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Preface

This volume contains the papers presented at RECOMB 2010: the 14th Annual
International Conference on Research in Computational Molecular Biology held
in Lisbon, Portugal, during April 25–28, 2010. The RECOMB conference series
was started in 1997 by Sorin Istrail, Pavel Pevzner, and Michael Waterman.
RECOMB 2010 was hosted by INESC-ID and Instituto Superior Tecnico, orga-
nized by a committee chaired by Arlindo Oliveira and took place at the Inter-
national Fair of Lisbon Meeting Centre.

This year, 36 papers were accepted for presentation out of 176 submissions.
The papers presented were selected by the Program Committee (PC) assisted
by a number of external reviewers. Each paper was reviewed by three members
of the PC, or by external reviewers, and there was an extensive Web-based
discussion over a period of two weeks, leading to the final decisions. RECOMB
2010 also introduced a Highlights Track, in which six additional presentations
by senior authors were chosen from papers published in 2009. The RECOMB
conference series is closely associated with the Journal of Computational Biology,
which traditionally publishes special issues devoted to presenting full versions of
selected conference papers.

RECOMB 2010 invited several distinguished speakers as keynotes and for
special sessions on Genomics in Medicine and Regulatory RNAs. Invited speak-
ers included Cecilia Arraiano (Instituto de Tecnologia Qúımica e Biológica Uni-
versidade Nova de Lisboa), Chris Bakal (Institute of Cancer Research), David
Bartel (MIT, Whitehead Institute and Howard Hughes Medical Institute), Jan
Gorodkin (University of Copenhagen), Simon Kasif (Boston University), Isaac
Kohane (Harvard Medical School), Doron Lancet (Weizmann Institute), Klaus
Lindpainter (Roche Genetics), Patrice Milos (Helicos BioSciences Corporation),
Norbert Perrimon (Harvard Medical School and Howard Hughes Medical In-
stitute), Eitan Rubin (Ben Gurion University), and Mona Singh (Princeton
University).

RECOMB 2010 was only possible through the dedication and hard work of
many individuals and organizations. Special thanks go to the PC and external
reviewers for helping to form a high-quality conference program, and the Orga-
nizing Committee, coordinated by Ana Teresa Freitas, for hosting the conference
and providing the administrative, logistic, and financial support. We also thank
our sponsors, including ISCB, FCT and FLAD. Without them the conference
would not have been financially viable. We thank the RECOMB Steering Com-
mittee, chaired by Martin Vingron, for accepting the challenge of organizing
this meeting in Lisbon. Finally, we thank all the authors who contributed pa-
pers and posters, as well as the attendees of the conference for their enthusiastic
participation.

March 2010 Bonnie Berger
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Lúıs Rocha Indiana University, Bloomington, USA
Sara Silva INESC-ID, Portugal
Susana Vinga INESC-ID / IST, Portugal



Organization IX

Previous RECOMB Meetings

Dates Hosting Institution Program Chair Conference
Chair

January 20-23, 1997,
Santa Fe, NM, USA

Sandia National Lab Michael Waterman Sorin Istrail

March 22-25, 1998 New
York, NY, USA

Mt. Sinai School of Medicine Pavel Pevzner Gary Benson

April 22-25, 1999 Lyon,
France

INRIA Sorin Istrail Mireille Regnier

April 8-11, 2000 Tokyo,
Japan

University of Tokyo Ron Shamir Satoru Miyano

April 22-25, 2001 Mon-
treal, Canada
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An Algorithmic Framework for Predicting
Side-Effects of Drugs

Nir Atias and Roded Sharan

Blavatnik School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel
{atiasnir,roded}@post.tau.ac.il

Abstract. One of the critical stages in drug development is the iden-
tification of potential side effects for promising drug leads. Large scale
clinical experiments aimed at discovering such side effects are very costly
and may miss subtle or rare side effects. To date, and to the best of our
knowledge, no computational approach was suggested to systematically
tackle this challenge. In this work we report on a novel approach to
predict the side effects of a given drug. Starting from a query drug, a
combination of canonical correlation analysis and network-based diffu-
sion are applied to predict its side effects.

We evaluate our method by measuring its performance in cross val-
idation using a comprehensive data set of 692 drugs and their known
side effects derived from package inserts. For 34% of the drugs the top
scoring side effect matches a known side effect of the drug. Remarkably,
even on unseen data, our method is able to infer side effects that highly
match existing knowledge. Our method thus represents a promising first
step toward shortcutting the process and reducing the cost of side effect
elucidation.

Keywords: Prediction, Canonical correclation analysis, Network diffu-
sion, Drug targets.

1 Introduction

Systems medicine is an emerging discipline in systems biology that aims at in-
tegrating clinical databases with large scale molecular interaction data to eluci-
date diseases and drugs [1]. Applications of such approaches range from predicting
gene-disease associations and drug-target relations [2] to discoveringnew drugs [1].

Beyond the development of new drug leads, a critical stage in drug devel-
opment is the identification of side effects that result from treatment with the
drug. Drug safety has gained much attention in recent years, and has become
a serious bottleneck in drug development, leading to the reduction in the num-
ber of newly approved drugs despite the enormous research efforts invested in
drug discovery [3]. The elucidation of adverse reactions may occur long after the
approval of a drug, as in the case of rosiglitazone maleate (Avienda R©), and

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 N. Atias and R. Sharan

can even lead to discontinuing the use of the drug, as in the case of rofecoxib
(Vioxx R©) (see also [4]).

The only attempt we are aware of to predict side effects is due to Xie et al. [5].
They used protein-ligand binding predictions to identify off-targets for a given
drug. The latter were used to pinpoint known pathways that are likely to be
affected by the drug and consequently predict its side effects. This approach de-
pends on protein structure information and accurate pathway information, which
greatly limits its applicability. In particular, biological processes involved in side
effect reaction to treatment are still largely unknown and inferring side effects,
even when given the respective drug targets, remains a formidable task [6].

In contrast to the sparse work on side effect prediction, the related area of
elucidating gene-disease and drug-target associations has become very active in
recent years. State of the art methods for predicting gene-disease associations
are based on the observation that genes that cause similar diseases tend to lie
close to one another in a network of protein-protein interactions [7,8]. Given a
query disease, genes causing similar diseases are identified, and a network-based
computation is used to prioritize candidate genes according to their proximity
to this initial set [9,10,11]. Several methods have been suggested for drug-target
prediction. Campillos et al. [2] construct a comprehensive drug-side effect data
set and use it, in conjunction with chemical properties, to define a similarity
metric between drugs. Given a query drug, they identify similar drugs and pro-
pose their targets as candidate targets for the drug. Yildirim et al. [12] examine
a drug-target network in which drugs are connected based on shared targets and
find that drug cluster according to the Anatomical Therapeutic Chemical (ATC)
classification. Despite the insights offered by this network, no prediction scheme
was suggested. A somewhat related work by Yang et al. [13] uses text mining to
highlight genes responsible for serious adverse drug reactions. Finally, Kutalik et
al.[14] integrate gene expression data and drug response data under different cell
lines. They identify co-modules of genes and drugs with similar behavior across
a subset of the cell lines, leading to the prediction of new drug targets.

Here we present a first systematic approach for predicting side effects for
drugs. Our approach combines two algorithms to predict side effects. The first
algorithm is based on canonical correlation analysis which is used to obtain a
low dimensional subspace that jointly contains drug-side effect associations and
molecular data on drugs, such as their chemical structure. Data on new drug
queries are projected onto this subspace and an efficient algorithm is used to
identify corresponding side effect vectors that best correlate with the projected
data. The second algorithm is based on diffusion in a side effect similarity net-
work. Starting from a prior solution that is based on the side effects of drugs
that are similar to the query, a diffusion process is used to obtain final scores
that are smooth over the network.

We evaluate our method by measuring its performance in 20-fold cross vali-
dation using a comprehensive data set of 692 drugs and their known side effects
derived from package inserts. For 34% of the drugs the top scoring side effect
matches a known side effect of the drug; for almost two thirds of the drugs our
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method infers a correct side effect among the five top ranking predictions. In com-
parison, applying the algorithm to randomized instances, “correct” predictions
are obtained for only 10% (top ranking) or 32% (among the five top ranking) of
the drugs. We further validate our method in a blind test on ∼450 drugs that
were not part of the initial data, but for which some side effect information exists
in the literature. Remarkably, even on these unseen data, our method is able to
infer side effects that highly match existing knowledge: for 45% of the drugs, a
correct side effect is included among the five top ranking predictions. Finally, we
show the utility of our method in drug target elucidation. We make predictions
for over 4,000 drugs for which no side effect information is readily available. We
then show a significant correlation between the side effect similarity and target
similarity among these drugs. Not only does this agree with a previous study
that used this correlation to predict drug targets [2], but importantly it suggests
that target prediction algorithms can be applied also in the vast regime of drugs
whose side effects have not been mapped to date.

2 Algorithmic Approach

We present two novel algorithms for predicting side effects, which are then com-
bined to yield the final ranking of side effects for a given drug. The first algorithm
is based on canonical correlation analysis. It requires as input an attribute ma-
trix describing the drugs. In a training phase it learns a linear projection of the
attribute and side effect data onto a joint low-dimensional space such that per
drug, the correlation between the projected vectors of attributes and side effects
is maximized. This projection is then used to infer the side effects of a test drug.
The second algorithm is based on diffusion in a side effect similarity network.
Given a query drug, the algorithm first identifies side effects of similar drugs.
Starting from these side effects, a diffusion process is executed to obtain a final
ranking that is smooth over the side effect network.

In the following we denote the number of drugs by n and the number of side
effects by m. We assume that we are given as input a drug attribute matrix
Rp×n, in which each drug is described by a set of p attributes; a drug-side
effect association matrix Em×n; and an attribute vector q for a query drug. In a
preprocessing step we normalize the rows of E and R to have mean 0.

2.1 Canonical Correlation Analysis

In canonical correlation analysis we aim to uncover and exploit the correlation
between the two data sets that represent the drugs, R and E in our case, by
projecting these data sets into a joint space and using the projection for the
prediction task. We assume that corresponding vectors in each of the data sets
should be highly correlated under some joint representation. Intuitively, our ob-
jective is to find two projection matrices, (WE)m×k and (WR)p×k, that project
E and R onto a common k-dimensional subspace in which the correlations be-
tween projected vectors corresponding to the same drugs are maximized. The
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projection vectors are chosen so that the set of projected vectors under each of
the data sets will be orthonormal.

Formally, the problem is defined as follows:

max
WE ,WR

Tr
(
WT

E ERT WR

)
, subject to

WT
E EET WE = WT

R RRT WR = I
(1)

where Tr (M) is the trace of M . As shown in the Appendix, the resulting opti-
mization problem can be solved by reducing it into an eigenvector problem on
an appropriately defined matrix, and using the k eigenvectors with the largest
eigenvalues to define the projection.

To avoid over-fitting and to account for numerical instabilities we use a reg-
ularized version of CCA [15]. The regularization takes additional regularization
factors ηE and ηR which are used to penalize the norm of the column vectors
of WE and WR. Instead of using two regularization factors we follow Wolf et
al. [16] and use a single additional regularization parameter, η, and the largest
eigenvalues, λE and λR, of EET and RRT , respectively (see Appendix).

Finally, we use the projection matrices to compute a score vector for the query
drug. To this end, the attribute vector q of the query drug is projected onto the
subspace identified by the CCA: qproj = WT

R · q. In accordance with the goal of
CCA, we seek a corresponding side effect vector v whose projection maximizes
the correlation to qproj . Formally, we seek:

max
v

qT
projW

T
E v

|qproj|
∣∣WT

E v
∥∥ (2)

The maximum is achieved when WT
E v = qproj; however, as WT

E projects v into
a smaller subspace, the system of equations is under-determined. To obtain a
unique solution, f , we use the pseudoinverse of WT

E , denoted by
(
WT

E

)†. In
general, a pseudoinverse is computed using singular value decomposition, but
here we can use the specific structure of WE to compute it more efficiently using
matrix multiplication, as detailed in the Appendix.

2.2 Diffusion-Based Prediction

The second algorithm that we use is based on a diffusion process in a side effect
similarity matrix, aiming to score side effects so that: (i) prior information is
taken into account; and (ii) similar side effects receive similar scores. Such an
approach was applied successfully for predicting disease-causing genes [10].

Formally, given a similarity matrix between side effects (S) and a prior infor-
mation vector y, we seek a score vector f which satisfies:

f = αS · f + (1 − α) y (3)

where α ∈ [0, 1] is a parameter reflecting the relative importance of the two
(possibly contradicting) requirements on f .
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We build S based on E, by measuring the Jaccard coefficient between the
sets of drugs associated with each side effect. Formally, let Γ (s) denote the set
of drugs associated with side effect s. Then the similarity between side effects i
and j is given by the Jaccard coefficient of their corresponding drug sets:

S̃i,j =
|Γ (i) ∩ Γ (j)|
|Γ (i) ∪ Γ (j)| . (4)

To account for the different similarity profiles of different side effects, we nor-
malize the similarities by setting Si,j = S̃i,j/

√
Pi · Pj , where Pi =

∑
j S̃i,j .

The computation of the prior vector is based on a similarity function between
drugs. The latter is computed using R and its specific definition depends on the
attribute data at hand, as described in Section 3.1. Let Dq,d denote the similarity
between the query drug q and any other drug d. We apply a nearest neighbor
approach, defining the prior value for side effect s as the highest similarity score
Dq,d between a drug d and the query, across all drugs associated with s: ys =
maxd∈Γ (s) {Dq,d}.

In [17] it is shown that if the eigenvalues of S are in [−1, 1] (which is the case
under our normalization) then f can be computed using an iterative process

f0 = y; f t = αS · f t−1 + (1 − α) y (5)

which efficiently converges to the analytical solution: f = (I − αS)−1 (1 − α) y.

2.3 Merging Score Vectors

Invoking the CCA based prediction and the diffusion based prediction yields
two score vectors. Different strategies for merging these two vectors into a single
ranking can be applied. Merging the two score vectors directly is problematic as
the scores are not necessarily comparable. We follow ideas from Lin et al. [18],
who use a logistic function for the merging. The logistic function is a monotonic
transformation of the score, thus preserving the relative ranking of each algo-
rithm on the one hand, while rescaling the scores to the same range on the other
hand.

Formally, given score vectors s1 and s2, with mean values s̄1 and s̄2, respec-
tively, the combined score vector is given by:

score(s1, s2) =
1
2

(
1

1 + e−(s1−s̄1) +
1

1 + e−b−a(s2−s̄2)

)
(6)

where a and b are two free parameters which adjust between the two scoring
systems.

2.4 Parameter Tuning and Performance Evaluation

The prediction algorithm has several parameters. Two parameters are used by
the CCA algorithm: η – the regularization parameter, and k – the dimension
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of the subspace to which the data are projected. One parameter is used by the
diffusion algorithm: α – the relative weight of the prior term vs. the smoothing
term. Two final parameters, a and b, control the merging of the two score vectors.

We tune the parameters using grid search in a cross validation setting. Specif-
ically, in each iteration of a 20-fold cross validation, 5% of the drugs serve as a
test set and their side effect associations are hidden; 5% additional drugs serve
as an internal test set to tune the parameters; the rest 90% of the drugs are used
for training. First, the parameters of the two algorithms, η, k and α, are learned,
maximizing the performance of each algorithmic variant separately on the in-
ternal test data. Next, the mixing parameters a and b are learned. Finally, the
learned parameters are used to evaluate the performance of the algorithm on the
test data. We note that in each cross validation iteration, the CCA projection
and the side effect similarity network are recomputed.

We measure the quality of the predictions by computing a precision-recall
curve for varying numbers of predictions per drug. Given a desired number of
predictions, k, we consider the union of the top k ranking predictions for all
drugs and compute: (i) precision – the percent of correct predictions; and (ii)
recall – the percent of true side effects that were recovered. To summarize the
curve we compute the area under it, as well as the area under its leftmost section
where the recall is smaller than 0.2. To resolve cases in which several side effects
attain the same score, we adjust the ranks of these side effects to be their average
(unadjusted) rank.

To assess the significance of the results obtained by the algorithm, we applied
it also to randomized instances of the data. The randomization was performed
by permuting the columns of the drug-side effect association matrix E, thus
randomizing the relations between drugs and their side effect vectors, while pre-
serving the distribution of side effects in the data.

3 Results

3.1 Data Retrieval and Similarity Computations

Drugs and their associated side effects were obtained from SIDER [19], an online
database containing drug-side effect associations extracted from package inserts
using text mining methods [2]. This data set spans 880 drugs, 1382 side effects,
and 61,102 drug-side effect associations. Drugs and side effects vary greatly in
their number of associations. Some effects are present in almost all drugs (e.g.,
dizziness, edema and nausea), while others are associated with very few drugs
(e.g. flashbacks, rectal polyp); and similarly for drugs. Thus, we filtered from
the association data drugs and side effects that lie at the top 10% (greater than
151 associations for drugs and 127 associations for side effects), as well as side
effects and drugs having less than two association. The resulting drug-side effect
network contained 692 drugs, 680 side effects and 12,871 associations. These
data were represented in a binary association matrix, E, where Es,d = 1 if and
only if drug d is associated with side effect s.
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The prediction algorithm can be applied with various drug attribute schemes,
drug similarity measures and side effect similarity measures. For drugs, we exper-
imented with two supporting data sets: (i) chemical hashed fingerprints; and (ii)
NCI-60 drug response data for the different drugs under different cell lines [14].
For side effects, we based our similarity computation on their sets of associated
drugs (see Section 2).

Chemical data based computation. Structures for the drugs molecules were down-
loaded from PubChem [20]. Hashed fingerprints based on these chemical struc-
tures were computed using the open source Chemistry Development Kit (CDK)
[21,22]. The description matrix, R, used by the CCA prediction algorithm, is the
matrix whose columns are the hashed fingerprints.

The similarity score between drugs, used by the diffusion algorithm, was cal-
culated according to the Tanimoto 2D score between the two fingerprints, which
is equal to their Jaccard coefficient. Formally, let rd denote the hashed finger-
print for drug d (rd

i ∈ {0, 1} , i ∈ 1 . . . 1024). The similarity score between two
drugs, j and l, is given by:

D
(chem)
j,l = Tanimoto

(
rj , rl

)
=

∑
i

(
rj
i · rl

i

)
∑

i

(
rj
i + rl

i − rj
i · rl

i

) (7)

Response data based computation. We downloaded the drug response data used
in [14] from http://serverdgm.unil.ch/bergmann/PingPong.html. The data
were used to build the description matrix R. An entry in R lists the concentration
of a drug that is needed to achieve 50% growth inhibition under a certain cell line
(log(GI50)). Missing data were replaced by the mean response to the drug over
all cell lines. The similarity score between drugs, used by the diffusion algorithm,
was calculated according to the Pearson correlation between the corresponding
response profiles.

3.2 Chemical Structure Based Prediction Performance

In our first application of the algorithm we used the drug chemical structure
information as supporting data. We tested the algorithm in a 20-fold cross val-
idation setting, where in each cross validation iteration 5% of the data were
hidden, serving as a test set, and the other 95% served as a training set. Within
the training set, an internal cross validation was conducted to train the param-
eters of the algorithm as described in Section 2.4.

Overall, for 34.7% (240) of the 692 drugs the algorithm ranked first one of the
known side effects of these drugs. For 63.4% (439) of the drugs, a correct side
effect was ranked among the top five scoring side effects. In comparison, when
applying our algorithm to randomized instances of these data, for only 68.1
(±7.69, 9.85%) of the drugs, on average, the top ranking side effect matched a
known side effect of the drug; and only 225.1 (±12.8, 32.5%) of the drugs, on
average, had a known side effect among the top five ranking side effects. These
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A B

Fig. 1. Performance evaluation. Dotted lines depict standard deviation for random
curves. (A) Performance comparison using chemical structures as supporting data. (B)
Performance comparison using drug response as supporting data.

Table 1. Performance statistics of the different algorithmic variants and a comparison
to a random application. Top1 lists the number of drugs having a known side effect
ranked highest. Top5 lists the number of drugs having at least one known side effect
among the 5 highest ranking side effects. Area is the total area under the precision-
recall curve; and Area20 is the area under the leftmost (recall < 0.2) section of the
precision-recall curve. The best result in each row appears in bold.

Data Set Result Combined alg. CCA Diffusion Expected Random
Chemical Top1 240 232 206 0 68.16±7.69

Top5 439 430 407 0 225.1±12.8
Area 0.1190 0.1095 0.1111 0.0168 0.0524±0.0009

Area20 0.0483 0.0465 0.0412 0.0017 0.0145±0.0005
Response Top1 17 14 11 3 7.92±2.36

Top5 29 26 25 23 24.86±3.23
Area 0.1419 0.1382 0.1241 0.097 0.1122±0.005

Area20 0.0373 0.035 0.0275 0.0204 0.0236±0.0024

marked differences are also reflected in the areas under the curve: 0.119 on the
real data and 0.0524 (±0.0009) at random (see Figure 1A and Table 1).

We further compared the performance of the combined algorithm to those of
applying the CCA or diffusion-based computations by themselves. As evident
from the results in Figure 1A and Table 1, the combined algorithm outperforms
the diffusion-based variant and is marginally better than the CCA based variant
in all evaluation measures.

Some side effects are more prevalent than others and shared across many
drugs. To examine the impact of side effect frequency on the prediction task, we
have devised an algorithm that randomly ranks side effects according to their
frequency distribution. The algorithm scores side effects by iteratively choosing
side effects according to their empirical distribution in the training data, each
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time incrementing their score. As shown in Figure 1A this algorithm performs
worse than all other variants, suggesting that the prevalence of side effects is not
sufficient to explain association with drugs.

3.3 Response Based Prediction Performance

We additionally applied our algorithm using the drug response data. As the
response information was not available for many of the drugs, the application
was limited to 58 drugs, spanning 188 side effects. The algorithm ranked one of
the known side effects highest for 17 (29%) of the drugs. For 29 (50%) drugs
a correct side effect was ranked among the top 5 scoring side effects. These re-
sults significantly outperformed the random expectation (see Table 1). Precision-
recall curves for the different algorithmic variants are displayed in Figure 1B. As
for the chemical structure data, the combined algorithm outperformed diffusion
based variant significantly and is marginally better than the CCA variant. The
randomized algorithm based on side effect expectancy based on the occurrence
distribution performs worse than all other variants.

3.4 A Large Scale Blind Test

To further validate our approach, we downloaded from DrugBank [23,24] a com-
pilation of 4,335 drugs that were not available in SIDER. Chemical structures
and hashed fingerprints for these new drugs were computed as described in sec-
tion 3.1, and side effect rankings were calculated using the combined algorithm.

To evaluate the results of our prediction algorithm, we used the Hazardous
Substances Data Bank (HSDB), an online peer reviewed database focusing on
toxicology of potentially hazardous chemicals (see [25]). For 448 drugs that had
matching records in HSDB, the text in the Human Health Effects section was
downloaded and a simple textual search scheme was applied to extract annotated

A B

Fig. 2. A blind test. (A) Percentage of new drugs with validated predictions in HSDB.
(B) Correlation between number of validated predictions and the amount of information
available for corresponding drugs. Dotted lines show the 95% confidence interval.
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side effects. For 102 (22.8%) of the drugs, the side effect that was ranked highest
by our algorithm was also associated to the corresponding drug in HSDB (see
Figure 2A). For 201 (44.9%) of the drugs, one or more of the 5 top scoring side
effects were confirmed by HSDB.

We believe that the accuracy in the validation is in fact higher, as only exact
string matches were considered in the textual search and the side effect data
are far from complete. To support this assertion, we calculated the correlation
between the number of validated predictions and the length of the textual record
in HSDB. For the 201 validated drugs mentioned above, we found a significant
correlation between the quality of predictions and the amount of available in-
formation (Pearson r = 0.25, p < 2.3e − 4). The correlation increases as more
predictions are taken into account (see Figure 2B).

3.5 Using Side Effect Predictions for Drug Target Elucidation

In a seminal paper, Campillos et al. [2] have shown that drugs with similar
side effects are likely to share molecular targets. Exploiting this correlation they
were able to predict new targets for drugs. However, their analysis was limited
to drugs with known side effects. Our method has the potential to overcome this
limitation as long as some molecular data is available on the drug in question.

To demonstrate the utility of our method in drug target elucidation, we ap-
plied it to predict the side effects of 4,335 drugs from DrugBank that do not have
side effect information in SIDER. We then computed the correlation between two
drug similarity matrices: one that is based on comparing the top k predicted side
effects (via a Jaccard coefficient), and another that is based on comparing known
drug targets (via a Jaccard coefficient). The Pearson correlation between the two
similarity matrices varied for varying k, reaching a peak of 0.084 for k = 13 (see
Figure 3). This correlation was significantly higher than the random expectation
(shuffling the drug-target associations while maintaining the same number of asso-
ciated targets per drug). Expectedly, the correlation was lower than that observed
for the drugs whose side effects are known (from SIDER).

Fig. 3. Correlations of side-effect-based and target-based similarities
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4 Conclusions

Our contribution in this paper is three fold: (i) We show that computational pre-
diction of side effects of drugs is possible. We present an approach that combines
correlation based analysis with network diffusion, achieving very high retrieval
accuracy. In cross validation we are able to accurately predict side effects for up
to two thirds of the drugs; in a blind test we are able to confirm our predictions
for almost half of the drugs. (ii) We demonstrate the use of different data sets,
such as chemical structure and cell line response, for the prediction task. The
use of different data sets could potentially increase the sensitivity and specificity
of the predictions. (iii) We find a significant correlation between the similarity
of the predicted side effects of drugs and their targets, indicating the potential
utility of our algorithm in drug target identification.

Several extensions of our work are possible. The CCA algorithm that we pre-
sented is limited to the analysis of one descriptive data set at a time. It is pos-
sible that using generalized canonical correlation analysis one could extend the
method to take into account multiple data sets. The descriptive data used came
from two sources: chemical structure information and cell line response data.
Other sources of descriptive data could be used, most notably gene expression
data in response to drug treatment such as those cataloged by the Connectivity
Map project [1].

In summary, we believe that our algorithm constitutes a first step toward
shortcutting the process of side effect identification in the development of new
drugs.
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Appendix

Solving the CCA Optimization Problem

Given two descriptive matrices E and R, CCA aims at finding two projection
matrices WE and WR so that the following correlation is maximized:

max
WE ,WR

Tr
(
WT

E ERT WR

)
, subject to

WT
E EET WE = WT

R RRT WR = I
(8)

Denote CEE = EET , CER = ERT , CRE = RET and CRR = RRT . Consider
first the case where each of the projection matrices is a single vector, and define
the following optimization problem:

max
we,wr

wT
e CERwr√

wT
e CEEwe · wT

r CRRwr

(9)

Since the expression to optimize is invariant under scaling of the projections we

and wr, one can fix the two terms in the denominator to 1 and optimize the
numerator. The resulting Lagrangian is:

L (λe, λr, we, wr) = wT
e CERwr −

λe

2
(
wT

e CEEwe − 1
)
− λr

2
(
wT

r CRRwr − 1
)

Taking derivatives and comparing to zero we find that λe = λr = λ and, conse-
quently, that wr can be expressed as:

wr =
C−1

RRCREwe

λ
(10)

and that we is the solution to the generalized eigen problem:

CERC−1
RRCREwe = λ2CEEwe (11)

Let WR be the matrix whose columns are the vectors solving Eq. 10, and let WE

be the matrix whose columns are eigenvectors solving Eq. 11. Then

Tr
(
WT

E CERWR

)
=

k∑
i=1

wT
e,iCERwr,i

=
k∑

i=1

wT
e,iCERC−1

RRCREwe,i

λi

=
k∑

i=1

λ2
i w

T
e,iCEEwe,i

λi
=

k∑
i=1

λi
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Thus choosing eigenvectors corresponding to the k largest eigenvalues will max-
imize the objective of Eq. 1.

It remains to show that this solution respects the optimization constraints.
The constraints of the Lagrangian ensure that the entries along main diagonal
of WT

E EET WE and WT
R RRT WR are equal to one. To show that the off-diagonal

elements of these matrices are zero, we apply the Cholesky decomposition to
CEE and CRR (both are symmetric): CEE = LEELT

EE and CRR = LRRLT
RR.

Denoting ue = LT
EEwe and A = L−1

EECER

(
LT

RR

)−1, we can reformulate Eq. 11
as a standard eigen problem:

L−1
EECER

(
LT

RR

)−1
L−1

RRCRE

(
LT

EE

)−1
ue = AAT ue = λ2ue (12)

As AAT is symmetric, its eigenvectors ue are orthogonal, implying that for i �= j:
wT

e,iEET we,j = wT
e,iLEELT

EEwe,j = uT
e,iue,j = 0.

In the regularized version of CCA, the terms CEE and CRR in Eq. 9 are
replaced with

C∗
EE =

(
EET + ηλEI

)
(13)

C∗
RR =

(
RRT + ηλRI

)
Computing a Side Effect Vector with Highest Correlation

We wish to efficiently compute the vector f =
(
WT

E

)†
qproj . Using the notation

above, ue = LT
EEwe, and in matrix form, UE = LT

EEWE . Substitute that into
the equation above we get:

f =
((

LT
EE

)−1
UE

)†
qproj (14)

Since LT
EE is invertible, the pseudoinverse of (LT

EE)−1 is LT
EE . Since UE has

linearly independent columns, its pseudoinverse is equal to
(
UT

E UE

)−1
UT

E . It
follows that

f =
(
UT

E UE

)−1
UT

E LT
EEqproj = UT

E LT
EEqproj

= LEEUEEqproj = CEEWEqproj

Thus f can be computed using simple matrix multiplication.
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Abstract. We consider the problem of aligning two metabolic path-
ways. Unlike traditional approaches, we do not restrict the alignment to
one-to-one mappings between the molecules of the input pathways. We
follow the observation that in nature different organisms can perform
the same or similar functions through different sets of reactions and
molecules. The number and the topology of the molecules in these al-
ternative sets often vary from one organism to another. In other words,
given two metabolic pathways of arbitrary topology, we would like to
find a mapping that maximizes the similarity between the molecule sub-
sets of query pathways of size at most a given integer k. We transform
this problem into an eigenvalue problem. The solution to this eigenvalue
problem produces alternative mappings in the form of a weighted bi-
partite graph. We then convert this graph to a vertex weighted graph.
The maximum weight independent subset of this new graph is the align-
ment that maximizes the alignment score while ensuring consistency. We
call our algorithm SubMAP (Subnetwork Mappings in Alignment of
Pathways). We evaluate its accuracy and performance on real datasets.
Our experiments demonstrate that SubMAP can identify biologically rel-
evant mappings that are missed by traditional alignment methods and
it is scalable for real size metabolic pathways.

Availability: Our software and source code in C++ is available at
http://bioinformatics.cise.ufl.edu/SubMAP.html

1 Introduction

Biological pathways show how different molecules interact with each other to
perform vital functions. In the literature, the terms “network” and “pathway” are
used interchangeably for different types of interaction data. Metabolic pathways,
an important class of biological pathways, represent how different compounds
are transformed through various reactions. Analyzing these pathways is essential
in understanding the machinery of living organisms.

The efforts on analyzing pathways can be classified into two types. The first
type takes one pathway into account at a time and explores the important prop-
erties of that network such as its robustness [1], steady states [2] and modu-
lar structure [3]. The second type is the comparative approach which considers
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multiple pathways to identify their frequent subgraphs [4,5] and their align-
ments [6,7,8,9,10,11]. Alignment is a fundamental type of comparative analysis
which aims to identify similar parts between pathways. For metabolic pathways,
these similarities provide insights for drug target identification [12,13], metabolic
reconstruction of newly sequenced genome [14], phylogenic reconstruction [15,16]
and enzyme cluster and missing enzyme identification [17,18].

2.3.1.117 2.6.1.17 3.5.1.8

2,3,4,5−
Tetrahydro−
dipicolinate

2.6.1.83
LL−2,6−Dia−
minopimelate

Fig. 1. A portion of Lysine biosynthesis
pathway. Each reaction is represented by
the Enzyme Commission (EC) number of
the enzyme that catalyze it. Each circle
represents a compound. Humans use the
the path on the top with three reactions,
whereas plants and Chlamydia can achieve
this transformation directly by a single re-
action through the path (in bold) at the
bottom.

In the literature, alignment is of-
ten considered as finding one-to-
one mappings of the molecules of
two pathways. In this case, the
global/local pathway alignment prob-
lems are GI/NP complete as the
graph/subgraph isomorphism prob-
lems can be reduced to them in
polynomial time [19]. A number
of studies have been done to sys-
tematically align different types of
biological networks. For metabolic
pathways, Pinter et al. [6] devised an
algorithm that aligns query pathways
with specific topologies by using a
graph theoretic approach. Tohsato et
al. proposed two algorithms one re-
lying solely on Enzyme Commission (EC [20]) numbers of enzymes and the
other considering only the chemical structures of compounds of the query path-
ways [9,10]. Latterly, Cheng et al. developed a tool, MetNetAligner, for metabolic
pathway alignment that allows a certain number of insertions and deletions of
enzymes [11]. However, these methods do not integrate different types of infor-
mation (e.g., topology, homology) and focus on a single similarity score (e.g.,
enzyme similarity, compound similarity, etc.). Furthermore, some of these meth-
ods limit the query pathways to certain topologies, such as trees, non-branching
paths or limited cycles, which degrades their applicability to complex pathways.
Recently, Singh et al. [21] and Ay et al. [7,8] combined both topological features
and homological similarity of pairwise molecules to find the alignments of protein
interaction networks and metabolic pathways respectively. These two algorithms
showed that this integration increases the accuracy of alignment. Additionally,
these methods do not restrict the topologies of query pathways and hence are
applicable to arbitrarily complex pathways.

All the methods discussed above limit the possible molecule mappings to
only one-to-one mappings. As also pointed out by Deutscher et al. [22] consid-
ering each molecule one by one fails to reveal its function(s) in complex path-
ways. This restriction prevents all the above methods from identifying biolog-
ically relevant mappings when different organisms perform the same function
through varying number of steps. As an example, there are alternative paths
for LL-2,6-Diaminopimelate production in different organisms [13,23]. Figure 1



SubMAP: Aligning Metabolic Pathways with Subnetwork Mappings 17

illustrates two paths both producing LL-2,6-Diaminopimelate starting from
2,3,4,5-Tetrahydrodipicolinate. The bottom path represents the shortcut used
by Chlamydia and plants on the path to the synthesis of an important amino
acid, L-Lysine. This shortcut is not available for humans since we lack LL-DAP
aminotransferase (2.6.1.83). Humans use a three step process shown as the top
path in Figure 1 to do this transformation. Thus, a meaningful alignment should
match the top path with three reactions to the bottom with a single reaction
when the human lysine biosynthesis pathway is aligned to the same pathway of
a plant or Chlamydia. However, since these two paths have different number of
reactions, traditional alignment methods fail to identify this mapping.

Our aim in this paper is to design an algorithm that can accurately iden-
tify such biologically relevant mappings by allowing one-to-many mappings of
molecules. Note that, in Figure 1 the topologies of both reaction sets are linear
paths. It is possible to have reaction sets with arbitrary topologies. Therefore,
we use the term subnetwork to include all types of topologies. Also, since we
only consider the sets of reactions that are connected, we will simply use the
term subnetwork instead of connected subnetwork.

Problem definition: Here, we consider the problem of aligning two metabolic
pathways. Unlike traditional alignment approach, we allow aligning a molecule
of one pathway to a connected subnetwork of the other. More formally, let P
and P̄ be two query pathways and k be a positive integer. We want to find the
mapping between the molecules of P and P̄ with the largest alignment score,
such that (1) each molecule in P (P̄) can map to a subnetwork of P̄ (P) with
at most k molecules and (2) each molecule can appear in at most one mapping.

The first condition above allows one-to-many mappings. The second condition
enforces consistency. That is, if a molecule is already mapped alone or as a part
of a subnetwork, it cannot map to another molecule. We elaborate on consistency
and the problem definition later in Section 2. Note that, allowing one-to-many
mappings in alignment introduces new computational challenges that cannot be
addressed using existing methods and hence novel methods are needed to tackle
this problem.

Contributions: In this paper, we propose a novel algorithm named SubMAP
that finds subnetwork mappings in alignment of pathways. SubMAP accounts for
both the effect of pairwise similarities (homology) and the organization of path-
ways (topology). This combination is motivated by its successful applications on
pathway alignment by Singh et al. [21] and Ay et al. [7,8]. However, allowing one-
to-many mappings makes it impossible to trivially extend these methods to our
problem. To address this challenge, we map our problem to an eigenvalue prob-
lem. We solve this eigenvalue problem using an iterative technique called power
method. The result of the power method converges to a principal eigenvector.
This eigenvector defines a weighted bipartite graph where each node corresponds
to a molecule or a subnetwork. The edges are only between two nodes from dif-
ferent pathways and their weights define the similarity of these nodes. Unlike
the problem with only one-to-one molecule mappings, the resulting nodes of the
bipartite graph can be intersecting as the same molecule can appear in more
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than one subnetwork. We term such node pairs as conflicting. In order to ensure
that the alignment is consistent, we construct a vertex weighted conflict graph
with nodes representing a mapping of two subnetworks one from each pathway
and edges representing a conflict between two mappings (i.e., they create incon-
sistency). The similarity values in the principal eigenvector are the weights of the
nodes in conflict graph. Our algorithm aims to find the set of mappings (nodes)
that has no conflicts (edges) and maximizes the total weight of nodes. This prob-
lem is equivalent to finding maximum weight independent subset. Since the max-
imum weight independent set problem is NP-hard, we use a heuristic to extract
an independent set from the conflict graph which gives us a non-conflicting set of
one-to-many mappings. We report these mappings as the alignment of the query
pathways. Our experiments on the metabolic pathways from KEGG [24] database
suggest that SubMAP finds biologically meaningful alignments efficiently. Also,
SubMAP is scalable as it aligns pathways with around 50 reactions while allowing
subnetworks of size three in less than a minute.

The rest of the paper is organized as follows. Section 2 describes our algorithm.
Section 3 presents experimental results. Section 4 concludes the paper.

2 Our Algorithm: SubMAP

In this section, we present our algorithm for pairwise metabolic pathway align-
ment that allows one-to-many molecule mappings. We begin by introducing some
notation that we use throughout this section. Then, we formally state the prob-
lem and describe the SubMAP algorithm in detail.

Let, P be a pathway which is represented by a directed unweighed graph G =
(V, E). Here, we only use the reactions of the pathway in graph representation.
Hence, the vertex set V = {r1, r2, . . . , rn} is the set of all reactions of P . We
include a directed edge eij from ri to rj in E if and only if at least one output
compound of ri is an input compound of rj . We call ri a backward neighbor of rj

and rj a forward neighbor of ri if eij ∈ E. Note that reactions can be reversible
(bi-directional) and hence both eij and eji can exist.

A subnetwork of a pathway is a subset of its reaction set such that the induced
undirected graph of the elements of this subset forms a connected graph. Let
Ri ⊆ V be such a subnetwork of P . We define Rk as Rk = {R1, R2, . . . , RN}
where |Ri| ≤ k for all i ∈ [1, N ]. Here, |Ri| denotes the cardinality of the reaction
set Ri. Verbally, Rk is the set of all subnetworks of P that have at most k
reactions. Using this notation, we define a binary relation that maps a reaction
of a query pathway to a subnetwork of the other as follows:

Definition 1. Let P and P̄ be two pathways and k be a positive integer. Also, let
Rk = {R1, R2, . . . , RN} and R̄k = {R̄1, R̄2, . . . , R̄M} be the sets of subnetworks
with size at most k of P and P̄. We define a binary relation between Rk and R̄k

that allows one-to-many reaction mappings as ϕ : ϕ ⊆ (R1 × R̄k)∪ (Rk × R̄1).

Clearly, ϕ allows one-to-one and one-to-many mappings. The cardinality of ϕ
(|ϕ|) is at most nM + mN − nm where n, m are the number of reactions of
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P and P̄ respectively. In other words, the number of all possible mappings is
nM +mN −nm. The alignment of P and P̄ is a binary relation that is a subset
of all these possible mappings and satisfies certain criteria that we describe next.

Recall that for a mapping (Ri, R̄j) ∈ ϕ one of the Ri or R̄j can contain more
than one reaction. Reporting this mapping as a part of our alignment implies
that all the reactions of the subnetwork with multiple reactions are aligned to a
single reaction of the other. To have a consistent alignment none of the reactions
of these subnetworks can be included in any other mapping. Next, we formally
define the term conflict to characterize this property.

Definition 2. Let ϕ be a binary relation and Ri, Ru ∈ Rk and R̄j , R̄v ∈ R̄k.
The distinct pairs (Ri, R̄j) ∈ ϕ and (Ru, R̄v) ∈ ϕ conflict if and only if (Ri ∩
Ru) ∪ (R̄j ∩ R̄v) �= ∅.

Conflicts can cause inconsistencies about which reaction subset of one pathway
should be aligned to the one of the other pathway. If ϕ has a conflicting pair
of elements, we say ϕ is inconsistent. Since this is not a desirable property, we
limit our alignment to the consistent relations only.

In order to find biologically relevant alignments we also need a meaningful
scoring scheme. One standard scoring scheme for this purpose incorporates the
homology of the aligned molecules with their topologies [7,8,21]. Here, we gener-
alize this scheme to one-to-many mappings. We will elaborate on this similarity
score later in Section 2.4. Next, we state our problem formally.

Problem formulation: Given k and two pathways P and P̄, let Rk and R̄k be
the sets of subnetworks with size at most k of P and P̄ respectively. We want to
find the consistent binary relation ϕ ⊆ (R1 × R̄k) ∪ (Rk × R̄1) that maximizes
the summation of the similarity scores of the aligned subnetworks.

In the following, we present our algorithm SubMAP. Section 2.1 explains how
we enumerate the subnetworks of query pathways. Section 2.2 and 2.3 discuss
homological and topological similarities respectively. Section 2.4 describes the
eigenvalue formulation and extraction of the alignment.

2.1 Enumeration of Connected Subnetworks

The first step of SubMAP is to create the sets of all connected subnetworks
of size at most k for each query pathway. Here, we describe the enumeration
process for a single query pathway. Let G = (V, E) represent a pathway and k
be a positive integer. We construct the set of subnetworks Rk as follows. For
k = 1 Rk= R1= V . For k > 1 we define Rk recursively by using Rk−1. At
each recursive step we check for each reaction in V if it can be added to already
enumerated subnetworks of size k − 1 to create a new connected subnetwork of
size k. This way the kth recursive step takes O(|V |.(|Rk−1| − |Rk−2|)) time.

The size of the set Rk can be exponential in k when G is dense. However,
metabolic pathways are usually sparse (on the average there are 2.5 forward
neighbors per reaction). We observe that the number of subnetworks of real
metabolic pathways for k = 3 is around 5|V | and for k = 4 it is 10|V | on the
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average. In Section 3.2, we provide a detailed discussion of how |Rk| changes
with different pathway sizes and different k values.

2.2 Homological Similarity of Subnetworks

Recall that the relation ϕ maps a reaction to a subnetwork that can contain mul-
tiple reactions. This necessitates computing the similarity between reaction sets.
Since reactions are defined by their input and output compounds (i.e., substrates
and products) and the enzymes that catalyze them, we measure the homological
similarity between reactions using the similarities of these components.

In the literature, there are alternative pairwise similarity scores for com-
pounds, enzymes and reactions. Particularly, two well known measure are in-
formation content similarity for enzyme pairs [6] and SIMCOMP [25] for com-
pound pairs. We denote these measures by SimE and SimC respectively. We
defer the readers to Ay et al. [8] for details on computing these similarities.
Here, we utilize these similarity measures to compute the homological similarity
between two reaction sets. To calculate this, we first construct the sets of the
unions of input compounds (Ii), output compounds (Oi) and enzymes (Ei) of
the reactions in each subnetwork Ri. For instance, in Figure 1 if we take upper
path as the subnetwork Ri, then Ei = {2.3.1.117, 2.6.1.17, 3.5.1.8}. Let γe, γi, γo

denote the relative weights of the similarities of enzymes, input compounds and
output compounds respectively. We define SimRSet as:

SimRSet(Ri, R̄j) = γeW (Ei, Ēj , SimE) + γiW (Ii, Īj , SimC) + γoW (Oi, Ōj , SimC)

Here W denotes the sum of edge weights of the pairs returned by the maximum
weight bipartite matching (MWBM) of the two sets. MWBM finds an assignment
between the nodes of two sets such that maximizes the sum of the weights of
these assignments specified by the similarity score. We use γi = γo = 0.3 and
γe = 0.4 as they provide a good balance between enzymes and compounds.

We calculate SimRSet for all possible one-to-many mappings between the
subnetworks of two pathways. The number of possible pairings is nM+mN−nm
where n, m are the number of reactions of P , P̄ and N = |Rk| and M = |R̄k|.
Therefore, in this step, we calculate SimRSet function nM + mN − nm times.
This way, we assess the homological similarities between all possible subnetwork
mappings. Even though this scoring is a good measure of similarity, relying solely
on this score ignores the topology similarity which we explain next.

2.3 Topological Similarity of Subnetworks

The motivation for utilizing topological similarity is that the induced topologies
of two aligned subnetworks should also be similar. In other words, if Ri is mapped
to R̄j , then their neighbors in the corresponding pathways should also be similar.
Motivated by this, we first extend the neighborhood definition of reactions to
reaction subnetworks. Then, we introduce the notion of support between two
mappings.
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Definition 3. Let Ri, Ru ∈ Rk. Then, Ru is a forward neighbor of Ri (Ru

∈ FN(Ri)) if and only if there exists ra ∈ Ri and rb ∈ Ru such that rb is a
forward neighbor of ra or Ri ∩Ru �= ∅. Ri is a backward neighbor of Ru (Ri

∈ BN(Ru)) if and only if Ru is a forward neighbor of Ri.

Definition 4. Let Ri, Ru ∈ Rk and R̄j , R̄v ∈ R̄k. The mapping (Ri, R̄j) sup-
ports the mapping (Ru, R̄v) if and only if both Rj ∈ FN(Ri) and R̄v ∈ FN(R̄u)
or both Rj ∈ BN(Ri) and R̄v ∈ BN(R̄u).

Definition 4 states that the mapping of Ri to R̄j favors all possible mappings of
forward (backward) neighbors of Ri to those of R̄j . For instance, if FN(Ri) =
2, FN(R̄j) = 2, BN(Ri) = 1 and BN(R̄j) = 2, then the mapping (Ri, R̄j)
supports 2 × 2 + 1 × 2 = 6 mappings. We distribute the support of (Ri, R̄j)
equally to these six mappings. There can be cases when one mapping does not
provide support to any others. In such cases, we simply distribute its support
equally to all possible mappings (nM + mN − nm). Conceptually, we consider
the support of each mapping (Ri, R̄j) on the other mappings as a matrix. We
call it the support matrix (S) since it stores the topological support between
different mappings. Notice that we are setting the entries of S in a way that for
each mapping the sum of the relative weights of its support is 1. In other words,
the sum of all the entries in each column of S is one. This ensures the stability
and convergence of our algorithm as we explain in Section 2.4. Interested reader
can find detailed description of the support matrix in a previous work of ours [8].

Trivial but costly way of creating S matrix is to check each mapping against all
the others to calculate the support values. However, such an exhaustive strategy
will require computing a huge matrix S of size (nM + mN − nm) × (nM +
mN − nm). Since the creation of S will incur prohibitive computational costs,
we do not construct this matrix literally. Instead, for each mapping (Ri, R̄j),
we take the sets FN(Ri), FN(R̄j) and BN(Ri), BN(R̄j) to generate only the
pairs supported by (Ri, R̄j). In other words, we use the sparse matrix form of
the support matrix S.

2.4 Aligning Two Pathways

Both the homological similarities of subnetworks and their topological organiza-
tion provide us significant information for the alignment of metabolic pathways.
A good alignment algorithm needs to combine these two factors in an efficient
and accurate way. Here, we describe how we achieve this combination in SubMAP
by using an iterative technique called power method.

Let k be a given parameter and P , P̄ be two pathways with connected sub-
network sets Rk = {R1, R2, . . . , RN} and R̄k = {R̄1, R̄2, . . . , R̄M} respectively.
We represent the homological similarity of all subnetwork pairs by the column
vector

−→
H of size nM +mN−nm, where n, m are the number of reactions of P , P̄

respectively and N = |Rk|, M = |R̄k|. Each entry of
−→
H denotes the homological

similarity between two subnetworks one from each pathway which corresponds
to a mapping.
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Let S be the (nM + mN − nm) × (nM + mN − nm) support matrix as
described in Section 2.3. Given a parameter α ∈ [0, 1] to adjust the relative
weights of homology and topology, we combine homology and topology through
power method iterations as follows:

−−−→
Hk+1 = αS

−→
Hk + (1 − α)

−→
H0 (1)

In this equation,
−→
H0 =

−→
H . We iterate this equation till

−−−→
Hk+1 =

−→
Hk (i.e., it

converges). The resulting vector
−→
Hp is the principal eigenvector of the matrix

αS +(1−α)
−→
H0e where e is a row vector of size nM +mN −nm with all entries

equal to 1. This system converges to a unique principal eigenvector when the
matrices S and

−→
H0e are both column stochastic. We assure this as each column

of S as well as
−→
H 0 itself adds up to one. Each entry of

−→
Hp gives us a combination

of homological and topological similarities for the corresponding mapping. We
use α = 0.6 in this paper since in our previous work we observed that this value
provides a good combination of the two similarities [7,8].

Subnetwork 1 (P) Subnetwork (P̄)
−→
Hp

a: R1 = {r1, r2} R̄1 = {r̄1} 0.7
b: R2 = {r1} R̄2 = {r̄2} 0.6
c: R3 = {r3} R̄3 = {r̄1} 0.4
d: R4 = {r4} R̄4 = {r̄3, r̄4, r̄5} 0.9
e: R5 = {r4, r5} R̄5 = {r̄5} 0.8

(a)

a

b c

d

e

0.7

0.6

0.9

0.80.4

(b)

Fig. 2. (a) Each row corresponds to a
possible mapping between subnetworks
from two hypothetical metabolic path-
ways. The first column is the unique la-
bel for each mapping. Second and third
columns are the reactions in the two
subnetworks that can map. Last column
is the similarity between the two subnet-
works. (b) The conflict graph Gc for the
mappings in (a).

Recall that our aim is to find the re-
lation ϕ that maximizes the summation
of the similarity scores defined by

−→
Hp

while preserving the consistency between
mappings. Using

−→
Hp and the definition

of conflict between two mappings (Def-
inition 2), we create a vertex weighted
undirected graph Gc = (Vc, Ec, w), which
we name as the conflict graph as fol-
lows. Each mapping (Ri, R̄j) ∈ ϕ cor-
responds to a vertex in Vc. We set the
weight of each vertex a = (Ri, R̄j) (i.e.,
w(a)) to the similarity between Ri and
R̄j as computed in

−→
Hp. Since the num-

ber of possible one-to-many mappings is
nM + mN − nm, the conflict graph has
nM+mN−nm vertices (i.e., |Vc| = nM+
mN −nm). We draw an undirected edge
between two vertices a = (Ri, R̄j) and
b = (Ru, R̄v) if (Ri∩Ru)∪(R̄j ∩R̄v) �= ∅

(i.e., a and b conflict). For instance, in
Figure 2 there is an edge between a and
b representing that they conflict since re-
action r1 is common to both a and b.

Extracting the subset of vertices that
do not conflict (i.e., no edges) and max-
imize the sum of the similarity score from the conflict graph is equivalent to
finding its the maximum weight independent set (MWIS). MWIS problem can
be reduced to our problem of finding the consistent alignment by simply mapping
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each vertex to a mapping and each undirected edge to a conflict between two
mappings. The MWIS problem is NP-hard [26] and there is no constant factor
approximation to the optimal solution unless P = NP [27]. Therefore, we need
a heuristic algorithm to find the MWIS of Gc and hence our alignment.

We adopt the greedy heuristic described by Sakai et al. [28]. Let N(v) denote
the set of vertices that are connected to v. At each iteration of this algorithm, we
pick the vertex v that maximizes f(v) =

∑
∀ui∈N(v)

w(v)
w(ui)

. This strategy implies
that a vertex is more likely to be picked if the mapping it represents has large
similarity score and conflicts with small number of other mappings with small
similarity scores. After picking a vertex v, we put v into the result set and remove
v and all the vertices connected to it (v ∪ N(v)). We also remove all the edges
incident to at least one of the vertices in (v ∪ N(v)). When there are no more
vertices to remove from Gc, the result set contains the vertices of a maximal
weight independent set. For our alignment problem, this vertex set corresponds
to a set of non-conflicting subnetwork mappings. As an example, in Figure 2, d
is the first vertex to be picked. Then, we remove d and e ∈ N(d) from the graph
and put d in the result set. Next, we pick the vertex b as f(b) = 0.6

0.7 > f(a) =
0.7

0.6+0.4 > f(c) = 0.4
0.7 . We remove b and a ∈ N(b) and put b in the result set.

Finally, only c is left and taking it into our result set, we have our consistent
alignment as the mappings b = (r1, r̄2), c = (r3, r̄1) and d = (r4, {r̄3, r̄4, r̄5}).

3 Experimental Results

In this section, we experimentally evaluate the performance of SubMAP.

Dataset: We use the metabolic pathways of 20 organisms taken from the KEGG
database. Our dataset contains 1,842 pathways in total. The average number of
reactions per pathway is 21 and the largest pathway has 72 reactions.

3.1 Alternative Subnetworks

Different organisms can perform the same function through different subnet-
works. We name such altered parts that have similar functions as alternative
subnetworks. An accurate alignment should reveal alternative subnetworks in dif-
ferent pathways. In our first experiment we evaluate whether SubMAP can find
them in real metabolic pathways. We align the pathway pairs which are known
to contain functionally similar parts with different reaction sets and topologies.
Table 1 presents a subset of mappings that are found by our algorithm.

The first row of Table 1 corresponds to alternative subnetworks in Figure 1. The
reaction R07613 represents the bottom path in Figure 1 that plants and Chlamy-
dia use to produce LL-2,6- Diaminopimelate from 2,3,4,5- Tetrahydrodipicolinate.
This path is discovered and reported as a shortcut on the L-Lysine synthesis path
for plants and Chlamydia which is not present in humans [13,23]. Watanabe
et al. [13] also suggest that since humans lack this path and hence the catalyzer of
the reaction R07613, namely LL-DAP aminotransferase (EC:2.6.1.83), this is an
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Table 1. Alternative subnetworks that produce same or similar output compounds from
the same or similar input compounds in different organisms. 1 Main input compound
utilized by the given set of reactions. 2 Main output compound produced by the given
set of reactions. 3 Reactions mappings that corresponds to alternative paths. Reactions
are represented by their KEGG identifiers.

Pathway Organisms Input Comp.1 Output Comp.2 Reaction Mappings3

Lysine biosynthesis A.thaliana 2,3,4,5-Tetra- LL-2,6-Di-
R07613 ⇔ R02734 + R04365 + R04475

E.coli hydrodipico. aminopimelate

Lysine biosynthesis A.thaliana L-Saccharopine L-Lysine R00451 + R00715 + R00716 ⇔ R00451
E.coli meso-2,6-Di.

Pyruvate metabolism E.coli Pyruvate Oxaloacetate R00199 + R00345 ⇔ R00344
H.sapiens

Pyruvate metabolism E.coli Oxaloacetate Phosphoenol-
R00341 ⇔ R00431 + R00726

H.sapiens pyruvate

Pyruvate metabolism T.acidophilum Pyruvate Acetyl-CoA R01196 ⇔ R00472 + R00216 + R01257
A.tumefaciens

Glycine, serine, H.sapiens Glycine Serine
R00945 ⇔ R00751 + R00945 + R06171threonine metabolism R.norvegicus L-Threonine

Fructose and E.coli L-Fucose L-Fucose 1-p
R03163 + R03241 ⇔ R03161mannose metabolism H.sapiens L-Fuculose 1-p

Citrate cycle S.aureus N315 Isocitrate 2-Oxoglutarate R00268 + R01899 ⇔ R00709
S.aureus COL

Citrate cycle H.sapiens Succinate Succinyl-CoA R00432 + R00727 ⇔ R00405
A.tumefaciens

Citrate cycle H.sapiens Isocitrate 2-Oxoglutarate
R00709 ⇔ R00362

A.tumefaciens Citrate Oxaloacetate

attractive target for the development of new drugs (antibiotics and herbicides).
When we align the Lysine biosynthesis pathways of H.sapiens and A.thaliana (a
plant), our algorithm mapped the reaction R07613 of A.thaliana to the three reac-
tions that H.sapiens has to use to transform2,3,4,5-Tetrahydrodipicolinate to LL-
2,6- Diaminopimelate (R02734, R04365, R04475). In other words, SubMAP suc-
cessfully identified the alternative subnetworks of different size (1 for A.thaliana
and 3 for H.sapiens) that perform the same function.

Another interesting example is the second row that is extracted from the same
alignment described above. In this case, the three reactions that can produce L-
Lysine for A.thaliana are aligned to the only reaction that produces L-Lysine
for H.sapiens. R00451 is common to both organisms and it utilizes meso-2,6-
Diaminopimelate to produce L-Lysine. The reactions R00715 and R00716 take
place and produce L-Lysine in A.thaliana in the presence of L-Saccharopine [29].

For the alignment of Pyruvate metabolisms of E.coli and H.sapiens, the third
and fourth rows show two mappings that are found by SubMAP. The first one
maps the two step process in E.coli that first converts Pyruvate to Orthophos-
phate (R00199) and then Orthophosphate to Oxaloacetate (R00345) to the sin-
gle reaction that directly produces Oxaloacetate from Pyruvate (R00344) in
H.sapiens. The second one shows another mapping in which a single reaction of
E.coli is replaced by two reactions of H.sapiens. The first two rows for Citrate
cycle also report similar mappings for other organism pairs.

Note that all the above examples are one-to-many reaction mappings and
hence a merit of the new algorithm we propose here. Our algorithm SubMAP
also reports one-to-one mappings. The last row of Table 1 is an example in
which one reaction of an organism is replaced by exactly one reaction of another
organism. Aligning Citrate cycles of H.sapiens and A.tumefaciens reveals that
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even though both the input and output compounds of two reactions R00709
and R00362 are different SubMAP maps these reactions. Also, if we look at
the EC numbers of the enzymes catalyzing these reactions (1.1.1.41 and 4.1.3.6)
their similarity is zero (see Information content enzyme similarity [8]). If we
were to consider only the homological similarities, these two reactions could
not have been mapped to each other. However, both these reactions are the
neighbors of two other reactions R01325 and R01900 that are present in both
organisms. The mappings of R01325 to R01325 and R01900 to R01900 support
the mapping of their neighbors R00709 to R00362. Therefore, by incorporating
the topological similarity our algorithm is able to find meaningful mappings
with similar topologies and distinct homologies. An algorithm not considering
pathway topologies would fail to identify such mappings.

These results suggest: (i) By allowing one-to-many mappings, our method
identifies functionally similar subnetworks even if they have different number of
reactions. (ii) The incorporation of topological similarity makes it possible to find
mappings that can be missed by only considering homological similarity.

3.2 Number of Connected Subnetworks
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Fig. 3. The number subnetworks with at
most k nodes for pathways of different sizes

Given the parameter k, our algo-
rithm enumerates all connected reac-
tion subnetworks of size at most k
for each query pathway. One ques-
tion that we need to answer is: How
many such subnetworks exist? Fig-
ure 3 plots this number for all the
pathways in our dataset. When k =
1, the figure shows the number of re-
actions in each pathway. For k > 1
the results demonstrate that the num-
ber of subnetworks increase exponen-
tially with k. However, the increase is
significantly lower than the theoreti-
cal worst case

∑k
i=1

(
n
i

)
(i.e., n choose

i). For instance, the largest number of
subnetworks we obtained for n = 72
and k = 5 is around 750 times less than the theoretical worst case.

The figure also suggests that the number of subnetworks increase linearly with
the size of the pathway. This is mainly because the average number of edges (i.e.,
neighbors) of a node (i.e., subnetwork) remains roughly same as the size of the
network increases. As a result, we conclude that for k ≤ 4, we can enumerate
and store all the subnetworks in our dataset. The number of subnetworks for
k = 5 is still small enough to handle. However, in practice it is unlikely for a
single reaction to replace a subnetwork with such a large number of reactions. We
expect that k ≤ 4 would be sufficient to find most of the alternative subnetworks.
Hence, we use k ≤ 4 in our experiments.
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3.3 One-to-Many Mappings within and across Major Clades

In Section 3.1, we demonstrated that our algorithm can find alternative sub-
networks on a number of examples. An obvious question that follows is: How
frequent are such alternative subnetworks and what are their characteristics? In
other words, is there really a need to allow one-to-many mappings in alignment.
In this experiment we aim to answer these questions.

Table 2. Percentages of 1-to-1, 1-
to-2, 1-to-3 and 1-to-4 mappings
in between and across three major
clades (A: Archaea, E: Eukaryota,
B: Bacteria)

1-to-1 1-to-2 1-to-3 1-to-4
E-E 89.6 8.8 1.1 0.5
B-B 80.1 16.0 3.1 0.8
A-A 78.3 15.7 4.7 1.3
B-E 69.1 23.1 6.3 1.5
A-B 60.5 28.3 8.5 2.7
A-E 55.8 31.0 10.4 2.8

We conduct an experiment as follows.
We first pick 9 different organisms 3 from
each major phylogenic clade. These or-
ganisms are T.acidophilum, Halobacterium
sp., M.thermoautotrophicum from Archaea;
H.sapiens, R.norvegicus, M.musculus from
Eukaryota; and E.coli, P.aeruginosa,
A.tumefaciens from Bacteria. We then extract
10 common pathways for these 9 organisms
from KEGG. For each of these common path-
ways, we choose all possible pairs of the 9
organisms (

(9
2

)
= 36) and align that specific

pathway for all organism pairs. In these align-
ments we exclude the self alignments and the
alignment with parameter k = 1 since those will definitely incur a bias favoring
the number of one-to-one alignments. We computed all possible alignments (10
× 36 = 360) for k = 2, 3 and 4 (360 × 3 = 1,080 alignments in total). Finally,
we calculated the number of four possible types of subnetwork mappings which
are 1-to-1, 1-to-2, 1-to-3 and 1-to-4. We hypothesize that the metabolisms of the
organisms within a clade will tend to perform the same function through the
same (or similar) sized sets of reactions while those across different clades will
perform from alternative subnetworks of varying sizes.

Table 2 summarizes the results of this experiment. The percentages of each
mapping type between two clades is shown as a row in this table. The first three
rows corresponds to alignments within a clade and the last three represents
alignments across two different clades. An important outcome of these results
is that there are considerably large number of one-to-many mappings between
organisms of different clades. In the extreme case (last row), nearly half of the
mappings are one-to-many. The results also support our hypothesis that one-
to-one mappings is more frequent for alignments within the clades compared to
across clades due to high similarity between the organisms of the same clade.
For instance, for both the first and last row one side of the query set is the
Eukaryota. However, going from first row to last, we see around 40% decrease
in the number of one-to-one mappings and 250%, 850% and 450% increase in
the number of 1-to-2, 1-to-3 and 1-to-4 mappings respectively. Considering Ar-
chaea are single-celled microorganisms (e.g., Halobacteria) and Eukaryota are
complex organisms with cell membranes (e.g., animals and plants), these jumps
in the number of one-to-many mappings suggest that the individual reactions
in Archaea are replaced by a number of reactions in Eukaryota. These results
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have two major implications. (i) One-to-many mappings are frequent in nature.
To obtain biologically meaningful alignments we need to allow such mappings.
(ii) The characteristics of the alterative subnetworks can help in inferring the
phylogenic relationship among different organisms.

3.4 Evaluation of Running Time and Memory Utilization

SubMAP allows one to many mappings to find biologically relevant alignments.
This however comes at the expense of increased computational cost. Theoret-
ically, this increase can be exponential in k in the worst case. The worst case
happens when the pathway is highly connected. Metabolic pathways however
are sparse and their connectivity follows power law distribution [30]. In order
to understand the capabilities and limitations of our method we examine its
performance on real datasets in terms of its running time and memory usage.

We evaluate the performance of our method for querying a database of path-
ways as follows. We create a query set by selecting 50 pathways of varying sizes
from our dataset described at the beginning of this section. We then select an-
other 50 pathways of different sizes to use as our database set for this experiment.
We pick the latter 50 pathways such that the average reactions per pathway is
21.4, which is very close to that of the entire database. We then align each query
pathway with all the database pathways one by one for different values of k. We
measure the average running time and the average memory usage for each query
pathway and k value combination. Note that we do not present any performance
comparison with an existing method as the existing methods do not allow one-
to-many mappings. However, our results for k = 1, shows the performance of
our algorithm when we restrict it to one-to-one mappings.
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Fig. 4. The average running time of
SubMAP when a query pathway is
aligned with all the pathways in a path-
way database. The selected pathway
database contains 50 pathways. X-axis
is the number of the reactions of the
query pathways.

Figure 4 shows the average running
time of SubMAP for query pathways with
increasing number of reactions. When k
= 1 (i.e., only one-to-one mappings as in
existing methods), it runs in less than 0.2
seconds even for the largest query path-
way in our query set. As k increases, the
running time increases as well. This is
because the number of subnetworks and
the average numbers of forward and back-
ward neighbors of subnetworks increase
with k. However, we observe that our
method can perform alignments in practi-
cal time even when k = 4. It aligns path-
ways with around 50 reactions in less than
one minute and 20 minutes for k = 3 and
4 respectively. It runs in less than 15 min-
utes for the largest query pathway (72 re-
actions) in our query set for k = 3.
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We also measure the actual memory usage of our algorithm for real pathways
of varying sizes and k values (Figure omitted). For k = 1 or 2, the memory
usage is negligible (1 MB or less) for all pathways. Although the memory usage
increases with k, it remains feasible even for query pathways with around 50
reactions for k = 4. Our algorithm uses less than 300 MB for the largest query
when k = 3. For two query pathways both with around 50 reactions and k = 4,
the memory requirement is around 600 MB. Thus, our algorithm can run on a
standard computer for aligning real-sized metabolic pathways.

4 Conclusion

In this paper, we considered the problem of aligning two metabolic pathways.
The distinguishing feature of our work from the literature is that we allow map-
ping one molecule of one pathway to a set of molecules of the other. To address
this problem, given two metabolic pathways P and P̄ and an upper bound k
on the size of the connected subnetworks, we developed the SubMAP algorithm
that can find the consistent mapping of the subnetworks of P and P̄ with the
maximum similarity. We transformed the alignment problem to an eigenvalue
problem. The solution to this eigenvalue problem produced a good mixture of
homological and topological similarities of the subnetworks. Using these simi-
larity values, we constructed a vertex weighted graph that connects conflicting
mappings with an edge. Then, our alignment problem transformed into finding
the maximum weight independent subset of this graph. We employed a heuristic
method that is used to solve maximum weight independent set problem. The
result of this method provided us an alignment that has no conflicting pair of
mappings (i.e., consistent). Our experiments on real datasets suggested that our
method can identify biologically relevant alignments of alternative subnetworks
that are missed by traditional methods. Furthermore, even though SubMAP
does not restrict the topologies of query pathways, it is still scalable for real size
metabolic pathways when the reaction subsets of size at most four are considered.
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Abstract. Admixture mapping is a gene mapping approach used for the
identification of genomic regions harboring disease susceptibility genes
in the case of recently admixed populations such as African Americans.
We present a novel method for admixture mapping, called admixture
aberration analysis (AAA), that uses a DNA pool of affected admixed
individuals. We demonstrate through simulations that AAA is a powerful
and economical mapping method under a range of scenarios, capturing
complex human diseases such as hypertension and end stage kidney dis-
ease. The method has a low false-positive rate and is robust to deviation
from model assumptions. Finally, we apply AAA on 600 prostate cancer-
affected African Americans, replicating a known risk locus. Simulation
results indicate that the method can yield over 96% reduction in geno-
typing. Our method is implemented as a Java program called AAAmap
and is freely available.

1 Introduction

Many complex disease studies are currently being conducted using population-
based genetic association [1]. The premise of this method is that affected indi-
viduals carry a common variant of a disease susceptible gene which is in linkage
disequilibrium with sampled markers. Hence, the susceptibility locus can be de-
tected via the indirect association between the sampled markers and the disease
status. In order to guarantee a sufficiently high power in association studies,
thousands of cases and controls are sampled using dense marker panels.

Admixture mapping, also known as Mapping by Admixture Linkage Dise-
quilibrium (MALD), offers a more economical alternative to association studies
in certain circumstances without sacrificing the statistical power [2]. MALD is
a gene mapping approach used for the identification of genomic regions har-
boring disease susceptibility genes in the case of recently admixed populations,
i.e. populations that are an admixture of several ancestral populations. African
Americans are an example of an admixed population, having both European
and African ancestries. The method is applicable when the prevalence of a dis-
ease is significantly different between the ancestral populations from which the
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admixed population was formed. When such a disease is studied, admixed indi-
viduals carrying the hereditary disease are expected to show an elevated genomic
contribution from the ancestral population that has the higher prevalence of the
disease around the disease gene loci. A MALD study is comprised of three main
steps. First, a panel of ancestry informative markers (AIM) that differentiate
well between ancestral populations is designed. Next, either cases or both cases
and controls are individually genotyped using the AIM panel, and the mosaic of
ancestries of each individual is inferred. Finally, the inferred ancestral profiles
are scanned in search for an aberration towards the ancestral population with
the higher risk, as expected to appear near the disease locus.

The MALD method successfully discovered multiple risk alleles for prostate
cancer [3,4], a disease with a higher incident rate in Africans compared to Euro-
peans, and a candidate locus for end-stage kidney disease in African Americans
[5]. Diseases of similar characteristics include stroke, hypertension and multiple-
sclerosis; a more comprehensive list of diseases suitable for admixture mapping
appears in the method’s review by Smith and O’Brien [2]. In all of these cases,
the statistical efficiency of MALD stems from the fact that only a few thousands
of ancestry informative markers are required in order to accurately infer the an-
cestry of the admixed individuals [6,7]. Moreover, only a few hundreds of cases
are required for the identification of the ancestral aberration around the disease
locus [8].

In this paper we present a novel approach for admixture mapping that con-
siderably reduces the genotyping cost of disease studies by applying admixture
aberration analysis (AAA) on pooled DNA of affected admixed individuals. Our
analysis detects divergence of allele distribution in a pool of samples near a dis-
ease locus without the intermediate step of ancestry inference per individual.
The inherent aberration in admixture around the disease locus shifts the sam-
pled allele frequencies towards the distribution of the alleles in the ancestry with
the higher risk. It is the examination of this shift, evaluated through the estima-
tion of allele frequencies in the pooled sample, that provides the means for our
pooled mapping method. Figure 1 illustrates this idea.

Current MALD studies mainly differ in the informative panel of choice and
the method used for ancestry inference. Patterson et al. [9] presented a method
that employs a hidden Markov model (HMM) for the estimation of ancestry
along the genome. The HMM was integrated into a Markov chain Monte Carlo
(MCMC) method to account for the uncertainties in model parameters. Tang
et al. [10] extended previous methods by modeling linkage-disequilibrium in the
ancestral populations using a Markov Hidden Markov model (MHMM), namely,
dependency between adjacent markers evident in the ancestral populations was
modeled. An inference framework developed in [11] enables the incorporation of
more complex probability models that account for linkage disequilibrium in the
ancestral populations. An earlier work by Chakraborty and Weiss [12] suggested
mapping by directly assessing divergence from admixture linkage-disequilibrium,
as expected near disease loci.
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Fig. 1. An illustration of admixture aberration. (a) Two distinct ancestral populations,
X and Y , expressing a different distribution of alleles at a particular location. The
greater the distance between allele distributions, the more informative the marker is
regarding ancestry. (b) a sample of admixed individuals, descendants of the ancestral
populations X and Y . In case of a disease with higher prevalence in population X, the
affected sample will exhibit a higher contribution from population X near the disease
locus, as indicated by the graph on the left. Hence, in the affected individuals, the
distributions of alleles near the disease locus bears a higher resemblance to that of
population X. The healthy admixed individuals show a contribution of populations X
and Y that corresponds to the admixture process.

DNA Pooling has been suggested as a practical way to reduce the cost of
large-scale association studies [13]. Rather than analyzing thousands of cases
and controls that were sampled separately, association analysis was first applied
on pooled cases and pooled controls in the work of Arnheim et al [14]. Steer et al.
[15] have recently demonstrated the feasibility of pooled association studies using
high resolution microarrays for rheumatoid arthritis. Zeng and Lin [16] examined
the analysis of pooled DNA, extending the single-marker association methods
to haplotype association using a likelihood-based approach. Kirov et al. [17]
investigated the accuracy by which the allele frequency difference between pools
can be estimated. This work was extended by Wilkening et al. [18] for higher
resolution SNP microarrays of 250K. Pooling was also used in QTL studies.
For example, Darvasi and Soller [19] presented a statistical test of marker-QTL
linkage based on selective pools of individuals with extreme quantitative trait
values.



34 S. Bercovici and D. Geiger

The main contribution of this paper is the introduction of pooling to admix-
ture mapping, and the demonstration of its power to the mapping of disease
susceptibility loci. Pooling is a far more effective tool for admixture mapping in
comparison to association studies. In the case of a recently formed admixed pop-
ulation, the linkage-disequilibrium patterns generated by the admixture process
stretch over regions of several centimorgans, resulting in a wider effect which is
easier to detect. In addition, using ancestry informative markers improves the
ability to locate deviations of LD and marker distribution from those expected
by the admixture process alone. The efficiency of our pooled AAA method has
been established through simulation and via analysis of diseases that are cur-
rently being studied using the non pooled MALD approach. Specifically, we first
develop the aberration analysis method based on a window of markers while
accounting for linkage disequilibrium in the ancestral populations. We then de-
termine the method’s power through simulations. We show, for example, that
a power of over 70% is achieved in a simulated study of an African American
population carrying a disease with ethnicity relative risk of 1.3, comparable with
end-stage kidney disease, using 7 pools of 200 individuals with 4 repetitions. The
results in this case indicate a more than 25-fold decrease in genotyping versus
a non-pooled MALD method. We also demonstrate the strength of our pooled
method on a sample of African American cases of prostate cancer, replacing 600
independently measured individuals with a single simulated pool. The result
demonstrate that a significant signal (LOD 7.2) is obtained near the risk locus
found by Amundadottir et al. [20] and Freedman et al. [3]. Finally, we discuss the
robustness of our method to measurement errors and to deviation from model
assumptions.

2 Material and Methods

2.1 Definitions and Model Assumptions

The genome of a recently admixed individual is a mosaic of long, single ancestry,
chromosomal segments. We use the following definitions to describe these seg-
ments in admixed individuals. An admixed chromosome is a chromosome that
originated from more than one ancestral population. A Post Admixture Recom-
bination point (abbreviated PAR) is a recombination point in which either two
chromosomes from different populations crossed, or two chromosomes crossed
where at least one of the chromosomes is an admixed chromosome. A (PAR)
block is a chromosomal segment limited by two consecutive PAR points, or by a
chromosome edge and its closest PAR point. An immediate implication of these
definitions is that every PAR block originated from a single ancestral popula-
tion, designated as the ancestry of the block, for otherwise the block would have
been further divided. In our model, we assume that the ancestry of PAR blocks
are mutually independent. We further assume that given the ancestry of a PAR
block, the markers within that PAR block are independent of the markers out-
side the PAR block and are determined strictly according to the distribution
that corresponds to the ancestry of that PAR block [7]. The markers within a
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PAR block are assumed to be dependent, accounting for the background linkage-
disequilibrium in the ancestral populations.

Consider an admixed population that originated from two ancestral popula-
tions X and Y . Each ancestral population may have a different prevalence for a
disease. A common way to characterize the disease risk attributed to the ances-
tral profile is by the ethnicity relative risk (ERR) which measures the increased
risk due to an additional allele from population Y . Under a multiplicative disease
model, ERR is defined as

r =
ψ(XY )
ψ(XX)

=
ψ(Y Y )
ψ(XY )

(1)

where ψ(·) is the probability of the disease given that the ancestry pair at the
disease susceptibility locus is either XX , XY , or Y Y .

When studying an admixed population with an hereditary disease character-
ized by an ERR �= 1, the regions around the disease loci are expected to show an
aberration towards the ancestry with the higher risk, shifting the distribution of
nearby allele frequencies. Our method scans through the genome, computing for
each examined location the ratio between the likelihood of the measured allele
frequencies under the assumption of a close disease locus and the likelihood of
the measured frequencies under the null assumption of no disease:

Λ0 =
P (S|nearby disease locus)

P (S|no disease)
(2)

where S are the observed allele frequencies. Since the computation of this like-
lihood becomes intractable as the number of samples and markers grow, we
approximate these probabilities via the multivariate central limit theorem over
a window of markers. This approximate measure, denoted Λ, is used in the re-
ported results. In the remaining method section, we derive the distribution of
alleles under the two hypothesis, and the Λ score. We first assume a window
with a single marker and then extend the results to multi-marker windows.

2.2 Single Marker Analysis

We first compute the probability P (J |d) of a bi-allelic marker J ∈ {0, 1} of an
individual, given the individual is affected (denoted by d). This probability is
given by

P (J |d) = P (J |r̄, d) · P (r̄|d) + P (J |r, d) · P (r|d) (3)

where r indicates that at least one recombination has occurred between the
disease locus and the location of allele J since the first admixture event, and r̄
is the complementary event.

The occurrence of post-admixture recombination points (PAR) can be mod-
eled as a Poisson process with rate λ which is derived from the admixture dynam-
ics. In the case of a hybrid-isolated admixture model [21], λ roughly corresponds
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to the number of generations since the admixture began. Hence, under the as-
sumption that the event of a recombination is independent of the disease status,
the probability of at least one PAR point between location l1 and l2 is

P (r|d) = P (r) = 1 − e−λ·|l1−l2| (4)

To compute P (J |r, d) in Equation 3, we note that given r, namely that at least
one PAR point occurred between sampled allele J and the disease locus, the
distribution of the allele is determined solely by the ancestry at the location and
the admixture coefficient P (Q):

P (J |r, d) =
∑
Q

P (J |Q, r, d) · P (Q|r, d) (5)

=
∑
Q

P (J |Q) · P (Q)

where Q is the ancestry at the marker location.
To compute P (J |r̄, d) in Equation 3, namely when assuming no PAR point

exist between the disease locus and the sampled allele, the distribution of the
allele is given by

P (J |r̄, d) =
∑
Q′

P (J |Q′) · P (Q′|d) (6)

where Q′ is the ancestry at the disease locus. The above equality relies on the as-
sumption that given the ancestry of the chromosomal segment containing marker
J , the affection status and the allele are independent, an assumption that is com-
mon in admixture mapping models [9]. The probability P (Q′|d) of the ancestry
of an affect individual at disease locus Q′ is formalized in terms of the multi-
plicative disease model. Let Z ′ ∈ {XX, XY, Y Y } denote the ancestry pair at the
disease locus. The probability of ancestry Q′ given the disease can be written as

P (Q′ = X |d) =
∑
Z′

P (Q′ = X |Z ′, d) · P (Z ′|d) (7)

= P (Z ′ = XX |d) +
P (Z ′ = XY |d)

2

The probability P (Z ′ = XX |d) is computed from ψ(·) as follows:

P (Z′ = XX|d) =
P (D|Z′ = XX) · P (Z′ = XX)∑

Z′ P (d|Z′) · P (Z′)

=
ψ(XX) · p2

X

ψ(XX) · p2
X + 2ψ(XY )pX(1 − pX) + ψ(Y Y )(1 − pX)2

where pX is the a priori probability of ancestry X in an admixed individual. The
probabilities P (Z ′ = XY |d) and P (Z ′ = Y Y |d) are derived in a similar fashion.
This completes the derivation of all terms of Equation 3.
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We continue by considering a set of independent marker observations J1, J2, ...
Jn sampled from n affected admixed individuals. We need to compute the like-
lihood ratio L of these observations, namely the probability of the observations
under the hypothesis of a nearby disease susceptibility locus divided by the
probability under the null hypothesis of no disease

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

As we assume independent and identically distributed Ji, we conclude that(
n

|{Ji|Ji = 1}|

)
· P (J1, .., Jn) = P (Sn)

where Sn =
∑

i Ji. Hence, the likelihood ratio can be rewritten as follows

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

=
P (Sn|H1)
P (Sn|H0)

We now explicate how to approximate the probabilities P (Sn|H0) and P (Sn|H1).
According to the central limit theorem, the standardized sum of n observations

converges to the standard normal distribution N(0, 1) as n grows

S∗
n =
∑

Ji − n · μ
σ
√

n
→ N(0, 1)

where μ and σ are determined by the distribution of J . For the two hypotheses,
we use the following means and variances:

μ0 = P (J |r, d), σ0 =
√

P (J |r, d) · (1 − P (J |r, d))

μ1 = P (J |d), σ1 =
√

P (J |d) · (1 − P (J |d))

Note that P (J |d) is given by Equation 3, and that P (J |r, d) is given by Equa-
tion 5. The use of P (J |r, d) for the null hypothesis is justified because this case is
equivalent to an infinitely distant disease locus. Each hypothesis yields a different
distribution of the markers hence a different standardization, and in turn, a cor-
responding probability for the sum of observations. We denote the standardized
sums of Sn according to hypotheses H0 and H1 by SH0

n and SH1
n , respectively.

The likelihood ratio of the observations under the two hypothesis can now be
approximated as follows

L =
P (J1, .., Jn|H1)
P (J1, .., Jn|H0)

→ P (SH1
n )

P (SH0
n )

= Λ (8)

The log10 of Λ is called the LOD score; high LOD scores are indicative of a
nearby disease locus.

In the above derivation, we assumed that the n marker observations are in-
dependent even though each affected individual contributes two observations to
the sample. The effect of this discrepancy weakens as the sample size increases.
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As a final note consider the case of fully informative markers. Such markers
have one allele with probability 1 in the first ancestral population and the other
allele with probability 1 in the second ancestral population. When using fully
informative markers and assuming no errors reading them, the ancestry at each
marker location is known with certainty using a single marker readings. In this
case, a non-pooled MALD locus statistic such as the one described in [9], reduces
to the ratio between the probability of ancestry given a nearby disease locus and
the a priori probability of ancestry (rather than a ratio between probabilities of
marker data). This ratio exactly equals, in the limit of sufficiently large samples,
to our Λ statistic under fully informative markers. Consequently, for sample
sizes that one normally deals with in MALD studies (> 500 samples), our AAA
method retains the same statistical power as non-pooled MALD but at orders of
magnitude less genotyping under this scenario. A comparison of the power of the
two methods is further studied in Section 3 without assuming fully informative
markers.

2.3 Multi-marker Analysis

We now extend our analysis from a single marker to the case of haplotypes where
m bi-allelic markers are sampled. First, we derive the probability P (J |d) of an
individual to carry haplotype J ∈ {0, .., 2m − 1} given that the individual is
affected (denoted by d). This probability can be written via

P (J |d) =
∑

π

P (J |π, d) · P (π) (9)

where π is a partition of the haplotype into PAR blocks. The probability of a
partition p(π) is determined by the independent PAR points that either occurred
or did not occur between sampled markers

∏m−1
i=1 P (Ri), where the variable

Ri ∈ {0, 1} denotes whether a PAR point occurred between markers i and i +1,
and the probability P (Ri = 1) is given by Equation 4.

To compute the remaining term p(J |π, d) in Equation 9, recall that our ad-
mixture model assumes that markers within a PAR block are independent of
markers outside the PAR block given the ancestry of the block. Hence, given
partition π, the probability of haplotype J is given by

P (J |π, d) =
∏
b

P (Jb|d) (10)

=
∏
b

∑
Qb

P (Jb|Qb, d) · P (Qb|d)

where b is a block in partition π, Jb are the markers within block b, and Qb is the
ancestry of that block. The probability of a block’s ancestry given an affected
individual is determined by whether or not the disease locus is within the PAR
block in question, hence is

P (Qb|d) =

{
P (Q′|d) ld ∈ b

πQ otherwise
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where ld is the tentative disease locus, πQ is the a prior probability of ancestry
Q, and P (Q′|d) is given in Equation 7.

Our model assumes that given the ancestry of a block, the haplotype dis-
tribution is independent of the disease status. Hence, the term P (Jb|Qb, d) in
Equation 10 is equals the probability P (Jb|Qb) which can be computed via sam-
ples taken from the ancestral populations. For example, European and West
African individuals phased in the HapMap project [22] were used in Section 3 to
construct the ancestral haplotype distribution P (J |Q) for the analysis of African
American. This concludes the derivation of all the terms used in the computation
of Equation 9.

Finally, we consider a set of independent haplotype observations J1, J2, ...Jn

sampled from n affected admixed individuals. We compute the likelihood ratio
of the pooled observations, dividing the probability under the hypothesis of a
nearby disease susceptibility locus by the probability under the null hypothesis
of no disease:

L =
P (Sn|H1)
P (Sn|H0)

where Sn is the sum of observations Ji.
We continue by explicating the computation of the probabilities P (Sn|H0)

and P (Sn|H1). According to the multivariate central limit theorem, under the
assumption that the covariance matrix of J is positive-definite, the standard-
ized sum of n observations converges towards the standard normal distribution
N(0, Σ) as n grows

S∗
n =
∑

Ji − n · μ√
n

→ N(0, Σ)

where μ and Σ are determined by the distribution of J assuming an affected
admixed individual. For the two hypotheses, we use the following means and
covariance matrices:

μ0 =
∑

J

J · P (J |d, ld = ∞)

μ1 =
∑

J

J · P (J |d, ld = l)

Σ0
i,j = E

(
(J i − J̄ i)(Jj − J̄j)

∣∣∣ ld = ∞)

Σ1
i,j = E

(
(J i − J̄ i)(Jj − J̄j)

∣∣∣ ld)
where J i indicates the ith component of haplotype J . Under the alternative
hypothesis, the distribution P (J |d, ld = l) equals P (J |d) given by Equation 9,
setting ld to equal the suspected locus l. When assuming no disease locus, the
distribution P (J |d, ld = ∞) equals P (J |d) from Equation 9 under the assump-
tion ld = ∞.

We denote the standardized sums of Sn according to hypotheses H0 and H1
by SH0

n and SH1
n , respectively. The likelihood ratio under the two hypothesis can

now be approximated as follows
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L =
P (Sn|H1)
P (Sn|H0)

→ P (SH1
n )

P (SH0
n )

= Λ (11)

The AAA method is defined to be the process of computing the LOD score
log10 Λ via Equation 11 at examined locations along the genome, declaring a
region that shows a LOD above 3.3 as a suspect area that may contain a dis-
ease locus. Subsequently, significant peaks serve as candidates for fine-mapping.
Section 3 details the process of selecting the LOD threshold.

2.4 Pooling Strategies

In the case of DNA pooling, two parameters affect the number of panels used,
namely the pool size k and the number of pool repetitions l. It was shown that
these two parameters can increase the accuracy of allele frequency estimation in
the pooled sample which affects the method’s statistical power [13]. Based on
previous studies, when using a high-throughput platform for genotyping, pooling
is recommended to be applied in quadruplets (l = 4). An empirical study of
pooling examined the efficiency of this approach in association studies, using
pools of k = 250 individuals [15]. We report our results with l = 4 and k = 200.

2.5 Leave-One-Out Filter

The leave-one-out (LOO) approach is a common filtering method that can be
used in this context to discard false-positive signals originating from markers
with erroneous frequencies. One potential source for bias is the inaccurate esti-
mation of the allele frequencies in the ancestral populations. Biased genotyping
errors can also result in false signals. Both error sources are assumed to occur
independently between the markers and with low probability. When applying
the AAA method, the robustness of a high LOD signal is examined via LOO by
repeatedly removing markers and evaluating the effect on the LOD; the minimal
LOD is reported, conferring with a conservative approach. A significant signal
that persists after the removal of the marker with the highest contribution to
the LOD is less likely to be false. LOO is especially effective in admixture map-
ping because suspected regions are usually supported by multiple SNP markers,
retaining the method’s power throughout the filterring phase as opposed to as-
sociation studies, which often pinpoints a small suspected region with a single
SNP marker.

3 Results

In this section we evaluate the performance of AAA through simulations, show-
ing that the method has high statistical power and can detect loci of disease
genes with even modest ethnicity relative risk. We investigate our statistics in
the absence of a disease, bounding the false-positive rate to 5% genome-wide. We
examine the effect of deviation from model assumptions, showing that for many
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realistic disease models (ERR > 1.4) the method is robust to the inaccuracies
expected in real data, and for milder ERR, the power can be retained through
additional samples. We compare our AAA method to non-pooled MALD, demon-
strating significant reduction in panel assays due to pooling at the cost of an
increase in sample size. Finally, we validate our method by replicating the result
of a prostate cancer risk locus using real data.

To evaluate the performance of our proposed method, we simulated data fol-
lowing the characteristics of recent MALD studies. We examined a range of dis-
ease models, including a mild value of ERR = 1.3 (corresponding to end-stage
kidney diseases) which produces signals that are harder to detect in compar-
ison to diseases with higher ERR values such as hypertension (ERR 1.6) [2].
The population of African Americans was simulated using the haplotypes of 60
unrelated European and 60 unrelated West African individuals phased in the
HapMap project [22].

The simulation assumed a Hybrid-Isolated admixture model with 0.2 Euro-
pean contribution, 0.8 African contribution, and 8 generations of admixture.
The simulated individuals were sampled according to a published panel of 1955
ancestry informative SNP markers [7], of which approximately 150 SNPs are on
chromosome 1.

Figure 2 illustrates the output of the AAA method, using pools of 500,1000,
1500 and 2000 affected individuals. The disease susceptibility locus was set to
50cM and the simulated disease ERR was 1.3. A 3-marker sliding window was
used to examine chromosome 1. One can clearly note that the evident peak, co-
located with the disease locus, becomes significantly differentiated from distant
locations with every increase in sample size.

We evaluated the distribution of our LOD statistic in the absence of a disease
by performing simulations of pools of 500, 1000 and 2000 admixed controls, ana-
lyzing the sample using a window of 2, 3 and 4 markers at 1cM steps. We assume
an ERR between 1.3 and 1.8 using a multiplicative increase risk model (Equa-
tion 1) with a higher prevalence in Africans. Each configuration was repeated
2500 times. The results illustrate that the gap between random and significant
signals increases markedly with both the sample size and the window size (see
Table 2 in the appendix for more details). The 95th percentile was approximately
LOD = 3.3 when a pool of 1000 individuals was analyzed using a window of 2-4
markers over the entire genome, assuming an ERR of 1.3. This means that by
defining the significance threshold to be a LOD > 3.3, we consequently confer a
less than 5% type I error under the unfavorable condition of a hard to detect dis-
ease. Our recommended threshold of LOD > 3.3 is applicable for a wide range of
parameters, as seen in Table 2, but can be relaxed depending on the admixture
model and sample size, as can be determined through appropriate simulations.

To establish the statistical power of AAA we simulated a range of models
with ERR values ranging from 1.2 to 1.8. For each disease model, we evaluated
the performance for a single pool of 500, 750, 1000, 1500 and 2000 cases. In
each simulation, a uniformly random locus along chromosome 1 was chosen as
the disease locus. Each configuration, consisting of a specific sample size and
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Fig. 2. LOD score along chromosome 1 showing a peak co-located with disease locus at
50 cM. The significant signal is enhanced with the increase of sample size while nearby
LOD scores drop. The simulated disease ERR (1.3) is comparable to end-stage kidney
disease. Chromosome 1 was sampled using 147 ancestry informative markers.

an ethnicity relative risk, was repeated 2500 times. Figure 3 summarizes the
results of applying AAA using a window of 4 markers. A successful detection
was defined as a peak with LOD > 3.3 within 5cM of the actual disease locus.
The results indicate high statistical power (over 80%) under disease models that
are considered difficult to detect (e.g., ERR of 1.3) when a pool of 1500 affected
individual is used. We further found that 500 cases suffice to detect a disease of
ERR ≥ 1.6 with a power of approximately 80%, and 1000 cases yield a power of
over 83% in the analysis of a disease with ERR ≥ 1.4.

To evaluate the robustness of AAA to deviation from model assumptions,
we examined the performance under inaccuracies in the admixture parameters.
Namely, the inaccurate estimate λ of the number of generations since first ad-
mixture, and the inaccurate estimate of the ancestral distribution P (Q). Using a
simulated population with African American admixture characteristics we con-
clude that the statistical power is insensitive (less than 1% decrease in power)
to an inaccuracy of up to 5% in λ. Error in the estimate of P (Q) has a greater
effect on power. In particular, a 5% overestimation of the contribution of the
ancestry with the higher risk yields a 4.8% drop in power for a study with 2000
cases and ERR ≥ 1.5, and a 1.8% drop for a study with 1000 cases and ERR 1.8.
When only 1000 cases are used to study a disease with a milder ERR of 1.5, the
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Fig. 3. Statistical power of 4-marker window analysis under different disease models
and sample sizes

power drops significantly from 95% to 72%. The inaccuracies in the estimation
of these admixture parameters are expected to be lower than 5% in the case of
African Americans [9].

To investigate the extent of genotyping reduction due to pooling we examined
the number of SNP assays needed in order to achieve 70% power using our
AAA method versus MALD. The MALD method performance was evaluated
under the optimal condition where the ancestries are perfectly inferred by a
fully informative single marker (as described in Section 2). The performance of
AAA was examined over 2500 uniformly chosen locations along chromosome 1,
using a window of 4 markers. In the case of AAA, we report the results under
the configuration of k = 200 and l = 4 which resembles the choice of [13] and
[15]. The results are shown in Table 1. For ERR = 1.3, MALD requires a sample
of 700 affected individuals, with one assay per individual. For the same disease
model, AAA uses 28 assays, which suggests a 96% reduction in genotyping.
The disadvantage of AAA is the need to collect additional affected individuals.
However, for less than doubling the number of individuals, a 25-fold reduction in
the number of assays is achieved. The performance of AAA was evaluated using a
real panel for admixture mapping. When considering only perfect markers, AAA
performance improves even when a single marker window analysis is applied,
reducing the number of cases from 1300 to 1200, and the number of assays from
28 to 24. Similar results are obtained for ERR = 1.4.
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Table 1. The number of SNP assays needed to achieve a power of 70% using MALD
and AAA. The AAA method yields over 25-fold decrease in the number of SNP assays
when using pool size k = 200 and number of replicates per pool l = 4.

Cases Assays
ERR MALD AAA MALD AAA
1.3 700 1300 700 28
1.4 470 820 470 20

To evaluate the performance of AAA on real data, we examined a sample of
1646 African Americans with prostate cancer that were genotyped using 1985
ancestry informative SNPs. This sample led to the confirmation of prostate can-
cer risk locus in African American men through admixture mapping [3]. We
simulated a pool using 600 cases that were genotyped with the same 1276 mark-
ers. The allele frequencies in the ancestral populations were estimated using a
sample of 343 Europeans and 183 Africans. An ERR of 1.65 was used for the
analysis based on [2]. A European genetic contribution of 0.215 was estimated
using a maximum likelihood approach on the pooled sample of affected admixed
individuals.

Applying AAA using a window of 4 markers results in a significant signal
near a known risk locus (see Figure 4 in the appendix for more details). The
peak on chromosome 8 (LOD 7.2) is less than 5Mb from the susceptibility locus
reported by [3]. Applying the AAA method genome-wide yielded 2 additional
less significant signals on chromosomes 5 and 9 (LOD 3.7−3.8). To evaluate the
robustness of the three significant signals, we applied AAA with 4-marker and
LOO filterring. The analysis shows that only the known locus on chromosome 8
persist, with a significant LOD of 5.88, while the other two peaks at chromosomes
5 and 9 drop to 0.2 and 1.46, respectively. We attribute the two additional signals
to biased markers.

4 Discussion

Pool-based methods rely on estimates of the allele frequencies in the pooled
sample. It is known that pool-based association analysis is sensitive to errors in
these estimates. Previous studies evaluated an error in the estimation of allele
frequency difference between pools of less than 1.4% in 10K SNP arrays [17]. We
now discuss the effects of these errors on AAA.

Themodel we used to simulate allele frequencies assumed independentnormally-
distributed errors with zero mean. Three error levels were tested, adjusting the
variance of the error so as to reflect a 95th percentile of 1, 3 and 5 percent error in
observed allele frequency. We performed simulations using pools of 500, 1000 and
2000 admixed controls, analyzing a window of 4 markers while using LOO filtering
at 1cM steps, and assuming an ERR between 1.3 and 1.8. Each configuration was
repeated 2500 times. The results are that the selected threshold of LOD = 3.3 is
still valid for up to 5% error in allele frequencies for the case of ERR 1.3− 1.5 and
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500− 1000 affected individuals. These results further suggest that the analysis of
the prostate cancer sample is robust to 5% allele frequency estimation error. Error
in the estimation of allele frequencies has a greater impact on the false-positives
rate in the case of a disease with a higher ERR or a larger sample, increasing the
needed significance threshold defined by the 95th percentile. One should adjust the
significance threshold according to the expected allele frequency error via appro-
priate simulation.

We also repeated the experiment with cases, evaluating the impact of allele
frequency estimation errors on the statistical power of AAA. The power of an-
alyzing a disease with ERR 1.5 using 1000 cases decreases from 95% to 82%.
The tested error levels had a smaller effect on the analysis of a larger sample or
a disease with a higher ERR value, still retaining a power of over 90%. In the
analysis of a smaller sample size or a disease with a lower ERR, that achieved
a power between 50% and 60% under accurate allele frequency estimation, the
power decreased to 33−38% once such errors were introduced. However, in most
of these settings, our simulated experiments on pooled controls suggest that a
less stringent LOD threshold can be used without sacrificing the low level of
false-positives.

The AAA method has an advantage over pooled association studies with re-
spect to allele frequency estimation errors because (1) only a small fraction of
SNP markers are required for the analysis, enabling the use of higher accuracy
genotyping platforms, and (2) the chosen panel of markers are biased towards
a high minor allele frequency in the admixed population, which increases the
expected accuracy [18]. The common enhancements applied in pool-based asso-
ciation studies of repeated measures and the subdivision of samples into pools
should also increase the robustness of our method considerably.

Another source of error lies in the inaccurate estimation of allele frequencies of
the ancestral populations which may lead to an increase in the number of false-
positive signals. Indeed, initial experiments indicate that errors in the ancestral
allele distribution increase the false-positive signals as these mimic the effect of a
true risk allele. Such results may explain few of the additional suspected regions
in the prostate cancer sample that were detected prior to applying LOO.

Our analysis assumes knowledge of the admixture coefficient P (Q), and the
number of generations since the first admixture λ. While reasonable estimates
of these parameters exists for some admixed populations, such as the African
American and the Latino populations, it is recommended to tune the λ and
P (Q) estimates using the sampled cases. We evaluated the genetic contribution
of Europeans by applying a maximum likelihood approach on our prostate cancer
cases pool, computing P (Q = Europe) = 0.215.

One of the properties of admixture mapping is that it can be applied on cases
only, a property which holds for AAA as well. Nevertheless, similar to the use of
control samples in MALD, healthy admixed individuals can increase the statis-
tical power and decrease the rate of false-positives by providing a more accurate
estimation of the allele frequencies in the ancestral population P (J |Q) as well as a
more accurate estimation of the admixture parameters. Admixed controls pooled



46 S. Bercovici and D. Geiger

in several groups, each of similar admixture coefficient, can be used to adjust the
estimates of ancestral allele frequencies using a maximum likelihood approach.
In particular, measuring a marker’s frequency in two African American control
groups with a known and different admixture coefficient allows the estimation of
the marker’s frequencies in the ancestral populations via Equation 5.

The AAA method presented in Section 2 is developed for the case of an
admixed population that was formed by two ancestral populations. Supporting
admixed populations with more than two ancestral populations, as is the case
with the Latino admixed population who are descendants of Native Americans,
Europeans, and Africans, can be achieved through an adjustment of Equation 7.
Another approach is to model all low risk populations as one ancestral population
and the high risk population as the second ancestral population, applying the
method as is.

Our multi-marker AAA method takes into account knowledge of linkage-
disequilibrium evident in the ancestral population. Such inherent and complete
incorporation of LD in the analysis further increases the method’s statistical
power, whereas other MALD methods do not fully benefit from this information,
ranging from partial to no support of background LD. In addition, the analysis
we developed is applied on a window of markers, while common MALD statis-
tics employ an analysis of a single locus. Interestingly, the development steps
presented in Section 2 imply that non-pooled MALD methods can also benefit
from a multi-marker approach by deriving a statistic that evaluates aberration
of inferred ancestries in a region, examining a range of marker locations rather
than a single marker location at a time.

The goal of this work has been to alleviate the considerable cost of mapping.
As the results indicate, a high power of 70% can be achieved for a disease with
ethnicity prevalence differences comparable with end-stage kidney disease by
pooling 1300 affected individuals, yielding a 25-fold reduction in genotyping
in comparison to previous non-pooled MALD methods. We showed that AAA
can be used by gene mapping groups as an economical, practical and powerful
approach for the initial localization of regions containing disease genes.
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Appendix

Table 2. The 95th percentile of LOD scores using pools of 500, 1000 and 2000 simulated
controls analyzed using a window of 2, 3 and 4 markers under the false assumption
of ERR between 1.3 and 1.8. All tested configurations exhibit a score lower than 3.3
in the 95th percentile. The simulations demonstrate that in most cases an increase in
either sample size or in the size of the sliding window results in a reduction of the
threshold.

2 Markers Window 3 Markers Window 4 Markers Window
Sample Size 1.3 1.5 1.8 1.3 1.5 1.8 1.3 1.5 1.8
500 2.8 3.28 3.12 2.83 3.28 2.99 2.84 3.26 2.72
1000 3.29 3.14 1.72 3.3 2.89 0.78 3.28 2.75 0.26
2000 3.28 1.56 -1.78 3.06 0.65 -4.4 2.93 0.05 -6.39

Fig. 4. The analysis of 600 prostate cancer cases using AAA and a 4 markers win-
dow. (a) The significant peak of 7.2 LOD is evident in close proximity to a validated
prostate cancer risk locus at 129 Mb (marked by a triangle) that was previously dis-
covered through a linkage scan by Amundadottir et al. [20] and later reported by
Freedman et al. [3] using admixture mapping. Two additional significant signals are
evident on chromosome 5 and 9. (b) Only the validated locus passes the LOO filter
with a significant LOD of 5.88.
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Abstract. Metagenomic data enables the study of microbes and viruses through 
their DNA as retrieved directly from the environment in which they live. Func-
tional analysis of metagenomes explores the abundance of gene families,  
pathways, and systems, rather than their taxonomy. Through such analysis re-
searchers are able to identify those functional capabilities most important to or-
ganisms in the examined environment. Recently, a statistical framework for the 
functional analysis of metagenomes was described that focuses on gene fami-
lies. Here we describe two pathway level computational models for functional 
analysis that take into account important, yet unaddressed issues such as path-
way size, gene length and overlap in gene content among pathways. We test our 
models over carefully designed simulated data and propose novel approaches 
for performance evaluation. Our models significantly improve over current ap-
proach with respect to pathway ranking and the computations of relative abun-
dance of pathways in environments. 

Keywords: Metagenomics, functional analysis, pathways, Markov Chain 
Monte Carlo (MCMC). 

1   Introduction 

Metagenomics is an increasingly prevalent approach for the study of microbial com-
munities directly from the environment in which they live. Unlike in traditional mi-
crobiology, random DNA pieces (called reads) – collected directly from the environ-
ment without a culturing stage – are being sequenced. Avoiding the culturing stage 
makes it possible to study the vast majority of microbes on earth, more than 99% 
according to some estimates, which cannot be cultured. To-date, metagenomics was 
applied for studying several environments and microbial functions [1-6]. Notable 
discoveries were made using metagenomics including the identification of pro-
teorhodopsin [7] and the discovery of photosystem I genes in viral genomes [8].  

Analysis of metagenomic data poses analytical challenges resulting from the short 
length of DNA reads of which the data consists.  Traditional Sanger sequencing gen-
erates reads of average length 900bps; newer high-throughput sequencers produce 
reads of even shorter lengths ranging between less than 100bps (e.g. the Illumina 
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** Corresponding authors. 



 Pathway-Based Functional Analysis of Metagenomes 51 

Solexa and ABI SOLiD sequencers) to 500bps (the 454 Life Sciences sequencer). 
Even with recent and expected advances in sequencing technology, read length is 
likely to remain a major issue in metagenomics analysis that will require novel com-
putational methods that are different from those used for the analysis of complete 
genomes. Such methods have been emerging in an increasing rate lately, including 
methods and strategies for assembly, gene calling, community structure prediction 
and more (see [9] for an overview of the field). 

The functional analysis of metagenomes aims to identify those functional capabili-
ties most significant to organisms living in the environment under study. Usually, 
analysis is done either at the single gene level, focusing on the abundance of gene 
families, or at the pathway level in which the occurrence of genes in pathways is 
taken into account. These processes start by identifying genes in the data and predict-
ing their function, where function prediction is done by aligning the data against func-
tion-oriented databases. Such databases include COG [10], Pfam [11], and TIGRFAM 
[12] for gene level analysis, and KEGG [13], MetaCyc [14], or SEED [15] for sys-
tems or pathway level analysis1. For each function, the function prediction process 
generates its read count, i.e. the number of reads associated with the function in the 
metagenome. Once determined, read counts can be used for computing the relative 
abundance of each function in the metagenome. Previous works ignored issues related 
to gene length and the minimum portion of a gene required in order to identify it (e.g. 
[1, 16, 17]) and estimated the relative abundance of each function f, both at the gene 
family and pathway levels, as the relative abundance of its read count from all func-
tions in the function database F: 

freq f( ) =
read_count( f )

read_count( f ')
f '∈F

∑
 

(1) 

We refer to this as the read count approach. It is straightforward when complete ge-
nomes are considered and the relative abundance of functions is computed based on 
gene count, namely the number of genes associated with the different functions. 
However it results in inherently biased estimates when read counts are considered, 
due to the fact that longer genes are expected to have a higher read count simply due 
to their length. This problem is addressed in a recently published work [18] that  
presents a statistical framework for the functional analysis at the gene family level. 
The model presented in that paper is based on the assumption that the number of reads 
beginning at each position across any genome is Poisson-distributed [19]. While this 
framework fits gene families, it may not be suitable as is for functional analysis at  
the pathway level, most notably due to the presence of the same genes in several  
pathways.  

Functional analysis at the pathway level is mainly used for two purposes: computa-
tion of pathway relative abundance, and pathway content comparison. Computing 
relative abundance of pathways within a single sample provides an overall view of the 

                                                           
1 The SEED database is commonly used for functional analysis that is defined in terms of sub-

systems rather than pathways. However, since our models treat pathways as gene sets and do 
not consider issues such as pathway topology and products, the theory described in this paper 
is also applicable to databases such as SEED. 
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environment and was used in many studies and platforms (e.g. [15, 17, 26, 28]). 
Comparing pathways' abundance between samples makes it possible to identify path-
ways that are enriched within one of the environments with respect to the other 
([1,26]). Derivatives of pathway content comparison may be used for clustering func-
tionally similar environments using metrics over pathway abundances vectors 
([1,27]).  

Pathway reconstruction is a related problem in which the most likely set of path-
ways in a genome or a metagenome is determined, without estimating their abun-
dance. A commonly-used naïve approach to this problem would be to collect all 
pathways with at least one representative in the data. However, this approach is ex-
pected to yield an inflated list of pathways. Recently, a method called MinPath was 
described that attempts to deduce the minimal set of pathways required for supporting 
an observed set of functions [29]. The method uses Integer Programming for deciding 
whether a pathway is present, based on the observed functions. Note that in this case 
the relative abundance of the different functions is not taken into account, and no 
estimation of the relative abundance of the different pathways is done. 

Here, we present two models for the functional analysis of metagenomes at the 
pathway level. Both models ignore pathway topology and treat pathways as gene sets. 
We begin with a short description of the model described in [18] and deduce the inde-
pendent pathways model that can be regarded as a natural extension of the previous 
work. Next we present the pathway intersection model that takes into account the co-
occurrences of genes in more than one pathway. We test both models on synthetic data 
and compare the results to the currently used read-count approach.  Our tests focus on 
the abovementioned two common functional analysis tasks, namely sample compari-
son and the computation of relative abundance of pathways in the environment.  
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Fig. 1. a. The independent pathways model. In this model a gene that is shared among sev-
eral pathways is assumed to have a copy for each pathway in which it appears. For example: G5 
belongs to three pathways and thus assumed to have three copies b. The pathway intersection 
model. Each gene that appears in one or more pathways is assumed to appear once. G5 in this 
case will have a single copy, shared between P2, P3 and P4. 
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2   Materials and Methods 

2.1   The Poisson Model for Computing Gene Family Abundance 

A metagenome M is a set of R sequence reads of length r each, extracted randomly 
with uniform probability for all positions across all genomes from some DNA sample 
of size L bps. A gene family G represents a set of functionally similar genes, which 
can be defined, for example, via sequence similarity. COG, Pfam and other databases 
are often used as references for the identification of gene families in metagenomic 
data. We denote a collection of gene families by DGENE; the association between M’s 
reads and gene families is defined in terms of the read count, RG, representing the 
number of reads (out of R) carrying a detectable portion of G’s member. Assuming 
that the abundance of a gene family G∈DGENE in the DNA pool is CG (i.e. the DNA 
sample has CG copies of genes that are members in G), the read count, RG, is Poisson 
distributed with mean λG [18]: 

Pr RG = k( ) ~ Poisson λG( ) =
λG

k ⋅ e-λG

k!
 (2) 

where 

λG = R

L
r +LG − 2T( )⋅CG

 (3) 

In this formula, R/L is the rate of read starts per base pair. The term (r+LG-2T) reflects 
the average number of starting positions for reads carrying a detectable portion of a 
single copy of G where LG is the average length of G’s members, T is the minimum 
portion of a gene required to be present on a read in order to be associated with its 
family and r is the read length. 

An estimator for a gene read count, ˆ R G , can be computed using BLAST [20] with a 

certain threshold. A Maximum Likelihood Estimate (MLE) ˆ C G  for CG can be calcu-

lated from Equation 3 and ˆ R G : 

ˆ C G =
ˆ R G

R

L
⋅ r +LG − 2T( )

 
(4) 

All parameters in this formula are known, except for L, and hence an explicit calcula-
tion of gene family abundance is impossible. In previous work [18] the above formula 
was used to compute frequency estimators for gene families, which is the relative 
abundance of a certain gene family out of the total abundance of all gene families in 
the DNA sample pool (which eliminates the dependency on L)2. In this paper, we 
resolve the problem of the unknown DNA sample length L by computing the abun-
dance of a gene family per organism in the sample, instead of the absolute abundance. 

                                                           
2 Note that λG in [18] refers to the expected number of clone inserts whose two sides are se-

quenced. Here reads are assumed to be independent of each other, the adjustment to pair-end 
sequencing should be straightforward. 
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This requires an estimation of the average genome length in the DNA sample, as 
shown next. 

2.2   Estimating the Average Genome Length in the DNA Sample  

The estimation of the average length of a genome is based on the known existence of 
a group of genes that are known to be present exactly once per genome in all bacterial 
species. Several known single-copy genes, such as bacterial rpoB, recA and gyrA, 
were used as both phylogenetic markers [21, 22] as well as for the normalization of 
the abundance of genes in metagenomic samples [2, 22–25].  

In the case of a single-copy gene SCG, the number of copies in the entire DNA 
sample, CSCG, is equal to the number of organisms in the sample, N0, hence it is possi-
ble to deduce an MLE for the average genome length based on Equation 4:  

L

N0

≈ L
ˆ C SCG

= R
ˆ R SCG

r +LSCG − 2T( ) (5) 

A more accurate estimation of the average genome length is achieved by averaging 
the estimated values for several single copy genes.  

Utilizing the estimated average genome length, based on Equation 4, the abundance 
of a gene family G per organism in the DNA sample can be calculated as following: 

ˆ C G
N0

= L

N0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

ˆ R G
R ⋅ r +LG − 2T( )

 (6) 

2.3   Computing Pathway Abundance: The Independent Pathways Model 

In the context of the current analysis, a pathway P is defined as a set of gene families 

},...,{ 1
P
m

P GGP = , GENEP
i DG ⊆ . Several repositories of pathways exist, for example 

KEGG and MetaCyc, and they can be used in this study. We denote a collection of 
pathways by DPATH.  

The independent pathways model assumes that all gene families within a certain 
pathway, P, have the same number of occurrences (i.e. P

m
PP CCC == ...21

), and refer to 

this number of occurrences as the abundance of the pathway, CP. In this section, we 
assume that pathways' abundances in an organism are mutually independent (Figure 
1a). Analogously to the case of gene families, for each pathway P∈DPATH our goal 
here is to compute the abundance of the pathway per organism, denoted by WP. Based 
on the latter assumptions, for each pathway P an estimation of its abundance per or-
ganism can be calculated by averaging the estimated abundance of the member gene 
families: 

W P =
ˆ C P

N0

= L

N0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

1
m

ˆ R 
Gi

P

R ⋅ r + L
Gi

P − 2T( )i=1

m

∑  (7) 



 Pathway-Based Functional Analysis of Metagenomes 55 

Note that it is also possible to express the relative abundance of a pathway with re-
spect to all other pathways in a sample by dividing WP by the sum of Wi for all 
Pi∈DPATH. In this case the estimation for the average genome length (L/N0) is elimi-
nated. 

2.4   Computing Pathway Abundance: The Pathways Intersection Model 

Pathways – being a descriptive tool – are not necessarily disjoint modules, but rather 
they share common proteins. Ignoring the overlap in gene family content between 
pathways may lead the method of Section 2.3 to overestimate the abundance of path-
ways that share proteins with other pathways. Here we describe a second model that 
accounts for non-empty pathway intersections by jointly computing the abundance of 
all pathways within a collection of pathways. 

The pathways intersection model assumes that a given pathway Y is either present 
or absent in an organism in the sample, where the presence of the pathway entails the 
presence of all of its member gene families in the organism. We denote by WY the 
random Boolean variable that represents the presence of a pathway Y in an organism. 
The probability that a gene family G is present in the genome of the organism is given 
by: 

P(G |W ) =1− 1− P(W Y =1)[ ]
Y ∈D PATH G ∈Y{ }

∏  
(8) 

The abundance of G in the sample, CG, is deduced by multiplying this probability by 
the number of organisms in the sample, N0. Consequently the read count, RG, is Pois-
son distributed with the following mean: 

λG = R

L
r +LG − 2T( )⋅ 1− 1− P(W Y =1)[ ]

Y ∈D PATH G ∈Y{ }
∏

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⋅N0

 (9) 

This can be computed for various estimates of the W variables, using the estimated 
average of the genome lengths in the sample (computed in Section 2.2).  

Using the observed number of reads, ˆ R G , we estimate P(WY=1| ˆ R G) via a Markov 
Chain Monte Carlo (MCMC) posterior sampling. We assume a uniform prior for 
P(W), and estimate P( ˆ R G| WY=1) using Equation (2), with λG given by Equation (9). 
The average of the obtained samples is used as the estimated posterior probability for 
the presence of each pathway in an organism. 

2.5   Materials 

In order to test both our models we have generated five synthetic metagenomes based 
on simulated organisms, with different community complexities and metagenome 
sizes.  

Generating organisms. We have generated two sets of organisms, KEGG10 and 
KEGG125 consisting of 10 and 125 synthetic species, respectively. First, the number 
of pathways and frequency of “dummy genes” (i.e. genes that do not belong to any 
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pathway and that were chosen at random) were chosen either manually (KEGG10) or 
at random using a normal distribution with manually set parameters (KEGG125). 
Next, the simulated number of pathways was chosen at random from the KEGG data-
base. Having done that, all genes from the selected pathways and the dummy genes 
were placed at random on the genome, using lengths as they appear in KEGG (for 
enzymes) or 1000 (for dummy genes). In addition to these genes, 3 single copy genes, 
gyrA, recA and rpoB, were also located randomly on each genome using their true 
lengths, averaged over instances from several bacterial genomes (2670, 1040 and 
3520 bps, respectively). Note that our simulated data is based on the pathway inter-
section model (of Section 2.4), namely a single copy for every gene that appears in at 
least one pathway. Overall, the average genome length, number of pathways and 
frequency of dummy genes was 2.5Mbps, 57 and 75% (respectively) for KEGG10 
and 2.9Mbps, 81 and 68% for the KEGG125 (The choice of parameters was made in 
accordance with metagenomes in the IMG/M system [17]).  

Generating populations. For each simulated population, a different organisms' preva-
lence and a different population structure were used. Population complexity, which 
refers to the relative abundance among species, was either high (similar abundance for 
most species) or low (a few relatively dominant species, low abundance for the rest). 

Metagenome generation. Number of reads per metagenome was manually set, read 
length (r) and minimum detectable gene portion (T) were set to 900 (typical of Sanger 
sequencing [2]) and 100 (corresponds to e-value ≈ 1e-100 in BLAST) base-pairs, 
respectively. Number of reads per species is proportional to its DNA share in the 
population, defined as (genome length*frequency in the population)/(sum of (genome 
length*frequency in the population) over all species).   

Table 1. General information on simulated metagenomes 

Metagenome Organisms Population complexity (% 
of most abundant species) 

# reads 

M1 KEGG10 High (10%) 100,000 
M2 KEGG10 Low (50%) 100,000 
M3 KEGG125 High (1.4%) 100,000 
M4 KEGG125 Low (10.8%) 100,000 
M5 KEGG125 Low (10.8%) 10,000 

2.6   Evaluation of the Different Methods 

Functional comparison. In this test, the quality of each method with respect to path-
way-based functional comparison of two samples is evaluated. Given two metage-
nomes M and M' and a method for pathway abundance estimation, the frequency of 
each pathway in both M and M' is estimated and the absolute difference between the 
two frequencies is computed. Next, pathways are ranked based on their differential 
enrichment, and the intersection between the true and estimated most differentially 
enriched pathways is computed for every prefix size m (≤100).  
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Pathway abundance estimations. For each method, pathways are ranked based on 
their estimated frequencies. Similarly to the case of functional comparison, we use the 
number of pathways that are common to both the true and estimated m most abundant 
pathways as a measure of quality. Hyper-geometric distribution was used in order to 
evaluate the statistical significance of the results. In short, the probability that the 
intersection between the two lists of size m contains exactly k pathways is given by 

Pr(X = k) ~ Hypergeometric(k;N,m,n) =

m

k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N − m

n − k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 (10) 

where N is the total number of pathways and n=m is the prefix size. The significance 
of the observed k is given by the Hyper-Geometric Tail (HGT): 

Pr(X ≥ k) = Hypergeometric(i;N,m,n)
i= k

m

∑  (11) 

In addition to the above, we have also used the Pearson correlation coefficient for 
evaluating the degree of agreement between the lists of true and estimated frequencies. 

3   Results 

To evaluate the performance of our methods in predicting pathway abundances, we 
generated synthetic metagenome data with various community complexities and sizes 
(Section 2.5; Table 1). Our tests focus on two of the most interesting tasks in the con-
text of metagenomics: (i) comparing pathways' abundance between samples and (ii) 
computing relative abundance of pathways within a single sample. As a baseline, we 
compared the performance of our methods to that of a standard read-count approach, 
estimating the relative abundance of each pathway as the relative abundance of its 
read counts out of the total number of read counts in all considered pathways (see 
Equation 1).  

To evaluate the performance of the various prediction methods on the task of func-
tion comparison, we compared all pairs of metagenomes and evaluated the resulting 
lists (Figure 2, and Figure 5 in the Appendix). The pathway intersection model 
showed superior performance over the other models in 6 out of 10 scenarios (e.g. 
Figure 2a). The independent pathways model performed slightly better than the read-
count model in most cases. The relatively low improvement in performance in this 
task is somewhat expected since our models aim to correct biases in the estimation of 
pathway abundances introduced by differences in pathway size and gene lengths, 
while these biases are largely eliminated when comparing the same pathway over two 
samples.  

Since the original aim of the read-count method was to address the above task of 
computing changes in gene set abundances across metagenomes, it is not suitable for 
computing the relative abundance of pathways in a sample as it does not account for 
differences in pathway sizes (an inherent factor for this task). Therefore, as a baseline  
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Fig. 2. Agreement between true and estimated lists of most differentially enriched path-
ways in selected pairs of metagenomes. For each m≤100 (X axis), the frequency of pathways 
that are among the m most differentially enriched pathways in both the true and estimated 
ranked lists is plotted for (a) metagenomes M1 and M5, and (b) M3 and M4. Refer to the ap-
pendix for plots of all other pairs. 

to assessing the performance of our methods here, we implemented a fourth method, 
the normalized read-count, that is based on read-counts but also account for pathway 
sizes. The relative abundance of a pathway in this method is given by: 

freq P( ) =
read_count(P)/size(P)

read_count(P')/size(P')
P '∈D PATH

∑
 

(12) 

To evaluate the performance of the various methods in predicting the relative abun-
dance of pathways across a single sample, we tested the agreement between the rank-
ings of pathways based on their true abundances and predicted abundances by the 
various methods (Figure 3, and Figure 6 in the Appendix). Quite expectedly, the per-
formance of the read-count method is significantly worse than that of the other meth-
ods. A significant improvement is achieved by the normalized read-counts, taking into 
account pathway sizes. An additional marked improvement is achieved by the inde-
pendent pathway model, accounting for variation in gene lengths. The performance of 
the pathway intersection method is inferior to that of the independent pathways 
method when ranking sets of highly abundant pathways. On the other hand, the per-
formance of the pathway intersection method is superior to all other methods when 
considering pathways with lower abundances. 

To further evaluate the performance of the various methods in predicting relative 
abundance of pathways across a single sample, we computed the Pearson correlation 
coefficient between the true and predicted relative abundances (Figure 4a). Consistent 
with its poor performance in the ranking test, the read-counts method shows no corre-
lation with the true pathway abundances across all metagenomes. The independent 
pathways and the pathway intersection methods perform better than or equal to the  
 

a b
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Fig. 3. Ranking pathways based on their enrichment in metagenome M3. (a) The intersec-
tion between the true and predicted m most abundant pathways using the various prediction 
methods (y-axis), for different values of m (x-axis). (b) Statistical significance (hyper-
geometric p-values) for the intersection between the true and predicted highly abundant path-
way sets shown in (a). Other simulated metagenomes exhibited similar behavior (see Figure 6). 

 

Fig. 4. Pearson correlation between predicted and true pathway abundances across the 
various metagenomes. (a) Correlations obtained for the entire set of 250 pathways used in the 
simulation, (b) correlations obtained for the set of 150 less abundant pathways. 

normalized read counts method in all cases. In particular, the pathway intersection 
method outperforms the other approaches when lowly abundant pathways are  
considered (Figure 4b), as also shown above in the ranking tests. The success of the 
pathway intersection method on rare (or missing) pathways may be due to the fact 
that it does not do multiple counting of a gene common to several pathways while the 
other methods do. Frequencies assigned by the other models will be higher than the 

a b

a b
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true frequencies; while this also happens with abundant pathways, its influence on 
rare pathways is much higher. The independent pathways model does not suffer from 
this bias. 

4   Discussion 

In this work we have proposed two models for functional analysis of metagenomes at 
the pathway (systems) level reflecting two different assumptions regarding the shar-
ing of genes among pathways. The two models eliminate biases resulting from varia-
tions in number of genes across pathways and also biases resulting from variation in 
genes' lengths [18]. Our methods performed much better with respect to predicting 
relative abundance of pathways.  Each of our two methods was shown to have its own 
strength: the pathway intersection method outperforms the other approaches in pre-
dicting pathway abundances when focusing on lowly abundant pathways; the inde-
pendent pathways method is superior in ranking pathway abundances for highly 
abundant pathways. Both our methods performed only slightly better than the read-
count method when used for functional comparison, despite the failure of the later in 
the second task of predicting the absolute frequencies of the different pathways. One 
possible explanation for this behavior is that frequency estimation biases of specific 
pathways tend to be similar in both compared datasets and thus cancel each other 
when computing the relative abundances. For example, the relative abundance of a 
gene family or a pathway whose members are relatively long is likely to be overesti-
mated by the read-count method in both samples. Such mutual compensation does not 
hold in the general case, suggesting that a more robust method is in place. 

The pathway intersection method relies on the availability of single copy genes that 
are present in the vast majority of species in the studied environment. Single copy 
genes were used in the past as phylogenetic markers [3] and for estimating gene 
abundance [2, 23, 24]. There are several families of single copy genes that are known 
to be present across all known bacterial species, but these families are not present in 
Archaea and Eukaryotes. Hence, the pathway intersection method is more appropriate 
for environments in which the vast majority of sampled microbes are bacteria such as 
marine environments, but is likely to yield skewed frequencies when applied to envi-
ronments in which either Archaeal or Eukaryotic species are abundant (such as acid 
mine drainage). 

Functional characterization of metagenomic data such as that discussed in this 
study depends, first and foremost, on the quality of the employed pathway annotation 
data. Specifically, all pathway analysis methods rely on the basic assumption that a 
pathway is a coherent functional module that is either entirely present or absent in an 
organism. However, pathways defined in databases such as KEGG and MetaCyc do 
not fully address this requirement, and in many cases have only a fraction of their 
genes actually present in many species. Future advances in pathways curation are 
expected to significantly improve the outcome of the presented methods. 

To our knowledge, this is the first time in which the issue of functional analysis at 
the pathway level of metagenomic data was studied in depth, providing further means 
for the exploration of metagenomes and their functions via environment-based com-
parative analysis. 
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Appendix 

 

Fig. 5. Agreement between true and estimated lists of most differentially enriched pairs of 
metagenomes. Refer to the legend of Fig. 2 for description. Read count (blue), independent 
pathways (green) and pathway intersection (red) models are compared. 
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Fig. 6. Ranking pathways based on their abundances in metagenomes M1, M2, M4 and 
M5. Refer to the legend of Fig. 3 for description. Read count (blue), normalized read-count 
(cyan), independent pathways (green) and pathway intersection (red) models are compared. 
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Abstract. Clustering methods are a useful and common first step in
gene expression studies, but the results may be hard to interpret. We
bring in explicitly an indicator of which genes tie each cluster, changing
the setup to biclustering. Furthermore, we make the indicators hierarchi-
cal, resulting in a hierarchy of progressively more specific biclusters. A
non-parametric Bayesian formulation makes the model rigorous and yet
flexible, and computations feasible. The formulation additionally offers
a natural information retrieval relevance measure that allows relating
samples in a principled manner. We show that the model outperforms
other four biclustering procedures in a large miRNA data set. We also
demonstrate the model’s added interpretability and information retrieval
capability in a case study that highlights the potential and novel role of
miR-224 in the association between melanoma and non-Hodgkin lym-
phoma. Software is publicly available.1

Keywords: Biclustering, graphical model, information retrieval, nested
Chinese restaurant process, miRNA, melanoma, non-Hodgkin lymphoma.

1 Introduction

Unsupervised learning methods are often used as a first step in biological gene
expression studies [1]. The fact that most methods do not provide interpretable
structures as to why the data was grouped as such hinders the subsequent anal-
ysis. Biclustering, where objects are both grouped and associated with feature
subsets, is a natural framework for improving interpretability [2]. Although sev-
eral biclustering approaches exist, few are capable of handling the uncertainty
that necessarily arises for a large enough number of biclusters. We recur to the
probabilistic modelling framework [3] in order to develop a biclustering method
that is interpretable, has flexibility and expressive power, and is efficiently com-
putable. Probabilistic approaches to biclustering in the biological sciences have
already been successfully used in the analysis of chemogenomic studies [4] and
gene expression data [5], although the corresponding models differ significantly
1 http://www.cis.hut.fi/projects/mi/software/treebic/
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from ours. In particular, we propose a method to jointly group microarray sam-
ples hierarchically and assign genes to nodes in the hierarchy, with the node
assignments implying that samples under the scope of a node in the hierarchy
are homogeneous with respect to the genes assigned to it.2 This enables the
method to both provide a tree-structured clustering and explicitly state which
features in the data were responsible for the groupings.

We show how the model yields a natural information retrieval relevance mea-
sure that allows relating samples in a principled manner. We apply the model
to a large miRNA data set [6], compare it to other biclustering approaches, and
illustrate the model’s advantages with a case study about the role of miR-224
on the relation between melanoma and non-Hodgkin lymphoma.

The paper is organized as follows: We first describe the model, its inference
procedure, and an information retrieval relevance measure. We then compare
our model to four other biclustering approaches in a miRNA data set, quantify
the model’s information retrieval performance, and elaborate on a case study.
Finally, we summarize our work and describe potential future directions.

2 Generative Model

2.1 Specification

The research problem is to find a hierarchy of clusters such that the objects
(microarray samples) associated with a cluster are homogeneous for a subset of
features (genes). Child clusters are to be associated with less objects but wider
feature subsets than their corresponding parent clusters.

The proposed model can be seen as a particular instance of a biclustering
method [2], where each bicluster corresponds to a group of samples that behave
like replicates for a subset of genes. Biclusters are arranged as nodes in a tree hi-
erarchy, with nodes closer to the root corresponding to broad sample groups tied
by a low number of genes, and with nodes closer to the bottom of the hierarchy
corresponding to limited but highly homogeneous sample groups. The generative
process for our model consists of three parts: First, samples are partitioned into
a tree structure. Second, genes are positioned along nodes in the tree. Third, the
expression data is generated accordingly.

In order to partition samples into a tree structure, we use a probability distri-
bution over infinitely-branched trees called the nested Chinese restaurant pro-
cess (nCRP) [7]. This process may be defined over infinite-depth or finite-depth
trees. We opt for specifying a maximum depth parameter in advance. Running
the nCRP with a set of samples results in each sample being assigned a unique
path from the root to a leaf node. The tree is initialized with a single node (the
root), to which all samples are assigned. The samples are then probabilistically
partitioned into groups according to the Chinese restaurant process (CRP)[8].3

2 Alternatively, it may hierarchically group genes and assign samples to nodes, al-
though we did not explore that option in the present work.

3 Using the standard gastronomic metaphor associated with the CRP, we will inter-
changeably refer to groups as tables and samples as clients.
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Formally, assume n clients are partitioned into k different tables (k ≤ n), making
each of those tables j contain mj clients. The assignment probabilities for the
(n + 1)-th client are given as follows:

P (cn+1 = j|c1,...,n) =

⎧⎪⎨⎪⎩
mj

n + γ
, j ≤ k,

γ

n + γ
, j = k + 1.

(1)

The joint distribution for all clients is exchangeable (i.e. invariant to client order
permutation), with γ controlling the final number of tables. We consider γ to be
a random variable with a vague prior distribution,

γ ∼ Gamma (aγ = 1, bγ = 1) . (2)

The obtained tables become the child nodes of the root. The CRP is again run
for each of the child nodes and corresponding clients. This recursion continues
until the maximum tree depth has been reached. See Fig. 1 for an example.

Fig. 1. Running the nCRP for a set of 6 clients (numbered from 1 to 6) in an infinitely-
branched tree of maximum depth 3. The clients assigned to each node are between
braces.

Given the assignment of samples to paths in the tree, we represent genes
as binary features and provide a feature activation model. First, for each di-
rected edge (u, v) in the tree, we sample an edge length from a uniform Beta
distribution,

l(u,v) ∼ Beta(α = 1, β = 1). (3)

All features (i.e. all genes) are set to 0 at the root node. For each directed edge
from a node u to one of its child nodes v, each feature may switch to 1 with
probability equal to the corresponding edge length. Finally, whenever a feature
switches to 1, it stays at 1 for the remainder of the directed path. More formally,
let zj,u denote the value of feature j at node u. The activation of feature j at
child node v is determined by the following conditional probabilities:

P
(
zj,v = 1|zj,u = 0, l(u,v)

)
= l(u,v), (4)

P
(
zj,v = 1|zj,u = 1, l(u,v)

)
= 1. (5)
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This models the notion that genes may be indicative of either broad or specific
phenotypes. By allowing genes to be activated along different paths, the model
also encompasses the idea that two sample groups may be homogeneous with
regard to the same gene, albeit in different ways, as we shall see below in more
detail. Notice that the above probability rules are defined without recurring to
assignments of samples to paths, that is, they can be formally defined as being
applied on the entire infinite tree. The probability rule in (5) is also a component
of the phylogenetic Indian buffet process (pIBP) model [9]. The scope of the
two models is however disparate, as in the pIBP the authors present a non-
exchangeable prior for representing objects as infinite feature vectors, where
object relations are given in the form of a pre-specified tree.

The path assignment and feature activation patterns determine the distribu-
tion of the expression data. Assume that feature j switches from 0 to 1 at node
u. Denote the set of samples in the subtree that has u as its root by Su, and the
expression data for those samples restricted to feature j as Y j,Su . Then,

Y j,Su ∼ N
(
μj,u1, σ2

j,uI
)
, (6)

μj,u ∼ N(μ = 0, σ2 = σ2
j,u), (7)

σ2
j,u ∼ Inv-Gamma (a = 1, b = 1) . (8)

where μj,u and σ2
j,u are respectively scalar mean and variance parameters, spe-

cific to the group induced by feature j at node u. The prior distribution for each
μj,u assumes adequately normalized data; the random variable σ2

j,u is given a
vague prior distribution. Our choice of prior probability density functions allows
us to analytically integrate out μj,u and σ2

j,u, obtaining a multivariate Student-t
distribution for Y j,Su [10]. This increases the efficiency of the sampler, although
normality assumptions are in practice only an approximation whose usefulness
is ultimately only validated by the results. If, for a given path ending in a leaf
node u, a feature j never becomes activated, then, for every sample s ∈ Su, we
draw the corresponding scalar expression value Yj,s from a baseline Gaussian
distribution, assuming standardized data,

Yj,s ∼ N(μ0 = 0, σ2
0 = 1). (9)

Notice that the same baseline distribution is used when required, regardless of
the actual path or feature.

Figure 2 provides an example of an artificial data set with 3 genes and 4
samples generated using this approach.

2.2 Inference

We are interested in analyzing the joint posterior distribution of the path as-
signment and feature activation variables (respectively, c and z), as well as γ,
given the input expression data, which according to Bayes’ rule is

P (c, z, γ|Y ) =
P (γ)P (c|γ)P (z)P (Y |c, z)

P (Y )
∝ P (γ)P (c|γ)P (z)P (Y |c, z). (10)
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Fig. 2. Illustration of the generative process for a fictitious noise-free data set with
3 genes (A, B, and C) and 4 samples (”healthy 1”, ”healthy 2”, ”leukemia”, and
”melanoma”). The healthy samples share the same path assignment, while each of
the cancer samples has its own unique path. The rounded rectangles represent nodes
and indicate the current feature activation state. Gene A becomes active at both of
the root’s child nodes, leading to homogeneous expression for the healthy samples as
well as for the cancer samples, although the between-group difference in expression is
significant. Gene C exhibits homogeneous expression under both cancer samples, but
not under the healthy samples. Gene B has a specific expression pattern for each of
the samples.

The term P (z) results from integrating out all edge length variables, and the
term P (Y |c, z) results from integrating out all mean and variance variables.
The posterior distribution is intractable and we approximate it by means of a
collapsed Gibbs sampler [11,12].

Sampling path assignments. The posterior distribution for the path assign-
ment of client i is given by

P (ci|c−i, z, Y ) ∝ P (ci|c−i)P (Y ·,i|c, z, Y ·,−i), (11)

where c−i is the collection of path assignments for all clients except i, Y ·,−i is
the expression data for all features and all clients but i, and dependency on γ has
been dropped from the notation for succinctness. See Fig. 3 for an illustration
of path assignments. The number of available paths to choose from is equal to
the total number of nodes in the current tree (discarding any previous path
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(a) (b)

Fig. 3. Two possible paths for a new client, given a tree with 7 nodes. In 3(a), the path
1→3→6 does not involve the creation of new nodes. In 3(b), the path 1→3→8 implies
adding a new node to the tree.

assignments of client i). The first term in (11) can be computed with (1). The
second term can be decomposed into the following product:

P (Y ·,i|c, z, Y ·,−i) =

⎛⎝ L∏
l=1

G∏
j=1

P
(
Yj,i|Y j,Sul

)zj,ul
(1−zj,p(ul)

)

⎞⎠ G∏
j=1

P (Yj,i)1−zj,uL .

(12)
Each node ul corresponds to the node at the l-th level on the given path. We
denote the parent of u by p(u). The first term in (12) is interpretable as follows:
For every node ul in the path, we take the features that switch to 1 in that
node. For each of those features j, we consider the clients assigned to paths that
include ul, and compute the predictive probability of the corresponding induced
group generating the observed Yj,i. It is straightforward to derive that the pre-
dictive distribution for each induced group is a univariate Student-t distribution
[10]. The second term in (12) involves the features that are never activated in the
path. For each of those, we must compute the probability that Yj,i was generated
from a baseline Gaussian distribution, as described in (9). For every previously
unpopulated section of a path, there needs to be an instantiation of the corre-
sponding feature activation variables. We choose to draw them from their prior
distribution. Since feature values are formally generated throughout the entire
infinite tree, our approach conceptually corresponds to a type of lazy loading,
where feature values are instantiated from their prior distribution as required.
This implies that, although we are effectively bringing in novel feature variables
into the model, their specific values do not contribute to the probability compu-
tations in (11). Alternative approaches involving simultaneously sampling path
assignments and novel feature values are however possible.

Sampling feature values. The posterior odds for the value of feature j at
node u are given by

P (zj,u = 1|c, z−(j,u), Y )
P (zj,u = 0|c, z−(j,u), Y )

=
P (zj,u = 1|z−(j,u))
P (zj,u = 0|z−(j,u))

P (Y j,·|zj,u = 1, z−(j,u), c)
P (Y j,·|zj,u = 0, z−(j,u), c)

, (13)
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where z−(j,u) is the set of feature values excluding feature j at node u, Y j,· is the
expression data restricted to feature j, and zj,· is the set of feature values for all
nodes but restricted to feature j. Due to the conditional probability distributions
specified in (4) and (5), some feature values are deterministic and thus do not
require sampling. Namely, if a feature is set to 1 at a node u, then all values
for that feature at any node v descendant from u must be equal to 1. This
entails that the process of sampling a feature value corresponds to incrementing
or decrementing the feature’s generality level for a specific path.

The first term in (13) is given by

P (zj,u = 1|z−(j,u))
P (zj,u = 0|z−(j,u))

=
α + n−j

u+

β + n−j
u−

, (14)

where n−j
u+ is the number of features that switched from 0 to 1 when traversing

the edge (w, u) (w being the parent node of u) and n−j
u− is the number of features

that were kept at 0 when traversing that same edge, with both parameters
disregarding feature j. The second term in (13) is given by

P (Y j,·|zj,u = 1, z−(j,u), c)
P (Y j,·|zj,u = 0, z−(j,u), c)

=
P (Y j,Su |zj,u = 1, c)∏du

i=1 P (Y j,Svi
|zj,vi = 1, zj,u = 0, c)

, (15)

where vi is the i-th child node of u, and du is the total number of child nodes of u.
Both the numerator and the terms in the denominator correspond to multivariate
Student-t distributions. In the numerator, all samples under node u are assumed
to form a group with respect to feature j. In the denominator, samples instead
form subgroups, each of them homogeneous with respect to feature j, but without
assuming between-group homogeneity.

Sampling γ. We sample the variable γ by use of an auxiliary variable scheme
developed for Dirichlet process mixture models [13,14]. The procedure presented
here is identical to the one in the hierarchical Dirichlet process model [14]. For
a given node u in the tree, let du be the number of its child nodes and nu be the
number of samples assigned to it. It can be shown [15] that du is distributed as

P (du|γ, nu) ∝ γdu
Γ(γ)

Γ(γ + nu)
, (16)

where terms that do not depend on γ have been discarded. Multiplying the above
over all nodes in the tree yields

P (d1, . . . , dV |γ, n1, . . . , nV ) ∝
V∏

u=1

γdu
Γ(γ)

Γ(γ + nu)
, (17)

where the product is taken across all nodes u that are not leaf nodes, and V
designates the number of those nodes. The posterior distribution for γ depends
exclusively on its prior distribution from (2) and the above product. The main
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idea behind this sampling scheme is to represent each fraction of Gamma func-
tions as

Γ(γ)
Γ(γ + nu)

=
1

Γ(nu)

∫ 1

0
wγ

u(1 − wu)nu−1
(

1 +
nu

γ

)
dwu, (18)

where wu ∈ [0, 1] is an auxiliary variable. Define w = (wu)V
u=1, introduce an

extra vector of binary auxiliary variables b = (bu)V
u=1, and specify the joint

distribution of γ, w, and b as

q(γ, w, b) ∝ γaγ−1+d·e−γbγ

V∏
u=1

wγ
u(1 − wu)nu−1

(
nu

γ

)bu

, (19)

where we have used dot (·) notation for vector summation. Marginalizing the
auxiliary variables from the above joint distribution yields the original posterior
distribution for γ [14,13]. Gibbs sampling updates are then given by

q(γ|w, b) ∝ γaγ−1+d·−b·e−γ(bγ−
∑V

u=1 log wu), (20)

q(wu|γ) ∝ wγ
u(1 − wu)nu−1, (21)

q(bu|γ) ∝
(

nu

γ

)bu

. (22)

Visual inspection of the sampled values shows that the sampler converges under
50 iterations.

2.3 Information Retrieval

Generative models offer a natural measure of pairwise object relevance. Consider
an arbitrary probabilistic model parameterized by θ with input data X. Assume
a query object q, corresponding to the data point xq, and a potentially relevant
object r. Denote the parameters relating to r as θr. The relevance of r to q can
be defined as

rel(q, r) def=
∫

θ

P (xq|θr)P (θ|X)dθ (23)

[16]. This measure can be interpreted as the expected probability that the data
point corresponding to object q was generated with the parameters from object
r. A standard approximation is to obtain an estimate θ̂ and compute P (xq|θ̂r).
Notice that this measure is not symmetric.

In our context, the relevance of a sample r to another sample q can be defined
as the expected probability that the expression data Y ·,q was generated with the
path variable cr. This implies that any two samples r1 and r2 with equal path
assignments (cr1 = cr2) are equally relevant to a query sample q. Thus, in this
model the proposed relevance measure works at node granularity. Averaging (23)
over samples yields an estimate of between-node relevance, although we have not
explored this possibility in the present work. We approximate (23) by using only
the sample with the highest posterior probability, generated via the described
Gibbs sampler.
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3 Results

We tested our model on a collection of 199 miRNAs profiled in 218 human
healthy tissues, tumors, and cell lines. We pre-processed the data set and stan-
dardized the resulting expression data in a gene-wise fashion, as originally
described [6]; this makes the data set coherent with the parameter choices
stipulated in the previous section. We ran the Gibbs sampler for 2500 burn-
in iterations and further 2500 iterations, collecting the sample with the highest
posterior probability. The path and feature variables were initialized with a draw
from their prior. The maximum tree depth was fixed at 3, which is the lowest
number that allows the model to form a sample hierarchy. The method took
about 14 hours to run on an AMD Opteron Dual Core Processor with 2.8GHZ.4

This procedure was repeated 30 times. In the following analysis, we considered
the sample with the overall highest posterior probability.

3.1 Comparison to Previous Work

We compared the performance of our method to that of 4 well-established bi-
clustering approaches [17,18,19,20] with default parameterizations. The results
are presented in table 1. As miRNAs are known to have tissue-specific expression
profiles [21], we first tested for the enrichment of specific tissues in the obtained
biclusters. Significance was computed by means of Bonferroni-corrected hyper-
geometric tests with an original p-value of 0.01. Our method, named TreeBic,
had the highest fraction of biclusters enriched for at least one tissue; at the
other extreme, the CC method failed to significantly cluster samples from the
same tissues in any bicluster. Our method, along with Samba, also managed to
obtain the highest number of tissues enriched in at least one bicluster. Next, we
assessed the functional homogeneity of each bicluster. We extracted a collection
of confirmed miRNA targets from the TarBase database [22]. For each bicluster,
we took the corresponding miRNAs and obtained the union of their targets. We
then computed the functional enrichment of Gene Ontology (GO) [23] biological
process terms in each target set, again using a Bonferroni-corrected hyperge-
ometric test with an original p-value of 0.01 (terms with 5 or less genes were
discarded). Our method outperforms all others with respect to the number of
enriched GO categories. The biclusters found by our method also appear to be
overall more functionally homogeneous, as shown by the percentage of biclusters
enriched for at least one GO category. The overall low number of enriched GO
categories is possibly due to the current sparsity of confirmed microRNA targets.
Despite these results, our method has the second-lowest number of biclusters.

4 Preliminary experiments on an artificial data set with 218 samples and 5970 features
indicate that the same simulation takes approximately 250 hours, with the average
number of nodes in the inferred tree being 145. Path variable sampling takes ap-
proximately 95% of inference time, indicating that a combination of heterogeneous
features and high sample size leading to a large tree is the main bottleneck in the
method.
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Table 1. Method comparison with regard to tissue and miRNA target gene functional
enrichment. Our model is named TreeBic; it outperforms 4 standard biclustering meth-
ods both in the fraction of biclusters enriched for at least one tissue/GO category and in
the total number of enriched tissues/GO categories. See text for details on the meaning
of each performance measure.

TreeBic Samba[17] Plaid[18] CC[19] OPSM[20]
# Biclusters 16 54 29 20 10

% Tissue-Enriched Biclusters 63% 50% 41% 0% 40%
% GO Term-Enriched Biclusters 63% 46% 0% 18% 60%

# Enriched Tissues 14 14 8 0 2
# Enriched GO Terms 12 11 0 4 9

This suggests that the inferred hierarchical structure allows for a more efficient
representation of the signal in the data set. Overall, by performing best both
in terms of the fraction of enriched biclusters and the total number of enriched
tissue and GO categories, our method appears to dominate over the other tested
approaches.

3.2 Information Retrieval

In previous work we have shown that graphical models are useful in deriving
object relevance measures that allow performing information retrieval in gene
expression data in both an efficient and interpretable manner [24]. Here, we
performed a feasibility study on the ability of the model to retrieve samples
from the same tissue as a query sample. For a query taken from one of the 218
samples, we defined as positive the samples with the same tissue as the query. We
computed true-positive and false-positive rates at each point in the relevance-
ranked list of leaf nodes, and summarized the measures with the area under the
corresponding ROC curve (AUC) [25]. For each tissue or cell line class, we com-
puted the median of the AUC. Out of 20 classes, 13 (65%) led to a median AUC
higher than the 0.5 baseline. The list of ranked results can provide important
biological insight. As a case study, we queried the system with a follicular cleaved
lymphoma sample. The method considers a sequence of 2 melanoma samples, 7
follicular cleaved lymphoma samples, and 6 large B-cell lymphoma samples as
the most relevant. Although melanoma is a malignancy of a different cell type
than non-Hodgkin lymphoma, there is epidemiological evidence for their asso-
ciation [26], a relation which is highlighted in our results and which we further
investigate below. The practical usefulness of this model for information retrieval
remains to be further assessed.

