
Strong Cryptography from Weak Secrets
Building Efficient PKE and IBE from Distributed

Passwords

Xavier Boyen1, Céline Chevalier2, Georg Fuchsbauer3, and David Pointcheval3

1 Université de Liège, Belgium
2 Telecom ParisTech, Paris, France

3 École Normale Supérieure, CNRS-INRIA, Paris, France

Abstract. Distributed-password public-key cryptography (DPwPKC)
allows the members of a group of people, each one holding a small secret
password only, to help a leader to perform the private operation, asso-
ciated to a public-key cryptosystem. Abdalla et al. recently defined this
tool [1], with a practical construction. Unfortunately, the latter applied
to the ElGamal decryption only, and relied on the DDH assumption, ex-
cluding any recent pairing-based cryptosystems. In this paper, we extend
their techniques to support, and exploit, pairing-based properties: we
take advantage of pairing-friendly groups to obtain efficient (simulation-
sound) zero-knowledge proofs, whose security relies on the Decisional
Linear assumption. As a consequence, we provide efficient protocols, se-
cure in the standard model, for ElGamal decryption as in [1], but also for
Linear decryption, as well as extraction of several identity-based cryp-
tosystems [6,4]. Furthermore, we strenghten their security model by sup-
pressing the useless testPwd queries in the functionality.

1 Introduction

Recently, Abdalla et al. [1] proposed the notion of distributed-password public-
key cryptography (DPwPKC), which allows the members of a group of people,
each one holding a small independent secret password, to act collectively (for
the benefit of one of them, who “owns” the group) as the custodian of a private
key in some ordinary public-key cryptosystem — without relying on any secure
(secret and/or authentic) storage — as long as each member remembers his or
her password. Precisely, in DPwPKC, the members initially create a “virtual”
key pair (sk, pk), by engaging in some distributed protocol over adversarial chan-
nels, where only pk is revealed, while sk is implicitly determined by the collection
of passwords. Third parties can perform the public-key operation(s) of the un-
derlying system using pk. Members can help the leader of the group perform
private-key operation(s) in a distributed manner, by engaging in some protocol
using only their knowledge of their respective passwords.

Password-based public-key cryptography is generally considered infeasible be-
cause password-based secret-key spaces are easy to enumerate, and the knowl-
edge of the public key makes it possible to test the correct key from that space,

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 297–315, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

298 X. Boyen et al.

without interacting with anyone (offline dictionary attack). In DPwPKC, there
are as many passwords as participants, and (unlike in virtually all applications of
passwords) the passwords are not meant to be shared: they are chosen indepen-
dently by each player. Since the passwords need not be related, they will likely
be diverse, and the min-entropy of their combination ought to grow linearly with
the number of participants, even if every single password is itself minuscule. For
instance, with ten players each holding a random 20-bit password, the virtual
secret key will be a random 200-bit string, which is more than enough to build
a secure public-key system for usual values of the security parameter. This is
what makes sk in DPwPKC resistant to brute-force off-line dictionary attacks,
even though the corresponding pk is public.

The main contribution of [1] was to define general functionalities for dis-
tributed password-based key generation and private computation in the UC
model, and to give a construction for ElGamal decryption as a proof of con-
cept. However, the construction proposed in [1] was merely illustrative because
it required generic simulation-sound non-interactive zero-knowledge (SSNIZK)
proofs for NP languages, which can only be performed efficiently in the random
oracle model [3]. Furthermore, their distributed private computation protocol
could only perform the task of computing csk from the implicit secret key sk,
and the security of their protocol relied on the DDH assumption. Together, these
restrictions limited its applicability to ElGamal decryption.

In this work, we first improve and strengthen the ideal functionalities defined
in [1], by further restricting the information that the adversary can gain from an
attack. This will make any protocol that we can prove to realize those function-
alities stronger, since the simulation will have to work without this information.
(Recall that in the UC model, the functionalities are supposed to capture every-
thing that we allow the adversary (and thus the simulator) to learn.)

Then, we extend the techniques from [1] to support a much broader class of
private-key operations in discrete-log-hard groups, including operations involv-
ing random ephemerals and/or operations in bilinear groups. More precisely, our
construction still targets the distributed computation of csk, but under the De-
cision Linear assumption, which makes the proof more intricate since the DDH
is now verifiable: we had to change the workings of the protocol to introduce
secret values. Furthermore, the construction works for several values of c at
once, and now allows to share random ephemerals in the exponent. It thus al-
lows a much greater variety of public-key cryptosystems to be converted to dis-
tributed password-based cryptosystems, including extraction of identity-based
private keys — thus giving us the new interesting notion of “password-based
distributed identity-based encryption” (DPwIBE). Contrarily to regular IBE,
the “central” key extraction authority is now distributed among a group of peo-
ple (sufficiently many of them trusted), with the “master key” being implicitly
contained in the collections of short independent passwords held by those users.

In the process of strengthening and generalizing the protocols, we also make
them much more efficient. To do so, we develop special-purpose simulation-sound
non-interactive zero-knowledge proofs (SSNIZK) for our languages of interest,

Strong Cryptography from Weak Secrets 299

in the standard model, and show how to use them instead of the inefficient
general SSNIZK considered in [1]. We do this using bilinear maps, in the CRS
model, relying on a classic decisional hardness assumption for bilinear groups.
The SSNIZK proofs we construct revisit the techniques of [12] and use efficient
proofs inspired by the recent Groth-(Ostrovsky)-Sahai sequence of efficient NIZK
construction in bilinear groups [14], but do not trivially follow from them.

A number of new technical challenges had to be solved. We specifically men-
tion the following: 1) the use of pairings not only helps us make efficient zero-
knowledge proofs for various languages, it would also help the adversary verify
the result of the private computation csk in the basic DPwPKC protocol from
[1]. Since the UC model requires that the simulation be carried out until the end
on both correct and incorrect inputs, this will make our new security reduction
somewhat more intricate since the result sent at the end of the simulation is ran-
dom and we do not want the adversary to become aware of it. 2) In connection
with the stronger and simpler functionality definitions we propose, the adversary
is no longer allowed to conduct explicit password compatibility tests prior to the
private-key operation. This should intuitively further complicate the simulation,
though we remarkably note that these queries were indeed useless in the proofs
and thus getting rid of them has no negative impact. 3) Generally speaking, we
achieved much of our security and efficiency gains over [1], by succeeding to make
our protocols being fully robust by the use of public verifications (computations
of pairings) rather than intermediate validity tests (SSNIZK proofs, relying on
the random oracle model in [1]). This is generally both more efficient (no more
SSNIZK proofs) and more secure than testing, but it can lead to significantly
more complex simulations owing to the ideal functionality being less “helpful”.

