treatment ofthe
translational atomic motion provides the semiclassical Hamiiton-SchrOdinger equa­
tions of motion which are a 5-dimensional nonlinear dynamical system with two
integnilsof moti~TFieatOiTIicdynamics can oe regular or cnaotiC{in tne sense
of exponentialsei1Sifivity to smallvariafiOilSininiiialCOi1difiOilSaild/Oflhesys::
tem's control parameters) indepenoence on values onne control parameters, the
atom-field detuning and recoil frequency. We develop a semiclassical theory of the
chaotic atomic transport in terms of a random walk of the atomic electric diQole
moment u which is one of the components of a Bloch vector. Based on a jumQ-like
oenavior of tnis variaole for atoms crossing nooes of tne stanoing laser wave, we
construct a stocnastic map tnat specifies tne center-of-mass motion . WeHildtne re­
lations between the detuning, recoil frequency and the atomic energy, under which
atoms may move in a rigid oQtical lattice in a chaotic way. We obtain the analyti­
cal conditions under which deterministic atomic transport has fractal QroQerties and
explain a nierarcnical structure of tne oynamical fractals . Quantum treatment of tne
atOiTIiCillOtiOilin a stanoing wave is stuoied-intne oresseo state picture wnere the
atom moves in two optical potential ssimultaneously.-Iflne values onne oetuning
and a characteristic atomic frequency are of the same order, than there is a Qroba­
bility of nonadiabatic transitions of the atom upon crossing nodes of the standing
wave. At tne same conoition exactly, we ooserve suooen cnanges Uili11j'lS)in tne
atomic dipole moment u when1ne atom crosses tne nooes:-Tnose jumps are accom­
paniedoy splitting of atomic wave pacKetsat tne nooes . Sucn a proliferation of wave
packets at the nodes of a standing wave is a manifestation of classical atomic chaotic
transport. In particular, the effect of simultaneous traQQi!1g of an atom in a well of
one of the oQticalpotential and its flight in the other potential is a quantum analogue
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ofachaoIicclassicalwalKing of an atom. ATrargevaliiesonhedetUrli~~uan­
tum evolution is sliown to 6e auiabaIiciilaCCOfdance witn a regular cliaracter of tlie
classical atomic motion .

Thefunuamental mouerfOflFieinteffictiOilOf a rauiaIion willi matter, comprisinga
collection or2~level quantum systems coupleu wilhasingle-moue electromagnetic
fielu, proviaes tne oasiS-forlaser pliysics anuaescri6es a ricn variety of nonlinear uY::
namical effects . The discover)' that a single-mode laser, a s)'mbol of coherence and
stabilit)', rna)' exhibit deterministic instabilities and chaos is eSReciall)' important
since lasers proviue nearly iueal systems to test general iueas in statistical phYSics.
From tlie stanupoiilfOfnonlinear uynamics.-Iaser is an open uissipalive system
wnicn transforms an external excitatiOilinto a colierent output inlne presence of
loss. In 1975 Haken (Haken, 1975) has shown that a single-mode, homogeneously
broadened laser, oRerating on resonance with the gain center can be described in
the rotating-wave approximation b)' three real semiclassical Maxwell-Bloch equa­
tions wliichareiSOi11Oij)niClOlhefamous Lorenz equation s. Some manifestation s
ofa[ orenz-type strange attractor anu-dissipative cnaos liave 6een o6serveuwiifi
different t),Res of lasers.

In the same time George Zaslavsk)' with co-workers (Belobrov et aI., 1976) have
studied interaction of an ensemble of 2-level atoms with their own radiation field
inaperfectSingle-moue cavity witnout any losses anu externalexcitaiiOi1S,\Vliicli
is-Knownas the-DiCKe moucllDicke;-r954f.Tney were able to uemonstrate analyt­
ically anu numericall ydynamicarinsta6ililies anucnaos orHamiltonian type ina
semiclassical version of the Dicke model without rotating-wave aRRroximation . It
was the first RaRer that opened the door to stud)' Hamiltonian atomic chaos in the
rapiuly growing fielus of cavity quantum electrouynamics, quantum anu atomic op­
tiCS:-SemiClassical equations of motion for tliis system may 6e reuuceulOMaxwell:::
Blocli equations for tliree reariildepenuent varia61es wliich-;-iildifference from the
laser theor)', do not include losses and Rump. Those equations are, in general , nonin­
tegrable, but the)' become integrable immediatel )' after adoQ!iJlg the rotating-wave
:lpproxlmatlOn (la)'nes and Cummmgs, 1963) that Implies the eXIstence of an ad­
oilional-integralof motion, conservation of tne so-calleo num6er of excitations .
Numerical expei'imen1SnaveshOWnlnat prominenfChaosariseswhentnedei1SiiY
of atoms is ver)' large (aRProximatel)' I020Cill3 in the oRtical range (Belobrov et
aI., 1976)). The followmg~rogress m thIS field has been motIvated, maml)', by~
desire to find manifestations of Hamiltonian atomic chaos in the models more suit­
aolefor experimentarimplementations. Twenty years after tnatpioneer paper, man­
ifestations orHamiltonian cliaos liave 6een founo-inexperiments wilh-KicKeo colo
atoms in a mooiilateo-Iaser fiela:-Nowoays, a few groups ii11hT USA--;-Australia,
New Zealand , German)', France , England , Ital)' and in other countries can perform
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routine experiments on HarriilIOilianchaoswiih----COlaatOillSiilOfJIica:nanicesand
traj:)S(fora review see (Bensinger et aI., 2003}).

In tnis Q'lperwe review some results on tneor)' ofHarriiltoniancl1iiOSWithasingle
2-level atom In a standing-wave laser field that have been obtained In our group In
Vladivostok. In spite ot we publIshed wIth George only one paper on thIS subject
(Prants et al~2002), our work-inlliisfielcrhasoeen mainl)' insQirea-o)' nis Pilper
(Belobrov et aI., 1976) written in 1975 in Krasno)'arsk, Siberia .

An atom Qlaced in a laser standing wave is acted uQon b)' two radiation forces,
aeterminiSiiCClipole anoSiOChastic oissipative ones (Kazantsev et aI., 1990Y:-Tne
mecnanical action oflignt upon neutralat:Oi11Sisaflheneart oflaser cooling, trap­
ping, ano-Bose-Einstein conoensation. Numerous applications onne mecnanical
action of light include isotoQe separation , atomic lithog!'lP1})' and epitax)', atomic­
beam deflection and sQlitting,maniQulating translational and internal atomic states,
measurement of atomic positions, and man)' others . Atoms and ions in an oQtical
lattice, formeo oy a laser stanoing wave, are perspective oojects for implementation
of quantum information processing ana quantum computing. A-dvances in cooling
and trapPiDg of atoms, tailoring~Qtical potentials of a desired form and dimension
(including I-dimensional optical lattices) , controlling the level of dissipation and
noise are now enabling the direct experiments with single atoms to stud)' funda­
mental principles of quantum pnysics, quantum cnaos, oeconerence, ana quantum­
classical corresponoence (for recent reviews on cola atoms in opticarIattices see
Rcf.~Grynoerg ano~ooilliaro~2DOT;Morsch ano-Ooerthaler, 2006}).

Experimental stud)' of guantum chaos has been carried out with ultracold atoms
in o-kicked oQtical lattices (Moore et aI., 1994; Robinson et aI., 1995; Hensinger
et al~2U03Y:-To suppress spontaneous emission ana provioe a conerent quantum
oynamics atoms il11nose experiments were aetuneaJarJr7Jiiitheoplical resonance.
Adiaoaticelimination onne exciteo state amplituoeleaos to an effectiveHamil:::
tonian for the center-of-mass motion (Graham et aI., 1992), whose 3/2 degree-of­
freedom classical analogue has a mixed phase space with regular islands embedded
in a chaotic sea. De Brogile waves of o-kicked ultracold atoms have been shown
to oemonstrate unoer appropriate conoitions tne effect of oynamicallocalization in
momentum oiiliibUiiOilSWl1icn means tne quantum suppressiOilOfchaoiicdiffiiSiOil
(Moore et aI., 1994; Robinson et aI., 1995; HensInger et aI., 2003) . Decoherence due
to sQontaneous emission or noise tend to suppress this guantum effect and restore
classical-like d)'namics . Another imQortantquantum chaotic phenomenon with cold
atoms iilfar-oetuneo opticarIattices is a cnaos-assisteo tunneling.-lnexpeiiments
(StecK et al~200T;Hensinger;-2001ru1tracola atoms nave beendemonstrateoto
oscillate conerentlYoetween two regular regions in mixeopnase space even tnougl1
the classical transQort between these regions is forbidden b)' a constant of motion
(other than energyj.
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Tne transRort of coluatOiTiSinopticanafficeshasoeenobserved101ake1hefOiTIl
orballiSiicmotiOi1,C)SCillaIiOilSinwellsoflheoj)ticalpoteritial;-BrownianTilOtion
(Chu et a!., 1985), anomalous diffusion and Levy flights (Bardou et aI., 2002 ; Mark­
SiCii1CfCfaI :;--1 99~TheLevyflighlShavcocen founu in tnc context of suorccoil
laser coolmg (Bardou et aI., 2002) in the dtstnbuttOns of escape tim es for ultracold
atoms trappecrintne potentialweHs wiih momentum states c1osetOlhedarkstaIe.
In tnose experiments tne variance anu tne mean time for atoms to leave tne trap nave
been shown to be infinite .