3.3 Biological Analysis

Figure 4 portrays the inferred sample tree. The method separates samples into
organs from the reproductive system (node 1, with the exception of ovary, which
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falls under node 4), malignancies (nodes 2 and 3), and organs from the gastroin-
testinal tract (node 6). The method isolates the only two brain tissue samples in
the data set, with a potential explanation being that they are the only healthy
samples of ectodermal origin in the data set, in contrast with e.g. organs from
node 6, which are of endodermal origin. On the other hand, node 4 appears to
contain a more heterogeneous set of enriched tissues and pathological entities,

Fig. 4. Inferred tree structure. Nodes are numbered in breadth-first order and labelled
with overrepresented tissues or cell lines (FDR q-value < 0.25). The non-stringent q-
value enables richer node annotations. Some of the tissue types are overrepresented
in more than one leaf node (e.g. T-cell ALL in nodes 10 and 11). Notice that this
annotation approach does not guarantee that significant tissues in a parent node are
also significant in the corresponding child nodes (e.g. nodes 6 and 15). Node 16 did not
have any significantly overrepresented tissues.
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Table 2. Genes differentially over-expressed between two melanoma sample groups
(designated as types A and B) [28]. Genes predicted to be miR-224 targets are in bold
text.

Gene Function Over-Expressed in Type A Over-Expressed in Type B

Pro-Apoptotic APAF1, BAD, BNIP1, BAK1, CASP2, CASP4,
BNIP3L, CASP1, CASP7, ENDOG, HTRA2, PDCD5,

CYCS, VDAC1 PRODH, SEPT4, TNFSF10
Anti-Apoptotic BCL2, BCL2A1, PPARD, API5, FIS1, PPP2CA,

RAF1 PPP2R1A, PPP2R1B, PSEN1

Antioxidant GLRX2, GPX4, GSR, MT3, ATOX1, CAT, GSS,
PRDX3, PRDX5 HSPD1, SOD1

including a combination of healthy (bladder, kidney, and ovary) and cancerous
(mesothelioma, mycosis fungoides) tissues. The method is also able to further
decompose leukemias (node 3) into leukemia cell lines (node 10) and leukemic
tissue (node 11).

The previously mentioned relation between melanoma and non-Hodgkin lym-
phoma is also hinted at by the contents of node 2. In order to find miRNAs with
a role specifically in both melanoma and lymphoma, we computed the set differ-
ence between miRNAs that are activated in the melanoma and lymphoma nodes
and those which are activated in any of the other haematological malignancy
nodes. The single resulting miRNA, miR-224, is known to have a dual function,
conditionally inducing both apoptosis and cell proliferation, and it was found to
be either over or under-expressed in several tumor types [27]. In order to grasp
potential mechanisms by which miR-224 may have a common role in melanoma
and lymphoma, we first analyzed a collection of 38 genes that were found to
be differentially over-expressed between two subsets of melanoma samples in an
independent study (designated as type A and B) [28]. We used a recent miRNA
target prediction algorithm [29] to compute which of those genes are potential
miR-224 targets (Table 2). The prediction that 50% of type-A pro-apoptotic
genes and 67% of type-B anti-apoptotic genes are regulated by miR-224 is evi-
dence of its dual role in cell proliferation and apoptosis, and indicative that it
may have an important post-transcriptional regulatory effect in melanoma. The
role of miR-224 in stimulating proliferation is not well understood [27]. We hy-
pothesize that it may enhance proliferation by targeting some of the predicted
type-A pro-apoptotic genes. The anti-apoptotic gene API-5, recently proposed as
a target for cancer treatment [36], is known to be targeted by miR-224 [30], and
its protein product interacts with FGF-2 [31], which has in turn been observed
to have increased levels of expression in patients with haematological malignan-
cies, including lymphoma [32]. There is also evidence that miR-224 directly binds
CD40 [33], which is known to have an important role both in lymphoma [34] and
melanoma [35]. Together, these results indicate miR-224 may be an important
element in explaining the association between melanoma and non-Hodgkin lym-
phoma. Although this analysis is speculative, it brings out the model’s ability
to generate hypotheses and drive the biological analysis.
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4 Conclusions

We have introduced a graphical model which allows grouping microarray samples
and providing an interpretation basis for that grouping. The model makes the
assumption that samples are grouped in a tree structure, where nodes correspond
to hierarchical subgroups, and where each node is associated with a subset of
genes for which the corresponding samples are highly homogeneous. We applied
the model to a large miRNA data set, where it was shown to outperform other
biclustering approaches. We then provided a case study that depicts how the
model variables and information retrieval formulation can be used to direct the
biological analysis. The case study highlighted the potential role of miR-224 in
the association between melanoma and non-Hodgkin lymphoma.

The current model may be extended in several ways. While in the present
work we fixed the maximum tree depth at a specific level, selection of the ap-
propriate depth may be conducted by recurring to cross-validation measures or
by enhancing the model with an automatic depth selection capability. The as-
sumption that each sample chooses a single path allows for the use of a flexible
prior over trees that also makes computations feasible. This assumption can be
relaxed, although it may lead to slower mixing during inference. Finally, alter-
native feature activation models may be devised, incorporating notions such as
e.g. pathway enrichment among genes activated throughout the same edges.
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Abstract. Emerging research demonstrates the potential of protein-
protein interaction (PPI) networks in uncovering the mechanistic bases
of cancers, through identification of interacting proteins that are co-
ordinately dysregulated in tumorigenic and metastatic samples. When
used as features for classification, such coordinately dysregulated sub-
networks improve diagnosis and prognosis of cancer considerably over
single-gene markers. However, existing methods formulate coordination
between multiple genes through additive representation of their expres-
sion profiles and utilize greedy heuristics to identify dysregulated sub-
networks, which may not be well suited to the potentially combinatorial
nature of coordinate dysregulation. Here, we propose a combinatorial
formulation of coordinate dysregulation and decompose the resulting ob-
jective function to cast the problem as one of identifying subnetwork
state functions that are indicative of phenotype. Based on this formula-
tion, we show that coordinate dysregulation of larger subnetworks can
be bounded using simple statistics on smaller subnetworks. We then use
these bounds to devise an efficient algorithm, Crane, that can search
the subnetwork space more effectively than simple greedy algorithms.
Comprehensive cross-classification experiments show that subnetworks
identified by Crane significantly outperform those identified by greedy
algorithms in predicting metastasis of colorectal cancer (CRC).

1 Introduction

Recent advances in high-throughput screening techniques enable studies of com-
plex phenotypes in terms of their associated molecular mechanisms. While
genomic studies provide insights into genetic differences that relate to certain
phenotypes, functional genomics (e.g., gene expression, protein expression) helps
elucidate the variation in the activity of cellular systems [1]. However, cellu-
lar systems are orchestrated through combinatorial organization of thousands
of biomolecules [2]. This complexity is reflected in the diversity of phenotypic
effects, which generally present themselves as weak signals in the expression
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profiles of single molecules. For this reason, researchers increasingly focus on
identification of multiple markers that together exhibit differential expression
with respect to various phenotypes [3,4].

Network-based approaches to identification of multiple markers. High-
throughput protein-protein interaction (PPI) data [5] provide an excellent
substrate for network-based identification of multiple interacting markers.
Network-based analyses of diverse phenotypes show that products of genes that
are implicated in similar phenotypes are clustered together into “hot spots”
in PPI networks [6,7]. This observation is exploited to identify novel genetic
markers based on network connectivity [8,9,10]. For the identification of differ-
entially expressed subnetworks with respect to GAL80 deletion in yeast, Ideker
et al. [11] propose a method that is based on searching for connected subgraphs
with high aggregate significance of individual differential expression. Variations
of this method are shown to be effective in identifying multiple genetic markers
in prostate cancer [12], melanoma [13], diabetes [14], and others [15,16,17].

Coordinate/synergistic dysregulation. Network-based approaches are fur-
ther elaborated to capture coordinate dysregulation of interacting proteins at a
sample-specific resolution [18]. Ulitksy et al. [19] define dysregulated pathways as
subnetworks composed of products of genes that are dysregulated in a large frac-
tion of phenotype samples. Chuang et al. [20] define subnetwork activity as the
aggregate expression of genes in the subnetwork, quantify the dysregulation of a
subnetwork in terms of the mutual information between subnetwork activity and
phenotype, and develop greedy algorithms to identify subnetworks that exhibit
significant dysregulation. Subnetworks identified by this approach are also used
as features for classification of breast cancer metastasis, providing significant im-
provement over single-gene markers [20]. Nibbe et al. [21,22] show that this no-
tion of coordinate dysregulation is also effective in integrating protein and mRNA
expression data to identify important subnetworks in colon cancer (CRC). Anas-
tassiou [23] introduces the concept of synergy to delineate the complementarity
of multiple genes in the manifestation of phenotype. While identification of mul-
tiple genes with synergistic dysregulation is intractable [23], important insights
can still be gained through pairwise assessment of synergy [24].

Contributions of this study. Despite significant advances, existing approaches
to the identification of coordinately dysregulated subnetworks have important
limitations, including the following: (i) additive formulation of subnetwork activ-
ity can only highlight the coordinate dysregulation of interacting proteins that
are dysregulated in the same direction, overlooking the effects of inhibitory and
other complex forms of interactions; (ii) greedy algorithms may not be able to
adequately capture the coordination between multiple genes that provide weak
individual signals. In this paper, with a view to addressing these challenges,
we develop a novel algorithm, Crane, for the identification of Combinatorially
dysRegulAted subNEtworks. The contributions of the proposed computational
framework include the following:
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– We formulate coordinate dysregulation combinatorially, in terms of the mu-
tual information between subnetwork state functions (specific combinations
of quantized mRNA expression levels of proteins in a subnetwork) and phe-
notype (as opposed to additive subnetwork activity ).

– We decompose combinatorial coordinate dysregulation into individual terms
associated with individual state functions, to cast the problem as one of
identifying state functions that are informative about the phenotype.

– Based on this formulation, we show that the information provided on phe-
notype by a state function can be bounded from above using statistics of
subsets of this subnetwork state. Using this bound, we develop bottom-up
enumeration algorithms that can effectively prune out the subnetwork space
to identify informative state functions efficiently.

– We use subnetworks identified by the proposed algorithms to train neural
networks for classification of phenotype, which are better suited to mod-
eling the combinatorial relationship between the expression levels of genes
in a subnetwork, as compared to classifiers that require aggregates of the
expression profiles of genes as features (e.g., SVMs).

We describe these algorithmic innovations in detail in Section 2.

Results. We implement Crane in Matlab and perform comprehensive cross-
classification experiments for prediction of metastasis in CRC. These experi-
ments show that subnetworks identified by the proposed framework significantly
outperform subnetworks identified by greedy algorithms in terms of accuracy of
classification. We also investigate the highly informative subnetworks in detail
to assess their potential in highlighting the mechanisms of metastasis in CRC.
We present these results in Section 3 and conclude our discussion in Section 4.

2 Methods

In the context of a specific phenotype, a group of genes that exhibit signifi-
cant differential expression and whose products interact with each other may
be useful in understanding the network dynamics of the phenotype. This is be-
cause, the patterns of (i) collective differential expression and (ii) connectivity
in protein-protein interaction (PPI) network are derived from independent data
sources (sample-specific mRNA expression and generic protein-protein interac-
tions, respectively). Thus, they provide corroborating evidence indicating that
the corresponding subnetwork of the PPI network may play an important role
in the manifestation of phenotype. In this paper, we refer to the collective dif-
ferential expression of a group of genes as coordinate dysregulation. We call a
group of coordinately dysregulated genes that induce a connected subnetwork
in a PPI network a coordinately dysregulated subnetwork.

Dysregulation of a gene with respect to a phenotype. For a set V of
genes and U of samples, let Ei ∈ R|U| denote the properly normalized [25] gene
expression vector for gene gi ∈ V , where Ei(j) denotes the relative expression
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Fig. 1. Additive vs. combinatorial coordinate dysregulation. Genes (g) are shown as
nodes, interactions between their products are shown as edges. Expression profiles
(E) of genes are shown by colormaps. Dark red indicates high expression (H), light
green indicates low expression (L). None of the genes can differentiate phenotype and
control samples individually. Aggregate subnetwork activity (average expression) for
each subnetwork is shown in the row below its gene expression matrix. The aggregate
activity of S1 can perfectly discriminate phenotype and control, but the aggregate
activity of S2 cannot discriminate at all. For each subnetwork S1 and S2, each column of
the gene expression matrix specifies the subnetwork state in the corresponding sample.
The states of both subnetworks can perfectly discriminate phenotype and control (for
S2, up-regulation of g7 alone or g5 and g6 together indicates phenotype; we say state
functions LLH and HHL are indicative of phenotype).

of gi in sample sj ∈ U . Assume that the phenotype vector C annotates each
sample as phenotype or control, such that Cj = 1 indicates that sample sj is
associated with the phenotype (e.g., taken from metastatic sample) and Cj = 0
indicates that sj is a control sample (e.g., taken from a non-metastatic tumor
sample). Then, the mutual information I(Ei; C) = H(C) − H(C|Ei) of Ei and
C is a measure of the reduction of uncertainty about phenotype C due to the
knowledge of the expression level of gene gi. Here, H(X) = −

∑
x∈X p(x) log p(x)

denotes the Shannon entropy of discrete random variable X with support X . The
entropy H(Ei) of the expression profile of gene gi is computed by quantizing Ei

properly. Clearly, I(Ei; C) provides a reasonable measure of the dysregulation
of gi, since it quantifies the power of the expression level of gi in distinguishing
phenotype and control samples.

Additive coordinate dysregulation. Now let G = (V , E) denote a PPI net-
work where the product of each gene gi ∈ V is represented by a node and each
edge gigj ∈ E represents an interaction between the products of gi and gj . For a
subnetwork of G with set of nodes S ⊆ V , Chuang et al. [20] define the subnet-
work activity of S as ES =

∑
gi∈S Ei/

√
|S|, i.e., the aggregate expression profile

of the genes in S. Then, the dysregulation of S is given by I(ES ; C), which is a
measure of the reduction in uncertainty on phenotype C, due to knowledge of
the aggregate expression level of all genes in S. In the following discussion, we
refer to I(ES ; C) as the additive coordinate dysregulation of S.
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Combinatorial coordinate dysregulation. Additive coordinate dysregula-
tion is useful for identifying subnetworks that are composed of genes dysregu-
lated in the same direction (either up- or down-regulated). However, interactions
among genes and proteins can also be inhibitory (or more complex), and the dys-
regulation of genes in opposite directions can also be coordinated, as illustrated
in Figure 1. Combinatorial formulation of coordinate dysregulation may be able
to better capture such complex coordination patterns.

To define combinatorial coordinate dysregulation, we consider binary rep-
resentation of gene expression data. Binary representation of gene expression
is commonly utilized for several reasons, including removal of noise, algorith-
mic considerations, and tractable biological interpretation of identified patterns.
Such approaches are shown to be effective in the context various problems, rang-
ing from genetic network inference [26] to clustering [27] and classification [28].
Ulitsky et al. [19] also use binary representation of differential expression to iden-
tify dysregulated pathways with respect to a phenotype. There are also many
algorithms for effective binarization of gene expression data [29]. For our pur-
poses, let Êi denote the binarized expression profile of gene gi. We say that gene
gi has high expression in sample sj if Êi(j) = H and low expression if Êi(j) = L.
Then, the combinatorial coordinate dysregulation of subnetwork S is defined as

I(FS ; C) = H(C) − H(C|Ê1, Ê2, ..., Êm), (1)

where FS = {Ê1, Ê2, ..., Êm} ∈ {L, H}m is the random variable that represents
the combination of binary expression states of the genes in S and m = |S|.

The difference between additive and combinatorial coordinate dysregulation
is illustrated in Figure 1. Anastassiou [23] also incorporates this combinato-
rial formulation to define the synergy between a pair of genes as ψ(g1, g2) =
I(Ê1, Ê2; C)−(I(Ê1; C)+I(Ê2; C)). Generalizing this formulation to the synergy
between multiple genes, it can be shown that identification of multiple genes with
synergistic dysregulation is an intractable computational problem [23]. Here, we
define combinatorial coordinate dysregulation as a more general notion than syn-
ergistic dysregulation, in that coordinate dysregulation is defined based solely
on collective differential expression, whereas synergy explicitly looks for genes
that cannot individually distinguish phenotype and control samples.

Subnetworks that exhibit combinatorial coordinate dysregulation with respect
to a phenotype may shed light into the mechanistic bases of that phenotype.
However, identification of such subnetworks is intractable, and due to the combi-
natorial nature of the associated objective function (I(FS ; C)), greedy algorithms
may not suit well to this problem. This is because, as also demonstrated by the
example in Figure 1, it is not straightforward to bound the combinatorial coor-
dinate dysregulation of a subnetwork in terms of the individual dysregulation
of its constituent genes or coordinate dysregulation of its smaller subnetworks.
Motivated by these considerations, we propose to decompose the combinato-
rial coordinate dysregulation of a subnetwork into individual subnetwork state
functions and show that information provided by state functions of larger sub-
networks can be bounded using statistics of their smaller subnetworks.
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Subnetwork state functions informative of phenotype. Let fS ∈ {H, L}m

denote an observation of the random variable FS , i.e., a specific combination of
the expression states of the genes in S. By definition of mutual information, we
can write the combinatorial coordinate dysregulation of S as

I(FS ; C) =
∑

fS∈{H,L}m

J(fS ; C) (2)

where
J(fS ; C) = p(fS)

∑
c∈{0,1}

p(c|fS) log(p(c|fS)/p(c)). (3)

Here, p(x) denotes P (X = x), that is the probability that random variable X
is equal to x (similarly, p(x|y) denotes P (X = x|Y = y)). In biological terms,
J(fS ; C) can be considered a measure of the information provided by subnetwork
state function fS on phenotype C. Therefore, we say a state function fS is
informative of phenotype if it satisfies the following conditions:

– J(fS ; C) ≥ j∗, where j∗ is an adjustable threshold.
– J(fS ; C) ≥ J(fR; C) for all fR � fS . Here, fR � fS denotes that fR is a

substate of state function fS , that is R ⊆ S and fR maps each gene in R to
an expression level that is identical to the mapping provided by fS .

Here, the first condition ensures that the information provided by the state func-
tion is considered high enough with respect to a user-defined threshold. It can be
shown that for any S ⊆ V , 0 ≤ J(fS ; C) ≤ max{−p(c) log p(c),−(1−p(c)) log(1−
p(c))} = jmax(p(c)) [30], where p(c) denotes the fraction of phenotype samples
among all available samples. Therefore, in practice, we allow the user to specify
a threshold j∗∗ in the range [0, 1] and adjust it as j∗ = j∗∗jmax(p(c)), to make
the scoring criterion interpretable and uniform across all datasets. The second
condition ensures that informative state functions are non-redundant, that is, a
state function is considered informative only if it provides more information on
the phenotype than any of its substates can. This restriction ensures that the
expression of each gene in the subnetwork provides additional information on the
phenotype, capturing the synergy between multiple genes to a certain extent.
For a given set of phenotype and control samples and a reference PPI network,
the objective of our framework is to identify all informative state functions.

Algorithms for the identification of informative state functions. Since
the space of state functions is very large, the problem of discovering all informa-
tive state functions is intractable. Here, we address this challenge by utilizing a
bound on the value of J to effectively prune the search space. Our approach is in-
spired by a similar result by Smyth and Goodman [31] on information-theoretic
identification of association rules in databases. In the following theorem, we show
that the information that can be provided by all superstates of a given state func-
tion can be bounded based on the statistics of that state function, without any
information about the superstate.
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Theorem 1. Consider a subnetwork S ⊆ V and associated state function fS.
For any fR � fS , the following bound holds:

J(fR; C) ≤ p(fS) max
c∈{0,1}

{
p(c|fS) log

1
p(c)

}
= Jbound(fS , C). (4)

The proof of this theorem is provided in the supplementary materials [30]. Note
that this theorem does not state that the J-value of a state function is bounded
by the J-value of its smaller parts, it rather provides a bound on the J-value of
the larger state function based on simpler statistics of its smaller parts. Using
this bound, we develop an algorithm, Crane, to efficiently search for informative
state functions. Crane enumerates state functions in a bottom-up fashion, by
pruning out the search space effectively based on the following principles:

1. A state function fS is said to be a candidate state function if |S| = 1 or
J(fS ; C) ≥ J(fS\{gi}; C) for all gi ∈ S.

2. A candidate state function fS is said to be extensible if Jbound(fS ; C) ≥ j∗.
This restriction enables pruning of larger state functions using statistics of
smaller state functions.

3. An extension of state function fS is obtained by adding one of the H or L
states of a gene gi ∈ V \ S such that gigj ∈ E , where gj is the most recently
added gene to fS . This ensures network connectivity of the subnetwork as-
sociated with the generated state functions.

4. For an extensible state function, all possible extensions are considered and
among those that qualify as candidate state functions, the top b state func-
tions with maximum J(.) are selected as candidate state functions. Here, b
is an adjustable parameter that determines the breadth of the search and
the case b = 1 corresponds to a greedy algorithm.

5. An extensible state function fS is not extended if |S| = d. Here, d is an
adjustable parameter that determines the depth of the search.

Crane enumerates all candidate state functions that qualify according to
these principles, for given j∗, b, and d. At the end of the search process, the
candidate state functions that are not superceded by another candidate state
function (the leaves of the enumeration tree) are identified as informative state
functions, if their J-value exceeds j∗. A detailed pseudo-code for this procedure
is given in the supplementary materials [30].

Using state functions to predict metastasis in cancer. An important ap-
plication of informative state functions is that they can serve as features for
classification of phenotype. Since the genes that compose an informative state
function are by definition highly discriminative of phenotype and control when
considered together, they are expected to perform better than single-gene fea-
tures [20]. Note here that Crane discovers specific state functions that are
informative of phenotype, as opposed to subnetworks that can discriminate phe-
notype or control. However, by Equation 2, we expect that a high J(fS , C) for
a specific state function fS is associated with a potentially high I(FS , C) for
the corresponding subnetwork S. Therefore, for the application of Crane in
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Fig. 2. Neural network model used to utilize subnetworks identified by Crane for clas-
sification. Each subnetwork is represented by an input layer neuron and these neurons
are connected to a single output layer neuron.

classification, we sort the subnetworks that are associated with discovered state
functions based on their combinatorial coordinate dysregulation I(FS , C) and
use the top K disjoint (non-overlapping in terms of their gene content) subnet-
works with maximum I(FS , C) as features for classification. In the next section,
we report results of classification experiments for different values of K.

Deriving representative features for subnetworks is a challenging task. Using
simple aggregates of individual expression levels of genes along with traditional
classifiers (e.g., regression or SVMs) might not be adequate, since such repre-
sentations may not capture the combinatorial relationship between the genes in
the subnetwork. For this reason, we use neural networks that incorporate sub-
network states (FS) directly as features. The proposed neural network model is
illustrated in Figure 2. In the example of this figure, two subnetworks are used
to build the classifier. Each input is the expression level of a gene and the inputs
that correspond to a particular subnetwork are connected together to an input
layer neuron. All input layer neurons, each representing a subnetwork, are con-
nected to a single output layer neuron, which produces the output. Each layer’s
weights and biases are initialized with the Nguyen-Widrow layer initialization
method (provided by Matlab’s initnw parameter). Then for a given gene ex-
pression dataset for a range of control and phenotype samples (which, in our
experiments, is identical to that used for identification of informative state func-
tions), the network is trained with Levenberg-Marquardt backpropagation (using
Matlab’s trainlm parameter), so that, given expression profiles in the training
dataset, the output of the second layer matches the associated phenotype vector
within minimal mean squared error. This learned model is then used to perform
classification tests on a different gene expression dataset for the same phenotype.

3 Results and Discussion

In this section, we evaluate the performance of Crane in identifying state func-
tions associated with metastasis of colorectal cancer (CRC). We first compare
the classification performance of the subnetworks associated with these state
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functions against single gene markers and subnetworks identified by two greedy
algorithms that aim to maximize additive and combinatorial coordinate dysreg-
ulation. Then, we inspect the subnetworks that are useful in classification, and
discuss the insights these subnetworks can provide into metastatis of CRC.

Datasets. In our experiments, we use two CRC related microarray datasets ob-
tained from GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/
geo/index.cgi). These datasets, referenced by their accession number in the
GEO database, include the following relevant data:

– GSE6988 contains expression profiles of 17,104 genes across 27 vs. 20 col-
orectal tumor samples with and without liver metastasis, respectively.

– GSE3964 contains expression profiles of 5,845 genes across 28 vs. 18 colorec-
tal tumor samples with and without liver metastasis, respectively.

The human protein-protein interaction data used in our experiments is obtained
from the Human Protein Reference Database (HPRD), http://www.hprd.org.
This dataset contains 35023 binary interactions among 9299 proteins, as well
as 1060 protein complexes consisting of 2146 proteins. We integrate the binary
interactions and protein complexes using a matrix model (e.g., each complex is
represented as a clique of the proteins in the complex), to obtain a PPI network
composed of 42781 binary interactions among 9442 proteins.

Experimental design. For each of the datasets mentioned above, we discover
informative state functions (in terms of discriminating tumor samples with or
without metastasis) using Crane. While state functions that are indicative of
either metastatic or non-metastatic phenotype can have high J(.) values, we use
only those that are indicative of (i.e., knowledge of which increases the likelihood
of) metastatic phenotype for classification and further analyses, since such state
functions are directly interpretable in terms of their association with metastasis.
In the experiments reported here, we set b = 10, and d = 6. The value of j∗∗ is
set to 0.5, that is subnetwork state functions that have at least as half as the
maximum achievable J-value for the given dataset are considered informative.
Note that these parameters are used to balance the trade-off between computa-
tional cost of subnetwork identification and classification accuracy. The reported
values are those that provide reasonable performance by spending a reasonable
amount of time on subnetwork identification (a few hours in Matlab for each
dataset). To binarize the gene expression datasets, we first normalize the gene
expression profiles so that each gene has an average expression of 0 and standard
deviation 1. Then we set the top α fraction of the entries in the normalized gene
expression matrix to H (high expression) and the rest to L (low expression). In
the reported experiments, we use α = 0.25 (25% of the genes are expressed on
an average) as this value is found to optimize the classification performance.

Implementation of other algorithms. We also use two greedy algorithms
to identify coordinately dysregulated subnetworks, one of which aims to maxi-
mize additive coordinate dysregulation [20], while the other aims to maximize
combinatorial coordinate dysregulation. We implement the greedy algorithms to

http://www.ncbi.nlm.nih.gov/geo/index.cgi
http://www.ncbi.nlm.nih.gov/geo/index.cgi
http://www.hprd.org
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Training: GSE6988, Testing: GSE3964 Training: GSE3964, Testing: GSE6988

Fig. 3. Classification performance of subnetworks identified by Crane in predicting
colon cancer metastasis, as compared to those identified by greedy algorithms that
aim to maximize combinatorial or additive coordinate dysregulation, as well as single-
gene markers. Subnetworks identified by Crane and greedy combinatorial algorithm
are used to train neural networks (NNs), while those identified by the greedy additive
algorithm are used to train NNs, as well as support vector machines (SVMs). In the
graphs, horizontal axes show the number of disjoint subnetwork features (with maxi-
mum combinatorial or greedy coordinate dysregulation) used in classification, vertical
axes show the area under ROC curve achieved by the corresponding classifier.

identify a subnetwork associated with each gene in the network by seeding the
greedy search process from that gene. The greedy algorithms grow subnetworks
by iteratively adding to the subnetwork a network neighbor of the genes that are
already in the subnetwork. At each iteration, the neighbor that maximizes the
coordinate dysregulation of the subnetwork is selected to be added. Once all sub-
networks are identified, we sort these subnetworks according to their coordinate
dysregulation (I(ES ; C) or I(FS ; C)) and use the top K disjoint subnetworks
to train and test classifiers, for different values of K. The binarization scheme
for greedy identification of combinatorially dsregulated subnetworks is identical
to that for Crane. While quantizing ES to compute I(ES ; C), as suggested
in [20], we use �log2(|U|)� + 1 bins where |U| denotes the number of samples.
Note that, in [20], the subnetworks identified by the greedy algorithm are filtered
through three statistical tests. In our experiments, these statistical tests are not
performed for the subnetworks discovered by any of the three algorithms.

The design of classifiers for combinatorially dsregulated subnetworks identi-
fied by the greedy algorithm is also identical to that for subnetworks identified
by Crane. For the subnetworks with additive coordinate dysregulation, we com-
pute the subnetwork activity ES for each subnetwork, and use these as features to
train and test two different classifiers: (i) a support vector machine (SVM) using
Matlab’s svmtrain and svmclassify functions (this method is not applicable
to combinatorial coordinate dysregulation), (ii) feed-forward neural networks,
in which each input represents the subnetwork activity for a subnetwork and
these inputs are connected to hidden layer neurons. For the single-gene mark-
ers, we rank all genes according to the mutual information of their expression
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profile with phenotype (I(Ei; C)) and use the expression level of K genes with
maximum I(Ei; C) as features for classification.

Classification performance. We evaluate the cross-classification performance
of the subnetworks in the context of predicting metastasis of CRC. Namely, we
use subnetworks discovered on the GSE6988 dataset to train classifiers and we
test the resulting classifiers on GSE3964. Similarly, we use subnetworks discov-
ered on GSE3964 to train classifiers using the same dataset and perform testing
of these classifiers on GSE6988. The cross-classification performance of subnet-
works discovered by an algorithm is not only indicative of the power of the
algorithm in discovering subnetworks that are descriptive of phenotype, but also
the reproducibility of these subnetworks across different datasets.

The classification performance of the subnetworks identified by Crane and
greedy algorithms is compared in Figure 3. In the figure, for each 1 ≤ K ≤ 20,
the ‘Area Under ROC Curve’(AUC) is reported for each classifier. AUC is a
measure of the overall performance of a classifier, which accounts for the trade-
off between the precision (selectivity) and recall (sensitivity) of predictions. Here,
precision is defined as the fraction of true positives among all samples classified
as phenotype by the classifier, while recall is defined as the fraction of true
positives among all true phenotype samples. AUC is a measure of the average
precision across varying values of recall and an AUC of 1.0 indicates that the
classifier provides perfect precision without sacrificing recall (or vice versa).

As seen in Figure 3, subnetworks identified by Crane significantly outper-
form the subnetworks identified by other algorithms in predicting metastasis of
colorectal cancer. In fact, in both cases, Crane has the potential to deliver 100%
accuracy using very few subnetworks. While we use a simple feature selection
method here for purposes of illustration, the performance of Crane subnet-
works are quite consistent, suggesting that these performance figures can indeed
be achieved by developing elegant methods for selection of subnetwork features.
These results are rather impressive, given that the best performance that can be
achived by the greedy additive algorithm is 91% and 93% for the classification
of GSE3964 and GSE6988, respectively. On the other hand, the greedy algo-
rithm for combinatorial coordinate dysregulation is outperformed by the greedy
additive algorithm on the classification of GSE3964 and performs quite poorly
compared to Crane. These results show that, besides the combinatorial formu-
lation of coordinate dysregulation, the search algorithm implemented by Crane

Table 1. Five subnetworks that are associated with the most informative state func-
tions discovered on GSE6988

Rank
Proteins Comb. Coor. Most Significantly Enrichment

Dysregulation Enriched Process p-value

1 CASP1, LMNA, CTCF, APP, APBA1 1.00 Cell Adhesion 1 × 10−6

2 JAK2, STAT5A, IL7R, STAT3, IL2RA 0.96 Lymphocyte Proliferation 1 × 10−9

3 TRAF1, CFLAR, NFKB1, FBXW11, NFKBIB 0.96 Inflammation 1 × 10−8

4 CD9, KIT, BTK, WAS, NCK1 0.96 Cell Adhesion 1 × 10−4

5 XRCC5, VAV1, ARGHDIA, RAC2, NOS2A 0.96 Inflammation 1 × 10−4
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also adds to the power of identified subnetworks in discriminating metastatic
and non-metastatic samples.

Effect of parameters. We also investigate the effect of parameters used to con-
figure Crane on classification performance, by fixing all but one of the param-
eters to the above-mentioned values and varying the remaining parameter. The
results of these experiments are given in detail in supplementary materials [30].
To summarize, we observe that classification performance is quite robust against
variation in α ranging from 10% to 40%. As expected, classification performance
improves by increasing j∗∗, but values of j∗∗ as low as 0.15 still provide nearly
65% average classification accuracy. While increasing d improves performances
as would be expected, this improvement saturates for d > 3 and performance
declines for larger subnetworks. This observation can be attributed to curse of
dimensionality, since the number of possible values of random variable F grows
exponentially with increasing subnetwork size. Finally, while larger b improves
classification performance in general by increasing the breadth of the search, we
observe some exceptions to this behavior (e.g., the average performance for b = 3
appears to be higher than that for b = 5).

Subnetworks and state functions indicative of metastasis in CRC. Can-
cer metastasis involves the rapid proliferation and invasion of malignant cells
into the bloodstream or lymphatic system. The process is driven, in part, by the
dysregulation of proteins involved in cell adhesion and motility [32], the degra-
dation of the extracellular matrix (ECM) at the invasive front of the primary
tumor [33], and is associated with chronic inflammation [34]. An enrichment
analysis of the top five subnetworks identified on GSE6988 reveals that all of
these subnetworks are highly significant for the network processes underlying
these phenotypes (Table 1).

Further, as CRC metastasis is our classification endpoint, we wanted to eval-
uate our subnetworks in terms of their potential to propose testable hypotheses.
In particular, to highlight the power of our model approach, we choose a subnet-
work for which at least one gene was expressed in the state function indicative of
CRC metastasis. This subnetwork contains TNFSF11, MMP1, BCAN, MMP2,
TBSH1, and SPP1 and the state function LLLLLH (in respective order) indicates
metastatic phenotype with J-value 0.33. The combinatorial dysregulation of this
subnetwork is 0.72, while its additive coordinate dysregulation is 0.37, i.e., this
is a subnetwork which would likely have escaped detection by the greedy method
based on additive dysregulation (this subnetwork is not listed in Table 1 since
it is not among the top five scoring subnetworks). Using the genes in this sub-
network as a seed, we construct a small subnetwork diagram for the purpose
of more closely analyzing the post-translational interactions involving these pro-
teins. This is done using Metacore, a commercial platform that provides curated,
highly reliable interactions. From this subnetwork, we remove all genes indicated
to be not expressed in human colon by the database, and then selectively prune
it in order to clearly focus on a particular set of interactions (Figure 4). It merits
noting that although Brevican (BCAN) is in subnetwork, it is removed for being



92 S.A. Chowdhury et al.

Fig. 4. Hypothesis-driver subnetwork - interaction diagram illustrating key interactions
with gene products from a subnetwork identified by Crane as indicative of CRC metas-
tasis. Shown are the gene products in discovered subnetwork (red circles) and their
direct interactions with other proteins. Green lines represent an activating interaction,
red lines indicate an inhibitory interaction. Arrows indicate direction of interaction.
Inset is the expression pattern of subnetwork proteins at the level of mRNA.

non-expressed in the human colon, although evidence from the Gene Expression
Omnibus (see accession GDS2609) casts doubt on this, as does the microarray
we use for scoring (GSE6988).

As seen on the interaction diagram, SPP1 (Osteopontin) and TBSH1 (Throm-
bosponidin 1) interact with a number of the integrin heterodimers to increase
their activity (green line). Integrin heterodimers play a major role in mediating
cell adhesion and cell motility. SPP1, up-regulated in metastasis (see inset in
Figure 4), is a well-studied protein that triggers intracellular signaling cascades
upon binding with various integrin heterodimers, promotes cell migration when
it binds CD44, and when binding the alpha-5/beta-3 dimer in particular, pro-
motes angiogenesis, which is associated with the metastatic phenotype of many
cancers [35]. MMP proteins are involved in the breakdown of ECM, particu-
larly collagen which is the primary substrate at the invasive edge of colorectal
tumors [36]. MMP-1 has an inhibitory effect on Vitronectin (red line), hence
the loss of expression of MMP-1 may “release the brake” on Vitronectin, which
in turn may increase the activity of the alpha-v/beta-5 integrin heterodimer.
Likewise, MMP-2 shows an inhibitory interaction with the alpha-5/beta-3
dimer, which may counteract to some extent the activating potential of SPP1,
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suggesting that a loss of MMP-2 may exacerbate the metastatic phenotype.
Taken together, these interactions suggest a number of perturbation exper-
iments, perhaps by pharmacological inhibition or siRNA interference of the
integrin dimmers or MMP proteins, to evaluate the role of these interactions, in-
dividually or synergistically, in maintaining the metastatic phenotype. Note also
that, alpha-v/beta-5 integrin does not exhibit significant differential expression
at the mRNA-level, suggesting that the state function identified by Crane may
be a signature of its post-translational dysregulation in metastatic cells.

4 Conclusion

We present a novel framework for network based analysis of coordinate dysreg-
ulation in complex phenotypes. Experimental results on metastasis of colorectal
cancer show that the proposed framework can achieve almost perfect perfor-
mance when discovered subnetworks are used as features for classification. These
results are highly promising in that the state functions that are found to be infor-
mative of metastasis can also be useful in modeling the mechanisms of metastasis
in cancer. Detailed investigation of the state functions and the interactions be-
tween proteins that together compose state functions might therefore lead to
development of novel hypotheses, which in turn may be useful for development
of theurapetic intervention strategies for late stages of cancer.
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Abstract. Comprehensive characterization of a proteome defines a fun-
damental goal in proteomics. In order to maximize proteome coverage for
a complex protein mixture, i.e. to identify as many proteins as possible,
various different fractionation experiments are typically performed and
the individual fractions are subjected to mass spectrometric analysis. The
resulting data are integrated into large and heterogeneous datasets. Pro-
teome coverage prediction refers to the task of extrapolating the number
of protein discoveries by future measurements conditioned on a sequence
of already performed measurements. Proteome coverage prediction at
an early stage enables experimentalists to design and plan efficient pro-
teomics studies. To date, there does not exist any method that reliably
predicts proteome coverage from integrated datasets. We present a gen-
eralized hierarchical Pitman-Yor process model that explicitly captures
the redundancy within integrated datasets. We assess the proteome cov-
erage prediction accuracy of our approach applied to an integrated pro-
teomics dataset for the bacterium L. interrogans and we demonstrate
that it outperforms ad hoc extrapolation methods and prediction meth-
ods designed for non-integrated datasets. Furthermore, we estimate the
maximally achievable proteome coverage for the experimental setup un-
derlying the L. interrogans dataset. We discuss the implications of our
results to determine rational stop criteria and their influence on the de-
sign of efficient and reliable proteomics studies.

1 Introduction

Recent developments in mass spectrometry based proteomics have enabled bi-
ologists to comprehensively characterize proteomes, the protein inventories of
biological samples [1]. To achieve extensive proteome coverage, a range of differ-
ent experiments have to be carefully planned and extensively repeated. Proteome
coverage prediction denotes the task of estimating the expected yield of protein
discoveries upon experiment repetitions. This task is essential to guide experi-
mental planning and to infer maximal coverage for a particular series of experi-
ments. Here we present a generalized hierarchical Pitman-Yor process to reliably
predict proteome coverage for multidimensional fractionation experiments.
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The most successful strategy to achieve extensive proteome coverage is re-
ferred to as shotgun proteomics. Briefly, proteins are biochemically extracted
from a biological sample and are enzymatically digested to yield a complex en-
semble of peptides. Protein and/or peptide ensembles are optionally further frac-
tionated according to physical/chemical/biological properties (multidimensional
fractionation). Tandem mass spectrometry is then used to sample and identify
individual peptide species present in the resulting ensembles and to finally re-
cover the set of proteins initially present in the biological sample [2] (Fig. 1).

The capacity of mass spectrometers limits the number of peptides possibly
identified at a time. Due to this constraint it is by far too difficult to identify the
entirety of species in a peptide ensemble arising after enzymatic digestion of a
typical complex biological sample such as a complete proteome. Two experimen-
tal routes are pursued to circumvent this limitation and to enable comprehen-
sive characterization of a complex peptide ensemble. First, peptide ensembles
are fractionated into a multitude of less complex and, therefore, more tractable
ensembles before being analyzed by tandem mass spectrometry and second, ex-
periments are extensively repeated. Popular fractionation schemes separate pep-
tides with respect to properties such as e.g. size or isoelectric point. Reversed
phase liquid chromatography (LC) is the most common fractionation technique

m/z

...

time

ππ t-1= i ππ t  | ππ t-1= i 

IEF

LC-
MS/
MS

Fig. 1. Illustration of a typical multidimensional fractionation experiment. The ini-
tial root peptide ensemble obtained from the biological source is separated by some
fractionation method (e.g. isoelectric focussing (IEF)), giving rise to a set of related
peptide ensembles. LC-MS/MS analysis is performed for each of these fractions. Liquid
chromatography fractionation generates a sequence of child peptide ensembles from the
root ensemble. Each of these ensembles is derived from the root ensemble by pooling
peptides of similar polarity. The sequence of ensembles features descending overall po-
larity in the course of the experiment. During the experiment peptides πt are drawn
from the sequence of ensembles and analyzed by the mass spectrometer coupled to
the liquid chromatography system and subsequently identified computationally. We
propose a non-parametric Bayesian approach to characterize the distributions gov-
erning the peptide ensembles. We simulate further experiments and thereby predict
proteome coverage by sampling from these peptide distributions. For details please
refer to section 2.
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and separates peptide ensembles according to hydrophobicity and is typically
directly coupled to a tandem mass spectrometry system (LC-MS/MS). Mul-
tidimensional fractionation strategies comprise multiple steps of fractionation,
typically fractionation according to some physico-chemical property other than
hydrophobicity followed by LC-MS/MS analysis. (Fig. 1). Shotgun proteomics
studies that achieved significant proteome coverage for a variety of organisms
have shown to build on extensive repetition of multidimensional fractionation
experiments (see e.g. [3]).

Methods for proteome coverage prediction estimate the expected number of
peptide/protein discoveries when experiments are repeated. Proteome coverage
prediction is essential for rational experimental planning of shotgun proteomics
studies. Projects aiming at extensive proteome coverage require a considerable
amount of experimentation. Proteome coverage should ideally increase efficiently
with consecutive experiments. The choice between competing experimental se-
tups should thus be guided by their potential to increase proteome coverage.
Methods for proteome coverage prediction enable to rationally determine the
optimal setup. Proteome coverage prediction furthermore enables to estimate
the maximal coverage as well the volume of experiments required to achieve this
coverage.

Proteome coverage prediction and related tasks have not been addressed un-
til recently. Fenyo et al. conducted simulation studies to generally investigate
how fractionation of peptide or protein ensembles might affect the efficiency of
shotgun proteomics experiments [4]. Brunner et al. roughly estimated upper and
lower bounds for proteome coverage from a real data set by assuming worst/best
case scenarios [3]. Recently, an infinite Markov model based on Dirichlet pro-
cesses [5] has been proposed to characterize LC-MS/MS experiments and for
the first time to predict proteome coverage for one dimensional fractionation
experiments [6].

In practice, it is highly desirable to predict proteome coverage of multidi-
mensional fractionation experiments since these strategies have shown to have
the largest potential to map out a proteome. However, there does not exist any
method for proteome coverage prediction of these experiments. This task is par-
ticularly challenging since the proteomes represented by each fraction overlap to
an unknown extent. Proteome coverage prediction methods for multidimensional
fractionation experiments have to account for this phenomenon.

In this paper we generalize the non-parametric approach to characterize pep-
tide distributions arising in LC-MS/MS experiments [6] to further enable
proteome coverage prediction from integrated datasets compiled from multidi-
mensional fractionation experiments. Specifically, we propose a novel generalized
hierarchical Pitman-Yor process [7,8] with self-referential base measures that
addresses the issue of distribution overlap which is introduced by the fraction-
ation preceding the LC-MS/MS analysis. Besides the possibility to characterize
peptide distributions arising in the course of multidimensional fractionation ex-
periments, this approach also lends itself to characterize the biologically more
relevant protein distributions. We assess our method on a set of 24 experiments
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from multidimensional fractionation of a L. interrogans whole proteome sample
and report better performance than ad hoc extrapolation schemes and other ap-
proaches designed for one dimensional fractionation experiments. We discuss our
results with respect to maximally achievable proteome coverage from a peptide-
as well as protein-centric perspective.

2 Methods

The following sections give technical background and details on the hierarchi-
cal Pitman-Yor process framework for proteome coverage prediction based on
integrated datasets. Briefly, our approach characterizes the peptide/protein dis-
tributions arising in a multidimensional fractionation experiment and simulates
further experiments by sampling from these distributions. Proteome coverage is
predicted by counting the number of novel peptide/protein discoveries in the
simulations. In the following sections we will assume a peptide-centric view for
clarity, i.e. consider peptide distributions instead of its protein counterparts.
Note that peptides, by virtue of being protein fragments, also refer to protein
identities. Therefore, the following sections can also be read by consequently
substituting peptides with proteins. Complications arising from peptides am-
biguously referring to several protein identities are discussed in section 4.

2.1 Pitman-Yor Processes

We apply Pitman-Yor Processes to characterize peptide distributions arising in
the course of a series of proteomics experiments. In the following we briefly
review the concept of Pitman-Yor Processes in the context of this work.

Like the Gaussian distribution is an appropriate distribution for a real valued
random variable in numerous applications, the Pitman-Yor process frequently
is an appropriate distribution for complex objects such as discrete distributions
[9]. Loosely spoken, Pitman-Yor processes are suited as priors over discrete dis-
tributions that are expected to have most of their probability mass on a small
number of atoms and only little probability mass on the vast majority of atoms
[8]. As various proteomics studies have shown that protein/peptide frequencies
exhibit such a property (see e.g. [10]), we use Pitman-Yor processes as priors for
distributions G over a set Π of peptides defined by a protein database of the
studied organism.

G | γ, d, H ∼ PY(γ, d, H) (1)

where PY(γ, d, H) is a Pitman-Yor process with a concentration parameter γ,
a discount parameter d and a base probability measure H . The base measure is
defined over Π (sample space). H is frequently chosen uniform, assigning 1/|Π |
probability mass to each π ∈ Π .

The so called Chinese Restaurant construction [11,12] provides an intuitive
way to see which kind of distributions are likely to be drawn from a Pitman-Yor
process PY(γ, d, H). Imagine a restaurant with an infinite number of tables. At
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each table a specific dish is served. We construct a distribution G over dishes after
having seated an infinite number of customers. Customers are seated according
to a probabilistic rule. Specifically, the probability of the t-th customer being
seated at the table serving dish πt = k assumes the values

P (πt = k | π1, ..., πt−1, γ, d, H) =

{
nk−d
t−1+γ populated table
γ+kd

t−1+γ next unpopulated table
(2)

where nk corresponds to the number of customers already sitting at the table
serving dish i. In case a customer happens to be seated at a new table, the dish
served at this table is drawn from the base probability measure H . A procedural
description of serving a new customer in a restaurant with seating arrangement
R = n1, n2... is as follows:

Seat(R, γ, d, H)
1 t ← SampleTable(R, γ, d)
2 if t �= new
3 then return Dish(R, t)
4 else return Sample(H)

The larger the concentration parameter γ, the higher the chances that a new
customer is seated at a new table. The more customers have already been seated,
the less likely a new dish will be served. The larger the discount parameter d the
less likely a customer is seated at an already populated table. Note that d < 1. In
summary, the parameters γ and d control, though in different ways, the deviation
of G from the base measure H . The Chinese Restaurant construction specifies the
posterior to iteratively sample from πt | π1, ..., πt−1, γ, d, H after marginalizing
out G.

Pitman-Yor Processes are generalizations of the more commonly known Dirich-
let processes [11,13]. More precisely, a Dirichlet Process DP(γ, H) is equivalent
to a Pitman-Yor process PY(γ, d, H) with d = 0. Both Dirichlet and Pitman-Yor
processes will be used as priors for peptide distributions that arise in the course
of a multidimensional fractionation experiment. After having estimated the pro-
cess parameters we will simulate further experiments by sampling according to
the Chinese Restaurant construction.

2.2 Hierarchical Process Model for Multidimensional Fractionation
Experiments

In the following we characterize the distributions which arise in a multidimen-
sional fractionation experiment. We specifically describe a typical setup that com-
prises two consecutive fractionation steps, where the first step splits the initial
peptide ensemble into a set of I fractions that are each analyzed by LC-MS/MS
(Fig. 1). Besides enforcing consistency along subsequent fractionation steps using
hierarchical processes, we further want our model to explicitly capture the simi-
larity of corresponding peptide distributions across different fractions.
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The initial peptide ensemble follows the root distribution G. We assume a
Pitman-Yor process prior PY(γr, dr, H) for G. The base measure H is chosen to
be the uniform distribution over the peptides defined by the protein database of
the studied organism.

Peptides are not directly sampled from the root distribution G. Consider
some time point t during the LC-MS/MS analysis of fraction i. The peptide πi

t is
sampled from the child peptide distribution Gi

t of the peptide ensemble currently
eluting from the liquid chromatography column. Following [6] we assume that
the precedent peptide πi

t−1 := j is indicative for the current polarity of the
chromatography and thereby the current peptide distribution, i.e. with a slight
abuse of notation we assume Gi

t = Gi
j . Further we assume a Dirichlet process

prior for Gi
j , resulting in an infinite Markov model for LC-MS/MS experiments

similar to [6].

Gi
j | γi

c, A
i
j ∼ DP(γi

c, A
i
j)

πt | πi
t−1 =j ∼ Gi

j (3)

We want the child distributions Gi
j to be consistent with the root distribution

G, i.e. we want to ensure that peptides having zero probability mass in the
initial peptide ensemble still have zero probability mass during an LC-MS/MS
experiment. This notion is captured by choosing G as base measure Ai

j in (3),
yielding a hierarchical process [7]. This choice ensures (1) that Gi

j is consistent
with G, i.e. the support of Gi

j is enclosed by the support of G and (2) that Gi
j

will have similarity to G to an extent defined by the concentration parameter γi
c.

Furthermore, we want to capture the similarity between Gi
j and its corresponding

distributions Gi′

j in all other fractions i′ �= i. Therefore we extend the base
measure Ai

j in (3) to a (self-referential) linear combination of the distributions
(Gi′

j )I
i′=1 and G.

Ai
j = ai

iG +
∑
i′ �=i

ai
i′G

i′

j (4)

Since the values ai := (ai
i′)

I
i′=1 are not known beforehand, it is natural to treat

them as a random discrete distribution with a Dirichlet process prior. The ai
i

reflect the dissimilarity of fraction i from the other fractions by controlling the
rate of sampling peptides directly from the root distribution G. We account
for their distinguished role by putting prior weight αi

a on ai
i and incorporating

this parameter by assuming for the ai a biased (in the sense of [6]) Dirichlet
process prior DPi(γi

a, αi
a, M) with uniform base measure M := (1/I)1..I . In the

following, we will refer to the ai as the adapter distributions.
The self-referential base measures Ai

j are a crucial component of this process
since they capture the important overlap of peptide distributions across the
fractions j arising in a multidimensional fractionation experiment. The step from
the simple base measure G as described in [6] to the self-referential base measure
enables to appropriately characterize the peptide distributions describing such
an experiment.
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Putting together the precedent considerations we fully characterize the stochas-
tic source of a in a multidimensional fractionation experiment by

G | γr, dr, H ∼ PY(γr, dr, H)
ai | γi

a, αi
a, M ∼ DPi(γi

a, αi
a, M)

Gi
j | γi

c, A
i
j ∼ DP(γi

c, A
i
j)

πt | πi
t−1 =j ∼ Gi

j (5)

Note that it is straightforward to assume Pitman-Yor process priors for all dis-
tributions. This choice though comes at the cost of additional parameters that
have to be learned from data. In this work we wanted to focus on robustness
and therefore we decided to keep the priors of the child distributions as simple
as possible.

2.3 Sampling Sequences of Protein Identifications

This section describes a nested, recursive Chinese Restaurant construction to
sample peptides from the hierarchical process model with self-referential base
measures given an already observed series π of already observed peptides, i.e.
how to simulate further experiments.

For each distribution in the hierarchical process model we have a restaurant
representation, i.e. a seating arrangement. Specifically, we denote the restaurants
corresponding to the Gi

j as Rc
ij = (nc

ijk)K
k=1, those to the aj as Ra

i = (na
ii′)

I
i′=1

and the root restaurant as Rr = (nk)K
k=1. To keep the notation uncluttered we

incorporate the prior weights αi
a into the counts na

ii and respectively Ra
i . R

denotes the set of all restaurants. Note that a set of seating arrangements R
implies a series π of observed identifications. We further summarize the set of
parameters by θ := (γr, dr, γ

1
a, ..., γI

a, γ1
c , ..., γI

c ).
For a given set of seating arrangements R we now want to sample the identi-

fication πt for fraction i and preceding identification πt−1 = j. Verbally, we first
have to iterate the Chinese Restaurant construction for the corresponding child
distribution. In case this iteration triggers a sampling event of its base measure,
we have to determine which of its mixture components is to be sampled. There-
fore we iterate the Chinese Restaurant construction of the corresponding adapter
distribution. Subsequently, either the root restaurant or, recursively, some of the
sibling child restaurants of another fraction is iterated. This procedure can sum-
marized as shown below.

SampleIdentification(i, j, R, θ, H, M)
1 π ← Seat(Rc

ij , γ
i
c, 0, 0) // sample child

2 if π = 0
3 then i′ ← Seat(Ra

i , γi
a, 0, M) // sample adapter

4 if i′ �= i
5 then π ← SampleIdentification(i′, j, R, θ, H, M)
6 else π ← Seat(Rr, γr, dr, H) // sample root
7 return π
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The nested, recursive Chinese Restaurant construction serves to simulate fur-
ther experiments, i.e. to sample more peptides given an already observed series
π of peptides and will be useful in the following section to derive a likelihood
function for paramater estimation.

2.4 Empirical Bayes Parameter Estimate

Parameters of the hierarchical process model from section 2.2 can be estimated
from a series π of identifications by empirical Bayes inference, i.e. by choosing
the parameters to maximize a likelihood function LR̂.

θ̂ := arg max
θ

LR̂(θ) (6)

In the following we will specify LR̂. Sampling a series π of identifications reduces
to iterate various Chinese Restaurant constructions according to the probabilities
in (2). We can define a likelihood function LR(θ) for a set of seating arrangements
R, or the corresponding series π of identifications.

LR(θ) = Lcr(Rr, γr, dr) ·
I∏

i=1

Lcr(Ra
i , γi

a) ·
J∏

j=1

Lcr(Rc
ij , γ

i
c) (7)

where Lcr(R, γ, d)/Lcr(R, γ) corresponds to the likelihood of achieving a seating
arrangement R in a single restaurant representation of a Pitman-Yor/Dirichlet
process sample with parameters γ, d/γ. Note that prior weights αi

a of the adapter
processes are appropriately incorporated into Ra

i and they are therefore not
explicitly listed.

Lcr(R, γ, d) =
∏K

k=1(γ + kd) ·
∏nk

n=1(n − d)∏N
n=1(n + γ)

(8)

with N =
∑K

k=1 nk and K corresponding to the number of populated tables.
We do observe the series π of identifications. Though we only have incom-

plete knowledge about R. We observe the seating arrangements Rc
ij of the child

processes.

nc
ijk =

∣∣πi
t : (πi

t−1 = j) ∧ (πi
t = k)

∣∣ (9)

where the πi
t ∈ πi denote identifications observed exclusively in fraction i. We

do not directly observe Rr and the Ra
i . We present a sparse estimate for R that

is consistent with π and complies with a minimal number of seating events in
the root restaurant representation Rr of the root distribution G. Consider the
representation matrix M with entries mik equalling one if a peptide k has been
observed in fraction i or zero otherwise. We want each peptide discovery k to
be represented by some fraction fk. We further want to choose the number of
representing fractions to be as small as possible. This problem is more commonly
known as the NP-hard set cover problem [14]. We compute the fk with the greedy
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heuristic, choosing at each step the fraction which covers the largest number of
remaining different peptides. Every time the peptide k is discovered, i.e. sampled
for the first time in a child process, we choose the corresponding adapter process
to trigger a sampling event in fk. Accordingly, we estimate the hidden seating
arrangements of the adapter and root restaurant representations.

na
ii′ =

∣∣i, j, k : (fk = i′) ∧ (∃ t : (πi
t−1 = j) ∧ (πi

t = k))
∣∣

nr
k =
∣∣i, j, k : (fk = i ) ∧ (∃ t : (πi

t−1 = j) ∧ (πi
t = k))

∣∣ (10)

We finally determine the parameters θ̂ by optimizing LR̂ with a quasi-Newton
method [15]. In summary, we obtain an empirical Bayes parameter estimate from
an observed series π of identifications.

2.5 Proteome Coverage Prediction with False Identifications

At this point we can specify how to predict the number of new peptide discov-
eries for future experiments from a series π of already observed identifications.
In a first step, we estimate the parameters and hidden variables of the hierar-
chical process model (2.2) as described in the preceding section 2.4. Second, we
sample m peptide series (πnew,i)m

i=1 by means of the nested Chinese Restaurant
construction (2.3). For each πnew,i we count the number of new discoveries. The
expected proteome coverage we estimate as the mean of discovery counts across
all πnew,i.

In practice, the series π of observed peptides corresponds to a series of peptide-
spectrum matches that have been inferred computationally. Obviously peptide-
spectrum matches are not perfect. Fortunately, the fraction of false positive
peptide-spectrum matches is typically known [16,17]. Furthermore it has been
observed that false positive peptide-spectrum matches distribute in a uniform-
like manner across the protein database [6,10]. To account for false positive
peptide-spectrum matches we adaptively estimate parameters and we adaptively
sample novel peptide identifications as described in [6].

3 Results

We present results that demonstrate the proteome coverage prediction perfor-
mance of our hierarchical process model. To this end we studied a large multi-
dimensional fractionation experiment of a L. interrogans sample. We compared
to a recent approach designed for (one dimensional) LC-MS/MS experiments [6]
and to ad hoc extrapolation methods. We further extrapolated proteome cover-
age for the L. interrogans sample to make statements about maximal coverage.

We studied an integrated dataset acquired from multidimensional fraction-
ation experiments for the bacterium L. interrogans. After protein extraction
and tryptic digestion, the resulting peptide mixture was fractionated according
to the isoelectric point of the peptides by off gel electrophoresis and each of
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Fig. 2. Proteome coverage prediction performance by cross validation. Training
datasets generated by subsampling the complete set of peptide-spectrum matches. Test
of prediction performance on complete dataset. (a) Hierarchical process model accuracy
in terms of root mean square deviation (rmsd) from the true progression of proteome
coverage. Columns correspond to relative training dataset size compared to the com-
plete L. interrogans. (b) Example trajectory for prediction from dataset instance with
10% relative size. Plot shows trajectory of observed (real), predicted true positive (tp)
and including false positive protein discoveries (all). (c) Performance comparison of
hierarchical process model with infinite Markov model (imm), extrapolation of log-
arithmic regression (log) and linear extrapolation of last experiment (lin). Box plot
of log odds of rmsd (log(rmsdref/rmsdcomp)) for reference and compared method (lin,
log, imm). Median log odds for comparison with the other methods are significantly
lower than zero, indicating weaker performance than our approach. The hierarchical
process model is capable to reliably predict proteome coverage from a small amount of
identifications and clearly outperforms other applicable methods.

the 24 fractions analyzed by LC-MS/MS coupled to a FT-LTQ high mass ac-
curacy instrument. Target-decoy database search with Sequest/PeptideProphet
[16] resulted in 59918 peptide-spectrum matches at a false discovery rate of 1%
(Schmidt et al., manuscript in preparation).

We assessed proteome coverage prediction performance in a cross validation
scenario. Briefly, we generated various training datasets of decreasing size by sub-
sampling the complete set of peptide-spectrum matches. We performed proteome
coverage prediction for each training dataset and assessed accuracy by comparing
to the real proteome coverage progression of the complete dataset. Precisely, we
generated 20 training datasets by 20 times sampling 10% of all peptide-spectrum
matches in the dataset while preserving their fraction association. We repeated
this procedure by also sampling 20, 30 or 50% of all peptide-spectrum matches,
finally obtaining 80 training datasets of varying size.

We assessed the prediction accuracy of the hierarchical process model (Fig. 2a).
Prediction accuracy is measured as root mean square deviation of predicted
and actually observed progression of proteome coverage. Proteome coverage
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corresponds to number of protein discoveries. Prediction accuracy is reason-
able already for the smallest training dataset sizes, i.e. 10% of the complete L.
interrogans dataset. Fig. 2b depicts an example prediction for the set of smallest
training datasets. As expected, prediction accuracy improves further for training
datasets of larger size. Similar results are obtained for prediction of proteome
coverage in terms of peptide discoveries (data not shown). We conclude that
our approach is able to reliably predict proteome coverage already from a small
amount of data.

We compared the hierarchical process model to other methods. We chose two
simple general purpose extrapolation methods and a method designed for pro-
teome coverage prediction of non-integrated datasets. We first considered an
extrapolation scheme that linearly extrapolated proteome coverage progression
of the last LC-MS/MS experiment of a training series. Second, we considered the
extrapolation of a logarithmic regression (y = a log x + b). We assessed predic-
tion performance on the 80 training series as described above and observed that
the hierarchical process model clearly outperforms the other methods (Fig. 2c).
These results indicate that proteome coverage prediction for integrated datasets
is a non-trivial task that is not solved satisfactory by ad hoc extrapolation meth-
ods and is different from the related task of proteome coverage prediction for
non-integrated datasets.

We estimated saturation proteome coverage for L. interrogans given the exper-
imental workflow described above. Therefore we performed proteome coverage
prediction for in silico repetition of all experiments. Proteome coverage in terms
of peptide discoveries appears to steadily increase (Fig. 3a). Proteome coverage
in terms of protein discoveries also seems to increase (Fig. 3b). This observa-
tion is however only true for all protein discoveries including the false positive
ones. Since our approach separately accounts for the contribution of false and
true positive protein discoveries (see section 2.5), we could exclusively monitor
the progression of true protein discoveries. We observe that the number of true
positive protein discoveries does not change significantly. Considering the rate
of new true positive discoveries, we effectively have reached saturation coverage
for L. interrogans.

4 Discussion

For the first time, we propose a method to predict proteome coverage for multidi-
mensional fractionation experiments. This achievement is an important enabling
step for experimentalists since multidimensional fractionation experiments so
far have the largest potential to comprehensively characterize a proteome. We
present a novel hierarchical process to characterize distributions arising in the
course of these experiments. This approach conceptionally extends methods ex-
clusively suited for single fraction experiments [6], by introducing self-referential
base measures that accommodate similarities among different experiment frac-
tions. Our approach is generic since it operates on the level of peptide or protein
distributions and, therefore, it conceptually accommodates any kind of heteroge-
neous set of fractions being analyzed by LC-MS/MS. Fractions do not necessarily
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a b

Fig. 3. Proteome coverage prediction beyond the L. interrogans dataset. Vertical lines
denote the extent of the dataset in terms of acquired peptide-spectrum matches (psm).
Trajectories correspond to predicted true positive (tp) and including false positive
discoveries (all) (a) Progression of peptide discoveries. (b) Progression of protein dis-
coveries. Protein discovery rate stagnates compared to the steadily increasing number
of peptide discoveries. The L. interrogans dataset achieves saturation coverage at the
level of protein discoveries.

have to originate from a single fractionation experiment. The considered frac-
tions might also be derived from different tissues or cell cultures as long as their
analysis is based on the same sequence database. Although we explicitly describe
an approach that accounts for two fractionation steps, it is conceptually straight-
forward to extend it from a two level to a higher level hierarchy. However, the
corresponding experimental setups are rarely encountered in practice. We show
that our model reliably predicts proteome coverage of future experiments from
a small amount of already performed experiments and clearly outperforms other
methods.

Besides providing predictions at the level of peptide discoveries, we demon-
strate that our approach yields reliable predictions of proteome coverage in terms
of protein discoveries. Specifically, we require the set of considered fragment ion
spectra to be unambiguously assigned to a protein identity to estimate future
proteome coverage. This requirement is usually met, since possible ambiguities
introduced by peptide-spectrum matches whose sequence maps to several protein
identities are typically resolved by protein inference engines, e.g. by reporting
a minimal consistent set of protein identifications [18]. It will though be inter-
esting to extend our approach to allow for ambiguity in the protein identity
assignments.

There has been considerable discussion in the past about when to consider
a proteome to be mapped out. Our approach to proteome coverage prediction
enables us to detect saturation coverage for any kind of shotgun proteomics
dataset. In this study the L. interrogans dataset reaches saturation coverage at
the level of protein discoveries. Out of 3740 proteins reported in the sequence
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database, roughly 2000 proteins can be faithfully observed — not less but also
not a lot more. This analysis is a remarkable result considering the manageable
amount of experimentation (24 LC-MS/MS runs). It should be noted that this
result is valid for the given experimental setup, such as type of protein extraction,
enzymatic digestion, fractionation method, type of mass spectrometer. Despite
the sensitive state-of-the-art approach reported here, it remains conceivable that
other experimental approaches turn out to be able to explore other parts of the
L. interrogans proteome. Their potential could though be evaluated with the
hierarchical process model presented here. Therefore the presented method is
suited to assist method development since it objectively assesses the potential
of a particular method to explore a proteome.

Characterizing more complex proteomes (e.g. human) necessitates a consid-
erably larger amount of experimentation. In this context it will be promising to
perform proteome coverage prediction for different experimental strategies at an
early stage of the project to design future experiments such that maximal pro-
teome coverage is achieved efficiently. Our approach enables for the first time to
accommodate any multidimensional fractionation strategy to perform this task.
Efficient study design will help to save costly experiments, contribute to the
reliability of the final set of protein discoveries [6,10] and furthermore enhance
subsequent directed/targeted proteomics studies [19,20].
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Abstract. STEREO is a novel algorithm that discovers cis-regulatory
RNA interactions by assembling complete and potentially overlapping
same-strand RNA transcripts from tiling expression data. STEREO first
identifies coherent segments of transcription and then discovers individ-
ual transcripts that are consistent with the observed segments given in-
tensity and shape constraints. We used STEREO to identify 1446 regions
of overlapping transcription in two strains of yeast, including transcripts
that comprise a new form of molecular toggle switch that controls gene
variegation.

1 Introduction

Evidence has recently emerged from high-throughput expression datasets that
overlapping RNA transcripts can play an important role in gene regulation. For
example, an antisense transcript can be used to regulate its corresponding sense
gene [8,3]. In budding yeast, a sense/antisense toggle has been shown to regulate
the mating type of the cell [6]. The interference of a transcript on the same strand
as a coding transcript is also sufficient to play a repressive role in the regulation
of downstream genes [10,11].

Discovering RNA transcript based cis-regulation requires the precise spatial
localization of transcripts and the identification of their overlap with other,
nearby transcripts. Contemporary algorithms for analyzing tiling microarray
identify non-overlapping segments of coherent transcription [15], but they do
not attempt to identify the transcripts that generated and potentially span the
observed segments. A genomic locus which is multiply transcribed may produce
a region of complex segmentation, but no additional resolution of such regions
into separate, overlapping transcripts can be provided by dynamic programming
or the probabilistic models used by segmentation algorithms.

We present a new algorithm, STEREO, for the computational analysis of over-
lapping transcription. STEREO is organized into two phases. The first phase im-
plements segmentation and discovers genomic intervals which are transcribed in
one of the input experiments. The identified genomic intervals are classified into
transcript or background classes using both observed probe intensities and the
� Currently: University of Colorado.

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 110–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Discovering Regulatory Overlapping RNA Transcripts 111

Fig. 1. Workflow description for segmentation and transcript recovery phases of the
STEREO algorithm. The phases operate on sequence in a genomic region tiled by a mi-
croarray. The first phase partitions the genome into segments and assigns each segment
a local transcription label. The second phase identifies clusters of transcription. For
each cluster, transcript arrangements are enumerated and evaluated, and the optimal
arrangement is chosen as the explanation for that cluster.

3′ to 5′ transcript intensity fall-off caused by reverse transcriptase processivity.
The second phase, transcript reconstruction, resolves this labeled segmentation
into consistent arrangements of explanatory RNA transcripts. STEREO performs
a combinatorial search of all possible transcripts, given the constraints of tran-
script additivity and differential expression, to yield a segmentation.

STEREO is the first algorithm to computationally discover regions of complex
transcription from segmentation, and to resolve those regions into overlapping
transcripts. Overlapping transcripts fall into two mutually-exclusive categories,
opposite and same-strand overlap, both of which may be expected to exhibit
mutual interference or other regulatory properties. Opposite-strand overlap in-
volves two transcripts transcribed from complementary DNA strands whose spa-
tial extents overlap despite their different directions. Sense/antisense pairs of
transcripts over the same gene are an example of opposite-strand overlap. Same-
strand overlap occurs when two or more transcripts transcribed from overlapping
portions of a DNA strand.

We tested STEREO on tiling expression data from two strains of yeast and
discovered 1,446 instances of transcriptional overlap. Of these, 564 (39.0%) were
overlapping in the same strand, a percentage consistent with previous esti-
mates of alternate promoter usage in known yeast coding regions [12]. North-
ern blot analysis confirmed a same-strand interaction predicted by STEREO, and
STEREO also identified opposite-strand transcripts that are organized into a novel
form of molecular toggle switch [2] that controls the state of gene variegaton.

The remainder of our paper is organized into sections that describe notation,
previous work, and experimental design (Section 2), expression segmentation and
results (Section 3), transcript discovery and results (Section 4), and a discussion
(Section 5).
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2 Preliminaries

2.1 Notation

We begin by outlining some basic notation for arrays and transcripts, shown in
Table 1. For geometric descriptions of locations along the genome, we will use
two terms: points and intervals. A point is the location of a single nucleotide in a
genome assembly. Probes map to a genome assembly as point locations, based on
the center of the interval to which their sequence is uniquely mapped. Intervals
are convex subsets of the genome, single coherent loci specified completely by
start and end positions.

Table 1. Array, segmentation, and transcript notation summary

i, j, s, t probes i, experiments j, segments s, transcripts t
xi genomic location of probe i
yij intensity of probe i in experiment j

5′
[s,t],3

′
[s,t] 5′ and 3′ ends of segment s or transcript t

|x − x′| linear distance along the genome, in bp
ts a label indicating the type of segment s
θs parameters of segment s
δit the distance |xi − 3′

t| from probe i to the 3′ end of transcript t
Ti set of transcripts that overlap probe i
γtj intensity of transcript t in experiment j
λt 3’ log-linear slope of transcript t

A breakpoint set B = (b1, . . . , bN) is an ordered list of genomic locations which
partition the genome into a set of non-overlapping intervals called segments. A
segmentation is a set of segments which partition a complete genome. For a given
set of breakpoints B, we use SB to indicate the segmentation defined by those
breakpoints. If s ∈ SB, then s is a genomic interval whose endpoints (5′

s and 3′
s)

are consecutive elements of the list B. A segmentation algorithm assigns each
segment a type ts and a set of parameters θs which provide a local description
of the probe values within that segment.

A transcript is a genomic interval, characterized by its start and end points
5′

t and 3′
t. It is a single, coherent message transcribed from the genome in one

or more cells. It may be edited or it may be present in an unedited form, in
which case it will appear as an interval when matched to the genome which pro-
duced it. Overlapping transcripts will produce complex regions of transcription.
Transcribed regions are sections of the genome which may form part or all of a
single mapped transcript or multiple adjacent and overlapping transcripts.

2.2 Prior Work

Analysis of tiling microarray data by segmentation was originally used for the
analysis of comparative genomic hybridization [15,19]. Picard et al. described
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the first dynamic-programming based segmentation algorithms for discovering
regions of copy number variation in array-CGH experiments [15]. They later ex-
tended their algorithm to provide automatic labeling of segments using a hybrid
dynamic programming/expectation maximization approach [16]. These meth-
ods derive their computational efficiency from the fundamental assumption that
the segments they identify form a non-overlapping partition of the genome into
spatially coherent intervals, an assumption which allows the use of dynamic pro-
gramming approaches to discover optimal segmentations.

Tiling microarrays are also used to measure the transcription of genomic re-
gions, and segmentation algorithms were similarly adapted to uncover consis-
tently transcribed regions in those datasets [18]. Huber et al. adapted the seg-
mentation algorithm of Picard to identify transcribed regions from tiling arrays
[7]. This method was then used in David et al., which published the first genome-
wide tiling microarray study of transcription in yeast [4]. One additional feature
of tiling microarrays was their ability to discover strand-specific transcription
through the use of strand-specific probes and experimental protocols which pre-
served the strand-specificity of the sample. The array results of David et al. were
strand-specific, and so were able to identify regions of opposite-strand overlap-
ping transcription.

Microarrays are not the only method for analyzing transcription on a genome-
wide scale and in an unbiased manner; sequencing of cDNA has been a standard
way to identifying unknown transcripts. Miura et al. sequenced expressed cDNA
tags to produce a catalog of 5′ and 3′ transcript end-points throughput the
yeast genome [12]. Sequencing measures single transcripts (and not transcribed
regions) directly, and therefore can give information about the structure of tran-
script overlaps, starting, and ending points only if the read length is long enough
relative to the transcript lengths.

The use of new, high-throughput short read sequencing machines to investi-
gate transcription has led to the recent adoption of RNA-seq as a measurement
of genome wide transcription [9,21]. RNA-seq experiments sequence fragments
of transcripts which are randomly selected from the sample. Nagalakshmi et al.
provided the first strand-insensitive view of transcription through RNA-seq in
budding yeast [13]. These results have been extended in a strand-specific manner
in related strains of yeast by Wilhelm et al. [20]. Unlike traditional sequencing,
which produces longer reads, these unpaired-end short read sequencing tech-
niques are unable to give us a full picture of the transcripts from which they were
taken and suffer from the same problem of transcript mixture as microarrays.
Some sequencing protocols produce reads which are insensitive to the strand
of the underlying transcript, requiring that downstream computational analyses
include strand-differentiation as one of their goals [14].

2.3 RNA cis-Regulation in S288C and Σ1278b

Using an array designed to probe the S288C genome at approximately 50 base-
pair resolution, we designed a set of experiments intended to reveal differences
in transcription regulation between two closely related strains of Saccharomyces
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cerevisiae: S288C and Σ1278b [5]. Each array had two channels, Cy3 and Cy5,
which were used to simultaneously measure the expression in the two strains. In
addition to the haploid (mat-α) dataset of [5], we generated diploid expression in
rich media with a technical replicate of each experiment. Treating each channel
of each array as a separate logical experiment, this design provided us with eight
total experiments on which to perform our segmentation and analysis. Data was
normalized across experiments using quantile normalization [1].

3 Segmenting Expression Using Multiple Constraints

The segmentation phase of our algorithm partitions the genome into a complete
set of non-overlapping regions. Each block, or segment, in the partition is la-
beled either ts = TRANSCRIBED or ts = BACKGROUND and assigned a set of local
parameters that model the microarray probe observations within the segment.
The segmentation considers multiple microarray experiments as input and learns
a single segmentation that jointly explains all the input experiments. Segments
may be assigned local parameters on an experiment specific basis, but the loca-
tions of the segments and the breakpoints that divide them are common across
all experiments. Each label (TRANSCRIBED and BACKGROUND) corresponds to a
model class, each with different complexities (requiring a penalty for the choice
of a more complex class). The algorithm chooses from two classes, a flat model
class that fits a mean and a variance to a given segment and represents the
BACKGROUND segment label, and a linear model class that fits a line to the log
intensities of the probes in a segment and is used to model the TRANSCRIBED la-
bel. The linear model class captures the 3′ falloff effect created by the reverse
transcriptase step of our experimental protocol. Both model classes can be rep-
resented by their log likelihood functions:

L(1)
j (x1, x2, μj , σ) =

1
2

log(σ)
∑

i:x1≤xi≤x2

(yij − μj)2

2σ2 (1)

L(2)
j (x1, x2, μj , λ, σ) = Π +

1
2

log(σ)
∑

i:x1≤xi≤x2

(yij − log(μje
δiλ))2

2σ2 (2)

Here the x1 and x2 parameters are the bounds of the segment, while xi and yij

are the location of probe i and the value of probe i in experiment j, respectively.
Π is a penalty term which corrects for the choice of the more complex (linear)
model class, and is set through training against synthetically generated data. For
a fixed pair of segment bounds, the choice of parameters for either model class
are obtained by maximizing the corresponding log likelihood functions L(1) or
L(2). For either likelihood function, we will write θ∗ ≡ argmaxθ

∑
j Lj(x1, x2, θ)

to indicate the maximum likelihood values of the parameters given the segment
boundaries x1 and x2, and L(x1, x2) ≡ L(x1, x2, θ

∗) for the log-likelihood as a
function of just the segment endpoints.
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3.1 Segmentation Phase Uses Dynamic Programming to Find an
Optimal Segmentation

The algorithm finds an optimal set of segmentation boundaries such that the
total log likelihood of all probe observations from all experiments is maxi-
mized. Since a segmentation is a partition that separates the genome into non-
overlapping regions, this can be accomplished through dynamic programming
on the recursive formulation for L.

L(x1, x2) =

⎧⎨⎩
L

(1)(x1, x2)
L

(2)(x1, x2)
maxb∈[x1,x2] L(x1, b) + L(b, x2)

(3)

The identity of any segment can be tracked by remembering which choice is
maximizing. Those segments [x1, x2] for which the L

(1)(x1, x2) is optimal are
given the BACKGROUND label, while the TRANSCRIBED label is assigned to those
for which L

(2)(x1, x2) was optimal.
We also ran an implementation of the Picard segmentation algorithm on the

S288C and Σ1278b dataset. Although this method can be easily adapted to han-
dle multiple experiments simultaneously, it lacks the ability to identify regions
with a shape other than a flat regions of transcription; instead, it separates the
sloped regions of transcription into “steps” of multiple flat segments. Therefore,
the Picard algorithm is unable to handle a key feature of our experimental proto-
col (the 3′ falloff) and unnecessarily single units of transcription into artificially
complex sets of segments.

3.2 Segmentation Phase Discovers Novel Regulatory Transcription

We also examined the tiled expression data of Bumgarner[2], where Σ1278b mu-
tants were compared. Our segmentation algorithm, when run separately on each
strand of this dataset, identified 14, 076 segments on the Watson strand and
13, 792 on the Crick strand. From the segmentation on the Watson strand, we
identified 37.0% of the tiled genome as transcribed and from the Crick strand we
identified 40.3%. Taken together, accounting for overlap, we identified 65.2% of
the complete genome sequence as transcribed. The segmentation also recovered
two noncoding transcripts whose regulatory function is related to their spatial
overlap and interference with the production of a downstream coding transcript.
In Figure 2, we show the locations of two noncoding transcripts, PWR1 and
ICR1, that implement a new type of RNA molecular toggle[2].

4 STEREO Assembles Transcripts from Expressed Segments

4.1 An Additive Model for Overlapping Transcripts

Our model for overlapping transcripts employs two key constraints. First, we
constrain same-strand overlapping transcripts that are co-expressed to display
additive expression in their region of overlap. Second, we constrain transcripts
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Fig. 2. We are able to discover noncoding transcription which is known to play a role in
the regulation both of a downstream coding transcript (FLO11) and of each other. ICR1
and PRW1 are noncoding RNAs, reported in [2], whose regulatory function is related
to their spatial overlap. The segmentation phase of our STEREO algorithm is able to find
the complete PRW1 transcript and the 3′ end of the ICR1 transcript in the Bumgarner
dataset. Regions identified as BACKGROUND are shown in grey, TRANSCRIBED regions are
shown in color. Genes are identified as arrowed boxes. The x-axis is genomic coordinates
and the y-axis is log intensity.

to display 3′ to 5′ fall off in intensity corresponding to the processivity of
reverse transcriptase in our experimental method. Our additivity constraint is
reflected in the summation in Equation 4, and the slope constraint is reflected
in the parameter λ that uniformly applies to all modeled transcripts. Equation
4 models observed intensities yij as the sum of transcript levels γtj associated
with a particular transcript t in experiment j. Equation 4 makes the assumption
that the noise of the array is log-normal, but that the transcripts themselves are
additive in the non-logarithmic-scale of the array.

yij = log(
∑
t∈Ti

γtje
λδit) + eij (4)

If we give the unit level error term a probability distribution, εij ∼ N (·; 0, σy),
we turn Equation 4 into a probabilistic model with log-likelihood function:

L(Γ, σ, λ) = −Nσ −
∑

i

∑
j

(yij − log(
∑

t∈Ti
γtje

λδit))2

2σ2 (5)

The vector of transcript intensities Γ = {γtj}, along with the transcript slope λ
and probe level variance σ, are chosen to maximize the log likelihood function
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in Equation 5. Since this equation is a non-linear function of a sum, there is
not a simple closed-form solution for the maximizing parameters. Instead, we
compute the derivatives of the log-likelihood function and maximize numerically
using gradient ascent.

4.2 Enumerating and Evaluating Overlapping Transcripts

A maximum likelihood solution to Equation 5 provides a method for finding local
parameters for a set T of overlapping transcripts. However, it does not answer
the question of how we determine T . A poor choice of T will lead to estimates
of transcript intensities that do not correspond to biological reality.

STEREO uses an enumeration-based search method to choose the transcript
arrangement T which best explains the transcribed regions that are provided as
input by the segmentation and labeling phase. We assume that the segmentation
provided to the transcript discovery phase has correctly identified the starts and
ends of transcripts as breakpoints in the segmentation, and correctly labeled each
segment as transcribed or noise. Furthermore, we assume that every transcribed
segment must be explained by at least one transcript, while noise segments will
not be explained by any transcript.

We break the problem of transcript calling into independent sub-problems,
called clusters. Each cluster is a spatially-consecutive sequence of transcribed
segments, separated from every other cluster by one or more noise segments, or
a chromosome boundary.

The STEREO algorithm first identifies the clusters corresponding to the input
segmentation of tiling microarray data. Then for each cluster, it enumerates
all possible transcript arrangements. Each cluster will have a finite number of
arrangements, since there are a finite number of breakpoints in the cluster and
we assume that the total number of transcripts does not exceed the number
of segments in the cluster. For each enumerated transcript arrangement T , we
find an optimal set of parameters ΘT ≡ 〈ΓT , λT , σT 〉 = arg max L(Γ, λ, σ) by
maximizing the log-likelihood equation of the probes within the cluster. The
penalized log-likelihood L(ΓT , λT , σT )−C(T ) then provides a score by which to
evaluate the fit of the transcript arrangement T to the cluster. The complexity
penalty C(T ) = α|T |+βcover(T ) assesses a constant penalty for the total number
of transcripts in T and for the number of overlaps cover(T ) in the arrangement.
The penalties (α and β) are chosen to optimize transcript discovery against
synthetically-generated data.

4.3 STEREO Transcript Discovery Recovers Appropriate SER3/SRG1
Transcripts

An example of known overlapping transcripts with regulatory interactions in
yeast is the SER3 gene and its upstream intergenic transcript, SRG1. The SER3
gene is involved in serine biosynthesis and under repressing conditions its pro-
moter is bound by significant levels of both TATA binding protein (TBP) and
RNA polymerase II (Pol II). The expression of a short transcript that runs
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through the SER3-proximal TATA element is associated with decreased expres-
sion of the SER3 transcript itself [10]. Furthermore, a nearly 2 kb read-through
transcript starting from the SRG1 TATA element and extending through the
entire SER3 gene itself was observed by northern analysis in the same study.

The SER3 and SRG1 genes, and their observed architecture of overlapping
transcription, provide a convenient test of our ability to estimate relative inten-
sities of overlapping transcripts. In Figure 3, we show that our tiling array data
in S288C (red) and Σ1278b (blue) around the SER3 and SRG1 locus. The figure
depicts the locations of three overlapping transcripts, shown as orange arrows:
one from the upstream SRG1 TATA element extending to the annotated start of
the SER3 gene, the second from the SER3 TATA element extending to the end
of the SER3 gene, and one 2 kb-long transcript starting from the SRG1 TATA
element and extending through the SER3 gene itself.

Using our transcript intensity estimation method we reconstructed relative
log-intensities of 4.4 and 6.3 for the A and B transcripts respectively; these val-
ues are consistent with previously reported concentrations for SRG1 and SER3
respectively [10]. Moreover, the fitted intensities are anti-correlated across cell
types, between the two measured strains of yeast. When the SRG1 transcript
drops the SER3 transcript rises, consistent with the claim that SRG1’s tran-
scription represses that of SER3.

Fig. 3. A Reconstruction of transcript intensities at the SER3/SRG1 locus. A1.
Probes included in either the SER3 or SRG1 region and in this analysis are displayed in
either red (S288C) or blue (Σ1278b) dots. Original probes from Martens et al. enriched
for the SRG1 transcript are green boxes. Putative transcripts A, B, and C are shown in
orange arrows and TATA elements with red dots. Transcript A corresponds to Martens
SRG1 transcript while transcript B corresponds to SER3 transcript. Transcript C is the
“readthrough” transcript Martens detected, extending exactly 2 kb. Transcript inten-
sity analyses were carried out for two arrangements, (A2) just the A and B transcripts
and (A3) all three transcripts. Each transcript has reconstructed intensities for both
S288C (red) and Σ1278b (blue) experimental data. B Schematics for classification of
transcript pairs, along with the total number of cases STEREO identified, within each
category.
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4.4 Identification of 1446 Overlapping Transcripts

STEREO resolved the collected S288C and Σ1278b expression datasets into 6609
transcripts. Most transcripts (5233) inferred by our method were strand single-
tons, covering a single region without a second overlapping transcript. However,
our algorithm identified 1446 regions of overlapping transcription, of which 564
were same-strand overlapping transcripts. Figure 3 Part B shows a classification
of transcript pairs into six categories depending on their relative orientation and
overlap, and gives the number of transcript pairs that fell into each category
from our dataset.

The segmentation and labeling phase has also been able to uncover over-
lapping transcript pair predictions which show differential expression between
different cell types and strains, and whose variation is consistent with potential
repressive regulatory interactions between the overlapping transcripts.

4.5 Northern Analysis of Overlapping Predictions

In order to confirm one of our predictions we chose three of the predictions
made by our algorithm to test with northern blot analysis. To facilitate north-
ern blot analysis we chose examples to test that had a larger outer transcript
with a smaller inner contained transcript that would readily be apparent in the

Fig. 4. Northern analysis was performed at YCR082W to test for the presence of
multiple overlapping transcripts. Probes were chosen to cover the first 400 bp of the
gene, shown as a blue square. The blot (A) shows two transcripts with lengths ap-
proximately 5 kb and 600 bp. These transcripts correspond (B) to two overlapping
transcripts called by the STEREO algorithm with lengths of approximately 5 kb and 300
bp. For clarity, only the Watson strand is shown. Probes in TRANSCRIBED regions are
shown in color for S288C (red) and Σ1278b (blue) data.
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experimental result. In one of the three locations tested northen blot analysis
showed same-strand overlapping transcription with transcript lengths matching
those produced by STEREO. This validated locus, YCR082W, provides a new ex-
ample of tandem overlapping transcripts previously unknown in the literature4.
Instead of reporting overlapping transcripts in this location, an alternate ex-
planation would have been two tandem transcripts aligned head-to-tail; in this
case, the transcript discovery algorithm reconstructs the more complex overlap
based on our prior distribution over transcript intensities and our belief that
higher-intensity transcripts are less likely than lower ones.

Zheng et al. have previously attempted to quantify the intensities of multiple
overlapping transcripts using a hierarchical Bayesian model [22]. Their approach
is limited, however, to the quantification of transcript intensities whose locations
have already been specificed from gene annotations or an external datasource.
Rochette et al. have reported a set of overlapping transcripts at a genome-wide
level in the parasite Leishmania [17]. These transcripts were identified by experi-
mental means (5′-RACE) in a genome significantly smaller than yeast, however,
and do not represent a comprehensive computational approach to transcript
discovery.

5 Discussion

Our STEREO algorithm contains several unique features. In the segmentation
phase, we simultaneously incorporated multiple experiments and utilized the
slope of the transcription data to identify transcribed segments. In the transcript
discovery phase we employed both additive intensity and differential expression
to evaluate likely configurations of transcripts.

STEREO also has certain limitations. While a 3′ to the 5′ intensity fall off pro-
vides a useful constraint, it also makes it more difficult to accurately locate the
5′ ends of long, low-abundance transcripts. In addition, STEREO is sometimes
unable to separate same-strand overlapping transcripts without differential ex-
pression between conditions or strains. In these cases, overlapping transcript
calling depends on our prior distributions on transcript intensities. A better
understanding of the distribution of transcript abundances will improve the ac-
curacy of our transcript reassembly algorithm. The combinatorial architecture
of gene regulation is in part implemented by RNA based cis-regulation. We are
making our set of 1446 candidate interactions available for other investigators.
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Abstract. We introduce the first polynomial-time phylogenetic reconstruction
algorithm under a model of sequence evolution allowing insertions and dele-
tions (or indels). Given appropriate assumptions, our algorithm requires sequence
lengths growing polynomially in the number of leaf taxa. Our techniques are
distance-based and largely bypass the problem of multiple alignment.
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1 Introduction

We introduce a new efficient algorithm for the phylogenetic tree reconstruction (PTR)
problem which rigorously accounts for insertions and deletions.

Phylogenetic background. A phylogenetic tree or phylogeny is a tree representing the
speciation history of a group of organisms. The leaves of the tree are typically existing
species. The root corresponds to their most recent common ancestor (MRCA). Each
branching in the tree indicates a speciation event. It is common to assume that DNA
evolves according to a Markovian substitution process on this phylogeny. Under such
a model, a gene is a sequence in {A, G, C, T}k. Along each edge of the tree, each site
independently mutates according to a Markov rate matrix. The length of a branch is a
measure of the amount of substitution along that branch1. The PTR problem consists in
estimating a phylogeny from the genes observed at its leaves. We denote the leaves of a
tree by [n] = {1, . . . , n} and their sequences by σ1, . . . , σn.

The model of sequence evolution above is simplistic: it ignores many mutational
events that DNA undergoes through evolution. At the gene level, the most important
omissions are insertions and deletions of sites, also called indels. Stochastic models
taking indels into account have long been known [1, 2], but they are not widely used in
practice—or in theory—because of their complexity. Instead, most practical algorithms
take a two-phase approach:

1. Multiple sequence alignment. Site ti of sequence σi and site tj of sequence σj are
said to be homologous if they descend from the same site t0 of a common ancestor u
only through substitutions. In the multiple sequence alignment (MSA) problem, we
seek roughly to uncover the homology relation between σ1, . . . , σn. Typically, the

1 The precise definition of a branch length depends on the model of evolution. For roughly
constant mutation rates, one can think of the branch length as proportional to the amount of
time elapsed along a branch.
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output is represented by a matrix D of n aligned sequences of equal length with val-
ues in {A, G, C, T,−}. Each column of the matrix corresponds to homologous sites.
The state − is called a gap and is used to account for insertions and deletions. For
instance if sequence σl does not have a site corresponding to t0 in u above, then a
gap is aligned with positions ti of σi and tj of σj (which belong to the same column).

2. Phylogenetic tree reconstruction. The matrix D is then cleaned up by removing
all columns containing gaps. Let D′ be this new matrix. A standard PTR algorithm
is then applied to D′. Note that substitutions alone suffice to explain D′. (In fact,
there are many other ways to deal with gaps but we do not describe them here.)

Traditionally, most of the research on phylogenetic methods has focused on the second
phase.

In fact, current theoretical analyses of PTR assume that the MSA problem has been
solved perfectly. This has been a long-standing assumption in evolutionary biology. But
this simplification is increasingly being questioned in the phylogenetic literature, where
it has been argued that alignment heuristics often create systematic biases that affect
analysis [3,4]. Much recent empirical work has been devoted to the proper joint estima-
tion of alignments and phylogenies [1, 2, 5, 6, 7, 8, 3, 9]. Here, we give the first analysis
of an efficient, provably consistent PTR algorithm in the presence of indels. Our new
algorithm suggests that a rough alignment suffices for an accurate tree reconstruction—
bypassing the computationally difficult multiple alignment problem.

Theoretical properties of PTR. In addition to computational efficiency, an important
theoretical criterion in designing a PTR algorithm is the so-called sequence-length
requirement (SLR). At a minimum, a reconstruction algorithm should be consistent,
that is, assuming a model of sequence evolution, the output should be guaranteed to
converge on the true tree as the sequence length k (the number of samples) goes to
+∞ [10]. Beyond consistency, the sequence-length requirement (or convergence rate)
of a PTR algorithm is the sequence length required for guaranteed high-probability re-
construction. The SLR is typically given as an asymptotic function of n, the number of
leaves of the tree. Of course, it also depends on the substitution parameters.

A classical result due to Erdös et al. [11] states that, for general trees under the as-
sumption that all branch lengths are bounded by constants, the so-called Short Quartet
Method (SQM) has poly(n)-SLR. The SQM is a particular PTR algorithm based on
estimating evolutionary distances between the leaf taxa, that is, the sum of the branch
lengths between species. Such algorithms are known as distance-based methods. The
basic theoretical result behind distance-based methods is the following: the collection of
pairwise evolutionary distances between all species forms a special metric on the leaves
known as an additive metric; under mild regularity assumptions, such a metric charac-
terizes the underlying phylogeny interpreted as an edge-weighted tree, that is, there is
a one-to-one correspondence between additive metrics and phylogenies; moreover, the
mapping between them can be computed efficiently [12].

A new approach. In the classical theoretical setting above where the MSA problem is
assumed perfectly solved (we refer to this setting below as the ESSW framework), the
evolutionary distance between two species is measured using the Hamming distance (or
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a state-dependent generalization) between their respective sequences. It can be shown
that after a proper correction for multiple substitutions (which depends on the model
used) the expectation of the quantity obtained does satisfy the additive metric property
and can therefore serve as the basis for a distance-based PTR algorithm.

Moving beyond the ESSW framework, it is tempting to account for indels by sim-
ply using edit distance instead of the Hamming distance. Recall that the edit distance
or Levenshtein distance between two strings is given by the minimum number of op-
erations needed to transform one string into the other, where an operation is an inser-
tion, deletion, or substitution of a single character. However, no analytical expression is
known for the expectation of edit distance under standard indel models and computing
such an expression appears difficult—if at all possible. An alternative idea is to compute
the maximum likelihood estimator for the time elapsed between two species given their
sequences. But this involves solving a nonconvex optimization problem and the likeli-
hood is only known to be efficiently computable under a rather unrealistic assumption
known as reversibility [1] (see below).

We use a different approach. We divide the sequences into quantile blocks (the first
x%, the second x%, etc.). We show that by appropriately choosing x above we can
make sure that the blocks in different sequences essentially “match” each other, that is,
they are made of mostly homologous sites. We then compare the state frequencies in
matching blocks and build an additive metric out of this statistic. As we show below, this
is in fact a natural generalization of the Hamming estimator of the ESSW framework.
However, unlike the Hamming distance which can easily be analyzed through standard
concentration inequalities, proving rigorously that our approach works involves sev-
eral new technical difficulties. Once a distance estimate is obtained, we use a standard
distance-based reconstruction method. (No new algorithm is presented here.)

Related work. For more background on models of molecular evolution and phyloge-
netics, see, e.g., [13,12,14]. Following the seminal results of [11], there has been much
work on sequence-length requirement, including [15,16,17,18,19,20,21,22,23,24,25,
26, 27, 28, 29, 30].

The multiple sequence alignment problem as a combinatorial optimization problem
(finding the best alignment under a given pairwise scoring function) is known to be NP-
hard [31, 32]. Most heuristics used in practice, such as CLUSTAL [33], MAFFT [34],
and MUSCLE [35], use the idea of a guide tree, that is, they first construct a very rough
phylogenetic tree from the data (using for instance edit distance as a measure of evo-
lutionary distance), and then recursively construct alignments over subsets of species
produced by “aligning alignments.” We point out that multiple sequence alignments are
useful in their own right—not only to reconstruct phylogenies. In fact, it may be possi-
ble to use an approach similar to ours to construct good guide trees, as described above,
and potentially obtain better alignments as a result.

To our knowledge, little theoretical work has been dedicated to the joint estimation
of alignments and phylogenies, with the exception of Thatte [36] who gave consistency
results for the reversible case in the limit where the deletion-to-insertion ratio tends to
1. However, no sequence-length requirement is obtained in [36]. In recent related work,
Andoni et al. [37] considered the problem of reconstructing ancestral sequences in the
presence of indels.
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There is a large body of empirical research on alignment-free phylogenetic recon-
struction, particularly in the context of genome-wide analyses. Such methods often
work by counting k-mers (and variants). See e.g. [38] and references therein. The
method we present here is closely related to k-mer statistics—in essence, we compute
a 1-mer statistic, but we do so on a large number of roughly aligned blocks in order to
derive more statistical power. In fact, our results can be seen as a first attempt to analyze
rigorously this type of alignment-free approach.

1.1 Model of Sequence Evolution

Phylogeny. A phylogeny is represented by a binary tree T = (V, E), whose leaves
L ⊂ V correspond to extant species, and whose bifurcations denote evolutionary events
whereby two new species are generated from an ancestor. The root of the phylogeny,
denoted by r(T ), represents the common ancestor of all the species in the phylogeny,
and we assume that all edges of T are directed away from r(T ); so, if e = (u, v) is a
branch of the phylogeny, u is the parent of v and v is the child of u. Moreover, if v′ is
in the subtree of T rooted at u, we call v′ a descendant of u and u an ancestor of v′.

Along each branch of the phylogeny, the genetic material of the parent species is sub-
ject to modifications that produce the genetic material of its child species. A common
biological assumption is that the genetic material of each species u can be represented
by a binary sequence σu = (σ1

u, . . . , σKu
u ) of length Ku over a finite alphabet—we

work here with the binary alphabet {0, 1} for simplicity2—and that the changes to
which σu is subjected along the branch e = (u, v) are described by a Markov pro-
cess. In particular, the Markov property implies that, given the sequence σu of u, the
sequence σv is independent of the sequences of the species outside the subtree of T
rooted at u.

A simplifying assumption commonly used in phylogenetics is that all species have
sequences of the same length and, moreover, that every site, i.e., every coordinate, in
their sequences evolves independently from every other site. In particular, it is assumed
that, along each branch e = (u, v) of the phylogeny, every site σj

u of the sequence σu is
flipped with probability pe to the value 1 − σj

u independently from the other sites. This
model is known as the Cavender-Farris-Neyman (CFN) model. A simple generalization
to {A, G, C, T} is known as the Jukes-Cantor (JC) model. See, e.g., [14].

Accouting for indels. In this paper, we consider a more general evolutionary process
that accounts for the possibility of insertions and deletions. Our model is similar to the
original TKF91 model [1], except that we do not enforce reversibility.3 In our model,
every edge e = (u, v) of the phylogeny is characterized by a quadruple of parameters
(te; ηe, μe, λe), where te is the evolutionary time between the species u and v, and ηe,
μe and λe are respectively the substitution, deletion and insertion rates. The process

2 We can also consider richer alphabets, e.g., {A, C, G, T}, without much modification. See jour-
nal version.

3 We do not use an immortal link and we do not assume that the length process is at stationarity.
Our techniques can also be applied to the TKF91 model without much modifications. We leave
the details to the reader.
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by which the sequence at v is obtained from the sequence at u is defined below. (The
process can be simply described as a continuous-time Markov process [39]. We give a
full description for clarity.)

Definition 1 (Evolutionary Process on a Branch). Given an edge e = (u, v), with
parameters (te; ηe, μe, λe), the sequence σv at v is obtained from the sequence σu at u
according to the following Markov procedure:

1. intialize σv := σu, Kv := Ku and t	 := te;
/*t� is the remaining time on the edge e*/

2. while t	 > 0
– let I0, I1, . . ., IKv be exponential random variables with rate λe, D1, . . ., DKv

exponential random variables with rate μe, and M1, . . ., MKv exponential ran-
dom variables with rate ηe; suppose that these random variables are mutually
independent and let T be their minimum;

– if T > t	 break; otherwise: if Ij = T , insert a new site whose value is chosen
uniformly at random from {0, 1} between the sites σj

v and σj+1
v of σv;4 if Dj =

T , delete the site σj
v from σv; and if Mj = T , replace σj

v by 1 − σj
v;

– update σv according to these changes, and update Kv to reflect the new se-
quence length; set the remaining time t	 := t	 − T ;

In words, the evolutionary process defined above assumes that every site of the sequence
σu of the parent species is, independently from the other sites, subjected to a sequence
of evolutionary events that flip its value; these events are distributed according to a Pois-
son point process of intensity ηe in the time interval [0, te]. However, the site may get
deleted and therefore not be inherited by the sequence of the node v; this is determined
by whether an exponential random variable of rate μe is smaller than te. While each site
of the parental sequence σu is subjected to this process, new sites are introduced in the
space between existing sites at rate λe, and each of these sites follows a similar process
for the remaining time.

Given the evolutionary process on a branch of the phylogeny, the evolutionary pro-
cess on the whole phylogeny is defined as follows.

Definition 2 (Evolutionary Process). Suppose that every site of the sequence σr(T ) at
the root of the phylogeny is chosen to be 0 or 1 uniformly at random. Recursively, if σu

is the sequence at node u and e = (u, v) is an edge of the phylogeny, the sequence σv at
node v is obtained from the sequence σu by an application of the evolutionary process
on a branch described by Definition 1.

For ease of exposition, we present our proof in the special case when the substitution,
insertion and deletion rates are the same on all edges of the phylogeny. We will discuss
the more general case in the journal version of the paper.

Definition 3 (Molecular Clock Assumption). Under the molecular clock assumption,
there exist η, μ and λ such that ηe = η, μe = μ and λe = λ, for all e.

Notation. In the sequel, we label the leaves of the phylogeny with the positive integers
1, 2, . . ., n, so that L = {1, . . . , n}, and the root r(T ) of the phylogeny with 0.

4 Clearly, if j = 0, then σj
v is undefined and, if j = Kv , then σj+1

v is undefined.
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1.2 Main Result

Statement of results. We begin with a consistency result.

Theorem 1 (Consistency). Assume that 0 < te, ηe < +∞, for all e ∈ E. Moreover,
assume that the indel rates satisfy λe < μe for all e ∈ E. Under these assumptions,
there exists an algorithm solving the phylogenetic reconstruction problem (that is, re-
turning the correct tree) with probability of failure approaching 0 as the sequence length
at the root of the tree goes to +∞.

Our main result is the following. For simplicity we work under the symmetric two-
state case and assume that the Molecular Clock Assumption holds. We will show in the
journal version of the paper that these assumptions are not necessary for our results to
hold.

Theorem 2 (Main Result: Two-State Ultrametric Case). Assume there exist con-
stants 0 < f, g < +∞, independent of n, such that all branch lengths te, e ∈ E, satisfy
f < te < g. Moreover, assume that ηe = η, for all e ∈ E, where η is bounded between
two constants η > 0 and η̄ < +∞ independent of n, and that the indel rates satisfy
λe = λ, μe = μ, for all e ∈ E, and λ < μ = O(1/ logn). Under the assumptions
above, there exists a polynomial-time algorithm solving the phylogenetic reconstruction

problem (that is, returning the correct tree) with probability of failure O
(
n−β′

)
, if the

root sequence has length kr = polyβ′(n).

The main contribution here is the estimation of an appropriate distance. Once this is
done, we simply use a standard reconstruction method, such as Buneman’s method [40].

Remark 1 (Branch Lengths). Our assumption that all branch lengths te, e ∈ E, satisfy
f < te < g is standard in the sequence-length requirement literature following the
seminal work of [11].

Remark 2 (Indel Rates). Under our assumptions about the branch lengths given in The-
orem 2, it follows that the evolutionary time from the root of the tree to the leaves is
Θ(log n). This implies that as long as λ < μ = O(1/ log n), a constant—independent
of n but potentially arbitrarily small, say 1 in a 100—fraction of the sites of the root
sequence “survive” all the way to the leaves of the tree with high probability. Theorem 2
implies that this constant fraction of surviving sites provides sufficient information for
the phylogenetic reconstruction problem to be solvable. On the other hand, if the indel
rates are significantly higher than 1/ logn, the sequences at the leaves of the tree may
experience wild variations in length—a case which appears difficult to analyze.

Remark 3 (Supercritical Case). For convenience, our result is stated for the case μ > λ
which is the most relevant in practice. Our algorithm can be extended easily to the cases
μ < λ and μ = λ. We leave the details to the reader.

Proof sketch. As we noted before, unlike the classical setting where the Hamming dis-
tance can be analyzed through standard concentration inequalities, proving rigorously
that our approach works involves several new technical difficulties. The proof goes
through the following steps:
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1. Sequence length and site displacements. We give bounds on how much sequence
lengths vary across the tree, through a moment-generating function argument. Us-
ing our bounds on the sequence length process, we bound the worst-case displace-
ments of the sites. Namely we show that, under our assumptions, all sites move by
at most O(

√
k log k) where k is the length of the sequence at the root.

2. Sequence Partitioning. We divide each sequence in blocks of size roughly kζ for
ζ > 1/2. From our bounds on site displacements, it follows that the blocks roughly
match across different sequences. In particular, we bound the number of homol-
ogous sites between matching blocks with high probability and show that the ex-
pected correlation between these blocks is approximately correct.

3. Expectations. We compute expectations of block statistics, which involve analyz-
ing a continuous-time Markov process. We use these calculations to define an ap-
propriate additive metric based on correlations between blocks.

4. Concentration. Finally, we show that our estimates are concentrated. The con-
centration argument proceeds by conditioning on the indel process satisfying the
high-probability conditions in the previous points.

The crux of our result is the proper estimation of an additive metric. With such an
estimation procedure in hand, we can use a standard distance-based approach to recover
the phylogeny.

Organization. The rest of the paper is organized as follows. The evolutionary distance
forming the basis of our approach is presented in Section 2. We describe our full dis-
tance estimator in Section 3 and prove its concentration in the same section. All proofs
are omitted from this extended abstract. Full proofs and extensions will be described in
the journal version of the paper.

2 Evolutionary Distances

In this section, we show how to define an appropriate notion of “evolutionary distance”
between two species. Although such distances have been widely used in prior phylo-
genetic work and have been defined for a variety of models [12, 14], to our knowledge
our definition is the first that applies to models with indels. We begin by reviewing the
standard definition in the indel-free case and then adapt it to the presence of indels. Our
estimation procedure is discussed in Section 3. Throughout, we assume μ > λ.

2.1 The Classical Indel-Free Case

Suppose first that λe = μe = 0 for all e, that is, there is no indel. In that case, the
sequence length remains fixed at k and the alignment problem is trivial. Underlying all
distance-based approaches is the following basic definition.

Definition 4 (Additive Metric). A phylogeny is naturally equipped with a so-called
additive metric on the leaves D : L × L → (0, +∞) defined as follows ∀a, b ∈ L,
D(a, b) =

∑
e∈PT (a,b) ωe, where PT (a, b) is the set of edges on the path between a and

b in T and where ωe is a nonnegative function of the parameters on e—in our case, te,
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ηe, λe, and μe. For instance, a common choice for ωe would be ωe = ηete in which
case D(a, b) is the expected number of substitutions per site between a and b. Often
D(a, b) is referred to as the “evolutionary distance” between species a and b. Additive
metrics are characterized by the following four-point condition: for all a, b, c, d ∈ L,
D(a, b) + D(c, d) ≤ max{D(a, c) + D(b, d),D(a, d) + D(b, c)}. Moreover, assuming
ωe > 0 for all e ∈ E, it is well-known that there exists a one-to-one correspondence
between D and T as a weigthed tree with edge weights {ωe}e∈E . For more background
on tree-based metrics, see [12].

Definition 4 implies that phylogenies can be reconstructed by computing D(a, b) for all
pairs of leaves a, b ∈ L. Assume we seek to estimate the evolutionary distance between
species a and b using their respective sequences. In a first attempt, one might try the
(normalized) Hamming distance between σa = (σ1

a, . . . , σk
a) and σb = (σ1

b , . . . , σk
b ).

However, the expected Hamming distance—in other words, the probability of disagree-
ment between a site of a and b—does not form an additive metric as defined in Defini-
tion 4. Instead, it is well-known that an approriate estimator is obtained by “correcting”
the Hamming distance for “multiple” substitions. Denoting by Ĥ(σa, σb) the Ham-
ming distance between σa and σb, a Markov chain calculation shows that D(a, b) =
− 1

2 log(1 − 2E[Ĥ(σa, σb)]), with the choice ωe = ηete. See e.g. [14]. In a distance-
based reconstruction procedure, one first estimates D with

D̂(a, b) = −1
2

log(1 − 2Ĥ(σa, σb)), (1)

and then applies a standard reconstruction algorithm. The sequence-length requirement
of such a method can be derived by using concentration results for Ĥ [11, 15].

2.2 Taking Indels into Account

In the presence of indels, the estimator (1) based on the Hamming distance is difficult to
apply. One has to first align the sequences, which cannot be done perfectly and causes
biases and correlations that are hard to analyze. Alternatively, one could try a differ-
ent string distance such as edit distance. However, computing the expectation of edit
distance under indel models appears difficult.

We use a different approach involving correlations between state frequencies. We
will eventually apply the estimator to large sub-blocks of the sequences (see Section 3),
but we first describe it for the full sequence for clarity. For a node u, let Ku be the
(random) length of the sequence at u and Zu, the number of 0’s in the sequence at u.
Then, our distance estimator is D̂(a, b) =

(
Za − 1

2Ka

) (
Zb − 1

2Kb

)
. We now analyze

the expectation of this quantity. For u ∈ V , we let Δu = Zu − 1
2Ku, be the deviation

of Zu from its expected value (conditioned on the sequence length).

Single channel. Suppose T is made of a single edge from the root r to a leaf a with
parameters t, η, λ, μ. Assume first that the original sequence length is kr = 1. Let Ka

be the length of the sequence at a. Then, by Markov chain calculations [41, Section
III.5], it can be shown that the moment-generating function of Ka is

F (s, t) ≡ E
[
sKa
]

=
μ(s − 1) − e(μ−λ)t(λs − μ)
λ(s − 1) − e(μ−λ)t(λs − μ)

. (2)
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By differentiating F (s, t) we can derive

E[Ka] = e−(μ−λ)t, (3)

and

Var[Ka] =
μ + λ

μ − λ
[e−(μ−λ)t − e−2(μ−λ)t]. (4)

Let K∗
a be the number of “new” sites at a, that is, excluding the original site if it

survived. (We ignore the substitutions for the time being.) The probability that the
original site survives is e−μt. Then, E [K∗

a ] = E [Ka − �{original site survives}] =
e−(μ−λ)t − e−μt, by linearity of expectation.

We now take into account the substitutions. Assume that the original sequence length
at r is a random variable Kr and that the sequence at r is i.i.d. uniform. Denote by
Zr the number of 0’s at r. The probability that a site in r, that is still surviving in a,
has flipped its value, that is, has mutated an odd number of times in time t, is p =∑+∞

j=0 e−ηt (ηt)2j+1

(2j+1)! = e−ηt sinh ηt = 1−e−2ηt

2 . Also, note that a new site created along
the path between r and a has equal chance of being 0 or 1 at the end of the path. Then,
we have:

Lemma 1 (Single Channel: Expected Deviation). E[Δa |Kr, Zr] = e−(2η+μ)tΔr.

Fork channel. Consider now a “fork” tree, that is, a root r from which emanates a single
edge eu = (r, u) which in turn branches into two edges ea = (u, a) and eb = (u, b)
(Figure 1). For x = a, b, u, we denote the parameters of edge ex by tx, λx, μx, ηx.

Lemma 2 (Fork Channel: Expected Distance). The following holds:

E

[
D̂(a, b)

]
= e−(2ηa+μa)tae−(2ηb+μb)tbe−(μu−λu)tu

kr

4
.

Molecular clock. We specialize the previous result to the Molecular Clock Assumption.
That is, we assume, for x = a, b, u, that λx = λ, μx = μ, and ηx = η. Note that by
construction ta = tb (assuming species a and b are contemporary). We denote t = ta

and t̄ = tu + ta. Denoting κ = kre−(μ−λ)t̄

4 , we then get:

r

a b

u

Fig. 1. The Fork Channel
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Lemma 3 (Molecular Clock: Expected Distance). E

[
D̂(a, b)

]
= e−(4η+μ+λ)tκ.

Letting β = 4η + μ + λ, we get that −2 log E[κ−1D̂(a, b)] = 2βt, which is the evo-
lutionary distance between a and b with the choice ωe = βte. Therefore, we define the
following estimator D̂∗(a, b) = −2 logκ−1D̂(a, b), where we assume that μ, λ, η, κ are
known.

3 Distance Computation

We now show how to estimate the evolutionary distance between two species by decom-
posing the sequences into large blocks which serve as roughly independent samples. We
use the following notation: Mt = e−(μ−λ)t, Dt = e−μt, δ = μ − λ, φ = μ + λ, and
Γt = λδ−1(1 − Mt).

Remark 4. Under our main assumptions, the quantities Mt, Dt, and Γt are essentially
constants, that is, O(1). We use this fact throughout this section.

3.1 Concentration of the Indel Process

Sequence length. We first show that the sequence length is concentrated. Let T be
single channel consisting of edge e = (r, a). Let kr be the length at r.

Lemma 4 (Single Channel: Large Deviations of Sequence Length). For all γ > 0,
there exists a constant c = c(Mt, Γt; γ) > 0, such that, for all k̂r ≥ kr, with probability

at least 1 − k̂−γ
r , it holds that Ka = krMt ± c

√
k̂r log k̂r.

Correlated sites. Now let T be the fork channel consisting of nodes r, u, a and b as in
Figure 1. Assume that a and b are contemporary, call t the time separating them from
u, and denote by Sab the number of sites in a and b that are jointly surviving from u.
These are the sites that produce correlation between the sequences at a and b. All other
sites are essentially noise. We bound the large deviations of Sab.

Lemma 5 (Fork Channel: Large Devations of Jointly Surviving Sites). Condition
on the sequence length at u being ku. Then, for all γ > 0, there exists a constant
c = c(Dt; γ) > 0, such that, for all k̂u ≥ ku, with probability at least 1− k̂−γ

u , it holds

that Sab = kuD2
t ± c

√
k̂u log k̂u.

3.2 Sequence Partitioning

From Lemma 4, it follows that the sites of the root sequence (or of an internal sequence)
remain fairly close to their expected position at the leaves. We take advantage of this
fact by dividing each sequence into blocks of size asymptotically larger than the typical
displacement implied by Lemma 4. As a result, matching blocks in different sequences
share a significant fraction of sites. Moreover, distinct blocks are roughly independent.
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�u − 2δu

�u + 2δu

exterior block boundaryinterior block boundary

blocks have length �u

sequence at u

sequence at a
blocks have length � ≈ �uMt

- the descendants of the exterior block of u encompass the whole block of a, w.h.p
- the descendants of the interior block of u fall inside the block of a, w.h.p

Under event E1:

- the windows of boundary uncertainty have length 2δuMt.

Fig. 2. Under the event E1 the descendants of the interior blocks of σu fall inside the correspond-
ing blocks of σa; the descendants of the exterior blocks of σu contain all surviving sites inside
the corresponding blocks of σa; the windows of uncertainty have length 2Mtδu

We estimate the evolutionary distance between two leaves by comparing the site fre-
quencies in matching blocks. This requires some care as we show next.

Consider the fork channel. We seek to estimate the evolutionary distance D̂(a, b) be-
tween a and b (normalized by the sequence length at u). See Figure 2 for an illustration
of the partitioning of sequences that is described next.

Partitioning the leaf sequences. Let k0 be some deterministic length (to be determined),
and consider the first k0 sites in the sequences σa and σb at the nodes a and b respec-
tively. If the sequence at a or b has length smaller than k0, we declare that our distance
estimate D̃(a, b) (see below) is +∞.

We divide the leaf sequences into L blocks of length � where � = �kζ
0�, for some

1
2 < ζ < 1 to be determined later, and L = �k0/��. We let k′

0 = �L. For all i =
1, . . . , L, we define the i-th block σa,i of a to be the subsequence of σa ranging from
position (i − 1)� + 1 to position i�. We let Za,i be the number of zeros inside σa,i and
define the block deviations Δa,i = Za,i − 	

2 , for all i = 1, . . . , L. And similarly for the
sequence at b.

Using the above notation we define our distance estimator next. Assume that L is
even. Otherwise, we can just drop the last block in the above partition. Our estimator
is the following: D̃(a, b) = 2

L

∑L/2−1
j=0 Δa,2j+1Δb,2j+1. Notice that in our summation

above we skipped every other block in our sequence partition to avoid overlapping sites
and hence decrease potential correlations between the terms in the estimator. In the rest
of this section, we analyze the properties of D̃(a, b). To do this it is helpful to consider
the sequence at u and the events that happened in the channels defined by the edges
(u, a) and (u, b).
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Partitioning the ancestral sequence. Let us choose �u to be the largest integer satisfying

�uMt ≤ �. (5)

Suppose that the sequence σu at node u is not shorter than k′
u = (L − 1)�u, and define

the i-th ancestral block σu,i of u to be the subsequence of σu ranging from position
(i− 1)�u + 1 to position i�u, for all i ≤ L − 1. Given Lemma 4, the choice of �u in (5)
is such that the blocks of u and the corresponding blocks at a and b roughly align.

In order to use the expected evolutionary distance as computed in Lemma 3, we
define an “interior” ancestral block which is guaranteed with high probability to remain
entirely “inside” the corresponding leaf block. Let δu =

⌈
L + c

Mt

√
k′

u log k′
u

⌉
, where

c is an appropriate constant. (The L = o(
√

k0) in δu is needed only when (5) is a strict
inequality.) We define the i-th (ancestral) interior block σ′

u,i of u to be the subsequence
of σu,i ranging from position (i−1)�u +δu of σu to position i�u−δu. Notice that δu ∼√

k0 log k0, while �u ∼ kζ
0 . Therefore, for k0 > k∗

0 , where k∗
0 = k∗

0(μ, λ, t, γ) > 0 is
sufficiently large, (i − 1)�u + δu � i�u − δu so that the sequence σ′

u,i is well-defined.
Also, for all i = 1, . . . , L − 1, we define x′

a,i, y′
a,i to be the position of the leftmost,

respectively rightmost, site in the sequence σa descending from the site at position
(i−1)�u + δu, respectively i�u− δu of σu. Similarly we define x′

b,i and y′
b,i. Given this

notation, we define the following “good” event

E ′
1 = {∀i ≤ L − 1 : (i − 1)� < x′

a,i, x
′
b,i < (i − 1)� + 2Mtδu,

i� − 2Mtδu < y′
a,i, y

′
b,i < i�}. (6)

Intuitively, when the event E ′
1 holds, all descendants of the interior block σ′

u,i are located
inside the blocks σa,i and σb,i respectively (and they do not shrink much).

To argue about block independence, we also define the exterior block σ′′
u,i of u to be

the subsequence of σu,i ranging from position (i− 1)�u − δu of σu to position i�u + δu

with corresponding positions x′′
a,i, y

′′
a,i, x

′′
b,i and y′′

b,i and good event E ′′
1 defined similarly

as above.
We show that the event E1 = E ′

1 ∪ E ′′
1 holds with high probability, conditioned on

the sequence length Ku at u being at least k′
u. Figure 2 shows the structure of the indel

process in the case that the event E1 holds.

Lemma 6 (Interior/Exterior Block Is Inside/Outside Leaf Block). Conditioned on

the event {Ku ≥ k′
u}, we have P[E1] ≥ 1 − 16L

(
1

k′
u

)γ

.

Block correlation. Let Sab,i be the number of common sites in the blocks σa,i and σb,i

that are jointly surviving from u. Similarly we define S′
ab,i and S′′

ab,i where, for ξ = a, b,
σ′

ξ,i (σ′′
ξ,i) denotes the subsequence of σξ ranging from position x′

ξ,i (x′′
ξ,i) to position

y′
ξ,i (y′′

ξ,i). We define a good event for Sab,i as

E2 = {∀i ≤ L − 1 : �uD2
t − 3Mtδu ≤ Sab,i ≤ �uD2

t + 3Mtδu}.

Lemma 7 (Jointly Surviving Sites in Blocks). Conditioned on the event {Ku ≥ k′
u},

we have P[E2] ≥ 1 − 18L
(

1
k′

u

)γ

.
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3.3 Estimation Guarantees

We are now ready to analyze the behavior of our estimate D̃(a, b). In this subsection
we compute the expectation and variance of D̃(a, b). We denote by I a realization of
the indel process (but not of the substitution process) on the paths between u and a, b.
We denote by E the event such that {Ku ≥ k′

u}, E1, and E2 are satisfied. Suppose that
k0 > k∗

0 .

Lemma 8 (Block Independence). Conditioning on I and E , {Δa,2j+1Δb,2j+1}L/2−1
j=1

are mutually independent.

Lemma 9 (Expected Correlation under Good Event). We have

E[Δa,iΔb,i | I, E ] =
1
4
e−4ηte−2μt�u ± O

(√
k0 log k0

)
.

Lemma 10 (Variance under Good Event). We have Var[Δa,iΔb,i | I, E ] ≤ 3
16�2.

Lemma 11 (Distance Estimate). We have

E

[
D̃(a, b) | I, E

]
=

1
4
e−(4η+μ+λ)t� ± O

(√
k0 log k0

)
,

and Var
[
D̃(a, b) | I, E

]
≤ 3

8
1

�k1−ζ
0 � �

2. In particular, for ζ > 1/2 small enough

STD
[
D̃(a, b) | I, E

]
= O

(
k

3ζ−1
2

0

)
= o(
√

k0).

3.4 Concentration

We now show that our distance estimate is concentrated. For notational convenience, we
denote by P

∗
u the probability measure induced by conditioning on the event {Ku ≥ k′

u}.
Recall that the event E is contained in {Ku ≥ k′

u}.

Lemma 12 (Concentration of Distance Estimate). Let α > 0 be such that ζ − α >
1/2, and β = 1 − ζ − 2α > 0, for ζ > 1/2 small enough. Then for k0 large enough

P
∗
u

[∣∣∣∣4� D̃(a, b) − e−(4η+μ+λ)t
∣∣∣∣ > 1

kα
0

]
≤ O

(
1

kβ
0

)
.

The proofs of Theorems 1 and 2 follow using the standard Buneman algorithm [40].
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16. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build (almost)

all trees (part 2). Theor. Comput. Sci. 221, 77–118 (1999)
17. Huson, D.H., Nettles, S.H., Warnow, T.J.: Disk-covering, a fast-converging method for phy-

logenetic tree reconstruction. J. Comput. Biol. 6(3–4) (1999)
18. Steel, M.A., Székely, L.A.: Inverting random functions. Ann. Comb. 3(1), 103–113 (1999);

Combinatorics and biology (Los Alamos, NM, 1998)
19. Csurös, M., Kao, M.Y.: Provably fast and accurate recovery of evolutionary trees through

harmonic greedy triplets. SIAM Journal on Computing 31(1), 306–322 (2001)
20. Csurös, M.: Fast recovery of evolutionary trees with thousands of nodes. J. Comput.

Biol. 9(2), 277–297 (2002)
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Abstract. Due to alternative splicing events in eukaryotic species, the
identification of mRNA isoforms (or splicing variants) is a difficult prob-
lem. Traditional experimental methods for this purpose are time con-
suming and cost ineffective. The emerging RNA-Seq technology provides
a possible effective method to address this problem. Although the ad-
vantages of RNA-Seq over traditional methods in transcriptome analysis
have been confirmed by many studies, the inference of isoforms from mil-
lions of short sequence reads (e.g., Illumina/Solexa reads) has remained
computationally challenging. In this work, we propose a method to calcu-
late the expression levels of isoforms and infer isoforms from short RNA-
Seq reads using exon-intron boundary, transcription start site (TSS) and
poly-A site (PAS) information. We first formulate the relationship among
exons, isoforms, and single-end reads as a convex quadratic program, and
then use an efficient algorithm (called IsoInfer) to search for isoforms.
IsoInfer can calculate the expression levels of isoforms accurately if all
the isoforms are known and infer novel isoforms from scratch. Our exper-
imental tests on known mouse isoforms with both simulated expression
levels and reads demonstrate that IsoInfer is able to calculate the expres-
sion levels of isoforms with an accuracy comparable to the state-of-the-art
statistical method and a 60 times faster speed. Moreover, our tests on
both simulated and real reads show that it achieves a good precision and
sensitivity in inferring isoforms when given accurate exon-intron bound-
ary, TSS and PAS information, especially for isoforms whose expression
levels are significantly high.

1 Introduction

Transcriptome study (or transcriptomics) aims to discover all the transcripts and
their quantities in a cell or an organism under different external environmental
conditions. A large amount of work has been devoted to transcriptomics, which
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includes the international projects EST [1,2], FANTOM [3], and ENCODE [4,5].
Many technologies have been introduced in recent years including array-based
experimental methods such as tiling arrays [6], exon arrays [7], and exon-junction
arrays [8,9], and tag-based approaches such as MPSS [10,11], SAGE [12,13],
CAGE [14,15], PMAGE [16], and GIS [17]. However, due to various constraints
intrinsic to these technologies, the speed of advance in transcriptomics is far
from being satisfactory, especially on eukaryotic species because of widespread
alternative splicing events.

Applying next generation sequencing technologies to transcriptomes, the re-
cently developed RNA-Seq technology is quickly becoming an important tool
in functional genomics and transcriptomics. It can be used to identify all genes
and exons and their boundaries [18,19] and to study gene functions and perform
transcriptome analysis [20]. For example, based on an unannotated genomic
sequence and millions of short reads from RNA-Seq, [21] developed a general
method for the discovery of a complete transcriptome, including the identifi-
cation of coding regions, ends of transcripts, splice junctions, splice site varia-
tions, etc. Their application of the method to S.cerevisiae (yeast) showed a high
degree of agreement with the existing knowledge of the yeast transcriptome.
Besides yeast [22,18], RNA-Seq has been applied to the transcriptome analysis
of mouse [23,24] and human [25,26]. These results demonstrate that RNA-Seq
is a powerful quantitative method to sample a transcriptome deeply at an un-
precedented resolution. Moreover, DNA sequencing technologies are under fast
development. Some of them now could provide long reads, paired-end reads,
DNA-strand-sequencing of mRNA transcripts, etc. See [27] for a comprehensive
analysis of the advantages of RNA-Seq over traditional methods in genome-wide
transcriptome analysis, and the challenges faced by this technology.

Very recently, several methods have been proposed to characterize the ex-
pression level of each transcript [28,29] using RNA-Seq data. In [28], the authors
showed that short (single-end or paired-end) read sequences cannot theoreti-
cally guarantee a unique solution to the transcriptome reconstruction problem
(i.e., the reconstruction of all expressed isoforms and their expression levels) in
general even if the reads are sampled perfectly according to the length of each
transcript (without random distortions and noise). However, under the same
assumption, the authors also showed that paired-end reads could help recon-
struct the transcripts uniquely and determine their expression levels for most
of the currently known isoforms of human, and single-end reads could allow us
to determine the expression levels correctly if all the isoforms are known. How-
ever, these results are mostly of theoretical interest because sequence read data
are random in nature and may contain noise in practice. [29] presented a more
practical way to estimate the expression levels of known isoforms. The method
uses maximum likelihood estimation followed by importance sampling from the
posterior distribution.

The availability of all the isoforms is the basis of the accurate estimation of
isoform expression levels [29], which could be used to infer all splicing variants
quantitatively and qualitatively. The variations in isoform expression levels and
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splicing are important for many studies, e.g., the study of diseases [30,31] and
drug development [32]. A lot of effort has been devoted to the identification of
transcripts/isoforms from the more traditional EST, cDNA data. Instead of a
comprehensive review, we will just name a few results below. To enumerate all
possible isoforms, a core ingredient is the splicing graph [33,34]. A predetermined
parameter “dimension” decides how many transcripts are compared simultane-
ously. The parameter is usually fixed to two, but recently, [34] extended the
method to arbitrary dimensions. There are several methods that assemble tran-
scripts from EST data using the splicing graph and its variations [35,36]. Newly
proposed experimental methods in [37,38] could be used to identify new isoforms.
However, it is still unclear whether these methods can be applied in a large scale.

RNA-Seq has shown great success in transcriptome analysis, but it has not
been used to infer isoforms. Although it is straightforward to infer the existence
of novel isoforms from RNA-Seq data that exhibit novel transcribed regions
[24,6], it is not so obvious how to use RNA-Seq data to infer the existence of
novel isoforms in known transcribed regions, because the observed reads could
be sampled from either known or unknown isoforms. The problem has remained
challenging for two reasons. The first is that RNA-Seq reads are usually very
short. The second is due to the randomness and biases of the reads sampled from
all the transcripts. In fact, to our best knowledge, there has been no published
work to computationally infer isoforms from (realistic) short RNA-Seq reads.

Due to the high combinatorial complexity of isoforms of genes with a (mod-
erately) large number of exons, the inference of isoforms from short reads (and
other available biological information) should be realistically divided into two
sub-problems. The first is to discover all the exon-intron boundaries as well as
the transcription start site (TSS) and poly-A site (PAS) of each isoform. As
mentioned above, there are several effective methods for detecting exon-intron
boundaries from RNA-Seq read data [18,19]. The identification of TSS’s and
PAS’s is an indispensable part of many large genomics projects [3,4]. The tech-
nology of GIS-PET (Gene Identification Signature Paired-End Tags) can also
be used to identify TSS-PAS pairs [17,39]. The second sub-problem is to find
combinations of exons that can properly explain the RNA-Seq data, given the
exon-intron boundary and TSS-PAS pair information.

In this paper, we are concerned with the second sub-problem in isoform infer-
ence. Assuming that the exon-intron boundary and TSS-PAS pair information
is given, we propose a method (called IsoInfer) to infer isoforms from short
RNA-Seq reads (e.g., Illumina/Solexa data). Although our method works for
single-end data and data with both single-end and paired-end reads, we will use
single-end reads as the primary source of data and paired-end reads as a sec-
ondary data which can be used to filter out false positives. We formulate the
relationship among exons, isoforms, and single-end reads as a convex quadratic
program, and design an efficient algorithm to search for isoforms. Our method
can calculate the expression levels of isoforms accurately if all the isoforms are
known. To demonstrate this, we have compared IsoInfer with the simple count-
ing method in [40,41] and the method in [29] on simulated expression levels and
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reads, and found that our method is much more accurate than the simple count-
ing method and has a comparable accuracy as the method in [29] but is 60 times
faster. Most importantly, IsoInfer can infer isoforms from scratch when they are
sufficiently expressed, by trying to find a minimum set of isoforms to explain the
read data. Our experimental tests on both simulated and real reads show that
it is possible to infer the precise combination of exons in a sufficiently expressed
isoform from RNA-Seq short read data with a reasonably good accuracy, when
accurate exon-intron boundary and TSS-PAS pair information is provided. To
our best knowledge, this is the first computational method to infer isoforms from
short RNA-Seq reads. Due to the page limit, some proofs and tables are omitted
in this extended abstract but can be found in the full paper [42]

2 Methods

2.1 Assumptions and Terminology

Traditionally, only five types of alternating splicing (AS) events have been pro-
posed, including exon skipping, mutually exclusive exons, intron retention, alter-
native donor and acceptor sites [43]. However, these events are not adequate to
describe complex AS events as more experimental knowledge has become avail-
able [44]. In this work, we describe isoforms or AS events in a much general way,
which is referred to as a “bit matrix” in [44].

Fig. 1. Expressed segments. Every exon-intron boundary introduces a boundary of
some segment. Every expressed segment is a part of an exon.

The exon-intron boundaries of a gene divide the gene into disjoint segments,
as shown in Figure 1. A segment is expressed if it has mapped reads. Thus, every
expressed isoform consists of a subset of expressed segments. Two segments are
adjacent if they are adjacent in the reference genome (i.e., they share a common
boundary). For example, in Figure 1, s2 and s3 are adjacent but s1 and s2 are
not. Any two segments may form a segment junction which is not necessarily an
exon junction in the traditional sense. For example, s2 and s3 form a segment
junction, which is not an exon junction. In the following, “junction” refers to
“segment junction” unless otherwise stated.

As stated in the introduction, we first assume that exon-intron boundaries are
known. Our second assumption is that the short reads are uniformly randomly
sampled from all the expressed isoforms (i.e., mRNA transcripts). We have to fur-
ther assume that the short reads have been mapped to the referenced genome. The
mapping of RNA-Seq reads can be done by many recent tools, e.g., Bowtie [45],
Maq [46], SOAP [47], RNA-MATE [48] and mrFAST [49]. The mapping of multi-
reads (i.e., reads that match several locations of the reference genome) is addressed
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in [24,50]. We will use Bowtie in our work due to its efficiency and accuracy. The
last assumption concerns paired-end reads, which will be stated in section 2.3.

2.2 Quadratic Programming Formulation

G denotes the set of all the genes. Each g gene defines a set of expressed segments
Sg = {s1, s2, . . . , s|Sg|} (given exon-intron boundaries), where the expressed seg-
ments are sorted according to their positions in the reference genome. The junc-
tions on this gene are all the pairs of expressed segments (si, sj), 1 ≤ i < j ≤ |Sg|.
The length of segment si is li. Denote the set of all known isoforms of this gene
as Fg. Each isoform f ∈ Fg consists of a subset of expressed segments. The ex-
pression level (i.e., the number of reads per base) of isoform f is denoted by xf .
The sum of the length of all transcripts, weighted by their expression levels, over
all genes, is L0 = C ·

∑
g∈G
∑

s∈f,f∈Fg
lsxf , for some constant C that defines the

linear relationship between the expression level and the number of transcripts
corresponding to an isoform. C can be inferred from data as shown in [24].

From now on, we will consider a fixed gene g and omit the subscript g when
there is no ambiguity. Let M be the total number of single-end reads mapped to
the reference genome and di the number of reads falling into expressed segment
si. Under the uniform sampling assumption, di is the observed value of a random
variable (denoted as ri) that follows the binomial distribution B(M, pi), where
pi = Cyili/L0 and yi =

∑
si∈f xf . Because M is usually very large, pi is very

small and Mpi is sufficiently large in most cases, the binomial distribution can be
approximated by a normal distribution N(μi, σ

2
i ), with μi = Mpi, σ

2
i = Mpi(1−

pi) ≈ Mpi = μi, similar to the approximation in [29]. Therefore, the random
variables ri−μi

σi
, for every expressed segment si, follow the same distribution

approximately. Define εi = |ri − μi|. Then, the variable ε
σi

also follows the same
distribution approximately for every si.

Let L1 denote the length of a single-end read. In order to map reads to junc-
tions, we will also think of each junction (si, sj) as a segment of length 2L1 − 2,
consisting of the last L1 − 1 bases of si and the first L1 − 1 bases of sj . Denote
the set of the junctions as J = {s|S|+1, s|S|+2, . . . , s|S|+|J|}. The relationship
among the expressed segments of gene g, its expressed isoforms, and the single-
end reads mapped to each expressed segment and junction can be captured by
the following quadratic program (QP):

min z =
∑

si∈S∪J( εi

σi
)2

s.t.
∑

si∈f xf li + εi = di, si ∈ S ∪ J

xf ≥ 0, f ∈ F

where σi is the standard deviation in the normal distribution N(μi, σ
2
i ) and will

be empirically estimated from di.
Note that if each ri follows the normal distribution strictly, then the random

variables εi

σi
is i.i.d. and thus the solution of the above QP would correspond to

the maximum likelihood estimation of the xf ’s if each σi is fixed [51], and the ob-
jective function z is a random variable obeying the χ2 distribution with freedom
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|S|+ |J |. This QP can be easily shown to be a convex QP by a simple transfor-
mation and solved in polynomial time by a public program QuadProg++ which
implements the dual method of Goldfarb and Idnani [52] for convex quadratic
programming. Since σi is unknown, we substitute

√
di for σi as an approxi-

mation. Let QPsolver denote the above algorithm for solving the convex QP
program. Given S, F, and di’s, QPsolver returns the values of xi’s and z.

When the isoforms in F are given, minimizing the objective function means
to find a combination of the expression level (xf ) of each isoform in F such that
the observed values (di’s) can be explained the best. In this case, the value of
the objective function serves as an indicator of whether the isoforms in F can
explain the observed data. More specifically, p-value(z) denotes the probability
of P (Z ≥ z), where Z is a random variable following the χ2 distribution with
freedom |S| + |J |. We empirically choose a cutoff of 0.05. If p-value(z) is less
than 0.05 we conclude that F cannot explain d.

2.3 Paired-End Reads

Figure 2(left) illustrates some concepts concerning paired-end reads. A paired-
end read consists of a pair of short (single-end) reads separated by a gap. The
figure also defines the read length, span, start position, center position and end
position of a paired-end read. If the span of a paired-end read is a random variable
following some probability distribution h(x), then three possible strategies for
generating paired-end reads will be considered in this paper.

– Strategy (a): The start position of a paired-end read is uniformly and ran-
domly sampled from all the expressed isoforms. Then the span of this paired-
end is generated following the distribution h(x). If the end position of this
paired-end read falls out of the isoform, the paired-end read is truncated
such that the end position of this read is at the end of the isoform.

– Strategy (b): The center position of a paired-end read is uniformly and
randomly sampled from all the expressed isoforms. Then the span of this
paired-end is generated following the distribution h(x). This strategy has
been adopted in [53]. Again, if the start (or end) position of this paired-
end read falls out of the isoform, the paired-end read is truncated such that
the start (or end, respectively) position of this read is at the start (or end,
respectively) of the isoform.

– Strategy (c): The end position of a paired-end read is uniformly and ran-
domly sampled from all the expressed isoforms. Then the span of this paired-
end is generated following the distribution h(x). If the start position of this
paired-end read falls out of the isoform, the paired-end read is truncated
such that the start position of this read is at the start of the isoform.

Let w1, w2, w3 be the lengths of three consecutive intervals on an isoform as
shown in Figure 2(right). When any of the strategies (a-c) is applied to generate
a certain number of paired-end reads, the following Theorem 1 gives a non-trivial
upper bound on the probability of not observing any reads with start positions
in the first interval and end positions in the third interval.
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Fig. 2. Left: A paired-end read consisting of two short reads of length L2 that are
separated by a gap. Right: Three consecutive intervals on an isoform.

Theorem 1. Suppose that the expression level of this isoform is α RPKM (i.e.,
reads per kilobase of exon model per million mapped reads [24]), and the span of
each paired-end read follows some distribution h(x). If M paired-end reads are
generated by any of the strategies (a-c), the probability that there are no paired-
end reads that have start positions in the first interval and end positions in the
third interval is upper bounded by

PM,h,α(w1, w2, w3) = (1 − P0)M ≈ e−MP0

where P0 = 10−9α
∑

0≤i<w1

∫ u(i)
l(i) h(x)dx, l(i) = w1 − i + w2, and u(i) = w1 −

i + w2 + w3.

2.4 Valid Isoforms

For a gene with expressed segments S = {s1, s2, . . . , s|S|}, an isoform f of this
gene can be expressed as a binary vector with length |S|. The ith element f [i]
of f is 1 if and only if expressed segment si is contained in f . Denote the set
of all possible binary vectors with n elements as B(n). Similarly, a single-end or
paired-end short read that is mapped to a subset S′ ⊆ S of expressed segments
can be represented as a binary vector r ∈ B(|E|) such that r[i] = 1 if and
only if si ∈ E′. A subset E′ of expressed segments is supported by single-end or
paired-end reads if there is at least one single-end or paired-end read r such that
r[i] = 1, i ∈ E′.

Although single-end reads, paired-end reads, and TSS-PAS information data
do not provide exact combinations of expressed segments of isoforms, they can
be used to eliminate many isoforms from consideration. Each of these types of
data provides some information that can be used to define a condition which
will be satisfied by all isoforms inferred by our algorithm (to be described in the
next subsection).

– Junction information. A junction (si, sj) is on an isoform f if f [i] = f [j] = 1
and f [k] = 0, i < k < j. If si and sj are adjacent, then junction (si, sj) is
an adjacent junction. An isoform satisfies condition I if all the non-adjacent
junctions on this isoform are supported by single-end short reads. In practice,
most sufficiently expressed isoforms satisfy this condition. For example, when
40 millions single-end reads with length 30bps are mapped, the probability of
an isoform with expression level 6 RPKM satisfying condition I is 99.3% and
92.8%, if this isoform contains 10 and 100 exons, respectively. See Theorem
2 below for the details.
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– Start-end segment pair information. For an isoform f , expressed segment si is
the start expressed segment of f if f [i] = 1 and f [j] = 0, 1 ≤ j < i. Expressed
segment si is the end expressed segment of f if f [i] = 1 and f [j] = 0, i <
j ≤ |S|. The TSS-PAS pair information describes the start and end expressed
segments of each isoform and will be referred to as the start-end segment pair
data. An isoform satisfies condition II if the start-end segment pair of this iso-
form appears in the given set of start-end segment pairs. If the TSS-PAS pair
information is missing, then any expressed segment can theoretically be the
start or end expressed segment. However, in this case, many short (and thus
unrealistic) isoforms could be introduced, which will make isoform inference
difficult. Therefore, when the TSS-PAS pair information is missing, we allow
an expressed segment si to be the start (or end) expressed segment of any iso-
form if there is no expressed segment sj with j < i (or i < j) such that junction
(sj , si) (or (si, sj), respectively) is adjacent or supported by some read.

– Paired-end read data. A pair of expressed segments (si, sj), i < j on an iso-
form f is an informative pair if f [i] = f [j] = 1 and PM,h,α(li+L2−1, gi,j, lj+
L2 − 1) < 0.05, assuming that the span of a paired-end read follows some
probability distribution h(x), the expression level of this isoform is α RPKM
and M paired-end reads have been mapped. Here, L2 is the read length of
a paired-end read, gi,j =

∑
i<k<j lkf [k], and PM,h,α is defined in Theorem

1. According to the theorem, if (si, sj) is informative, then the probability
that there are no paired-end reads with start positions in segment si and
end positions in segment sj is less than 0.05. A triple of expressed segments
(si, si+1, sj), i + 1 < j is an informative triple if f [i] = f [i + 1] = f [j] = 1
and PM,h,α(L2 − 1, gi,j, lj + L2 − 1) < 0.05. Similarly, (si, si+1, sj), j < i is
an informative triple if PM,h,α(L2 − 1, gj,i+1, lj +L2 − 1) < 0.05. An isoform
satisfies condition III if every informative pair or triple on this isoform is
supported by paired-end reads. A larger α makes this condition more strin-
gent. Because in many cases, two isoforms can only be distinguished by a
pair or triple of segments, it is necessary to require that every informative
pairs or triple (instead of some of them) are supported by paired-end reads.

Note that while the junction information is always available given the single-end
read data and exon-intron boundary information, the start-end segment pair
information and paired-end read data are not necessarily always available. We
define an isoform as valid if it satisfies conditions I, II and/or III whenever the
corresponding types of data are provided. The following theorem gives a lower
bound on the probability that type I condition is satisfied by an isoform.

Theorem 2. Under the uniform sampling assumption, the probability that an
isoform f consisting of t exons with expression level x RPKM satisfies type I
condition is at least (1−e−xL1M/109

)t−1, where e is the base of natural logarithm,
M the number of single-end reads mapped, and L1 the length of single-end reads.

2.5 Isoform Inference Algorithm

We now describe our algorithm, IsoInfer, for inferring isoforms. The algorithm
uses the following types of data: the reference genome, single-end short reads,
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exon-intron boundaries, TSS-PAS pairs, gene boundary information from the
reference genome annotation, and paired-end short reads. The first three pieces
of information (i.e., the reference genome, exon-intron boundaries and single-end
short reads) are required in the algorithm. If TSS-PAS pairs are not provided,
gene boundaries would be required. The flow of data processing in IsoInfer is
illustrated in Figure 3. The third step of the algorithm requires an external tool
(e.g., Bowtie [45]) to map the short reads to the reference genome and junction
sequences. In the fifth step, any two segments that are adjacent or supported
by a junction read will be clustered together. Note that, such a cluster may
contain expressed segments from more than one gene or contain only a subset
of expressed segments from a single gene, but these cases do not happen very
often. Furthermore, in each cluster, if there is a sequence of consecutive ex-
pressed segments such that every internal segment has no non-adjacent junction
with any other expressed segment other than its left or right neighbor in the se-
quence, then we will combine the expressed segments into a single segment. This
compression will be important because it reduces the problem size drastically
for some isoforms containing a very large number of expressed segments. The
details of the clustering and compression step are straightforward and omitted.

Fig. 3. The flow of data processing in algorithm IsoInfer

In the following, we give more details of the last step in IsoInfer, i.e., in-
ferring isoforms. Each cluster of expressed segments defines an instance of the
isoform inference problem. Denote such an instance as I(S, R, T, d), where S =
{s1, s2, . . . , s|S|} is the set of expressed segments in the cluster, R the set of short
(single-end and paired-end) reads mapped to the segments in the cluster, T the
set of start-end segment pairs, and d a function such that d(i), si ∈ S, denotes
the number of single-end reads mapped to segment si and d(i, j), 1 ≤ i < j ≤ |S|,
denotes the number of single-end reads mapped to junction (si, sj).

The inference procedure is summarized in Algorithm 1. It first enumerates all
the valid isoforms in step 1. However, for a cluster with a large number of ex-
pressed segments and isoforms, the number of valid isoforms could be too large
to be enumerated efficiently even though conditions I, II and/or III could be
used to filter out many invalid isoforms. Therefore, the algorithm enumerates
valid isoforms with high expression levels first, where the expression level of an
isoform is defined by the least number of single-end reads on any junction of
the isoform. The enumeration terminates when a preset number (denoted as γ)
of valid isoforms are enumerated. The parameter γ is used to avoid the rare
cases that the number of valid isoforms is too large to be handled by subsequent
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steps of IsoInfer. We set γ = 1000 by default based on our empirical knowledge
of the real data considered in section 4. For example, over 97.5%, 98.5%, and
99% cases, the number of valid isoforms is no more than 1000 in the tests on
mouse brain, liver and muscle tissues, respectively, when the exact boundary
and TSS-PAS information is extracted from the UCSC knownGene table. The
impact of the omitted isoforms is minimized because highly expressed isoforms
are enumerated first.

A short read r is validated by a set of isoforms if the set contains an isoform f
such that f [i] = 1 when r[i] = 1. A start-end segment pair is validated by a set
of isoforms if this pair is the start-end segment pair of some f in the set. A set
of isoforms is a feasible solution of I(S, R, T, d) if every read in R and start-end
segment pair in T are validated by the set. Due to possible noise in sequencing
and the incompleteness of the enumeration of valid isoforms in step 1, it may
happen that some reads or start-end segment pairs are not supported by the
set of isoforms F enumerated in step 1. Step 2 of the algorithm removes such
invalidated reads and start-end segment pairs to make F feasible.

Algorithm 1. IsoformInference. Given an instance I(S, R, T, d), the algorithm
infers a set of isoforms to explain the read data.
1: Among all segment junctions of an isoform f , denote m(f) as the minimum number

of single-end reads mapped to any of these junctions. Enumerate all the valid
isoforms f in the descending order of m(f) until a preset number (γ) of valid
isoforms is obtained. Denote the set of all the enumerated valid isoforms as F .