2 Security Model

Split Functionalities. Throughout this paper, we assume basic familiarity with
the universal composability framework [9]. Without any strong authentication
mechanisms, the adversary can always partition the players into disjoint sub-
groups and execute independent sessions of the protocol with each subgroup,
playing the role of the other players. Such an attack is unavoidable since players
cannot distinguish the case in which they interact with each other from the case
where they interact with the adversary. The authors of [2] addressed this issue
by proposing a new model based on split functionalities which guarantees that
this attack is the only one available to the adversary.

The split functionality is a generic construction based upon an ideal func-
tionality. In the initialization stage, the adversary A adaptively chooses disjoint
subsets of the honest parties (with a unique session identifier that is fixed for the
duration of the protocol). During the computation, each subset H activates a
separate instance of the functionality F . All these functionality instances are in-
dependent: The executions of the protocol for each subset H can only be related
in the way A chooses the inputs of the players it controls. The parties Pi ∈ H
provide their own inputs and receive their own outputs, whereas A plays the
role of all the parties Pj /∈ H .

300 X. Boyen et al.

Note that the use of these split functionalities already allows the adversary
to try some passwords for users by choosing subgroups of size 1 and trying a
password for each of them while impersonating the other players. They are thus
enough to model on-line dictionary attacks. In [1], additional TestPwd queries
were available to the adversary, thus allowing additional password trials. In this
paper, we limit the adversary against the ideal functionality (i.e. the simulator),
to the unavoidable on-line dictionary attack but in the strict sense, and thus
without any additional TestPwd queries. This means that we give less power to
the simulator. Both the constructions in [1] and ours do not need them in the
security proofs, which means that a stronger security level is reached.

In the sequel, as we describe our two general functionalities FpwDistPublicKeyGen

and FpwDistPrivateComp (the complete descriptions can be found in the full ver-
sion [8]), one has to keep in mind that an attacker controlling the commu-
nication channels can always choose to view them as the split functionalities
sFpwDistPublicKeyGen and sFpwDistPrivateComp, which implicitly consist of multiple in-
stances of FpwDistPublicKeyGen and FpwDistPrivateComp for non-overlapping subsets of
the original players. Furthermore, one cannot preventA from keeping some flows,
which will never arrive. This is modelled in our functionalities by a bit b, which
specifies whether the flow is really sent or not.

The Players and the Group Leader. We denote by n the number of users
involved in a given execution of the protocol. All the computation is done for the
benefit of only one of them, denoted as the group leader. The role of all the other
ones, the players, is to help it in its use of the group’s virtual key. A group is thus
formed arbitrarily and is defined by its composition, which cannot be changed:
a leader, which is the only one to receive the result of a private computation in
the end, and a (ordered or not, according to the secret key computation from
the passwords) set of players to assist it.

The Aim of the Functionalities. The functionalities are intended to capture
distributed-password protocols for (the key-generation and private-key opera-
tion of) an arbitrary public-key primitive, but taking into consideration the un-
avoidable on-line dictionary attacks. More precisely, the aim of the distributed
key generation functionality FpwDistPublicKeyGen is to provide a public key to
the users, computed according to their passwords with respect to a function
PublicKeyGen given as parameter. Moreover, it ensures that the group leader
never receives an incorrect key in the end, whatever the adversary does.

In the distributed private computation functionality FpwDistPrivateComp, the aim
is to perform a private computation for the sole benefit of the group leader,
which is responsible for the correctness of the computation; in addition, it is
the only user to receive the end result. This functionality will thus compute a
function of some supplied input in , depending on a set of passwords that must
define a secret key corresponding to a given public key. More precisely, it will
be able to check the compatibility of the passwords with the public key thanks
to a verification function PublicKeyVer, and if it is correct it will then compute
the secret key sk from the passwords with the help of a function SecretKeyGen,
and from there evaluate PrivateComp(sk, in) and give the result to the leader.

Strong Cryptography from Weak Secrets 301

The function PrivateComp could be the decryption function Dec of a public-key
encryption scheme, or the signing function Sign in a signature scheme, or the
identity-based key extraction function Extract in an IBE system.

Note that SecretKeyGen and PublicKeyVer are naturally related to the func-
tion PublicKeyGen called by the former functionality. In all generality, unless
SecretKeyGen and PublicKeyGen are both assumed to be deterministic, we need
the predicate PublicKeyVer in order to verify that a public key is “correct” with-
out necessarily being “equal” (to some canonical public key). Also note that the
function SecretKeyGen is not assumed to be injective, lest it unduly restrict the
number of users and the total size of their passwords. The distributed compu-
tations should not reveal more information than the non-distributed ones, and
thus the ideal functionalities can make use of these functions as black-boxes.

The Functionalities. We only recall here the main points of the functionalities,
referring the interested reader to [1] for details. But, importantly, as in [10], the
functionalities are not in charge of providing the passwords to the participants.
The passwords are chosen by the environment which then hands them to the
parties as inputs. This guarantees security even in the case where an honest user
executes the protocol with an incorrect password: This models, for instance,
the case where a user mistypes its password. It also implies that the security is
preserved for all password distributions (not necessarily the uniform one) and in
all situations where related passwords are used in different protocols.

The private-computation functionality fails directly at the end of the initial-
ization phase if the users do not share the same (public) inputs. In principle,
after the initialization stage (the NewSession queries) is over, the eligible users
are ready to receive the result. However the functionality waits for the adver-
sary S to send a compute message before proceeding. This allows S to decide
the exact moment when the result should be sent to the users and, in particu-
lar, it allows S to choose the exact moment when corruptions should occur (for
instance S may decide to corrupt some party Pi before the result is sent but
after Pi decided to participate to a given session of the protocol; see [15]). Also,
although in the key generation functionality all users are normally eligible to
receive the public key, in the private computation functionality it is important
that only the group leader receives the output (though he may choose to reveal
it afterwards to others, outside of the protocol, depending on the application). In
both cases, after the result is computed, S can choose whether the group leader
indeed receives it. If delivery is denied (b = 0), then nobody gets it, and it is as
if it was never computed. Otherwise, in the first functionality, the other players
may be allowed to receive it too, according to a schedule chosen by S.

Note that given the public key, if the adversary knows/controls sufficiently
many passwords so that the combined entropy of the remaining passwords is
low enough, he will be able to recover these remaining passwords by brute force
attack. This is unavoidable and has nothing to do with the fact that the system is
distributed: off-line attacks are always possible in principle in public-key systems,
and become feasible as soon as a sufficient portion of the private key is known.

302 X. Boyen et al.

3 Notations and Building Blocks

The authors of [1] propose a protocol that deals with a particular case of unau-
thenticated distributed private computation [2], as captured by their function-
alities recalled in the former section. Informally, assuming s to be a secret key,
the aim of the protocol is to compute a value cs given an element c of the group.
They claim that this computation can be used to perform distributed BLS sig-
natures [7], ElGamal decryptions [11], linear decryptions [5], and BF or BB1
identity-based key extraction [6,4] but they only focus on ElGamal decryptions,
relying on the DDH assumption.