A new arena of --=q=CucccaCCCnZtu=-CmC:-Cn--=o-:C-nlineardynamicswiin atoms in opticarJattices is
openecrif we work----neartJie optical resonance andUiKe1neaynamics onnternal
atomic states into account. A.single atom in a stanuing-wave laser fielu may be
semiclassicall)' treated as a nonlinear d)'namical s)'stem with coupled internal (elec­
tronic) and external (mechanical) degree s of freedom (Prants and Sirotkin , 2001 ;
Prants anu KQi1'Kov, 2001 ; Prant s, 2002DillheseiTIicliiSsicaland-HamiltOriiai1lim=
its (wnen one treats atoms as point-liKe particles anu neglects spontan eous emission
and otner losses of energy), a numoer of nonlinear uynamicareffects nave oeen an­
'!1 )'ticall )' and numericall)' demon strated with this s)'stem: chaotic Rabi oscillations
(Prants and Sirotkin, 200 I; Prants and Kon' kov, 200 I ; Prant s, 2002), Hamiltonian
chaotic atomic transport and d)'namical fractals (Argonov and Prants , 2003 ; Prants
anaLJIcy sKY, 2003 ; Argonov ana Prants, 2007 ; Prants ct a!., 2006f,I:6vy flignts ana
anomalous aiffiiSiOO1Prants et al~2002;Prants, 2002; Argonov ana-Prants , 200OT.
These effect s are caused b)' local instabilit)' of the CM motion in a laser field. A
set of atomic trajectories under certain conditions becomes exponenti all)' sensitive
to small variations in initial quantum internal and classic al external states orland
in tne control param eters, mainly, tne atom-laser uetuning. Hamiltonian evolution
is a smootn process tnat iswell-descrioeu-in a semiclassical approximation oy the
couplecIRamilton-Scmoainger equations. A.aetailedlneory ofHamiltonian cnaotic
transRort of atoms in a laser standing wave has been developed in our recent PilRer
(Argonov and Prants , 2007) .

43-:1-Hiiiiiilliin:SchriJilinger equatiiiiiiO[iiiiiiiOii

We consiaer a 2~level atom wiln mass rna anu transiii Oilfrequency Wa inal:::
dimensional classic al standing laser wave with the frequency wf and the wave vector
~. In the frame rotating with the frequency wf , the Hamiltoni an is the following~

(4 .1)

Here O"±,z are the Pauli operators which describe the transitions between lower, II),
and upper , 12), atomic states , Q is a maximal value of the Rabi frequency. The laser
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~is assumeolOoe strong enougli, so we can treat tnefieloc]assicallX:-Posifion
X ana momentum Ii operators will beconsioered-insecfion"Semicl iiSSical-d)'nam­
ics" as c-numl)ers, X ana P. Tlie simple wavefunction for tlie electronic oegree of
freedom IS

(4 .2)[0/(t )) = a(t) 1-,-2)~+_b--,--( tLL) [-,-1)-,---, ----'------'-

wliere a ano-barethecornj)lex=Yal liedRffibability ampli fUdeslOfiild-theatOi11iillhe
states 12) and 11 ), respectivelY-Using theHamiltonian (4.1) , we get the Schrodinger
equatlOnl

(4.3)

da OJa - OJf
i dt = 2 a - SlbcoskfX ,

db OJf - OJa
i dt = 2 b - SlacoskfX .

Let us introduce instead of the comIJlex-valued probability amIJlitudes a and b the
following real-valued variables:

u == 2Re (ab*) , v== - 2 Im(ab*), (4.4)

wnere u ana v are a syncnronizea-CWifhthelaserfielo) ana a quaorature components
an lie atomicelectricdipole moment, respectively, anoziSllie atomic population
inversiom

In the IJrocess of emitting and absorbing photons, atoms not onl )' change their
intern al electronic states but their external translational states change as well due to
tlie pnoton recoil. In tliis section we will oescrioe tlie translational atomic motion
cliiSSically.Tlie posifion ana mom entum of a point-liKe atom satisfy c1iiSSicalHlliTIil:::
ton equations of motion. Full-dynamics il11lie aosence of any losses is now governeo
Q)' the Hamilton-Schrodinger equation s for the real-valued atomic variables

i = to.», P= - u sinx , U= Llv,

v= - L1 u +2zcosx, i = - 2vcosx ,
(4.5)

where x == kfX and P == P l likf are normalized atomic center-or-mass position and
momentum, respectivel y. Dot denotes differentiation with respect to the dimension­
less time r == Slt . The norm alized recoil frequency, OJr == lik}lmaSl « I, and the
atom-field detuning, L1 == ( OJ( - OJa )ISl , are the control parameters. The system has
two integral s of motion, namely tne total energy

OJr 2 L1
H == -P - ucosx - - z,

2 2
(4 .6)

and the Bloch vector u2 + v2 +22 = I . The conservation of the Bloch vector length
follows immeoiatelYfrom Eqs:-r4~4T.

Equations (4~5) constitute a nonlin ear Hamiltonian autonomous system willi two
and half degrees of freedom which, owing to two integrals of motion , move on a
3-dimensional h)'IJersurface with a given energ)' value H . In general , motion in a
3~imensionalphase sIJace in characterized by a positive L)'apunov exponent X, a
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negative eXIlOnent eguariill1lagi1iftldetOlheposifive one, anil zero ex])onent. The
iTIilXiTili1i11LYi\])unov ex])onent cnaracterizes tne mean rate of tne ex])onential iliver­
genceof inifially close trajectories anil serves as a guantitative measure of il)'namical
chaos m the system. The result of computation of the maximum Lyapunov exponent
independence on tl1edctUi1iilgLlanalhcinifiarafOiTIic momentum Po isshOWi1iil
Fig. 4.1. Color in the ])Iot codes the value of the maximum L)'a])unov exponent It .
In white regions the values of It are almost zero, and the atomic motion is regular
in the corresponding ranges of Ll and Ro. In shadowed regions positive values of A
imply unstaolemotiOil.

Figure 4:-I-demonstrates thatlne center-of-mass motion oecomes unstao]eifthe
ilimei1SiOilless momentum exceeo Slhevalue Po ;:::: 300tnat corresponilS{Wiln our
normali zation) to the atomic velocit)' Va ;:::: 3 mls for an atom with rna ;:::: 10- 22 g in
the field with the wavelength close to the transition wavelength Ita~ 800 nm. Willi
these estimates for the atomic and lattice parameters and Q / 2n = 109 HZ, one gets
the normalized value of the recoil frequency equal to ill, = 10-5. The detuning Ll
wiJroe varied-in a wioe range, anillne Blocn variaoles are restricteil-oy thelengtn
ofthe Bloch vector.