2: Remove all the short reads and start-end segment pairs that are not validated by
F .

3: for 5 ≤ u ≤ β do
4: w(f) ← 0 for f ∈ F .
5: for 0 ≤ m ≤ |S| − u do
6: n ← m + u.
7: V (m,n) ← BestCombination(I(m,n)).
8: For each v ∈ V (m,n), define G(v) = {f |f ∈ F, f (m,n) = v} and for each

f ∈ G(v), let w(f) = w(f) + 1/|G(v)|.
9: end for

10: Sort F by w in increasing order.
11: for f ∈ F do
12: if w(f) < 1 and F − {f} is a feasible solution of I then
13: F ← F − {f}.
14: end if
15: end for
16: end for
17: w′(f) ← 1/w(f) for f ∈ F .
18: Solve the weighted set cover instance (U,C, w′), where U = R∪T, C = {Sf |f ∈ F},

and r ∈ Sf if r is validated by f for r ∈ U for each f ∈ F by the branch-and-bound
method implemented in GNU package GLPK. Return the set of the valid isoforms
corresponding to the optimal solution of set cover.



148 J. Feng, W. Li, and T. Jiang

To find a subset of valid isoforms to explain the data, a simple idea is to try all
possible combinations of the valid isoforms in F and find a minimum combination
that can explain all the short reads, as done in procedure BestCombination (i.e.,
Algorithm 2). The procedure BestCombination gradually increases the number
of valid isoforms considered and enumerates all possible combinations of such a
number of isoforms until a preset condition is met.

Algorithm 2. BestCombination. Given an instance I(S, R, F, d), find a “best”
subset of F such that the read data can be explained by enumerating all possible
subsets of F .
1: for 1 ≤ i ≤ |S| do
2: p ← 0 and F ′ ← ∅.
3: for each F ′′ ⊂ F where |F ′′| = i and F ′′ is a feasible solution of I do
4: {z, x} ←QPsolver(I(S, F ′′, d)).
5: if p < p-value(z) then
6: p ← p-value(z) and F ′ ← F ′′.
7: end if
8: end for
9: if p ≥ 0.05 then

10: Return F ′.
11: end if
12: end for

However, it is often infeasible to enumerate all possible combinations of the
valid isoforms of a given size. When this happens, we decompose an the instance
into some sub-instances. In each sub-instance, only a subset of expressed seg-
ments are considered. More specifically, for an instance I(S, R, F, d), where F is
the set of valid isoforms enumerated, a sub-instance I(m,n) = I(S(m,n), R(m,n),
d(m,n), F (m,n)), 0 ≤ m < n ≤ |S|, is defined concerning the subset S(m,n) =
{sm+1, . . . , sn} of expressed segments of S. It is formally defined as follows. For
each f ∈ B(|S|), define f (m,n) ∈ B(n−m) and f (m,n)[i] = f [i+m], 1 ≤ i ≤ n−m.
In other words, f (m,n) denotes the sub-vector of f spanning the interval [m+1, n].
Let F (m,n) = {f (m,n)|f ∈ F}, R(m,n) = {r(m,n)|r ∈ R}, d(m,n)(i) = d(i+m), 1 ≤
i ≤ n − m, and d(m,n)(i, j) = d(i + m, j + m), 1 ≤ i < j ≤ n − m. Note that the
start-end segment information is not needed in sub-instances.

The parameter β appearing in step 3 controls the maximum size of a sub-
instance. Larger sub-instances make the results of procedure BestCombination
more reliable. However, the execution time of BestCombination increases expo-
nentially with the number of valid isoforms which grows with the size of the
sub-instance. Therefore, instead of a fixed size, a set of sub-instance sizes from
the interval [5, β] are attempted. For a fixed sub-instance size, BestCombination
is executed on each sub-instance of the size in step 7. According to the results
of BestCombination, each valid isoform is assigned a weight in Step 8 which
roughly indicates the frequency that the isoform appears in the combinations
found by BestCombination. A subset of valid isoforms with weights less than 1
are removed in steps 11-15 without making F infeasible.
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In steps 17 and 18 of the algorithm, a weighted set cover instance is con-
structed such that an optimal solution implies a subset of valid isoforms with
a minimum total weight such that all the short reads and start-end segments
can be explained. The set cover problem can be solved by using the branch-and-
bound method implemented in GNU package GLPK, since it involves only small
instances.

3 Simulation Test Results

We test IsoInfer on mouse genes. The reference genomic sequence and known
isoforms of all mouse genes are downloaded from UCSC (mm9, NCBI Build
37) [54]. All exon-intron boundaries of the known isoforms are extracted. This
dataset contains 26,989 genes and 49,409 isoforms. 16,392 (60.7%) of the genes
have only one isoform and 59 (0.2%) of the genes have more than 10 isoforms.
5830 (21.6%) of the genes have only one exon and 384 (1.4%) of the genes
have more than 40 exon-intron boundaries. For the simulation study, only genes
with at least two known isoforms are used, which result in 10,595 genes. We
further extract all the start-end segments and randomly generate relative ex-
pression levels of every isoform. Although it would be natural to assume that
expression levels follow a uniform distribution, it is reported in [55,56,57] that the
expression levels of isoforms tend to obey a log-normal distribution. Therefore,
we consider three types of distributions.

– Base10: For each isoform, a random number r following the standard normal
distribution is generated and then 10r is assigned as the relative expression
level of this isoform.

– Base2: For each isoform, a random number r following the standard normal
distribution is generated and then 2r is assigned as the relative expression
level of this isoform.

– Uniform: For each isoform, a random number r uniformly generated from
[0,1] is assigned as the relative expression level of this isoform.

Then 40M single-end and 10M paired-end short reads are randomly generated
according to the relative expression levels of the isoforms. In the simulation, we
assume that the span of a paired-end read is a random variable obeying the
normal distribution N(μ, σ2) [58] so we could evaluate the impact of the mean
and deviation of the spans of paired-end reads on the performance of IsoInfer.
Note that IsoInfer does not depend on this assumption and works for paired-end
reads drawn from any distribution.

Finally, IsoInfer is used to recover all the known isoforms using the start-
end segments and single-end and paired-end reads. In the simulation, the read
lengths of single-end and paired-end reads are 25bps and 20bps, respectively.
The parameter α is set to 1 RPKM, β = 7 and γ = 1000. We consider three
measures of the performance, sensitivity, effective sensitivity and precision. A
known isoform is recovered if it is in the output of IsoInfer. Sensitivity is defined
as the number of recovered isoforms divided by the number of all known isoforms.
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Precision is defined as the number of recovered isoforms divided by the number of
isoforms inferred. Since IsoInfer only intends to infer isoforms that are sufficiently
expressed, it is useful to consider how many sufficiently expressed isoforms are
recovered by the algorithm. Since Theorem 2 shows that an isoform with a
sufficiently high expression level is likely to satisfy condition I (i.e., all its exon-
intron junctions are supported by the read data) with high probability, we define
effective sensitivity as the number of recovered isoforms divided by the number
of known isoforms whose exon-intron junctions are supported by the read data.

3.1 Calculation of Expression Levels

To estimate the effectiveness of our QP formulation, we randomly generate
Base10 expression levels and single-end short reads on the known mouse isoforms
and check whether it can recover the correct expression levels of the known iso-
forms. For an isoform f with expression level xf and calculated expression level

x′
f , the relative difference |x′

f−xf |
xf

is used to measure the accuracy of calculation.
A simple and widely used method of calculating expression levels of isoforms is
based on counting reads mapped to its unique exons and exon junctions [41,40].
Clearly, this simple strategy fails if the isoform does not have any unique ex-
ons or exon junctions. We compare our method with the simple method (simply
denoted as Uniq in this paper) and the method based on maximum likelihood es-
timation (MLE) and importance sampling (IS) [29]. The comparison is depicted
in Figure 4.
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Fig. 4. Comparison of the accuracies of different methods in estimating isoform expres-
sion levels. The Y-axis shows the percentage of isoforms whose estimated/calculated
expression levels are within a certain relative difference range from the truth. 10 million
reads (left) and 80 million reads (right) are sampled in each of the figures.

The comparison shows that MLE followed by IS (MLE+IS) is the most accu-
rate and Uniq is the worst. IsoInfer achieves comparable performances with MLE
(followed by IS). An advantage of MLE+IS is that it also provides a 95% confi-
dence interval for each expression level estimation. On the other hand, IsoInfer
calculates the expression levels much faster than MLE+IS does (3 minutes vs 3
hours for all mouse genes on a standard desktop PC). The efficiency of IsoInfer
makes the search for novel isoforms possible.
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3.2 The Influence of the Distribution of Expression Levels

In this section, we analyze the influence of the distribution of expression levels
on the performance of IsoInfer in inferring isoforms. The distribution of the
span of paired-end reads are fixed as the normal distribution N(300, 302). The
sensitivities and precisions grouped by number of known isoforms per gene are
depicted in Figure 5.

The overall sensitivities and precisions of IsoInfer on (Base10, Base2, Uni-
form) expression levels are (39.7%,75.0%,72.5%) and (79.3%,82.1%,81.3%), re-
spectively. The sensitivities for Base10 expression levels are much lower than
those for Base2 and Uniform expression levels, because a large faction of the
isoforms are not significant expressed. The effective sensitivity of three cases
are 83.5%, 77.4% and 77.4%, respectively. Figure 5 gives detailed sensitivity,
effective sensitivity and precision of IsoInfer on genes with a certain number
of isoforms. The high effective sensitivity shown in the figure is also confirmed
by the sensitivity results on different expression levels, also given in Figure 5
which shows that isoforms with high expression levels are identified with high
sensitivities. For example, for Base10 expression levels, isoforms with expression
level above 3 (or 6) RPKM are identified with sensitivity above 56.0% (or 81.0%,
respectively).
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Fig. 5. The sensitivity (top left), effective sensitivity (top right) and precision (bottom
left) of IsoInfer on genes with a certain number of isoforms when different distributions
of expression levels are generated. The bottom right graph shows the sensitivity of
IsoInfer on different expression levels when different distributions of expression level
are applied. In the graph, the expression levels are log2 transformed. Expression level
x corresponds to 25 · 2x RPKM. The vertical line corresponds to expression level 1/8
= 3.125 RPKM.
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Fig. 6. The sensitivity (top left), effective sensitivity (top right) and precision (bottom
left) of IsoInfer on genes with a certain number of isoforms when different combinations
of type I, II and III data are provided. The bottom right graph shows the sensitivity
of IsoInfer on different expression levels when different combinations of type I, II and
III data are used. Again, the expression levels are log2 transformed. Expression level x
corresponds to 25 · 2x RPKM. The vertical line corresponds to expression level 1/8 =
3.125 RPKM.

3.3 The Importance of Start-End Expressed Segment Pairs

As mentioned before, single-end short reads are necessary for our algorithm
but start-end segment pairs and paired-end reads are optional. To estimate the
importance of the last two pieces of information, we compare the results when
different types of data are available. Four combinations are possible, denoted as
I, I+II, I+III, and I+II+III, where I, II and III correspond to single-end reads
(which provide the junction information), start-end segment pairs and paired-
end data, respectively. The combination I+III means that the single-end and
paired-end read data are available but not the start-end segment pairs. In the
simulation, Base10 expression levels are generated and the span distribution of
paired-end reads is fixed as N(300, 302). Figure 6 shows that start-end segment
pairs are much more important than paired-end reads for our algorithm. For
example, the sensitivities and precisions for combinations I+II and I+III are
(38.9%,78.5%) and (29.5%,16.5%), respectively.

3.4 The Influence of Span Distribution

The span of paired-end reads follows the normal distribution N(μ, σ2). We run
IsoInfer on different combinations of μ and σ. On each combination, 10 million
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pair-end reads are randomly generated. Since start-end segment pairs are much
more important than paired-end reads, as shown in the above subsection, the
span distribution should not have a significant influence on the inference results
when start-end segment pairs are available. This is confirmed by Tables 3 and
4 given in [42]. The precision and sensitivity of IsoInfer vary by at most 1.5%
when different span distributions are applied.

The above small effect of paired-end read data on the performance of IsoInfer
is because the parameter α is set to 1. When a large α is applied, IsoInfer trades
sensitivity for precision. For example, when the span distribution of paired-end
read is fixed as N(300, 302), if α is set to 1, the sensitivity and precision on genes
with at least 8 isoforms are 40.2% and 74.0%, respectively. The two measures will
change to 35.4% and 78.1%, respectively, when α is set to 20. The performance
of IsoInfer when α is set to different values is shown in Tables 5 and 6 of [42].

4 Recovery of Known Isoforms from Real Reads

The evaluation uses the following four data sets: (1) known mouse isoforms down-
loaded from UCSC [54], which contains 49,409 transcripts, (2) mouse mRNAs
expressed in various tissues downloaded from UCSC containing 228,779 mR-
NAs, (3) RNA-Seq data from brain, liver and skeletal muscle tissues of mouse
[24], which contains 47,781,892, 44,279,807 and 38,210,358 single-end reads for
brain, liver and muscle, respectively, and (4) 104,710 exon junctions that were
predicted by TopHat from the above RNA-Seq data for mouse brain tissue [19].

As in the simulation tests, on a specific tissue, one can only expect that
isoforms with expression levels above a certain threshold can be detected by
RNA-Seq experiments, so as to be inferred by IsoInfer. Given a set of mapped
reads, an isoform is said to be theoretically expressed if each exon except for
the first and last one of this isoform has expression level at least 1 RPKM and
every exon junction on this isoform is supported by short reads. (Note that this
does not really guarantee that the isoform is actually expressed.) The expres-
sion levels of the first and last exons are ignored here because of the possible
3′ and 5′ sampling biases in RNA-Seq [27,24]. The theoretically expressed iso-
forms among known mouse isoforms and mRNAs are used as benchmarks. Note
that the benchmarks change when different tissues are considered, because the
expression levels of isoforms change from tissue to tissue.

We have done two group of tests. The first one is to use the TSS-PAS pair
and exon-intron boundary information from the known mouse isoforms and/or
mRNAs from UCSC and RNA-Seq short reads to infer isoforms. The predicted
isoforms are compared with the theoretically expressed isoforms in the corre-
sponding benchmark. An isoform is recovered by IsoInfer if one of isoforms in-
ferred by IsoInfer matches this isoform precisely (i.e., the two isoforms contain
exactly the same set of exons with exactly the same boundaries). The inference
results are shown in Table 1. These results demonstrate that when accurate exon-
intron boundary and TSS-PAS pair information is provided, IsoInfer achieves a
reasonably good precision, and the precision increases as the size of the bench-
mark increases. When known mouse isoforms are used, IsoInfer achieves decent
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effective sensitivities (i.e., 72.9% for brain, 82.2% for liver and 83.0% for muscle).
Because mRNAs were collected from different sources and tissues, a large frac-
tion of them may not really be expressed in a specific tissue. Therefore, effective
sensitivity of IsoInfer drops when mRNAs are used as the benchmark.

Table 1. The performance of IsoInfer when different exon-intron boundary and TSS-
PAS pair information and corresponding benchmarks are used. Here, “Union” means
that the exon-intron boundary and TSS-PAS pair information is extracted from both
known mouse isoforms and mRNAs and the benchmark is the union of the known
mouse isoforms and mRNAs.

Known isoforms mRNAs Union
Tissue Brain Liver Muscle Brain Liver Muscle Brain Liver Muscle

#Theoretically expressed 18521 12411 11723 87178 72594 69086 101392 82199 78298
Precision 0.493 0.592 0.627 0.572 0.670 0.712 0.591 0.697 0.737

Effective sensitivity 0.729 0.822 0.830 0.328 0.352 0.366 0.335 0.365 0.381

The second test measures the performance of IsoInfer when the exact exon-
intron boundary information is unavailable. The test uses exon-intron boundaries
predicted by TopHat from the RNA-Seq read data on the mouse brain tissue and
the TSS-PAS pair information extracted from the known mouse isoforms and/or
mRNAs. The test results are shown in Table 2. Although it is reported in [19] that
over 80% of the exon junctions predicted by TopHat are also exon junctions in the
UCSC known mouse isoforms, the inference result on the known mouse isoforms
is much worse than the result when exact exon-intron boundary information
is provided. On the other hand, when mRNA is used as the benchmark, the
exon-intron boundaries provided by TopHat lead IsoInfer to a more aggressive
prediction (and thus achieving a better effective sensitivity).

In each of the above tests, the last three steps of IsoInfer shown in Figure 3
took less than 80 minutes on an Intel P8600 processor.

Table 2. The performance of IsoInfer when the exon-intron boundary information is
extracted from the exon junctions predicted by TopHat. These results are all on the
mouse brain tissue. The TSS-PAS pair information is extracted from the known mouse
isoforms and/or mRNAs, depending on the benchmark. Again, “Union” means that
the TSS-PAS pair information is extracted from both known mouse isoforms and the
benchmark is the union of the known mouse isoforms and mRNAs.

Known isoforms mRNAs Union
Precision 0.240 0.362 0.378

Effective sensitivity 0.496 0.532 0.508
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Abstract. A phase transition is taking place today. The amount of data
generated by genome resequencing technologies is so large that in some
cases it is now less expensive to repeat the experiment than to store
the information generated by the experiment. In the next few years it
is quite possible that millions of Americans will have been genotyped.
The question then arises of how to make the best use of this information
and jointly estimate the haplotypes of all these individuals. The premise
of the paper is that long shared genomic regions (or tracts) are unlikely
unless the haplotypes are identical by descent (IBD), in contrast to short
shared tracts which may be identical by state (IBS). Here we estimate
for populations, using the US as a model, what sample size of genotyped
individuals would be necessary to have sufficiently long shared haplotype
regions (tracts) that are identical by descent (IBD), at a statistically
significant level. These tracts can then be used as input for a Clark-like
phasing method to obtain a complete phasing solution of the sample.
We estimate in this paper that for a population like the US and about
1% of the people genotyped (approximately 2 million), tracts of about
200 SNPs long are shared between pairs of individuals IBD with high
probability which assures the Clark method phasing success. We show
on simulated data that the algorithm will get an almost perfect solution
if the number of individuals being SNP arrayed is large enough and the
correctness of the algorithm grows with the number of individuals being
genotyped.

We also study a related problem that connects copy number vari-
ation with phasing algorithm success. A loss of heterozygosity (LOH)
event is when, by the laws of Mendelian inheritance, an individual should
be heterozygote but, due to a deletion polymorphism, is not. Such poly-
morphisms are difficult to detect using existing algorithms, but play an
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important role in the genetics of disease and will confuse haplotype phas-
ing algorithms if not accounted for. We will present an algorithm for
detecting LOH regions across the genomes of thousands of individuals.
The design of the long-range phasing algorithm and the Loss of Het-
erozygosity inference algorithms was inspired by analyzing of the Multi-
ple Sclerosis (MS) GWAS dataset of the International Multiple Sclerosis
Consortium and we present in this paper similar results with those ob-
tained from the MS data.

1 Introduction

Genome-wide association studies (GWAS) proceed by identifying a number of
individuals carrying a disease or trait and comparing these individuals to those
that do not or are not known to carry the disease/trait. Both sets of individu-
als are then genotyped for a large number of Single Nucleotide Polymorphism
(SNP) genetic variants which are then tested for association to the disease/trait.
GWAS have been able to successfully identify a very large number of polymor-
phism associated to disease ([19, 4, 1] etc.) and the amount of SNP data from
these studies is growing rapidly. Studies using tens of thousands of individuals
are becoming commonplace and are increasingly the norm in the association of
genetic variants to disease [5, 19, 13]. These studies generally proceed by pooling
together large amounts of genome-wide data from multiple studies, for a com-
bined total of tens of thousands of individuals in a single meta-analysis study. It
can be expected that if the number of individuals being genotyped continues to
grow, hundreds of thousands, if not millions, of individuals will soon be studied
for association to a single disease or trait.

SNPs are the most abundant form of variation between two individuals. How-
ever, other forms of variation exist such as copy number variation – large scale
chromosomal deletions, insertions, and duplications (CNV). These variations,
which have shown to be increasingly important and an influential factor in many
diseases [17], are not probed using SNP arrays. A further limitation of SNP ar-
rays is that they are designed to probe only previously discovered, common
variants. Rare variants, belonging perhaps only to a small set of carriers of a
particular disease and hence potentially more deleterious, will not be detected
using SNP arrays.

To reach their full potential, the future direction of genetic association studies
are mainly twofold: the testing of more individuals using genome-wide associa-
tion arrays and the resequencing of a small number of individuals with the goal
of detecting more types of genetic variations, both rare SNPs and structural
variation [16]. Testing multiple individuals for the same variants using standard
genome-wide association arrays is becoming increasingly common and can be
done at a cost of approximately $100 per individual. In the next couple of years
it is plausible that several million individuals in the US population will have had
their genome SNP arrayed. In contrast, whole genome resequencing is currently
in its infancy. A few people have had their genome resequenced and the cost of
sequencing a single individual is still estimated in the hundreds of thousands of
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dollars. However, whole genome sequencing is preferable for association studies
as it allows for the detection of all genomic variation and not only SNP variation.

Due to the fact whole genome SNP arrays are becoming increasingly abundant
and whole genome resequencing is still quite expensive, the question has been
raised whether it would suffice to whole genome sequence a small number of in-
dividuals and then impute [7] other genotypes using SNP arrays and the shared
inheritance of these two sets of individuals. It has been shown – in the Icelandic
population with a rich pedigree structure known – that this could be done most
efficiently using the haplotypes shared by descent between the individuals that
are SNP arrayed and those that have been resequenced [10]. Haplotype sharing
by descent occurs most frequently between closely related individuals, but also
occurs with low probability between individuals that are more distantly related.
In small closely related populations, as in the Icelandic population, only a mod-
erately sized sample size is therefore needed in order for each individual to have,
with high probability, an individual that is closely related to it. In larger popu-
lations, such as the US population, a larger sample size will be needed for there
to be a significant probability of an individual sharing a haplotype by descent
within the population. We say that an individual is “Clark phaseable” with re-
spect to a population sample if the sample contains an individual that shares
a haplotype with this individual by descent. In this paper we explore what the
required sample size is so that most individuals within the sample are Clark
phaseable, when the sample is drawn from a large heterogeneous population,
such as the US population.

Problem 1. Current technologies, suitable for large-scale polymorphism screen-
ing, only yield the genotype information at each SNP site. The actual haplotypes
in the typed region can only be obtained at a considerably high experimental
cost or computationally by haplotype phasing. Due to the importance of hap-
lotype information for inferring population history and for disease association,
the development of algorithms for detecting haplotypes from genotype data has
been an active research area for several years [3, 15, 18, 14, 10, 6]. However,
algorithms for determining haplotype phase are still in their infancy after about
15 years of development (e.g. [3, 18, 9]). Of particular worry is the fact that
the learning rate of the algorithm, i.e. the rate that the algorithms are able to
infer more correct haplotypes, grows quite slowly with the number of individuals
being SNP arrayed.

Solution 1. In this paper we present an algorithm for the phasing of a large
number of individuals. We show that the algorithm will get an almost perfect
solution if the number of individuals being SNP arrayed is large enough and
the correctness of the algorithm grows with the number of individuals being
genotyped. We will consider the problem of haplotype phasing from long shared
genomic regions (that we call tracts). Long shared tracts are unlikely unless the
haplotypes are identical by descent (IBD), in contrast to short shared tracts
which may be identical by state (IBS). We show how we can use these long
shared tracts for haplotype phasing.
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Problem 2. We further consider the problem of detecting copy number variations
from whole genome SNP arrays. A loss of heterozygosity (LOH) event is when,
by the laws of Mendelian inheritance, an individual should be heterozygote but
due to a deletion polymorphism, is not. Such polymorphisms are difficult to
detect using existing algorithms, but play an important role in the genetics of
disease [17] and will confuse haplotype phasing algorithms if not accounted for.

Solution 2. We provide an exact exponential algorithm and a greedy heuristic
for detecting LOH regions.

For this paper, we run empirical tests and benchmark the algorithms on a simu-
lated GWAS datasets [8] resembling the structure of the International Multiple
Sclerosis Genetics Consortium [4] data. To determine LOH events we assume
the data is given in trios, i.e. the genotypes of a child and both its parents are
known.

2 Long Range Phasing and Haplotype Tracts

The haplotype phasing problem asks to computationally determine the set of
haplotypes given a set of individual’s genotypes. We define a haplotype tract (or
tract for short) denoted [i, j] as a sequence of SNPs that is shared between at
least two individuals starting at the same position i in all individuals and ending
at the same position j in all individuals. We show that if we have a long enough
tract then the probability that the sharing is IBD is close to 1. Multiple sharing
of long tracts further increases the probability that the sharing corresponds to
the true phasing.

2.1 Probability of Observing a Long Tract

We show that as the length of the tract increases the probability that the tract
is shared IBD increases. Let t be some shared tract between two individual’s
haplotypes and l be the length of that shared tract. We can then approximate
the probability this shared tract is identical by state (IBS) pIBS(l). Let fM,i

be the major allele frequency of the SNP in position i in the shared tract t.
Assuming the Infinite Sites model and each locus is independent,

pIBS(l) =
l∏

i=1

((fM,i)(fM,i) + (1 − fM,i) (1 − fM,i))

We can approximate pIBS(l) by noticing fM,i∗fM,i dominates (1−fM,i)(1−fM,i)
as fM,i → 1, pIBS(l) ≈

∏l
i=1(fM,i)2. Let favg be 1

l fM,i ∀i ∈ t. Then pIBS(l) ≈
(favg)2l. Given fM,i is some high frequency, say 95%, then a sharing of 100
consecutive alleles is very unlikely, pIBS(100) ≈ 0.95200 = 10−5. For very large
datasets we will need to select the length of the tract being considered to be large
enough so that the probability that the sharing is identical by state is small.
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The probability two individuals separated by 2(k + 1) meiosis (kth-degree
cousins) share a locus IBD is 2−2k [10]. As k increases, the probability kth-
degree cousins share a particular locus IBD decreases exponentially. However, if
two individuals share a locus IBD then they are expected to share about 200

2k+2
cM [10]. Relating P (IBD) to length of tract l,

P (IBD|sharing of length l) =
2−2n

2−2n +
(
(fM,i)2l + (1 − fM,i)

2l
)

which is shown in Fig. 1.
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Fig. 1. Probability of IBD as a function of shared tract length (measured in SNPs) and
plotted for several n and major allele frequencies (MAF). n is the number of meiosis
between the two individuals. The smaller the MAF or n the faster P(IBD) converges
to 1.

2.2 The Clark Phase-Able Sample Size Problem

Given the large tract sharing, we can construct the Clark consistency graph hav-
ing individuals as vertices and an edge between two individuals if they share a
tract [15]. Figure 2 shows the Clark consistency graph for different minimum
significant tract lengths (or window sizes) in the MS dataset. At what minimum
significant tract lengths will the graph become dense enough so that phasing can
be done properly? What percentage of the population needs to be genotyped so
that the Clark consistency graph becomes essentially a single connected com-
ponent? We call this “The Clark sample estimate: the size for which the Clark
consistency graph is connected, C.”

We computed the average number of edges in the haplotype consistency graph
as a function of window size to get a sense when the Clark consistency graph of
the MS data becomes connected. Based on Fig. 3 and P (IBD) we can propose an
algorithmic problem formulation from the Clark consistency graph. Preferably
we would like to solve either one of the below problems.
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Problem 3. Remove the minimum number of the edges from the Clark consis-
tency graph so that the resulting graph gives a consistent phasing of the haplo-
types.

Problem 4. Maximize the joint probability of all the haplotypes given the ob-
served haplotype sharing.

Fig. 2. Left: The Clark consistency graph for region [1400,1600). A large fraction of
individuals share consistent haplotypes of length 200 suggesting many are IBD. Right:
The Clark consistency graph for a smaller window size of 180 base pairs. We observe
a more dense connected component in part due to the smaller windows size but also
because of the specific genomic region.

We believe that both of these problem formulations are NP-hard and instead
propose to solve these problems using a heuristic. Our benchmarking on simu-
lated data shows that this heuristic works quite well.

2.3 Phasing the Individuals That Are Part of the Largest
Component

We now proceed with an iterative algorithm working on the connected compo-
nents in the Clark haplotype consistency graph. First we construct the graph
according to some length of haplotype consistency (Fig. 3 and P (IBD) help
define this length). We iterate through each site of each individual to find the
tracts. After we find a site with some long shared region, we look at its neigh-
bors in the connected component and apply a voting scheme to decide what the
value is for each heterozygous allele. After each individual has been processed
we iterate with having resolved sites in the original matrix.

Observation 1. If the Clark consistency graph is fully connected all edges are
due to IBD sharing and all individuals can be perfectly phased up to the point
were all individuals are heterozygote at a particular site.

Therefore, phasing individuals in a connected component of the graph should be
easy, but in practice there will be some inconsistencies for a number of reasons.
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Fig. 3. The average number of edges per window size stays relatively constant until
a window size of about 180. The graph becomes more connected at this point likely
because the window size is small enough to not be largely affected by recombination
(but still large enough for the shared tracts to not likely be IBS).

If a node in the Clark consistency graph has a high degree then the phasing of
that node will be ambiguous if its neighbors are not consistent. At some times
this may be due to genotyping error and at times this may be due to identical by
state sharing to either one or both of an individuals haplotypes. The identical by
state sharing may because the haplotype has undergone recombination, possibly
a part of the haplotype is shared identical by descent and a part is identical by
state.

Our alphabet for genotype data is Σ = {0, 1, 2, 3}. 0s and 1s represent the
homozygote for the two alleles of a SNP. A 2 represents a heterozygous site
and a 3 represents missing data. Given a set of n-long genotype strings G =
{g1, g2, . . . , g|G|} where gi ∈ Σn, we represent this in a matrix M with m = 2 |G|
rows and n columns:

M =

⎡⎢⎢⎢⎣
M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,n

⎤⎥⎥⎥⎦
Each genotype gi is represented by the two rows 2i−1 and 2i. Initially, M2i−1,j =
M2i,j = gi[j].

We define allele consistency to be:

c(a, b) =

{
1 if a = b or a ∈ {2, 3} or b ∈ {2, 3}
0 otherwise

Rows r and s of M are consistent along a tract [i, j] (i.e. have a shared tract) is
written

C[i, j](r, s) =
∏

k∈[i, j]

c (Mr,k, Ms,k)

The length of a tract is written |[i, j]| = j − i + 1.
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A shared tract [i, j] between rows r and s is maximal shared tract if it cannot
be extended to the left or right; i.e., i = 1 or c(Mr,i−1, Ms,i−1) = 0 and j =
n or c(Mr,j+1, Ms,j+1) = 0. The maximal shared tract between rows r and s at
position i is written Sr,s

i . It is unique. Note that if Sr,s
i = [j, k] then ∀l∈[j, k]S

r,s
l =

Sr,s
i .

2.4 Tract Finding and Phasing Algorithm

Given that there are some loci for which individuals share IBD and that these
sharings are expected to be large, we developed an algorithm to detect and use
these sharings to resolve the phase at heterozygous sites. Each site is resolved by
determining if there are any other individuals that likely share a haplotype by
descent. SNPs that do not have their phase determined during any given iteration
will be processed in succeeding iterations. If there are enough long IBD loci, this
algorithm should unambiguously determine the phase of each individual.

If we know that the data contains trios, a child and both of its parents, we
start by phasing the trios using Mendelian laws of inheritance. This replaces
many of the heterozygote sites (whenever at least one member of a family is
homozygous) and even a few of the sites having missing data (i.e., when the
parents are both homozygous and the child’s genotype is missing).

To phase using long shared tracts, we start by fixing a minimum significant
tract length L. We run several iterations, each of which generate a modified
matrix M ′ from M , which is then used as the basis for the next iteration.

First, we set M ′ := M .
For each row r we examine position i. If Mr,i ∈ {0, 1} then we move to the

next i. Otherwise Mr,i ∈ {2, 3}, and we count “votes” for whether the actual
allele is a 0 or 1.

V r
0 = |{s | s �= r and |Sr,s

i | ≥ L and Ms,i = 0}|

V r
1 is defined analogously (the difference being the condition Ms,i = 1). If V r

0 >
V r

1 then we set M ′
r,i := 0. Similarly for V r

1 > V r
0 . If V r

0 = V r
1 then we do nothing.

A more complex case is when Mr,i = 2. We make sure the complementary
haplotypes are given different alleles by setting the values of both haplotypes
simultaneously. This does not cause a dependency on which haplotype is visited
first because we have extra information we can take advantage of. We count votes
for the complementary haplotype and treat them oppositely. That is, votes for
the complementary haplotype having a 1 can be treated as votes for the current
haplotype having a 0 (and vice versa). So letting r′ be the row index for the
complementary haplotype, we actually compare V r

0 + V r′

1 and V r
1 + V r′

0 . This is
helpful when SNPs near position i (which therefore will fall within shared tracts
involving i) have already been phased (by trio pre-phasing or previous itera-
tions). It also helps in making the best decision when both haplotypes receive a
majority of votes for the same allele, e.g., both have a majority of votes for 0. In
this case, taking into account votes for the two haplotypes simultaneously will
result in whichever has more votes getting assigned the actual value 0. If they
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each receive the exact same number of votes, then no allele will be assigned. This
also avoids the above-mentioned dependency on the order in which the haplo-
types are visited – the outcome is the same since votes for both are taken into
account.

In this manner, M ′ is calculated at each position. If M ′ = M (i.e. no changes
were made) then the algorithm terminates. Otherwise, M := M ′ (M is replaced
by M ′) and another iteration is run.

2.5 Phasing the Individuals That Are Not a Part of the Largest
Component

Individuals that are part of small connected components will have a number of
ambiguous sites once they have been phased using the edges in their connected
component. For these individuals, we compute a minimum number of recombi-
nations and mutations from their haplotypes to others that have better phasing
(belong to larger components). We then assign these haplotypes phase based on
minimizing the number of mutations plus recombinations in a similar manner as
the approach of Minichiello Durbin [12].

Alternatively this could be done in a sampling framework, where we sample
the haplotype with a probability that is a function of the number of mutations
and recombinations.

2.6 Experimental Results on Simulated Data

We compared the correctness and learning rate of our algorithm against BEA-
GLE [2] using a simulated dataset. Using the Hudson Simulator [8], we generated
3000 haplotypes each consisting of 3434 SNPs from chromosomes of length 105.
We estimated a population size of 106 with a neutral mutation rate of 10−9.
To generate genotypes, we randomly sampled from the distribution of simulated
haplotypes with replacement such that each haplotype was sampled on average
2, 3, and 4 times. We applied our algorithm and BEAGLE to the simulated data
after combining haplotypes to create parent-offspring trio data (inspired by our
analysis of the MS dataset). Both algorithms effectively phase the simulated
dataset largely due to the initial trio phasing (Table 1). Our algorithm learns
the true phasing at an increasing rate as the expectation of haplotypes sampled
increases. The most clear example of this trend is in the Brown Long Range
Phasing miscall rate. By weighing edges proportional to probability of sharing
IBD rather than a fixed set of votes per edge, we should achieve more accurate
phasings (subject of future work).

3 Loss of Heterozygosity Regions

We call the loss of the normal allele a Loss of Heterozygosity (LOH) which
may be a genetic determinant in the development of disease [11, 17]. In some
situations, individuals that are heterozygous at a particular locus can possess
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Table 1. We created three populations using a base pool of 3000 simulated haplotypes
using the Hudson simulator. Populations 1, 2, and 3 were created by sampling each
haplotype according to a geometric distribution with expectation 2, 3, and 4 respec-
tively. Haplotypes were then randomly paired to create genotypes. The miscall rate is
the ratio of 2’s miscalled to total 2’s (after trio phasing). Error-free phasings denote
the number of haplotype phasings with zero miscalled 2’s.

Population 1 Population 2 Population 3
BEAGLE miscall rate 0.0685% 0.0160% 0.00951%
Brown Long Range Phasing miscall
rate

0.0501% 0.0148% 0.00503%

BEAGLE Error-free phasings 4467 6819 8898
Brown Long Range Phasing Error-
free phasings

4459 6840 8923

Total haplotypes 4524 6870 8940

one normal allele and one deleterious allele. The detection of CNVs, such as
deletions, is an important aspect of GWAS to find LOH events, and yet, it is
commonly overlooked due to technological and computational limitations.

LOH can be inferred using data from SNP arrays. The SNP calling algorithm
for SNP arrays cannot distinguish between an individual who is homozygous for
some allele a and an individual who has a deletion haplotype and the allele a
(Fig. 4, Left). LOH events can then be inferred by finding such genotypic events
throughout the dataset. We will present two algorithms for computing putative
LOH regions across GWAS datasets.

3.1 Definitions

A trio consists of three individual’s genotypes and is defined by the inheritance
pattern of parents to child. As before, let M denote the matrix of genotypes but
we now assume M consists of trios. Let Mi denote the ith trio of M (individuals
i, i + 1, and i + 2). At any site j the trio Mi may have 43 possible genotype
combinations for which the trio can either be consistent with LOH (CLOH),
not consistent with LOH (NCLOH), or show evidence of LOH (ELOH) (Fig.
4, Left). A trio at site i shows ELOH if the inheritance pattern can only be
explained with the use of a deletion haplotype (or a genotyping error). A trio at
site i is NCLOH if the inheritance pattern cannot be explained with the use of a
deletion haplotype, and CLOH if it may be explained with the use of a deletion
haplotype.

3.2 The LOH Inference Problem

We are given a set of n SNPs and a set of m trios genotyped at those SNPs. For
each SNP/trio pair the SNP can have one of three labels:

– X – The marker is inconsistent with having a loss of heterozygosity (Fig. 4,
Left: Not Consistent with LOH).
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Fig. 4. Left: Three examples of inheritance patterns in GWAS data in the context of
LOH. The Evidence of LOH (ELOH) pattern shows strong correlation between LOH
and a SNP site because the only possible explanation involves introducing a deletion
haplotype. An inheritance pattern is called consistent with LOH (CLOH) if it does
not contradict the presence of a deletion haplotype and can be explained with normal
inheritance patterns. An inheritance pattern not consistent with LOH (NCLOH) occurs
when a deletion haplotype cannot be introduced to explain the trio inheritance pattern.
Right: The correlation between inheritance pattern and ELOH, CLOH, and NCLOH.
We define E to be ELOH, C to be CLOH, and N to be NCLOH. The superscript
defines for which parent the putative deletion haplotype is associated. We define the
superscript F to be consistent with a deletion haplotype inherited from the father, M
for mother, and P for both parents.

– 0 – The marker is consistent with having a loss of heterozygosity (Fig. 4,
Left: Consistent with LOH).

– 1 – The SNP shows evidence of loss of heterozygosity, (Fig. 4, Left: Evidence
of LOH).

For any trio Mi, a contiguous sequence of at least one 1 and an unbounded
number of 0 sites is called an putative deletion. We call two putative deletions, pi

and pj, overlapping if they share at least 1 common index. Let hi and hj be two
ELOH and let pi and pj contain hi and hj respectively. Each putative deletion
is associated with an interval which is defined by their start and end indices:
[si, ei] and [sj, ej ] respectively. hi and hj are called compatible (or overlapping)
if hi and hj are members of the same putative deletion (i.e. hi ∈ [si, ei] and
hj ∈ [si, ei]) or hi is contained in the interval defining pj and hj is contained in
the interval defining pi. All CLOH and ELOH sites within a putative deletion
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must share the same parent (Fig. 4, Right). The task is to call all 1’s ∈ M either
a deletion or a genotyping error according to some objective function which
weighs the relative costs of calling genotyping errors or deletions.

3.3 LOH Inference Algorithms

We present an exponential algorithm and a greedy heuristic for computing pu-
tative deletions. Both algorithms begin by parsing M and removing SNPs in
which the Mendelian error rate is above 5% to remove artifacts from genotyp-
ing. We then calculate the LOH site vector for each trio in the dataset which
corresponds to using the table defined in Fig. 4 (Right) to translate each SNP
site. This new matrix is denoted N( |M|

3 ×l). To identify the genotyping errors
and putative deletions, we define two operations on N : error correction call and
deletion haplotype call. An error correction call will categorize an ELOH site
as a genotyping error effectively removing it from any particular deletion haplo-
type. An deletion haplotype call will identify a putative deletion as an inherited
deletion haplotype. We infer inherited deletion haplotypes using the objective
function

minN (k1 ∗ (genotype error corrections calls) + k2 ∗ (deletion haplotypes calls))

where k1 and k2 are weighing factors. k1 and k2 can be simple constant factors
or a more complex distribution. For example, setting k1 to 2 and k2 to 7, we will
prefer calling a putative deletion with at least 4 pairwise compatible ELOH sites
an inherited deletion. For a more complex objective function, we could define k2
to be k3(number of conserved individuals) + k4(length of overlapping region) +
k5((number of ELOH)/(number of CLOH)). The parameters must be tuned to
the input data. For example, association tests will tune the parameter to favor
putative deletions with many conserved individuals. We suspect that this prob-
lem is NP-complete for general N . In the case of the Multiple Sclerosis dataset,
the matrix N contains small overlapping putative deletions and over 95% of N
is non-putative deletions, that is, N is very sparse.

Algorithm 1. We start by giving an exact exponential algorithm which min-
imizes the objective function. Let xi denote a set of overlapping putative dele-
tions. For sparse N we can reduce the minimization function from minN to
minx1..xs where x1..xs ∈ N and {x1..xs} ⊆ N . Since any particular putative
deletion is defined by the ELOH sites, we can enumerate all feasible non-empty
sets of ELOH sites for all xi. Computing this for all putative deletions demands
work proportional to

∑s
i=1 B(ei) where ei is the number of ELOH sites in xi

and B is the Bell number. In practice, we found that ei is bounded by a small
constant but this complexity is still unreasonable for most ei.

Algorithm 2. For practical purposes, we’ve developed a greedy algorithm for
cases where the exact exponential algorithm in unreasonable (Fig. 5). For each
xi ∈ N , the algorithm selects the component with the maximum trio sharing,
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Trio 1 1 0 0 1 1 0 0 X 0 0 X X

T i 2 0 X 1 0 1 1 X 0 0 X 1 X

SNP Sites

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Trio 1 1 0 0 1 1 0 0 X 0 0 X XTrio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Trio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Fig. 5. A visual depiction of the greedy algorithm for finding putative deletions (con-
sistencies with particular parents are omitted for simplicity). The red rectangles denote
trio SNP sites which have not been called yet. The blue rectangle denotes a called in-
herited deletion haplotype. A green rectangle denotes a genotype error call. First, the
algorithm finds the component (a clique in G(V,E)) with the maximum trio sharing:
SNP sites 3-6. It checks if the score of this component and either calls it an inher-
ited deletion or a set of genotyping errors (in this case the former). The intervals are
updated by remove vertices and edges from the overlap graph and the algorithm con-
tinues. Both remaining components consisting of SNP sites 1 and 11 are both of size
1. These will most likely be called genotyping errors.

that is, the possibly overlapping putative deletions that include the most ELOH
sites. Because every two ELOH sites in an inherited deletion must be pairwise
compatible, this component is a clique. To find the maximum clique, we con-
struct an overlap graph G(V, E) where hi ∈ V if hi is an ELOH in a putative
deletion in this interval and (hi, hj) ∈ E if hi and hj are compatible. Iden-
tifying the maximum clique in this graph is NP complete. We therefore find
maximum cliques using a greedy approach that iterates over a queue containing
the compatible vertices, selecting the highest degree node vm and adding it to
the potential clique set if and only there is an edge between vm and each vertex
in the clique. At the end of this process, the algorithm calls the site(s) a deletion
haplotype or genotyping error according to the objective function, clears the set,
and continues until all vertices in the queue are processed.

3.4 Experimental Results on Simulated Data

We tested the algorithm using the same simulated phasing dataset. To simulate
and score an error-prone GWAS dataset containing an LOH, we define six pa-
rameters, two metrics, and generate only one deletion in the genotype matrix
(Table 2). We randomly select a set of trios and an interval in the simulated
haplotype matrix to contain the generated deletion. After the site is selected,
we place ELOH sites on the SNPs according to some probability (assumed in-
dependent for each SNP in the interval).
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Table 2. Six tunable parameters and two scoring metrics for testing of the LOH
algorithm

Probability of Error per Site For all SNP-trio pairs, we add a Mendelian
error according to this probability (assumed
independent for each site).

Interval Length The exact length of the generated deletion.
Trios in Deletion The exact number of trios sharing the gener-

ated deletion.
Probability of ELOH in Interval The probability a SNP is an ELOH site within

the generated deletion interval.
Coefficient of Genotype Error Call The objective function cost for calling an

ELOH site a genotyping error (parameter k1

in our objective function)
Coefficient of Inherited Deletion Call The objective function cost for calling a set of

ELOH sites an inherited deletion (parameter
k2 in our objective function)

True Positive There is one interval that contains the inher-
ited deletion, thus a true positive corresponds
to correctly identifying an inherited deletion
in this region.

False Positive We have a false positive if we identify an in-
herited deletion in a region disjoint from the
generated deletion’s region.

Table 3. We tested out algorithm using the six tunable parameters as defined in
Table 2. Each configuration was run with a coefficient of genotyping error of 2.

Param
Set

Site Error
Prob.

Interval
Length

Trios in
Deletion

Prob. of
ELOH

Coeff. of
Deletion

True
Positive

False
Positive

Runs

1 0.0001 5 5 0.75 11 1000 0 1000
2 0.0001 2 5 1 11 1000 0 1000
3 0.0001 2 5 1 11 1000 0 1000
4 0.0001 9 3 0.75 11 1000 0 1000
5 0.0001 7 3 0.50 15 58 0 100
6 0.00333 9 3 0.75 15 100 38888 100

Although our LOH model is quite simplistic, we do observe promising results.
Our algorithm is sensitive to inherited deletions that are very short but shared
among many people and also sensitive to inherited deletions that are longer and
shared by few people.

In general, the algorithm is accurate when the coefficient of deletion call and
genotype error call are tuned well (Table 3 – parameter sets 1-4). For a dataset
with low genotyping error rate (∼0.0001 site error probability), the coefficient
of deletion call can be set low; if it is set too high, a true inherited deletion
may be incorrectly called a genotyping error, possibly missing an associative
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LOH (Table 3 – parameter set 5). A similar caveat pertains to datasets with
significant genotyping error rates (for instance, the MS dataset). A coefficient
of deletion call that is too low can yield false positives (Table 3 – parameter set
6). Finding appropriate tuning mechanisms for the two coefficients to maximize
algorithm specificity and sensitivity will be the subject of future work.

4 Conclusion and Future Work

We have shown that long range phasing using Clark consistency graphs is prac-
tical for very large datasets and the accuracy of the algorithm improves rapidly
with the size of the dataset. We have also given an algorithm that removes most
Mendelian inconsistencies and distinguishes between genotyping errors and dele-
tion events which can be factored into the phasing algorithm when applied to
GWAS data. Future work includes applying probabilistic models to both algo-
rithms to score tract sharings and putative deletions more appropriately.

All algorithms are available via sending a request to the corresponding
authors.
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Abstract. Cryo-electron microscopy (cryo-EM) plays an increasingly
prominent role in structure elucidation of macromolecular assemblies.
Advances in experimental instrumentation and computational power have
spawned numerous cryo-EM studies of large biomolecular complexes re-
sulting in the reconstruction of three-dimensional density maps at inter-
mediate and low resolution. In this resolution range, identification and
interpretation of structural elements and modeling of biomolecular struc-
ture with atomic detail becomes problematic. In this paper, we present
a novel algorithm that enhances the resolution of intermediate- and low-
resolution density maps. Our underlying assumption is to model the low-
resolution density map as a blurred and possibly noise-corrupted version
of an unknown high-resolution map that we seek to recover by deconvolu-
tion. By exploiting the nonnegativity of both the high-resolution map and
blur kernel we derive multiplicative updates reminiscent of those used in
nonnegative matrix factorization. Our framework allows for easy incorpo-
ration of additional prior knowledge such as smoothness and sparseness,
on both the sharpened density map and the blur kernel. A probabilistic
formulation enables us to derive updates for the hyperparameters, there-
fore our approach has no parameter that needs adjustment. We apply
the algorithm to simulated three-dimensional electron microscopic data.
We show that our method provides better resolved density maps when
compared with B-factor sharpening, especially in the presence of noise.
Moreover, our method can use additional information provided by ho-
mologous structures, which helps to improve the resolution even further.

1 Introduction

Cryo-electronmicroscopy (cryo-EM) and low-resolutionX-ray crystallographyare
emerging experimental techniques to elucidate the three-dimensional structure
of large biomolecular complexes [1,2,3,4]. A major drawback common to these
methods is that the reconstructed density maps are only of intermediate or low
resolution, typically in the nanometer range. In this resolution range, it becomes
difficult to interpret the density maps unambiguously and to fit atomic models. A
method to improve the quality of electron density maps has therefore the potential
to broaden the scope of cryo-EM and low-resolution crystallography.

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 174–188, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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B-factor sharpening [5,6,7] is often advocated as a method for improving the
resolution of density maps. The method operates in the frequency domain and
applies a negative B-factor to the Fourier coefficients of the density map. This
has the effect that high-frequency components encoding high-resolution features
are amplified. B-factor sharpening has several limitations: First, the underlying
model of the PSF is an isotropic Gaussian whose width is determined by the mag-
nitude of the overall B-factor (the Fourier transform of a Gaussian is a Gaussian
with inverted width). This assumption may be inappropriate for anisotropic data
such as 2D crystals. Second, the method suffers from amplification of noise: Noise
in density maps contributes high-frequency components, which are weighted up
when applying a negative B-factor. Third, it is not possible to incorporate prior
knowledge to regularize the recovered high-resolution density map. For example,
the B-factor sharpened density map is not guaranteed to be nonnegative.

In this article, we present a novel algorithm to sharpen electron density maps.
The algorithm remedies some of the shortcomings of thermal factor sharpen-
ing. The underlying assumption is that low- to intermediate-resolution density
maps can be viewed as distorted or “blurred” versions of high-resolution maps.
Mathematically, this blurring process is modeled as a convolution

y = f ∗ x (1)

where y denotes the observed blurry and noisy low-resolution map, x the true
high-resolution map, f the linear shift-invariant blur kernel or point spread func-
tion (PSF) and ∗ the linear convolution operator.

We propose a blind deconvolution method (BD) to sharpen electron density
maps. BD aims to invert the blurring process and thereby recover the high-
resolution map without any knowledge on the degradation or blur kernel. It
does so by estimating the sharpened density map and the PSF simultaneously.
In this paper, we are interested in BD algorithms that do not assume a particular
structural model and that are in this sense parameter-free. The recovered high-
resolution map will be useful for density map interpretation and model fitting.

Blind deconvolution is a severely ill-posed problem because there exists an
infinite number of solutions and small perturbations in the data lead to large
distortions in the estimated true map. The ill-posedness may be alleviated by
confining the set of admissible maps to those which are physically plausible
through the introduction of additional constraints. One such constraint is that
electron density maps are inherently nonnegative. We show that nonnegative
blind deconvolution (NNBD) can be cast into a set of coupled quadratic programs
that are solved using the multiplicative updates proposed in [8]. No learning rate
has to be adjusted and convergence of the updates is guaranteed. By iterating
between an update step for x and f , we obtain an efficient BD algorithm that
allows for straightforward incorporation of prior knowledge such as sparseness
and smoothness of the true map and/or the PSF.

Blind deconvolution is a valuable tool in many image and signal processing
applications such as computational photography, astronomy, microscopy, and
medical imaging and thus has been treated in numerous publications. Many
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blind deconvolution algorithms have been proposed in various fields of research,
for an overview confer [9,10,11,12]. However, to our knowledge it has never been
proposed in the field of cryo-EM.

2 Blind Deconvolution by Nonnegative Quadratic
Programming

Our generative model underlying the image formation process is

y ≈ f ∗ x

where the degraded map y, the PSF f and the true map x are n-dimensional.1

Assuming additive Gaussian noise with zero mean and variance τ−1, the likeli-
hood of observing y is given by

p(y|f, x, τ) = Z(τ)−1 exp
{
−τ

2
‖y − f ∗ x‖2

}
where ‖ ·‖ denotes the L2-norm and Z the normalizing partition function, which
depends only on the precision τ . As a prior, we constrain f and x to be of finite
size and to lie in the nonnegative orthant: p(x) ∝ χ(x ≥ 0) and p(f) ∝ χ(f ≥ 0)
where χ is the indicator function. Computation of the maximum a posteriori
(MAP) estimate of f and x is equivalent to the nonnegatively constrained prob-
lem of minimizing the negative log-likelihood viewed as a function of the un-
known parameters f and x:

min
f≥0, x≥0

L(f, x) =
1
2
‖y − f ∗ x‖2

. (2)

Here, the negative log-likelihood L is expressed in units of τ and constants
independent of f and x have been dropped. Because of the interdependence
of f and x through the convolution, optimization problem (2) is non-convex
and a globally optimal solution cannot be found efficiently. Fortunately, the
objective function L(f, x) is sufficiently well-behaved as it is convex in each
variable separately if the other is held fixed. This observation suggests a simple
alternating descent scheme: instead of minimizing (2) directly we iteratively
solve the minimization problems minf≥0 L(f) and minx≥0 L(x), where L(f),
L(x) denotes L(f, x) for fixed f , x, respectively. If we can ensure descent in each
step, we will obtain a sequence of estimates {f (k), x(k)} that never increase the
objective L(f, x). Due to the symmetry of the convolution operation, f∗x = x∗f ,
we can restrict our exposition to the optimization of x; equivalent results will
hold for f .

1 The convolution is assumed to be non-circular and its value is taken only on its valid
part, i.e. in the one-dimensional case, if x ∈ R

n and f ∈ R
m, then y is an element of

R
n−m+1. For discretized signals, ∗ reads (f ∗x)n =

∑
i∈supp(f) fixn−i where supp(f)

denotes the support of f .
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Because convolution is a bilinear operation, the problem of optimizing x can
be written in matrix notation:

min
x≥0

L(x) =
1
2
‖y − f ∗ x‖2 =

1
2

xTFTFx − yTFx +
1
2

yTy (3)

where in this formulation y, x and f are zero-padded vectors stacked in lexico-
graphical order and F is a block-Toeplitz structured matrix. In the following we
will use both notations interchangeably; the type of the involved quantities will
be clear from the context. Minimizing (3) is equivalent to solving a quadratic
program with nonnegativity constraint (NNQP)

min
x≥0

1
2

xTAx + bTx (4)

with A = FTF and b = −FTy. Recently, a novel algorithm for solving NNQPs
based on multiplicative updates has been proposed [8]. In the derivation of the
updates, only the positive semidefiniteness of A is required. In particular, A
may have negative entries off-diagonal. The key idea is to decompose A into its
positive and negative part, i.e. A = A+−A− where A±

ij = (|Aij |±Aij)/2, and to
construct an auxiliary function G(x, x′) for the objective (2) such that ∀x, x′ > 0:
L(x) ≤ G(x, x′) and L(x′) = G(x′, x′). Because G(x, x′) is an upper bound on
L(x), minimization with respect to x yields an estimate x̂ = argminxG(x, x′)
which never increases the objective L(x′):

L(x̂) ≤ G(x̂, x′) ≤ G(x′, x′) ≤ L(x′).

As shown in [8] a valid auxiliary function for (4) is given by

G(x, x′) =
1
2

∑
i

(A+x′)i

x′
i

x2
i −
∑

i

(A−x′)i x′
i log

xi

x′
i

+ bTx − 1
2

x′TA−x′. (5)

Minimization of (5) with respect to its first argument yields the update:

x ← x ! −b +
√

b ! b + 4 (A+x) ! (A−x)
2A+x

. (6)

The symbol ! denotes voxel-wise multiplication, also division and square root
are understood voxel-wise. For a nonnegative observed map y with A+ = FTF ,
A− = 0 and b = −FTy, update (6) reads

x ←− x ! FTy

FTFx
. (7)

Contrary to previous approaches to NNQP [13], no learning rate is involved that
needs adjustment. Furthermore convergence to a global optimum is guaranteed.
Note that as f ∗x approaches y the multiplicative factor in (7) tends to one. The
update rules can be computed very efficiently using the Fast Fourier Transform
[14] because

Fx ≡ f ∗ x = F−1 {F (f) · F (x)}
and

FTx ≡ f 
 x = F−1 {F (f)∗ · F (x)}
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Algorithm 1. Nonnegative Blind Deconvolution
Input: Degraded, blurry map y
Output: Sharp map x, blur kernel f

Initialization of f and x with positive flat maps

while ‖y − f ∗ x‖2
F > ε do

f ← x  f�y
f�f∗x

x ← f  x�y
x�x∗f

end
return

where F denotes the discrete Fourier transform and 
 the n-way correlation
between f and x. Hence, we never have to compute matrices F and X explicitly.
Because the objective is symmetric in x and f , we obtain an equivalent update
for f :

f ←− f ! XTy

XTXf
. (8)

Coming back to a our original problem, namely solving (2) jointly in x and f ,
we propose to iterate between update steps in x and f . Cycling between (7) and
(8) ensures that both f and x will remain in the nonnegative orthant. Although
multiplicative updates guarantee convergence to a global optimum in the case
of NNQP, the proposed NNBD scheme only ensures convergence to a stationary
point. Therefore, the solution might be sensitive to the initial values of x and
f . In our experiments, however, initialization was never a problem: choosing flat
maps for the initial x and f always led to good results. Algorithm (1) summarizes
our NNBD approach.

3 Incorporation of Prior Knowledge

In the absence of noise as well as in the case of high signal-to-noise ratios2 (SNRs)
our algorithm correctly decomposes a blurry observation into the true underlying
map and the corresponding PSF.3 Figure 1 shows a simulated one-dimensional
toy example, where x is an equispaced sample of a Gaussian mixture model and
f is chosen such that it is irreducible.4 The estimated map x̂ and PSF f̂ are
2 Here, we define the SNR of a signal as SNR(dB) = 10 log10

var(x)
var(y−x∗f)

.
3 Note that this is true only up to an overall scaling factor, because for each estimate
{f̂ , x̂} there exist infinitely many estimates { 1

λ
f̂ , λx̂} with λ ∈ R

+ that explain the
observed data equally well. To rule these out, we fix the scale by normalizing f .
In addition to this scale invariance, the solution is also shift-invariant. Usually this
effect can be corrected only by means of further prior knowledge.

4 A signal x is irreducible, if it cannot be decomposed into two or more nontrivial
components {x1, x2, . . . , xn} such that x = x1 ∗ x2 ∗ . . . ∗ xn. Note that if either f
or x is reducible, NNBD becomes inherently ill-posed, because y = f ∗ x cannot be
decomposed unambiguously without employing additional prior knowledge.
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Fig. 1. One-dimensional toy example. The top row shows the results of NNBD at SNR
of 60 dB, the bottom row for SNR 20 dB. A, E: data y used in NNBD. B, F: true (black)
and estimated (red) PSF f . C, G: true (black), NNBD (red) estimate of the true signal
x. D, H: negative log-likelihood (on logarithmic scale).

close to the ground truth. However, Fig. 1 shows that low SNRs raise difficulties
in the reconstruction process and lead to noise-fitting and unfavorable solutions.

To further constrain the space of admissible solutions, additional knowledge
about the unknown map and the PSF has to be utilized. This knowledge will
be represented by non-uniform prior distributions p(f |θ) and p(x|θ) on f and x,
respectively, involving hyperparameters θ. With p(θ) denoting the prior of the
hyperparameters, the joint posterior is proportional to:

p(x, f, θ|y) ∝ p(y|f, x, θ) p(x|θ) p(f |θ) p(θ). (9)

In the following, we describe prior distributions that are compatible with the
multiplicative updates for f and x derived in the previous section. Again, because
of the symmetry of (2) in f and x, we will restrict ourselves to the incorporation
of prior knowledge on the unknown map x.

Incorporating priors on x introduces additional terms in (3) that have to be
taken into account in the computation of the MAP estimate. In the derivation
of the multiplicative update rule (6), we minimized the auxiliary function (5)
defining an upper bound on L(x). A close look reveals that all priors whose neg-
ative logarithm comprises terms that are either linear, quadratic, or logarithmic
in x can be incorporated into (5) and hence are compatible with the update (6).
This includes the following priors:

– Smoothness: A desired property in many imaging applications is smooth-
ness of the true map, which can be enforced by penalizing the norm of its
gradient ‖∇x‖. The corresponding prior is

p(x|λ) ∝ exp
{
−λ

2
‖∇x‖2

}
(10)
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Note that ‖∇x‖2 can be rewritten as xTΔx where Δx ≡ ∇T∇x = −L ∗ x is
the negative Laplace operator, i.e. in the one-dimensional case L = (1,−2, 1).

– Sparseness: A further assumption commonly made is sparseness, which can
be encoded in the exponential prior

p(x|λ) ∝ exp{−λ
∑

i

|xi|} = exp{−λ I
Tx} (11)

where the second equality holds for nonnegative maps.
– Orthogonality: In some applications, it is useful to introduce a voxel-wise

nonnegative background z, which results in the model y = f ∗ x + z. Such
a background could, for example, account for the solvent in electron micro-
scopic recordings or a homologous structure for model refinement (cf. section
4.1). Usually, the background should be uncorrelated with the reconstructed
map which can be enforced by penalizing the overlap between x and z, i.e.

p(x|θ) ∝ exp{−λ zTx}. (12)

We treat the background as a variable that we learn along with f and x
using analogous multiplicative updates. In the following, we will refer to
this regularization term as orthogonality constraint. Of course, z could be
constant if such knowledge is available.

– Entropy: A reasonable assumption, especially for the form of the PSF, is
that it exhibits a bump-like shape. This can be favored by using the entropic
prior

p(x|λ) ∝ exp
{
λ
∑

i

log xi

}
. (13)

The Burg entropy
∑

i log xi is compliant with the auxiliary function G(x, x′)
and favors maximum entropy maps, i.e. constant maps. Entropy and sparse-
ness/orthogonality can be combined into a single prior density: a voxel-wise
Gamma distribution.

Table 1 summarizes the presented prior distributions and the required modifica-
tions in (6).

3.1 Estimation of Hyperparameters

An important aspect is the estimation of the unknown hyperparameters. In-
stead of resorting to heuristics or cross-validation, we use Bayesian inference
to estimate the hyperparameters θ. For all hyperpriors introduced in the previ-
ous section, the Gamma distribution G(θ|α, β) is a conjugate prior. The ideal
approach to hyperparameter estimation would be to calculate their marginal
posterior distribution

p(θ|y) =
∫

f≥0

∫
x≥0

p(x, f, θ|y) df dx (14)

and determine the mean or mode [15]. In our case, however, exact integration
over f and x is infeasible. One would have to resort to computationally intensive
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Table 1. Modifications for the incorporation of prior knowledge in the update of
the true map. Δ+ and Δ− refer to the decomposition of the negative Laplacian Δ =
Δ+ − Δ−. diag{x} is a diagonal matrix with entries xi.

Prior A+ A− b

Smoothness F TF + Δ+ Δ− −F Ty

Sparseness F TF 0 −F Ty + λI

Orthogonality F TF 0 −F Ty + λz

Entropy F TF λdiag{x}−2 −F Ty

methods like Markov chain Monte Carlo or alternatives such as variational [16]
or approximate inference [17]. Therefore we pursue the much simpler approach
of computing the MAP estimate of the joint posterior, i.e.

θ̂ = argminθ p(f̂ , x̂, θ|y) (15)

where f̂ and x̂ denote the MAP estimate of the PSF and the true map, re-
spectively. Although it has been argued that this approximation is crude and
neglects valuable information [12], the joint MAP approach led to good results
in our experiments. The estimates for the hyperparameters θ̂ can be derived by
solving (15) directly. The shape parameters α and β of the Gamma hyperprior
are not estimated but set to fixed values α = 1 and β close to zero. According
to [18] the sensitivity of the results on the shape parameters is negligible, which
was confirmed by our experiments.

3.2 Discussion

Let us come back to the one-dimensional toy example at low SNR (cf. Fig. 1).
Figures 2 A-D show how enforcing smoothness of the signal using prior (10) pre-
vents unfavourable noise-fitting and effectively helps us to recover the original
signal and the PSF from the blurred and noisy observation. We further inves-
tigated the estimation of the regularization parameter λ. We tested different
fixed values for λ and compared the reconstruction error of and the correlation
with the true signal when applying our hierachical Bayes approach. Figures 2 E
and F show that the Bayes procedure yields a minimal reconstruction error and
a maximal correlation for a wide range of fixed λ values. The evolution of the
regularization parameter (Fig. 2 G) reveals an important feature of our deconvo-
lution algorithm. Starting at a small initial value, the regularization parameter
increases rapidly within a few iterations after which it gradually converges to
a smaller optimal value. This finding may justify the heuristic regularization
scheme of Shan et al. [19], which seems to be crucial for the success of their
BD algorithm on natural images [12]. Shan et al. propose to start the deconvo-
lution with a large value of λ – a conservative choice that puts higher weight
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Fig. 2. One-dimensional toy example. The top row shows the results of NNBD at a
SNR of 20 dB. A: data y used in NNBD. B: true (black) and estimated (red) PSF f .
C: true (black), NNBD (red) estimate of the true signal x. D: negative log-likelihood
(on logarithmic scale). The bottom row shows the absolute deviation (E)/correlation
coefficient (F) of the reconstructed signal x̂ from/and the true underlying signal x for
fixed values of the regularization parameter λ (black) and in the case of NNBD with
additional hyperparameter estimation (red) after 5000 iterations. G: Evolution of the
hyperparameter λ with increasing number of iterations.

on the prior than on the data. As the deconvolution improves, the regulariza-
tion parameter is decreased to put more and more weight on the data. This is
similar to simulated or deterministic annealing which aims to avoid trapping in
sub-optimal local minima. The advantage of our approach is that, contrary to
Shan et al., we do not need to choose a schedule for adjusting λ. Rather our
update procedure automatically balances the influence of the data versus the
importance of the prior.

4 Applications

To evaluate the performance of our model and verify its validity we applied
our algorithm to simulated three-dimensional density maps with a sampling of
1 Å/voxel. We used the program pdb2mrc from the EMAN software package
[20] for density map simulation. First, we use nonnegative blind deconvolution
to sharpen electron density maps. In the second application, we demonstrate
the capabilities of our approach and the usefulness of the orthogonality prior by
incorporating homologous structure information in the deconvolution.

4.1 Electron Density Maps of Proteins

For validation we used a monomer of the trimer of the bluetongue virus capsid
protein VP7 (PDB ID: 2BTV) [21]. Figure 3 A shows the molecular structure,
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Fig. 3. NNBD for the electron density map of the monomer of the bluetongue virus
outer shell coat protein VP7 (PDB ID: 2BTV): Top row: A: molecular structure, B:
simulated density map at 10 Å, C: point spread function. Middle row: D: NNBD recon-
struction with molecular structure fitted into it, E: NNBD reconstruction, F: estimated
point spread function. Bottom row: G: correlation coefficient with simulated density
maps at various resolutions, H: Guinier plot. See text for details.
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Fig. 3 B the simulated electron density map at 10 Å resolution and Fig. 3 C
the corresponding PSF. Figures 3 D-F show the density map reconstructed with
NNBD, the molecular structure fitted into it and the estimated PSF, respec-
tively. The sharpened map reveals the nature of most secondary structure ele-
ments, whereas the original density map provides ambiguous secondary structure
information. Also side chains become visible, which is important for modeling
atomic details. To quantify the gain in resolution, we computed the correlation
coefficient between the sharpened map and density maps simulated at higher res-
olutions. Figure 3 G shows that the correlation coefficient is highest for a density
map at a resolution of 6 Å. Hence, our algorithm is able to sharpen the original
map and to improve its resolution by almost a factor of two. Figures 3 C and F
depict the true and estimated PSFs. The overall shape and functional form is de-
termined correctly, however the estimated bandwith appears to be smaller. This
shrinkage of the PSF is largely due to the smoothness prior that downweights
high-frequency components, which causes a loss of structural details but, at the
same time, prevents amplification of noise. In this sense, underestimation of
the bandwidth is conservative and should be viewed as a feature rather than a
shortcoming.

Further insight is obtained by looking at the Guinier plot (Fig. 3 H) showing
the radially averaged power spectrum against the squared resolution. In physical
terms, the Guinier plot quantifies the map’s energy content at various spatial
frequencies. Blurring has the effect that the Guinier plot drops off quite rapidly –
convolution with a broad PSF acts as a low-pass filter that deletes all informa-
tion above a certain cutoff frequency. The NNBD algorithm is able to recover
high-frequency information to a large extent and lifts the Guinier curve above
the curve of the simulated density map at a resolution of 6 Å (orange line in
Figure 3 H).

To study the influence of noise, we corrupted the simulated density maps with
Gaussian noise at different SNRs. We used the program proc3d from the EMAN
software package [20] for noise corruption. Figure 4 A shows a noisy 10 Å-density

A B C D

Fig. 4. NNBD for the electron density map of the monomer of the bluetongue virus
outer shell coat protein VP7 (PDB ID: 2BTV): A: simulated density map at SNR of
6 dB at 10 Å resolution, B: NNBD reconstruction, C: result of embfactor, D: median-
filtered result of embfactor



A New Algorithm for Improving the Resolution of Cryo-EM Density Maps 185

A B C

D E F

G H I

Fig. 5. NNBD for the electron density map of the bluetongue virus capsid protein
(PDB ID: 2BTV) using additional structural information from a homologous fold.
Top row: A: molecular structure of trimer 2BTV, B: top view of simulated density
map of 2BTV at 8 Å resolution, C: sideview. Middle row: D: molecular structure of the
African horse sickness virus capsid protein (PDB ID: 1AHS), E: simulated density map
of 1AHS at 8 Å resolution, F: density map of 1AHS fitted into the map of 2BTV by
FOLDHUNTER. Bottom row: G: NNBD of 2BTV without density map of homologous
fold, H: molecular structure of 2BTV fitted into the density map, I: closeup view of H.
See text for details.
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map at a SNR of 6dB. Figure 4 B shows the corresponding NNBD reconstruction
using a smoothness prior (10). For comparison Fig. 4 C shows the density map
sharpened with embfactor [7,6], the state-of-the-art method within the field.

4.2 Incorporating Homologous Structure Information

We now demonstrate how additional information from homologous structures
can be incorporated to aid the deconvolution process and to detect secondary
structure. We use the trimeric structure of the bluetongue virus capsid protein
VP7 (PDB ID: 2BTV) as an example. Figures 5 A-C show the molecular struc-
ture, a top and side view of the simulated density of 2BTV at a resolution of
8 Å. The protein is made up of β-sheets and α-helices in the upper and lower
domains, respectively. The African horse sickness virus capsid protein (PDB ID:
1AHS) is a close structural homologue (RMSD: 1.4 Å) to the all-beta domain of
2BTV. Figures 5 D-F display the molecular structure, the simulated density at
a resolution of 8 Å and the fit of 1AHS into 2BTV provided by FOLDHUNTER
[22]. In B-factor sharpening, information from homologous folds is used to com-
pute the optimal B-factor for density sharpening. In our blind deconvolution
approach, we model the observed density map as being composed of the homol-
ogous structure simulated at a higher resolution and the remainder density of
2BTV. The density of the homologous fold is held fixed, only the missing density
and the PSF are estimated during the deconvolution. As initial PSF, we use a
Gaussian at 6 Å resolution corresponding to the resolution difference between
the high-resolution density of 1AHS at 2 Å and the experimental density. During
reconstruction, we apply the orthogonality constraint (12) to enforce that the
1AHS density and the unexplained region of 2BTV do not overlap. The result
of NNBD is shown in Figs. 5 G-I. As clearly visible in the closeup (Fig. 5 I), the
sharpenend density map reveals sidechains and information with almost atomic
resolution. Figures 6 A-C compare the true PSF and the PSFs estimated by
NNBD with and without homologous structure. As in the previous example,
the width of the PSF is underestimated due to the smoothness prior. However,
the additional structural information facilitates a more accurate estimation of
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Fig. 6. Comparison of true PSF (A) and the PSFs estimated by NNBD without (B) and
with homologous structure information (C). D: Guinier plot of reconstructed density
maps with (magenta dashed line) and without homologous structure information (red
dotted line). See text for details.
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the PSF (Fig. 6 C) and thereby allows the restoration of a high-resolution den-
sity map (Fig. 5 I). The Guinier plot (Fig. 6 D) illustrates the improved recovery
of high-frequency information and the increase in resolution.

5 Summary

We propose a new method for improving the resolution of cryo-EM density
maps by nonnegative blind deconvolution. We provide an iterative algorithm
for learning simultaneously the sharpened density map and the blur kernel. We
illustrate the generality of the proposed framework and show that the derived
updates allow for easy incorporation of prior knowledge such as smoothness and
sparseness.The updates are multiplicative and do not require the adjustment of
a learning rate, as opposed to previously proposed gradient descent techniques.
In addition, the updates ensure the nonnegativity of the sharp map and the
PSF and guarantee convergence to a stationary point. A hierarchical Bayesian
formulation also allows us to derive update rules for the hyperparameters, thus
the method is fully parameter-free. The simplicity of the multiplicative updates
allows for straightforward implementation. By employing the Fast Fourier Trans-
form, we can reduce the computational complexity to large extent such that even
medium and large sized problems (number of voxels > 107) can be tackled effi-
ciently. Computation time is typically in the order of minutes to hours for large
density maps (> 4003) depending on the number of iterations one is willing to
perform. Since our method allows the inspection of intermediate results, the user
can decide when to stop either by visual inspection or by a user-set threshold
of the monotonically decreasing cost function. We illustrate the performance
and versatility of our algorithm by sharpening simulated electron density maps
of the bluetongue virus capsid protein VP7 and by incorporating homologous
structure information into the deconvolution process. We are currently applying
our method to experimental density maps. Initial results confirm that NNDB is
a flexible and generic tool to improve the resolution of electron density maps.
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Towards Automated Structure-Based NMR
Resonance Assignment
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Abstract. We propose a general framework for solving the structure-
based NMR backbone resonance assignment problem. The core is a novel
0-1 integer programming model that can start from a complete or partial
assignment, generate multiple assignments, and model not only the as-
signment of spins to residues, but also pairwise dependencies consisting
of pairs of spins to pairs of residues. It is still a challenge for automated
resonance assignment systems to perform the assignment directly from
spectra without any manual intervention. To test the feasibility of this
for structure-based assignment, we integrated our system with our auto-
mated peak picking and sequence-based resonance assignment system to
obtain an assignment for the protein TM1112 with 91% recall and 99%
precision without manual intervention. Since using a known structure has
the potential to allow one to use only N-labeled NMR data and avoid
the added expense of using C-labeled data, we work towards the goal
of automated structure-based assignment using only such labeled data.
Our system reduced the assignment error of Xiong-Pandurangan-Bailey-
Kellogg’s contact replacement (CR) method, which to our knowledge is
the most error-tolerant method for this problem, by 5 folds on average.
By using an iterative algorithm, our system has the added capability of
using the NOESY data to correct assignment errors due to errors in pre-
dicting the amino acid and secondary structure type of each spin system.
On a publicly available data set for Ubiquitin, where the type prediction
accuracy is 83%, we achieved 91% assignment accuracy, compared to the
59% accuracy that was obtained without correcting for typing errors.

1 Introduction

Nuclear Magnetic Resonance (NMR)-based technologies are not only important
for determining protein structure in solution [3, 7], but also studying protein-
protein, protein-ligand interactions [31, 42], and identifying new drugs [35, 41].
However, presently, it can still take an experienced NMR spectroscopist weeks
to months to process the data after the NMR spectra are collected. A key bot-
tleneck step in the data processing is backbone resonance assignment, where the
goal is to assign chemical shift values extracted from the spectra to the under-
lying backbone atoms. If the protein is examined under multiple experimental
� The first two authors are Joint First Authors.
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conditions, or different mutants of the protein are being studied, the assignment
step needs to be repeated each time. Automated methods can accelerate this
process especially if a similar 3D structure is already known, such as one ob-
tained from a previous step. The use of a structure may also allow subsequent
steps to use only N-labeled NMR data.

Traditional, sequence-based, resonance assignment methods depend mainly
on the amino acid sequence and carbon connectivity information extracted from
triple resonance experiments [1,4,6,10,17,19,21,22,23,24,27,28,30,32,36,43,46,
50, 51]. With the rate of new unique protein folds being discovered decreasing
relative to the rate of protein structures being determined [33,34], one can expect
that most proteins have homologs with a known protein structure. Analogous to
molecular replacement in X-ray crystallography [12], the known structure can
be used as a template to which the NMR experimental evidence is matched, as
is done in various structure-based assignment methods [4, 5, 6, 13, 14, 18, 21, 26,
38, 39, 43, 49, 50].

The Nuclear Vector Replacement (NVR) approach [26, 27] uses 15N-HSQC
spectra, HN -15N residual dipolar couplings (RDC), sparse dNN NOEs, amide
exchange rates, and no triple resonance data for structure-based assignment. The
problem was cast as a maximum bipartite matching problem, which they solved
in polynomial time. Using close structural templates, they achieved an accuracy
of over 99%. Their work was extended to handle more distant templates using
normal mode analysis to obtain an ensemble of template structures [4]. Unlike
NOEs, which stem from short-range interactions, RDCs can provide long-range
orientation information. However, currently in NMR labs, RDC experiments are
not as commonly used for backbone resonance assignment.

For assignment using 3D NOESY data, Xiong et al. developed a branch-and-
bound algorithm [49], which they later improved to a randomized algorithm [50],
which we shall refer to as the contact replacement (CR) method. The CR method
was demonstrated to tolerate 1-2Å structural variation, 250-600% noise, and 10-
40% missing contact edges. Although they mention that there exists methods
with close to 90% average accuracy for predicting a spin system’s amino acid
class prior to an assignment, the CR method ignored such errors. The method
achieved an assignment accuracy of above 80% in α-helices, 70% in β-sheets,
and 60% in loops. To our knowledge, it is the most error-tolerant structure-
based assignment method in terms of the noise level. The data used consisted of
only N-labeled spectra: 2D 15N-HSQC, 3D 15N-TOCSY-HSQC, 3D 15N-NOESY-
HSQC, and 3JHNHα coupling constants derived from 3D HNHA. The problem
was cast as a subgraph matching problem, where one graph consisted of the
contacts in the known protein structure, and the other consisted of the NOESY
cross peaks (NOEs) that connected spin system pairs. In general, the mapping
of NOESY peaks to specific contacts is ambiguous due to experimental errors,
missing peaks, and false peaks. Although the graph problem that was solved is
NP-hard, Xiong et al. proved that under their noise model, the problem could
be solved in polynomial time with high probability. In NOEnet [43], the problem
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was also cast as a subgraph matching problem. Unlike the CR method, NOEnet
generates an ensemble of assignments containing all assignments compatible with
the NMR data, and it requires only 1HN -1HN NOEs. However, it requires un-
ambiguous NOEs, such as those from 4D NOESY experiments, so the noise is
less than that handled by the CR method.

In NMR studies, NMR spectra are often examined by visual inspection, where
the cross peaks get picked by inspection, or by automatic methods but then
checked by the scientist. The peaks get accumulated in a list of peaks, and this list
can change during the study as errors and inconsistencies are discovered during
the assignment step. Therefore, the peak picking and the resonance assignment
steps are usually done together. We aim to build a system that automates this
process without any manual intervention. To our knowledge, current structure-
based methods are still semi-automated. The heart of our system is a novel and
general 0-1 integer linear programming (ILP) model. We focus on structure-based
assignment using only N-labeled NMR data because using a known structure
has the potential to allow one to avoid the added expense of using C-labeled
data. Nevertheless, the ILP model can be adapted to include carbon connectivity
information from C-labeled data.

To test the feasibility of fully-automated structure-based assignment, we first
build upon our earlier work on automated sequence-based resonance assignment,
IPASS [1], which uses peak lists that are automatically picked from the spectra.
These peak lists, which tend to be more noisy than manually picked peaks, are
generated from our automated peak picking system, PICKY [2]. We used our
method to refine the IPASS assignment to achieve an accuracy of 91% recall and
99% precision, an improvement over the input assignment, which had a recall
value of 84% and precision of 97%. Recall is defined as C ÷ R and precision
as C ÷ S, where C is the number of correct assignments, R is the number of
residues that can be assigned, and S is the number of assignments made by the
method. Typically, by accuracy we mean precision. Although the improvement is
modest, we started directly from the spectra using systems that are completely
automated.

For using only N-labeled data, automated and robust structure-based assign-
ment is still a challenge. In comparison to the CR method, on 9 proteins from
the data set used by the CR method, our method, on average, has 5 times fewer
incorrect assignments. As a step towards robust assignment, we achieve further
error tolerance by using the NOESY data to directly handle errors in predicting
each spin system’s amino acid and secondary structure type. This was tested on
5 proteins with typing errors introduced, and on a publicly available data set for
Ubiquitin with a combined type prediction accuracy of 83% (both amino acid
and secondary structure type correct). On Ubiquitin, we achieved an assignment
accuracy of 91%, which is a large improvement over the 59% accuracy that was
obtained without correcting for typing errors. Although we focused on resonance
assignment using only N-labeled spectra, we also discuss generalizations of the
ILP model to take into account other sources of data.
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2 Methods

We use the graph representations from the CR method [50] to represent the
template protein of known structure and the NMR data of the unknown target
protein.

Contact Graph: Each residue in the template protein is represented by a vertex
labelled with residue-related features. We use only amino acid and secondary
structure type. Other possible features include predicted chemical shift values,
back-computed RDCs [26], etc . . . . An edge is created between a pair of amino
acids if there is a contact according to a given distance cutoff. Each edge is la-
belled by all pairs of directed proton-proton interaction types. We consider only
two types of interactions, Hα and HN, and HN and HN. Since Hα and HN is not
symmetric, the labels have a direction.

Interaction Graph: We define each spin system to consist of the chemical shifts
of the backbone N, HN , Hα, and the side chain protons. Each spin system is
represented by a vertex labelled with spin system-related features. We use only
the predicted amino acid and secondary structure type. Like the CR method, we
use the side chain protons only in amino acid type prediction. Amino acid type
predictions were obtained from the RESCUE software, version 1 [37]. RESCUE
classifies each spin system into one of ten possible amino acid classes using proton
chemical shifts. We used all classes with positive reliability score rather than
the highest scoring class because this improved assignment accuracy. Secondary
structure type predictions can be obtained from 3JHNHα coupling constants [47].
Other possible features include experimental chemical shifts and RDC values.
An edge is created between a pair of spin systems if there is at least one matching
NOESY peak (15N, HN, 1H), where the 15N, HN matches the backbone N, HN

chemical shift of one spin system and the 1H matches the backbone HN or Hα of
the other spin system. Edges are labelled similarly to the contact graph with the
addition of a match score for each NOESY peak. The match score is defined as
erfc( |Δe|

0.02×√
2
) as used in [50], where erfc is the complementary error function

and |Δe| is the chemical shift difference between 1H and the matching HN or
Hα. Edge labels are not limited to 3D 15N NOESY-HSQC data. If 1HN -1HN

NOEs, as used in NOEnet, are available, a match score function that measures
the chemical shift difference between the HN s can be used.

To find the best match between the two graphs, we look for the common edge
subgraph that maximizes the match score, subject to the constraint that the
vertex and edge labels match. Finding the maximum common weighted edge
subgraph (and also the maximum common node subgraph), in general, is NP-
hard [40]. We use integer programming to do the maximization because it models
the problem naturally as we will show. Our ILP formulation is similar to that for
the maximum clique problem [8], to which subgraph matching can be reduced
[40]. To solve the ILP model, we used the solver in the commercial optimization
package ILOG CPLEX R© version 9.130. Note that if we consider only vertex
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matches, we get a maximum bipartite matching problem, which can be solved
in polynomial time as in the NVR method.

2.1 0-1 Integer Programming Model

Define Vc, Vi to be the set of vertices in the contact graph and interaction graph,
respectively. Define Ec, Ei to be the set of edges in the contact and interaction
graph, respectively.

Input Data

m(a, s, b, t) The edge match score between amino acids a, b ∈ Vc and spin
systems s, t ∈ Vi, where a is matched with s, and b is matched with
t. In our model, it is equal to the sum of the match scores of the
NOESY peaks that match (s, t) and match an interaction type of
(a, b). The score is assumed to be non-negative.

m(a, s) The vertex match score between amino acid a and spin system s.
The score is assumed to be non-negative

Ei(a, b) The set of edges in the interaction graph that match the edge (a, b) ∈
Ec. An edge (s, t) ∈ Ei matches edge (a, b) if the edge labels match
while taking into account the direction of the interaction, and if either
the label of vertex a matches that of vertex s and the label of vertex
b matches that of vertex t, or a with t and b with s.

A The set of all matching (a, s), where a ∈ Vc and s ∈ Vi, and there
exists (a, b) ∈ Ec and (s, t) ∈ Ei such that (s, t) matches (a, b).

Decision Variables

X(a, s, b, t) A binary variable. It equals to 1 if spin system s is assigned to
amino acid a, and spin system t is assigned to amino acid b; and
0 otherwise. This variable represents an edge match between the
graphs. X(b, t, a, s) is equivalent to X(a, s, b, t). For the purpose
of exposition, we use X(a, s, b, t) to denote either X(b, t, a, s) or
X(a, s, b, t), although the model contains only one such variable.

X(a, s) A binary variable. It equals to 1 if spin system s is assigned to the
amino acid a; and 0 otherwise. This variable represents a vertex
match.

Formulation

max
X

⎛⎜⎝
∑

(a, s)∈A m(a, s) ·X(a, s)+∑
(a, b)∈Ec

∑
(s, t) ∈
Ei(a, b)

m(a, s, b, t) ·X(a, s, b, t)

⎞⎟⎠ (1)

subject to
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∑
s

X(a, s) ≤ 1 ∀a ∈ Vc, (2)

∑
a

X(a, s) ≤ 1 ∀s ∈ Vi, (3)

∑
t s.t.

(s, t) ∈ Ei(a, b)

X(a, s, b, t) ≤ X(a, s)

∀(a, s) ∈ A, ∀(a, b) ∈ Ec,

(4)

X(a, s, b, t) ∈ {0, 1} , (5)

X(a, s) ∈ {0, 1} . (6)

Discussion. Equation (1), the objective function, expresses the total edge and
vertex match score of the assignment. The first summation is over all vertices that
are involved in at least one edge match. The second summation is over all edges
that match. Unlike subgraph isomorphism, we look for edge matches only rather
than non-matches. Non-matches are scored implicitly as described below. We
generate only the variables involved in at least one edge match. We do not assign
vertices that are isolated, unless the vertices can be unambiguously assigned,
such as being the only ones with a particular type. Constraint (2) ensures that
each amino acid is assigned to at most one spin system. Constraint (3) ensures
that each spin system is assigned to at most one amino acid. Therefore, extra
amino acids or spin systems can be unassigned, and missing amino acids or spin
systems implicitly have a score of 0.

Constraint (4), in conjunction with (2) and (3), ensure that if X(a, s, b, t) = 1,
then X(a, s) = 1 and X(b, t) = 1. If X(a, s) = 1 and X(b, t) = 1, the left hand
side of (4) can be zero, so missing edges are allowed. However, edge match scores
are always non-negative and we are maximizing the score. If a match exists, we
are guaranteed that one edge match variable is set to 1. Note that (2) and (3)
prevent the situation in (4) where X(a, s, b, t) = 1 and X(a, u, b, v) = 1, or
X(a, s, b, t) = 1 and X(i, s, j, t) = 1, so each contact graph edge has at most
one matching interaction graph edge that gets picked, and vice versa. Since the
interaction graph tends to have more edges than the contact graph, extra edges
can get unmatched. Since edge match scores are non-negative, missing edges
implicitly have a score of 0, so a missing edge penalty for the scoring function is
not necessary. To implicitly allow a negative missing edge penalty, all the edge
match scores can be shifted by the penalty. The final two constraints ensure
that the decision variables are binary. Note that the above formulation does not
enforce that the common subgraph be connected, so contacts in different domains
of the protein can get matched, while the parts in-between are unmatched.
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2.2 ILP Model Generalizations

The ILP model can be adapted to accommodate different situations by setting,
adding or removing variables, modifying their coefficients, and adding or removing
constraints.

DifferentSources ofData. Although we considered only chemical shiftmatches
in the scoring function, the objective function of the ILP model can model any
function that models the assignment of spins to residues and also the assignment
of pairs of spins to pairs of residues. For C-labeled data, if there is carbon connec-
tivity evidence that supports that spin systems s and t is associated with adjacent
amino acids ai and ai+1, the value of m(ai, s, ai+1, t) can be increased. The vari-
able X(ai, s, ai+1, t) can also be removed if there is insufficient connectivity and
contact information.

For RDC data, once an alignment tensor has been estimated, back-computed
RDCs can be computed and compared with the experimental values to yield a
value for each m(a, s). After running the ILP, the assignment information can be
used to update the alignment tensor and m(a, s) terms. For 1HN -1HN NOEs,
chemical shift matches can be encoded in the m(a, s, b, t) terms.

The coefficients m(a, s, b, t) did not use all the information in amino acids a
and b. Different scores or weights can be used to account for matches to specific
types of contacts in the template protein structure, such as long range β-sheet
contacts and local Hα and HN contacts in α-helices. The CR method focused
on finding common Hamiltonian path fragments in the graphs to be matched.
Similar to carbon connectivity, the score for matches to pairs of adjacent amino
acids can be scaled up to emphasize the Hamiltonian path, so that the objective
function contains a weighted version of the Hamiltonian path length. Alterna-
tively, to enforce a maximum allowable number of missing edges along the path,
we can add the constraint∑

(a, b) ∈ Ec ,
|a− b| = 1

∑
(s, t) ∈ Ei(a, b)

X(a, s, b, t) ≥ n−m (7)

where the sum is over all spin system pair matches to adjacent amino acids. n is
the number of amino acids minus one, and m is the maximum allowable number
of missing edges along the path.

Note that if we remove the X(a, s, b, t) variables, and consider only the
X(a, s) variables and use dummy vertices in the case that the size of Vc is not
equal to Vi, we get a maximum bipartite matching problem. In this case, we can
relax the constraint that the variables are integers because the constraint matrix
becomes totally unimodular [9], so linear programming, which is not NP-hard,
will give an integer optimal solution.

Apriori Assignment Information. ILP solvers can start from an initial
solution to improve performance. This initial solution can even be a partial
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assignment. If specific spin system-amino acid assignments are known, the cor-
responding vertex match variables can be fixed to 1. The ability to fix specific as-
signments and to start from an existing assignment allows for a semi-automated
approach, where the returned assignment is examined and corrected manually.
The ILP can then be rerun using the new information rather than starting from
scratch.

MultipleSolutions. The maximum common subgraph is not necessarily unique,
so there may be multiple best scoring assignments. The sequential algorithm, in-
troduced by Greisdorfer et al. [16] and generalized to more than two solutions
in [11], can be used to generate solutions that are within a certain percentage of
the optimal solution and have maximum diversity as measured by a diversity mea-
sure, such as average pairwise hamming distance. The one tree algorithm can also
be used [11]. Examining the variability of each amino acid’s possible assignments
among a set of optimal or near optimal assignments allows one to assess the as-
signment stability. The set of assignments can be used in consensus methods. For
instance, the above ILP can be used to generate a consensus assignment by ig-
noring the X(a, s, b, t) variables and setting each m(a, s) to the number of times
amino acid a got assigned to spin system s.

NOE Assignment. The current ILP model simplifies the assignment problem
by using edge match variables, where each variable represents a match between
an amino acid pair and spin system pair rather than between an atom and a
spin. This leads to the problem where a given NOESY peak can explain more
than one edge match. If we remove this problem and identify which NOESY
peak corresponds to exactly which pair of contacting atoms, perhaps the accu-
racy of resonance assignment will improve. The ILP model can be modified to
perform both resonance and NOE assignment simultaneously. However solving
both problems increases the size of the model, so we leave it as future work. To
enforce that each NOESY peak corresponds to at most one interaction, for each
NOESY peak p, we have ∑

a, s, b, t ,
(s, t) matches p ,
(s, t) ∈ Ei(a, b)

X(a, s, b, t, p) ≤ 1 (8)

where we have defined a new binary variable X(a, s, b, t, p) corresponding to an
edge match that is explained by NOESY peak p, where p matches spin systems
s and t. To tie this variable to the other variables, we have, ∀X(a, s, b, t) where
(s, t) ∈ Ei(a, b),

X(a, s, b, t) ≤
∑
p ,

(s, t) matches p

X(a, s, b, t, p) (9)
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k ·X(a, s, b, t) ≥
∑
p ,

(s, t) matches p

X(a, s, b, t, p) (10)

where k is the number of NOESY peaks that match the spin system pair (s, t).
Constraint (9) ensures that if there is an edge match, the match is due to at
least one NOESY peak. Constraint (10) ensures that if there are NOESY peaks
explaining an edge match, the corresponding edge match variable will get se-
lected. The m(a, s, b, t) · X(a, s, b, t) terms in the objective function would
then be replaced by terms of the form m(a, s, b, t, p) · X(a, s, b, t, p), where
m(a, s, b, t, p) is the match score of NOESY peak p that matches (s, t) and
matches an interaction type of (a, b).

2.3 Spin System Type Prediction Errors

In the current ILP model, an edge match requires that the corresponding ver-
tices match in amino acid and secondary structure type. If the type prediction
for a spin system is incorrect, then it will get assigned to the wrong amino acid,
and the correct spin system for that amino acid will also get incorrectly as-
signed. Assuming that the other assignments are correct, if the type matching
requirement is then relaxed, we expect that the edge match scores for the incor-
rectly assigned spin systems will be greater when they are assigned to the correct
amino acids. We do not, however, want to relax the type matching requirement
for the correctly assigned spin systems. This forms the basis of our approach to
handle type prediction errors as summarized in Fig. 1. The ILP model is first
solved with the type matching requirement. Putative correct assignments are
then identified, and then the ILP is resolved with these assignments fixed, while
the type matching requirements are relaxed for the non-fixed spin systems.

To determine whether or not an assignment should be fixed, we examine the
percentage of contacts matched involving each assigned amino acid. This per-
centage can be outputted as a confidence measure for each assignment. Due
to erroneous assignments, a tight criteria for identifying fixed assignments may
exclude correct assignments and result in a large problem size. For the initial
criteria, we chose a 50% cutoff. Analogous to gradually decreasing the tempera-
ture in the simulated annealing optimization method [25], we used progressively
tighter criteria. Once the ILP is resolved, the previously fixed assignments may
no longer satisfy the criteria, while new assignments may satisfy it. Therefore,
for a given criteria, we resolve the ILP until the fixed assignments do not change,
or after a maximum number of iterations. We chose 50% because the majority
of the missing edge percentages in our data are below 50% (Table 1). To tighten
the criteria, we considered the requirement that a certain number of sequential
neighboring contacts, nonlocal contacts between β-sheet amino acids, and local
helix contacts (i ± 5) in the template protein structure be matched. We first
required only one sequential neighbor and then later two (assignments for amino
acids at the end points will not be fixed). Finally, we required that β-sheet amino
acids have at least one β-sheet contact match, and that α-helix amino acids have
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at least one local contact match before and one local contact match after the
residue. We did not attempt to optimize the set of criteria for fixing assignments
as this is a modeling issue, and we wanted to show that our ILP model is flexible
in modeling the problem.

For a given fixed assignment, ILP solvers can return a solution with score
within N% of the optimal solution, where we chose N to be 1%. If the fixed as-
signment is correct, then this solution will have score close to the global optimal
solution. If not, other possible fixed assignments would need to be considered. We
found that generating multiple solutions, improving each one, and then taking
the best scoring one at the end produces a better final assignment. The genera-
tion of multiple solutions can be started at the initial ILP step or at subsequent
ILP steps. In the latter case, previous assignments could be supplied to CPLEX
as an initial feasible solution to speed up the optimization. Multiple solutions
can also be generated from the final assignment by fixing assignments and then
running the sequential or one tree algorithm. This allows the examination of the
possible assignments for the non-fixed residues.

Fig. 1. Iterative Integer Programming with Fixed Assignments

3 Results

TM1112, an 89 residue protein from Thermotoga maritima [48], was provided
by the Arrowsmith Lab at the University of Toronto. Accounting for 5 prolines,
manual resonance assignment by the lab yielded 84 assigned residues. The pro-
tein has 17 residues in α-helices, 58 in β-sheets, and 14 in loops. The assignment
obtained without manual intervention from IPASS was refined using the X-ray
structure PDB ID:1O5U and the spectra 15N-HSQC, 15N-edited NOESY, and
HCCONH-TOCSY. HCCONH-TOCSY was used in place of 3D 15N TOCSY-
HSQC because we did not have the latter. Since we did not have the latter,
contacts from Hi

α to Hj
N were represented by edges from Hi

α to Hj+1
N . The
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step that handles type prediction errors was also omitted because we did not
have TOCSY-HSQC to do type prediction. Peak lists were obtained automati-
cally from the spectra using PICKY. To compile the spin systems, chemical shift
match tolerances of 0.5 ppm for N and 0.05 ppm for H were used. The IPASS
assignment was fixed except where amino acids had greater than 70% of its con-
tacts unmatched by the NOESY peaks of the assigned spin systems. We used an
iterative approach of generating multiple assignments, taking the consensus, and
discarding amino acids with no assigned spin system that occurred at least 50%
of the time. This was repeated until no amino acids could be discarded. To han-
dle the discarded amino acids, carbon connectivity information generated from
IPASS was used to add any amino acids that could be unambiguously assigned.

Although we started with the IPASS assignment, this test is non-trivial be-
cause we used only a subset of the spectra used by IPASS, we could not do spin
system type prediction, and the noise level (number of NOE edges per contact
graph edge) was 12× at a distance cutoff of 4 Å. Nevertheless, by using contact
information from the X-ray structure, we achieved an accuracy of 76 correct as-
signments out of 77 assigned amino acids, yielding 91% recall and 99% precision.
This is a 5 residue improvement over the IPASS assignment, which achieved a
recall value of 84% and precision of 97%. One wrong assignment made by IPASS
was corrected. In general, the majority of the contacts of the unassigned residues
were missing NOESY peaks. Although the improvement is modest, we started
directly from the spectra using systems that are completely automated.

We then tested the performance of our method on the synthetic data set used
by the CR method. It consisted of 9 proteins. The authors provided us with
data that was simulated from the following NMR structures from the PDB:
1KA5, 1EGO, 1G6J, 1SGO, and 1YYC. The data for the other 4 proteins were
simulated similar to their simulation method described in [49], where only one
of the NMR models was used to generate the NOESY peaks. Although the
simulated data was derived from one of the models in the PDB file, similar to
the CR experiments, we tested the data using every model in the PDB file as
the template structure, where the number of models per PDB file ranged from
10 to 32. The structural noise (in RMSD) of the models within each PDB file is
given in Table 1, which summarizes the test set. To control noise, our method
automatically increases the distance cutoff at 0.25 Å increments until the noise
level is under 8. This gives an improvement over using a fixed 4 Å cutoff. We
used the same distance cutoffs on the CR software.

Table 2 compares our method with the CR method, where the first row of
each entry gives our results, while the row below gives the CR’s. On 8 of the 9
proteins, our average accuracy on the entire protein is better. We achieved an
average accuracy of 97.1%, whereas the CR method has 86.0% accuracy, result-
ing in 4.8 times fewer wrong assignments by our method. We also noticed that
the ILP model significantly outperforms the CR method on both β-sheet and
loop regions. This may be due to the fact that our method can maximize the
score better as shown in column 4 of Table 2. In many instances, the score is
higher than the score of the correct assignment, which indicates that maximizing
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Table 1. Summary of the test set. From left to right: template structure, number
of residues in the template (total/helix/sheet/loop); number of spin systems (to-
tal/helix/sheet/loop); number of prolines; noise level (number NOE edges per contact);
percentage of contacts missing in the NMR data (total/helix/sheet/loop); average pair-
wise RMSD of the models in the template PDB file (total/helix/sheet/loop).

Template No. Residues No. Spin Sys No. PRO Noise (x) Missing (%) RMSD (Å)

1KA5 88/40/23/25 85/39/23/23 1 5.5/5.6/5.9/5.3 21/20/21/22 0.2/0.2/0.1/0.2

1EGO 85/40/19/26 81/40/19/22 3 5.6/5.4/5.8/6.3 22/22/26/19 1.6/1.4/0.9/2.3

1G6J 76/18/22/36 72/18/22/32 3 4.4/3.5/5.1/4.8 33/31/32/35 1.1/0.6/0.4/1.5

1SGO 139/46/28/65 136/46/28/61 3 5.5/4.7/4.0/7.4 41/38/49/40 10.9/7.3/5.5/14.1

1YYC 174/36/72/66 158/36/70/52 10 6.6/5.2/7.5/7.3 38/35/38/40 4.0/2.5/1.6/6.0

2NBT 66/-/16/50 60/-/16/48 5 3.4/-/3.6/3.3 36/-/22/40 3.4/-/1.7/3.8

1RYJ 70/9/27/34 67/9/27/31 2 3.1/2.0/3.1/3.8 28/33/29/25 1.5/1.0/0.9/1.9

2FB7 80/-/32/48 73/-/32/41 7 3.1/-/3.0/3.2 34/-/30/36 5.4/-/2.0/6.8

1P4W 87/66/-/21 82/65/-/17 3 5.5/5.3/-/6.7 31/28/-/40 1.1/0.7/-/1.9

contact matches alone may not necessarily give the correct assignment. For
2NBT, where 40% of loop contacts are missing, we did slightly worse, but the
score is greater than the score of the correct assignment; similarly for helix
residues in 1RYJ. In general, since amino acids in helices tend to have local con-
tacts with nearby amino acids, in many of our tests, we observed that missing
NOE edges and typing errors produced local errors in helices. For 1RYJ, the
accuracy for helices using a (i ± 2) window, i.e., allowing a spin system to be
assigned within two residues away from the correct residue, was 100%.

Our program ran significantly faster. However, the CR program was written
in Python, and ours was written in Java, and we used CPLEX. Both the CR
and our program were run on our servers, consisting of Pentium 4 1.4Ghz, 4 GB
RAM machines.

The CR software did not allow for the input of amino acid and secondary
structure type predictions, so we could only perform the comparison assuming
correct amino acid and correct secondary structure typing. Nevertheless, since
perfect spin system typing cannot easily be achieved, we also tested our method
on predicted spin system types. First we tested with only amino acid type pre-
diction, and then we tested with both amino acid and secondary structure typing
errors. For the 5 data sets received, we ran RESCUE Version 1 [37] on the experi-
mental proton chemical shifts from the protein’s entry in the Biological Magnetic
Resonance Bank (BMRB) [44]. Table 3 gives the results with amino acid type
prediction. For comparison, we included the results of using type matching as
strict constraints; that is, the result without using the iterative algorithm that
tries to correct for typing errors. In general, type correction resulted in large
improvements. For 1G6J, the amino acid typing accuracy is high, so the im-
provement is minimal. For 1YYC, the improvement is significant even though
the typing accuracy is low. The accuracy, however, varied substantially depend-
ing on the model used as the template. Nevertheless, the template with the best
score yielded an accuracy of 89.9%, which increases to 94.1% when considering
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Table 2. Comparison between the ILP model and the Contact Replacement Method
for correct amino acid and secondary structure typing. For each protein, the first row
gives our results, while the second row gives the CR’s. From left to right: template struc-
ture; average accuracy over all the models (total/helix/sheet/loop); accuracy ranges
(total/helix/sheet/loop); number of times the assignment score was greater than, less
than, or equal to the score of the correct assignment; the CPU time per model.

Template Avg Acc. (%) Acc. Range (%) Times Score

>,<, = Ref

CPU Time

(sec)

1KA5 100/100/100/100

94/100/76/100

100/100/100

98-93/91-74/100

0, 0, 16

0, 16, 0

2

804

1EGO 98/100/100/93

96/96/100/93

100-97/100/100/100-90

100-92/100-90/100/100-79

15, 0, 5

4, 12, 4

1

708

1G6J 97/100/100/94

91/100/ 87/88

100-95/100/100/100-90

97-89/100/100-86/100-85

25, 2, 5

0, 32, 0

1

756

1SGO 96/97/100/94

80/95/95/62

100-86/100-95/100/100-70

88-71/100-87/100-86/76-45

13, 3, 4

0, 20, 0

3

4,302

1YYC 97/99/96/98

72/92/62/72

100-93/100/100-91/100-92

76-67/100-89/69-53/79-64

17, 0, 3

0, 20, 0

4

5,292

2NBT 91/-/98/88

92/-/95/90

96-85/-/100-93/95-79

100-88/-/100-88/96-82

10, 0 , 0

1, 9, 0

1

2,328

1RYJ 97/98/96/96

82/100/70/86

97-94/100-88/96/96-93

82-75/100/70/88-72

20, 0, 0

0, 20, 0

1

918

2FB7 96/-/97/96

92/-/94/90

100-91/-/100-93/100-90

95-88/-/100-94/95-83

7, 0, 3

0, 10, 0

1

1,566

1P4W 99/100/-/97

77/77/-/77

100-97/100/-/100-88

91-63/91-63/-/90-58

4, 0, 16

0, 20, 0

3

3,612

Average 97/99/99/96

86/94/85/84

-

-

-

-

2

2254

an (i ± 2) window. This indicates that using multiple templates, such as those
generated by normal mode analysis [4], may improve accuracy. In these tests, we
used weaker criteria for fixing assignments. We did not require nonlocal β-beta
sheet and local α-helix contact matches.

Table 4 gives the results for both amino acid and secondary structure typing
errors. The standard method for predicting secondary structures from 3JHNHα

coupling constants [47] is similar to the following: if the coupling value is between
2.5 and 5.5, the spin system is predicted as helix. If the value is between 8 and
11.5, the spin system is predicted as β-sheet; otherwise, it is predicted as loop.
From a test set of the following BMRB entries with accession numbers 4267,
4071, 2151, 4458, 4376, 4136, 4784, 4347, 4163, 4297, plus ubiquitin experimental
values from the literature [45], we obtained an average typing accuracy of 60%
with a range of 50-69%. This will likely be too low for resonance assignment, so
we classified coupling constants into classes consisting of two secondary structure
types, which dramatically increased the average accuracy at the cost of increased
problem size. For values less than 6.5, we classify it as helix and loop; otherwise
we classify it as β-sheet and loop. With this, we obtained an average accuracy
of 92% with a range of 82-100%.
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Table 3. Assignment accuracy for amino acid typing errors and correct sec-
ondary structure typing. From left to right: template structure; average accuracy
for strict type matching; average accuracy for iterative error correction over all the
models (total/helix/sheet/loop); accuracy ranges for iterative error correction (to-
tal/helix/sheet/loop); amino acid typing accuracy; number of times the assignment
score was greater than, less than, or equal to the score of the correct assignment; the
CPU time per model. Values in parenthesis give the accuracy within an i± 2 window.

Template Avg Acc

Strict (%)

Avg Acc

Iter (%)

Range Acc

Iter (%)

A.A. Typing

Acc (%)

Times Score

>, <, = Ref

CPU Time

(sec)

1KA5 86 100/100/100/100 100/100/100/100 89 0, 0, 16 30

1EGO 86 94/92(99)/100/94 100-91/100-87/100/100-90 90 15, 3, 2 22

1G6J 92 94/100/93/91 97-87/100/100-90/100-78 96 7, 25, 0 3

1SGO 82 92/90(100)/95/93 96-87/100-84/100-82/96-83 92 7, 13, 0 180

1YYC 59 77/86 (92)/81/66 94-68/100-58/100-52/90-5 79 0, 20 , 0 504

For our tests, we introduced secondary structure class prediction errors yield-
ing the typing accuracies in Table 4, which are slightly below 92%. In these
tests, we used nonlocal β-beta sheet and local α-helix contact matches for fixing
assignments. For the convenience of time, we tested each target using only the
first model in the template. The noise level and percentage of missing NOEs is
similar to the average values in Table 1. From column 2 of Table 4, we see that
low assignment accuracies can result if spin system type prediction errors are not
handled, even if the type prediction accuracy is high. For 1KA5, the assignment
accuracy did not change from the previous test. For 1EGO, the accuracy actu-
ally improved because of the tighter criteria for fixing assignments. The larger
1SGO struggled to maximize the score, but the accuracy is still much higher
than without the iterative algorithm. For 1YYC, its large size combined with its
low amino acid typing accuracy, produced poor quality fixed assignments, but
there is still a large improvement over the case without the iterative algorithm.

For ubiquitin, we obtained 15N HSQC, 15N TOCSY-HSQC, and 15N NOESY-
HSQC data from Richard Harris’s The Ubiquitin Resource Page [20]. We picked
the peaks manually by inspecting the spectra with SPARKY [15]. Ubiquitin
has 76 residues and 3 prolines. The noise level is 4.6 at 4 Å cutoff, and the
missing edge percentage is 28.3%. HSQC peaks without an Hα chemical shift
were correctly filtered out as noise. For amino acid typing, RESCUE performed
poorly, giving an accuracy of 68.6%. The errors appear to be due to missing peaks
that are hidden by peak overlap. Using a higher resolution TOCSY spectrum
may improve accuracy. We performed the typing manually using each type’s
expected number of proton shifts and their expected range of values. Manual
typing gave an accuracy of 90%, where the average number of possible amino
acid types per spin system was 3.3 with a range of 1 to 8. We used the results of
manual typing for assignment. We used experimental 3JHNHα coupling constants
from the literature [45]. Eight spin systems did not have J-coupling values, so
their predicted class included all three secondary structure types. The accuracy
of secondary structure type prediction was 91%, yielding a combined typing
accuracy of 83%. Model 1 from PDB 1D3Z was used as the template structure.
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Table 4. Assignment accuracy for both amino acid and secondary structure typing
errors. From left to right: template structure; accuracy for strict type matching; accu-
racy of the best scoring model for iterative error correction (total/helix/sheet/loop);
amino acid typing accuracy; secondary structure typing accuracy; percentage difference
in score of the best scoring assignment compared to the correct one (+ means score of
our assignment was higher); the CPU time per model. Values in parenthesis gives the
accuracy in a (i ± 2) window.

Template Acc Strict

(%)

Acc Best Score

Iter (%)

A.A. Typing

Acc (%)

S.S. Typing

Acc (%)

Diff Ref

Score (%)

CPU Time

1KA5 72 100/100/100/100 89 91 0 4 hr

1EGO 65 97/95 (100)/100/100 90 85 -1.5% 1 h

1SGO 63 88/82 (91)/96/88 92 87 -3.0% 10.5 hr

1G6J 75 91/100/86/90 96 90 +0.5% 32 min

1YYC 40 70/91/71/53 79 91 -3.1% 46 hr

The template structure was not derived from the NMR data. An NMR model
was used to test the case of using results from previous NMR studies. The best
scoring assignment had accuracy 87.1%, with 64.3% on α-helix (85.7% with i±2
window), 95.7% on β-sheet, and 90.0% on loops. Although the accuracy for
helix residues is low, many of the errors are due to a +1 assignment position
error due to the HSQC peak of a nearby amino acid not being present in the
NMR data. We also obtained a consensus assignment by generating 10 solutions
from the best scoring assignment with fixed assignments meeting the secondary
structure contact matching criteria. Consensus gave an accuracy of 91% with
78% for helices (92% i±2) and the other types unchanged. Without the iterative
algorithm, the accuracy is 59%.

4 Discussion

Local assignment errors in helices show the limitations of using only backbone
proton contact information. Since our ILP model can accommodate different
sources of information, it is of interest to test the relative contribution of each
source to assignment. Our attempt at robust structure-based assignment using
only N-labeled NMR data also reveals the challenges that impede complete au-
tomation. Amino acid type prediction from the unassigned chemical shifts of the
side chain protons is impeded by missing and artifact TOCSY peaks, incorrect
assignment of TOCSY peaks to their corresponding HSQC peak, and incorrect
assignment of proton chemical shifts to their proton type (Hβ , Hγ , . . . ). Type
prediction is further impeded by an increase in protein size, which tends to result
in increased chemical shift overlap. Such overlap may result in ambiguous spin
systems, where a TOCSY peak matches more than one spin system. Unfortu-
nately, one cannot use fewer proton types while also using backbone nitrogen
chemical shifts because it results in poor typing accuracy unless carbon chemi-
cal shifts are also used [29]. The test set obtained from the authors of the CR
method did not have any ambiguous spin systems. For secondary structure type
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prediction, obtaining a high yield of J-coupling constants from HNHA becomes
more difficult as the protein size increases. An increase in size also tends to
lead to an increase in the noise level of the edges, so correct contact matches
may become lost. The level is increased futher if automatically picked peaks are
used. Using such peak lists for Ubiquitin yielded a noise level above 12 versus
4.6 from manually picked peaks. Rather than predicting a spin system’s amino
acid and secondary structure type, it might be simpler to exploit the known as-
signments in the BMRB, and predict a putative set of amino acids for each spin
system. Promising preliminary results were obtained by using BMRB chemical
shift data, Hα from TOCSY, and protein structure information for building an
interaction graph with a reduced noise level. Although this requires information
about previous assignments, such information will become available during NMR
studies involving different mutants of a given protein once one assignment has
been determined.
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Abstract. Generating all plausible de novo interpretations of a pep-
tide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly
matching them against the database represent a recently emerged al-
ternative approach to peptide identification. However, the sizes of the
Spectral Dictionaries quickly grow with the peptide length making their
generation impractical for long peptides. We introduce Gapped Spectral
Dictionaries (all plausible de novo interpretations with gaps) that can be
easily generated for any peptide length thus addressing the shortcoming
of the Spectral Dictionary approach. We show that Gapped Spectral Dic-
tionaries are small thus opening a possibility of using them to speed-up
MS/MS database searches. Our MS-GappedDictionary algorithm (based
on Gapped Spectral Dictionaries) enables proteogenomics applications
that are prohibitively time consuming with existing approaches. We fur-
ther introduce gapped tags that have advantages over the conventional
peptide sequence tags in filtration-based MS/MS database searches.

1 Introduction

Most peptide identification tools are still rather slow since they match every
tandem mass (MS/MS) spectrum against all peptides in a database. A faster
approach would be to generate a de novo reconstruction of a spectrum and to
match the resulting peptide against a database. The fundamental algorithmic
advantage of the latter approach is that one can pre-process the database (e.g.,
by constructing its suffix tree) so that matching becomes instantaneous. The only
reason why most MS/MS database search tools still use the former approach is
because de novo peptide sequencing remains inaccurate. Even the most advanced
de novo peptide sequencing tools [6,7,16] correctly reconstruct only 30 - 45% of
the complete peptides identified in MS/MS database searches. After decades of
algorithmic developments, it seems that de novo peptide sequencing “hits a wall”
and that accurate full-length peptide reconstruction is nearly impossible due to
the limited information content of MS/MS spectra. We argue that regions with
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low information content should be represented as mass gaps (the mass that may
represent two or more amino acids) and advocate use of gapped peptides as
spectral interpretations.

Kim et al., 2009 [13] recently proposed to generate multiple de novo recon-
structions (rather than a single one) and to match them against a database (MS-
Dictionary approach). Since matching peptides against a pre-processed database
is very fast, generating thousands of reconstructions still has advantages over the
traditional approaches where spectra are matched against large databases. Given
an MS/MS spectrum, MS-Dictionary generates the Spectral Dictionary [13] that
contains all plausible de novo reconstructions of the spectrum (i.e., with scores
exceeding a given threshold) and further matches them against a database. The
running time of MS-Dictionary is almost independent of the database size mak-
ing it a tool of choice for peptide identification in large databases [13].

Although MS-Dictionary was proved to be useful for peptides shorter than
15 amino acids (aa), it has limitations for longer peptides with large Spectral
Dictionaries. We introduce MS-GappedDictionary that generates rather small
Gapped Spectral Dictionaries (even for long peptides) thus addressing the key
limitation of the Spectral Dictionaries. Gapped Spectral Dictionary is the set
of gapped peptides (see [14]) that are derived from the full-length peptides in
the Spectral Dictionary. Gapped peptides occupy a niche between accurate but
short peptide sequence tags [17] and long but inaccurate full-length peptide
reconstructions. The gapped peptides are both long and accurate making them
well suited for de novo-based MS/MS database search approaches. In difference
from short peptide sequence tags, a gapped peptide typically has a single match
in a database reducing peptide identification to a single database look-up. For a
typical 20-aa long peptide, the size of Spectral Dictionary exceeds 1017, while the
size of the Gapped Spectral Dictionary is only 104. Moreover, we show that even
smaller Gapped Spectral Dictionaries with only 20-100 peptides are sufficient for
most applications. At the same time, gapped peptides are sufficiently long for
efficient database matching. For example, for a spectrum of 15-aa long peptide,
the average length1 of gapped peptides in its Gapped Spectral Dictionary exceeds
9 aa. For all practical purposes, (gapped) peptides of length 9 are as informative
as (full-length) peptides of length 15 for matching databases (unless the database
size approaches 209). Table 1 (left upper panel) shows the Gapped Spectral
Dictionary of a spectrum of peptide LNRVSQGK consisting of 7 gapped peptides
(as compared to its Spectral Dictionary consisting of 92 peptides shown in Table
S1 in the Supplement). We describe an efficient algorithm for constructing the
Gapped Spectral Dictionaries (using the generating function approach [12]) that
also computes coverage of each gapped peptide, reflecting the portion of plausible
de novo reconstructions represented by a gapped peptide (see section 3.2 for the
definition of coverage).

Recent proteogenomics studies highlighted the importance of MS/MS searches
against the six-frame translation of genomes [5,9,10,19]. However, until recently,

1 The number of gaps and amino acids in the gapped peptide. For example, the length
of [186]DK[246]FK is 6.



210 K. Jeong et al.

Table 1. Left upper panel: The Gapped Spectral Dictionary for the spectrum of pep-
tide LNRVSQGK (consisting of 7 gapped peptides) is much smaller than the Spectral
Dictionary (consisting of 92 full-length peptides). For simplicity, LNRVSQGK is repre-
sented by its integer amino acid masses as follows: [113][114][156][99][87][128][57][128].
Each gapped peptide is represented by amino acids and mass gaps. Note that a mass
may represent combinations of amino acids (for example, [128] can be Q, K, GA, or
AG). Either Q or K is used instead of [128] when [128] occupies the same position
as Q or K on the peptide LNRVSQGK. The gapped peptides that match the correct
peptide are called correct gapped peptides. For example, the gapped peptides [113 +
114]RVSQGK or LN[156+99]SQGK match peptide LNRVSQGK. In this Gapped Spec-
tral Dictionary, the gapped peptides 1 and 6 (with †) are correct gapped peptides. The
gapped peptides are shown in the descending order of their coverages, the portion of
the total probability of all peptides in the Spectral Dictionary represented by a gapped
peptide.
Left lower panel: Peptide sequence tags of length 3 derived from the Gapped Spectral
Dictionary. Masses over left (right) arrows are the prefix (suffix) masses of the tags.
Only 2 tags (e.g., QGK and VRV) cover all gapped peptides in the Gapped Spectral
Dictionary.
Right panel: The Gapped Spectral Dictionary for the spectrum of peptide AIIDAIVS-
GELK (16 gapped peptides represent 24,034 full length peptides). The correct gapped
peptides are marked by †. The Gapped Spectral Dictionary for the peptide AIIDAIVS-
GELK reveals only 3 tags (GEL, ELK, and SGE), together covering only 18.59% of
the Spectral Dictionary.

No. Gapped Peptide Coverage # of peptides
(GP) of GP (%)∗ representing GP

1† [227]RVSQGK 45.69 12
2 [128] [255]VSQGK 15.99 32
3 [128]VRVSQGK 13.71 20
4 [128]VR[186]QGK 11.42 4
5 [128]VRV[215]GK 5.71 2

6† [383]VSQGK 5.71 2
7 [128]G[198]VSQGK 1.77 20

Total · 100 92

No. Tag Tag coverage(%) Covered GP

1 569←− QGK 0−→ 94.3 1,2,3,4,6,7
2 383←− VSQ 185−→ 82.9 1,2,3,6,7
3 482←− SQG 128−→ 82.9 1,2,3,6,7
4 227←− RVS 313−→ 59.4 1, 3
5 128←− VRV 400−→ 19.4 3,5

No. Gapped Peptide Coverage # of peptides
(GP) of GP (%)∗ representing GP

1 [445][250]S[186]LK 33.81 3286
2† [695]S[186]LK 19.18 1703
3 [445][337][186]LK 13.28 255
4 [445][250][273]LK 7.67 178
5† [782]GELK 6.10 684

6† [695]SGELK 5.55 5563
7 [445][250]S[299]K 4.20 901
8 [445][250]SGELK 3.78 3437
9 [445][337]GELK 1.98 1072
10 [445][250]SG[242]K 1.61 3942

11† [695]SG[242]K 0.91 1614
12 [445][394]ELK 0.91 507
13 [445][250]SG[370] 0.66 604
14 [445][250][144]ELK 0.20 91

15† [695][144]ELK 0.07 35
16 [445][337]G[242]K 0.09 162

Total · 100 24034

searches against the six-frame translations of large genomes were impractical
even with the fastest MS/MS search tools. Although MS-Dictionary enabled
searches in the six-frame translation of the human genome with 40X speed-up
over InsPecT [13], it loses many peptide identifications because Spectral Dictio-
naries of long peptides have to be truncated (leading to truncating the correct
peptides in some cases). Gapped Spectral Dictionaries remedy this shortcoming
of Spectral Dictionaries and nearly double the number of identified peptide in
the six-frame translation of the human genome (as compared to MS-Dictionary).

Table 1 (left lower panel) illustrates how gapped peptides and their cover-
age can be utilized for constructing the peptide sequence tags [17]. Tanner et
al., 2005 [20] introduced covering sets of tags (set of tags containing at least
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one correct tag) and demonstrated how such sets can greatly speed-up MS/MS
database searches. However, while the sizes of covering sets may vary between
spectra, Tanner et al., 2005 [20] did not describe an approach for selecting (the
varying number of) tags for every spectrum and did not assign rigorous prob-
abilities to tags. As a result, InsPecT currently generates a fixed number of
tags for each spectrum. While Gapped Spectral Dictionaries can be utilized for
generating (varying number of) conventional peptide sequence tags along with
their probabilities, Table 1 (right panel) illustrates that “good” peptide sequence
tags (representing all peptides in the Gapped Spectral Dictionary) may be diffi-
cult to find. We advocate generating gapped tags representing sequences of mass
gaps (like [186]LK derived from the first peptide in the right panel of Table 1)
and demonstrate that gapped tags improve the filtration efficiency of peptide
sequence tags in tag-based MS/MS database searches.

2 Methods

2.1 Path Dictionary Problem

Most de novo peptide sequencing algorithms interpret spectra by analyzing paths
in spectrum graphs [2]. We start by discussing the problem of finding suboptimal
paths in arbitrary graphs and later describe how it relates to finding paths in
the spectrum graphs.

Let G(V, E, score, probability) be a directed acyclic graph with vertex set V ,
edge set E, and functions score and probability defined on its edges. Given a
path in G, the score of the path is defined as the sum of scores of its edges, while
the probability of the path is defined as the product of probabilities of its edges.
Given a graph G with selected vertices s (source) and t (sink), and a threshold
MinScore, the Path Dictionary (denoted as PD(G, MinScore)) is defined as
the set of all paths from s to t with scores exceeding MinScore (along with
their probabilities). The following Path Dictionary Problem can be solved using
standard algorithms for finding suboptimal paths [4].

Path Dictionary Problem.Given a directed acyclic graph G and a threshold
MinScore, construct PD(G, MinScore).

Define p(x) as the total probability of all paths of score x from the source s
to the sink t in the graph G. The generating function x→ p(x) can be efficiently
computed as the probability of node (t, x) in the dynamic programming graph
as described in [12,13] (Figure 1, left). PD(G, MinLength) is constructed by
standard backtracking in the dynamic programming graph.

For a spectrum graph of a tandem (MS/MS) mass spectrum [2], the Path
Dictionary Problem corresponds to de novo peptide sequencing problem when
multiple (suboptimal) de novo reconstructions (rather than a single one) are gen-
erated. Kim et al., 2008 [12] applied the generating function approach (Figure 1,
left) to analyze MS/MS spectra and further demonstrated [13] how to generate
the Path Dictionary (termed Spectral Dictionary) that contains all plausible de
novo reconstructions for a given spectrum. Each path in Path Dictionary cor-
responds to a full-length peptide reconstruction in the Spectral Dictionary, and
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x>MinScore p(x) corresponds to spectral probability. To generate the Spectral

Dictionaries, a spectral probability Threshold is fixed and MinScore is selected
in such a way that the spectral probability does not exceed Threshold.

This Spectral Dictionary approach, while useful, is not practical for long pep-
tides (15 amino acids and longer) with large dictionaries. We bypass this problem
by solving the Gapped Path Dictionary Problem defined below.

2.2 Gapped Path Dictionary Problem

Let H be a subset of vertices of a graph G containing the source s and the sink
t (vertices of H are called hubs). We remark that every path on vertices in G
induces a hub path on vertices in H by simply retaining only vertices from H in
the original path. For example, a path s → v1 → v2 → v3 → v4 → v5 → v6 → t
that contains hubs s, v2, v3, v5, t induces a hub path s→ v2 → v3 → v5 → t. We
define the probability of a hub path as the total probability of all paths inducing
this hub path. The Gapped Path Dictionary GPD(G, H, MinScore) is defined
as the set of all hub paths induced by the paths in PD(G, MinScore) (along
with their probabilities).

Gapped Path Dictionary Problem.Given a directed acyclic graph G, a sub-
set of its vertices H , and a threshold MinScore, construct the Gapped Path
Dictionary GPD(G, H, MinScore).

The brute-force algorithm for constructing GPD(G, H, MinScore) (by con-
structing PD(G, MinScore) and generating all hub paths induced by the paths
in PD(G, MinScore)) is impractical for large PD(G, MinScore). Below we de-
scribe an efficient algorithm for solving the Gapped Path Dictionary Problem
that does not require the construction of PD(G, MinScore).

Given hubs h and h′, we define Path(h, h′) as the set of all paths in G between
h and h′ that do not pass through other hubs. Each path in Path(h, h′) is
characterized by its score and probability. Let X (h, h′) be the set of scores of
all paths from Path(h, h′) and Prob(h, h′) be the total probability of all paths
in Path(h, h′). If Prob(h, h′, x) is defined as the total probability of all paths of
score x from the set Path(h, h′), then Prob(h, h′) =

∑
x∈X (h,h′) Prob(h, h′, x).

We define the hub graph GH as a multigraph on the set of vertices H (Figure 1,
right panel). For every x ∈ X (h, h′), there exists an edge between h and h′ with
score x and probability Prob(h, h′, x).2 The score and the probability of a path in
GH is defined as the sum of scores and the product of probabilities of its edges,
respectively.

As the hub paths (on vertices in H) are induced by the paths in G, GPD(G, H,
MinScore) is the same as PD(GH , MinScore). Therefore, the Gapped Path
Dictionary Problem in G is essentially the Path Dictionary Problem in the hub
graph GH , and we only need to compute the scores and the probabilities of the
edges in GH to solve the Gapped Path Dictionary Problem. Below, we show how
to compute Prob(h, h′, x) for all edges of the hub graph.

2 There exists |X (h, h′)| edges between vertices h and h′ in the multigraph GH .
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Fig. 1. Left panel: Illustration of the dynamic programming algorithm for computing
the generating function of graph G shown in (a). The nodes of the dynamic program-
ming (DP) graph (b) are defined as pairs (v, x), where v is a vertex of G and x is a
score. Two nodes (v, x) and (v′, x′) are connected by an edge iff there exists an edge
between vertices v and v′ in G with score x′ − x. The probability of an edge between
(v, x) and (v′, x′) in the DP graph equals to the probability of the edge (v, v′) in G.
A source s in graph G corresponds to a single node (s, 0) in the DP graph. A node
(v, x) is present in the DP graph iff there exist a path from (s, 0) to (v, x). In this
example, red (blue) edges of the DP graph in (b) are from the red (blue) edges of the
graph G in (a). All edge probabilities in (b) are 0.5 as the probabilities of edges of
G are 0.5. The node probability of node (v, x) (shown inside nodes in (b) and (c)) is
the total probability of the paths from the source s to v with the score x. The node
probability of the source of the DP graph is initialized by 1, and the node probability
of a node (v, x) is obtained by the weighted summation of the node probabilities of its
predecessors (see [12]). The generating function is represented by the probabilities of
the sink nodes in the DP graph. To find all paths of score x from the source to the
sink in graph G one has to backtrack all paths from the node (t, x) in the DP graph.
If x = 2, two paths of score 2 are found as in (c): {s, v2, v4, v7, t} and {s, v3, v6, t}.
Right panel: Path Dictionary and Gapped Path Dictionary. (a) PD(G, 1) and the
generating function of G. (b) The construction of GH using edges between hubs v2 and
t (shown as solid blue and red edges) as examples. Solid blue and red edges in GH are
induced by dashed blue and red paths in G. All paths that use only non-hub vertices
in G are collapsed into edges in GH . (c) The hub graph GH , GPD(G, H, 1), and the
generating function of GH .
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Given a hub h in the graph G(V, E, score, probability), we modify the score
function by assigning score −∞ to all edges originating at all hubs other than
h. Denote the resulting score function (parameterized by h) as score(h). The
family of score functions score(h) for all hubs h ∈ H can be used to compute
Prob(h, h′, x) for all pairs of hub vertices h and h′. One can prove that computing
Prob(h, h′, x) (for all x ∈ X (h, h′)) is equivalent to computing the generating
function for a graph G(V, E, score(h), probability) with source h and sink h′.
Note that a single computation of the generating function from h to the sink t
for the graph G(V, E, score(h), probability) gives us Prob(h, h′, x) for all h′ ∈ H
and all x ∈ X (h, h′).

After constructing the hub graph GH , GPD(G, H, MinScore) can be con-
structed by computing generating function for the graph GH and generating all
paths with score exceeding MinScore. Figure 1 shows an example of the Path
Dictionary and the Gapped Path Dictionary.

2.3 Compact Gapped Path Dictionaries

So far, we represented each path in the Gapped Path Dictionary as the sequence
of edges (rather than vertices) the path traverses. Since the hub graph GH is a
multigraph (that may have multiple edges of various scores between the same
vertices), there can be many paths (with different scores) with identical vertex-
sets (Figure 1, right panel (c)). We define the Compact Gapped Path Dictionary,
denoted by CGPD(G, H, MinScore), as the set of vertex-sets of paths in the
Gapped Path Dictionary GPD(G, H, MinScore), along with their probabilities,
where the probability of each vertex-set in CGPD(G, H, MinScore) is defined
as the total probability of the paths in GPD(G, H, MinScore) with the same
vertex-set (see Table S1 in the Supplement).

The Compact Gapped Path Dictionary CGPD(G, H, MinScore) can be gen-
erated (albeit inefficiently) from GPD(G, H, MinScore) by simply representing
all paths with identical vertex-sets as a single vertex-set and adding up the prob-
abilities of all such paths. However, one can efficiently generate the Compact
Gapped Path Dictionary without explicitly constructing Gapped Path Dictio-
nary. Since the Gapped Path Dictionary in G is the same as the Path Dictionary
in the multi-graph GH , the Compact Gapped Path Dictionary in G is the same
as the vertex-sets of Path Dictionary in GH , It is easy to see that generating
these vertex-sets can be achieved by retaining only the edges with the highest
scores among parallel edges in the (multi)graph GH and constructing the Path
Dictionary in the resulting (simple) graph. The Path Dictionary in this modified
GH induces the vertex-sets of the Compact Gapped Path Dictionary in G.

After the Compact Gapped Path Dictionary is generated, one still needs to
compute the probability of each vertex-set. This again can be done by applying
MS-GeneratingFunction to a graph consisting of a single path corresponding to
each vertex-set in the Compact Gapped Path Dictionary (this path represents a
multi-graph since it may contain parallel edges). The probability of the gapped
peptide represented by a vertex-set is given by the summation of the probabilities
of all edge-paths (with the same vertex-set) with scores exceeding MinScore.
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2.4 Gapped Spectral Dictionaries

For each spectrum, we construct its spectrum graph and generate a set of hubs
(prefix masses). Given a spectrum graph G and a set of hubs H , paths in G
correspond to peptides while vertex-sets in GH correspond to gapped peptides
introduced in [14]. Gapped Spectral Dictionary is defined as Compact Gapped
Path Dictionary of the spectrum graph.

While we described an algorithm for constructing the Gapped Spectral Dic-
tionary for a given hub set H , it remains unclear how to select hubs. The hub
selection has to achieve two conflicting goals: (i) minimize the number of se-
lected hubs to ensure that the constructed Gapped Spectral Dictionary is small,
and (ii) maximize the average length of peptides in the Compact Gapped Spec-
tral Dictionary to ensure that the reconstructed gapped peptides are sufficiently
informative.

Therefore, the goal is to select k hubs that maximize the average number of
vertices per path in the Gapped Path Dictionary (weighted by their probabili-
ties). We select hubs as k most “popular” vertices in paths in PD(G, MinScore).
Such ranking of vertices of the graph G can be computed by generating Spectral
Profiles introduced in [14].3

3 Results

3.1 Datasets

We used the previously analyzed Shewanella [12], HEK [13] and Standard [15]
datasets to benchmark MS-GappedDictionary. Shewanella dataset (18,468 dou-
bly charged spectra of distinct tryptic peptides from Shewanella oneidensis
MR-1) is used to benchmark the performance of MS-GappedDictionary. HEK
dataset (21,605 charge 2 spectra of distinct human peptides) is used to test
database searches with MS-GappedDictionary. Standard dataset (990 charge 2
spectra of distinct human peptides) is used to benchmark applications of MS-
GappedDictionary for (gapped) tag generation. See Supplement for the detailed
description of these datasets.

To generate the Gapped Spectral Dictionaries, the value of the spectral prob-
ability threshold is set to 10−9 for Shewanella and Standard datasets and 10−11

for HEK dataset (assuming that the precursor integer mass is known). The spec-
tral hubs are selected based on k maximal peaks in its Spectral Profile with k
varying from 20 to 40.

3.2 From Gapped Spectral Dictionaries to Pocket Dictionaries

Since multiple peptides often induce the same gapped peptide, Gapped Spec-
tral Dictionaries are typically much smaller than Spectral Dictionaries. Figure 2
3 The Spectral Profiles provide a better hub selection than peak intensities and

PRMs [20] (see Supplement).
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Fig. 2. Left panel: Gapped Spectral Dictionary size vs. Spectral Dictionary size (for
varying peptide length and number of hubs) in Shewanella dataset.
Right panel: Coverage ranking of (best ranked) correct gapped peptides in Shewanella
dataset. We have chosen the best ranked correct gapped peptide for each spectrum
(There can be more than one correct gapped peptides per each spectrum as in Table 1).
The average ranking does not exceed 80 regardless of the peptide length (for δ = 5, 7, 9).
The number of hubs is 20. The bubbled stems represent the range that the rankings
fall into with probability 90%.

(left) shows the sizes of Gapped Spectral Dictionaries and Spectral Dictionar-
ies for various peptide lengths. While the size of Spectral Dictionary grows as
20peptide length, the size of the Gapped Spectral Dictionary is limited by 2|H|,
where |H | is the number of hubs. In practice, the size of Gapped Spectral Dic-
tionaries is much smaller than 2|H| for sensible values of spectral probabilities.
For example, for peptides of length 20, the size of the Spectral Dictionary ex-
ceeds 1017 while the size of the Gapped Spectral Dictionary is on the order of
104 (for |H | = 20).

Figure 3 (left) shows the probability distribution of the lengths of the gapped
peptides that are induced by the correct peptides (correct gapped peptides). The
probability that these gapped peptides are short (length less than 5) is less than
0.01 regardless of the peptide length. The high average length of the correct
gapped peptides (10 - 13) indicates that Gapped Spectral Dictionaries have the
potential to speed up database searches. Gapped peptides are classified into short
(with length shorter than δ) and long (with length equal to or longer than δ).
Discarding short gapped peptides results in δ-reduced Gapped Spectral Dictionary
(with minimum gapped peptide length δ).

A spectrum is δ-identifiable if its δ-reduced Gapped Spectral Dictionary con-
tains at least one correct gapped peptide. Figure S2 in the Supplement shows
the identifiability of spectra in the Shewanella dataset. For 20 hubs and δ = 5,
the identifiability is higher than 99% for all peptide lengths. Figure S2 illus-
trates that there exists a tradeoff between the identifiability and efficiency of
the database search controlled by the minimum length of the gapped peptide δ
(increase in δ reduces the identifiability but improves the filtering efficiency of
the database search).

After generating the δ-reduced Gapped Spectral Dictionaries, we order all
gapped peptides by their coverages, and analyze the rank of the first correct
gapped peptides in this ranked list. The coverage of a gapped peptide is defined



Gapped Spectral Dictionaries and Their Applications 217

1 3 5 7 9 11 13 15 17 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Probability distribution of correct gapped peptide length : # hubs = 20

Length of the correct gapped peptides

P
ro

ba
bi

lit
y

Peptide length = 10
Peptide length = 15
Peptide length = 20

20 40 60 80 100 120 140

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Gapped peptides

P
ro

ba
bi

lit
y

Probability of finding the correct gapped peptides (# hubs = 20)

Peptide length = 10
Peptide length = 15
Peptide length = 20

Fig. 3. Left panel: Probability distribution of the length of the gapped peptide in-
duced by correct peptides in Shewanella dataset.
Right panel: The probability that a correct gapped peptide is found within k top-
ranked peptides in the δ-reduced Gapped Spectral Dictionary. The number of hubs is
20, and δ = 5 (see Supplement for different parameters).

as the probability of the gapped peptide divided by the total probability of the
peptides in the Spectral Dictionary. Figure 2, right shows that the average rank
of the best ranked correct gapped peptides does not exceed 100 even for long
gapped peptides (δ = 5, 7, 9). In fact, only 20 - 100 gapped peptides are typically
sufficient to generate a covering set containing a correct peptide (Figure 3, right).
As such, it suffices to generate a small subset of the Gapped Spectral Dictionary
called Pocket Dictionary by choosing the k best-ranked gapped peptides in the
δ-reduced Gapped Spectral Dictionary (k is typically 20 - 100).

Figure S2 (right panel) in the Supplement shows the identifiability of the
Pocket Dictionaries compared to the identifiability in the (full-size) δ-reduced
Gapped Spectral Dictionaries. Throughout the paper we generate Pocket Dic-
tionaries of size 100 with δ = 5 and 20 hubs that result in high identifiability.4

3.3 Database Search with Gapped Spectral Dictionaries

Figure 4 shows the percentage of spectra in the HEK dataset identified with MS-
Dictionary and MS-GappedDictionary in searches against the six-frame trans-
lation of the human genome. For peptides of length 20, MS-GappedDictionary
identified ≈ 80% of all peptides while MS-Dictionary identified only ≈ 4% of
them. MS-GappedDictionary reliably identified 19,280 of 21,605 HEK spectra
4 While we showed how to generate the highest-scoring gapped peptides, it is not

immediately clear how to generate the highest-probability vertex-sets (gapped pep-
tides) in the δ-reduced Gapped Path Dictionary. This difficulty stems from the fact
that the y-axis in the DP graph (Figure 1) represents accumulated scores and not
accumulated probabilities. To address this problem, we implemented a depth-first
branch-and-bound backtracking traversal of the DP graph that uses accumulated
scores to determine membership in the Pocket Dictionary and accumulated proba-
bilities to select the highest-coverage peptides. The algorithm maintains the accumu-
lated probability for every suffix extension and combines it with node probabilities
(Figure 1) to prune extensions whose maximum probability is lower than that of the
current k-th ranked highest-probability peptide.
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Fig. 4. The percentage of peptides in HEK dataset identified by MS-GappedDictionary
and MS-Dictionary in the six-frame translation of the human genome as compared with
peptides identified in searches of human protein database

in the six-frame translation of the human genome nearly doubling the number
of peptides identified by MS-Dictionary (10,266 peptides were reported in [13]).
It illustrates that MS-GappedDictionary finds ≈ 90% of peptides identified in
human protein database by searching the 80-times large six-frame translation of
the human genome (i.e., without knowing where the genes are). Therefore, MS-
GappedDictionary significantly improves on MS-Dictionary in proteogenomics
gene discovery and annotation.

In contrast to MS-Dictionary, peptides identified by MS-GappedDictionary
may not belong to the Spectral Dictionary. For example, a gapped peptide
AT[144]GG may match ATSGGG (in the Spectral Dictionary) and ATGSGG
(not in the Spectral Dictionary). Thus, peptides matched by MS-GappedDiction-
ary have to be scored to remove those that are not in the Spectral Dictionary.
Since the number of matches reported by MS-GappedDictionary is typically
small (Table S5), the time required for removing low-scoring peptides is negligi-
ble (less than 0.01 s per spectrum).

The current version of MS-GappedDictionary uses gapped tags to speed-up
searches in huge databases. Below we sketch a more efficient algorithm (based
on matching the entire gapped peptides) that will described in detail elsewhere.

A brute-force algorithm to match the set of m gapped peptides against a
database of size n has O(kmn) complexity, where k is the maximum length of
peptides. The complexity can be further reduced by constructing the keyword
tree of gapped peptides. We construct a Master Dictionary that combines the
Pocket Dictionaries for all spectra. Since the Pocket Dictionaries have only 20
- 100 gapped peptides per spectrum, the size of the Master Dictionary is only
1-2 orders of magnitude larger than the size of the spectral dataset. We further
construct the keyword tree of the Master Dictionary (in the alphabet of gap
masses) in O(km) time (we assume constant alphabet size). For every peptide
of length k in the database we generate all gapped peptides induced by this
peptide (the number of such peptides is bounded by 2k−1) and combine all such
peptides into a Master Gapped Database. Since matching each gapped peptide
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against the keyword tree of the Master Gapped Spectral Dictionary takes O(k)
time, matching the entire Master Gapped Database against the keyword tree
takes O(km + f(k)n) where f(k) is bounded by k · 2k−1 (f(k) is expected to be
much smaller in practice).5

3.4 From Gapped Spectral Dictionaries to Gapped Tags

The right panel of Table 1 demonstrates that many gapped peptides in the
Gapped Spectral Dictionary may not contain peptide sequence tags. In con-
trast, allowing a single gap in tags (gapped tags) reveals a covering set of only
6 tags of length 3 : [273]LK, G[242]K, S[299]K, [250]SG, ELK, and [186]LK. In
contrast with peptide sequence tags, gapped tags include both gaps and amino
acid masses. Below we limit our analysis to gapped tags with gaps below 500
Da6 and analyze gapped tags of length 3 with at most one gap (i.e., gapped
tags with at least 2 amino acids). Such tags are called proper gapped tags. We
demonstrate that the proper gapped tags have better filtering efficiency than
peptide sequence tags. Some masses in a gapped peptide may represent either
an amino acid or a gap because 5 amino acids (N, Q, K, R, and W with masses
114, 128, 128, 156, and 186, respectively) have composite masses equal to the
sum of two amino acid masses. For example, the composite mass 114 Da could
represent either N or GG. One can check whether a composite mass represents
an amino acid by examining the hub set. A mass m is a submass of a composite
mass mass if both m and mass − m represent masses of amino acid. If mass
starts at position prefixMass in a gapped peptide, then it represents an amino
acid iff prefixMass + m represents a hub for each submass m of mass mass.

To generate the set of proper gapped tags, we select at most one proper gapped
tag from each gapped peptide in the Pocket Dictionary. The greedy algorithm for
selecting proper gapped tags is described in the Supplement. Figure 5 (left panel)
compares the gapped tags generated by MS-GappedDictionary with peptide se-
quence tags generated by InsPecT. Using only 15 proper gapped tags generated
by MS-GappedDictionary (see Table S4), the overall accuracy is 95.1% while
the accuracy of InsPecT tags is only 87.2% with 15 peptide sequence tags and
94.7% even with 50 tags.

MS-GappedDictionary constructs a hash table using proper gapped tags from
a database as the keys and their database positions as the hashed values (if a
proper gapped tag starts at a database position, the value position is added to
the key tag). This approach has a memory overhead since the hash table for
gapped tags is larger than the hash table for the conventional peptide sequence
tags. However, by limiting the gap size in the proper gapped tags to 500 Da, the
memory increase can be tolerated. For example, the hash table of the Swiss-Prot

5 Matching gapped peptides against a database can be formulated as the pattern
matching problem with don’t cares [1,8,18]. Implementing these algorithms will result
in further speed-up of MS-GappedDictionary.

6 We limit the mass of the largest gap to limit the memory requirements of MS-
GappedDictionary (see below).
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database (release 56.6, 146 million residues) is only 10 times larger than the size
of the database.

Once the hash table is built, finding peptides matched to a proper gapped
tag is fast, and the search space for further analysis is limited to only those
matched peptides. We define the filtration efficiency of a gapped tag/peptide
sequence tag/peptide as the ratio of the number of its matches in the random7

database over the database size. While the filtration efficiency of a peptide is
1/20peptide length (and the filtration efficiency of amino acid is 1/20), it is easy
to see that the filtration efficiency of a gap of mass m is the sum of filtration
efficiencies of all peptides with mass m. It turns out that (large) masses typ-
ically have better filtration efficiencies than amino acids. Figure 5 illustrates
that the filtration efficiency of masses larger than 250 Da fluctuates around
1/(average amino acid mass) resulting in ≈ 6-fold improvement in filtra-
tion efficiency as compared to amino acids. This improvement translates into
a superior filtration efficiency of gapped tags as compared to peptide sequence
tags.

For each spectrum of Standard dataset, we generated tags using MS-Gapped-
Dictionary (15 proper gapped tags per spectrum) and InsPecT (50 peptide se-
quence tags per spectrum), and measured the number of tag matches against
the Swiss-Prot database. While InsPecT reported ≈ 2 million peptide sequence
tag matches, MS-GappedDictionary reported only ≈ 450 thousands gapped tag
matches. It directly leads to the speed up of the database search. The running
time to search the Swiss-Prot database was 0.21 sec for MS-GappedDictionary
(including the generation of the Gapped Spectral Dictionary and the gapped
tags) and 0.51 sec for InsPecT per spectrum on a desktop machine with a
2.67-GHz Intel processor. We also searched the six frame translation of the hu-
man genome and MS-GappedDictionary (0.36 sec per spectrum) showed ≈ 20X

7 A database with identically and independently distributed amino acids with proba-
bility 1/20.
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speed-up as compared to InsPecT (8.5 sec per spectrum).8 Note that InsPecT is
one of the fastest database search tools that is 10 times faster than X!Tandem
and 60 times faster than SEQUEST [13].

