
Simple and Communication Complexity Efficient

Almost Secure and Perfectly Secure Message
Transmission Schemes

Yvo Desmedt1,2,�, Stelios Erotokritou1,��, and Reihaneh Safavi-Naini3,� � �

1 Department of Computer Science, University College London, UK
{y.desmedt,s.erotokritou}@cs.ucl.ac.uk

2 Research Center for Information Security (RCIS), AIST, Japan
3 Department of Computer Science, University of Calgary, Canada

rei@ucalgary.ca

Abstract. Recently Kurosawa and Suzuki considered almost secure
(1-phase n-channel) message transmission when n = (2t + 1). The au-
thors gave a lower bound on the communication complexity and pre-
sented an exponential time algorithm achieving this bound. In this paper
we present a polynomial time protocol achieving the same security prop-
erties for the same network conditions.

Additionally, we introduce and formalize new security parameters to
message transmission protocols which we feel are missing and necessary
in the literature.

We also focus on 2-phase protocols. We present a protocol achieving
perfectly secure message transmission of a single message with O(n2)
communication complexity in polynomial time. This is an improvement
on previous protocols which achieve perfectly secure message transmis-
sion of a single message with a communication complexity of O(n3).

Keywords: Information-theoretic cryptography, Perfectly secure mes-
sage transmission, Almost secure message transmission, Cryptographic
protocols, Privacy, Reliability, Coding theory, Secret sharing.

1 Introduction

Perfectly secure message transmission (PSMT) schemes were introduced by
Dolev et al. in [2]. Such protocols aim to provide perfect privacy and perfect
reliability of message transmission between two parties (a sender and a receiver)
who do not share a key, in the presence and influence of an infinitely powerful

� This work was done while funded by EPSRC EP/C538285/1 and by BT, as BT
Chair of Information Security.

�� The author would like to thank EPSRC and BT for their funding of this research.
� � � This research was supported in part by iCORE (Informatics Circle of Research

Excellence) in the Province of Alberta, as well as NSERC (Natural Sciences and
Engineering Research Council) in Canada.

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 166–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Simple and Efficient Secure Message Transmission Schemes 167

active adversary. These protocols are important as they are fundamental crypto-
graphic protocols with important applications in research [3,5]. In the (r-phase,
n-channel) model, a sender wishes to securely send a secret to a receiver. This
transmission should occur in r phases with n channels connecting the sender and
receiver. The adversary is able to corrupt up to t network nodes.

In [2] it was shown that if r = 2, n ≥ (2t + 1) is a necessary and sufficient
condition for PSMT. In this paper we present a protocol which is the most ef-
ficient in the literature for the transmission of a single message. Our protocol
achieves this in polynomial time and with O(n2) communication complexity.
This improves on the O(n3) communication complexity of previous protocols.
Optimum results for two phase protocols with regards to transmission rate have
only recently been achieved. One of these results was that of [1] at CRYPTO
2006. The paper presented a protocol with O(n) transmission rate but exponen-
tial computational complexity. These results were improved at EUROCRYPT
2008 in [7] where the authors presented a polynomial 2-phase PSMT protocol
able to achieve O(n) transmission rate. The communication complexity for this
protocol is however O(n3), while the one we present is O(n2). Despite the work
of [7] which achieves linear transmission rate the protocol they present is only
optimal for communication with a large number of messages. For applications
which require the perfectly secure transmission of a single message, the protocol
we present is the most efficient in the literature.

Different variations on the security of message transmission schemes exist in
the literature [2,6,9,13]. In [2] the authors showed that a necessary and sufficient
condition for PSMT to occur when r = 1 is that n ≥ 3t+1. For these conditions
the authors also provided a protocol achieving perfect security with optimum
communication complexity. In [4] the authors considered perfect security with
probabilistic reliability. In such protocols, reliability of message transmission
may fail with a bounded probability. The work was important as it presented
the sizable gap between the connectivity required to achieve perfect as opposed
to probabilistic security. In [8] Kurosawa and Suzuki considered almost secure
(1-phase, n-channel) message transmission when n = 2t+1. The authors showed
that almost secure message transmission can be achieved provided we are will-
ing to accept a small probability that the protocol will fail. A lower bound in
communication complexity for this type of transmission was given and an expo-
nential time protocol achieving this bound was presented. Srinathan et al. [12]
improved on this by presenting a polynomial time protocol achieving similar se-
curity. We also present a polynomial time almost secure message transmission
protocol. Contrary to the protocol presented in [12] which can transmit O(n)
messages, the protocol we present is for the transmission of a single message
only. The protocol we present is computationally more efficient requiring in the
order of n less computation than the protocol of [12]. For applications where
the almost secure transmission of a single message is required, the protocol we
present is the most efficient and appropriate to use.

Both protocols we present are of interest to both theoretical and practical
purposes. Whereas previous protocols have sought to optimize transmission rate

168 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

only [7,8,12], we have concentrated on making protocols more efficient with re-
gards to communication and computation complexities. The protocols we present
are theoretically the most efficient regarding these complexities. They are also
important for practical purposes. In real world practical applications, compu-
tational cryptography is generally used. When these are not available or are
broken, in order to initialize these, new keys will have to be exchanged between
communicating parties. In such circumstances it makes no sense to send multiple
messages.

In this paper we also look at different security definitions for message trans-
mission schemes which exist in the literature. These seem to vary from paper to
paper and different aspects to security of message transmission are termed in a
different way by various authors. We aim to resolve this confusion by introduc-
ing and formalizing new security parameters to message transmission protocols
which we feel are missing and necessary in the literature.

