
Fresh Re-keying: Security against Side-Channel

and Fault Attacks for Low-Cost Devices

Marcel Medwed1, François-Xavier Standaert2,
Johann Großschädl3, and Francesco Regazzoni2

1 Graz University of Technology, Austria
2 Université catholique de Louvain, Belgium
3 University of Luxembourg, Luxembourg

Abstract. The market for RFID technology has grown rapidly over the
past few years. Going along with the proliferation of RFID technology is
an increasing demand for secure and privacy-preserving applications. In
this context, RFID tags need to be protected against physical attacks
such as Differential Power Analysis (DPA) and fault attacks. The main
obstacles towards secure RFID are the extreme constraints of passive
tags in terms of power consumption and silicon area, which makes the
integration of countermeasures against physical attacks even more diffi-
cult than for other types of embedded systems. In this paper we propose
a fresh re-keying scheme that is especially suited for challenge-response
protocols such as used to authenticate tags. We evaluate the resistance
of our scheme against fault and side-channel analysis, and introduce a
simple architecture for VLSI implementation. In addition, we estimate
the cost of our scheme in terms of area and execution time for various
security/performance trade-offs. Our experimental results show that the
proposed re-keying scheme provides better security (and does so at less
cost) than state-of-the-art countermeasures.

1 Introduction

Radio-Frequency Identification (RFID) is an emerging technology that enables
identification of non-line-of-sight objects or subjects. Based on cheap RF micro-
circuits—called tags—apposed on or incorporated in the items to identify, the
RFID technology is now widely deployed in our everyday life. Considering the
plethora of applications that are targeted, it is little surprising that security and
privacy issues related to RFID technology have become an important concern in
recent years. Solving these issues has created a need for cryptography-enabled
RFID tags that fulfill stringent constraints on area and power consumption.

Unfortunately, while designing secret-key or public-key cryptographic hard-
ware on an area budget of a few thousand logic gates is challenging enough, the
cost criteria is not the only one to be met by secure RFID tags. In particular, as
these tags often operate in insecure or even hostile environments, they can be
subject to different types of implementation (i.e. physical) attacks. This means
that, instead of targeting the cryptographic algorithms and/or protocols at the
mathematical level, an adversary may directly attack their implementation in

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 279–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

280 M. Medwed et al.

k

k∗

r

gk(r)

fk∗(m) cm

Fig. 1. Fresh re-keying: basic principle

order to break a system. A considerable number of experiments reported in the
literature during the past ten years demonstrate the low-cost nature of certain
classes of physical attacks, most prominently side-channel attacks (e.g. Simple
Power Analysis, Differential Power Analysis [14]) and fault attacks [1]. The very
same attacks that can break unprotected smart cards also apply to RFID tags
(just slight adaptations of the measurement setup are necessary [10]), which is
no surprise given that both types of devices are manufactured using the same
or similar VLSI technology. As a consequence, the need for low-cost protections
against such physical attacks emerges. The requirement of physical security is
a particularly challenging issue since most published approaches to increase the
resistance against side-channel or fault attacks are rather expensive [19]. Even
worse, there exist only very few combined countermeasures against both types
of attacks. On the other hand, developing and implementing security protocols
with large mathematical security margins is not very worthwhile if the devices
executing these protocols do not provide a similar (or at least reasonable) level
of physical security.

In order to solve these problems, we introduce a simple re-keying scheme to
protect RFID tags and other low-cost devices against Differential Fault Attacks
and a large category of side-channel attacks (namely the “standard” SPA and
DPA attacks as described in Section 2). This scheme, depicted in Figure 1, can
be used in a challenge-response authentication protocol for RFID tags or, more
generally, for physically secure encryption. It contains an encryption function
f (typically, f is a block cipher; we will use the AES as example throughout this
paper) to encrypt every challenge (or, more generally, every message block m)
with a fresh session key k∗. This session key k∗ is obtained with the help of a
function g that uses a master key k and an on-tag generated public nonce r as
input. That is, the tag computes the session key k∗ = gk(r) first and then the
ciphertext c = fk∗(m). At a first glance, it may seem that such a scheme just
shifts the problem of protecting the block cipher f against physical attacks to
the problem of protecting the function g against the same attacks. However, we
argue in this paper that fresh re-keying provides significant advantages, both in
terms of security and performance, over existing countermeasures. Firstly, and
quite simply, it makes attacks based on Differential Fault Analysis unpractical
because the same key is never used twice to encrypt a challenge or message. Sec-

Fresh Re-keying: Security against Side-Channel and Fault Attacks 281

ondly, it allows for separating the requirements on the two functions. On the one
hand, g has to be low-cost and easy to protect against side-channel attacks, but
does not have to be cryptographically strong. On the other hand, f only needs
to be secure against side-channel attacks with a data complexity bounded to one
single query (i.e. SPA, essentially).