4 Discussion

Gapped peptides occupy a niche between accurate but short peptide sequence
tags and long but inaccurate full-length peptide reconstructions. The gapped
peptides are both long and accurate making them an ideal choice for de novo-
based MS/MS database search approaches. In difference from peptide sequence
tags, they typically have a single match in a database reducing peptide identifica-
tion to a single look-up in the database. While future work will focus on efficient
matching of full-length gapped peptides against large databases, we show how
gapped tags can be generated from gapped peptides to effectively filter indexed
databases. Furthermore, we show how the concept of coverage can be instru-
mental for ranking sparse representations of spectral dictionaries, here limited
to gapped tags and gapped peptides but conceptually generalizable to any sparse
representation of all plausible peptide reconstructions.
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Supplement A: Spectral Dictionary for the Peptide LNRVSQGK

Table S1. The Spectral Dictionary of the peptide LNRVSQGK consists of 92 full-
length peptides. The gapped peptides in the third column represent the Gapped Path
Dictionary while the gapped peptides in the fourth column represent the Compact
Gapped Path Dictionary.

Peptides Score Gapped peptides Gapped peptides
in Spectral Dictionary from Gapped Path Dictionary from Compact Gapped Path Dictionary

LNRVSQGK 36 [227][156]VS[128]G[128]
LNRVSKGK 36
VQRVSKGK 35
VQRVSQGK 35
RARVSKGK 35
NLRVSKGK 35 [227][156]VS[128]G[128]
ARRVSKGK 35 [227][156]VS[128]G[128]
RARVSQGK 35
VKRVSQGK 35
NLRVSQGK 35
VKRVSKGK 35
ARRVSQGK 35
QRVVSQGK 36
KRVVSQGK 36 [128][255]VS[128]G[128]
QRVVSKGK 36
KRVVSKGK 36
KASPVSKGK 35
QTGPVSQGK 35
QPGTVSKGK 35
QSAPVSKGK 35
KTGPVSKGK 35
KPSAVSQGK 35
KSAPVSQGK 35
QALAVSQGK 35
QASPVSQGK 35
KSAPVSKGK 35
QSPAVSKGK 35
QPSAVSKGK 35
KALAVSQGK 35 [128][255]VS[128]G[128]
KTGPVSQGK 35 [128][255]VS[128]G[128]
QSPAVSQGK 35
KPSAVSKGK 35
QTGPVSKGK 35
KSPAVSQGK 35
KALAVSKGK 35
KPGTVSQGK 35
QASPVSKGK 35
KASPVSQGK 35
QPSAVSQGK 35
QPGTVSQGK 35
KSPAVSKGK 35
KPGTVSKGK 35
QSAPVSQGK 35
QALAVSKGK 35
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Table S1. (continued)

Peptides Score Gapped peptides Gapped peptides
in Spectral Dictionary from Gapped Path Dictionary from Compact Gapped Path Dictionary

QVRVSKGK 42
KVRVSQGK 42 [128]V[156]VS[128]G[128]
QVRVSQGK 42
KVRVSKGK 42

AGVRVSKGK 39
AGVRVSQGK 39 [128]V[156]VS[128]G[128]
GAVRVSKGK 39
GAVRVSQGK 39
KVGVVSKGK 37
KVGVVSQGK 37 [128]V[156]VS[128]G[128]
QVVGVSQGK 37
KVVGVSKGK 37 [128]V[156]VS[128]G[128]
QVVGVSKGK 37
KVVGVSQGK 37
QVGVVSQGK 37
QVGVVSKGK 37
KVRVSAGGK 35
KVRVSGAGK 35 [128]V[156]VS[128]G[128]
QVRVSGAGK 35
VRVSAGGK 35
QVRGEKGK 35
QVRGEQGK 35 [128]V[156][186][128]G[128] [128]V[156][186][128]G[128]
KVRGEQGK 35
KVRGEKGK 35
KVRVNTGK 36 [128]V[156]V[215]G[128] [128]V[156]V[215]G[128]
QVRVNTGK 36
YGYVSQGK 36 [383]VS[128]G[128] [383]VS[128]G[128]
YGYVSKGK 36

QGPTVSQGK 39
KGPTVSKGK 39
KGTPVSKGK 39
KGPTVSQGK 39 [128]G[198]VS[128]G[128]
QGTPVSQGK 39
QGPTVSKGK 39
KGTPVSQGK 39
QGTPVSKGK 39
QGVVVSQGK 37 [128]G[198]VS[128]G[128]
KGVVVSKGK 37 [128]G[198]VS[128]G[128]
QGVVVSKGK 37
KGVVVSQGK 37
AGGTPVSKGK 36
AGGPTVSKGK 36
GAGPTVSKGK 36
GAGPTVSQGK 36 [128]G[198]VS[128]G[128]
GAGTPVSQGK 36
AGGPTVSQGK 36
GAGTPVSKGK 36
AGGTPVSQGK 36
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Supplement B: Spectral Profile vs. PRM Score
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Fig. S1. Comparison of hubs generated from largest Spectral Profile peaks with hubs
generated from the largest PRM scores. Each hub set is evaluated by the identifia-
bility of the resulting δ-reduced Gapped Spectral Dictionary. (for δ = 5, 9 and the
number of hubs varying from 20 (upper figure) to 40 (middle figure). When δ = 9,
the hubs constructed from the Spectral Profile have much better identifiability than
hubs constructed from PRM score (95% vs. 30%). In the bottom figure, the identifia-
bility according to the size of Pocket Dictionary is compared (Pocket Dictionary size
= 25, 100, the number of hubs is 20, and δ = 5.). Blue bars represent the hubs from
the Spectral Profile and red bars from the PRM score.
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Supplement C: Datasets

We used the previously published Shewanella, HEK, and Standard data sets to
benchmark MS-GappedDictionary.

Shewanella dataset. To benchmark the performance of MS-GappedDictiona-
ry, we adopted the Shewanella dataset composed of 18,468 charge 2 spectra from
Shewanella oneidensis MR-1, each representing a distinct tryptic peptide [13].
The spectra in this dataset were identified with InsPecT⊕MS-GeneratingFunc-
tion to ensure that all spectra have spectral probabilities below 10−9. Note that
MS-GeneratingFunction was shown to improve upon other MS/MS identification
tools (InsPecT, X!Tandem, and SEQUEST/PeptideProphet [12]) and in most
applications, peptide identifications with spectral probabilities above 10−9 are
of little use since they result in high FDR.9

HEK dataset. The Shewanella dataset cannot be utilized to test MS-Gapped-
Dictionary in searching huge databases because Shewanella oneidensis MR-1 is a
small genome. Kim et al. [13] used spectra from the human HEK293 cell line and
searched them against the six-frame translation of the human genome (≈ 2.5 bil-
lion amino acids for repeat-masked human genome). We used the same dataset
(composed of 21,605 charge 2 spectra of distinct peptides) to compare the perfor-
mance of MS-GappedDictionary and MS-Dictionary in the six-frame tranlation
of the human genome search. The spectra in this dataset were identified with
InsPecT⊕MS-GeneratingFunction to ensure that that all spectra have spectral
probabilities below 10−11 (see [13] for the reason to choose the rigid thresh-
old). Each spectrum in HEK dataset is identified as a tryptic peptide from the
six-frame translation of the human genome (i.e., peptides that span the exon
boundaries are discarded).

Standard dataset. Both Shewanella and HEK data sets are inadequate for
benchmarking the (gapped) tag generation accuracy, since the tag-based tool In-
sPecT was used to identify the spectra (i.e., a correct InsPecT tag was generated
for every spectrum). We obtained the dataset reported in [14] collected from the
Standard Protein Mix database [15], where the spectra were identified by SE-
QUEST [3] and PeptideProphet [11] that do not use tags for identifications. We
further selected peptide identifications with spectral probabilities below 10−9

and formed the dataset(denoted Standard) with 990 charge 2 spectra of distinct
peptides.

To generate the Gapped Spectral Dictionaries, the value of the spectral prob-
ability threshold is set to 10−9 for Shewanella and Standard datasets and 10−11

for HEK dataset (assuming that the precursor integer mass is known). The spec-
tral hubs are selected based on k maximal peaks in its Spectral Profile with k
varying from 20 to 40.

9 The Supplement present analysis of the same dataset for spectral probabilities below
10−10 and 10−11.
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Supplement D: Identifiability of the Gapped Spectral Dictionaries
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Fig. S2. Left panel: Identifiability of the δ-reduced Gapped Spectral Dictionaries
from the Shewanella dataset for δ = 5 (upper part), δ = 7 (middle part), and δ = 9
(lower part).
Right panel: Identifiability of the δ-reduced Gapped Spectral Dictionaries and Pocket
Dictionaries from the Shewanella dataset for δ = 5 (upper part), δ = 7 (middle part),
and δ = 9 (lower part). The number of hubs is 20. Even for long peptides, Pocket
Dictionaries with 50 gapped peptides are sufficient to ensure the identifiability higher
than 97% when δ is 5. When δ is large, larger Pocket Dictionaries are needed.
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Supplement E: Analog of Figure 3 for Varying Number of Hubs and
the Spectral Probability Thresholds
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Fig. S3. Analog of Figure 3 when the number of hubs is 20 or 30 and the spectral
probability threshold is 10−9 - 10−11 (1st row : 10−9, 2nd and 3rd rows :10−10, 4th and
5th rows :10−11). 20 or 30 hubs are used. δ is fixed to 5 for figures in the right panel.
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Supplement F: Spectral Identifiability for the Spectral Probability
Thresholds 10−10 or 10−11

Fig. S4. Left panel: Analog of Figure S2 (right) when the spectral probability thresh-
old is 10−10.
Right panel: Analog of Figure S2 (right) when the spectral probability threshold is
10−11.
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Supplement G: Gap Deconvolution Table

Table S2. Deconvolution of gaps into amino acid combinations (for integer masses
from 114 Da to 250 Da)

Mass # Comb. Combinations
114 2 [GG, N]
128 4 [AG, GA, Q, K]
142 1 [AA]
144 2 [SG, GS]
154 2 [PG, GP]
156 3 [VG, GV, R]
158 4 [TG, SA, AS, GT]
168 2 [PA, AP]
170 4 [LG, VA, AV, GL]
171 3 [GGG, NG, GN]
172 4 [DG, TA, AT, GD]
174 1 [SS]
184 4 [LA, PS, SP, AL]
185 9 [AGG, GAG, QG, KG, GGA, NA, AN, GQ, GK]
186 7 [EG, DA, VS, SV, AD, GE, W]
188 4 [MG, TS, ST, GM]
194 3 [HG, PP, GH]
196 2 [VP, PV]
198 3 [TP, VV, PT]
199 7 [AAG, AGA, GAA, QA, KA, AQ, AK]
200 6 [EA, LS, TV, VT, SL, AE]
201 5 [SGG, GSG, GGS, NS, SN]
202 5 [MA, DS, TT, SD, AM]
204 2 [FG, GF]
208 2 [HA, AH]
210 2 [LP, PL]
211 5 [PGG, GPG, GGP, NP, PN]
212 4 [DP, LV, VL, PD]
213 8 [VGG, GVG, RG, AAA, GGV, NV, VN, GR]
214 4 [DV, LT, TL, VD]
215 15 [TGG, SAG, ASG, GTG, SGA, GSA, AGS, GAS, QS, KS, GGT, NT, TN, SQ, SK]
216 4 [ES, DT, TD, SE]
217 2 [CG, GC]
218 4 [FA, MS, SM, AF]
220 2 [YG, GY]
224 2 [HS, SH]
225 10 [PAG, APG, PGA, GPA, AGP, GAP, QP, KP, PQ, PK]
226 3 [EP, LL, PE]
227 17 [LGG, VAG, AVG, GLG, VGA, GVA, RA, AGV, GAV, QV, KV, GGL, NL, LN, VQ,

VK, AR]
228 11 [GGGG, NGG, GNG, MP, EV, DL, GGN, NN, LD, VE, PM]
229 18 [DGG, TAG, ATG, GDG, TGA, SAA, ASA, GTA, AAS, AGT, GAT, QT, KT, DN,

GGD, ND, TQ, TK]
230 5 [MV, ET, DD, TE, VM]
231 5 [SSG, CA, SGS, GSS, AC]
232 2 [MT, TM]
234 6 [YA, FS, HP, PH, SF, AY]
236 2 [HV, VH]
238 2 [HT, TH]
239 3 [PAA, APA, AAP]
241 19 [LAG, PSG, SPG, ALG, LGA, VAA, AVA, GLA, PGS, GPS, SGP, GSP, AAV,

AGL, GAL, QL, KL, LQ, LK]
242 22 [AGGG, GAGG, QGG, KGG, GGAG, NAG, ANG, GQG, GKG, GGGA, NGA,

GNA, EL, AGN, GAN, QN, KN, GGQ, NQ, GGK, NK, LE]
243 28 [EGG, DAG, VSG, SVG, ADG, GEG, WG, DGA, TAA, ATA, GDA, VGS, GVS,

RS, SGV, GSV, AAT, EN, AGD, GAD, QD, KD, DQ, DK, GGE, NE, SR, GW]
244 6 [FP, ML, ED, DE, LM, PF]
245 14 [MGG, TSG, STG, GMG, SSA, TGS, SAS, ASS, GTS, SGT, GST, MN, GGM, NM]
246 4 [FV, MD, DM, VF]
247 2 [CS, SC]
248 2 [FT, TF]
250 4 [YS, HL, LH, SY]
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Supplement H: Generating Proper Gapped Tags from Gapped
Peptides

We distinguish between terminal tags (that start at N-terminus or end at C-
terminus) and internal tags. The tag generation algorithm attempts to generate
a proper tag for each gapped peptide from the Pocket Dictionary {P1, . . . , Pn}
ordered in the decreasing order of (gapped) peptide coverages. At the i-th stage,
the algorithm selects one proper gapped tag from peptide Pi unless (i) the pep-
tide Pi contains one of the previously chosen proper gapped tags, or (ii) the pep-
tide Pi does not have proper gapped tags. If there are multiple proper gapped
tags available for selection at the i-th stage, the algorithm randomly selects an
internal tag (if available), otherwise, it selects a terminal tag.10

Table S3 compares the percentage of gapped peptides with peptide sequence
tags and proper gapped tags in Pocket Dictionaries. Table S4 shows the average
numbers of gapped tags that are generated from the Pocket Dictionaries.

Table S3. The percentage of gapped peptides in the Pocket Dictionary of size 100
that contain peptide sequence tags and proper gapped tags of length 3 (for Standard
dataset)

Peptide % gapped peptides % gapped peptides
length with peptide sequence tags with proper gapped tags

10 90.83% 98.66%
12 69.69% 90.93%
14 54.24% 82.55%
16 47.25% 75.69%
18 35.30% 64.08%
20 38.33% 61.44%

Table S4. The average number of proper gapped tags (of length 3) produced by the
tag generation algorithm for various peptide lengths (for Standard dataset). Only ≈ 15
proper gapped tags are required on average to cover the Pocket Dictionary with 100
peptides.

Peptide length 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# gapped tags 1.2 6.6 13.1 15.3 16.2 17.4 17.9 16.8 17.6 18.4 16.1 16.9 17.8 15.1

10 Internal proper gapped tags are preferred since they typically have better filtration
efficiency than terminal tags.
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Supplement I: # of Matches of Spectra Searched against the Six Frame
Translation of Human Genome before Scoring

Table S5. Average number of matches of spectra from HEK dataset searched against
the six-frame translation of human genomes before scoring. HEK dataset is used to
generate the Gapped Dictionaries. Only 3 - 60 matches should be scored to remove
those that are not in the Spectral Dictionary.

Peptide length 10 11 12 13 14 15 16 17 18 19 20
# matches 2.9 9.5 24.3 38.7 54.0 44.4 55.6 53.2 54.9 53.3 66.1
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Abstract. Immense amounts of raw instrument data (i.e., images of
fluorescence) are currently being generated using ultra high-throughput
sequencing platforms. An important computational challenge associated
with this rapid advancement is to develop efficient algorithms that can
extract accurate sequence information from raw data. To address this
challenge, we recently introduced a novel model-based base-calling algo-
rithm that is fully parametric and has several advantages over previously
proposed methods. Our original algorithm, called BayesCall, significantly
reduced the error rate, particularly in the later cycles of a sequencing run,
and also produced useful base-specific quality scores with a high discrim-
ination ability. Unfortunately, however, BayesCall is too computationally
expensive to be of broad practical use. In this paper, we build on our pre-
vious model-based approach to devise an efficient base-calling algorithm
that is orders of magnitude faster than BayesCall, while still maintaining
a comparably high level of accuracy. Our new algorithm is called naive-
BayesCall, and it utilizes approximation and optimization methods to
achieve scalability. We describe the performance of naiveBayesCall and
demonstrate how improved base-calling accuracy may facilitate de novo
assembly when the coverage is low to moderate.

1 Introduction

Recent advances in sequencing technology is enabling fast and cost-effective
generation of sequence data, and complete whole-genome sequencing will soon
become a routine part of biomedical research. The key feature of the next-
generation sequencing technology is parallelization and the main mechanism un-
derlying several platforms is sequencing-by-synthesis (SBS); we refer the reader
to [1, 15] for a more comprehensive introduction to SBS and whole-genome re-
sequencing. Briefly, tens to hundreds of millions of random DNA fragments get
sequenced simultaneously by sequentially building up complementary bases of
single-stranded DNA templates and by capturing the synthesis information in a
series of raw images of fluorescence. Extracting the actual sequence information
(i.e., strings in {A, C, G, T}) from image data involves two computational prob-
lems, namely image analysis and base-calling. The primary function of image

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 233–247, 2010.
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analysis is to translate image data into fluorescence intensity data for each DNA
fragment, while the goal of base-calling is to infer sequence information from the
obtained intensity data. Although algorithms developed by the manufacturers
of the next-generation sequencing platforms work reasonably well, it is widely
recognized that independent researchers must develop improved algorithms for
optimizing data acquisition, to reduce the error rate and to reduce the cost of
sequencing by increasing the throughput per run.

At present, Illumina’s Genome Analyzer (GA) is the most widely-used system
among the competing next-generation sequencing platforms. In GA, SBS is car-
ried out on a glass surface called the flow cell, which consists of 8 lanes, each with
100 tiles. In a typical sequencing run, each tile holds about a hundred thousand
clusters, with each cluster containing about 1000 identical DNA templates. The
overall objective is to infer the sequence information for each cluster. The base-
calling software supplied with GA is called Bustard, which adopts a very efficient
algorithm based on matrix inversion. Although the algorithm works very well for
the early cycles of a sequencing run, it is well-known that the error rate of Bus-
tard becomes substantial in later cycles. Reducing the error rate of base-calls
and improving the accuracy of base-specific quality score will have important
practical implications for assembly [3, 4, 11, 12, 14, 17, 21], polymorphism detec-
tion (especially rare ones) [2,12], and downstream population genomics analysis
of next-generation sequencing data [7,8].

Recently, several improved base-calling algorithms [5, 9, 16, 19] have been de-
veloped for the Illumina platform. In particular, a large improvement in accuracy
was achieved by our own method called BayesCall [9]. The key feature that dis-
tinguishes BayesCall from the other methods is the explicit modeling of the
sequencing process. In particular, BayesCall explicitly takes residual effects into
account and is the only existing base-calling algorithm that can incorporate time-
dependent parameters. Importantly, parameter estimation is done unsupervised
and BayesCall produces very good results even when using a very small training
set consisting of only a few hundred randomly chosen clusters. This feature en-
ables the estimation of local parameters to account for the potential differences
between different tiles and lanes. Furthermore, being a fully parametric model,
our approach provides information on the relative importance of various factors
that contribute to the observed intensities, and such information may become
useful for designing an improved sequencing technology.

Supervised machine learning is an alternative approach that other researchers
have considered in the past for base-calling. For example, Alta-Cyclic [5] is a
method based on the support vector machine that requires a large amount of
labeled training data. To create a rich training library, in every sequencing run it
requires using a control lane containing a sample with a known reference genome.
Note that using such a control incurs cost and takes up space on the flow cell
that could otherwise be used to sequence a sample of interest to the biologist.
Furthermore, this approach cannot handle variability across lanes.

In [9], we showed that our method significantly improves the accuracy of base-
calls, particularly in the later cycles of a sequencing run. In addition, we showed
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that BayesCall produces quality scores with a high discrimination ability [6] that
consistently outperforms both Bustard’s and Alta-Cyclic’s. Unfortunately, how-
ever, this improvement in accuracy came at the price of substantial increase in
running time. BayesCall is based on a generative model and performs base-calls
by maximizing the posterior distribution of sequences given observed data (i.e.,
fluorescence intensities). This step involves using the Metropolis-Hastings algo-
rithm with simulated annealing, which is computationally expensive; it would
take several days to base-call a single lane using a desktop computer. This slow
running time seriously restricts the practicality of BayesCall.

The goal of this paper is to build on the ideas behind BayesCall to devise an
efficient base-calling algorithm that is orders of magnitude faster than BayesCall,
while still maintaining a comparably high level of accuracy. There are two com-
putational parts to BayesCall: parameter estimation and base-calling. Since es-
timation of the time-dependent parameters in BayesCall can be performed pro-
gressively as the sequencing machine runs, we believe that the bottleneck is in
the base-calling part. Our new algorithm is called naiveBayesCall. It is based on
the same generative model as in BayesCall and employs the same parameter esti-
mation method as before (see [9] for details). However, in contrast to BayesCall,
our new algorithm avoids doing Markov chain Monte Carlo sampling in the
base-calling part of the algorithm. Instead, naiveBayesCall utilizes approxima-
tion and optimization methods to achieve scalability. To test the performance
of our method, we use a standard resequencing data of PhiX174 virus, obtained
from a 76-cycle run on Illumina’s GA II platform. Then, we demonstrate how
improved base-calling accuracy may facilitate de novo assembly.

Our software implementation can be run either on an ordinary PC or on a com-
puting cluster, and is fully compatible with the file formats used by Illumina’s GA
pipeline. Our software is available at http://bayescall.sourceforge.net/.

2 A Review of the Model Underlying the Original
BayesCall Algorithm

Our main goal in developing BayesCall was to model the sequencing process in
GA to the best of our knowledge, by taking stochasticity into account and by
explicitly modeling how errors may arise. In each cycle, ideally the synthesis pro-
cess is supposed to add exactly one complementary base to each template, but,
unfortunately, this process is not perfect and some templates may jump ahead
(called prephasing) or lag behind (called phasing) in building up complementary
strands. This is a major source of complication for base-calling. Environment
factors such as temperature fluctuation also contribute to stochasticity.

Below, we briefly review the main ideas underlying BayesCall [9]. Throughout,
we adopt the same notational convention as in [9]: Multi-dimensional variables
are written in boldface, while scalar variables are written in normal face. The
transpose of a matrix M is denoted by M ′. The index t is used to refer to
a particular cycle, while the index k is used to refer to a particular cluster of
identical DNA templates. The total number of cycles in a run is denoted by L.

http://bayescall.sourceforge.net/
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Fig. 1. The graphical model for BayesCall. The observed random variables are the
intensities It,k. Base-calling is done by finding the maximum a posteriori estimates of
St,k. In this illustration, the window within which we consider phasing and prephasing
effects has size 5. In our implementation, we use a window of size 11.

Let ei denote a 4-component column unit vector with a 1 in the ith entry and 0s
elsewhere. We use the basis with A, C, G, T corresponding to indices 1, 2, 3, 4,
respectively.

BayesCall is founded on a graphical model, illustrated in Figure 1. It involves
the following random variables:

Sequence (Sk): We use Sk = (S1,k, . . . , SL,k), with St,k ∈ {eA, eC , eG, eT }, to
denote the 4-by-L binary sequence matrix corresponding to the complementary
sequence of the DNA templates in cluster k. The main goal of base-calling is to
infer Sk for each cluster k. We assume a uniform prior on sequences:

St,k ∼ Unif(eA, eC , eG, eT ).

If the genome-wide nucleotide distribution of the sample is known, then that
distribution may be used here instead, which should improve the accuracy of
base-calls.

Active template density (Λt,k): In BayesCall, fluctuation in fluorescence in-
tensity over time is explicitly modeled using a random variable Λt,k that corre-
sponds to the per-cluster density of templates that are “active” (i.e., able to syn-
thesize further) at cycle t in cluster k. Given Λt−1,k from the previous cycle, Λt,k

is distributed as a 1-dimensional normal distribution with mean (1 − dt)Λt−1,k

and variance (1− dt)2Λ2
t−1,kσ2

t :

Λt,k|Λt−1,k ∼ N ((1 − dt)Λt−1,k, (1− dt)2Λ2
t−1,kσ2

t ). (1)

Intensities (It,k): We use It,k = (IA
t,k, IC

t,k, IG
t,k, IT

t,k)′ ∈ R
4×1 to denote the

fluorescence intensities of A, C, G, T channels at cycle t in cluster k, after
subtracting out the background signals. These are the observed random variables
in our graphical model.
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As mentioned above, the DNA synthesis process is not perfect and may go out
of “phase.” In Bustard and BayesCall, the synthesis process in a cycle is modeled
by a Markov model in which the position of the terminating complementary
nucleotide of a given template changes from i to j according to the transition
matrix P = (Pij) given by

Pij =

⎧⎪⎪⎨⎪⎪⎩
p, if j = i,

1− p− q, if j = i + 1,
q, if j = i + 2,
0, otherwise,

where 0 ≤ i, j ≤ L. Here, p denotes the probability of phasing (i.e., no new base
is synthesized during the cycle), while q denotes the probability of prephasing
(i.e., two bases are synthesized). Normal synthesis of a single complementary
nucleotide occurs with probability 1 − p − q. At cycle 0, we assume that all
templates start at position 0; i.e., no nucleotide has been synthesized. Note that
the (i, j) entry of the matrix P t corresponds to the probability that a terminator
at position i moves to position j after t cycles.

Define Qjt as the probability that a template terminates at position j after
t cycles. It is easy to see that Qjt = [P t]0,j, the (0, j) entry of the matrix P t.
We use Qt to denote column t of the L-by-L matrix Q = (Qjt). In practice, Qt

will have only a few dominant components, with the rest being very small. More
precisely, the dominant components will be concentrated about the tth entry.
Therefore, at cycle t, we simplify the computation by considering phasing and
prephasing effects only within a small window w about position t. Let Qw

t denote
the L-dimensional column vector obtained from Qt by setting the entries outside
the window to zero. Hence, the concentration of active templates in cluster k
with A, C, G, T terminating complementary nucleotide can be approximated by
the following 4-dimensional vector:

Zw
t,k = Λt,kSkQw

t . (2)

The four fluorophores used to distinguish different terminating nucleotides have
overlapping spectra [20], and this effect can be modeled as XtZ

w
t,k, where Xt ∈

R
4×4 is a matrix called the crosstalk matrix, with (Xt)ij denoting the response

in channel i due to fluorescence of a unit concentration of base j. (We refer the
reader to [13] for discussion on estimating Xt.)

In addition to phasing and prephasing effects, we observed other residual ef-
fects that propagate from one cycle to the next. We found that modeling such
extra residual effects improves the base-call accuracy. In BayesCall, we intro-
duced parameters αt and assumed that the observed intensity It,k at cycle t
contains the residual contribution αt(1 − dt)I t−1,k from the previous cycle. In
summary, the mean fluorescence intensity for cluster k at cycle t is given by

μt,k = XtZ
w
t,k + αt(1− dt)It−1,k, (3)

with I0,k defined as the zero vector 0. Finally, with the assumption that the
background noise at cycle t is distributed as Gaussian white noise with zero
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mean and covariance matrix ‖Zw
t,k‖2Σt, where ‖ · ‖ denotes the 2-norm, the

observed fluorescence intensity in BayesCall is distributed as the following 4-
dimensional normal distribution:

It,k|It−1,k, Sk, Λt,k ∼ N (μt,k, ‖Zw
t,k‖2Σt), (4)

where the mean is shown in (3).
In BayesCall, global parameters p, q, and cycle-dependent parameters dt, αt,

σt, Xt, Σt are estimated using the expectation-maximization (EM) algorithm,
combined with Monte-Carlo integration via the Metropolis-Hastings algorithm.

3 naiveBayesCall: A New Algorithm

We now describe our new algorithm naiveBayesCall. As mentioned in Introduc-
tion, it is based on the same graphical model as in BayesCall, and we employ
the method detailed in [9] to estimate the parameters in the model. The main
novelty of naiveBayesCall is in the base-calling part of the method. We divide
the presentation of our new base-calling algorithm into two parts. First, we pro-
pose a hybrid algorithm that combines the model described in Section 2 with
the matrix inversion approach employed in Bustard. Then, we use the hybrid al-
gorithm to initialize an optimization procedure that both improves the base-call
accuracy and produces useful per-base quality scores.

3.1 A Hybrid Base-Calling Algorithm

We present a new inference algorithm for the model described in Section 2. The
main strategy is to avoid direct inference of the continuous random variables
Λt,k. First, for each cycle t, we estimate the average concentration ct of templates
within each tile. In [9], we showed that the magnitude of the fluctuation rate
dt (c.f., (1)) is typically very small (less than 0.03) for all 1 ≤ t ≤ L. Hence,
assuming that dt is close to zero for all t, we estimate the tile-wide average
concentration ct using

ct =
1
K

K∑
k=1

4∑
b=1

max(0, [X−1
t (It,k − αtIt−1,k)]b), (5)

where K denotes the total number of clusters in the tile and [y]b denotes the
bth component of vector y. The above ct serves as our estimate of Λt,k for all
clusters k within the same tile. Using this estimate, we define

Ĩt,k =
(

It,k − αt
ct

ct−1
It−1,k

)
+

, (6)

where (y)+ denotes the vector obtained from y by replacing all negative compo-
nents with zeros. Note that subtracting αt

ct

ct−1
It−1,k from It,k accounts for the

residual effect modeled in (3). The ratio ct

ct−1
rescales It−1,k so that its norm is

similar to that of It,k.
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Algorithm 1. Hybrid Algorithm
for all tiles do

for all cycles 1 ≤ t ≤ L do
Estimate concentration ct for each cycle t according to (5).

end for
for all clusters 1 ≤ k ≤ K do

Compute residual-corrected intensities Ĩk using (6).
Compute concentration matrix Zk according to (7).
Correct for phasing and prephasing effect using (8).
Infer SH

1,k, . . . , SH
L,k using (9) and output the associated sequence.

end for
end for

After determining Ĩt,k, the rest of the hybrid base-calling algorithm resembles
Bustard. (For a detailed description of Bustard, see [9].) First, for each cycle t,
we estimate the cluster-specific normalized concentration of four different bases
using

Zt,k = (ZA
t,k,ZC

t,k,ZG
t,k,ZT

t,k)′ =
1
ct

(X−1
t Ĩt,k)+, (7)

where Xt is the 4-by-4 crosstalk matrix at cycle t (see previous section). Normal-
izing by the tile-wide average ct is to make the total concentration stay roughly
the same across all cycles. Note that Zt,k is an estimate of the concentration
vector shown in (2). Now, we let Zk = (Z1,k, . . . , ZL,k) and use the following
formula to correct for phasing and prephasing effects:

Zk(Qw)−1, (8)

where Qw = (Qw
1 , . . . , Qw

L) is the L-by-L phasing-prephasing matrix defined in
Section 2. Finally, for t = 1, . . . , L, the row index of the largest value in column
t of (8) is called as the tth base of the DNA templates in cluster k:

SH
t,k = argmax

b∈{A,C,G,T}
[Zk(Qw)−1]b,t. (9)

Algorithm 1 summarizes the hybrid base-calling algorithm just described.
The performance of the hybrid algorithm will be discussed in Section 4. We

will see that, with the parameters estimated in BayesCall, our simple hybrid
algorithm already outperforms Bustard.

3.2 Estimating Λk via Optimization and Computing Quality Scores

In this section, we devise a method to improve the hybrid algorithm described
above and to compute base-specific quality score. The Viterbi algorithm [18]
has been widely adopted as a dynamic programming algorithm to find the most
probable path of states in a hidden Markov Model. There are two source of
difficulty in applying the Viterbi algorithm to our problem:
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Algorithm 2. naiveBayesCall Algorithm
for all clusters k do

Initialize S
(0)
k = (SH

1,k, . . . , SH
L,k) using Algorithm 1.

for 1 ≤ t ≤ L do
for b ∈ {A, C, G, T} do

Find λb
t,k = argmaxλ Lb

t,k(λ), where Lb
t,k(λ) is defined as in (10).

Compute base-specific quality score Q(b) using (14) and (15).
end for
Set st,k = argmaxb∈{A,C,G,T} Lb

t,k(λb
t,k).

Update S
(t)
k = Rt,st,k (S(t−1)

k ).
end for
Call s1,k, . . . , sL,k as the inferred sequence and output base-specific quality scores.

end for

1. Our model is a high order Markov model, so path tracing can be com-
putationally expensive. This complexity arises from modeling phasing and
prephasing effects. Recall that the observation probability at a given cycle
t depends on all hidden random variables Si,k with i within a window w
about t. In [9], we used 11 for the window size.

2. In addition to the discrete random variables Sk = (S1,k, . . . , SL,k) for the
DNA sequence, our model contains continuous hidden random variables
Λk = (Λ1,k, . . . , ΛL,k), but the Viterbi algorithm cannot handle continu-
ous variables. One might try to address this problem by marginalizing out
Λk, but it turns out that the maximum a posteriori (MAP) estimate of Λk

is useful for computing quality scores.

To address the first problem, we obtain a good initial guess of hidden variables Sk

and use it to break the high order dependency. To cope with the second problem,
we adopt a sequential approach. Algorithm 2 summarizes our naiveBayesCall
algorithm and a detailed description is provided below.

Our algorithm iteratively estimates Λt,k and updates St,k, starting with t = 1
and ending at t = L. Let S

(i)
k denote the sequence matrix after the ith iteration.

We initialize S
(0)
k = SH

k , where SH
k = (SH

1,k, . . . , SH
L,k) is obtained using the

hybrid algorithm described in Section 3.1. Let st,k denote the base (i.e., A,
C, G, or T) called by naiveBayesCall for position t of the DNA sequence in
cluster k. At iteration t, the first t − 1 bases s1,k, . . . , st−1,k have been called
and the vectors S1,k, . . . , St−1,k have been updated accordingly. The following
procedures are performed at iteration t:

Optimization: Our inference of Λt,k depends on the base at position t, which
has not been called yet. We use λb

t,k to denote the inferred value of Λt,k, given
that the base at position t is b. For a given base b ∈ {A, C, G, T }, we define the
log-likelihood function

Lb
t,k(λ) =

{
log P[It,k|It−1,k,Rt,b(S

(t−1)
k ), λ], if t = 1,

log P[λ|λst−1,k

t−1,k ] + log P[It,k|It−1,k,Rt,b(S
(t−1)
k ), λ], if t > 1,

(10)
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where Rt,b(S
(t−1)
k ) denotes the sequence matrix obtained by replacing column t

of S
(t−1)
k with the unit column vector eb, the probability P[λ|λst−1,k

t−1,k ] is defined

in (1), and observation likelihood P[It,k|It−1,k,Rt,b(S
(t−1)
k ), λ] is defined by (2)–

(4), More exactly,

P[It,k|It−1,k,Rt,b(S
(t−1)
k ), λ] ≈ φ(I t,k; λXtz

w,b
t,k +αt(1−dt)It−1,k, ‖λzw,b

t,k ‖2Σt),
(11)

where zw,b
t,k = Rt,b(S

(t−1)
k )Qw

t is an unscaled concentration vector and φ(·; μ, Σ)
is the probability density function of a multivariate normal distribution with
mean vector μ and covariance matrix Σ. For each b ∈ {A, C, G, T }, we estimate
λb

t,k using the following optimization:

λb
t,k = argmax

λ
Lb

t,k(λ). (12)

Our implementation of naiveBayesCall uses the golden section search method
[10] to solve the 1-dimension optimization problem in (12).

Base-calling: The nucleotide at position t is called as

st,k = argmax
b∈{A,C,G,T}

max
λ

Lb
t,k(λ) = argmax

b∈{A,C,G,T}
Lb

t,k(λb
t,k), (13)

and the sequence matrix is updated accordingly: S
(t)
k = Rt,st,k

(S(t−1)
k ).

Quality score: For position t, the probability of observing b is estimated by

P(b) =
φ(I t,k; λb

t,kXtz
w,b
t,k + αt(1− dt)I t−1,k, ‖λb

t,kzw,b
t,k ‖2Σt)∑

x∈{A,C,G,T} φ(I t,k; λx
t,kXtz

w,x
t,k + αt(1− dt)It−1,k, ‖λx

t,kzw,x
t,k ‖2Σt)

,

(14)
and the quality score for base b is given by

Q(b) = 10 log10

[
P(b)

1− P(b)

]
. (15)

4 Results

In this section, we compare the performance of our new algorithm naiveBayesCall
with that of Bustard, Alta-Cyclic [5], and our original algorithm BayesCall [9].

4.1 Data and Test Setup

In our empirical study, we used a standard resequencing data of PhiX174 virus,
provided to us by the DPGP Sequencing Lab at UC Davis. The data were
obtained from a 76-cycle run on the Genome Analyzer II platform, with the
viral sample in a single lane of the flow cell. The lane consisted of 100 tiles,
containing a total of 14,820,478 clusters. Illumina’s base-calling pipeline, called
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Integrated Primary Analysis and Reporting, was applied to the image data to
generate intensity files.

The entire intensity data were used to train Alta-Cyclic and BayesCall. Fur-
ther, since Alta-Cyclic requires a labeled training set, the reads base-called by
Bustard and the PhiX174 reference genome were also provided to Alta-Cyclic.
To estimate parameters in BayesCall and naiveBayesCall, the intensity data for
only 250 randomly chosen clusters were used.

To create a classification data set for testing the accuracy of the four base-
calling algorithms, the sequences base-called by Bustard were aligned against
the PhiX174 reference genome, and those reads containing more than 22 mis-
matches (i.e., with more than 30% of difference) were discarded. This filtering
step reduced the total number of clusters to 6,855,280, and the true sequence
associated with each cluster was assumed to be the 76-bp string in the reference
genome onto which the alignment algorithm mapped the sequence base-called
by Bustard. The same set of clusters was used to test the accuracy of all four
methods.

Note that since the classification data set was created by dropping those
clusters for which Bustard produced many errors, the above experiment setup
slightly favored Bustard. Also, it should be pointed out that since Alta-Cyclic
was trained on the entire lane, it actually had access to the entire testing data
set during the training phase.

4.2 Improvement in Running Time

The experiments were done on a Mac Pro with two quad-core 3.0GHz Intel
Xeon processors, utilizing all eight cores. Table 1(a) shows the training time and
the prediction time of Alta-Cyclic, BayesCall, and naiveBayesCall. The times
reported in Table 1(a) are for the full-lane of data. The training time of naive-
BayesCall is the same as that of BayesCall, since naiveBayesCall currently uses
the same parameter estimation method as in BayesCall. Although the train-
ing time of BayesCall is longer than that of Alta-Cyclic, we point out that, in
principle, the cycle-dependent parameters in BayesCall can be estimated pro-
gressively as the sequencing machine runs (a run currently takes about 10 days).
This advantage comes from the fact that BayesCall can be trained without la-
beled training data. As Table 1(a) illustrates, naiveBayesCall dramatically im-
proves the base-calling time over BayesCall, delivering about 60X speedup. This
improvement makes our model-based base-calling approach practical.

4.3 Summary of Base-Call Accuracy

Table 1(b) shows the overall base-call accuracy of the four different methods. The
columns under the label “4 Tiles” show the results for only 4 out of the 100 tiles in
the lane. Since it would take more than 15 days for BayesCall to call bases for the
entire lane, it was not used in the full-lane study. Both Bustard and Alta-Cyclic
were trained on the full-lane data. To train BayesCall for the 4-tile data, we
randomly chose 250 clusters from each tile to estimate tile-specific parameters,
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Table 1. Comparison of overall performance results (a) Running times (in hours). (b)
Base-call error rates. BayesCall’s testing time was estimated from that for 4 tiles of
data. The “by-base” error rate refers to the ratio of the number of miscalled bases to
the total number of base-calls made, while the “by-read” error rate refers to the ratio
of the number of reads each with at least one miscalled base to the total number of
reads considered.

(a)

Training Testing Time
Time for Full-Lane

Alta-Cyclic 10 4.4
BayesCall 19 362.5
naiveBayesCall 19 6

(b)

4 Tiles Full-Lane
By-base By-read By-base By-read

Bustard 0.0098 0.2656 0.0103 0.2705
Alta-Cyclic 0.0097 0.3115 0.0101 0.3150
BayesCall 0.0076 0.2319 NA NA
naiveBayesCall 0.0080 0.2348 0.0088 0.2499

and used the same parameters in naiveBayesCall. To run naiveBayesCall on the
full-lane data, we randomly chose 250 clusters from the entire lane to estimate
lane-wide parameters.

From Table 1(b), we see that the performance of naiveBayesCall is comparable
to that of BayesCall. Figure 2 shows the tile-specific average error rate for each
tile of the full-lane data. Note that naiveBayesCall clearly outperforms both
Bustard and Alta-Cyclic for tiles 21 to 100, but has comparable error rates for
tiles 1 to 20. It is possible to improve naiveBayesCall’s accuracy for the first 20
tiles by using tile-specific parameter estimates (see Discussion).

Figure 3(a) illustrates the cycle-specific average error rate. Note that naive-
BayesCall’s average accuracy dominates Alta-Cyclic’s for all cycles. Furthermore,
the improvement of naiveBayesCall over Bustard increases with cycles, as illus-
trated in Figure 3(b). This suggests that it is possible to run the sequencing
machine for longer cycles and still obtain useful sequence information for longer
reads by using an improved base-calling algorithm such as ours. Furthermore,
we believe that fewer errors in later cycles may facilitate de novo assembly. We
return to this point in Section 4.5.

4.4 Discrimination Ability of Quality Scores

To compare the utility of quality scores, we follow the idea in [6] and define the
discrimination ability D(ε) at error tolerance ε as follows. First sort the called
bases according to their quality scores in decreasing order. Then go down that
sorted list until the error rate surpasses ε. The number of correctly called bases
up to this point is defined as D(ε). Hence, D(ε) corresponds to the number of
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(a) (b)

Fig. 2. Title-specific error rates. Our algorithm naiveBayesCall clearly outperforms
both Bustard and Alta-Cyclic for tiles 21 to 100, but has comparable error rates for
tiles 1 to 20. It is possible to improve naiveBayesCall’s base-call accuracy for the first
20 tiles by using tile-specific parameter estimates. (a) By-base error rate for each tile.
(b) By-read error rate for each tile.

(a) (b)

Fig. 3. Comparison of average base-call accuracy for the full-lane data. Note that
naiveBayesCall’s average accuracy dominates Alta-Cyclic’s for all cycles. Further, The
improvement of naiveBayesCall over Bustard increases with cycles. (a) Cycle-specific
error rate. (b) Improvement of naiveBayesCall and Alta-Cyclic in cycle-specific error
rate over Bustard.

bases that can be correctly called at error tolerance ε, if we use quality scores
to discriminate bases with lower error probabilities from those with higher error
probabilities. For any given ε, a good quality score should have a high D(ε).
Shown in Figure 4 is a plot of D(ε) for naiveBayesCall, Alta-Cyclic, and Bus-
tard. As the figure shows, naiveBayesCall’s quality score consistently outper-
forms Alta-Cyclic’s. For ε < 0.0017 and ε > 0.0032, naiveBayesCall’s quality
score has a higher discrimination ability than Bustard’s, while the opposite is
true for the intermediate values 0.0017 < ε < 0.0032.
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Fig. 4. Discrimination ability D(ε) of quality scores for the full-lane data

4.5 Effect of Base-Calling Accuracy on the Performance of de Novo
Assembly

Here, we demonstrate how improved base-calling accuracy may facilitate de novo
assembly. Because of the short read length and high sequencing error rate, de
novo assembly of the next-generation sequencing data is a challenging task.
Recently, several promising algorithms [3, 4, 14, 17, 21] have been proposed to
tackle this problem. In our study, we used the program Velvet [21] to perform
de novo assembly of the reads called by different base-calling algorithms. First,
we randomly chose a set of clusters from the 4-tile data without doing any fil-
tering. Then, we base-called those clusters using each of Bustard, Alta-Cyclic,
BayesCall, and naive-BayesCall, producing four different sets of base-calls on the
same data set. For each set of base-called reads, Velvet was run with the k-mer
length set to 55. For a given choice of coverage, we repeated this experiment
100 times. The results are summarized in Table 2, which shows the N50 length,
the maximum contig length, and the total number of contigs produced; these
numbers were averaged over the 100 experiments. On average naiveBayesCall
led to better de novo assemblies than did Bustard or Alta-Cyclic: For 5X and
10X coverages, the performance of naiveBayesCall was similar to that of Bus-
tard’s in terms of the N50 and maximum contig lengths, but naiveBayesCall
produced significantly more contigs than did Bustard. For 15X and 20X, naive-
BayesCall clearly outperformed Bustard in all measures, producing longer and
more contigs. The results for BayesCall and naiveBayesCall were comparable.

5 Discussion

Reducing the base-call error rate has important consequences for several sub-
sequent computational problems, including assembly, SNP calling, disease as-
sociation mapping, and population genomics analysis. In this paper, we have
developed new algorithms to make our model-based base-calling approach scal-
able. Being a fully-parametric model, our approach is transparent and provides
quantitative insight into the underlying sequencing process. The improvement
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Table 2. Average contig lengths resulting from de novo assembly of the 76-cycle
PhiX174 data, when different base-calling algorithms are used to produce the input
short-reads. The length of the PhiX174 genome is 5386 bp, and Velvet [21] was used
to perform the assembly. N50 is a statistic commonly used to assess the quality of de
novo assembly. It is computed by sorting all contigs by their size in decreasing order
and adding the length of these contigs until the sum is greater than 50% of the total
length of all contigs. The length of the last added contig is reported as N50. A larger
N50 indicates a better assembly. Also shown are the maximum contig length (denoted
“Max”) and the total number of contigs (denoted “#Ctgs”).

Cov- Bustard Alta-Cyclic BayesCall naiveBayesCall
erage N50 Max #Ctgs N50 Max #Ctgs N50 Max #Ctgs N50 Max #Ctgs

5X 145 153 277 140 146 251 146 156 358 146 158 349
10X 203 368 2315 200 353 2148 203 368 2435 203 365 2467
15X 352 685 4119 331 637 4047 368 712 4249 371 716 4263
20X 675 1162 4941 674 1119 4893 752 1246 5004 750 1259 5015

in base-call accuracy delivered by our algorithm implies that it is possible to
obtain longer reads for a given error tolerance.

In our method, it is feasible to estimate parameters using a training set con-
sisting of only a few hundred randomly chosen clusters. We believe that naive-
BayesCall’s ability to estimate local parameters using a small number of clusters
should allow one to take into account the important differences between different
tiles and lanes (recall the results discussed in Section 4.3). One possible approach
to take in the future is to partition the lane into several regions and estimate
region-specific parameters. Further, adopting the following strategy may work
well: Estimate lane-wide parameters using a small number of clusters randomly
chosen from the entire lane. Then, obtain tile-specific or region-specific param-
eter estimates by initializing with the lane-wide estimates and by performing a
few iterations of the expectation-maximization algorithm (as described in [9])
using a small number of clusters from the tile or region. We believe that the
accuracy of naiveBayesCall can be improved significantly by using tile-specific
or region-specific parameter estimates.
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Abstract. Genetic interactions (such as synthetic lethal interactions)
have become quantifiable on a large-scale using the epistatic miniarray
profile (E-MAP) method. An E-MAP allows the construction of a large,
weighted network of both aggravating and alleviating genetic interac-
tions between genes. By clustering genes into modules and establish-
ing relationships between those modules, we can discover compensatory
pathways. We introduce a general framework for applying greedy clus-
tering heuristics to probabilistic graphs. We use this framework to apply
a graph clustering method called graph summarization to an E-MAP
that targets yeast chromosome biology. This results in a new method
for clustering E-MAP data that we call Expected Graph Compression
(EGC). We validate modules and compensatory pathways using enriched
Gene Ontology annotations and a novel method based on correlated gene
expression. EGC finds a number of modules that are not found by any
previous methods to cluster E-MAP data. EGC also uncovers core sub-
modules contained within several previously found modules, suggesting
that EGC can reveal the finer structure of E-MAP networks.

1 Introduction

A synthetic sickness or lethality (SSL) interaction specifies a genetic dependence
between two nonessential genes in which a double-knockout mutant has signifi-
cantly reduced fitness. A number of studies have searched for such interactions
and generated novel hypotheses about the cellular functions of genes of interest
and the genetic network of the organism as a whole [24,21]. Two genes with
an SSL interaction are believed to have a compensatory relationship: when one
gene is lost, the other compensates for the lost gene’s cellular function, whether
directly or indirectly [10].

Following initial studies of SSL, Collins et al. pioneered the epistatic miniar-
ray profile (E-MAP) method for defining genetic interactions quantitatively using
data generated by the synthetic genetic array protocol [23,9]. An E-MAP aims to
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generate a full matrix of interactions for a set of genes (e.g. 743 genes in [9]). For
every pair of genes, the E-MAP reports the difference between the measured fit-
ness of a double-knockout mutant strain and the expected fitness of the double
knockout, computed using measured fitnesses of single-knockout mutant strains.
One strength of the E-MAP approach is that the reported value can be used to
measure the intensity of the interaction. An SSL interaction would result in a neg-
ative value, called an aggravating interaction, because the actual fitness would be
much less than expected. Significantly positive values in the E-MAP, called alle-
viating interactions, suggest that the measured fitness is greater than expected.
Such an interaction can occur when the performance of a cellular function is de-
pendent on the presence of both genes and the loss of one of the genes is enough
to disrupt the function. Then the loss of the second gene does not cause as much
harm as might be expected. The identification of both aggravating and alleviating
interactions is another strength of the E-MAP approach.

An effective method for analyzing genetic interactions is to find clusters within
a graph where genes are represented by vertices and interactions are repre-
sented by edges. A number of studies searched these graphs for structures called
between-pathway models (BPMs), which consist of two clusters, or modules, with
many aggravating edges between them [14,25,16,4]. The genes in these modules
are likely to be functionally related, and the pair of modules in a BPM are
likely to have a relationship where one can compensate for a breakdown of the
other. The quintessential example of such a structure would be two redundant
pathways working towards a common downstream function and each with the
property that if one gene is knocked out, its pathway is disabled. In this case,
we would expect to see many SSL edges for genes between the two pathways.
Though things are seldom this simple in the S. cerevisiae genetic network, pre-
vious studies have found many convincing examples of BPMs. More recent work
has performed a similar clustering analysis on interaction networks generated by
E-MAP, taking into account both aggravating and alleviating interactions and
the interaction intensities [26,2].

In general, the network clustering problem is to partition the nodes of a graph
G into disjoint subsets X = {M1, . . . , Mk} so that some measure f(G, X) of the
quality of the partitioning is optimized. The methods of modularity [20], graph
summarization (GS) [18], minimum multiway cut [27], and others all fall un-
der this general framework. Many clustering quality functions are known to be
NP-hard to optimize (e.g. [5]) or are conjectured to be NP-hard (such as GS).
Often the best algorithms in practice for these difficult clustering problems are
agglomerative hierarchical clustering approaches, e.g. [18,7]. In these approaches,
each node is initially placed in its own module, and pairs of modules are succes-
sively merged to improve the clustering quality. We show how to extend greedy
agglomerative clustering methods with certain locality properties of the quality
function to probabilistic graphs, where each edge e exists with probability p(e).

We apply this greedy clustering framework to probabilistic graphs derived
from yeast E-MAP data to uncover clusters and BPMs. We use a clustering qual-
ity (cost) function derived from GS [18]. GS is an approach to graph partitioning
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based on compression that is well-founded in information theory [18] and was
successful in finding functionally cohesive modules in the S. cerevisiae protein-
protein interaction network such that unannotated proteins could be accurately
annotated based on the modules they were placed in [19]. A particular strength
of GS is finding approximate bicliques in the graph, which are identified as com-
pressible structures. Because approximate bicliques are the subgraph signature
of a BPM, the GS framework is a good clustering formulation for finding BPMs
in a genetic interaction network. The framework is sufficiently robust that it can
incorporate domain-specific information such as physical interactions between
proteins, as was found to be important in previous studies [26,2]. We call our
approach expected graph compression (EGC).

Proper validation of hypothesized BPMs is important but challenging because
there is no ground truth against which to compare. We validate BPMs using two
new tests that employ S. cerevisiae gene expression measurements aggregated
from 132 studies [12] based on intra- and inter-module expression correlation.
BPMs uncovered by EGC and previous E-MAP clustering methods demonstrate
greater correlation of gene expression than expected by chance. We also validate
modules and BPMs by enrichment of Gene Ontology (GO) annotations [1]. The
modules and BPMs found by EGC compare well to those from previous studies
and cover the largest number of unique GO annotations. EGC returns more
modules and BPMs than past methods at a similar level of quality. A substantial
number of modules found are novel and dissimilar to any modules reported by
prior studies. In addition, a subset of modules are uncovered by all existing
algorithms, and we consider these to be super-validated. Finally, in a number of
cases, two or more EGC modules are entirely contained within a module found
by a previous study, representing submodules of finer resolution.

In summary, we show how to derive an efficient greedy heuristic for optimizing
the expected quality of a graph partitioning for a general class of quality mea-
sures. We apply this technique to E-MAP data to uncover modules and BPMs
that are of comparable quality to existing E-MAP clustering approaches accord-
ing to two novel validation measures and GO annotations. We also show that
many of the modules found by this method better match known biological units
and can reveal the fine structure of compensatory pathways.

2 Methods

2.1 Agglomerative Hierarchical Clustering in Probabilistic Graphs

A probabilistic graph G is a triple (VG , EG , pG), where VG is the vertex set, EG is
the edge set, and pG : EG → [0, 1] is a function such that pG(e) is the probability
that edge e ∈ EG exists, independent of all other edges in the graph. Pairs of
vertices not connected by an edge in EG have probability 0 of an edge. Prob-
abilistic graphs arise in several applications of clustering biological networks,
and several schemes [15,17] have been proposed to assign probabilities to edges
in physical interaction networks and functional association networks. A proba-
bilistic graph G may alternatively be viewed as the set of graphs obtained by



Extracting Between-Pathway Models from E-MAP Interactions 251

choosing a subset of edges that have non-zero probability. Under this view, any
definite (non-probabilistic) graph g ∈ G represents a single instantiation of G
where all edges have been determined to exist or not. We take this view for the
remainder of this section.

The graph clustering problem on non-probabilistic graphs seeks to parti-
tion the nodes into subsets X = {M1, . . . , Mk} to minimize some cost func-
tion f(G, X). When dealing with probabilistic graphs, instead of computing
argminX f(G, X), a more natural goal is to find

argminX Eg∈Gf(g, X). (1)

In other words, we look for the partitioning X that minimizes the expected cost
of the partitioning over all possible instantiations of the probabilistic graph G.
Minimizing (1) can be more difficult than the non-probabilistic setting because
of the large number of possible graphs that must be considered.

If the clustering cost function f has the following two properties then heuris-
tics for optimizing (1) exist that are only slightly less efficient than the heuristics
for optimizing the non-probabilistic variant:

(i) f can be decomposed into a sum of pairwise costs h between modules.

f(G, X) =
∑

Mi,Mj∈X

h(Mi, Mj ,G) . (2)

(ii) h(Mi, Mj ,G) depends only on Aij , the number of edges between Mi and Mj .

Admittedly, properties (i) and (ii) are restrictive on possible cost functions f .
However, GS satisfies both and so good heuristics for minimizing its cost function
exist for probabilistic graphs, as we now show.

Suppose a clustering cost function f satisfies properties (i) and (ii) above.
Then, by property (i), we can rewrite (1) as follows:

Eg∈Gf(g, X) =
∑
g∈G

P (g)
∑

Mi,Mj∈X

h(Mi, Mj , g) =
∑

Mi,Mj∈X

∑
g∈G

P (g)h(Mi, Mj , g).

(3)
Rather than sum over all g ∈ G as in (3), by property (ii), we can collect together
all graphs that have a particular value for Aij between modules Mi and Mj and
sum over possible values for Aij :

Eg∈Gf(g, X) =
∑

Mi,Mj∈X

∑
a∈range(Aij)

P (Aij = a | G)h(Mi, Mj , a) . (4)

Here P (Aij = a | G) is the probability that a graph in G has a edges between
modules Mi and Mj and range(Aij) is the set of possible values for Aij .

To compute the expectation of the cost function efficiently without analyzing
every graph, we store the probabilities P (Aij = a | G) for a ∈ range(Aij) for
every pair of modules and update them each time two modules are merged
together. At the start of the algorithm, each vertex is in its own module, and
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P (Aij = 1 | G) = pG({i, j}) and P (Aij = 0 | G) = 1−pG({i, j}), where pG({i, j})
is the probability that edge {i, j} exists. When modules Mi and Mj are merged
to form a new module Mk, the probabilities for the number of edges between
Mk and any other module Mq are calculated by

P (Akq = a) =
a∑

x=0

P (Aiq = x)P (Ajq = a− x). (5)

Considered as a vector of probabilities, P (Akq) = 〈P (Akq = 0), P (Akq = 1), . . . 〉
can be computed as the convolution of the vectors P (Aiq) and P (Ajq). Using
the fast Fourier transform algorithm, the new probabilities can be computed in
time O(πij log πij), where πij is the number of possible edges between modules
i and j. Thus, we can compute the expected cost of an edge at any stage of the
greedy algorithm with little extra work.

2.2 Expected Graph Compression

Graph summarization (GS) is a graph compression algorithm that has been
successfully used to cluster protein-protein interaction networks [19]. GS seeks
to minimize the cost to represent all edges in a (non-probabilistic) graph G =
(VG, EG) by searching for a new graph H = (VH , EH) where a node in VH

represents one or more nodes in VG. A summarizing edge (A, B) in H implies
that there is a biclique in G between all nodes that comprise nodes A and B and
serves to represent those biclique edges in EG more compactly. In the common
case that the nodes contained in A and B have many edges between them but
do not form a complete bipartite graph, we may still use a summarizing edge
and add corrections to remove the missing edges. Edges in EG that are not
represented by any summarizing edges in EH also must be added as corrections.
The new graph H and list of removal corrections RC and addition corrections AC
can be used to completely reconstruct G. The cost of this partitioning is given
by fgs(G, H) = |EH | + |RC| + |AC|. The most effective algorithm in previous
studies to minimize fgs(G, H) was a greedy algorithm that at every iteration
merges the two nodes of H that would most reduce the graph cost fgs [18,19]
(see Figure 1). Then each vertex of H induces a module of vertices in G.

The framework described above can be used to extend GS to probabilistic
graphs. We first note that fgs obeys property (i) and can be rewritten as a
sum of pairwise costs as in (2) where hgs gives the cost to represent the edges
between two modules Mi, Mj. This cost depends on whether we can represent
the edges from the original graph between these modules less expensively with
a summarizing edge in EH or by listing each of the original edges individually
as addition corrections. Specifically, we have

hgs(Mi, Mj,G) = hgs(Mi, Mj, Aij) = min{πij −Aij + 1, Aij} , (6)

where πij is the number of possible edges between modules Mi and Mj, which is
|Mi||Mj | when i �= j, and Aij is the number of edges from the original graph (or
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Aij P (Aij) Cost

0 0.002 0
1 0.032 1
2 0.162 2
3 0.338 3
4 0.319 4
5 0.130 4
6 0.017 3

Fig. 1. Every iteration of the EGC greedy optimization algorithm merges the two
modules, such as h and k to j above, that result in the largest decrease in expected
cost as given by (4). The table on the right outlines the necessary information for this
calculation, including the probability of Aij = a edges beween modules i and j and the
cost of Aij = a edges between the modules defined by (6).

a single instantiation in the probabilistic case) where one vertex belongs to Mi

and the other belongs to Mj . Thus, the cost of an edge depends on the graph
only through Aij and fgs obeys property (ii). Therefore, the general framework
described above can be used to find a compressed graph H that has the minimum
expected cost.

Due to the stochasticity in the graph, this expected graph compression (EGC)
abandons the premise of a lossless compression upon which GS was built. In re-
turn, the edge weights allow greater discrimination in determination of modules.
If the edge probabilities are all 1, EGC outputs the same summarizing graph H
as GS. As the probabilities decrease to 0, the modules gradually break apart, as
there is less to gain in trying to compactly represent improbable edges. Using
the edge weights allows us to emphasize the summarization of interactions with
high weight while still taking interactions with low weight into account.

2.3 Application to E-MAP Data

The yeast chromosome E-MAP data [9] forms a 743 × 743 matrix, containing
183040 interaction values (some interaction experiments fail) that can take on
any real number (> 0 indicates alleviating and < 0 indicates aggravating inter-
actions). An effective way to make use of the values is to build a model (e.g. a
mixture of Gaussian distributions representing different interaction classes [26]).
Our approach is to map each value to a probability that the interaction truly
exists. This model accounts for experimental noise and ensures that the prob-
ability of interaction increases with increasing magnitude of the E-MAP value.
An interaction value < −3 has been used previously as a cutoff for an SSL inter-
action [13], implicitly assigning a probability of 1 to interactions below the cutoff
and 0 to those above it. Using a logistic function that softens this threshold, we
map an E-MAP value x to probability (1 + e−3|x|+7.5)−1, which has probability
1/2 at E-MAP value 2.5 where it rises most steeply. An E-MAP value of 3 gives a
probability of ∼ 0.82 of interaction. The resulting probabilistic graph contained
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20763 aggravating edges and 10581 alleviating edges representing interactions
that mapped to probabilities > 0.05. The results were robust to minor parame-
ter changes.

Alleviating and aggravating interactions indicate a very different type of re-
lationship between two genes. We separate the two types of edges into different
probabilistic graphs, Gag for aggravating and Gal for alleviating, and search for
the partitioning X that minimizes the expected cost to represent both graphs:

argminX Eg∈Gagfgs(g, X) + Eg∈Galfgs(g, X) . (7)

Because the vertex set is the same in both Gag and Gal, we can simplify (7) so
that both types of interactions are considered simultaneously when computing
edge costs. The algorithm must also be adjusted to account for the high rate of
failure for E-MAP experiments (∼ 1/3 of the matrix in the data set used [9]). In
order to not overestimate the number of possible edges πij between two modules,
we exclude untested or failed pairs of proteins from πij .

Previous work has demonstrated that compensatory pathways are more read-
ily identified when physical interactions are simultaneously considered, specifi-
cally between proteins within modules [14,26,2]. To make use of physical inter-
actions within EGC we only consider a merge between two modules if there is a
physical interaction between a pair of proteins with one protein in each module.
This way EGC will only output connected components of proteins as modules.
EGC was run using two different sets of physical interactions in order to compare
to previous methods. One set includes 2061 physical interactions used by Ulit-
sky et al. [26]. The interactions were originally downloaded from the SGD and
BioGrid databases [6,22] and exclude those found using the two-hybrid method.
Most analysis in this paper focuses on the EGC results with this interaction set.
The second set was used by Bandyopadhyay et al. [2] and combines interactions
from two large-scale TAP-MS studies [8]. In this set, real values measure the
evidence for each interaction. We used the 1552 interactions with scores > 1, a
threshold used for analysis by Bandyopadhyay et al.

Another desirable attribute of a clustering algorithm is the ability to guide
the approximate size of the final modules. As described, EGC finds modules with
a small average size and many modules of size 2 and 3. Although small modules
are interesting, slightly larger ones would be more biologically informative. EGC
offers a straightforward way to encourage the algorithm to grow the modules
larger. If the cost of a removal correction is lowered, there is more incentive
to combine genes into modules as the missing interactions are less costly. We
computed the validation metrics for removal correction costs of 1.0, 0.5, 0.25,
and 0.1 and found 0.25 to be the most effective in creating reasonably sized
modules that validated well.

Past studies on GS [18,19] actually used a variation of the greedy optimization
algorithm where the reductions in cost used to evaluate possible merges were
normalized by the sum of all edge costs for the two modules to be merged. As
originally formulated, the greedy algorithm tended to grow a small number of
modules very large in the initial iterations to the detriment of the final global
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cost. Normalizing the cost reduction encourages a more balanced progression.
We implement this variation in EGC.

After running EGC, we defined modules as the sets of genes merged into ver-
tices in VH that contain more than one gene. If the probability of a summarizing
edge is > 0 between two modules, we consider the pair to be a BPM.

2.4 Validation via GO Annotations

True authentication of a BPM would require direct lab demonstration of one set
of proteins compensating for the other. Since doing so in a large-scale fashion
would be infeasible, we resort to indirect computational tests. For example, if the
proteins in one module truly compensate for proteins in the other module, we
might expect the modules to perform related functions. This may not be the case
for all BPMs, but two functionally related modules should be better candidates
for a compensatory relationship than two functionally disjoint modules.

One way to assess functional similarity is to compare Gene Ontology (GO) [1]
annotations. We associate GO terms with modules using the FuncAssociate web
service [3], which searches all 3 subontologies (biological process, cellular compo-
nent, and molecular function) of the Gene Ontology. FuncAssociate performs a
hypergeometric enrichment test and corrects for multiple hypotheses using simu-
lation. We consider a module to be validated if it is enriched for a GO annotation
with P-value < 0.05. We additionally require the annotation to apply to ≤ 500
S. cerevisiae proteins as terms that describe > 500 proteins were too vague.

We introduce a similar test for BPMs by comparing the enriched annotations
for each module in the BPM. For each pair of enriched annotations (one for
each module), we find their lowest common ancestor in the GO hierarchy. If it
applies to ≤ 500 S. cerevisiae proteins, we consider the module annotations to
be functionally related and the BPM to be validated.

2.5 Validation via Gene Expression

Hescott et al. recently introduced a promising validation method for BPMs that
uses gene expression measurements from mutant strains of S. cerevisiae with a
single gene knocked out [11]. However, this approach is hindered by the limited
number of such expression data sets. On the other hand, gene expression data for
healthy cells in a wide range of conditions is plentiful. Correlated gene expression
for proteins in a module across various cellular stages and conditions is evidence
of functional coherence. If gene expression is correlated between modules in a
BPM, they are likely to be functionally related, thus supporting the BPM.

We use an aggregated set of experiments from 132 yeast gene expression stud-
ies [12]. To test a module, we first compute the Pearson correlation coefficient
between expression vectors for every pair of genes in the module. We use the
average of these correlations to measure the coherence of gene expression for
the module. To assess the significance of the statistic for a module of size N ,
we computed it for 1000 randomly sampled sets of N genes from the E-MAP
data set. We report a P-value for each module that is equal to the proportion of
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Table 1. Comparison of modules output by variations of EGC and previous methods

Modules GO Annotationsa Annotatedb Correlatedc

EGC1 118 636 89.8% (106) 23.7% (28)
EGC B-phys2 113 629 85.8% (97) 23.0% (26)
EGC no al3 128 641 85.9% (110) 20.3% (26)
EGC r=14 129 641 85.3% (110) 19.4% (25)
EGC no phys5 243 607 46.5% (113) 12.85% (31)
Ulitsky et al. 62 588 100% (62) 32.3% (20)
Bandyopadhyay et al. 91 624 85.5% (76) 24.2% (22)

1considers physical interactions (from the Ulitsky et al. data set) and alleviating inter-
actions and sets the removal correction cost to 0.25; 2uses the Bandyopadhyay et al.
physical interactions; 3uses no alleviating interactions; 4removal correction cost = 1;
5no physical interactions considered. anumber of unique GO terms that are enriched
in some module; bnumber of modules enriched with at least 1 GO term; cmodules that
attain an expression correlation with P-value < 0.05.

randomly sampled gene sets that had a greater correlation statistic. We consider
modules with a P-value < 0.05 to be validated under this test.

To test BPMs, we create a centroid expression vector for each module where
entry i in the vector is the average of the expression values for the module’s genes
in experiment i. For pairs of modules that participate in a BPM, we compute the
correlation between their centroid expression vectors over all experiments where
≥ 2 genes were measured in each module. We again survey the background dis-
tribution by sampling pairs of sets of randomly chosen genes with sizes matching
the modules in the BPMs being tested and computing the centroid correlation
statistic. BPMs with P-values < 0.05 were considered validated.

3 Results and Discussion

3.1 Modules Uncovered by Expected Graph Compression

EGC was run on the yeast chromosome E-MAP generated by Collins et al. [9].
Descriptions of all modules and BPMs can be found at http://www.cbcb.umd.
edu/research/bionet/EGC. EGC has a single parameter, r, which is the cost
of a removal correction. Standard GS uses r = 1, but setting r = 0.25 produced
larger (3.0 genes per module with r = 2.5 versus 2.3 with r = 1) and more
biologically relevant modules. This leads to greater sensitivity and precision of
GO term annotation, seen in rows “EGC” and “EGC r=1” in Tables 1 and 2.
With respect to correlation of gene expression, a greater percentage of modules
and BPMs are validated when using r = 0.25 compared with r = 1.

While SSL (aggravating) interactions are widely used for BPM identification
[14,25,16,4], E-MAPs describe both alleviating and aggravating interactions. To
assess the significance of alleviating interactions on BPM quality, we compare
modes of EGC with and without them. If only aggravating interactions are

http://www.cbcb.umd.edu/research/bionet/EGC
http://www.cbcb.umd.edu/research/bionet/EGC
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Table 2. Comparison of BPMs output by variations of EGC and previous methods

BPMs GO Annotationsa Annotatedb Correlatedc

EGC 403 175 43.4% (175) 12.9% (52)
EGC B-phys 369 165 49.3% (182) 13.0% (48)
EGC no al 371 175 44.7% (166) 12.9% (48)
EGC r=1 629 190 43.9% (276) 10.0% (63)
EGC no phys 706 159 28.5% (201) 9.2% (65)
Ulitsky et al. 153 141 66.0% (101) 15.7% (24)
Bandyopadhyay et al. 208 132 45.2% (94) 13.0% (27)

anumber of unique GO terms that satisfy the criteria in Section 2.4 for at least 1 BPM;
bpercent of BPMs annotated with at least one term. cpercent of BPMs for which the
centroid correlation test described in Section 2.5 attains a P-value < 0.05.

considered in EGC, we find fewer BPMs and modules that are less likely to
be enriched for GO annotations and less correlated in gene expression (“EGC
no al” in Tables 1 and 2). Though the impact of alleviating interactions is not
overwhelming, the results suggest that they should be included. Overall, EGC
places 3059 aggravating and 492 alleviating interactions across modules in BPMs
and 81 aggravating and 159 alleviating interactions within modules. Alleviating
interactions will appear within modules when the loss of one gene disrupts the
module’s function in such a way that the loss of more genes does not have a
large affect on fitness.

Physical interactions were demonstrated to be helpful in previous efforts to
cluster E-MAP networks [26,2], but not all successful studies on BPMs have
incorporated them [4]. We find that using physical interactions to restrict the
greedy merges leads to a major boost in performance shown in rows “EGC”
and “EGC no phys” in Tables 1 and 2. In the EGC greedy algorithm, there
are commonly a number of conflicting candidates with similar profiles of genetic
interactions, and the physical interactions serve as a second independent source
of evidence that the proteins being considered are functionally related. The set
of physical interactions used by Bandyopadhyay et al. gave results of a similar
quality — the modules are slightly worse and the BPMs are slightly better.

3.2 Comparison with Previous Studies

We compare the EGC modules and BPMs with those from previous studies
performed by Ulitsky et al. [26] and Bandyopadhyay et al. [2] on the yeast
chromosome E-MAP. All modules and BPMs are considered in these comparisons
because the validation tests are inexact and even modules and BPMs that are not
validated represent sets of genes with potentially interesting genetic interaction
patterns. EGC produces many more modules than either of the previous methods
(Table 1). These modules cover slightly more GO annotations (636 vs. 588 and
624), and a higher percentage of these modules are enriched for an annotation
than Bandyopadhyay et al. A higher percentage of Ulitsky et al. modules are
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Fig. 2. Modules from the 3 methods publishing results on the yeast chromosome E-
MAP [9] are displayed as a Venn diagram. Two modules are considered equivalent if
their Jaccard index is ≥ 2/3 (which does not account for containment of one module
in another). Each study contributes unique modules, with EGC offering the most.

annotated and have correlated gene expression, though that algorithm produced
far fewer modules. Hence, EGC produces many more modules of comparable or
slightly lower quality than existing E-MAP clustering approaches.

EGC also naturally identifies modules that are dense with interactions be-
tween genes within the module. These modules are tagged by EGC by creating
self-edges that summarize within-module interactions. EGC identifies 38 of these
dense modules. They are generally high quality as all 38 are enriched for a GO
annotation and 12 (31.6%) have correlated gene expression.

We also tested the algorithm of Brady et al. [4] who reported compelling
results on a set of unweighted SSL interactions. We provided this method with
E-MAP interactions that had value < −3 as input because these most closely
represent the SSL edges for which it was designed. However, the algorithm was
less successful when taken out of its intended context in this way. The modules
it returned were annotated with fewer GO terms (571) at a lower precision (75%
modules annotated) and a lower percentage were validated by correlation of gene
expression (15%) compared to the methods designed specifically for E-MAPs.

EGC tends to find smaller modules than the other methods — the mean
module size is 3.0 for EGC, 5.0 for Ulitsky et al., and 4.1 for Bandyopadhyay et
al. — including many modules of size 2. These are pairs of genes that have very
similar profiles of genetic interactions, and no other genes were sufficiently similar
to have been merged into the cluster. Though EGC does not grow the modules
as large as the other algorithms, it places more genes in modules than Ulitsky et
al. (355 vs. 313). (In each algorithm, many genes exist as singletons that are
not placed in any module.) Bandyopadhyay et al. placed slightly more genes
into modules (374). More BPMs are identified per module by EGC (average 6.8)
than other methods (4.9 for Ulitsky et al. and 4.6 for Bandyopadhyay et al.).

3.3 Novel and Super-Validated Modules

Many modules are found only by EGC. We consider two modules to be equivalent
if the Jaccard index between them is ≥ 2/3. The Jaccard index between two
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modules is the number of proteins in both divided by the number of proteins in
at least one. Figure 2 shows a Venn diagram of the module overlaps using this
equivalence, which demonstrates the substantial unique contributions of each
method. If we further exclude modules for which > 90% of their proteins are
contained in a module from another study, we obtain a collection of modules that
represent groupings of genes that are truly unique to each study. EGC produces
37 unique modules (31%), 27 of which are enriched for a GO annotation and 4 of
which display correlation of gene expression. These 37 modules participate in 128
BPMs, 44 of which are validated by the annotation test and 7 of which display
correlation of gene expression. By the same criteria, 23 (37%) of the modules from
Ulitsky et al. and 51 (56%) of the modules from Bandyopadhyay et al. are unique.
The large fraction of unique modules produced by each method indicates that
the underlying motivations for each approach are uncovering complementary
views of the E-MAP network and suggests that there is some uncertainty about
what the “true” clustering should be.

In one example of a unique module, EGC finds a module of 12 genes (contain-
ing e.g. CDC73) that is both annotated and displays correlation of gene expres-
sion. This module contains all 4 yeast genes annotated as histone ubiquitination,
which other methods do not place together, and 11 genes annotated as histone
methylation. The module participates in 14 BPMs, including aggravating edges
to modules annotated as histone exchange; GET complex; and retrograde trans-
port, endosome to Golgi. Another unique module has 4 genes (RAD9, RAD24,
DUN1, RAD53), 3 of which are involved in a DNA damage signal transduction
pathway. This module is involved in 7 BPMs, such as with modules annotated
as replication fork protection, Ctf18 RFC-like complex, and DNA replication
factor A complex.

Furthermore, 16 modules are found by every study. All 16 of these modules are
annotated with GO terms and 8 have correlated gene expression, which suggests
that they are highly reliable and should be considered the “super-validated”
modules of the yeast chromosome E-MAP. For example, one module consists
of all 6 proteins of the elongator holoenzyme complex (e.g. ELP6) and another
consists of 6 of 7 proteins of the prefoldin complex (e.g. GIM3).

3.4 Using EGC to Find Submodules of Larger Modules

Because EGC produces smaller modules in general, it reveals the finer struc-
ture of the chromosome E-MAP network. We examined cases where EGC split
a module from a previous study into smaller submodules. There exists 6 cases
where ≥ 2 EGC modules are contained in a single Ulitsky et al. module and
7 cases where ≥ 2 EGC modules are contained in a single Bandyopadhyay et
al. module. In most cases, genetic interactions and GO annotations support the
split. For example, Ulitsky et al. report a module of 13 proteins, 11 of which are
annotated as belonging to the Rpd3L complex. The 2 proteins (SPT3, SPT8)
without this annotation are placed by EGC into a separate module, and the
remaining 11 are divided into modules of size 4 (UME6, RXT3, UME1, CTI6)
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(a) Rpd3L complex (b) RSC complex

Fig. 3. Nodes indicate EGC modules labeled by a module ID and annotation. Node
size is proportional to the number of genes in the module. Edges indicate BPMs with
solid lines as aggravating interactions and dashed lines as alleviating interactions. Edge
thickness is proportional to the probability that a summarizing edge is used between
the two modules (see 2.2). (a) EGC separates the Rpd3L complex found by Ulitsky et
al. into two submodules based on vastly different genetic interaction profiles. (b) EGC
divides another Ulitsky et al. module into three sets. Four genes annotated as tran-
scriptional preinitiation complex assembly form a module, and five RSC complex genes
are split into two modules, each with its own distinct pattern of genetic interactions.

and 7 (PHO23, RXT2, DEP1, SAP30, SDS3, RPD3, SIN3). While both submod-
ules share a number of interactions (Figure 3(a)), each module also has unique
interactions, including edges from the module of size 7 to modules annotated
as DNA-directed RNA polymerase II holoenzxxyme, GET complex, and pro-
teasome complex. Genetic interactions clearly dichotomize the Rpd3L complex,
and EGC uncovers these submodules.

EGC breaks up another Ulitsky et al. module with 11 genes (Figure 3(b)).
One submodule (TAF4, TAF12, TAF6, and TAF9) contains the only genes in
the set annotated with transcription initiation factor activity. All genes in the
submodule are annotated with transcriptional preinitiation complex assembly.
Though five genes in the Ulitksy et al. module are annotated as part of the RSC
complex, EGC splits them into two modules (RSC1, RSC8, RSC6 and RSC58,
RSC9) based on very different genetic interaction profiles. While both modules
have an aggravating edge to a module annotated as Rpd3S complex, the module
with 3 genes also interacts with modules annotated as histone exchange, protein
kinase CK2 complex, THO complex and more. Again, EGC is able to detect
potential submodules in this protein complex supported by the E-MAP.

4 Conclusion

For many clustering tasks, a greedy strategy is a useful heuristic. Additionally,
many types of networks can be modeled as weighted or probabilistic graphs.
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We have outlined a general framework to perform greedy merging for clustering
methods on probabilistic graphs. We applied this framework to identify modules
and between-pathway models (BPMs) in a genetic interaction network. We in-
troduced a pair of new validation tests based on correlation of gene expression,
which are moderately successful in that the modules and BPMs are more likely
to have correlated gene expression than expected by chance. However, the effect
is not overwhelming and alternative relationships between the pairs of modules
in BPMs cannot be ruled out. In many cases, two or more EGC modules are
contained in a single module found by a previous method. We found that in most
cases, GO annotations and genetic interactions support the division uncovered
by EGC. These finer-grained modules may be useful to understand the structure
of the larger modules found by previous methods.
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Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer,
Heidelberg (2007)

6. Cherry, J., Adler, C., Ball, C., et al.: SGD: Saccharomyces genome database. Nu-
cleic Acids Research 26(1), 73 (1998)

7. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 66111 (2004)

8. Collins, S., Kemmeren, P., Zhao, X., et al.: Toward a comprehensive atlas of the
physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439
(2007)

9. Collins, S.R., Miller, K.M., Maas, N.L., et al.: Functional dissection of protein
complexes involved in yeast chromosome biology using a genetic interaction map.
Nature 446(7137), 806–810 (2007)

10. Hartman, J.L., Garvik, B., Hartwell, L.: Principles for the buffering of genetic
variation. Science 291(5506), 1001–1004 (2001)



262 D.R. Kelley and C. Kingsford

11. Hescott, B.J., Leiserson, M.D.M., Cowen, L.J., Slonim, D.K.: Evaluating between-
pathway models with expression data. In: Batzoglou, S. (ed.) RECOMB 2009.
LNCS, vol. 5541, pp. 372–385. Springer, Heidelberg (2009)

12. Hibbs, M.A., Hess, D.C., Myers, C.L., Huttenhower, C., Li, K., Troyanskaya, O.G.:
Exploring the functional landscape of gene expression: directed search of large
microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)

13. Ihmels, J., Collins, S.R., Schuldiner, M., Krogan, N.J., Weissman, J.S.: Backup
without redundancy: genetic interactions reveal the cost of duplicate gene loss.
Mol. Syst. Biol. 3 (2007)

14. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using pro-
tein networks. Nature Biotechnology 23(5), 561–566 (2005)

15. Leach, S., Gabow, A., Hunter, L., Goldberg, D.S.: Assessing and combining re-
liability of protein interaction sources. In: Pac. Symp. Biocomput., pp. 433–444
(2007)

16. Ma, X., Tarone, A.M., Li, W.: Mapping genetically compensatory pathways from
synthetic lethal interactions in yeast. PLoS ONE 3(4) (2008)

17. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-
formatics 21(suppl. 1) (June 2005)

18. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: Proceedings of the 2008 ACM SIGMOD international conference on man-
agement of data, pp. 419–432. ACM, New York (2008)

19. Navlakha, S., Schatz, M.C., Kingsford, C.: Revealing biological modules via graph
summarization. Journal of Computational Biology 16(2), 253–264 (2009)

20. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

21. Pan, X., Yuan, D.S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J.S., Hi-
eter, P., Spencer, F., Boeke, J.D.: A robust toolkit for functional profiling of the
yeast genome. Mol. Cell 16(3), 487–496 (2004)

22. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers,
M.: BioGRID: a general repository for interaction datasets. Nucleic Acids
Res 34(Database Issue), D535 (2006)

23. Tong, A.H., Evangelista, M., Parsons, A.B., et al.: Systematic genetic analysis with
ordered arrays of yeast deletion mutants. Science 294(5550), 2364–2368 (2001)

24. Tong, A.H., Lesage, G., Bader, G.D., et al.: Global mapping of the yeast genetic
interaction network. Science 303(5659), 808–813 (2004)

25. Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in
the Saccharomyces cerevisiae interaction networks. Mol. Syst. Biol. 3 (April 2007)

26. Ulitsky, I., Shlomi, T., Kupiec, M., Shamir, R.: E-MAPs to module maps: dissecting
quantitative genetic interactions using physical interactions. Mol. Syst. Biol. 4 (July
2008)

27. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function
prediction from protein-protein interaction networks. Nature Biotechnology 21(6),
697–700 (2003)



B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 263–280, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Simultaneous Identification of Causal Genes and  
Dys-Regulated Pathways in Complex Diseases 

Yoo-Ah Kim, Stefan Wuchty, and Teresa M. Przytycka  

National Center for Biotechnology Information, NLM, NIH, 8600 Rockville Pike,  
Building 38A, Bethesda, MD 20894 

{kimy3,wuchtys,przytyck}@ncbi.nlm.nih.gov 

Abstract. In complex diseases different genotypic perturbations of the cellular 
system often lead to the same phenotype. While characteristic genomic altera-
tions in many cancers exist, other combinations of genomic perturbations poten-
tially lead to the same disease, dysregulating important pathways of the cellular 
system. In this study, we developed novel computational methods to identify 
dysregulated pathways and their direct causes in individual patients or patient 
groups. Specifically, we introduced efficient and powerful graph theoretic algo-
rithms to identify such dysregulated pathways and their causal genes and ap-
plied our methods to a large set of glioma specific molecular data.  

Keywords: Complex disease, genetic variations, copy number variation, bio-
logical pathway, graph theoretic algorithm, glioma.  

1   Introduction 

Complex diseases are typically caused by combinations of molecular perturbations 
that might vary strongly in different patients, dysregulating the same components (or 
pathways) of a cellular system (review [1]). For example, recent studies reported 
mutations, leading to dysregulated axon-guidance pathway genes in Parkinson Dis-
ease [2] and a set of genes, causing a possible disruption of neural activity–dependent 
regulation  in autism [3] while diseases with similar phenotypes often are caused by 
mutations in functionally linked genes [4]. In recent years, whole-genome gene ex-
pression sets are increasingly used to search for markers, allowing the diagnosis of 
diseases or classifying their subtypes [5-11]. Several approaches combined expression 
measurements with various types of direct or indirect pathway information, obtaining 
improved disease classification [12-15], prioritization of disease associated genes [16-
18], and  identification of disease specific dys-regulated pathways [19]. Furthermore, 
considerable efforts towards integrated level approaches for uncovering disease caus-
ing genes ([20]; review [21]) and elucidation of relations between variability in gene 
expression and genotype (review [22]) have been recently made. In particular, Tu et 
al. implemented a random walk approach (used also in [16, 17])  to infer regulatory 
pathways [23] in yeast. Suthram et al. [24] further improved this approach by using 
the analogy between random walks and current flow in electric networks. 

While previous methods allowed valuable insights into the modular nature of dis-
eases by elucidating affected genes and pathways, they did not attempt to provide a 
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genome-wide view on possible causes of such dysregulation. Since biological path-
ways interact with each other in a variety of ways, one has to go beyond studying 
associations between individual disease genes and genotype variations in order to 
fully understand the complex disease network. In this paper, we address this challenge 
and present the first genome-wide approach to simultaneously determine dysregulated 
pathways and their putative direct causes/factors in individual patients and/or patient 
groups. As a model system we utilized gene expression and genomic profiles of hu-
man glioma patients, aggressive forms of human brain cancers that are characterized 
by genomic regions that are largely affected by copy number alterations such as am-
plifications, homozygous and heterozygous deletions as well as allelic imbalances 
such as loss of heterozygosity (LOH) and gene conversions [25]. Deletions of chro-
mosomal areas, that contain tumor suppressor genes, can cause faulty regulation of 
important cell cycle processes, resulting in malignant cellular proliferation. Gene 
amplifications can promote over-expression of genes involved in cell proliferation 
and survival. Indeed, gene expression profiles allow a further classification of glioma 
subtypes [26]. While copy number variation and gene expression data in glioma pro-
vide opportunities to test our approach, our method also can be applied to other dis-
ease systems where genetic variations play a causal role. 

Summarizing our contributions, (i) we developed a multi-step meta-analysis 
framework, integrating various types of data to facilitate the genome-wide discovery 
of disease causal genes and dys-regulated pathways. (ii) since our method models 
information flow in a biological network as a current flow in an  electric circuit, and 
we needed to solve this problem for large number of randomized networks to provide 
a measure of statistical significance,  we developed several optimization techniques 
leading to current flow algorithms fast enough to run efficiently on networks of the 
size of  human interactome. (iii) We formulated the problem of finding a minimal set 
of putative causal genes for a given set of samples as a variant of a weighted multi-set 
cover problem and presented an efficient algorithm for this problem. (iv) We devel-
oped algorithms for two models of interaction networks. In our basic model, we used 
undirected edges allowing algorithmic efficiency and robustness with respect to noise 
in the network. In the refined model we utilized additional information such as the 
types and directions of interactions and developed a simple heuristic approach that 
allows us to solve the refined version of the problem on a large human interaction 
network. (v) Finally, we applied our method to genomic and gene expression data sets 
of glioma patients. Our approach returned causal genes, target genes, and pathway 
hubs that included a high proportion of known oncogenes, indicating the power of our 
approach. 

2   Methods  

We developed a novel multistep algorithm to identify causal genes and associated 
dysregulated pathways by integrating several levels of analysis and data, including 
gene expression, genomic alterations and molecular interactions. Specifically, we aim 
to identify pathways, starting from genes that are located in areas of genomic altera-
tions in human gliomas to potential target genes by following molecular interactions 
such as protein-protein interactions, phosphorylation events and protein-transcription 
factor interactions. We first describe the outline of the algorithm in Section 2.1 and 
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discuss the details of each step in the following subsections. Following the description 
of our basic approach, refinements of the method and corresponding results are pre-
sented as well. 

2.1   Overview of Our Methods  

Given a set of disease cases s1, s2,, …, sn, each disease case si is characterized by a 
genotype profile {gi1, gi,2,, …, gi,j…} where gi,j represents the genotype of case si in 
locus lj. In our analysis, we utilized copy number alterations as genotypic information 
and gene expression profiles of each disease case, {ei1, ei,2,, …, ei,k…} where ei,k repre-
sents the gene expression of case si for gene gk. The outline of algorithm is illustrated 
in Fig. 1. In the first step, we identify a representative set of genes that are differen-
tially expressed in disease cases (‘target genes’), comparing gene expression profiles 
of disease samples and non-disease control cases (Fig. 1a) in the first step. The prob-
lem of identifying sets of representative target genes is related to finding disease 
markers and disease classification schemas. In our approach, we formulate the prob-
lem as a multi-set cover problem, determining a set of target genes with a greedy  

 

 

Fig. 1. Schematic outline of the algorithm. (a) Selecting a representative set target genes are 
differentially expressed in disease cases compared to controls and are selected using a variant 
of multi-set cover approach. (b) Initial association of selected target genes with variations in 
genetic loci. (c) Identification of candidate casual genes using a network of molecular interac-
tions. (d) Selection of a final set of causal genes and identification of pathway genes. 
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Algorithm 1. Target gene selection 
1. for each pair of gene gk and sample si, find p-value p(si, gk) of gene expression 

data compared to those of non-disease samples. 
2. create a multi-set cover instance SC = {S, Γ, α, β}  
3. U = a set of cases covered less than α.  
4. TG = a set of selected genes 
5. Γ is a collection of subsets C(gk) S 
6. repeat the following until |U| ≤  β  

6.1. select a gene gk   TG with maximum |U ∩ C (gk)|  
6.2. include the selected gene in TG 
6.3. update U 

 
 
approach. Informally, we ensure that each case is associated with (or covered by) 
some minimal number of selected differentially expressed genes and maximizing the 
overlap between these covers at the same time (see Section 2.2 for details). In the 
following, TG = {tg1, tg2,…, tgm} denotes the set of target genes selected in this step. 

In the next step (Fig. 1b and Section 2.3), we search for potential causes of the dif-
ferential expression of target genes TG, utilizing an eQTL analysis that uncovers 
correlations between gene expression variation of target genes TG and copy number 
variation of loci. Since genomic data in neighboring regions tend to be highly corre-
lated, we first choose a subset of representative loci (i.e. tag loci), significantly reduc-
ing computational costs and alleviating problems of multiple hypothesis testing. Note 
that the eQTL analysis in this step only provides putative eQTL regions that are asso-
ciated with each target gene. Such regions are usually large and may include many 
false positives due to multiple testing issues and high correlations between neighbor-
ing markers.  

We therefore further investigate the regions to identify causal genes and consider a 
gene to be more likely to be casual if there exists a path in the underlying interaction 
network that connects the causal gene with the corresponding target gene (Fig. 1c).  In 
our analysis, we adopt a variant of a current flow algorithm [24], modeling the prob-
lem of finding a pathway through the network of molecular interactions as current 
flow in an electric circuit. In this way we find a set of candidate causal genes CG(i) = 
{cgi,1, cgi,2, …, cgi,ni} for each target gene tgi and estimate the corresponding statistical 
significance with a permutation test (Section 2.4). 

In the final step, we select a set of causal genes that explain the disease cases  
(Fig. 1d). We define a gene gk as causal (i.e. explains a disease case si) if the locus 
that includes the gene has a copy number alteration in case si while differentially ex-
pressed disease genes exist in the sample which are associated with the causal gene gk. 
Given a set of candidate causal genes and disease cases, we formulate this problem as 
a variant of a weighted multi-set cover problem to find a minimum set of causal genes 
explaining (almost) all disease cases (Section 2.5). In addition, we find dysregulated 
pathways describing the flow of information between each pair of causal and target 
gene (Section 2.6). 

Compared to molecular interactions in yeast [24], sets of interactions in human are 
several order of magnitudes larger, more noisy, and less complete. Furthermore, tissue 
specific interaction networks are not available that we expect to be rewired in the 
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disease stages. We consider all interactions as undirected in the basic version of our 
approach, increasing robustness with respect to missing information and mitigating 
algorithmic complexity issues. Since such tweaks are simplifications, we also devel-
oped a heuristic that accounts for the directions of phosphorylation events and pro-
tein-DNA interactions for biologically more accurate results (Section 2.7).   

2.2   Selecting Target Genes  

First, we identify genes that are differentially expressed in the disease cases compared 
to the non-disease controls in each case. Specifically, we normalized gene expression 
values as a Z-score, utilizing mean and standard deviation of gene expression values 
in the non-disease control cases. We consider a gene differentially expressed if the 
normalized gene expression value of the gene has a significant p-value in the given 
case using a Z-test.  

Mapping all differentially expressed genes to all loci (see Section 2.3 for more de-
tail) would not only require expensive computational cost but also suffer from multi-
ple testing issues. Therefore, we choose a representative set of target genes for further 
analysis so that a sufficient number of differentially expressed genes are selected for 
each case. We formulate the problem of selecting target genes as a minimum multi-set 
cover problem: We construct a multi-set cover instance SC =  {S,Γ,α, β} where S is a 
set of cases. Γ is a collection of subsets C(gk)⊆ S for each gene gk such that C(gk) 
includes all cases for which gene gk has a significant p-value. α represents the number 
of times that a case needs to be covered, and β is the maximum number of outliers. In 
other words, all but β cases need to be covered at least α times in the output cover.  
 

Algorithm 2. eQTL mapping 
1. For each chromosome chr, let Lchr be the set of loci on the chromosome, sorted 

in increasing order of their genomic locations. Run the following for each 
chromosome. 

2. tl = Lchr [0] \\ the first locus 
3. Add tl to TL \\ TAG loci 
4. Consider loci in the sorted order 

4.1.    if corr(tl, Lchr [i]) ≤θTL (i: the current index, corr(x, y): correlation 
coefficient) 

right(tl) = Lchr [i-1] \\ set the right boundary of the old tag locus 
tl = Lchr [i]  and include tl to TL \\ select a new tag locus 
Consider loci in reverse sorted order starting from j = i-1 
if corr(tl, Lchr [j]) ≤θTL 

left(tl)= Lchr [j+1]  \\ set the left boundary of the new tag 
Go to 4.1 

5. For each target gene dgi  
5.1. TL(i) =  
5.2. For each tag locus tlj 

5.2.1.  Run linear regression between E(dgi) and CN(tlj) and compute 
p(dgi, tlj) 

5.2.2.  If p(dgi, tlj) < θeqtl 
Include tlj to TL(i) 
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The problem to choose a minimum number of genes, satisfying the constraints is NP-
hard, prompting us to design a greedy algorithm. The pseudocode of the correspond-
ing algorithm is shown in Algorithm 1.  

2.3   eQTL Mapping 

We utilize a set of loci L = {l1, l2,…, lm} where each locus li  is characterized by the 
corresponding copy number cni,j in each case j,  CNi = {cni,1, cni,2,…, cni, n}. Since 
copy numbers of nearby loci tend to be highly correlated we can significantly reduce 
the number of loci by performing local clustering, allowing us to obtain a smaller set 
of tag loci. In Algorithm 2 we present the pseudocode of the tag loci selection algo-
rithm where TL = {tl1, tl2,…, tlm}  is a set of tag loci and R(tlk) = [left(tlk), right(tlk)] is 
the correlated genomic region of around each tag locus tlk. Such regions include all 
consecutive loci including tlk, ensuring that the Pearson’s correlation coefficient of 
CNk and CNi  at any locus li  in the region is > θTL. Tag loci and associated regions can 
be computed in linear time. Highly correlated regions will be investigated in later 
steps to identify causal genes. Note that according to the algorithm, adjacent regions 
may overlap and a gene may belong to more than one region. 

Given TL = {tl1, tl2,…, tlm}, we identify candidate loci by associating copy number 
alteration with expression profiles of target genes. Given a set of target genes TG and 
tag loci TL, we calculate p-values p (tgi, tlj) by a linear regression between the expres-
sion values of gene tgi, E(tgi), and copy numbers of tag locus tlj, CN(tlj) of all cases. 
For each target gene tgi, TL(i) ⊆ TL includes all tag loci with p(tgi,, tlj) < θeqtl. We 
consider a tag loci tlj associated with tgi if tlj ∈ TL(i). 

2.4   Identifying Candidates Causal Genes 

For each pair of a target gene tgi and an associated tag locus tlj ∈ TL(i), we identify 
candidate causal genes in the region of the corresponding locus R(tlj). Inspired by the 
work of Suthram et al. [24], we adopt a variant of a current flow algorithm. For a 
given tag locus tlj we first identify a set of genes C(tlj) that are located in the corre-
sponding locus region R(tlj). Using a network of molecular interactions, including 
protein-protein, protein-DNA interactions and phosphorylation events, we create an 
electric circuit, connecting potential causal genes in C(tlj) and the target gene in ques-
tion and compute the current flow from the target gene to its potential causal genes. 
The conductance of each interaction edge is given as a function of gene expression  
 

Algorithm 3. Selecting candidate causal genes 
1. For each disease gene dgi
2. CG(dgi)= ∅

2.1 For each tag locus tlj ∈ TL(i) and associated region R(tlj)
2.1.1. Compute C(tlj), a set of genes located in R(tlj)
2.1.2. Construct an electric circuit and compute current  

to each gene in C(tlj)
2.1.3. Compute current in random networks and p-value for 

each gene in C(tlj)
2.1.4. CG(dgi) = CG(dgi) ∪ g ∈C(tl j ) p − value(g) ≤ θ current{ }
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correlation of the genes at the endpoints of edges and the target gene. The current 
flow is obtained by solving a system of linear equations as described in Section 2.4.1. 
Due to the large size of the human interaction network, standard software packages 
cannot solve the underlying system. In Section 2.4.2, we present optimization tech-
niques to compute the solution and describe ways to estimate empirical p-values for 
each pair of target gene and tag locus given the solution of the linear system in Sec-
tion 2.4.3. For each target gene tg, we find a set of candidate causal genes, CG(tg), if 
p ≤ θcurrent (Algorithm 3). 

2.4.1   Linear System 
The current flow algorithm is based on the well-known analogy between random 
walks and electronic networks where the amount of current entering a node or an edge 
in the network is proportional to the expected number of times a random walker will 
visit the node or edge. Let G = (N, E) represent a gene network where N is a set of 
genes and E is a set of molecular interactions. Let vector I = [I(e) for e ∈  E] denote 
current passing through the edges and V = [V(n) for n ∈ N] denote variables for volt-
age at the nodes. For a given tag locus, let C be the set of candidate genes located in 
its genomic region. Vector X = [X[c] for c ∈ C] denotes the current leaving the candi-
date genes. For each edge e, we compute the weight w(e) = (corr(e[0], tg)+corr(e[1], 
tg))/2, which represents the conductance of the edge. Ohm’s law is defined as 

Id ∗ I + P ∗V = 0                                                (1) 

where Id is an |E|×|E| identity matrix, and O is a zero matrix. P is an |E| ×|N| matrix 
and P(e, n) = w(e) if n = e[1], -w(e) if n = e[0], and 0 otherwise. Kirchhoff’s current 
law is 

Q ∗ I + R ∗ X = T                                                 (2) 

where Q is an |N| ×|E| matrix, and Q(n, e) = 1 if n = e[0], -1 if n=e[1], and 0 other-
wise. R is an |N|×|C| matrix where R(n, c) = 1 if n = c and 0 otherwise. T is an |N|×1 
vector where T(n) = 1 if n is the target gene tg, and 0 otherwise. 

Finally, we set the voltage of all genes in C to be 0 so that all current flows into the 
candidate genes and there is no current flow between them, defined as 

S ∗V = 0                                                              (3) 

where S is a |C|×|N| matrix and S(c, n) = 1 if n=c and 0 otherwise. We are interested 
in the total current passing through each gene in C by solving the linear equations  
(1)-(3).  

2.4.2   Optimization 
The most computationally expensive part in our algorithm is the computation of the 
solution of the current flow. Since there exist dozens to hundreds of associated loci 
with θeqtl = 0.01 for each gene straightforward approaches take about several hours to 
days to compute the solution on the NCBI computing cluster. Furthermore, the size of 
linear system is O(|E|2) due to the equation (1) and therefore, computations increas-
ingly get intractable since the estimation of statistical significance needs additional 
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computation to solve the linear systems for a large number of randomized networks, 
prompting us to optimize the computation in several ways.  

First, we combine eqs. (1) and (2) to reduce the size of matrix. By (1) we replace I 
in (2) with -P*V, and obtain   

−Q∗ P ∗V + R ∗ X = T                                                 (4) 

leaving us to solve the linear system (3) and (4), which reduces the size of linear sys-
tem to O(|N|2). 

The second optimization is to compute an inverse matrix using matrix decomposi-
tion [27] and utilize the fact that all tag loci associated with the same target gene have 
a common matrix Q*P. Considering the matrix representation of our linear system 
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where QP = (Q∗ P)−1. Note that QP  can be pre-computed and reused to compute 

[VT XT] for each associated tag locus. Even though solving linear system by comput-
ing inverse matrices typically takes more time than other methods, our algorithm 
requires the |N|×|N| matrix inversion operation only once for each target gene, allow-
ing us to fast compute solutions for all loci associated to a target gene. 

2.4.3   Computing Empirical p-Values 
Given the solution of the linear system, an empirical p-value for each pair of target 
gene and tag locus is estimated by generating 50 random networks, swapping edges 
while preserving node degrees. Assuming that each edge has a unit conductance, we 
run the current flow algorithm in each random network for the same set of genes and 
compute the amount of current flowing into each gene located in the tag locus. A 
normal distribution was fitted to the current values in the random network and empiri-
cal p-values are computed with a Z-test.  

2.5   Selecting Final Set of Causal Genes   

One of our primary goals is to identify a set of causal genes that explain (almost) all 
disease cases. Given the candidate causal genes affecting target genes (computed by 
Algorithm 3) and the copy number variation of genotypes we identify a handful of 
common causal genes that explain the disease cases. A target gene tgj is affected by a 
causal gene cgk if cgk ∈ CG(tgj), i.e., the current flow from tgj to cgk has a significant 
p-value. We formally define a causal gene explaining a case as follows: 

Definition 1. A causal gene cgk explains a case si iff (i) the tag locus including the 
gene has copy number alterations in case si and (ii) there exists a set of target 
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gene(s), D(cgk, si), which are affected by cgk and differentially expressed in case  
si. The weight between a causal gene and a case, w(k, i) is defined as the size of 
D(cgk, si).  

A bipartite graph B(C, S) between a set of candidate causal genes C and disease cases 
S can be constructed by adding edges between gene cgk  and si if and only if gene cgk 
explains a case si.(Fig. 2a). For a subset of candidate causal genes C0 and a case s, let 
W(C0, s) be the total number of target genes covering s by the genes in C0, 

  
W (C0,s) = D(c,s)

c∈C0U . A case is explained if the total weight covering the sample 

exceeds a certain threshold. As in the preprocessing in the first step, we want to ex-
plain all cases (allowing a few outliers) with minimum number of causal genes. In 
Fig. 2b, two causal genes {A, D} are selected covering each case (except case 1) at 
least 3 times. 

(a)                                                                                 (b)     

Fig. 2. Selection of final causal genes.  (a) In an example of a bipartite graph between candidate 
causal genes and disease cases each edge is labeled with the associated set of target genes that 
are affected by the causal gene and differentially expressed in the corresponding disease case. 
(b) The set of selected final causal genes {A, D} covers each disease case at least three times 
(except case 1).   

The problem can be formulated as a variant of minimum weighted multi-set cover 
problem. Consider an instance WSC = {B, γ, δ} where B is a weighted bipartite graph 
between C and S. We want to choose a subset of genes C’ from C such that for each 
case except δ cases, W(C’, s) ≥ γ. Since a very simple version of the multi-set cover 
problem (unweighted without outliers) is NP-hard, we designed an algorithm, using a 
greedy approach to choose a subset of genes. Repeatedly, we compute the total weight 
that can be covered by choosing a gene and select a gene with maximum total weight 
until we meet the stop criterion (See Algorithm 4 for the details). 

2.6   Identifying Dysregulated Pathways 

Finally, we determine dysregulated pathways. Let r(c) be the regions that contain a 
causal gene c. Since regions may overlap, a gene can be part of more than one region. 
Let rmax(c, d) and tlmax(c, d) be the region and tag locus that harbor gene c and have 
the most significant p-value among all the current flow solutions from d to regions  
in r(c).  



272 Y.-A. Kim, S. Wuchty, and T.M. Przytycka 

Algorithm 4. Selection of final causal genes 
1. Create a weighted multi-set cover instance WSC = {Β, γ, δ} 
2. U = a set of cases covered less than γ.  
3. MCG = a set of selected causal genes 
4. Repeat the following until |U| ≤  δ 

4.1. Select a gene gk ∉ MCG  with maximum 

W (gk,U) = (W (MCG ∪{gk},s) −W (MCG,s))
s∈U

∑  

4.2. Include the selected gene in MCG 
4.3. U 

 
 

Utilizing a current flow solution Sol(d, tlmax(c, d)) from d to tlmax(c, d) we deter-
mined a path from c to d by defining a maximum current path from d to c as a simple 

path P (d, c) = (d, g1, g2,…, c) such that mingi in P (d, c) I(gi) is maximized where I(gi) is 
the total current passing through the gene gi. We compute a path for each pair of a 
final causal gene and a target gene affected by the underlying causal gene. 

2.7   Algorithm Refinements  

In our basic algorithm, we considered all interactions as undirected. Furthermore, we 
assumed that each interaction has a regulatory effect on a target gene. Aiming to ob-
tain more biologically meaningful results, we modify the basic version of our  
algorithms on two accounts. First, we assume that direct regulation activity on the 
expression of disease is mediated by transcription factors only. Therefore, we imple-
mented a version of the algorithm, determining paths where target genes interact with 
transcription factors only. Second, we account for directions of protein-DNA interac-
tions and phosphorylation events, allowing us to interpret the results in the context of 
information flow in the cell. One way to obtain current flow in directed networks is to 
solve a linear programming [24]. However, such an approach is computationally ex-
tremely costly given the large size of our human molecular interaction network. We 
address this problem by a simple heuristic approach by searching for edges that are 
used in opposite direction after solving the linear system. Removing these edges we 
solve the linear system for the remaining edges again and repeat this process until 
only a small number of directed edges are used incorrectly.  

3   Data  

3.1   mRNA Data Treatment 

We utilized 321 patient and 32 non-tumor control samples collected from the NCI-
sponsored Glioma Molecular Diagnostic Initiative (GMDI) which were profiled using 
HG-U133 Plus 2.0 arrays. Arrays were normalized at the PM and MM probe level 
with dChip [26, 28]. Using the average difference model to compute expression val-
ues, model-based expression levels were calculated with normalized probe level data, 
and negative average differences (MM > PM) were set to 0 after log-transforming 
expression values [26]. Accounting for weak signal intensities, all probesets with 
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more than 10% of zero log-transformed expression values were removed. Represent-
ing each gene, we chose the corresponding probeset with the highest mean intensity in 
the tumor and control samples. 

3.2   Determination of Copy Number Alterations  

The same 321 patient and 32 non-tumor control samples were hybridized on the Ge-
nechip Human Mapping 100K arrays, and copy numbers were calculated using Affy-
metrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and 
summarization, calculated log2-tranformed ratios were used to estimate raw copy 
numbers. Using a Gaussian approach, raw SNP profiles were smoothed (> 500 kb 
window by default) and segmented using a Hidden Markov Model approach [25, 29, 
30], Considering alterations of copy numbers (CN), we define an amplification if log2 
CN -1 > 0.1 and a deletion if log2 CN -1 < -0.1.  

3.3   Interaction Network 

We utilized human protein-protein interaction data from large-scale high-throughput 
screens [31-33] and several curated interaction databases [34-37] totaling 93,178 
interactions among 11,691 genes. As a reliable source of experimentally confirmed 
protein-DNA interactions, we used 6,669 interactions between 2,822 transcription 
factors and structural genes from the TRED database [38]. As for phosphorylation 
events between kinases and other proteins we found 5,462 interactions between 1,707 
human proteins utilizing networKIN [39, 40] and phosphoELM database [41]. Pool-
ing all interactions we obtained a network of 11,969 human proteins that are con-
nected by 103,966 links. 

4   Results  

4.1   Target Genes 

A gene is defined to be differentially expressed for a case if p-value is less than 0.01 
when a standard normal distribution is fitted to the control. In the basic model, we 
solved a multi-set cover instance SC = {S, Γ, 30, 15} using Algorithm 1, and obtained 
73 target genes. The selected target genes and their expression patterns are shown in 
Table 1. Four genes, CD200R1, CH25H, GPR27 and WNT6 are not considered in the 
later analysis due to the weak signal intensities of gene expression. 

Only 25 target genes that were selected in the basic model have transcription fac-
tors. For the refined model, we only consider genes with transcription factors and 
selected 77 target genes using a multi-set cover (α = 25, β = 15). All 25 genes se-
lected in the basic model are also selected in the refined model (Table 1). Since only 
25-30% of genes in the network have known transcription factor, we have less cover-
age (25 times each case) even though more target genes are selected in the refined 
model. Searching literature and manually examining our 25 genes in the common set 
using AceView [42] we found all but 6 genes, ATN1, PIGQ, C20orf108, RNASE2, 
TBL2 and UBN1 to be cancer-related, while one of the remaining four, ATN1, is 
related to brain diseases.  
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Table 1. Target, hub and causal genes found using the basic and refined model. The common 
set contains genes found in both models. As for the color-code of target and hub genes, red 
genes are up-regulated and green genes are down-regulated. Causal genes are marked red if 
they were found in amplified region and green if they were found in deleted genomic regions. 

 

4.2   eQTL Mapping 

Among 50K SNPs, 905 tag loci have been selected with a correlation threshold = 0.9 
in Algorithm 2. We performed linear regression between copy number alterations of 
the tag loci and target genes and chose tag loci with p < 0.01. On average, we found 
104 tag loci per target gene, while transforming growth factor TGFB2 led with 233 
associated loci. 

4.3   Causal Genes  

We applied Algorithm 3 for all pairs of target genes and associated loci. The number 
of genes located in each region varied from 0 to several dozens, and therefore the 
amount of current that flows to genes cannot be compared directly among different 
loci to prioritize the genes. For each locus and a set of genes in the associated region, 
we only consider genes receiving current of at least 70% of the maximum current 
among all genes in the region. We then use a permutation method to obtain empirical 
p-values and select candidate causal genes for each target gene if the empirical, gene 
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specific p ≤ 0.05. On average, each target gene has 56 candidate causal genes, and the 
final causal genes are selected using Algorithm 4.  

For the basic model, we created a weighted multi-set cover instance {B, 25, 20} 
and selected 26 final causal genes. To evaluate the performance of our method, we 
compiled 166 genes related to Glioma (which we call GLIOMA_GENES) using 
AceView1. Three genes (PTEN, EGFR, MTAP) in the final causal genes are also 
included in GLIOMA_GENES (p-value = 0.004). We note that disease associated 
genes in AceView are automatically collected, using a literature-mining algorithm, 
and may not be comprehensive. For example, our causal gene set includes GBAS 
(glioblastoma amplified sequence, a gene that is reported amplified in approximately 
40% of glioblastomas [43]. By manually searching literature, we also found that more 
than half of causal genes in the basic model (14 genes) are associated with cancer. In 
the refined model, 33 final causal genes are selected using the weighted multi-set 
cover instance {B, 25, 30}. Among 17 genes that were not included in the basic 
model, 10 genes were found to be cancer related. In particular, PTK2 (also called 
FAK) is known to be upregulated in anaplastic astrocytoma and glioblastoma and 
may play a role in the promotion of glioblastoma cell proliferation, survival and mi-
gration [44]. The selected genes are listed in the second row of Table 1. Genes are 
marked as red for copy number amplification and green for deletion2.  

Interestingly, among the predicated causal genes are two classical “antagonist” 
genes: PTEN, a tumor suppressor gene and EGFR, a tumor activator. Both genes, 
located at chromosome 10 and 7 respectively, are frequently affected by copy number 
alterations. Indeed, we found that the genomic profiles of some patients only show an 
increase of gene copy number in EGFR while some only have deletions in the PTEN 
region. In turn, some patients show both or even none of these two variations.  How-
ever, there exists a large number of other cancer related genes among the identified 
causal genes that can serve as conduits to the cancer causing perturbations.  

4.4   Dysregulated Pathways 

Maximum current paths have been computed between every pair of target and its 
causal gene as described in Section 2.6. The network combining all those paths in-
cludes 348 (311) nodes and 644 (691) interactions in the basic (refined) model. Sev-
eral important cancer and brain disease related genes appear as intermediate hub 
nodes in the network. The top 20 genes with highest degree (“hub genes”) for each 
model are listed in the bottom row of Table 1. The list includes many cancer related 
genes MYC(78, 53), TP53(16, 57), CDK2(21, 22), E2F1(15, 18), PRKCA (18, 14), 
E2F4(9, 22), GSK3B(18, 12), AR(5, 22), RELA(7, 20), SP1(11, 17), and GRB2(13, 
6) where the numbers inside the parenthesis indicate the degrees of the genes in the 
basic and refined model.  

                                                           
1 174 genes are listed as Glioma associated genes in Aceview. After removing genes with no 

valid expression data or not appearing in our gene network, we obtained 166 genes in 
GLIOMA_GENES. 

2 In case that there are mixed samples with amplification or deletion in the genomic region, we 
performed binomial testing with p-value threshold 0.05. 
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Fig. 3a shows the subnet in the refined model where PTEN, which is a tumor sup-
pressor that has mutations in a large number of cancer types, is considered as a causal 
gene and includes all paths to target genes that are affected by PTEN. Specifically, the 
PTEN network is significantly enriched for genes that are involved in several cancer 
related cellular processes such as cell cycle and ER overload response. In Fig. 3b, we 
show a subnetwork that revolves around CDK4 as a target gene that is connected to 
its causal genes. We find that the network is significantly enriched with genes that are 
involved in cell cycle processes and positive regulation of cell proliferation. Further-
more, an overwhelming majority of networks hubs is known to be associated with 
cancer.  

(a) (b)(a)
    (a)                                                         (b)  

Fig. 3. Subnetworks exemplifying dys-regulated pathways obtained with the refined algorithm. 
The color of each gene shows its expression level: red (up-regulated), green (down-regulated), 
yellow (neutral), and gray (no expression data). Rectangular and octagon nodes are the genes 
identified as target and final causal genes, respectively. Thick edges appear in the maximum 
current paths, and background edges are obtained by computing induced sub-graphs. The dotted 
edges are protein-DNA interactions and green edges represent phosphorylation. In (a), we show 
the sub-graph between PTEN and its affected target genes while in (b) we present the subnet 
between CDK4 and affecting causal genes. 

5   Discussion 

In this work we proposed the first approach for simultaneous identification of causal 
genes of diseases and dys-regulated pathways.  In our approach, we started by identi-
fication of “seed” target genes by a vertex multicover approach. Followed by the 
identification of putative causal genes by a simple eQTL analysis, we refined the 
initial set by modeling and solving a current flow problem.  The latter step addition-
ally uncovered other prominent nodes in the network connecting causal genes to the 
representing target genes.  

As such, pathways uncovered by the current flow algorithm can be considered as 
possible explanations for causes that lead to the phenotype we observed. Even though  
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our integrative approach allows us to uncover interesting regulatory subnetworks, 
many other sources of auxiliary information remain to be integrated. For example, our 
current approach might be extended with regulatory interactions provided by miRNAs 
as well as epigenetic interactions. As for the current status of molecular interactions, 
we acknowledge that the current network of protein interactions, protein-DNA inter-
actions and phosphorylation events is incomplete and noisy. Despite these data spe-
cific problems augmenting eQTL evidence with pathway information resulted in a 
very powerful approach, allowing us to not only uncover potential disease genes, but 
also find intermediate nodes on molecular pathways that mediate information between 
causal genes and disease marker genes.   
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Abstract. Constructing quantitative dynamic models of signaling pathways is an
important task for computational systems biology. Pathway model construction
is often an inherently incremental process, with new pathway players and in-
teractions continuously being discovered and additional experimental data being
generated. Here we focus on the problem of performing model parameter estima-
tion incrementally by integrating new experimental data into an existing model.
A probabilistic graphical model known as the factor graph is used to represent
pathway parameter estimates. By exploiting the network structure of a pathway,
a factor graph compactly encodes many parameter estimates of varying quality
as a probability distribution. When new data arrives, the parameter estimates are
refined efficiently by applying a probabilistic inference algorithm known as be-
lief propagation to the factor graph. A key advantage of our approach is that the
factor graph model contains enough information about the old data, and uses only
new data to refine the parameter estimates without requiring explicit access to the
old data. To test this approach, we applied it to the Akt-MAPK pathways, which
regulate the apoptotic process and are among the most actively studied signaling
pathways. The results show that our new approach can obtain parameter estimates
that fit the data well and refine them incrementally when new data arrives.

1 Introduction

To fully understand complex biological pathways, we must uncover not only the con-
stituent elements—genes, proteins, and other molecular species—and their interactions,
but also the dynamics, i.e., the evolution of these interactions over time. One important
goal of computational systems biology is to build quantitative models of pathway dy-
namics [1,2]. These models should not only capture our understanding of the underlying
mechanisms, but also predict behaviors yet to be observed experimentally. A key chal-
lenge is to address the inherently incremental nature of the model construction process,
as new pathway players and interactions are discovered and additional experimental
data are generated. In this work, we address the problem of incrementally constructing
pathway models as new data becomes available.

A signaling pathway is a network of biochemical reactions. To build a model, we
need both the network structure and the parameters. Structure modeling captures the
interdependencies among the molecular species, based on the reactions producing and
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consuming them. Parameter modeling determines the kinetic rate constants, initial con-
ditions, etc. that govern the biochemical reactions. Here, we focus on parameter mod-
eling, also called parameter estimation.

Parameter estimation for large signaling pathways is a well-known difficult problem,
due to the need to search a high-dimensional parameter space and the lack of accurate
data. Conventional parameter estimation algorithms fit an estimate of the parameters
with all available experimental data and produce a single best estimate of the parameters
(see [3] for a survey). When new data arrives, the entire procedure must be repeated
afresh, in order to fit both the new and the old data well. This simplistic approach of
recomputing the parameter estimate is undesirable. It does not take advantage of the
earlier estimates. Furthermore, it may be not even be feasible, if the old data is not
easily accessible. Often, many parts of the current model are obtained from external
sources. For these “imported” parts, we have the estimated parameter values, but are
unlikely to have access to the data used to produce these estimates. Hence we need a
modeling approach that encodes the information from the old data compactly in the
model itself and furthermore can integrate new data into an existing model to refine it.

We propose to use a probabilistic graphical model known as the factor graph [4] to
represent pathway parameter estimates. We view a factor graph as a representation of a
probability function p(k1,k2, . . . ) over the parameters k1,k2, . . . . A particular estimate of
parameter values has high probability if it fits well with experimental data according to
a suitable error measure. A factor graph represents many parameter estimates of varying
quality, encoded as a probability function, rather than a single best estimate based on
the existing data. A large pathway model typically involves many parameters. As a
result, p(k1,k2, . . . ) is a high-dimensional function, which is expensive to compute and
store. A key advantage of the factor graph model is that it exploits the network structure
of a pathway to factor p(k1,k2, . . . ) as a product of lower-dimensional functions. This
drastically reduces the complexity of representing p(k1,k2, . . . ) and allows parameter
estimates to be refined efficiently.

To incorporate new data, we add new nodes to a factor graph and apply a proba-
bilistic inference technique known as belief propagation (see [5] for a survey) to refine
the parameter estimates represented by p(k1,k2, . . . ). Belief propagation reconciles the
local constraints encoded in the new and the old factor graph nodes and ensures that
they are globally consistent.

To test our approach, we applied it to the Akt-MAPK pathways. The kinase Akt plays
an important role in regulating cellular functions, including, in particular, apoptosis, and
has been identified as a major factor in several types of cancer. We created multiple data
sets through simulation and introduced them one at a time into the factor graph model.
The results show that our approach can obtain estimates that fit the data well and refine
them incrementally when new data becomes available.

2 Background

2.1 Modeling Pathway Dynamics

The dynamics of a signaling pathway is often modeled as a system of nonlinear ordinary
differential equations (ODEs):
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(a)
x1 +x2

k1�
k2

x3
(b) f1 : ẋ1 = k2x3−k1x1x2

f2 : ẋ2 = k2x3−k1x1x2
f3 : ẋ3 = k1x1x2−k2x3

(c)

Fig. 1. (a) A reaction, in which two substrates x1 and x2 bind reversibly to form a complex x3.
The speed of the forward and backward reactions depends on the kinetic rate constants k1 and k2,
respectively. (b) The corresponding system of ODEs. (c) The HFPN model. The places are drawn
as circles, and the transitions, as rectangles.

ẋ1(t) = f1(x1(t),x2(t), . . . ;k1,k2, . . . )
ẋ2(t) = f2(x1(t),x2(t), . . . ;k1,k2, . . . )

...

, (1)

where xi(t) denotes the concentration level of molecular species i at time t and ẋi(t)
denotes the corresponding rate of change. Each function fi, usually nonlinear, encodes
the kinetics of the reactions that produce or consume xi. The reactions are typically
modeled with the mass action law or Michaelis-Menten kinetics [6], and we assume
that the functions f1, f2, . . . are given. The kinetic rate constants k1,k2, . . . are parameter
that govern the speed of reactions. See Fig. 1 for an example.

Using the vector notation, we can rewrite (1) more concisely as ẋ(t) = f(x(t);k),
where x(t) = (x1(t),x2(t), . . .), ẋ(t) = (ẋ1(t), ẋ2(t), . . .), and k = (k1,k2, . . .). Finally,
we also need to specify the initial concentration levels x(0) = x0.

The system of ODEs in (1) can be represented as a hybrid functional Petri net
(HFPN) [7], which makes pathway structure explicit. A HFPN is a directed bipartite
graph consisting of two types of nodes: places and transitions. In our case, places rep-
resent molecular species, and transitions represent reactions. The places and transitions
are connected by arcs to indicate the flow of reactants and products. For an enzyme-
catalyzed reaction, a read arc, shown pictorially as a dashed arc, connects an enzyme
place to a catalyzed transition. It indicates that the enzyme influences, but is not con-
sumed by the reaction. See [7] for more details on the HFPN model.

2.2 Parameter Modeling

An important step in building a pathway model is to determine the pathway parame-
ters, which include kinetic rate constants and initial concentration levels of molecular
species. Here we mainly deal with unknown kinetic rate constants, but the basic idea
applies to unknown initial concentration levels as well.

Experimental determination of parameter values in vitro may not be possible or pro-
hibitively expensive. A more practical approach is to estimate the parameter values
based on experimental data. Suppose that we are given a set D of experimental data
{x̃i j}, where x̃i j is the experimentally measured concentration level of molecular species
i at time Tj. The goal is to determine the values of the unknown parameters k so that the
resulting pathway dynamics, i.e., the evolution of molecular concentration levels over
time, fits experimental data well. Mathematically, our goal consists of minimizing an
objective function measuring the error in fit to data:
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J(k|D) = ∑
i∈M

∑
j

(xi(Tj;k)− x̃i j)2, (2)

where M denotes the set of experimentally measured molecular species, and xi(t;k), i =
1,2, . . . are the solution to the system of ODEs in (1) with parameters k. Typically
we obtain xi(t;k), i = 1,2, . . . by simulating (1), using a numerical method. We can
generalize J(k|D) by multiplying each term in (2) by a weight wi j to favor the fit to data
for some species at certain time over others. In the following, however, we use (2) to
simplify the presentation. For multiple data sets D1,D2, . . . ,Dn, we simply sum up the
error due to each data set and denote the total error by J(k|D1,D2, . . . ,Dn).

Standard estimation algorithms traverse the space of all parameter values and search
for an optimal set of values with the best fit with D. A major challenge is that the size
of the parameter space grows exponentially with the number of unknown parameters.
Many different search strategies have been proposed to overcome this challenge, includ-
ing local strategies (such as gradient descent) and global strategies (such as simulated
annealing and evolutionary algorithms). See [3] for a survey, as well as [8,9]. However,
almost all current algorithms aim to find a single best parameter estimate based on the
data available. This is inadequate for incremental pathway modeling: the single estimate
cannot be easily improved when new data arrives. We propose instead to use a factor
graph to represent a probability distribution that encodes multiple parameter estimates.
Using this representation, we can refine the estimates systematically by adjusting their
probabilities when new data becomes available.

Yoshida et al. adopts a similar probabilistic, data-driven view of parameter estima-
tion [8], but their method assumes that all the data is available and is not geared towards
incremental modeling. Factor graphs have been used to model biological systems [10],
but the main goal there is to study the functional correlations among the molecular
species in the pathway rather than the dynamics. An early use of belief propagation in
computational biology is to predict protein secondary structure assignment [11].

3 Incremental Pathway Parameter Modeling

3.1 Overview

Often, experimental data are obtained in an incremental fashion. As a new data set Dn

arrives at some time Tn with T1 < T2 < T3 < · · · , we want to incorporate Dn and compute
a new estimate of the parameters k. A simplistic approach would be to use all the data
available up to time Tn,

⋃n
i=1 Dn, and recompute the estimate of k from scratch. The

error in fit to data is then given by J(k|D1,D2, . . . ,Dn). This approach, however, may
be infeasible, because experimental data are generated by different research groups at
different times. While the estimated parameter values may be published and accessible,
the data used to produce these estimates is usually not. Recomputing the parameter
estimate is also inefficient, as it does not take advantage of earlier estimates.

We would like to compute an estimate of k at time Tn using only Dn and the estimates
obtained from the earlier data

⋃n−1
i=1 Di. To do so, we encode a set of estimates of k as a

probability function

p(k|D) = (1/λ )exp(−J(k|D)), (3)
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Fig. 2. (a) The HFPN model of an enzyme-mediated reversible reaction. (b) A factor graph Sn

is constructed for each data set Dn. (c) The factor graphs are merged by fusing their common
variable nodes representing unknown parameters.

where D is a given data set, λ is a normalizing constant ensuring that
∫

p(k|D)dk = 1,
and J(k|D) measures the error in fit to data, as defined in (2). The probability function
p(k|D) encodes a set of parameter estimates, with large p(k|D) value indicating small
error in fit to the data set D. In other words, we view p(k|D) as a probabilistic weight on
k, expressing preferences over k values due to the constraints from the data set D. Now
suppose that p(k|D1,D2, . . . ,Dn−1) represents the parameter estimates at time Tn−1.
When a new data set Dn arrives at Tn, we use Dn to update the probabilistic weights on
the estimates encoded by p(k;D1,D2, . . . ,Dn−1) and obtain a new probability function
p(k;D1,D2, . . . ,Dn−1,Dn). This is similar to Bayesian update, except that p(k|D) is
basically a weight on k that depends on the error in fit to data J(k|D) and does not in
itself have any real statistical meanings.

This incremental approach would be beneficial only if we can store and update
p(k|D) efficiently. For a large pathway model with many unknown parameters, p(k|D)
is a high-dimensional global function over the entire parameter space. However, each
species in a typical signaling pathway interacts with only a small number of other
species (see Fig. 5 for an example). We can exploit this insight on the network struc-
ture of a pathway to approximately factor the high-dimensional function p(k|D) into
a product of lower-dimensional functions, and represent this factored probability func-
tion as a factor graph [4]. When combined with belief propagation (see Section 4), this
representation helps us to find the best parameter estimates efficiently. Furthermore, it
enables us to store and update p(k|D) efficiently in an incremental fashion.

Let Sn be a factor graph representing p(k|Dn), which, as mentioned earlier, rep-
resents preferences over k values due to the constraints from the data set Dn. In our
incremental approach to parameter modeling, we compute a sequence of factor graphs
Kn,n = 1,2, . . ., where K1 = S1 and Kn for n ≥ 2 is obtained by merging Sn into Kn−1

See Fig. 2 for an illustration. The merging process uses belief propagation to combine
the preferences on k values represented by Kn−1 with those represented by Sn. This
results in new preferences represented by Kn.

We are ready to present the factor graph model for p(k|D). We begin with a brief
introduction to factor graphs. We then describe how to construct a factor graph Sn,
given a data set Dn and how to merge S1,S2, . . . ,Sn incrementally to build Kn.

3.2 Factor Graphs

Suppose that a high dimensional function g(z) can be factored as a product of lower
dimensional functions: g(z) = ∏i gi(zi), where z = (z1,z2, . . .) is a set of variables
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Fig. 3. The factor model for the function
g(x1,x2,x3,x4) = g1(x1,x2) · g2(x1,x4) ·
g3(x2,x3,x4).

and each zi is a (small) subset of variables in
z. A factor graph for g(z) is an undirected bi-
partite graph consisting of two types of nodes:
factor nodes and variable nodes. Each factor
gi(zi) has a corresponding factor node in G, and
each variable z j has a corresponding variable
node in G. There is an undirected edge between
the factor node for gi(zi) and the variable node
for z j if z j ∈ zi, i.e., z j is a variable of the func-
tion gi(zi). An example is shown in Fig. 3.

A variable node for z j contains a probability distribution over the values of z j. A
factor node for gi(zi) specifies the dependencies among the variables in zi and expresses
preferences over their values due to some constraints. In pathway parameter modeling,
the main variables are the parameters, and the constraints arise from the ODEs in which
a parameter appears. For example, consider the reaction shown in Fig. 1. Suppose that
data are available for x1(t),x2(t),x3(t) at all times t, but the rate constants k1 and k2 are
unknown. Then, each of the three equations in the system of ODEs for the reactions
imposes a constraint on the unknowns k1 and k2 at all times t. Those combinations of
k1 and k2 values that satisfy the constraints are favored. In general, each equation in an
ODE model represents a local constraint on the parameters involved in the equation,
and each such constraint results in a factor node. The resulting factor graph represents
the probability function p(k|D) as a product of factors, each involving only a small
number of unknown parameters.

3.3 The Factor Graph Structure

Given a data set D, we now construct the factor graph S for the parameters of a system of
ODEs modeling a biological pathway. For each equation ẋi = fi(x;k) in (1), we create
a factor node ν( fi) in S. We also create a variable node ν(k j) for each parameter k j and
a variable node ν(x j) for each molecular concentration level x j. We insert an edge that
connects a factor node for fi and a variable node for k j (or x j), if k j (or x j) is involved
in fi. An example is shown in Fig. 4.

Our main goal is to capture the dependencies among the parameters. We can elim-
inate many of the variable nodes representing molecular concentration levels and thus
simplify S. However, we can eliminate a variable node only if it does not represent
the concentration level of an enzyme. The reason is that although enzymes are not
consumed in catalytic reactions, their concentration levels influence the reactions. In

Fig. 4. (a) A simple signaling cascade and its ODEs. (b) The factor graph representation. The
variable nodes in gray—x1, x3, and x4—can be eliminated.
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general, eliminating a variable node corresponding to an enzyme results in the loss of
dependency between the reaction producing the enzyme and the reaction catalyzed by
the enzyme. To see this, consider again the example in Fig. 4. If we eliminate the vari-
able nodes for x1, x3 and x4, which are not enzymes, the dependencies among k1,k2,k3,
and k4 remain intact. However, if we eliminate the variable node x2, an enzyme, the
factor graph breaks into two disconnected components. There is no constraint that con-
nects k1 and k2 with k3 and k4, implying that k1 and k2 are independent of k3 and k4.
This is clearly not the case.

To summarize, the structure of a factor graph—the variable nodes, the factor nodes,
and the edges—is constructed from the ODEs that model a signaling pathway. Each fac-
tor captures the dependencies among the parameters involved in a particular equation.

3.4 The Compatibility Functions

To complete the construction of the factor graph S, we need to associate a factor, also
called a compatibility function, with each factor node ν( fi) and decomposes p(k|D) as
a product of these compatibility functions. Although all compatibility functions depend
on D, we drop the explicit mention of D in this section to simplify the notation. It is
understood that compatibility functions are defined with respect to a given data set D.
The compatibility function for ν( fi) is given by

gi(ki,xi(t)) = exp(−Ei(ki,xi(t))), (4)

where ki and xi(t) are respectively the set of parameters and the set of molecular con-
centration levels corresponding to the variables nodes connected to ν( fi). Note the dis-
tinction between xi, which denotes the concentration level of species i, and xi. The
function Ei(ki,xi(t)) consists of two terms:

Ei(ki,xi(t)) = Ei,1(ki)+ Ei,2(ki,xi(t)). (5)

The first term Ei,1(ki) measures the fit to data for a particular choice of values for the
parameters in ki. The second term Ei,2(ki,xi(t)) measures whether the values for ki are
consistent with those for xi(t).

We calculate Ei,1(ki) based on the global effect of ki on the fit to data for the molec-
ular species that are experimentally measured:

Ei,1(ki) = min
k\ki

∑
m∈M

∑
j
(xm(Tj;k)− x̃m j)2, (6)

where k\ki denotes the set of parameters in k, but not in ki, M denotes the set of all
species that are measured experimentally, xm(t;k) is the concentration level of species
m at time t, obtained by simulating the system of ODEs in (1) with parameters k, and
finally x̃m j is the experimental concentration level of species m at time Tj.

The second term Ei,2(ki,xi(t)) measures the consistency between the parameter val-
ues ki and concentration levels xi(t): ki and xi(t) are consistent if xi(t) can be obtained
by simulating the system of ODEs in (1) with parameter values ki and some suitable
choice of values for parameters in k\ki. The function Ei,2(ki,xi(t)) takes binary values.
If ki and xi(t) are consistent, Ei,2(ki,xi(t)) = 0; otherwise, Ei,2(ki,xi(t)) = +∞. This
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way, ki values that are inconsistent with the dynamics defined by the ODEs are filtered
out, regardless of their agreement with experimental data according to Ei,1(ki).

With our definition of compatibility functions, the factor graph S encodes exactly the
function

g(k,x(t)) =
1
λ ∏

i
gi(ki,xi(t)) =

1
λ

exp
(
−∑

i
Ei(ki,xi(t))

)
, (7)

where k =
⋃

i ki, x =
⋃

i xi, and λ is a normalizing constant ensuring that g(k,x(t))
represents a well-defined probability function. The function g(k,x(t)) has the same
extremal values as J(k) and p(k):

Theorem 1. The following statements are equivalent:

1. The parameter values k∗ minimize J(k).
2. The parameter values k∗ maximize p(k).
3. The parameter values k∗ and concentration levels x(t;k∗) maximize g(k,x(t)),

where x(t;k∗) is the molecular concentration levels obtained by simulating the
ODE model in (1) with parameter values k∗.

The proof is given in Appendix A. This result implies that that to minimize J(k) or
maximize p(k), we may equivalently maximize g(k,x(t)). Why do we want to do so?
The reason is that although g(k,x(t)) is also a high-dimensional function, it is factored
as a product of lower-dimensional functions represented by the factor graph S. We can
maximize it effectively using belief propagation (Section 4), when searching for a pa-
rameter estimate with the best fit to data.

The compatibility functions defined above measure the fit to data globally over all
experimentally measured molecular species. As a heuristic for improving efficiency,
we introduce a variant which measures the fit to data locally as well. The definition of
Ei,1(ki) then depends on whether the concentration level xi of molecular species i is
measured experimentally. If it is, we calculate Ei,1(ki) locally using only the data for
xi:

Ei,1(ki) = min
k\ki

∑
j

(xi(Tj;k)− x̃i j)2. (8)

If xi is not measured experimentally, we calculate Ei,1(ki) globally using (6). Intuitively,
calculating the fit to data locally strengthens the local constraints and makes belief
propagation (Section 4) more greedy. This turns out to be helpful in our experiments
(Section 4). However, it does not have the theoretical guarantee stated in Theorem 1.

We now discuss how to represent and compute the compatibility functions gi(ki,
xi(t)). First, the parameter values and the concentration levels are discretized into a
finite of set of intervals. Both the probability distributions for variable nodes and the
compatibility functions for factor nodes are represented using this discretization. This
is common practice for factor graphs used in conjunction with belief propagation [5]. It
is not a severe limitation here, as the experimentally measured concentration levels for
proteins in a signaling pathway often have very limited accuracy. Furthermore, once be-
lief propagation gives the best parameter estimate up to the resolution of the discretiza-
tion, we can further refine the estimate by performing a local search, thus mitigating
the effect of discretization. More details regarding this can be found in Section 5. One
advantage of the discrete representation is that the resulting factor graph can represent
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arbitrary probability distributions, up to the resolution of the discretization. There is no
need to assume a particular parametric form of the distribution.

Next, to compute gi(ki,xi(t)), we need to perform the minimization required in (6)
or (8). For this, we sample a representative set of parameter values and perform the
minimization over the set of sampled values. This would be expensive computationally
if performed on the space of all parameters. We need sophisticated sampling methods
such as Latin square sampling [12] to reduce the computational cost. Whenever possi-
ble, we also decompose a pathway model into components (Section 3.5). Sampling is
performed only within a pathway component, which usually contains a small subset of
parameters. This keeps the computational cost low.

3.5 Pathway Decomposition

For computational efficiency, we decompose a pathway into components. Each com-
ponent usually contains only a small subset of unknown parameters. We build a factor
graph S′ for each component independently, assuming that the component is unaffected
by the other components. Each component factor graph S′ encodes a probability func-
tion expressing preferences over the values of the parameters contained in S′. To account
for the dependency among the parameters from different components, we merge the
component factor graphs and apply belief propagation (Section 4) to reconcile the dif-
ferent preferences over parameter values from each component. We do not have space
here to describe this somewhat elaborate procedure. The details can be found in [13].
See Fig. 5 for an example of a decomposed pathway model.

3.6 Data Integration

Suppose that a sequence of data sets D1,D2, . . . arriving at time T1,T2, . . .. Let Kn de-
note the factor graph for p(k|D1,D2, . . . ,Dn). We want to build Kn incrementally by
integrating the data sets one at a time. At the nth stage, we first apply the procedure de-
scribed above to construct a factor graph Sn for Dn. To construct Kn, we merge Sn with
Kn−1 by fusing their common variable nodes. Specifically, if a node of Sn represents
the same unknown parameter as a node of Kn−1, they are merged as a single node in
Kn. The edges are rearranged accordingly. Other nodes of Sn and Kn−1 remain the same
in Kn. See Fig. 2 for an illustration. It is important to note that although Kn takes into
account all the data

⋃n
i=1 Di, the construction of Kn requires only Dn. Information from

the earlier data sets
⋃n−1

i=1 Di is encoded in Kn−1. Intuitively each new data set Dn adds
a “slice” to our final factor graph Kn. So the size of Kn grows linearly with n.

We now turn to the important step of belief propagation, which reconciles the local
constraints encoded by Kn−1 and Sn.

4 Finding the Best Parameter Estimate

Theorem 1 shows that to find the minimum k∗ of J(k|D1,D2, . . . ,Dn), we can equiva-
lently maximize g(k,x(t)) represented by the factor graph Kn. We compute the maxi-
mum by applying a standard belief propagation (BP) algorithm called the max-product
algorithm to Kn.
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We give only a quick overview of BP here. See [4,5] for comprehensive tutorials. Let
G be a factor graph representing a factored non-negative function g(z) = g(z1,z2, . . .) =
∏i gi(zi), where zi is the subset of variables involved in the factor gi(zi). After normal-
ization, g(z) can be considered a probability function. Each variable node ν(z j) of G is
initialized with a probability distribution π0(z j)—commonly called a belief —over the
values of z j. A preferred z j value has higher probability. The initial distribution π0(z j)
represents our prior knowledge on the value of z j. If there is no prior information on z j,
we set its initial distribution to be uniform. After initialization, a variable node ν(z j)
sends its belief π(z j) as a message to each adjacent factor node ν(gi). Upon receiv-
ing the messages from the adjacent variable nodes, a factor node ν(gi) combines them
with its own compatibility function gi(zi) and creates a new message, which is sent to
each variable node ν(z j) adjacent to ν(gi). The belief at ν(z j) is then updated so that
z j values satisfying the compatibility function gi(zi) well have their probabilities in-
creased. The order in which to send the messages must follow a suitable protocol, and
the messages stop when a termination condition is met.

When BP terminates, the variable nodes take on beliefs favoring values that satisfy
well the local constraints represented by the compatibility functions in the factor nodes.
If a factor graph G contains no cycles, BP converges to the global maximum of the
function that G represents [14]. In practice, a factor graph modeling a complex system
often contains cycles. So convergence is not guaranteed, and one needs to terminate the
algorithm using heuristic criteria. Nevertheless, BP on general factor graphs has gener-
ated good results in diverse applications [15,16]. One reason is that BP is in essence a
dynamic programming algorithm, which performs a more global search than strategies
such as gradient descent, and is less likely to get stuck in local maxima.

We apply BP to a factor graph representing the function g(k,x(t)) in (7). Each com-
patibility function gi(ki,xi(t)) in the factor graph encodes two types of constraints:
Ei,1(ki) measures the fit to data, and Ei,2(ki,xi(t)) measures the consistency between
ki and xi(t) with respect to the dynamics defined by the ODEs in (1). BP favors k and
x values that satisfy these constraints well. It is also important to remember that when
BP terminates, the variable nodes of the factor graph contain not only the parameter
values with the best fit to existing data, but also alternative parameter values of varying
quality weighted by the probabilities. These alternatives will become useful when new
data arrives.

We run BP on each incrementally constructed factor graph Kn. For n = 1, the variable
nodes of K1 are initialized with the uniform probability distribution. For n ≥ 2, the
variable nodes of Kn are initialized with beliefs resulting from BP at the previous stage.
Recall that Kn is obtained by merging Kn−1 with a factor graph slice Sn representing the
new data set Dn (Section 3.6). So BP has the effect of reconciling the constraints due to
the new data (encoded in Sn) with those due to the earlier data (encoded in Kn−1) and
favoring those parameter values with good fit to both the new and the old data.

5 Results

We tested our approach on the Akt-MAPK signaling pathways. The kinase Akt is a
major factor in many types of cancer. The Akt pathway is one of the most actively
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Fig. 5. The HFPN model of the Akt-MAPK pathways. A place node in the model is shaded in
gray if data is available for the corresponding molecular species. The light gray boxes indicate
the components obtained through pathway decomposition.

studied kinase pathways, as it plays a key role in essential cellular functions, including
cell survival, differentiation, etc. [17]. The Akt pathway interacts with several other
pathways while performing its functions, in particular, the MAPK pathway.

In our earlier work [18], we performed parameter estimation on a combined model
of the Akt-MAPK pathways using experimental data and studied the crosstalk between
them. In the present setting, due to the lack of sufficient number of experimental data
sets, we used synthetic data. The Akt-MAPK model used in our case study contains
36 molecular species and 42 unknown parameters. See Fig. 5. A larger figure along
with model parameter values is available at http://www.comp.nus.edu.sg/

˜rpsysbio/recomb2010. We generated six data sets by simulating the model un-
der different knockdown conditions, in which the initial concentration level of each of
six molecular species—Akt, PDK1, PP2A, PTEN, and the cell receptor—is reduced.
Each data set contains concentration levels of 13 molecular species at 50 time points.

We normalized the value of each parameter to a range between 0 and 1 and divided
the range into 10 equally-sized intervals. Due to the discretization, belief propagation
produces the best parameter intervals rather than exact values. As a post-processing

http://www.comp.nus.edu.sg/~rpsysbio/recomb2010
http://www.comp.nus.edu.sg/~rpsysbio/recomb2010
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step, we apply the Levenberg-Marquardt algorithm [19], starting from the mid-points
of the best parameter intervals obtained from belief propagation. This gives us the final
parameter estimate that minimizes the error in fit to data.

As mentioned in Section 1, a key goal of our work is to address the issue of not
having access to all the data at the same time. In our test, we introduced the six data
sets one at a time, in an arbitrary, but fixed order. At each stage, to perform parameter
estimation, we used only one data set along the factor graph model from the earlier
estimation; all other data sets were kept away. Since sampling is used during the factor
graph modeling (Section 3.4), we repeated each test 10 times.

Fig. 6. The error in fit to data, as six
data sets were introduced one at a
time. The darker bar indicates the
error of the parameter estimate ob-
tained by SRES, using all six data
sets.

Fig. 6 shows the mean error in fit to data over the
10 runs in each stage. To examine the benefits of
using multiple data sets for parameter estimation,
the error is measured according to (2) using all six
data sets. The plot shows that as more data are
used, the error generally decreases, as expected.
Fig. 7 shows the concentration level of Bad (Bcl2
antagonist of cell death), an important downstream
protein in the pathway. Each plot shows how the
concentration level changes over time under one of
the six knockdown conditions. Figs. 6 and 7 indi-
cate that the fit to data improves, as more data sets
are introduced to refine the parameter estimate. For
example, parameter estimate 1 causes substantial

error in fit to data set 2, 3, and 5, while parameter estimate 6, after integrating all data,
fits well with all data sets. The results confirm that our approach can integrate new data
and improve the parameter estimates effectively.

Next, we compared our results with that from COPASI [20], a well-established path-
way simulator with parameter estimation functions. COPASI contains several methods
for parameter estimation. We used SRES, which is the best based our experiences. We
ran SRES for an extended duration (10 hours), using all six data sets. After integrating
enough data sets, our approach of incremental parameter modeling obtained compa-
rable and better estimates (Fig. 6). The results suggest that our incremental approach
through data integration does not sacrifice parameter estimation accuracy, compared
with global estimation methods that require access to all the data sets at once.

To test the robustness of our approach, we considered four additional knockdown
conditions by combining the knockdown conditions specified earlier. We generated four
new data sets under these additional conditions and computed the error in fit to data for
the six parameter estimates obtained earlier (Fig. 8). We did not recompute the parame-
ter estimates using the additional data, as the purpose here is to check the robustness of
the estimates obtained earlier under new conditions. The results indicate a trend similar
to that shown in Fig. 6.

As more data sets are integrated, we expect that the uncertainty of parameter esti-
mates decreases. Fig. 9 shows the change in the standard deviations of some estimated
parameters as the number of data sets increases. There is a general decrease in the stan-
dard deviations for all estimated parameters, indicating that data integration is effective
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Fig. 7. The change in concentration level over time for Badp136 under six knockdown conditions.
The six curves in each plot correspond to the six different parameter estimates as more data sets
are integrated. Data points are shown every 5 time steps to avoid cluttering the plots.

Fig. 8. The error in fit to data under combination of knockdown conditions

Fig. 9. The mean values and the standard deviations of the estimated parameters over 10 runs.
The bars indicate the mean values of estimated parameters. The error bars indicate the standard
deviations. The dashed lines indicate the nominal parameter values.

for reducing the uncertainty of estimated parameters. For some parameters, such as the
ones shown in Fig. 9, the uncertainty is very low, after six data sets were integrated.
However, for some other parameters, including k7,k9,k10,k11,k12,k13,k21,k22,k32,k37,
k40,k41,k42, the uncertainty remains large. The graphical model of the pathway (Fig. 5)
reveals that such parameters are mostly associated with molecular species that are either
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(i) involved in several reactions, e.g., Aktm, Raf, Bad, or (ii) have insufficient data to
constrain their values, e.g., PIP3, Aktm. This observation suggests that biological path-
ways are less sensitive to parameter variations around molecular species involved in
more than one set of production-consumption reactions. The uncertainty level in pa-
rameter estimates can also provide guidance to biologists in the subsequent design of
their experiments to further constrain important pathway parameters.

