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Abstract. Metagenomics is the study of microbial communities sam-
pled directly from their natural environment, without prior culturing.
Among the computational tools recently developed for metagenomic se-
quence analysis, binning tools attempt to classify all (or most) of the
sequences in a metagenomic dataset into different bins (i.e., species),
based on various DNA composition patterns (e.g., the tetramer frequen-
cies) of various genomes. Composition-based binning methods, however,
cannot be used to classify very short fragments, because of the substan-
tial variation of DNA composition patterns within a single genome. We
developed a novel approach (AbundanceBin) for metagenomics binning
by utilizing the different abundances of species living in the same environ-
ment. AbundanceBin is an application of the Lander-Waterman model to
metagenomics, which is based on the l-tuple content of the reads. Abun-
danceBin achieved accurate, unsupervised, clustering of metagenomic se-
quences into different bins, such that the reads classified in a bin belong
to species of identical or very similar abundances in the sample. In ad-
dition, AbundanceBin gave accurate estimations of species abundances,
as well as their genome sizes—two important parameters for characteriz-
ing a microbial community. We also show that AbundanceBin performed
well when the sequence lengths are very short (e.g. 75 bp) or have se-
quencing errors.

Keywords: Binning, metagenomics, EM algorithm, Poisson distribution.

1 Introduction

Metagenomic studies have resulted in vast amounts of sequence, sampled from
a variety of environments, leading to new discoveries and insights into the un-
cultured microbial world [1], such as the diversity of microbes in different
environments [2,3], microbial (and microbe-host) interactions [4,5], and the en-
vironmental and evolutionary processes that shape these communities [6]. Cur-
rent metagenomic projects are facilitated by the rapid advancement of DNA
sequencing techniques. Recently developed next-generation sequencing (NGS)
technologies [7] (such as Roche/454 [8] and Illumina/Solexa [9]) provide lower
cost sequence, without the cloning step inherent in conventional capillary-based
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methods. These NGS technologies have increased the amount of sequence data
obtained in a single run by several orders of magnitude.

One of the primary goals of metagenomic projects is to characterize the organ-
isms present in an environmental sample and identify the metabolic roles each
organism plays. Many computational tools have been developed to infer species
information from raw short reads directly, without the need for assembly—
assembly of metagenomic sequences into genomes is extremely difficult, since
the reads are often very short and are sampled from multiple genomes. We cat-
egorize the various computational tools for the estimation of taxonomic content
into two basic classes, and will review them briefly below.

The first class of computational tools maps metagenomic sequences to taxa
with or without using phylogeny (often referred to as the phylotyping of metage-
nomic sequences), utilizing similarity searches of the metagenomic sequences
against a database of known genes/proteins. MEGAN [10] is a representative
similarity-based phylotyping tool, which applies a simple lowest common an-
cestor algorithm to assign reads to taxa, based on BLAST results. Phyloge-
netic analysis of marker genes, including 16S rRNA genes [11], DNA polymerase
genes [12], and the 31 marker genes defined by [13], are also applied to deter-
mining taxonomic distribution. MLTreeMap [14] and AMPHORA [15] are two
phylogeny-based phylotyping tools that have been developed, using phylogenetic
analysis of marker genes for taxonomic distribution estimation: MLTreeMap uses
TreePuzzle [16], and AMPHORA uses PHYML [17]. CARMA [18] searches for
conserved Pfam domains and protein families [19] in raw metagenomic sequences
and classifies them into a higher-order taxonomy, based on the reconstruction of
a phylogenetic tree for each matching Pfam family. These similarity-based and
phylogeny-based phylotyping tools have a common limitation: they do not say
much about the taxonomic distribution of the reads that do not match known
genes/proteins, which may constitute the majority of the metagenomic sequences
for some samples. A more recent approach PhymmBL [20] combines similarity
search and DNA composition patterns to map metagenomic sequences to taxa,
achieving an improved phylogenetic classification for short reads.