In the following sections of this paper, we define a number of desired properties
for the function g and propose a concrete implementation that we analyze in
detail. We then explore the design space for g and discuss different trade-offs
between performance and resistance against side-channel attacks. Relying on
previous results of evaluations of protected devices, our implementation figures
show that a significant level of physical security can be obtained at reasonable
cost. In particular, we assess the computational difficulty of performing attacks
based on the traditional “divide-and-conquer” strategy in which different parts
of the master key k are recovered separately. We show that the cost of such an
attack is prohibitive for the targeted applications. Regarding fault analysis, we
discuss the protection against differential fault attacks, but do not consider any
of the simple fault attacks that reduce the number of rounds of a block cipher
or output the key instead of the ciphertext. These attack scenarios represent a
more general, scheme-independent threat and are commonly prevented by other
means, e.g. loop invariants or code signatures. Finally, we briefly discuss the
resistance of our scheme against the recently introduced algebraic side-channel
attacks [29]. While the exact evaluation of such advanced techniques is left as a
topic for further research, we sketch solutions to prevent them.

1.1 Related Work

There exists a significant literature on countermeasures to prevent side-channel
attacks. In this section, we summarize the most common countermeasures and
discuss their advantages and limitations. We then argue how our proposal can
be seen as a new trade-off between security and performance.

First, masking (e.g. [7,31]) is a commonly applied and thus well understood
technique to protect a device against side-channel attacks. Its main drawback is
that the performance penalty can be significant because of the need to compute
a correction term on-the-fly, during the encryption process [7]. Masking can be
defeated by higher-order attacks [21] or due to hardware issues such as glitches
[18]. Nonetheless, it is usually considered as an effective ingredient for the pro-
tection of cryptographic hardware. The permutation tables analyzed in [3] have
quite similar properties, both in terms of performance and security [27].

Next to masking, hiding is another frequently applied countermeasure. Many
hiding schemes have been proposed in the literature recently, e.g. different time
randomization tools or side-channel resistant logic-styles featuring an (almost)
data-independent power consumption profile. Such logic-styles can be based on
standard CMOS cell libraries (e.g. WDDL [36]), or require full-custom design
(e.g. SABL [35]). Again, there is a security vs. performance/cost trade-off since
designing full-custom hardware is more expensive than using standard cells, but
provides also more options for fine-tuning and, hence, better security [16].

282 M. Medwed et al.

Closer to our proposed solution are different protocol-level countermeasures
such as regular key updates. The idea of regular key updates was first described
in [13] and has recently attracted significant attention, see e.g. [22,23]. These re-
keying schemes have the advantage of being formally analyzed, which allows for
a good evaluation of the security level they provide. On the other hand, they still
rely on certain physical assumptions that must be fulfilled by the hardware and
they can be quite inefficient when a chip has to be re-initialized regularly (which
is typically the case in a challenge-response setting). More precisely, as detailed
in [33], a secure initialization process for such constructions using e.g. the AES
would require a tree-based structure with up to n applications of the AES, where
n is the size of the initialization vector. This hardly fits into the RFID realm.

The use of all-or-nothing transforms to prevent certain types of side-channel
attacks is discussed in [15]. Here the idea is to transform the plain- and cipher-
texts with a low-cost mapping that is easy to protect against physical adversaries
and makes the guessing strategy, exploited in most standard DPA attacks, hard
to apply. As this proposal is quite recent, its careful security analysis is still an
open problem. Interestingly, it also shifts the problem of protecting a complete
cipher to the problem of protecting a simpler transform. But as for re-keying
schemes, the initialization and synchronization of an encryption protected with
such all-or-nothing transforms can be expensive. Another drawback is the need
of an additional secret shared between the two parties.

Our fresh re-keying is related to the idea of all-or-nothing transforms and the
standard re-keying schemes. Its big advantage is to provide a low-cost solution
to the initialization problem because a fresh session key is used to encrypt every
block of plaintext. In addition, since we also apply a transform on the key, we
avoid the need of sharing an additional secret as is the case with all-or-nothing
transforms. Finally, the proposed solution is low-cost because we only need one
transform to protect the key rather than two transforms to protect the plaintext
and ciphertext. On the other hand, we share the advantages of these protocol-
level countermeasures. In particular, we do not need to compute correction terms
during the encryption process and can take advantage of masking and hiding to
protect our re-keying scheme, as will be detailed in the following sections. Due
to its high regularity, we can even consider a full-custom implementation.

Note that, because we focus on RFID applications, this paper primarily deals
with implementation efficiency, as will be detailed in Section 4 and 5. In partic-
ular, we demonstrate that for the same or similar gate count, our scheme allows
for implementing more masking and shuffling than if one directly attempts to
protect a block cipher design with similar countermeasures. We believe that this
is an important first step in order to motivate further research on fresh re-keying
schemes. Our security analysis considers an important class of practical attacks
but generalizing it towards more abstract (or general) models of computation
and leakage (e.g. the ones summarized in [24]) and evaluating the performance
penalties that this would imply is an interesting open research question.

Fresh Re-keying: Security against Side-Channel and Fault Attacks 283

2 Background

As detailed in the introduction, the countermeasure proposed in this paper splits
the problem of physical security into different subproblems. Some parts of our
design are only required to be protected against SPA, whereas other parts also
require DPA-resistance. Since these are all standard notions in the field of cryp-
tographic hardware, we only summarize them and point to references for a more
formal treatment. In addition, we describe DPA attacks exploiting the standard
divide-and-conquer strategy that we consider in our security analysis. Finally, we
discuss how our re-keying scheme can be used in an authentication protocol.