6 Conclusion

Pathway model construction is often an incremental process, as new experiments lead
to discoveries of additional players and interactions in a pathway. This paper presents
a data integration approach to incremental pathway parameter modeling. We use the
factor graph as a probabilistic model of pathway parameter estimates. It enables us
to refine the parameter estimates in a principled and efficient manner, when new data
becomes available. A main benefit of our approach is that the factor graph model com-
pactly encodes the information from old data in itself and uses only new data to refine
the parameter estimates. It eliminates the unrealistic requirement of having access to all
data, both old and new, in order to improve the parameter estimates.

Several aspects of our approach require further investigation. So far, we have only
tested it with unknown kinetic rate constants as parameters. Our approach can also deal
with unknown initial molecular concentration levels by treating them as parameters, but
we are yet to implement and test our approach to handle this variant. We also need to
test this method on multiple signaling pathway models using real experimental data.

An important underlying idea of our approach is to compose factor graph models.
The current work exploits temporal composition by merging successive slices of factor
graphs representing new data sets. This allows us to integrate new data and refine model
parameters. We can go one and exploit spatial composition. When new experiments
suggest additional components of a pathway or interacting pathways, we may compose
the models for these components and pathways to form a single model. Spatial com-
position allows us to expand a model and incorporate missing players and interactions.
The pathway decomposition technique described briefly in Section 3.5 in fact consti-
tutes a special case of spatial composition, but more work is needed to explore spatial
composition methods. Together temporal and spatial compositions create a modeling
framework that supports model refinement and expansion systematically.
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ucation, Singapore.
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A Proof of Theorem 1

Proof. Since p(k) = (1/λ )exp(−J(k)) and the exponential function is monotonic, the
equivalence between statements 1 and 2 clearly holds.

We now prove the equivalence between statements 1 and 3. Define E(k,x(t)) =
∑i Ei(ki,xi(t)). Since we want to minimize E(k,x(t)), we are only interested in the
case when E(k,x(t)) is finite. The function E(k,x(t)) is finite if and only if ki and xi

are consistent for all i. Let x(t;k) denote the concentration levels consistent with the
parameters k. In this case, Ei,2(ki,xi(t)) = 0 for all i. Using this and (6), we then get

min
k

E(k,x(t;k)) = min
k

(
∑

i
Ei,1(ki,xi(t))

)
= min

k

(
∑

i
min
k\ki

∑
m∈M

∑
j
(xm(t j;k)− x̃m j)2

)
= min

k

(
∑

i
min
k\ki

J(k)
)

(9)

Note that mink\ki
J(k) is a function of ki. If k∗ minimizes J(k), then k∗i minimizes

mink\ki
J(k) for all i. It then follows from (9) that

min
k

E(k,x(t;k)) = ∑
i

min
k

J(k).

Since g(k,x(t)) = (1/λ )exp(−E(k,x(t))), the conclusion follows. ��
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Abstract. Motivation: The current methods for the determination of
the statistical significance of peaks and regions in NGS data require an
explicit normalisation step to compensate for (global or local) imbalances
in the sizes of sequenced and mapped libraries. There are no canonical
methods for performing such compensations, hence a number of different
procedures serving this goal in different ways can be found in the liter-
ature. Unfortunately, the normalisation has a significant impact on the
final results. Different methods yield very different numbers of detected
“significant peaks” even in the simplest scenario of ChIP-Seq experi-
ments which compare the enrichment in a single sample relative to a
matching control. This becomes an even more acute issue in the more
general case of the comparison of multiple samples, where a number of
arbitrary design choices will be required in the data analysis stage, each
option resulting in possibly (significantly) different outcomes.

Results: In this paper we investigate a principled statistical procedure
which eliminates the need for a normalisation step. We outline its basic
properties, in particular the scaling upon depth of sequencing. For the
sake of illustration and comparison we report the results of re-analysing
a ChIP-Seq experiment for transcription factor binding site detection.
In order to quantify the differences between outcomes we use a novel
method based on the accuracy of in silico prediction by SVM-models
trained on part of the genome and tested on the remainder.

Availability: The supplementary material is available at [1].

1 Introduction

Current short read sequencing technology (routinely referred to as Next Gener-
ation Sequencing or NGS) allows for genome wide scans for various phenomena
of interest, such as methylation, transcription factor binding sites, etc. In order
to derive meaningful results from the mapping of short reads (or tags) to the
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reference genome, a number of statistical filters based on the binomial distribu-
tion, Poisson distribution and their variants have been proposed in the literature
[2,3,4,5]. These methods are also very similar to SAGE data analysis [6,7], which
also deals with short sequence data.

In order to discern a meaningful signal from tags mapped to a reference
genome, a number of biases have to be dealt with and corrected for, as the
signal “is actually the convolution of a number of effects: the density of map-
pable bases in a region, the underlying chromatin structure and the actual signal
from transcription factor binding” [2]. The natural way to mitigate these issues
is to introduce control samples, so that the detected signal is in the form of local
enrichment of tag counts with respect to the control. The closer the prepara-
tion and processing of the control to the target sample, the more reliable the
mitigation of biases.

However, experimenters cannot ensure that the target and control samples
are prepared and processed in a completely equivalent manner and in practice
the number of tags derived from two separate sequencing reaction can differ by
a significant factor. This situation becomes endemic if one attempts to develop
local models [2] compensating for local biases along the reference DNA. In the
simplest situation such as ChIP-Seq experimental detection of binding sites for a
transcription factor [2], where one attempts to detect enrichments in the target
sample with respect to a carefully prepared control, there is a plausible argument
for scaling the control sample counts to the level of the target, especially when
considering pre-filtered narrow regions of significant enrichment.

In practice, there are other scenarios where such scaling is less applicable.
An example is where one looks for the differential peaks between two different
tissue samples, e.g. differences in methylation between two cell lineages [8,5].
Here, even the direction of scaling (local or global) is not obvious. Moreover, as
argued in [5], the common level to which the sample counts are adjusted has a
profound impact on the statistical significance of peaks when either Poisson or
binomial models are used (see Section 3.3), thus the number of detected peaks
depends significantly on the choices of scaling strategies.

The situation becomes even more cumbersome for experiments that involve
multiple samples, for example when quantifying the difference between two cell
lineages using pairs of samples collected from multiple subjects in order to account
for patient specific heterogeneity. One possibility is to adjust all counts to a com-
mon size across the whole collection. As we have noted, this common size impacts
on the number of “significant peaks” as in practice scaling could be by a factor of
2 or more with the resulting variation in p-values being by a factor of 4 or more.
Moreover, the addition of new samples to the analysis could lead logically to read-
justment of the updated “common size” distorting the previous results. The ad hoc
nature of some of these adjustments undermines the principled statistical analysis,
introducing arbitrary design choices and obscure data driven adjustments.

In this paper we propose a different statistical technique that does not require
an explicit sample size adjustment and thus functions directly on the original
counts. Any adjustments can be used as an additional means for accounting
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for other biases in the data. An example of this is the known variations in the
density of mappable tags (i.e., the effective depth of sequencing) [2] along the
DNA sequence.

2 Background

We now outline a conceptual model which can be used while reading this paper.
Using a specific protocol (sonication, enzymatic reactions cutting the DNA at
specific locations, protein immunoprecipitation selecting specific fragments of
protein bound to them, etc.) a library L of DNA fragments is prepared. From this
library a subset R is randomly sampled and for each of the sampled fragments
a part of it, a short read, is sequenced providing a tag, which is a k-mer of DNA
bases. The tag is then mapped to one or many matching locations in an a priori
known reference DNA sequence, the human genome in our case, using a specific
protocol, e.g. only exact matching, or only exact and unique, or only unique
with up to one error, etc. We are interested in the reference genome locations
where significant over/under-representation of the mapped tags occur, so called
peaks or peak ranges, as these can be interpreted as evidence for some specific
property of DNA or its epigenetic modifications. In some experiments such as
SAGE-Seq or Digital Karyotyping [8,5] there are natural peak regions, as the
tags congregate at specific DNA locations determined by the enzymes used to cut
the source DNA. In other cases, such as ChIP-Seq experiments using sonication,
the peak regions have to be determined from the data using specific algorithms
(e.g. [2,9]), or perhaps just defined by a simple partitioning of the genome into
uniform small blocks, say of the order of a thousand bases.

In this section we assume that a set of peak regions of interest is given to
us. Let us consider a single peak range r. We denote by X = X(R) a random
variable of the count of tags mapped to r, and by x its particular realisation. If
we denote by λ, 0 < λ < 1, the proportion (fraction) of reads in the library L
with tags mappable to r, then X can be modelled as a binomial random variable,
Bin(λ, |R|):

P[x = X(R)] =
(
|R|
x

)
λx(1 − λ)|R|−x, (1)

for x = 0, 1, ..., |R|. In a typical case of interest λ� 1 and the distribution of X
is very well approximated by the Poisson distribution [10], Poi(μ):

P[x = X ] = μx e−μ

x!
, (2)

where x = 0, 1, ..., |R| and the Poisson rate is defined as μ = λ|R|.

3 The Poisson Margin Test

Now we focus on comparing two libraries, LA and LB, from which random
samples of mappable tags RA and RB were drawn, respectively. Suppose we
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have observed counts xA and xB of tags mapped to the specific peak range r of
interest, and λA and λB are the corresponding proportions of tags in the libraries
LA and LB mappable to r, respectively. Let (a, b) ∈ {(A, B), (B, A)} and the
following relation for empirical proportions holds:

λ̂a :=
xa

|Ra|
< λ̂b :=

xb

|Rb|
. (3)

How strong is this evidence for λa < λb? We approach this issue in a typical
statistical hypothesis testing manner. Namely, we are interested in testing the
alternative hypothesis (H1) that λa < λb versus the null hypothesis (H0) that
λa ≥ λb, i.e. that the complementary relation holds. As a natural test statistic
we can use the maximal probability of observing at least as extreme counts
Xa, Xb under the null hypothesis (H0). This probability we shall quantify in
two different ways, a test based on the binomial distribution (Binomial Margin,
MBi) and its Poisson approximation (Poisson Margin, MPo), respectively:

MBi(xa, xb) := sup
λa≥λb>0

P
[
Xa ≤ xa & xb < Xb

∣∣ Xi ∼ Bin(λi, |Ri|)
]
,

MPo(xa, xb) := sup
λa≥λb>0

P
[
Xa ≤ xa & xb < Xb

∣∣ Xi ∼ Poi(λi|Ri|)
]
, (4)

assuming the observed proportions relation (3) holds and, otherwise:

MBi(xa, xb) =MPo(xa, xb) := 1. (5)

In practice both tests are numerically equivalent, but MPo is easier to handle
analytically and computationally, and will be the primary focus of the rest of
this paper.

We observe that the above definitions do not require that the sample sizes
|RA| and |RB| be equal. By definition, the Poisson margin MPo is the tightest
universal upper bound on the following probability

P
[
Xa ≤ xa & xb < Xb & λa ≥ λb

∣∣ Xi ∼ Poi(λi|Ri|)
]
≤MPo(xa, xb).

In this sense it is a very conservative p-value, corresponding to the worst case
scenario test.

3.1 Computation of Poisson Margin

The following result facilitates the efficient numerical evaluation of MPo; the
proof is presented in the on-line Supplement [1]. Let

ρ := |Ra|
/
|Rb|, and χ := xa

/
xb.

Theorem 1. If the empirical relation for proportions (3) holds, then

MPo(xa, xb) = sup
0<μ

e−2μ
xa∑
i=0

(2μ)i

i!(1 + ρ)i

∑
j>xb

(2μρ)j

j!(1 + ρ)j
, (6)
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where the supremum is achieved for μ = μ∗, the only solution of the reduced
critical equation:

0 = E(μ) := ρ + ρ

xa∑
i=1

i−1∏
j=0

(1 + ρ)(xa − j)
2μ

−
∞∑

i=1

i∏
j=1

2μρ

(1 + ρ)(xb + j)
(7)

with the function E monotonically decreasing for μ > 0, from +∞ to −∞.
Moreover, if Eqn. 3 holds, then

ρ− χ +
√

(ρ− χ)2 + 4χρ(1 + ρ)
4ρ

≤ μ∗
xb
≤ (1 + χ)(1 + ρ)

2ρ + 1
+ O

(
1
xb

)
, (8)

where we use the“O”-notation for the negligible rounding term such that

lim
ε→0

|O(ε)/ε| < χ/4 + 1/2.

Equation (7) is easy to solve numerically, using Newton’s method for example,
even for large counts where xa, xb ∼ 105. The function E(μ) is monotonically de-
creasing and the bounds (8) can be used for initialisation of the solver iterations.
The sums in (7) have quickly decaying terms, so in practice they are reduced
to a summation of only a few terms. One of the aims of our derivation was to
develop such a simplification and to remove some very small nuisance factors
that are below the computer precision, say with log10 below −308 (= the limit
of IEEE-754 double precision).

Proof Outline. We express (4) explicitly as a 2-dimensional optimisation task:

MPo(xa, xb) = sup
0<λb≤λa

e−μa−μb

xa∑
i=0

μi
a

i!

∑
j>xb

μj
b

j!

∣∣∣∣
μa=λa|Ra|
μb=λb|Rb|

, (9)

which can be reduced to the 1-dimensional optimisation

MPo(xa, xb) = sup
0<λ

e−μa−μb

xb∑
i=0

μi
a

i!

∑
j>xb

μj
b

j!

∣∣∣∣
μa=λ|Ra|
μb=λ|Rb|

.

The latter task can be solved by finding a solution λ∗ of the critical equation for
the function of λ under “sup” above, which after some simplifications, introduc-
tion of variable μ := λ |Ra|+|Rb|

2 and removal of small positive factors reduces to
(7). The details are available on-line [1]. ��
Figure 2.A shows the numerical evaluation of MPo across a range of counts
which occur in practice. This figure clearly shows where the effects of the pre-
cision limits of IEEE-754 become apparent: the significant, “dark blue” shaded
part of the plot corresponds to p-values < 10−400. The thousands of peaks in
the experimental data discussed in Section 4 fall into this region, see [1]. Note
that the truncation of log10MPo at −500 is used in Figure 2.A purely for the
purpose of visualisation.
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3.2 Related Statistical Tests

The Poisson Margin test is closely related to some other statistical tests. This
relationship has been explored elsewhere (see [1][5]) and here we mention only
the Counts test and the Coin Toss test.

For xa < xb the Counts test is defined as

T∗(xa, xb) := sup
μa≥μb>0

P
[
Xa ≤ xa & xb < Xb

∣∣ Xi ∼ Poi(μi)
]

(10)

Fig. 1. A: Lower and upper bounds on μ∗ given by Eqn. (8) of Theorem 1 (broken
lines) and compared to the exact values μ∗ given by solution of Eqn. 7; here we show
averages for μ∗ as solid lines, the values for evaluation over xa-grid of 100 values
logarithmically spaced between 1 and 1000 and corresponding xb := xa/χ < 10, 000.
B: Computational validation of the Scaling Power Law given by Theorem 3. The plots
show clearly the asymptotical power scaling law (12): Tct(κxa, κxb) ≈ Tct(xa, xb)κ

translating to the linear dependence in the plots of the form xa �→ log10 Tct(xa, xa/χ) ≈
xa × A−1 log10 Tct(A,A/χ), where A � 1 is a constant.

Fig. 2. A: Numerical evaluation of log10 MPo(xa, xb) for the case of |Ra| = |Rb| and
B: of the relative difference (log10 MPo − log10 Tct)/ log10 MPo. The evaluation has
been done for the regular logarithmic grid of count values 1 ≤ xa, xb ≤ 10, 000.
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for xa < xb and the Coin Toss test as

Tct(xa, xb) := P

[
X ≤ xa

∣∣∣ X ∼ Bin

(
1
2
, xa + xb

)]
. (11)

The Coin Toss test was used in [3,2]. The data from the latter paper will be used
for our experimental validation, hence, indirectly, we will be comparing against
this statistic, and a clarification of its relationship to the Poisson Margin is
appropriate here. Both papers have used Coin Toss for computing the statistical
significance of the difference between two counts xa and xb in the same fashion
as in the case of MPo, but for the special case when libraries have equal, or
equalised, sizes, namely |Ra| ≈ |Rb|. In this special case they are “equivalent”
to the MPo test in the following sense.

Theorem 2. If |Ra| = |Rb| and the empirical proportion relation (3) holds, then

MPo(xa, xb) = T∗(xa, xb) ≈ Tct(xa, xb).

Proof outline. If |Ra| = |Rb|, then λa < λb is equivalent to μa := λa|Ra| <
μb := λb|Rb|, hence the equivalence MPo(xa, xb) = T∗(xa, xb) follows from the
definitions (4) and (10). The approximation by Tct has been argued in [5]; here
we demonstrate it by numerical evaluation presented in Figure 2. ��
Figure 2.B shows a numerical evaluation of the differences between
log10MPo||Ra|=|Rb| and log10 Tct over a grid of values of xa and xb which occur
in practice. Note the differences in the shading scales used in the two sub-figures.
The difference | log10MPo − log10 Tct| is < 2, hence in the areas of significant
values of log10MPo, say < −100, it composes practically negligible correction
of ≤ 1%. This also allows the extension of the scaling properties Tct discussed
below to the case of MPo||Ra|=|Rb|.

3.3 Scaling Properties

The following result can be shown formally (see [5]).

Theorem 3 (Scaling Power Law). Let 0 < 2xa < xb be two integers and
κ > 1. Then

log Tct(κxa, κxb) = κ log Tct(xa, xb) +
o(xb)
xb

, (12)

where o(xb)
xb

→ 0 for xb →∞ denotes a ‘negligible’ correction.

The computational validation of this result and implied practical extension to
the whole range of values xb > 0 is presented in Figure 1.B which is sufficient for
our discussion below. Plots in there show clearly the asymptotical power scaling
law (12): Tct(κxa, κxb) ≈ Tct(xa, xb)κ translating to the linear dependence in the
plots of the form log10 Tct(xa, xa/χ) ≈ xa×A−1 log10 Tct(A, A/χ), where A� 1
is a constant.
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The above Theorem and Figure 1.B facilitate a discussion of two important
issues in the analysis of the NGS data, namely, (i) the impact of the number of
lanes use by the sequencing machine to map the library and (ii) scaling of the
counts, in the case of typically unequal sizes of the sequenced and then mapped
tag sets. Firstly, they tell us that having κ times more reads sequenced, e.g. using
κ lanes in the sequencing machine rather than one, will provide an exponentially
stronger (i.e. smaller, exponentiated by κ) p-values, asymptotically for large xb.
This can be used, for example, as guidance for selection of more or fewer lanes
in an NGS experiment.

However, those results also point to fragility of “count scaling”. More precisely,
if the numbers of reads actually sequenced and mapped are significantly different,
|Ra| �≈ |Rb|, then either we need statistical tests that are intrinsically immune to
such differences or we need to normalize the counts in a candidate peak region
to make them comparable. The MPo test (4) falls in fist category while the Tct

tests represents the latter.

4 Experimental Validation

It is far from clear that the postulated statistical test will provide useful results
in practice. Simply put, the worst case scenario embraced in definition (4) may
be too conservative and the generated p-values too close to 1 be informative.
In order to address this concern, we have decided to focus on the well studied
NGS application of ChIP-Seq peak calling, which involves comparison of only
two libraries (the target and the dedicated control). The more complex problem
of differential analysis of multiple libraries will be addressed in future work.

In order to validate our method we have used public domain ChIP-Seq data.
In particular, [2] provides 36,998 putative locations/regions for binding STAT1
and 24,739 locations/regions for Pol II. Note that both databases in [2] have
been used as the basis of the most recent ENCODE data in their correponding
domains, hence we have no alternative ‘gold standards’ to evaluate the results
of our analysis. In this paper we deal with this obstacle by using a procedure
evaluating the results of analysis by checking their internal consistency. This
procedure is outlined below in Section 4.3.

Since [2] also provides the Eland mappings of the tags for the controls, STAT1
and Pol II data sets we have performed an additional independent analysis of
this data using Poisson Margin outlined in the following two sections.

4.1 Re-ordering

We have used the list of peak ranges, peak locations and range boundaries exactly
as in [2]. For each range we have extracted (raw) counts, following the protocol
described in the original paper and then used the MPo statistic to allocate
the p-value (see Supplementary Table 1 for STAT1 and Table 2 for Pol II).
Although the order according to the MPo method is only slightly different from
the original, the overlap is > 90%, see Table 1, the differences in performance
benchmarks especially for STAT1 are significant.
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4.2 De-novo Significant Range Location

In our experiments described below we have implemented and run a fixed size
sliding window method across the genome comparing the number of tags in each
window for the control and target samples, for each sample for both DNA strands
pooled together. Regions of significance are then defined by thresholding the p-
values obtained from the Poisson Margin test. This resembles the approach in
[11]. This effectively separates the tasks of finding regions of the genome where
we believe a peak lies and determining the location of the antibody binding site
itself, the former task being done efficiently on the whole genome scale and the
latter being done intensively on just those regions identified by the genome wide
scan as containing a peak. The genome was scanned sequentially with a window
of 200 bp, shifted every 4 bases, which took about 17 minutes on a workstation
with 2GHz Opteron CPUs and 32Gb of main memory.

We have identified 35,229 peak ranges for STAT1 using un-adjusted p-values
<1E-4 and 28,890 using un-adjusted p-values <1E-6 for Pol II, with thresholds
chosen to match the numbers of peaks in the original publication. The range was
defined as a contiguous region of 200 BP blocks which passed the threshold.

Such a procedure can be followed by refinements of boundaries and more
precise location of the range boundaries and more precise peak location. Example
of such secondary adjustments can be found in [2,11,12], but we used none here.

4.3 Genome Annotation Test

We wish to quantify consistency of the putative peak ranges by quantifying
ability to predict those locations on the whole genome by a predictor trained on
a part of the genome. In our experiments peak ranges from chromosome 22 were
used for training and those from the remaining chromosomes were used only
for testing. For quantifying prediction accuracy we have adapted protocol 1B in
[13,14,15]. In brief, the genome is divided into 500bp non-overleaping segments
(total of 5,362,342 segments not containing ‘N’s), with each segment labeled as
positive if it overlaps a peak range and negative otherwise (the positive segments
comprise < 1% of the total number of segments). These labels were used to
build a predictor and verify its performance measured by precision and recall.
We recall that “Precision” means ratio of true positive retrieved (for a given
decision threshold) to number of retrieved cases, and “Recall” is the number of
true positive retrieved divided by the total number of true positive cases.

A linear support vector machine (SVM) was developed to label each 500bp
segment independently [15]. Each 500bp segment was represented as a feature
vector containing frequency counts of 4-mers contained within. Recursive feature
elimination was used to reduce the model’s number of features and other meta-
parameters were set to maximise the area under precision-recall curve (PRC) in
an internal cross-validation on the training data.

This method works very well for some tasks such as the prediction of transcrip-
tion start sites and the binding of some transcription factors (e.g., c-Myc) [15],
and seems to significantly outperform other methods such as standard position
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weight matrices (PWM). From our experience, STAT1 is one of the harder tran-
scription factors to predict, however we still observe much higher performance
using the SVM predictor than with PWMs [15].

4.4 Results

Table 1 and Figure 3 summarise results for few its variations of genome anno-
tation experiment described above, for STAT1 and Pol II data, respectively. We
recall, the data from chromosome 22 was used for training exclusively and test
results reported are for data from the whole genome. The following four basic
variations of experiment consisted in usage of different sets of peaks:

– I: The top 50% of the original list in [2];
– II: The top 50% of the list in [2] after sorting by MPo method;
– III: The whole 100% list in [2];
– IV: A de novo list of peaks derived as outlined in Section 4.2.

Additionally, for STAT1 we have also tested a typical position weight (PWM)
matrix from TRANSFAC � 7.0. This is reported as row “V” in Table 1. In this
case the “score” per range in [2] is defined as the max of PWM scores for all
positions within a 500BP tile. The overlap in Table 1 was calculated using the
top 37k tiles as scored by the PWM.

We observe that for variants I and II for STAT1, the area under the PRC
curve (4.0%) is approximately 1.5 times that for the original [2] ordering (2.6%).
For Pol II the corresponding difference is smaller, due to larger similarity of the
ordered lists and much higher accuracy of predictions, but differences between
de-novo (blue solid) and 100% list in [2] (broken blue) in Figure 3.B is well
pronounced.

Table 1. Summary of ordered peaks lists overlap with the list in [2] and the accuracy
prediction of binding site on the whole genome. In experiments I-IV we use data on
chromosome 22 for training SVM exclusively. All values listed are in %.

List overlap (%) with [2] Prediction for whole genome
Number of top peaks Area under Prec. at recall

Experiment 10% 20% 50% 100% Prec.-Rec. curve 10% 20%
STAT1

I: Roz.50% 100 100 100 - 2.6 7.6 4.2
II: Roz.+MPo50% 96 94 91 - 4.0 12.3 7.5

III: Roz.100% 100 100 100 100 5.5 17.1 8.0
IV: deNovo-MPo 68 69 70 83 5.7 18.2 8.2
V: Roz.100% PWM 3 5 9 12 4.1 8.4 4.4

Pol II

I: Roz.50% 100 100 100 - 24.4 56.0 50.1
II: Roz.+MPo50% 53 85 95 - 25.6 57.4 51.7

III: Roz.100% 100 100 100 100 23.2 58.8 51.2
IV: deNovo-MPo 66 71 74 77 26.9 62.4 56.1
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Fig. 3. Precision–Recall curves for STAT1 (A) and Pol II (B) corresponding to Ta-
ble 1. We report test results for the whole genome for the variants I-V of the genome
annotation test experiment described in Section 4.4.

5 Discussion

The basic protocol described in this paper can be extended in a number of
directions. In the experiments we have used only uniquely mapped reads. The
density of such reads varies along the genome, which can affect the relative
p-values for peaks at different locations since both MPo and the Coin Tossing
statistic (Tct) [2] are sensitive to the sequencing depth (see Figure 1.B). A simple
way around this obstacle is to scale up the observed counts (per range) inversely
to the fraction of mappable tags for the region. Such information for uniquely
mapped tags of length 30 is provided in [2], but information of uniquely mapped
up to 2 mismatches (which we prefer) is not currently available (see comment in
[2, Supplement]). We have not used this correction here.

We present an alternative to the method introduced previously, e.g. [2], [4]
or [11]. We have focussed on the first of those references since it is one of the
most recent and allows access to good quality of experimental data, included
in ENCODE. We have shown that a principled analysis of such data using our
method is feasible with minimal need for (arbitrary) design choices and with a
minimal number of data-adjustable parameters. (An illustrating example here is
the introduction in [2, p. 73] of an ad hoc parameter 0 ≤ Pf ≤ 1 for the fraction
of putative highest peaks to be excluded from regression for local normalisation
of counts). Our approach is robust, and can be applied to a wide variety of exper-
imental designs involving different numbers of samples, possibly from different
cell lineages. It is applicable precisely because it does not require scaling of the
individual libraries of reads. The results in [5] and Section 3.3 show that such a
scaling, if applied, should be done with extreme caution, if the analysis is to be
meaningful.



308 A. Kowalczyk et al.

6 Conclusions

We have developed a principled statistical test for the detection of significant
reads concentrations which is directly applicable to libraries of different (un-
matched) sizes without any scaling of read counts and have demonstrated that
such a scaling could introduce significant bias in the computed p-values. Al-
though our statistical test targets differential analysis for multiple NGS libraries,
the initial validation in this paper is restricted to the simplest case of comparison
of a target library to a matching reference. Using the recent Encode Chip-Seq
data we have shown that our test delivers non-vacuous results, with peak calling
accuracies comparable or even improved with respect to the the original dedi-
cated algorithm. The absence of adequate gold standards for benchmarking was
circumvented by application of a novel internal consistency check based on the
accuracy of generalisation of a supervised learning predictor. Demonstration of
the utility of that protocol is the second major contribution of this paper.
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Abstract. With the advent of next generation sequencing technologies, the cost
of sequencing whole genomes is poised to go below $1000 per human individ-
ual in a few years. As more and more genomes are sequenced, analysis methods
are undergoing rapid development, making it tempting to store sequencing data
for long periods of time so that the data can be re-analyzed with the latest tech-
niques. The challenging open research problems, huge influx of data, and rapidly
improving analysis techniques have created the need to store and transfer very
large volumes of data.

Compression can be achieved at many levels, including trace level (com-
pressing image data), sequence level (compressing a genomic sequence), and
fragment-level (compressing a set of short, redundant fragment reads, along with
quality-values on the base-calls). We focus on fragment-level compression, which
is the pressing need today.

Our paper makes two contributions, implemented in a tool, SLIMGENE. First,
we introduce a set of domain specific loss-less compression schemes that achieve
over 40× compression of fragments, outperforming bzip2 by over 6×. Includ-
ing quality values, we show a 5× compression using less running time than
bzip2. Second, given the discrepancy between the compression factor obtained
with and without quality values, we initiate the study of using ‘lossy’ quality val-
ues. Specifically, we show that a lossy quality value quantization results in 14×
compression but has minimal impact on downstream applications like SNP call-
ing that use the quality values. Discrepancies between SNP calls made between
the lossy and lossless versions of the data are limited to low coverage areas where
even the SNP calls made by the lossless version are marginal.

1 Introduction

With the advent of next generation sequencing technologies [8,15,16,10], the cost of
sequencing whole genomes has decreased dramatically in the past several years, and
is poised to go below $1000 per human individual in a few years. As more and more
genomes are sequenced, researchers are faced with the daunting challenge of interpret-
ing all of the data. At the same time, analysis methods are undergoing rapid develop-
ment making it tempting to store sequencing data for long periods of time so that the
data can be re-analyzed with the latest techniques. The challenging open research prob-
lems, huge influx of data, and rapidly improving analysis techniques have created the
need to store and transfer very large volumes of data.
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The study of human variation, and genome wide association (GWAS) was tradition-
ally accomplished using micro-arrays, for which the data is smaller by over 3 orders of
magnitude. However, these GWA studies have been able to explain only a very small
fraction of heritable variation present in complex diseases. Many researchers believe
that whole genome sequencing may overcome some of the limitation of micro-arrays.
The incomplete picture formed by micro-arrays, the many applications of sequencing
(Ex: structural variations), and the expected improvement in cost and throughput of se-
quencing technology ensure that sequencing studies will continue to expand rapidly.
The question of data handling must therefore be addressed.

Even with the limited amount of genetic information available today, sites such as the
Broad Institute and the European Bioinformatics institute are among the biggest storage
consumers in the world, spending millions of dollars on storage [6]. Beyond research
laboratories, the fastest growing market for sequencing studies is big pharmaceutical
companies [6]. Further, population studies on hundreds of thousands of individuals in
the future will be extremely slow if individual disks have to be shipped to an analysis
center. The single genome data set we use for our experiments takes 285GB in uncom-
pressed form. At a network download rate of 10Mb/s this data set would take 63.3 hours
to transfer over the Internet. In summary, reducing storage costs and improving interac-
tivity for genomic analysis makes it imperative to look for ways to compress genomic
data.

While agnostic compression schemes like Lempel-Ziv [20] can certainly be used,
we ask if we can exploit the specific domain to achieve better compression. As an
example, domain-specific compression schemes like MPEG-2 [13] exploit the use of a
dictionary or reference specific to the domain. Here, we exploit the fact that the existing
human assembly can be used as a reference for encoding. We mostly consider loss-
less compression algorithms. Specifically, given a set of genomic data S, we define
a compression algorithm by a pair of functions (C,D) such that D(C(S)) = S, The
compression factor c.f., defined by |S|/|C(S)| describes the amount of compression
achieved.

The genomic data S itself can have multiple forms and depends upon the technology
used. Therefore, the notion of ‘loss-less’ must be clarified in context. In the Illumina
Genome Analyzer, each cycle produces 4 images, one for each of the nucleotides; con-
sequently, the set S consists of the set of all images in all cycles. By contrast, the
ABI technology maps adjacent pairs of nucleotides to a ‘color-space’ in the unpro-
cessed stage. We refer to compression at this raw level as a. Trace Compression. The
raw, trace data is processed into base-calls creating a set of fragments (or, reads). This
processing may have errors, and a quality value (typically a Phred-like score given
by −�10 log(Perror)�) is used to encode the confidence in the base-call. In b. Frag-
ment Compression, we define the genomic data S by the set of reads, along with quality
values of each base-call. Note that the set of reads all come from the genomic sequence
of an individual. In c. Sequence Level Compression, we define the set S simply as the
diploid genome of the individual.

There has been some recent work on compressing at the sequence level [2,4,5,12].
Brandon and colleagues introduce the important notion of maintaining differences
against a genomic reference, and integer codes for storing offsets [2]. However, such
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sequence compression relies on having the fragments reconciled into a single (or diploid)
sequence. While populations of entire genomes are available for mitochondria, and other
microbial strains sequenced using Sanger reads, current technologies provide the data
as small genomic fragments. The analysis of this data is evolving, and researchers de-
mand access to the fragments and use proprietary methods to identify variation, not
only small mutations, but also large structural variations [9,7,18,14]. Further, there are
several applications (e.g., identifying SNPs, structural variation) of fragment data that
do not require the intermediate step of constructing a complete sequence.

Clearly, trace data are the lowest level data, and the most difficult to compress. How-
ever, it is typically accessed only by a few expert researchers (if at all), focusing on a
smaller subset of fragments. Once the base-calls are made (along with quality values),
the trace data is usually discarded.

For these reasons, we focus here on fragment level compression. Note that we share
the common idea of compressing with respect to a reference sequence. However, our
input data are a collection of potentially overlapping fragments (each, say 100 bps
long) annotated with quality values. These lead to different compression needs and
algorithms from [2,5] because fragment compression must address the additional re-
dundancy caused by high coverage and quality values. Further, the compression must
efficiently encode differences due to normal variation and sequencing errors, for the
downstream researcher.

Contribution: Our paper makes two contributions, implemented in a tool, SLIMGENE.
First, we introduce a set of domain specific loss-less compression schemes that achieve
over 40× compression of fragments, outperforming bzip2 by over 6×. Including qual-
ity values, we show a 5× compression. Unoptimized versions of SLIMGENE run at
comparable speeds to bzip2. Second, given the discrepancy between the compression
factor obtained with and without quality values, we initiate the study of using ‘lossy’
quality values and investigate its effect on downstream applications. Specifically, we
show that using a lossy quality value quantization results in 14× compression but has
minimal impact on SNP calls using the CASAVA software. Less than 1% of the calls are
discrepant, and we show that the discrepant SNPs are so close to the threshold of detec-
tion, that no miscalls can be attributed to lossy compression. While there are dozens of
downstream applications and much work needs to be done to ensure that coarsely quan-
tized quality values will be acceptable for users, our paper suggests this is a promising
direction for investigation.

2 Data-Sets and Generic Compression Techniques

Generic compression techniques: Consider the data as a string over an alphabet Σ.
We consider some generic techniques. First, we use a reference string so that we only
need to encode the differences from the reference. As each fragment is very small, it is
critical to encode the differences carefully. Second, suppose that the letters of σ ∈ Σ
are distributed according to probability P (σ). Then, known compression schemes (Ex:
Huffman codes, Arithmetic codes) encode each symbol σ using log2

1
p(σ) bits, giving

an average of H(P ) (entropy of the distribution) bits per symbol, which is optimal for
the distribution, and degrades to log(|Σ|) bits in the worst case.
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Our goal is to devise an encoding (based on domain specific knowledge) that mini-
mizes the entropy. In the following, we will often use this scheme, describing the suit-
ability of the encoding by providing the entropy values. Also, while it is asymptotically
perfect, the exact reduction is achievable only if the probabilities are powers of 2. There-
fore, we often resort to techniques that mimic the effect of Huffman codes. Finally, if
there are inherent redundancies in data, we can compress by maintaining pointers to the
first occurrence of a repeated string. This is efficiently done by tools such as bzip2, and
we reuse the tools.

Data formats: Many formats have been proposed for packaging and exporting genomic
fragments, including the SAM/BAM format [11,17], and the Illumina Export format [3].
Here, we work with the Illumina Export format, which provides a standard representa-
tion of Illumina data. It is a tab delimited format, in which every row corresponds to
a read, and different columns provide qualifiers for the read. These include ReadID,
CloneID, fragment sequence, and a collection of quality values. In addition, the format
also encodes information obtained from aligning the read to a reference, including the
chromosome strand, and position of the match. The key thing to note is that the frag-
ment sequences, the quality values, and the match to the chromosomes represent about
80% of the data, and we will focus on compressing these. In SLIMGENE , each column
is compressed independently, and the resulting data is concatenated.

Data Sets: Experimental, and Simulated
We consider a data-set of human fragments, obtained using the Illumina Genome An-
alyzer, and mapped to the reference (NCBI 36.1, Mar. 2006). A total of 1.1B reads of
length 100 were mapped, representing 35× base-coverage of the haploid genome. We
refer to this data-set as GAHUM. The fragments differ from the reference either due to
sequencing errors or genetic variation, but we refer to all changes as errors. The num-
ber of errors per fragment is distributed roughly exponentially, with a heavy tail, and a
mean of 2.3 errors per fragment, as shown below. Because of the heavy tail, we did not
attempt to fit the experimental data to a standard distribution.

#Errors(k) 0 1 2 3 4 5 6 7 8 9 ≥ 10
Pr(k errors) 0.43 0.2 0.09 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.09

Simulating coverage: While we show all compression results on GAHUM, the results
could vary on other data-sets depending upon the quality of the reads, and the coverage.
To examine this dependence, we simulated data-sets with different error-rates, and cov-
erage values. We choose fragments of length 100 at random locations from Chr 20, with
a read coverage given by parameter c. To simulate errors, we use a single parameter P0
as the probability of 0 errors in the fragment. For all k > 0, the probability of a fragment
having exactly k errors is given by Pk = λPr(k errors) from the distribution above. The
parameter λ is adjusted to balance the distribution (

∑
i Pi = 1). The simulated data-set

with parameters c, P0 is denoted as GASIM(c, P0).
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3 Compressing Fragment Sequences

Consider an experiment with sequence coverage c(∼ 30×), which describes the ex-
pected number of times each nucleotide is sequenced. Each fragment is a string of
characters of length L(� 100) over the nucleotide alphabet Σ (Σ = {A, C, G, T, N}).
The naive requirement is 8c bits per nucleotide, which could be reduced to c log(|Σ|) �
2.32c bits with a more efficient encoding. We describe an encoding based on compari-
son to a reference that all fragments have been mapped to.

The position vector: Assume a Position bit vector POS with one position for every
possible location of the human genome. We set POS[i] = 1 if at least one fragment maps
to position i (POS[i] = 0 otherwise). For illustration, imagine an 8-character reference
sequence, ACGTACGC, as depicted in Figure 1. We consider two 4bp fragments, CGTA
and TACG, aligned to positions 2 and 4, respectively, with no error. Then, POS =
[0, 1, 0, 1, 0, 0, 0, 0]. The bit vector POS would suffice if (a) each fragment matched
perfectly (no errors), (b) matches to the forward strand and (c) at most one fragment
aligns to a single position (possible if L > c). The space needed reduces to 1 bit per
nucleotide, (possibly smaller with a compression of POS), independent of coverage c.

Fig. 1. A simple proposal for fragment compression starts by mapping fragments to a reference
sequence. The fragments are encoded by a Position Vector and a Refinement Vector consisting
of variable size records representing each compressed fragment. The compressed fragments are
encoded on a “pay as needed” basis in which more bits are used to encode fragments that map
with more errors.

In reality, these assumptions are not true. For example, two Fragments 1 and 2 match
at position 2, and Fragment 2 matches with a substitution (Figure 1). We use a Refine-
ment vector that adds count and error information. However, the Refinement vector is
designed on a “pay as needed basis” – in other words, fragments that align with fewer
errors and fewer repeats need fewer bits to encode.
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The refinement vector: The Refinement Vector is a vector of records, one for each
fragment, each entry of which consists of a static Prelude (3 bits) and an ErrorInstruc-
tion record, with a variable number of bits for each error in the alignment.

The 3-bit Prelude consists of a MoreCopies, a Strand and a Flawless bit. All frag-
ments that align with the same location of the reference genome are placed consecu-
tively in the Refinement Vector and their MoreCopies bits share the same value, while
the respective bits of consecutive fragments that align to different locations differ. Thus,
in a set of fragments, the MoreCopies bit changes value when the chromosome location
varies. The Strand bit is set to 0 if the fragment aligns with the forward strand and 1
otherwise, while the Flawless bit indicates whether the fragment aligns perfectly with
the reference, in which case there is no following ErrorInstruction.

When indicated by the Flawless bit, the Prelude is followed by an ErrorInstruction,
one for every error in the alignment. The ErrorInstruction consists of an Offset code (#
bp from the last erroneous location), followed by a variable length Operation Code or
OpCode field describing the type of error.

Opcode: As sequencing errors are mostly nucleotide substitutions, the latter are en-
coded by using 2 bits, while the overhead of allocating more space to other types of
error is negligible. Opcode 00 is reserved for other errors. To describe all substitutions
using only 3 possibilities, we use the circular chain A → C → G → T → A. The op-
code specifies the distance in chain between the original and substituted nucleotide. For
example, an A to C substitution is encoded as 01. Insertions, deletions, and counts of
N are encoded using a Huffman-like code, to get an average of T = 3 bits for Opcode.

Offset: Clearly, no more than O = log2 L bits are needed to encode the offset. To
improve upon the log2(100) � 7 bits per error, note that the quality of base calling
worsens in the later cycles of a run. Therefore, we use a back-to-front error ordering to
exploit this fact, and a Huffman-like code to decrease O.

The record for Fragment 2 (CGTT, Figure 1) provides an example for the error en-
coding, with a prelude equal to 100 (last fragment that maps to this location and error
instructions follow) followed by a single ErrorInstruction. The next 5 bits (00001) in-
dicate the relative offset of the error from the end of the fragment. The first bit of the
offset is a “Last” bit that indicates that there are no more errors. The offset field is fol-
lowed by an opcode (11) which describes a substitution of T for A, a circular shift of
3. Further improvement is possible.

Compact Offset encoding: Let E denote the expected number of errors per fragment,
implying an offset of L

E bp. Instead, we use a single bitmap, ERROR, to mark the posi-
tions of all errors from all fragments. Second, we specify the error location for a given
fragment as the number of bits we need to skip in ERROR from the start offset of the
fragment to reach the error. We expect to see a ‘1’ after max{1, L

cE } bits in ERROR.
Thus, instead of encoding the error offset as L

E bp, we encode it as the count using

O = log2
L/E

max{1, L
cE }

= min{log2
L

E , log2 c}

bits. For smaller coverage c < L
E , we can gain a few bits in computing O. Overall, the

back-to-front ordering, and compact offset encoding leads to O � 4 bits.
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Compression analysis: Here, we do a back-of-the-envelope calculation of compres-
sion gains, mainly to understand bottlenecks. Compression results on real data, and
simulations will be shown in Section 3.1. To encode Refinement, each fragment con-
tributes a Prelude (3 bits), followed by a collection of Opcodes (T bits each), and Off-
sets (O bits each). Let E denote the expected number of errors per fragment, implying
a refinement vector length of

E · (3 + T + O)

per fragment. Also, encoding POS, and ERROR requires 1 bit each, per nucleotide of
the reference. The total number of bits needed per nucleotide of the reference is given
by

2 +
c

L
· E · (3 + O + T ) (1)

Substituting T = 3, O = 4, L = 100, we have

c.f. =
8c

2 + 0.1cE (2)

Equation 2 provides a basic calculation of the impact of error-rate and coverage on com-
pressibility using SLIMGENE. For GAHUM, E = 2.3 (Section 2). For high coverages,
the c.f. is � 8/0.23 � 35. For lower coverages, the fixed costs are more important,
but the POS and ERROR bitmaps are very sparse and can be compressed well, by (say)
bzip2.

Effectiveness: The reader may wonder how our seemingly ad hoc encoding technique
compares to information theoretic bounds. We first did an experiment to evaluate the
effectiveness of OpCode assignment. We tabulated the probability of each type of er-
ror (all possible substitutions, deletions, and insertions) on our data set and used these
probabilities to compute the expected OpCode length using our encoding scheme. We
found that the expected OpCode length using our encoding was 2.97 which compares
favorably with the entropy which was 1.9.

We also did an experiment to determine the effectiveness of the offset encoding.
The width of the error location O depends on the number of bits that we need to skip
in ERROR to reach the error location for a given fragment. We computed the error
distribution of chromosome 20 of GAHUM and found that the majority of cases involved
the skipping of no more than 10 bits in ERROR. Indeed, the entropy of the distribution of
error offsets was 3.69. Thus, an initial allocation of 3 or 4 bits (with additional allocation
as necessary) is reasonable.

3.1 Experimental Results on GASIM(c, P0)

We tested SLIMGENE on GASIM(c, P0) to investigate the effect of coverage and errors
on compressibility. Recall that for GAHUM, P0 = 0.43, c = 30, E = 2.3. As P0 is
varied, E is approximately≈ 2.3

1−0.43 · (1− P0) � 4(1− P0).
In Figure 2a, we fix P0 = 0.43, and test compressibility of GASIM(c, 0.43). As

suggested by Eq. 2, the compressibility of SLIMGENE stabilizes once the coverage
is sufficient. Also, using SLIMGENE+bzip2, the compressibility for lower coverage is
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Fig. 2. Compressibility of GASIM(c,P0). (a) The compression factors achieved with change in
coverage. c.f. is lower for lower coverage due to the fixed costs of POS, and ERROR, and stabilizes
subsequently. (b) Compressibility as a function of errors. With high values of P0 (low error), up
to 2 orders of magnitude compression is possible. Note that the values of P0 are multiplied by
100.

enhanced due to better compression of POS and ERROR. Figure 2b explores the depen-
dency on the error rates using GASIM(30, P0). Again, the experimental results follow
the calculations in Eq. 2, which can be rewritten as

8 · 30
2 + 0.1 · 30 · 4(1− P0)

� 20
1− P0

At high values of P0, SLIMGENE produces 2 orders of magnitude compression. How-
ever, it outperforms bzip2 and gzip even for lower values of P0.

4 Compressing Quality Values

For the Genome analyzer, as well as other technologies, the Quality values are often de-
scribed as≈ − log(Perr). Specifically, the Phred score is given to be �−10 · log(Perr)�.
The default encoding for GAHUM require 8 bits to encode each Q-value. We started
by testing empirically if there was a non-uniform distribution on these values (see Sec-
tion 2). The entropy of the Q-values is 4.01. A bzip2 compression of the data-set re-
sulted in 3.8 bits per Q-value. For further compression, we need to use some character-
istics of common sequencers.

Position dependent quality: Base calling is highly accurate in the early cycles, while
it gradually loses its accuracy in subsequent cycles. Thus, earlier cycles are populated
by higher quality values and later cycles by lower values. To exploit this, consider a
matrix in which each row corresponds to the Q-values of a single read in order. Each
column therefore corresponds (approximately) to the Q-values of all reads in a single
cycle. In Figure 3a, we plot the entropy of Q-value distribution at each columns. Not
surprisingly, the entropy is low at the beginning (all values are high), and at the end (all
values are low), but increases in the middle, with an average entropy of 3.85.
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(a) (b)

(c)

Fig. 3. Distribution of quality, and Δ values, and Markov encoding. (a) A distribution of
Q-values at each position. The entropy is low at the beginning (all values are high), and at the
end (all values are low), but increases in the middle. (b) A histogram of Δ-values. (c) Markov
encoding: Each string of Q-values is described by a unique path in the automaton starting from
q = 0, and is encoded by concatenating the code for each transition. Huffman encoding bounds
the number of required bits by the entropy of the distribution. Edge labels describe the required
number of bits for each transition.

Encoding Δ values: The gradual degradation of the Q-values leads to the observation
that Q-values that belong to neighboring positions differ slightly. Thus, if instead of
encoding the quality values, one encodes their differences between adjacent values (Δ),
it is expected that such a representation would be populated by smaller differences. For
instance, Figure 3b shows a histogram of the distribution of Δ-values. However, the
entropy of the distribution is 4.26 bits per Δ-value.

Markov encoding: We can combine the two ideas above by noting that the Δ-values
also have a Markovian property. As a simple example, assume that all Q-values from
2 to 41 are equally abundant in the empirical data. Then, a straightforward encoding
would need �log2(41−2+1)� = 6 bits. However, suppose when we are at quality value
(say) 34 (Figure 3c), the next quality value is always one of 33, 32, 31, 30. Therefore,
instead of encoding Q′ using 6 bits, we can encode it using 2 bits, conditioning on the
previous Q-value of 34.

We formalize this using a Markov model. Consider an automaton M in which there
is a distinct node q for each quality value, and an additional start state q = 0. To start
with, there is a transition from 0 to q with probability P1(q). In each subsequent step,
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M transitions from q to q′ with probability Pr(q → q′). Using an empirical data-set D
of quality values, we can estimate the transition probabilities as

Pr(q → q′) =

⎧⎪⎨⎪⎩
0 (* if q′ = 0 *)
fraction of reads with initial quality q′ (* if q = 0 *)

#pairs (q, q′) in D
#occurrences of q in D (* otherwise *)

(3)

Assuming a fixed length L for fragments, the Entropy of the Markov distribution is
given by

H(M) =
1
L
H(P1) +

L− 1
L

∑
q,q′ �=0

Pr(q → q′) log
(

1
Pr(q → q′)

)
(4)

Empirical calculations show the entropy to be 3.3 bits. To match this, we use a custom
encoding scheme (denoted as Markov-encoding) in which every transition q → q′ is en-
coded using a Huffman code of− log (Pr(q → q′)) bits. Table 1 summarizes the results
of Q-value compression. The Markov encoding scheme provides a 2.32× compression,
requiring 3.45 bits per character. Further compression using bzip2 does not improve on
this.

Table 1. Quality value compression results

Raw File bzip2
Δ Markov

(Huffman) (Huffman)
Bits per character 8 3.8 4.25 3.45

c.f. 1 2.11 1.88 2.32

5 Lossy Compression of Quality Values

Certainly, further compression of Quality values remains an intriguing research ques-
tion. However, even with increasing sophistication, it is likely that Q-value compres-
sion will be the bottleneck in fragment-level compression. So we ask the sacrilegious
question: can the quality values be discarded? Possibly in the future, base-calling will
improve to the point that Q-values become largely irrelevant. Unfortunately, the answer
today seems to be ‘no’. Many downstream applications including alignment, variant
calling, and many others consider Q-values as a critical part of inference, and indeed,
would not accept fragment data without Q-values. Here, we ask a different question: is
the downstream application robust to small changes in Q-values? If so, a ‘lossy encod-
ing’ could be immaterial to the downstream application.

Denote the number of distinct quality values produced as |Q| = Qmax − Qmin,
which is encoded using log2(|Q|) bits. Note that a Q-score computation such as �−10 ·
log2(Perr)� already involves a loss of precision. The error here can be reduced by
rounding, or even better, by a ‘randomized’ rounding, defined as

rrand(x) =
{
�x� with probability x− �x�
�x� otherwise

(5)
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Randomized rounding helps to prevent errors in subsequent interpretation. For exam-
ple, suppose x = 1.4 consistently over many experiments. Then, randomized rounding
(which rounds x to 1 or 2) ensures that the expected value of rrand(x) is 1.4. For pa-
rameter b, we define the lossy Q-score encoding by

LQ-scoreb(Q) = rrand

(
Q-score · 2b

|Q|

)
(6)

We encode the 2b distinct values using Markov-encoding. A downstream application
will therefore see Qmin + |Q| · LQ-scoreb(Q) instead of the original value Q.

We test the impact of the lossy scheme on Illumina’s downstream application called
CASAVA [3] that calls alleles based on fragments and associated Q-scores. CASAVA
was run over a 50M wide portion of the Chr 2 of GAHUM using the original Q-values,
and it returned a set S of |S| = 17, 021 variants that matched an internal threshold
(the allele quality must exceed 10; in heterozygous cases the respective threshold for
the weak allele is 6). For each choice of parameter b ∈ {1, . . . , 5}, we reran CASAVA
after replacing the original score Q with Qmin + |Q| · LQ-scoreb(Q). Denote each of
the resulting variant sets as Sb. A variant s ∈ S ∩ Sb is concordant. It is considered
discrepant if s ∈ (S \ Sb) ∪ (Sb \ S).

The results in Figure 4 are surprising. Even with b = 1 (using 1 bit to encode Q
values), 98.6% of the variant calls in S are concordant. This improves to 99.4% using
b = 3. Moreover, we observe (in Fig. 4b) that the discrepant SNPs are close to the
threshold. Specifically, 85% of the discrepant SNPs have allele qualities ≤ 10.

5.1 Is the Loss-Less Scheme Always Better?

We consider the 38 positions in Chr 2 where the lossy (3-bits) compression is discrepant
from the loss-less case. On the face of it, this implies a 0.2% error in SNP calling, clearly
unacceptable when scaled to the size of the human genome. However, this assumes that
the loss-less call is always correct. We show that this is clearly not true by comparing the
SNP calls based on lossy and loss-less data in these 38 positions with the corresponding
entries, if any, in dbSNP (version 29). We show that most discrepancies come from
marginal decisions between homozygote and heterozygote calls.

For simplicity, we only describe the 26/38 SNPs with single nucleotide substitution
in dbSNP. In all discrepant cases, the coverage is no more than 5 reads (despite the fact
that the mean coverage is 30×). Further, in all but 2 cases, both lossy, and lossless agree
with dbSNP, and the main discrepancy is in calling heterozygote versus homozygotes.
Specifically, lossy calls 14/10 homozygotes and heterozygotes, against lossless (12/12).
With coverage ≤ 5, the distinction between homozygote and heterozygotes is hard to
make. Close to 50% of the differences were due to consideration of extra alleles due to
lossy compression, while in the remaining, alleles are discarded. Given those numbers,
it is totally unclear that our lossy compression scheme yields worse results than the
lossless set, not to mention that in some cases it can lead to better results.

We next consider the two positions where the discrepant SNPs produced by the
lossy scheme completely disagree with the dbSNP call. Table 2 shows that at position
43150343 dbSNP reports C/T. The loss-less Q-values and allele calls were respectively
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Fig. 4. Impact of Lossy Compression on CASAVA. CASAVA was run on a 50M wide region
of Chr 2 of GAHUM using lossless and lossy compression schemes. The y-axis plots the fraction
of discrepant SNPs as a function of lossy compression. The x-axis shows the number of bits used
to encode Q-scores. (b) The allele quality distribution of all lossless SNPs and the discrepant
SNPs for 3 and 4-bit quantization. The plot indicates that the discrepant variants are close to the
threshold of detection (allele quality of 6 for weak alleles in the heterozygous case, 10 for the
homozygous case).

39G, 28G, 20G, 30G; CASAVA did not make a call. On the other hand, the lossy re-
construction led to values 41G, 27G, 22G, 32G, which pushed the overall allele quality
marginally over the threshold, and led to the CASAVA call of ‘G’. In this case, the
lossy reconstruction is quite reasonable, and there is no way to conclude that an error
was made. The second discrepant case tells an identical story.

Given the inherent errors in SNP calling (lossy or lossless), we suggest that the appli-
cations of these SNP calls are inherently robust to errors. The downstream applications
are usually one of two types. In the first case, the genotype of the individual is important
in determining correlations with a phenotype. In such cases, small coverage of an im-
portant SNP must always be validated by targeted sequencing. In the second case, the
SNP calls are used to determine allelic frequencies and SNP discovery in a population.
In such cases, marginally increasing the population size will correct errors in individ-
ual SNP calls (especially ones due to low coverage). Our results suggest that we can
tremendously reduce storage while not impacting downstream applications by coarsely
quantizing quality values.

Table 2. Case of wrongly called alleles. In both cases the lossy quality values result in a score
which marginally exceeds the threshold of 10 used to call the allele.

position dbSNP entry scheme Qvalues allele quality Decision

43150343 C/T
lossy-8 41G 27G 22G 32G 10.2 G
lossless 39G 28G 20G 30G 9.9 -

46014280 A/G
lossy-8 27C 37C 37C 10.1 C
lossless 27C 36C 36C 9.9 -
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6 Putting It All Together: Compression Results

We used SLIMGENE to compress the GAHUM data-set with 1.1B reads, a total size of
285GB. We focus on the columns containing the reads, their chromosome locations and
match descriptors (124.7GB), and the column containing Q-values (103.4GB), for a to-
tal size of 228.1GB. The results are presented in Table 3 and show a 40× compression
of fragments. Using a lossy 1-bit encoding of Q-values results in a net compression of
14× (8× with a 3-bit encoding). While space restriction preclude a detailed compar-
ison with other data representation formats like SAM/BAM, we report that the BAM
representation of GAHUM results only in a 3× compression of the dataset.

Table 3. Compression of GAHUM using SLIMGENE. Using a loss-less Q-value compression,
we reduce the size by 5×. A lossy Q-value quantization results in a further 3× compression, with
minimal effect on downstream applications.

fragments+ Q-values total execution time(hr)
alignment(GB) (GB) (GB)

Uncompressed 124.7 103.4 228.1 N/A
gzip (in isolation) 15.83 49.92 65.75 N/A
bzip2 (in isolation) 17.9 46.49 64.39 10.79
SLIMGENE 3.2 42.23 45.43 7.38
SLIMGENE+bzip2 3.04 42.34 45.38 7.38
SLIMGENE+lossy Q-values(b = 3) 3.2 26 29.8 7.38
SLIMGENE+lossy Q-values(b = 1) 3.2 13.5 16.7 7.38

7 Discussion

The SLIMGENE toolkit described here is available on request from the authors. While
we have obtained compression factors of 35 or more for fragment compression, we be-
lieve we could do somewhat better and get closer to information theoretic limits. Cur-
rently, error-encoding is the bottleneck, and we do not distinguish between sequencing
errors and genetic variation. By storing multiple (even synthetic) references, common
genetic variation can be captured by exact matches instead of error-encoding. To do
this, we only have to increase the POS vector while greatly reducing the number of
ErrorInstructions. This trade-off between extra storage at the compressor/decompressor
versus reduced transmission can be explored further.

While this paper has focused on fragment compression as opposed to sequence
compression (Brandon et al. [2]), we believe both forms of compression are impor-
tant, and in fact, complementary. In the future, if individuals have complete diploid
genome sequences available as part of their personal health records, the focus will shift
to sequence-level compression. It seems likely that fragment level compression will
continue to be important to advance knowledge of human genetic variation, and is the
pressing problem faced by researchers today. We note that Brandon et al. [2] also men-
tion fragment compression briefly, but describe no techniques.
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While we have shown 2-3× compression of quality values, we believe it is unlikely
this can be improved further. It is barely conceivable that unsuspected relations exist,
which allow us to predict Q-values at some positions using Q-values from other posi-
tions; this can then be exploited for additional compression. However, there is nothing
in the physics of the sequencing process that suggests such complicated correlations
exist. Further, it would be computationally hard to search for such relations.

If compressing quality values beyond 3× is indeed infeasible, then lossy compres-
sion is the only alternative for order of magnitude reductions. Our results suggest that
the loss is not significant for interpretation. However, we have only scratched the sur-
face. Using companding (from Pulse Code Modulation [1]), we plan to deviate from
uniform quantization, and focus on wider quantization spacings for the middle quality
values and smaller spacing for very high and very low quantization values. Further, we
need to investigate the effect of quantization on other analysis programs for say de novo
assembly, structural variation, and CNV detection. The number of quantization values
in SLIMGENE is parameterized, and so different application programs can choose the
level of quantization for their needs. A more intriguing idea is to use multi-level encod-
ing as has been suggested for video [19]; initially, coarsely quantized quality values are
transmitted, and the analysis program only requests finely quantized values if needed.

As sequencing of individuals becomes commoditized, its production will shift from
large sequencing centers to small, distributed laboratories. Further, analysis is also
likely be distributed among specialists who focus on specific aspects of human biology.
Our paper initiates a study of fragment compression, both loss-less and lossy, which
should reduce the effort of distributing and synthesizing this vast genomic resource.
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Abstract. Given molecular genetic data from diploid individuals that,
at present, reproduce mostly or exclusively asexually without recombina-
tion, an important problem in evolutionary biology is detecting evidence
of past sexual reproduction (i.e., meiosis and mating) and recombination
(both meiotic and mitotic). However, currently there is a lack of compu-
tational tools for carrying out such a study. In this paper, we formulate
a new problem of reconstructing diploid genealogies under the assump-
tion of no sexual reproduction or recombination, with the ultimate goal
being to devise genealogy-based tools for testing deviation from these
assumptions. We first consider the infinite-sites model of mutation and
develop linear-time algorithms to test the existence of an asexual diploid
genealogy compatible with the infinite-sites model of mutation, and to
construct one if it exists. Then, we relax the infinite-sites assumption and
develop an integer linear programming formulation to reconstruct asex-
ual diploid genealogies with the minimum number of homoplasy (back or
recurrent mutation) events. We apply our algorithms on simulated data
sets with sizes of biological interest.

1 Introduction

Reproduction in asexual organisms usually is less costly than that in sexual
organisms. Yet, sexual reproduction and genetic recombination are common to
the majority of higher organisms in nature, and several different explanations
have been put forward to address this intriguing phenomenon (see [4, 21] and
references therein). Although it still remains debatable as to which precise evo-
lutionary conditions and mechanisms maintain sex and recombination in natural
populations, it is widely believed that sex and recombination are important for
the long-term evolutionary success of an organism; that is, asexual organisms
are believed to be much more susceptible to extinction than are their sexual
counterparts that undergo meiosis and mating [25]. Contrary to this common
belief, the phylum Rotifera, microscopic aquatic animals widespread through-
out the world, contains a class—namely, Bdelloidea—that seems to have been
reproducing asexually for tens of millions of years, diversifying into 360 known
species that constitute 4 families and 18 genera. Fossil evidence suggests that
bdelloid rotifers have been around for at least 35 to 40 million years [34], while
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molecular genetic analysis suggests an age that is more than twice as large [23].
Maynard Smith [26] referred to the bdelloid rotifers as “something of an evolu-
tionary scandal”, and it has been questioned in the past whether they indeed
have remained asexual for all that while [19].

Recently, Mark Welch and Meselson [23] analyzed molecular genetic data of
four bdelloid species and provided evidence to support bdelloid rotifers’ an-
cient, continuous asexuality. Their method was based on counting synonymous
sequence differences between different copies of a gene within individual, which,
under neutrality, are expected to be over-represented in an old asexual organism.
(See [5] for a review.) Mark Welch and Meselson showed that allelic sequence dif-
ferences at synonymous sites are significantly greater in bdelloid rotifers than in
their closest relative class monogonont rotifers, consisting of about 1500 species,
which seem to reproduce mostly asexually, but with an occasional sexual repro-
duction. (More recent evidence in support of the ancient asexuality of bdelloid
rotifers is provided in [10].) In contrast to this success, when a similar analy-
sis was applied to other asexual organisms such as darwinulid ostrocods [28],
of which morphological evidence strongly supports ancient asexuality [24], no
significantly high level of sequence divergence was observed. In another study,
a similar sequence divergence test applied to plant-parasitic worms (specifically,
root-knot nematodes from the genus Meloidogyne) supported their ancient asexu-
ality, while further analysis revealed that interspecific hybridization was involved
in the history of this group [22]. From this study, the author concluded “genetic
signatures of ancient asexuality must be taken with caution due to the confound-
ing effect of interspecific hybridization, which has long been implicated in the
origins of apomictic species.” As these cases illustrate, a more refined method
that makes better use of DNA data is needed for studying asexuality.

In this paper, we develop new methods to test asexuality by explicitly con-
sidering the evolutionary history of diploid individuals. We first consider the
infinite-sites model of mutation, which corresponds to the ideal case in which
mutations provide as much information about genealogy as possible. This ideal
case should provide an upper bound on our chance of detecting signatures of past
sexual reproduction. Given n pairs of phased haplotypes or n unphased geno-
types, our goal is to test the existence of an n-leaved diploid perfect phylogeny
(DPP)—an asexual diploid genealogy compatible with the infinite-sites model
of mutation and no recombination—for the input individuals, and to construct
one if it exists. We devise linear-time algorithms for both phased haplotypic and
unphased genotypic input data, and show that a minimal DPP for a given data
set is unique if it exists. If a DPP solution exists for unphased genotypic input
data, our algorithm finds a phasing of the input genotypes into pairs of haplo-
types compatible with the DPP, and the DPP serves as a data structure that
encodes all such phasing solutions.

In the second part of this paper, we relax the infinite-sites assumption and
study the diploid imperfect phylogeny (DIP) problem, which is to reconstruct
asexual diploid genealogies with the minimum number of homoplasy (recur-
rent or back mutation) events. If the minimum number of homoplasy events is
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significantly greater than that expected for typical asexual organisms, then it
may indicate that other evolutionary forces such as recombination, hybridiza-
tion, or sexual reproduction may have played a role in the evolutionary history.
We develop an integer linear programming formulation to tackle this problem
and study the practicality of our approach by applying our algorithms on simu-
lated data sets with sizes of current biological interest.

Our ultimate goal is to devise genealogy-based tools for testing deviation
from asexual evolution. Given molecular genetic data from diploid individuals
that, at present, reproduce mostly or exclusively asexually, an important open
problem is to estimate the frequency of past sexual reproduction, as well as the
amount of recombination (meiotic and mitotic crossovers and gene-conversions).
Further, it will be important to estimate when sexuality was lost and how
many independent times. The work described in this paper is a modest step
toward that general direction. The preliminary results described here suggest
that genealogical approaches may provide new insights into the study of asexual
evolution.

CloneTree, software that implements our algorithms, will be made pub-
licly at http://www.eecs.berkeley.edu/~yss/software.html. It produces a
graphical output that displays the diploid genealogy found by our algorithms.

2 Diploid Perfect Phylogeny

We assume that the input data consist of either phased or unphased single nu-
cleotide polymorphisms (SNPs) from n diploid individuals with m polymorphic
sites. Each site has at most two phased alleles, denoted by {0, 1}. The data we
consider are of the following two types:

Definition 1 (Haplotype data). A haplotype is a binary string of length m.
Let hi and h̃i denote the pair of haplotypes of individual i; hi and h̃i are called
mates. A collection of such pairs of haplotypes for n individuals is denoted by
a 2n-by-m binary matrix H, in which rows 2i− 1 and 2i correspond to the two
haplotypes of individual i.

Definition 2 (Genotype data). Let gi denote the genotype of individual i.
The value of gi at site k is 0 if individual i has two copies of 0 at site k; 1
if individual i has two copies of 1 at site k; or 2 otherwise. A collection of
genotypes for n individuals is denoted by G, with row i corresponding to gi. A
2n-by-m binary matrix H is said to be a phasing solution to an n-by-m ternary
matrix G if, for all i = 1, . . . , n, gi in G is the genotype consistent with the mates
hi and h̃i in H.

In the infinite-sites model of mutation, at most one mutation may occur
per site in the entire evolutionary history. Trees representing evolutionary his-
tories consistent with the infinite-sites model of mutation are called perfect

http://www.eecs.berkeley.edu/~yss/software.html
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Fig. 1. From left to right, a haplotype data set H for four individuals, its unique mini-
mal diploid perfect phylogeny T , and evolutionary histories of the haplotypes embedded
in T . We use τX and τY to denote the solid and the dotted trees in T , respectively. An
open circle labeled k represents a mutation at site k.

phylogenies [29]. We will refer to these as haploid perfect phylogenies (HPP)
to distinguish them from diploid perfect phylogenies, a new concept defined as
follows.

Definition 3 (Diploid Perfect Phylogeny). A diploid perfect phylogeny
(DPP) for n diploid individuals is an n-leaved rooted tree T representing the evo-
lutionary history of self-cloning (or asexually reproducing) individuals satisfying:

1. Mutations occur on edges and each site may mutate at most once in T . Time
flows from the root (which has degree 2) to the leaves (which have degree 1),
and each edge in T represents a diploid lineage. If site k mutates on an
edge, only one of the two haplotypes gets modified at that site, and the newly
arising allele (0 or 1) has never been seen before at that site.

2. Depending on whether the input data are pairs of haplotypes or genotypes,
every vertex of a DPP is labeled by a pair of haplotypes or a genotype, re-
spectively.

3. There is a one-to-one correspondence between the n leaves of T and the n
input individuals.

A minimal DPP is a DPP in which the two ends of every interior edge have
different labels.

Note that a set of 2n haplotypes for n individuals may admit an HPP solution
while admitting no DPP solution. A DPP example is shown in the middle of
Figure 1. In this paper, we address the following two algorithmic questions:

DPP for Haplotype Data: Given a haplotypic data set H for n diploid indi-
viduals, determine whether H admits a DPP solution, and find one if it exists.

DPP Haplotyping for Genotype Data: Given a genotypic data set G for
n diploid individuals, determine whether G can be phased to a haplotypic data
set H that admits a DPP solution, and if so, find such a phasing solution H .
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3 DPP for Haplotype Data

In [13], Gusfield devised a linear-time algorithm to test whether a given haplo-
typic input data set admits an HPP solution and to find one if it exists. In this
section, we construct an analogous linear-time algorithm for DPP, making use of
Gusfield’s linear-time algorithm for HPP. First, we highlight several important
properties satisfied by DPPs.

3.1 Properties of Diploid Perfect Phylogenies

Suppose there is an n-leaved minimal DPP T for H . Let xr and yr denote the
root haplotypes of T . Following the history of xr on T leads to one haplotype per
leaf in T . Denote this set of haplotypes HX and their history τX . Similarly, follow
the history of yr on T to obtain HY and τY . Note that each diploid individual
has exactly one of its two haplotypes in HX and the other in HY . The following
properties are implied by the one-mutation-per-site condition:

P1. The set of mutations in τX and τY are disjoint. (In Figure 1, sites 1 and 3
mutate in τX but not in τY . Similarly, site 2 mutates in τY but not in τX .)

P2. If xr[k] �= yr[k], then both 0 and 1 have already been seen, so part 1 of
Definition 3 implies that neither τX nor τY contains a mutation at site k.
As a consequence, no individual in T is homozygous at site k. (In Figure 1,
sites 4 and 5 satisfy this property.)

For a given input data set H , the one-mutation-per-site condition imposes tight
constraints on the possible root haplotypes of a DPP. In what follows, we use
E(H) to denote the set of all sites in H at which every individual is heterozygous.

Lemma 1 (Constraints on the root). The haplotypes xr , yr of any possible
root individual of a DPP satisfy the following properties:

1. For all k /∈ E(H), there cannot be two distinct homozygous genotypes at site
k. If any individual i in H has a homozygous genotype hi[k] = h̃i[k] = c,
then the root individual also has the same genotype xr[k] = yr[k] = c.

2. H restricted to the sites in E(H) has exactly two distinct haplotypes, and
those haplotypes are equal to the root haplotypes xr, yr restricted to E(H).
More precisely, for any particular site j ∈ E(H), let HX (respectively, HY )
denote the set of n haplotypes with a 1 (respectively, 0) at site j. Then, for
all k ∈ E(H), both HX and HY are non-polymorphic at site k, with HX

and HY having different alleles. Further, xr (respectively, yr) restricted to
the sites in E(H) is the same as any haplotype in HX (respectively, HY )
restricted to E(H). So, for all k ∈ E(H), the root is heterozygous at site k.

Proof. If there exists a DPP, Property P1 implies that no two distinct homozy-
gous genotypes may exist any at site. Further, Property P2 implies that if H
contains an individual homozygous at site k, then the root individual of any
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DPP solution for H must be homozygous at that site. The first part of this
lemma then follows from these two facts.

Let T denote an n-leaved DPP for the n individuals in H , and suppose that
the root ρ of T is homozygous at some site j ∈ E(H). Then, since every individual
in H is heterozygous at that site, ρ is not in H . Now, the one-mutation-per-site
condition implies that there is an edge that separates ρ from all individuals in H ,
thus implying that T contains a leaf not labeled by any individual in H , which
in turn implies that T is not an n-leaved DPP for H , a contradiction. Hence,
the root individual of a DPP must be heterozygous at every site j ∈ E(H).
This fact and the one-mutation-per-site condition together imply that there is
no mutation event at any site j ∈ E(H) in the entire T , and the second part of
the lemma immediately follows. �

Lemma 1 implies that if a DPP exists for H , there is a unique choice for the
root. Using this lemma, we can show several useful results that hold if a DPP
exists. First, we need two definitions.

Definition 4 (Resolution of a vertex). In a graph G, resolution of a degree-d
vertex v incident to edges e1, . . . , ed (with d > 3), is an operation that splits v
into two new vertices v1 and v2, such that (i) v1 and v2 are joined by a new edge,
(ii) each of e1, . . . , ed is incident with either v1 or v2, (iii) both v1 and v2 have
degree ≥ 3, and (iv) the remaining vertices and edges of G remain the same.

Definition 5 (��, Join operation). For two k-by-l matrices M1 and M2, the
k-by-2l matrix M1 �� M2 is obtained by appending row i of M2 to row i of M1.

The following result provides a way to find the partition of H into HX and HY

if a DPP solution exists.

Proposition 1 (Partition of H into HX and HY ). For n > 1, suppose
there exists an n-leaved diploid perfect phylogeny T for the n individuals in H.
Then, the 2n haplotypes in H admit a unique 2n-leaved minimal unrooted haploid
perfect phylogeny τ satisfying the following:

1. If E(H) �= ∅, then there exists a unique edge in τ such that cutting that
edge partitions τ into two n-leaved subtrees such that, for each individual
i, haplotype hi appears as a leaf of one subtree while its mate haplotype h̃i

appears as a leaf of the other subtree. (See Figure 2a.)
2. If E(H) = ∅, then there exists a unique vertex v in τ with degree d, where

d > 3, such that resolving v and cutting the edge between the newly created
vertices partitions τ into two n-leaved subtrees such that, for each individual
i, haplotype hi appears as a leaf of one subtree while its mate haplotype h̃i

appears as a leaf of the other subtree. (See Figure 2b.)

Proof. Define τX , τY , xr, and yr as in the beginning of this section. If xr and yr

are not identical, then add a new edge between the root of τX and the root of
τY , and add mutation events on that edge for all sites k where xr[k] �= yr[k]. If
xr and yr are identical, combine τX and τY by identifying the root vertex ρX of
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Fig. 2. HPP and DPP examples for Propositions 1 and 2. (a) There is a unique edge
(namely, the edge on which sites 4 and 5 mutate) satisfying the property described in
part 1 of Proposition 1. (b) There is a unique vertex (labeled v in the figure) satisfying
the property described in part 2 of Proposition 1. (c) The unique minimal diploid
perfect phylogeny consistent with the HPP shown in (b).

τX with the root vertex ρY of τY , such that the new vertex ρX⊕Y obtained from
identifying ρX and ρY is incident with all the edges that were incident with ρX

or ρY . Then, Properties P1 and P2 implies that the resulting tree τX⊕Y is an
unrooted HPP for the haplotypes in H . Now, contract interior edges in τX⊕Y

with no mutations and call the resulting tree τ . Note that τ is a unique 2n-leaved
minimal unrooted HPP for the haplotypes in H .

If E(H) �= ∅, then xr and yr are not identical, so τ described above contains
an edge between xr and yr with at least one mutation. Therefore, τ satisfies
part 1 of the Proposition. If E(H) = ∅, then Lemma 1 implies that the root
haplotypes xr and yr are identical, so τ has the vertex ρX⊕Y described above.
Note that ρX⊕Y has degree > 3, and part 2 of the Proposition is satisfied by
construction. �

If a DPP exists for H and E(H) = ∅, part 2 of Proposition 1 indicates that there
is a unique degree-d vertex v, where d > 3, such that a partition of H into HX

and HY can be obtained from resolving that vertex. However, there can be more
than one admissible resolution of that vertex (and hence more than one possible
partition of H) that is consistent with the existence of a DPP. Below, we show
that all such resolutions imply the same minimal DPP. For illustration, consider
the HPP shown in Figure 2b. It admits two possible partitions of H into HX

and HY —either HX = {h1, h̃2, h3, h̃4, h5, h̃6} and HY = {h̃1, h2, h̃3, h4, h̃5, h6},
or HX = {h1, h̃2, h̃3, h4, h5, h6} and HY = {h̃1, h2, h3, h̃4, h̃5, h̃6}. It is easy to see
that both cases lead to the same DPP, depicted in Figure 2c. Now, the following
result establishes the uniqueness of a minimal DPP solution:

Proposition 2 (Uniqueness). If a DPP exists for H, then H admits a unique
minimal DPP.

Proof. Suppose that H admits a DPP. If E(H) �= ∅, then part 1 of Proposition 1
implies that there is a unique way to partition H into HX and HY . The root
haplotypes xr and yr are as described in Lemma 1. A minimal DPP for H must
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be a minimal HPP for HX �� HY with xr �� yr as the root sequence, and its
uniqueness follows from the uniqueness of a rooted minimal HPP for a binary
matrix with a given root.

Suppose that E(H) = ∅, and let τ and v be as in Proposition 1. Lemma 1
implies that the root haplotypes xr and yr of a DPP are identical. For ease
of exposition, suppose that those haplotypes are all-zero. Then, the haplotypes
assigned to v are all-zero. To each mutation in τ , one can associate a binary
character for the n individuals {1, 2, . . . , n} as follows. For each mutation occur-
ring on some edge in τ , imagine cutting that edge, and consider the subtree not
containing v that would be cut. Assign a 1 to every individual i with either hi

or h̃i as a leaf in that subtree, and assign 0s to all other individuals. (Since there
exists a DPP, no individual has both of its haplotypes in that subtree.) Now, the
tree shape and the assignment of mutations to the edges of a minimal DPP for
H must be the same as that of a minimal HPP for the set of binary characters
just described with the all-zero sequence as the root, and the uniqueness of that
DPP is immediate. �

3.2 A Linear-Time Algorithm for Haplotype Data

Using the above results and Gusfield’s linear-time algorithm for HPP [13], we
can devise the following O(mn)-time algorithm to find a DPP solution, if it
exists:

1. Check that the conditions in Lemma 1 are satisfied. If not, there is no DPP
solution. Otherwise, the root haplotypes xr and yr are uniquely determined.

2. Check whether there exists a 2n-leaved minimal unrooted HPP τ for H . If
not, there is no DPP solution. Otherwise, check whether a partition of the
2n-by-m input matrix H into two n-by-m matrices HX and HY can be found
as described in Proposition 1.
(a) If E(H) �= ∅, the two ends of the edge in τ needed to be cut should be

labeled by xr and yr.
(b) If E(H) = ∅, then xr = yr. The vertex v described in the second part of

Proposition 1 is the one labeled by xr = yr. Determine whether there ex-
ists a resolution of v such that cutting the newly created edge partitions
H into HX and HY . If not, there is no DPP solution.

3. Test whether there exists an n-leaved HPP for the n-by-2m matrix HX �� HY

with xr �� yr as the root sequence. If so, then it corresponds to the unique
minimal DPP for H . Otherwise, there is no DPP solution.

4 DPP Haplotyping for Genotype Data

In [14], Gusfield considered phasing (or haplotyping) genotypic input data as an
HPP and provided a nearly-linear-time algorithm for the problem. Simpler but
slower solutions [2, 8] were subsequently proposed for the problem, and linear-
time algorithms were recently found [7, 33]. The absence of recombination and
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homoplasy imposes stringent constraints on the genealogy of asexual diploid indi-
viduals. In this section, we exploit such constraints to devise a simple linear-time
algorithm for the DPP Haplotyping Problem under the assumption of asexual
reproduction. Our approach has two stages. First, for a given input genotype
data set G, we find a DPP if it exists. Then, we use that DPP to find a phasing
solution for G.

4.1 A Linear-Time Algorithm for Constructing a DPP for Genotype
Data

Lemma 1 implies that genotypic states 0 and 1 (denoting homozygotes) cannot
both appear in any column in G. Further, the one-mutation-per-site condition
implies that, when a mutation occurs at a site, it is either of type 0 → 2 or
1 → 2, but never 2 → 0 or 2 → 1. Using these facts, we devise the following
linear-time algorithm for constructing a DPP for G, if it exists:

1. For every column k = 1, . . . , m in G do the following:
(a) Check if both 0 and 1 appear in column k. If so, there is no DPP solution.
(b) If column k contains neither a 0 nor a 1, then set zr[k] = 2.
(c) Else, if column k contains a 0 (1), then set zr[k] = 0 (zr[k] = 1).

2. If the above step has not failed, then there are at most two distinct genotypic
states in each column of G. Viewing each column as a two-state character
and each row as a haplotype, test whether G admits an n-leaved HPP with
zr as the root sequence, with mutations of type 0 → 2 or 1 → 2, depending
on the root character state. If such an HPP exists, it corresponds to the
unique minimal DPP for G.

With appropriate renaming of character states, the above algorithm can be car-
ried out in O(mn) time using Gusfield’s linear-time HPP algorithm for binary
matrices [13]. Note that if a DPP exists for an input genotype data, its root
genotype zr is uniquely determined as described in the above algorithm.

Due to space considerations, we omit the details of our algorithm for finding
a DPP haplotyping solution.

5 Diploid Imperfect Phylogeny

If a set of diploid sequences does not allow a diploid perfect phylogeny, then other
forces must be present in the evolutionary history. These may include homoplasy
or recombination events and further analysis is necessary to distinguish between
these possibilities.

Definition 6 (Diploid Imperfect Phylogeny). A diploid imperfect phylogeny
(DIP) for n diploid individuals is an n-leaved rooted tree T satisfying conditions
(2) and (3) in the definition of Diploid Perfect Phylogeny, and satisfying condi-
tion (1) with the modification that multiple mutations are possible at each site.
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In order to measure the strength of evidence to distinguish between homoplasy
and recombination events, we define a measure of deviation from a diploid perfect
phylogeny. For a diploid imperfect phylogeny T displaying a set of sequences S,
let MT (k) denote the number of edges in T corresponding to mutation at site k.

Definition 7. A diploid imperfect phylogeny T for input H is q-imperfect (or
q-near-perfect) if

∑
k:MT (k)≥1(MT (k)− 1) = q.

The diploid imperfect phylogeny problem is to find a DIP T displaying the input
sequences which minimizes the imperfection q. In particular, if the sequences can
be displayed in a diploid perfect phylogeny T , then MT (k) ≤ 1 for each site k,
and T satisfies q = 0.

In the case of haploid input sequences, the problem of constructing imperfect
haploid phylogenies has received much attention from both theoretical and prac-
tical points of view. Fernandez-Baca and Lagergren [9], Halperin and Eskin [17],
and Sridhar et al. [31] analyzed theoretical bounds for algorithms to solve this
problem to optimality, while Sridhar et al. [30] showed that the problem is fixed-
parameter tractable in the imperfection of the resulting phylogeny. Further, it
has been shown that linear programming approaches can efficiently handle data
sets of biological interest [32]. We now consider the case of constructing diploid
imperfect phylogenies and introduce a problem which casts this problem in the
framework of combinatorial optimization.

5.1 Group Steiner Tree Problem

The problem of reconstructing phylogenies is closely related to the Steiner Tree
Problem, a well studied problem in combinatorial optimization. Given a graph
G = (V, E) with edge costs and a set of terminals R ⊆ V , a Steiner tree in G is
a subgraph of G containing a path between any pair of terminals. The cost of a
Steiner tree T is the sum of the edge costs in T and the Steiner Tree Problem is
to find the minimum cost Steiner tree in G.

Let H be a set of input sequences of length m and let graph G be the m-cube
defined on vertices V = {0, 1}m and edges E = {(u, v) ∈ V×V :

∑
i |ui−vi| = 1}.

Let R ⊂ V be the set of binary sequences corresponding to the rows of input H .
The minimum (haploid) imperfect phylogeny problem is then equivalent to the
minimum Steiner tree problem on underlying graph G with terminal vertices R.
Even in this restricted setting, the Steiner tree problem is NP-complete [11].

To solve the diploid imperfect phylogeny problem, we introduce the following
more general Steiner tree problem. Let G = (V, E) be an undirected graph, let d
be a non-negative cost function on edge set E, and let R = R1 ∪R2 . . . Rk ⊂ V
be a partition of the terminal vertices into disjoint groups. A group Steiner tree
of G is a Steiner tree containing at least one vertex from each group Ri and the
Group Minimum Steiner Tree (GMST) Problem is to find the group Steiner tree
of minimum cost.

The diploid imperfect phylogeny problem can be transformed to an instance
of the Group Steiner Tree problem as follows. Let H = {hi, h̃i}n

i=1 be the input
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set of paired haplotype sequences to the diploid imperfect phylogeny problem,
where hi and h̃i are binary sequences of length m. Let graph G be the 2m-
cube (where vertices are binary sequences of length 2m and edges are pairs
of binary sequences with Hamming distance equal to one), and for each i, let
terminal group Ri be the pair of vertices {hih̃i, h̃ihi} ⊆ V (G). The GMST on
this instance is then equivalent to the minimum diploid imperfect phylogeny
problem on H .

Because of its computational complexity, an important component of any
computational approach for solving the Steiner Tree problem is to eliminate
vertices that cannot be present in any optimal tree. In the haploid imperfect
phylogeny problem, it has been shown that the Buneman graph of the input
sequences contains all optimal trees [3, 6]. Restricting the underlying graph of
the problem in such a way has been shown to be efficient and practical on real
data sets [32]. The following proposition shows an analogous results holds for
the diploid phylogeny problem:

Proposition 3. Let H be a set of n pairs of haplotype sequences {hi, h̃i} and
let B(H) denote the Buneman graph on ∪i{hih̃i, h̃ihi}. Then every minimum
imperfect diploid phylogeny T ∗(H) is a subgraph of B(H).

We prove this proposition using the following theorem of Bandelt et al. for
haploid imperfect phylogeny construction:

Theorem 1 (Bandelt et al.). [3, 29] For binary haplotype input sequences
H, let B(H) denote the Buneman graph on H. Then every minimum imperfect
phylogeny T ∗(H) is a subgraph of B(H).

Proof (Proposition 3). Let H = {hi, h̃i}n
i=1 be a set of n pairs of haplotype

sequences of length m. Suppose T ∗(H) is a minimum GMST on the hypercube
of dimension 2m with terminal groups Ri = {hi, h̃i} (1 ≤ i ≤ n). By definition,
T ∗(H) must contain at least one terminal ti from each terminal group Ri =
{hih̃i, h̃ihi}. It follows that T ∗(H) is a minimum Steiner tree on terminal set
{ti}n

i=1. By Theorem 1, T ∗(H) is a subgraph of the Buneman graph B({ti}n
i=1).

Since ti ∈ {hih̃i, h̃ihi}, it follows that T ∗(H) is a subgraph of the Buneman
graph B({hih̃i, h̃ihi}n

i=1) = B(H). ��

5.2 Integer Linear Programming Formulation

One approach for solving Steiner tree problems is to use integer linear pro-
gramming (ILP) methods. We use the multicommodity flow formulation for the
GMST problem, in which one unit of flow is sent from the root vertex to every
group. For a subgraph S of a graph G, associate a vector xS ∈ R

E , where edge
variable xS

e takes value 1 if e appears in S and 0 otherwise. Each edge (v, w) ∈ E
has two binary variables f i

v,w and sv,w: f i
v,w represents the amount of flow along

edge (v, w) whose destination is group Gi and variables sv,w are binary selection
variables denoting the presence or absence of edge (v, w) in the group Steiner
tree. The ILP is:
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min
∑

v,w∈V

dv,wsv,w (1)

subject to
∑
w∈V

f i
v,w =

∑
w∈V

f i
w,v for all v ∈ V \ (∪i Ri) (2)∑

v∈V

∑
t∈Ri

f i
v,t = 1,

∑
v∈V

∑
t∈Ri

f i
t,v = 0,

∑
v∈V

f i
r,v = 1 ∀ groups Ri (3)

0 ≤ f i
v,w ≤ sv,w for all t ∈ T , sv,w ∈ {0, 1} for all e ∈ E. (4)

Constraints (2) impose flow conservation on all vertices not belonging to any
group. Constraints (3) impose the inflow/outflow constraints on groups Ri. Fi-
nally, Constraints (4) impose the condition that there is positive flow on an edge
only if the edge is selected. This ILP solves the diploid imperfect phylogeny
problem to optimality.

6 Simulation Results

To mimic what was done in the past experimental studies [23,28], we considered
only a single locus, where a locus is a collection of sites. No recombination was
considered in our simulations. We implemented a forward simulator for a single
locus in a diploid population of constant size N undergoing discrete-time random
mating with non-overlapping generations. Given N diploid parents at generation
t − 1, individuals at generation t were obtained as follows: With probability
1 − ps, one parent was randomly chosen with replacement and it produced a
progeny via self-cloning. With probability ps, a pair of parents was randomly
chosen with replacement, and they produced a progeny via meiosis and mating.
When producing a progeny, either by self-cloning or by sexual reproduction,
new mutations were introduced according to a specified rate. This procedure
was repeated until N progenies were produced for generation t.

Forward simulations are computationally intensive, so we used N = 1000 to
obtain simulations in a reasonable time. We started each simulation at generation
0 with N identical diploid individuals, and then ran the simulation for τ = 4000
generations with ps > 0, followed by τA generations of asexual phase (i.e., with
ps = 0). Note that the average number of sexual reproductions in the history
of the entire population is τpsN . We took n diploid samples at the end of each
simulation. We performed the following two different types of simulation:

S1. Infinite-sites mutation model with the mutation rate fixed at 5× 10−3 per
locus. We used varying values of n, τA and ps, and performed 500 simula-
tions for each parameter setting.

S2. Finite-sites mutation model with homoplasy, using 25000 sites and muta-
tion rate u per locus; the per-site mutation rate is u/25000. We fixed n = 40
and used varying values of u, τA and ps. We performed 50 simulations for
each parameter setting.
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Infinite-sites case (S1): Under this ideal toy model with no recombination
or homoplasy, if the input data set does not admit a DPP solution, then it
would indicate that sexual reproduction has played a role in the evolutionary
history. To assess our chance of detecting signatures of past sexual reproduction,
we examined how often DPP solutions exist even if some amount of sexual
reproduction actually took place in the evolutionary history of the population.
The results are summarized in Table 1(a). These results suggest that infrequent
sexual reproduction may be difficult to detect, and that the signature of past
sexual reproduction may decay rather quickly with time. However, note that
the chance of detecting signatures of past sexual reproduction increases with the
sample size n. Likewise, the chance increases with the number of segregating sites
in the sample (results not shown). Instead of looking at one or a few genes at a
time, as done in the past [10,23,28], analyzing larger fractions of diploid genomes
should increase the chance of detecting signatures of past sexual reproduction.

Finite-sites case with homoplasy (S2): To test the performance of the ILP
described in Section 5.2, we analyzed data from the above-mentioned finite-
sites simulation with homoplasy. We report the results obtained from solver
CPLEX 12, but have also used the GNU Linear Programming Kit in order to
release a free version of our software. We performed extensive testing to analyze

Table 1. Simulation results discussed in Section 6. (a) Proportion of data sets admitting
DPP solutions in the infinite-sites simulation study S1, with the mutation rate = 5×10−3

per locus. (b) Average ratio q/η of the amount of homoplasy to the total number of
mutating sites in the finite-sites simulation study S2, with n = 40 and 25000 sites.

(a)

Asexual phase τA

n ps 0 100 500 1000 2000
10 1 × 10−5 0.98 0.99 0.99 1.00 1.00
25 1 × 10−5 0.96 0.99 0.99 0.99 1.00
50 1 × 10−5 0.95 0.99 0.99 0.99 1.00
75 1 × 10−5 0.94 0.98 0.99 0.99 1.00
10 1 × 10−4 0.79 0.86 0.94 0.96 1.00
25 1 × 10−4 0.67 0.79 0.93 0.96 1.00
50 1 × 10−4 0.60 0.77 0.92 0.95 1.00
75 1 × 10−4 0.56 0.75 0.92 0.95 1.00
10 1 × 10−3 0.20 0.34 0.65 0.83 0.95
25 1 × 10−3 0.08 0.20 0.57 0.80 0.95
50 1 × 10−3 0.03 0.15 0.52 0.79 0.95
75 1 × 10−3 0.01 0.14 0.50 0.78 0.95
10 1 × 10−2 0.01 0.05 0.43 0.71 0.95
25 1 × 10−2 0.00 0.01 0.29 0.65 0.94
50 1 × 10−2 0.00 0.00 0.25 0.63 0.93
75 1 × 10−2 0.00 0.00 0.24 0.62 0.93

(b)

Asexual phase τA

u ps 100 500 1000 2000
1 × 10−3 1 × 10−5 0.159 0.134 0.126 0.122
1 × 10−3 1 × 10−4 0.212 0.181 0.096 0.091
1 × 10−3 1 × 10−3 0.265 0.261 0.247 0.213
1 × 10−3 1 × 10−2 0.559 0.290 0.242 0.112
2 × 10−3 1 × 10−5 0.162 0.157 0.159 0.129
2 × 10−3 1 × 10−4 0.179 0.169 0.132 0.124
2 × 10−3 1 × 10−3 0.445 0.254 0.241 0.161
2 × 10−3 1 × 10−2 0.469 0.241 0.229 0.165
3 × 10−3 1 × 10−5 0.098 0.092 0.099 0.091
3 × 10−3 1 × 10−4 0.115 0.105 0.119 0.069
3 × 10−3 1 × 10−3 0.344 0.209 0.139 0.109
3 × 10−3 1 × 10−2 0.496 0.231 0.158 0.134
4 × 10−3 1 × 10−5 0.074 0.119 0.087 0.083
4 × 10−3 1 × 10−4 0.147 0.136 0.109 0.098
4 × 10−3 1 × 10−3 0.301 0209 0.138 0.097
4 × 10−3 1 × 10−2 0.440 0.206 0.183 0.136

n = number of diploid individuals sampled, ps = probability of sexual reproduction,
u = per-locus mutation rate.
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the scaling behavior of our algorithms to larger number of sites and samples.
While CPLEX is significantly faster for larger instances, GLPK is fast enough
to illustrate the practicality of our algorithms on data sets of sizes of current
biological interest. For each simulation instance, we used the ILP to find the
minimum DIP and then calculated the imperfection q (see Definition 7) of the
resulting diploid genealogy. This number corresponds to the minimum number
of back or recurrent mutations needed in addition to the number of mutations η
that would be present if the data admitted a DPP solution. As Table 1(b) shows,
for each setting of the mutation rate u, increasing the probability ps of sexual
reproduction or decreasing the number of generations in the asexual phase tends
to increase the mean ratio q

η . This suggests that, for a given mutation rate, the
amount of detected homoplasy may provide some information about past sexual
reproduction. For most of the simulations, the solver CPLEX solved the resulting
ILP in fractions of a second, with the largest instance taking 1.3 seconds.

7 Discussion

In this paper, we considered a new problem in phylogenetics. Reconstructing the
genealogy of diploid individuals is not only an interesting problem, but also has
important practical applications. We believe that such a genealogical approach
offers much more than can existing tests based on counting sequence differences
[23, 28] or considering a single haplotype per individual [12]. To gain intuition
on this new problem, we have explored algorithmic aspects of reconstructing
diploid genealogies. It remains an important open problem to develop a sound
statistical framework for studying the evolutionary history of asexual diploids,
allowing for occasional sexual reproduction, recombination, and hybridization.
Explicitly modeling the genealogy of asexual diploids will help to address a
number of important questions in evolutionary biology: Could it be that sexual
reproduction has actually occurred in the history of reputed ancient asexuals? If
so, how big a role has sexual reproduction played in their long-term evolutionary
success? If not, when was sexuality lost and how many independent times? For
those species that are mainly asexual but occasionally reproduce sexually, how
can we estimate the frequency of sexual reproduction? Can we distinguish the
effects of mitotic recombination from that of past sexual reproduction? How does
natural selection act on asexual diploids? The work described in this paper is a
modest step toward addressing such questions.

As mentioned in the introduction, no significantly high level of sequence di-
vergence was observed in the purportedly ancient asexual organism darwinulid
ostrocods. It remains an open question whether this finding for ostrocods can
be attributed to gene-conversion. It would be interesting to extend the work de-
scribed in this paper to develop a method of reconstructing parsimonious diploid
genealogies that explicitly incorporate sexual reproduction and gene-conversion.
As a first step, it will be interesting to investigate whether there exists an effi-
cient algorithm for reconstructing diploid genealogies with constrained patterns
of sexual reproduction and recombination, similar to the recent work on the so-
called galled-trees [15, 16, 18, 27]. Although we have focused on diploid perfect



On the Genealogy of Asexual Diploids 339

phylogeny for two-state characters in this paper, generalizing the work to han-
dle multi-state characters and polyploidy seems possible. (For all fixed number
of states, polynomial-time algorithms exist for the haploid perfect phylogeny
problem. See [1,20].)

Acknowledgment

We thank Dan Gusfield for many helpful comments on a preliminary version
of this manuscript. This research is supported in part by NIH grants K99-
GM080099 (YSS) and R01-HG002942 (CHL); by NSF grants IIS-0513910 (CHL),
CCF-0515378 (FL), and IIS-0803564 (FL); and by a Packard Fellowship for Sci-
ence and Engineering (YSS).

References

1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for the perfect
phylogeny problem when the number of character states is fixed. SIAM J. Com-
puting 23, 1216–1224 (1994)

2. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny:
A direct approach. J. Comput. Biol. 10, 323–340 (2003)

3. Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits
of human populations using median networks. Genetics, 743–753 (1989)

4. Barton, N.H., Charlesworth, B.: Why sex and recombination? Science 281, 1986–
1990 (1998)

5. Birky Jr., C.W.: Bdelloid rotifers revisited. Proc. Nat. Acad. Sci. 101, 2651–2652
(2004)

6. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson.,
F., et al. (eds.) Mathematics in the Archeological and Historical Sciences, pp.
387–395. Edinburgh University Press (1971)

7. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phy-
logeny haplotyping (PPH) problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail,
S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500,
pp. 585–600. Springer, Heidelberg (2005)

8. Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure
via perfect phylogeny. J. Bioinf. Comput. Biol. 1, 1–20 (2003)

9. Fernandez-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect
phylogeny. SIAM Journal on Computing 32, 1115–1127 (2003)

10. Fontaneto, D., Herniou, E.A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C.,
Barraclough, T.G.: Independently evolving species in asexual bdelloid rotifers.
PLoS Biology 5(4), e87 (2007)

11. Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Ad-
vances in Applied Mathematics 3(43-49), 299 (1982)

12. Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U., Shapiro, E.: Genomic vari-
ability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1(5),
e50 (2005)

13. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21,
19–28 (1991)



340 F. Lam, C.H. Langley, and Y.S. Song

14. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and effi-
cient solutions. In: Proc. 6th Annual Intl. Conf. on Research in Computational
Molecular Biology (RECOMB), pp. 166–175 (2002)

15. Gusfield, D.: Optimal, efficient reconstruction of Root-Unknown phylogenetic net-
works with constrained recombination. J. Comput. Sys. Sci. 70, 381–398 (2005)

16. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phy-
logenetic networks with constrained recombination. J. Bioinf. Comput. Biol. 2,
173–213 (2004)

17. Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using Im-
perfect Phylogeny. Bioinformatics 20, 1842–1849 (2004)

18. Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.-K.: Constructing a smallest
refining galled phylogenetic network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail,
S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500,
pp. 265–280. Springer, Heidelberg (2005)

19. Judson, P.O., Normark, B.B.: Ancient asexual scandals. Trends Ecol. Evol. 11,
41–46 (1996)

20. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration
of perfect phylogenies when the number of character states is fixed. SIAM J.
Computing 26, 1749–1763 (1997)

21. Keightley, P.D., Otto, S.P.: Interference among deleterious mutations favours sex
and recombination in finite populations. Nature 443, 89–92 (2006)

22. Lunt, D.: Genetic tests of ancient asexuality in root knot nematodes reveal recent
hybrid origins. BMC Evolutionary Biology 8, 194 (2008)

23. Mark Welch, D., Meselson, M.: Evidence for the evolution of bdelloid rotifers
without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000)

24. Martens, K., Rossetti, G., Horne, D.J.: How ancient are ancient asexuals? Proc.
R. Soc. London B 270, 723–729 (2003)

25. Maynard Smith, J.: The Evolution of Sex. Cambridge University Press, Cambridge
(1978)

26. Maynard Smith, J.: Contemplating life without sex. Nature 324, 300–301 (1986)
27. Nakhleh, L., Warnow, T., Linder, C.: Reconstructing reticulate evolution in

species – theory and practice. In: Proc. 8th Annual Intl. Conf. on Research in
Computational Molecular Biology (RECOMB), pp. 337–346 (2004)

28. Schön, I., Martens, K.: No slave to sex. Proc. R. Soc. London B 270, 827–833
(2003)

29. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
30. Sridhar, S., Blelloch, G.E., Ravi, R., Schwartz, R.: Optimal imperfect phylogeny

reconstruction and haplotyping. In: Proceedings of Computational Systems Bioin-
formatics, pp. 199–210 (2006)

31. Sridhar, S., Dhamdhere, K., Blelloch, G.E., Halperin, E., Ravi, R., Schwartz, R.:
Simple reconstruction of binary near-perfect phylogenetic trees. In: Proceedings
of International Workshop on Bioinformatics Research and Applications, pp. 799–
806 (2006)

32. Sridhar, S., Lam, F., Blelloch, G.E., Ravi, R., Schwartz, R.: Efficiently finding the
most parsimonious phylogenetic tree via linear programming. In: Măndoiu, I.I.,
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Abstract. Next-generation sequencing technologies produce a large
number of noisy reads from the DNA in a sample. Metagenomics and
population sequencing aim to recover the genomic sequences of the species
in the sample, which could be of high diversity. Methods geared towards
single sequence reconstruction are not sensitive enough when applied in
this setting. We introduce a generative probabilistic model of read gener-
ation from environmental samples and present Genovo, a novel de novo
sequence assembler that discovers likely sequence reconstructions under
the model. A Chinese restaurant process prior accounts for the unknown
number of genomes in the sample. Inference is made by applying a series
of hill-climbing steps iteratively until convergence. We compare the per-
formance of Genovo to three other short read assembly programs across
one synthetic dataset and eight metagenomic datasets created using the
454 platform, the largest of which has 311k reads. Genovo’s reconstruc-
tions cover more bases and recover more genes than the other methods,
and yield a higher assembly score.

1 Introduction

Metagenomics and population sequencing aim to recover the genomic sequences
in a genetically diverse environmental sample. Examples of such environments
include biomes of narrow systems such as human gut [13], honey bees [8], or
corals [23,19] and also larger ecosystems [24,22]. These studies advance our sys-
temic understanding of biological processes and communities. In addition, the
recovered sequences can enable the discovery of new species [24] or reveal details
of poorly understood processes [26]. Another set of examples include cancer tu-
mor cells [27] and pathogen populations such as HIV viral strains [25], where
the genetic diversity is associated with disease progression and impacts the effec-
tiveness of the drug treatment regime. Finally, the genetic structure of microbial
populations may yield insight into evolutionary mechanisms such as horizontal
gene transfer, and enable determination of genetic islands carrying functional
toolkits necessary for survival and pathogenicity [20].

Such studies are made possible through the use of next-generation sequenc-
ing technologies, such as the Illumina Genome Analyzer (GA), Roche/454 FLX
system, and AB SOLiD system. Compared to older sequencing methods, these
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sequencers produce a much larger number of relatively short and noisy reads of
the DNA in a sample, at a significantly lower cost.

While there are a few de novo assemblers aimed at single sequence reconstruc-
tion from short reads [6,29,15,5], there are no such tools designed specifically for
metagenomics. The challenges stem from uncertainty about the population’s size
and composition. Additionally, coverage across species is uneven and affected by
the species’ frequency in the sample. Analysis of the complete populations re-
quires sensitive methods that can reconstruct sequences even for the low-coverage
species. Methods geared towards single sequence reconstruction are not sensitive
enough when applied in this setting.

Such single sequence reconstruction tools commonly frame the problem as
a search for an Eulerian path in a de Bruijn graph. The nodes of the graph
are k-mers, with an edge connecting any two k-mers positioned consecutively
on the same read. As mentioned by Chaisson et al. [7], “the Eulerian approach
works best for error-free reads and quickly deteriorates as soon as the reads
have even a small number of base-calling errors”. To cope with this problem, a
large computational effort is used to detect and correct read errors before any
assembly is done. While this approach is feasible for the ultra-short Illumina
reads, the task becomes much harder in 454 reads, as the average read length is
above 100 (and can reach 400b) and almost every read has an error. In addition,
the error correction usually treats reads with low-frequency k-mers as erroneous
and discards them. In metagenomics, this could filter out low-frequency species.

We introduce a generative probabilistic model of read generation from envi-
ronmental samples and present Genovo, a novel de novo sequence assembler that
works by discovering likely sequence reconstructions under the model. The model
captures the uncertainty about the population structure as well as the noise
model of the sequencing technology. A Chinese restaurant process prior accounts
for the unknown number of genomes in the sample. To discover likely assemblies
we perform a series of deterministic and stochastic hill-climbing moves, based
on the iterated conditional modes (ICM) algorithm. As we show, our Bayesian
approach offers a better sensitivity for assembly in highly diverse environments.

The accurate and sensitive reconstruction of populations has been tackled
in restricted domains, such as HIV sequencing, both experimentally [25] and
computationally [16,11,28]. However, these tools require prior information on the
population and utilize a reference genome. A Chinese restaurant process, similar
to ours, was also used in the recent work of Zagordi et al [28]. However, their
approach is applicable only to a very small-scale (103) set of reads already aligned
to a short reference sequence. Our method uses no prior information, scales up to
the order of 105 454 reads, and simultaneously performs read multiple alignment,
read denoising and de novo sequence assembly.

We compare the performance of our algorithm to three state of the art short
read assembly programs in terms of the number of GenBank bases covered,
the number of amino acids recognized by PFAM profiles, and using a score
we developed, which quantifies the quality of a de novo assembly using no ex-
ternal information. The comparison is conducted on 8 metagenomic datasets
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[20,3,4,8,23,10] and one synthetic dataset. Genovo’s reconstructions show better
performance across a variety of datasets. Genovo is publicly available online at
http://cs.stanford.edu/genovo.

2 Methods

Probabilistic Model
An assembly consists of a list of contigs, and a mapping of each read to a
contiguous area in a contig. The contigs are represented each as a list of DNA
letters {bso}, where bso is the letter at position o of contig s. For each read
xi, we have its contig number si, and its starting location oi within the contig.
We denote by yi the alignment (orientation, insertions and deletions) required to
match xi base-for-base with the contig. Bold-face letters, such as b or s, represent
the set of variables of that type. The subscript −i excludes the variable indexed
i from the set.

Our probabilistic model can be characterized as a generative process, in which
we first construct an unbounded number of contigs (each has unbounded length),
then assign place holders for the beginning of reads in a coordinate system of
contigs and offsets, and finally copy each read’s letters (with some noise) from
the place it is mapped to in the contig. Formally, this is defined as follows:

1. Infinitely many letters in infinitely many contigs are sampled uniformly:

bso ∼ Uniform(B) ∀s = 1 . . .∞, ∀o = −∞ . . .∞

where B is the alphabet of the bases (typically B = {A,C,G,T}).
2. N empty reads are randomly partitioned between these contigs:

s ∼ CRP(α, N)

We use the Chinese Restaurant Process (CRP) [1] as a prior for the random-
ized partition. CRP(α, N) generates a partition of N items by assigning the
items to classes incrementally. If the first i− 1 items are assigned to classes
s1..si−1, then item i joins an existing class with a probability proportional
to the number of items already assigned to that class, or it joins a new class
with a probability proportional to α. The likelihood of a partition under
this construction is invariant to the order of the items, and thus yields the
following conditional distribution:

p(si = s|s−i) =
1

N − 1 + α
·
{

N−i,s s is an existing class
α s represents a new class

Where N−i,s counts the number of items, not including i, that are in class
s. The parameter α controls the expected number of classes, which in our
case represent contigs. In the appendix we show how to set it correctly.



344 J. Laserson, V. Jojic, and D. Koller

3. The reads are assigned a starting point oi within each contig:

ρs ∼ Beta(1, 1 + β) ∀s that is not empty
oi ∼ G(ρs) ∀i = 1..N

We set β = 100. The distribution G is a symmetric variation of geomet-
ric distribution that includes all the negative integers and is centered at 0.
The parameter ρs controls the length of the region from which reads are
generated:

G(o; ρ) =
{

0.5(1− ρ)|ot|ρ o �= 0
ρ o = 0

4. Each read is assigned a length li, and then its letters xi are copied (with
some mismatches) from its contig si starting from position oi and according
to the alignment yi (encoding orientation, insertions and deletions):

li ∼ L ∀i = 1..N

xi, yi ∼ A(li, si, oi,b, pins, pdel, pmis) ∀i = 1..N

L is any arbitrary distribution over read lengths. The distribution A repre-
sents the noise model known for the sequencing technology (454, Illumina,
etc.). For example, if each read letter has a pmis probability to be copied
incorrectly, and the probabilities for insertions and deletions are pins and
pdel respectively, then the log-probability log p(xi, yi|oi, si, li,b) of generat-
ing a read in the reverse orientation with nhit matches, nmis mismatches,
nins insertions and ndel deletions is

log 0.5+nhit log(1−pmis)+nmis log
(

pmis

|B| − 1

)
+nins log(pins)+ndel log(pdel)

assuming an equal chance (0.5) to appear in each orientation and an inde-
pendent noise model. Given an assembly, we denote the above quantity as
scorei

READ, where i is the read index.

This model includes an infinite number of bso variables, which clearly cannot all
be represented in the algorithm. The trick is to treat most of these variables as
‘unobserved’, effectively integrating them out during likelihood computations.
The only observed bso letters are those that are supported by reads, i.e. have
at least one read letter aligned to location (s, o). Hence, in the algorithm de-
tailed below, if a contig letter loses its read support, it immediately becomes
‘unobserved’.

Algorithm
Our algorithm is an instance of the iterated conditional modes (ICM) algorithm
[2], which maximizes local conditional probabilities sequentially, in order to reach
the MAP solution. Starting from any initial assembly (our initializing assembly
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treats each read as occupying its own contig), our algorithm performs a series
of hill-climbing moves in the space of assemblies, in an iterative fashion. We run
our algorithm until convergence (200-300 iterations), and then we output the
assembly that achieved the highest probability thus far. Running the algorithm
multiple times with different random seeds showed no significant influence on the
resulting assembly. This suggests that while our algorithm has some stochastic
elements, the variability of the output is low. We list below the moves used to
explore the space:

Consensus Sequence. This type of move performs ICM updates over the
(observed) letter variables bso. For each location (s, o), let ab

so be the number
of reads in the current assembly that align the letter b ∈ B to location (s, o).
Since we assumed a uniform prior over the contig letters, we optimize the score
by setting bso = arg maxb∈B ab

so (ties broken randomly).

Read Mapping. This move performs stochastic ICM updates over the read
variables si, oi, yi. For each read i, we start by removing it completely from the
assembly. We choose a new location and alignment for the read (si, oi, yi) by
sampling from the joint posterior p(si = s, oi = o, yi = y|xi,y−i, s−i,o−i,b, ρ).

For every potential location (s, o), we first compute y∗
so, the best alignment of

the read for that location, using the banded Smith-Waterman algorithm (applied
to both read orientations):

y∗
so = arg max

y
p(xi, y|si = s, oi = o,b).

This includes locations where the read only partially overlaps with the contig, in
which case aligning a read letter to an unobserved contig letter entails a prob-
abilistic price of log(|B|−1) per letter. We now set si, oi by sampling a location
(s, o) from p(si = s, oi = o, y∗

so|·):

p(si =s, oi =o, y∗
so|·) ∝ p(si =s|s−i)p(oi =o|si = s, ρs)p(xi, y

∗
so|si =s, oi =o,b)

∝ Ns · G(o; ρs) · p(xi, y
∗
so|si = s, oi = o,b)

The weights {Ns}, which are counting the number of reads in each sequence,
encourage the read to join large contigs. As dictated by the CRP, we also include
the case where s represents an empty contig, in which case we simply replace
Ns with α in the formula above. In that case, the p(xi, y

∗
so) component also

simplifies to li log(|B|−1), where li is the length of the read. We set yi = y∗
sioi

.
As bad alignments render most (s, o) combinations extremely unlikely, we

significantly speed up the above computation by filtering out combinations with
implausible alignments. A very fast computation can detect locations that have
at least one 10-mer in common with the read. This weak requirement is enough
to filter out all but a few locations, making the optimization process efficient
and scalable. A further speedup is achieved by caching common alignments.

Geometric Variables. This step performs ICM updates on the ρs variables.
Each draw of a location o from G(ρs) can be thought of a set of |o|+1 Bernoulli
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trials with |o| failures and one success. Let ô1, . . . , ôNs be the offsets of the reads
assigned to sequence s. By a known property of the Beta distribution, it follows
that ρs|ô1, . . . , ôNs ∼ Beta(1 + Ns, 1 + β + Os) where Os =

∑Ns

k=1 |ôk|. We set ρs

to Ns

Ns+β+Os
, the mode of the above distribution.

Global Moves. The above ICM moves are very local. To speed up convergence,
we employ the following set of global moves, each one changes a set of variables
at once, and hence takes a larger step in the space of assemblies. (a) Propose
indels. If at a specific location most reads have an insertion, we propose to
delete the corresponding letter in the contig and realign the reads, and accept
the proposal if that improves the likelihood. For example, if out of n reads, a
reads have an insertion, then after the proposed change those a reads will have
one less insertion each, and n − a reads will have a new deletion. We have a
similar move for deletions. (b) Center. We change the coordinate system of
each sequence to maximize the p(o) component of the likelihood. (c) Merge.
We merge two contigs whose ends overlap, if it improves the likelihood.

Chimeric Reads. Chimeric reads [17] are reads with a prefix and a suffix
matching distant locations in the genome. In our algorithm, these rare corrupted
reads often find their way to the edge of an assembled contig, thus interfering
with the assembly process. To deal with this problem we occasionally (every 5
iterations) disassemble the reads sitting in the edge of a contig, thus allowing
other correct reads or contigs to merge with it and increase the likelihood beyond
that of the original state. If such a disassembled read was not chimeric, it will
reassemble correctly in the next iteration, thus keeping the likelihood the same
as before.

Evaluation Metrics
Running on a set of reads, each method outputs the list of contigs that it was
able to assemble from the reads. As done in previous studies [6,18], we evaluate
only contigs longer than 500bp.

Since for non-simulated data we do not have the actual list of genomes (the
‘ground truth’) that generated it, exact evaluation of de novo assemblies in
metagenomic analysis is hard. We utilize three different indicators for the quality
of an assembly. For the first indicator, we BLASTed the contigs produced by each
method. Our goal was to estimate the number of genome bases that the contigs
span. For each dataset, we used the BLAST hits of all the methods to compile a
pool of genomes (downloaded from GenBank) that best represent the consensus
among the methods. Then, for each method, each base in the pool’s genomes
received a score indicating the quality of the best alignment covering it (the
BLAST alignment score divided by the length of the aligned interval). We were
then able to ask the question “How many pool bases were covered with a score
greater than x?”, and plot it in a graph which we call the BLAST profile.

The value of the reconstructed sequences lies in the information they carry
about the underlying population, such as is provided by the functional anno-
tation of the contigs. Our second indicator evaluated the assemblies based on
this information. We decoded the contigs into protein sequences (in all 6 reading



Genovo: De Novo Assembly for Metagenomes 347

frames) and annotated these sequences with PFAM profile detection tools [12].
We denote by scorePFAM the total number of decoded amino acids matched by
PFAM profiles.

The above two indicators can be easily biased when exploring environments
with sequences that are not yet in these databases, and hence our third indica-
tor is a score that uses no external information and relies solely on the reads’
consistency. Given an assembly, denote by S the number of contigs, and by L
the total length of all the contigs. We measure the quality of an assembly using
the expression ∑

i

scorei
READ − log(|B|)L + log(|B|)V0S.

The first term penalizes for read errors and the second for contig length, embody-
ing the trade off required for a good assembly. For example, the first term will
be optimized by a naive assembly that lays each read in its own contig (without
any changes), but the large number of total bases will incur a severe penalty
from the second term. These two terms interact well since they represent prob-
abilities - the first term is the (log) probability for generating each noisy read
from the contig bases it aligns to, and the second term is the (log) probability
for generating (uniformly) each contig letter. The third term ensures a minimal
overlap of V0 bases between two consecutive reads. To see this, assume two reads
have an overlap of V bases. If you split the contig into two at this position, the
third term gives you a ‘bonus’ of log(|B|)V0, while the second term penalizes you
for log(|B|)V for adding V new bases to the assembly. Hence, we will prefer to
merge the sequences iff V > V0. We set V0 to 20.

To be able to compare the above score across different datasets, we normalized
it by first subtracting from it the score of a naive assembly that puts each read
in its own contig, and then dividing this difference by the total length of all
the reads in the dataset. We define scoredenovo to be this normalized score. See
Appendix for another derivation of scoredenovo , based on our model.

3 Results

While many sequencing techologies are gaining popularity, most of the short-
read metagenomic datasets currently available have been sequenced using 454
sequencers (probably due to their longer reads), hence we focus on this technol-
ogy. We compare the performance of our algorithm to three other tools: Velvet
[29], EULER-SR [6] and Newbler, the 454 Life Science de novo assembler. New-
bler was specifically designed for 454 reads and is provided with the 454 machine.
Velvet and EULER-SR were designed for the shorter Illumina reads, but support
454 reads as well and are freely available.

Before testing the methods on the metagenomic datasets, we benchmarked
them on a single sequence assembly task. We used run SRR024126 from NCBI
short read archive, which contains 110k reads taken from E. coli (length 4.6Mb).
Even though Genovo was not optimized for the single sequence assembly task,
it performed on par with the other methods, as Table 1 shows.
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Table 1. Comparing the methods on a single sequencing task. Contigs were mapped
using BLAST to the E. coli reference strand (NC 000913.2). Coverage computed by
taking the union of all matching intervals with length > 400b. Identities are exact base
matches (i.e. not including gaps and mismatches). Nx is the largest value y such that
at least x% of the genome is covered by contigs of length ≥ y.

no. total contig N50 N90 coverage identities
contigs length(kb) (kb) (kb) (%) (%)

Genovo 129 4693 76.9 25.9 88.4 98.5
Newbler 150 4645 60.4 17.6 88.9 98.5
Velvet 621 4496 10.5 3.6 87.6 98.6
Euler 828 4493 7.6 2.6 86.9 98.6

Table 2. Metagenomic Datasets. Accession numbers starting with ‘SRR’ refer to NCBI
Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi).

name (#reads) description (source)

Bee1(19k),
Bee2(36k) [8]

Samples from two bee colonies. Data obtained by J. DeRisi Lab.

Coral(40k) [23] Samples from viral fraction from whole Porites compressa tissue
extracts (SRR001078).

Tilapia1(50k),
Tilapia2(64k) [10]

Samples from Kent SeeTech Tilapia farm containing micro-
bial (SRR001069) and viral (SRR001066) communities isolated
from the gut contents of hybrid striped bass.

Peru(84k) [3] Marine sediment metagenome from the Peru Margin sub-
seafloor (SRR001326).

Microbes(135k) [4] Samples from the Rios Mesquites stromatolites in Cuatro Cien-
agas, Mexico (SRR001043).

Chicken(311k) [20] Samples of microbiome from chicken cecum. Dataset at
http://metagenomics.nmpdr.org, accession 4440283.3

Synthetic(50k) Metagenomic samples of 13 virus strains, generated using
Metasim [21], a 454 simulator. See Appendix for list.

We carried on to compare the methods in a metagenomics setting. The com-
parison is conducted on 8 datasets from 6 different studies, and one synthetic
dataset (see Table 2). Figure 1 compares the different methods across datasets
using scoredenovo (we could not run EULER-SR on Coral). Genovo wins on every
dataset, with as high as 366% advantage over the second best method. On the
synthetic dataset, Genovo assembled all the reads (100.0%) into 13 contigs, one
for each virus. The assemblies returned by the other methods are much more
fractured — Euler, Velvet and Newbler returned 33, 47, and 38 contigs, repre-
senting only 88%, 36% and 68% of the reads, respectively. The real datasets with
highest scoredenovo were Bee1, Bee2 and Tilapia1. Genovo was able to assemble
in large contigs 60%, 80% and 96% of the reads in these datasets, respectively,
compared to 30%, 25% and 59% achieved by the second best method. The low
scoredenovo values for the other datasets reflect a low or no overlap between most
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Fig. 1. Comparing the methods based on scoredenovo. The numbers above the bars rep-
resent the improvement (in percentages) between Genovo and the second-best method.
To compute scoredenovo, we had to complete each list of contigs to a full assembly, by
mapping each read to the location that explains it best. Reads that did not align well
to any location were treated as singletons - aligned perfectly to their own contig.

reads in those datasets. Such reads almost always lead to assemblies with many
short contigs, regardless of the method used, which drive the score to 0. An
example of such dataset is Chicken — all methods produced assemblies which
ignored at least 97% of the reads.

Figure 2 shows the BLAST profile for each method, a curve that visualizes the
quantity vs. the quality of the contigs (see Methods). On the synthetic dataset,
Genovo covered almost all the bases (99.7%) of the 13 viruses. Other methods
did poorly: Newbler, Euler and Velvet covered 72.4%, 63.4% and 39.3% of the
bases, respectively. As for the real datasets, in Bee1, Bee2, Tilapia2 and Chicken
many contigs showed a significant match in BLAST (E < 10−9) and the BLAST
profiles provide a good indication for the assembly quality. In those cases not
only does Genovo discover more bases, but it also produces better quality contigs,
since Genovo’s profile dominates the other methods even on high thresholds for
the alignment quality (except on Tilapia2). These differences could also translate
to more species. For example, in Bee1, none of Euler’s and Newbler’s contigs
matched in BLAST to Apis mellifera 18S ribosomal RNA gene, even though
Genovo and Velvet had contigs that matched it well. On the other datasets
most of the contigs did not show a significant match, and hence the genome
pools compiled for those datasets are incomplete in the sense that they do not
represent all the genomes in the (unknown) ground truth.

Figure 3 compares the methods in terms of the number of amino acids matched
by a protein family, as measured by scorePFAM (see Methods). In all datasets Gen-
ovo has the highest score (with the exception of Bee1, where Newbler wins by
260aa), indicating that Genovo’s contigs hold more (and longer) annotated re-
gions. For example, in the highly fractured Chicken dataset, our BLAST and
PFAM results are markedly higher: 65% more bases were significantly (E < 10−9)
matched in BLAST and 36% more amino acids recognized in PFAM compared
to the second best method (Newbler). The difference is also qualitative — the
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Fig. 2. The BLAST profiles of each method across all datasets. For each dataset we
compiled a pool of sequences representing the ground truth. For each method, each base
in the pool receives a score indicating the quality of the best alignment covering it.
The curve shows how many bases received a score higher than the x value. The dashed
horizontal line represents the total no. of bases in the pool covered by at least one
method. The dashed vertical line represents the alignment quality of an exact match.
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Fig. 3. Comparing the methods based on scorePFAM. The contigs were translated to
proteins in all 6 reading frames. scorePFAM measures how many amino acids were recog-
nized by protein families profilers. Due to the scale difference, results are divided into
two figures with the datasets on the right figure having an order of magnitude more
annotated amino acids. The numbers above the bars show the change between Genovo
and the best of the other methods.
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contigs reconstructed by our method were recognized by 84 distinct PFAM fam-
ilies, compared to 67 for Newbler’s contigs. It is important to note that in our
assembly, the length of matched regions ranged from 54 to1206aa, with average
region length ∼289aa. Similar performance on PFAM matching was achieved on
the Tilapia2 dataset, where the number of matched families was 47 (compared
to Newbler’s 33), and the range of matched regions was 60-1137aa. Such long
matched regions could not be recovered from a read-level analysis.

The BLAST and PFAM results should not be taken as the ultimate measure
of the reconstruction quality, or the dataset quality, since environmental samples
may contain uncultured species that are phylogenetically distant from anything
sequenced before. An example of such a dataset is Tilapia1, where almost all
the contigs did not match significantly, as shown by the BLAST profiles and
scorePFAM, even though they had significant coverage (one of our contigs, with no
significant BLAST match, had a segment of 3790 bases with a minimal coverage
of×85 and a mean coverage of×177). Importantly, scoredenovo does not suffer from
the same problems since it is based on the quality of the read data reconstruction,
rather than the presence of a ground truth proxy.

4 Discussion

Metagenomic analysis involves samples of poorly understood populations. The
sequenced sets of reads approximate that population and can yield informa-
tion about the distribution of gene functions as well as species. However, due
to fluctuations of the genomes’ coverage, these distributions may be poorly es-
timated. Furthermore, a read-level analysis may not be able to detect motifs
that span multiple reads. Finally, a detailed analysis of events such as horizontal
gene transfer will necessitate obtaining both the transposed elements and the
genetic context into which they transposed. All of these concerns, in addition to
a desire to obtain sequences for novel species, motivate development of sequence
assembly methods aimed at problems of population sequencing.

Uncertainty over the sample composition, read coverage, and noise levels make
development of methods for metagenomic sequence assembly a challenging prob-
lem. We developed a method for sequence assembly that performs well both on
biologically relevant scores (based on BLAST and PFAM matches) and on a
score that uses no external information. One advantage of our approach is that
our probabilistic model is modular, permitting changes to the noise model with-
out the need to modify the rest of the model. Thus, the extensions to other
sequencing methodologies, as they are applied to metagenomic data, should be
fairly straightforward. In addition, instead of a uniform prior over the genome
letters one can use a prior based on a reference genome. Such prior will boost
the model’s sensitivity in detecting variants of that genome, which can be useful
when sequencing viral populations or transcriptome.

Our algorithm performs deterministic and stochastic hill-climbing moves
based on the conditional probabilities derived from our probabilistic model. This
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approach is suited for the problem of finding the best assembly. In a setting
where the goal is to find multiple alternative reconstructions (alternative splicing,
horizontal gene transfer), the same formulas can be used to construct a sampler
that comprehensively explores the space according to the MCMC algorithm, and
is thus more likely to explore all the modes of the distribution.

The running time required to construct an assembly can range from 15 minutes
on a single CPU for a dataset with 40k reads up to a few hours for a dataset
with 300k 454 reads, depending not only on the size but also on the complexity
of the dataset. Newbler, Velvet and Euler typically provide their results on the
order of minutes. Our increase in computational time is compatible with the
time spent on a next generation sequencing run and it is worthwhile considering
the superior results compared to the other assemblers.

The promise of metagenomic studies lies in their potential to elucidate inter-
actions between members of an ecosystem and their influence on the environ-
ment they inhabit. For example, deeper understanding of constituent parts of
the microbiota inhabiting humans [9,13,14] as well as their evolution in response
to environmental changes, such as presence of antibiotics, will be necessary for
targeted drug design. In order to begin answering questions about these pop-
ulations, systematic sequence level analysis is necessary. With the advances of
the sequencing technology and increases in the coverage, methods which can
explore the space of possible reconstructions will become even more important.
The model and method introduced in this paper are well suited to meet these
challenges.

Acknowledgements

This material is based upon work supported under a Stanford Graduate Fellow-
ship and a National Science Foundation Grant BDI-0345474.

References

1. Aldous, D.: Exchangeability and related topics. École d’été de probabilités de Saint-
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Appendix

Understanding the Likelihood
In order to choose the α parameter correctly, we have to understand our model
better. Assume there are N reads and S contigs, with Ns the number of reads
in contig s. Our model log-likelihood can be written as

log p(x,y|s,o,b) + log p(b) + log p(o|s, ρ) + log p(s)

where

log p(x,y|s,o,b) =
∑

i

scorei
READ

log p(b) = − log(|B|)L

log p(s) = log(α)S +
∑

s

log Γ (Ns) + const(α, N)

log p(o|s, ρ) =
∑

s

Os log(1 − ρs) + Ns log ρs + const(N);

where L is the total length of all the contigs, Os =
∑

i:si=s |oi|, and Γ (·) is
the gamma function. There is an interesting interaction between log p(s) and
log p(o). To simplify log p(s) we use the Sterling approximation log Γ (x) ≈(
x− 1

2

)
log x− x + 1

2 log(2π):∑
s

log Γ (Ns) ≈
∑

s

Ns log Ns +
1
2

log(2π)S − 1
2

∑
s

log Ns + const(N)

To simplify log p(o), we will assume there is a roughly uniform coverage across all
contigs, with d the average distance between the oi of two consecutive reads. It
follows that contig s is roughly of length Nsd. After a centering move, the reads’
offsets stretch from −Nsd/2 to Nsd/2, and we can thus estimate as Os = N2

s d/4.
When ρs is updated, it is set to be

ρs =
Ns

Ns + β + Os
=

4
4 + β

Ns
+ Nsd

≈ 4
Nsd

(here we assume Ns >> β ≥ 1). Using Taylor approximation:

log(1− ρs) ≈ −ρs − 0.5ρ2
s = − 4

Nsd
− 8

N2
s d2

Hence:

log p(o|s, ρ) =
∑

s

N2
s d

4

(
− 4

Nsd
− 8

N2
s d2

)
+
∑

s

Ns(log
4
d
− log Ns)

= −
∑

s

Ns log Ns −
2
d
S + const(N, d)
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Combining the formulas for log p(o) and log p(s), the most dominant term cancels
out and we obtain this formula for the log-likelihood (removing constants):

∑
i

scorei
READ − log(|B|)L +

(
log α− 2

d
+

1
2

log(2π)
)

S − 1
2

∑
s

log Ns

As the last term is in effect very weak, this can be seen as an alternative deriva-
tion for scoredenovo .

Consider an assembly that has two contigs with a perfect overlap of V0 bases.
Now consider the assembly obtained by my merging (correctly) the two overlap-
ping contigs. For simplicity, assume both contigs have N0 reads. The difference in
log-likelihood between those two assemblies log p(merged)− log p(split) becomes
zero when

log α = log(|B|)V0 +
1
2

log
(

No

4π

)
+

2
d

We use this formula to tune α appropriately. In the datasets we have, d is
always larger than 2, which disables the last term. We want to merge contigs
with N0 = 10 reads or more, provided that they have an overlap larger then
V0 = 20 bases. Based on this formula, we set α = 240, which experimentally
gives better results than other values.

Synthetic Dataset
We used Metasim with the default configuration for 454-250bp reads. The dataset
was composed of the following sequences (in parenthesis, number of reads): Acid-
ianus filamentous virus 1 (14505), Akabane virus segment L (4247), Akabane
virus segment M (2636), Black queen cell virus (5309), Cactus virus X (3523),
Chinese wheat mosaic virus RNA1 (3300), Chinese wheat mosaic virus RNA2
(1649), Cucurbit aphid-borne yellows virus (2183), Equine arteritis virus (4832),
Goose paramyxovirus SF02 (4714), Human papillomavirus - 1 (1846), Okra mo-
saic virus (1016), Pariacoto virus RNA1 (240).

Running Velvet, Euler and Newbler
For Velvet, we run velvethwith k-mer length 21. We run velvetgmultiple times
using 14 values between 1 and 30 for the -cov_cutoff parameter. We choose the
configuration which maximizes the N50. For EULER-SR, we run Assemble.pl
setting the k-mer length to 25. For Newbler, we run runAssembly on the fasta
file.
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Abstract. While the discovery of structural variants in the human pop-
ulation is ongoing, most methods for this task assume that the genome
is sequenced to high coverage (e.g. 40x), and use the combined power
of the many sequenced reads and mate pairs to identify the variants.
In contrast, the 1000 Genomes Project hopes to sequence hundreds of
human genotypes, but at low coverage (4-6x), and most of the current
methods are unable to discover insertion/deletion and structural variants
from this data.

In order to identify indels from multiple low-coverage individuals we
have developed the MoGUL (Mixture of Genotypes Variant Locator)
framework, which identifies potential locations with indels by examin-
ing mate pairs generated from all sequenced individuals simultaneously,
uses a Bayesian network with appropriate priors to explicitly model each
individual as homozygous or heterozygous for each locus, and computes
the expected Minor Allele Frequency (MAF) for all predicted variants.
We have used MoGUL to identify variants in 1000 Genomes data, as well
as in simulated genotypes, and show good accuracy at predicting indels,
especially for MAF > 0.06 and indel size > 20 base pairs.

1 Introduction

Next generation sequencing technologies have dramatically decreased the cost of
sequencing human genomes. These technologies are enabling the 1000 Genomes
Project - an ambitious undertaking to reconstruct hundreds of genotypes and
understand the polymorphisms present in the human population. The resequenc-
ing of humans for the 1000 Genomes Project uses a combination of approaches,
including deep sequencing of several individuals and whole-exome resequenc-
ing via DNA-capture. Simultaneously, the largest fraction of individuals will be
sequenced via a low-coverage whole-genome shotgun approach, where each indi-
vidual will be sequenced to ∼4-6x coverage. At this point in time it is not clear
if this low coverage will be sufficient to identify a large fraction of the human
variation, especially structural genomic polymorphisms.

While methods for the discovery of SNPs from read mapping have been avail-
able for some time [1], and the past two years have seen several tools developed
� To whom correspondence should be addressed.
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specifically for discerning SNPs from NGS data ([2,3,4]), the development of
algorithms for the identification of larger, structural variants (SVs), including
insertions and deletions (indels), is still a very active research area. While the
identification of very small indels can be accomplished by directly analyzing the
read mappings, with 36bp reads it is difficult to identify indels > 10 bases. The
identification of larger indels and other rearrangements is typically accomplished
via the mate pair, or paired-end mapping technique (see [5] for a review). In this
approach, two reads are sequenced from the two ends of a DNA fragment (the
insert). Because the size of the DNA fragment is (approximately) known, struc-
tural variants can be identified by comparing the expected insert size to the
distance between the mapped reads in the reference genome: if these are signifi-
cantly different (the mate pair is termed discordant), it is likely that an SV has
occurred between the two mappings. The past few years have seen the devel-
opment of several novel methodologies and tools for SV discovery based on the
analysis of discordant mate pairs, including a formal framework for identification
of structural variants [6], tools that allow for flexible clustering of mate pairs to
identify SVs [7], maximum parsimony and maximum likelihood approaches for
SV detection [8], as well as tools that combine paired-end mapping with careful
analysis of unpaired reads to assemble SV breakpoints [9].

Previously we proposed MoDIL [10], a method for SV identification based on
the analysis of all mate pairs (concordant and discordant) that span a particu-
lar genomic location. MoDIL (Mixture of Distributions Indel Locator) fits two
(possibly shifted) distributions of insert sizes (corresponding to the two hap-
loid genotypes in a diploid) to the observed mapped distances at each location
in the genome. By analyzing these distributions it is possible to discover much
smaller indels than with other mate pair-based approaches. MoDIL, however,
cannot be directly applied to low coverage individuals, including the bulk of the
1000 Genomes data, as it requires at least 20 inserts covering a genomic locus to
identify indels (it is difficult to accurately fit two distributions with fewer data
points). In the 1000 Genomes data, each locus is expected to be covered, on
average, by 4 mate pairs in each individual. While the total coverage from all
individuals is much higher, and most polymorphisms are di-allelic (i.e. there are
only two alleles at a given locus in the human population), MoDIL expects the
fractions of mate pairs sampled from each haplotype to be approximately equal.
In contrast, in the 1000 Genomes data the fractions are determined by the allele
frequencies and will vary across the loci.

In this work we build a Bayesian approach for the discovery of indel poly-
morphisms from mixtures of large numbers of genotypes, such as 1000 Genomes
data. Our approach, MoGUL (Mixture of Genotypes Variant Locator), builds
a Bayesian network that uses priors to explicitly model each individual as ho-
mozygous or heterozygous, and computes the expected Minor Allele Frequency
(MAF) at each location along the chromosome. We use MoGUL to identify vari-
ants in the 1000 Genomes data and simulated genotypes, and demonstrate that
it allows for the identification of indels > 30 bases for MAF > 0.04, while indels
as small as 20 bases can be identified for MAF > 0.06.
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Fig. 1. Distribution of insert sizes from different individuals, shifted so that they are
all centered at zero. Note the discrepancies among the individual distribution, necessi-
tating modeling them as separate random variables. Here mean of insert sizes are set
to be zero.

2 Methods

The main difficulty in identifying indels from paired-end data is differentiating
mate pairs coming from a locus with an indel from those with an anomalous
insert size. The insert size from each individual l follows a distribution, p(Yl)
(see Figure 1), and individual mate pairs generated from the tail of the distri-
bution are impossible to discern from mate pairs overlapping an indel. Previous
methods, such as MoDIL [10] and BreakDancer [9], use support from other mate
pairs, generated by the high mate pair coverage to separate these cases. While
each individual in our dataset will have only a few mate pairs sampled at ev-
ery genomic location, our algorithm combines the mate pairs generated from
many individuals to achieve sufficient coverage. MoGUL models mate pairs as
generated from either one or two unknown distributions, corresponding to the
two possible alleles at this location among the human genotypes. Our algorithm
does not consider tri-allelic variants, which are rare.

Our algorithm starts by mapping all of the mate pairs onto the reference
genome. We use the MrFAST tool [11], which identifies mappings for every mate
pair that has at most 2 mismatches in each read and has the mapped distance
(the distance between the forward and reverse reads of the pair) closest to the
expected insert size. If this mapped distance is within 3 standard deviations,
only the best mapping is identified. If no such mapping is found, all possible
mappings for the two reads are returned, and our algorithm considers all of
them. For every genomic location we identify those mate pairs that would be
affected if that location was the site of an indel. These mate pairs will have the
two reads mapping on opposite sides of the genomic location, and we refer to
this set of mate pairs as a cluster (see next section).
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If the genomic location is the site of an indel that is polymorphic in the
human population, mate pairs in the corresponding cluster may be generated
from two distributions, corresponding to the two alleles (with and without the
indel). Using a Bayesian network we infer the size of the indel, as well as
the individuals with indels for each cluster. Because our model may identify
the same indel calls from multiple clusters, a final post-processing step is used
to combine these calls and to compute the log likelihood ratio between our model
and the null model. For simplicity, in the following sections we will call a mate
pair “discordant” if there is significant disparity between insert size and mapped
distance, and “concordant” otherwise. Note that these terms are only used for
convenience – we do not a priori assign mate pairs to these categories.

2.1 Clustering Mate Pairs

We first generate clusters with mappings of mate pairs for each genomic locus,
and determine whether or not the locus contains a common indel. In this step
we find a set of mate pairs C from L number of individuals, all of which overlap
with a particular genomic location. Figure 2 illustrates our clustering scheme.

For each mate pair we look at one base after the left read and all mate pairs
overlapping the location form a cluster C. We explain how we detect indels
from these clusters by example. Suppose the mate pairs in Figure 2 are from
the same mate pair library with the first two mate pairs discordant and the rest
concordant. In such a case, as shown in Figure 2, the first two mate pairs agree
on a certain indel size (they have similar mapped distance), and the indel can
be detected from the second to the fourth cluster containing the two discordant
mate pairs (we merge indel calls in a post-processing step).

If we use all the clusters generated by this scheme, the number of clusters
will be close to the number of mate pairs, and the algorithm will be too slow.
Instead, we filter out clusters if it is very likely that there is no indel iat the
corresponding location. For each individual l, we compute the likelihood that
the mate pairs were generated from a cluster with no indel (p-value). If there is
at least one individual with significant p-value (< 0.001) or two individuals with
less significant p-value (< 0.05), the locus is deemed significant.

We define the p-value as the probability of having at least predicted size
of indel (> γ) given no indels. Let {Dl1, . . . , Dln} represent independent and
identically distributed random variables corresponding to the mapped distances
of mate pairs generated from the l-th individual with insert size distribution
p(Yl), mean μYl

and standard deviation σYl
. Their mean follows the Gaussian

distribution with mean equal to the mean of the insert size μYl
and standard

deviation of σYl
/
√

n according to the central limit theorem. We define the p-value
for the individual l with the size of indel γ as follows:

p-value =
∞∑
γ

P (X ; 0, σYl
/
√

n) =
0∑

−∞
P (X ; γ, σYl

/
√

n)
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Fig. 2. This figure shows how to generate clusters with mapped mate pairs in the ref-
erence genome. Mate pairs are colored by red or blue representing different individuals.
For each mate pair Xi, we generate a cluster consisting of all mate pairs overlapping
a genomic location of one base after the left read of the mate pair Xi (the locations of
the arrows).

Here, X = D − μYl
is the expected size of the indel, and P (X) follows the

Gaussian distribution. The second equality can be proven via symmetry of
Gaussian.

In computing the p-value we correct for the possibility that the cluster con-
tains a heterozygous indel by using a shifted sample mean: γ′ = 2γ.

2.2 Detecting Common Indels Using a Bayesian Network

The clusters from Sec. 2.1 include mate pairs generated from many individuals,
all of which have unique distributions of insert sizes (see Figure 1). We define the
variable Xlm as the expected size of indel from the m-th mate pair of individual
l:

Xlm = Dlm − μYl

where Dlm is mapped distance of the m-th mate pair of the individual l and
μYl

is mean of the insert size distribution p(Yl). We will use random variabe Xli

instead of Dli because it shifts the distributions for all individuals so that they
are all centered at zero. Given a cluster of mate pairs as an input, we developed
a Bayesian network (Figure 3) to infer the size of the indel polymorphism (if
one exists), and haplotypes of individuals that contain the indel. The Bayesian
network generates mate pairs {Xlm}, while internal states correspond to the
presence/absence of indel and its heterozygosity. All random variables are defined
for an input cluster, rather than the whole individual genome.

We model the individual l with random variable Zl:

Zl =
{

0 if individual l has no indel
1 if individual l has an indel.

We use the random variable Qlm to model the two copies of chromosomes (alleles)
in individual l. Note that subscript l refers to individual l and m denotes m-th
mate pair generated from this individual:

Qlm =

⎧⎨⎩
0 if Zl = 1 and chromosome contains no indel
1 if Zl = 1 and chromosome contains an indel
2 if Zl = 0.
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QlmXlm
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Fig. 3. Bayesian network for detecting common indels at a particular locus in the
genome. Here L represents the number of individuals and Ml is the number of mate
pairs from individual l. The random variable Zl determines whether individual l has an
indel or not. If individual l has an indel (Zl = 1), Qlm generates a mate pair Xlm and
θl controls the heterozygosity of Zl. Mate pair, Xlm, is generated from distribution of
insert sizes with zero mean or with shifted mean of γ if Xlm has an indel. If individual l
has no indel (Zl = 0), mate pairs {Xlm}Ml

m=1 are generated from p(Yl) with zero mean.
Priors π and θl are controlled by α and β parameters.

As shown in Figure 3 we can generate Xlm given Zl, Qlm and size of indel
γ. For example, if Qlm = 1, Xlm is generated from p(Yl) with an indel size
of γ. If {Zl = 0 ∪ Qlm = 0} then Xlm is generated from p(Yl) with no indel.
For simplicity we omit the p(Yl)s in Figure 3. To avoid overfitting problems we
applied Bayesian priors π and θl to Zl and Qlm, respectively.

We smooth the distribution of p(Yl), and define a new probability distribution
of insert sizes, q(Xl), for individual l as follows:

q(Xl) =

{∑
kiσYl

≤y−μYl
<ki+1σYl

pYl
(y) if kiσYl

≤ Xl < ki+1σYl∑
−k′

j+1σYl
≤y−μYl

<−k′
jσYl

pYl
(y) if −k′

j+1σYl
≤ Xl < −k′

jσYl

Here we sum pYl
(y)s over the intervals [kiσYl

, ki+1σYl
) for deletions and

[−k′
j+1σYl

,−k′
jσYl

) for insertions. In our experiments, we used 10 values of ki

and k′
js (i, j ∈ {1, 2, . . . , 10}, k1 = k′

1 = 0). Probability distributions of the
random variables in Figure 3 are defined as follows:

p(Zl = z|π) = πz(1 − π)1−z

where z = 0 if individual l has no indel and P (Zl = 0) = π and P (Zl = 1) = 1−π.

p(Qlm = q|Zl = 1, θl) = θq
l (1− θl)1−q

where q = 0 if the chromosome contains no indel, and 1 otherwise. If Z1 = 0, we
do not generate mate pair Xlm from Qlm and set q = 2. We generate Xlm from
the following distribution:

p(Xlm|Zl, Qlm, γ) =
{

q(Xlm) if {Zl = 0 ∪ q = 0}
q(Xlm − γ) if q = 1.



MoGUL: Detecting Common Insertions and Deletions in a Population 363

The priors π and θl follow the beta distribution, which is the conjugate prior of
binomial distributions.

To infer the states of our model, we find maximum a posteriori (MAP) solution
because it is fast and deterministic. We initialize our model using heuristics (e.g.
Qlm = 1 if Xlm > σl) and random configurations, and run the model multiple
times to avoid local maxima. Given current states of the model the update rules
are given as follows (updated states are denoted by (*)):

π∗ =
u + α1 − 1

L + α1 + α2 − 2

where u is the number of individuals with no indel. In practice we use α = {30, 1}
because most variants have a small MAF [12].

θ∗l =
v + β1 − 1

Ml + β1 + β2 − 2

where v is the number of mate pairs with Qlm = 0 in individual l, and we set
β = {5, 5}, favoring heterozygous indels, as these are more likely under a neutral
evolutionary model.

We update the random variables γ, Zl and Qlm as follows:

γ∗ = argmax
γ

L∏
l=1

Ml∏
m=1

P (Xlm|Zl, Qlm, γ)

Z∗
l = argmax

Zl∈{0,1}
P (Zl|π)

Ml∏
m=1

P (Xlm|Zl, γ, Qlm)P (Qlm|Zl, θl)

Q∗
lm = argmax

Qlm∈{0,1,2}
P (Qlm|Zl, θl)P (Xlm|Zl, Qlm, γ).

This algorithm is iterated, with each hidden random variable updated until the
posterior probability of the model cannot be improved by the value of the thresh-
old (e.g. τ = 10−4).

2.3 Merging and Assigning Confidence to Indel Calls

In the post-processing step we merge duplicated indel calls. As shown in Sec.
2.1, a single indel may be found in multiple clusters. We merge indel calls if they
meet three criteria: (1) the predicted indel regions overlap, (2) the expected size
of the indel is similar (< σmix) , (3) the sets of individuals for whom the indel
is predicted overlap. Here σmix is the standard deviation of insert sizes from all
individuals.

To assign confidence values for every cluster we compute the log likelihood
ratio R between our model and null model as follows:

R =
L∑

l=1

Ml∑
m=1

log P (Xlm|Zl, Qlm, γ)−
L∑

l=1

Ml∑
m=1

log P (Xlm|Zl, Qlm, 0).

We discard indel calls if the log likelihood ratio is not significantly larger than a
pre-specified threshold (by default, 30).