4.3.2 Regimes 01motion

The case of exact resonance, Ll = 0, was considered in detail in Ref. ePrants and
Sirotkin , 200 I ; Argonov and Prants , 2006) . Now we brieft)' repeat the simple results
fOrlnesaK:eof self-con sistency. At zero iletuning, tne variaole U oecomes a constant,
U - Uo, anolhefast (u, V, z) anoslow (x, p) variaoles are separateilallowing one to
integrate exactly tne reiluceil equations of motion . Tne total energy (4:-6)is equal to
Ho = H(u = uo,Ll = 0) , and the atom moves in a simple cosine potential uocosx

A I I
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wiiht nree possiDle tYRes oftra:jectOries:oscillatOf-likemoIionin a RotentialweJrif
Ho < Uo (atoms are trapjJeo]5y tne stanoing-wave fielo),Ii1Otion along tne separatrix
if flo = uo, ana 6allistic-liJ<e motiOilifHo > uo. Tne exact solution for tne center-of­
mass motion ISeasily found In terms of ellIptIc functions (see (Prants and SlrotJ<In,
200T; A:rgonov ano-Prants, 200m

ASlOii1iei11iilatmnicevolUiion;-itdepei1dSOillFie1i1iTiSlaiiOilliI-degreeoffreedOffi
since tne strengtn of tne atom-fielu couRliBg oepenos on tne position ofatOffiina
periodic standing wave. At.1 = 0, it is eas)' to find the exact solutions of Eqs . (4.5)

vCr) =±~ cos 21'cosxdr' + XO ,

z(r ) = =f~ sin (2 .10' cosx dr' +xo) ,
(4 .7)

where u = uo, and cos[x(-r)] is a given function of the translation al variables only
which can be found with the heIR of the exact solution for x (Prants and Sirotkin ,
2001 ; Argonov anu Prants, 2006f.Tne sign of viscquallOlhaffOfifiCinitial value zo
anuxoisanintegfation constant. Tneinternal energy onne atom, z, anu-its quaura­
ture uipole-moment component v coulcf6e consiuereuasfrequency-mooulateusig­
nals with the instant frequenc y 2cos[x(-r)] and the modulation frequenc y wrP(r ),
but it is correct only if the maximum value of the first frequenc y is much greater
than the value of the second one, i. e., for IWrPol « 2.

The maximum Lyapunov exponent A depends both on the parameters Wr and A,
ana on initial conoitions oftne system (4~5r.-Itis naturally to expect tnat offthe
resonance atoms with comparati vely small values of the initial momentum ~o will
be at once trapped in the first well of the oRtical potential, whereas those with larg~

values of ~o~y~gh. The question is what will happen with atoms, if their
iniiriinZinetic energy wiJrbeclose to therniiXii11ili11Oflne optical potentiiil:-NU=
merical experiments uemonstrate tnat sucn atoms will wanuer inlne opticarJattice
with alternating traRRiDgs in the wells of the oRtical potential and flights over its
hills. The direction of the center-of-mass motion of wandering atoms may chang~

in a chaotic way (in the sense of eXRonential sensitivity to small variations in initial
conuiiions). A typicalcnaotically wanuering atomic trajectory issnown inFig.-4~2~

It follows from (4.5) that the translational motion of the atom at .1 i= 0 is de­
scri6eu-6y tne equation of a nonlinear pnysical penuulum wiihthefrequency moa:
ulationl

X+ wru(r ) sinx = 0,

wnere u isafunction of alllne otner aynamical varia15les.

(4.8)
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4.3.3 Stochastic map for chaotic atomic transport

ChaotIc atormc transport occurs even It the normalIzed detunmg IS very small,
ILl I « I (Fig. 4.1). Under this condition, we will deriveTritllis section approximate
equatiOilSforthe center-of-mass motion:-The atomic energy at ILl I« Cisgiven willi
[gOOd accuracy bYits resonant valueHO:-RetiifriinglO1hebasicserofUie eguations
of moti0i1T4.5), we may neglect tne first rignt-nand1Cfri1ifilhcfOtirthcquaiionsincc
It IS very small as compared with the second one there . However, we cannot now
exclude the third eguation from the consideration . Using the solution (4.7) for v, we
can transform this eguation as

(4.9)it = ± Ll~ cos g , X == 2 r' cosxdr ' + Xo.____________Jo _
Far from the nodes of the standing wave, Eg. (4.9) can be a])])foximately integrated
under the additional condition, Iwrpl« I , which is valid for the ranges of the pa­
rameters andlfie initial atomic momentum wFiereCfiaotic transport occurs. ASSt.li11=
ing cosx to De a slowly-varyingfunctionin comparison withthefunction cos z.
we obtain far from the nodes the apj)roximate solution for the u-component of the
atomic dipole moment

u ::::o sin (±-Ll-sinx+c),
2co sx

(4.10)

where C is an integration constant. Therefore, the amplitude of oscillations of the
quantity u for comparatively slow atoms (Iwrp i« I) is small and of the order of ILl I
far from the nodes .

At ILl I = 0, the syncl1fOi1izeo component of t he atomiC-dipole moment u isa
constant wfieRa~J1je~t1jeLBlocJi variaDle~Lan_d v oscillateJILaccordance witlLtlie---- --I~-------------~-solution (4.7). At 4EOand far from the nodes, the variable u performs shallow os-
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cflIaiiOi1Sfor the natural frequency 1.11 is small as compared with the Ramfrequency.
However, theoehavi()f()fuis expecteolOoe ver)' specialwlien an atom apQroaches
to an)' nooe of tlie staniling wave since near tlie noilet:fieOSCillatiOilSOftheatOiTIic
populatIon InverSIon Z slow down and the correspondIng drIVIng frequency becomes
close to the resonance WIth the natural frequency. As a result, sudden "Jumps" of the
variaole U are expectea to occur near thenoaes.-Tl1iSCOi1jectiifeis sUPJl0rteil-o)' the
numerical simulation. In Fig. 4.3 we sliow a typicaloeliaviorofthevariaoleufora
comparativel)' slow and slightl)' detuned atom . The plot c1earl)' demonstrates sud­
ilei1"jumps"of u near tlie noiles of tlie staniling wave anil small oscillations oetween
ilie_noaesJ

Approximating toe variaoleuoetween toe noiles oy constant values, we can con­
struct a discrete mapJling (Argonov and Prants, 2007)

Um= sin(e sin pm + arcsinum_tl , (4 .11)

where e == 1.11 J n/ WrPnod e will be called an angular amplitude of the jump, Um is
a vaIUeOf U Just after tnem:thl1Ode croSSIng, i/tn are ranClOi11j?hases to oecnosen
in the rang~[O , 2n], and Pnode ==~ is the value of the atomic momentum
at the instant when the atom crosses a node (which is the same with a given value
of the energ)' H for all the nodes) . With given values of .1, Wr , and RHode' the maQ
(4.11) has been shown numericall)' to give a satisfactor)' probabilistic distribution of
magiliftldesofchangesintnevariaole U just after crossinglhenodes:-ThestOCnastic
map (4.11) is valid under the assumptions of small detunings (1.11 « 1) and com­
paratively slow atoms (Iwrpi « 1). Furthermore, it is valid only for those ranges of
the control parameters and initial conditions where the motion of the basic s)'stem
(4.5) is unstable. For examQle, in those ranges where all the L)'aQunov eXQonents
are zero, U oecomes a quasi-periodicfunction ana cannot De approximateil-oy the
map.

0.8 ,----------.----.---------.-------,

u

~0 1000__2000~000__,,000
r

mg. 2I:3-TYIJlCalevoli.ifiOi1OflheatOri1iCdijJOle-momenl comlJOnent u for a com)Jaratively slow
and slightly detuncd atom: xo = 0, Po = 550, VO = 0, Uo = zo = 0.7071, to, = 10- 5 , L1 = - 0.01.
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4.3.4 Statistical properties ofchaotic transport

WIth given values ot the control parameters and the energy H, the center-ot-mass
illOiionisdeteiTilined-o)' tFieValuesof Urn (see Ei:fT4~8rr:-One can ob1ai iltrOiTIlhe
~ression for the energ)' (4.6) the conditions under which atoms continue to move
in tlie same oirection after crossing a nooe or cliange tlie oirection of motion not
reachIng the nearest antInode. Moreover, as In the resonance case, there eXist atomIc
trajectories along whIch atom s move to antInodes with the velocIty gomg asymptot­
icall)' to zero . It is a kind of separatrix-like motion with an infinite time of reaching
the stationary~oints .

The conditions for different regimes of motion depend on whether the crossing
numb er m is even or odd . Motion in the same direction occurs at (- I y n+ 1Urn < H,
separatrix-like motion - at (- I)rn+l u rn = H, and turns - at ( _1)rn+l u rn > H . It
is so oecause even values of m correspono to cosx > 0, wliereas 000 values - to
cos x < O. The guantit )' U during the motion changes its values in a random-like
manner (see Fig . 4.3) taking the values which provide the atom either to prolong the
motion in the same direction or to turn . Therefore, atom s ma)' move chaoticall)' in
tlie optical lattice. Tlie cliaotic transport occurs if tlie atomic energy is in tlie range
O<H<l-:-ATH<O, atoms cannot reachevenllie nearest nooeandoscilli.itein
the first potential well in a regular manner (see Fig . 4.1). At H > I , the values of
U are alwa)'s satisf)' to the flight condition. Since the atomic energy~positive in
the regime of chaotic transport, the corresponding conditions can be summarized as
follows : at lui < H , atom always moves in the same direction, whereas at lui >H,
atom eitlier moves in tlie same oirection, or turns oepenoing on the sign of cosx in
a given intervalof motion . In particular, ifthe mooulus ofuislarger foralong time
then the energ)' value , then the atom oscillates in a Qotential well crossing two times
each of two neighbor nodes in the c)'c1e.