2 Background

2.1 Environment of Message Transmission Protocols

In a message transmission protocol the sender starts with a message MA drawn
from a message space M with respect to a certain probability distribution. We
assume that the message space M is a subset of a finite field F. At the end of the
protocol, the receiver outputs a message MB. We consider a synchronous setting
in which messages between sender and receiver are sent in phases. A phase is
thus a transmission from sender to receiver or vice-versa.

We will assume an unconditionally secure setting where the adversary is com-
putationally unbounded. We consider an active adversary which can take control
of t internal nodes in a network. The adversary is assumed to know the com-
plete protocol specification, message space M and the complete structure of the
network graph. We will only consider static adversaries which must choose the
nodes to corrupt before the protocol begins. The adversary is able to view all
the behavior (randomness, computation, messages received) and can take full
control of any node which is compromised.

The communication network is modeled as a directed graph G = G(V, E)
whose nodes are the parties and whose edges are point-to-point reliable and
private communication channels. The network model which will be considered
consists of bidirectional channels between a sender and a receiver. Disjoint paths
between a sender and a receiver are referred to as wires and will be termed so
from now on. As the adversary can take control of t internal nodes in a network,
the adversary has the capability to control t wires.

2.2 Security Definition

Here we present the current security definitions for message transmission proto-
cols which exist in the literature. We argue why we think these definitions are
incomplete and formalize new security parameters we believe should be included.

Simple and Efficient Secure Message Transmission Schemes 169

Current Security Definition - Probabilistic Reliability. The following
definition is taken from Franklin and Wright [4] and defines (ε, δ)-security.

1. Let δ < 1
2 . A message transmission protocol is δ-reliable if, with probability

at least 1 - δ, B terminates with MB = MA. The probability is over the
choices of MA and the coin flips of all nodes.

2. A message transmission protocol is perfectly reliable if it is 0-reliable.
3. ε refers to the privacy that is achieved. As we will be considering perfect

privacy we refer the reader to [4] for the definition of ε-privacy.
4. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-

reliable.

Current Security Definition - Probabilistic Failure. Almost secure mes-
sage transmission was considered in [8] with the following security definition:

Definition 1. We say that a (1-phase, n-channel) message transmission scheme
is (t, δ)-secure if the following conditions are satisfied for any adversary A who
can corrupt at most t out of n channels.

Privacy. A learns no information on MA. More precisely when R denotes the
random variable,

Pr(R = MA|Xi1 = xi1 , · · · , Xit = xit) = Pr(R = MA)

for any MA ∈ M and any possible xi1 , · · · , xit messages observed by A on
adversary controlled wires.

General Reliability. The receiver outputs MB = MA or ⊥ (failure). The
receiver thus never outputs a wrong secret.
Failure. Pr(Receiver outputs ⊥) < δ.

Comparison of the Two Security Definitions. The above security defini-
tions refer to two very different security properties. The definition of reliability
from [4] only considers executions that terminate and always output a message.
The protocol outputs the correct message with a bounded probability. However,
the reliability definition of [8] identifies two types of executions. The first of these
are executions that terminate but do not produce an output (i.e. output ⊥). The
second of these are executions that terminate and always produce the correct
result. Reliability in these definitions refers to both types of executions.

We propose a new security definition that reconciles the above definitions. This
is done by introducing new security parameters which capture the authenticity of
the received message and the availability of the message transmission protocol.
Executions that terminate but do not produce a correct output can be seen as
an attack on authenticity of the message. Executions that output failure can be
seen as an attack on the availability of the transmission protocol. This leads us
to propose the following definition.

New Security Definition. The first security parameter we call the availability
of a transmission protocol and is defined as follows:

170 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

– Let γ ≤ 1. A message transmission protocol achieves γ-availability if, with
probability at least 1 - γ, B accepts a message, i.e. B accepts ⊥ with proba-
bility γ.

Availability considers executions that were captured by the δ parameter in the
security definition of [8].

Authenticity is the second security parameter we introduce. Assuming the
sender transmits MA and the receiver accepts MB ∈ {M,⊥}, δ-authenticity is
achieved by the following conditional probability.

δ = P (MA �= MB|ReceiverAccepts).

The above covers both the reliability definition of [4] and the executions of [8]
which terminate and always produce the correct result.

ε-privacy remains the same as defined in [4]. This type of security from now
on will be referred to as (ε, δ, γ)-security. It should be pointed out that perfectly
secure message transmission protocols (i.e. the work of [2,6,10]) achieve (0, 0, 0)-
security under this new definition. In our work we will present a polynomial
1-phase (0, 0, γ)-secure protocol in Section 3 and in Section 5 we consider 2-
phase (0, 0, 0)-secure protocols.

2.3 Secret Sharing Schemes

An m-out-of-n threshold secret sharing scheme allows for a secret message MA

to be distributed as a selection of n shares {s1,. . . ,sn} so that the following
properties are achieved:

1. Any collection of m shares is able to reconstruct the secret message MA.

2. Any subset of (m − 1) or less shares reveals no information about MA.

Variant of Shamir Secret Sharing Scheme. Shamir secret sharing [11] allows
for the reconstruction of a secret using polynomial interpolation. When secret
sharing is used in the literature it is assumed that the x-coordinates of points to
be used are available in a public database and shares sent to participants (or in
our case across wires) are the y-coordinates of the points. When using Shamir
secret sharing in message transmission protocols, denoting as p the polynomial
from which the shares are constructed, it is usually the norm to transmit share
p(i) across wire wi - where 1 ≤ i ≤ n and n denotes the number of wires
connecting sender and receiver.