A second class of computational tools attempts to solve a related but distinct
problem, the binning problem, which is to cluster metagenomic sequences into
different bins (species). Most existing computational tools for binning utilize
DNA composition. The basis of these approaches is that genome G+C content,
dinucleotide frequencies, and synonymous codon usage vary among organisms,
and are generally characteristic of evolutionary lineages [21]. Tools in this cate-
gory include TETRA [22], MetaClust [23], CompostBin [24], TACOA [25], and
a genomic barcode based method [26]. All the existing DNA composition based
methods achieve a reasonable performance only for long reads—at least 800 bp.
TACOA is able to classify genomic fragments of length 800 and 1000 bp into
the phylogenetic rank of class with high accuracy (accurate classification at the
order and genus level requires fragments of ≥ 3 kb) [25]; CompostBin was tested
on simulated datasets of 1 kb reads [24]. This length limitation (∼1 kb) will
be difficult (if not impossible) to break, because of the local variation of DNA
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composition [21]. Foerstner et al. reported that the GC content of complex mi-
crobial communities seems to be globally and actively influenced by the envi-
ronment, suggesting that it may be even harder to distinguish fragments from
different species living in the same environment, based on DNA composition [27].

In addition, metagenomic sequences may be sampled from species of very dif-
ferent abundances (for example, the Acid Mine Drainage project [28] found two
dominant species, accompanied by several other rarer species in that environ-
ment), and the difference in abundances may affect the classification results for
DNA-composition based approaches. For example, a weighted PCA was adopted
instead of a standard PCA in CompostBin, to reduce the dimension of compo-
sition space, considering that the within-species variance in the more abundant
species might be overwhelming, compared to between-species variance [24].

Here we report a novel binning tool, AbundanceBin, which can be used to clas-
sify very short sequences sampled from species with different abundance levels
(Fig. 1a). The fundamental assumption of our method is that reads are sampled
from genomes following a Poisson distribution [29]. In the context of metage-
nomics, we model the sequencing reads as a mixture of Poisson distributions.
We propose an Expectation-Maximization (EM) algorithm to find parameters
for the Poisson distributions, which reflect the relative abundance levels of the
source species. We note that a similar method was first described by Li and Wa-
terman, for the purpose of modeling the repeat content in a conventional genome
sequencing project [30], and Sharon et al. proposed a statistical framework for
protein family frequency estimation from metagenomic sequences based on the
Lander-Waterman model [31], given that different protein families are of different
lengths. AbundanceBin assigns reads to bins using the fitted Poisson distribu-
tion. In addition, AbundanceBin gives an estimation of the genome size (or the
concatenated genome size of species of the same or very similar abundances),
and the coverage (which reflects the abundances of species) of each bin, all in an
unsupervised manner. Since AbundanceBin is based on l-tuple content (not the
composition), in principle it can be applied to classify reads that are as short as
l bp. We report below first the algorithm and then tests of AbundanceBin on
several synthetic metagenomic datasets and a real metagenomic dataset.

2 Methods

Randomized shotgun sequencing procedures result in unequal sampling of dif-
ferent genomes, especially when the species abundance levels differ. We seek to
discover the abundance values as well as the genome sizes automatically and
then bin reads accordingly. We assume that the distribution of sequenced reads
follows the Lander-Waterman model [29], which calculates the coverage of each
nucleotide position using a Poisson distribution. We thus view the sequencing
procedure in metagenomic projects as a mixture of m Poisson distributions, m
being the number of species. The goal is to find the mean values λ1 to λm, which
are the abundance levels of the species, of these Poisson distributions.
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(a) (b)

Fig. 1. (a) A schematic illustration of AbundanceBin pipeline, and (b) the recursive
binning approach used to automatically determine the number of bins

2.1 Mixed Poisson Distributions

In random shotgun sequencing of a genome, the probability that a read starting
from a certain position is N/(G − L + 1), where N is the number of reads,
G is the genome size, and L is the length of reads. N/(G − L + 1) ≈ N/G ,
given G � L. Assume x is a read and a l-tuple w belongs to x. The number of
occurrences of w in the set of reads follows a Poisson distribution with parameter
λ = N(L− l + 1)/(G−L +1) ≈ NL/G in a random sampling process with read
length L.

Similarly, for a metagnomic dataset, the number of occurrences of w in the
set of reads also follows a Poisson distribution with parameter λ = N(L − l +
1)/(G − L + 1) ≈ NL/G, but G in this case is the total length of the genomic
sequences contained in the metagenomic dataset. In metagenomic datasets, the
reads are from species with different abundances. If the abundance of a species
i is n, the total number of occurrences of w in the whole set of reads coming
from this species should follow a Poisson distribution with parameter λi = nλ,
due to the additivity of Poisson distribution. Now the problem of finding the
relative abundance levels of different species is transformed to the modeling of
mixed Poisson distributions.