Here, we show how to really achieve such results, by constructing a protocol
relying on the Decision Linear assumption [5] for compatibility with bilinear
groups. This protocol will easily enable “password-based” Boneh-Franklin IBE
scheme [6]. In the following section, we show how to modify the protocol to obtain
“password-based” Boneh-Boyen (BB1) IBE scheme [4] and linear decryptions [5].

Notations. Let G be a multiplicative cyclic group of prime order p and g3 a
generator of G. The linear encryption works as follows: The private key is a
pair of scalars, sklin = (x1, x2), and the public key, pklin = (g1, g2, g3), where
g1 = g3

1/x1 , g2 = g3
1/x2 . In order to encrypt M ∈ G, one chooses r1, r2

$← Zp,
and the ciphertext consists of C = Epklin

(M ; r1, r2) = (C1, C2, C3) = (g1r1 , g2
r2 ,

Mg3
r1+r2). The decryption process consists of M = Dpklin

(C) = C3/(C1
x1C2

x2).
This encryption scheme is secure under the Decisional Linear (DLin) as-

sumption, first presented in [5] and stated here for completeness: For random
x, y, r, s ∈ Z∗

p and (g, f = gx, h = gy, f r, hs) ∈ G5, it is computationally in-
tractable given gd to distinguish between the case where d = r + s or d is
random. More precisely, a triple (f r, hs, gd) is named a linear triple in basis
(f, h, g) if d = r+ s. We also consider a one-time signature scheme consisting of
the three algorithms (SKG, Sign,Ver).

Passwords, Public Key and Private Key. Each user Pi owns a privately
selected password pwi, to act as the i-th share of the secret key sk (see below).
For convenience, we write pwi = pwi,1 . . . pwi,� ∈ {0, . . . , 2� − 1}, i.e., we further
divide each password pwi into � bits pwi,j , where p < 2� (p is the order of the
group G). Notice that although we allow full-size passwords of up to � bits (the
size of p), users are of course permitted to choose shorter passwords.

The authors of [1] discussed the use of such passwords to combine properly
into a private key sk: the combination should be reproducible, it should allow
to recover either of the passwords from the key and the other passwords, and
it should preserve the joint entropy of the set of paswords. They also discussed
possible cancellation or aliasing effects of the passwords. The preferable solution
is to do standard pre-processing using hashing, i.e. that each user independently
transforms his or her true password pw∗

i into an effective password pwi by ap-
plying a suitable extractor pwi = H(i, pw∗

i , Zi) where Zi is any relevant public
information. We can then safely take sk =

∑
i pwi and be assured that the en-

tropy of sk will closely match the joint entropy of the vector (pw∗
1, . . . , pw

∗
n).

Strong Cryptography from Weak Secrets 303

The discrete-log-based key pair (sk, pk = gsk) is then defined as follows:
sk = SecretKeyGen(pw1, . . . , pwn) def=

∑n
i=1 pwi

pk = PublicKeyGen(pw1, . . . , pwn) def= g
∑

pwi

The password/public-key verification function is then
PublicKeyVer(pw1, . . . , pwn, pk) def=

(
pk ?= g

∑
pwi

)
.

In the following, we focus on a specific format for the PrivateComp function,
defined by (sk, c) �→ m = csk. We show how to perform it in a distributed way,
and how to use if for decryption processes, and private key extraction in IBE.

Building Blocks
Extractable Homomorphic Commitments. As in [1], the first step of
our distributed decryption protocol is for each user to commit to his password
(the details are given in the following section). The commitment needs to be
extractable, homomorphic, and compatible with the shape of the public key.
Generally speaking, one needs a commitment Commit(pw, R) that is additively
homomorphic on pw and with certain properties on R. Instead of ElGamal’s
scheme [11] used in [1], we focus here on linear commitments Commitg(pw, r, s) =
(U1

pwg1
r, U2

pwg2
s, gpwg3

r+s), where (U1, U2, U3 = g) is not a linear triple in basis
(g1, g2, g3) in order to provide extractability, or encryptions Encryptg(pw, r, s) =
(g1r, g2

s, gpwg3
r+s) (here, g1, g2 and g3 are defined as before and g is a generator

of G). In both cases, the hiding property or the semantic security rely on the
DLin assumption. Extractability is possible granted the private/decryption key
(x1, x2), such that g3 = g1

x1 = g2
x2 , and recalling that the users commit to

bits. Denoting by (c1, c2, c3) the commitment, it is thus enough to check that
c3/(c1x1c2

x2) = 1 or (c3/g)/((c1/U1)
x1(c2/U2)

x2) = 1.

Proofs of Membership. For the robustness and soundness of the protocols,
we need some proofs of honest computations. We use witness-indistinguishable
and SSNIZK proofs/arguments. The difficulty consists in designing such simula-
tion-sound proofs without random oracles: they are described in Section 6. Along
these lines, we use the following kinds of non-interactive proofs:

– CDH(g,G, h,H), to prove that (g,G, h,H) lies in the CDH language: there
exists a common exponent x such that G = gx and H = hx. Granted pairing-
friendly groups, this can be easily done by simple pairing computations;

– WIProofBit(C), to prove that the commitment or the ciphertext C contains
a bit. We will use a WI proof from [13], which basically proves that either C
or C divided by the basis is a linear 3-tuple;

– SSNIZKEqg,c(C1, C2), to prove that the ciphertexts/commitments C1 and C2

contain the same value, possibly in the different bases g and c, that is,
C1 encrypts/commits to ga and C2 encrypts/commits to ca, with the same a.
We use a SSNIZK argument, following the overall approach by Groth [12] to
obtain simulation soundness, but using the Groth-Sahai proof system [14]
for efficiency (see Section 6 – the proof is omitted, but very similar to [12]).

304 X. Boyen et al.

4 Description of the Protocols

The Distributed Key Generation Protocol. This protocol is described
in Figure 1 and realizes the functionality FpwDistPublicKeyGen. All the users are
provided with a password pwi and want to obtain a public key pk. One of them
is the leader of the group, denoted by P1, and the others are P2, . . . , Pn.

The protocol starts with a round of commitments of these passwords. Each
user sends a commitment Ci of pwi (divided into � blocks pw1,1, . . . , pwi,� of
length L — here, L = 1): it computes Ci,j = (C(1)

i,j , C
(2)
i,j , C

(3)
i,j) = (U1

pwi,jg1
ri,j ,

U2
pwi,jg2

si,j , gpwi,jg3
ri,j+si,j) for j = 1, . . . , � and random values ri,j and si,j ,

and publishes Ci = (Ci,1, . . . , Ci,�), with a set of proofs WIProofBit(Ci,j) that
each commitment indeed commits to an L-bit block. As we see in the proof (see
the full version), this commitment needs to be extractable so that the simulator
is able to recover the passwords used by the adversary, which is the reason
why we segmented all the passwords and make commitments of bits, along with
a WIProofBit that the committed value is actually a bit. Each user also runs
the signature key generation algorithm to obtain a signature key SKi and a
verification key VKi. The users will be split according to the values received in
this first flow (i.e. the commitments, the proofs and the verification keys), as we
see in the second flow where they send a signature of all they have received up
to this point. Thus, the protocol cannot continue past this point if some players
do not share the same values as the others (i.e. one of the signatures σi will be
rejected later on and at least a user will abort).