2.1 SPA and DPA

In terms of side-channel resistance, the main requirement for our protocol to be
secure can be summarized as follows:

1. The function f needs to be secure against SPA.
2. The function g needs to be secure against both SPA and DPA.

SPA stands for Simple Power Analysis and corresponds to an attack in which
an adversary directly recovers key material from the inspection of a single mea-
surement trace (i.e. power consumption or EM radiation, typically). DPA stands
for Differential Power Analysis and corresponds to more sophisticated attacks in
which the leakage corresponding to different measurement traces (i.e. different
plaintexts encrypted under the same key) is combined. As a matter of fact, in
absence of an efficient solution to guess the session key k∗ from the master key
k, such attacks can only be applied to the function g in the scheme depicted in
Figure 1. Indeed, for the block cipher f , every plaintext will be encrypted using
a different k∗. For more details about such attacks, we refer to [19].

2.2 Divide-and-Conquer Strategies

Divide-and-conquer attacks, such as the standard DPA described in [20], are
attacks in which the adversary recovers small parts of a master key (also called
subkeys) one by one. Most side-channel attacks published in the open literature
fall into this category. In such a setting, an important skill of the adversary is
the ability to predict some (key-dependent) intermediate computations during
the encryption process (e.g. the first round S-box outputs in a block cipher). As
will be detailed in Section 6.3, this is typically what is made difficult by our fresh
re-keying scheme. If g has good enough diffusion, it should be hard to guess the
intermediate computations of f depending on the master key k. Therefore, only
SPA attacks can be performed against the session key k∗.

2.3 Challenge-Response Protocol

In a challenge-response authentication protocol, one entity sends a challenge
and the other party responds with the encrypted challenge together with some
additional information. Then, the response is checked. Depending on the use

284 M. Medwed et al.

case, this process can be repeated with swapped roles. As our re-keying scheme
is designed for physically secure encryption, it can be straightforwardly used
in any symmetric-key challenge-response authentication. The tag simply has to
implement the fresh-rekeying as shown in Figure 1. The reader implements the
same scheme, except that the nonce r is provided from outside by the tag.

Regarding the communication overhead, the transmission of the r values does
not necessarily imply that the number of passes in the protocol increases. In a
three-pass mutual authentication protocol (such as described in, e.g., ISO/IEC
9798-2 [11]) the r values can be included in data transported during the passes.
Thus, the number of passes increases at most by one, depending on who starts
the protocol. Note that an important property of our fresh re-keying is that the
adversary should not gain an advantage when resetting the device. That is, after
each reset the tag should compute a fresh nonce r and session key (in a passive
RFID scenario, the tag is reset any time it is taken out of the reader field).

3 Choice of the Function g

In order to investigate the security of the fresh re-keying scheme in Figure 1, one
first needs to determine the two functions f and g. As previously mentioned, a
natural choice for the function f is a block cipher, e.g. AES. Hence, it remains
the choice of the function g, which is, in fact, the most critical both for security
and performance. In this section, we specify the required properties for g and
select an appropriate candidate according to those properties.

3.1 Desired Properties

The following properties for g are motivated by a combination of side-channel
security aspects and hardware implementation aspects.

P1: Diffusion. One bit of the session key k∗ should depend on many bits of the
master key k. In other words, guessing one bit of the session key must be com-
putationally difficult. This property ensures that the divide-and-conquer tech-
nique, usually applied in DPA, cannot be easily carried out.

P2: No need for synchronization. The function g should not have a variable
inner state which needs to be kept synchronous among the parties. The only
inner state should be the static portion k (contrary to [22,23]).

P3: No additional key material. The symmetric key material, which needs to be
distributed in advance among the parties and stored within the devices, should
not be larger than that of classical block encryption. That is, the master key k
should suffice to evaluate both functions f and g (contrary to [15]).

P4: Little hardware overhead. Deriving the session key k∗ in hardware must be
cheaper than protecting the “original” circuit (i.e. the function f) by means
of secure logic-styles and other countermeasures.

P5: Easy to protect against SCA. g should have a suitable algebraic structure
that makes its protection against SCA easier than e.g. block ciphers. Combined

Fresh Re-keying: Security against Side-Channel and Fault Attacks 285

with the previous property, this means that deriving the session key k∗ with a
protected g should also be lower in cost than protecting f .

P6: Regularity. If possible, the function g should have a high regularity in order
to facilitate its implementation in a full-custom design. This is motivated by the
good security properties that the fine-tuning of such designs allows.

3.2 Candidate

From a cryptographic point of view, the most obvious choice for g would either
be a hash function or an encryption function. However, they would not be useful
in the present context since they are just as complex to implement and protect
as the original block cipher f . In contrast, from an engineering point of view, a
bitwise XOR function would be best. In fact, an XOR fulfills many of the above
properties, but the diffusion remains very weak. Combining these two extremes
led us to select g as the following modular multiplication:

g :
(
GF(28)[y]/p(y)

)2 → GF(28)[y]/p(y) : (k, r) → k ∗ r.

In the later sections of this paper, the polynomial p(y) will be defined as yd + 1
with d ∈ {4, 8, 16}. The actual choice of d will be used as parameter to improve
the diffusion (i.e. P1), as will be discussed in Section 6.3. Regarding the other
properties, P2 is fulfilled because the function only depends on the public but
random nonce r and the secret key k; P3 is fulfilled because only one master
key k is needed to evaluate g. P4-P6 are discussed in the next section.