364 S. Lee, E. Xing, and M. Brudno

3 Results

In the sections below, we use two different approaches to validate our algorithms.
First, we use simulated data to evaluate how well MoGUL performs at different
variant frequencies, and then use MoGUL to perform variant discovery on one
chromosome of the current 1000 Genomes dataset, that includes 124 individuals
sequenced at approximately 4x.

3.1 Simulation Results

We first validate our model through simulation results. In our simulation, we
sampled mate pairs from 120 individuals, with the mate pair library size of each
individual l following the experimental distribution p(Yl).

We generated indels of 10-100 base pairs and implanted them in the individual
genomes, varying the minor allele frequency (MAF) from 0.02 to 0.5. Figure 4
shows the heatmap for the performance of MoGUL. MoGUL works well for MAF
greater than 0.06, for indels > 20 base pairs.

To investigate the precision and recall rate of MoGUL we generated 10,000
clusters with 50 individuals (100 haplotypes). 1000 clusters contained implanted
indels of 20-150 base pairs, while 100 clusters contained implanted indels of 150-
1000 base pairs. For each individual we sampled mate pairs with approximately
2-3x read coverage. We detected indels for these individuals using MoGUL. The
recall and precision rates of our algorithm are shown in Table 1.

3.2 1000 Genome Project Pilot Dataset

In order to validate MoGUL on real data, we downloaded low coverage individu-
als generated by the pilot project for the 1000 Genomes project from the NCBI
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Fig. 4. Heatmap representing the performance of MoGUL. The color of each cell indi-
cates average error rate of 20 MoGUL simulations for a given combination of deletion
size (X axis) and Minor Allele Frequencies (Y axis). If the size of indel predictions by
MoGUL is more than 10bp away from the true size of deletion we consider it incorrect.
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Table 1. Comparison between indel calls in chromosome 20 located by our approach
with the datasets generated by Mills et al. [13] (all MoGUL indels), and MoDIL [10]
(only indels in NA18507, the same individual as was studied by Lee et al., was con-
sidered). For the simulation experiments we consider the indel call is correct if the
difference between the true indel size and the predicted one is less than 10bp and the
log likelihood ratio is greater than 10.

Population NA18507 Simulation

Length Type MoGUL Mills et al. Overlap MoGUL MoDIL Overlap Recall Precision

≥100bp INS 6 20 0 2 1 1 0.91 1
DEL 1009 183 57 34 13 10 0.89 1

50-100bp INS 56 44 15 19 4 4 0.92 0.68
DEL 486 71 42 22 6 5 0.86 0.99

20-50bp INS 170 231 43 25 24 12 0.64 0.37
DEL 1818 327 194 101 84 31 0.57 0.74

trace archive, aligned these to the NCBI reference genome with MrFAST [11],
and predicted indels for all of these on chromosome 20. The results are summa-
rized in Table 1. Overall, MoGUL predicted 3,545 events in any individual on
chromosome 20. This is approximately 630 events per individual. We compare
these indels to previously discovered variants both across the population, and
for one specific individual, NA18507.

To our knowledge, the only previous study that has characterize small to
medium size indels in the human populations is by Mills et al [13]. They used
low coverage Sanger-style reads from 36 individuals to identify indels via the
split-read mapping approach. Thus they are able to identify the exact size of
the indel, while the MoGUL method infers it indirectly from the discordant
mappings. Overall, the overlap between MoGUL and the indels of Mills et al
was statistically significant. While exact sensitivity and specificity of the two
methods is difficult to analyze, as different (and fewer) individuals were used for
the Mills et al study, the size correlation of overlapping indels was very strong,
and the overall error of MoGUL size estimates was small (see Figure 6).

In order to enable the direct comparison of indel discovery from single high
coverage individual versus multiple low coverage individuals, we included in our
dataset a down-sampled version of the NA18507 Yoruban genome which we
previously analyzed using the MoDIL method. Remarkably, MoGUL was able
to identify 83% of the indels > 50bp (20/24) that were previously detected by
MoDIL, while identifying several additional variants that were missed by MoDIL,
possibly due to low coverage in the NA18507 individual specifically. Of the events
20-50bp, 40% (43/108) were recovered by MoGUL.

In Figure 5 we plot the minor allele frequency of the variants discovered by
our method. The distribution agrees with the expected curve until ∼ MAF 0.07,
but then drops rapidly – demonstrating MoGUL’s inability to identify indels at
low minor allele frequencies.
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Fig. 5. Distribution of minor allele frequencies for indels in the 1000 Genomes dataset
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Fig. 6. (A) A scatter plot showing the lengths of overlapping indels between the Mills
et al. dataset and MoGUL predictions. Overall the lengths are highly correlated. The
cluster of indels of length 300 corresponds to Alu element activity. (B) The absolute
error in the estimation of indel length. The predicted lengths of the indels are very
close (typically within 10 bases) of the true indel size. Overall the distribution of the
error follows a Gaussian, as expected from the model (see [10] for details). The outliers
may indicate either false positives for either dataset or tri-allelic variants.

4 Discussion

The identification of various polymorphisms in the human population is an im-
portant step towards understanding the landscape of human genotypes. In this
paper we present MoGUL: the Mixture of Genotypes Variant Locator, a tool
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to identify common insertion/deletion polymorphisms from many individuals
sequenced at low coverage. We validate our approach via simulated data at var-
ious allele frequencies, as well as with data from the 1000 Genomes project.
MoGUL can identify indels >20 base pairs with at least 0.06 MAF, using the
current low coverage data; it is expected that the coverage will double to 6-
8x per individual for the final 1000 Genomes project data release, and we are
hopeful that MoGUL’s performance will further improve on this larger dataset.
Another application of MoGUL is resequencing of biopsy tissues, where the dis-
eased (tumourous) tissue is biopsied (and sequenced) together with the healthy
surrounding tissue, leading to a mixture of several genotypes at each location.

Simultaneously, MoGUL is only capable of recapturing a small fraction of
the rare variants that predominate in the human population. While capturing
common genotypes is important, it is thought that rare alleles, ones with MAF <
0.01, are much more likely to be evolutionarily harmful and disease related [12].
Designing methods that can find these variants from paired-end data, possibly
incorporating direct information on read matches, as in the Pindel tool [14], is
an important avenue for further research.
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Abstract. Accurate reconstruction of phylogenies remains a key chal-
lenge in evolutionary biology. Most biologically plausible formulations
of the problem are formally NP-hard, with no known efficient solution.
The standard in practice are fast heuristic methods that are empirically
known to work very well in general, but can yield results arbitrarily far
from optimal. Practical exact methods, which yield exponential worst-
case running times but generally much better times in practice, provide
an important alternative. We report progress in this direction by intro-
ducing a provably optimal method for the weighted multi-state maximum
parsimony phylogeny problem. The method is based on generalizing the
notion of the Buneman graph, a construction key to efficient exact meth-
ods for binary sequences, so as to apply to sequences with arbitrary finite
numbers of states with arbitrary state transition weights. We implement
an integer linear programming (ILP) method for the multi-state prob-
lem using this generalized Buneman graph and demonstrate that the
resulting method is able to solve data sets that are intractable by prior
exact methods in run times comparable with popular heuristics. Our
work provides the first method for provably optimal maximum parsi-
mony phylogeny inference that is practical for multi-state data sets of
more than a few characters.

1 Introduction

One of the fundamental problems in computational biology is that of infer-
ring evolutionary relationships between a set of observed amino acid sequences
or taxa. These evolutionary relationships are commonly represented by a tree
(phylogeny) describing the descent of all observed taxa from a common ancestor,
a reasonable model provided we are working with sequences over small enough
regions or distant enough relationships that we can neglect recombination or
other sources of reticulation [1]. Several criteria have been implemented in the
literature for inferring phylogenies, of which one of the most popular is maximum
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parsimony (MP). Maximum parsimony defines the tree(s) with the fewest muta-
tions as the optimum, generally a reasonable assumption for short time-scales or
conserved sequences. It is a simple, non-parametric criterion, as opposed to com-
mon maximum likelihood models or various popular distance-based methods [2].
Nonetheless, MP is known to be NP-hard [3] and practical implementations of
MP are therefore generally based on heuristics which do not guarantee optimal
solutions.

For sequences where each site or character is expressed over a set of discrete
states, MP is equivalent to finding a minimum Steiner tree displaying the input
taxa. For example, general DNA sequences can be expressed as strings of four
nucleotide states and proteins as strings of 20 amino acid states. Recently, Srid-
har et al. [4] used integer linear programming to efficiently find global optima for
the special case of sequences with binary characters, which are important when
analyzing single nucleotide polymorphism (SNP) data. The solution was made
tractable in practice in large part by a pruning scheme proposed by Buneman
and extended by others [5,6,7]. The so-called Buneman graph B for a given set of
observed strings is an induced sub-graph of the complete graph G (whose nodes
represent all possible strings of mutations) such that B ⊆ G still contains all
distinct minimum Steiner trees for the observed data. By finding the Buneman
graph, one can often greatly restrict the space of possible solutions to the Steiner
tree problem. While there have been prior generalizations of the Buneman graph
to non-binary characters [8,9], they do not provide any comparable guarantees
usable for accelerating Steiner tree inference.

In this paper, we provide a new generalization of the definition of Buneman
graph for any finite number of states that guarantees the resulting graph will
contain all distinct minimum Steiner trees of the multi-state input set. Further,
we allow transitions between different states to have independent weights. We
then utilize the integer linear programming techniques developed in [4] to find
provably optimal solutions to the multi-state MP phylogeny problem. We vali-
date our method on four specific data sets chosen to exhibit different levels of
difficulty: a set of nucleotide sequences from Oryza rufipogon [10], a set of hu-
man mt-DNA sequences representing prehistoric settlements in Australia [11], a
set of HIV-1 reverse transcriptase amino acid sequences and, finally, a 500 taxa
human mitochondrial DNA data set. We further compare the performance of
our method, in terms of both accuracy and efficiency, with leading heuristics,
PAUP* [12] and the pars program of PHYLIP [13], showing our method to yield
comparable and often far superior run times on non-trivial data sets.

2 Methods

2.1 Notation and Background

Let H be an input matrix that specifies a set of N taxa χ, over a set of m
characters C = {c1, . . . cm} such that Hij represents the jth character of the ith

taxon. The taxa of H represent the terminal nodes of the Steiner tree inference.
Further, let nk be the number of admissible states of the kth character ck. The set
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of all possible states is the space S ≡ {0, 1, . . . n1− 1}
⊗

. . .
⊗
{0, 1, . . . nm− 1}.

We will represent the ith character of any element b ∈ S, by (b)i. The state
space S can be represented as a graph G = (VG , EG) with the vertex set VG = S
and edge set EG = {(u, v)|u, v ∈ S,

∑m
cp∈C δ[(u)p, (v)p] = 1}, where δ[a, b] = 0 if

a = b and 1 otherwise. Furthermore, let α = {αp|cp ∈ C} be a set of weights,
such that αp[i, j] represents an edge length for a transition between states i, j ∈
{0, . . . np − 1} for character cp. We will assume that these lengths are positive
(states that share zero edge length are indistinguishable), symmetric in i, j and
satisfy the triangle inequality.

αp[i, j] + αp[j, k] ≥ αp[i, k] ∀ i, j, k ∈ {0, . . . np − 1} (1)

Non-negativity and symmetry are basic properties for any reasonable definition
of length. If a particular triplet of states (say i, j, k) does not satisfy the triangle
inequality in equation 1, we can set αp[i, k] = αp[i, j] + αp[j, k] and still ensure
that the shortest path connecting any set of states remains the same. We can
now define a distance dα over G, such that for any two elements u, v ∈ VG

dα[u, v] ≡
m∑

p∈C

αp[(u)p, (v)p] (2)

Given any subgraph K = (VK , EK) of G, we can define the length of K to be the
sum of the lengths of all the edges L(K) ≡

∑
(u,v)∈EK

dα[u, v]. The maximum
parsimony phylogeny problem for χ is equivalent to constructing the minimum
Steiner tree T∗ displaying the set of all specified taxa χ, i.e., any tree T∗(V∗, E∗)
such that χ ⊆ V∗ and L(T∗) is minimum. Note that T∗ need not be unique.

2.2 Pre-processing

Before we construct the generalized Buneman graph corresponding to an input,
we perform a basic pre-processing of the data. The set of taxa in the input H
might not all be distinct over the length of sequence represented in H . These
correspond to identical rows in H and are eliminated. Similarly, characters that
do not mutate for any taxa do not affect the true phylogeny and can be removed.
Furthermore, if two characters are expressed identically in χ (modulo a relabeling
of the states), we will represent them by a single character with each edge length
replaced by the sum of the edge lengths of the individual characters. In case there
are n such non-distinct characters, one of them is given edge lengths equal to
the sum of the corresponding edges in each of the n characters and the rest
are discarded. These basic pre-processing steps are often useful in considerably
reducing the size of input.

2.3 Buneman Graph

The Buneman graph was introduced as a pruning of the complete graph for
the special case of binary valued characters. For this special case it is useful
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to introduce the notion of binary splits cp(0)|cp(1) for each character cp ∈ C,
which partition the set of taxa χ into two sets cp(0) and cp(1) corresponding
to the value expressed by cp. Each of these sets is called a block of cp. Each
vertex of the Buneman graph B can be represented by an m-tuple of blocks
[c1(i1), c2(i2), . . . , cm(im)], where ij = 0 or 1, for j ∈ {1, 2, . . .m}. To construct
the Buneman graph, a rule is defined for discarding/retaining the subset of
vertices contained in each pair of overlapping blocks [cp(ip), cq(iq)] for each pair
of characters (cp, cq) ∈ C×C. All vertices which satisfy cp(ip)∩cq(iq) = ∅ for any
pair of characters (cp, cq) can be eliminated, while those for which cp(ip)∩cq(iq) �=
∅ for all [cp(ip), cq(iq)] are retained. Buneman previously established for the
binary case that the retained vertex set will contain all terminal and Steiner
nodes of all distinct minimum length Steiner trees.

We extend this prior result to the weighted multi-state case by presenting
an algorithm analogous to the binary case to construct a graph with these
properties.

2.4 Algorithm for Constructing the Generalized Buneman Graph

Briefly, the algorithm looks at the input matrix projected onto each distinct
pair of characters p, q and constructs a np×nq matrix C(p, q), where the i× jth

element C(p, q)ij is 1 only if there is at least one taxon t such that (t)p = i and
(t)q = j and zero otherwise. The algorithm then implements a rule for each such
pair of characters p, q that allows us to enumerate the possible states of those
characters in any optimal Steiner tree. For clarity, we will assume that each state
for each character is expressed in at least one input taxon, since states that are
not present in any taxa cannot be present in a minimum length tree because of
the triangle inequality. The rule is defined by a np×nq matrix R(p, q) determined
by the following algorithm:

1. R(p, q)ij ← C(p, q)ij for all i ∈ {0, 1, . . . np − 1} and j ∈ {0, 1, . . . nq − 1}.
2. If all non-zero entries in C(p, q) are contained in the set of elements

(∪kC(p, q)ik)
⋃

(∪kC(p, q)kj)

for a unique pair i ∈ {0, 1, . . . np−1} and j ∈ {0, 1, . . . nq−1} then R(p, q)xy ←
1 for all x, y such that either x = i or y = j (See Fig 1 where this pair of
states are denoted ipq and iqp.)

3. If the condition in step 2 is not satisfied then set R(p, q)ij ← 1 for all i, j.

This set of rules {R} then defines a subgraph Bpq ⊆ G for each pair of characters
p, q, such that any vertex v ∈ Bpq if and only if R(p, q)(v)p(v)q

= 1. The intersec-
tion of these subgraphs B = ∩cp,cq∈CBpq then gives the generalized Buneman
graph for χ given any set of distance metrics α = {αp|cp ∈ C}. Note that the
Buneman graph of any subset of χ is a subset of B. It is easily verified that for
binary characters, our algorithm yields the standard Buneman graph.

The remainder of this paper will make two contributions. First, it will show
that the generalized Buneman graph B defined above contains all minimum
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cp(ipq)

cq(iqp)

Fig. 1. An example of the generalized Buneman pruning condition. If all taxa in χ are
present in the shaded region, vertices in all other blocks can be discarded.

Steiner trees for the input taxa χ. This will in turn establish that restricting the
search space for minimum Steiner trees to B will not affect the correctness of the
search. The paper will then empirically demonstrate the value of these methods
to efficiently finding minimum Steiner trees in practice.

Before we prove that all Steiner minimum trees connecting the taxa are dis-
played in B, we need to introduce the notion of a neighborhood decomposition.
Suppose we are given any tree T (V, E) displaying the set of taxa χ. We will con-
tract each degree-two Steiner node (i.e., any node that is not present in χ) and
replace its two incident edges by a single weighted edge. Such trees are called X-
Trees [14]. Each X-Tree can be uniquely decomposed into its phylogenetic X-Tree
components, which are maximal subtrees whose leaves are taxa. Formally, each
phylogenetic X-Tree P (ψ) consists of a set of taxa ψ ⊆ χ and a tree displaying
them, such that there is a bijection or labeling η : lP → ψ between elements
of ψ and the set of leaves lP ∈ P (ψ) [14] (Fig 2) . All vertices in P (ψ) with
degree 3 or higher will be called branch points. From now on we will assume that
given any input tree, such a decomposition has already been performed (Fig 2).
Two phylogenetic X-Trees P (ψ) and P ′(ψ) are considered equivalent if they have
identical length and the same tree topology. By identical tree topology, we mean
there is a bijection between the edge set of the two trees, such that removing any
edge and its image partitions the leaves into identical bi-partitions. We define
two trees to be neighborhood distinct if after neighborhood decomposition they
differ in at least one phylogenetic X-Tree component. We define a labeling of
the phylogenetic X-Tree as an injective map Γ : P → G between the vertices
of P (ψ) and those of the graph G such that Γu represents the character string
for the image of vertex u in G. Since leaf labels are fixed to be the character
strings representing the corresponding taxa, Γt = ηt ∈ ψ for any leaf t ∈ lP .
Identical phylogenetic X-Trees can, however, differ in the labels Γu of internal
branch points u ∈ P \ lP .

We will use a generalization of the Fitch-Hartigan algorithm to weighted par-
simony proposed by Erdos and Szekely [15,16]. The algorithm uses a similar
forward pass/backward pass technique to compute an optimal labeling for any
phylogenetic X-Tree T (ψ). Arbitrarily root the tree T (ψ) at some taxon ζ and
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Fig. 2. An input tree and its phylogenetic X-Tree components,with taxa labelled by
integers

starting with the leaves compute the minimum length minL(Γb, Tb) of any la-
beling of the subtree Tb consisting of the vertex b and its descendants, where the
root b is labeled Γb as follows.

1. If Γb labels a leaf ηb ∈ ψ, minL(Γb = ηb, Tb) = 0 and ∞ otherwise.
2. If b has k children Db = {v1, . . . vk}, and Tv is the subtree consisting of

v ∈ Db and its descendants,

minL(Γb, Tb) =
∑

v∈Db

min
Γv

{minL(Γv, Tv) + dα[Γb, Γv]} (3)

where the minimum is to be taken over all possible labels Γv for each char-
acter and for each child v ∈ Db.

The optimal labeling of T (ψ) is one which minimizes the length at the root:
L(T ) = minL(ηζ , Tζ). Labels for each descendant are inferred in a backward
pass from the root to the leaves and using equation 3. Note that the minimum
length of a tree is just the sum of minimum lengths for each character, i.e.,
minL(Γb, Tb) =

∑
cs∈C minL(Γb, Tb)(s), where minL(Γb, Tb)(s) is the minimum

cost of tree Tb rooted at b for character cs.
Briefly, our proof is structured as follows: Given any phylogenetic X-Tree T (ψ)

labeling (typically denoted Γ below), we will show that the generalized Buneman
pruning algorithm for each pair of characters (cp, cq) defines a subgraph Bpq

which contains at least one possible labeling of no higher cost (typically denoted
Φ below) for T (ψ). We will then show that the intersection of these subgraphs
B = ∩p�=qBpq thus contains an optimal labeling for T (ψ).

If the pruning condition in step 2 of the algorithm that defines the Buneman
graph is not implemented for the pair of characters (cp, cq), then Bpq = G and
all labels are necessarily inside Bpq. We prove the following lemma for the case
when the pruning condition is satisfied, ie., there exist unique states ipq of cp

and iqp of cq, such that each element in the set of leaves lT = {t ∈ T (ψ)|ηt ∈ ψ}
either has (ηt)p = ipq or (ηt)q = iqp or both. Each time we relabel vertices, we
will keep all characters except cp and cq fixed. To economize our notation, we will
represent the sum of costs in cp and cq of the tree T labeled by Γ , which has some
branch point b as the root, simply by writing L(Γ, T ) = L(Γ, T )(p) + L(Γ, T )(q).
We use the notation Γx = [(Γx)p, (Γx)q] to represent the label for a vertex x and
suppress the state of all other characters.
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Fig. 3. (a) The base case of a degree |ψ| star that can be attached to a parent vertex
ζ in the Erdos-Szekely algorithm. (b) T (ψ) for the general case (see Lemma 1).

Lemma 1. Given any phylogenetic X-Tree T (ψ) with ψ ⊆ Bpq, and a labeling
Γ , such that an internal branch point b ∈ T \ lT is labeled outside Bpq, i.e.,
Γb /∈ Bpq, there exists an alternate labeling Φ of T (ψ) inside Bpq such that

1. either L(Γ, T ) ≥ L(Φ, T ) + dα[Γb, Φb], or —
2. L(Γ, T ) ≥ L(Φ, T ) for each of the following choices: Φb = [ipq, iqp] or [ipq,

(Γb)q] or [(Γb)p, iqp], and Φv = Γv for all v �= b. We will call a tree that
satisfies this second condition a (cp, cq)-Tree

Proof. We will use induction on the number of internal branch points outside
Bpq to prove the claim. Without loss of generality we can consider all branch
points of T (ψ) to be labeled outside Bpq. If some branch points are labeled
inside Bpq then they can be treated as leaves of smaller X-Tree(s) that have all
branch points outside Bpq. This is similar to the neighborhood decomposition
we performed earlier for those branch points that were present in the set of input
taxa. The set of branch points is then the set T \ lT = {u ∈ T |Γu /∈ Bpq}.

For the base case assume all the leaves are joined at a single branch point b
to form a star of degree |ψ| (see Fig. 3(a) without the root ζ). We can group the
leaves into three sets:

1. I = {ηu = [ipq, yu]|yu �= iqp, ηu ∈ ψ}
2. II = {ηv = [xv, iqp]|xv �= ipq, ηv ∈ ψ}
3. III = {ηw = [ipq, iqp]|ηw ∈ ψ}

The cost of the tree for cp and cq, with branch point Γb = [x, y], is

L(Γ, T )(p) + L(Γ, T )(q) =
∑
u∈I

(αp[x, ipq] + αq[y, yu]) +
∑
v∈II

(αp[x, xv]

+ αq[y, iqp]) +
∑

w∈III

(αp[x, ipq] + αq[y, iqp]) (4)

The only way for L(Γ, T )(p) + L(Γb, T )(q) to be minimum with x �= ipq and
y �= iqp, is if III = ∅ and |I| = |II|. For contradiction, suppose |I|+ |III| > |II|.
We could then define a labeling Φ identical to Γ over all characters, except
Φb = [ipq, y], such that dα[Γb, Φb] = αp[Γb, Φb]. We could then reduce the length,
since
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L(Γ, T )(p) =
∑
u∈I

αp[x, ipq] +
∑
v∈II

αp[x, xv] +
∑

w∈III

αp[x, ipq]

≥ αp[x, ipq] +
∑
v∈II

(αp[x, xv ] + αp[x, ipq])

≥ αp[x, ipq] +
∑
v∈II

αp[ipq, xv] = L(Φ, T )(p) + dα[Γb, Φb] (5)

where the last inequality follows from the triangle inequality. Similarly, if |II|+
|III| > |I|, we could define Φb = [x, iqp] and arrive at L(Γ, T )(q) ≥ L(Φ, T )(q) +
dα[Γb, Φb].

On the other hand if |I| = |II| and III = ∅ setting Φb = [ipq, y] or Φb = [x, iqp]
or Φb = [ipq, iqp] all achieve a length no more than L(Γ, T )(p) + L(Γ, T )(q).
Therefore, this is a (cp, cq)-Tree. This proves the base case for our proposition.

We will now assume that the claim is true for all trees with n branch points
or less. Suppose we have a labeled tree T (ψ) with n + 1 branch points which
are all outside Bpq. Let Db = {v1, . . . vk} be the children of a branch point
b in T (ψ) and {T1, . . . Tk} be the subtrees of each v ∈ Db and their descen-
dants. Note that some of these descendants may be leaves. Since T (ψ) has at
least two branch points, one of its descendants (say v1) must be a branch point
(Fig 3(b)). Let Tb = T \ T1 be the subtree consisting of b and all its other de-
scendants. For clarity we will use the notation Γb = [xb, yb] and Γv1 = [x1, y1].
This implies,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + dα[Γb, Γv1 ]
= L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1] (6)

There are four possibilities.

1. Both Tb and T1 are (cp, cq)-Trees with n or less branch points - In this
case, by induction, both Tb and T1 can be relabeled with Φb and Φv1 of the
form [ipq, iqp]. Since the cost in cp and cq of the edge (b, v1) is now zero,
we have an optimal labeling of T (ψ) within Bpq and L(Γ, T ) ≥ L(Φ, T ) .
Note that each of the choices of the form [ipq, y1] or [x1, ipq] for relabel-
ing of b also satisfy property 2 of the claim. Therefore, this is a (cp, cq)-
Tree.

2. Tb is a (cp, cq)-Tree, but T1 is not. Therefore, there is a labeling Φ of T1 with
either Φv1 = [ipq, y1] and/or Φv1 = [x1, ipq] such that

L(Γ, T1) ≥ L(Φ, T1) + dα[Γv1 , Φv1 ] (7)

Let us assume for concreteness that Φv1 = [ipq, y1]. It will become clear that
the argument works for the other possible choices. Since, Tb is a (cp, cq)-Tree,
by induction, we can choose a labeling of Tb with Φb = [ipq, yb], such that
L(Γ, Tb) ≥ L(Φ, Tb). This gives
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L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (8)

Comparing the previous two equations with equation 6, we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γv1 , Φv1 ] + αp[xb, x1] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + αp[x1, ipq] + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (9)

which satisfies the first possibility of the claim. It should be clear that
if Φv1 = [x1, iqp] then the choice Φb = [xb, iqp] would give an identical
bound.

3. T1 is a (cp, cq)-Tree, but Tb is not. This case is similar to the previous one.
Since Tb has less than n branch points, which are all outside Bpq, and it is
not a (cp, cq)-Tree, we have from induction a labeling Φ of Tb with either
Φb = [ipq, yb] and/or Φb = [xb, ipq] such that

L(Γ, Tb) ≥ L(Φ, Tb) + dα[Γb, Φb] (10)

As before, let us assume Φb = [ipq, yb] for concreteness. Since T1 is a (cp, cq)-
Tree, we can choose a labeling with Φv1 = [ipq, y1] such that L(Γ, T1) ≥
L(Φ, T1). This gives,

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (11)

Comparing the previous two equations with equation 6, we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (12)

An identical argument carries through if Φb = [xb, iqp].
4. Neither T1 or Tb are (cp, cq)-Trees. It follows from induction that there is

a labeling Φ such that L(Γ, Tb) ≥ L(Φ, Tb) + dα[Γb, Φb] and L(Γ, T1) ≥
L(Φ, T1) + dα[Γv1 , Φv1 ]. There are two possibilities in this case.
(a) (Φb = [ipq, yb] and Φv1 = [ipq, y1]) or (Φb = [xb, iqp] and Φv1 = [x1, iqp]).

As before, we will prove the claim for the former possibility while the
later case can be proved by an identical argument.

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (13)
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L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Γv1 , Φv1 ]
+ αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (14)

This also satisfies the claim. The proof for Φb = [xb, iqp] and Φv1 =
[x1, iqp] is identical.

(b) (Φb = [ipq, yb] and Φv1 = [x1, iqp]) or (Φb = [xb, iqp] and Φv1 = [ipq, y1]).
As before, we show the calculation for the former possibility. In this
case

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1] (15)

Combining this with equation 6 we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Γv1 , Φv1 ]
+ αp[xb, x1] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1]
+ αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ] = L(Φb, T ) (16)

But if we now relabel b and v1 with Φ̃v1 = [ipq, iqp] and Φ̃b = [ipq, iqp]
while Φ̃v = Φv for all other v, we get L(Φ, T1) + αq[y1, iqp] ≥ L(Φ̃v1 , T1)
and L(Φ, Tb) + αp[xb, ipq] ≥ L(Φ̃, Tb). This immediately gives,

L(Φ̃, T ) = L(Φ̃, Tb) + L(Φ̃, T1) + dα[Φ̃b, Φ̃v1 ]
≥ L(Φ, T ) ≥ L(Γ, T ) (17)

Identical arguments work for the choices Φ̃v1 = [x1, iqp] and Φ̃b = [xb, iqp].

This proves that if either of the two possibilities claimed are always true for an
X-Tree with n branch points or less then they are also true for a tree with n + 1
branch points. The proof for arbitrary n follows from induction.

��

Corollary 1. Given a minimum length phylogenetic X-Tree T (ψ) there is an
optimal labeling for each branch point within B.

Proof. Lemma 1 establishes that for any minimum Steiner tree labeled by Γ and
any branch point b ∈ T such that Γb /∈ Bpq, an alternative optimal labeling Φ
exists such that Φb is inside the union of blocks
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Λ(Γb, p, q) ≡ [cp(ipq)cq(iqp)] ∪ [cp(ipq)cq((Γb)q)] ∪ [cp((Γb)p)cq(iqp)]

If we root the tree at b, the new optimal labeling for all its descendants is in-
ferred in a backward pass of the Erdos-Szekely algorithm. This ensures that
each branch point in a minimum length phylogenetic X-Tree is labeled inside
Bpq. Let Sb = ∩Bpq �=GΛ(Γb, p, q) ⊆ B, where the intersection is taken over all
pair of characters for which the pruning condition is satisfied. It follows from
Lemma 1 that Sb also contains an alternate optimal labeling of T (ψ). Note
that Sb is a non-empty subset of B. This must be true because given a char-
acter pair cp, cq, each union of blocks contains at least one taxon and so the
rule matrix R(p, q) that defines the Buneman graph must have ones for each of
these blocks. Therefore each element in Sb represents a distinct vertex of the
Buneman graph. ��

As argued before, any minimum Steiner tree can be decomposed uniquely into
phylogenetic X-Tree components and the previous corollary ensures that each
phylogenetic X-Tree can be labeled optimally inside the generalized Buneman
graph. It follows that all distinct minimum Steiner trees are contained inside the
generalized Buneman graph.

2.5 Integer Linear Program (ILP) Construction

We briefly summarize the ILP flow construction used to find the optimal phy-
logeny. We convert the generalized Buneman graph into a directed graph by
replacing an edge between vertices u and v with two directed edges (u, v), (v, u)
each with weight wuv as determined by the distance metric. Each directed edge
has a corresponding binary variable su,v in our ILP. We arbitrarily choose one of
the taxa as the root r, which acts as a source for the flow model. The remaining
taxa T ≡ χ−{r} correspond to sinks. Next, we set up real-valued flow variables
f t

u,v, representing the flow along the edge (u, v) that is intended for terminal t.
The root r outputs |T | units of flow, one for each terminal. The Steiner tree is
the minimum-cost tree satisfying the flow constraints. This ILP was described
in [4], and we refer the reader to that paper for further details. The ILP for this
construction of the Steiner tree problem is the following:

Minimize
∑

(u,v)∈B
wuvsu,v

subject to
∑

v

(f t
u,v − f t

v,u) = 0 ∀u ∈ B \ {t, r}, ∀t ∈ T∑
v

(f t
r,v − f t

v,r) = 1 ∀t ∈ T

0 ≤ f t
u,v ≤ su,v ∀(u, v) ∈ B, ∀t ∈ T

su,v ∈ {0, 1} ∀(u, v) ∈ B (18)
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Table 1. Pruning and run time results for the data sets reported

Data Input Complete |B| ILP pars PAUP*

(raw) graph length time length time length time
O. rufipogon DNA 41 × 1043 218 ∗ 32 58 57 0.29s 57 2.57s 57 2.09s
Human mt-DNA 80 × 245 228 64 44 0.48s 45 0.56s 44 5.69s
HIV-1 RT protein 50 × 176 216 ∗ 3 ∗ 42 297 40 127.5s 42 0.30s 40 3.84s

mt3000 500 × 3000 299 ∗ 32 322 177 40s 178 2m37s 177 5h23m
mt5000a 500 × 5000 2167 ∗ 32 1180 298 5h10m 298 35m49s 298 3h52m
mt5000b 500 × 5000 2229 ∗ 33 360 312 3m41s 312 57m6s 312 2h40m
mt10000 500 × 10000 2357 ∗ 35 6006 N. A. N. A. 637 1h34m 637 1h39m

3 Results

We implemented our generalized Buneman pruning and the ILP in C++. The
ILP was solved using the Concert callable library of CPLEX 10.0. We compared
the performance of our method with two popular heuristic methods for maximum
parsimony phylogeny inference — pars, which is part of the freely-available
PHYLIP package [13], and PAUP* [12], the leading commercial phylogenetics
package. We attempted to use PHYLIP’s exact branch-and-bound method DNA
penny for nucleotide sequences, but discontinued the tests when it failed to solve
any of the data sets in under 24 hours. In each case, pars and PAUP* were run
with default parameters. We first report results from three moderate-sized data
sets selected to provide varying degrees of difficulty: a set of 1,043 sites from a
set of 41 sequences of O. rufipogon (red rice) [10], 245 positions from a set of 80
human mt-DNA sequences reported by [11], and 176 positions from 50 HIV-1
reverse transcriptase amino acid sequences. The HIV sequences were retrieved
by NCBI BLASTP [17] searching for the top 50 best aligned taxa for the query
sequence GI 19571541 and default parameters. We then added additional tests
on larger data sets all derived from human mitochondrial DNA. The mtDNA
data was retrieved from NCBI BLASTN, searching for the 500 best aligned taxa
for the query sequence GI 61287976 and default parameters. The complete set
of 16,546 characters (after removing indels) was then broken in four windows
of varying sizes and characteristics: the first 3,000 characters (mt3000), the first
5,000 characters (mt5000a), the next 5,000 characters (mt5000b), and the first
10,000 characters (mt10000). Table 1 summarizes the results.

For the set of 41 sequences of lhs-1 gene from O. rufipogon (red rice) [10], our
method pruned the full graph of 218 ∗ 32 nodes (after screening out redundant
characters) to 58. Fig 4(a) shows the resulting phylogeny. Both PAUP* and pars
yielded an optimal tree although more slowly than the ILP (2.09 seconds and
2.57 seconds respectively, as opposed to 0.29 seconds).

For the 245-base human mt-DNA sequences, the generalized Buneman prun-
ing was again highly efficient, reducing the state set from 228 after removing
redundant sequences to 64. Fig 4(b) shows the phylogeny returned. While PAUP*
was able to find the optimal phylogeny (although it was again slower at 5.69
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Fig. 4. Most parsimonious phylogenies (a) lhs-1 gene for O. rufipogon [10] (b) Human
mt-DNA [11] and (c) HIV-1 RT proteins [17]. Edges are labelled by their lengths in
parentheses followed by sites that mutate along that edge. Dark red ovals are input
taxa and light blue Steiner nodes.

seconds versus 0.48 seconds), pars yielded a slightly sub-optimal phylogeny
(length 45 instead of 44) in a comparable run time (0.56 seconds).

For HIV-1 sequences, our method pruned the full graph of 216 ∗ 3 ∗ 42 possible
nodes to a generalized Buneman graph of 297 nodes, allowing solution of the ILP
in about two minutes. Fig 4(c) shows an optimal phylogeny for the data. PAUP*
was again able to find the optimal phylogeny and in this case was faster than
the ILP (3.84 seconds as opposed to 127.5 seconds). pars required a shorter run
time of 0.30 seconds, but yielded a sub-optimal tree of length of 42, as opposed
to the true minimum of 40.

For the four larger mitochondrial datasets, Buneman pruning was again highly
effective in reducing graph size relative to the complete graph, although the
ILP approach eventually proves impractical when Buneman graph sizes grows
sufficiently large. Two of the data sets yielded Buneman graphs of size below
400, resulting in ILP solutions orders of magnitude faster than the heuristics.
mt5000a, however, yielded a Buneman graph of over 1,000 nodes, resulting in an
ILP that ran more slowly than the heuristics. mt10000 resulted in a Buneman
graph of over 6,000 nodes, leading to an ILP too large to solve. pars was faster
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than PAUP* in all cases, but PAUP* found optimal solutions for all three instances
we can verify while pars found a sub-optimal solution in one instance.

We can thus conclude that the generalized Buneman pruning approach de-
veloped here is very effective at reducing problem size, but solving provably to
optimality does eventually become impractical for large data sets. Heuristic ap-
proaches remain a practical necessity for such cases even though they cannot
guarantee, and do not always deliver, optimality. Comparison of PAUP* to pars
and the ILP suggests that more aggressive sampling over possible solutions by
the heuristics can lead optimality even on very difficult instances but at the cost
of generally greatly increased run time on the easy to moderate instances.

4 Discussion

We have presented a new method for finding provably optimal maximum parsi-
mony phylogenies on multi-state characters with weighted state transitions, us-
ing integer linear programming. The method builds on a novel generalization of
the Buneman graph for characters with arbitrarily large but finite state sets and
for arbitrary weight functions on character transitions. Although the method has
an exponential worst-case performance, empirical results show that it is fast in
practice and is a feasible alternative for data sets as large as a few hundred taxa.
While there are many efficient heuristics for recontructing maximum parsimony
phylogenies, our results cater to the need for provably exact methods that are
fast enough to solve the problem for biologically relevant multi-state data sets.
Our work could potentially be extended to include more sophisticated integer
programming techniques that have been successful in solving large instances of
other hard optimization problems, for instance the recent solution of the 85,900-
city traveling salesman problem pla85900 [18]. The theoretical contributions of
this paper may also prove useful to work on open problems in multi-state MP
phylogenetics, to accelerating methods for related objectives, and to sampling
among optimal or near-optimal solutions.
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Abstract. The advent of high-throughput sequencing technologies con-
stituted a major advance in genomic studies, offering new prospects in a
wide range of applications. We propose a rigorous and flexible algorithmic
solution to mapping SOLiD color-space reads to a reference genome. The
solution relies on an advanced method of seed design that uses a faith-
ful probabilistic model of read matches and, on the other hand, a novel
seeding principle especially adapted to read mapping. Our method can
handle both lossy and lossless frameworks and is able to distinguish, at
the level of seed design, between SNPs and reading errors. We illustrate
our approach by several seed designs and demonstrate their efficiency.

1 Introduction

High-throughput sequencing technologies can produce hundreds of millions of
DNA sequence reads in a single run, providing faster and less expensive solu-
tions to a wide range of genomic problems. Among them, the popular SOLiD
system (Applied Biosystems) features a 2-base encoding of reads, with an error-
correcting capability helping to reduce the error rate and to better distinguish
between sequencing errors and SNPs.

In this paper, we propose a rigorous and flexible algorithmic approach to
mapping SOLiD color-space reads to a reference genome, capable to take into
account various external parameters as well as intrinsic properties of reads re-
sulting from the SOLiD technology. The flexibility and power of our approach
comes from an advanced use of spaced seeds [1,2].

The main novelty of our method is an advanced seed design based on a faithful
probabilistic model of SOLiD read alignments incorporating reading errors, SNPs
and base indels, and, on the other hand, on a new seeding principle especially
adapted for read mapping. The latter relies on the use of a small number of
seeds (in practice, typically two) designed simultaneously with a set of position
on the read where they can hit. We call this principle position-restricted seeds.
Advantageously, it allows us to take into account, in a subtle way, read properties
such as a non-uniform distribution of reading errors along the read, or a tendency
of reading errors to occur periodically at a distance of 5 positions, which are
observed artifacts of the SOLiD technology.
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A number of algorithms and associated software programs for read mapping
have been recently published. Several of them such as MAQ [3], MOSAIK [4],
MPSCAN [5] PASS [6], PerM [7], RazerS [8], SHRiMP [9] or ZOOM [10] apply
contiguous or spaced seeding techniques, requiring one or several hits per read.
Other programs approach the problem differently, e.g., by using the Burrows-
Wheeler transform (Bowtie [11], BWA [12], SOAP2 [13]), suffix arrays (sege-
mehl [14], BFAST [15]), variations of the Rabin-Karp algorithm (SOCS [16])
or a non-deterministic automata matching algorithm on a keyword tree of the
search strings (PatMaN [17]). Some tools, such as segemehl [14] or Eland [18],
are designed for 454 and Illumina reads and thus do not deal with the char-
acteristics of the SOLiD encoding which is the subject of this paper. Also, it
should be noted that, in many cases, sensitivity is sacrificed in favor of speed:
most methods find similarities up to a small number of mismatches, and few
approaches account for nucleotide insertions and deletions.

Seed-based methods for read mapping use different seeding strategies. SHRiMP
[9] uses spaced seeds that can hit at any position of the read and introduces a lower
bound on the number of hits within one read. MAQ [3] uses six light-weight seeds
allowed to hit in the initial part of the read. ZOOM [10] proposes to use a small
number (4-6) of spaced seeds each applying at a fixed position, to ensure a lossless
search with respect to a given number of mismatches. In the lossless framework,
PerM [7] proposes to use “periodic seeds” (see also [19]) to save on the index size.

Despite the number of proposed solutions, none of them relies on a systematic
seed design method taking into account (other than very empirically) statistical
properties of reads. In this paper, we present a seed design based on Hidden
Markov models of read matches, using a formal finite automata-based approach
previously developed in [20]. To the best of our knowledge, this is the first time
that the seed design for read mapping is done based on a rigorous probabilistic
modeling.

Our approach allows us to design seeds in both lossy and lossless frameworks.
In the lossless framework, where the goal is to detect all read occurrences within
a specified number of mismatches, we have the flexibility of partitioning this
number into reading errors and SNPs.

As a result, we obtain a very efficient mapping algorithm combining a small
number of seeds and therefore a reasonable amount of index memory with guar-
anteed sensitivity and small running time, due to a restricted subset of positions
where seeds should be applied.

2 AB SOLiD Reads: Encoding and Technological
Artifacts

The SOLiD System [21] enables massively parallel sequencing of clonally ampli-
fied DNA fragments. This sequencing technology is based on sequential ligation
of dye-labeled oligonucleotide probes, each probe assaying two base positions at
a time. The system uses four fluorescent dyes to encode for the sixteen possi-
ble 2-base combinations. Consequently, a DNA fragment is represented by the
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initial base followed by a sequence of overlapping dimers, each encoded with
one of four colors using a degenerate coding scheme that satisfies several rules.
Thus, although a single color in a read can represent any of four dimers, the
overlapping properties of the dimers and the nature of the color code eliminate
ambiguities and allow for error-correcting properties.

As our work relies on modeling the error distribution along the reads, we are
particularly interested in several aspects of the sequencing technology that influ-
ence this distribution. First, since every color of the read encodes two adjacent
bases and therefore every base affects two adjacent colors, it follows that any sin-
gle base mutation results in the change of two adjacent colors in the read. On
the other hand, since cycles of five di-nucleotide readings are performed in order
to retrieve the sequence (as described in the documentation of Applied Biosys-
tems [21,22]), we expect reading error bias to appear with a periodicity of 5.

To confirm this intuition, we studied the variation of the reading error prob-
ability along the read by analyzing statistical properties of about a million of
SOLiD reads of the S. cerevisiae genome. In this analysis, we used the qualities
Ql associated to each position l on the read, which relate to the error probability
pl

e through Ql = −10 · log10 (pl
e) [23].
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We computed the quality correlation between read positions depending on
the distance between them. Formally, if m is the read length, then for each
i ∈ {1, .., m − 1}, we computed the correlation through the following standard

formula c(i) = E((Qj−Q̃)(Qj+i−Q̃))
(σQ)2 , where E(·) is the expectation, Q̃ the average

quality along the read, and σQ the standard deviation of quality values. The
result is given in Figure 1. It shows significantly higher correlations (up to 0.63)
between pairs of positions located at distances that are multiples of 5.

Additionally, we studied the behavior of reading error probability values along
the read. As shown in Figure 2, the error probability tends to increase towards
the end of the read, making the last positions of the color sequence less reliable
when searching for similarities.
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3 Seed Design for Mapping SOLiD Reads

3.1 Seed Design: Background

Spaced seeds, first proposed in the context of DNA sequence alignment by the
PatternHunter algorithm [1], represent a powerful tool for enhancing the effi-
ciency of the sequence search.

Using a spaced seed instead of a contiguous stretch of identical nucleotides to
select a potential similarity region can improve the sensitivity of the search for a
given selectivity level [1]. Furthermore, using a seed family, i.e. several seeds si-
multaneously instead of a single seed, further improves the sensibility/selectivity
trade-off [24,25]. The price for using seed families is the necessity to store in mem-
ory several indexes, one for each seed. In practice, however, using in the search a
small number of seeds can significantly improve the sensitivity/selectivity ratio.

A crucial feature of spaced seeds is their capacity to be adapted to different
search situations. Spaced seeds can be designed to capture statistical properties
of sequences to be searched. For example, [26,27] report on designing spaced
seeds adapted to the search of coding regions. One of the contributions of this
paper is a rigorous design of seeds adapted to mapping genomic reads issued
from the SOLiD technology. Note that here we will work with regular spaced
seeds rather than more advanced subset seeds [20,27,28], as there is very little
or no information in discriminating among different classes of mismatches that
can be used to our advantage.

One has to distinguish between the lossy and lossless cases of seed-based
search. In the lossy case we are allowed to miss a fraction of target matches,
and the usual goal of seed design is to maximize the sensitivity over a class of
seeds verifying a certain selectivity level. In the lossless case we must detect all
matches verifying a given dissimilarity threshold (expressed in terms of a number
of errors or a minimal score), and the goal of seed design is to compute a minimal
set of seeds with the best selectivity that still ensures the lossless search. In the
context of read mapping for high-throughput sequencing technologies, both lossy
[9,3] and lossless [10,7] frameworks have been used.

Our approach to seed design relies on a methodology proposed in our previous
work [20], based on the finite automata theory. A central idea is to model the set
of target alignments by a finite-state probability transducer, which subsumes the
Hidden Markov Model commonly used in biosequence analysis. On the other
hand, a seed, or a seed family, is modeled by a seed automaton for which we
proposed an efficient compact construction [29]. Once these two automata have
been specified, computing the seed sensitivity can be done efficiently with a
dynamic programming algorithm as described in [20]. The seed design is then
done by applying our Iedera software [20,29,30] that uses the above algorithm
to explore the space of possible seeds and select most sensitive seeds using a
sampling procedure for seeds and respective hit positions and by performing a
local optimization on the best candidates.

Here we apply this methodology to seed design for mapping SOLiD reads,
both in the lossy and lossless frameworks. Besides, we introduce an important
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novelty in the definition of seeds, especially advantageous for mapping short
reads: position-restricted seeds, which are seeds designed together with the set of
positions on the read where they can be applied. This can be seen as an interme-
diate paradigm between applying each seed at every position and the framework
of [10] where each seed applies to a designated position of the read. Position-
restricted seeds offer an additional power of capturing certain read properties
(such as, e.g., an increasing error level towards the end of the read) in a flex-
ible way, without sacrificing the selectivity and thus the speed of the seeding
procedure.

3.2 Modeling Seeds and SOLiD Reads by Finite Automata

We now present our model of color sequence alignments, built on the observations
of Section 2. Note that we consider the reference genome translated into the color
alphabet, i.e. both the reads and the genome are represented in color space.

Position-restricted seeds. As shown in Section 2, the reading error probabil-
ity increases towards the end of the read, implying that a search for similarity
within the last positions of the read could lead to erroneous results or no results
at all. Hence, we can improve the seed selectivity by favoring hits at initial posi-
tions of the read where matches are more likely to be significant. We then define
each seed π jointly with a set of positions P to which it is applied on the read.

We use the framework of [20] where a seed π is represented by a deterministic
finite automaton Q over the alignment alphabet A which is here the binary
match/mismatch alphabet. Note that the size of Q is a crucial parameter in the
algorithm of [20] to compute the sensitivity of the seed. An efficient construction
of such an automaton has been studied in [29]: it has the optimal size of (w +
1)2s−w states, where s and w are respectively the span (length) and weight
(number of match symbols) of the seed.

Let m be the read size. To take into account the set of allowed positions, we
compute the product of Q with an automaton λP consisting of a linear chain of
m + 1 states q0, q1, . . . , qm, where q0 is the initial state, and for every qi, both
outgoing transitions lead to qi+1. Final states of the automaton reflect the set
of possible positions P where the seed is allowed to hit: a state qi is final iff
i− s ∈ P .

A trivial upper bound on the size of the product automaton for a spaced
seed of span s and weight w is (w + 1) · 2s−w ·m. This bound can be improved
using the notion of matching prefix, as explained in [29]. Thus, an economical
implementation of the product of Q by λ taking into account the set of matching
positions P always produces at most (w + 1) · 2s−w · |P |+ m states.

Furthermore, consider an interval graph of the possible placements of the
seed on the read, where each placement spans over an interval of s positions.
The chromatic number c of this graph can be easily computed, providing the
maximal number of overlapping seeds. We observe that if this number is small
(compared to (s − w + log(w))), then the size of the product automaton is
bounded by O((m + 1) · 2c).
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Model for SNPs and reading errors. As explained in Section 2, there are
two independent sources of errors in reads with respect to the reference genome:
reading errors and SNPs/indels, i.e., bona fide differences between the reference
genome and sequenced data. We represent each of these sources by a separate
Hidden Markov Model (viewed as a probabilistic transducer, see [20]), combined
in a model which allows all error types to be cumulated in the resulting sequences.

The SNP/Indel model, denoted MSNP/I , (Figure 3) has three states: Match,
SNP and Indel, referring to matches, mismatches, and indels at the nucleotide
level, and is parametrized by SNP and Indel occurrence probabilities, denoted
pSNP and pIndel. Each transition of MSNP/I generates a color match, mismatch
or indel, with probabilities pc

m, pc
e, and pc

i respectively, defined as follows. An
insertion or deletion of n nucleotides appears at the color level as an inser-
tion/deletion of n colors preceded in 3/4 cases by a color mismatch [21]. Hence,
the pc

e = 0.75 when entering the Indel state, and pc
i = 1 for any transition

having the Indel state as source. A nucleotide mutation is reflected in the color
encoding by a change of two adjacent colors (and, more generally, n consecutive
mutations affect n + 1 consecutive colors [21]). Thus, pc

e = 1 when entering or
leaving the SNP state, and a color match/mismatch mixture when staying in the
mismatch state, since color matches may occur inside stretches of consecutive
SNPs. Finally, pc

m = 1 when looping on the M state.
The reading errors are handled by a more complex model, denoted MRE

(Figure 4). Basically, it is composed of several submodels, one for each possible
arrangement of reading errors on a cycle of 5 positions. Within these submodels,
the transitions shown in red correspond to periodic reading errors, and generate
reading errors with a fixed, usually high probability perr. This simulates the
periodicity property shown in Figure 1. Switching from one cyclic submodel to
another with a higher reading error rate (by adding another red transition, with
high error probability) can occur at any moment with a fixed probability ps.

The transitions shown in black in the model from Figure 4 have an error
emission probability of 0. However, in the complete reading error model, we wish
to simulate the error probability that increases towards the end (in conformity
with Figure 2). We do this by ensuring that reading errors are generated on these
transitions with a probability p′err(pos) (lower than perr) given by an increasing
function of the current position pos on the read. Technically, this is achieved
by multiplying the automaton in Figure 4 by a linear automaton with m + 1
states, where m is the read length and the i-th transition generates a reading
error (color mismatch) with the probability p′err(i). The reading error emission
probability in the product model is computed as the maximum of the two reading
error probabilities encountered in the multiplied models.

The final model, which combines both error sources, is the product of MSNP/I

and MRE . While the states and transitions of the product model are defined in
the classic manner, the emissions are defined through specific rules based on sym-
bol priorities. If corresponding transitions of MSNP/I and MRE generate symbols
α and β with probabilities p1 and p2 respectively, then the product automaton
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Fig. 4. Reading error automaton

generates the dominant symbol between α and β with probability p1p2. Different
probabilities obtained in this way for the same symbol are added up.

The dominance relation is defined as follows: indels are dominant over both mis-
matches and matches, and mismatches dominate matches. For example, (indel,
mismatch) results in an indel, (mismatch, mismatch) and (match, mismatch)
represent mismatch, (match, match) is a match. This approach ensures that er-
rors generated by each of the two models are superposed.

3.3 Computing the Sensitivity or Testing the Lossless Property

Given an automaton Q specifying a family of seeds possibly restricted to a set
of positions, we have to compute its sensitivity (in the lossy framework) or to
test whether it is lossless (in the lossless framework).

The sensitivity of a seed family is defined [1,31] as the probability for at least
one of the seeds to hit a read alignment with respect to a given probabilistic
model of the alignment. As outlined in Section 3.1, this is done using the dynamic
programming technique of [20]. We therefore omit further details.

In the lossless framework, we have to test if the seed specified by Q is lossless,
i.e. hits all the target alignments. The set of target alignments is defined through
a threshold number of allowed mismatches.
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A straightforward way to test the lossless property of Q would be to construct
a deterministic automaton recognizing the set of all target alignments and then
to test if the language of this automaton is included in the language of Q. This,
however, is unfeasible in practice. The automaton of all target alignments is much
too costly to construct: for example, in the case of threshold of k mismatches,
there are

∑k
a=0

(
m
a

)
different alignments of length m, and the Aho-Corasick

automaton of these strings would have
∑k+1

a=0

(
m
a

)
states. Moreover, testing the

inclusion would lead to computing the product of this automaton with Q which
would multiply the number of states by that of Q.

Alternatively, we propose an efficient dynamic programming algorithm di-
rectly applied to Q that can verify the inclusion. This algorithm computes, for
each state q of Q, and for each iteration i ∈ [1..m], the minimal number of
mismatches needed to reach q at step i. Let k be the threshold for the num-
ber of mismatches. Then, the lossless condition holds iff at step m, all non-final
states have a number of mismatches greater than k. Indeed, if there is a non-final
state that has a number of errors at most k after m steps, then there is at least
one string of length m with at most k mismatches that is not detected by the
automaton, which contradicts the lossless condition. This algorithm is of time
complexity O(|Q| · |A| ·m), and space complexity O(|Q| · |A|), where A is the
alphabet of the alignment sequences, in our case {0, 1}.

To illustrate the efficiency of this algorithm, consider the case of a single
spaced seed of span s and weight w, yielding an automaton with at most (w +
1)·2s−w states [32,20]. On this automaton, our method runs in time O(wm2s−w)
which brings an improvement by a factor of 2w

w of the general bound O(m2s)
from [33].

In the context of color sequence mapping, it is interesting to define the lossless
property with respect to a maximal number of allowed mismatches that is split
between SNPs and reading errors. Since, in the color space, a SNP appears as
two adjacent color mismatches, having k non-consecutive SNPs and h color mis-
matches implies the possibility to accept 2k + h mismatches with the additional
restriction that there exist at least k pairs of adjacent ones. The automaton that
recognizes the set of alignments verifying this condition on mismatches can be
obtained by combining simple 3-state building blocks as depicted in Figure 5.
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An example of such an automaton, accepting 1 SNP and 2 reading errors, is
illustrated in Figure 6 (1 and 0 denote match and mismatch respectively).

Note that the case of consecutive SNPs, resulting in sequences of adjacent
color mismatches, is a simpler problem (since consecutive SNPs produce re-
quire less mismatches in the color representation than the same number of non-
consecutive SNPs) and is covered by the proposed model: a seed that is lossless
for alignments with non-consecutive SNPs will also be lossless for alignments
with the same number of consecutive SNPs.

To verify the lossless property for k SNPs and h color mismatches, we intersect
the corresponding automaton with the seed automaton (thus restricting the set of
alignments recognized by the seed to those with k SNPs and h color mismatches)
and submit the result to the dynamic programming algorithm of Section 3.3.

4 Experiments and Discussion

We present now several efficient seed designs illustrating our methodology (more
examples at http://bioinfo.lifl.fr/yass/iedera_solid).

We first computed several sets of seeds of weight 10, restricted to either 10 or
12 positions among the 34 positions of SOLiD reads, each including one or two
seeds. Figure 7 shows some of the resulting seeds, together with the correspond-
ing sensitivity values, computed through the methods described in Section 3.

Interestingly, both single seeds 1-Lossy-10p and 1-Lossy-12p contain a dou-
ble gap, which may reflect that an SNP modifies two adjacent colors. However,
this gap is not centered but rather shifted at the two-third of the seed (as ob-
served for the best single seeds of [19]). Note also that in the two-seed families
2-Lossy-10p and 2-Lossy-12p, one of the chosen seeds is ungapped. This may

1-Lossy-10p: sensitivity 0.9543 2-Lossy-10p: sensitivity 0.9627
1 5 10 15 20 25 30 1 5 10 15 20 25 30
#######--### : : : : ########## : : : :
: #######--###: : : : : : ########## : : :
: #######--### : : : : : : ########## : :
: : #######--### : : : : : : : ##########:
: : #######--### : : : : : : : ##########
: : :#######--### : : ######----####: : : :
: : : #######--###: : : : ######----#### : :
: : : :#######--### : : : : ######----#### :
: : : : #######--### : : : : ######----####
: : : : : #######--### : : : : :######----####

1-Lossy-12p: sensitivity 0.9626 2-Lossy-12p: sensitivity 0.9685
1 5 10 15 20 25 30 1 5 10 15 20 25 30

#######--### : : : : ########## : : : :
: #######--###: : : : : : ########## : : :
: #######--### : : : : : :########## : :
: : #######--### : : : : : : :########## :
: : #######--### : : : : : : :##########
: : :#######--### : : : : : : : ##########
: : : #######--###: : ####--##--####: : : :
: : : #######--### : : ####--##--#### : : :
: : : : #######--### : : ####--##--#### : : :
: : : : #######--### : : ####--##--#### : :
: : : : :#######--### : : ####--##--#### : :
: : : : : #######--### : : : : :####--##--####

Fig. 7. Position-restricted seeds for 10 (above) and 12 (below) allowed positions. Dif-
ferent placements of a seed correspond to the allowed positions.

http://bioinfo.lifl.fr/yass/iedera_solid
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be a consequence of the fact that we consider indels in our lossy model, which
usually forces the seeds to have a smaller span. Another interesting observation
is that two-seed families 2-Lossy-10p and 2-Lossy-12p are actually lossless for
the threshold of 3 mismatches, whereas single seeds 1-Lossy-10p and 1-Lossy-

12p are not lossless for this setting.
We then focused on the lossless case where the maximal number of allowed

mismatches is split between SNPs and reading errors. Using the procedure de-
scribed in Section 3.3, we computed lossless single and double seeds for one SNP
and two reading errors. Results are shown in Figure 8.

1-Lossless-14p 2-Lossless-8p

1 5 10 15 20 25 30 1 5 10 15 20 25 30

####--#-------####--# : : ########## : : : :
:####--#-------####--# : : : : ########## : : :
: ####--#-------####--# : : : : : : ########## :
: ####--#-------####--#: : : : : : : ##########
: ... : : #####-----##### : : :
: : : ####--#-------####--# :#####-----##### : : :

: : : : #####-----#####
(14 consecutive placements) : : : : #####-----#####

Fig. 8. Lossless position-restricted seeds for 1 SNP and 2 reading errors

Note that the seed 1-Lossless-14p is one of several single seeds of weight
10 we found that satisfied this lossless condition, with no restriction on allowed
positions. Interestingly, they all have a very large span (21) and a regular pattern
with a periodic structure that can be obtained by iterating a simpler pattern
solving the lossless problem for an appropriate cyclic problem, following the
property we previously described in [19]. For two-seed families, Figure 8 shows
a lossless pair of seeds 2-Lossless-8p for read length 33 (which then remains
lossless for larger lengths), where each seed is restricted to apply to four positions
only.

To get a better idea of the sensitivity of the obtained seeds applied to real data,
we tested them on 100000 reads of length 34 from S. cerevisiae and computed
the number of read/reference alignments hit by each (single or double) seed.
Alignments were defined through the score varying from 28 to 34, under the
scoring scheme +1 for match, 0 for color mismatch or SNP, -2 for gaps. Results
are presented in Figure 9. One conclusion we can draw is that the performance
of lossless seeds 1-Lossless-14p and 2-Lossless-8p decreases quite fast when
the alignment score goes down, compared to lossy seeds. Intuitively, this is,
in a sense, a price to pay for the lossless condition which usually makes these
seeds less appropriate for the alignments with a number of errors exceeding the
threshold. Another conclusion is that, as expected, single seeds perform worse
than double seeds, although the overall number of positions where seeds apply
is the same for both single and double seeds.

Note finally that the choice of the best seed can be affected, on one hand,
by different properties of the class of target alignments (number, type and dis-
tribution of mismatches and indels etc.) and, on the other hand, by the size of
the data and the available computational resources. The former can be captured
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Fig. 9. Number of read alignments with scores between 28 and 34 hit by each seed

by our probabilistic models described in Section 3. The latter is related to the
choice of the selectivity level, directly affecting the speed of the search, which
is defined by the seed weight and the number of allowed positions. Depending
on the chosen selectivity, different seeds can (and should) be preferred. Note in
this regard that seeds appearing in Figure 9 have different selectivity and are
then incomparable stricto sensu. A comparison of different seeds for SOLiD read
mapping in typical practical situations will be a subject of a separate work.

5 Conclusions and Perspectives

In this paper, we presented a seed design framework for mapping SOLiD reads to
a reference genomic sequence. Our contributions include the concept of position-
restricted seeds, particularly suitable for short alignments with non-uniform error
distribution; a model that captures the statistical characteristics of the SOLiD
reads, used for the evaluation of lossy seeds; an efficient dynamic programming
algorithm for verifying the lossless property of seeds; the ability to distinguish
between SNPs and reading errors in seed design.

Our further work will include a more rigorous training of our models and in
particular a more accurate estimation of involved probabilities, possibly using
advanced methods of assessing the fit of a model. Another interesting question
to study is the design of efficient combined lossy/lossless seeds which provide a
guarantee to hit all the alignments with a specified number of errors and still
have a good sensitivity when this threshold is exceeded. Computing such seeds,
however, could be difficult or even unfeasible: for example, lossless seeds tend to
have a regular structure (see [19]) while best lossy seeds often have asymmetric
and irregular structure. Finally, we want to define and study a lossless property
that incorporates possible indels and not only mismatches (SNPs or reading
errors) occurring in read alignments.
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médicale) for sharing insightful knowledge about the SOLiD technology. Laurent
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Bogdan Paşaniuc1, Noah Zaitlen2,3, and Eran Halperin1,2,3

1 International Computer Science Institute, Berkeley, CA
2 Molecular Microbiology and Biotechnology Department

Tel-Aviv University
3 The Blavatnik School of Computer Science

Tel-Aviv University

Abstract. Next generation high throughput sequencing (NGS) is poised
to replace array based technologies as the experiment of choice for mea-
suring RNA expression levels. Several groups have demonstrated the
power of this new approach (RNA-seq), making significant and novel
contributions and simultaneously proposing methodologies for the anal-
ysis of RNA-seq data. In a typical experiment, millions of short sequences
(reads) are sampled from RNA extracts and mapped back to a reference
genome. The number of reads mapping to each gene is used as proxy
for its corresponding RNA concentration. A significant challenge in an-
alyzing RNA expression of homologous genes is the large fraction of the
reads that map to multiple locations in the reference genome. Currently,
these reads are either dropped from the analysis, or a näıve algorithm is
used to estimate their underlying distribution. In this work, we present
a rigorous alternative for handling the reads generated in an RNA-seq
experiment within a probabilistic model for RNA-seq data; we develop
maximum likelihood based methods for estimating the model parame-
ters. In contrast to previous methods, our model takes into account the
fact that the DNA of the sequenced individual is not a perfect copy of
the reference sequence. We show with both simulated and real RNA-seq
data that our new method improves the accuracy and power of RNA-seq
experiments.

1 Introduction

Next generation high throughput sequencing (NGS) technologies are rapidly es-
tablishing themselves as powerful tools for assaying a growing list of cellular
properties including sequence and structural variation, RNA expression lev-
els, alternative splice variants, protein-DNA/RNA interaction sites, and chro-
matin methylation state[18,16,14,15,11,1]. NGS enables thousands of megabases
of DNA to be sequenced in a matter of days with very low cost compared to
traditional Sanger sequencing. It provides tens of millions of short reads which
can then be mapped back to a reference genome or used for de novo assembly.
The advantages offered by NGS are underlined by the sheer wealth of significant
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novel discoveries not possible with existing chips and prohibitively expensive
with previous sequencing methods.

As with any new technology, there are a host of new problems to solve in order
to maximize the benefit of the data produced. In the case of NGS, many of the
new methods adapt classic problems such as alignment and assembly to the
relatively short, inaccurate, and abundant set of reads. Other methods, such as
the one presented here, aim at optimizing the analysis of NGS assays previously
done using microarray based technologies such as quantifying gene expression
levels from RNA data (RNA-seq). A first step in such an analysis is mapping
the reads to a reference genome and aggregating the counts for each genomic
location. Under the assumption that NGS samples short reads at random from
the sequenced sample, the sequences with higher concentration will produce more
reads. In the case of arrays this corresponds to a higher probe intensity. Indeed,
it was recently shown that the RNA-seq read counts and expression array probe
intensities are highly correlated measurements for RNA expression levels[15,14].

Accurate estimation of the number of reads mapped to each genomic loca-
tion critically depends on finding the location on the reference genome from
which each read originated. While the majority of the reads produced by an
NGS experiment map to a unique location along the genome, due to short read
length, sequencing errors, and the presence of repetitive elements and homologs,
a significant percentage of reads (up to 30% from the total mappable reads)
are mapped to multiple locations (multireads). In the vast majority of RNA-seq
experiments that have been published so far, the analysis consisted of simply
disregarding the multireads from subsequent analyses. However, as previously
noticed [15] if the multireads are discarded, the expression levels of genes with
homologous sequences will be artificially deflated. If the multireads are split ran-
domly amongst their possible loci, differences in estimates of expression levels for
these genes between conditions will also be diminished leading to lower power to
detect differential gene expression. Several groups have proposed a more intuitive
alternative for dealing with multireads [6,15]. Although there are small differ-
ences, they both adopt a heuristic approach, dividing the multireads amongst
their mapped regions according to the distribution of the uniquely mapped reads
in those regions. Intuitively, if there is a unique segment in the homologous re-
gion, then the distribution of the multireads in the repetitive segment of the
region will follow the same distribution as the reads in the unique segment. This
approach, although intuitive, is not optimal, as it does not thoroughly model the
contribution of the multireads.

In this work we propose a rigorous framework for handling multireads that
is applicable to several different assays including RNA-seq. In contrast to pre-
vious approaches, which were heuristic in their nature, we propose a generative
model that describes the results of an RNA-seq experiment including multireads.
An important feature of our model is that it takes into account genetic varia-
tion between the reference human genome sequence and the sequence of the
studied sample, improving accuracy in some instances and allowing for simulta-
neous expression analysis and genotyping. We further developed algorithms for
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estimating the parameters of the model using a maximum likelihood approach.
We show through simulations and real RNA-seq data that our method signif-
icantly improves the accuracy and power of detecting differentially expressed
genes under several measures. Particularly, our results on real data demonstrate
that in an RNA-seq experiment comparing two tissues, we can potentially dis-
cover many more genes that are differently expressed between the tissues. In
addition, our treatment of genetic variation allows us to simultaneously call
variants (e.g. locations where the sequenced sample varies from reference), and
use the location of these variants to further resolve the location of the multireads.

An implementation of our method is freely available for download as part
of the software package SeqEm at http://www.cs.tau.ac.il/˜heran/cozygene/
software.html.

2 Methods

We will first describe our probabilistic generative model for an RNA-seq exper-
iment. Let G = (G1, . . . , Gn) be n contiguous DNA regions representing genes
or other potentially expressed sequences. For each Gi we define the RNA cellu-
lar concentration of the gene as Pi, s.t.

∑n
i=1 Pi = 1. P = (P1, . . . , Pn) can be

interpreted as the normalized expression levels for the regions in G. Our model
assumes that reads of length l are generated by randomly picking a region R
from G according to the distribution P , and then copying l consecutive posi-
tions from R starting at a random position in the gene. The copying process is
error-prone, with probability ε(k) for a sequencing error in the kth position of
the read. The model is easily adapted to multi-length reads, but a fixed length is
used here for simplicity. This process is repeated until we have a set of m reads
R = r1, . . . , rm generated according to the model described above. The objective
of an RNA-seq experiment is to infer P from R.

The first step in an RNA-seq experiment consists of mapping the results of an
NGS run to the reference genome. Mapping methods such as ELAND, Maq, and
bwa [9,12,13] provide for each read its most probable alignment, its position,
and how many mismatches the alignment contains. Due to sequencing errors,
some reads may not align perfectly. Furthermore, multireads align to more than
one position, especially if the sequenced regions overlap with repeated genomic
sequences such as homologous genes or repeats like ALUs, LINEs, and SINEs.

In the context of our model, each read ri originated from one of the regions
in G, but due to sequencing errors it may not align perfectly to that region;
furthermore due to repeated sequences, it may also align to other regions. Put
differently, for each region Gj and read ri, we have a probability pij = P (rj |Gi),
the probability of observing rj given that the locus of the read was gene Gi. In
practice, for each read rj , this probability will be close to zero for all but a few
regions. The likelihood of observing the m reads can be written as:

L(P ; R) =
m∏

j=1

P (rj |G, P ) =
m∏

j=1

n∑
i=1

P (Gi)P (rj |Gi) =
m∏

j=1

n∑
i=1

Pipij



400 B. Paşaniuc, N. Zaitlen, and E. Halperin

Unfortunately we do not know the expression levels P . A natural way of finding
estimates for P is given in the following problem formulation for the Maximum
Likelihood Expression Inference (MLEI) problem:

Definition 1 (MLEI). Given a set or reads r1, · · · , rm and a set of regions
G1, · · ·Gn, find a probability Pi for every region Gi so that

∑
i Pi = 1, and so

that the likelihood of the data L =
∏m

j=1
∑n

i=1 Pipij is maximized.

As shown in [5] the likelihood objective function is concave, and the maxi-
mization of this function is polynomially solvable since there is a separation
oracle as long as the pij coefficients are fixed. We present here an Expectation-
Maximization (EM) algorithm for the MLEI problem. Since this problem is
concave, the EM algorithm will converge to the optimal solution.

2.1 EM Algorithm for Inferring Expression Levels

We now describe an algorithm for solving the MLEI problem. We are searching
for P = {P1, P2, · · · , Pn} such that the likelihood of the data is maximized. Let
M be the underlying true unobserved matching of reads to regions. Then the
following is an EM algorithm that searches for P that maximizes L(P ; R). Let
P (t) be the current estimate of P .

E step:

Q(P |P (t)) = EM|R,P (t) [log L(P ; R, M)]

= EM|R,P (t) [
m∑

i=1

(log PM(i) + log piM(i))]

=
m∑

i=1

n∑
j=1

[(log Pj + log pij)×
P

(t)
j pij∑n

j=1 P
(t)
j pij

]

M step:

P (t+1) = arg max
P

Q(P |P (t))

= arg max
P

[
m∑

i=1

n∑
j=1

aij log Pj +
m∑

i=1

n∑
j=1

aij log pij ]

where aij =
P

(t)
j pij∑n

j=1 P
(t)
j pij

. Given that pij (the probability of read j if it came from

region j) are fixed, maximizing the above function reduces to finding

P (t+1) = argmax
P

m∑
i=1

n∑
j=1

aij log Pj =
n∑

j=1

(
m∑

i=1

aij) log Pj

It can be easily shown that the maximum is achieved at:

P
(t+1)
j =

∑m
i=1 aij∑m

i=1
∑n

j=1 aij
, ∀j
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Since the likelihood function is concave [5], the above EM is guaranteed to con-
verge to the optimal solution. Although it does not have the same polynomial
time guarantee as the method in [5], in practice it outperforms the HAPLOFREQ
method of [5] and provides a basic framework for the extension of the MLEI
problem to the case of joint estimation of expression levels and variants where
the sequenced sample differs from the reference genome. Since Single-Nucleotide
Polymorphisms (SNPs) are the most common source of variation in the human
genome we focus primarily on single nucleotide variants although other type of
variants can be easily incorporated into the model. The model of reads with SNP
variants is more realistic and may also be more powerful for certain cases since
SNPs can be used to distinguish genomic locations in homologous regions. We
demonstrate in the Results section that the solution obtained by the EM more
accurately estimates the gene expression levels P , than the heuristic methods
of either ignoring the multireads altogether or dividing them among the regions
they map to.

2.2 Joint Estimation of Expression Levels and SNP Variants

In the above formulation we implicitly assumed that the probabilities pij were
fixed and easy to compute since we had a fixed reference dataset. All differences
between reads and reference were assumed to be due to errors and pij was
simply a function of our model parameters. In practice however, the sequenced
DNA may be slightly different than the reference genome, particularly in SNP
positions. To model the SNP locations, we introduce a variable Xk = {X1

k , X2
k}

with X1
k , X2

k ∈ {A, C, T, G} for each genomic position k, which denotes the
genotype of the sequenced sample at that location. The values of Xk are unknown
and they have to be inferred. We can assume we have a prior distribution of Xk

which corresponds to the distribution of the allele frequencies in the genome –
this distribution can be empirically estimated (depending on the ancestry of the
sample) from the HapMap[3] data, and particularly the ENCODE[2] regions, as
well as the 1000 genomes project when the data becomes available. Particularly,
we can have an estimate of the distribution of allele frequency across positions
that are not known to be SNPs based on the ENCODE regions, and for the other
positions we have their allele frequencies from dbSNP or from HapMap. Now, if
the plausible alignment of read ri to region Gj spans the positions X1, .., , Xl,
assuming that sequencing errors are independent of each position, we can write
pij as:

pij =
∏
k

γ(Xk, rk
i , k)

where,

γ(Xk, rk
i , k) =

⎧⎨⎩
ε(k), if X1

k �= rk
i , X2

k �= rk
i

1− ε(k), if X1
k = rk

i , X2
k = rk

i

0.5, otherwise

ε(k) is the error rate function in a read at position k. The dependency of the
error rate on the position comes from technological constraints as the error
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rate is expected to increases with the length of the reads (see [4] for empirical
estimates of Solexa error rates). Based on this, the problem of joint estimation
of expression levels and SNP variants can be defined as follows:

Definition 2 (MLEI-SNP). Given a set or reads r1, · · · , rm and a set of re-
gions G1, · · ·Gn, find a probability Pi for every region Gi and genotype Xk =
{X1

k , X2
k} ∈ {A, C, T, G}2 for every location k, so that

∑
i Pi = 1, and so

that the likelihood of the data L =
∏m

j=1
∑n

i=1 Pipij is maximized, where pij =∏l
k=1 γ(Xk, rk

i , k).

EM extension with SNP variants. In order to maximize the likelihood of
the data, we are now looking for both P = {P1, P2, · · · , Pn} s.t

∑
Pi = 1 and

genotype calls X = {x1, · · · , xk} for every genomic location so that the likelihood
of the data L(P, X ; R) =

∏m
j=1
∑n

i=1 Pipij is maximized, where pij is defined as
before:

pij =
∏
k

γ(Xk, rk
i , k)

The EM algorithm can be adapted as follows:
E step:

Q(P, X |P (t), X(t)) = EM|R,P (t),X(t) [log L(P, X ; R, M)]

= EM|R,P (t),X(t) [
m∑

i=1

log PM(i)piM(i)]

=
m∑

i=1

n∑
j=1

[(log Pjpij)×
P

(t)
j pX(t)

ij∑n
j=1 P

(t)
j pX(t)

ij

]

M step:

(P (t+1), X(t+1)) = argmax
P,X

Q(P, X |P (t), X(t))

= argmax
P,X

[
m∑

i=1

n∑
j=1

aij log Pjpij ]

= argmax
P,X

[
m∑

i=1

n∑
j=1

aij log Pj +
m∑

i=1

n∑
j=1

aij log pij ]

Since the two terms in the above equation are independent we can maximize
them separately. Just as before the first term in the equation above is maximized

when P
(t+1)
j =

∑m
i=1 aij∑m

i=1
∑n

j=1 aij
, where aij =

P
(t)
j pX(t)

ij∑
n
j=1 P

(t)
j pX(t)

ij

.

The second term is more complicated as we need to find X∗ that maximizes∑m
i=1
∑n

j=1 aij log pij . However, since the term depending on pij is a log of a
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product, we can decompose it into independent contributions for each genomic
location k and optimize each Xk independently. Namely,

m∑
i=1

n∑
j=1

aij log pij =
m∑

i=1

n∑
j=1

aij log
∏
k

γ(Xk, rk
i , k)

=
m∑

i=1

n∑
j=1

aij

∑
k

log γ(Xk, rk
i , k)

=
∑

k

∑
read i spans k

aij log γ(Xk, rk
i , k)

and thus we set

X
(t+1)
k = arg max

Xk=(x1
k,x2

k)

∑
read i spans k

aij log γ(Xk, rk
i , k)

In practice we can speed up the computations by noticing that in the M step
when finding new estimates for Xt+1

k we only need to consider locations k at
which there are at least c > 0 mismatches to the reference.

3 Results

In this section we present results on both simulated and real data sets show-
ing the superior accuracy of our approach when compared to three previously
proposed heuristic approaches for this problem. The first method we compare
to is the standard method that ignores all multireads and estimates the ex-
pression levels Puniq

i as the percentage of unique reads mapped to region i
amongst all uniquely mapped reads. The second method estimates Pi by di-
viding the ambiguous reads uniformly between each region it maps to. Namely,
Punif

i = 1
m

∑
j:j maps to i

1
h(i) , where h(i) is the number of locations read ri maps

to. A more intuitive approach[6,15] is to divide each read amongst each location
it maps to according to weights, where the weights are given by the distribution
of the uniquely mapped reads in those regions; we denote this method as the
weighted approach.

Performance measures. We use two correlated measures for the distance be-
tween the estimated and true distributions of the RNA expression levels P . Pi

denotes the true expression level of a gene and P̂i is the estimated expression
level. The first measure we use, the error rate, is computed as 1

n

∑
i
|Pi−P̂i|

Pi
and

it quantifies the average distance between the true and the estimated expression
level in a region. A second approach to measure the accuracy of the estimates
is the “goodness of fit” measure between the two distributions, in terms of chi-
square difference:

∑
i

(Pi−P̂i)2

Pi
. This measure is of particular interest as it is

correlated to the power to detect differentially expressed regions.

Simulated Datasets. In the first set of experiments we assessed the performance
of our framework on RNA-seq by simulating short reads based on chromosome 1
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from the human genome as a reference sequence. We focused on known homolo-
gous genes since they are the genes that are most affected by multireads. To do
this, we downloaded the 756 human homologous genes from chromosome 1 from
the Homologene[10] database. We removed all overlapping genes and genes with
no other homologs in human resulting in 51 genes over 95kb.

The human reference genome does not contain information about possible
polymorphisms, however it is expected that we will see both homozygous and
heterozygous variants when sequencing a random individual in comparison to
the reference. Given that the sequencing sample is different from the reference
at a locus where the SNP allele frequency is f , the probability for a heterozygote
is 2f(1− f) and for a homozygous variant different from the reference is f2(1−
f)+ f(1− f)2 = f(1− f). Thus, given that a site is different from the reference,
the probability of a heterozygote is 2/3, and of a homozygote is 1/3, regardless
of the allele frequency f . As done elsewhere[13], we used this observation when
simulating a sample. First we pick a set of variants (where the sample differs
from reference) with a rate of 10−3 (which is the approximate frequency of SNPs
in the genome) and then we randomly set 2/3 of the variants as heterozygous
and 1/3 homozygous. In order to make the simulations as close to the actual
data as possible, we also picked genotypes for the sample at known HapMap
SNPs from the distribution given by the HapMap CEU frequencies.

For each of the 51 homologous genes we randomly chose Pi according to
the uniform distribution, and normalized so that

∑
i Pi = 1; Pi represents the

true expression rate for gene i. We generated xi reads for this region, where
xi = C×L(i)×Pi

T . C is a parameter of the simulation denoting the coverage rate,
L(i) is the length of the gene in base-pairs (we only count the exons) and T
is the length of the read. Although currently available NGS technologies such
as Solexa[9] or ABI SolID[8] produce reads of length 20 to 40 base-pairs it is
expected that the read length will increase dramatically to up to 100 bp and
more in the near future. For this reason, we use simulations for two tag lengths
( T = 32 and T = 100) thus simulating both currently available technologies and
future technological developments. For each read at every location we inserted
errors using a rate of ε = 0.01; similar results were obtained on simulations
using an empirical error model that was estimated by Dohm et al.[4] (data
not shown). The reads were mapped to chromosome 1 hg18 using the bwa[12]
mapping algorithm with default parameters.

Inferring expression levels in homologous genes. In our first set of results
we compared the EM algorithms with or without SNP variant calling to previ-
ously employed methods. Figure 1 shows that both EM algorithms outperform
the other methods for both 32 and 100 bp length reads as well as for the different
accuracy measures. Indeed for reads of length 32 the error rate decreases from
approximately 30% for the uniq method that uses only the uniquely mapped
reads to approximately 20% for both EM methods. The improvement, although
still substantial, is more modest for reads of length 100, probably due to a smaller
number of multireads as compared to reads of length 32.
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Fig. 1. Accuracy of gene expression inference based on simulated RNA-seq data for
different read lengths and different accuracy measures. Results are given as averages
over 100 simulated datasets. The EM methods outperform the heuristic methods of
assigning reads as well as the approach of ignoring multireads.

To further highlight the effect of including the multireads in subsequent analy-
ses as opposed to the general approach of using only the uniquely mapped reads
we assessed the quality of SNP variant inference with or without multireads.
To maintain a meaningful comparison, we called SNP variants based on unique
reads under the same likelihood method for calling SNPs as in the EM algorithm
of Section 2.2. Table 1 shows the true and false positive rates for SNP variant
calling showing that the e − m − snps method outperforms the uniq method
for all studied coverages when compared to the method that employs only the
uniquely mapped reads.

Detecting differential expression. Using the same set of genes as before we
simulated pairs of experiments with different expression levels for the genes.
Using the true expression levels and a standard chi-square test (α = 0.01), we
first computed a set of differentially expressed genes between the experiments
which serve as the gold standard “true” differentially expressed genes. We as-
sessed the capacity of identifying the differentially expressed genes when differ-
ent methods were used for estimating P ′

is. The EM method shows the overall
best performance, area under ROC curve of .83, compared to .75 for the uniq
method and .81, .82 for the unif and weighted methods. For α = 0.05 cutoff,
EM achieves (true positive, false positive) rates of (97.5%, 24.5%) compared to
(88.4%, 20.8%) for uniq method, (95.9%,26.6%) for unif and (96.6%,26.4%) for
weighted method.
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Table 1. Variant calling rates on simulated datasets with reads of length 32 for various
coverages. Results given in averages over 100 simulated datasets.

coverage method TPR FPR
1x uniq 18.00% 2.39E-05

e-m-snps 18.26% 4.97E-05
5x uniq 53.19% 3.27E-05

e-m-snps 55.52 % 3.99E-05
10x uniq 69.67% 4.82E-05

e-m-snps 73.55% 4.13E-05
20x uniq 79.23% 3.50E-05

e-m-snps 83.65% 2.26E-05

Fig. 2. Expression levels of gene ABCG5 in the GeneAtlas (http://biogps.gnf.org)
project with high expression in Liver and Fetalliver. Gene ABCG5 is shown to be
highly differentially expressed between Liver and Kidney in Marioni et al. [14] RNA-
seq data only when using our EM method for inferring gene expression levels.

Real dataset. We also applied our methods to a real RNA-seq data set from
Marioni et.al [14] consisting of two runs of an Illumina Genome Analyzer with
half of the lanes containing human liver RNA and half kidney. We mapped all
the reads with bwa [12] to the human genome sequence build hg18 and counted
the number of reads in exons (we used the exon annotation of UCSC genome
browser [7]). The read counts per gene were highly correlated across lanes and
did not exhibit a lane effect for most lanes [14]. We used the data from lanes
one and two from the first run to estimate kidney and liver expression levels. We
used the weighted method and our EM method to estimate the read counts for
each gene. In this case we do not know the true expression levels of the genes
so we can not report which method is more accurate. Instead, we measure the
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number of genes exceeding a 5x log2 fold change between each of the methods.
For genes with uniquely mapped reads, these methods will perform identically,
so we restricted our analysis to the 2207 genes with more than 200 multireads.
For this set of homologous genes our EM method found 94 highly differentially
expressed genes, while the weighted method reported only 86, a decrease of 8.5%.
All of the genes found to be highly differentially expressed using the weighted
method were contained in the set found using EM. To verify that the additional
8 genes we found using EM were not false positives we examined their expression
levels in the GeneAtlas project [17], a comprehensive survey of gene expression
in human tissues. For 7 of the 8 additional genes we found GeneAtlas expression
levels were consistent with the EM findings; the probe intensities were greater
than 50 in one tissue and less than 10 in the other. Figure 2 shows an example for
the gene ENSG00000138075 (ABCG5). Note that ABCG5 has a known homolog
ABCG8 so it is one of the cases that our method addresses. Only one of these
eight genes predicted to be differentially expressed by EM, was not differentially
expressed in the GeneAtlas. Overall, these data confirm the increased power of
our method, suggesting that the additional differentially expressed genes found
by the EM are true positives.

4 Discussion

Given the dropping cost of sequencing, and the numerous advantages RNA-seq
has over expression array based experiments, it is likely that in the next future
RNA-seq will become a pervasive choice for measuring cellular RNA expression
levels. Many of the analyses conducted so far have utilized varying methods, and
it is currently unclear which strategies will prove to be the most accurate and
powerful. Considering the rich literature discussing proper analysis of microarray
data over the last fifteen years, it is likely that methods for this new technology
can be significantly improved.

This work addresses an important aspect of RNA-seq analysis; how to han-
dle reads from homologous and repetitive elements that map to multiple ge-
nomic locations. Our results clearly show that näıve approaches significantly
underestimate the true expression of homologous genes. Unlike previous heuris-
tic approaches we present methods based on a rigorous probabilistic generative
framework for an RNA-seq experiment and show that our approach consistently
outperforms all previous attempts at solving this problem. We also applied our
approach on a real RNA-seq data set to find several new highly differentially
expressed genes when compared to previous approaches; these findings were
confirmed by existing expression array data sets.

We have identified several areas of improvement that we plan to address in
future work. Currently, our method is limited to the use of consensus genes
and maybe improved by additionally modelling isoforms, splice variants, allelic
heterogeneity, and un-annotated genes. In addition, the problem of multireads
extends beyond RNA-seq experiments. For example, in both ChiP-seq and RIp-
seq scenarios array based methods are replaced with an NGS approach and so



408 B. Paşaniuc, N. Zaitlen, and E. Halperin

analysis methods must again handle multireads. Instead of determining the dis-
tribution of multireads as in RNA-seq, a binary signal is returned specifying
whether or not a particular transcription factor binds to a specific genomic lo-
cation. Solving the multiread problem in this context can potentially increase
the power of detecting interesting loci, particularly when these loci fall within
repetitive elements of the genome.
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Abstract. We introduce a data structure, analysis and visualization
scheme called a cactus graph for comparing sets of related genomes.
Cactus graphs capture some of the advantages of de Bruijn and break-
point graphs in one unified framework. They naturally decompose the
common substructures in a set of related genomes into a hierarchy of
chains that can be visualized as multiple alignments and nets that can
be visualized in circular genome plots.

1 Introduction

Genomes are often compared at a fine scale using multiple alignments [1] [2], which
capture base-level differences, and at a large scale using circular genome plots [3]
[4], which capture rearrangements.However, the changes between genomes exhibit
structure at many intermediate levels as well. This structure is inherently nested,
with small inversions inside of larger inversions, duplications within duplications,
etc. We introduce a data structure called a cactus graph that captures the nested
structure of genome comparisons. Applications of cactus graphs include the com-
parison of reference genomes from related species, comparison of structural varia-
tion between genomes of the same or different individuals within a species [5], and
comparison of different somatic variants of an individual’s germline genome, e.g.
in cancer genomics research [6] [7].

The first step in genome comparison is to identify and align segments of DNA
that are homologous between and within the genomes being compared. These
segments may be, for example, coding exons, recognizably conserved noncoding
elements, or large orthologous chromosomal regions of closely related genomes.
A multiple alignment of a set of homologous segments is called a block.

Identification of the segments leaves behind stretches of unaligned DNA we
call adjacencies between segments and at the ends of chromosomes. To make the
two adjacencies at the opposite ends of a chromosome into proper adjacencies,
we add a cap at each end representing the telomeres, and connect these two
caps by adjacencies to the first and last segments. More generally, a cap can
be the end of any sequence of DNA. Thus, when applying these conventions
to represent an internal part of a chromosome, the caps are the ends of the
segments flanking this internal part of the chromosome. We define a thread as a
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path of alternating adjacency and segment edges that is flanked by adjacencies
connected to caps. The potential nesting of threads makes it easier to represent
hierarchical structures within the chromosomes of the genomes being compared.

Caps naturally inherit the homologies of the segment ends that define them.
Additional homologies can be defined a priori for chromosome telomeres, so that
all caps, be they internal segment ends or chromosome telomeres, are treated
in the same fashion. A family of homologous caps is called an end. Figure 1
shows an example of two different threads traversing a set of ends, blocks and
adjacencies.
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Fig. 1. A circular genome style plot showing a complete net with examples of chains
and threads. Blue and green lines depict two homologous threads traversing a series
of segments in blocks and the joining adjacencies. All aligned boxes are blocks ex-
cept A1 and A4, which are ends representing telomeres. The ends of the blocks and
the ends of the telomeres are mapped as filled black rectangles on the edges of the
aligned boxes. These are the nodes in the complete net. DNA bases within the adja-
cencies are not shown. Ignoring the unseen sequence within the adjacencies and starting
at A1, the blue thread gives the sequence ACTTGGCCACTGGGACGCCATC-
GGAAGTTCCagtGGGACGCCATCATCGGATCGACTGTTTCATGGATCCC. The
green thread gives the sequence ACTGAAGACCGGATCGcatggccagtGAGC. The
lower case “agt” in the blue thread represents the reverse complement of the bottom
segment of block G1, which is traversed right-to-left in the blue thread and similarly,
the lower case segment in the green thread is the reverse complement of segments in
B2, K1 and B1, also traversed right-to-left. Chains containing more than one block/end
are given distinct colors; for example chain A has two blocks, A2 and A3, and two ends,
A1 and A4 in it, all colored red. The large curly brackets highlight the four ends of the
subnet shown in Figure 2.
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A net is a graph in which each node is an end and each edge represents a set
of adjacencies between the caps in the two ends it connects. A complete net for
the comparison of a set of genomes has a node for each end of every block and a
node for each telomere end. There is an edge between two nodes whenever there
is an adjacency between them in any of the genomes being compared. Usually
the nodes are laid out on a circle and the edges are geodesics that cross the circle
(Figure 1) [3] [4]. Complete nets quickly get very dense and hard to interpret
with growing genome size and genome distance, thankfully they can often be
decomposed into smaller components. The cactus graph provides an organizing
principle in which simpler subnets and nested substructures can be extracted
from complete nets. For example, the four ends highlighted by curly braces in
Figure 1 form a connected component of adjacencies for which we can construct
a net as shown in Figure 2. In the “blue” genome, they appear as A2 B A3

A2

B

A3

Fig. 2. A net for the ends highlighted by curly brackets in Figure 1. The net is composed
of four ends: an end of A2, and end of A3, and both ends of the chain B, which is
composed of B1 and B2. The ends are represented by the four filled circles on the
larger circle. The adjacencies between the ends of the elements are the colored green
and blue lines, the coloring indicating the two respective threads of Figure 1.
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Fig. 3. A cactus graph with embedded net substructures for the chains and threads in
Figure 1. The blue and green lines again depict the two threads. Each net node is shown
in a circle; the origin net is φ. Block and end edges are depicted with multiple arrows,
representing the different threads traversing them. The dotted arrows of A1 and A4

indicate they are inherited ends. The lines within the circles represent the adjacencies.
The dotted lines in net φ represent the backdoor adjacencies connecting the dead ends
of A1 and A4.
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and in the “green” genome they appear as A2 −B A3, where the negative sign
denotes reverse complement. This inversion is represented cleanly in a simple
subnet, separable from the larger complete net.

Each node of the cactus graph is a subnet of a complete net, as determined by
the construction in Section 2.3 below, and each edge is a block. Every block in
the genomes being compared appears as an edge, and every adjacency between
segments or from a segment to a telomere cap is represented in one of the subnets.
The cactus graph consists of a single connected component that is composed of
a set of simple cycles, i.e. cycles such that no node is used twice, such that any
two simple cycles intersect at at most one node (Figure 3). This property gives it
its “cactus-like” appearance. Each simple cycle in the graph has an orientation
that determines the direction of each edge on the cycle (see Section 2.5). All the
telomere ends are contained in a single subnet represented by a node called the
origin. A hierarchical set of chains is defined as follows. For each simple cycle
that includes the origin we define a child chain by concatenating the blocks
represented by the edges of the cycle in the order that they appear, starting
from the first outgoing edge from the origin. Each node along this cycle, apart
from the origin, represents a link in the chain. Conceptually, the link consists
of that node and the entire sub-cactus graph that is attached to the chain at
that node, i.e. the smaller cactus you would get if you pruned off this piece and
replanted it. The origin node is called the parent of the child chain. Traversing
outwardly from child chains of the origin node the definition of further chains
proceeds recursively. Each node in one of the previously found simple cycles
for which we have not yet defined a chain set becomes a new origin-like node,
and we define child chains for it in the manner above, until all nodes have been
explored and all chains are children with unique parents. This recursion results
in a hierarchical structure called the cactus tree, a bi-layered tree consisting of
parent subnets describing the relative order and orientation of their child chains,
and these chains in turn containing a subnet in each of their links that describes
further chains nested inside these links, and so on (Figure 4). This hierarchy
represents the organization of the substructures shared between the genomes at
various levels, from large chromosomal regions down to individual bases.
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Fig. 4. A cactus tree for the cactus in Figure 3. Nets are shown as circles, chains as
squares. The tree is bi-layered, with alternating net and chain layers.
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In this manner, a cactus graph partitions a set of genomes into nested struc-
tures represented by chains and subnets, which can be visualized using align-
ments and circular plots, respectively. Cactus-graph-derived chains and subnets
are analogous to those introduced in [8], but not identical. The theory behind the
cactus graph [9] generalizes the notion of components and their hierarchies de-
fined by Bergeron et al. for the study of rearrangements between pairs of genomes
[10] [11]. The abstract combinatorial notion of a cactus graph, discussed further
below, has also been used in many different optimization problems, including
graph decomposition [12], optimal traffic [13] and facility location problems [14],
and electrical circuits [15].

2 Results

2.1 Basepairs, Chromosomes and Genomes

We start by linearizing all the circular chromosomes in a set of input genomes,
by breaking each of them at an arbitrary point. Let S be the resulting set of
linear input chromosomes. Here we assume the input chromosomes are single
complete sequences, in Section 1.1 of the appendix we consider the following
construction stages with missing data. Mathematically a chromosome is just a
circular string of signed symbols taken from a fixed alphabet of possible symbols.
To avoid being excessively abstract, we will assume that the alphabet is just the
symbols {A/T, T/A, C/G and G/C} for basepairs, with the understanding
that the usual rules for reverse-complementing basepairs apply.

2.2 Homology

We say that two basepairs in S are homologous, denoted x ∼ y, if they are
related to each other by some given biological definition of relatedness, e.g. if
they descend from a common ancestral basepair that existed a certain time in the
past. For the purposes of this paper we require only that the notion of homology
between basepairs be an equivalence relation. Two strings x = x1 . . . xn and
y = y1 . . . yn are homologous if their bases are homologous, i.e. x ∼ y if x1 ∼ y1,
x2 ∼ y2, ..., and xn ∼ yn.

2.3 Blocks, Ends, Adjacency Graphs and Cactus Graphs

The goal is to represent the common structure between substrings of homologous
bases in S. To do this we model two types of aforementioned homology structure,
blocks and ends. A block is formally a maximal set of maximal-length homolo-
gous strings, represented by a gapless alignment of these strings. The blocks are
shown as boxes containing gapless alignments in Figure 1. Blocks are defined
by first forming a column consisting of all of the basepairs homologous to the
given basepair, and then adding further columns to the left and right whenever
the adjacent bases are all also homologous to each other. The horizontal rows
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of the block, the previously defined segments, are the strings representing the
homologous sequences of DNA aligned in the block. Ends are maximal sets of ho-
mologous caps. We define two types of end for our graphs, block ends, which are
the ends of blocks and inherited ends, which include the previously mentioned
telomeres, and which will also include block ends from higher level problems
when we define multi-level cactus graphs (Section 2.6).

The adjacency graph (Figure 5 (A)) is a graph with a node for every end
and an adjacency edge between two ends if there is an adjacency, potentially
containing a nonempty substring from the input sequence, between a cap in one
of the ends and a cap in the other end, i.e. if the caps would abut except for
a possibly non-empty intervening adjacency substring in the input chromosome
in which they appear. Self-edges are allowed in the adjacency graph, and occur
when two homologous caps in opposite orientation share an adjacency. Multi-
edges are not included in the adjacency graph, i.e. there is at most one adjacency
edge between any two nodes, even if there are several adjacencies between them;
in this case the adjacency edge is labelled with the set of adjacencies and their
substrings, which uniquely pair caps between the ends they link. Unlike blocks
the substrings within the adjacencies of an adjacency edge are not assumed to
be homologous and are therefore not aligned. The two ends of each block are
also connected by an edge in the adjacency graph; these edges are called block
edges, and are labelled with the oriented set of aligned segments of the block
they represent. In addition to the block edges the adjacency graph also includes
end edges; for each inherited end the adjacency graph includes one end edge that
connects the node representing the inherited end to a special dead-end node. All
dead end nodes are in turn connected in a clique by unlabeled backdoor adjacency
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Fig. 5. Examples graphs in the stages of construction of the final cactus graph from an
initial adjacency graph. (A) G0, an example adjacency graph. All black edges represent
blocks except the black edges A and G, which are end edges; adjacency edges are grey,
a backdoor adjacency (dotted grey edge) attaches the dead end nodes to one another.
(B) G1, the same graph after the collapse of the adjacency components. (C) G2, after
the collapse of the 3-edge connected components. (D) G3, after modifications to bridge
edge components to make the graph Eulerian.
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edges. The adjacency graph is almost equivalent to a multi-breakpoint graph [16],
and is related to various types of de Bruijn graphs used in comparative genomics
and sequence assembly [17] [18].

Let G0 be the adjacency graph. The cactus graph is built from G0 in a series
of steps, as illustrated in Figure 5.

(1) Ignoring the block and end edges, we compute the connected components
of G0 formed by the adjacency edges only. These are called adjacency-connected
components. All dead ends will be in a single component which we call the
origin component. The graph G1 represents this decomposition of G0 into the
resulting adjacency-connected components (Figure 5(B)). There is a node in G1
for every adjacency-connected component in G0. The graph G1 has only block
and end edges, no adjacency edges. Two nodes X and Y in G1, representing
(not necessarily distinct) adjacency-connected components in G0, are connected
by an edge in G1 for every block or end edge in G0 from some x ∈ X to some
y ∈ Y . Thus, the graph G1 is formed by merging adjacency-connected nodes in
G0 and retaining only the block and end edges in the merged graph. We call the
node in G1 and subsequent graphs containing the origin component of G0 the
origin node.

(2) We compute the decomposition of G1 into 3-edge connected components
using the linear time algorithm in [19]. To define this decomposition, we say that
two nodes x and y in G1 are equivalent if there is no set of up to two edges in
G1 which, upon removal, disconnect G1 in such a way that there is no path from
x to y. Thus, two nodes are equivalent if it takes the removal of 3 or more edges
to disconnect them. The equivalence classes of nodes are called 3-edge connected
components. The graph G2 represents this decomposition (Figure 5(C)). It has
one node for each 3-edge connected component. Two nodes X and Y in G2 are
connected by an edge for every edge in G1 between some node x ∈ X and some
node y ∈ Y . Thus, the graph G2 is formed by merging equivalent nodes in G1.
The theory of graph decomposition into 3-edge connected components shows
that G2 is in fact a cactus graph in the combinatorial sense. However, it is not
yet the cactus graph.

(3) Finally, to construct the cactus graph, we fold in the tree-like structures in
G2 to obtain an Eulerian cactus graph G = G3 (Figure 5(D)). Formally, an edge
in G2, or indeed in any graph, is called a bridge if its removal disconnects the
connected component in which it is contained. Consider the subgraph formed
by only the bridge edges. It is easy to see that this subgraph is a forest, i.e. a
collection of disjoint trees. In the fold-in process, for each such tree, we merge
all leaf nodes and branching nodes into a single tree loop node. Only the non-
branching internal nodes in the tree are left out of this merge, and appear on
simple cycles emanating from the tree loop node, along with other cycles that
were already present before this merge step. It is easy to see that the resulting
graph G is also a cactus graph with one origin node. In fact, every node is either
in a unique simple cycle or is the unique intersection of two or more simple
cycles. Thus, all the nodes in G have an even number of edges incident upon
them, i.e. are of even degree. We refer to a graph with even degree nodes as
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an Eulerian graph after Euler’s famous “Seven Bridges of Königsburg” example
demonstrating that every connected component in such a graph must have a
path through it that uses every edge exactly once and returns to its point of
origin, a so-called Eulerian circuit.

Each node in the cactus graph G represents a set of block ends. The caps from
these block ends are connected by a net structure as defined above, in which two
caps are connected by an adjacency in which they appear. With the exception of
the origin node, the net for a node defines a perfect matching between the caps
incident upon the node, i.e. a pairing that includes each cap exactly once. The
net for the origin node contains the set of dead ends, connected in a clique, and
a set of non-dead ends which by definition must be connected to one another
in a perfect matching. To construct a perfect matching for the origin node the
backdoor adjacencies connecting the dead end nodes are removed and, using
the fact that there are an even number of dead ends, they are replaced with a
perfect matching. For any circular chromosomes we match their two dead ends by
a backdoor adjacency to ensure that a thread which traverses them contains the
adjacency which was originally broken when the circle was linearized. Otherwise
the matching is arbitrary.

All adjacencies that occur between caps in the input sequences are represented
in the nets of G. Every adjacency is represented in the net for the node to which
it maps via the construction above. Thus, after we construct the perfect match-
ing for the dead end nodes, when we trace the connected threads through the
graph G, we recover precisely the set S of input chromosomes and a set of back-
door adjacencies, one backdoor adjacency being present each time we traverse
between two chromosome ends. The perfect matching constructed between the
dead ends defines the order in which threads traverse the input chromosomes.
In this sense, G is a structured representation of S. To formalize this representa-
tion, the net structure for caps incident on each node and the segments of each
block represented by an edge are both considered to be part of the cactus graph
G, as node and edge substructures, respectively.

2.4 Traversals and Fundamental Cycles

A path in a graph is a sequence of edges (n0, n1), (n1, n2), (n2, n3), . . . , (nk−1, nk)
that share intermediate nodes n1, . . . nk−1. It is simple if it does not use the same
intermediate node twice. It is a cycle if the first and last nodes are identical. A
traversal of a simple cycle c is a path that uses only edges from c, with direction
of travel on the edge indicated by sign. For example, if c is the simple cycle
composed of edges 1 2 3 4 5, then t = 2 3 4 −4 4 5 1 2 3 −3 −2 −1 1 2 −2
is a traversal of c. In general, a traversal starts and ends at arbitrary nodes in
the simple cycle, and each symbol in the traversal represents a move forward or
backwards in it.

A simple cycle c in a graph G is fundamental if for any path p in G, if we ignore
all edges in p that are not in the cycle c, we obtain a traversal of c. It is easy to
see that c is fundamental if and only if there are no edges between nodes of c
other than the edges of c itself and for every node n on c that is also connected
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to a node not on c, removal of n disconnects the graph. When c is a fundamental
cycle in G, it captures an invariant substructure within all paths in G. A cactus
graph has the special property that all its simple cycles are fundamental. This
follows directly from the fact that any two simple cycles intersect at at most
one node. Let G be the cactus graph constructed as described above from a set
of input chromosomes S and let c be a simple cycle in G. Let Sc be the set of
chromosomes obtained from S by ignoring all the basepairs from blocks that are
not in c. Then because c is fundamental, it follows that every chromosome in Sc

is a traversal of c. Thus, the simple cycles in G represent universal substructures
of the chromosomes of S.

2.5 Canonical Cactus Graph Layout and Reference Genomes

We define a cyclic reference ordering for the block ends (i.e. edges) incident on
each node in the cactus graph in such a way that the two ends of each simple
cycle incident on the node are adjacent in this ordering. Adjacencies in this
cyclic order between ends of the same cycle are called cycle identity adjacencies
and adjacencies between distinct cycle ends are called cycle change adjacencies.
The cyclic order alternates between identity and change adjacencies. A planar
embedding of the cactus graph that satisfies the cyclic order for edge incidences
on each node is called a canonical layout. The key property of the cactus graph,
that two simple cycles intersect at at most one node, implies that the there is an
underlying tree structure to the simple cycles, as we have already seen reflected
in the cactus tree representing the hierarchy of chains, which guarantees that
there always exists a planar (i.e. non-edge crossing) canonical layout of the cactus
graph.

For each edge in G we define a reference sequence, which may, for example, be
a consensus sequence for the alignment of the block represented by the edge, or
an inferred ancestral sequence for the block. We use the cycle change adjacencies
to define the thread end connections between these reference sequences. For each
node, these adjacencies form a perfect matching of the edges incident upon the
node that we call the reference edge matching. The reference genome is obtained
by traversing the edges of G in the Eulerian circuit defined by the reference edge
matchings (i.e. cycle change adjacencies) in the nodes and concatenating the
corresponding reference sequences (Figure 6). In particular, whenever we enter
a node via the end of a block, we leave the node again via the block end that
is adjacent to it in the cyclic ordering for that node, which is the unique end
matched to it in the reference matching. This is like the threading through G
for the input chromosomes, except in the reference genome there is exactly one
thread traversing each block, representing the reference sequence for the block.
It is easily verified that this results in a Eulerian circuit with a single circular
chromosome suitable for layout in a circular net display.

The reference genome represents more of an organizing principle than an
actual biological entity. It has the key property that each homology block appears
in it exactly once. Thus, it serves as a universal reference coordinate space to
which we can unambiguously map strings from all of the input chromosomes
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Fig. 6. A reference genome for the cactus in Figure 3. The added red thread represents a
traversal of every block in the cacti exactly once. Black lines represent added adjacency
edges, not observed in any input genome, but necessary to complete the tour. For
example, the indels represented by J and K in β are both included by the addition of
an extra adjacency edge. The reference genome defined gives the ordering of the blocks
and ends in the circular genome plot Figure 1.

in S. If instead we try to choose one of the input sequences in S itself as the
reference genome, we run into the problem that duplications that are specific to
that sequence make it ambiguous to map homologous copies from the other input
sequences. Related to the problem of defining a reference genome, in Section 1.2
of the appendix we consider ambiguity and multiple possible tours of the cactus
graph.

2.6 Multi-level Cactus Graphs

We do not insist that every basepair in the set of input genomes be contained
within a block, but instead allow for bases to be contained within intervening
unaligned adjacencies. This allows us to define “sparse” cactus graphs in which
only a portion of the genomes are aligned, for example, one might initially define
a high level sparse cactus graph in which the blocks were composed of homolo-
gous sets of exons. All bases outside the exons are contained in the adjacencies.
Each node in the cactus graph is a net that is built from some set of these ad-
jacencies. Now suppose we extend our notion of homology by aligning some of
the bases that occur inside the adjacency edges in the nets. We can therefore
define an orthogonal notion of recursion to that of the hierarchical structure of
the cactus graph.

It is easier to define a high-level cactus graph using the segments and adjacen-
cies at the lower level. Essentially, an adjacency at the higher level is a thread
at the lower level. Formally, let us say that two threads are similar if they have
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homologous caps at at least one end. A group is a minimal set of disjoint threads
that is closed under similarity, i.e. a (pairwise) non-overlapping set of threads
such that there are no threads that are similar to any of those in the set that are
not already in the set, and there is no proper subset of these threads that has
this closure property. A group is self-contained if there is no homology between
any segment in a thread in the group with any segment outside of the threads
in the group. Each net in a high-level cactus graph is a union of self-contained
groups from the lower level segments and adjacencies.

There are two kinds of groups. A link is a group in which all the caps are part
of two homology classes, i.e. two ends. A tangle is a group in which the caps form
more than two homology classes (ends). We call a net whose adjacencies contain
non-empty substrings of S non-terminal and conversely a net whose adjacencies
contain only empty substrings terminal. In a multi-level cactus graph, for each
self-contained group in a net, termed a net contained group (either link or tangle),
we construct a child cactus graph in which: (1) Threads connecting caps from the
group’s ends are treated as linear chromosomes. (2) The group’s ends become
inherited ends in the child cactus graph, and thus map the boundaries between
the parent net and the child cactus graph. (3) Homologies between segments
within the threads form the blocks. Thus the adjacencies in the parent net are
divided up into lower level segments and further adjacencies in the child cactus
graph, repeating the process recursively that was used to construct the cactus
graph containing the parent net. The recursion creating child cactus graphs can
be continued until all non-terminal nets have defined child chains, and child
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cactus graphs and thus all bases in S become part of a block in one cactus graph
of the set of cactus graphs that comprise a multi-level cactus graph (Figure 7(A)).
Just as the parent-child organization of chains and nets in a cactus graph can be
represented by a bi-layered cactus tree, a multi-level cactus graph’s chains, nets
and net contained groups can be represented in a bi-layered multi-level cactus
tree, Figure 7(B). The chain layer of a cactus trees in the multi-level cactus tree
contains both chain and net contained group nodes, we consequently call this
the grouping layer because it groups the ends in the nets above into child nets
in the layer below, unless the node is a chain with no children, in which case the
chain node is a leaf. The edges that emanate from a chain node in the cactus
tree correspond to the links in the chain. For consistency, we say that link groups
within chains are chain contained links. Conversely, net contained groups can be
divided into net contained links and net contained tangles.

2.7 Implementation

We have implemented a three stage multi-level cactus graph recursion as out-
lined above. In the first stage of the recursion, after computing the pairwise
alignments and forming the resulting homology classes which define the blocks,
the subsequent construction stages as in Section 2.3 are followed. In the second
and third stages of the recursion non-terminal nets are further, independently
recursed upon to further “fill in” homologies in the sparser higher level cactus
graphs. Within each non-terminal net the grouping of the block ends into net
contained groups is made by the adjacency connectivity (as described) and fur-
ther merging of these adjacency connected groups is made if the adjacencies they
contain share homology according to the lower level alignment procedure. At the
end of the three stages all non-terminal nets have defined net contained groups
with attached lower level cactus graphs, such that the leaf nets (those with
only chains as descendants) in the resulting multi-level cactus tree are always
terminal.

In the first two stages pairwise alignments between sequences are computed us-
ing the LASTZ program ( http://www.bx.psu.edu/miller lab/dist/README.
lastz-1.01.50/README.lastz-1.01.50.html ). In the first stage LASTZ is run
using the strict parameters: –notransition –step=20 –nogapped. In the middle
stage the default LASTZ parameters are used. In the final stage a pairwise-HMM
similar to the one in [20] is used to align each pair of sequences in the grouping
in both the forward-forward and forward-reverse strand orientations, and those
pairs of bases for which the posterior probability of alignment is greater than a
threshold P (default P >= 0.7) are included in the set to be aligned.

In all stages spurious pairwise alignments, because the alignment relation is
transitive, cause the over collapsing of the graph into blocks with a very large
resulting number of segments; we term the number of segments in a block the
block’s degree. To overcome this problem we implement a recursive series of
heuristics, to be fully described in forthcoming extended analysis, to repeatedly

http://www.bx.psu.edu/miller_lab/dist/README.lastz-1.01.50/README.lastz-1.01.50.html
http://www.bx.psu.edu/miller_lab/dist/README.lastz-1.01.50/README.lastz-1.01.50.html
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Table 1. Statistics on the nets of the cactus trees. Region: region name. Bp size: total
number of basepairs in the input sequences. T. nets: Total nets in the cactus tree, either
’all’, including all nets in tree, ’nets’, including only net contained groups or ’chains’,
including only chain contained groups.. Note the sum of net and chain contained groups
is equal to all minus one (for the root node). Norm. relative entropy: Let N be a net
in the set of all nets T in a cactus tree X. Furthermore let N0 . . . Nn−1, Nn denote the
ancestral path of nodes from the root net N0 of the cactus tree to the net Nn. Let
P (X) =

∑
Nn∈T |b(Nn)|(log2(|b(Nn)|) +

∑n−1
i=0 log2(|c(Ni)|)) and Q(X) = Zlog2(Z),

where Z is the total number of basepairs in the input sequences, b(N) is the set of
basepairs contained in blocks of the net N , |b(N)| is the the size of b(N), c(N) is
the set of child nets (direct descendants) of N and |c(N)| is the size of c(N). The
total relative entropy is P (X) − Q(X) and the normalised relative entropy (NRE) is
(P (X) − Q(X))/Z. The measure therefore reflects the balance of the tree. Children:
The children of a net are its direct descendants nets in the subsequent net layer of
the (multi layered) cactus tree. Results given for non-leaf nets only. Depth: The depth
of a net is the number of nodes (excluding itself) on the path from it to the root
node. Results for leaf nets only. (A leaf net is net with only chain descendants in the
multi-layered cactus tree).

Nets

Region Bp Size
T. Nets Relative Entropy Children Depth

All Nets Chains P(X)/Z Q(X)/Z NRE Max Avg. Med. Min Max Avg. Med.
ENm001 12993002 323029 105769 217259 23.63 35.44 11.81 1097 2.34 1 3 75 7.90 8
ENm002 7112290 164130 58132 105997 22.76 28.03 5.27 1179 2.25 1 3 19 6.63 7
ENm003 3538075 83837 28830 55006 21.75 29.66 7.90 710 2.30 1 4 35 6.86 7
ENm004 22314965 252560 89689 162870 24.41 38.67 14.26 2530 2.27 1 4 18 7.85 8
ENm005 11296788 276484 96670 179813 23.43 32.50 9.07 2832 2.29 1 3 45 7.66 7

Table 2. Statistics on the chains of the cactus trees. Region: region name. Type:
categories of chains, either ‘all’, which includes all chains or ‘>= 2 B.’, which includes
only chains containing a minimum of two blocks. Total: total number of chains in
the cactus tree. Per Net: numbers of child chains in each net. Link Number: number of
links in chain. Block Bp length: number of basepairs in blocks of chain. Instance length:
average number of basepairs in an instance of the chain, including both its blocks and
intervening links.

Chains

Region Type Total
Per Net Link Number Block Bp length Instance Length

Max Avg. Med. Max Avg. Med. Max Avg. Med. Max Avg. Med.

ENm001
all 49816 127 0.36 0 255 2.12 1 74361 41.55 0 1566361 166.30 2

>= 2 B. 13752 127 0.10 0 255 5.06 1 9205 136.15 15 1566361 568.48 22

ENm002
all 27618 78 0.38 0 354 2.10 1 59918 45.45 0 240848 121.26 2

>= 2 B. 6799 78 0.09 0 354 5.48 1 22139 160.42 16 240848 436.78 25

ENm003
all 13919 43 0.38 0 188 2.07 1 71783 44.22 0 102444 175.65 2

>= 2 B. 3510 43 0.10 0 188 5.24 1 11319 145.79 16 102444 640.60 24

ENm004
all 43840 120 0.39 0 1015 2.05 1 4987160 181.38 0 4987160 328.23 2

>= 2 B. 11026 119 0.10 0 1015 5.15 1 441976 202.88 17 1756334 746.46 28

ENm005
all 47581 238 0.39 0 289 2.03 1 116021 40.62 0 1088526 127.62 2

>= 2 B. 12139 238 0.10 0 289 5.04 1 14384 143.41 15 1088526 458.29 25
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merge and undo blocks according to the set of homologies until the block set
maps the input sequences sufficiently but no block has degree higher than a pre-
specified maximum degree (by default a maximum degree of 50 was used at all
stages).

To test this procedure we constructed multi-level cacti using the described
procedure for the first five Encode Pilot Project [21] ENCODE, ENm001 (the
CFTR), ENm002 (the interleukin cluster), ENm003 (the apo cluster), ENm004
(region on Chr22) and ENm005 (region on Chr21). For each region we used
seven placental mammal genome sequences from Human, Chimpanzee, Baboon,
Mouse, Rat, Dog and Cow; the total sizes of all the input sequences for each
region ranged from between 3.5 to 22.3 million bases. On a dual-core 2.6GHz
laptop with 4 gigabytes of memory alignments for each region took from between
1 to 3 hours. Table 1 gives statistics for nets in the resulting cactus.

Of particular interest is the balance of the resulting trees. Using the measure
of relative entropy (see table legend) we calculate that the average number of
bits required to encode a path from the root of the multi layered cactus tree to
the net whose child chains contain it is between approximately 25% and 60%
more than that required in an optimally balanced tree. The depth of the tree is
also important in considering indexing the cactus tree, because some nets have
a very high degree of branching the median and average depths of leaf nets in
the multi-level cactus tree is only around 7-8.

Table 2 shows statistics on the chains in the multi-level cactus tree. We break
the analysis up into two categories, firstly we consider all chains and secondly
we consider only chains containing a minimum of two blocks. This is because
many chains involve a single block (typically with degree 1, corresponding to an
indel) and an inherited end from a parent net contained group and are therefore
relatively uninteresting. We observe many long chains, in terms of block number,
total combined block basepair length and average instance length of a thread
running through a chain and its links. Figures S1 in the supplement shows the
distribution of these length metrics, Figures S2-S4 show the relationship between
these length metrics. There is a clear trend for longer chains in terms of links
to have longer total basepair block lengths and longer instance lengths, however
we also observe chains with few links, and therefore few blocks with very long
instance lengths and block lengths. These latter chains typically correspond to
either lineage specific insertions, as mentioned, or in the case where the aver-
age instance length is much larger than the total block length, to where chains
span very large links. This latter case occurs where order and orientation is con-
served between the very ends of the input sequences but there is substantial
rearrangement in the rest of the sequences which prevent intermediate links in
these chains. In the supplement Tables S1 and S2 and Figures S-7 analyze met-
rics of block length and end connectivity. We note that most block ends are not
highly connected (average 1.5, median 1 adjacencies to other distinct ends), and
that more than 90% of groups contain less than 10 block ends.
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3 Discussion

This paper has described how cactus graphs provide a hierarchical decomposition
of genomes into a series of nested chains and nets, given a homology mapping.
Furthermore our implementation demonstrates that for substantial regions it is
possible to construct large multi-level cactus graphs that are reasonably balanced
and highly branching so that there median depth from root to leaves is short. We
therefore believe that cactus graphs will prove useful for visualizing, storing, in-
dexing and ultimately reasoning about genome comparisons. We are developing
several extensions to this work along these lines. In Section 1.3 of the appendix
we explore a complementary idea to that of multi-level cactus graphs, that there
is often a natural hierarchical organization for subsets of input genomes, e.g. by
evolutionary sub-clades. We thus propose recursively constructing (multi layer)
cactus graphs progressively across sub-clades of an organizing phylogeny or lin-
eage of events (in the case of cancer genomes), linking cacti naturally together
using ancestral genomes derived from each cactus.

The supplementary material for this paper can be found at: http://compbio.
soe.ucsc.edu/reconstruction/cactus recomb2010 paper/supplement.pdf
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Abstract. The de Bruijn graph assembly approach breaks reads into k-mers be-
fore assembling them into contigs. The string graph approach forms contigs by 
connecting two reads with k or more overlapping nucleotides. Both approaches 
must deal with the following problems: false-positive vertices, due to erroneous 
reads; gap problem, due to non-uniform coverage; branching problem, due to 
erroneous reads and repeat regions. A proper choice of k is crucial but for single 
k there is always a trade-off: a small k favors the situation of erroneous reads 
and non-uniform coverage, and a large k favors short repeat regions.  

We propose an iterative de Bruijn graph approach iterating from small to 
large k exploring the advantages of the in between values. Our IDBA outper-
forms the existing algorithms by constructing longer contigs with similar accu-
racy and using less memory, both with real and simulated data. The running 
time of the algorithm is comparable to existing algorithms. 

 

Availability: IDBA is available at http://www.cs.hku.hk/~alse/idba/ 

Keywords: De novo assembly, de Bruijn graph, string graph, mate-pair, high 
throughput short reads. 

1   Introduction 

Despite tremendous research efforts, de novo assembly remains an only partially 
solved problem. Although more reference genomes are known for efficient re-
sequencing, de novo assembly remains a critical step in studying a genome. Applica-
tions such as detection of structural variations [1] cannot be done easily based on  
resequencing techniques and there are evidences that show genome assembly based on 
resequencing may produce errors especially for species with high mutation rates [1].  

With high throughput sequencing technologies (e.g. Ilumina Genome Analyzer and 
Applied Biosystems SOLiD), mate-pair short reads (35nt to 75nt) of a mammalian 
genome can be generated in a few weeks at low cost. As short reads have different 
characteristics (i.e. shorter length, higher coverage, but relatively higher error rates) 
when compared to traditional Sanger reads, new assembly tools have emerged [2-11]. 
The first batch of tools (e.g. SSAKE [3], VCAKE [4], SHARCGS [5]) uses the “over-
lap-then-extend” idea but need to rely on data structures such as prefix trees, so they 
require lots of memory and run very slowly. The newer tools are divided into  
those based on the de Bruijn graph (e.g. Velvet [7], Abyss [8], Euler-SR[2, 6], 
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AllPaths[11]) and those based on the string graph (e.g. Edena [9]). Each of the two 
approaches has merits and limitations, and it is not clear which is better. 

De Bruijn graph algorithms [7-8, 12-13] assemble reads by constructing a de 
Bruijn graph in which each vertex represents a length-k substring (k-mer) in a length-l 
read and connects vertex u to vertex v if u and v are consecutive k-mers in a read, i.e. 
the last (k – 1) nucleotides of the k-mer represented by u is the same as the first (k – 1) 
nucleotides of the k-mer represented by v. Intuitively, maximal paths of vertices with-
out branches in the graph correspond to contigs to be outputted by algorithms.  

String graph algorithms [9, 14] represent each read by a vertex and there is a di-
rected edge from vertex u to vertex v if the suffix of at least x nucleotides of read u is 
the same as the prefix of read v. The value of x is the number of overlapping nucleo-
tides for two consecutive reads. Similar to de Bruijn graph algorithms, string graph 
algorithms report maximal paths without branches as a contigs.  

When the reads are error-free with high coverage, most tools work well. However, 
because of repeats, erroneous reads, and non-uniform coverage, their performances is 
not always acceptable. In this paper, we focus on three major problems: (1) false 
positive vertices (due to errors in reads); (2) gap problem (due to non-uniform or low 
coverage) and; (3) branching problem (due to repeats or errors in reads). 

Three major problems  

(a) False Positive Vertices: Errors in reads introduce false positive vertices which 
make both graphs bigger and consume more memory; for example, for the human 
genome with 30x coverage, the memory requirement of Velvet [7] and Abyss[8] is 
more than 250G. 
(b) Gap problem: Due to non-uniform or low coverage, reads may not be sampled for 
every position in the genome. For the de Bruijn graph, when all the (possible l – k) 
reads covering consecutive k-mers are missing, we may have short “dead-end” paths. 
The larger the k, the more serious is the gap problem. The same applies to the string 
graph if all the (possible l – x) reads following another read are missing.  
(c) Branching problem: Those k-mers which connect with multiple k-mers due to 
repeat regions or erroneous reads introduce branches in the de Bruijn graph. Many 
algorithms [7-9] stop the contigs at branches and it is not possible to extend a contig 
without additional information. A small k will lead to more branches. The same 
branching problem occurs in string graph algorithms, and depending on the value of x, 
the same read can be connected with multiple other reads.  

Existing assembly algorithms 
Table 1 summarizes the major techniques used by existing algorithms to solve the 
above problems. There are two methods for handling false positive vertices. (1) Dead-
end removal: False positive vertices usually lead to short dead-end paths. Both de 
Bruijn and string algorithms (e.g. [7-8]) remove false positive vertices by removing 
these paths. However, due to the gap problem, some paths may be removed by  
mistake. (2) Filtering: de Bruijn graph algorithms remove false positive vertices if the 
corresponding k-mers appear no more than m times. However, some correct k-mers 
with low coverage might also be removed especially for large k for which the ex-
pected k-mer occurrence frequency is low. As for string graph algorithms, the  
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expected occurrence of each read is also low (1 or 2) and they rely on error correction 
which falls back to the multiplicity of k-mers [15] to correct errors in each read before 
forming contigs. 

Table 1. Major techniques used to handle the three problems 

Problems Techniques de Bruijn graph String graph 
(i) Dead-end removal Yes Yes 1) False positive 

vertices (ii) Filtering Yes (not effective 
if k is large) 

Not applicable (relies on 
error correction algorithms) 

2) Gap No effective method (try to 
use a reasonable small k or x) 

-- -- 

(i) Using read information Yes Not applicable (already use 
the whole read information) 

3) Branching 

(ii) Bubble removal Yes Yes 

 
There is no effective method to deal with the gap problem except all algorithms try 

to avoid gaps by using a small k (or x in string graphs). 
Some de Bruijn graph algorithms [12] solve the branching problem by considering 

only those branches that are supported by reads. However, this method may easily 
lead to erroneous contigs [12] if the reads are erroneous especially when error rates 
are high. This method cannot be applied to string graph algorithms as they already 
consider the read information. The other technique is bubble removal, which is used 
by both approaches [7-9] and tries to merge similar paths of very similar vertices into 
one path as the small differences may only be due to SNPs or errors. However, the 
merging might be incorrect and this process increases the length of contigs at the 
expense of their accuracy. 

Table 2. Performance (N50) of three existing assembly algorithms (Edena, Velvet, Abyss) 
against IDBA under different coverage and error rates for the simulated dataset using E.coli 
where read length is 75nt. The best results generated are used for comparison. 

 High Coverage 
Low Error Rate 

(100x, 0.5%) 

Low Coverage 
Low Error Rate 

(30x, 1%) 

High Coverage 
High Error Rate 

(100x, 2%) 

Low Coverage 
High Error Rate 

(30x, 2%) 
Edena (string Graph) 63256 5104 53491 147 
Velvet (de Bruijn Graph) 63214 24772 59285 16527 
Abyss (de Bruijn Graph) 58678 22109 50009 10992 
IDBA (our algorithm) 63218 63218 59287 32612 

 
To summarize, string graph algorithms do not have an effective method to remove 

errors from reads and have the gap problem if x is set to a reasonable value to avoid 
the branching problem. However, string graph algorithms, which make use of the 
direct information in the whole read, perform very well in case of high coverage and 
low error rate. For other cases, de Bruijn graph algorithms may perform better. Our 
observations are confirmed by the N50 comparison of Edena [9] (currently one of the 
best string graph algorithms), Velvet [7] and Abyss [8] (the best de Bruijn graph algo-
rithms) based on different coverage and error rates of the data as shown in Table 2 
(more details on the comparison can be found in Section 4). 
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The best existing assembly algorithms are Edena (string graph based), Velvet and 
Abyss (both de Bruijn graph based, differing in the exact details for handling dead-
ends and bubble removal). However, setting the correct parameter k in de Bruijn 
graph algorithms (or x in string graph algorithms) is crucial. The k parameter (or x) 
affect the filtering and, moreover, provides a trade-off between the gap problem and 
the branching problem. In order to minimize the number of gaps, a smaller k (or x) 
should be used. But with a small k (or x), the branching problem becomes more seri-
ous. Existing algorithms usually pick a moderate value for k (or x) to balance between 
the two problems. None of the existing approaches try to take advantage of using 
different k (or x) values1.  

Our contributions  
We propose a new assembly algorithm (IDBA) based on the de Bruijn graph. The 
idea is simple but practical in that it alleviates the difficulties in setting a correct k and 
the filtering threshold m, gives good results, uses much less memory (many existing 
tools require huge amount of memory making them impractical for large genomes) at 
the expense of a reasonable increase in running time. Instead of using a fixed k, our 
algorithm iterates from small to large k (kmin to kmax) capturing the merits of all values 
in between. The key step is to maintain an accumulated de Bruijn graph to carry use-
ful information forward as k increases. Note that this is not the same as running the 
algorithm for many different k values independently as it is not clear how to combine 
contigs from different runs to get a better result. We show theoretically that the accu-
mulated de Bruijn graph can capture good contigs and these contigs can be made 
longer as k increases. Based on experiments on simulated and real data, we show that 
IDBA can produce longer contigs (see Table 2 for the N50 comparison) with similar 
accuracy (very few wrong contigs and high coverage). More detailed results are pre-
sented in Section 4.  

We are able to reduce the memory consumption by 50-80% as compared to exist-
ing algorithms which use a fixed k of moderate size. Because k is of moderate size, 
the algorithms cannot do filtering in the first step especially when the coverage is not 
high and thus create a big graph due to false positive vertices. However, since IDBA 
starts with a small k, many false positive vertices are pruned with a conservative and 
effective filtering in the first step (e.g., set m=1). Although IDBA iterates through 
different k values, with implementation tricks (described in Section 2), IDBA runs a 
lot faster than Abyss and is comparable with other existing algorithms. 

Organization of the paper and remarks 
We organize the paper as follows. In Section 2, we introduce our algorithm IDBA and 
show the advantages of using small and large k values. Also, we provide key imple-
mentation details which help to reduce the memory consumption and running time. 
Section 3 compares the performance of IDBA with existing algorithms on both simu-
lated and real data. We conclude the paper in Section 4. 

                                                           
1 The SHARCGS [5] algorithm uses fixed x values (the number of overlapping nucleotides) 

when extending a read, but they repeat the whole assembling procedure independently using a 
few different x values and combine the resulting contigs from different runs only.  
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We note that using mate-pair information to resolve repeats that are longer than 
reads is another important aspect of an assembly tool. In this paper, we mainly focus 
on short repeats, which account for the largest portion of repeats in genomes and 
cannot be resolved by mate-pair information easily as the variation of the insert size 
may be even larger than the length of the repeat. We leave the problem of how to use 
mate-pair information in assembly more effectively for future study. Hence, the last 
step of our assembly tool, which uses mate-pair information to connect the contigs, 
simply follows Abyss [8]. Note also that, although our approach can be applied to the 
string graph with a range of x values, currently there is no effective way to remove 
errors from reads for string graphs, and so we focus on de Bruijn graphs. 

2   Algorithm IDBA 

Given a set of reads, we denote the de Bruijn graph for any fixed k as Gk. Instead of 
using only one fixed k, IDBA (Iterative de Bruijn Graph short read Assembler) iter-
ates on a range of k values from k = kmin to k = kmax and maintains an accumulated de 
Bruijn graph Hk at each iteration. In the first step, k = kmin, Hk is equivalent to the 
graph Gk after deleting all vertices whose corresponding k-mers appear no more than 
m times (we set m = 1 or 2 in practice depending on the coverage of the input reads) 
in all reads. Theorem 3(in the Appendix) shows that these k-mers are very likely to be 
false positives.  

To construct Hk+1 from Hk, we first construct potential contigs in Hk by identifying 
maximal paths v1, v2, …, vp in which all vertices have in-degree and out-degree equal 
to 1 except v1 and vp which may have in-degree 0 and out-degree 0, respectively. Note 
that a path of p vertices represents a potential contig of length p + k – 1. We remove 
all reads that can be represented by potential contigs in Hk i.e. those reads that are 
substrings of a contig (as these reads cannot be used to resolve any branch). In the 
construction of Hk+1, we only consider the remaining reads and the potential contigs in 
Hk. We perform two steps to convert Hk to Hk+1. (1) For each edge (vi, vj) in Hk, we 
convert the edge into a vertex (representing a (k+1)-mer xi1 xi2 … xik xjk = xi1 xj1 …xjk). 
(2) We connect every two such vertices by an edge if the corresponding two consecu-
tive (k+1)-mers have support from one of the remaining reads or potential contigs of 
Hk, i.e. the corresponding (k+2)-mer exists.  

Note that in practice, we do not need to go from k to k+1; we can jump from k to 
k+s, in which case, for (1), we convert each path of length s in Hk into a vertex. In 
Theorem 5 in the Appendix, we show that by setting s = 1, we may get high quality 
contigs. As s increases, we expect the quality of contigs will drop, so it is always 
better to use a small s. The choice of s will represent a trade-off on the efficiency of 
the algorithm and the quality of the contigs. 

For each Hk, we follow other algorithms [7] to remove dead-ends (potential contig 
shorter than 3k – 1 with one end with 0 in-degree or out-degree, which represents a 
path in Hk of length at most 2k). Note that removing a dead-end may create more 
dead-ends, the procedure will repeat until no more dead-ends exist in the graph. These 
dead-end contigs are likely to be false positives (to be discussed in the Appendix). In 
fact, most of the remaining false positive vertices after the first filtering step can be 
removed as dead ends and the accuracy of the contigs produced by IDBA is high. 
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After obtaining Hkmax, we merge bubbles where bubbles are two paths representing 
two different contigs going from the same vertex v1 to the same vertex vp where these 
two contigs differ by only one nucleotide. This scenario is likely to be caused by an 
error or a SNP. Like other assembly algorithms [7-9], we merge the two contigs into 
one. We base on mate-pair information to connect the contigs as much as possible by 
using a similar algorithm as Abyss[8] and report the final set of contigs. 

 
Algorithm IDBA 
1 k <- kmin (kmin = 25 by default) 
2 Filter out k-mers appearing <= m times  
3 Construct Hkmin 
4 Repeat 
5 a) Remove dead-ends with length < 2k 
6 b) Get all potential contigs 
7 c) Remove reads represented by potential contigs 
8 d) Construct Hk+s (s = 1 by default) 
9 e) k <- k + s 
10 Stop if k >= kmax (kmax = 50 by default) 
11 Remove dead-end with length shorter than 2kmax 
12 Merge bubbles 
13 Connect potential contigs in Hkmax using mate-pair information 
14 Output all contigs 

 
Note that the probability of removing a true positive vertex in our filtering step is 

very low (Theorem 3 in Appendix A.3 gives the analysis) as long as kmin and the fil-
tering threshold m are set to a reasonable value (e.g. m = 1). For example, if 1.6×106 
length-75 reads are sampled from a genome of length 4.1×106 (45x coverage) with 
error rate 1%, the probability of filtering out a true positive vertex in H25 is 1.14×10-9, 
i.e. the expected number of false negative vertices is 0.0047 << 1 which is very small. 
Even for some cases where the expected number of false negative vertices is large, 
say 10, it is still relatively very small when compared with the genome size. Thus, for 
simplicity in analysis, we assume there is no false negative vertex in Hkmin. The filter-
ing step can remove a large portion of the false positive vertices. Most of the remain-
ing false positive vertices are removed in later steps by dead-ends The probability of 
removing a correct contig as a dead-end is also small (see Theorem 4 in Appendix 
A.3 for the exact calculation of the probabilities). The probability of determining a 
dead-end wrongly is only 2.46×10-4 when the above example is considered. 

Due to the gap problem a contig that appears in Gk, for a small k, might not be a 
contig in Gk' for k'>k. However, in IDBA, if a contig c appears in Hk, there must be a 
contig c’ in Hk’ containing c (Theorem 1). That is, the contig information is carried 
over from Hk to Hk’. As k increases, more branches can be resolved while the gaps 
solved when k is small in previous iterations will be preserved. 
 
Theorem 1: Assume that kmin = k and k < k’. If there is a contig c in Gk of length at 
least 3kmax – 1 with all true positive vertices, there must be a contig c’ in Hk’ such that 
c’ contains c. 
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Proof: By induction on k. Let k’ = k + 1 and c = x1x2…xp+k–1 be a contig in Hk repre-
sented by the path p = (v1, v2, …, vp), all vertices v1, v2, …, vp have in-degree and  
out-degree ≤ 1, it is easy to see that the path p’ = (v1’, v2’, …, vp–1’) in Hk+1 where each 
(k+1)-mer vi’ = xixi+1…xi+k also has in-degree and out-degree ≤ 1. As the length of the 
contig represented by path p’ ≥ 3kmax – 1, there must be a contig including path p, i.e. 
c, in Hk+1.                 
 
Corollary: Hkmax must contain all contigs in Gkmin of length at least 3kmax – 1 with all 
true positive vertices. 
 
In practice Hkmax always contains longer contigs than Gkmin by resolving branches at 
each iteration. As Figure 1 shows, by iterating the graph Hk towards larger k, we may 
get longer and longer contigs as some of the branches (e.g. length-k repeat region 
(Case 1) and error branches in Hk+1 (Case 2)) may be resolved when using a larger k. 

 

 

Fig. 1. Two cases for having longer contigs 

Case 1: Let c1 = s1vrs2 and c2 = s3vrs4 be two substrings in the genome where vr is a 
common length-k substring representing a repeat region, s1, s2, s3, s4 are different 
substrings. c1 and c2 are represented by five contigs in Hk as the k-mer vr has in-degree 
of 2 and out-degree of 2. If there are two correct reads containing vr and its 2 
neighboring nucleotides at both ends in c1 and c2 respectively, and there is no error 
read containing s1vrs4 or s3vrs2, then there must be two contigs, one containing c1 and 
the other containing c2 in Hk+1. 

Case 2: Let c be a contig in Hk that stops before vertex u whose in-degree is 1 and 
out-degree is >1. Assume that among all branches of u, only u to v is correct. If there 
is a correct read containing u and its 2 pairs of neighboring nucleotides at both ends 
and there is no error read linking c with other branches, there will be a longer contig 
c’ in Hk+1 that contains c. 

Case 1 and Case 2 prove the following theorem. 
 
Theorem 2: If there is a contig c in Gk of length at least 3kmax – 1 with all vertices are 
true positive which satisfies case 1 or case 2 in Hk’, k = kmin ≤ k’ < kmax, there is a 
longer contig c’ in Hkmax that contains c. 

Case 1: 
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v 

s2 

s3 s4 

s1v vs2 
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In the algorithm, we increase the value of k by 1 at each iteration, i.e. s = 1. Theorem 
5 in Appendix A.3 shows that for a better quality of the contigs, this is essential. On 
the other hand, as a trade-off between the efficiency of the algorithm and the quality 
of the contigs, it is possible to set s > 1, i.e. to increase the value of k by more than 1 
at each iterative step. 

2.1   Implementation Details 

The memory used by IDBA is only about 20-30% of that used by the other existing 
tools because 80% of false positive vertices are removed in the filtering step (line 2 in 
algorithm IDBA) and IDBA uses a compact hash table to represent de Bruijn graph 
implicitly with each edge represented by one bit only. 

Although IDBA constructs Hkmax from Hkmin step by step, the running time of 
IDBA is not directly proportional to the number of k values between kmax and kmin. 
According to Theorem 1, a contig in Hk is also a contig in Hk+1, thus IDBA only needs 
to check whether a branch in Hk can be resolved in Hk+1. Since reads represented by a 
contig are removed in each iteration, the number of reads in each iteration decreased. 
In practice, about half of the reads are removed when constructing Hkmin+1 and IDBA 
runs much faster than Abyss, and about three times slower than Velvet. 

3   Experimental Results 

The genome of Escherichia coli (O157:H7 str. EC4115) from NCBI [16] is used for 
simulated experiments (the genome length is 5.6 M). Reads are randomly sampled 
uniformly with coverage 30x. In our experiments, we generated reads with error rates 
1%, read length 75 and insert distance 250. Note that we have repeated the experi-
ments using other coverage (e.g. 50x, 100x), error rates (e.g. 2%) and read length (e.g. 
50). The results are similar, so we only show the result for 30x coverage with 1% 
error on length-75 reads. We also use a real data set, namely Bacillus Subtilis, to 
evaluate our algorithm. The length of the genome is 4.1M. The reads are sequenced 
using Solexa machine with coverage 45x, read length 75 and insert distance 400. The 
estimated error rate is about 1%. 

3.1   Simulated Data 

We compare the performance of Velvet2, Abyss3, Edena and our algorithm IDBA on 
the simulated data based on different k values (or x values). For IDBA, we fix kmin = 
25, m = 1 and compare the performance of IDBA with different kmax. For the other 
algorithms, defaults parameters provided by the assemblers are used. We also plot 
the upper bound that can be achieved by building an ideal de Bruijn graph with no 
false positive or false negative vertices and edges and produce all single paths as 
contigs. 

                                                           
2 Since pair-end version of Velvet performs not well and pair-end version of Abyss outperforms 

Velvet in the quality of results, we only show result of single-end version of Velvet. 
3 Since SHARCGS is too slow and Abyss applies a similar idea as Euler with better perform-

ance, we leave SHARCGS and Euler out of our comparison. 
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We calculate N50 and coverage only for valid contigs which are longer than 100 
bps and can be aligned to the reference with 99.9% similarity. Figure 2(a) shows the 
comparison of the algorithms based on N50. As we mentioned in the introduction 
(Section 1), existing assembly algorithms have many false positive vertices and 
branching problems when k is small and they have many gaps when k is large. Thus 
these algorithms have the best performance (largest N50) for in-between values of k 
(the optimal k for Velvet, Edena and Abyss are 35, 40 and 40 respectively in this data 
set). Since IDBA considers a range of k values, its performance is better than the 
others even when considering a range of 10 values for k (kmin = 25 and kmax = 35). 
Furthermore, when IDBA considers a larger range for k (kmin = 25 and kmax = 50), its 
performance is close to the upper bound. We have only 10 false positive contigs when 
setting kmin = 25 and kmax = 50 while Abyass, Velvet and Edena produce 489, 19 and 
650 false positive contigs respectively. 

 
Fig. 2. (a) N50 for contigs produced by assembly algorithms with different k-values (x-values if 
the software is string graph based) on simulated data using E.coli as the reference genome 
where read length is 75nt, coverage is 30x and error rate is 1%. (IDBA-pe and abyss-pe are the 
results for using mate-pair information to extend the contigs while Edena does not use mate-
pair information) (b) N50 for contigs produced by assembly algorithms with different k (or x) 
values on real data from bacillus subtilis where read length is 75nt, coverage is 45x and error 
rate is 1%. 

For IDBA and Abyss, we also apply the mate-pair information to connect the re-
sulting contigs to make them longer. The results are shown in the same graph (IDBA-
pe and abyss-pe). Note that as k increases, the N50 may drop when applying the  
mate-pair procedure since more branches have been resolved incorrectly and some 
short contigs are removed as dead-ends. In fact, further research is required on how to 
use mate-pair information effectively for assembly. The pair-end version of Abyss has 
optimal result when k is 35 while IDBA has optimal result when k is 45. 
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Table 3. Statistics of optimal (w.r.t. N50) result of each algorithm for simulated data 

Time Memory k Contigs Coverage
Number N50 Max length False pos. contigs (total len.) 

Velvet 155s 1641M 35 1412 24772 127265 70(35589) 95.29% 
Edena 957s 678M 40 4672 5104 46908 650 (72019) 97.22% 
IDBA 371s 360M 25–50 1563 63218 217365 9(4654) 97.96% 
IDBA-pe 412s 360M 25–45 709 105579 217365 43 (164120) 93.94% 
Abyss 1114s 1749M 40 1390 22109 87118 66 (34998) 95.05% 
abyss-pe 1237s 1749M 40 484 59439 226626 186 (352437) 91.39% 
upper-bound -- -- 50 1561 63218 217365 0 (0) 99.11%  
 
Table 3 shows a comprehensive statistics on the performance of the algorithms on 

their optimal k values (w.r.t. N50). IDBA produced much longer contigs than all other 
algorithms. When mate-pair information is not available, the N50 of IDBA (63218) is 
about three times that of the next best algorithm (24772 by Velvet) and is the same as 
the upper bound. IDBA also produced the fewest number of wrong contigs (a contig 
which cannot be aligned to the reference genome with 99.9% similarity) and the total 
length of all wrong contigs is only about 4500nt which is much less than the other 
algorithms. The coverage of IDBA is also the best among all algorithms. Since IDBA 
performs well on assembling single end reads, it outperforms other algorithms even 
when use mate-pair information. To conclude, IDBA outperforms other algorithms 
substantially and produces much longer contigs with higher accuracy. 

3.2   Real Data 

Figure 2(b) shows the N50 of the contigs produced by Velvet, Abyss, Edena and our 
algorithm IDBA on the real reads from Bacillus Subtilis using different k values (x 
values). Since the reads may not be uniformly sampled in the real data set, we use a 
smaller kmin (20nt) and keep m = 1 to run IDBA. For the other algorithms, we use their 
default parameters except for k. We do not have the reference genome to check if a 
contig is valid. We calculate the N50 for all reported contigs longer than 100bp. Note 
that the result may not be accurate, because some algorithms may produce longer but 
invalid contigs. The results are consistent with that of the simulated data. Velvet, 
Edena and Abyss get their best performance when k = 40, 40 and 45 respectively. 
IDBA can keep improving the result while kmax is increasing.  

In this data set, mate-pair information is not so useful for IDBA because using read 
information can already solve most of the branches. When using kmax equal to 50, the 
N50 pair-end version of IDBA produced is 30% longer than single end version. The 
performance of mate-pair version Abyss has similar performance as in simulated data. 
Its optimal k is 35, and the longest N50 it produces is even shorter than single end 
IDBA. In conclusion, IDBA produced the longest contigs among all algorithms. A 
detailed comparison is given in Table 4 in Appendix A.2. 

3.3   Running Time and Memory Consumption 

Other than Abyss (12.8 minutes – 7 hours for simulated data and 10 minutes – 1.2 
hours for real data depending on the value of k), the running time of other algorithms 
are more or less the same. Abyss runs much slower when k is small, probably due to 
its slow procedure for dealing with graphs with many false positive vertices. Velvet 
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(120 – 220 seconds for simulated data and 130 – 200 seconds for real data) is the 
fastest among all algorithms. IDBA (180 – 350 seconds for simulated data and 280 – 
330 seconds for real data) runs faster than Abyss and is about three times slower than 
Velvet. Refer to Figures 3 and 4 in the Appendix for details. 

The memory consumption is about the same for different k values across the exist-
ing algorithms. Abyss and Velvet require about 2G bytes of memory for simulated 
data and 1G memory for real data. IDBA only requires about 400M and 300M respec-
tively because 80% of false positive vertices are removed in the first filtering step. 
Note that only 8 25-mers are removed incorrectly in simulated data set (it matches 
with expected number 8.88 calculated in Theorem 3). So, the memory consumption of 
IDBA is only about 20 – 30% of the existing de Bruijn graph tools. Edena consumes 
less memory than Abyss and Velvet because the number of reads is small, but still 
double the size used by IDBA. Refer to Tables 3 in Section 3.2 and Table 4 in the 
Appendix for details. 