Once this first step is done, the users commit again to their passwords (by
encrypting them, for efficiency reasons), but this time in a single block: C′

i =
(C′

i
(1)
, C′

i
(2)
, C′

i
(3)) = (g1ti , g2

ui , gpwig3
ti+ui) (with random values ti and ui) and

publish it along with a SSNIZK proof that the passwords committed are the same
in the two commitments: SSNIZKEqg,g(Ci, C

′
i), Ci roughly being the product of

the Ci,j , i.e. a commitment of pwi. The new encryptions C′
i will be the ones used

in the rest of the protocol. They need not be segmented (since we will not extract
anything from them, but just make computations on encrypted values), but we
ask the users to prove that they are compatible with the former commitments.

Each user Pi computes H = H(C1, . . . ,Cn), and sends a signature of the
values that identifies this execution, under an ephemeral one-time signature key,
to avoid malleability and replay from previous sessions: σi = Sign(H ; SKi). This
allows the protocol to realize the split functionality by ensuring that everybody
has received the same values in the first round (more precisely, the players have
been split according to what they received in the first round, so that we can
assume that they have all received the same values). Note that the protocol will
fail if the adversary drops or modifies a flow received by a user, even if everything
was correct. This situation is modeled by the bit b of the key delivery queries in
the functionality, for when everything goes well but some of the players do not
obtain the result.

Strong Cryptography from Weak Secrets 305

The need for an additional extractable commitment Ci of gpwi (and a proof
that the password used is the same, and that everybody received the same value)
is a requirement of the UC model, as in [10]. Indeed, we show later on that
S needs to be able to simulate everything without knowing any passwords: Thus,
he recovers the passwords by extracting them from the commitments Ci made
by the adversary in the first round, enabling him to adjust his own values before
the subsequent encryptions C′

i, so that all the passwords are compatible with
the public key (if they should be in the situation at hand).

After these rounds of commitments/encryptions, the players check the signa-
tures and abort if one of them is not valid. A computation step then allows them
to compute the public key. Note that everything has become publicly verifiable.

Computation starts from the ciphertexts C′
i, and involves two “blinding rings”

to raise sequentially the values
∏

i C
′
i
(3) = g

∑
i pwig3

∑
i(ti+ui), g1, g2 and g3

to some distributed random exponent α =
∑

i αi. The players then broadcast
g3

α(ti+ui) (the values g1 and g2 are only here to check the consistency of the val-
ues ti and ui and avoid cheating), leaving every player able to compute gα

∑
i pwi .

A final “unblinding” allows for the recovery of g
∑

i pwi = pk. We stress that every
user is able to check the validity of this computation (at each step, it checks the
CDH values to ensure that the same exponent was used each time): A dishonest
execution cannot continue without an honest user becoming aware of it (and
aborting). Note however that an honest execution can also be stopped by a user
if the adversary modifies a flow, as reflected by the bit b in the functionality.

The Distributed Private Computation Protocol. This protocol is pre-
sented in Figure 2 and realizes FpwDistPrivateComp. Here, in addition to their pass-
words, the users are also provided a public key pk and a group element c ∈ G.
For this given c ∈ G, the leader wants to obtain m = csk. A big difference with
the previous protocol is that this result will be private to the leader. But before
computing it, everybody wants to be sure that all the users are honest, or at
least that the combination of the passwords is compatible with the public key.

This verification step is exactly the same as the computation step in the
previous protocol. The protocol starts by verifying that they will be able to
perform this computation, and thus that they indeed know a representation of
the secret key into shares. Each user sends a commitment Ci = {Ci,j}j of its
password as before, and the associated set of WIProofBit(Ci,j).

As in the former protocol, once this first step (which enables the users to be
split into subgroups according to what values they have received) is done, the
users commit again to their passwords in the value C′

i, which will be the ones
used in the rest of the protocol, and also send a signature which enables them to
check that they share the same public key pk, the same group element c, and have
received the same values in the first round. It thus avoids situations in which a
group leader with an incorrect key obtains a correct private computation result,
contrary to the ideal functionality. The protocol will thus fail if all these values
are not the same to everyone, which is the result required by the functionality.

Next, the users make yet another encryption Ai of their passwords, but this
time they do a linear encryption of pwi in base c instead of in base g (in the

306 X. Boyen et al.

C
om

m
it

m
en

t
F
ir

st
S
te

p
︷

︸︸
︷

(1a) ri,j , si,j
R← Z

∗
p

Ci,j =Commitg(pwi,j , ri,j , si,j)=(U1
pwi,j g1

ri,j , U2
pwi,j g2

si,j , gpwi,j g3
ri,j+si,j)

Π0
i,j = WIProofBit(Ci,j)

(SKi, VKi)← SKG
Ci={Ci,j}j ,{Π0

i,j}j ,VKi−−−−−−−−−−−−−−−−→

C
om

m
it

m
en

t
S
ec

on
d

S
te

p
︷

︸︸
︷

(1b) H = H(C1, . . . ,Cn, VK1, . . . , VKn) ti, ui
R← Z

∗
p

C′
i = Encryptg(pwi, ti, ui) = (g1

ti , g2
ui , gpwig3

ti+ui)

Ci =

(
∏ (

Ci,j
(1)

)2j

,
∏ (

Ci,j
(2)

)2j

,
∏ (

Ci,j
(3)

)2j)

Π1
i = SSNIZKEqg,g(Ci, C

′
i) σi = Sign(H ;SKi)

C′
i,Π1

i ,σi−−−−−−→

B
li
n
d
in

g
R

in
g

︷
︸︸

︷ (1c) abort if one of the signatures σi is invalid
γ

(0)
0 =

∏
i C′

i
(3)

= g
∑

i pwig3

∑
i ti+

∑
i ui γ

(1)
0 = g1 γ

(2)
0 = g2 γ

(3)
0 = g3

This round is done sequentially, for i=1,. . . ,n.