2.2 Binning Algorithm

Given a set of metagenomic sequences, the algorithm starts by counting l-tuples
in all reads (Fig. 1a). Then we use an Expectation-Maximization (EM) algorithm
to approximate the species abundance level and the genome size of each species,
which consists of 4 steps, as follows.

1. Initialize the total number of species S, their genome size li, and abundance
level λi for i = 1, 2, ..., S.
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2. Calculate the probability that the l-tuple wj (j = 1, 2, ..., W ; W is the total
number of possible l-tuples) coming from ith species given its count n(wj)
(see Appendix for details).

P (wj ∈ si|n(wj)) =
li

∑S
m=1 lm(λm

λi
)n(wj)e(λi−λm)

(1)

3. Calculate the new values for each li and λi.

li =
W∑

j=1

P (wj ∈ si|n(wj)) (2)

λi =

∑W
j=1 n(wj)P (wj ∈ si|n(wj))

li
(3)

4. Iterate step 2 and 3 until the parameters converge or the number of runs ex-
ceeds a maximum number of runs. The convergence of parameters is defined
as
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where λ
(t)
i and l

(t)
i represent the abundance level and genome length at

iteration t, respectively. The maximum number of runs is set to 100 (which
is sufficient for the convergence of the EM algorithm for all the cases we have
tested).

Once the EM algorithm converges, we can estimate the probability of a read
assigned to a bin, based on its l-tuples binning results as,

P (rk ∈ si) =

∏
wj∈rk

P (wj ∈ si|n(wj))
∑

si∈S

(∏
wj∈rk

P (wj ∈ si|n(wj))
) (5)

where rk is a given read, wj is the l-tuples that belong to rk, and si is any bin.
A read will be assigned to the bin with the highest probability among all bins.
A read remains unassigned if 90% of its l-tuples are excluded (counts too low or
too high, see section 2.3), or if the highest probability is < 50%.

2.3 Lower- and Upper-Limit for l-Tuple Counts

We set a lower- and upper-limit for l-tuple counts, as additional parameters,
when we approximate λi and li. The lower-limit is introduced to deal with se-
quencing errors, and the upper-limit is introduced to handle l-tuples with ex-
tremely high counts, such as those from vector sequences or repeats of high copy
numbers. Let the lower-limit be Blower and the upper-limit be Bupper . Then the
formula for calculating λi and li is modified to

li =
W∑

j=1

P (wj ∈ si|n(wj)), ∀n(wj) > Blower ∧ n(wj) < Bupper (6)
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λi =

∑W
j=1 n(wj)P (wj ∈ si|n(wj))

li
, ∀n(wj) > Blower ∧ n(wj) < Bupper (7)

2.4 Automatic Determination of the Total Number of Bins by a
Recursive Binning Approach

In the EM algorithm, we need to provide the number of bins as an input, in order
to determine the parameters of the mixed Poisson distributions. However, this
number is often unknown, as for most metagenomic projects. We implemented a
recursive binning approach to determine the total number of bins automatically.
The recursive binning approach works by separating the dataset into two bins
and proceeds by further splitting bins (as shown in Fig. 1b)—it is a top-down
approach. The recursive binning approach was motivated by the observation
that reads from genomes with higher abundances are better classified than those
with lower abundance. The recursive procedure continues if 1) the predicted
abundance values of two bins differ significantly, i.e., |λi−λj |/min(λi, λj) ≥ 1/2;
2) the predicted genome sizes are larger than a certain threshold (currently set
to 400,000, considering that the smallest genomes of living organisms yet found
are about 500,000 bp—Nanoarchaeum equitans has a genome of 490,885 bp, and
Mycoplasma genitalium has a genome of 580,073 bp); and 3) the number of reads
associated with each bin is larger than a certain threshold proportion (3%) of
the total number of reads classified in the parent bin.

2.5 Performance Evaluation

We defined the classification error rate as the number of misclassified reads di-
vided by the total number of reads. Chatterji et al [24] used a normalized error
rate—the arithmetic average of the classification error rates for all the bins—to
evaluate their binning approach CompostBin. We consider that the standard
error rate, instead of normalized error rate, serves better for the performance
evaluation of AbundanceBin, since AbundanceBin takes advantage of different
species abundances. For comparison, we also provide the normalized classifica-
tion error rates.