Note that the diffusion property of this modular multiplication significantly
depends on the choice of r. Since r is randomly generated on-chip by the tag,
it allows arguing about the tag’s physical security by showing that the diffusion
is high enough on average. By contrast, on the reader side, the nonce might be
generated by an adversary. Hence, the re-keying will not ensure diffusion (and
physical security) on that side. As a consequence, the (more expensive) reader is
expected to be protected against implementation attacks by other means.

4 Implementation of the Function g

In this section we elaborate on the implementation of g. We start from a general
description of the multiplication algorithm, extend it to a blinded version, and
eventually discuss the use of secure logic for a hardware implementation.

4.1 Unprotected Implementation

The unprotected implementation of the multiplication follows Algorithm 1, the
complexity of which mainly depends on p(y). Thus, the degree of this polynomial
can be used to trade off performance for diffusion. For example, if d = 16 (resp.
d = 8), every bit of the session key k∗ will depend on 64 (resp. 32) bits of the
master key on average (refer to Section 6.3 for details). Note that if d < 16, the

286 M. Medwed et al.

Algorithm 1. Product-scan algorithm for multiplication.

Require: a, b ∈ GF(28)[y]/yd + 1
Ensure: c = a ∗ b ∈ GF(28)[y]/yd + 1
1: ρ← rand(), i← 0, j ← ρ, k← ρ, l← 0
2: while k �= ρ− 1 mod d do
3: ACCU ← 0
4: for l = 0 to d− 1 do
5: ACCU ← ACCU + ai · bj

6: if l < d then
7: i← i− 1 mod d
8: end if
9: j ← j + 1 mod d

10: end for
11: ck ← ACCU
12: k ← k + 1 mod d
13: end while
14: return c

multiplication is simpler, but needs to be applied several times to cover all key
bytes (e.g. twice if d = 8, four times if d = 4).

We opted for a product-scan algorithm [8], in which the result is calculated
digit-wise. That is, in each iteration of the outer loop (lines 4–10), all partial
products which add to the same digit of the final product are computed and
accumulated. The main disadvantage of this algorithm is the out-of-order pro-
cessing of the operands. However, the special choice of p(y) allows to overcome
this problem; this choice will be justified in Section 4.4.

4.2 Improving g’s SPA/DPA Resistance with Shuffling

Due to the structure of the ring we are operating on, the individual digits of the
product are independent (i.e. “carry-free”), which allows one to randomize the
order in which these digits are accumulated. Therefore, shuffling can be applied
as a side-channel countermeasure [19]. Shuffling has the effect that an adversary
who observes a side-channel trace can not directly infer the operations carried
out in different samples (i.e. in our case: which part of the product is processed
at what time), which makes SPA difficult. In addition, shuffling also increases
the data complexity of a DPA attack by d2 [9]. Note that this countermeasure
comes for free in our case because only the starting index of the outer loop has
to be initialized with a random value (line 1 in Algorithm 1).

4.3 Improving g’s SPA/DPA Resistance with Blinding

DPA attacks against a multiplication algorithm usually target the partial prod-
ucts. This is simply because a partial product depends only on one digit of each
operand, which allows for applying a divide-and-conquer strategy. A common

Fresh Re-keying: Security against Side-Channel and Fault Attacks 287

Algorithm 2. Blinded session key generation.

Require: k, r, bi with i = 1 to m, the masking order
Ensure: k∗ = k ∗ r
1: bk ← k
2: for i = 1 to m do
3: bk ← bk + bi

4: end for
5: k∗ ← bk ∗ r
6: for i = 1 to m do
7: k∗ ← k∗ + bi ∗ r
8: end for
9: return k∗

side-channel countermeasure, which is also applicable in our context, is to use a
redundant representation for the variables. Sharing a variable over (m + 1) vari-
ables is referred to as mth-order blinding (also called masking in the symmetric
setting [31]). Blinding is a powerful countermeasure, but only efficient when the
computational overhead due to operating on such a redundant representation
is small. Since addition and multiplication are distributive in our algebra, this
condition is nicely satisfied.

Algorithm 2 shows an mth-order blinded version of the function g. In line
3, m random blinds bi are added to k before the multiplication is carried out in
line 5; afterwards, each product bi ∗ r has to be removed again from the result in
line 7. It can be easily verified that this does not change the result. However, it
ensures that any adversary who wants to mount a DPA on g needs to exploit the
joint information of m partial products, thus perform an mth-order DPA. The
number m presents the second parameter in our design space for g. Both the
time and space complexity of g increases linearly with m, while the complexity
of a DPA on g grows exponentially with m [2].

4.4 Improving g’s SPA/DPA Resistance with Protected Logic-Styles

Finally, the main reason why we opted for the product-scan algorithm is because
it facilitates the use of secure logic-styles. More precisely, the part of the memory
that holds sensitive data is small when multiplying operands according to the
product-scan method. While a DPA can be performed on the partial products
during the execution of the multiplication, it is difficult to attack a byte of the
final result directly, as they depend on many bytes of both operands. Since the
product-scan algorithm operates only on one product-byte at a time, only this
byte and the corresponding multiplication in GF(28) have to be protected. In
general, secure logic is expensive compared to standard CMOS; thus it should
be used sparingly. However, this is exactly what our proposed re-keying scheme
allows a designer to achieve. A third parameter in our design space will be the
use of such protected hardware and the resulting impact on area.