In this paper we will use a variant of the above for the protocol of Section 3.
The only thing that will vary is that the x-coordinates of points to be used will
be private and shares sent will be the (x, y)-coordinates of the points.

3 Polynomial 1-Phase Almost Secure Message
Transmission

We now describe our 1-phase almost secure message transmission protocol for
n = (2t + 1). As our protocol is relatively simple we first present the main idea

Simple and Efficient Secure Message Transmission Schemes 171

of our protocol. We then describe the main techniques used in the protocol. We
then formally present the security and complexity proof - showing that it is a
polynomial algorithm regarding computation and communication complexities.

3.1 Main Idea

As our protocol is a 1-phase protocol, communication can only occur one way
from sender to receiver. Denoting as MA the secret message of the transmission,
the sender will construct a (t+1)-out-of-n secret sharing code of MA. The sender
thus has n shares (s1, . . . , sn) of MA. For each one of the n shares the sender
will then carry out a (t+1)-out-of-n secret sharing (these new shares are termed
as sub-shares for clarity) and will transmit these sub-shares to the receiver -
the way this is done is outlined in Section 3.2. The receiver will then check the
correctness of the shares of MA and considering only the correct shares will
proceed to carry out error detection. This is also outlined in Section 3.2. If no
error is detected the receiver accepts the message interpolated by the shares. If
at least one error is detected, the receiver accepts ⊥. When the receiver accepts
a value the protocol terminates. As in some cases the receiver accepts ⊥ and in
all other cases the receiver accepts the correct message with perfect secrecy and
authenticity the protocol achieves (0, 0, γ)-security.

3.2 Main Protocol Techniques

In this section we outline three main techniques used in the protocol. The first
is the encoding and transmission of the secret message executed by the sender.
The other two are carried out by the receiver and are the identification of faulty
wires and error detection schemes.

Message Encoding and Transmission. Denoting as MA the secret message
of the transmission, the sender will carry out a (t + 1)-out-of-n secret sharing of
MA - obtaining shares (s1, . . . , sn). The sender does this by choosing a random
polynomial p of degree at most t over GF (q) such that p(x) = MA + a1x

1 +
· · ·+atx

t - where a1, . . . , at are uniformly random elements of GF (q) and q � n
denotes the size of the finite field. The n shares (s1, . . . , sn) are obtained by
evaluating (p(1), . . . , p(n)).

For 1 ≤ i, j ≤ n the sender proceeds to construct a (t + 1)-out-of-n secret
sharing scheme of share si and transmit the constructed shares in the following
manner:

1. The sender chooses a random polynomial pi of degree at most t over GF (q)
such that pi(x) = si + ai1x

1 + · · · + aitx
t where ai1, . . . , ait are uniformly

random elements of GF (q).
2. n different uniformly random elements (ri1, . . . , rin) over the finite field are

then selected.
3. The n sub-shares of si are computed by evaluating pi at (ri1, . . . , rin) to

obtain (si1 = pi(ri1), . . ., sin = pi(rin)).
4. The random elements with the corresponding sub-shares are coupled to-

gether to obtain ((ri1, si1), . . ., (rin, sin)).

172 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

5. The definition of polynomial pi is transmitted over wire wi.
6. The sender transmits the pair (rij , sij) over wire wj .

Faulty Wire Detection. This technique is carried out by the receiver at the
end of the protocol phase. Identification of faulty wires is done in the following
way:

– Initialize set FAULTY := ∅, REPEATFLAG := TRUE.
– Do the following while (REPEATFLAG = TRUE):

a REPEATFLAG := FALSE.
b For i := 1, . . . , n

1. IF wire wi ∈ FAULTY GOTO Step 6.
2. Denote as pi the polynomial definition received from wire wi.
3. Considering only the ith pair of values - (rji, sji), received from wires

wj /∈ FAULTY .
4. IF pi(rji) = sji for at least (t + 1) pair of values received from

different wires, then do nothing.
5. ELSE wire wi is identified as a faulty wire. Add wi to FAULTY .

Set REPEATFLAG := TRUE.
6. End of loop.

The faulty wire detection scheme described above identifies faulty wires. How-
ever, it cannot guarantee that wires identified by the scheme as non-faulty are
not controlled by the adversary and that changes were not carried out. As will be
outlined later, adversary controlled wires can still pass the test of this scheme -
even if changes were carried out. In short, adversary controlled wires can achieve
this if any alterations carried out on polynomial definitions still result in the al-
gorithm finding at least (t + 1) pair of values passing the test of Step 4.

It is easy to see that the computational complexity of the above scheme is
polynomial. The while loop can be repeated at most t times (as overall at most
t faulty wires can be identified in different instances of the while loop).

Error Detection. Error detection is carried out in the following manner. Con-
sidering only wires wi /∈ FAULTY , evaluate pi(0) for the polynomial received
from wire wi to obtain share si and denote as m the number of shares obtained.
Carry out error detection on the m shares in the following manner. Select t + 1
random shares from the m shares to obtain polynomial p. If any of the remaining
m−(t+1) shares do not lie on p then an error has been detected and the receiver
outputs ⊥. Otherwise the receiver accepts p(0) of the obtained polynomial as
the message of the transmission.

It is clear to see that the computational requirements of this error detection
process is polynomial.