4   Conclusions 

Our IDBA algorithm, based on de Bruijn graphs, can capture the merits of all k values 
in between kmin and kmax to achieve a good performance in producing long and correct 
contigs. Because the initial filtering step removes many false positive k-mers and the 
number of reads considered at each iterative step is reduced, the required memory and 
running time is much reduced. Though an accumulated de Bruijn graph is maintained 
at each iterative step, the running time is comparable with the existing algorithms. In 
fact, this running time can be further reduced if, say, one or two k values are skipped 
at each iterative step. In practice, the quality of the result is only slightly affected by 
the skipping of values, in exchange for shorter running time.  

Our next target is to investigate how to better use mate-pair information for resolv-
ing long repeats in order to produce even longer and more accurate contigs. 
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Appendix 

A.1   Running Times of the Assembly Algorithms 

Figure 3 and Figure 4 show the running time of IDBA and existing assembly algo-
rithms, Velvet, Abyss and Edena on the simulated data set and the real data set. From 
the figures, we can see that IDBA has similar running time as other assembly algo-
rithms except Abyss which takes a very long time when k is small due to a compli-
cated method for removing dead-ends. 

Abyss took longer than 2000 
seconds when k smaller than 
40. (It took 27000 seconds 
when k = 25) 

 

Fig. 3. Running time of assembly algorithms with different k (or x) values on simulated data 

A.2   Detailed Comparison of the Assembly Algorithms for Real Data 

In Table 4, we show comprehensive statistics on the performance of the algorithms on 
their optimal k value (w.r.t. N50) for the real dataset. IDBA produced much longer 
contigs than all other algorithms no matter whether the single-end or the pair-end 
version is used. The result is consistent with that of the simulated dataset. 



438 Y. Peng et al. 

Abyss took longer than 
1600 seconds when k 
smaller than 40. (It took 
8000 seconds when k = 
30)

 

Fig. 4. Running time of assembly algorithms with different k (or x) values on real data 

Table 4. Statistics for the optimal (w.r.t. N50) result of each algorithm for real data 

Contigs  Time Memory k 
Total No. N50 Max length  

Velvet 150s 893M 40 335 57656 181399 
Edena 649s 632M 40 926 19423 66455 
IDBA 325s 310M 25 – 50 267 140067 602412 
IDBA-pe 361s 310M 25 – 50 203 187648 613166 
Abyss 729s 923M 40 445 30081 134067 
Abyss-pe 3766s 936M 35 406 120807 537397 

A.3   Theorems and Proofs 

Theorem 3: Assume m is the filtering threshold, the probability that a kmin-mer v in 
the genome (except the first l – kmin and last l – kmin kmin-mer in the whole genome) 
does not appear in Hkmin (false negative) when t length-l reads are uniformly sampled 
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Theorem 4: Assume that a contig c in Hk is treated as dead-end and removed. The 
probability that c is a correct contig is less than 
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Proof: A contig c in Hk is treated as dead-end only if c is of length less than 3k – 1 
and is not a dead end in Hk–1. Since all contigs in Hk–1 are preserved in Hk, c is re-
moved because (1) the length of c is at least 3(k – 1) – 1 and shorter than 3k – 1, or  
(2) c is shorter than 3(k – 1) – 1 and one of its ends has 0 in-degree or out-degree in 
Hk. Thus c will not be treated as a dead-end if the two adjacent (k+3)-mers of c is 
sampled. By considering kmin = k + 3 and m = 0 in Theorem 1, the probability that no 
read contains a particular (k+3)-mer is at most 
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Fig. 5. Cases that a longer contig in Hkmax,1 does not exist in Hkmax,2 

Let Hk,s denote the accumulated de Bruijn graph Hk with step size s. Theorem 5 shows 
that Hkmax,1 has at most the same number of gaps as Hkmax,2. There are some cases 
(Figure 5) that there is a longer contig in Hkmax,1 which is not in Hkmax,2. For example, 
consider a contig c in Hk which stops before vertex u whose in-degree = 1 and out-
degree >1 and all branches of u are shorter than 2k and only u to v is correct. If there 
is only two reads contains u and its 2 pairs of neighboring nucleotides at two ends 
respectively and there is no error read linking c with other branches, there is a longer 
contig c’ in Hk+2,1 that contains c which does not appear in Hk+2,2. 
 
Theorem 5: If a kmax-mer (kmax+1-mer) in the genome appears in Hkmax,2, it also ap-
pears in Hkmax,1. 
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Proof: By induction on kmax. Consider kmax = kmin + 2. Given a kmax-mer ((kmax+1)-mer) 
v does not appear in Hkmax,1, let v’ be the shortest substring of v of length-k which does 
not appear as a vertex in Hk,1 or an edge in Hk–1,1, kmin ≤ k ≤ kmax. 
 

Case 1: k = kmin, i.e. v’ does not appear in Hkmin,2, v does not appear in Hkmax+1,2.  
Case 2: k = kmin+1, there are two cases: (a) v’ does not appear in Hkmin,1 as an edge 

or (b) v’ is a vertex on a dead-end with length less than 2(kmin+1) in Hkmin+1,1. In case 
(a), since any (kmin+2)-mer contains v’ as substring does not appear in Hkmax,2, v does 
not appear in Hkmax,2. In case (b), v is a vertex on a dead-end with length less than 
2(kmin+2) in Hkmax,2 which will be removed. 

Case 3: k = kmin+2, there are two cases: (a) v does not appear in Hkmin+1,1 as an edge 
or (b) v is a vertex on a dead-end with length less than 2(kmin+2) in Hkmin+2,1. In case 
(a), consider the path (v1, v2, v3) in Hkmin,1 representing the (kmin+2)-mer v. Since v does 
not appear in Hkmin+1,1 as an edge, v2 has >1 in-degree or out-degree and there is no 
read containing v’ as subsring. Thus the in-degree and out-degree of v are 0 in Hkmax,2 
and v will be removed as dead-end. In case (b), v is a vertex on a dead-end with length 
less than 2(kmin+2) in Hkmax,2 which will be removed.  

Case 4: k = kmin+3, i.e. v does not appear in Hkmax,1 as an edge, the path (v1, v2, v3, v3) 
in Hkmin,1 representing the (kmin+3)-mer v is not a potential contig and there is no read 
containing v as a substring. Thus v does not appear in Hkmax,2 as an edge.          
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Abstract. We describe a probabilistic model, implemented as a dy-
namic Bayesian network, that can be used to predict nucleosome posi-
tioning along a chromosome based on one or more genomic input tracks
containing position-specific information (evidence). Previous models have
either made predictions based on primary DNA sequence alone, or have
been used to infer nucleosome positions from experimental data. Our
framework permits the combination of these two distinct types of in-
formation. We show how this flexible framework can be used to make
predictions based on either sequence-model scores or experimental data
alone, or by using the two in combination to interpret the experimental
data and fill in gaps. The model output represents the posterior prob-
ability, at each position along the chromosome, that a nucleosome core
overlaps that position, given the evidence. This posterior probability is
computed by integrating the information contained in the input evidence
tracks along the entire input sequence, and fitting the evidence to a sim-
ple grammar of alternating nucleosome cores and linkers. In addition to
providing a novel mechanism for the prediction of nucleosome position-
ing from arbitrary heterogeneous data sources, this framework is also
applicable to other genomic segmentation tasks in which local scores are
available from models or from data that can be interpreted as defining a
probability assignment over labels at that position. The ability to com-
bine sequence-based predictions and data from experimental assays is a
significant and novel contribution to the ongoing research regarding the
primary structure of chromatin and its effects upon gene regulation.

Keywords: Nucleosome prediction, dynamic Bayesian network, chro-
matin structure.

1 Introduction

DNA in eukaryotes is packaged with histone and other proteins into a chromatin
complex. The most basic element of chromatin is the nucleosome “core”, which
consists of a bundle of eight histone proteins around which is wound approx-
imately 147 base pairs (bp) of double-stranded DNA. Between adjacent cores
exists a variable-length stretch of DNA commonly called the “linker” which is
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generally more accessible to elements such as transcription factors than the com-
pacted DNA in the core. The precise positioning of the nucleosome cores and the
inter-nucleosomal linker regions allows for selective access to the DNA by the
cellular machinery; understanding the mechanisms that control this positioning
is therefore crucial to our understanding of gene regulation and expression.

Numerous computational approaches to inferring nucleosome positions either
from experimental data or from the primary DNA sequence have been pub-
lished in recent years. These methods generally use a hidden Markov model
(HMM) or similar framework (e.g. Boltzmann chain) in which a sequence of
hidden states, representing the nucleosome core and the linker, form a Markov
chain, and the observations “emitted” by each state are derived either from
DNA-sequence models or experimental assays. Common model assumptions in-
clude the requirement that adjacent nucleosomes may not overlap, as well as
constraints on the length of a nucleosome and a model of the linker lengths.
The model of linker lengths generally specifies a minimum linker length due to
steric hindrance between adjacent nucleosomes, and may also define a geometric
or other distribution over longer linker lengths [1] or an upper limit on linker
length [2]. Although very similar in implementation, models based on DNA-
sequence scores and models based on experimental data are solving two different
problems. When the inputs to the HMM are sequence-model scores [1,2,3,4,5],
the HMM framework predicts the most probable nucleosome positions based on
the DNA sequence alone. In contrast, when the inputs originate from experi-
mental data such as tiling microarrays [6,7,8,13], the goal is data analysis and
interpretation.

In this work, we exploit the power of dynamic Bayesian networks (DBNs)
to create a general framework for predicting nucleosome positions using one
or more input tracks of arbitrary position-specific genomic scores. A DBN is
a generalization of the widely used HMM [9], and generalized versions of the
standard inference algorithms commonly applied to HMMs exist for the broader
class of DBNs. The typical HMM falls into the broad class of generative models
in that, in addition to being used in the standard way, the model can also be
(although rarely is) used to generate instances of evidence sequences according
to the model parameters. The model that we present here is more discrimina-
tive in nature, and uses the input evidence to directly inform the probabilities at
each state in the Markov chain. Furthermore, our model allows multiple evidence
tracks to be combined to jointly influence the current state, while the Markov
chain simultaneously enforces the sequential grammar that is described by the
state transition matrix. Specifically, we show how we can use either sequence-
model scores or experimental data independently, or both together, with the
result that the sequence scores can be used to fill in gaps in the experimental
data and provide a more complete picture of the nucleosome landscape. Alter-
natively, sequence-model scores can be used in conjunction with transcription
factor (TF) binding probabilities, resulting in a competitive model similar to
the one described by Wasson and Hartemink [5] with the assumption that a TF
can only bind to the DNA between nucleosome cores. The ability to combine
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sequence-based predictions and data from experimental assays is a significant
and novel contribution to the ongoing research regarding the primary structure
of chromatin and its effects upon gene regulation.

2 Results

2.1 Predicting Nucleosome Positioning from Arbitrary
Sequence-Preference Scores

In recent years, numerous methods have been proposed for scoring a DNA seg-
ment for the purposes of distinguishing nucleosome-inhibiting vs nucleosome-
forming regions. The DBN presented in this work can integrate the information
contained in these types of local sequence scores, regardless of the method used
to produce them, to infer nucleosome positioning along a chromosome. In this
section we illustrate this application of our method with three specific examples.
First we show that we can recapitulate the average occupancy predicted by the
Segal model [3,12,14] using the Segal raw binding scores as inputs, and then
we show predictions based on our recently developed nucleosome dyad scores
using two different linker-length models. Our probabilistic framework permits
two types of linker models: a geometric length-distribution which prefers shorter
linkers, or a uniform distribution which gives the same probability to all possible
linker lengths (see Methods for details). These two different linker-length models
can be thought of as describing two variations on the statistical positioning idea
[10] in regions where sequence-directed positioning is weak.

Our nucleosome dyad score, dScore, is based on a discriminative pattern-
correlation method [11] which computes a score for the central position of an
input sequence of length 301 bp, based on sequence information alone, by weight-
ing and combining information from all k-mers for k ∈ {1, 2, 3}. This score is
the continuous-valued output of a binary classifier and can be interpreted in a
manner similar to a log-ratio. The Segal raw binding score is the log-ratio of
two model components: one captures the periodic positioning of dinucleotides
along the nucleosome core, while the other encodes the relative linker-region
preferences for all 5-mers.

Figure 1 shows the two different sequence-preference scores in the top panel:
the Segal raw binding score and our dyad score (dScore), plus a GC-content
track for reference (computed using a sliding window of width 71 bp). In the
bottom panel, each trace corresponds to the posterior probability that a posi-
tion is covered by a nucleosome core, inferred by the model from the input local
sequence scores. The output based on the Segal raw binding score and using the
uniform linker-length model closely recapitulates the average occupancy proba-
bility predicted by the full Segal model [12] (Pearson correlation r = 0.96). Two
separate output traces are shown based on the dScores: the first uses the uniform
linker-length model, and the second uses the geometric linker-length model.

There are significant qualitative similarities as well as differences both between
the Segal and dScore sequence-scores and the posterior probabilities shown in
Figure 1. These differences are due to the differences in the input scores as well as
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Fig. 1. S. cerevisiae chromosome II: raw sequence-model scores and local GC % (bot-
tom) and nucleosome core posterior probabilities (top) for the Segal model and our
pattern-classification model with a uniform linker model (green) and a geometric linker
model (blue)

to differences in the linker length models. The most striking difference can be seen
immediately upstream of the GAL10 transcription start site, in an AT-rich region
wide enough for one nucleosome core, where both sequence-models produce low
scores. The Segal model predicts a very long nucleosome-free region (NFR), while
the two dScore models predict a weakly-positioned nucleosome—the model that
prefers shorter linker lengths places a nucleosome with high probability while
the uniform linker-length model places one with lower probability.

2.2 Interpretation of Experimental Data Alone or in Conjunction
with Sequence Scores

Another application of our model is to interpret experimental data, similar to
what has been done previously with microarray data [6,8,13]. By incorporating
additional information in the form of sequence-based scores or even just a model
of linker lengths, the model can fill in gaps in the experimental data. Experi-
mental data is frequently also expressed as a log-ratio, so the same mapping to
probabilities described above can be used here.

Figure 2 shows a region on yeast chromosome II for which there is a gap
in one of the in vivo experimental data sets from Kaplan et al. [12]. The gap
is 1340 bp wide and corresponds to the ribosomal protein RPL4A. Using the
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experimental data as an evidence track, the probabilistic model was run twice—
once using the geometric linker model, and once using the uniform linker model
(top panel of Figure 2). When the model includes a preference for shorter linker
lengths, it places 8 nucleosomes, evenly distributed across the 1340 bp gap in
the data. With the uniform linker model, we observe two interesting changes in
the predictions: first, they track the input data much more closely because, aside
from the grammar, the data is the only source of information; and second, the
model is much less certain about how many nucleosomes fill the gap—without
the preference for short linkers, the model is considering all possible placements
of between one and eight nucleosomes. In both cases the uncertainty grows with
the distance from the nearest data, as indicated by the decreasing local maxima
and the increasing local minima.

2.3 Evaluation of Predicted Nucleosome Position Accuracy

We have previously created a set of 50,814 estimated nucleosome dyad positions
in yeast based on the experimental data of Field et al. [14]. The genomic positions
of these dyads were estimated by applying a simple peak-detection algorithm to
a nucleosome occupancy map, and a confidence score derived from the number
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Fig. 2. S. cerevisiae chromosome II: Experimental data (blue stars) with a gap
spanning the coding sequence for ribosomal protein RPL4A (approximately 300,000-
301,400) Top: nucleosome core posterior probabilities inferred from experimental data
using geometric linker (red) or uniform linker (green). Bottom: sequence-model scores
(green) are added as additional evidence and nucleosome positions recomputed.
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of overlapping reads was associated with each dyad [11]. In order to evaluate the
positional accuracy of the predictions based on the two different sequence-model
scores described above, we compare the predicted dyad positions (local maxima
in the posterior probability of being in the dyad state) to the experimental
benchmark set and compute the fraction of the positions in the experimental set
that are within X nucleotides of a predicted dyad.

Posterior probabilities of nucleosome positions were computed using three dif-
ferent input tracks (one at a time): (a) the experimental Field occupancy map,
(b) the dScores, and (c) the Segal raw binding scores. Predicted dyad positions
were then compared to the entire benchmark set and to a small subset of the
highest scoring positions (Fig 3). Because the estimated positions being used as
the benchmark were derived from the same data used in (a), one would expect
a near perfect concordance, and in fact the majority of the 50,814 dyads have
corresponding predictions within 3 bp. The fact that the predictions based on the
experimental dataset do not match up more exactly to the positions estimated us-
ing a simple peak-detection approach highlights the strengths of using a sequence
model which simultaneously integrates all available information along the entire
sequence. For example, if the experimental data indicates a sharply demarcated
NFR, the edges of the NFR will affect the positioning of adjacent nucleosomes.
These effects are automatically considered by the DBN but not by a simplistic
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Fig. 3. Dyad positions inferred by the DBN using experimental data (red), dScores
(green), or Segal raw binding scores (blue), compared to previously estimated dyad
positions. Each pair of curves represents an evaluation over the entire set of 50,814
estimated dyad positions (all) and the top-scoring 3,180 (high). Each curve represents
the fraction y of the estimated dyad positions for which a dyad was predicted by the
DBN to within x nucleotides. The grey curves represents the performance that would
be expected by chance (mean, and mean ± one standard deviation, from simulations).
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peak-detection approach. For the purposes of comparing to predictions based on
sequence scores, this comparison to predictions based directly on the data pro-
vides an upper bound on the performance of any other method.

The dyad positions predicted using either type of sequence-based scores are
both much less similar to the benchmark positions, although for both models the
high-scoring benchmark dyads are more likely to be predicted accurately. At a
maximum distance of 15 nucleotides between a benchmark dyad and a predicted
dyad, corresponding to a 90% overlap between the reference nucleosome core
and the prediction, the dScore-based predictions match 47% of the high-scoring
subset and 31% of the entire set, compared to 31% and 24% respectively for
the Segal-based predictions, and the 16% that would be expected by chance.
All three sets of predictions contained very similar numbers of predicted dyads
(∼62,500), so these accuracy figures are directly comparable.

2.4 Competition with Transcription Factors

Histone proteins do not interact with the DNA to form nucleosomes in isolation,
but rather compete dynamically with other DNA binding factors. To illustrate
how this notion of competition can be incorporated into our model, we show
an example of combining nucleosome-sequence scores with a landscape of tran-
scription factor binding probabilities. We scanned the yeast genome using the
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Fig. 4. S. cerevisiae chromosome II: competition with transcription factors destabilizes
weakly positioned nucleosomes first. Top: nucleosome positions inferred from dScores
without (red) and with low (green) and high (blue) levels of TF competition. Bottom:
dScores (red) and TF binding probability landscape (green).
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112 DNA-binding protein sequence specificities described by Badis et al. [15],
and created an overall TF landscape by taking the maximum resulting bind-
ing probability at each position (see Methods for details). This information was
then used in parallel with the dScores described earlier, and results are shown
in Figure 4. This region of yeast chromosome II has two genes transcribed in
opposite directions, with transcription start sites separated by approximately
600 bp. Immediately upstream of each TSS is a region of very high AT-content
which includes strong matches for several TFs including SIG1 and PHO2. The
figure shows that including the TF binding landscape almost completely elim-
inates the formerly weakly predicted nucleosome upstream of the GAL10 TSS
while not significantly affecting the most strongly predicted nucleosomes.

3 Discussion

We have developed a novel solution to the problem of predicting nucleosome
positions along a chromosome by incorporating arbitrary sources of informa-
tion within a coherent probabilistic framework. Previous approaches have solved
only part of this problem, using either sequence information alone or experimen-
tal data alone. Using sequence-based evidence in combination with experimental
data provides a mechanism for interpreting the experimental data while filling in
gaps using sequence predictions. Gaps in experimental data can be a significant
problem in organisms with much larger (and more highly repetitive) genomes
than yeast, where even genome-wide assays of nucleosome positioning produce
relatively sparse data sets [16,17]. Combining multiple input tracks also permits
us to investigate the relative impacts of different factors on the nucleosome land-
scape. Two different sequence-models could even be combined to see whether,
jointly, they can make more accurate predictions than either one individually.

While we acknowledge the ongoing debate as to the impact in vivo of sequence-
directed nucleosome positioning, we believe that predictive models that can in-
corporate the mechanisms that affect nucleosome positioning will increase our
understanding of the chromatin structure and the impact it has on gene reg-
ulation and expression. Based on our genome-wide comparison of nucleosome
positions estimated from an in vivo dataset to those predicted using dScore, we
find that roughly 15% more of the nucleosome cores are predicted with at least a
90% overlap than would be expected by chance. The remaining nucleosomes are
likely to follow a statistical positioning pattern, which this DBN naturally mod-
els. It may be interesting to explicitly compare a nucleosome-occupancy proba-
bility computed using purely local information to the probability computed by
a full sequential model in order to understand which nucleosomes are predicted
to be well-positioned due to a locally strong sequence signal and which might
be predicted to be well-positioned as a result of a nearby, strongly-positioned
“barrier” [10].

In this study, we opted not to evaluate our methods by computing a cor-
relation between the posteriors produced by our model and an experimentally
determined nucleosome occupancy profile [1]. Empirically, such profiles generally
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exhibit a strong dependence on local GC-content; consequently, a simple sliding
window of GC-content yields a pseudo nucleosome positioning signal that corre-
lates at 0.70 with an empirical in vitro profile and between 0.56 and 0.63 for three
in vivo sets from [12]. Although the inherent GC-richness of the nucleosome cores
and AT-richness of the linkers will naturally produce this type of correlation, our
concern is that the known GC-bias of the Illumina high-throughput sequencing
will further enhance this effect. In contrast, a separate in vivo data set [14],
from the same lab but based on the Roche 454 sequencing platform, has a lower
correlation with local GC-content (r=0.42), which is consistent with the lower
GC-bias previously observed with these longer reads [18]. A recent study inves-
tigating the impact of chromatin structures on laboratory DNA manipulation
[19] also noted that the sequencing bias toward higher read-density in GC-rich
regions of Illumina-based deep sequencing [20] can result in a misleading overrep-
resentation of sequence reads in GC-rich DNA that will correlate strongly with
GC-rich genomic features. The dScore was explicitly designed to be insensitive to
GC-content across its analysis window (301 bp), and is less correlated (r = 0.46)
with GC-content computed on a smaller scale (71 bp) than the Segal raw binding
score (r = 0.74). Rather than trying to reproduce the wandering baseline seen
in experimental nucleosome occupancy maps, we choose to focus on trying to
accurately predict the most likely positions of linkers vs cores. In the posterior
probabilities produced by our model, a deep null indicates a highly confident
linker position and in turn a highly confident adjacent nucleosome, while regions
of greater uncertainty are characterized by smaller differences between adjacent
local maxima and local minima.

We believe that our discriminative framework for incorporating arbitrary het-
erogeneous scores directly into a sequential model will also prove useful in other
segmentation applications in which a score can be interpreted directly as a la-
bel probability and may not lend itself well to being modeled using Gaussian
mixtures in a generative framework—one possible example being inferring copy
number variation from experimental data [21]. This framework can also be ex-
tended by using indicator variables [22] to explicitly allow for missing data or
to specify, for example, that when two input tracks are both present only one of
the two should be used.

4 Methods

4.1 A Dynamic Bayesian Network for Nucleosome Prediction

The DBN that we use in this work is similar to a previous DBN-based method
we developed to predict transmembrane protein topology from sequence [23],
and is implemented using the Graphical Models Toolkit (GMTK) [24]. The task
addressed by Philius, the topology prediction DBN, is the segmentation of an
input protein into a series of non-overlapping regions belonging to one of three
classes: membrane, inside, or outside. In this nucleosome prediction task, our goal
is even simpler because there are only two classes of interest: nucleosome core and
linker. Philius introduced a novel approach to using partially labeled data during
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training which we will further generalize here. Typically, when labeled data is
used to train an HMM (i.e. supervised training), the label accompanying each
observation (e.g. nucleotide or amino acid) specifies the value of the associated
“hidden state”. Philius allows for a more flexible relationship between the label
and the state during training: a one-to-many relationship is defined between the
labels and the states, and a special “wildcard” label allows the state variable to
take on any value that is otherwise consistent with the topology of the model. In
the case of Philius, the wildcard label is used to address the uncertainty inherent
in the segment boundaries—at each segment boundary, some labels were replaced
by the wildcard in order to allow the model to make small adjustments to the
boundary locations during training. For the purposes of nucleosome prediction,
we exploit this idea to define a similarly flexible relationship between labels and
states, although in the model presented here, the labels are not observed in the
traditional sense—instead they are constrained by the evidence.

Philius uses a two-pass decoding process that makes use of so-called “soft”
labels to find the protein topology that maximizes the posterior probabilities at
each position while obeying the grammar constraints required by the membrane
topology. In this work, we show that a similar mechanism can be used to incor-
porate a variety of information sources to predict nucleosome positioning while
obeying the grammar constraints required by the chromatin “topology”.

Figure 5a shows the graphical model of our DBN, in which a single track of
virtual evidence is incorporated as a soft constraint on the value of the label node.
For simplicity, this graphical model omits the portion of the graph which takes
care of the counting for the fixed-duration states. This counting mechanism is
implemented exactly as in Philius [23]. To fully define the nucleosome positioning
DBN, in addition to the graphical model shown in Figure 5a, the precise form of
the relationship between each node and its parent(s) must be defined. We will
proceed by describing each of the DBN components in turn, starting with the
Markov chain over states, then the relationship between each connected state
and label pair (si,qi) joined by the observed child ci, and finally how the input
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Fig. 5. Graphical models for (a) the DBN with a single track of evidence and (b) a
single frame showing the incorporation of an arbitrary number N of evidence tracks.
The small black nodes represent the virtual evidence, the white nodes represent hidden
variables, the subscript i refers to the genomic position and the superscripts in (b) index
the evidence tracks.
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model scores, experimental data, or other types of information are injected into
the DBN via the relationship between the label node qi and the virtual evidence
node vi.

A Markov Chain over Hidden States. Our model consists of five states:
three to model the fixed-length nucleosome and two to model the variable-length
linker. The three states that are used to describe the nucleosome and their as-
sociated lengths are the dyad (5 bp), and the 5’ and 3’ turns (71 bp each),
where the dyad refers to the central position of the nucleosomal sequence, at the
axis of symmetry of the histone core. The linker is described using two states:
a fixed-length state (9 bp), and a state with a geometrically-distributed length
(implemented as a simple self-looping state, with minimum length 1 bp). To-
gether these two states capture the steric hindrance constraint between adjacent
nucleosomes, enforcing a minimum linker length of 10 bp, while also allowing for
arbitrarily long linkers. The state transition diagram is shown in Figure 6 and
consists of a simple cycle in which each state has only one possible next state,
meaning that when a change in state is to occur, there is only one possible new,
different state given the current state. This simple sequence of states defines the
nucleosome “grammar”. For simplicity, the initial state is always defined to be
the geometric-length linker state. This hard constraint greatly reduces the com-
plexity of the inference while having relatively little effect on the predictions.
For all subsequent states, the conditional relationship between each state and
the previous state Pr[si|si−1] is defined according to the deterministic grammar
described above, with the exception of the self-looping linker state which tran-
sitions to the next state (the 5’ turn) with probability p or remains in the linker
state with probability 1 − p. The duration model realized by this self-looping
state is a geometric distribution, Pr[k] = (1− p)k−1p for k > 0, with mean 1/p.
By using a feature in GMTK that allows for exponential weights to be applied
to any edge in the DBN, we can also run our model with a completely unbiased
linker model. We do this by setting a weight of 0 on the state-transition edge: this
exponential weight is applied to any non-zero probability in the state-transition
matrix, causing all non-zero values in the matrix to become 1. In this mode, the
Pr[k] defined above is equal to 1 for all values of k. The effect of this exponen-
tial weight is similar to that of the temperature constant in a Boltzmann model,

D
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D

Fig. 6. State transition diagram. The width of each rectangular state is proportional
to the duration specified for that state. The circular state represents the self-looping
linker state which follows a geometrical duration distribution.
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albeit inverted: a weight of 0 corresponds to an infinite temperature at which all
possible outcomes become equally likely.

Virtual Evidence Constraints. While the backbone of our model is the same
Markov chain over hidden states that exists in the traditional HMM, the rela-
tionship between the hidden state and the “observation” is quite different. While
each state in an HMM is traditionally thought of as “emitting” a particular dis-
crete or continuous observed random variable, and the probability distribution
over the observed variable is conditioned on the hidden state, our model has a
more discriminative flavor in which the information available at each genomic
position is used to directly influence the local probability distribution over pos-
sible state assignments. The result is that the probability of a particular se-
quence of state assignments is weighted according to the information available
at each position. This direct influence on the local probability over the possible
assignments to the state variable is accomplished using the concept of “virtual
evidence” [23,25,26], as will be described in more detail below. Below each state
in the graphical model, a typical HMM would have a single observed node oi,
dependent on the parent state si according to some distribution Pr[oi|si]. In
this DBN, we have instead two distinct relationships: the first is a deterministic
relationship between the state si, the label qi, and the virtual evidence node
ci: Pr[ci|si, qi]. This construct, in which ci is called an observed child because
it induces a relationship between its parents, is used to define which states are
consistent with a particular label: ci is observed to be equal to 1, and the table
Pr[ci = 1|si, qi] implements an indicator function I(si, qi), which is equal to 1 if
si and qi are consistent with one another, and otherwise is equal to 0.

The second probabilistic relationship shown in the graphical model is between
the label qi and a second virtual evidence node vi, and is defined as Pri[vi = 1|qi].
We add the subscript i to this conditional relationship to indicate that it depends
on the current position, i, unlike the relationship between the state and the label,
and unlike the observation distribution in a typical time-homogeneous HMM.
Finally, we assign a uniform marginal distribution over the possible values of qi:
Pr[qi = Q] = 1/|Q| where Q represents a specific label, and |Q| is the cardinality
of the discrete label variable.

Joint Probability Distribution. We can now give the equation for the prob-
ability of a particular assignment to all of the hidden nodes, in other words to a
particular sequence of states s, and a particular sequence of labels q:

Pr[s,q] ∝
(

Pr[s1]
N∏

i=2

Pr[si|si−1]

) (
N∏

i=1

I[si, qi] Pr[qi] Pri[vi|qi]

)

in which we use the indicator function I(si, qi) in place of Pr[ci = 1|si, qi]. The
indicator function I[si, qi] will cause all inconsistent pairs of sequences s and q
to have probability zero. Considering only the subset of sequence pairs that are
self-consistent {s̄, q̄}, this probability can be restated as:
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Pr[̄s, q̄] ∝
(

Pr[s̄1]
N∏

i=2

Pr[s̄i|s̄i−1]

) (
N∏

i=1

Pr[q̄i] Pri[vi|q̄i]

)

in which the first term in parentheses scores the sequence of states and enforces
the grammar defined by the state-transition matrix, while the second term incor-
porates the virtual evidence at each position. Finally, we sum over all consistent
label sequences q̄, to find the probability of a particular sequence of states:

Pr[̄s] ∝
(

Pr[s̄1]
N∏

i=2

Pr[s̄i|s̄i−1]

) (∑
q̄

N∏
i=1

Pr[q̄i] Pri[vi|q̄i]

)

This probability can be computed efficiently using the junction tree algorithm,
which is a generalization of the forward-backward algorithm for HMMs, because
of the underlying tree structure of the graph. We can similarly compute the
posterior probabilities for the state variable at each position, and this will be
the standard output of our model—specifically we plot the posterior Pri[core]
computed by summing the posterior probabilities of the three nucleosome states
(the dyad and the 5’ and 3’ turns). Furthermore, multiple tracks of evidence can
be incorporated into the model simply by replicating the evidence portion of the
model as shown in Figure 5b. All of the information available at each genomic
position will be used to infer the probabilities of the possible assignments to the
state variable at that position.

Evidence Track Definition. We have defined the state space of our model
but we have not yet precisely defined either the labels or the virtual evidence
that we intend to use to define the function Pri[vi|qi]. We describe three possible
sources of information to be used as inputs to our model, although our intent
here is to describe a framework in which arbitrary sources of information can
be combined in a principled manner to predict nucleosome positioning along
a chromosome. The three types of nucleosome-positioning information that we
describe are: a) scores from a DNA-sequence model of nucleosome positioning; b)
nucleosome-occupancy data from a high-throughput sequencing experiment; and
c) a transcription factor “landscape”. The first two types of information can each
be used as the sole source information, while the TF landscape is shown used in
conjunction with scores from a sequence model. The one-to-many relationship
between each label variable and the associated state variable is customized for
each type of input data.

Sequence model scores. Assuming that a sequence model score zi can be inter-
preted as a log-ratio, in other words a choice between two hypotheses, we define
qi to be a binary label such that qi = 1 corresponds to the dyad state, and qi = 0
corresponds to any non-dyad state. The virtual evidence node, vi is also a binary
random variable, although we always observe vi = 1 for all i. We assign uniform
marginal probability distributions to both of these binary variables, and then use
the law of total probability to find that the sum of the conditional probabilities
Pr[vi = 1|qi = 1] and Pr[vi = 1|qi = 0] is equal to 1. Furthermore, we define
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the log-ratio of these two conditional probabilities to equal the aforementioned
score, zi, and therefore:

Pr[vi = 1|qi = 1] =
1

1 + e−zi
and Pr[vi = 1|qi = 0] =

1
1 + ezi

Experimental data. Experimental data derived from a microarray or sequencing
assay can similarly be interpreted as a log-ratio and supplied as an evidence
track exactly as described for the sequence scores above.

Transcription factor binding probabilities. The third type of input information
that we consider is a binding probability track representing one or more TFs. We
model the relative affinity of a binding site to a particular transcription factor X
using a position weight matrix (PWM) as described in [27]. Assuming that a TF
can only bind in the absence of a nucleosome, i.e. in a linker region, we define qi

such that qi = 1 corresponds to either linker state, and qi = 0 corresponds to any
state. A high TF-binding probability (high probability that qi = 1) will therefore
result in a higher probability of being in a linker state, while a low TF-binding
probability (high probability that qi = 0) will have little to no effect.
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Abstract. In this paper, we focus on finding complex annotation pat-
terns representing novel and interesting hypotheses from gene annota-
tion data. We define a generalization of the densest subgraph problem
by adding an additional distance restriction (defined by a separate met-
ric) to the nodes of the subgraph. We show that while this generalization
makes the problem NP-hard for arbitrary metrics, when the metric comes
from the distance metric of a tree, or an interval graph, the problem can
be solved optimally in polynomial time. We also show that the dens-
est subgraph problem with a specified subset of vertices that have to
be included in the solution can be solved optimally in polynomial time.
In addition, we consider other extensions when not just one solution
needs to be found, but we wish to list all subgraphs of almost maximum
density as well. We apply this method to a dataset of genes and their an-
notations obtained from The Arabidopsis Information Resource (TAIR).
A user evaluation confirms that the patterns found in the distance re-
stricted densest subgraph for a dataset of photomorphogenesis genes are
indeed validated in the literature; a control dataset validates that these
are not random patterns. Interestingly, the complex annotation patterns
potentially lead to new and as yet unknown hypotheses. We perform
experiments to determine the properties of the dense subgraphs, as we
vary parameters, including the number of genes and the distance.
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1 Introduction

Biological knowledge is increasingly being represented using graphs, e.g., protein
interactions, metabolic pathways, gene regulation, gene annotation, etc. Finding
highly dense regions in graphs is a problem of both theoretical [17,12,3,14] and
practical importance. Density is one quantitative measure of the connectedness
of a subgraph and is defined as the ratio of the number of induced edges to the
number of vertices in the subgraph. Even though there are an exponential num-
ber of subgraphs, a subgraph of maximum density can be found in polynomial
time [17,12,3]. In contrast, the maximum clique problem to find the subgraph of
largest size having all possible edges is NP -hard; it is even NP hard to obtain
any non-trivial approximation. Finding densest subgraphs with additional size
constraints is NP hard [14]; yet, they are more amenable to approximation than
the maximum clique problem. Moreover detecting only cliques can be somewhat
restrictive, since interesting subgraphs missing a few edges are omitted by any
such procedure.

In this paper, we apply the densest subgraph problem to the task of finding
complex patterns in a gene annotation graph representing annotations of genes
using terms from controlled vocabularies (CVs) or ontologies. We attempt to
increase the biological meaning of subgraphs by favoring the inclusion of pairs
of nodes that have a meaningful relationship within the ontology structure that
was used to create the gene annotation graph; we do this by defining a distance
metric dH between pairs of nodes. The goal is to return dense subgraphs with
vertices within the subgraph satisfying a distance threshold.

We introduce a new variant of densest subgraph problems in this paper, namely
the distance restricted densest subgraph problem to capture this property. We are
given a graph G = (V, E) as well as a distance metric dH defined over pairs of
vertices u, v ∈ V . The goal is to return a maximum density subgraph S ⊆ V (G),
such that in S, any pair of vertices are within distance τ according to dH .

Further, researchers may be interested in obtaining patterns containing pre-
specified nodes. We refer to this as the subset maximum density problem, and
this is described in Section 3. Finding only one dense subgraph may not suffice
since the researchers may wish to find many complex annotation patterns. Thus,
we address the problem of all maximum and nearly maximum dense subgraphs
with distance/ subset restrictions in Section 4. We are the first to introduce and
study the problem of detecting distance and subset restricted densest subgraphs.

In computational biology, there has been a body of work closely related to
detecting dense subgraphs. Most of these papers concentrate on protein-protein
interaction networks, where the goal is to cluster the network to detect densely
connected molecular modules [30,15,19,24], that can possibly identify protein
families and molecular complexes [4,1], or even identify missing interactions [32]
and annotations [21]. Work by Newman [22] studies community detection in
metabolic and regulatory networks. Communities are characterized by high intra
and sparse inter connectivity. Many of these works on community detection can
benefit by application of distance restricted dense subgraphs problem and its
extensions.
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The works of [1,19] consider clustering coefficients for a measure of density
on the neighborhood of each node. It is defined as the ratio of edges among the
neighbors to the maximum possible number of edges. Thus an alternative mea-
sure for density can be to compute clustering coefficient of the entire subgraph.
However it tends to find very small subgraphs and is not effective.

1.1 Gene Annotation Data

Knowledge about genes has been captured in publicly available bibliographic
resources such as PubMed [27,6] and PubMed Central [28,6], general purpose
resources such as Entrez Gene [5,20], and in more focused model organisms
or domain specific collections such as The Arabidopsis Information Resource
(TAIR) [8,16,9]. In order to improve interoperability, various communities have
created a number of ontologies such as the Gene Ontology (GO) [7,11], the Plant
Ontology (PO) [26], and the Unified Medical Language System (UMLS) [2,31].
Data entries (records) in a resource are typically annotated with concepts or
controlled vocabulary (CV) terms from one or more of these ontologies, creating
a rich Web of annotation knowledge.

We focus on The Arabidopsis Information Resource (TAIR) [8,16,9]. A sci-
entist can typically visit a page that provides a rich synopsis of a TAIR gene
and then follow links to reach genotype and phenotype annotation data, publica-
tions, organism specific data, ESTs, pathway data, etc. Annotations in TAIR are
associated with explanations or evidence codes reflecting the underlying method-
ology supporting the annotation. While TAIR is a valued and much visited portal
that fuels the progress of scientific research, it also requires that scientists spend
many hours manually clicking through web pages and following links, to create a
subset of annotation knowledge for pattern discovery. Scientists often use simple
tools such as a spreadsheet to maintain this subset of annotation knowledge.
Increasingly, there is a need for more sophisticated tools to help the scientist
integrate, analyze and visualize this knowledge.

We illustrate this using an example tool for integrating TAIR annotation data.
The LSLink system [18] can be used to specify a protocol to create a background
LSLink dataset of hyperlinked data records and their annotations. The proto-
col follows hyperlinks from each TAIR gene, and integrates the corresponding
GO annotations, PO annotations, and the publications in PubMed that support
the annotation. Some sample output of the integration protocol and the LSLink
dataset is illustrated in Fig. 1(a) where we visualize the annotations for gene
CRY1. The GO annotations are on the left side and the PO annotations on the
right. Each includes the identifier and the label for the Controlled Vocabulary
(CV) term. In addition, the figure includes the PubMed publications that sup-
port the annotations. As of January 2009, there were 17 GO annotations and
5 PO annotations for CRY1. The figure illustrates only some of the annotations
(due to lack of space).

The LSLink annotation dataset of Fig. 1(a) represents knowledge culled from
multiple research projects and their accompanying publications. The chall-
enge for the scientist is to mine these datasets to discover important patterns.
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(a) Associations between GO and PO CV
Terms Gene CRY1

(b) Semantic relationships in Gene On-
tology GO

Fig. 1. TAIR

Consider the gene GA3OX1 and a simple pattern of a pair comprising the GO CV
term gibberellicacid mediatedsignalingand the PO CV term germination;
it is meaningful since GA3OX1 regulates seedling growth. While these simple pat-
terns are somewhat interesting, in order to capture biological knowledge, the
scientist would be interested in finding a more complex pattern. Identifying a com-
plex pattern in the annotations of a single gene may be non-trivial for a gene such
as CRY1which has many annotations since the scientist has to consider many pairs
of annotations and many groups of CV terms. However, the real challenge is even
more difficult. While a pattern comprising a group of GO and PO terms annotat-
ing a single gene may correspond to a meaningful biological phenomenon, it may
not be an interesting discovery. This is because it is annotating a single gene and
the knowledge may be well known. A truly interesting discovery of knowledge that
is as yet unknown, typically would require that the scientist solve the greater chal-
lenge of finding a pattern of a group of PO terms and GO terms that annotated
multiple genes. Identifying such a co-occurrence pattern for a group of as yet un-
related genes can lead to the gold standard of an interesting discovery that would
lead to actionable hypothesis, e.g., an experiment to verify the pattern.

The second challenge is that the GO and PO terms that form a pattern
are not independent but they occur within a (hierarchical) ontology structure.
Controlled vocabulary (CV) terms that are closer to each other in the hierar-
chy may be more closely related in meaning. Consider the fragment of the GO
hierarchy of Fig. 1(b). This fragment illustrates some of the GO terms that
annotate the TAIR gene GA3OX1. The labeled rectangular nodes annotate the
gene while the circular nodes are placeholder GO CV terms in the ontology
that do not annotate GA3OX1. We note that the following 2 terms, response
to gibberellin stimulus and gibberellic acid mediated signaling, are
more closely related whereas the pair of terms, response to red light and
gibberellin biosynthetic process may appear to be unrelated. A complex
pattern that included the first pair is more likely to be meaningful in comparison
to a complex pattern that included the second pair. Two nodes in the ontology
graph that have a smaller shortest path distance are assumed to be more closely
related and therefore more biologically meaningful, compared to a pair that are
farther apart in the structure.
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1.2 Gene Annotation Graph and Notion of Density

We can formalize our problem as follows: We are given two ontologies, GO and
PO and a collection of genes G, that are associated with some subsets of the CV
terms in the two ontologies. In other words, each gene is annotated (associated)
with a set of GO and PO nodes as seen in Fig. 1(a). We can represent this data
in the form of a bipartite graph G = (A, B, E) between the set of GO nodes and
the set of PO nodes. The bipartite graph is a weighted graph where each edge
is labeled with a set of gene names, such that each gene is annotated with the
corresponding GO and PO nodes.

Each CV term in the GO (or PO) ontology has a vertex representing it in A (or
B). If there are t genes g1, g2, .., gt ∈ G containing the CV terms corresponding
to vertices u ∈ A and v ∈ B in their annotations, then an edge is added between
u and v in G, with weight w′(u, v) = t. We will often refer to this bipartite graph
G as the annotation graph. We note that while we illustrate our algorithms using
this GO PO bipartite graph, our algorithm works equally well for general graphs.

If the set of genes of interest are richly annotated with GO and PO terms,
then the scientist has to examine a large annotation graph G. Even a simple
yet meaningful visualization of the annotation graph is non trivial. Our high
level objective is to discover complex patterns involving multiple genes that are
co-annotated with the same subset of GO and PO terms. One way to do this
is to identify large cliques in bipartite graphs. To be more flexible in finding
interesting patterns, we instead look for densest subgraphs that find a large
set of genes sharing a lot of common GO and PO terms; at the same time we
would like the GO and PO terms to be closely related leading to the distance
restriction.

Another formulation may consider the genes and their annotations by GO,
PO nodes as a hypergraph. GO and PO nodes correspond to vertices as before,
but now each gene is a hyperedge consisting of a set of GO and PO nodes. One
related notion of density in a hypergraph is the ratio of hyperedges completely
contained in a subgraph to the number of vertices present in that subgraph.
Our algorithms for finding maximum density subgraphs work with hypergraphs
as well. However this formulation may not be very useful in our context. A set
of GO and PO nodes may be shared by a few genes; if there is a gene that in
addition includes another GO or PO node that was not chosen, then it will not
be included. The detection of this last gene might provide valuable information
by discovering a missing annotation; but the hypergraph approach may not
detect it.

We further consider two extensions to the problem that will be of interest
to the scientist. Finding a single densest subgraph may not help the scientist
explore all the interesting patterns in the annotation knowledge. One extension
is to find all densest subgraphs. Further, there may be subgraphs that have
density close to the maximum density that are also interesting, e.g., they include
a different set of genes, or a different set of GO or PO terms, in comparison to
the densest subgraph. Such diversity of subgraphs may also help the scientist
discover interesting patterns. Thus, a natural generalization is to find all the
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subgraphs of density close to the maximum. We refer to this as the all almost
maximum density subgraph problem. Finally, scientists might be interested in
filtering the densest subgraphs so that they contain a specified subset of GO or
PO CV terms that are of interest to the scientist. We call this subset maximum
density problem.

Our main contributions are as follows:
– In Section 2 we give a formal definition of the distance restricted dense

subgraph problem. We show that for general metrics the problem is at least
as hard to approximate as the well known independent set problem, and for
special metrics such as trees and interval graphs it can be solved optimally in
polynomial time. In addition, if we are willing to relax the distance threshold
slightly we can solve it in polynomial time.

– In some cases there is a subset of GO and PO nodes that are to be studied,
and we are specifically looking for subgraphs that contain these nodes. In
Section 3 we show that the problem when a specified subset of vertices must
be part of the subgraph can also be solved optimally in polynomial time as
well.

– In Section 4 we show how Picard and Queyrannes’s framework [25] (devel-
oped to find a compact encoding of all s-t min-cuts) can be adapted to find
a collection of subgraphs whose density is close to the density of the max-
imum density subgraph. This framework can also be trivially extended for
the generalizations we mentioned above (distance restricted subgraphs as
well as the case when a subset of nodes must be part of the solution).

– Using a set of 10 photomorphogenesis genes and a set of 10 control genes,
a user evaluation demonstrates that the densest subgraph for the photomor-
phogenesis genes returns many patterns that are validated by the literature.
Further, the control genes validate that the results in the densest subgraph
are not random patterns. Of more interest, we identified complex patterns
of as yet not well known knowledge that could lead to new hypotheses. Re-
sults are reported in Section 5. We performed experiments on several other
different set of genes and studied the properties of densest subgraphs and
our algorithms on TAIR dataset. These additional results can be found in
an extended version [29].

2 Distance Restricted Densest Subgraph Problem

In this section we are interested in the distance restricted densest subgraph prob-
lem. While our methods work for general graphs, in this framework we consider
a bipartite graph G = (A, B, E) with two disjoint sets of vertices A and B, and
a set of edges E. We are also given a distance function (say a metric) dA (dB)
that specifies distances between pairs of nodes in set A (B). In addition, we
are given distance thresholds τA, τB. The goal is to compute a densest subgraph
GS = (SA, SB, ES) by choosing subsets SA ⊂ A and SB ⊂ B to maximize the
density of the subgraph, which is defined as w′(ES)

|SA|+|SB | . Here w′(ES) denotes the
weight of the edges in the subgraph induced by ES . In addition, we require that
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Fig. 2. An example of a bipartite graph G = (A, B, E) (left). GO and PO graphs are
shown on the right.

for all pairs of vertices u, v ∈ SA we have dA(u, v) ≤ τA, and the same con-
dition holds for pairs of vertices in SB, namely that for all x, y ∈ SB we have
dB(x, y) ≤ τB . Here G represents the annotation graph, A and B correspond
to GO and PO nodes respectively. Distance function dA (dB) comes from the
shortest path metric of the GO (PO) ontology graph.

Consider the example in Fig. 2. We set τA = τB = 1 (distance is defined by the
shortest path metric).The densest subgraph that satisfies the distance constraints
is as shown - formed by the nodes SA = {L, C, D} and SB = {O, H, I}. The
number of edges is 7 in this induced graph giving a density of 7

6 . Note that the
subgraph obtained by adding node J to GS would have a higher density of 9

7 ,
but we cannot add J to the subgraph since d(H, J) > τB . The proof of the
following theorem is omitted for lack of space and can be found in the extended
version [29].

Theorem 1. When the distance function is an arbitrary metric, the problem is
NP -hard and at least as hard to approximate as the maximum independent set
problem [10].

The relationship with the independent set problem explains why this problem is
hard to approximate and it is not possible to develop approximation algorithms
with good performance guarantee for this problem for general metrics. However,
we next show that for many family of graphs this problem can be solved exactly.
We identify a generic property of a metric, such that if the metric satisfies this
property then we can solve the problem optimally in polynomial time.

2.1 Polynomial Time Algorithms for the Distance Restricted
Densest Subgraph Problem

Let G = (A∪B, E) and dA and dB be the two metrics. Let SA ⊆ A and SB ⊆ B
form a densest subgraph in G such that any two vertices u, v ∈ SA, dA(u, v) ≤ τA,
for a given value τA (and similarly for x, y ∈ SB, dB(x, y) ≤ τB).

For our specific problem, we encode the distance function between pairs of
nodes in A and B by the shortest path distance in a given graph H . H will
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have two components, one for A and one for B. Let n be the number of nodes
in G. The high level idea is as follows: we wish to select a polynomial collection
of subgraphs Gi = (Ai, Bi, Ei) for i = 1 . . . p(n), and for each Gi compute the
densest subgraph. The computed Gi’s satisfy the following two properties:

– Distance property: All pairs of nodes in Ai (Bi) satisfy the pairwise dis-
tance constraint.

– Subset property: There exists some Gi that contains the true optimum
solution GS .

Since we find the densest subgraph within each Gi, we are guaranteed to find
GS . Thus a polynomial time algorithm for extracting Gi’s give a sufficient con-
dition for the existence of a polynomial time algorithm for the distance restricted
densest subgraph problem on G. To obtain the densest subgraph within each Gi,
we will use the procedure Find-Dense-Subgraph(Gi) (described later). The
worst case running time involves p(n) calls to an algorithm for computing the
densest subgraph, which in turn requires O(log n) calls to a a min-cut/max-flow
algorithm (worst case O(n3)). This gives rise to a polynomial time algorithm,
albeit with a rather high polynomial complexity. Luckily, in practice, the sub-
graphs we run the computation on are significantly smaller than the entire graph,
so the algorithm runs fairly quickly.

We now show how to generate a polynomial collection of subgraphs Gi’s satis-
fying the two properties: distance and subset property. Let z be a small constant.
Consider every subset Yp of A such that |Yp| = z, and for all t′A ≤ τA let Ap

be defined as {v ∈ A|∀r ∈ Yp dA(v, r) ≤ t′A}. Similarly we define a collection of
subsets Bq: Consider every subset Zq of B such that |Zq| = z, and t′B ≤ τB, let
Bq be defined as {v ∈ B|∀r ∈ Zq dB(v, r) ≤ t′B}. We generate subgraphs defined
by every Ap and Bq pair.

First note that, since we are considering every subset Yp ⊆ A and Zq ⊆ B:
the subset property holds; namely that one of these subgraphs is guaranteed to
contain the optimal subset of nodes. The main difficulty is to show the distance
property, that is to show the pairwise distance between every pair of nodes in
Ap is at most t′A and the pairwise distance between every pair of nodes in Bq

is at most t′B . Now, we exhibit some classes of graphs for which the distance
property holds.

Tree Metric. Let TA, TB be the trees for A and B respectively in H . The
distance in TA(TB) induces the metric dA(dB).

In this case we need z = 2 (recall that z is the cardinality of Yp and Zq).
Choose two vertices a and b from TA of distance, say t′A. and two vertices c, d
from TB of distance t′B. Define Yp = {a, b} and Zq = {c, d}. Obtain the sets Ap

and Bq as described in the previous subsection. Construct a subgraph induced
on the vertex sets Ap, Bq and obtain the densest subgraph. Return the densest
subgraph obtained from all of these subgraphs by making all possible choices for
{a, b} and {c, d}.

Now, we prove that the above algorithm (call it Tree-Densest-Subgraph)
produces an optimum solution, by showing that the distance property holds.
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Theorem 2. Tree-Densest-Subgraph gives an optimum solution, when dA

and dB form a tree metric.

Proof. We only need to show the distance property, that is all the vertices chosen
in Ap have pair-wise distance ≤ t′A and all the vertices chosen in Bq have pair-
wise distance ≤ t′B . Pick any two arbitrary vertices x, y ∈ Ap. Therefore they
are both at distance at most t′A from a and b. Let the path from x to a, Px,a

intersect Pa,b at c1 and similarly the path from y to a intersect Pa,b at c2. Let
d(x, c1) = d1 and d(y, c2) = d2. Without loss of generality, assume, c1 is closer
to a than c2. Let d(a, c1) = r1, d(c1, c2) = r2, d(c2, b) = r3. Hence the distance
between x and y is d(x, y) = d1+r2+d2. We have the following sets of equations,
d1 ≤ r1, otherwise x, b is a furthest pair. Similarly, d2 ≤ r3, otherwise (a, y) is
a furthest pair. Hence d1 + r2 + d2 ≤ r1 + r2 + r3 ≤ t′A. Therefore, all the
vertices chosen from Ap satisfies the distance threshold. Same argument works
for vertices chosen from Bq. Thus the distance property is established. ��

Some Other Distance Metrics. The same approach can be extended for
graphs where each edge can participate in at most one or two cycles and the
problem can be solved optimally in polynomial time. In general it may be possible
to extend this approach to graphs where each edge participates in constant
number of cycles. The proof technique is similar to the case of trees. Another
class of graphs for which we can obtain polynomial time algorithm is interval
graphs. The proofs of these results can be found in an extended version [29].

2.2 Generalization to Arbitrary Graphs

For general graphs, it is not possible to obtain an exact polynomial time algo-
rithm. Here we describe two methods that we implemented. The first method
guesses a vertex a ∈ GS from GO (b ∈ GS from PO) and selects all the vertices
within distance say t′A

2 ( t′B
2 ) of a(b). Suppose that the set of vertices are denoted

by Xa(Xb). We now run the algorithm Find-Dense-Subgraph(Xa∪Xb). This
ensures that the vertices are all close to each other, but we may not find the
densest subgraph due to the shorter distance requirement.

The second method is identical except that we guess a node a from GO and
a node b from PO and select all the vertices within distance say t′A(t′B) of a (b).
Now clearly, V (GS) ⊆ Xa∪Xb and any two vertices in Xa have distance at most
2t′A and any two vertices in Xb have distance at most 2t′B. Thus if the optimum
solution has density dS with distance threshold t, then we guarantee obtaining
a subgraph with density at least dS and distance at most 2t.

3 Densest Subgraphs with a Specified Subset

In this section, we describe the densest subgraph algorithm, where a subset of
GO and PO nodes are given apriori and must appear in the returned solution.
A distance threshold may also be specified. In that case, we force the subset
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of nodes that must appear in the solution, into Gi and obtain the rest of the
vertices by proper guessing as has been shown in the previous section. Thus in
this section, we just consider the problem of finding a densest subgraph of a
graph when a subset of nodes must appear in the solution.

Given a graph G = (V, E) and a weight function on the edges w′ and a weight
function on the vertices w, and a subset C of vertices, we wish to compute a
densest subgraph that contains C. The density of a subgraph is defined as the
ratio of the total weight of the edges in the induced graph, to the weights of
the nodes in the subgraph (in the unweighted case, all weights are 1). If S is a
subset of nodes then E(S) is the subset of edges in the subgraph induced by S.
Let w′(E(S)) =

∑
e∈E(S) w′(e). For a node c, let w′(S, c) =

∑
(x,c)|x∈S w′(x, c).

Let E(S) be the set of edges incident to nodes in S for any S ⊂ V .
We first contract all the nodes in C to a single node c. We define w(c) =∑
i∈C w(i). All the edges between nodes in C become a self loop on c with

w′(c) =
∑

(i,j)∈E(C) w′(i, j).
In other words, we wish to compute a subset S ⊂ V \ {c} such that we

maximize the following ratio:w′(E(S))+w′(c)+w′(S,c)
w(S)+w(c) .

3.1 Algorithm for Densest Subgraph without a Specified Subset

We first discuss the basic algorithm for finding a densest subgraph by a series
of max-flow (min-cut) computations [17]. This is the procedure Find-Dense-
Subgraph mentioned earlier. We guess α, the density of the maximum density
subgraph and then refine our guess by doing a network flow computation. Sup-
pose a subset S∗ exists with density α∗ and this is the maximum density sub-
graph. Suppose our guess is α. By appropriately defining a flow network and by
examining its min-cut structure we are able to determine if α = α∗, or α < α∗ or
α > α∗. It is very easy to start the binary search since we have upper and lower
bounds on the optimal density α∗ and since all densities are rational numbers,
once the interval size drops to below 1

|V |2 we can stop.
We next describe the flow network that is constructed. Create a flow network

G′ with a source s and sink t. We have a node corresponding to each edge in G
(call this set E′) and a node corresponding to each node in G (call this set V ′).
Add edges from s to e ∈ E′ of capacity w′(e) and an edge from v ∈ V ′ to t with
capacity αw(v). Add edges from e = (x, y) ∈ E′ to both x ∈ V ′ and y ∈ V ′ with
capacity ∞1.

If C = ∅ then the construction proceeds as follows (original problem). First
note that there is a s-t min-cut of value w′(E). Suppose the max density sub-
set has density α∗. Suppose our guess α < α∗ = w′(S∗)

w(S∗) , then it follows that
αw(S∗) < w′(S∗).

Now consider an s-t cut (s ∪ V1, t ∪ V2) in the flow network G′, then let
S = V1∩V ′. The cut includes all the edges from nodes in S to t of capacity αw(S)

1 If E′ is a set of hyper-edges then we add such edges from e to all x ∈ V ′ such that
x ∈ e.
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as well as edges from s to nodes in E′ that are not in V1. All edges e = (x, y) ∈ E
with one end in V \ S must be in V2 since otherwise there will be an edge of ∞
capacity across the cut. All the edges in the induced graph formed by S must be
in V1, since otherwise we can reduce the capacity of the cut. The weight of this
cut is exactly w′(E\E(S))+αw(S). Note that w′(E\E(S)) includes the weight of
all edges that are incident on some node in E\S. The weight of this cut is exactly
w′(E \ E(S)) + αw(S) = w′(E) − w′(S) + αw(S) = w′(E) − (w′(S) − αw(S)).
But for the optimal subset S∗, we have w′(S∗) − αw(S∗) > 0 thus there is a
cut of value < w′(E). So if this happens we know that our guess for α is < α∗.
Similarly, when our guess for α is > α∗ then the (unique) min-cut has value
w′(E). When we make the correct guess, then there are multiple min-cuts of
value w′(E). Any min-cut other than the trivial gives the correct solution.

3.2 Algorithm for Densest Subgraph with a Specified Subset C

We now show how to modify this construction when C �= ∅. We create a new
source s′ and add an edge to s with capacity w′(E) − αw(c). We also remove c
from V ′. Again suppose that α < α∗. In this case, a subset S∗ exists such that
w′(E(S∗))+w′(c)+w′(S∗,c)

w(S∗)+w(c) > α. Thus, w′(E(S∗)) + w′(c) + w′(S∗, c) − α(w(S∗) +
w(c)) > 0. Rreplace w′(E) − w′(E(V \ (S∗ ∪ c))) for the first term. (Note that
w′(E(V \ (S∗ ∪ c))) includes all edges incident on nodes in V \ (S∗ ∪ c), and not
only the edges induced by those nodes). We now obtain:

w′(E)− w′(E(V \ (S∗ ∪ c))) − α(w(S∗) + w(c)) > 0.

(w′(E)− αw(c)) − (w′(E(V \ (S∗ ∪ c))) + αw(S∗)) > 0.

(w′(E)− αw(c)) > w′(E(V \ (S∗ ∪ c))) + αw(S∗).

This means that a min-cut exists (defined by the subset S∗ for example) that is
smaller than w′(E)− αw(c).

So again by looking at the min-cut structure we should be able to know that
α < α∗. If α > α∗ then the trivial min-cut separating s′ from the rest of the
graph is unique. A binary search for α can be done.

Side Note: A simple method that will not work is to snap the edges to c as
self loops and to then compute the densest subgraph in G with c removed. If
the density of the densest subgraph found is lower than w′(c)/w(c) then we
just return C as the answer. Otherwise we return S ∪ C. The main problem is
that the density of S could get lowered when we merge with C. The level of
dilution depends on the size of the densest subgraph in G with c removed; hence
a subgraph with slightly lower density than the optimal solution, but of much
larger size could be a better choice.

4 Finding All almost Maximum Densest Subgraphs

In this section, we describe an algorithm for computing all densest subgraphs as
well as all almost maximum densest subgraphs. It might not be sufficient just
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to find only one subgraph of highest density, and sometimes subgraphs having
density close to the maximum might be interesting as well. If α∗ is the highest
density, our goal is to find all subgraphs that have density close to α∗. A subgraph
S that has density α∗(1−δS) is lacking by a factor of (1−δS) from the optimum.
Thus if we want to detect it, we have to relax the density requirement of S by
a (1− δS) factor. The amount of relaxation may differ depending on the size of
the returned subgraph. We denote by D(S) the density of the subgraph induced
by S.

Formally, given a graph G = (V, E), if α∗ = maxS⊆V D(S), then given an

ε > 0, we want to return T = {S | S ⊆ V, D(S) ≥
(
1− ε

|S|
)

α∗}. Therefore,
we have δS = ε

|S| . We consider the unweighted case, where vertices and edges
all have unit weights. Extension to arbitrary weight is trivial. Also we can pose
the distance restriction as in Section 2 easily and get the same approximation
results as we obtained earlier.

Recall the construction of flow network from Section 3. We guess α as the
value of density and create a flow network N(G) for graph G. If {s∪ V1, t∪ V2}
is the minimum cut and V1 ∧ V = S, then the value of min-cut is K = |E| −
(E(S) − α|S|). Thus when, α = α∗, K = |E|. The algorithm searches for the
value of α∗ using a binary search. Since the gap between two consecutive density
values, is at least 1

|V |2 [12], the value of α∗ can be guessed accurately in O(log n)
time.

We construct the flow network Nα∗ with α∗ as the guess, and compute all min-
cuts having value ≤ |E| + εα∗. There are two questions, “how can we compute
all min-cuts of value ≤ |E| + εα∗ ?” and “how can T be detected from these
min-cut computations ?”. While we address the first question in Subsection 4.1,
following lemma answers the second.

Lemma 1. Let M = {V1 | cut(s ∪ V1, t ∪ (V \ V1)) ≤ |E| + α∗ε}, then T =
{V1 ∩ V }.

Proof. Let S′ ∈ T and S′ = V ′
1 ∧ V . Then the cut induced by s ∪ V ′

1 is |E| −
(E(S′) − α∗|S′|) = |E| − |S′|(D(S′) − α∗). Since S′ ∈ T , D(S′) ≥ α∗(1 − ε

|S′|).
Thus, the cut induced by s∪V ′

1 is at most |E|−|S′|(α∗(1− ε
|S′| )−α∗) = |E|+α∗ε.

Hence, V ′
1 ∈ M . On the other hand, if V ′

1 ∈ M , then the cut value of s ∪ V ′
1

is, |E| − (E(S′)− α∗|S′|) ≤ |E|+ α∗ε. Thus, α∗|S′| − E(S′) ≤ α∗ε, or D(S′) ≥
α∗(1 − ε

|S′|). ��

Now we show how by modifying Picard and Queyranne’s algorithm [25], we can
compute all cuts of value ≤ |E|+ εα∗ in Nα∗ .

4.1 Finding All Almost Min-Cuts

In Picard’s algorithm, we are given a finite directed network N = (V, E, c),
with vertex set V , including a source s and a sink t, arc sets E and positive
capacities ci,j defined on every (i, j) ∈ E. The goal is to compute all s-t cuts
having minimum value. Given a binary relation R on V , a subset C ⊆ V is said
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to be closure for R, iff for all vertices i, j ∈ V , the conditions i ∈ C and iRj
imply j ∈ C. Picard showed that, if f is a maximum flow in N , cres is the
residual capacity and R is defined as, iRj, iff cres(i, j) > 0, then a cut (S, S̄)
separating s from t is a minimum cut iff S is a closure for R containing s and
not t. By enumerating all closures of R, all the min-cuts can now be detected.

We define the relation R as, iRj iff cres(i, j) > εα∗ = δ instead of cres(i, j) >
0. The following lemma connects all almost s-t cuts with the closures for R.

Theorem 3. All s-t cuts of value ≤ K + δ are closures for R, where K is the
value of minimum s-t cut.

Proof. Consider a cut S of value K ′ ≤ K + δ. Let the edges across the cut
E(S, S̄) = {e1, e2, . . . , el}, ei ∈ E(G) with capacities {c1, c2, . . . , cl} and flow
{f1, f2, . . . , fl}. Since maxflow is equal to min-cut, when we consider the max
flow in the network, we must have, f(S, S̄)− f(S̄, S) = K. Hence f(S, S̄) > K.
Let if possible one of the residual capacity, say of e1 be higher than δ, then
that will imply S is not a closure for R. We have K < f1 + f2 + . . . + fl <
(c1 − δ) + c2 + . . . + cl = K ′ − δ. So K ′ > K + δ, giving a contradiction. ��

Therefore, we again enumerate all the closures, and discard any closure for which
cut value is > K +δ. This last step is necessary, since there can be some closures
for R that do not necessarily give a cut of value ≤ K + δ. The closures for R
contain all the cuts of value ≤ K + δ and some cuts of value K + δ(l + l′).

5 Experiments on the TAIR Dataset

We briefly summarize the results of several experiments. In a first experiment
(dataset SD1) we analyze 10 photomorphogenesis genes. We use the literature to
validate patterns identified in a dense subgraph. We highlight some interesting
patterns that are novel and could lead to new hypotheses. A control experiment
(dataset SD2) includes the 10 photomorphogenesis genes and 10 additional con-
trol genes. The control experiment is used to confirm that all patterns identified
in the dense subgraphs are true positives and are validated in the literature.
There were no false positive patterns identified in our experiment. In a subse-
quent experiment (dataset SD3), we analyze 20 genes involved in different (and
currently unrelated) biological pathways. We also perform experiments to study
the properties of the dense subgraphs, for different experiment protocols and pa-
rameters such as the number of genes and the GO and PO distance thresholds.
These results are in an extended report [29].

We execute a protocol to retrieve all TAIR genes, their GO and PO anno-
tations, and the reference publications from PubMed. As of January 2009, the
LSLink TAIR dataset contains 3540 GO CV terms, 350 PO CV terms, 18861
genes, 70128 GO annotations, 484261 PO annotations and 1873250 (GO, PO)
pairs. The average number of GO annotations and PO annotations for the TAIR
genes is 3.97 and 3.13, respectively. The maximum number of annotations for
any gene is 22 GO annotations and 50 PO annotations.
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5.1 Photomorphogenesis Case Study

We report on promising results of a photomorphogenesis case study on dataset
SD1 with the following 10 TAIR genes: CRY1, CRY2, HFR1, CIB1, CIB5, SHB1,
COP1, HY5, PHOT1, PHOT2. These 10 genes are associated with 107 annotations
(66 GO terms and 41 PO terms) and 2230 combinations of (GO, PO) terms. The
edge weight from the corresponding bipartite graph ranged from a minimum of
1 (1368 edges) to a maximum of 7 (2 edges). We applied the distance restricted
dense subgraph algorithm with GO distance threshold of 2 and PO distance
threshold of 3, which identified a complex pattern involving the following sub-
set: 9 genes, CRY1, CRY2, HFR1, CIB5, COP1, HY5, PHOT1, PHOT2, SHB1 3
GO terms, 5634: nucleus; cellular component, 5773: vacuole; cellular
component, and 5794: Golgi apparatus; cellular component; and 13 PO
terms. These obtained GO and PO terms are shown in Figure 3. Figure 3 also
shows a subgraph chosen from the densest subgraph involving 2 GO terms, 5634:
nucleus; cellular compo- nent and 5773: vacuole; cellular component;
and 2 PO terms, 13: cauline leaf; plant structure and 37: shoot apex;
plant structure are shown in Figure 3. This creates 4 (GO, PO) pairs as fol-
lows: (5634, 13); (5634, 37); (5773, 13); (5773, 37). Figure 3 also illustrates the
genes that are annotated by these pairs.

We make the following observations:

– The combinations of (GO,PO) edges observed in this complex pattern are
consistent with the literature and provides validation that the complex pat-
tern is meaningful. Details of all the observations can be found in an extended
version [29].

– Specific combinations of genes and (GO,PO) edges are interesting in that
they can lead to further hypothesis. We identify 5 potentially interesting
patterns from the subgraph. We elaborate on two patterns. Details can be
found in an extended version [29].

– HFR1 is not annotated with the following GO and PO combination: (5634:
nucleus; cellular component and 37: shoot apex; plant structure).
This is indicated by an arrow in Figure 3. A review of the literature suggests
that this is a novel observation about the mechanism controlling this gene
that should be pursued further.

– The next observation confirms the potential benefits of our approach to find-
ing complex patterns in the annotated LSLink datasets. Consider the pattern
of annotation that includes the 2 genes CRY2 and PHOT1. Both are annotated
with the following 2 GO and PO combinations: (5773: vacuole; cellular
component and 13: cauline leaf; plant structure) and (5773: vacuole;
cellular component and 37: shoot apex; plant structure). These anno-
tations are also marked with an arrow in Figure 3. We observe that there are
only 2 papers in the literature, [23] published in 2004, and [13] published in
2008, that postulate that some members of the CRY and PHOT families may
be functionally interactive in vacuoles. Indeed, these two papers came to this
conclusion only after significant experimental research.
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Fig. 3. Potential Complex Pattern of Photomorphogenesis Genes

To summarize, our user evaluation confirmed the benefit of using the dense sub-
graph approach of identifying complex patterns based on the underlying patterns
of annotation, without having to completely digest the scientific literature and/or
complete an experiment protocol.

We performed a control experiment using SD2; SD2 included the 10 genes of
SD1 and 10 additional genes that were chosen randomly from genes that had
some common annotations with the genes in SD1. The goal of this experiment is
to verify that the pattern emerged from experimenting on SD1 alone still persists
and thus to confirm that it was not a random pattern. The dense subgraph for
SD1 included 9 genes, 3 GO terms, 13 PO terms and 39 (GO, PO) edges. The
dense subgraph for SD2 included 14 genes, 4 GO terms, 11 PO terms and 44
(GO, PO) edges. The genes included the 8 photomorphogenesis genes (HFR1
CRY2 CIB5 COP1 PHOT1 CRY1 SHB1 HY5) and 6 control genes (GAPC2
FT ARF3 AG ARF4 REV). The gene PHOT2 is not included. Further, the
GO term Golgi apparatus and 3 PO terms cauline leaf, leaf whorl and
petiole were not present. Two GO terms mitochondrion and cytosol and 1
PO term inflorescence meristemwere introduced. Detailed observations from
the control dense subgraph for SD2 can be found in an extended version [29].

While the control dense subgraph for SD2 does show some variations in terms
of photomorphogenesis genes, GO and PO terms from that obtained using SD1,
we verified that none of these variations are significant, i.e., the variations do
not contradict any of the patterns of annotation of the dense subgraph for SD1.
Further the patterns of SD1, that were found validating the literature or can
lead to potentially new hypothesis are unchanged. For example, PHOT2 which is
excluded from the control subgraph, as well as the GO and PO terms that are
excluded were not included in any of the SD1 patterns. An unexpected benefit is
that the control densest subgraph for SD2 was itself able to yield some interesting
patterns that could lead to new hypotheses.

We note that developing a NULL hypothesis to test the significance of the
dense subgraphs that we generate is non trivial since there are many metrics
to compare the similarity of two graphs. One option is to add control genes as
described. Other alternatives include comparing the density distribution of dense
subgraphs from a random graph versus the dense subgraphs from our datasets.
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Another would generate all almost dense subgraphs to determine if they are
different with respect to both metrics as well as the observed patterns. One may
also consider random labeling of the GO and PO terms in the datasets. We will
explore these alternatives in future work.

Additional experiments on different set of genes and empirical study on
the properties of the densest subgraph algorithms can be found in an extended
version [29].

Acknowledgments. We thank Carl Kingsford and Mihai Pop for useful dis-
cussions about our results and their feedback has been invaluable.

References

1. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics 4 (2003)

2. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Research 32(Database issue), 267–270
(2004)

3. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

4. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-
scale detection of protein families 30(7), 1575–1584 (April 2002)

5. Entrez: the life sciences search engine,
http://www.ncbi.nih.gov/gquery/gquery.fcgi

6. Sayers, E.W., et al.: Database resources of the National Center for Biotechnology
Information. Nucleic Acids Research 37(Database issue), D16–D18 (2009)

7. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature
Genetics 25(1), 25–29 (2000)

8. Margarita, et al.: TAIR: a resource for integrated Arabidopsis data. Functional and
Integrative Genomics 2(6), 239 (2002)

9. Rhee, S.Y., et al.: The Arabidopsis Information Resource (TAIR): a model or-
ganism database providing a centralized, curated gateway to arabidopsis biology,
research materials and community. Nucleic Acids Research 31(1), 224–228 (2003)

10. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

11. Gene Ontology (GO), http://www.geneontology.org/
12. Goldberg, A.V.: Finding a maximum density subgraph. Technical report (1984)
13. Kang, B., Grancher, N., Koyffmann, V., Lardemer, D., Burney, S., Ahmad, M.:

Multiple interactions between cryptochrome and phototropin blue-light signalling
pathways in arabidopsis thaliana. Planta 227(5), 1091–1099 (2008)

14. Khuller, S., Saha, B.: On finding dense subgraphs. In: ICALP 2009, pp. 597–608
(2009)

15. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clus-
tering. Bioinformatics 20(17), 3013–3020 (2004)

16. Rhee, S.Y., Reiser, L.: Using The Arabidopsis Information Resource (TAIR) to
Find Information About Arabidopsis Genes. Current Protocols in Bioinformatics
(2005)

http://www.ncbi.nih.gov/gquery/gquery.fcgi
http://www.geneontology.org/


472 B. Saha et al.

17. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart
and Winston, New York (1976)

18. Lee, W.-j., Raschid, L., Sayyadi, H., Srinivasan, P.: Exploiting ontology structure
and patterns of annotation to mine significant associations between pairs of con-
trolled vocabulary terms. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.)
DILS 2008. LNCS (LNBI), vol. 5109, pp. 44–60. Springer, Heidelberg (2008)

19. Li, X., Foo, C., Ng, S.: Discovering protein complexes in dense reliable neighbor-
hoods of protein interaction networks 6, 157–168 (2007)

20. Maglott, D.R., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Research 35(Database issue), 26–31 (2007)

21. Navlakha, S., White, J., Nagarajan, N., Pop, M., Kingsford, C.: Finding biologi-
cally accurate clusterings in hierarchical tree decompositions using the variation of
information. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 400–417.
Springer, Heidelberg (2009)

22. Newman, M.E.J.: Modularity and community structure in networks 103(23), 8577–
8582 (2006)

23. Ohgishi, M., Saji, K., Okada, K., Sakai, T.: Functional analysis of each blue light
receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants
in arabidopsis. PNAS 1010(8), 2223–2228 (2004)

24. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules
from protein interaction networks. Proteins 54(1), 49–57 (2004)

25. Picard, J.-C., Queyranne, M.: On the structure of all minimum cuts in a network
and applications. Mathematical Programming Study 13, 8–16 (1980)

26. Plant Ontology (PO), http://www.plantontology.org/
27. PubMed, http://www.ncbi.nih.gov/entrez/
28. PubMed Central, http://www.pubmedcentral.nih.gov/
29. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.: Dense subgraph with

restrictions and applications to gene annotation graphs (2010),
http://www.cs.umd.edu/~samir/grant/recomb-full.pdf

30. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular
networks 100(21), 12123–12128 (October 2003)

31. Unified Medical Language System (UMLS),
http://www.nlm.nih.gov/research/umls/

32. Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in protein
networks by completing defective cliques. Bioinformatics 22(7), 823–829 (2006)

http://www.plantontology.org/
http://www.ncbi.nih.gov/entrez/
http://www.pubmedcentral.nih.gov/
http://www.cs.umd.edu/~samir/grant/recomb-full.pdf
http://www.nlm.nih.gov/research/umls/


Time and Space Efficient RNA-RNA Interaction
Prediction via Sparse Folding

Raheleh Salari1,�, Mathias Möhl2,�, Sebastian Will2,�,
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Abstract. In the past years, a large set of new regulatory ncRNAs
have been identified, but the number of experimentally verified targets
is considerably low. Thus, computational target prediction methods are
on high demand. Whereas all previous approaches for predicting a gen-
eral joint structure have a complexity of O(n6) running time and O(n4)
space, a more time and space efficient interaction prediction that is able
to handle complex joint structures is necessary for genome-wide target
prediction problems. In this paper we show how to reduce both the time
and space complexity of the RNA-RNA interaction prediction problem
as described by Alkan et al. [1] via dynamic programming sparsification -
which allows to discard large portions of DP tables without loosing op-
timality. Applying sparsification techniques reduces the complexity of
the original algorithm from O(n6) time and O(n4) space to O(n4ψ(n))
time and O(n2ψ(n)+ n3) space for some function ψ(n), which turns out
to have small values for the range of n that we encounter in practice.
Under the assumption that the polymer-zeta property holds for RNA-
structures, we demonstrate that ψ(n) = O(n) on average, resulting in
a linear time and space complexity improvement over the original algo-
rithm. We evaluate our sparsified algorithm for RNA-RNA interaction
prediction by total free energy minimization, based on the energy model
of Chitsaz et al. [2], on a set of known interactions. Our results confirm
the significant reduction of time and space requirements in practice.

1 Introduction

Starting with the discovery of microRNAs (miRNAs) and the advent of genome-
wide transcriptomics, it has become clear that RNA plays a large variety of
important roles in living organisms that extend far beyond being a mere inter-
mediate in protein biosynthesis [3]. Several of these non-coding RNAs (ncRNAs)
regulate gene expression post-transcriptionally through base pairing (and estab-
lishing a joint structure) with a target mRNA, as per the eukaryotic miRNAs
� Joint first authors.
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and small interfering RNAs (siRNAs) [4,5,6], antisense RNAs [7,8] or bacterial
small regulatory RNAs (sRNAs) [9]. In addition to such endogenous regulatory
ncRNAs, antisense oligonucleotides have been used as exogenous inhibitors of
gene expression; antisense technology is now commonly used as a research tool
as well as for therapeutic purposes. Furthermore, synthetic nucleic acids systems
have been engineered to self assemble into complex structures performing various
dynamic mechanical motions [10,11,12,13,14].

Despite all the above advances, the first set of computational methods for
predicting ncRNA-target mRNA interactions suffered from over-simplifying the
types of interactions allowed. As a result they could not accurately predict many
known interactions, especially those involving long ncRNAs. More precisely,
these methods either restricted the interactions to external positions, or they
allowed interactions with at most one interaction site. These restrictions were
lifted by two independently developed methods, which provided the first set of
algorithms for predicting a precise interaction structure of two RNA strands:
(i) the algorithm by Pervouchine [15], for example, maximizes the total number
of base pairs, and (ii) a more general method by Alkan et al. [1], minimizes
the total free energy of the interacting RNA strands using a nearest neighbor
energy model. Alkan et al. also provide a proof of the NP-completeness of the
general problem, together with a precise definition of interaction types that can
be handled, as well as the first experimental confirmation of the total free energy
minimization approach via correctly predicting the joint structure formed by a
number of interacting RNA pairs.

More recently, two approaches [2,16] independently solved the problem of
calculating the partition function for the interaction model introduced by Alkan
et al., allowing to determine important thermodynamic quantities like melting
temperatures. As demonstrated in [2], the computed melting temperatures are
in a good agreement with experimentally measured ones.

One key problem with the above approaches for predicting a general joint
structure [15,1,2,16] is that they all have a worst case running time of O(n6)
and a space complexity of O(n4). While this complexity might be acceptable
when analyzing only a few putative sRNA-target interaction pairs, we are now
faced with the situation that the amount of data to be analyzed is vastly increas-
ing. To give an example, a recent mapping of transcripts using tiling arrays in
the budding yeast S. cerevisiae [17] with 5,654 annotated open reading frames
(ORF) has found 1555 antisense RNAs that overlap at least partially with the
ORFs at the opposite strand. Currently, it is completely unclear what these an-
tisense RNAs are doing - whether they target only their associated sense mRNA
or have also other mRNA targets, and whether they always form a complete
duplex or more complex joint structures such as multiple kissing hairpins if they
overlap only partially is not known. The same situation appears in many other
species. Thus, there is urgent need for a more time and space efficient interaction
prediction method that is able to handle complex joint structures.

In this paper we present a new method for calculating the joint structure of
interacting RNAs by minimizing their total free energy, which improves time
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and space efficiency over previous approaches. As first in its class, the method is
sufficiently fast to be applied in large scale screening approaches. We suggest to
refine putative interacting pairs with even more accurate RNA-RNA-interaction
prediction approaches [2,16]. Because these approaches compute a partition func-
tion for RNA-RNA-interaction, they can determine important thermodynamic
parameters such as melting temperatures, however their efficiency cannot be
improved in the same way.

We show how to reduce both time and space complexity using an approach
called sparsification, which uses the observation that the resulting DP-matrices
are sparse. As previous applications of sparsification to problems related to RNA
folding, our approach exploits a triangle inequation on the dynamic programming
matrix. Assuming the polymer-zeta property for interacting RNAs, we show an
efficiency gain by a linear factor. This polymer-zeta property basically states
that the probability of a base pair decreases with its size, i.e. there are only few
long range base pairs.

In this paper we consider a version of the polymer-zeta property for interacting
RNAs and develop novel algorithmic approaches as (1) we cannot assume the
standard polymer-zeta property for all base pairs as for intermolecular base pairs
there is no clear notion of a distance between the bases; (2) the joint interaction
prediction problem does not allow to split only at arcs in the recursion, which
was crucial in the demonstration of a linear (asymptotic) speed up for problems
involving the folding of a single RNA.

We sparsify the dynamic programming tables involved in total free energy
minimization first described in Alkan et al. [1] on the more general energy model
of Chitsaz et al. [2] resulting in a significant reduction in time and space com-
plexity. There are four different cases that need to be sped up, which results in
a total of four different candidate lists; for each sequence and each region, we
have to consider folding with interaction or without interaction, which gives rise
to two candidate lists per sequence. We emphasize that beyond reducing time
complexity, we obtain a similar space reduction even in the intricate setting of
four independent candidate lists.

Sparsification in RNA folding. The general technique of DP sparsification has
been used in the context of RNA-folding, to reduce the time and space com-
plexity of two central problems in this domain, namely (i) the calculation of the
MFE structure of a single RNA sequence folding [18,19], and (ii) the Sankoff ap-
proach [20] of simultaneous folding and alignment of two RNAs [21,19]. In both
cases, a (roughly) linear reduction in the time complexity was achieved on aver-
age.1 The time/space reduction is based on the assumption that RNA-structures
or consensus structures - in the simultaneous alignment and folding of RNAs,

1 To be more precise, the time complexity of RNA-folding was reduced from O(n3)
to O(nZ) and the space complexity was reduced from O(n2) to O(Z), where Z is
a sparsity factor satisfying n ≤ Z ≤ n2. An estimation [18] of the expected value
of a parameter related to Z, based on a probabilistic model for polymer folding and
measured by simulations, shows that Z is significantly smaller than O(n2). Similar
results are given for the co-folding problem.
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satisfy the polymer-zeta behavior, which is an assumption that we employ in
predicting the intramolecular base-pairs observed in RNA joint structures. The
above approaches for RNA folding as well as simultaneous folding and alignment
use the polymer-zeta property for either a single RNA sequence and structure,
or for a consensus structure of two (structurally similar) RNAs, leading to a
single candidate list.

RNA-RNA interaction prediction methods. The first set of computational meth-
ods to calculate joint structures formed by interacting RNAs (e.g., RNAhy-
brid [22] or TargetRNA [23]) considered only the base-pairs between the two
different strands that form a duplex structure. Since this ignores the intramolec-
ular structures, later approaches aimed to predict a joint structure for both
interacting RNAs. This second generation of RNA-RNA interaction prediction
methods, which include pairfold [24], RNAcofold [25] and the method presented
by Dirks et al. as part of the NUpack package [26], consider joint structures
of mRNA and sRNA that are generated by concatenating the two sequences
using a special linker character. Then, a modified version of the standard RNA-
folding algorithms (such as Mfold [27] or RNAfold [28]) which preserve the basic
recursive structure of standard RNA-folding but specially treat loops that con-
tain the linker symbol, is applied. Unfortunately, none of the above approaches
can predict joint structures with kissing hairpin interactions. For that reason, a
third generation of RNA-RNA interaction prediction algorithms (in particular,
RNAup [29] and IntaRNA [30]) were recently introduced. These approaches first
determine the accessibility of all putative interaction sites, from which an energy
to make the sites free of intramolecular base-pairs can be calculated. Later, this
energy is combined with the energy of the duplex that can be formed between
different interaction sites.

Clearly, the third generation methods can only handle one interaction site
per sequence - which may not include any intramolecular base-pairs. As a result,
two or more kissing hairpins as per the interaction between OxyS and fhlA [31]
cannot be treated by these approaches. For the purpose of handling such complex
joint structures, more sophisticated DP-methods of Pervouchine [15] and Alkan
et al. [1], as well as the partition function variants by Chitsaz et al. [2] and Huang
et al. [16] were introduced. Finally, more recent methods introduced in [32,33]
can be seen as heuristic approximations to the full model of [2], or as an extension
of the accessibility approaches (RNAup/IntaRNA) to several interaction sites.

2 Preliminaries

Throughout this paper, we denote the two nucleic acid strands by R and S.
Strand R is indexed from 1 to LR in 5′ to 3′ direction and S is indexed from 1 to
LS in 3′ to 5′ direction. Note that the two strands interact in opposite directions,
e.g. R in 5′ → 3′ with S in 3′ ← 5′ direction. Each nucleotide is paired with at
most one nucleotide in the same or the other strand. The subsequence from the
ith nucleotide to the jth nucleotide in a strand is denoted by [i, j]. We refer to
the ith nucleotide in R and S by iR and iS respectively. An intramolecular base
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pair between the nucleotides i and j in a strand is called an arc and denoted
by a bullet i • j. An intermolecular base pair between the nucleotides iR and iS
is called a bond and denoted by a circle iR ◦ iS. An arc iR • jR (or respectively
iS • jS) covers a bond kR ◦ kS if iR < kR < jR (or iS < kS < jS). An arc
is called interaction arc if it covers a bond. A subsequence [iR, jR] (or [iS, jS ],
analogously) contains a direct bond, kR ◦ kS , if iR ≤ kR ≤ jR and no arc within
[iR, jR] covers kR ◦ kS . Two bonds iR ◦ iS and jR ◦ jS are called crossing bonds
if iR < jR and iS > jS or iR > jR and iS < jS . An interaction arc iR • jR in R
subsumes a subsequence [iS , jS ] in S if there is at least one bond kR ◦ kS , where
iR < kR < jR and iS < kS < jS , and for all bonds kR ◦ kS , if iS ≤ kS ≤ jS then
iR < kR < jR. Analogously, interaction arcs in S can subsume subsequences in
R. Two interaction arcs iR • jR and iS • jS are part of a zigzag, if there is a bond
kR ◦ kS , where iR < kR < jR and iS < kS < jS , but neither iR • jR subsumes
[iS , jS ] nor iS • jS subsumes [iR, jR].

We represent the recursions of our dynamic programming (DP) algorithm
in a graphical notation using the recursion diagrams introduced in [2]. Within
the recursion diagrams, a horizontal line indicates the phosphate backbone, a
solid curved line indicates an arc, and a dashed curved line encloses a region
and denotes its two terminal bases which may be paired or unpaired. Letters
within a region specify a recursive quantity. White regions are recursed over and
blue regions indicate those portions of the secondary structure that are fixed at
the current recursion level and contribute to the energy as defined by the energy
model. Green and red regions have the same recursion cases as the corresponding
white regions, except that for the green regions multiloop energy and for red
regions kissing loop energy is applied, i.e. the corresponding penalties for each
unpaired base and base pair should be applied. A solid vertical line indicates a
bond, a dashed vertical line denotes two terminal bases of a region which may
be base paired or unpaired, and a dotted vertical line denotes two terminal bases
of a region which are assumed to be unpaired. A terminal determined by • is
starting point of either an interaction arc or a bond.

3 Methods

In this section we discuss an algorithm for RNA-RNA interaction prediction via
total free energy minimization, under the assumption that there are no (internal)
pseudoknots, crossing bonds (i.e. external pseudoknots), or zigzags in the joint
structure. The algorithm is similar to the one introduced by Alkan et al. [1] on a
simpler energy model. We use sparsification techniques to reduce the complexity
of the original algorithm from O(n6) time and O(n4) space to O(n4ψ(n)) time
and O(n2ψ(n)+n3) space for some function ψ(n) = O(n) on average. To simplify
the presentation, we discuss the sparsification for the joint structure prediction
via total base pair maximization. Note that RNA-RNA interaction based on
base pair maximization is the generalized version of the Nussinov model [34] for
single RNA folding and was employed by Pervouchine [15] as well as Alkan et
al. [1] for RNA-RNA interaction prediction. Later in the paper we also provide
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all concepts for generalizing the algorithm to capture a more realistic energy
model provided by Chitsaz et al. [2].

3.1 Sparsification for Maximizing Base Pairs

Given two RNA sequences R and S, N(iR, jR, iS, jS) denotes the maximum
number of base pairs in the joint structure of [iR, jR] and [iS , jS ], and NX(i, j)
(for X ∈ {R,S}) denotes the maximum number of base pairs of the subsequence
[i, j] of the single sequence X. The recursion cases for computing the maxi-
mum number of base pairs for RNA-RNA interaction are illustrated in Fig. 1.
N(iR, jR, iS, jS) and NX(i, j) for X ∈ {R,S} are calculated by the following
recursions

N(iR, jR, iS, jS) = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(iR + 1, jR, iS , jS) (a)
N(iR, jR, iS + 1, jS) (b)
N(iR + 1, jR, iS + 1, jS) + 1 (c)

max
iR<k≤jR

R[iR],R[k] compl.

(
1 + NR(iR + 1, k − 1)

+ N(k + 1, jR, iS , jS)

)
(d)

max
iS<k≤jS

S[iS ],S[k] compl.

(
1 + NS(iS + 1, k − 1)

+ N(iR, jR, k + 1, jS)

)
(e)

max
iR<kR≤jR
iS<kS≤jS

R[iR],R[kR] compl.

(
1 + N(iR + 1, kR − 1, iS, kS)

+ N(kR + 1, jR, kS + 1, jS)

)
(f)

max
iR<kR≤jR
iS<kS≤jS

S[iS ],S[kS ] compl.

(
1 + N(iR, kR, iS + 1, kS − 1)

+ N(kR + 1, jR, kS + 1, jS)

)
(g)

(1)

NX(i, j) = max

⎧⎪⎨⎪⎩
NX(i + 1, j) (a)

max
i<k≤j

X[i],X[k] compl.

(
1 + NX(i + 1, k − 1)

+ NX(k + 1, j)

)
(b)

(2)

In Eq. 1, the cases (a) and (b) introduce an unpaired base at positions iR and iS
respectively, and case (c) introduces a bond iR ◦ iS. Cases (d) and (f) introduce
an arc at iR • k and cases (e) and (g) at iS • k, where cases (f) and (g) assume
that the arc is an interaction arc and cases (d) and (e) assume that this is not
the case.

Time reduction by sparsification. We will apply a sparsification technique
to reduce the number of cases necessary to be considered for Eq 1(d)-(g), as well
as Eq 2(b).

Concerning sparsification, the simple cases are Eq 1(d),(e), and Eq 2(b), which
correspond to the folding of a single sequence. The sparsification of these cases
works in close analogy to the sparsification of RNA structure prediction as de-
scribed by Wexler et al. [18]. We will briefly review their approach adapted to
case Eq 2(b). Thereafter, we describe sparsification of the complex cases.
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Fig. 1. Recursion cases for computing the maximum base pairing joint structure of
[iR, jR] and [iS , jS ]

Sparsifying recursion cases for single structure folding. The key to sparsification
is a triangle inequality property of the DP matrix. In the case of NX, for every
subsequence [i, j] and i < k ≤ j the following inequality holds:

NX(i, j) ≥ NX(i, k) + NX(k + 1, j).

Due to this property, it is sufficient to maximize in Eq. 2(b) for each i only
over certain candidates k instead of all k with i < k ≤ j. In this case, k is a
candidate for i, iff NX(i + 1, k) < NX(i, k) and for all i < k′ < k, 1 + NX(i +
1, k′ − 1) + NX(k′ + 1, k) < NX(i, k). Operationally, during the computation
of NX(i, k) we detect that k is a candidate for i by checking that the instance
1+NX(i+1, k−1)+NX(k+1, k) of recursion case Eq. 2(b) is the only maximal
case.

For non-candidates k there exists some k′, i ≤ k′ < k, where NX(i, k) =
NX(i, k′) + NX(k′ + 1, k). Then for all j > k, NX(i, k) + NX(k + 1, j) =
NX(i, k′) + NX(k′ + 1, k) + NX(k + 1, j), and by triangle inequality NX(i, k) +
NX(k + 1, j) ≤ NX(i, k′) + NX(k′ + 1, j). This means that, whenever a non-
candidate k yields a maximal value, then there is already a k′ < k that yields
the same value. Therefore k does not need to be considered, because the smallest
such k′ is taken into account.

Wexler et al. showed that sparsification reduces the expected time complexity
of RNA folding by a linear factor, since the expected number of candidates for
each i is constant. The transfer of sparsification to cases Eq 1(d) and (e) is
straightforward, because only one subsequence is decomposed and the indices of
the other subsequence remain fixed.

Sparsifying recursion cases for joint structure folding. We extend the sparsifica-
tion idea to the recursion cases Eq 1(f) and (g), which split both sequences and
therefore minimize over a pair of split points (kR, kS). For the four dimensional
matrix N(iR, jR, iS, jS), the following generalization of the triangle inequality
holds.

Observation 1 (Triangle inequality for N(iR, jR, iS , jS)). For every subse-
quence [iR, jR] and [iS , jS ] and for every iR < kR ≤ jR and iS ≤ kS < jS,
N(iR, jR, iS, jS) ≥ N(iR, kR, iS , kS) + N(kR + 1, jR, kS + 1, jS).

Note that in principle both cases Eq 1(f) and (g) split the two subsequences at kR

and kS , respectively, into the pairs [iR, kR], [iS , kS ] and [kR +1, jR], [kS +1, jS ].
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The only difference is that within the first pair of subsequences, [iR, kR], [iS, kS ],
case (f) assumes an arc iR • kR and case (g) assumes an arc iS • kS. We consider
only the case Eq 1(f), the case (g) is analogous.

Definition 1 (Candidate for case Eq. 1(f)). For case Eq. 1(f), a pair
(kR, kS) is a candidate for (iR, iS), iff iR and kR are complementary and for
all (k′

R, k′
S) �= (kR, kS) with iR < k′

R ≤ kR, iS < k′
S ≤ kS,

1 + N(iR + 1, kR − 1, iS, kS) + N(kR + 1, kR, kS + 1, kS)
> 1 + N(iR + 1, k′

R − 1, k′
S, kS) + N(k′

R + 1, kR, k′
S + 1, kS),

With respect to the recursion case (f) a candidate (kR, kS) implies that the in-
stance with kR = jR and kS = jS (i.e. 1 + N(iR + 1, kR − 1, iS , kS) + N(kR +
1, kR, kS + 1, kS)) is the only maximal instance in the maximization of (f).
Furthermore, it implies that none of the cases (a)-(e) in the computation of
N(iR, kR, iS, kS) yields a larger value than case (f).

Lemma 1. For correctness of the recursion of Eq. 1, in the maximization of
Eq. 1(f) it suffices to consider only the set of candidates given above.

Proof. For any non-candidate (kR, kS), there exists some (k′
R, k′

S) with iR− 1 ≤
k′

R ≤ kR, iS − 1 ≤ k′
S ≤ kS , (k′

R, k′
S) �= (kR, kS), (k′

R, k′
S) �= (iR − 1, iS − 1), and

1+N(iR +1, kR−1, iS, kS) ≤ N(iR, k′
R, iS, k′

S)+N(k′
R +1, kR, k′

S +1, kS). (3)

Note that k′
R = iR − 1 or k′

S = iS − 1 in Eq. 3 occurs when (kR, kS) is not a
candidate due to one of the recursion cases (a)-(e).

Eq. 3 and the triangle inequality imply that for all jR > kR and jS > kS

1 + N(iR + 1, kR − 1, kS , jS) + N(kR + 1, jR, kS + 1, jS)
≤ N(iR, k′

R, iS, k′
S) + N(k′

R + 1, kR, k′
S + 1, kS) + N(kR + 1, jR, kS + 1, jS)

(4)

≤ N(iR, k′
R, iS, k′

S) + N(k′
R + 1, jR, k′

S + 1, jS).

Non-candidates (kR, kS) for (iR, iS) do not need to be considered in the recur-
sions of all N(iR, jR, iS , jS), because there exists a recursion case splitting at
(k′

R, k′
S) that yields the same or better score for N(iR, kR, iS, kS). The equiv-

alent case is considered in the recursion of N(iR, jR, iS , jS) and, due to Eq. 4,
yields a greater or equal score. �

Therefore the recursion case Eq. 1(f) can be updated such that the maximization
runs only over the candidates for this case.

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) candidate for (iR, iS)

(
1 + N(iR + 1, kR − 1, iS, kS)

+ N(kR + 1, jR, kS + 1, jS)

)
(5)

Analogously, we define candidates for case Eq. 1(g). The candidate criterion
for Eq. 1(g) is stricter than for Eq. 1(f), since we require that a candidate for
Eq. 1(g) is better than all cases Eq. 1(a)-(e) and (f).
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Definition 2 (Expected number of candidates). ψ1(n) denotes the ex-
pected number of candidates k ≤ n + i for some i in cases Eq. 1(d),(e), and
Eq. 2(b). ψ2(n) is the expected number of candidates (kR, kS), kR ≤ iR + n,
kS ≤ iS + n, for some (iR, iS) in cases Eq. 1(f) and (g).

Applying the described sparsification to all non-constant cases in recursions Eq. 1
and Eq. 2, yields the following.

Theorem 2. N(1, LR, 1, LS) can be computed in O((ψ1(n)+ψ2(n))n4) expected
time, where n = max(LR, LS).

For a theoretical bound on ψ1(n) and ψ2(n), we assume the polymer-zeta prop-
erty holds for each one of the RNA sequences that are involved in the interaction
(with the other RNA sequence). The polymer-zeta property states that in any
long polymer chain the probability of having arc between two monomers with
distance m converges to b.m−c, where b, c > 0 are some constants. For a polymer
as a self-avoiding random walk on a square lattice, it has been known that c > 1
[35]. The exponent c for the denaturation transition of DNA in both 2D and
3D models is found to be larger than 2 [36]. Since RNA folds similar to other
polymers, one can assume that RNA folding obeys the polymer-zeta property;
i.e. the probability that a structure is formed over the subsequence of length m
converges to b.m−c, where c > 1. Although the property is not proven for RNA
molecules, there is empirical evidence, as shown by Wexler et al. [18], that a
version of polymer-zeta property holds for RNA molecules as well.

Lemma 2. Assume that the two interacting RNAs independently satisfy the
polymer-zeta property with c > 1, i.e. there exist constants b > 0 and c > 1 such
that the probability for any internal base pair i • (i + m) is bounded by b ·m−c -
even when two RNAs interact. Then ψ1(n) = O(1) and ψ2(n) = O(n).

Proof. ψ1(n) = O(1) follows from Wexler et al. [18]. For ψ2(n) = O(n), consider
all candidates (kR, kS) for (iR, iS) and case Eq. 1(f). (Case Eq. 1(g) is sym-
metric.) Note that in Eq. 1(f), iR • kR. For a fixed kS analogously to Wexler
et al. [18], the expected number of kR with iR • kR is b

∑n
i=1 i−c < b

∑∞
i=1 i−c

which converges to a constant for c > 1. Hence for each of the O(n) possible
values of kS , kR takes only a constant number of different values and hence on
average we have O(n) such candidates. �

Space efficient strategy. The space complexity of the algorithm can be re-
duced from O(n4) to O(n3 +ψ(n)n2) as follows. The matrices NR and NS only
require O(n2) space. All cases for the computation of an entry N(iR, jR, iS, jS)
only rely on entries N(i′R, j′R, i′S, j′S) that satisfy one of the following two prop-
erties. (i) j′R ∈ {jR − 1, jR} and j′S ∈ {jS − 1, jS} or (ii) N(i′R, j′R, i′S, j′S) corre-
sponds to some candidate of the respective case, i.e. in case Eq. 1(d) j′R + 1 is
a candidate for i′R − 1 = iR, in case (e) j′S + 1 is a candidate for i′S − 1 = iS ,
in case (f) (j′R + 1, j′S) is a candidate for (i′R − 1, i′S) = (iR, jR), and in case (g)
(j′R, j′S + 1) is a candidate for (i′R, i′S − 1) = (iR, jR). As shown in the following
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Algorithm: Space efficient evaluation of Eq. 1

precompute matrices NR and NS ;
initialize empty lists for candidates ;
for jR = 1..LR do

allocate and init matrix slice N(·, jR, ·, ·) ;
for jS = 1..LS , iR = jR..1, iS = jS ..1 do

compute N(iR, jR, iS, jS) ;
if jR is candidate for iR and Eq. 1(d) then

store NR(iR + 1, jR − 1, iS, jS) in list for iR and Eq. 1(d)
else if jS is candidate for iS and Eq. 1(e) then

store NS(iS + 1, jS − 1) in list for iS and Eq. 1(e)
else if candidate for Eq. 1(f) then

store N(iR + 1, jR − 1, iS, jS) in list for (iR, iS) and Eq. 1(f)
else if candidate for Eq. 1(g) then

store N(iR, jR, iS + 1, jS + 1) in list for (iR, iS) and Eq. 1(g)
end

end
free matrix slice N(·, jR − 1, ·, ·) ;

end

algorithm, all values that satisfy (i) can be stored in a three dimensional matrix
and all values that satisfy (ii) can be stored in candidate lists of length ψ(n) for
each of the O(n2) instances of (iR, iS).

Note that, in the pseudocode, we maintain two three dimensional matrices,
namely N(·, jR, ·, ·) and N(·, jR−1, ·, ·) during the computation of the values for
jR. In practice, we save half of this memory, because any entry N(·, jR− 1, ·, js)
can be freed as soon as all N(·, jR, ·, jS) are computed.

Trace-Back. We describe the recursive trace-back starting from a matrix entry
(iR, jR, iS, jS). Computing the Trace-back involves some recomputation. First,
the entire matrix slice N(·, jR, ·, jS) is recomputed unless it is already in memory.
This requires access to only entries in the same matrix slice and candidates.
Then, the best case in the recursion for N(iR, jR, iS , jS) is identified. In cases
(a)-(c), we recurse to the respective entry. In cases (d)-(g), which split in a first
and second entry, we first recurse to the second one, which is in the same matrix
slice. Then, we free the memory for the current matrix slice and recurse to the
first entry, which will cause recomputation. Since each entry is recomputed at
most once, the trace-back does not affect the asymptotic complexity.

3.2 Sparsification for Minimizing Free Energy

Alkan et al. [1] describe minimization of the free energy of RNA-RNA-interaction
based on a simple stacked-pair energy model assuming there are no pseudoknots,
crossing bonds, and zigzags in the joint structure. Here we discuss an algorithm
for RNA-RNA interaction free energy minimization on the same type of inter-
actions based on the interaction energy model of Chitsaz et al. [2]. Since the
general recursive structure of this algorithm is identical to base pair maximiza-
tion, our sparsification technique can be applied to reduce their time and space



Time and Space Efficient RNA-RNA Interaction Prediction 483

complexity in the same way. The exact recursions of our sparsified free energy
minimization algorithm are given in the appendix. Compared to base pair max-
imization, these recursions distinguish several matrices representing differently
scored substructures. Notably, they are formulated such that all cases that split
an entry (iR, jR, iS, jS) at (kR, kS) are of the same form as cases Eq. 1(f) and (g)
or kR and kS are bounded due to the loop length restriction of the energy model.
Achieving the same space complexity requires one additional consideration. For
assigning correct energy to internal loops formed by interaction arcs, an entry
(iR, jR, iS, jS) can depend on (i′R, j′R, iS , jS), where j′R is neither jR nor jR − 1.
However, jR − j′R is still bounded by the maximal loop length � of the energy
model, i.e. jR − j′R < �. Hence, it suffices to store � matrix slices (·, j′R, ·, ·) for
jR − � < j′R ≤ jR.

Theorem 3. The MFE interaction of two RNAs of maximal length n can be
computed in expected time O((ψ1(n)+ψ2(n))n4) and expected space O((ψ1(n)+
ψ2(n))n2 + n3).

4 Experimental Results

For evaluating the effect of sparsification on RNA-RNA-interaction, we imple-
mented three variants of the total free energy minimization algorithm for RNA-
RNA-interaction prediction: the first variant does not perform any sparsification,
the second employs sparsification for improving the time complexity, and the
third improves both time and space complexity. Below, we first demonstrate that
sparsification leads to a significant reduction of the time and space requirements
in practice. Then we study the relationship between the sequence length and
the number of candidates per each base on a large set of confirmed RNA-RNA
interactions and study the average time/space behavior of the algorithms.

Since sparsification does not affect the calculated free energy values (i.e. opti-
mality of the calculated joint free energy of the interaction), the accuracy of the
predicted interactions is identical to previous approaches for general RNA-RNA-
interactions based on the same scoring scheme [1,2,32]. As a result, the reader is
referred to Salari et al. [32] for an assessment of sensitivity, positive prediction
value, and F-measure of these methods (which will be identical to that of the
method presented here) on the data set of Kato et al. [37] which involves five
distinct RNA-RNA interactions.

4.1 Time and Space Requirements of Total Free Energy
Minimization

We applied the three variants of the MFE algorithm to five distinct RNA-RNA
interactions reported by Kato et al. [37], which were used by Salari et al. [32] to
assess the accuracy of available RNA-RNA interaction methods with no sparsifi-
cation. Note that the available methods are not capable of handling interactions
involving longer RNAs.
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(a) Run-time improvement (b) Space improvement (c) Average No. candi-
dates

Fig. 2. Performance of three variants of the RNA-RNA interaction prediction algorithm
via total free energy minimization, on a set of interactions compiled by Kato et al. [37].
All values for time and space usage are normalized by the usage of the non-sparsified
algorithm, for which absolute time/space usage figures are also given.

Fig. 2 shows (in absolute terms) time and space usage of the algorithms (with
or without sparsification) on a Sun Fire X4600 server with 2.6 GHz processor
speed. The results show that sparsification significantly improves the perfor-
mance of the algorithms. In fact, Fig. 2 demonstrates that as the RNA sequences
in question get longer, the relative performance of the sparsified algorithms (with
respect to the non-sparsified ones) improve. Although the pure time optimiza-
tion causes a small space overhead due to maintaining the candidate lists, the
time and space optimization not only improve the space utilization, as expected,
but also results in further reduction in running time.

4.2 Number of Candidates

The time and space complexity of the (time and space) sparsified RNA-RNA-
interaction prediction algorithm is linearly proportional to the (average) num-
ber of interaction partner candidates per base. Fig. 2(c) shows how the average
number of candidates (kR, kS) change as the lengths of the two RNA sequences
increase. While the non-sparsified algorithms need to consider a quadratic num-
ber of split points (kR, kS), the number of candidates (and hence the number of
split points) is much lower for the sparsified algorithms.

In order to observe the effects of sparsification on a much larger data set
involving longer RNA sequences, we employ the algorithm for RNA-RNA inter-
action prediction which maximizes the number of (internal and external) base
pairs. The data set we use for this purpose includes 43 pairs of ncRNAs and
their known target mRNAs. This set not only includes (i) the data set of Kato
et al. [37], but also (ii) a recently compiled test set of Busch et al. [30] con-
sisting of 18 sRNA-target pairs, as well as (iii) all ncRNA-target interactions of
E.coli from NPinter [38]. Among these interactions 32 are from E.coli, 8 are from
Salmonella typhimurium and 3 are from HIV. Since the majority of the known
ncRNAs bind to their target mRNAs in close proximity of the start codon, we
extracted - as the target region - a subsequence comprising 300nt upstream
and 50nt downstream of the first base of the start codon of each mRNA from
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Fig. 3. Average number of candidates as a function of subsequence lengths

GenBank [39]. As a result, the maximum sequence length is 227nt for ncRNAs
and 350nt for target mRNAs.

The experimental results on this larger data set confirm that the sparsification
technique works for a single RNA folding via base pair maximization: the average
number of candidates for those cases is low (roughly 5) as previously reported
by Wexler et al. [18].

The recursion cases Eq. 1(f) and (g) split both RNAs simultaneously at points
(kR, kS). Therefore they dominate the running time of the algorithm. For these
cases, we counted the candidates that were considered during the computation
of (the maximum number of base pairs of) each subsequence pair. The average
number of candidates for different subsequence lengths, both for ncRNAs and
mRNAs are depicted in Fig. 3 - specific cases that correspond to Eq. 1(f) as well
as Eq. 1(g) are provided separately. Note that the average number of candidates
are generally low regardless of the sequence lengths: among all possible combina-
tions of split points (kR, kS) (respectively in ncRNA and mRNA), even for the
longest subsequences (e.g. ncRNA length lS = 252 and mRNA length lR = 202),
no more than 40 pairs (of the possible 252 x 202 = 50, 904 combinations for this
example) are actual candidates on the average.2

5 Conclusion

In this paper, we consider the problem of predicting the joint structure of two
interacting RNAs via minimizing their total free energy as a tool for detect-
ing/verifying mRNA targets of regulatory ncRNAs. Earlier approaches to the
problem either use a restricted interaction model, not covering many known
joint structures, or require significant computational resources for many practi-
cal instances. Here we show that sparsification, a technique that has been applied

2 Note that certain combinations of lR and lS there is no value for the number of
candidates due to the fact that there is no data for lR > 111 and lS > 252 as well
as lR > 202 and lS > 153.
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to single RNA folding, can be applied to the problem of RNA-RNA interaction
prediction, to significantly improve both the running time and the space utiliza-
tion of these approaches. In fact, by employing a version of the polymer-zeta
property for interacting RNA-structures (a property generally assumed to be
held by many polymers, and has been empirically shown for single RNAs), we
show how to reduce the running time and space of RNA-RNA interaction predic-
tion, from O(n6) time and O(n4) space to O(n4ψ(n)) time and O(n2ψ(n) + n3)
space, for a function ψ(n) = O(n) on average. These theoretical predictions are
verified by our experiments; as a result it is now possible to employ computa-
tional prediction of RNA-RNA interactions to a much wider range of potential
regulatory ncRNAs and their targets.

Acknowledgments

R. Salari was supported by SFU-CTEF funded Bioinformatics for Combat-
ing Infectious Diseases Project co-lead by Sahinalp. The research of M. Möhl
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Appendix

Total number of fragments for different ncRNA and target subsequence lengths.
The plot of Fig. 4 shows the total number of fragments for different ncRNA and
target subsequence lengths. The white region on top right of the plot in Fig. 4
(lR > 111 ∧ lS > 252 and lR > 202 ∧ lS > 153) denotes the area that there are
no fragments in our data set.

Sparsification of Energy Minimization RNA-RNA-Interaction. Here, we present
our sparsified algorithm for RNA-RNA interaction free energy minimization
based on the interaction energy model of Chitsaz et al. [2]. The minimum free
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energy (mfe) joint structure M(iR, jR, iS , jS) derived from one of the seven possi-
ble cases shown in Fig. 5(b). The first two cases are when iR or iS is an unpaired
base. In third case iR interacts with iS , this bond starts a special type of joint
structure denoted by Ib and it is explained in Fig. 5(c). The forth and fifth cases
are when iR or iS is forming intramolecular base pairs. In other possible cases ei-
ther iR•kR is an interaction arc subsuming [iS , kS ] or iS •kS is an interaction arc
subsuming [iR, kR]. The sparsified DP algorithm for free energy minimization,
M(iR, jR, iS , jS), is defined as follows:

M(iR, jR, iS, jS)=max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(iR + 1, jR, iS , jS) (a)
M(iR, jR, iS + 1, jS) (b)
M Ib(iR, jR, iS , j) (c)

max
iR<k≤jR

k cand. for (iR)

(
MR.b(iR, k)

+ M(k + 1, jR, iS , jS)

)
(d)

max
iS≤k<jS

k cand. for (iS)

(
MS.b(iS , k)

+ M(iR, jR, k + 1, jS)

)
(e)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS ) cand. for (iR, iS)

(
M Is(iR, kR, iS , kS)

+ M(kR + 1, jR, kS + 1, jS)

)
(f)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS ) cand. for (iR, iS)

(
M Is′

(iR, kR, iS, kS)
+ M(kR + 1, jR, kS + 1, jS)

)
(g)

(6)

MX(i, j)=max

⎧⎪⎨⎪⎩
MX(i + 1, j) (a)

max
i<k≤j

(k) cand. for (i)

(
MX.b(i, k)

+ MX(k + 1, j)

)
(b)

(7)

M Ib(iR, jR, iS, jS) (Fig. 5(c)) is the mfe for the joint structure of [iR, jR] and
[iS , jS ] assuming iR ·jS is an interaction bond, and M Is(iR, jR, iS, jS) (Fig. 5(d))
is the mfe for the joint structure of [iR, jR] and [iS , jS ] assuming iR ◦ jR is an
interaction arc subsuming [iS , jS ]. M Is′

is symmetric to M Is where iS ◦ jS is an
interaction arc subsuming [iR, jR]. In QIsl, [iS , jS ] contains at least interaction
arc and in QIsk, [iS , jS ] contains at least one direct bond. The other auxiliary
matrices are QIll, QIlk, QIkl, and QIkk (Fig. 5(g)). QIll includes all cases where
both [iR, jR] and [iS , jS ] have at least one interaction arc. QIlk (symmetric to
Ikl) includes all cases where [iR, jR] has at least one interaction arc and [iS , jS ]
has at least one direct bond. QIkk includes all cases where both [iR, jR] and
[iS , jS ] have at least one direct bond.
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Fig. 5. a) Recursion cases for MFE single structure. b) Recursion cases for MFE joint
structure. c) Recursion cases for MFE joint structure while iR ◦ jS is a bond. Here
iR < kR ≤ min iR + �, jR and iS < kS ≤ min iS + �, jS w. � is the maximal loop length.
d) In recursive quantity Is, iR•jR is an interaction arc which subsumes interval [iS , jS ].
The subsumed area contains at least one direct bond or at least one interaction arcs.
e) Recursion cases for Isl or Isk which extract the interaction arc iR • jR. f) In Ikk,
Ikl, Ilk, or Ill, if the terminal point iR (or jS) is not an end point of interaction
bond or arc, some recursions should be applied to extract the internal structure. g)
Recursion for joint structures that has direct interactions on both subsequences (Ikk),
direct interaction on one subsequence and interaction arc on the other (Ikl and Ilk
which are symmetric), and interaction arcs on both subsequences (Ill).
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Abstract. The Human Leukocyte Antigen (HLA) genes play a major
role in adaptive immune response and are used to differentiate self anti-
gens from non self ones. HLA genes are hyper variable with nearly every
locus harboring over a dozen alleles. This variation plays an important
role in susceptibility to multiple autoimmune diseases and needs to be
matched on for organ transplantation. Unfortunately, HLA typing by
serological methods is time consuming and expensive compared to high
throughput Single Nucleotide Polymorphism (SNP) data. We present a
new computational method to infer per-locus HLA types using shared
segments Identical By Descent (IBD), inferred from SNP genotype data.
IBD information is modeled as graph where shared haplotypes are ex-
plored among clusters of individuals with known and unknown HLA
types to identify the latter. We analyze performance of the method in a
previously typed subset of the HapMap population, achieving accuracy
of 96% in HLA-A, 94% in HLA-B, 95% in HLA-C, 77% in HLA-DR1,
93% in HLA-DQA1 and 90% in HLA-DQB1 genes. We compare our
method to a tag SNP based approach and demonstrate higher sensitiv-
ity and specificity. Our method demonstrates the power of using shared
haplotype segments for large-scale imputation at the HLA locus.

1 Introduction

The Human Leukocyte Antigen (HLA) region, located on chromosome 6p21,
encodes genes for the Major Histocompatibility Complex (MHC) in humans.
MHC are cell surface proteins which play an important role in adaptive immune
response. These proteins form a complex with the antigenic peptides which is
presented on the cell surface. This complex is recognized by the T-cell receptors
to trigger the adaptive immune response by inducing the death of the cell and/or
production of antibodies.

The HLA genes are classified into two main classes. Class I genes present
peptides from within the cell and are recognized by the CD8+/cytotoxic T cells
which kill the cells displaying the antigens. The Class I MHC genes are HLA-A,
HLA-B, HLA-C. Class II genes present peptides from the intra cellular vac-
uoles and are recognized by the CD4+/helper T cells which trigger antibody
production. The Class II genes are HLA-DP, HLA-DM, HLA-DOA, HLA-DOB,
HLA-DQ and HLA-DR. HLA genes are also highly polymorphic. For example,
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HLA-A has 893 alleles, HLA-DRB has 814 alleles [13]. The large number of
alleles enables the immune system to respond to a wide range of pathogens.

The HLA nomenclature [10] is illustrated in Fig. 1. The convention is to use a
four-digit code to distinguish alleles which differ in their protein products. The
first two digits represent the allele family, determined by serological typing. The
third and fourth digits represent amino acid differences. The remaining digits
represent other non-coding differences. The required resolution depends on the
immunological application under consideration.

Fig. 1. HLA Nomenclature

HLA genes have been implicated in a number of autoimmune diseases such as
Crohn’s disease [1,2] and multiple sclerosis [8]. Physically, different gene variants
have different abilities to present antigens and therefore incur different sensi-
tivities to their presence. Matching HLA types are therefore required for organ
transplantation to succeed. However, experimental methods of HLA typing are
time consuming and expensive [7]. Indirect typing using tag SNPs [3] is con-
founded by the unusual patterns of recombination and selection that require
locus-specific methods [7]. Moreover, the region also contains long stretches of
high Linkage Disequilibrium(LD), often spanning several megabases and HLA
loci [11], curbing the performance of standard models of genetic variation.

Leslie et al.[7] have developed a method for HLA type inference based on
allele combinations or haplotypes. A Hidden Markov Model is used to calculate
the probability of observing a specific HLA allele by modeling the chromosome
as an imperfect mosaic of the ancestral haplotypes carrying the same allele. The
described model assumes that the parental origin (phase) of each allele haplotype
is known for SNP data and uses a training set with known, phased HLA types.

With the availability of large and comprehensively genotyped cohorts, tools
have been developed to harness many samples for detecting Identity By Descent
(IBD) between pairs of individuals [4,12], that carry copies of the same local
haplotype from a recent common ancestor. Such analysis naturally applies to
the haplotypic structure of the HLA, with the special interest in this region
motivating increased attention. This attention is required because of the special
haplotype structure at the HLA [5].

We have recently developed a method that accurately detects all long IBD
shared regions from genotype marker data [4]. The method uses a dictionary-
based sliding window approach to identify long, nearly-identical regions between
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pairs of individuals in linear time. Here, we present a graph-based method that
uses segments shared between HLA-typed and un-typed individuals to infer their
putative HLA types. We provide theoretic description of the model and offer
software implementation, a unique contribution to the geneticist user.

The paper is organized as follows: We define the framework and the problem
in Sec. 2. Section 3 describes our algorithms for HLA imputation. The data
used for analysis is explained in Sec. 4. The results and comparison to tag SNP
method are presented in Sec. 5, followed by a summary discussion in Sec. 6.

2 Preliminaries

We define a model for inferring HLA types at individual loci for unphased data.
We study one locus at a time and throughout the methods sections consider only
the current locus. The results repeat such analysis for each locus separately along
the HLA region. An individual v is associated with a pair of alleles (α, β) at each
HLA locus, representing the HLA types. We denote this by v(α, β). An individual
with α = β is homozygous. The input consists of a set of individuals with
known HLA types and another set with unknown HLA types. The individuals in
these two sets are referred to as resolved and unresolved individuals, respectively.
Unphased IBD segments that are shared pair-wise across resolved and unresolved
individuals are inferred using GERMLINE [4] and serve as a starting point for
our analysis.

Formally, IBD is represented as an undirected graph called the IBD-Graph,
GIBD. The nodes V of GIBD map to the individuals with genotypic data (resolved
and unresolved) and the edges E represent the IBD shared segments. Ideally we
would have GIBD as input for HLA imputation, but in practice we may only
assume the input to be a noisy version G0

IBD of the true GIBD. G0
IBD has the

same nodes, as GIBD along with many of the same edges (true positives), but it
also contains false positives (edges between nodes not related by IBD) and false
negatives (missing edges between nodes related by IBD).

An edge in G0
IBD between two nodes v(α, β) and w(γ, δ) is suggestive of the

nodes sharing one or both the HLA types i.e., at least one of (α = γ), (β = γ),
(α = δ) or (β = δ) is true. The edges which satisfy these criteria are termed
consistent. Note that the converse does not hold: if two nodes share a common
HLA type, it does not imply they are IBD because the same HLA allele can
have multiple SNP-haplotype backgrounds. The HLA imputation problem is
intuitively defined as follows:

Input: G0
IBD(V, E0) and a set of assigned type pairs (α(r), β(r)) for all nodes r in

a resolved subset R ⊂ V .
Output: Assignment of type pairs (α(u), β(u)) for all unresolved nodes u ∈ V \R.
Objective: Maximize the correctly assigned nodes.

As the objective is not defined in terms of the available data, we consider a
surrogate optimization criterion. We seek an assignment which maximizes the
consistent edges.
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We propose an iterative approach for HLA imputation. While G0
IBD(V, E0)

is used as the input for the first iteration, the IBD-Graph is adjusted in each
iteration to maintain the consistency of edges. Formally, denote the IBD-Graph
in the ith iteration as Gi

IBD. We detect false positives and false negatives which
are removed from and added to the edge set respectively to form Ei, the edge
setin the ith iteration. After adjusting the graph, possible HLA types and HLA
type-pairs are inferred for unresolved nodes. Possible HLA types represent alleles
of one of the chromosomes satisfying the constraints defined by Gi

IBD and HLA
type-pairs represent alleles of both the chromosomes of the unresolved node.

Gi
IBD is examined in triplets of nodes, T (r1, r2, u), where r1, r2 are resolved

and u is unresolved and at least two of the edges (r1, r2), (r1, u) and (r2, u) are
in Ei. The possible HLA types and type-pairs from all triplets containing u are
combined based on a likelihood function to assign the most likely HLA types to
the unresolved node. We expect a number of unresolved nodes to be resolved
within each iteration. This information is then used in subsequent iterations to
infer HLA types for the remaining ambiguous or unresolved nodes (Fig. 2)

2.1 Sources of Information

The sources of information for defining possible HLA types are triplets generated,
matches with homozygote nodes and previously detected false negatives. Triplets
and homozygote matches are deduced from Gi

IBD.
We define three possible configurations for a triplet based on the sub-graph

of Gi
IBD induced by (r1, r2, u). If this sub-graph is a clique, we call it a triangle

triplet(Fig. 3a). Alternatively, it is a path along the three nodes and we denote
this as an end triplet(Fig. 3b) or a middle triplet(Fig. 3c) depending on the
position of u along the path. Possible HLA types are deduced from each triplet
as described below.

Triangle triplets. (Fig. 3a) are fully connected by definition. Since only consis-
tent edges are considered for any triangle triplet T (r1, r2, u), r1 and r2 share one
or both HLA types. We consider these cases in turn. (1) One shared HLA-type:
We denote the HLA types of the resolved nodes by r1(ρ, α) and r2(ρ, β) with
α �= β. In this case the following assignments to u maintain the consistency of
the edges: the shared HLA type: ρ or the HLA type-pair formed by (α, β) (Fig.
4A(I)). (2) Both HLA types shared: Here, we denote the HLA types by r1(ρ, τ)
and r2(ρ, τ). Thus the shared types, ρ and τ , are possible HLA types for u (Fig.
4A(II)).

End triplets. (Fig. 3b) are processed as follows: For a triplet T (r1, r2, u) assume
without loss of generality that (r1, u) ∈ Ei and (r2, u) /∈ Ei. We denote the HLA
types of the resolved nodes by r1(ρ, α) and r2(ρ, β). By definition, if α �= β,
then assigning the HLA type of r1 not shared with r2 i.e.; α, to u maintains
the consistency of the edges (Fig. 4B(I)). Otherwise if α = β, the edge (r1, r2)
is detected as a false negative and is added to Ei. The triplet is treated as a
triangle triplet in the subsequent iterations. For example, the triplet in (Fig.
4B(II)) defines ρ and α as possible HLA types.
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Fig. 2. An iterative-triangulation approach for HLA type inference from
unphased data. The method initializes the resolved and unresolved nodes from the
training and test sets, respectively. The edges among these individuals are used to gen-
erate triplets. These triplets are used to draw up a set of possible HLA type resolutions
for each node. The HLA types with highest likelihood are chosen as resolution for the
nodes where applicable and the process is repeated for the remaining unresolved nodes.

Fig. 3. Types of triplets (a) Triangle triplet: Pair-wise matches between all indi-
viduals. (b) End triplet: Unresolved individual has match with only of the resolved
individuals. (c). Middle triplet. Resolved individuals do not have a match.

Middle triplets. (Fig. 3c) do not have an edge between the resolved nodes. For
any middle triplet T (r1, r2, u), r1 and r2 are not known to share any HLA types
since (r1, r2) /∈ Ei. Denoting types by r1(α, β) and r2(γ, δ), all HLA type pairs
(ρ, τ) where ρ ∈ {α, β} and τ ∈ {γ, δ} are assigned as possible HLA types of u.
Each type-pair maintains the consistency of the edges. The triplet in Fig. 4c(I)
defines (α, γ), (α, δ), (β, γ) and (β, δ) as possible HLA type-pairs.
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If any of α = γ, α = δ, β = γ or β = δ is true, then it is an indication of a
false negative. Again, we add the edge (r1, r2) to Ei and the triplet is treated
as a triangle triplet. For example, the triplet in (Fig. 4C(II)) defines α and β
as possible HLA types and triplet in (Fig. 4C(III)) defines possible HLA type α
and possible HLA type-pair (β, δ).

Lastly, unresolved nodes maybe connected to resolved nodes that are ho-
mozygous in HLA alleles. If (u, r) ∈ Ei where the HLA types of r(α, α), the
triplet containing (u, r) ∈ Ei defines α as a possible type for u.

3 Algorithms

3.1 Triplet Generation

The edges of Gi
IBD are represented using the adjacency list representation. More

precisely, for efficiency reasons, any given individual stores two adjacency lists,
for resolved and unresolved neighbors, respectively.

The algorithm for triplet generation is formally described in Fig. 5. Briefly,
triplets are generated by traversing the graph for all paths of length 3 containing
only one unresolved individual. Each traversal starts from a resolved individual
r, and progress in two ways based on the status of the adjacent individual, a:

1. If a is resolved, traverse through all the unresolved adjacent individuals of
a. This will generate candidate end triplets.

2. If a is unresolved, traverse through all the resolved adjacent individuals of
a to generate candidate middle triplets and traverse through all resolved
adjacent individuals of r to generate candidate end triplets.

If a trio of individuals generates both end and middle candidate triplets, a trian-
gle triplet of the trio is added. Other candidate end or middle triplets are indeed
end or middle triplets respectively. Duplicate generated triplets are identified
and removed. The algorithm then proceeds to resolve individuals.

3.2 Type Resolution

Define S = {t, e, m, f, h} as the categories of information, representing triangle
triplets, end triplets, middle triplets, false negatives and homozygous matches
respectively.

Type resolution assigns the most likely HLA types to an unresolved individual.
Define Cs(α) as the number of instances of category s defining α as a type for
the unresolved node, u under examination.

The quintuple (Ct(α), Ct(α), Cm(α), Cf (α), Ch(α)) is the sufficient statistic
for calculating the likelihood of α being assigned as follows: Define Lt(s) to be
the likelihood of triplet of category s being correct and Lf (s) as likelihood of
triplet of category s being incorrect. Define Cu

s to be the total number of triplets
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Fig. 4. Possible type from triplets. (A) Possible type generation for triangle
triplets. (I) One shared type: Shared type or the combination of non shared types.
(II) Two shared types. (B) Possible type generation for end triplets. (I) One shared
type: The non shared type. (II) False negative: Two shared types. (C) Possible type
generation for middle triplets. (I) Consistent edges: Combinations of the types of re-
solved individuals. (II) False negative with two shared types. (III) False negative with
one shared type: Shared type and the combination of non shared types

of category s for unresolved individual u. The likelihood of α being the resolution
for individual u is calculated as

Likelihood(α|u, Counts) =
∏
s∈S

Lt(s)Cs(α)
∏
s∈S

Lf(s)Cu
s −Cs(α) (1)

For HLA type-pairs (α, β), define Es(α, β) to be the to be the effective count
triplets of category s defining (α, β) as a possible HLA type-pair. The likelihood
calculation of HLA type-pair uses the same formula but after calculating the
effective counts given by

Es(α, β) = Cs(α) + Cs(β)− Cs(α, β) (2)
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GENERATE-TRIPLET (Gi
IBD, Ri−1):

Gi
IBD: IBD-Graph

Ri−1: Set of individuals resolved in iteration (i-1)

define sets Tt, Te, Tm: Set of triangle, end

and middle triplets respectively

for r in Ri−1 do

for v s.t (r, v) ∈ Ei

if v.RESOLV ED = TRUE
then

T ′
e = T ′

e ∪ {(r, v, u)|(v, u) ∈ Gi
IBD, u.RESOLV ED = FALSE}

else

T ′
m = T ′

m ∪ {(r, v, w)|(v, w) ∈ Gi
IBD, w.RESOLV ED = TRUE}

T ′
e = T ′

e ∪ {(r, v, w)|(v, w) ∈ Gi
IBD, w.RESOLV ED = FALSE}

Tt = T ′
e ∩ T ′

m

Te = T ′
e \ Tt

Tm = T ′
m \ Tt

Fig. 5. Algorithm for triplet generation

where Cs(α, β) represents the triplets of category s, defining both α and β as
possible types.

The score for HLA type-pair (α, β) and individual u is calculated as

Likelihood((α, β)|u, Counts) =
∏
s∈S

Lt(s)Es(α,β)
∏
s∈S

Lf (s)Cu
s −Es(α,β) (3)

Define p+, q+, p− and q− to be the likelihoods of true positive, false positive, true
negative and false negatives edges respectively. The likelihoods for the triplets
being correct or incorrect are calculated as in Table 1.

Table 1. Likelihood terms for correct and incorrect triplets

Category Likelihood of correct triplet Likelihood of incorrect triplet

Triangle triplet (p+)3 (q+)3

End triplet, Middle triplet (p+)2 × p− (q+)2 × q−

False negative (p+)2 × q− (q+)2 × p−

Triangle triplet p+ q+

We estimate the following rates from GERMLINE p+ : 0.9, p− : 0.85, q+ :
0.1, q− : 0.15 [4].

The algorithm for type resolution is formally described in Fig. 6. The algo-
rithm greedily resolves individuals by the likelihood calculation. Our implemen-
tation maintains a hash-map of all possible HLA types and type-pairs for each
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individual. The value of the hash-map is the quintuple, with the type or the
type-pair being the key.

The most likely HLA type, η is first chosen. If the individual is determined to
be homozygous genotypically, η is assigned as the resolution for the individual.
If η satisfies all the edges with the resolved individuals, the individual is consid-
ered potentially homozygous in HLA types. In such cases, the individual is left
unresolved and retained for processing in the further iterations.

HLA type-pairs are formed by combining each possible HLA type with η. The
two most likely type- pairs are determined and the HLA type-pair with highest
likelihood is assigned as resolution, if the difference between their likelihoods is
greater than zero.

At the end of each iteration, the adjacency lists of individuals containing newly
resolved individuals are updated to move the newly resolved individuals to the
head of the list. Thus the entire adjacency matrix needs to be constructed only
once at the start of the algorithm. All the steps are repeated until convergence
where no more resolutions are possible.

3.3 Complexity and Implementation

Triplet generation explores all paths of length three containing only one unre-
solved node. Thus the time complexity for triplet generation can be estimated as
O(|R|2|V \R|) where R is the set of resolved nodes and V is the set of all nodes
in the graph.

Type resolution is linearly dependent on the number of triplets generated
since each triplet is examined only once to identify the possible HLA types and
type-pairs. Thus O(|R|2|V \R|) is the bound on complexity.

The program was implemented in Java 1.5 and testing was done on a Linux
node of 2×2.4 GHz Xeon CPUs with 2 GB of memory. The average runtimes
per individual for cross validation of HLA-A, HLA-B, HLA-C, HLA-DRB1,
HLADQA1, HLADQB1 genes were 15, 4, 3, 0.7, 0.7, 1.3 seconds respectively
analyzing 5475, 3328, 3387, 2899, 2545, 2426 IBD shared segments. The software
has been made available for download at http:/www1.cs.columbia.edu/∼itsik/
hla ibd/index.html.

4 Data

The data used for analysis has been described in [3]. Briefly, The data includes 90
individuals (30 parent-offspring trios) of the Yoruba people from Ibadan, Nigeria
(YRI); 182 Utah residents (29 extended families of European ancestry, from the
Centre dEtude du Polymorphisme 6 is available. HLA typing was carried out
for class I (HLA-A, HLA-B, HLA-C) and class II (HLA- DRB1, HLA-DQA1,
HLA-DQB1) genes using the PCR-SSOP protocols. The CEU and YRI popu-
lations were used for analysis of the model and all the data was assumed to
be unphased for Centre d’Etude du Polymorphisme Humain (CEPH) collection
(CEU); 45 unrelated Han Chinese from Beijing, China (CHB); and 44 unrelated
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RESOLUTION (U)

U: Unresolved individuals

for u in U do

determine η: highest scoring possible type

if u is homozygous

then

u.TY PES := (η, η)
u.RESOLV ED := TRUE

else

if η satisfies all the matches with resolved r : (u , r) ∈ Gi
IBD

then

u cannot be completely resolved in the current iteration

u.RESOLV ED := FALSE
this is an indication of possible homozygous HLA types

else

for each possible type α do

if τ �= η
then

define type-pair (α, η)
False negative detection based on η (Fig.7)

Calculate LIKELIHOOD((α, η))

find (α, τ ) and (β, τ ), the two most likely type-pairs

if LIKELIHOOD((α, η)) �= LIKELIHOOD((β, η))
then

u.TY PES := (α, τ )
u.RESOLV ED := TRUE

else

u.RESOLV ED := FALSE

Fig. 6. Algorithm for type resolution

Japanese from Tokyo, Japan(JPT), 6338 variants located in a 7.5Mb region on
chromosome 6 is available. HLA typing was carried out for class I (HLA-A, HLA-
B, HLA-C) and class II (HLA-DRB1, HLA-DQA1, HLA-DQB1) genes using the
PCR-SSOP protocols. The CEU and YRI populations were used for analysis of
the model and all the data was assumed to be unphased for analysis.

5 Results

We establish the accuracy of our method on the CEU HapMap data. Intuitively,
the effectiveness of the model is dependent on the presence of IBD among the
individuals under consideration. Leave one out cross-validation offers a good ap-
proach to test the model since it utilizes all the available IBD shared segment
information for the individual being tested. An individual being tested is instan-
tiated as unresolved and all the other individuals form the resolved individuals
or training set for the model. The individual can either be inferred as resolved,
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Fig. 7. Illustration of end triplets detecting false negatives.(I) The generated
end triplet. (II) The same end triplet becomes a false negative if β is chosen as η.

if types on both chromosomes are inferred; as ambiguous, if two types cannot be
inferred or more than two types are equally likely; as potentially homozygous, if
only a single type is present and inferred; or as unresolved, if no inference can be
made. The model is not dependent on learning any parameters from the training
data and therefore leave one out cross-validation does not bias the results.

Each locus is analyzed separately and the accuracy and coverage are defined
with respect to the number of chromosomes analyzed. Formally, let u(ρ, τ) be the
individual being tested. If u is inferred as resolved with HLA types (α, β), both
the chromosomes are accounted as called and both are correct if (α, β) = (ρ, τ).
Only one of the chromosomes is considered correct if α ∈ (ρ, τ) and β /∈ (ρ, τ) or
vice-versa. If u is inferred as ambiguous with HLA type α, one chromosomes is
called and is correct if α = ρ or α = τ . If u is inferred as potentially homozygous
with type α, both chromosomes are called; both are correct is α = ρ = τ , one is
correct if ρ �= τ and, α = ρ or α = τ .

The coverage and accuracy are measures as follows

Coverage =
TotalCalled

TotalAnalyzed
(4)

Accuracy =
TotalCorrect

T otalCalled
(5)

Table 2 lists the results of leave one out cross-validation tests on the CEU
HapMap population. The analysis examined shared segments which span 100kb
upstream and downstream of the gene under consideration. Results are shown
for both four-digit and two-digit resolutions. HLA types occurring only once
in the population and types which are not resolved to the required extent are
excluded from analysis. The model predicts results with high accuracy in the
HLA-A, HLA-B, HLA-C, HLA-DQA1 and HLA-DQB1 alleles at four-digit res-
olution. The accuracy for class I genes remains the approximately the same at
both the resolutions, but using two-digit resolution leads to higher accuracy in
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Table 2. Results of leave one out cross-validation for CEU population by considering
IBD shared segments which span 100kb upstream and downstream of the gene

Four-digit Two-digit

Gene Analyzed Accuracy Analyzed Accuracy

HLAA 314 96.5 322 96.4
HLAB 281 94.3 311 93.4
HLAC 328 94.2 316 94.9
HLADRB1 308 77.6 294 91.3
HLADQA1 350 92.6 330 94.3
HLADQB1 350 90.3 323 92.3

the class II genes. This can be attributed to a reduction in the false positive
matches at lower resolution.

The main sources of error are false positives and non-availability/non-detection
of IBD between individuals. The distribution of the false positives at four-digit
resolution for the different genes is illustrated in Fig. 8. For each individual, the
false positive percentage in a region is the percentage of matches of the resolved
adjacent nodes which are false positive. The HLA-DRB1 region has a higher num-
ber of individuals with large false positive percentages which is reflected in the
low accuracy prediction. Fitting the parameters of IBD detection, especially the
specific span used will improve results, but we chose to present benchmarks with
vanilla parameters across all genes.

We compare our results to the results from phasing the data. Phased version
of the CEU data based on trios is available from [3]. We used GERMLINE
[4] to obtain pairwise IBD segments between the haplotypes. Leave one out
crossvalidation is again used for testing. If M is the set of matches determined
by GERMLINE, the likelihood of allele α being the resolution for chromosome
c is calculated as below

Likelihood(α|c, M) =
H(α)∑

β∈A H(β)
(6)

where H(α) =
∑

(y,c)∈M δ(βy, α) where βy is the HLA type of chromosome y
and δ function given by

δ(α, β) =
{

1 if α = β
0 if α �= β

(7)

The HLA type with highest likelihood as assigned as resolution. If two or more
HLA types are tied for the highest likelihood, the chromosomes is left unresolved
and considered ambigious.

We also used fastPHASE [14] to perform phasing without using the trio infor-
mation and again use GERMLINE to determine set of matches using haplotypic
extensions of matches rather than genotypic extensions. The triplet based al-
gorithm is used to determine the resolutions in a leave one out crossvalidation
setting.
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Fig. 8. False positive rate distribution. X-axis represents the false positive per-
centage and Y-axis represents the fraction of individuals. Each point on the graph
represents the fraction of individuals with false positive percentage less than the cor-
responding reference value.

The performance is assessed by means of the sensitivity and specificity dif-
ferences. If A is the set of alleles under examination and P+

α , P−
α , N+

α and N−
α

are the positive, false positive, true negative and false negatives for allele α
respectively, sensitivity and specificity are calculated as below.

Sensitivity =
∑

α∈A P+
α∑

α∈A(P+
α + N−

α )
(8)

Specificity =
∑

α∈A N+
α∑

α∈A(N+
α + P−

α )
(9)

The comparison plot is shown in Fig. 9. All the methods show very high speci-
ficity (> 0.95 in all the genes). The performance of our method compares well
with trio based phased data results in the class I genes whereas having phased
data has significant benefits of the class II genes. This could be possibly because
of a reduction in the false positive rates in IBD matches when using trio based
phasing. This demonstrates that our method can be applied to unphased data
with accuracy comparable to phased data when the false positive rates in the
IBD segment determination are low. Phasing computationally without using the
trio information performs worse in both class I and class II genes demonstrating
the effectiveness of using genotypic extension when trio based phased data is not
available.
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Fig. 9. Sensitivity of the different approaches

6 Discussion

We have developed a method for inferring HLA types using genotypic data by
examining IBD shared segments with individuals of known HLA types. HLA
types are predicted with high accuracy by using the CEU HapMap data. HLA
genes play a critical role in adaptive immune response and autoimmune diseases.
Our model can be used as a starting point in the analysis of similar diseases.
The further applicability of SNP based methods of HLA type inference has been
described elsewhere [7].

Although advances have been made in phasing, inferring haplotype structure
in small cohorts or unrelated individuals remains a challenge [9]. Our method
analyses genotypic data without consulting the haplotype phases. This broadens
the applicability of the method to data where the phase is unknown.
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Abstract. Recent genome sequencing studies have shown that the so-
matic mutations that drive cancer development are distributed across a
large number of genes. This mutational heterogeneity complicates efforts
to distinguish functional mutations from sporadic, passenger mutations.
Since cancer mutations are hypothesized to target a relatively small num-
ber of cellular signaling and regulatory pathways, a common approach is
to assess whether known pathways are enriched for mutated genes. How-
ever, restricting attention to known pathways will not reveal novel cancer
genes or pathways. An alterative strategy is to examine mutated genes
in the context of genome-scale interaction networks that include both
well characterized pathways and additional gene interactions measured
through various approaches. We introduce a computational framework
for de novo identification of subnetworks in a large gene interaction net-
work that are mutated in a significant number of patients. This frame-
work includes two major features. First, we introduce a diffusion process
on the interaction network to define a local neighborhood of “influence”
for each mutated gene in the network. Second, we derive a two-stage mul-
tiple hypothesis test to bound the false discovery rate (FDR) associated
with the identified subnetworks. We test these algorithms on a large hu-
man protein-protein interaction network using mutation data from two
recent studies: glioblastoma samples from The Cancer Genome Atlas and
lung adenocarcinoma samples from the Tumor Sequencing Project. We
successfully recover pathways that are known to be important in these
cancers, such as the p53 pathway. We also identify additional pathways,
such as the Notch signaling pathway, that have been implicated in other
cancers but not previously reported as mutated in these samples. Our ap-
proach is the first, to our knowledge, to demonstrate a computationally
efficient strategy for de novo identification of statistically significant mu-
tated subnetworks. We anticipate that our approach will find increasing
use as cancer genome studies increase in size and scope.
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1 Introduction

Cancer is a disease that is largely driven by somatic mutations that accumulate
during the lifetime of an individual. Decades of experimental work have iden-
tified numerous cancer-promoting oncogenes and tumor suppressor genes that
are mutated in many types of cancer. Recent cancer genome sequencing studies
have dramatically expanded our knowledge about somatic mutations in cancer.
For example, large projects like The Cancer Genome Atlas (TCGA) [31], the
Tumor Sequencing Project (TSP) [8], and the Cancer Genome Anatomy Project
[11] have sequenced hundreds of protein coding genes in hundreds of patients
with a variety of cancers. Other efforts have taken a global survey of approxi-
mately 20,000 genes in a 1-2 dozen patients [40,18,32]. These studies have shown
that: tumors harbor on average approximately 80 somatic mutations; two tu-
mors rarely have the same complement of mutations; and thousands of genes
are mutated in cancer [40]. This mutational heterogeneity complicates efforts to
distinguish functional mutations from sporadic, passenger mutations. While a
few cancer genes are mutated at high frequency (e.g. well known cancer genes
like TP53 or KRAS), most cancer genes are mutated at much lower frequencies.
Thus, the observed frequency of mutation is an inadequate measure of the im-
portance of a gene, particularly with the relatively modest number of samples
that are tested in current cancer studies.

It is widely accepted that cancer is a disease of pathways and it is hypothesized
that somatic mutations target genes in a relatively small number of regulatory
and signaling networks [12,39]. Thus, the observed mutational heterogeneity is
explained by the fact that there are myriad combinations of alterations that
cancer cells can employ to perturb the behavior of these key pathways. The
unifying themes of cancer are thus not solely revealed by the individual mutated
genes, but by the interactions between these genes. Standard practice in cancer
sequencing studies is to assess whether genes that are mutated at sufficiently
high frequency significantly overlap known cancer pathways [31,8,36,40,32,25].

Finding significant overlap between mutated genes and genes that are mem-
bers of known pathways is an important validation of existing knowledge. How-
ever, restricting attention to these known pathways does not allow one to detect
novel group of genes that are members of less characterized pathways. More-
over, it is well known that there is crosstalk between different pathways [39]
and dividing genes into discrete pathway groupings limits the ability to detect
whether this crosstalk is itself a target of mutations. An additional source of
information about gene and protein interactions is large-scale interaction net-
works, such as the Human Protein Reference Database (HPRD) [22], STRING
[17], and others [2,34]. These resources incorporate both well-annotated path-
ways and interactions derived from high-throughput experiments, automated
literature mining, cross-species comparisons, and other computational predic-
tions. Many researchers have used these interaction networks to analyze gene
expression data. Ideker et al. [16] introduced a method to discover subnetworks
of differentially expressed genes, and this idea was later extended in different
directions by others [30,26,38,21,28,13,5].
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We propose to identify “significantly mutated subnetworks” – that is con-
nected subnetworks whose genes have more mutations than expected by chance
– de novo in a large gene interaction network. This problem differs from the
gene expression problem in that a relatively small number of genes might be
measured, a small subset of genes in a pathway may be mutated, and that a
single mutated gene may be sufficient to perturb a pathway. The näıve approach
to de novo identification of mutated subnetworks is to examine mutations on all
subnetworks, or all subnetworks of a fixed size. This approach is problematic.
First, the enumeration of all such subnetworks is prohibitive for subnetworks of
a reasonable size. Second, the extremely large number of hypotheses that are
tested makes it difficult to achieve statistical significance. Finally, biological in-
teraction networks typically have small diameter due to the presence of “hub”
genes of high degree. There are reports that cancer-associated genes have more
interaction partners than non-cancer genes [25,19], and indeed highly mutated
cancer genes like TP53 have high degree in most interaction networks (e.g. the
degree of TP53 in HPRD is 238). Such correlations might lead to a large number
of “uninteresting” subnetworks being deemed significant.