288 M. Medwed et al.

k∗ (shared)

k

r

b1

bk

bi

bn

...

read port 2 / operand 2 [0:7]

operand 1 [0:7]

sum [0:7]
read addr 1 [0:4]

read addr 2 [0:4]

write addr [0:4]

write port [0:7]

read port 1 [0:7]

write enable

Multiply
Accumulate

Unit
(Secure Logic)

acc enable

load accu

output enable

accu output [0:7]

Control
Unit

Adder

re
se

t

in
st

r
[0

:1
4]

in
 [

0:
7]

ou
t [

0:
7]

re
ad

y

Fig. 2. Block diagram of the random transformation circuit

5 Global Architecture

Following the algorithmic description in the previous section, we now focus on
concrete hardware cost and performance issues. We investigate the design space
of g and present the results of different hardware implementations.

5.1 Block Diagram and Design Space for the Function g

Figure 2 depicts a hardware architecture for g. The diagram contains all com-
ponents necessary to generate k∗, except a random number generator, which we
can reasonably assume to be available on the tag. The three main components
of the architecture are the controller, the memory and the multiply-accumulate
(MAC) unit. Determined by the use of the AES for the function f , the memory
consists of 128-bit registers. Note that the register holding k∗ would be shared
with f , hence it does not contribute to the cost of g’s circuit. The actual size
of the memory is directly related to the second design parameter: the blinding
order. If the blinding order is zero, only two registers are needed. If mth-order
blinding is implemented, (m + 1) additional registers are required.

The control unit is basically invariant across the design space. Changing the
degree of the polynomial only changes loop constants within the controller and
affects the clock cycles needed to carry out an operation. Also the successive
executions of an operation (such as needed for d ∈ {4, 8}) are managed by the
controller. A similar statement holds when changing the blinding order. The co-
re of the architecture is the MAC unit featuring a GF(28) multiplier, a GF(28)
adder, and an 8-bit register. Since the MAC unit targeted for implementation in
secure logic, its size is crucial, as will be analyzed in the next section.

Fresh Re-keying: Security against Side-Channel and Fault Attacks 289

Table 1. Post synthesis results of an ASIC implementation of g, g-pMAC and the full
re-keying scheme. The protected MAC unit is estimated on basis of iMDPL logic.

Implementation w/o blinding 1st-order 2nd-order 3rd-order

function g 4.5 kG 7.3 kG 8.7 kG 10.2 kG
g-pMAC 11.7 kG 14.6 kG 16.0 kG 17.5 kG
g + AES1 7.9 kG 10.7 kG 12.1 kG 13.6 kG

g-pMAC + AES1 15.1 kG 18.0 kG 19.4 kG 20.9 kG
1AES implementation taken from [5].

5.2 Implementation Results and Performance Evaluation

We evaluated the post-synthesis silicon area of an ASIC implementation of the
function g. The synthesis tool we used was the Design Compiler 2008.09 from
Synopsys, and the library was the Free Standard Cell library from Faraday Tech-
nology for the UMC L180 CMOS technology. Our evaluation is based on typical
corner values and reasonable assumptions for the constraints. Additionally, we
varied the frequency between 1 and 20 MHz, which are reasonably boundaries
for the considered application (typical frequencies are 6 MHz for HF tags and
1 MHz for UHF tags). After several synthesis runs with different constraints and
optimization options, we selected the results with the smallest area. Our results
are summarized in Table 1, including the following information:

1. The area estimation (gate equivalents) for g for different blinding orders.
2. The cost of a MAC unit in a DPA-resistant logic-style (g-pMAC). We used

iMDPL [26] and, hence, a scaling factor of 18 [12] for our estimations.
3. The total area (g + AES) needed for protecting the AES core of Feldhofer

et al. [5] using our fresh re-keying scheme, with the same parameters.

We compared our design to the protected AES circuit presented by Feldhofer
et al. in [6]. Their implementation has an area of approximately 19.5 kG and
is, to the best of our knowledge, the smallest protected AES core that targets
RFID applications. These results show that our fresh re-keying scheme requires
less area than a direct protection of its underlying block cipher, i.e. properties
P4, P5 and P6 in Section 3.1 are indeed fulfilled. More precisely, the implemen-
tation in [6] has a level of security comparable to the one of g featuring either
1st-order blinding or a protected MAC. This is because their implementation
protects parts with masking and other parts with secure logic. In the first case,
our implementation requires approximately 8.8 kG less than theirs, and in the
second case, the difference is approximately 4.4 kG. A combination of the two
countermeasures would still be around 1.5 kG smaller. Note that we could also
implement a blinding order of up to 5 at the same cost.

Table 2 presents the number of clock cycles needed for the generation of a
fresh session key k∗. Contrary to the area requirements, this number is strongly
determined by the polynomial selected for the diffusion. For example, when this
polynomial equals y16 + 1, the time required to complete the computation is

290 M. Medwed et al.

Table 2. Cycle count for re-keying with different diffusion levels and blinding orders

Blinding order y16 + 1 y8 + 1 y4 + 1

w/o blinding 290 162 98
1st-order 562 360 178

2nd-order 834 504 258
3rd-order 1160 648 338

almost three times longer than when using y4 + 1. The corresponding security
levels will be discussed in the next section. As a consequence, the designer can
easily tune the desired diffusion level towards the needs of the application (in
RFID the throughput is generally not a strict constraint). For comparison, the
performance overhead of the implementation of Feldhofer et al. [6] is between
32 and 1005 clock cycles, depending on the number of dummy instructions.