Tlie conoitions stateo aoove allow to find---a-direct corresponoence oetween
cliaotic atomic transport iillhe opticarIattice anostOChasIicdynamicsoftheBlocn
variiiole u . Itfollows from E(fT4T1)tliat tlie jump magnituoe Urn - Urn-I ju st after
crossing the m-th node depends nonlinearl)' on the previous value urn=J . For ana­
I)'zing statistical piQQertiesof the chaotic atomic transQort, it is more convenient to
introduce the map for arcsin Urn (Argonov and Prants , 2007)

(4.12)ftrn == arcsin Urn = e sin~n + arcsin Um=IL, --'--'~:L

where the jump magnituoedoes not oepeno on a current value oftlie variiiole:-The
~ (4.12) visuall)' looks as a random motion of the Qoint along a circle of unit
radius (Fig . 4.4) . The vertical Qrojection of this point is Urn . The value of the energ )'
H specifies four regions, two of which correspond to atomic oscillations in a well ,
ana two otlier ones - to oallistic motion in tlie optical lattice.

Wewillcall--''Ufli gh1'' such an event when atom passe s, at least, two succe s­
sive antinooes (ano1liree nooes) . The continuous f1ighTlength-L>21fis a oistance
between two succes sive turninKQoints at which the atom changes the sign of its ve-
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10cif)T,aildlfiediscreteflighTlength-is a numberofnodes-llne atom crosseo~Tne)'

arerelated-inasim~)', L~Cforsufficientlflong flighT.
Center-of-mass oscillaIiOilSinawelloftl1eOfJticalpoteritialwill -becalleo----a:

trapping" . At extremely small values of the detunIng, the Jump magnItudes are small
and the trapping occurs, largely, In the 2n-wlde wells, I. e., In the space Interval of
ihelength-2n:-ATinteiTilediaIeValiieSOflfiedetUriing,-it occurs , largely,-inlhen=
wide wells, i. e. in the space interval of the length x. Far from the resonance , ILl I;:: I,
traIJRing occurs onl)' in the n-wide wells. Just like to the case of flights, the number
of nooes I, atom crosseo Deingtrappeo in a well, is a oiscrete measure of trapping .

ThePDFsfortheflighTPfiODUlSltnijJping PtJl) events were analyticallyoeriYea
toDe exponential in a case of large jumps (Argonov ana Prants, 2007Y:-In a case of
small jumRs, the kind of the statistics deRends on additional conditions imRosed on
the atomic and lattice parameters, and the distributions Pn (l) and Ptr(l) were analyt­
icallysnown to De eiiner practically exponential orfunctiOilSWiih-long power-law
segments wilhtne slope - r:YDut exponentiiir"iailS":-Tne comparison ofthCFDFs
computeo wiln analyticaHormulas, tne stocnastic map, anolne Dasic equations of
motion has shown a good agreement in different ranges of the atomic and lattice
parameters (Argonov and Prants, 2007) . We will use the results obtained to find the
anal)'tical conditions, under which the fractal p!QIlerties of the chaotic atomic trans­
port can De oDserveo, ana to explain tne structure of tne corresponoing oynamical
fractalS]

Since the IJeriod and amRlitude of the optical IJotential and the atom-field de­
tuning can be modified in a controlled wa)" the transIJort exponents of the flight
and traIJQiI1g distributions are not fixed but can be varied continuousl )', allowing~
explore oifferent regimes of tne atomic transport. Our analytical ana numerical re­
sults wiihtheioealized system nave sfiOWillhatdeterminiSiic atomic transport in
an opticarIattice cannot De just c1assifiecI as normal ana anomalous one. Wenave
found that the flight and traIJQiI1g PDFs rna)' have long algebraicall)' deca)'ing~g::

J1

trapping

flight

""'----l.---L-=---+-----jO

\ - - - - - - - - -I-flight- -

-...,-------:::;>l--------I -H
~-"'""""'==--------___l-I
trapping

Fig. 4.4 Graphic representation for the maps of Urn and 8rn == arcsin Urn. H is a given value of the
atomic energy. Atoms either oscillate in oIJtical IJotential wells (trappjIlg) or fly through the oIJtical
laui cecllighl).l
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ments ana-asnort exponential'1ail":-~Tt means thatin some ranges oflheatOiTIic
ana lattice parameters numerical experiments reveal anomalous transQort witli Lev)'
flights. The transQort exponent equal to - 1.5 means that the first, second, and the
otner statistical moments are InfinIte tor a reasonably long tIme. Tne correspondIng
atomic trajectories computed tor thIs time are self-SimIlar and fractal. The total dls­
tanee,lhartlie atom travelsfOflhelimewhenlheflighTPDF-deca)'s algebraicallf,
is aominated ti)' a single f1iglit. However, tlie as)'mptotic tieliavior is close to nor­
mal transport. In other ranges of the atomic and lattice parameters, the transport is
practically normalootli for snort ana-long times.

4.3.5 Dynamicalfractals

Various fractal =liKe structures may arise in chaoticHamiltonian systems (Gaspard et
ac-;-T998;ZaslavsKy et al:-;-2DOSy:-rnRcf.1Prants ana-UleyskT200J;A:rgonov ana
Prants , 2003, 2006; Prants et aI., 2006) we have found numerically fractal I'!Qperties
of chaotic atomic transport in cavities and oQtical lattices . In this section we appJ)'
the analytical results of the theor)' of chaotic transport, developed in the preceding
sections, to find1heconditiOilSUilder wliichtFiedynamicarfractals may arise.

Weplace atoms one oy one at tne point xo = Owiih----a-fixea positive value of
the momentum [JO and comQute the time T when the)' cross one of the nodes at
x = -7r72 or x = 37fl2. In these numerical eXQeriments we change the value of the
atom-field detuning L1 only. All the initial conditions 120 = 200, zo = - I , uo = Vo = 0
and the recoil frequency (Or = 10-5 are fixed. The exit time function T(L1) in Fig. 4.5
aemonstrates an intermittency of smootli curves ana complicatea structures tliat
cannot De resolvea-in principle, no matter now large tlie magnification factor . The
second and third panels in Fig. 4.5 demonstrate successive magnifications of the
detuning intervals shown in the up~Qanel. Further magnifications reveal a self­
similarfractal-liKe structure tnat is typicaHorHamiltonian systems witn cnaotic
scatteril1g1Gasparaerar:~-r998;BudyansKY et al~2004Y:-Tneexit1ime T, corre­
sponaing to tiotfi1ne smootli ana unresolveaLi-intervalS;-increases with-increasing
the magnification factor. Theoreticall)', there exist atoms never crossing the border
nodes at x = - 7r72 or x = 37fl2 in sQiteof the fact that they have no obvious energ)'
restrictions to do that. Tiny intel])lay between chaotic external and internal atomic
aynamics prevents tliose atoms from leaving tne small space region .

VariousKindsofatOiTIietrajectOfiescanoecnaracterizea~bY1Fiei1Uri1ber of1imes
m atom crosses the central node at x = 7r72 between the border nodes . There are
also special separatrix-like trajectories along which atoms aSYB!Qtoticall)' reach the
points with the maximum of the potential energ)' , having no more kinetic energ)' to
overcome it. In aifference from tlie separatrix motion in tlie resonant system (:1 = OT,
a aetunea atom can asymptoticallyreach----oneonne stationary points even ifit was
trappea-for a wnilein a welCSucli an asymptotic motion taKes an infiniteIime, so
the atom will never reach the border nodes .
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The smooth L1 intervals in the first-order structure (Fig. 4.5, up~panel) corre­
spona to atoms wliicfi never cliange tlie airection of motion em- l)ai1dreachthe
border node at x = 31rj2 . The singular points in the first-order structure with T = 00,

wliicnarclocateCiarthcborder oetween tfie smootfi anCilil1fCSOlvcdLrintervals, are
generateCi-oylfie asymptotic trajectories. Analogously,tlie smooth- L1- intervalsiil
the second-orde r structure (second Qanel in Fig. 4.5) corresQond to the 2-nd order
(in~2)trajectOries,andsoon:

The set of all the values of the detunings, generatin g the separatrix-Iike trajecto­
ries, was sfiown to oe a countaolc fractal in Refs:-rArgonov anaP~2003~2006),

wnereasthesefOfllie values generating Ciynamically trappeCi atoms willi m = 00

seems to oe uncounta15Ie:-Tfieexiftime Taepenasin a complicateCi way not only on
the values of the control parameters but on initial conditions as well.