3.3 Security and Efficiency

Theorem 1. The above protocol achieves (0, 0, γ) security for appropriately
large q.

Simple and Efficient Secure Message Transmission Schemes 173

Proof. We first prove the perfect privacy of the protocol. The secret message MA

is secret shared using a (t + 1)-out-of-n secret sharing scheme. The adversary
can only learn t of these shares - those whose polynomial definitions are sent on
adversary controlled wires. For the secret sharing of the remaining shares the
adversary only learns t sub-shares of each and thus cannot learn any of these
shares. As the adversary learns t shares, no information is obtained about the
secret message. The protocol thus achieves perfect privacy.

Perfect authenticity is achieved as the receiver accepts a message only when
no errors are detected. This is proven by the following lemma.

Lemma 1. The faulty wire detection scheme will always identify as correct wires
the set of t + 1 non-faulty wires.

Proof. The faulty wire detection scheme identifies as a correct wire those whose
polynomial definitions correspond to at least (t + 1) received sub-shares. As
honest wires do not alter any information and as there are at least (t+1) honest
wires, honest wires will always be identified as correct wires. �

Due to the above lemma, at least (t+1) original shares of MA will be considered
by the sender in the error detection scheme. Because of this, no matter what
changes the adversary carries out the receiver will never accept a wrong message.
This is because the degree of the polynomial used in the secret sharing of MA is
at most t. This means that any alterations the adversary carries out cannot result
in a different t-degree polynomial which includes all the honest (t + 1) shares
(corresponding to honest wires) of MA . Therefore no matter what alterations the
adversary carries out to share values, at least one error will always be detected.
The receiver will thus never accept a message different to the message sent by
the sender. Perfect authenticity is therefore achieved.

We now calculate the availability. Failure of message transmission (i.e. when
the receiver outputs ⊥) occurs when an error is detected in the error detection
scheme of Section 3.2. An error is detected by this technique only when the
adversary successfully alters at least one share of the secret message. This can
only be achieved when a polynomial definition transmitted over a faulty wire is
altered and after the execution of the faulty wire detection technique, the specific
wire does not belong in the set FAULTY . For this to occur the adversary must
ensure that at least (t + 1) sub-shares received over all wires lie on the altered
polynomial. Assuming that the adversary controls t wires (all of which do not
belong in the set FAULTY) - and in turn controls t sub-shares, any strategy
followed by the adversary must ensure that at least one sub-share not controlled
by the adversary lies on the polynomial definition to be altered by the adversary.

The reader is reminded that shares in the scheme are a pair (rx, sy) where rx

is a random field element representing the x-value of a point on a 2-dimensional
plane and sy is the evaluation of rx for a particular polynomial. As the adversary
knows the polynomial definition transmitted on adversary controlled wires, the
adversary knows the value of all possible sub-shares ((rx, sy) pairs) that could be
constructed using that polynomial. What the adversary does not know is which
specific (t + 1) sub-shares were transmitted over the honest wires. As the values

174 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

rx were uniformly randomly chosen by the sender, in order for the adversary
to succeed in an attack against the protocol availability, the best strategy the
adversary could follow is to guess these rx values. (Note that from the original
polynomial and a correct rx value, the adversary knows the corresponding sy.)
Given that the adversary controls t wires the adversary is able to rule out t of
these rx possible values over the finite field - leaving (q − t) possible values for
rx sent over the (t + 1) honest wires.

As mentioned earlier, it is sufficient that at least one sub-share not controlled
by the adversary lies on the altered polynomial. The adversary can try to guess
up to t of these sub-shares1. The probability that at least one is successful, is
one minus the probability that all t guesses are wrong. All being wrong means,
that all t were not chosen by the sender, which obviously means they came from
the q − (2t + 1) remaining ones. So, the probability of success is then given by:

1 −

(
q − 2t − 1

t

)
(

q − t

t

)

The above analysis is for the case the adversary decides to alter a single
polynomial. If the adversary were to change the polynomial definition of two
wires and the attack of one wire failed, this would mean that for the other wire
attack to succeed, it would require for two sub-shares transmitted over honest
wires to be guessed correctly. This makes the full analysis more complex and
due to space reasons will appear in the full version of the text. �

We now analyze the complexity of the protocol. Denoting as |F| the bit length
of the field elements, the communication complexity of the protocol is O(n2|F|).
The computational complexities of both sender and receiver are polynomial.

We have thus presented a polynomial almost secure polynomial protocol im-
proving on the exponential time protocol presented in [8].

4 Comparison of Protocol to Previous Work

In this section we compare the protocol presented in the previous section to
previous work and argue as to why it is a valuable addition to the knowledge.

Comparison of Protocol to Suzuki and Kurusawa Protocol. The work
presented by Suzuki and Kurusawa in ICITS 2007 [8] was important as it proved
the lower bound of communication complexity required for almost secure message
transmission. Despite the authors presenting a protocol achieving this bound,
1 As the degree of the polynomial is at most t the adversary cannot guess more that

t of the remaining sub-shares. This is because (t + 1) correct sub-shares interpolate
the original polynomial. If the adversary guesses more than t sub-shares and more
than t are correct this means that the original polynomial will be interpolated and
in effect the adversary carries out no changes.

Simple and Efficient Secure Message Transmission Schemes 175

the computational complexity of the protocol was exponential which makes the
protocol inefficient with regard to time for large values of n.

The protocol presented in the previous section, despite having a greater com-
munication complexity of O(n2) - as opposed to the optimal O(n), is of polyno-
mial computation time making it a more appropriate protocol for use.