Upon receiving (γ
(0)
j , γ

(1)
j , γ

(2)
j , γ

(3)
j) for j = 1, . . . , i− 1,

check CDH(γ
(0)
j−1, γ

(0)
j , γ

(1)
j−1, γ

(1)
j),CDH(γ

(0)
j−1, γ

(0)
j , γ

(2)
j−1, γ

(2)
j)

and CDH(γ
(0)
j−1, γ

(0)
j , γ

(3)
j−1, γ

(3)
j); abort if one of them is invalid

αi
R← Z

∗
p γ

(0)
i = (γ

(0)
i−1)

αi γ
(1)
i = (γ

(1)
i−1)

αi γ
(2)
i = (γ

(2)
i−1)

αi

γ
(3)
i = (γ

(3)
i−1)

αi
γ
(0)
i ,γ

(1)
i ,γ

(2)
i ,γ

(3)
i−−−−−−−−−−−−→

(1d) given γ
(0)
n = gα

∑
i pwig3

α(
∑

i ti+
∑

i ui) γ
(1)
n = g1

α γ
(2)
n = g2

α γ
(3)
n = g3

α

check CDH(γ
(0)
n−1, γ

(0)
n , γ

(1)
n−1, γ

(1)
n), CDH(γ

(0)
n−1, γ

(0)
n , γ

(2)
n−1, γ

(2)
n)

and CDH(γ
(0)
n−1, γ

(0)
n , γ

(3)
n−1, γ

(3)
n)

for all i, Pi computes G1,i = (γ
(1)
n)ti , G2,i = (γ

(2)
n)ui ,

G3,i = (γ
(3)
n)ti , G4,i = (γ

(3)
n)ui

G1,i ,G2,i,G3,i,G4,i−−−−−−−−−−−−−→

U
n
b
li
n
d
in

g
R

in
g

︷
︸︸

︷ (1e) given, for j = 1, . . . , n G1,j , G2,j , G3,j , G4,j

check CDH(g1, C
′
j
(1)

, γ
(1)
n , G1,j), CDH(g2, C

′
j
(2)

, γ
(2)
n , G2,j),

CDH(γ
(1)
n , G1,j , γ

(3)
n , G3,j) and CDH(γ

(2)
n , G2,j , γ

(3)
n , G4,j)

ζn+1 = γ
(0)
n /

(∏
j G3,jG4,j

)
= gα

∑
j pwj

This round is done sequentially, for i from n down to 1.

given, for j from n down to i + 1, ζj , check CDH(γ
(1)
j−1, γ

(1)
j , ζj , ζj+1)

ζi = (ζi+1)
1/αi

ζi−→
(1f) given, for j from i− 1 down to 1, ζj , check CDH(γ

(1)
j−1, γ

(1)
j , ζj , ζj+1)

pk = ζ1

Fig. 1. Individual steps of the distributed key generation protocol

above C′
i ciphertext): Ai = Encryptc(pwi, vi, wi) = (g1vi , g2

wi , cpwig3
vi+wi). The

ciphertexts C′
i will be used to check the possibility of the private computation

(i.e. that the passwords are consistent with the public key pk = gsk), whereas the
ciphertexts Ai will be used to actually compute the expected result csk, hence
the two different bases g and c in C′

i and Ai, respectively. All the users send

Strong Cryptography from Weak Secrets 307

these last two ciphertexts to everybody, along with a SSNIZK argument that the
same password was used each time: Π2

i = SSNIZKEqg,c(C′
i, Ai).

After these rounds of commitments/encryptions, a verification step allows for
all the players to check whether the public key and the passwords are compatible.
Note that at this point, everything has become publicly verifiable so that the
group leader will not be able to cheat and make the other players believe that
everything is correct when it is not. Verification starts from the ciphertexts C′

i,
and involves a blinding and an unblinding ring as described above. This ends
with a decision by the group leader on whether to abort the protocol (when the
passwords are incompatible) or go on to the computation step. Every user is able
to check the validity of the group leader’s decision, as in the former protocol.

If the group leader decides to go on, the players assist it in the computation
of csk, again with the help of a blinding and an unblinding rings, starting from the
ciphertexts Ai. However, note that this time, the group leader does not reveal the
values G′

1,1 = (δ(1)n)v1 , G′
2,1 = (δ(2)n)w1 , G′

3,1 = (δ(3)n)v1 and G′
4,1 = (δ(3)n)w1 at the

end of the blinding ring, but it is the only one able to compute cβ
∑

j pwj . Instead
of revealing it to the others, it chooses at random an exponent x R← Z∗

q and
broadcasts the value cβx

∑
j pwj . The unblinding ring then takes place as before,

leading to a public value cβ1x
∑

j pwj that the environment cannot distinguish
from random thanks to the random exponent x. Furthermore, the whole process
is robust, which means that nobody can make the decryption result become
incorrect. Except of course the group leader itself who broadcasts any value it
wants as ζ′n+1, without having to prove anything. But this does not help it to
obtain a computation which it could not do alone, except the result csk.

Note that if at some point a user fails to send its value (denial of service attack)
or if the adversary modifies a flow (man-in-the-middle attack), the protocol will
fail. In the ideal world this means that the simulator makes a computation
delivery query to the functionality with a bit b set to zero. Because of the public
verifications of the CDH values, in these blinding/unblinding rounds exactly the
same sequence of passwords as in the first rounds has to be used by the players.
This necessarily implies compatibility with the public key, but may be an even
stronger condition.

As a side note, observe that all the blinding rings in the verification and com-
putation steps could be made concurrent instead of sequential, to simplify the
protocol. Notice however that the final unblinding ring of csk in the computation
step should only be carried out after the public key and the committed pass-
words are known to be compatible, and the passwords to be the same in both
sequences of commitments/encryptions, i.e. after the verification step succeeded.

All the witness-indistinguishable and SSNIZK proofs and arguments will be
described in Section 6. We show in the full version [8] that we can efficiently
simulate these computations without the knowledge of the pwi’s, so that they
do not reveal anything more about the pwi’s than pk already does. More pre-
cisely, we show that such computations are indistinguishable to A under the
DLin assumption.

308 X. Boyen et al.

C
om

m
it

m
en

t
S
te

p
s

︷
︸︸

︷
(2a) = (1a)

{Ci,j ,Π0
i,j}j−−−−−−−−→

(2b) = (1b) except vi, wi
R← Z

∗
p

Ai = Encryptc(pwi, vi, wi) = (g1
vi , g2

wi , cpwig3
vi+wi)

Π2
i = SSNIZKEqg,c(C

′
i, Ai)

C′
i,Ai,Π2

i−−−−−−→

B
li
n
d
.

R
in

g
︷

︸︸
︷ (2c) = (1c)

γ
(1)
i ,γ

(2)
i ,Π2

i−−−−−−−−→
(2d) = (1d)

(G1,i,G2,i,G3,i,G4,i)−−−−−−−−−−−−−−→

U
n
b
li
n
d
.

R
in

g
︷

︸︸
︷ (2e) = (1e)

ζi−→
(2f) = (1f) pk ?

= ζ1

B
li
n
d
in

g
R

in
g

︷
︸︸

︷ (3a) abort if one of the signatures σi is invalid
δ
(0)
0 =

∏
i Ai

(3) = c
∑

i pwig3

∑
i vi+

∑
i wi δ

(1)
0 = g1 δ

(2)
0 = g2 δ

(3)
0 = g3

P1 chooses at random β1
R← Z

∗
p and computes

δ
(0)
1 = (δ

(0)
0)β1 δ

(1)
1 = (δ

(1)
0)β1 δ

(2)
1 = (δ

(2)
0)β1 δ

(3)
1 = (δ

(3)
0)β1

This round is done sequentially, for i=2,. . . ,n.