6 Security Analysis

In this section, we provide a security analysis of our re-keying scheme. We start
with a note on the choice of k. Next, we discuss the security of the complete
scheme against Differential Fault Analysis. Then, we investigate its resistance
against side-channel attacks in three parts. First, we argue about the security
of the function g against SPA and DPA. Second, we discuss the security of the
function f against SPA only. Finally, and most importantly, we aim to analyze
the difficulty of mounting divide-and-conquer attacks against the complete re-
keying scheme. We will conclude the section with some open questions related
to advanced attack techniques exploiting algebraic cryptanalysis.

6.1 The Choice of k

Due to the structure of the ring we use, there exist zero divisors. If k takes the
value of a zero divisor, there exist several r which lead to the same k∗. To avoid
such collisions, we have to reduce the key space K to elements k ∈ K that are
co-prime to the polynomial yd +1. The resulting loss of entropy can be stated as
ΔH = 128 − H(K). For d = 16, we get ΔH = 128 − log2(255 ∗ 25615) ≈ 0.0056
bits. For d = 8, ΔH doubles, while for d = 4 it becomes four times as large. In
any of the three cases, the reduction of K can be neglected.

6.2 Resistance against Fault Attacks

Even in its most powerful variants, Differential Fault Analysis requires at least
one pair of correct and erroneous outputs to attack cryptographic algorithms
[25]. From such a pair, information about the secret key can be recovered. This
means that an adversary requires to encrypt the same plaintext (at least) twice
with the same secret key, which is prevented by our scheme. In other words, the
combination of re-keying with an initialization process using a fresh r for every
plaintext block provides a solid protection against Differential Fault Attacks.

Fresh Re-keying: Security against Side-Channel and Fault Attacks 291

6.3 Resistance against Standard Side-Channel Attacks

As mentioned in Section 2.1, the security of our fresh re-keying scheme is based
on two requirements: (1) the function f needs to be secure against SPA; (2) the
function g needs to be secure against both SPA and DPA. In this section, we
elaborate on how our architectural choices allow for fulfilling these requirements
(depending on different security parameters). Thereafter, we analyze in detail
the security of the complete scheme against divide-and-conquer attacks, i.e. we
show that, if the two previous conditions are met, it is computationally hard to
mount such DPA attacks against the functions f and g taken as a whole.

Security of g against SPA and DPA. The proposed architecture for g allows
us to deploy three well-studied countermeasures against DPA attacks, namely
shuffling, blinding and protection via secure logic. For an extensive discussion
of these countermeasures we refer to e.g. [19]; a more theoretical treatment can
be found in [30]. We note that, in addition to the large design space, our scheme
has some specific advantages compared to the straightforward protection of a
block cipher. For example, designing a masking scheme for a software implemen-
tation of a block cipher that has an order higher than 3 is an open problem, as
pointed out in [30]. In our case, thanks to the algebraic structure of the function
g, a generalization to higher orders is as easy as for asymmetric encryption. In
addition, as detailed in the previous section, the low-cost nature of g allows one
to combine several types of countermeasures against side-channel attacks at a
lower cost than if they would be directly applied to the original AES.

Security of the AES against SPA. Although not as difficult to achieve as
DPA resistance, security against SPA is crucial for the AES. In particular, and
since our re-keying scheme implies to run the key scheduling algorithm for any
new encryption, it is important to avoid attacks like the one in [17]. In order to
limit cost overheads, our strategy is to apply the same shuffling that is described
in Section 4.2 to the 16 state bytes of our AES implementation, as well as to the
key expansion. As detailed in [6], this can be done with little overhead (we do
not even need additional memory as we do not make use of dummy cycles).

Security of the Overall Scheme against Divide-and-Conquer Attacks.
The previous paragraphs described solutions for achieving SPA/DPA resistance
for g and SPA resistance for f . They show that the level of security against these
attacks can be easily tuned at the cost of some performance overheads that are
at least lower than those of protecting a stand-alone AES. It now remains to
argue about the security of the combined functions, i.e. can an attacker directly
perform a DPA on the function f by guessing the master key k?

In order to evidence that such attacks are computationally hard, we argue
in the following way. According to [20], a DPA attack against the AES requires
guessing some intermediate computation during the encryption process. In the
simplest case, one bit may be guessed (e.g. one bit after the first key addition
layer). In this context, the number of master key bits on which each bit of the

292 M. Medwed et al.

5 10 15 20 25 30

20

40

60

80

100

120

140
lo

g 2(#
tr

ac
es

)

Max. tolerated HW(r)

(a) Data complexity

2 4 6 8

20
40
60
80

100
120
140

#b
its

 o
f k

 to
 g

ue
ss

#bits of the DPA hypotheses: n
g

(b) Time complexity, Max. HW(r)=5

2 4 6 8

20
40
60
80

100
120
140

#b
its

 o
f k

 to
 g

ue
ss

#bits of the DPA hypotheses: n
g

(c) Time complexity, Max. HW(r)=15

2 4 6 8

20
40
60
80

100
120
140

#b
its

 o
f k

 to
 g

ue
ss

#bits of the DPA hypotheses: n
g

(d) Time complexity, Max. HW(r)=30

Fig. 3. Data vs. time complexity of a standard DPA against the combined f and g

session key k∗ depends only depends on the Hamming Weight (HW) of r. This
is because every bit of k∗ is a sum of all bits of k weighted by the bits of r. Since
all n bits of r are uniformly distributed, the probability that HW(r) ≤ X is

P = Pr[HW(r) ≤ X] =
X∑

i=0

(
n
i

)

2n
.