Comparison of Protocol to Srinathan et al. Protocol. The work presented
by Srinathan et al. in PODC 2008 [12] was important as it presented an almost
secure message polynomial time transmission protocol which achieves the opti-
mal transmission rate of O(n) with a communication complexity of O(n2). For
the protocol to achieve this transmission rate O(n) messages are transmitted.

The protocol presented in the previous section also has a communication
complexity of O(n2), but only a single message is transmitted.

When these two protocols are compared it may seem that the Srinathan et
al. protocol is the best protocol to use as more messages can be sent with the
same communication complexity.

Even though this is true, if the two protocols were to be compared with respect
to their computational complexities, it will be found that the protocol presented
in the previous section requires much less computation to complete than the
Srinathan et al. protocol.

The protocol of Srinathan et al. decides on whether to accept a message or
⊥ using error detection. For the Srinathan et al. protocol to accept a message a
total of n error detections need to be carried out. For ⊥ to be accepted between
one and n error detections need to be carried out - the actual number depending
on the actions of the adversary. Contrary to this, the protocol presented in the
previous section accepts a message or ⊥ within only a single error detection.
Because of this, the protocol presented in this paper requires in the order of n
less computation than the protocol of Srinathan et al.

This makes the presented protocol very useful for situations where the almost
secure transmission of a single message is required. This can include the trans-
mission of an encryption key in wireless sensor networks. In such a situation
the keys can be transmitted with the least amount of computation carried out
by receivers - in this case wireless sensors, which is an important factor for the
preservation of the wireless sensor battery life.

Note: Transforming the Desmedt-Wang Protocol to a (0, 0, γ) Proto-
col. We now describe how to transform the protocol presented in Section 3 of
[15] as a (0, δ) protocol (following the security definition of [4]) to a (0, 0, γ)
protocol with γ = δ.

The protocol works by sharing a secret using a (t + 1)-out-of-(2t + 1) secret
sharing scheme. Using message authentication codes (MAC’s) each share is au-
thenticated (2t + 1) different times using authentication keys specific to each
wire. Each share is then sent to the receiver only once and upon each wire only
one share is sent. The authentication codes of the shares are sent over the same
wire the share is sent on and the authentication keys are sent on their respective
wires. Although not stated in the description of the protocol, this process can be
carried out in a single phase. Correct shares are classified as those shares which

176 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

are authenticated by at least (t + 1) different MAC’s. As the authors considered
(0, δ) security the protocol reliability fails with a small probability.

The protocol can be transformed to a (0, 0, γ) protocol by simply carrying out
error detection on the correct shares in the same way as described in Section
3.2. The same decision as described in the presented error detection scheme will
also be taken.

With this transformation, this protocol also becomes a one phase (0, 0, γ)
protocol for a single message with a communication complexity of O(n2). In
effect this protocol is equivalent to the (0, 0, γ) protocol presented in the previous
section2.

5 Efficient Perfectly Secure Message Transmission

We now turn our attention to two-phase perfectly secure message transmission.
The protocol we present achieves perfectly secure message transmission of a
single message with O(n2) communication complexity and transmission rate
in polynomial time. This greatly improves on previous protocols [7,10] which
achieve this with O(n3) communication complexity and transmission rate.

We first present the main idea of our initial protocol and proceed to describe
the main techniques that will be used in the protocol. In Section 5.3 we formally
present our protocol and then present the security and complexity proof.

5.1 Main Idea

As our protocol is a two phase protocol, like most two phase protocols, in the
first phase the receiver will send random elements of the finite field to the sender.

At the end of the first phase, the sender will observe the received data and
identify possible errors that may have occurred in the transmission of the first
phase. Different types of errors may have occurred and these will be outlined
in Section 5.2. These errors will be sent via broadcast to the receiver in the
transmission phase of the second phase. The sender will also send via broadcast
correcting information so that the random elements sent in the first phase will
constitute shares of the secret shared message of the transmission.

At the end of the second phase, using the identified errors, the receiver is
able to identify all wires which were active during the transmission of the first
phase. Using the correcting information, the receiver is able to securely obtain
the secret message of the communication. The receiver is able to do this as it
can ignore the shares that correspond to the identified faulty wires.

5.2 Main Protocol Techniques

Broadcast. Broadcast will be used in the second phase of our protocol. When
the sender broadcasts information, the sender will send the same information
over all n wires which connect the sender and receiver. As the adversary is
able to corrupt at most t of these n wires, the receiver correctly receives the
information via a majority vote.
2 Using other authentication codes it is trivial to lower the transmission complexity.

Simple and Efficient Secure Message Transmission Schemes 177

Transmission of Random Elements. We now describe how random elements
are sent from the receiver to the sender in the first phase of the protocol 3. For
simplicity we first describe the transmission of one random element r.

The receiver constructs the shares of r using a (t + 1)-out-of-n secret sharing
scheme. The receiver thus chooses a random polynomial p of degree at most t
such that p(x) = r +a1x

1+ · · ·+atx
t. The n shares (s1, s2,. . . , sn) are computed

by evaluating p(x) at x1, x2,. . . , xn.
The receiver then proceeds to send share si via wire wi (1 ≤ i ≤ n). The

receiver also transmits the t coefficients (a1, . . . , at) and r - which define p,
across a single wire.