2.6 Metagenomic Datasets

We used MetaSim [32] to generate synthetic metagenomic datasets with reads
sampled from species of various abundances. MetaSim takes as input a set of
known genome sequences and an abundance profile, which determines the rel-
ative abundance of each genome sequence in a simulated dataset. The “Exact”
profile defined by MetaSim is used to generate reads without sequencing errors,
and “454” profile for reads generated with a 454 error model. The number of
reads as well as the mean and variance of read lengths are adjusted accordingly:
for average 400 bp, the mean value is set to 400 and the variance is set to 50;
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and for 75 bp, mean and variance are set to 75 and 5. All other settings are kept
as default. The genomes we used for generating synthetic metagenomic datasets,
and the AMD metagenomic sequences and its scaffolds were downloaded from
NCBI.

3 Results

We tested AbundanceBin on various synthetic metagenomic datasets with short
and very short sequence lengths (75–400 bp), and the results show that Abun-
danceBin gives accurate classification of reads to different bins, and accurate es-
timation of the abundances—as well as the genome sizes—in each bin. We note
that since these parameters are usually unknown in real metagenomic datasets,
we focused on synthetic datasets for benchmarking. We also applied Abundance-
Bin to the actual AMD dataset and revealed a relatively clear picture of the
complexity of the microbial community in that environment, consistent with the
analysis reported in [28].

3.1 Tests of Abundance Differences and the Length of l-Tuples

We did a series of experiments to test the abundance ranges of species re-
quired for accurate binning of reads. Fig. 2a shows the binning results for simu-
lated short reads sampled from two genomes (Mycoplasma genitalium G37 and
Buchnera aphidicola str. BP) at abundance ratios, 4:1, 3:1, 2.5:1, 2:1, 1.5:1,
and 1:1 (with 50,000 simulated reads of ∼400 bases for each setting). The clas-
sification error rate is low if the abundance ratio is 2.0 (0.1% and 4.7% for
ratio 4:1 and 2:1, respectively), but rises dramatically when the abundance ratio
drops to 1.5:1 (the error rate is 20.6% for abundance ratio 1.5:1). We conclude
that the abundance ratio needs to reach at least 2:1 for a good classification by
AbundanceBin.

We also tested different lengths of l-tuples, and the results show that when
l drops to 16, the binning performance dropped significantly for cases with two
genomes. The performance improved slightly when l increases to 20 for cases
with more than 3 genomes. Considering the performance on the tested cases, we
chose to use l = 20 for the following experiments.

3.2 AbundanceBin Achieves Accurate Binning, Estimation of
Species Abundance, and Genome Size

The binning results on several simulated datasets of short reads are summarized
in Table 1. AbundanceBin achieved both accurate estimation of species abun-
dances, and accurate assignment of reads to bins of different abundances. The
classification error rates are 0.10% and 0.64% for the classification of reads of
length 400 bp and 75 bp, respectively, sampled from two genomes (cases A and
C in Table 1). The error rates for the classification of reads sampled from more
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Fig. 2. (a) The classification error rates for classifying reads sampled from two genomes
versus their abundance differences, and (b) the recursive binning of a read dataset into
6 bins of different abundances (each box represents a bin with the numbers indicating
the abundance of the reads classified to that bin; e.g., the bin on the top has all the
reads, which will be divided into two bins, one with reads of abundances 1.5, 4, 8 and
64, and the other bin with reads of abundances 32 and 64)

genomes are slightly higher than for two-genome scenarios (e.g., the classifica-
tion error rates for two synthetic metagenomic datasets with reads of length 400
bp and 75 bp, sampled from 3 genomes, are 3.10% and 6.18%, respectively, as
shown in Table 1). For the classification of reads sampled from more than two
genomes, most of the errors occur in the least abundant bin. But AbundanceBin
was still able to classify the reads from species of higher abundance correctly for
all the tested synthetic metagenomic datasets, including one with reads sampled
from 6 different genomes (see Table 2).