This probability can be directly related to the data complexity of a concrete
attack. That is, a small multiple of 1/P traces have to be collected to observe an
r with the desired properties. Figure 3(a) illustrates this relationship between
the Hamming weight of r and the number of traces that have to be collected to
observe such an r. It can be seen that even for a Hamming weight as large as 30
the data complexity is significant as one million traces would be required.

In a typical DPA, there are two effects that improve the diffusion. First, the
adversary will usually not predict the output of the key addition, but rather the
output of the first S-box layer (or even MixColumns), in order to better distin-
guish between the different key candidates. This requires to guess 8 bits of the
session key (or 32 for MixColumns); we denote the number of session key bits
to guess as ng. Second, several traces corresponding to several plaintexts will
generally be combined in a DPA, each one giving rise to a new random r. We
denote this number of traces as nt. Overall, the percentage of bits on which a

Fresh Re-keying: Security against Side-Channel and Fault Attacks 293

DPA attack depends can be described as a function of the maximally tolerated
Hamming weight X as follows:

1 −
(

n − X

n

)nt·ng

.

Figures 3(b)-3(d) show the number of bits of k to guess as a function of the
hypothesis size ng. The different curves show the complexity for nt = 1 (low-
est curve), 5, 10, 20, and 50 (topmost curve). Since between 10 and 50 traces
are usually required to recover an AES key byte with reasonable confidence in
unprotected devices [32], it directly implies that the diffusion and, hence, time
complexity will generally be sufficient to protect RFID tags.

We end this subsection with two basic examples to illustrate how our coun-
termeasure influences the data and time complexities of a divide-and-conquer
attack. First we consider an AES implementation for which the attacker needs
to predict ng = 8 bits of the session key (a usual quantity). Furthermore, we
assume that he needs nt = 10 traces to mount a successful DPA. Even if the
attacker waits for r values with a Hamming weight of 5 (as in Figure 3(b)), he
needs to guess almost 128 bits of the master key to predict 10 times those 8 bits
of the session key. Thus the time complexity of such an attack would be close
to 2128. To assess the data complexity, we additionally look at the probability
of observing such r values. In Figure 3(a), it can be seen that they occur every
270 traces on average. For the second example we assume that guessing ng = 1
bit for nt = 5 traces is enough. Even in this (unlikely) case, the data and time
complexities are still prohibitive. In order to arrive at a more reasonable data
complexity, we wait for r values with Hamming weight 15. This means that we
have to observe (and acquire the traces for) 5 · 244 encryptions on average. The
time complexity in this case would be 260. Note that large data complexities
may be hard to cope with in practical side-channel attacks as even an effective
measurement setup is limited to approximately 20 traces per second.

6.4 Resistance against Algebraic Side-Channel Attacks

By clearly separating the properties of the functions f and g, our proposed re-
keying scheme has pushed the security against side-channel attacks towards an
extreme direction. On the one hand, standard side-channel attacks are thwarted
(as discussed in this paper). On the other hand, the function g that is protected
against such attacks is not very strong from a cryptographic point of view. As
a consequence, it appears to be an interesting target for the recently introduced
algebraic side-channel attacks [28,29]. These attacks are not based on a divide-
and-conquer strategy; they rather interpret the encryption of a plaintext into a
ciphertext as a big system of low-degree boolean equations in which the key bits
are unknown variables. Then, the information leakage corresponding to this en-
cryption is added to the system, also in the form of low-degree equations. As
demonstrated in [29], leaking information about the Hamming weights may be
sufficient to solve the system in practical time limits (minutes, typically). Quite

294 M. Medwed et al.

naturally, the complexity of solving such a system of equations strongly depends
on the algebraic structure of the target algorithm. For example, the AES is more
robust than the low-cost cipher PRESENT in this context [28].

Looking at our proposal for g, the situation is even worse since this function
is linear. Taking an analogy with stream ciphers, one could see the side-channel
leakage as a filtering function at the output of a linear number generator g. How-
ever, thanks to our flexible architecture, we can also offer positive arguments to
prevent such attacks. Most importantly, algebraic attacks can hardly deal with
erroneous information. Hence, the shuffling that we can perform for free on the
implementation of both f and g will most likely make mounting these attacks
much harder. Because of their recent nature, we leave the exact quantification
of algebraic side-channel attacks as a scope for further research.

7 Conclusions

In this paper, we discussed a new approach for re-keying and explored its use
as a countermeasure against physical attacks. The proposed scheme is tailored
to the security requirements and resource constraints of RFID applications. We
evaluated the architecture and security of the scheme, including its robustness
against DFA, SPA, and DPA. The flexibility and configurability of the proposed
architecture allows for reaching a high level of security at an area cost that is
close to the most efficient solutions available in the literature.