Upon receiving (δ
(0)
j , δ

(1)
j , δ

(2)
j , δ

(3)
j) for j = 1, . . . , i− 1,

check CDH(δ
(0)
j−1, δ

(0)
j , δ

(1)
j−1, δ

(1)
j), CDH(δ

(0)
j−1, δ

(0)
j , δ

(2)
j−1, δ

(2)
j),

CDH(δ
(0)
j−1, δ

(0)
j , δ

(3)
j−1, δ

(3)
j); abort if one of them is invalid

βi
R← Z

∗
p

δ
(0)
i = (δ

(0)
i−1)

βi δ
(1)
i = (δ

(1)
i−1)

βi δ
(2)
i = (δ

(2)
i−1)

βi δ
(3)
i = (δ

(3)
i−1)

βi
δ
(1)
i ,δ

(2)
i−−−−−→

(3b) given δ
(0)
n = cβ

∑
i pwig3

β(
∑

i vi+
∑

i wi) δ
(1)
n = g1

β δ
(2)
n = g2

β δ
(3)
n = g3

β

check CDH(δ
(0)
n−1, δ

(0)
n , δ

(1)
n−1, δ

(1)
n), CDH(δ

(0)
n−1, δ

(0)
n , δ

(2)
n−1, δ

(2)
n)

CDH(δ
(0)
n−1, δ

(0)
n , δ

(3)
n−1, δ

(3)
n)

for i �= 1, Pi computes G′
1,i = (δ

(1)
n)vi , G′

2,i = (δ
(2)
n)wi ,

G′
3,i = (δ

(3)
n)vi , G′

4,i = (δ
(3)
n)wi

G′
1,i,G′

2,i,G′
3,i,G′

4,i−−−−−−−−−−−−−→

U
n
b
li
n
d
in

g
R

in
g

︷
︸︸

︷ (3c) given, for j = 1, . . . , n G′
1,j , G

′
2,j , G

′
3,j , G

′
4,j

check CDH(g1, Aj
(1), δ

(1)
n , G′

1,j), CDH(g2, Aj
(2), δ

(2)
n , G′

2,j),

CDH(δ
(1)
n , G′

1,j , δ
(3)
n , G′

3,j) and CDH(δ
(2)
n , G′

2,j , δ
(3)
n , G′

4,j)

P1 computes G′
1,1 =(δ

(1)
n)v1 , G′

2,1 =(δ
(2)
n)w1 , G′

3,1 = (δ
(3)
n)v1 , G′

4,1 = (δ
(3)
n)w1

P1 chooses at random x
R← Z

∗
p

and computes ζ′
n+1 =

(
δ
(0)
n /

∏
j(G

′
3,jG

′
4,j)

)x

= cβx
∑

j pwj
ζ′

n+1−−−→
This round is done sequentially, for i from n down to 2.
Upon receiving, for j from n down to i + 1 ζ′

j

check CDH(δ
(1)
j−1, δ

(1)
j , ζ′

j , ζ
′
j+1)

ζ′
i = (ζ′

i+1)
1/βi

ζ′
i−→

(3d) given, for j from i− 1 down to 2 ζ′
j

check CDH(γ
(1)
j−1, γ

(1)
j , ζ′

j , ζ
′
j+1)

P1 gets ζ′
1 = (ζ′

2)
1/β1 = cx

∑
pwi = cxsk and finally csk

Fig. 2. Individual steps of the distributed decryption protocol

Strong Cryptography from Weak Secrets 309

Security Theorems. Assuming that the proofs of membership WIProofBit and
SSNIZKEq are instantiated as described in Section 6 (relying on the CDH), we
have the following results, provided that DLin is infeasible in G andH is collision-
resistant. The proofs of these theorems can be found in the full version [8].

Theorem 1. Let F̂pwDistPublicKeyGen be the concurrent multi-session extension of
FpwDistPublicKeyGen. The distributed key generation protocol in Figure 1 securely
realizes F̂pwDistPublicKeyGen for ElGamal key generation, in the CRS model, in the
presence of static adversaries.

Theorem 2. Let F̂pwDistPrivateComp be the concurrent multi-session extension of
FpwDistPrivateComp. The distributed decryption protocol in Figure 2 securely realizes
F̂pwDistPrivateComp for ElGamal decryption, in the CRS model, in the presence of
static adversaries.

As stated above, our protocols are only proven secure against static adversaries.
Unlike adaptive ones, static adversaries are only allowed to corrupt protocol
participants prior to the beginning of the protocol execution.

5 Extensions of the Protocols

Boneh-Franklin IBE Scheme [6]. We need to compute did = H(id)sk where
H(id) is a public hash of a user’s identity. This is analogous to csk, and thus our
protocol works as is.

Boneh-Boyen (BB1) IBE Scheme [4]. Here, did is randomized and of the
form (h0

sk(hid
1 h2)r, h3

r). Since (h0
sk) is a private value, the protocol can be

adapted as follows: 1) In the commitment steps, the user also commits (once)
in (2a) to a value ri, which will be its share of r. 2) Up to (2f), everything works
as before in order to check pk (there is no need to check r, constructed on the fly).
3) The blinding rings are made in parallel, one for (h0

sk)β , one for ((hid
1 h2)r)β ,

and one for (h3
r)β , the CDH being checked to ensure that the same r and βi are

used each time. 4) The players obtain (h0
sk(hid

1 h2)r)β and the unblinding ring
is made globally for this value. An unblinding ring is also done for (h3

r)β , with
the same verification for the exponents βi.

Linear Decryptions [5]. Let (f = g1/x, g, h = g1/y) be the public key of a
linear encryption scheme, (x, y) being the private key. Assuming z = y/x, these
keys can be seen as pk = (hz, hy, h) and sk = (y, z). Using these notations,

c = Epk(m; r) = (c1, c2, c3) = (f r, hs,mgr+s)
m = Dsk(c) = c3(c1xc2

y)−1 = mgr+sg−rg−s

In the first protocol, the players need to use two passwords zi and yi to create
the public key pk. In the second one, the commitment steps are doubled to
commit to both zi and yi. As soon as pk is checked, the blinding rings are made
separately, one for (c1x)β and one for (c2y)β . The players obtain (c1xc2

y)β and
the unblinding ring can be made globally for this value. In both rings, the CDH
is checked to ensure that the same βi is used each time.

310 X. Boyen et al.

6 Employed Proof Systems

6.1 GOS WI Proof of Commitments Being to Bits

Let (g1, g2, g3) ∈ G3 be a “basis” and let (U1, U2, g) ∈ G3 be a commitment
key (which is in general non-linear w.r.t. (g1, g2, g3), but for simulation purposes
it will be linear). Let C = (Ux

1 g
r
1, U

x
2 g

s
2, g

xgr+s
3) be a commitment to x using

randomness (r, s). Groth et al. [13] construct a WI proof system to show that one
of two triples is linear. Applying it to (C1, C2, C3) and (C1U

−1
1 , C2U

−1
2 , C3g

−1)
yields a proof that x ∈ {0, 1}, thus implements WIProofBit, in an efficient way
and without random oracles.