We emphasize here that AbundanceBin can bin reads as short as 75 bases
with reasonable classification error rates, as shown in Table 1. As we discussed
in the Introduction, binning of very short reads, such as 75 bases, is extremely
difficult and cannot be achieved by any of the existing composition based binning
approaches, due to the substantial variation in DNA composition within a single
genome. AbundanceBin will also give an estimation of the genome size for each
bin. As shown in Table 1, for most of the tested cases, the estimated genome
sizes are very close to the real ones. We note that AbundanceBin will classify
reads from different species of similar abundances into a single bin. In this case,
the predicted genome size for that bin is actually the sum of the genome sizes
of the species classified into that bin.

AbundanceBin also worked well on binning closely related species (closely
related species often have similar genomes, and therefore it is often very diffi-
cult to separate reads sampled from closely related species). For the synthetic
metagenomic datasets we tested, most reads from species that differ at only the
species level can still be classified into correct bins with very low error rates. For
examples, for two datasets, AbundanceBin resulted in binning with error rates
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of 0.96% and 0.68% for the dataset simulated from the genomes of Corynebac-
terium efficiens YS-314 and Corynebacterium glutamicum ATCC 13032, and
the dataset simulated from the genomes of Helicobacter hepaticus ATCC 51449
and Helicobacter pylori 26695 (both sets of genomes only differ at the species
level), respectively. These results demonstrate the ability of our algorithm to sep-
arate short reads from closely related species, even if the species are of the same
genus. (Note that AbundanceBin cannot separate reads from different strains of
the same species into different bins.)

3.3 AbundanceBin Can Handle Sequencing Errors

As mentioned in Methods, AbundanceBin can be configured to ignore l-tuples
that only appear once to deal with sequencing errors, considering that those
l-tuples are likely to be contributed by reads with sequencing errors and that
the chance of having reads with sequencing errors at the same position will be
extremely low. This may exclude some genuine l-tuples, but our tests reveal that
AbundanceBin achieved even better classification if all l-tuples of count 1 are
discarded (data not shown). AbundanceBin achieved slightly worse classification
of reads when reads contain sequencing errors, as compared to the classification
of simulated reads without sequencing errors (see cases E and F in Table 1).
This is expected, given that many spurious l-tuples are generated with a 454
sequencing error model. For example, 12,901,691 20-tuples can be found in a
dataset of simulated reads from two genomes with sequencing errors (case E in
Table 1), 5 times more than the case without error models (2,370,720).

3.4 AbundanceBin Doesn’t Require Prior Knowledge of the Total
Number of Bins

Table 2 compares the performance of AbundanceBin using the recursive binning
approach on several synthetic metagenomic datasets to that of AbundanceBin
given the total number of bins. Overall the performances of the recursive binning
approach are comparable to the cases with predefined bin numbers. Fig. 2b
depicts the recursive binning results of the classification of one of the synthetic
metagenomic datasets (which has reads sampled from 6 genomes) into 6 bins of
different abundances (with classification error rate = 3.73%), starting with a bin
that includes all the reads and ending with 6 bins each having reads correctly
assigned to them. It is interesting that the recursive binning approach achieved
even better performance for some cases. A simple explanation to this is that the
recursive binning strategy may create bigger abundance differences, especially
at the beginning of the binning process, and AbundanceBin works better at
separating reads from species with greater abundance differences (see Fig. 2a).
We note again that the high abundant bins are classified relatively well. The
majority of errors occur in low abundant bins.
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Table 1. Tests of AbundanceBin on synthetic metagenomic datasets (A-D without
sequencing errors, and E-F with sequencing errors a)