10000~=::;:::;::====;:===::::;::::===;:===:::::;:::=;;::::;;

T 5000

5000

0'-----'-------'--------'------'-------'------'

10000,-----------,--------.----------,,---------,-------,

_____-0.03 -0.0275'---__-0 .025'---__-0. 0225_
O'-----------:'--::-:----~_::_::_:,_____--_::_'_::__:_::_-------=~_:_::_----'

10000,-----------,---,-----.------------.--------,------,

5000

0'---------'-----------'---------'-------'
____---=- 0.02855 ---=- 0.0285'--- ---=- 0.02845

10000,

0.010.008
L1

0.006
0'-------=-:'--=-=--------=-:'-=-=--------:-'-,-------------'

;Ejg.-4~5 -Pructal:likecJependcnceofthe1imeof ex ifOfatomsT from a smallregiOriiiitficoIillcal
lattice on the detuning L1 : po = 200, 20 = - I , Uo = Vo = O. Magnifications of the detuning intervals
areshown,
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In Fig . 4.6 (Argonov and Prants, 2006) we Rresented a 2-dimensional image of
ihe1iiTieOfeiifTin die sRace of tlie initial atomic momentum ~o ann tlie atom-fielu
detuning .1. A self-similarity of this function is evident.

Thclengtli of all smootli segments in tlie m-tli aruer structure inFig.-4~S-ispro=

portional to the number of atoms N(m) leaving the space [-n I2,3n12] after cross­
ing the central node m times . An exponential scaling N(m) '" exp( -ym) has been
fOUildTilliTiei'ically with~r:- Thetraj)f'it1g PDFs , comRuteu w iih- the b-asicandre=
duced eguations of motion at the detunings in the range shown in Fig. 4.5, have been
founu to Iiave exponential tails. It is weIHnoWi1l'Gaspardefal:-;-r998nliat Hamil:::
tonian systems wiih-fullyaevelopeucliaos uemonstrate, as a rule, exponentialaecay
laws, wliereas tlie systems witli a mixeupliase space (containing islanus of regular
motion) usually have more slow algebraic decays due to the effect of stickiness of
trajectories to the boundaries of such islands (Zaslavsky et aI., 2005) . We have not
founu visiole regular islanus in our system at tlie values of tlie control parameters
usen to compute thcfractarinFig.-4~5 ann we may concludClliat tlie exponential
scalingis a resulfOf completelycliaotic wanuering of atoms inilie space interval
[-x / 2,3n/ 2] resembling chaotic motion in hyperbolic systems .

The fractal-like structure with smooth and unresolved comRonents may~pear if
atoms have an alternative either to turn back or to Rrolong the motion in the same
direction just after crossing the node at x = n/ 2. For the first-order structure in the
upper panel in Fig. 4.5, it means tliat tlie internal variaole u of an atom, just af­
ter crossing the node for the first time (cosx < 0), satisfies either to the condition
L!l < H (atom moves in the same direction), or to the condition Ul > H (atom turns
back) . If Ul = H , then the exit time T is infinite . The jumRs of the variable U after
crossinglhenodearedeterminiSiicout sensiiivelydepenuent on tlie values ofthe
control parameters anu-initial conuiiions. weliave useu1liisfact whenintrouucing
ilie stocliastic map. Small variations il11liese values lean to oscillations onlie quan­
!ity arcsin Ul around the initial value arcsin Uo with the angular amRlitude 0 . If this
llJ!!Illitude is large enough, then the sign of the guantitY_lll - H alternates and we
obtain alternating smooth (atoms reach the border x = 3n/2 without changing their
nirection of motionrana unresolveu (atoms turns a numoer of times oefore exit)
components of tlie fractal-liKe structure.

If the values of the parameters admit larg~jump magnitudes of the variable u,
then the dxnamical fractal arises in the energx range 0 < H < I , i. e., at the same
condition under which atoms move in the oRticallattice in a chaotic wax. In a case of
small jump magnituues, fractals may arise if tlie initial value of an atom Uo is close
enougli to tlie value onlie energy n.: e., tlie atom lias a possioility to overcome the
value U = H in a single j!l'!!I'. Therefore, the condition for appearing in the fractal
T(L1) the first-order structure with singularities is the following :

(4.13)

Tlie generatiOilOftlie seconu-oruer structure is explaineu analogouslf.Tf an atom
maue a turn after crossing tlie nouefOflhTfirst time,1henifWiIl cross tlie nouefor
ilie seconuti~Afterlliat-;ilie atom eiiherwill turn or cross thTbordernodeai



2074-HamiliOi1ianCfiiiOSWiihaCoI(rA1Oii1inanOj)=tl~ca=r=r.:=at=ti=c~e ~

7
__ - - ------ ---

x = -71: 2. What will happen depend on the value of U2 . However, in difference
ffOrilllle case with~l~heconditionfor apRearingailinfiniIeeXiflimewiifl
m = 2 is U2 = -fl . FUrtllermore, tile previous value Ul i~fixedl:inaifference

from uo) out C1epenCis on tile value of tile C1etuning L1 . In any case we Ilave UI > H
SInce the second-order structure consi sts of the traJectones of those atoms whIch
ftImeaafierthefifsfnOdecrossing. lnorderfor an atom woula-b--eaole to turn after
tile seconCi node crossing, tile magnituCie of its variable U slloulCi cllange sufficientl)'
to be in the range U2 < -H. The atoms, whose variables u could not "jump" so far,

Po 62.5

(b) 61.5

60.5

(c)

(d)

(t)

Fig. 4.6 The sca ttering funclion in the regim e of chaolic wandering. The time of exit T vs the
aetuning L1 ana tile initial momentum Ro . Tile function is sllown in a sllaaea relief regime.
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leave the space [-1r72~37r72] :-Tl1eSingularities are absent in the middle segment
of the second-order structure shown in the second panel in Fig. 4.5 because all the
corresIlOniling atoms left tlie sQace after tlie seconil noile crossing:-Thevaria15leti2
oscillaICSWiUi varying L1 generating oscillations of tlie exit time. Tlie coniliiion for
appeanng sIngulantles In the second-order structure IS the following:

(4~14}

With the values of the parameters taken in the simulation , we get the energ)' H =

0.2 + ,172. It is easy to obtain from the inequality (4.14) the approximate value of
the detuning 1,11 ;:::: 0.0107 for which the second-order singularities maY~)Jpear. In
tlie lower panel inFig. 4.5 one can see tliis effect. NiJaduitional conaitions are
requirea-for generating tlie structures ofthe1liird anil1lie next orilers.

Inequalit)' (4.14) is opposite to the inequalit)' that determines the condition for
<lQpearing power law deca)'s in the flight PDF. Therefore, d)'namical fractal rna)' aQ::
pear ililliose ranges of tlie control parameters wliere theLevyfliglits are impossible
anilvice versa. However, tlie trapping PDF may liave a power lawdecay:-IneqwiliIY
r4~14Tindifference from (4T3Tis strongly relatea wiilillie cliosen concrete sclieme
for computing exit times . It is not required with other schemes, sa)', with three antin­
odes between the border nodes .