We propose a rigorous framework for de novo identification of significantly
mutated subnetworks and employ two strategies to overcome the difficulties de-
scribed above. First, we formulate an influence measure between pairs of genes
in the network using a diffusion process defined on the graph. This quantity
considers a gene to influence another gene if they are both close in distance on
the graph and there are relatively few paths between them in the interaction
network. We use this measure to build a smaller influence graph that includes
only the mutated genes but encodes the neighborhood information from the
larger network. We then identify significant subnetworks using two techniques.
The first one requires to solve an NP-hard problem, while in the second one, in
which the influence between pairs of genes is enhanced by the number of mu-
tations observed on these genes, the computational problem is reduced to just
finding connected components in the graph. Finally, we derive a two-stage multi-
ple hypothesis test that mitigates the testing of a large number of hypotheses by
focusing on the number of discovered subnetworks of a given size rather than on
individual subnetworks. We also show how to estimate the false discovery rate
(FDR) associated with this test.

We tested our approach on the HPRD human interaction network using
somatic mutation data from two recently published studies: (i) 601 genes in
91 glioblastoma multiforme patients from The Cancer Genome Atlas (TCGA)
project; (ii) 623 genes in 188 lung adenocarcinoma patients sequenced during
the Tumor Sequencing Project (TSP). In both datasets, we identify statistically
significant mutated subnetworks that are enriched for genes on pathways known
to be important in these cancers. Our approach is the first, to our knowledge,
to demonstrate a computationally efficient strategy for de novo identification of
statistically significant mutated subnetworks. We anticipate that our approach
will find increasing use as cancer genome studies increase in size and scope.
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2 Methods

In this section we introduce our approach for the identification of significantly
mutated pathways in cancer. Due to space constraints, the proofs of theorems
are omitted. Supplementary material including details of proofs is available at
http://www.cs.brown.edu/people/braphael/supplements/.

2.1 Mathematical Model

We model the interaction network by a graph G = (V, E), where the vertices in
V represent individual proteins (and their associated genes), and the edges in
E represent (pairwise) protein-protein or protein-DNA interactions. Let T ⊆ V
be the subset of genes that have been been tested, or assayed, for mutations
in a set S of samples (patients). The size of T will vary by study; e.g. some
recent works resequenced hundreds of genes [31,8] while others examine nearly
all known protein-coding genes in the human genome [40,18,32]. We assume that
each gene g is assigned one of two labels, mutated or normal, in each sample.
Let Mi denote the subset of genes in T that are mutated in the ith sample,
for i = 1, . . . |S|. Let Sj be the samples in which gene gj ∈ T is mutated, for
j = 1, . . . , |T |, let m =

∑
i |Mi| be the total number of occurrences of altered

genes observed in all samples.
We define a pathway or subnetwork to be a connected subgraph of G. Note

that this definition matches the common biological usage of the term where
pathways may have arbitrary topology in the graph, and are not restricted to
be linear chains of vertices. We generally do not know whether more than one
gene must be mutated to perturb a pathway in a sample, and thus will assume
that a pathway is mutated in a sample if any of the genes in the pathway are
mutated. For a subset T ⊆ T , let S(T ) denote the set of samples in which at
least one gene in T is mutated.

2.2 Influence Graph

Our goal is to identify subnetworks that are significant with respect to the set of
mutated genes in the samples. The significance of a subnetwork is derived from:
(i) the number of samples that have mutations in the genes of the subnetwork,
and (ii) the interactions between genes in the subnetwork in the context of the
whole network topology. For example, consider two possible scenarios of mutated
nodes (Figure 1). In the first scenario, the two mutated nodes are part of a linear
chain in the interaction network. In the second scenario, the two mutated nodes
are connected through a high-degree node. In the first scenario, there is a single
path joining the two mutated nodes and thus we are more surprised by this local
clustering of mutations than in the second scenario, where the two nodes are
connected by a node that is present in a large number of possible paths.

Hubs present an extreme case of this phenomenon and result in many “uninter-
esting” subnetworks being deemed significant. Since many highly mutated cancer
genes, like TP53, also have high degree in interaction networks it is not advisable
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to ignore these genes in the analysis of cancer mutation data. These examples
show that significance of a subnetwork is derived from both: 1. the number of
samples that have mutations in the genes of the subnetwork, and 2. the interac-
tions between genes in the subnetwork in the context of the whole network. A
straightforward graph distance like the shortest path between nodes is not suffi-
cient to overcome the problems highlighted above. Moreover, other graph mining
approaches like dense subgraph identification [10] are also not appropriate, since
not all subnetworks of interest (e.g. the chain in Figure 1) are dense in edges.

Fig. 1. Mutation on chain vs.
star graph

We use a diffusion process on the interaction net-
work to define a rigorous measure of influence
between all pairs of nodes. To measure the in-
fluence of node s on all the other nodes in the
graph, consider the following process, described
by [33]. Fluid is pumped into the source node s
at a constant rate, and fluid diffuses through the
graph along the edges. Fluid is lost from each node
at a constant first-order rate γ. Let fs

v (t) denote
the amount of fluid at node v at time t, and let
fs(t) = [fs

1 (t), . . . , fs
n(t)]T be the column vector

of fluid at all nodes. Let L be the Laplacian matrix of the graph1, and let
Lγ = L + γI. Then the dynamics of this continuous-time process are governed
by the vector equation dfs(t)

dt = −Lγfs(t) + bsu(t), where bs is the elementary
unit vector with 1 at the sth place and 0 otherwise, and u(t) is the unit step
function. As t → ∞, the system reaches the steady state. The equilibrium dis-
tribution of fluid density on the graph is fs = L−1

γ bs (see [33]). Note that this
diffusion process is related to the diffusion kernel [24], or heat kernel [6], which
models the diffusion of heat on a graph, and these diffusion processes are also
related to certain random walks on graphs [9,27]. Diffusion processes and their
related flow problems have been used in protein function prediction on inter-
action networks [37,29] and to define associations between gene expression and
phenotype [28].

We interpret fs
i as the influence of gene gs on gene gi. Computing the diffusion

process for all tested genes gives us, for each pair of genes gj, gk ∈ T , the influence
i(gj, gk) that gene gj has on gene gk. Note that in general the influence is not
symmetric; i.e. i(gj, gk) �= i(gk, gj). We define an influence graph GI = (T , EI)
with the set of nodes corresponding to the set of tested genes, the weight of an
edge (gj , gk) is given by w(gj , gk) = min[i(gk, gj), i(gj , gk)]. If n is the number of
nodes in the interaction network, then the cost of computing GI is dominated
by the complexity of inverting an n× n matrix.

2.3 Discovering Significant Subnetworks: Combinatorial Model

Given an influence measure between genes, the obvious first approach for discov-
ering significant subnetworks is to identify sets of nodes in the influence graph
1 L = −A + D, where A is the adjacency matrix of the graph and D is a diagonal

matrix with Di,i = degree(vi).
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GI that are (1) connected through edges with high influence measure; and (2)
correspond to mutated genes in a significant number of samples. We fix a thresh-
old δ and compute a reduced influence graph GI(δ) of GI by removing all edges
with w(gi, gj) < δ, and all nodes corresponding to genes with no mutations
in the sample data. The computational problem is reduced to identifying con-
nected subgraphs of GI(δ) such that the corresponding set of genes is altered in
a significant number of patients.

The size of the connected subgraphs we discover is controlled by the threshold
δ. We choose sufficiently small δ such that in the null hypothesis, in which the
mutations are randomly placed in nodes corresponding to tested genes, it is
unlikely that our procedure finds connected subgraphs with similar properties.
Note that value of δ depends only on the null hypothesis and not on the observed
sample data (see Section 2.5 for details of the statistical analysis). Finding the
connected subgraph of k genes that is mutated in the largest number of samples
requires to solve the following problem, that we define as connected maximum
coverage problem.

Computational Problem. Given a graph G defined on a set of m vertices V , a
set of elements I, a family of subsets P = {P1, . . . , Pm}, with Pi ∈ 2I associated
to vi ∈ V , and a value k, find the connected subgraph C∗ = {vi1 , . . . , vik

} with
k nodes in G that maximize | ∪k

j=1 Pij |. In our case we have G = GI(δ), V is
the subset of genes in T mutated in at least one sample, and for each gi ∈ V
the associated set is Si. The connected maximum coverage problem is related
to the maximum coverage problem (see e.g. [14] for a survey) where given a set
I of elements, a family of subsets F ⊂ 2I , and a value k, one needs to find a
collection of k sets in F that covers the maximum number of elements in I. This
problem is NP-hard as set cover is reducible to it.

If the graph G is a complete graph, the connected maximum coverage problem
is the same as the maximum coverage problem. Thus the connected maximum
coverage problem is NP-hard for a general graph. Moreover we prove that the
problem is still hard even on simple graphs such as the star graph ([35] gives a
similar result for the connected set cover problem).

Theorem 1. The connected maximum coverage problem on star graphs is NP-
hard.

Since the connected maximum coverage problem is NP-hard even for simple
graphs we turn to approximate solutions. It is not hard to construct a polynomial
time 1 − 1

e approximation algorithm for spider graphs (analogous to the result
in [35] for the connected set cover problem). Since it cannot be applied to the
network here, we construct an alternative polynomial time algorithm that gives
O (1/r) approximation when the radius of the optimal solution C∗ is r.

Our algorithm obtains a solution Cv (thus, a connected subgraph) starting
from each node v ∈ V , and then returns the best solution found. To obtain
Cv, our algorithm executes an exploration phase, i.e. for each node u ∈ G it
finds a shortest path pv(u) from v to u. Let �v(u) be the set of nodes in pv(u),
and Pv(u) the elements of I that they cover. After this exploration phase, the
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algorithm builds a connected subgraph Cv starting from v. At the beginning
we have Cv = {v}. PCv is the set of elements covered by the current connected
subgraph Cv. Then, while |Cv| < k, the algorithm chooses the node u /∈ Cv such
that: u = argmaxu∈V

{ |Pv(u)\PCv |
|�v(u)\Cv|

}
and |�v(u) ∪ Cv| ≤ K; the new solution

is then �v(u) ∪ Cv. The main computational cost of out algorithm is due to
the exploration phase, that can be performed in polynomial time. We have the
following:

Theorem 2. The algorithm above gives a 1
cr -approximation for the connected

maximum coverage problem on G, where c = 2e−1
e−1 and r is the radius of optimal

solution in G.

For our experiments we implemented a variation of this algorithm, that for
each pair of nodes (u, v) considers all the shortest paths between u and v, and
then keeps the one that maximizes |Pv(u)|

|�v(u)| to build the solution Cv. With this
modification the algorithm is not guaranteed to run in polynomial time in the
worst-case, but ran efficiently for all our experiments.

2.4 Discovering Significant Subnetworks: The Enhanced Influence
Model

We developed an alternative, computationally efficient, approach for identifying
subnetworks that are significant with respect to the gene mutation data. The
Enhanced Influence Model is based on the idea of enhancing the influence mea-
sure between genes by the number of mutations observed in each of these genes,
and then decomposing an associated enhanced influence graph into connected
components.

We define the enhanced influence graph H . It has a node for each gene gj

with at least one mutation in the data. The weight of edge (gj , gk) in H is given
by h(gj, gk) = min {i(gj , gk), i(gk, gj)} ×max {|Sj |, ||Sk|}. Thus, the strength of
connection between two nodes in the enhanced influence graph is a function
of both the interaction between the nodes in the interaction network and the
number of mutations observed in their corresponding genes. Next we remove all
edges with weight smaller than a threshold δ to obtain a graph H(δ). We return
the connected components in H(δ) as the significant subnetworks with respect to
the mutation data and the threshold δ. The computational cost is the complexity
of computing all connected components in a graph with |S| nodes (number of
mutated genes), which is linear in the size of the graph. The significance of the
discovered subnetworks depends on the choice of δ. We choose sufficiently small
δ such that in the null hypothesis, in which the mutations are randomly placed
in nodes corresponding to tested genes, it is unlikely that our procedure finds
connected components of similar size (see Section 2.5 for details).

2.5 Statistical Analysis

We assess the statistical significance of our discoveries with respect to null hy-
pothesis distributions in which the mutated genes are randomly allocated in the
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network, i.e. when the occurrence of mutations are independent of the network
topology. We consider two null hypothesis distributions: in Hsample

0 a total of
m =

∑
i |Mi| mutations are placed uniformly at random in the nodes corre-

sponding to the |T | tested genes. While easier to analyze, this model does not
account for the fact that in the observed data a large number of mutations are
concentrated in a few genes(e.g. TP53). Thus, we also use a second null hypothe-
sis distribution, Hgene

0 , generated by permuting the identities of the tested genes
in the network. That is we select a random permutation σ of the set {1, . . . , |T |},
and we assign gene gj , that was mutated in the set of samples Sj ⊆ S, to the
location of gene gσ(j) in the original network.

A Two Stage Multi-Hypothesis Test. A major difficulty in assessing the sta-
tistical significance of the discovered subnetworks is that we test simultaneously
for a large number of hypotheses; each connected subnetwork in the interaction
graph with at least one tested gene is a possible significant subnetwork and thus
an hypothesis. The strict measure of significance level in multi-hypothesis test-
ing is the Family Wise Error Rate (FWER), the probability of incurring at least
one Type I error in any of the individual tests. An alternative, less conserva-
tive approach to control errors in multiple tests is the the False Discovery Rate
(FDR) [3]. Let V be the number of Type I errors in the individual tests, and
let R be the total number of null hypotheses rejected by the multiple test. We
define FDR = E[V/R] to be the expected ratio of erroneous rejections among all
rejections (with V/R = 0 when R = 0). Let h be the total number of hypothesis
tested. Applying either measure to our problem, a discovery would be flagged as
statistically significant only if its p-value is O (1/h), which is impractical in the
size of our problem. Instead, building on an idea presented in [23], we develop a
two stage test for our problem that allows us to flag a number of subnetworks in
our data as statistically significant with small false discovery rate (FDR) values.

We demonstrate our method through the analysis of the Enhanced Influ-
ence model. A similar technique was applied to the Combinatorial model. Let
C1, . . . , C� be the set of connected components found in the enhanced influence
graph H(δ). Testing for the significance of these discoveries is equivalent to si-
multaneously testing for 2|T | hypothesis. To reduce the number of hypothesis we
focus on an alternative statistic: the number of discoveries of a given size. Let r̃s

be the number of connected components of size ≥ s found in the graph H(δ), and
let rs be the corresponding random variable in the null hypothesis (Hsample

0 or
Hgene

0 ). We are testing now for just K = |T | simple hypotheses, for s = 1, . . . ,K:
Es ≡ “r̃s conforms with the distribution of rs”. Testing each hypothesis with
confidence level α/K, the first stage of our test identifies the smallest size s such
that with confidence level α we can reject the null hypothesis that r̃s conforms
with the distribution of rs.

The fact that the number of connected components of size at least s is statis-
tically significant does not imply necessarily that each of the connected compo-
nents is significant. We now add a second condition to the test that guarantees
an upper bound on the False Discovery Rate (FDR):
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Theorem 3. Fix β1, β2, . . . , βK such that
∑K

i=1 βi = β. Let s∗ be the first s such
that r̃s ≥ E[rs]

βs
. If we return as significant all connected components of size ≥ s∗,

then the FDR of the test is bounded by β.

In our tests we have used βi = β
2i for the ith largest s tested (with βs = β −∑

i βi for the smallest s), since we are more interested in finding large connected
components.

Estimating the Distribution of the Null Hypothesis. The null hypothesis
distributions can be estimated by either a Monte-Carlo simulation (“permutation
test”) or through analytical bounds.

Using Monte-Carlo simulation, two features of our method significantly reduce
the cost of the estimates. First, the Influence Graph GI is created without ob-
serving the sample data. The mutation data and GI are then combined to create
the sample dependent graphs GI(δ) and H(δ). Thus, the Monte Carlo simulation
needs to run on the graph GI which is significantly smaller than the original in-
teraction network (in our data the original interaction network had 18796 nodes
while the influence graph had only about 600 nodes). Second, our statistical test
does not use the p-values of individual connected subgraphs/components but the
p-value of the distribution of the number of connected subgraphs/components
of a given size. Thus, for this test it is sufficient to estimate p-values that are a
magnitude larger, and therefore require significantly fewer rounds of simulations.
These features allowed us to compute the null distributions through Monte-Carlo
simulations for the size of our data with no significant computational cost. For
larger number of tested genes we can estimate the null hypothesis through ana-
lytical bounds.

3 Experimental Results

We applied our approach to analyze somatic mutation data from two recent
studies. The first dataset is a collection of 453 somatic mutations identified in
601 tested genes from 91 glioblastoma multiforme (GBM) samples from The
Cancer Genome Atlas [31]. In total, 223 genes were reported mutated in at
least one sample. The second dataset is a collection of 1013 somatic mutations
identified in 623 tested genes from 188 lung adenocarcinoma samples from the
Tumor Sequencing Project [8]. In total, 356 genes were reported mutated in at
least one sample. For the Enhanced Influence model we also considered simulated
data.

We use the protein interaction network from the Human Protein Reference
Database (June 2008 version) [22] which consists of 18796 vertices and 37107
edges. We derive the influence graph for each dataset by directly computing the
inverse2 of Lγ . The results presented below are obtained by fixing the parameter
γ = 8, which is approximately the average degree of a node in HPRD (after the
2 In contrast [33] derive a power series approximation to L−1

γ whose convergence de-
pends on the choice of γ.
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removal of disconnected nodes). We also considered γ = 1 and γ = 30: in both
cases the results obtained are close to the ones obtained with γ = 8.

The resulting influence graphs have weights i(gj , gk) �= 0 for almost all pairs
(gj , gk) of tested genes: less than 2% of the weights are zero in the GBM
graph, while all weights in the lung adenocarcinoma graph are positive. Supple-
mentary tables are available at http://www.cs.brown.edu/people/braphael/
supplements/.

3.1 Combinatorial Model

We used the combinatorial model to extract a subnetwork of k mutated genes
that is mutated in the highest number of samples from GBM and lung adeno-
carcinoma with k = 10 and k = 20. For both datasets we used the procedure
described in Section 2.3 to derive the threshold δ = 0.0001 for the reduced influ-
ence graph GI(δ). Table 1 shows that we find statistically significant subnetworks
under both the Hgene

0 and Hsample
0 null hypotheses (p-values for Hsample

0 are com-
puted without Monte-Carlo simulation). To assess the biological significance of
our findings in GBM, we compared the genes in each subnetwork to the genes
in pathways that were previously implicated in GBM and used as a benchmark
in the TCGA publication [31] (See also Figure 2 (a) below). We find that our
subnetworks are enriched for genes in the RTK/RAS/PI(3)K pathway and to a
lesser extent, the p53 pathway. For the lung adenocarcinoma samples, we find
that the subnetworks share significant overlap with the pathways reported in the
original publication [8]. These results demonstrate that the combinatorial model
is effective in recovering genes known to be important in each of these cancers.

3.2 Enhanced Influence Model

Simulated Data. We tested the ability of our enhanced influence model to recover
significantly mutated pathways in simulated data. We extracted a well-curated
network of 258 genes called “Pathways in cancer (hsa05200)” from the KEGG
database [20]. We augmented this network with additional random edges so that
20% of the edges of the resulting network were random. We assigned mutations
to a well-known cancer signaling pathway, PKC -RAF - MEK - ERK, a linear
chain P of 4 genes, so that at least one gene is mutated in x% of samples, for
different x. We then randomly assigned mutations to all the genes in the network
matching the observed values (e.g. number of samples, ratio between number of
tested genes and number of genes in the network, etc.) We correctly identify
P as significantly mutated (P < 10−2, FDR < 10−2) even when each gene in
P is altered in ≤ 5% of the samples, but P is altered in 17% of the samples.
Note that genes mutated in 5% of the samples were not reported as significantly
mutated in [31], demonstrating that our method correctly identifies a mutated
path even when the individual genes in the path are not mutated in a significant
number of samples. Moreover, P is the only significant pathway reported by our
method. To verify that our influence measure takes into account the topology of
the network, we added a number of edges to the RAF gene in P , giving it high
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Table 1. Results of the combinatorial model. k is the number of genes in the subnet-
work. samples is the number of samples in which the subnetwork is mutated. p-val is
the probability of observing a connected subgraph of size k under the random model
Hsample

0 or Hgene
0 . enrichment p-val is the p-value of the hypergeometric test for over-

lap between genes in the identified subgraph and genes reported significant pathways
in [31] or [8]. For GBM, enrichment p-val is the p-value of the hypergeometric test for
RTK/RAS/PI(3)K and p53 pathways.

p-val pathway enrichment p-val
dataset k samples Hsample

0 Hgene
0 all RTK/RAS/PI(3)K p53

GBM 10 67 < 10−10 4 × 10−3 3 × 10−4 8 × 10−4 0.19
20 78 < 10−10 < 10−3 10−5 8 × 10−5 0.05

Lung 10 140 < 10−10 0.02 8 × 10−6 /
20 151 < 10−10 0.03 3 × 10−3 /

degree in the network. As expected, P is no longer identified as significant in the
modified network.

Real data. We applied the enhanced influence model to the GBM and lung ade-
nocarcinoma datasets. Following the procedure described in Section 2.4, we first
computed the enhanced influence network, using a threshold of δ = 0.003 for
the GBM data and δ = 0.01 for the lung adenocarcinoma data. Table 2 shows
the number and sizes of the connected components identified in the GBM data,
and the associated p-values, the latter obtained using the method described in
Section 2.5. We identify two significant connected components with more than
19 genes (FDR ≤ 0.14). We find significant overlap (P < 10−2 by hypergeomet-
ric test) between the 68 genes in our connected components and the set of all
mutated genes in the same RTK/RAS/PI(3)K, p53, and RB pathways examined
in the TCGA study [31]. The second largest connected component with 19 genes
has significant overlap to the p53 pathway, while the largest connected compo-
nent with 22 genes has significant overlap with the RTK/RAS/PI(3)K signaling
pathway. In contrast to the combinatorial model, the enhanced influence model
separates these two pathways into different connected components. Figure 2 (a)
illustrates the overlap between the mutated genes in connected components re-
turned by our method and genes in the pathways reported in [31].

For the lung data, Table 3 shows the sizes of connected components returned
by the enhanced influence model and the p-values associated with each. The 88
genes in the union of the connected components derived by our method over-
lap significantly (P < 7 × 10−9 by the hypergeometric test) with the mutated
pathways reported in the network of Figure 6 in the TSP publication [8]. We
identify 4 connected components of size ≥ 7 (FDR ≤ 0.56). The first connected
component of size 10 contains genes in the p53 pathway, and the second one is en-
riched (P < 10−2) for the MAPK pathway (Figure 2 (b)). The third component
is the ephrin receptor gene family, a large family of membrane-bound receptor
tyrosine kinases, that were reported as mutated in breast and colorectal cancers
[36]. Notably, only one of the genes in this component, EPHA3, is mentioned as
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Table 2. Results of the enhanced influence model on GBM samples. s is the size of
connected components (c.c.) found with our method. # c.c. ≥ s is the number of c.c.
with at least s nodes. μ is the expected number of c.c. with ≥ s nodes under random
models Hgene

0 , Hsample
0 . p-val is the probability of observing at least # c.c. ≥ s with

at least s nodes in a random dataset. The last 3 columns show, for c.c. with s > 3,
the result of the hypergeometric test for enrichment for RTK/RAS/PI(3)K, and p53
pathways respectively.

Hsample
0 Hgene

0 enrichment p-val
s # c.c. ≥ s μ p-val μ p-val RTK/RAS/PI(3)K p53
2 15 22.18 0.97 13.63 0.38 / /
3 3 6.37 0.98 4.38 0.6 / /
19 2 < 10−3 < 10−3 0.07 < 10−3 0.9 4 × 10−3

22 1 < 10−3 < 10−3 0.05 0.05 4 × 10−6 –

(a)

(b)

(c)

Fig. 2. (a) Overlap between subnetworks found by the enhanced influence model and
significant pathways reported in [31]. Each circle is a gene, gray nodes represents protein
families or complexes, or small molecules. For each protein family and complex, tested
genes are shown. “Dashed” nodes are tested genes that were not mutated in GBM,
and thus cannot be returned as significant. Red nodes are found in the c.c. of size 22,
blue nodes in the c.c. of size 18, and the green node in a c.c. of size 2. (b) Pathway
corresponding to one of the connected components extracted with enhanced influence
model in lung. (c) Notch signaling pathway identified in the lung dataset.

significantly mutated in [8]. Finally, the connected component of size 7 consists
exclusively of members of the Notch signaling pathway (Figure 2 (c)). The mu-
tated genes include: the Notch receptor (NOTCH2/3/4); Jagged (JAG1/2), the
ligand of Notch; and Mastermind (MAML1/2), a transcriptional co-activator of
Notch target genes. The Notch signaling pathway is a major developmental path-
way that has been implicated in a variety of cancers [1] including lung cancer
[7]. Mutations in this pathway were not noted in the original TSP publication
[8], probably because no single gene in this pathway is mutated in more than
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Table 3. Results of the enhanced influence model on lung adenocarcinoma samples.
Columns are as described in Table 2. Last column shows, for c.c. with s ≥ 7, the result
of the hypergeometric test for enrichment all genes reported in significant pathways in
[8] (the 3 values shown refers to c.c. of size 10).

Hsample
0 Hgene

0

s # c.c. ≥ s μ p-val μ p-val enrichment p-val
2 24 23.4 0.7 17.67 0.4 /
3 11 6.51 0.13 7.27 0.2 /
4 7 3.21 0.07 4.98 0.13 /
5 5 2.09 0.01 2.18 0.01 /
7 4 0.54 0.01 0.56 0.01 –
10 3 < 10−3 < 10−3 0.4 0.02 0.34; 10−5; 9 × 10−8

3 samples. Because our method exploits both mutation frequency and network
topology, we are able to identify these more subtle mutated pathways, and in
this case identify an entire “signaling” circuit.

3.3 Näıve Approach

To demonstrate the impact of the influence graph on the results, we implemented
a näıve approach that examines all paths in the original HPRD network that
connect two tested genes and contain at most 3 nodes. We extracted all paths
that were altered in a significant number of samples with FDR ≤ 0.01 using the
standard Benjamini-Yekutieli method [4]. More than 1700 paths in GBM and
> 2200 in lung adenocarcinoma are marked as significant with this method. A
major reason for this large number of paths is the presence of highly mutated
genes that are also high-degree nodes in the HPRD network (e.g. TP53). Each
path through these high degree nodes is marked as significant. One possible
solution is to remove any path that contains a subpath that is significant How-
ever, these filtered paths include none through important highly-mutated and
high degree genes (like TP53). Our influence graph uses both mutation frequency
and local topology of the network, allowing us to recover subnetworks containing
these genes. Finally, we note that finding larger, statistically significant subnet-
works (e.g. those with 10 or 20 nodes) with the näıve approach is impossible in
the GBM and lung datasets because of the severe multiple hypotheses correc-
tion for the large number of subnetworks tested; e.g., the number of connected
components with 10 tested nodes in the HPRD network is > 1010. For the same
reason the enumeration of all the paths or connected components of reasonable
size is impossible.

4 Discussion

We present an approach to identify significantly mutated pathways in a large,
unannotated interaction network. The subnetworks derived by our method share
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significant overlap with the known cancer pathways such as the manually curated
pathways in TCGA [31]. Remarkably, we automatically extracted a large frac-
tion of these pathways with modest number (100-200) of samples (Figure 2).
Our approach has two key advantages over the common strategy of testing the
overlap between mutated genes and genes from known pathways approach, us-
ing a hypergeometric or similar test. First, we incorporate biological information
that is not presently represented in existing well-characterized pathways, while
accounting for the uncertainty in large gene interaction networks. Second, we
are able to assign significance to genes that are altered at low frequency but
are part of a larger subnetwork that is altered at significant frequency. The lat-
ter advantage was demonstrated in the lung adenocarcinoma dataset where we
identify the Notch signaling pathway as significant, even though the individual
genes were not mutated at significant frequency.

We plan to extend our model in numerous directions, including: (i) inclusion
of other types of mutations such as copy number changes in genes, genome re-
arrangements, gene expression, or epigenetic alterations; (ii) extension of the
interaction network to include additional interaction types (e.g. regulatory or
miRNA) as well as directed interactions (activating vs. inhibitory); (iii) consid-
eration of errors in the interaction network. The later can be included naturally
in our diffusion model by adding weights, or reliabilities, on the edges. Moreover,
we have adapted our model to take into account the length of the genes in the
network, weighting the frequency of mutation in a gene by its length. The results
obtained for the GBM and lung adenocarcinoma data are extremely close to the
one presented here (data not shown).

We anticipate that our method will become even more useful as larger datasets
become available. Several recent studies [40,18,32] have surveyed a much larger
number of genes than considered here (approximately 20,000), but in a relatively
small number of samples (1-2 dozen per cancer type). Continuing decline in se-
quencing costs and the development of targeted exon-capture techniques [15] will
soon enable global surveys of all protein-coding genes in hundreds to thousands
of cancer samples.

References

1. Axelson, H.: Notch signaling and cancer: emerging complexity. Semin. Cancer
Biol. 14, 317–319 (2004)

2. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.:
BIND–The Biomolecular Interaction Network Database. Nucleic Acids Res. 29,
242–245 (2001)

3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate. J. Royal Statis-
tical Society, Series B 57, 289–300 (1995)

4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics 29(4), 1165–1188 (2001)

5. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification
of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007)

6. Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National
Academy of Sciences 104(50), 19735 (2007)



520 F. Vandin, E. Upfal, and B.J. Raphael

7. Collins, B.J., Kleeberger, W., Ball, D.W.: Notch in lung development and lung
cancer. Semin. Cancer Biol. 14, 357–364 (2004)

8. Ding, L., et al.: Somatic mutations affect key pathways in lung adenocarcinoma.
Nature 455(7216), 1069–1075 (2008)

9. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. The Mathematical
Association of America (1984)

10. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29,
2001 (1999)

11. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes.
Nature 446, 153–158 (2007)

12. Hahn, W.C., Weinberg, R.A.: Modelling the molecular circuitry of cancer. Nat.
Rev. Cancer 2(5), 331–341 (2002)

13. Hescott, B.J., Leiserson, M.D.M., Cowen, L.J., Slonim, D.K.: Evaluating between-
pathway models with expression data. In: Batzoglou, S. (ed.) RECOMB 2009.
LNCS, vol. 5541, pp. 372–385. Springer, Heidelberg (2009)

14. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston (1997)

15. Hodges, E., et al.: Genome-wide in situ exon capture for selective resequencing.
Nat. Genet. 39, 1522–1527 (2007)

16. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1),
S233–S240

17. Jensen, L.J., et al.: STRING 8–a global view on proteins and their functional
interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)

18. Jones, S., et al.: Core signaling pathways in human pancreatic cancers revealed by
global genomic analyses. Science 321(5897), 1801–1806 (2008)

19. Jonsson, P.F., Bates, P.A.: Global topological features of cancer proteins in the
human interactome. Bioinformatics 22, 2291–2297 (2006)

20. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28, 27–30 (2000)

21. Karni, S., Soreq, H., Sharan, R.: A network-based method for predicting disease-
causing genes. J. Comput. Biol. 16, 181–189 (2009)

22. Keshava Prasad, T.S., et al.: Human Protein Reference Database–2009 update.
Nucleic Acids Res. 37, D767–D772 (2009)

23. Kirsch, A., Mitzenmacher, M., Pietracaprina, A., Pucci, G., Upfal, E., Vandin,
F.: An efficient rigorous approach for identifying statistically significant frequent
itemsets. In: PODS, pp. 117–126 (2009)

24. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures.
In: Proceedings of the ICML, pp. 315–322 (2002)

25. Lin, J., et al.: A multidimensional analysis of genes mutated in breast and colorectal
cancers. Genome Res. 17, 1304–1318 (2007)

26. Liu, M., et al.: Network-based analysis of affected biological processes in type 2
diabetes models. PLoS Genet. 3, e96 (2007)

27. Lovász, L.: Random walks on graphs: A survey (1993)
28. Ma, X., Lee, H., Wang, L., Sun, F.: CGI: a new approach for prioritizing genes by

combining gene expression and protein-protein interaction data. Bioinformatics 23,
215–221 (2007)

29. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-
formatics 21(suppl. 1), i302–i310 (2005)



Algorithms for Detecting Significantly Mutated Pathways in Cancer 521

30. Nacu, S., Critchley-Thorne, R., Lee, P., Holmes, S.: Gene expression network anal-
ysis and applications to immunology. Bioinformatics 23, 850–858 (2007)

31. The Cancer Genome Atlas Research Network. Comprehensive genomic character-
ization defines human glioblastoma genes and core pathways. Nature 455(7216),
1061–1068 (2008)

32. Parsons, D.W., et al.: An integrated genomic analysis of human glioblastoma mul-
tiforme. Science 321(5897), 1807–1812 (2008)

33. Qi, Y., Suhail, Y., Lin, Y.Y., Boeke, J.D., Bader, J.S.: Finding friends and enemies
in an enemies-only network: a graph diffusion kernel for predicting novel genetic
interactions and co-complex membership from yeast genetic interactions. Genome
Res. 18, 1991–2004 (2008)

34. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.:
The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–
D451 (2004)

35. Shuai, T.-P., Hu, X.: Connected set cover problem and its applications. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer,
Heidelberg (2006)

36. Sjoblom, T., et al.: The consensus coding sequences of human breast and colorectal
cancers. Science 314(5797), 268–274 (2006)

37. Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing
entropy. Bioinformatics 20(suppl. 1), i326–i333 (2004)

38. Ulitsky, I., Karp, R.M., Shamir, R.: Detecting disease-specific dysregulated path-
ways via analysis of clinical expression profiles. In: Vingron, M., Wong, L. (eds.)
RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 347–359. Springer, Heidelberg (2008)

39. Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat.
Med. 10, 789–799 (2004)

40. Wood, L.D., et al.: The genomic landscapes of human breast and colorectal cancers.
Science 318(5853), 1108–1113 (2007)



Leveraging Sequence Classification by
Taxonomy-Based Multitask Learning

Christian Widmer1, Jose Leiva1,2, Yasemin Altun2, and Gunnar Rätsch1
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Abstract. In this work we consider an inference task that biologists
are very good at: deciphering biological processes by bringing together
knowledge that has been obtained by experiments using various organ-
isms, while respecting the differences and commonalities of these organ-
isms. We look at this problem from an sequence analysis point of view,
where we aim at solving the same classification task in different organ-
isms. We investigate the challenge of combining information from several
organisms, whereas we consider the relation between the organisms to
be defined by a tree structure derived from their phylogeny. Multitask
learning, a machine learning technique that recently received consider-
able attention, considers the problem of learning across tasks that are
related to each other. We treat each organism as one task and present
three novel multitask learning methods to handle situations in which
the relationships among tasks can be described by a hierarchy. These
algorithms are designed for large-scale applications and are therefore ap-
plicable to problems with a large number of training examples, which are
frequently encountered in sequence analysis. We perform experimental
analyses on synthetic data sets in order to illustrate the properties of
our algorithms. Moreover, we consider a problem from genomic sequence
analysis, namely splice site recognition, to illustrate the usefulness of our
approach. We show that intelligently combining data from 15 eukaryotic
organisms can indeed significantly improve the prediction performance
compared to traditional learning approaches. On a broader perspective,
we expect that algorithms like the ones presented in this work have
the potential to complement and enrich the strategy of homology-based
sequence analysis that are currently the quasi-standard in biological se-
quence analysis.

1 Introduction

Over a decade ago, an eight-year lasting collaborative effort resulted in the first
completely sequenced genome of a multi-cellular organism, the free-living nema-
tode Caenorhabditis elegans. Today, more than 50 eukaryotic genomes have been
sequenced and several hundred more are underway. The genome sequences are
the basis for much of the research on the molecular processes in these organisms.
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Typically, the more closely related the organisms are, the more similar are these
processes. For some organisms, certain biochemical experiments for the analysis
of particular processes can be performed more readily than for others (i.e. a large
part of biological understanding was obtained from experiments based on a few
model organisms such as yeast). This understanding can then be transferred to
other organisms, for instance by verifying or refining models of the processes—
often at a fraction of the original cost. This is but one example of a situation,
where transfer of knowledge across organisms is very fruitful.

In computational biology we often study the problem of building statistical
models from data in order to predict, analyze, and ultimately understand bi-
ological systems. Regardless of the problem at hand, be it the recognition of
sequence signals such as splice sites, the prediction of protein-protein interac-
tions, or the modeling of metabolic networks, we frequently have access to data
sets for multiple organisms. Thus, our goal is to develop methods that aim at
taking advantage of the data from different organisms in order to improve the
performance of the statistical models built for all organisms. We argue that, when
building a predictor for a given organism, data from other organisms should be
incorporated to the extent of the relation between the organisms.

Since it is assumed that all life can be traced back to an ancient common
ancestor, all organisms can ultimately be related by phylogeny. Furthermore, if
two organisms share a sufficiently long evolutionary history before divergence, it
can be expected that certain biological mechanisms (e.g., splicing) are conserved
to some degree. Thus, it is reasonable to assume that we can leverage data
from other organisms to enhance model quality for the organism of interest.
In bioinformatics, this is traditionally done by considering sequence homology.
This approach, however, is limited to almost exact correspondences of sequences
between one or several biological sequences, while it fails to capture other features
such as sequence composition that can be used to build an accurate model.

A family of machine learning methods, commonly referred to as domain adap-
tation or transfer learning, investigates the application of a predictor trained
with data from a given domain to data from a different one (see e.g., [3,5,11]).
Furthermore, the so-called multitask learning techniques consider the problem
of simultaneously obtaining predictors from different domains by exploiting the
fact that the domains are related (see e.g., [1,6]). Most of these methods assume
uniform relations across domains/tasks.1 However, it is conceivable that sharing
information between closely related domains is more beneficial than sharing be-
tween domains that are only distantly related (according to a given criterion).
Hence, it is important to take into account the degree of relatedness among the
domains when obtaining the set of models. Here, we investigate multitask learn-
ing scenarios where we are given a priori information about a hierarchy that
relates the domains at hand, which is often the case for biological problems.
In particular, we treat each organism as a domain and employ the hierarchy
given by the phylogeny. The fact that the availability of data describing the
same biological mechanism in several organisms is a reoccurring theme makes

1 We use the terms task and domain interchangeably.
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the hierarchical multitask learning approach particularly well suited for many
applications in computational biology.

Building upon previous work [11], we propose a general framework for lever-
aging information from related organisms by ensuring correspondence on model
basis rather than directly comparing sequences. We consider two principal ap-
proaches to incorporate relations across domains.

In the first approach, for a given task t, models from the other tasks serve
as prior information to the model of t, such that the parameters wt of task
t are close to the parameters wo of the other models. This can be achieved by
minimizing the norm of the differences of the parameter vectors, ‖wt−wo‖, along
with the original loss function. A convenient way of implementing this approach
is training models in a top-down manner, where a model is learned for each node
in the hierarchy over the data sets of tasks spanned by the node. The parent
nodes are used as the prior information, ‖wt−wparent(t)‖. Here, one can readily
use existing inference techniques with slight changes to the implementation. We
describe this method in Section 2.2. Accordingly, one can use the models of all
tasks as prior information, ‖wt − wt′‖ for related tasks t and t′, and train the
parameters of all tasks jointly. This method is outlined in Section 2.3. Compared
to the top-down approach, this formulation involves a larger set of parameters
to be jointly optimized during training. However, it can be decomposed into
sub-problems, which in turn are solved in an iterative manner. Its advantage is
that each problem can be trained on smaller data sets compared to the top-down
approach in which the model of the root node is trained on the union of all data
sets.

An alternative to the latter pair-wise approach has been suggested in the
context of support vector machines (SVMs) for the special case of two tasks [5].
We extend this idea and design an appropriate kernel function that not only
considers the data of the task t, but also the data from all other tasks according
to their similarities. We show that this kernel design can be derived by defining
predictor functions over the task parameters as well as the parameters of the
ancestors of the task. This leads to an essentially effortless multitask approach,
since one can use standard SVM implementations by simply implementing the
new kernel. We describe the new kernel and its derivation in Section 2.4.

In Section 3 we evaluate the proposed algorithms on simulated data and il-
lustrate some of their properties. Moreover, we consider the problem of splice-
site recognition in 15 different eukaryotic genomes and show that the proposed
methods can significantly improve the prediction accuracy by combining the in-
formation available for all organisms. We conclude the paper with a discussion
in Section 4.

2 Hierarchical Multitask Learning

2.1 Preliminaries

We are interested in the problem of learning M functions ft : X → Y between
the input space X and discrete output space Y, where t = 1, . . . , M corresponds
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to a task. We assume that we are given the relations across tasks via a hierarchy
T , where the tasks are the leaves of T . Our goal is to make use of the training
sample St of task t, while also considering the training samples from the other
tasks according to the given hierarchical information.

We investigate two principal approaches for exploiting hierarchical informa-
tion about task relations in a multitask learning (MTL) framework; namely
incorporating prior knowledge via regularization and via kernel design. The first
approach is used in two of the proposed methods. Hence, we describe the un-
derlying idea before we go into the technical detail. A regularization term is
typically used to introduce a penalty for complex solutions into the optimiza-
tion problem of a learning algorithm. In the existence of prior knowledge, the
Empirical Risk Minimization framework [13] incorporates the prior knowledge f̄
by

f̂ = min
f

⎡⎣R(f − f̄) +
∑

(x,y)∈S

� (f(x), y)

⎤⎦ , (1)

where R is the regularization term that penalizes the deviation of the current
model f from the previously obtained (fix) model f̄ , and � is a loss function (such
as the squared loss, or the hinge loss) that penalizes the error on the training
sample S = {(x1, y1), ..., (xn, yn)}. In the multitask approach, we use the models
of related nodes as f̄ , where relations are given by T . Following this scheme,
any regularized Machine Learning framework (e.g., regularized least squares,
regularized logistic regression) can be extended to include prior information.

Since one of the main goals of this work is to provide learning algorithms that
scale to large amounts of data, we instantiate the concept for Support Vector
Machines (SVM) [13].2 It has been shown in previous work that SVMs using
string kernels such as the Spectrum [8] or the Weighted Degree Kernel (WDK)
[9] are well suited for nucleic and protein sequence analysis [2].

2.2 Top-Down Domain Adaptive Support Vector Machines

Our first approach uses a regularized multitask approach, where a model is
learned for each node of the hierarchy T and the parent of node v serves as
prior information to v, such that the final model of v is close to the model of its
parent. The idea is to train the models in a top-down fashion, where the most
general model is obtained at the root node and more domain specific models are
obtained by moving down toward the leaves.

In SVMs, a model f is a linear function parametrized by w and b, f =
〈x,w〉+ b. Since each model can be trained independently, we drop the indices
for tasks and simply use w for parameters of the current node, and w0 for the
parameters of the parent node. The primal of the extended SVM formulation is

min
w,b

1
2
||w −w0||2 + C

∑
(x,y)∈S

� (〈x,w〉+ b, y) , (2)

2 Other options, however, may also be suitable to implement the ideas of this work.
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where � is the hinge loss, �(z, y) = max{1−yz, 0}. From a biological perspective,
the penalty term ||w −w0||2 enforces the model of an organism and the organism
it is derived from to be similar, based on the assumption of a relatively small
mutation rate. If the latter is the case, most properties of the model are conserved
through evolution. In order to employ kernels, we derive the dual of the above
formulation:

max
α
−1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj)−
n∑

i=1

αi

⎛⎜⎜⎜⎜⎜⎝
⎛⎝ m∑

j=1

α′
jyiy

′
jk(xi,x′

j)

⎞⎠− 1

︸ ︷︷ ︸
pi

⎞⎟⎟⎟⎟⎟⎠ ,

s.t. αT y = 0, 0 ≤ αi ≤ C ∀i ∈ {1, n},

where n and m are the number of training examples in S and S0 respectively,
and S0 is the training sample of the prior model. The αi represent the dual
variables of the current learning problem, whereas the α′

j represent the dual
variables obtained from the prior model w0; in the case of the linear kernel, it
is described as w0 =

∑m
j=1 α′

jy
′
jx

′
j . The resulting prediction is performed by

f(x) =
n∑

i=1

αiyik(x, xi) +
m∑

j=1

α′
jy

′
jk(x, xj) + b.

In the dual form of the standard SVM, the term p (corresponding to the pi in the
equation above) is set to p = (−1, . . . ,−1)T . This is equivalent to the case, where
we have no prior model (i.e. w0 = (0, . . . , 0)T ). In our extended formulation, the
pi can be pre-computed and passed to the underlying SVM-solver as the linear
term of the corresponding quadratic program (QP). To provide implementations
that readily deal with large-scale learning problems, we have extended the SVM
implementations LibSVM [4] and SVMLight [7] to handle prior information.3

Top-Down Hierarchical Learning. An illustration of the training procedure
is given in Figure 1. In a top-down manner, a predictor f is obtained at each node
v, whereas the loss L is evaluated on the union of training data S = ∪{St�T v}
at the leaves below the current node v, while the current model f is regularized
against the parent predictor fp. Training is completed once we have obtained a
predictor ft for each task t. The algorithm will be referred to as Top-Down-SVM
in the following.

2.3 Support Vector Machines with Pairwise Task Regularization

In the previous section, we described a method that learns models for internal
nodes of the hierarchy and imposes regularization between a node and its parent.
In this section, we describe a method where the relation between tasks is modeled
3 http://www.shogun-toolbox.org

http://www.shogun-toolbox.org
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(a) Given taxonomy (b) Root training (c) Inner training (d) Taxon training

Fig. 1. Illustration of the hierarchical top-down MTL training procedure. In this exam-
ple, we consider four tasks related via the tree structure in 1(a). Each leaf is associated
with a task t and its training sample St = {(x1, y1), ..., (xn, yn)}. In 1(b), training
begins by obtaining the predictor at the root node, for which data from all leaves are
taken into account in the loss term. Next, we move down one level to train a classifier
at an inner node, as shown in 1(c). Here, the loss is measured w.r.t. S1 ∪ S2 and the
classifier is forced to be similar to the parent solution via the regularization term, as
indicated by the red arrow. Finally, in 1(d), we obtain the final classifier of task 1 by
only taking into account S1 to measure the loss, while again regularizing against the
parent predictor. The procedure is applied in a top-down manner to the remaining
nodes until a predictor for each leaf was obtained.

directly via pairwise regularization. We refer to this method as Pairwise learning.
Similar regularization-based multitask learning methods were proposed in [6].
However, we extend this previous approach by incorporating hierarchical task
information, and by providing an efficient decomposition for practicability.

Given the hierarchy T , we first compute the distance ds,t between the tasks s
and t by summing up the lengths of the edges on the path from one leaf to the
other (tree-hop-distance). In our experiments, we assumed all edge lengths to
be 1. The resulting distance ds,t is subsequently converted to a similarity γs,t by
the transformation γs,t = a− ds,t/dmax, where a ≥ 1 is a parameter to control
the base similarity between tasks, and dmax is the maximal distance between
any pair of leaves in T . The matrix Γ that captures all pairwise similarities γs,t

will be referred to as task similarity matrix in the following.
In this method, the prior information comes from the models of similar tasks.

All the models are trained jointly by optimizing the regularization term along
with the loss �, which is measured separately for each wt on the corresponding
data set St,

min
w1,...,wM

1
2

M∑
t=1

M∑
s=1

γs,t‖wt −ws‖2 +
M∑

t=1

Ct

∑
(x,y)∈St

� (〈x,wt〉 , y) .

The parameter Ct is used to trade off the loss for task t on the training sample
against the regularization term in order to control generalization performance.
In our experiments, we set Ct = C, for t = 1, . . . , M for simplicity. The biological
interpretation of this formulation is that if two organisms share a sufficiently long
evolutionary history before divergence (reflected by γs,t), it can be expected that
certain aspects of the model describing the biological mechanism are conserved.
Thus, we use the task-similarity matrix Γ to control how strongly we regularize
each (wt,ws) pair to be close to each other.
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Decomposition. The pairwise formulation learns models only for the leaf nodes
of the hierarchy, as opposed to the Top-Down-SVM approach, in which the num-
ber of models to learn is given by all the nodes of the hierarchy. Its comparative
disadvantage, on the other hand, is that it couples the parameters of all models,
which leads to a large optimization problem. In order to overcome this limi-
tation, we developed a decomposition of the optimization problem that allows
the global solution to be obtained by solving a series of SVM-like quadratic pro-
grams iteratively until convergence. It can be shown that the above optimization
problem has a fixed point that coincides with the optimization problem of

min
wt

1
2λt‖wt − rt‖2 + C

∑
(x,y)∈St

� (〈x,wt〉 , y) , ∀t (3)

rt =
∑

s�=t βtsws, (4)
λt =

∑
s�=t γts, βts = γts/λt.

This formulation decouples the optimization problem into individual tasks and,
hence, retains scalability. It states that the regularization prior rt of each task
should be in the convex hull of {ws}s�=t. It can be solved iteratively by finding
the optimal rt for the current wt (cf. (4)) and finding the optimal wt for the
current rt (cf. (3)) for each task until convergence. Note that the difference
between (3) and (2) is the prior model, where in the first case it is the weight
average of related tasks and in the latter it is the parent model. Hence, the SVM
implementations in Section 2.2 can be used to solve (3). Kernelization follows
similarly. Investigating the relation between the dual and primal parameters,

wt =
∑

i:xi∈St

αiyixi +
∑
s�=t

βts

∑
j:xj∈Ss

αjyjxj ,

reveals that the pairwise regularization method results in “borrowing” support
vectors of related models with respect to the task similarities.

2.4 Multitask-Kernel Learning

In Sections 2.2 and 2.3, we presented two hierarchical multitask approaches based
on regularization with respect to related models. In this section, we propose an
alternative approach, MultiKernel, by defining a kernel function that incorpo-
rates data from related tasks. We first define a matrix Λ to encode ancestry
relationships as follows: Let λtr be the similarity of a task t and an inner node
r. As in the previous section, λtr is inversely related to the distance between t
and r, if r is an ancestor of t with respect to T , t �T r, and 0 otherwise. We
then define the predictor function for task t as

ft(x) = wT
t x + bt = (ut +

∑
t�r

λtrvr)T x + bt,

where {v}r are the internal node parameters and ut are the leaf node (task)
parameters. Here, the parameters of the node at each level in the hierarchy
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represent the corresponding level of abstraction. More precisely, the parameters
of the root node capture the most common structure across all tasks and as
we descend in the hierarchy, the parameters capture the deviation from the
previous level. Our goal is to achieve the proper specialization level for each task
by combining these parameters in the prediction function.

We propose to obtain {ut} and {vr} by solving the regularized loss function
for all tasks,

min
{ut},{vr}

1
2

M∑
t=1

‖ut‖2 +
1
2

R∑
r=1

‖vr‖2 + C

M∑
t=1

∑
(x,y)∈St

� (〈x,wt〉 , y) ,

where � is the hinge loss, and R is the number of inner nodes. Note that the
tasks are related to each other through the internal node parameters v as in
the case of Top-Down-SVM. However, the loss term � is evaluated only on the
leaf nodes, as opposed to Top-Down-SVM, where � is evaluated at all nodes
in the hierarchy by combining the relevant data sets. Instead of learning the
internal node models by error minimization and then enforcing the models of
the parent-child nodes to be similar, the goal here is to learn the internal node
models directly by minimizing the error on the leaf nodes (i.e. the tasks). It can
be shown that the dual formulation of the problem above is equivalent to that
of the standard SVM

max
α
− 1

2

n∑
i=1

n∑
j=1

αiαjyiyj k̃(xi,xj) +
n∑

i=1

αi

s.t. αT y = 0, 0 ≤ αi ≤ C ∀i ∈ {1, n},

where the kernel is defined on the union of all data sets,

k̃(xi, xj) = γ̃t(i),t(j)k(xi, xj).

Here, t(i) denotes the task that data point xi belongs to, and γ̃ts are the entries
of Γ̃ = I + ΔΔT . We require Γ̃ to be positive semi-definite in order to yield
a valid kernel k̃. Hence, we have constructed a kernel k̃ that incorporates the
interaction among tasks in addition to the interaction among data points. This
formulation is a generalization of the domain adaptation method of [5], where
the reweighting of the original kernel matrix is less flexible. Lastly, please note
that, while we needed Δ for the sake of derivation, it becomes clear from the dual
formulation that Γ̃ may be obtained using the same transformation as described
in Section 2.3, which was done for the following experiments.

3 Results

Experimental Setup. We performed experiments on two types of data sets. First,
we considered synthetic sequence data, which was created by applying mutations
to a Position Specific Scoring Matrix (PSSM) according to a pre-defined binary
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tree structure. Balanced, equally sized training data sets, 100 examples each,
were sampled for each of the leaves. As test set, an additional 5000 examples
were sampled for each task. We used the area under the ROC curve to evaluate
the prediction performance. (An evaluation using the area under the precision
recall curve yields similar results.)

As a second application, we considered the problem of splice site recognition.
We generated and used labeled sequences of acceptor splice sites from 15 different
eukaryotic genomes, which were similarly generated in [10,11] (see Figure 3 for
the taxonomic relation between the organisms). For each task, we obtained 10000
training examples and an additional test set of 5000 examples. We normalized
the data sets to have 100 negative examples per positive example. We report the
area under the precision recall curve (auPRC), which is an appropriate measure
for unbalanced classification problems (i.e. detection problems) [9].

Experiments were performed for each of the presented MTL methods (Top-
Down-SVM, Pairwise, MultiKernel) and the following two baseline methods. In
Union, all data are combined into one data set S = ∪M

t=1St, and a single global
model is obtained, which is used to predict on all domains. Furthermore, we
consider the baseline method Plain, in which an individual SVM is trained on the
data Si of each domain separately, not taking into account any information from
the other domains. For each method, the regularization parameter C was chosen
by cross-validation with 4 and 3 splits for toy and splice data, respectively. After
obtaining the optimal C, we retrained the model on all available training data.
The performance was measured on the separate test sets, which are considered
large enough to obtain reliable estimates of the predictors’ performances. The
data sets, as well as the Appendix with more detail about hyper-parameter
selection and toy data generation will be made available on our web-site4.

Results on the Toy Datasets. We consider two different settings of generating the
toy data sets: one with relatively high mutation rate (larger differences between
neighbouring tasks in the hierarchy) and one with small mutation rate (all tasks
are closely related). For this study, we analyze how the different methods perform
in these two settings with respect to the number of tasks (8, 16, 32, 64 tasks).
The results are shown in Figure 2. We can observe that the two baseline methods
perform very differently: While the Plain method performs essentially indifferent
for different numbers of tasks and mutation rates, the Union method performs
very well when the mutation rate is low, but quite poorly for large mutation
rates. Moreover, the performance of Union degrades for an increasing number
and, hence, diversity of tasks. This is particularly pronounced for high mutation
rates. The three proposed methods all perform better than the two baseline
methods, indicating that it pays-off to take the additional data and the relation
between the tasks into account. However, among the three proposed methods
there is no method that consistently performs best.

Results on the Splice Dataset. On the toy data set, all three MTL methods
perform similarly well and clearly outperform the two baselines on all eight
4 http://fml.mpg.de/raetsch/suppl/mtl-taxonomy

http://fml.mpg.de/raetsch/suppl/mtl-taxonomy
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(a) Toy data: High mutation rate (b) Toy data: Low mutation rate

Fig. 2. Results for the five considered methods on the toy data sets with high and
low mutation rate. Shown are the average areas under the ROC curves for different
numbers of tasks that have been generated from full binary trees.

tasks. For the splice site data set, examining the average performance across all
organisms (the last column in Figure 4), we also observe superior performance
of the MTL methods over the baseline methods. The Plain method is again
outperformed by all other methods, which emphasizes the importance of using
data from related organisms. Comparing the hierarchical MTL methods, we
observe that the Top-Down-SVM approach performs slightly better than the
other MTL methods. We conjecture that this is due to a suboptimal choice of
the similarity matrix, where tree-hop-distance was used for the pairwise and
multikernel approach.

Zooming in on the results for individual organisms, we observe the same trend:
MTL methods outperform the baselines in most cases and the Plain method
yields the worst performance. For 11 out of 15 organisms, all MTL methods
perform better than the baseline. The Top-Down method always performs bet-
ter than the baseline methods, except for A. nidulans, which is the only fungal
organism in our set. The gain from hierarchy is more pronounced in the lower
levels of the hierarchy, e.g., for A. thaliana, O. sativa, O. latipes, and D. rerio,
where data from closely related organisms are used to leverage the learning pro-
cess. An exception to this behaviour is seen on the mammals branch, where the
performance gain from MTL methods gets smaller for H. sapiens and essentially
diminishes for M. musculus. Our conjecture is that the hierarchy for this branch
is not deep enough in order to represent closely related organisms. Including
more similar organisms, and hence, extending the hierarchy to capture more
evolutionary steps, can improve the performance gain for these organisms.

It is worthwhile to investigate the performance of the methods on A. nidu-
lans, which is the child of the root node and, therefore, most distantly related to
the other organisms. We observe that the Union method performs worst on this
organism and the MTL methods perform on the same level as the Plain method.
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Fig. 3. Taxonomy used to relate organisms for the splicing experiment

Fig. 4. Results for the splice site data sets from 15 eukaryotic genomes: Shown are
auPRC performances of the five considered methods for each organism (two baseline
methods: Plain, Union; three proposed methods: Top-Down, Pairwise, and Multiker-
nel). We can observe that the two of the MTL methods consistently outperform the
baseline methods. In 14/15 cases, the hierarchy information lead to improved prediction
results.

Hence, MTL methods manage to improve the performance for closely related or-
ganisms, while causing (essentially) no performance loss on the distantly related
ones.

Moreover, it is interesting to observe that A. nidulans and C. elegans are the
only organisms/tasks, for which the Union method is considerably worse than
the Plain method. This hints at major differences between the recognition of
splice sites in these two organisms. This is less surprising for A. nidulans as
it is for C. elegans. It appears worth investigating this property also for other
nematode genomes to better understand this observation.

4 Discussion and Conclusion

We outlined two principle ways of leveraging information from related organ-
isms, where relationship between organisms is defined with respect to a given
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hierarchy. We presented three algorithms that readily deal with large scale prob-
lems such as those frequently encountered in genomic sequence analysis. We have
demonstrated that our methods outperform baseline methods on synthetic data,
and data from splice site prediction. On the one hand, the poor performance
of Plain relative to the MTL methods shows that exploiting information from
other tasks is in fact beneficial. On the other hand, the poor result of Union
demonstrates that there is no single model that fits all tasks equally. Clearly,
methods that carefully combine the data from different tasks according to their
relatedness perform best.

We are encouraged by the good performance of the Top-Down-SVM method,
as it provides a fast, simple and non-parametric way of exploiting hierarchical
information. Inferring an accurate task-similarity matrix Γ proves to be non-
trivial, therefore one should think of additional ways of using the hierarchy to
facilitate that task. Experiments on the splicing data show that a simple task-
similarity matrix based on tree-hop-distance can be suboptimal, particularly for
cases when edge lengths (i.e. evolutionary distance to the parent) are unequal.
Our immediate future work involves experiments, where edge lengths are incor-
porated into the similarity matrix. For phylogenetic trees, edge lengths can, for
instance, be given by evolutionary years.

From our experience with Multitask learning experiments, we conclude that
certain requirements have to be fulfilled in order for MTL method to be benefi-
cial. In particular, the problem has to be difficult enough to require considerable
amounts of data. In this context, difficult means that the number of training ex-
amples for each task is relatively low, compared to the complexity of the model
(e.g., we need many training examples to learn good models, when using string
kernels of high degree).

Furthermore, the tasks have to be similar enough to contain mutually relevant
information. If tasks are too different, and the learning problem is reasonably
easy, we might be better off learning tasks independently. On the contrary, if
task are too similar MTL methods will not give rise to much improvement over
obtaining one global model (as shown in the toy-data experiment).

Assuming reasonable conditions in terms of problem difficulty and task simi-
larity, we can benefit most from a hierarchy if we consider relatively many tasks.
Here, we need the fine-grained information about task relations contained in a
hierarchy to direct the trade-off in our learning approaches. In particular, we
can benefit most compared to one global model (i.e. Union), if the hierarchy
describes a rich structure (e.g., not a trivial one, such as all leaves attached to
the root).

For all of the presented methods, we plan to provide publicly available scalable
implementations based on modified versions of SVMLight [4] and LibSVM [7]
as part of the Shogun Machine Learning Toolbox [12]. Lastly, we would like to
emphasize that in computational biology there is a great number of problems for
which corresponding data sets are available for multiple organisms. We expect
that hierarchical MTL methods can indeed make a big difference for this class of
problems. Therefore, the methods and implementations that we presented could
be of value to a wide range of applications.
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domain adaptation algorithms. In: Advances in Neural Information Processing Sys-
tem, NIPS, Vancouver, B.C., vol. 22 (2008)
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Abstract. Metagenomics is the study of microbial communities sam-
pled directly from their natural environment, without prior culturing.
Among the computational tools recently developed for metagenomic se-
quence analysis, binning tools attempt to classify all (or most) of the
sequences in a metagenomic dataset into different bins (i.e., species),
based on various DNA composition patterns (e.g., the tetramer frequen-
cies) of various genomes. Composition-based binning methods, however,
cannot be used to classify very short fragments, because of the substan-
tial variation of DNA composition patterns within a single genome. We
developed a novel approach (AbundanceBin) for metagenomics binning
by utilizing the different abundances of species living in the same environ-
ment. AbundanceBin is an application of the Lander-Waterman model to
metagenomics, which is based on the l-tuple content of the reads. Abun-
danceBin achieved accurate, unsupervised, clustering of metagenomic se-
quences into different bins, such that the reads classified in a bin belong
to species of identical or very similar abundances in the sample. In ad-
dition, AbundanceBin gave accurate estimations of species abundances,
as well as their genome sizes—two important parameters for characteriz-
ing a microbial community. We also show that AbundanceBin performed
well when the sequence lengths are very short (e.g. 75 bp) or have se-
quencing errors.

Keywords: Binning, metagenomics, EM algorithm, Poisson distribution.

1 Introduction

Metagenomic studies have resulted in vast amounts of sequence, sampled from
a variety of environments, leading to new discoveries and insights into the un-
cultured microbial world [1], such as the diversity of microbes in different
environments [2,3], microbial (and microbe-host) interactions [4,5], and the en-
vironmental and evolutionary processes that shape these communities [6]. Cur-
rent metagenomic projects are facilitated by the rapid advancement of DNA
sequencing techniques. Recently developed next-generation sequencing (NGS)
technologies [7] (such as Roche/454 [8] and Illumina/Solexa [9]) provide lower
cost sequence, without the cloning step inherent in conventional capillary-based
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methods. These NGS technologies have increased the amount of sequence data
obtained in a single run by several orders of magnitude.

One of the primary goals of metagenomic projects is to characterize the organ-
isms present in an environmental sample and identify the metabolic roles each
organism plays. Many computational tools have been developed to infer species
information from raw short reads directly, without the need for assembly—
assembly of metagenomic sequences into genomes is extremely difficult, since
the reads are often very short and are sampled from multiple genomes. We cat-
egorize the various computational tools for the estimation of taxonomic content
into two basic classes, and will review them briefly below.

The first class of computational tools maps metagenomic sequences to taxa
with or without using phylogeny (often referred to as the phylotyping of metage-
nomic sequences), utilizing similarity searches of the metagenomic sequences
against a database of known genes/proteins. MEGAN [10] is a representative
similarity-based phylotyping tool, which applies a simple lowest common an-
cestor algorithm to assign reads to taxa, based on BLAST results. Phyloge-
netic analysis of marker genes, including 16S rRNA genes [11], DNA polymerase
genes [12], and the 31 marker genes defined by [13], are also applied to deter-
mining taxonomic distribution. MLTreeMap [14] and AMPHORA [15] are two
phylogeny-based phylotyping tools that have been developed, using phylogenetic
analysis of marker genes for taxonomic distribution estimation: MLTreeMap uses
TreePuzzle [16], and AMPHORA uses PHYML [17]. CARMA [18] searches for
conserved Pfam domains and protein families [19] in raw metagenomic sequences
and classifies them into a higher-order taxonomy, based on the reconstruction of
a phylogenetic tree for each matching Pfam family. These similarity-based and
phylogeny-based phylotyping tools have a common limitation: they do not say
much about the taxonomic distribution of the reads that do not match known
genes/proteins, which may constitute the majority of the metagenomic sequences
for some samples. A more recent approach PhymmBL [20] combines similarity
search and DNA composition patterns to map metagenomic sequences to taxa,
achieving an improved phylogenetic classification for short reads.

A second class of computational tools attempts to solve a related but distinct
problem, the binning problem, which is to cluster metagenomic sequences into
different bins (species). Most existing computational tools for binning utilize
DNA composition. The basis of these approaches is that genome G+C content,
dinucleotide frequencies, and synonymous codon usage vary among organisms,
and are generally characteristic of evolutionary lineages [21]. Tools in this cate-
gory include TETRA [22], MetaClust [23], CompostBin [24], TACOA [25], and
a genomic barcode based method [26]. All the existing DNA composition based
methods achieve a reasonable performance only for long reads—at least 800 bp.
TACOA is able to classify genomic fragments of length 800 and 1000 bp into
the phylogenetic rank of class with high accuracy (accurate classification at the
order and genus level requires fragments of ≥ 3 kb) [25]; CompostBin was tested
on simulated datasets of 1 kb reads [24]. This length limitation (∼1 kb) will
be difficult (if not impossible) to break, because of the local variation of DNA
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composition [21]. Foerstner et al. reported that the GC content of complex mi-
crobial communities seems to be globally and actively influenced by the envi-
ronment, suggesting that it may be even harder to distinguish fragments from
different species living in the same environment, based on DNA composition [27].

In addition, metagenomic sequences may be sampled from species of very dif-
ferent abundances (for example, the Acid Mine Drainage project [28] found two
dominant species, accompanied by several other rarer species in that environ-
ment), and the difference in abundances may affect the classification results for
DNA-composition based approaches. For example, a weighted PCA was adopted
instead of a standard PCA in CompostBin, to reduce the dimension of compo-
sition space, considering that the within-species variance in the more abundant
species might be overwhelming, compared to between-species variance [24].

Here we report a novel binning tool, AbundanceBin, which can be used to clas-
sify very short sequences sampled from species with different abundance levels
(Fig. 1a). The fundamental assumption of our method is that reads are sampled
from genomes following a Poisson distribution [29]. In the context of metage-
nomics, we model the sequencing reads as a mixture of Poisson distributions.
We propose an Expectation-Maximization (EM) algorithm to find parameters
for the Poisson distributions, which reflect the relative abundance levels of the
source species. We note that a similar method was first described by Li and Wa-
terman, for the purpose of modeling the repeat content in a conventional genome
sequencing project [30], and Sharon et al. proposed a statistical framework for
protein family frequency estimation from metagenomic sequences based on the
Lander-Waterman model [31], given that different protein families are of different
lengths. AbundanceBin assigns reads to bins using the fitted Poisson distribu-
tion. In addition, AbundanceBin gives an estimation of the genome size (or the
concatenated genome size of species of the same or very similar abundances),
and the coverage (which reflects the abundances of species) of each bin, all in an
unsupervised manner. Since AbundanceBin is based on l-tuple content (not the
composition), in principle it can be applied to classify reads that are as short as
l bp. We report below first the algorithm and then tests of AbundanceBin on
several synthetic metagenomic datasets and a real metagenomic dataset.

2 Methods

Randomized shotgun sequencing procedures result in unequal sampling of dif-
ferent genomes, especially when the species abundance levels differ. We seek to
discover the abundance values as well as the genome sizes automatically and
then bin reads accordingly. We assume that the distribution of sequenced reads
follows the Lander-Waterman model [29], which calculates the coverage of each
nucleotide position using a Poisson distribution. We thus view the sequencing
procedure in metagenomic projects as a mixture of m Poisson distributions, m
being the number of species. The goal is to find the mean values λ1 to λm, which
are the abundance levels of the species, of these Poisson distributions.
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(a) (b)

Fig. 1. (a) A schematic illustration of AbundanceBin pipeline, and (b) the recursive
binning approach used to automatically determine the number of bins

2.1 Mixed Poisson Distributions

In random shotgun sequencing of a genome, the probability that a read starting
from a certain position is N/(G − L + 1), where N is the number of reads,
G is the genome size, and L is the length of reads. N/(G − L + 1) ≈ N/G ,
given G � L. Assume x is a read and a l-tuple w belongs to x. The number of
occurrences of w in the set of reads follows a Poisson distribution with parameter
λ = N(L− l + 1)/(G−L +1) ≈ NL/G in a random sampling process with read
length L.

Similarly, for a metagnomic dataset, the number of occurrences of w in the
set of reads also follows a Poisson distribution with parameter λ = N(L − l +
1)/(G − L + 1) ≈ NL/G, but G in this case is the total length of the genomic
sequences contained in the metagenomic dataset. In metagenomic datasets, the
reads are from species with different abundances. If the abundance of a species
i is n, the total number of occurrences of w in the whole set of reads coming
from this species should follow a Poisson distribution with parameter λi = nλ,
due to the additivity of Poisson distribution. Now the problem of finding the
relative abundance levels of different species is transformed to the modeling of
mixed Poisson distributions.

2.2 Binning Algorithm

Given a set of metagenomic sequences, the algorithm starts by counting l-tuples
in all reads (Fig. 1a). Then we use an Expectation-Maximization (EM) algorithm
to approximate the species abundance level and the genome size of each species,
which consists of 4 steps, as follows.

1. Initialize the total number of species S, their genome size li, and abundance
level λi for i = 1, 2, ..., S.
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2. Calculate the probability that the l-tuple wj (j = 1, 2, ..., W ; W is the total
number of possible l-tuples) coming from ith species given its count n(wj)
(see Appendix for details).

P (wj ∈ si|n(wj)) =
li∑S

m=1 lm(λm

λi
)n(wj)e(λi−λm)

(1)

3. Calculate the new values for each li and λi.

li =
W∑

j=1

P (wj ∈ si|n(wj)) (2)

λi =

∑W
j=1 n(wj)P (wj ∈ si|n(wj))

li
(3)

4. Iterate step 2 and 3 until the parameters converge or the number of runs ex-
ceeds a maximum number of runs. The convergence of parameters is defined
as

∀λi

{∣∣∣∣λt+1
i

λt
i

∣∣∣∣ < 10−5
}

and ∀li
{∣∣∣∣ lt+1

i

lti

∣∣∣∣ < 10−5
}

(4)

where λ
(t)
i and l

(t)
i represent the abundance level and genome length at

iteration t, respectively. The maximum number of runs is set to 100 (which
is sufficient for the convergence of the EM algorithm for all the cases we have
tested).

Once the EM algorithm converges, we can estimate the probability of a read
assigned to a bin, based on its l-tuples binning results as,

P (rk ∈ si) =

∏
wj∈rk

P (wj ∈ si|n(wj))∑
si∈S

(∏
wj∈rk

P (wj ∈ si|n(wj))
) (5)

where rk is a given read, wj is the l-tuples that belong to rk, and si is any bin.
A read will be assigned to the bin with the highest probability among all bins.
A read remains unassigned if 90% of its l-tuples are excluded (counts too low or
too high, see section 2.3), or if the highest probability is < 50%.

2.3 Lower- and Upper-Limit for l-Tuple Counts

We set a lower- and upper-limit for l-tuple counts, as additional parameters,
when we approximate λi and li. The lower-limit is introduced to deal with se-
quencing errors, and the upper-limit is introduced to handle l-tuples with ex-
tremely high counts, such as those from vector sequences or repeats of high copy
numbers. Let the lower-limit be Blower and the upper-limit be Bupper . Then the
formula for calculating λi and li is modified to

li =
W∑

j=1

P (wj ∈ si|n(wj)), ∀n(wj) > Blower ∧ n(wj) < Bupper (6)
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λi =

∑W
j=1 n(wj)P (wj ∈ si|n(wj))

li
, ∀n(wj) > Blower ∧ n(wj) < Bupper (7)

2.4 Automatic Determination of the Total Number of Bins by a
Recursive Binning Approach

In the EM algorithm, we need to provide the number of bins as an input, in order
to determine the parameters of the mixed Poisson distributions. However, this
number is often unknown, as for most metagenomic projects. We implemented a
recursive binning approach to determine the total number of bins automatically.
The recursive binning approach works by separating the dataset into two bins
and proceeds by further splitting bins (as shown in Fig. 1b)—it is a top-down
approach. The recursive binning approach was motivated by the observation
that reads from genomes with higher abundances are better classified than those
with lower abundance. The recursive procedure continues if 1) the predicted
abundance values of two bins differ significantly, i.e., |λi−λj |/min(λi, λj) ≥ 1/2;
2) the predicted genome sizes are larger than a certain threshold (currently set
to 400,000, considering that the smallest genomes of living organisms yet found
are about 500,000 bp—Nanoarchaeum equitans has a genome of 490,885 bp, and
Mycoplasma genitalium has a genome of 580,073 bp); and 3) the number of reads
associated with each bin is larger than a certain threshold proportion (3%) of
the total number of reads classified in the parent bin.

2.5 Performance Evaluation

We defined the classification error rate as the number of misclassified reads di-
vided by the total number of reads. Chatterji et al [24] used a normalized error
rate—the arithmetic average of the classification error rates for all the bins—to
evaluate their binning approach CompostBin. We consider that the standard
error rate, instead of normalized error rate, serves better for the performance
evaluation of AbundanceBin, since AbundanceBin takes advantage of different
species abundances. For comparison, we also provide the normalized classifica-
tion error rates.

2.6 Metagenomic Datasets

We used MetaSim [32] to generate synthetic metagenomic datasets with reads
sampled from species of various abundances. MetaSim takes as input a set of
known genome sequences and an abundance profile, which determines the rel-
ative abundance of each genome sequence in a simulated dataset. The “Exact”
profile defined by MetaSim is used to generate reads without sequencing errors,
and “454” profile for reads generated with a 454 error model. The number of
reads as well as the mean and variance of read lengths are adjusted accordingly:
for average 400 bp, the mean value is set to 400 and the variance is set to 50;
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and for 75 bp, mean and variance are set to 75 and 5. All other settings are kept
as default. The genomes we used for generating synthetic metagenomic datasets,
and the AMD metagenomic sequences and its scaffolds were downloaded from
NCBI.

3 Results

We tested AbundanceBin on various synthetic metagenomic datasets with short
and very short sequence lengths (75–400 bp), and the results show that Abun-
danceBin gives accurate classification of reads to different bins, and accurate es-
timation of the abundances—as well as the genome sizes—in each bin. We note
that since these parameters are usually unknown in real metagenomic datasets,
we focused on synthetic datasets for benchmarking. We also applied Abundance-
Bin to the actual AMD dataset and revealed a relatively clear picture of the
complexity of the microbial community in that environment, consistent with the
analysis reported in [28].

3.1 Tests of Abundance Differences and the Length of l-Tuples

We did a series of experiments to test the abundance ranges of species re-
quired for accurate binning of reads. Fig. 2a shows the binning results for simu-
lated short reads sampled from two genomes (Mycoplasma genitalium G37 and
Buchnera aphidicola str. BP) at abundance ratios, 4:1, 3:1, 2.5:1, 2:1, 1.5:1,
and 1:1 (with 50,000 simulated reads of ∼400 bases for each setting). The clas-
sification error rate is low if the abundance ratio is 2.0 (0.1% and 4.7% for
ratio 4:1 and 2:1, respectively), but rises dramatically when the abundance ratio
drops to 1.5:1 (the error rate is 20.6% for abundance ratio 1.5:1). We conclude
that the abundance ratio needs to reach at least 2:1 for a good classification by
AbundanceBin.

We also tested different lengths of l-tuples, and the results show that when
l drops to 16, the binning performance dropped significantly for cases with two
genomes. The performance improved slightly when l increases to 20 for cases
with more than 3 genomes. Considering the performance on the tested cases, we
chose to use l = 20 for the following experiments.

3.2 AbundanceBin Achieves Accurate Binning, Estimation of
Species Abundance, and Genome Size

The binning results on several simulated datasets of short reads are summarized
in Table 1. AbundanceBin achieved both accurate estimation of species abun-
dances, and accurate assignment of reads to bins of different abundances. The
classification error rates are 0.10% and 0.64% for the classification of reads of
length 400 bp and 75 bp, respectively, sampled from two genomes (cases A and
C in Table 1). The error rates for the classification of reads sampled from more
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Fig. 2. (a) The classification error rates for classifying reads sampled from two genomes
versus their abundance differences, and (b) the recursive binning of a read dataset into
6 bins of different abundances (each box represents a bin with the numbers indicating
the abundance of the reads classified to that bin; e.g., the bin on the top has all the
reads, which will be divided into two bins, one with reads of abundances 1.5, 4, 8 and
64, and the other bin with reads of abundances 32 and 64)

genomes are slightly higher than for two-genome scenarios (e.g., the classifica-
tion error rates for two synthetic metagenomic datasets with reads of length 400
bp and 75 bp, sampled from 3 genomes, are 3.10% and 6.18%, respectively, as
shown in Table 1). For the classification of reads sampled from more than two
genomes, most of the errors occur in the least abundant bin. But AbundanceBin
was still able to classify the reads from species of higher abundance correctly for
all the tested synthetic metagenomic datasets, including one with reads sampled
from 6 different genomes (see Table 2).

We emphasize here that AbundanceBin can bin reads as short as 75 bases
with reasonable classification error rates, as shown in Table 1. As we discussed
in the Introduction, binning of very short reads, such as 75 bases, is extremely
difficult and cannot be achieved by any of the existing composition based binning
approaches, due to the substantial variation in DNA composition within a single
genome. AbundanceBin will also give an estimation of the genome size for each
bin. As shown in Table 1, for most of the tested cases, the estimated genome
sizes are very close to the real ones. We note that AbundanceBin will classify
reads from different species of similar abundances into a single bin. In this case,
the predicted genome size for that bin is actually the sum of the genome sizes
of the species classified into that bin.

AbundanceBin also worked well on binning closely related species (closely
related species often have similar genomes, and therefore it is often very diffi-
cult to separate reads sampled from closely related species). For the synthetic
metagenomic datasets we tested, most reads from species that differ at only the
species level can still be classified into correct bins with very low error rates. For
examples, for two datasets, AbundanceBin resulted in binning with error rates
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of 0.96% and 0.68% for the dataset simulated from the genomes of Corynebac-
terium efficiens YS-314 and Corynebacterium glutamicum ATCC 13032, and
the dataset simulated from the genomes of Helicobacter hepaticus ATCC 51449
and Helicobacter pylori 26695 (both sets of genomes only differ at the species
level), respectively. These results demonstrate the ability of our algorithm to sep-
arate short reads from closely related species, even if the species are of the same
genus. (Note that AbundanceBin cannot separate reads from different strains of
the same species into different bins.)

3.3 AbundanceBin Can Handle Sequencing Errors

As mentioned in Methods, AbundanceBin can be configured to ignore l-tuples
that only appear once to deal with sequencing errors, considering that those
l-tuples are likely to be contributed by reads with sequencing errors and that
the chance of having reads with sequencing errors at the same position will be
extremely low. This may exclude some genuine l-tuples, but our tests reveal that
AbundanceBin achieved even better classification if all l-tuples of count 1 are
discarded (data not shown). AbundanceBin achieved slightly worse classification
of reads when reads contain sequencing errors, as compared to the classification
of simulated reads without sequencing errors (see cases E and F in Table 1).
This is expected, given that many spurious l-tuples are generated with a 454
sequencing error model. For example, 12,901,691 20-tuples can be found in a
dataset of simulated reads from two genomes with sequencing errors (case E in
Table 1), 5 times more than the case without error models (2,370,720).

3.4 AbundanceBin Doesn’t Require Prior Knowledge of the Total
Number of Bins

Table 2 compares the performance of AbundanceBin using the recursive binning
approach on several synthetic metagenomic datasets to that of AbundanceBin
given the total number of bins. Overall the performances of the recursive binning
approach are comparable to the cases with predefined bin numbers. Fig. 2b
depicts the recursive binning results of the classification of one of the synthetic
metagenomic datasets (which has reads sampled from 6 genomes) into 6 bins of
different abundances (with classification error rate = 3.73%), starting with a bin
that includes all the reads and ending with 6 bins each having reads correctly
assigned to them. It is interesting that the recursive binning approach achieved
even better performance for some cases. A simple explanation to this is that the
recursive binning strategy may create bigger abundance differences, especially
at the beginning of the binning process, and AbundanceBin works better at
separating reads from species with greater abundance differences (see Fig. 2a).
We note again that the high abundant bins are classified relatively well. The
majority of errors occur in low abundant bins.
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Table 1. Tests of AbundanceBin on synthetic metagenomic datasets (A-D without
sequencing errors, and E-F with sequencing errors a)

ID Spe b Len c Total reads Bin
Abundance Genome size

Error rate(%)Real Predicted Real Predicted

A 2 400 bp 50,000
1 27.23 26.27 580,076 570,859

0.10 (0.20 d)2 6.83 6.49 615,980 614,605

B 3 400 bp 50,000
1 24.64 23.78 580,076 568,549

3.10 (6.64)2 6.13 6.02 615,980 517,110
3 1.8 2.39 1,072,950 941,425

C 2 75 bp 200,000
1 20.47 15.66 580,076 562,584

0.64 (1.07)
2 5.08 3.92 615,980 608,401

D 3 75 bp 200,000
1 27.6 20.93 580,076 565,859

6.18 (11.74)2 6.93 5.99 615,980 368,836
3 2.07 2.43 1,072,950 1,100,309

E 2 297 bp 50,000 1 20.21 11.63 580,076 521,168 1.12 (0.99)
2 5.07 3.01 615,980 945,435

F 3 297 bp 150,000
1 55.48 30.58 580,076 559,395

8.20 (11.41)2 13.98 9.6 615,980 341,290
3 3.50 2.72 1,072,950 3,064,199

a: The average sequencing error rate introduced is 3%, higher than the error rate of
recent 454 machines (e.g., the accuracy rate reported in [33] is 99.5%). A 3% sequenc-
ing error can reduce the l-tuple counts by about half (i.e., about 1 − 0.9720 = 0.46
of expected 20-mers without sequencing errors), which makes accurate estimation of
abundance and genome size difficult. b: The number of species used in simulating each
metagenomic dataset. The genomes used in these tests are Mycoplasma genitalium
G37, Buchnera aphidicola str. BP, and Chlamydia muridarum Nigg. The first two
genomes are used for the 2 species cases. c: The average length of the simulated reads.
d: Normalized error rates (see Methods for details).

Table 2. Comparison of binning performance using the recursive binning approach
(“Recursive”) versus the binning when the total number of bins is given (“Predefined”))

Test cases
Error rate (normalized error rate)

Predefined Recursive
3 genomes (no error model; 400 bp) 3.10% (6.64%) 3.24% (7.47%)
3 genomes (no error model; 75 bp) 6.18% (11.74%) 4.84% (9.31%)
3 genomes (454 error model; 297 bp) 8.21% (11.41%) 2.29% (4.21%)
4 genomes (no error model; 400bp) 1.12% (5.16%) 2.96% (6.96%)
6 genomes (no error model; 400bp) 2.50% (9.23%) 3.73% (13.07%)

3.5 Binning of Acid Mine Drainage (AMD) Datasets

The AMD microbial community was reported to consist of two species of high
abundance and three other less abundant species [28]. With the difference of two
abundance levels in this environment, we expect that the algorithm could classify
the AMD dataset into two bins. We applied AbundanceBin to a simulated AMD
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dataset (so that we have correct answers for comparison) and the real AMD
dataset from [28].

The synthetic AMD dataset contains 150,000 reads from five genomes, with
abundances 4:4:1:1:1. Our recursive binning approach automatically classified
the reads into two bins with an error rate of 1.03% (see Fig. 3a). (Note here
that each bin has reads sampled from multiple species. We consider that a read
is classified correctly if it is classified into the bin of the correct abundance.)
The binning accuracy dropped only slightly (with an error rate of 2.25%) for the
synthetic AMD dataset when sequencing errors were introduced.

We also applied AbundanceBin to reads from the actual AMD dataset (down-
loaded from NCBI trace archive; 13696 environmental sequence.007).Abundance-
Bin successfully classified these reads into exactly two bins (one of high abundance
and one of low abundance) using the recursive binning approach (see Fig. 3b). Note
the reads in this dataset have vector sequences, which resulted in a very small num-
ber of l-tuples of extremely high abundance (the highest count is 50,720)—this
phenomena has been utilized for vector sequence removal, as described in [34]).
Two approaches were employed to avoid the influences of the vector sequences:
1) we used the Figaro software package[34] to trim the vector sequences, and 2)
we set an upper-limit for the count of all l-tuples, ignoring l-tuples with counts
larger than the upper-limit (200 by default). We also downloaded the sequences
of 5 scaffolds of the 5 partial genomes assembled from the AMD dataset, so that
we can estimate the classification accuracy of AbundanceBin. The classification
error rate of the AMD sequences is ∼14.38%. Note this error rate only gives us a
rough estimation of the classification accuracy, since only 58% of the AMD reads
can be mapped back to the assembled scaffolds based on similarity searches by
BLAST—we mapped a read to a scaffold if the read matches the scaffold with
BLAST E-value ≤ 1e-50, sequence similarity ≥ 95%, and a matched length of ≥
70% of the read length. We emphasize that AbundanceBin achieved a much better
classification (with an error rate of 1.03%) for the simulated AMD reads, for which
we have correct answers to compare with.

4 Discussion

We have shown that our abundance based algorithm for binning has the ability
to classify short reads from species with different abundances. Our approach has
two unique features. First, our method is “unsupervised” (i.e., it doesn’t require
any prior knowledge for the binning). Second, our method is especially suitable
for short reads, as long as the length of reads exceeds the length of the l-tuple
(currently 20). AbundanceBin can in principle be applied to any metatagenomic
sequences acquired by current NGS, without human interpretation.

We implemented a simple strategy—excluding l-tuples that are counted only
once from the abundance estimation—to handle sequencing errors, and tests
have showed that AbundanceBin achieved better classification if all l-tuples of
single count are discarded. One potential problem of discarding l-tuples of low
counts is that some genuine l-tuples will be discarded as well, which results
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Fig. 3. The binning results for a simulated (a), and the actual (b) AMD datasets. The
histogram shows the total number of reads from different genomes classified to each
bin.

in a lower abundance estimation and a worse prediction of genome sizes, espe-
cially for the species with low abundance, as shown in Table 1. But we argue
that AbundanceBin can still capture the relative abundances of different bins
correctly, which is more important than the absolute values. Another potential
problem is that reads from low abundant genomes may not be classified when
sequencing errors are introduced in the reads. For example, the number of un-
classified reads in a two-genome case (metagenomic dataset E in Table 1) is 12,
and 389 in a three-genome case (metagenomic dataset F in Table 1). All un-
classified reads in both cases belong to the least abundant species, indicating
that the abundance values greatly affect the predicted results, especially when
sequencing errors are present. We expect that both problems will become less
problematic as sequencing coverage is increased, which is possible with massive
throughput NGS techniques. As for the abundance ratio required for successful
classification, we find that the ratio should be at least 2:1 to obtain an accept-
able result. The required ratio, of course, is also affected by several other factors,
such as the actual abundance level, the average length of reads, and the sequenc-
ing error rate. Our tests intentionally use well-classified datasets to allow us to
follow changes in classification error resulting from abundance differences, but
other factors besides the abundance ratio must also be considered.

AbundanceBin runs fast, and all the tests shown in the paper were completed
within an hour (using single CPU on Intel(R) Xeon(R)@2.00GHz) with very
moderate memory usage. For example, binning of the synthetic metagenomic
dataset A (see Table 1) requires 100MB memory, and dataset B 150MB. How-
ever, AbundanceBin may require large memory when working with very large
datasets of short reads.

We expect that AbundanceBin will have three important applications. First
it can be used for binning metagenomic sequences, as well as estimating species
abundances and genome sizes. Second, it can be combined with other binning
approaches. Note that AbundanceBin is not designed to separate reads from
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species of very similar abundances; we will develop an integrated method that
combines AbundanceBin and other binning methods that use, for example, DNA
composition. We expect that such an integrated method will achieve better clas-
sification performance by incorporating orthogonal information (abundance and
composition, for example). Finally, we expect that applying AbundanceBin to
separate reads into bins of different abundances (coverages), prior to the assem-
bly of metagenomic sequences, will improve the quality of genome assembly.
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Appendix

Equation (1) is used to calculate the probability that l -tuple wj (j=1,2,...,W ;
W is the total number of possible l -tuples) coming from the ith species given
its count n(wj). It is computed by applying Bayes’ rule as follows.

Pr (wj ∈ si | n(wj)) =
Pr (n(wj) | wj ∈ si) Pr (wj ∈ si)

Pr (n(wj))
(8)

=
Pr (n(wj) | wj ∈ si) Pr (wj ∈ si)∑S

m=1 Pr (n(wj) ∈ sm | wj ∈ sm) Pr (wj ∈ sm)
(9)

=
Pr (n(wj) | wj ∈ si) · li

G∑S
m=1 Pr (n(wj) ∈ sm | wj ∈ sm) · lm

G

(10)

=
λ

n(wj )
i e−λi

n(wj)!
· li∑S

m=1

(
λ

n(wj )
m e−λm ·

n(wj)!
lm

) (11)

=
li∑S

m=1

((
λm

λi

)n(wj)
· eλi−λm · lm

) (12)

where Pr (wj ∈ si) = li
G is the prior probability that word j is from species i,

and G is the total length of genomic sequences contained in the metagenomic
dataset. Equation (12) is the result of applying the probability mass function of
Poisson distribution into the probability function of equation (10).
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Abstract. Nuclear magnetic resonance (NMR) spectroscopy plays a critical role
in structural genomics, and serves as a primary tool for determining protein struc-
tures, dynamics and interactions in physiologically-relevant solution conditions.
The current speed of protein structure determination via NMR is limited by the
lengthy time required in resonance assignment, which maps spectral peaks to
specific atoms and residues in the primary sequence. Although numerous algo-
rithms have been developed to address the backbone resonance assignment prob-
lem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain
resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain
resonances depend on a set of NMR experiments that record through-bond inter-
actions with side-chain protons for each residue. Unfortunately, these NMR ex-
periments have low sensitivity and limited performance on large proteins, which
makes it difficult to obtain enough side-chain resonance assignments. On the
other hand, it is essential to obtain almost all of the side-chain resonance assign-
ments as a prerequisite for high-resolution structure determination. To overcome
this deficiency, we present a novel side-chain resonance assignment algorithm
based on alternative NMR experiments measuring through-space interactions be-
tween protons in the protein, which also provide crucial distance restraints and are
normally required in high-resolution structure determination. We cast the side-
chain resonance assignment problem into a Markov Random Field (MRF) frame-
work, and extend and apply combinatorial protein design algorithms to compute
the optimal solution that best interprets the NMR data. Our MRF framework cap-
tures the contact map information of the protein derived from NMR spectra, and
exploits the structural information available from the backbone conformations
determined by orientational restraints and a set of discretized side-chain confor-
mations (i.e., rotamers). A Hausdorff-based computation is employed in the scor-
ing function to evaluate the probability of side-chain resonance assignments to
generate the observed NMR spectra. The complexity of the assignment problem
is first reduced by using a dead-end elimination (DEE) algorithm, which prunes
side-chain resonance assignments that are provably not part of the optimal so-
lution. Then an A* search algorithm is used to find a set of optimal side-chain
resonance assignments that best fit the NMR data. We have tested our algorithm
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on NMR data for five proteins, including the FF Domain 2 of human transcrip-
tion elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), hu-
man ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family
DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain
(hSRI). Our algorithm assigns resonances for more than 90% of the protons in
the proteins, and achieves about 80% correct side-chain resonance assignments.
The final structures computed using distance restraints resulting from the set of
assigned side-chain resonances have backbone RMSD 0.5−1.4 Å and all-heavy-
atom RMSD 1.0 − 2.2 Å from the reference structures that were determined by
X-ray crystallography or traditional NMR approaches. These results demonstrate
that our algorithm can be successfully applied to automate side-chain resonance
assignment and high-quality protein structure determination. Since our algorithm
does not require any specific NMR experiments for measuring the through-bond
interactions with side-chain protons, it can save a significant amount of both ex-
perimental cost and spectrometer time, and hence accelerate the NMR structure
determination process.

1 Introduction

The knowledge of the 3D structures of proteins plays an important role in understand-
ing protein functions and discovering new drugs. Although high-throughput DNA se-
quencing technologies have been able to identify nearly the complete sequence of the
human genome, studies of the 3D structures of proteins on a genome-wide scale (i.e.,
structural proteomics) are still limited by current slow speed of protein structure de-
termination. X-ray crystallography and nuclear magnetic resonance (NMR1) are two
primary experimental methods for high-resolution protein structure determination. Un-
fortunately, structure determination by either method is laborious and time-consuming.
In X-ray crystallography, growing a good quality crystal is in general a difficult task.
NMR structure determination does not require crystals, thus it can be used to determine
protein structures in the physiologically-relevant solution state, and has become a pre-
mier tool for studying protein dynamics. However, current NMR structure determina-
tion is still limited by the lengthy time required to process and analyze the experimental
data. The development of automated and efficient procedures for analyzing NMR data
and acquiring experimental restraints will thereby speed up protein structure determi-
nation and advance structural proteomics research. In practice, side-chain resonance
assignments (the focus of this paper) are required for both side-chain dynamics studies
and high-resolution structure determination.

1 Abbreviations used: NMR, nuclear magnetic resonance; ppm, parts per million; RMSD, root
mean square deviation; HSQC, heteronuclear single quantum coherence spectroscopy; NOE,
nuclear Overhauser effect; NOESY, nuclear Overhauser and exchange spectroscopy; TOCSY,
total correlation spectroscopy; TROSY, transverse relaxation-optimized spectroscopy; RDC,
residual dipolar coupling; PDB, Protein Data Bank; BMRB, Biological Magnetic Reso-
nance Bank; pol η UBZ, ubiquitin-binding zinc finger domain of the human Y-family DNA
polymerase Eta; hSRI, human Set2-Rpb1 interacting domain; FF2, FF Domain 2 of human
transcription elongation factor CA150; GB1, B1 domain of Protein G; CH, Cα-Hα; SSE, sec-
ondary structure element; C′, carbonyl carbon; MRF, Markov Random Field; DEE, dead-end
elimination; GMEC, global minimum energy conformation.
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In NMR terminology, each atom in the known primary sequence of a target protein is
represented by a unique chemical shift (or resonance) in NMR spectra, that is, chemical
shift serves as a scalar “ID” for an atom in the primary sequence. The magnetic inter-
actions captured by an NMR spectrum can be described as a graph, in which each node
represents the resonance of an atom in the primary sequence, and each edge represents a
possible atomic interaction either through bond or through space. We call such a graph
the NMR interaction graph [2]. For example, in an NMR interaction graph derived from
a heteronuclear single quantum coherence spectroscopy (HSQC) spectrum, each edge
represents an amide bond (i.e., HN−N) interaction, while in an NMR interaction graph
derived from a nuclear Overhauser and exchange spectroscopy (NOESY) spectrum,
each edge represents a through-space interaction between a pair of protons closer than
6 Å, measured via the nuclear Overhauser effect (NOE).

In general, NMR structure determination is accomplished through the following pro-
cedure. The first step is to identify the correspondence between chemical shifts (i.e.,
nodes in the NMR interaction graph) and atoms in the primary sequence. Such a pro-
cess is called resonance assignment, which is a crucial step in NMR data analysis
and structure calculation. The resonance assignment can be classified into two cate-
gories: backbone resonance assignment and side-chain resonance assignment, which
refers to resonance assignment for backbone or side-chain atoms. A typical approach
for backbone resonance assignment is to exploit the connectivity information in an
NMR spectrum that measures the bond interactions between backbone atoms in the
main-chain of the primary sequence. For instance, in [1] a globally-consistent Hamil-
tonian path from an NMR interaction graph is found to align to the primary sequence
and obtain backbone resonance assignments. On the other hand, side-chain resonances
are normally assigned by exploiting the chemical shift pattern and the through-bond
connectivity information in side-chains from an HCCH total correlation spectroscopy
(HCCH-TOCSY) spectrum, which links up the side-chain resonances with the pre-
determined backbone resonances using sequential connectivities. The Biological Mag-
netic Resonance Bank (BMRB) [59] has collected statistics on observed chemical shifts
of all amino acids from a large database of solved protein structures. We call this in-
formation the BMRB statistical information. This information is often used to assist
both backbone and side-chain resonance assignment. Once the correspondence be-
tween chemical shifts and atoms in the primary sequence has been identified after
resonance assignment, each NOESY cross peak can be assigned to a pair of protons that
are potentially correlated via a through-space NOE interaction. This process is called
NOE assignment. In practice, neither resonance assignment nor NOE assignment is an
easy task, since NMR spectra are often complicated by spectral artifacts, missing peaks,
experimental noise and peak overlap. The completion of the NOE assignment process
immediately provides a set of NOE distance restraints between spatially-neighboring
protons, and enables structure calculation software, such as XPLOR-NIH [55] and CYANA

[23], to compute the 3D structure of the protein. Besides NOE distance restraints,
other NMR geometric constraints can be also used in structure determination. For ex-
ample, residual dipolar couplings (RDCs) provide global orientational restraints on
the internuclear bond vectors [58, 57], and can be also used in structure determina-
tion [58, 17, 53, 51, 13, 61, 62, 66].
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Although substantial progress has been made in automated backbone resonance as-
signment [68, 2, 10, 37, 14, 64, 1, 31, 60], general approaches for automated side-chain
resonance assignment are still not well developed [43, 48, 5]. Generally the side-chain
resonance assignment problem is much more challenging than the backbone resonance
assignment problem [48,5,47]. Traditional approaches for side-chain resonance assign-
ment [40,41,46,47] usually require a combination of several insensitive side-chain NMR
experiments, including HCCH-TOCSY experiments, to obtain enough side-chain reso-
nance assignments. Unfortunately, the performance of HCCH-TOCSY experiments is
limited on large proteins due to the fast transverse relaxation of protonated carbons,
which causes severe signal loss in NMR spectra. In addition, most large proteins must
be deuterated (i.e., most aliphatic protons are replaced with deuterium isotope, and NMR
signals from these atoms are muted), to reduce peak overlap and congestion in NMR
spectra. The deuteration is also required to increase the efficiency of the transverse
relaxation-optimized spectroscopy (TROSY) experiments that are generally used to en-
hance the sensitivity of NMR spectra. The deuteration for large proteins also drastically
reduces the number of the NMR-active protons attached to side-chain carbons, which
further limits the utility of TOCSY experiments, and thus makes it difficult to attain com-
plete side-chain resonance assignments. On the other hand, it is essential to obtain almost
all of the side-chain resonance assignments as a prerequisite for high-resolution struc-
ture determination, since they enable the NOE assignment, which constrains side-chain
conformations geometrically, thereby enabling high-resolution structure determination.
Although new techniques based on high-dimensional NMR experiments have been pro-
posed to overcome the peak overlap issue in side-chain resonance assignment [25,16],
they still incur a penalty in absolute sensitivity. In general, it takes weeks or even months
for traditional NMR approaches to collect all these required experimental data, and ob-
tain a nearly complete set of side-chain resonance assignments.

In this paper, we describe a novel algorithm that assigns side-chain resonances from
NOESY, backbone chemical shift and RDC data rather than from TOCSY spectra. We
cast the side-chain resonance assignment problem into a Markov Random Field (MRF)
framework, and apply combinatorial protein design algorithms to compute the optimal
solution. Our MRF captures the contact map information in the backbone conforma-
tions determined from RDCs using our recently-developed techniques [61, 62, 13, 66],
and a set of discretized side-chain conformations (i.e., rotamers) obtained from a high-
resolution structure database. A Hausdorff-based computation is incorporated in the
scoring function to compute the probability of side-chain resonance assignments to
generate the observed NOESY spectra. The optimal side-chain resonance assignments
are computed using the following protein design algorithms [12, 45, 19, 18, 9]. First, a
dead-end elimination (DEE) algorithm [12, 45, 19] is applied to prune side-chain res-
onance assignments that are provably not part of the optimal solution. Second, an A*
search algorithm is employed to find a set of optimal side-chain resonance assignments
that best interpret the NMR data. Note that MRF and other graphical models have been
used in structural and computational biology. Often they are used with techniques such
as belief propagation, which can only be proven to compute a local optimum for a gen-
eral graph. In contrast, we use DEE and A* algorithms to provably compute the global
optimal solution to the MRF.
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In [66], we proposed a high-resolution structure determination approach using an
RDC-defined backbone conformation and a pattern-matching technique. Unlike the al-
gorithm in [66] and other previous structure calculation approaches [22, 24, 44, 26, 34],
all of which require a nearly complete set of both side-chain and backbone resonance
assignments, in this paper the high-resolution structure determination strategy encoded
by our algorithm only needs backbone resonance assignments, and does not require any
TOCSY-like experiments. Such an advantage can help structural biologists reduce both
experimental cost and NMR instrument time, and hence speed up the NMR structure
determination process. The following contributions are made in this paper:

1. Introduction of a novel side-chain resonance algorithm that only requires NOESY
spectra, backbone chemical shifts, and RDCs, and does not require any TOCSY-like
experiments;

2. Development of an MRF framework for side-chain resonance assignment, which
captures the contact map information of the protein derived from NOESY spectra,
and exploits the structural information inferred from orientational restraints and
side-chain rotamers;

3. Introduction of a Hausdorff-based measure to compute a probability distribution of
side-chain resonance assignments in the MRF framework;

4. Application of protein design algorithms, including the DEE and A* search algo-
rithms, to solve the side-chain resonance assignment problem; and

5. Testing and excellent results on real NMR spectra for five proteins recorded at Duke
University.

2 Methods

2.1 Backbone Structure Determination from Residual Dipolar Couplings

We apply our recently-developed algorithms [61, 62, 66, 13] to compute the protein
backbone structures using two RDCs per residue (either NH RDCs measured in two
media, or NH and CH RDCs measured in a single medium). Details on backbone struc-
ture determination from RDCs are available in Supplementary Material [67] Section 1
and [61, 62, 13]. Alternatively, the global fold (i.e., backbone) could in principle be
computed by other approaches, such as protein structure prediction [3], protein thread-
ing [65] or homology modeling [35, 36].

2.2 Markov Random Field for Side-Chain Resonance Assignment

We introduce notation to describe our side-chain resonance assignment problem. Let
U = {r1, · · ·, rn} be the set of all resonances, including both backbone and side-
chain resonances. Here backbone resonances are assigned and taken as input to our
algorithm. Side-chain resonances are, of course, unassigned. Let t be the number of
unassigned side-chain resonances, so the number of assigned backbone resonances is
n − t. Without loss of generality, let V = {r1, · · ·, rt} be the set of unassigned side-
chain resonances, and let U − V = {rt+1, · · ·, rn} be the set of assigned backbone
resonances.
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Fig. 1. Schematic illustration of our side-chain resonance assignment algorithm. (A): Construc-
tion of the NOESY graph. (B): Construction of proton labels. (C): The side-chain resonance
assignment process.

A graph G = (U, E), called the NOESY graph [2, 1], represents the contact map
information of resonances from NOESY spectra. In a NOESY graph G = (U, E),
U is the set of proton resonances (including both assigned backbone and unassigned
side-chain proton resonances). Two resonances in U are connected by an edge in E,
when a NOESY cross peak is observed at the coordinates (within a parameterized error
window) of these two resonances (Fig. 1A). Nodes in U are called the resonance nodes
(or resonances). Given a resonance node u in a NOESY graph G = (U, E), N(u) =
{v | (u, v) ∈ E and u, v ∈ U, u �= v} is called the neighborhood of u. A proton label
is defined as a 3-tuple that consists of the proton name (e.g., Arg16-Hγ2), the rotamer
index (e.g., the 3rd rotamer in the rotamer library) and the proton coordinates in R

3.
The set of all proton labels is called the label set L of the NOESY graph. We obtain a
discrete and finite label set by considering all possible side-chain rotamer conformations
on the RDC-defined backbone (Fig. 1B). Since the backbone has been solved and each
side-chain rotamer conformation is rigid, each proton label corresponds to a proton on
a particular rotamer after being placed on the backbone (with fixed positions in R

3 with
respect to backbone conformation). In our assignment problem, we aim to find a map π :
V → L, such that the contact map information through the mapped resonance nodes in
a NOESY graph optimally interprets NOESY spectra. Given a resonance node ri ∈ V
and a map π, we call π(ri) ∈ L a proton label assignment (or assignment) of ri. Given
a sequence of resonances W = (r1, · · ·, rm), we call the sequence (π(r1), · · ·, π(rm))
an assignment of W , where π(ri) is the assignment of resonance node ri.
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Unlike previous side-chain resonance assignment algorithms [40, 41, 46, 47, 15],
which only assign proton names to resonances, our algorithm computes not only the
resonance assignments but also the rotamer assignments, since each proton label con-
tains both the proton name and the rotamer index of this proton. The rotamer assign-
ments included in the proton label assignments yield an ensemble of side-chain rotamer
conformations for each residue, which are unified by the logical “OR” operation. In
our algorithm, proton labels are treated as a cloud of unconnected points in R

3. This
formulation is similar to [20, 21] which uses a spatial proton distribution to represent
a gas of unbound and unassigned hydrogen atoms. Unlike in [20, 21], which depends
on molecular dynamics to embed the structure from the unassigned proton density, here
we exploit the RDC-defined backbone conformations and apply an MRF to compute
the correspondence between side-chain resonances and protons. Although the absence
of the covalent structure in proton labels may allow resonances to map to the protons
on the same side-chain in different rotameric states, we take into account the distance
information of the covalent structure when computing the probability of side-chain res-
onance assignments (Sec. 2.3). In practice, as we will show in Sec. 3, our MRF can
compute a high percentage of correct side-chain resonance assignments for accurate
structure determination.

Given a NOESY graph, the assignment of each unassigned resonance ri only de-
pends on the resonance assignments of its neighborhood N(ri) in G. We can use a
Markov Random Field (MRF) model [33] to encode this assignment problem. The as-
signment of a resonance node ri satisfies the following property:

Pr
(
π(ri) | π(rj), i �= j

)
= Pr

(
π(ri) | π(rj), rj ∈ N(ri)

)
, (1)

where Pr(·) is the probability of an event, and N(ri) is the set of resonance nodes
adjacent to ri in the graph.

According to the Hammersley-Clifford theorem [6], the distribution of an MRF can
be written in a closed form. Let C be a clique in the underlying graph G, and let TC(·)
be a clique potential [6] that represents the probability of a particular assignment of
all resonance nodes in clique C. Let V ′ = (r1, · · ·, rt) be an ordered sequence of res-
onances from set V = {r1, · · ·, rt}. Let F = (π(r1), · · ·, π(rt)) be an assignment
for the sequence of resonances V ′. By the Hammersley-Clifford theorem, the probabil-
ity of an assignment F is defined by Pr(F ) ∝ exp(−

∑
C TC(F )). We consider the

potential function TC for cliques of size 2, that is, the clique potential involves pairs
of neighboring resonance nodes in G. Note that MRFs with cliques of size of 2 have
been widely applied in several areas such as computer vision [8] and computational
biology [32, 63]. In our MRF, Pr(F ) measures the distribution of side-chain resonance
assignments by capturing the pairwise resonance interactions in NOESY spectra and
exploiting the structural information available from the RDC-defined backbone confor-
mations and the discretized side-chain rotamer conformations.

Given two proton labels with the distance between their coordinates less than 6 Å, we
expect to observe an NOE peak in NMR spectra. Such an expected peak is called a back-
computed NOE peak. In contrast, an NOE peak that has been observed in experimental
(NOESY) spectra is called an experimental NOE peak. A back-computed NOE pattern
is defined as a set of back-computed NOE peaks. Since each proton label consists of
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the proton name, the rotamer index and the discrete coordinates of the rotamer’s side-
chain proton, the assignments of a resonance ri and its neighborhood N(ri) determine a
back-computed NOE pattern. A back-computed NOE pattern is constructed as follows.
Let d(π(ri), π(rj)) be the Euclidean distance between two proton labels π(ri) and
π(rj). Let Iij = c · (d(π(ri), π(rj)))−6 be the back-computed peak intensity using
distance d(π(ri), π(rj)), where c is the calibration constant that can be computed using
the same strategy as in [49,34]. Let λ(ri) be the resonance of the heavy atom that is co-
valently bound to the proton corresponding to resonance ri. Given a pair of assignments
π(ri) and π(rj), we call bij(π(ri), π(rj)) = (ri, λ(ri), rj , Iij) the back-computed
NOE peak of π(ri) and π(rj). The definitions of back-computed NOE peaks here and
experimental NOE peaks in Sec. 2.3 are presented for 3D NOESY spectra. They can
be easily extended to other dimensional cases (e.g., 4D). When d(π(ri), π(rj)) is larger
than the NOE cutoff 6 Å or two proton labels represent the same proton name, the back-
computed NOE peak is a null point. Given a set of resonances W ⊂ U and the assign-
ment π, let Bπ(W ) = {bij(π(ri), π(rj))|ri, rj ∈ W, ri �= rj} be the back-computed
NOE pattern of W .

In our MRF formulation, the clique potential for node ri and its neighborhood N(ri)
can be measured by the matching score of their back-computed NOE pattern. Specifi-
cally, let Vi = {ri} ∪N(ri), and let Bπ(Vi) be the back-computed NOE pattern of Vi

under the assignment π. Without ambiguity, we will use Bi to represent Bπ(Vi). Let
s(Bi) be the matching score of the back-computed NOE pattern Bi, where the function
s(·) will be defined in Sec. 2.3. We use Tπ(ri, N(ri)) = −s(Bi) to represent the clique
potential of the pairwise interactions between ri and its neighborhood N(ri). Thus, we
have the following function for the probability of an MRF F = (π(r1), · · ·, π(rt)):

Pr(F ) ∝ exp

(
−
∑
ri∈V

Tπ(ri, N(ri))

)
= exp

(∑
ri∈V

s(Bi)

)
. (2)

We use Q to represent the BMRB statistical information (see Sec. 1). To estimate the
probability of an MRF F based on the BMRB statistical information Q, we first relate
them using the probability function Pr(Q|F ). Recall that λ(ri) represents the frequency
of the heavy atom covalently bound to the proton corresponding to ri. The probability
function Pr(Q|F ) is defined by

Pr(Q|F ) =
∏

ri∈V

P (|ri − μi|, σi) · P (|λ(ri)− μ′
i|, σ′

i), (3)

where P (|x − μ|, σ) is the probability of observing the difference |x − μ| in a normal
distribution with mean μ and standard deviation σ, and μi, σi, μ′

i, σ′
i are average values

and standard deviations of chemical shifts derived from BMRB given the assignment
π(ri). We note that the normal distribution and other similar distribution families have
been widely used to model the noise in the NMR data, e.g., see [52] and [38].

By Bayes’ Rule, Pr(F |Q), the probability of the assignment F conditioned on the
BMRB statistical information Q (namely the posterior probability), can be computed
as follows:
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Pr(F |Q) ∝ Pr(F ) · Pr(Q|F ) (4)

∝exp
(
−
∑
ri∈V

T
(
π(ri), π(N(ri))

))
·
∏

ri∈V

P (|ri − μi|, σi) · P (|λ(ri)− μ′
i|, σ′

i) (5)

= exp
(∑

ri∈V

s(Bi)
)
·
∏

ri∈V

P (|ri − μi|, σi) · P (|λ(ri)− μ′
i|, σ′

i). (6)

Our goal is to compute an assignment F ∗ = (π∗(r1), · · ·, π∗(rt)) that maximizes the
posterior probability Pr(F |Q). Taking the negative logarithm on both sides of Eq. (6),
we have the following pseudo-energy function for an assignment F = (π(r1), · · ·,
π(rt)):

EF = −
∑
ri∈V

ln P (|ri − μi|, σi) · P (|λ(ri)− μ′
i|, σ′

i)−
∑
ri∈V

s(Bi). (7)

The pseudo-energy function in Eq. (7) measures how well an assignment F = (π(r1), ···,
π(rt)) satisfies both the BMRB statistical information and the experimental NMR data.
Maximizing the posterior probability Pr(F |Q) in Eq. (6) is equivalent to minimizing the
pseudo-energy function in Eq. (7). We call the assignment F ∗ = (π∗(r1), · · ·, π∗(rt)),
that minimizes the scoring function EF and thus best interprets the NMR data restraints,
the optimal assignment or optimal solution to our MRF. Since our proton label assign-
ments contain both resonance assignments and molecular side-chain coordinates, the op-
timal assignment is analogous to the global minimum energy conformation (GMEC) in
the protein design literature.

2.3 The Matching Score of a Back-Computed NOE Pattern

The matching score of a back-computed NOE pattern can be measured by compar-
ing the back-computed peaks with NOESY spectra. Given a set of resonance nodes
W ⊂ U and an assignment π, let Bπ(W ) denote their back-computed NOE pattern.
Without ambiguity, we will use B to stand for Bπ(W ). Let Y be the set of exper-
imental peaks. The matching score between the back-computed NOE pattern B and
experimental spectrum Y can be measured by the conventional Hausdorff distance
H(B, Y ) = max(h(B, Y ), h(Y, B)), where h(B, Y ) = maxb∈B miny∈Y ‖b− y‖ and
‖·‖ is the normed distance. This conventional Hausdorff distance is sensitive to a single
outlying point of B or Y [28,29]. For example, suppose that an NOE peak is missing in
Y (which is quite common in NMR data), and its corresponding back-computed peak
in B has a large distance from any peak in Y . In such a case, the Hausdorff distance be-
tween B or Y is dominated by this missing NOE peak. To take into account the missing
NOE peaks, we employ a generalized Hausdorff distance measure, called the Haus-
dorff fraction (fractional Hausdorff distance), which is derived from the kth Hausdorff
distance hk from B to Y [29, 27]:

hk(B, Y ) = kth
b∈B

min
y∈Y

‖b− y‖,



MRF for NMR Side-Chain Assignment 559

where kth is the kth largest value. Now, let δ be the error window in chemical shift.
Then the probability of the back-computed NOE pattern B under hk(B, Y ) ≤ δ, is
computed by the following Hausdorff fraction equation [27]:

s(B) =
τ(B ∩ Yδ)

τ(B)
, (8)

where Yδ denotes the union of all balls obtained by replacing each point in Y with a
ball of radius δ, and τ(·) denotes the size of a set.

Next, we will show how to compute the matching score of a back-computed NOE
pattern in Eq. (8). Let bij(π(ri), π(rj)) = (ri, λ(ri), rj , Iij) be a back-computed NOE
peak in B based on assignments π(ri) and π(rj), where λ(ri) is the frequency of the
heavy atom covalently bound to the proton corresponding to ri, and Iij is the back-
computed peak intensity. Without ambiguity, we will use bij to represent bij(π(ri),
π(rj)). Note that the distance information of the covalent structure is also included
when computing a back-computed NOE pattern, since the distances between protons
within a residue or in consecutive residues are generally < 6 Å. Let (x, y, z, I ′) be the
experimental NOESY cross peak that is closest to the back-computed NOE peak bij un-
der the Euclidean distance measure, where x and z are frequencies of NOE interacting
protons, y is the frequency of the heavy atom covalently bound to the first proton, and I ′

is the peak intensity. When computing the geometric count τ(B∩Yδ), we must take into
account the uncertainty in chemical shift. For example, suppose that the back-computed
NOE peak bij is within the Euclidean distance δ from an experimental NOESY cross
peak. When bij is closer to this experimental peak, it should contribute more to count-
ing τ(B ∩ Yδ). To measure the probability of a back-computed NOE peak to intersect
with Yδ , we model the uncertainty of chemical shifts in individual dimensions as inde-
pendent normal distributions. Formally, the following equation is employed to compute
τ(B ∩ Yδ):

τ(B∩Yδ)=
∑

bij∈B

P (|I ′−Iij |, σIδ)·P (|x−ri|, σxδ)·P (|y−λ(ri)|, σyδ)·P (|z−rj|, σzδ),

(9)
where P (|x − μ|, σ) is the probability of observing the difference |x − μ| in a normal
distribution with mean μ and standard deviation σ. We define the standard deviations
in Eq. (9) as a function of the error window δ. We choose σ = δ/3 for each dimension
such that the probability for a back-computed NOE peak outside Yδ to contribute to
τ(B ∩ Yδ) is almost 0.

2.4 A DEE Pruning Algorithm

The chemical shift of each proton in a particular residue usually lies within an interval
derived from the BMRB statistical information [59]. Therefore, each resonance node ri

in the NOESY graph is only allowed to map to a subset of proton labels, in which the
BMRB-derived chemical shift intervals contain the frequency of ri. Given a resonance
ri, we call the subset of proton labels in L, that ri is allowed to map to, the candidate
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mapping set of ri, denoted by A(ri). When we know the backbone resonance assign-
ments, we have |A(ri)| = 1 for all backbone resonance nodes ri. Given a sequence of
resonances W = (r1, · · ·, rm), we call A(W ) = (A(r1), · · ·, A(rm)) the candidate
mapping set of W . Let D = (π(r1), · · ·, π(rm)), where π(ri) ∈ A(ri) is the assign-
ment of ri. We write D∈̇A(W ) when π(ri) ∈ A(ri) for every i = 1, · · ·, m, i.e., the
assignment of ri lies in the candidate mapping sets for all resonances.

We use γ(ri, u) to mean that proton label u ∈ L is assigned to resonance node ri,
where u ∈ A(ri). Initially, we prune any proton label assignment γ(ri, u) in which the
frequency of ri falls outside the BMRB-derived chemical shift interval. Let N(ri) =
{r′i1, · · ·, r′im} be the set of resonance nodes in the neighborhood of ri, and let N ′(ri) =
(r′i1, · · ·, r′im) be a sequence of resonance nodes in N(ri), where m is total number
of resonance nodes in the neighborhood. Then the candidate mapping set of N ′(ri) =
(r′i1, ···, r′im) is A(N ′(ri)) = (A(r′i1), · · ·, A(r′im)). Let Di = (π(r′i1), ···, π(r′im))∈̇A
(N ′(ri)) be an assignment of N ′(ri), where π(r′ij) ∈ A(r′ij), and we use γ(N ′(ri), Di)
to mean that Di is assigned to N ′(ri).

Given an assignment F = (π(r1), · · ·, π(rt)) for the sequence of resonances V ′ =
(r1, · · ·, rt), we use E(γ(ri, π(ri)) to represent the first energy term in Eq. (7) under the
assignment π. We use E(γ(ri, π(ri)), γ(N ′(ri), Di)) to represent the second energy
term in Eq. (7) when assigning π(ri) to resonance node ri and Di to N ′(ri), where
π(ri) ∈ A(ri) and Di∈̇A(N ′(ri)). Then the pseudo-energy scoring function in Eq. (7)
for an assignment F = (π(r1), · · ·, π(rt)) can be rewritten as

EF =
∑
ri∈V

E
(
γ(ri, π(ri))

)
+
∑
ri∈V

E
(
γ(ri, π(ri)), γ(N ′(ri), Di)

)
, (10)

where π(ri) ∈ A(ri) and Di∈̇A(N ′(ri)).
An algorithm that is similar to the GMEC calculation method in protein design [12,

45, 19, 18, 9] can be applied here to compute the optimal proton label assignments. The
dead-end elimination (DEE) algorithm has been effectively applied to prune rotamers
when their contribution to the total energy is always less than another (competing) ro-
tamer [12, 45, 19, 18, 9]. We use a similar idea here to prune proton label assignments
that are provably not part of the optimal solution. Given an unassigned side-chain reso-
nance node ri ∈ V , a proton label assignment v ∈ A(ri) is eliminated if an alternative
proton label assignment u ∈ A(ri) satisfies the following Goldstein criterion [19]:

E
(
γ(ri, v)

)
− E

(
γ(ri, u)

)
+ min

Di∈̇A(N ′(ri))

(
E
(
γ(ri, v), γ(N ′(ri), Di)

)
−E
(
γ(ri, u), γ(N ′(ri), Di)

))
> 0. (11)

Any assignment γ(ri, v) satisfying Eq. (11) is provably not part of the optimal solution,
and thus can be safely pruned. The complexity of computing the Goldstein criterion
in Eq. (11) is O(na2w), where n is the total number of resonances, a is the maximum
number of proton labels in the candidate mapping set of a resonance, and w is the maxi-
mum number of proton labels that can be assigned to a resonance node’s neighborhood.
DEE reduces the conformation search space by pruning proton label assignments that
can not be in the optimal solution, and provides a combinatorial factor reduction in
computational complexity.
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2.5 Computing Optimal Side-Chain Resonance Assignments

To compute the optimal solution to our MRF, we apply an A* algorithm [39, 54, 56] to
search over all possible combinations of the remaining proton label assignments surviv-
ing from DEE. An A* algorithm provably finds the optimal (i.e., least-cost) path from
a given starting node to the goal node in a search tree or graph. It uses a heuristic cost
function to determine the order of visiting nodes during the search. The heuristic cost
function consists of two parts: the actual cost from the starting node to the current node,
and the estimated cost from the current node to the goal node. Next, we will define both
actual and estimated cost functions that are used to determine the order of searching
nodes in our A* algorithm.

Recall that V ′ = (r1, · · ·, rt) denotes the sequence of unassigned side-chain res-
onances, and (rt+1, · · ·, rn) denotes the sequence of assigned backbone resonances.
Let Xi be the variable representing the assignment of resonance node ri. Similar to
the protein design problem [39, 18], our search configuration space can be also formu-
lated as a tree, in which the root represents an empty assignment, a leaf node represents
a full assignment of V ′, and an internal node represents a partial assignment of V ′

(i.e., only a subsequence of resonances in V ′ are assigned). Let H = (Xt+1, · · ·, Xn)
be the sequence of known assignments for backbone resonances (rt+1, · · ·, rn). Let
S = (X1, · · ·, Xt) be a sequence of assignments for side-chain resonances in V ′. Given
the BMRB statistical information Q and the known backbone chemical shifts H , the
probability for a sequence of side-chain resonance assignments S is

Pr(S|H, Q) = Pr(Xt, Xt−1, · · ·, X1|H, Q) = Pr(Xt|Xt−1, · · ·, X1, H, Q) · · ·
Pr(X2|X1, H, Q) · Pr(X1|H, Q). (12)

Suppose that the A* algorithm has assigned resonances r1, ···, ri−1. We rewrite Eq. (12)
as

Pr(S|H, Q) = Pr(Xt|Xt−1, · · ·, X1, H, Q) · · · Pr(Xi+1|Xi, · · ·, X1, H, Q)

· Pr(Xi|Xi−1, · · ·, X1, H, Q) · · · Pr(X1|H, Q). (13)

Taking the negative logarithm on both sides of Eq. (13), we have

− ln Pr(S|H, Q) = − ln
(
Pr(Xt|Xt−1, · · ·, X1, H, Q) · · · Pr(Xi+1|Xi, · · ·, X1, H,Q)

)
− ln

(
Pr(Xi|Xi−1, · · ·, X1, H, Q) · · · Pr(X1|H, Q)

)
. (14)

Eq. (14) measures the cost of a path from the root (i.e., empty assignment) to one of
leaf nodes (i.e., full assignments) in our A* search tree.

Let
g = − ln

(
Pr(Xi|Xi−1, · · ·, X1, H, Q) · · · Pr(X1|H, Q)

)
, (15)

which measures the probability of the set of the first i assignments X1, · · ·, Xi, and
leads to the actual cost of the path from the root to the current node in the A* search
tree.
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Let

h = − ln
(
Pr(Xt|Xt−1, · · ·, X1, H, Q) · · · Pr(Xi+1|Xi, · · ·, X1, H, Q)

)
, (16)

which estimates the cost of assigning the remaining resonance nodes (i.e., the cost of
the path from current node to the leaf nodes in the A* search tree).

Then the cost function in our A* search is defined by

f = g + h, (17)

where g is the actual cost from the root to the current node in the search tree, and h is
the estimated cost from the current node to one of leaf nodes, in which all side-chain
resonances are assigned.

In Eq. (16), Pr(Xj |Xj−1, · · ·, Xi, · · ·, X1, H, Q), j > i, is estimated as follows:

Pr(Xj |Xj−1, · · ·, Xi, · · ·, X1, H, Q)

= max
uj∈A(rj)···

ui+1∈A(ri+1)

Pr(γ(rj , uj)|γ(rj−1, uj−1), · · ·, γ(ri+1, ui+1), Xi, · · ·, X1, H, Q),

(18)
where γ(rj , uj) denotes the assignment of uj to resonance node rj .

The A* algorithm maintains a list of search nodes, which are ranked according to the
cost function (Eq. (17)). Similar to the protein design work in [18], here the A* search
algorithm expands the nodes in order of the cost function f . In each iteration, the node
with the smallest f value is visited, and the values of f in the remaining nodes are
updated. All remaining nodes in the list are re-ordered according to the new f values,
and form the children of current visited node. Such a process is repeated until all side-
chain resonances are assigned (i.e., when a leaf node in the search tree is reached).

An estimated cost function is admissible, if it does not overestimate the cost from
any node to the goal node. The admissibility of the estimated cost function ensures that
an A* search algorithm will find the optimal solution. The following claim provides the
soundness of our A* algorithm in computing the optimal assignment. The proof of this
claim is provided in Supplementary Material Section 2 available online in Ref. [67].

Claim 1. The estimated cost function defined in Eq. (18) is admissible, which guaran-
tees that our A* search algorithm will find the optimal solution.

The A* algorithm is proven to be complete and optimal in searching for the least-cost
path [39,54,56]. Although the time complexity of the A* algorithm is exponential in the
number of side-chain resonances in the worst case, in practice, our algorithm, including
both DEE and A* modules, runs only in hours for a medium-size protein. For instance,
it takes about 7 hours to compute the set of side-chain resonance assignments on a
single-processor machine for the human ubiquitin protein without human intervention.

3 Results

We have tested our algorithm on NMR data of five proteins: the FF Domain 2 of hu-
man transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1),
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human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA
polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). The
numbers of amino acid residues in these proteins are 62 for FF2, 39 for pol η UBZ, 56
for GB1, 76 for ubiquitin, and 112 for hSRI. Note that by the standards of the NMR
community [22, 5, 24, 55, 23, 64, 52, 60], tests on real experimental data of five pro-
teins are sufficient to demonstrate the feasibility of an algorithm in NMR data analysis
and structure determination. All NMR data except RDCs of ubiquitin and GB1 were
recorded and collected using Varian 600 and 800 MHz spectrometers at Duke Univer-
sity. The NOE cross peaks were picked from 3D 15N- and 13C-edited NOESY-HSQC
spectra. The NH and CH RDC data of FF2, pol η UBZ and hSRI were measured from
a 2D 1H-15N IPAP experiment [50] and a modified (HACACO)NH experimental [4]
respectively. Details on the NMR experimental procedures and results on the backbone
structure calculation from RDCs are provided in Supplementary Material Section 3
available online in Ref. [67].

3.1 Accuracy of Side-Chain Resonance Assignments

We evaluated the accuracy of the side-chain resonances assigned by our algorithm by
comparing them with the chemical shifts of the proteins that were assigned manually
using other additional side-chain NMR experiments. Our algorithm achieved the com-
pleteness of over 90% for resonance assignments, that is, it assigned the resonances of
over 90% of protons (Table 1). Note that the manual assignments are usually obtained
from TOCSY experiments, while frequencies in our resonance list are extracted from
NOESY spectra. Due to the experimental uncertainty, frequencies of our assigned reso-
nances are not exactly equal to the manually-assigned chemical shifts. We used an error
window 0.04 ppm for 1H, and 0.4 ppm for heavy atoms (i.e., 13C and 15N) to check
whether two resonance assignments agree with each other. We say a resonance assign-
ment is correct if its frequency is within the error window from the reference assignment,
which was assigned manually using other additional experiments. Our tests show that
our algorithm computes about 80% of the correct resonance assignments (Table 1).

Table 1. Summary of side-chain resonance assignment results

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Completeness (%) 97.7 94.9 90.2 97.6 92.7
Correctness (%) 81.9 81.8 83.6 92.2 78.0

In a hypothetical ideal case without any experimental error and noise, the goal of
an NMR assignment problem is to find a one-to-one correspondence (i.e., bijection)
between resonances and proton names in the protein sequence. In practice, a proton
can be mapped to 2-3 different resonances due to the ambiguity arising from chemical
shift degeneracy, that is, chemical shifts of two different protons may be so close that
the probabilities measuring their assignments are not sufficient to distinguish them. In
practice, the optimal solution to our MRF finds the one-to-one mapping for most reso-
nance assignments (Table 1), because the local neighborhood structure of our MRF has
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enforced these correct assignments. Most of the inconsistent assignments (i.e., two res-
onances are assigned to the same proton label) occur in the methylene protons bound to
the same carbon, or neighboring ring protons in aromatic residues. These protons often
have both similar chemical shifts and close coordinates in R

3, which makes it difficult
to distinguish them using the probability functions derived from our MRF framework.
We use the Boolean operation “XOR” to unify these inconsistent assignments. As we
will show in Sec. 3.2, the NOE assignment ambiguity arising from these inconsistent
resonance assignments does not degrade high-resolution structure determination, prob-
ably because these protons are adjacent in R

3 (with distance < 1.8−2.5 Å).

3.2 Effectiveness for High-Resolution Structure Determination

To investigate the effect of assigned side-chain resonances on high-resolution structure
determination, we first computed a set of NOE assignments using the side-chain res-
onance assignments computed by our algorithm. We then examined the quality of the
structures calculated using these NOE distance restraints. Details on computing NOE
distance restraints using assigned side-chain resonances are provided in Supplementary
Material Section 4 available online in Ref. [67].

To examine the accuracy of the NOE assignments computed by our algorithm, we
compared them with the reference structures. We say an NOE assignment is correct
if it agrees with the reference structure, that is, the distance between the assigned pair
of NOE protons in the reference structure satisfies the NOE restraint whose distance
is calibrated from the experimental peak intensity. As shown in Table 2, our algorithm
computes over 80% correct NOE restraints. To further investigate these NOE distance
restraints, we fed them into XPLOR-NIH [55] for the structure calculation. To fairly
compare the accuracy of our NOE restraints, we fed the same hydrogen bond and dihe-
dral angle constraints into XPLOR-NIH, as in computing the NMR reference structures.
In addition, the structures were refined with RDC data using XPLOR-NIH with a water-
refinement protocol [55]. We chose the ensemble of top 20 structures with the lowest

Table 2. Summary of NOE assignment results

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Total # of assigned NOEs 1421 1531 3540 960 1354

Intraresidue 597 648 1326 419 619
Sequential (|i − j| = 1) 295 321 777 254 282

Medium-range (|i − j| ≤ 4) 185 202 984 177 281
Long-range (|i − j| ≥ 5) 344 360 453 110 172

Percentage of correct NOE assignments (%) 87.0 81.7 83.3 89.4 85.5

Table 3. Summary of final calculated structures

Proteins GB1 ubiquitin hSRI pol η UBZ FF2
Average RMSD to mean coordinates

SSE region (backbone, heavy) (Å) 0.18, 0.38 0.36, 0.71 0.29, 0.75 0.12, 0.43 0.25, 0.67
Ordered region (backbone, heavy) (Å) 0.20, 0.41 0.58, 0.95 0.35, 0.81 0.15, 0.67 0.34, 0.89

RMSD to reference structure
SSE region (backbone, heavy) (Å) 0.56, 1.14 0.63, 1.40 1.25, 1.93 0.62, 1.39 0.58,1.53

Ordered region (backbone, heavy) (Å) 0.54, 1.08 0.93, 1.51 1.37, 2.09 0.97, 1.73 1.06, 2.17
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GB1 ubiquitin hSRI pol FF2

Fig. 2. Final NMR structures computed using our automatically-assigned NOEs. Row 1: the en-
semble of 20 lowest-energy NMR structures. Row 2: ribbon view of one structure in the ensemble.
Row 3: backbone overlay of the mean structures (blue) vs. corresponding NMR reference struc-
tures (green) (PDB ID of GB1 [30]: 3GB1; PDB ID of ubiquitin [11]: 1D3Z; PDB ID of FF2:
2E71; PDB ID of hSRI [42]: 2A7O; PDB ID of pol η UBZ [7]: 2I5O).

energies out of 50 structures computed by XPLOR-NIH as the ensemble of final struc-
tures. For all five proteins, the ensemble of top 20 structures with the lowest energies
converge into a compact cluster (Table 3 and Fig. 2). The average RMSD to the mean
coordinates is ≤ 0.6 Å for backbone atoms and ≤ 1.0 Å for all-heavy atoms. We su-
perimposed the mean structure of the ensemble with the reference structure for each
protein. The RMSD between the mean structure and the reference structure (ordered re-
gion) is 0.5−1.4 Å for backbone atoms and 1.0−2.2 Å for all-heavy atoms (Table 3 and
Fig. 2). These results indicate that the NOE assignments computed by our algorithm are
sufficient for high-resolution structure determination.

4 Conclusions

Side-chain resonance assignments are essential for high-resolution structure determina-
tion and side-chain dynamics studies. In this paper we proposed an MRF with protein
design algorithms to compute the set of optimal side-chain resonance assignments that
best interpret the NMR data. Tests on real NMR data demonstrated that our algorithm
computes a high percentage of accurate side-chain resonance assignments for high-
resolution structure determination. Since our algorithm does not require any TOCSY-
like experiments, it can advance NMR structure determination by saving a significant
amount of both experimental cost and NMR instrument time.

In [15], the authors proposed an algorithm that uses the knowledge of local cova-
lent polypeptide structures to iteratively assign side-chain resonances from previously-
assigned resonances (initially backbone resonances were assigned) using NOESY or
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TOCSY spectra. Compared to [15], in which only the conformation-independentbounds
on intra-residue and sequential inter-proton distances are used to iteratively assign side-
chain resonances, our algorithm applies an MRF that effectively exploits the RDC-
defined backbone conformations to derive side-chain resonance assignments.

Although our algorithm is only implemented for 3D NOESY spectra, it is general and
can be easily extended to higher-dimensional NOESY spectra. In addition, it would be
interesting to extend our algorithm to perform side-chain resonance assignment without
requiring backbone resonance assignments. Because RDCs are mapped to backbone
resonances, in this case, we might have to resort to other approaches such as protein
structure prediction, protein threading or homology modeling to obtain the initial global
fold.

Availability

The source code of our algorithm is available by contacting the authors, and is dis-
tributed open-source under the GNU Lesser General Public License (Gnu, 2002).
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Abstract

Background: The empirical frequencies of DNA k-mers in whole genome
sequences provide an interesting perspective on genomic complexity, and
the availability of large segments of genomic sequence from many or-
ganisms means that analysis of k-mers with non-trivial lengths is now
possible.

Results: We have studied the k-mer spectra of more than 100 species from
Archea, Bacteria, and Eukaryota, particularly looking at the modalities
of the distributions. As expected, most species have a unimodal k-mer
spectrum. However, a few species, including all mammals, have multi-
modal spectra. These species coincide with the tetrapods. Genomic se-
quences are clearly very complex, and cannot be fully explained by any
simple probabilistic model. Yet we sought such an explanation for the ob-
served modalities, and discovered that low-order Markov models capture
this property (and some others) fairly well.

Conclusions: Multimodal spectra are characterized by specific ranges of
values of C+G content and of CpG dinucleotide suppression, a range that
encompasses all tetrapods analyzed. Other genomes, like that of the pro-
tozoa Entamoeba histolytica, which also exhibits CpG suppression, do
not have multimodal k-mer spectra. Groupings of functional elements of
the human genome also have a clear modality, and exhibit either a uni-
modal or multimodal behaviour, depending on the two above mentioned
values.

Keywords: DNA k-mers, whole genome empirical frequencies, low-order
Markov models, modalities of DNA distributions, phylogenetic charac-
terization of modalities.

� Complete version can be found at http://genomebiology.com/2009/10/10/R108.
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Abstract. The devastating “Spanish flu” of 1918 killed an estimated
50 million people worldwide, ranking it as the deadliest pandemic in
recorded human history. It is generally believed that the virus trans-
ferred from birds directly to humans shortly before the start of the
pandemic, subsequently jumping from humans to swine. By developing
’non-homogeneous’ substitution models that consider that substitution
patterns may be different in human, avian, and swine hosts, we can de-
termine the timing of the host shift to mammals. We find it likely that
the Spanish flu of 1918, like the current 2009 pandemic, was a ’swine-
origin’ influenza virus. Now that we are faced with a new pandemic, can
we understand how influenza is able to change hosts? Again by modelling
the evolutionary process, considering the different selective constraints
for viruses in the different hosts, we can identify locations that seem to
be under different selective constraints in humans and avian hosts. This
allows us to identify changes that may have facilitated the establishment
of the 2009 swine-origin flu in humans.

The swine-origin pandemic flu pandemic of 2009 highlighted the impor-
tance of understanding the process of host shifts in zoonotic pathogens.
Understanding past host shifts can provide important information about
where current threats may originate. Analysing past host shifts using
molecular evolutionary analysis has been limited by models of sequence
change that consider the substitution process to be the same for all loca-
tions at all time (at most modulated by a site-specific scaling factor). By
considering non-homogeneous non-stationary models, we can model how
the substitution process in viruses such as influenza differs at different lo-
cations in the proteins and in different hosts. This allows us to determine
the timing and trajectory of host shift events, as well as identify loca-
tions where changes in amino acid may assist or be required for the host
shift event to occur. We apply these methods to the 1918 ’Spanish Flu’
pandemic, determining that, contrary to what is widely believed, this
pandemic also was likely from a swine-origin virus. We then apply these
techniques to the 2009 influenza pandemic, determining locations where
changes in amino acid may have facilitated the ability of these viruses
to sift from swine to human hosts. These models have wide applicability
where changes in selective constraints might have occurred, including un-
derstanding other pathogen host shifts, deciphering how HIV responds
to drug treatment, and how to understand and predict changes in func-
tionality or physiological context of proteins.
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Abstract. Transcriptional regulation is largely enacted by transcrip-
tion factors (TFs) binding DNA. Large numbers of TF binding motifs
have been revealed by ChIP-chip experiments followed by computational
DNA motif discovery. However, the success of motif discovery algorithms
has been limited when applied to sequences bound in vivo (such as those
identified by ChIP-chip) because the observed TF-DNA interactions are
not necessarily direct: some TFs predominantly associate with DNA in-
directly through protein partners, while others exhibit both direct and
indirect binding.

We present the first method for distinguishing between direct and
indirect TF-DNA interactions, integrating in vivo TF binding data, in
vivo nucleosome occupancy data, and DNA binding motifs from in vitro
protein binding microarray experiments. When applied to yeast ChIP-
chip data, our method reveals that only 48% of the data sets can be
readily explained by direct binding of the profiled TF, while 16% can
be explained by indirect DNA binding. In the remaining 36%, none of
the motifs used in our analysis was able to explain the ChIP-chip data,
either because the data were too noisy or because the set of motifs was
incomplete. As more in vitro TF DNA binding motifs become available,
our method could be used to build a complete catalog of direct and
indirect TF-DNA interactions. Our method is not restricted to yeast or
to ChIP-chip data, but can be applied in any system for which both in
vivo binding data and in vitro DNA binding motifs are available.
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Abstract. Developmental pathways need to be robust against environ-
mental and genetic variation to enable reliable morphogenesis. Here, we
take a systems biology approach to explain how robustness is achieved
in the developing mouse limb, a classical model of organogenesis. By
combining quantitative genetics with computational modeling we estab-
lished a computational model of multiple interlocked feedback modules,
involving sonic hedgehog (SHH) morphogen, fibroblast growth factor
(FGFs) signaling, bone morphogenetic protein (BMP) and its antago-
nist GREM1. Earlier modeling work had emphasized the versatile ki-
netic characteristics of interlocked feedback loops operating at different
time scales. Here we develop and then validate a similar computational
model to show how BMP4 first initiates and SHH then propagates feed-
back in the network through differential transcriptional regulation of
Grem1 to control digit specification. This switch occurs by linking a fast
BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop.
Simulated gene expression profiles modeled normal limb development as
well those of single-gene knockouts. Sensitivity analysis showed how the
model was robust and insensitive to variability in parameters. A surpris-
ing prediction of the model was that an early Bmp4 signal is essential to
kick-start Grem1 expression and the digit specification system. We ex-
perimentally validated the prediction using inducible alleles and showed
that early, but not late, removal of Bmp4 dramatically disrupted limb
development. Sensitivity analysis showed how robustness emerges from
this circuitry. This study shows how modeling and computation can help
us understand how self-regulatory signaling networks achieve robust reg-
ulation of limb development, by exploiting interconnectivity among the
three signaling pathways. We expect that similar computational analyses
will shed light on the origins of robustness in other developmental sys-
tems, and I will discuss some recent examples from our ongoing research
on developmental patterning.

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 575–576, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



576 J.-D. Benazet et al.

Reference

1. Benazet, J.D., Bischofberger, M., Tiecke, E., Gonalves, A., Martin, J.F., Zuniga,
A., Naef, F., Zeller, R.: A Self-Regulatory System of Interlinked Signaling Feedback
Loops Controls Mouse Limb Patterning. Science 323(5917), 1050–1053 (2009)



Automated High-Dimensional Flow Cytometric
Data Analysis

Saumyadipta Pyne1, Xinli Hu1, Kui Wang2, Elizabeth Rossin1, Tsung-I Lin3,
Lisa Maier1, Clare Baecher-Allan4, Geoffrey McLachlan2, Pablo Tamayo1,

David Hafler1, Philip De Jager1, and Jill Mesirov1

1 Broad Institute of MIT and Harvard, United States
2 University of Queensland, Australia

3 Department of Applied Mathematics, National Chung Hsing University, Taiwan
4 Division of Molecular Immunology, Center for Neurologic Diseases,

Brigham and Women’s Hospital and Harvard Medical School, United States

Abstract. Flow cytometry is widely used for single cell interrogation
of surface and intracellular protein expression by measuring fluorescence
intensity of fluorophore-conjugated reagents. We focus on the recently
developed procedure of Pyne et al. (2009, Proceedings of the National
Academy of Sciences USA 106, 8519-8524) for automated high-
dimensional flow cytometric analysis called FLAME (FLow analysis with
Automated Multivariate Estimation). It introduced novel finite mix-
ture models of heavy-tailed and asymmetric distributions to identify
and model cell populations in a flow cytometric sample. This approach
robustly addresses the complexities of flow data without the need for
transformation or projection to lower dimensions. It also addresses the
critical task of matching cell populations across samples that enables
downstream analysis. It thus facilitates application of flow cytometry to
new biological and clinical problems. To facilitate pipelining with stan-
dard bioinformatic applications such as high-dimensional visualization,
subject classification or outcome prediction, FLAME has been incor-
porated with the GenePattern package of the Broad Institute. Thereby
analysis of flow data can be approached similarly as other genomic
platforms. We also consider some new work that proposes a rigorous and
robust solution to the registration problem by a multi-level approach that
allows us to model and register cell populations simultaneously across a
cohort of high-dimensional flow samples. This new approach is called
JCM (Joint Clustering and Matching). It enables direct and rigorous
comparisons across different time points or phenotypes in a complex bi-
ological study as well as for classification of new patient samples in a
more clinical setting.

B. Berger (Ed.): RECOMB 2010, LNBI 6044, p. 577, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 578–579, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Discovering Transcriptional Modules by Combined 
Analysis of Expression Profiles and Regulatory 

Sequences* 

Yonit Halperin**, Chaim Linhart**, Igor Ulitsky, and Ron Shamir 

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel  
{yonithal,chaiml,ulitskyi,rshamir}@tau.ac.il 

Abstract. A key goal of gene expression analysis is the characterization of tran-
scription factors (TFs) and micro-RNAs (miRNAs) regulating specific transcrip-
tional programs. The most common approach to address this task is a two-step 
methodology: In the first step, a clustering procedure is executed to partition the 
genes into groups that are believed to be co-regulated, based on expression pro-
file similarity. In the second step, a motif discovery tool is applied to search for 
over-represented cis-regulatory motifs within each group. In an effort to obtain 
better results by simultaneously utilizing all available information, several stud-
ies have suggested computational schemes for a single-step combined analysis of 
expression and sequence data. Despite extensive research, reverse engineering 
complex regulatory networks from microarray measurements remains a difficult 
challenge with limited success, especially in metazoans. 

We present Allegro [1], a new method for de-novo discovery of TF and 
miRNA binding sites through joint analysis of genome-wide expression data 
and promoter or 3' UTR sequences. In brief, Allegro enumerates a huge number 
of candidate motifs in a series of refinement phases to converge to high-scoring 
motifs. For each candidate motif, it executes a cross-validation-like procedure 
to learn an expression model that describes the shared expression profile of the 
genes, whose cis-regulatory sequence contains the motif. It then computes a p-
value for the over-representation of the motif within the genes that best fit the 
expression profile. The output of Allegro is a non-redundant list of top-scoring 
motifs and the expression patterns they induce.  

The expression model used by Allegro is a novel log likelihood-based, non-
parametric model, analogous to the position weight matrix commonly used for 
representing TF binding sites. Unlike most extant methods, our approach does 
not assume that the expression values follow a pre-defined type of distribution, 
and can capture transcriptional modules whose expression profiles differ from 
the rest of the genome across a small fraction of the conditions. Furthermore, it 
successfully handles cases where the expression levels are correlated to the 
length and GC-content of the cis-regulatory sequences. Such correlations are 
quite common in practice, and often bias existing techniques, leading to false 
predictions and low sensitivity.  

                                                           
  * Supported in part by the Israel Science Foundation (grant 802/08 and Converging Technolo-

gies Program grant 1767.07). 
** These authors contributed equally to this work. 
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Allegro introduces several additional unique ideas and features, and is im-
plemented in a graphical, user-friendly software tool. We apply it on several 
large datasets (>100 conditions), in murine, fly and human, report on the tran-
scriptional modules it uncovers, and show that it outperforms extant techniques. 
Allegro is available at http://acgt.cs.tau.ac.il/allegro. 
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Möhl, Mathias 473

Naef, Felix 575
Nibbe, Rod K. 80
Noble, William Stafford 441
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