In our protocol n parallel executions of the above will be carried out. n random
elements (r1,. . ., rn) will be selected. The corresponding n random polynomials
(p1,. . ., pn) will also be constructed. For each random element, using the cor-
responding polynomial n shares will be constructed. For reasons of clarity we
denote as (si1,. . ., sin) the n shares for the ith random element. Upon each of the
n wires, n shares will be transmitted as will the definition of a single polynomial.
The definition of polynomial pi will be transmitted on wire wi (1 ≤ i, j ≤ n).
The sij share constructed from this polynomial will be sent on wire wj .

Error Detection and Identification of Faulty Wires. The above technique
described what will occur and what will be transmitted in the first phase of the
protocol. At the end of the first phase, the sender will receive n shares and a
definition of a polynomial from each wire. Using this, the sender carries out error
detection as follows.

For i, j := 1, . . . , n and for polynomial pi received from wire wi the sender
considers the n shares received as the ith share from each wire. The sender checks
each of the shares and identifies as error shares the shares whose value does not
agree with the definition of polynomial pi. Share sij received from wire wj is
thus identified as an error share if sij �=pi(xj). The sender proceeds to broadcast
the identified error shares to the receiver 4.

We now show that with this information the receiver can identify wires that
were active in the first phase of the protocol. For clarity we assume that each
error share is denoted as esij - with j indicating the wire wj and i indicating the
position from which the share was received by the sender (1 ≤ i, j ≤ n). The i
position of the share indicates that the share corresponds to the ith polynomial
received by the sender (from wire wi).

The receiver checks the following cases to identify faulty wires:

Case 1: If the value of error share esij is different to the corresponding share
sent out by the receiver in phase 1 then wire j is identified as a faulty wire.

Case 2: If the value of error share esij is equal to the corresponding share sent
out by the receiver in phase 1 then wire i is identified as a faulty wire.

3 This scheme is similar to the encoding scheme of Section 3.2. It also resembles
techniques used in [14].

4 This requires the sender to send a triple (j, i, v) to the receiver for each error share
- indicating the ith share of wire wj with its value v. Alternatively if n2 ≤ |F| a pair
of values (k, v) could be sent - where k = j ∗ n + i.

178 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

Lemma 2. The above cases correctly identify faulty wires of the first phase.

Proof. Case 1: In Case 1, the error value received by the sender at the end of
the first phase is identified to be different to the value sent by the receiver at
the start of the phase. The only way this could have occurred is if the wire
upon which the share was transmitted was actively controlled and the share was
altered. The specific wire is thus correctly identified as a faulty wire.

Case 2: In Case 2, the value of the error received by the sender at the end of
the first phase is identified to be the same as that sent by the receiver. The only
way that a correct value of a share could be identified as an error by the sender
is if it does not correspond to the corresponding polynomial. The only way this
could occur is if the polynomial had been altered from its original form. The
wire upon which the specific polynomial was sent is thus identified as a faulty
wire. Following on from this we also prove the following lemma. �

Lemma 3. If the adversary alters the polynomial transmitted across an adver-
sary controlled wire, the specific wire will always be identified as faulty.

Proof. As all polynomials are of degree at most t and as shares sent on honest
wires cannot be altered, if the adversary alters a polynomial the maximum num-
ber of shares transmitted on honest wires that can be included on the altered
polynomial is t. 5 This is a direct result from coding theory which states that
polynomials of degree at most t can share at most t common points between
them. As a result of this, there will always be at least one share transmitted
on an honest wire which will be identified as an error by the sender at the end
of the first phase. Following on from this, the adversary controlled wire will be
identified as earlier described. �

5.3 Formal Protocol Description

We now formally present our protocol. For our protocol we assume the message
of the transmission is MA ∈ F.

Step 1: The receiver does the following for i, j := 1, . . . , n:
1. The receiver selects random element ri.
2. The receiver constructs a (t + 1)-out-of-n secret sharing scheme of ri

using the random polynomial pi of degree at most t to obtain n shares
(s1i, s2i,. . . , sni).

3. The receiver sends polynomial pi on wire wi and share sij is sent on wire
wj .

Step 2: The sender does the following
1. The sender constructs a (t + 1)-out-of-n secret sharing scheme of MA to

obtain n shares (m1, m2,. . . , mn).

5 The adversary can trivially carry out this alteration as the adversary knows the
polynomial definition and thus all the shares.

Simple and Efficient Secure Message Transmission Schemes 179

2. For i := 1, . . . , n the sender receives polynomial pi from wire wi. The
sender evaluates pi(0) as ri. The sender calculates the value di := ri⊕mi.
These are termed correcting information.

3. For i := 1, . . . , n using the ith shares received from each wire, error shares
are identified. sij received from wire wj is an error share if sij �=pi(xj).

4. The set of all identified error shares is sent to the receiver via broadcast.
5. The set of correcting information - (d1, d2,. . . , dn), is sent to the receiver

via broadcast.
Step 3: The receiver does the following:

1. The receiver uses the technique of Section 5.2 to identify the set of active
wires of the first phase. The set of honest wires (indicated as HONEST)
is also constructed.

2. Using HONEST the receiver computes shares of the secret message MA.
This is done by computing mwi := rwi ⊕ dwi where wi ∈ HONEST .

3. Using the computed shares from the step above, the receiver interpolates
and obtains the secret message.

5.4 Security and Efficiency

Theorem 2. The above protocol achieves perfectly secure message transmission
((0, 0, 0)-security).