In this section we will treat atomic translational motion quantum mechanicall)', i. e.,
atom is supposeil to be not a point particle but a wave pacKet. Tlie corresponiling
Hamiltonian H has the form (4.1) wIth x=ancrP-being tliej)OSmonand momentum
operators. We will work-ii11lie momentum space wiilillie state vector

IP(t) ) = I [a(P,t)12)+b(P,t)II )]dP,

which satisfies to the Schrodinger equation

iiidiP) = HIP).
dt

Tlie normalizeil equations for tlie probability amplituilesliave the-form

I I
ia(p) = "2(Wrp2 -,1)a(p) -"2[b(p+ I)+b(p -I)],

. I 2 I
ib(p) = "2(WrP +,1)b(p) -"2[a(p+ I)+a(p -I)],

(4.15)

(4.16)

(4.17)

wiilillie same normalization anatlie control parameters as ii11lie semiclassicaltlie­
or)'. When deriving (4.17), we used the followinKPiQ~), of the momentum oper-
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(4.18)

EquatIOns (4.17) are an InfinIte-dimensIOnal set of ordInary dIfferentIal complex­
valued equations of the first order with coupled amplitudes a(p ± n) and b(ri£!1il
To characterize the internal atomic state, let us introduce the following variables ;

u(-r) == 2ReI d.x [a (x,-r)b*(x, -r)],

v(-r) == - 21mJd.x[a(x, -r)b*(x,-r)],

z(-r) == I d.x[la(x,-r)1 2 -lb(x,-r)1 2
],

(4.19)

which are quantum versions of the Bloch components (4.4) , and we denote them by
the same lettersJ

2I.~5 -nressea states picture analiOiiadiabafic transitions

Interpretation onne atomic wave-packermotiOilin a stanaing-wave field-is greatly
facilitatea-il1il1eoasisof atomicdressea states wnicn are eigenstates ofa2=level
atomjn_aJaseLfiCla=-Tlie_aaiaoaticaresseastates

L±:t:l = sineT2) +coseTI ), 1-).1 = cose]28ii1eTIL

tane == _.1__ )(_.1_)2 + I
2cosx 2cosx

(4.20)

are eigenstates at a nonzero detuning. The corresponding values of the quasienergy
are

(4.21)E (±) - ±J~ 2

+cosx.1 - 4 .
-----------

Bgure 4.7 shows a spatial variation of the quasienergies along the standing-wave
axis . It follows from EQST4.20]ai1dT4.2l)1nat, in general case, atom moves in tne

two potentials El ±) simultaneously.
At exact resonance, 21 = O~hcdressea states nave tne simplcform

I
1+ )= y2(11)+12 )),

I
1- )=-(11 ) -12))

y2
(4.22)

and are called diabatic states . The resonant potentials, E6±) = ± cosx, cross each
other at the nodes of the standing wave, x = 7r/ 2 + ttm, (m = 0,± I, ... ). What will
happen if we Qlace the centroid of an atomic wave Qacket exactly at the node , Xo =
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7f72, in the groundswerrjaoo suppose its initial mean momentum to oezero:
Po = O? The initial ground state is the superposition of the diabatic states: 11 ) =

(I +)+ 1- ))/V2~ne part of the initial wave packet at the top of the potential

E6+ ) will start to move to the right under the action of the gradient force p (+ ) =

-dEb+ )/ <Ix = sinx, and another one - to the left to be forced by p (- ) = - sinx
(see FIg. 4.7). It IS the well-known optIcal Stern-Gerlach effect (Kazantsev et aI.,
llJ74;-l1J9TJ;Sleator etal~). If the maximal expected value of the atomic kInetIC
energy does not exceed the potentIal one, the atom Will be trapped In the potential
well. Two splitted components of the initial wave packet will oscillate in the well
with the j)eriod of oscillations

T c:::'4~. (4.23)
__ wr _

The wave packet, willi Po = O~laced at tlie antinooe, say, at xo - O~issimu1ta­

neously at the top of the potential E(;+ ) and at the bottom of E(;-).Therefore, its

1+ )-component will slide down the both sides of the potential curve Eb+ ), and the
1- )-component will oscillate around x = 0 (see Fig. 4.7).

Out off resonance, L1 i= 0, the atomic wave packet moves in the bipotential

El ±) (4.21). The distance between the quasienergy curves is minimal at the nodes
ortl1eSIai1ding wave anoequaI1OL1~Fig:-4~7).Thespatialpcrioaandlhemod=

ulation depth of the resonant potentials Eb±) are twice as much as those for the

nonresonant potentials E~±).

x

___E~) _

Fig. 4.7 Resonant £6±) and nonresonant £~±) potentials for an atom in a standing wave. The
optlcal Stern-Gerlach effect In the resonant potentlal ISshown : sP1I1!JI1g of an atomIc wave packet
launched at the node of the wave (xo = 7(; /2, Po = 0). The wave packet , placed initiall y at the

anti node (xu = 0, pu = 0), appears to be simultaneously at the top of £6+) and the bottom of

li6)potentials. Its 1+ )-component slides down both the sides of £6+) and the 1- )-component

oscillates at the bottom of E6-).
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TheprooalillftYOfrlonadiabatietrariSitiilllsbetween the dressed states I+)A and
I- )A can be estimated in a simple way. The time of flight over a short distance
oxin neighbourhood of a node is ox!WrPn ode. If the time of transition between the
guasienergy levels, 21Ll , is of the order of the (light time, the transition IJrobability
IS close to 1. It IS easy to get the characterIstic frequency ot atomic monon trom that
COi1diiiQi11Kazantsev et a1:-;-1990)

(4.24)

where Rmldc is a value of the momentum in the vicinit)' of a node .
Dcpci1ding on tne relation between L1 ana L10 , tnere are tnree typiCiilcascs:

I . If ILl I« Llo, the nonadiabatic transition prooa1:lilit)ibetween the states 1+ )Li and
l=lLi upon crossing any node is close to I . However, the diabatic states I+) and
1- )are not mixed , and atom moves in one of optical resonant potentials.

2. If ILl 1 ~ Llo, the probabilitie s to change or not to change a given adiabatic state
upon crossing any noaeareoftne same oraer.

3-:-ITILlI » Llo, the nonadiabatic transition prooa61lity is exponentialIy snlalcana
atom moves in one of tne nonresonant potential s.

4.3'.-1-Wave [Jacket motiiiiliii7/ie momentum space

The atom at r = °is sUQIJosed to be p~ared as a Gaussian wave Qacket in the
momentum sQace

I [ (p - PO )2 . ]
ao(p) =0, bo(p) = ~fiLl p exp - 2(Llp )2 -t(p-po )xo , (4.25)

wiil1lne momentum wiClih-Llp = ro corresponaing to tne spatiiilwiClUlLfX =
!-i1401r that is much smaller than the optical wavelength A{:We compute the prob-=
abilit)' to find a 2-level atom at the moment oftime r with the momentum R

(4.26)

bYii1iegfaiingBqs.(4:-17)Wiil11heininiirconaiii0i1T4~25r.-Therccoil-frequency,

to; = 10-5, is fixed and the centroid of the wave packet is placed at the antinode
Xo = O~inalltne numerical experim ents .

4.5.1.LAdiabatic_evolutionat.exact.resonance

At exact resonance, Ll = 0, the wave function s of the diabatic states 1+) and 1-)
evolve independently, each one evolves in its own potential E(~+) and E(~ ), respec­

tively. The atom, prepared initially in the ground state m= (l±)-±I-=-)) IV2 with
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the mean initial momentum Po= 800, will start to move from the top of E(;+ ) and the

bottom of E6 )potentials (see FigA .7). Thus , the initial wave packet will split into
two components I+)andT= j :-Time evolution ofiheprooaoility function (4~2oTfor

eacho ftlie components issliOWilinFig.-4~8~Pax;::Qlease, attentiOOll1iif1hevaliieSOf
p on thIs and sImIlar plots Increase downwards. Color In this figure codes the values
<.lfJ!fIp,or) . The 1+ )-component (the lower trajectory in the figure) slides down the

curve E(~+ ) and, therefore, moves with an increasing velocity up to the next antinode
at x = 7C , and then it slows down approaching the antinode at x = 27C . The atom
moves ii11lie positive airection onlie axis x ana tfie process repeats perioaically

. h h . d (+) 2 / -(+ ) 690 h -(+ ) . f hWIt t e peno oro = 7C wrPo 2n ~ , were Po2n ISa mean momentum 0 . t e
i±l -component upon the atomi~ motion between a~nd 27C.

the 1- )-component (the upper trajectory in FigA .8) moves upward the potential

curve E6 )and slows down up to reaching the top of £6)at x = 7C . Then it moves
with an increasing momentum up to x = 27C. Since the mean momentum of the 1-E
component is smaller than that of the I+) one, the corresponding_period is longer,

or(~- ) ~ 9801

4.5.1.2 Proliferation of wave Ilackets at the nodes of the standing wave

New features in propilgation of atomic wave Qackets through the standing wave
:lI'pear under the condition .1 ~ .10. Using the semiclassical expression for the total
atomic energy (4.()); let us estimate tlie value of tlie atomic momentum at tlie noaes

400-r------------------,

p

600

800

1000

800600400200 1000________________or__o

Fig. 4.8 Time dependence of the momentum probability function W(p, or) for a ballistic atom at
resonance prepared initiall)' in the ground state (.1 = 0, Wr = 10 5, XQ = 0, IJfJ = 800).
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of the standing wave if the detuning is not large, III I « CIflhe atom is prepared
initially in the state 1+ ), i.e., uo = I, zo = 0, and q, = 0 then we have H = Ho = 2-:-2
at Ro = 800. Since the total energy is a constant, we get immediately from Eg. (4.6)

Pnode ~ j2ii7W,. ~ 665 . (4.27)

Usii1g1lle same fOfri1i.ila{4.6), we get tne values ofthCillini illiilai1dillaXimal
momenta iftlle atom starts to move wiihtheifiiiial mean momentum Po = 800:
Pmin ~ y'2(Ho - I) / roy ~ 490 and Pmax ~ y'2(Ho + I) / roy ~ 800.