6.2 Simulation-Sound NIZK Arguments for Relations of
Ciphertexts and Commitments

We construct two simulation-sound NIZK argument systems implementing the
proof SSNIZKEq. Given two ciphertexts, the first proves that the encrypted mes-
sages m1 and m2 are in CDH w.r.t. some fixed basis (c, d), i.e., m1 = cμ and
m2 = dμ for some μ. The second SSNIZK proves that for a given linear com-
mitment to x and a linear encryption of gy it holds that x = y. We follow the
overall approach by Groth [12] to obtain simulation soundness, but using the
Groth-Sahai proof system [14] we get an efficient result: the proofs themselves
are efficient, and we need not encrypt some of the witnesses in order to guarantee
extractability, as the employed Groth-Sahai proofs are witness extractable.
Overview. We start with some intuition on how [12] constructs simulation-
sound proofs for satisfiabilityofaset of pairing product equations (PPEs) {Ek}KE

k=1

(and later show how to express the statements we want to prove this way). Let
Σot be a strong one-time signature scheme1 and let Σcma be a signature scheme
that is existentially unforgeable under chosen message attack (EUF-CMA), and
whose signatures σ on a message M are verified by checking a set of PPEs over
a verification key vk and M , denoted {Vk(vk,M, σ)}KV

k=1.
The common reference string (CRS) of our argument system will contain a ver-

ification key vk for Σcma (whose corresponding signing key serves as simulation
trapdoor). When making an argument, one first chooses a key pair (vkot, skot) for
Σot, proves a statement and, at the end, adds a signature under vkot on the in-
stance and the proof. The statement one actually proves is the following: to either
know a witness satisfying Equations {Ek} or to know a signature on vkot valid
under vk. Groth [12] shows how to construct a new set of equations which is sat-
isfiable iff {Ek} or {Vk(vk, vkot, ·)} are satisfiable. Moreover, knowing witnesses
for either of them, one can compute witnesses of the new set of equations. Using
the techniques of [14], one then commits to the witnesses and proves that the
committed values satisfy the new PPEs in a witness-indistinguishable (WI) way.

To simulate an argument, after choosing a pair (vkot, skot), one uses the trap-
door to produce a signature σ on vkot valid under vk and uses σ as a witness
1 A signature scheme is strong one-time if no adversary, after getting a signature σ on

one message m of his choice, can produce a valid pair (m∗, σ∗) �= (m, σ).

Strong Cryptography from Weak Secrets 311

for {Vk(vk, vkot, ·)}. (It follows from WI of the Groth-Sahai proof that this is
indistinguishable from using a witness for {Ek}.) Even after seeing many proofs
of this kind, no adversary is able to produce one for a new false statement: Since
it has to sign the instance and the argument at the end, it must choose a new
pair (vk∗ot, sk

∗
ot) (by one-time security of Σot). Soundness of Groth-Sahai proofs

imposes that to prove a false statement (meaning that the first clause of the dis-
junction is not satisfiable), it must use a witness for the second clause, thus know
a signature on vkot. This however is infeasible by EUF-CMA of Σcma (since we
can extract the witnesses and thus a forged signature). We start by instantiating
the mentioned building blocks.

Building Blocks. The main motivation for our choices of instantiations of these
blocks is that their security is implied by DLin only. We insist that by admitting
more exotic assumptions, the efficiency of our proof system could be improved.

The Strong One-Time Signature Scheme Σot. We pick the scheme de-
scribed in [12] (but any other would equally do), since its security follows from
the discrete-log assumption which is implied by DLin.

The Waters Signature Scheme. The signature scheme from [16] suits our
purposes, it requires no additional assumption and—more importantly—signa-
tures are verified by checking PPEs.

Setup. In a bilinear group (p,G,GT , e, g), define parameters f ← G∗ and h :=
(h0, h1, . . . , h�)← G�+1. A secret key x← Zp defines a public key X := gx.
For ease of notation, define W(M) := h0

∏�
i=1 h

Mi

i .
Signing. To sign a message M ∈ {0, 1}�, choose r ← Zp and define a signature

as σ := (fxW(M)r, g−r).
Verification. A signature σ = (σ1, σ2) is accepted for message M iff

e(σ1, g) e(W(M), σ2) = e(f,X) (1)

Security. EUF-CMA follows from the computational Diffie-Hellman assumption
which is implied by DLin.

The Groth-Sahai Proof System. Consider a set of pairing product equations
{Ek}KE

k=1 on variables {Xi}ni=1 in G of the form
n∏

i=1

e(Ak,i, Xi)
n∏

i=1

n∏

j=1

e(Xi, Xj)γk,i,j = Tk (Ek)

for given Ak,i ∈ G, γk,i,j ∈ Zp, and Tk ∈ GT . Groth and Sahai [14] build
a non-interactive witness-indistinguishable proof of satisfiability of {Ek} from
which—given a trapdoor—can be extracted the witnesses Xi (we will use their
instantiation with DLin): the CRS is a (binding) key for linear commitments to
group elements. The proof consists of commitments to each Xi and 9 elements
of G per equation proving that it is satisfied by the committed values. By DLin,
replacing the CRS by a hiding commitment key is indistinguishable. In this
setting now every witness {Xi}ni=1 satisfying the equations generates the same
distribution of proofs, which implies witness-indistinguishability of the proofs.

312 X. Boyen et al.

Moreover, we assume a collision-resistant hash function H that maps strings
of elements of G to elements in Zp which we identify with their bit-representation
in {0, 1}�log p�. Thus, when we say we sign a vector of group elements, we actually
mean that we sign their hash values.

Equations for Proof of Plaintexts Being in CDH. Let c, d ∈ G be
fixed and let (g1, g2, g3) be a linear encryption key. Given two ciphertexts
C = (gr

1 , g
s
2,m1g

r+s
3) and D = (gt

1, g
u
2 ,m2g

t+u
3), we give a set of PPEs that

are satisfiable by a witness a if and only if there exists μ ∈ Zp such that m1 = cμ

and m2 = dμ.

e(C1, g3) = e(g1, a1) e(C2, g3) = e(g2, a2) (2)

e(D1, g3) = e(g1, a3) e(D2, g3) = e(g2, a4) e(C3a
−1
1 a−1

2 , d) = e(c,D3a
−1
3 a−1

4)

The witness satisfying them is a := (gr
3 , g

s
3, g

t
3, g

u
3). The first four equations

prove that the logarithms of the ai’s are those of C1, C2, D1, D2 w.r.t. their
respective bases. Thus, C3a

−1
1 a−1

2 = m1 and D3a
−1
3 a−1

4 = m2 and the last
equation shows that (m1,m2) is in CDH w.r.t. (c, d).