ID Spe b Len c Total reads Bin
Abundance Genome size

Error rate(%)
Real Predicted Real Predicted

A 2 400 bp 50,000
1 27.23 26.27 580,076 570,859

0.10 (0.20 d)
2 6.83 6.49 615,980 614,605

B 3 400 bp 50,000
1 24.64 23.78 580,076 568,549

3.10 (6.64)2 6.13 6.02 615,980 517,110
3 1.8 2.39 1,072,950 941,425

C 2 75 bp 200,000
1 20.47 15.66 580,076 562,584

0.64 (1.07)
2 5.08 3.92 615,980 608,401

D 3 75 bp 200,000
1 27.6 20.93 580,076 565,859

6.18 (11.74)2 6.93 5.99 615,980 368,836
3 2.07 2.43 1,072,950 1,100,309

E 2 297 bp 50,000
1 20.21 11.63 580,076 521,168

1.12 (0.99)
2 5.07 3.01 615,980 945,435

F 3 297 bp 150,000
1 55.48 30.58 580,076 559,395

8.20 (11.41)2 13.98 9.6 615,980 341,290
3 3.50 2.72 1,072,950 3,064,199

a: The average sequencing error rate introduced is 3%, higher than the error rate of
recent 454 machines (e.g., the accuracy rate reported in [33] is 99.5%). A 3% sequenc-
ing error can reduce the l-tuple counts by about half (i.e., about 1 − 0.9720 = 0.46
of expected 20-mers without sequencing errors), which makes accurate estimation of
abundance and genome size difficult. b: The number of species used in simulating each
metagenomic dataset. The genomes used in these tests are Mycoplasma genitalium
G37, Buchnera aphidicola str. BP, and Chlamydia muridarum Nigg. The first two
genomes are used for the 2 species cases. c: The average length of the simulated reads.
d: Normalized error rates (see Methods for details).

Table 2. Comparison of binning performance using the recursive binning approach
(“Recursive”) versus the binning when the total number of bins is given (“Predefined”))

Test cases
Error rate (normalized error rate)

Predefined Recursive

3 genomes (no error model; 400 bp) 3.10% (6.64%) 3.24% (7.47%)
3 genomes (no error model; 75 bp) 6.18% (11.74%) 4.84% (9.31%)
3 genomes (454 error model; 297 bp) 8.21% (11.41%) 2.29% (4.21%)
4 genomes (no error model; 400bp) 1.12% (5.16%) 2.96% (6.96%)
6 genomes (no error model; 400bp) 2.50% (9.23%) 3.73% (13.07%)

3.5 Binning of Acid Mine Drainage (AMD) Datasets

The AMD microbial community was reported to consist of two species of high
abundance and three other less abundant species [28]. With the difference of two
abundance levels in this environment, we expect that the algorithm could classify
the AMD dataset into two bins. We applied AbundanceBin to a simulated AMD



A Novel Abundance-Based Algorithm for Binning Metagenomic Sequences 545

dataset (so that we have correct answers for comparison) and the real AMD
dataset from [28].

The synthetic AMD dataset contains 150,000 reads from five genomes, with
abundances 4:4:1:1:1. Our recursive binning approach automatically classified
the reads into two bins with an error rate of 1.03% (see Fig. 3a). (Note here
that each bin has reads sampled from multiple species. We consider that a read
is classified correctly if it is classified into the bin of the correct abundance.)
The binning accuracy dropped only slightly (with an error rate of 2.25%) for the
synthetic AMD dataset when sequencing errors were introduced.

We also applied AbundanceBin to reads from the actual AMD dataset (down-
loaded from NCBI trace archive; 13696 environmental sequence.007).Abundance-
Bin successfully classified these reads into exactly two bins (one of high abundance
and one of low abundance) using the recursive binning approach (see Fig. 3b). Note
the reads in this dataset have vector sequences, which resulted in a very small num-
ber of l-tuples of extremely high abundance (the highest count is 50,720)—this
phenomena has been utilized for vector sequence removal, as described in [34]).
Two approaches were employed to avoid the influences of the vector sequences:
1) we used the Figaro software package[34] to trim the vector sequences, and 2)
we set an upper-limit for the count of all l-tuples, ignoring l-tuples with counts
larger than the upper-limit (200 by default). We also downloaded the sequences
of 5 scaffolds of the 5 partial genomes assembled from the AMD dataset, so that
we can estimate the classification accuracy of AbundanceBin. The classification
error rate of the AMD sequences is ∼14.38%. Note this error rate only gives us a
rough estimation of the classification accuracy, since only 58% of the AMD reads
can be mapped back to the assembled scaffolds based on similarity searches by
BLAST—we mapped a read to a scaffold if the read matches the scaffold with
BLAST E-value ≤ 1e-50, sequence similarity ≥ 95%, and a matched length of ≥
70% of the read length. We emphasize that AbundanceBin achieved a much better
classification (with an error rate of 1.03%) for the simulated AMD reads, for which
we have correct answers to compare with.