Open problems are in two main directions. First, it would be useful to extend
the present proposal in order to protect the reader side (which is needed to be
protected against physical attacks by other means than the fresh re-keying in
the present proposal). Second, our analysis relies on a simple candidate for the
function g. Investigating alternative ones, possibly trading some performance
overhead for security, is a promising topic for future research. In this context, it
is worth noting that there exist simple ways to improve the diffusion properties
of our scheme. As an illustration, one can generate two random nonces r1 and
r2, and then compress the resulting k ∗ r1 and k ∗ r2 (e.g. by XOR-ing the two
halves together, producing n/2 bits twice), and use the concatenation of the two
compressed strings as k∗. Pushing such a diffusion/performance trade-off even
further, one could also consider randomness extractors as function g (which are
of independent interest in leakage-resilient cryptography [4,34]).

Summarizing, we hope that our new countermeasure and instantiation for g
makes an interesting case compared to traditional approaches to prevent physical
attacks and raises interesting (theoretical and practical) research questions.

Acknowledgements. This work was funded in part by the European Commis-
sion’s ECRYPT II Network of Excellence, by the Belgian State IAP program
P6/26 BCRYPT, by the Walloon region E.USER project, and by the Austrian
Government funded project ARTEUS. François-Xavier Standaert is a Research
Associate of the Belgian Fund for Scientific Research (FNRS – F.R.S.).

Fresh Re-keying: Security against Side-Channel and Fault Attacks 295

References

1. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

3. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

4. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: Proceedings of
FOCS 2008, Washington, DC, USA, October 2008, pp. 293–302 (2008)

5. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

6. Feldhofer, M., Popp, T.: Power Analysis Resistant AES Implementation for Passive
RFID Tags. In: Proceedings of Austrochip 2008, Linz, Austria, October 8, 2007,
pp. 1–6 (October 2008), ISBN 978-3-200-01330-8

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis: the Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

8. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Berlin (2004)

9. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Hutter, M., Medwed, M., Hein, D., Wolkerstorfer, J.: Attacking ECDSA-enabled
RFID Devices. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 519–534. Springer, Heidelberg (2009)

11. International Organisation for Standardization (ISO), ISO/IEC 9798-2: Informa-
tion technology – Security techniques – Entity authentication – Mechanisms using
symmetric encipherment algorithms (1999)

12. Kirschbaum, M., Popp, T.: Private Communication (2009)
13. Kocher, P.: Leak Resistant Cryptographic Indexed Key Update, US Patent 6539092
14. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)
15. McEvoy, R.P., Tunstall, M., Whelan, C., Murphy, C.C., Marnane, W.P.: All-or-

Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis,
Cryptology ePrint Archive, Report 2009/185, http://eprint.iacr.org/2009/185

16. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information Theoretic Evaluation of
Side-Channel Resistant Logic Styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007)

17. Mangard, S.: A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 343–358. Springer, Heidelberg (2003)

18. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

http://eprint.iacr.org/2009/185

296 M. Medwed et al.

20. Mangard, S., Oswald, E., Standaert, F.-X.: One for All, All for One: Unifying
Standard DPA Attacks, Cryptology ePrint Archive, Report 2009/449 (2009)

21. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

22. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher
based PRNG Secure Against Side-Channel Key Recovery. In: The Proceedings of
ASIACCS 2008, Tokyo, Japan, March 2008, pp. 56–65 (2008)

23. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

24. Pietrzak, K.: Provable Security for Physical Cryptography. In: The Proceedings of
WEWORC 2009, Graz, Austria (July 2009) (invited talk)

25. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

26. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

27. Prouff, E., McEvoy, R.P.: First-Order Side-Channel Attacks on the Permuta-
tion Tables Countermeasure. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 81–96. Springer, Heidelberg (2009)

28. Renauld, M., Standaert, F.-X.: Algebraic Side-Channel Attacks, Cryptology ePrint
Archive, Report 2009/279, http://eprint.iacr.org/2009/279

29. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic Attacks on the
AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

30. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

31. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

32. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: an Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

33. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswlad, E.:
Leakage Resilient Cryptography in Practice, Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/2009/341

34. Standaert, F.-X.: How Leaky is and Extractor? In: Workshop on Provable Security
against Side-Channel Attacks, Leiden, The Netherlands (February 2010)

35. Tiri, K., Akmal, M., Verbauwhede, I.: Dynamic and Differential CMOS Logic with
Signal Independent Power Consumption to Withstand DPA on Smart Cards. In:
The Proceedings of ESSCIRC 2002, Florence, Italy, September 2002, pp. 403–406
(2002)

36. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: The Proceedings of DATE 2004,
Paris, France, February 2004, vol. 1, pp. 10246–10251 (2004)

http://eprint.iacr.org/2009/279
http://eprint.iacr.org/2009/341

	Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices
	Introduction
	Related Work

	Background
	SPA and DPA
	Divide-and-Conquer Strategies
	Challenge-Response Protocol

	Choice of the Function g
	Desired Properties
	Candidate

	Implementation of the Function g
	Unprotected Implementation
	Improving g's SPA/DPA Resistance with Shuffling
	Improving g's SPA/DPA Resistance with Blinding
	Improving g's SPA/DPA Resistance with Protected Logic-Styles

	Global Architecture
	Block Diagram and Design Space for the Function g
	Implementation Results and Performance Evaluation

	Security Analysis
	The Choice of k
	Resistance against Fault Attacks
	Resistance against Standard Side-Channel Attacks
	Resistance against Algebraic Side-Channel Attacks

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