Disjunction of Equations. Following [12] (and optimizing since the pairings
have variables in common), we define a set of equations which we can prove
satisfiable if we have witnesses for either (2) or (1), i.e., if we either know a
satisfying (2) or σ satisfying (1). We first introduce the following new variables:

χ1, χ2 φ1, φ2, φ3, φ4, φ5 ψ1, ψ2, ψ3

We define the following 15 equations expressing a disjunction of (2) and (1),
therefore termed “(2 ∨ 1)”.

Equation for Disjunction: e(g−1χ1χ2, g) = 1
From (1): e(χ2, ψ

−1
1 σ1) = 1 e(χ2, ψ

−1
2 W(M)) = 1 e(χ2, ψ

−1
3 f) = 1

e(ψ1, g) e(ψ2, σ2) e(ψ3, X)−1 = 1

From (2): e(χ1, φ
−1
1 g1) = 1 e(χ1, φ

−1
2 g2) = 1

e(χ1, φ
−1
3 g3) = 1 e(χ1, φ

−1
4 c) = 1 e(χ1, φ

−1
5 d) = 1

e(C1, φ3) e(φ1, a1)−1 = 1 e(C2, φ3) e(φ2, a2) = 1

e(D1, φ3) e(φ1, a3)−1 = 1 e(D2, φ3) e(φ2, a4) = 1

e(C3a
−1
1 a−1

2 , φ5) e(φ4, D3a
−1
3 a−1

4) = 1

Completeness. To produce a proof we proceed as follows: If we have an as-
signment a for (2), we choose χ1 := g, χ2 := 1, satisfying thus the first equation.
Moreover, set φ1 := g1, φ2 := g2, φ3 := g3, φ4 := c, φ5 := d. Thus the equations
of the block for (2) are satisfied, because a is a witness for (2). Since χ2 = 1,
we can set ψi := 1 (for all i) as well, which satisfies the block for (1), no matter
what value we set σ.

On the other hand, if we know a signature σ satisfying (1), we choose χ1 :=
φi := 1 (for all i) and χ2 := g, ψ1 := σ1, ψ2 := W(M), ψ3 := f and get a
satisfying assignment for any choice of a.

Strong Cryptography from Weak Secrets 313

Soundness. We show that if (2 ∨ 1) is satisfied then either a satisfies (2) or σ
satisfies (1): From the first equation we have that either χ1 or χ2 must be non-
trivial, which either confines the values of the φi’s to (g1, g2, g3, c, d) or those of
the ψi’s to (σ1,W(M), f). Now this imposes that either a satisfies (2) (by the
last five equations of the block for (2)) or σ satisfies (1) (by the last equation of
the block for (1)).

Equations for Proof of Commitment and Ciphertext Containing the
Same Value. Let (g1, g2, g3) be a key for linear encryption, and let (U1, U2, g) be
an associated commitment key. Let C = (Ux

1 g
r
1, U

x
2 g

s
2, g

xgr+s
3) be a commitment

to x and D = (gv
1 , g

w
2 , g

ygv+w
3) be an encryption of gy. We prove that x = y: the

witness is (a1 = Ux
1 , a2 = Ux

2 , a3 = gx, a4 = gr
3 , a5 = gv

3) satisfying

e(a1, U2) = e(U1, a2) e(C1a
−1
1 , g3) = e(g1, a4) e(D1, g3) = e(g1, a5)

e(a1, g) = e(U1, a3) e(C2a
−1
2 , g3) = e(g2, C3a

−1
3 a−1

4) e(D2, g3) = e(g2, D3a
−1
3 a−1

5) (3)

The equations in the first column show that a1 = Uz
1 , a2 = Uz

2 , a3 = gz for
some z, the second column proves that (C1a

−1
1 , C2a

−1
2 , C3a

−1
2) is linear (i.e.,

C commits to z) and the third that D is an encryption of a3 = gz.

Transformation. Transforming Equations (3) and (1) to a set (3 ∨ 1) analo-
gously to the construction of (2 ∨ 1), we get a set of 16 equations we can prove
satisfiable adding 10 new witnesses if either we have a witness for C being a
commitment to some x and D an encryption of gx, or we know a signature.
(Associate the φi’s to U1, a1, g1, g2 and g3.)

Assembling the Pieces. We describe the SSNIZK proof system for “plaintexts
in CDH”. The one for “commitment and ciphertext contain the same value” is
obtained by replacing (2 ∨ 1) by (3 ∨ 1).

Common Reference String. Generate a key pair (vk, sk) for Waters’ sig-
nature scheme, and a CRS crsGS for the Groth-Sahai proof system. Let
crs := (vk, crsGS) and let the simulation trapdoor be sk.

Proof. Let (C,D) ∈ G6 be an instance and a a witness satisfying (2). Generate
a key pair (vkot, skot) for Σot; using witness a, make a Groth-Sahai proof πGS
w.r.t. crsGS of satisfiability of (2∨1) with M := vkot; produce a signature σot
on (C,D, vkot, πGS) using skot. The proof is π := (vkot, πGS, σot)

Verification. Given π, verify σot on (C,D, vkot, πGS) under vkot, and πGS on
the respective equations.

Simulation. Proceed as in Proof, but using sk produce σ on vkot and use
that as a witness for (2 ∨ 1).

Theorem 3. Under the DLin assumption, the above is a simulation-sound NIZK
argument for the encryptions of two linear ciphertexts forming a CDH-pair.

Using the ideas given in the overview, the proof is analogous to that in [12]
except that we do not require perfect soundness and that we use the extraction
key for crsGS to extract a forged signature on vkot directly rather than adding
encryptions to the proof.

314 X. Boyen et al.

Acknowledgments

This work was supported in part by the European Commission through the ICT
Program under Contract ICT-2007-216646 ECRYPT II, by the French ANR-07-
SESU-008-01 PAMPA Project, and EADS.

References

1. Abdalla, M., Boyen, X., Chevalier, C., Pointcheval, D.: Distributed public-key cryp-
tography from weak secrets. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 139–159. Springer, Heidelberg (2009)

2. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993: 1st Conference on Computer and Commu-
nications Security, pp. 62–73. ACM Press, New York (1993)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

8. Boyen, X., Chevalier, C., Fuchsbauer, G., Pointcheval, D.: Strong cryptography
from weak secrets: Building efficient PKE and IBE from distributed passwords.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055,
pp. 297–315. Springer, Heidelberg (2010); Full version available from the web page
of the authors

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, Los Alamitos (2001)

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

12. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

13. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

Strong Cryptography from Weak Secrets 315

14. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

15. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
ACM CCS 2005: 12th Conference on Computer and Communications Security, pp.
180–189. ACM Press, New York (2005)

16. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

	Strong Cryptography from Weak Secrets Building Efficient PKE and IBE from Distributed Passwords
	Introduction
	Security Model
	Notations and Building Blocks
	Description of the Protocols
	Extensions of the Protocols
	Employed Proof Systems
	GOS WI Proof of Commitments Being to Bits
	Simulation-Sound NIZK Arguments for Relations of Ciphertexts and Commitments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