4 Discussion

We have shown that our abundance based algorithm for binning has the ability
to classify short reads from species with different abundances. Our approach has
two unique features. First, our method is “unsupervised” (i.e., it doesn’t require
any prior knowledge for the binning). Second, our method is especially suitable
for short reads, as long as the length of reads exceeds the length of the l-tuple
(currently 20). AbundanceBin can in principle be applied to any metatagenomic
sequences acquired by current NGS, without human interpretation.

We implemented a simple strategy—excluding l-tuples that are counted only
once from the abundance estimation—to handle sequencing errors, and tests
have showed that AbundanceBin achieved better classification if all l-tuples of
single count are discarded. One potential problem of discarding l-tuples of low
counts is that some genuine l-tuples will be discarded as well, which results
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Fig. 3. The binning results for a simulated (a), and the actual (b) AMD datasets. The
histogram shows the total number of reads from different genomes classified to each
bin.

in a lower abundance estimation and a worse prediction of genome sizes, espe-
cially for the species with low abundance, as shown in Table 1. But we argue
that AbundanceBin can still capture the relative abundances of different bins
correctly, which is more important than the absolute values. Another potential
problem is that reads from low abundant genomes may not be classified when
sequencing errors are introduced in the reads. For example, the number of un-
classified reads in a two-genome case (metagenomic dataset E in Table 1) is 12,
and 389 in a three-genome case (metagenomic dataset F in Table 1). All un-
classified reads in both cases belong to the least abundant species, indicating
that the abundance values greatly affect the predicted results, especially when
sequencing errors are present. We expect that both problems will become less
problematic as sequencing coverage is increased, which is possible with massive
throughput NGS techniques. As for the abundance ratio required for successful
classification, we find that the ratio should be at least 2:1 to obtain an accept-
able result. The required ratio, of course, is also affected by several other factors,
such as the actual abundance level, the average length of reads, and the sequenc-
ing error rate. Our tests intentionally use well-classified datasets to allow us to
follow changes in classification error resulting from abundance differences, but
other factors besides the abundance ratio must also be considered.

AbundanceBin runs fast, and all the tests shown in the paper were completed
within an hour (using single CPU on Intel(R) Xeon(R)@2.00GHz) with very
moderate memory usage. For example, binning of the synthetic metagenomic
dataset A (see Table 1) requires 100MB memory, and dataset B 150MB. How-
ever, AbundanceBin may require large memory when working with very large
datasets of short reads.

We expect that AbundanceBin will have three important applications. First
it can be used for binning metagenomic sequences, as well as estimating species
abundances and genome sizes. Second, it can be combined with other binning
approaches. Note that AbundanceBin is not designed to separate reads from
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species of very similar abundances; we will develop an integrated method that
combines AbundanceBin and other binning methods that use, for example, DNA
composition. We expect that such an integrated method will achieve better clas-
sification performance by incorporating orthogonal information (abundance and
composition, for example). Finally, we expect that applying AbundanceBin to
separate reads into bins of different abundances (coverages), prior to the assem-
bly of metagenomic sequences, will improve the quality of genome assembly.
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Appendix

Equation (1) is used to calculate the probability that l -tuple wj (j=1,2,...,W ;
W is the total number of possible l -tuples) coming from the ith species given
its count n(wj). It is computed by applying Bayes’ rule as follows.

Pr (wj ∈ si | n(wj)) =
Pr (n(wj) | wj ∈ si) Pr (wj ∈ si)

Pr (n(wj))
(8)

=
Pr (n(wj) | wj ∈ si) Pr (wj ∈ si)

∑S
m=1 Pr (n(wj) ∈ sm | wj ∈ sm) Pr (wj ∈ sm)

(9)

=
Pr (n(wj) | wj ∈ si) · li

G
∑S

m=1 Pr (n(wj) ∈ sm | wj ∈ sm) · lm
G

(10)

=
λ

n(wj )
i e−λi

n(wj)!
· li

∑S
m=1

(
λ

n(wj )
m e−λm ·

n(wj)!
lm

) (11)

=
li

∑S
m=1

((
λm

λi

)n(wj) · eλi−λm · lm
) (12)

where Pr (wj ∈ si) = li
G is the prior probability that word j is from species i,

and G is the total length of genomic sequences contained in the metagenomic
dataset. Equation (12) is the result of applying the probability mass function of
Poisson distribution into the probability function of equation (10).
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