Proof. We first prove the perfect privacy of the protocol. As the secret message is
secret shared using a (t+1)-out-of-n secret sharing scheme and as the adversary is
t-bounded, the adversary can only learn a maximum of t shares. This is because
only t of the random elements received by the sender in Step 2 are learned
by the adversary. These are the random elements whose polynomial definitions
were transmitted on adversary controlled wires (these may have been altered
by the adversary). The remaining t + 1 random elements are not learned by
the adversary. This is because all random elements are secret shared using a
(t + 1)-out-of-n secret sharing scheme and the adversary only learns t shares of
each one. As a result, the adversary can only learn t shares of the secret shared
message. Perfect privacy is therefore achieved.

Perfect authenticity of the protocol is achieved as the receiver only considers
shares of the secret message whose corresponding random element was correctly
received by the sender. This is achieved using the technique of identifying faulty
wires described in Section 5.2. As shown, if the adversary alters the polynomial
transmitted on an adversary controlled wire, the wire will always be identified as
a faulty wire. Because of this, only correct shares are used in the reconstruction
of the secret and thus perfect authenticity is achieved. Perfect availability is
achieved as the receiver always accepts a message. The protocol is thus a perfectly
secure message transmission protocol. �

We now analyze the complexity of the protocol. We denote as |F| the bit length
of the field elements, COM(1) and COM(2) the communication complexity of
the first and second phase of the protocol.

180 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

As the receiver in the first phase of the protocol sends n shares and a poly-
nomial (defined by t + 1 field elements) across each wire the communication
complexity of COM(1) is O(n2).

The most expensive part of phase two in terms of communication complexity
is the broadcast of the error shares identified in Step 2 of the protocol. As there
are only t+1 honest wires, the minimum number of shares not identified as error
shares by the sender will always be (t+1)2. The maximum number of error shares
is n2 − (t + 1)2. This is O(n2). Therefore, for the broadcast of the error shares
O(n3) communication complexity is required. The communication complexity of
COM(2) is thus O(n3). As only one message is sent, the transmission rate of
the protocol is O(n3).

It is easy to see that the computational costs of both sender and receiver are
both polynomial.

5.5 2-Phase PSMT with O(n2) Transmission Rate

The protocol of Section 5.3 in its current form achieves O(n3) transmission rate.
This is because of the O(n3) communication complexity of COM(2) for the
transmission of only one secret. We now describe how to decrease the transmis-
sion rate of the protocol to O(n2). The most expensive step in our two-phase
protocol is the broadcast of the error shares by the sender to the receiver. The
protocol is optimized by using a technique which allows for the reliable trans-
mission of the error shares to take place with O(n2) communication complexity
(as opposed to its current O(n3)).

The technique of generalized broadcast was first presented in [14] and later
used in [1,7]. The technique assumes the receiver knows the location of a number
f of faulty wires. Generalized broadcast is then able to authentically transmit
up to (f + 1) field elements between a sender and a receiver using codes that
can correct any (remaining) errors that may occur. This enables the authentic
transmission of (f + 1) field elements between a sender and a receiver with
a communication complexity of O(n) instead of O(n2) which allows for more
efficient protocols. For a definition of generalized broadcast the reader is referred
to Appendix A or [1,7,14].

As everything else in the protocol remains the same, the security proof of this
version of the protocol remains the same as before. In the second phase of the
protocol the sender uses generalized broadcast to transmit the error shares and
broadcasts the n correcting information to allow for the secret message recovery
on the receiver side. The second phase communication complexity - similar to
the first phase, is now O(n2) and as only one message is transmitted so is the
transmission rate of the protocol.

To the best of our knowledge this version of our protocol is the most efficient
2-phase polynomial perfectly secure transmission protocol for the transmission
of a single message which exists in the literature. Previous efficient protocols
included [10] and the protocol of Section 4 of [7].

Simple and Efficient Secure Message Transmission Schemes 181

6 Conclusion

In this paper we have introduced and formalized new security parameters to
message transmission protocols.

We have also presented a polynomial protocol achieving almost secure message
transmission for a single message. The protocol is of polynomial time and has
O(n2) communication complexity. It remains an open question whether a poly-
nomial time protocol with the lower bound of O(n) communication complexity
(as proven in [8]) can be created.

We have also presented a polynomial 2-phase perfectly secure message trans-
mission protocol with O(n2) communication complexity for a single message.
It would be nice to see if a more efficient protocol with lower communication
complexity (for either one or both phases) could be achieved. Following on from
this, it is also an open question to find a polynomial time protocol with linear
transmission rate and a communication complexity lower than O(n3).

Acknowledgements. The authors would like to thank the anonymous referees
for their valuable comments on improving the presentation of this paper.

References

1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically optimal two-round perfectly
secure message transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394–408. Springer, Heidelberg (2006)

2. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the ACM 40(1), 17–47 (1993)

3. Franklin, M., Galil, Z., Yung, M.: Eavesdropping games: A graph-theoretic ap-
proach to privacy in distributed systems. Journal of the ACM 47(2), 225–243 (2000)

4. Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity mod-
els. Journal of Cryptology 13(1), 9–30 (2000)

5. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M.: Resilient net-
work coding in the presence of Byzantine adversaries. In: INFOCOM, pp. 616–624.
IEEE, Los Alamitos (2007)

6. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly se-
cure communication over arbitrary networks. In: PODC 2002, pp. 193–202 (2002)

7. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message trans-
mission scheme. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
324–340. Springer, Heidelberg (2008)

8. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmis-
sion scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112.
Springer, Heidelberg (2009)