The formula (4.24) gives us the value of the characteristic frequency under the
cllosen conaitions, Llo ~ 0:08:-WcfixLl~0~05-ifillli SSCction;soLl ~ Llo.Tne initial
state 1+ ) is the following superposition of the adiabatic states:

I
1+ ) = j2[(cose + sine)1 + ),1 + (cose - sine)l - ),1 ]. (4.28)

With the help of (4.21) we can estimate the mixing angle at Ll = 0.05 to be egual
to e ~ -rc /4 . Then it follows from (4.28) that 1+ ) ~ 1- ),1' i. e., practically all

the wave packet is initially at the bottom of the potential El - ) (Fig. 4.7). Figure 4.9
demonstrates that the wave packet really slows down , and its centroid intersects the

node x = rc / 2 at 'rj( - ) ~ 215. Under the condition Ll ~ Llo, the atom has a probabilit)'
to change the IJotential for another one uIJon crossing a node and a IJrobability to stay
in its present potential. Tllis is exactly wllat we see inFig. 4.9: tile wave pacKetsplits

at the node x = rc / 2 with the I - )-component moving down in the potential Ei-)
(see the lower trajectory in this figure) and the 1+ )-component moves up the curve

El+ ) with a decreasing momentum (see the upper trajectory). Just after crossing the

node, the most part of the probability density moves in the potential Ei-)because
the corresponding probability is larger. The 1- )-component increases its velocity
upon approacning tile antinoae at x = rc ana ilieii slows aown up to tile secona noae

at x = 3rc / 2 where it splits into two components at 'rJ- ) ~ 640 . After that, one of

the components will move in the potential Ei+) decreasing the velocity up to the

next antinode at x = 2rc, and the other one will move in Ei-)increasing its velocity
in the same space interval. The probability density of this I - )-component is only
a few percents, and we draw a solid curve along this trajectory in order to visualize
tlle~otiOi1J

the I+ )-component of the packet, splitted after crossing the first node at x =
7f/2, has a smaller mean momentum than the 1- )-one. Therefore, it reaches the

second node later, at 'rJ+ ) ~ 800, where it splits into two parts : the upper 1+ )­

component will move in the potential El+ ) and the lower 1- )-one - in El ). Such
a proliferationofatOiTIic wave pacKets taKesplaces upon crossing allllle next noaes
anne stanaing wave.

The moment of time 'r~± ), when the centroids of the I± ~ponents cross the
n-tll noae, can 5e estimatea 5y tne simple formula (we suppose tnat tne centroia of
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iheatOiTIic wave pacKet was at x = O~Or

(4.29)_ (± ) (±) _ ( )77:
OJrPn_l ,n-rn - 2n-1 2_' _n_=_2_,3_,_._._. , _

where P~±)I n is a mean momentum of the 1± )-components upon their movement
between (n '- I )-th and n-th nodes. This quantity for the 1- I-component, moving

between x = 0 and x = 77:/2, is fib) ) = (po+Pnode)/2 ~ 732.5. So, the centroid of

this wave packet crosses the first node at or}- ) ~ 214. The lower 1- )-component

crosses the second node at x = 377:/2 at -ri- ) ~ 642. For the uIJper 1+ )-component

we get fil~l = (Pnode +Pmin) / 2 ~ 577.5 and -rJ+ ) ~ 815. All the other moments of

time, -r~± ), can be estimated in the same way. The estimates obtained fit well the
numerical data (see Fig. 4.9). The interference fringes on the upQer trajector)' at
-r ~ 1000 and P ~ 500 and on the lower one at -r ~ 900 and P ~ 800 reflect the
fine-scale sQlitting of the corresponding~packets.

Let us now compute tlie prooaoility map fOflI1-e-a-'to-m-p-r-e-p-ar-e<riiliiiallyil11he
ground state 112which has the fOlloWIng form in the adiabatic state basIS:

III = cos e1+ IL1 - sinel - IL1 • (4.30)

440...---------------------,

p

540

640

740.j - - -.,· '--- ¥7- - - ----,il--- -\,- - il--¥7-/1

600 800-r~

Fig. 4.9 Proliferation of atomic wave packets at the nodes of the standing wave at the detuning
L1 = 0.05 . The atom is prepared initiall)' in the dressed state 1+ ).Other conditions are the same as
in Fig. 4.8J
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Iffollowsf~~2l)fI1iif(4-:-3())is almost a 51f%=500/0 superposiTion of the 1 + )L1

and 1 - ) i\ states. All the other conditions are assumed to be the same as before .
Tne atomic wave pacKet splits from tne oe~g into two components witn tne

I+ )-one sliding down the curve Ei +) (the lower trajectory in Fig. 4.10) and the

1- )-one climbing over the potential Ei-)(the upper trajectory) . Each of the com­
ponents splits at tne first node wltn a small tIme difference between tne events. Tne
suosequent j)roliferuiionofllie wave pacKets occurs fOfllie upper ana-lower parts
ofthe j)robability density independently on each other in accordance with the same
scenario as described above. In difference from the preceding case, the atom, pre­
parea initially in tne grouna state, acquirea tlie values of tlie momentum tnat are
larger tnen theiilifial momentum Po - 800:

Tlie nonaaiaoatic transitions are accompaniea-bydrastic cnanges il11heinternal
state of the atom which is characterized by the values of the sYJ!Ilhased comj)onent
of the electric dipole moment u and the PQj)ulation inversion z. In Fig. 4.11 we
demonstrate their behavior for the atom prepared initially in the state 1+ ). Both
tlie variaoles cnange tneir values aoruptly in tlie time intervals witli tne centers at
r ~ 215;-040 ana-815~i . C., wncn tnc ccntroiasoftlic atomic wave pacKctscross the
first two nodesJ

400.--------------------,

200016001200800400
1200+

0
- - - -r-- - --r- - - -r-- - --r- - ---i

Fig. 4.10 The same as In FIg. 4.9 but for the atom prepared InitIally In the ground state.
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4.5.1.3 Adiabatic motion at large detunings

S:v.-Prants

For comparisonwiththeresulfsof1fie preceClingsectiOil,\VedemonstrateinFig.4~r2
the evolution of the momentum distribution function W(p , 'r) with the ground ini-
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mg:-4~J2 Adiabatic evolution of the momentum probability-function WIPmor a ballistic atom
at the large detuning L1 = 2.
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tial state at .1 = 2 and the other same conditions as in the preceding section. The
detuning .1 = 2 is large as comI'a red to the characteristic freguenc)' .10 c:::' 0.09 that
is estimated from (4.24) at Po = 800. It follows from (4.20) and (4.21) that at .1 = 2
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theiilltfiifstiteTI ) is a superposition of approximately 7(J%()f the state I+ ).11 and
'" 30% of the state I- )i\ ' So the main part of the initial packet begins to move in the

potential El+ ) increasing the momentum upon approaching the node at x = 7T: / 2, and

the other part moves in Ei-)decreasing the momentum in the same space interval
(see FIg. 4.12). Upon croSSIng the nodes, the probabIlIty of transition between the
states I± ).11 is small if 1.11 » .10, and each of the component will continue to move
in its own potential. The process is rej)eated and we see the j)eriodic variations of
the mean momentum of each of the components. The same picture is observed if
we take the state 1+ ) = (II ) + 12)) / J2 as the initial one. At .1 = 2, the state 1+ )
is a mix of 70% of 1- ).11 and 30% of I+ )L1' so the main part of the initial I+J
wave packet will move in the potential Ei-).The evolution of the internal atomic
varial5lesz ana u is snown inFig. 4.13. There are no jumps of z ana u when tne atom
crosses nodes . Instead of that, we see fast oscillations of those variables when the
atom crosses the first antinodes .

Thus , at 1.11 » .10, there are no nonadiabatic transitions due to the corresponding
small prooal5ility ana~herefore, no proliferation of wave pacKets at the noaes . The
evolution ofihe atomic wave pacKet is aaial5atic.