9. Patra, A., Shankar, B., Choudhary, A., Srinathan, K., Rangan, C.P.: Perfectly
secure message transmission in directed networks tolerating threshold and non
threshold adversary. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 80–101. Springer, Heidelberg (2007)

10. Sayeed, H.M., Abu-Amara, H.: Efficient perfectly secure message transmission in
synchronous networks. Inf. Comput. 126(1), 53–61 (1996)

11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

182 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

12. Srinathan, K., Choudhary, A., Patra, A., Rangan, C.P.: Efficient single phase un-
conditionally secure message transmission with optimum communication complex-
ity. In: PODC 2008, p. 457 (2008)

13. Srinathan, K., Kumar, M.V.N.A., Rangan, C.P.: Asynchronous secure communi-
cation tolerating mixed adversaries. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 224–242. Springer, Heidelberg (2002)

14. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004)

15. Wang, Y., Desmedt, Y.: Perfectly Secure Message Transmission Revisited. In:
Knudsen, L. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer,
Heidelberg (2002)

Appendix

A Generalized Broadcast

In this section we describe generalized broadcast and its use in the protocol
of Section 5.5. Generalized broadcast is a technique which combines broadcast
and error correcting codes thus achieving a more efficient broadcast of the error
shares. As mentioned in Section 5.5 generalized broadcast is used to decrease the
communication complexity of phase two of the protocol from O(n3) to O(n2).

As generalized broadcast only concerns the second phase of the protocol, we
assume that phase one has completed and the sender has identified all error
shares that may have occurred. We now describe the further steps the sender
carries out in order to transmit the error shares more efficiently.

The sender first defines the undirected graph Ge. An edge of the graph rep-
resents an error share that has been identified by the sender. The two vertices
of an edge are the two wires involved with the error share - the wire from which
the share was received and the wire whose polynomial definition the share is
meant to correspond to. What is important to note here is that each edge of Ge

always involves at least one faulty wire. This is because two honest wires can
never cause an error share as no alterations occur on honest wires.

Definition 2. A matching M of a graph G = (V, E) is a set of pairwise non-
adjacent edges. This means that no two edges in M share a common vertex. A
maximum matching of a graph G is a matching that contains the largest possible
number of edges.

The sender proceeds to compute a maximum matching MGe of Ge. Denoting as
Ms the size of MGe this indicates that there are Ms number of edges in MGe .
It should be noted that Ms ≤ t. Because of this, the sender is able to broadcast
the maximum matching MGe of Ge to the receiver with O(n2) communication
complexity. For each edge of MGe the sender will broadcast the received value
esij of the error share, the wire wr from which the share was received and the
wire wa with which it is associated with. As every edge in Ge (and thus in MGe)
always involves at least one faulty wire, this allows the receiver to identify Ms

Simple and Efficient Secure Message Transmission Schemes 183

number of faulty wires (in the same way as described in Section 5.2). What is
important for the encoding and transmission of all the error shares is that the
sender is aware of this.

Suppose that the sender wants to send Ms number of elements (e1, . . . , eMs)
to the receiver. The sender finds a polynomial p of degree at most Ms such that
p(1) = e1, . . . ,p(Ms) = eMs . The sender computes p(Ms + i) and transmits the
value on wire wi where 1 ≤ i ≤ n. The receiver in turn will receive n shares of
an (Ms + 1)-out-of-n secret sharing scheme. This kind of code has a minimum
Hamming distance of n−Ms = 2t+1−Ms. As Ms ≤ t this code does not allow
the receiver to correct the maximum number of errors that may occur. However,
as the receiver knows Ms number of faulty wires - through the broadcast of MGe ,
the receiver can ignore all shares received from these wires. The shortened code
the receiver now considers is an (Ms + 1)-out-of-(n−Ms) secret sharing scheme
with a minimum Hamming distance of n − Ms − Ms = 2t + 1 − Ms − Ms =
2(t − Ms) + 1. This kind of code allows the receiver to correct t − Ms number
of errors which also equates to the number of faulty wires that have yet to be
identified. The use of this shortened code thus allows the receiver to correct all
remaining errors that may occur, reconstruct the same polynomial p and with
perfect authenticity obtain the Ms elements (e1, . . . , eMs). With the transmission
of n elements (one share per wire) the sender is thus able to communicate with
perfect authenticity Ms elements to the receiver.

Following on from the above, as the size of the maximum matching is Ms this
means that 2Ms vertices (which correspond to wires) appear in MGe and Ge.
As at most n error shares can be associated with each wire the number of error
shares that will need to be transmitted to the receiver are at most 2Msn. As
shown, Ms elements can be transmitted using n elements and as there are at
most 2Msn error shares to transmit this can be carried out in 2n independent
executions of the generalized broadcast method.

All of the error shares can thus be communicated from sender to received with
perfect authenticity with O(n2) communication complexity. Because of this, the
communication complexity of the second phase of the protocol is now reduced
from O(n3) to O(n2).

	Simple and Communication Complexity Efficient Almost Secure and Perfectly Secure Message Transmission Schemes
	Introduction
	Background
	Environment of Message Transmission Protocols
	Security Definition
	Secret Sharing Schemes

	Polynomial 1-Phase Almost Secure Message Transmission
	Main Idea
	Main Protocol Techniques
	Security and Efficiency

	Comparison of Protocol to Previous Work
	Efficient Perfectly Secure Message Transmission
	Main Idea
	Main Protocol Techniques
	Formal Protocol Description
	Security and Efficiency
	2-Phase PSMT with O(n^2) Transmission Rate

	Conclusion
	Generalized Broadcast

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