Anintriguing effect of simultaneous trapping of an atom in a welloftheopiical po­
tential ana-iISballiSIicflighTIhroughtne opticarIattice is ol5servea at comparatively
small values of the detuning. Let us prepare an atom in the ground state II) with
such a mean initial value of the momentum Po that its 1- )-component would not

be able to overcome the barrier of the potential Ei-)but its I+ )-component would

have a sufficient kinetic energy to overcome the barrier of the El+ ) potential. Now

one could expect periodic oscillations in the first well of the potential El - ) and a si­

multaneous ballistic flight in the Ei+ ) potential with a proliferation of wave packets
of the I+ )-component at the nodes of the standing wave.

Bgure 4.14 demonstrates this effect at Ro = 300, .1 = - 0.05 and the same other
conditions as before . We see that the momentum of the 1- )-component (the upper
trajectory in this figure) oscillates in the range (300, -300), and this component is
trapped in the first well (-7T: 72 < x < 7T: 72). Whereas the I+ )-component moves in
tne positive airection splitting at eacn noae . Estimates of the perioaof oscillations
of the 1- )-component, T c:::' 2240 , with the help of (4.23) and of the time when the

centroid of the I+ )-component crosses the first node, -r}+ ) c:::' 380 (formula (4.29)),
fit welItne aata inFig.-4~14~
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Fig.4.14 Effect of simultaneous trapping of an atom in a well of the optical potential and its flight
tIlrougti tIle wave. TIle grouno initial state, L1 = - 0.05, I~o = 300.

2I-:-6-Quantum-classiCiiI correspon(lence andmaiiifesIafiOiiSOf
(Iynamical cliaos in wave-pacl{et atomic motion

Dyna micalcliaos inclassical systems iscnaracterizea-oy exponentiaIlyfast aiver­
gence orinitiaIlyclose trajectoriesinaoounaeapnase space. Suchabenaviillis
possioleoecause onne continuity onne classicalpliase space wnose points (tnere­
fore, classical s)'stem's states) can be arbitrar)' close to each other. The trajector)'
conceQtis absent in guantum mechanics whose Qhase space is not continuous due
to the Heisenberg uncertaint)' relation. The evolution of an isolated quantum s)'s­
temiSUilitary, ana tnere can oe no cnaos in tne sense of exponential sensitivity of
its states to smaIl variations iiliiliti:.il conoitions . Wnat is usuaIly unaerstana unoer
"-quantum chaos" is special features of the unitar)' evolution of a quantum s)'stem
in the range of its Qarameter values and initial conditions at which its classical ana­
!Qgue is chaoticj

Tne questiOil Hwfillfliappens to classiCiilmotion iiltne quantum worlowis a core
anne proolem of quantum-classical corresponoence. In spite of years of -discus­
sions from tne oeginning onne quantum era, iris stiII unclear now classicarfeatures
llppear from the underl)'ing_quantum eguations. It is especiall)' difficult to sQecif)'
what happens to classical d)'namical chaos in the guantum world (Berman and Za­
slavskY;-1978;Casati et al:-;-1979;Zaslavsky;-r98-1;Gutzwiller;-1990;Reiclil~1992;

Haak~r991;SfOck~r999f.Theinterest to theproolem of"quantum cnaoswis
motivatea-oy our oesire to unaerstana1lie quantum origin onne ooserveoclassical
chaosJ
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Inlllissecfion we estaolisn a corresponilenceoetween tne quantizeomot:iOilOf
il2-level atom in a staniling laser wave anil its semiclassical analogue consiilereil
in the third section . Semiclassical eguations (4.5) represent a nonlinear dynamical
system with positrve values ot the maxImal Lyapunov exponent In a wide range ot
ihe-iniiial conilitions ana control parameters (Or ana--:1-:-In otner woras, trajectories
in the 5-dimensional phase space are exponentially sensitive to small variations in
iiiiiialCOildiiiOilSaild/or parameters in tnose ranges. Tnat local ilynamicalinstabil­
ity is a reason for chaotic Rabi oscillations and chaotic motion of the atomic center
of mass aiscusseil in tne tnira section. In particular, it nas ]jeen founil tnat an atom
isa]jle to walkchaoiiCi.illYin a strictly periodic opticarJattice wiinout any noise or
Oiner ranilom processes (see Fig:-4~2r.-Tne cnaoticbenavior is causeil-]jy jumps of
the electric-diIlOle moment u at the nodes of the standing wave (Fig . 4.3). It follows
from Eqs . (4.5) that this quantity governs the atomic momentum . A stochastic mal'
for tne quantity u (4:-nJalloweil to aerive analytic expressions for prooaoility aen­
siiYfunctions onne atomiC1fi.ijJpingaild-f1ignt events tnat nave oeen snown to fii
well numericalsimulation (Argonov anil-Prants, 2007).

It has been shown that sudden changes in the behavior of u take place when
we quantized the atomic motion (see Fig . 4.11) under the condition .1 c:::' .10. Those
changes are more smooth than the jumQs of u in the semiclassical case because a de­
localizeil wave pacKet crosses a noile for a finite time interval. Tne quantum analysis
proviaes a clear reason for those jumps at Ll c:::' Llo, namely,-itis nonaaiaoatic tran­
sitions between the quasienergy states I+)L1 and I- )i\ which occur when an atom
crosses any node of the standing wave . Those jumps are accomQanied by~litting of
wave Qackets at the nodes. We may conclude that the Qroliferation of wave Qackets
at tne noiles of tne staniling wave is a manifestation of classical cnaotic transport
of an atom in an opticarJattice tnat nas ]jeen shOWilinRef8.TArgonov anil-Prants,
2003~200O;-2007) to taKe place in exactlYine same ranges ofiniiial conaiiions ana
control Qarameters. In particular, the effect of simultaneous trapQit1g of an atom in
a well of the optical Qotential and its flight in the same Qotential (Fig . 4.14) is a
quantum analogue of a cnaotic walKing of an atom snown inFig.-4:-2~

liiconcliiSion we woulilliketOiliSCiiSSbriefly theroleofClissipation. Wediil not
takeinto account any losses in our treatment. Conerent evolution onne atomic state
in a near-resonant standing-wave laser field is interrupted bY~Qontaneousemission
events at random moments of times. The semiclassical Hamiltonian evolution be­
tween these events has been shown to be regular or chaotic deQending on the values
of tne aetuning L1 ana tne initial momentum PO. We stress tnat aynamiCi.ilchaos
may nappen wiinout any noise anil any moiluEiion onhelattice parameters. Itis
~ecific kind of dynamical instabilit)' in the fundamental interaction between the
matter and radiation.

Dissipative transport of spontaneousl)' emitting atoms in a ID standing-wave
laser fielil nas ]jeen stuilieil in iletail in ReCTA:rgonov anil Prants, 2008Tii11he
regimes wnere tne unilerlying semiclassical-Hamiltonian ilynaillicsis regular anil
cnaotiC:-A-Nlonte Carlo stocnastic wavefunction metnoa was applied to simulate
semiclassically the atomic d)'namics with coupled internal and translational degrees
of freedom . It has been shown in numerical experiments and confirmed anal)'ticall)'
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ihafCfiaOtieatOiTiic transport can takel:fiefOiTileilherofoalliSiiCillOiionor a ranoOTil
walKing witn specific statistical properties. Tlie cnaracter of spatial ana momentum
oiffusion in tne 6allistic atomic transport was snown to cnang~tl)' in tne atom­
laser detunIng regime wnere tne HamiltonIan dynam tcs IS Irregular In tne sense of
dynamical cnaos. A clear correlation between tne benavlOrof tne momentum ddtu­
siOilCOefficienrancI-RamiliOilianchaosj)fOba6i lit)' FiaSbeenfOUild:

Wliat one could expect if spontaneous emission woulobetikeilinto consioera=
tion with our full)' guantum eguations of motion ? An)' act of spontaneous emission
interrupt s a colierent evolution of an atom at a ranoom time moment ana is accom­
paniea-6y a momentum recoil ana a suooen transiiion onne atom intOlne ground
state wnich-is a superposiiion ofthedresseo states. Tlie colierent evolution starts
llgain after that. A collapse of the atomic wave function and a splitting of atomic
wave packets are expected just after an)' spontaneous emission event. That addi­
tional splitting of wave pacKets at ranoom time moments, oesioes of tneir prolifera­
iionat1ne nooes of a standing wave at Ll ~ Llo, can improve tne quantum-classical
corresponoence inlne regime ofHamiltonian cnaos .
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