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Preface

Africacrypt 2010, the Third International Conference on Cryptology in Africa,
took place May 3–6, 2010 in Stellenbosch, South Africa. The General Chairs,
Riaal Domingues from the South African Communications and Security Agency
and Christine Swart from the University of Cape Town, were always a pleasure
to work with and did an outstanding job with the local arrangements. We are
deeply thankful that they agreed to host Africacrypt 2010 with only four months
notice after unanticipated events forced a change of location.

The Africacrypt 2010 submission deadline was split into two. Authors sub-
mitting papers were required to register titles and abstracts by the first deadline,
January 5. A total of 121 submissions had been received by this deadline, al-
though some were withdrawn before review. Authors were allowed to continue
working on their papers until the second deadline, January 10.

Submissions were evaluated in three phases over a period of nearly two
months. The selection phase started on January 5: Program Committee mem-
bers began evaluating abstracts and volunteering to handle various papers. We
assigned a team of people to each paper. The review phase started on January
11: Program Committee members were given access to the full papers and be-
gan in-depth reviews of 82 submissions. Most of the reviews were completed by
February 7, the beginning of the discussion phase. Program Committee members
were given access to other reviews and built consensus in their evaluations of
the submissions. In the end the discussions included 285 full reports and 203 ad-
ditional comments. The submissions, reviews, and subsequent discussions were
handled smoothly by iChair.

On February 21 we sent out 2 notifications of conditional acceptance and 24
notifications of unconditional acceptance. The next day we sent out comments
from the reviewers. One paper eventually met its acceptance conditions; the
final program contained 25 contributed papers and 3 invited talks. The authors
prepared final versions of the 25 contributed papers by February 28.

It is our pleasure to thank the other 53 Program Committee members for
lending their expertise to Africacrypt 2010 and for putting tremendous effort into
detailed reviews and discussions. We would also like to thank Thomas Baignères
and Matthieu Finiasz for writing the iChair software; Springer for agreeing to
an accelerated schedule for printing the proceedings; 70 external referees who
reviewed individual papers upon request from the Program Committee; and,
most importantly, all authors for submitting interesting new research papers to
Africacrypt 2010.

May 2010 Daniel J. Bernstein and Tanja Lange
Program Chairs, Africacrypt 2010
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Özgür Dagdelen
Erik Dahmen
Benne de Weger
Sebastian Faust
Georg Fuchsbauer
David Galindo
Juan A. Garay
Flavio Garcia
Matthew Green
Jens Groth
Darrel Hankerson
Mathias Herrmann
Dennis Hofheinz
Vangelis Karatsiolis
Eike Kiltz
Alptekin Küpçü
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A New RSA-Based Signature Scheme

Sven Schäge and Jörg Schwenk

Horst Görtz Institute for IT-Security, University of Bochum, Germany
{sven.schaege,joerg.schwenk}@rub.de

Abstract. In this work we present a new and efficient hash-and-sign
signature scheme in the standard model that is based on the RSA as-
sumption. Technically it adapts the new proof techniques that are used
to prove the recent RSA scheme by Hohenberger and Waters. In contrast
to the Hohenberger-Waters scheme our scheme allows to sign blocks of
messages and to issue signatures on committed values, two key proper-
ties required for building privacy preserving systems.

Keywords: digital signature schemes, standard model, RSA, message
blocks.

1 Introduction

It is well known that the basic RSA signature scheme [23] is not secure with
respect to the most stringent security definition for digital signature schemes –
existential unforgeability against adaptive chosen message attacks. To overcome
this deficiency the basic RSA scheme has been extended in various ways. Several
signature schemes have been proven secure in the random oracle model [1] like
full domain hash RSA [1] or probabilistic signature scheme (PSS) [2]. It was a
long open-standing problem to build compact signature schemes which are solely
secure under the RSA assumption and until 2009, the only efficient RSA-based
signature schemes that were secure in the standard model were based on tree
structures [10,13]. In 2009, Hohenberger and Waters step-wisely solved this prob-
lem by first presenting a new stateful RSA signature scheme (at Eurocrypt ’09)
and then describing the first stateless RSA-based hash-and-sign signature scheme
in the standard model (Crypto ’09).

Signature Schemes for Signing Message Blocks. In this paper we in-
vestigate whether the recent results by Hohenberger and Waters can be used to
construct a signature scheme that supports signing message blocks. A signature
scheme for message blocks, produces signatures over several independent mes-
sages. The user may then prove (with additional NIZK protocols) that it knows
the input messages and the corresponding signature without revealing these val-
ues. The main advantage is that the user may also disclose a relevant subset of
the messages to the verifier without compromising the secrecy of the remaining
attributes. Typically these schemes are used to generate certificates on private
user attributes like name, age, address, or marital status of the user. For exam-
ple imagine a user whose personal data has been certified by a global authority.

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 S. Schäge and J. Schwenk

If the user wants to order a new book in an online book store he is surely not
supposed to provide information on his marital status. On the other hand, to
ensure a successful delivery of the book his name and address are of course re-
quired information. When using signature schemes for message blocks the user
can so protect his private information by only disclosing absolutely neccessary
information to his communication partner. In 2002, Camenisch and Lysyanskaya
presented a signature scheme that is secure under the Strong RSA assumption
(SRSA) [8] (Appendix A) . The scheme has three key properties: 1) it can easily
be extended to sign several message blocks, 2) there exists efficient protocols for
issuing signatures on committed values and 3) there exist efficient protocols for
proving knowledge of a signature without actually revealing it. These properties
have made the Camenisch-Lysyanskaya (CL) scheme a useful building block in
several privacy preserving systems [4, 5, 6,7]

Contribution. In this work we present a new signature scheme based on the
RSA assumption that fulfills 1) and 2): it supports the signing of several (in-
dependent) message blocks and allows to issue signatures on committed values.
This makes our signature scheme useful in applications where privacy is critical.
Designing additional protocols that accomplish 3) may be the issue of future
work.

Technical Contribution. We start with revisiting the Camenisch-Lysyans-
kaya scheme. In the security proof of the CL scheme the simulator at first guesses
one of three types of forgery. According to its guess it prepares the input values
that are given to the attacker against the CL scheme. If the simulator’s guess
is correct it can break the Strong RSA assumption. Our key observation is the
following: two of these types of forgery can actually reduce security to the mere
RSA assumption. For the design of our new RSA based signature scheme we
take this as a starting point. To deal with the third case we essentially use the
new proof techniques that were presented by Hohenberger and Waters to prove
their RSA based scheme secure. In particular, we integrate that for a string X ,
all prefixes of X are processed as well.

Related Work. Besides being closely related to the recent Hohenberger-Waters
signature scheme our work adds to the line of existing signature schemes proven
secure under RSA-like assumptions. The first provably secure but impractical sig-
nature scheme was published by Goldwasser, Micali and Rivest in 1988 [18]. In
1995 and 1996, Dwork and Naor [13] and Cramer and Damg̊ard [10] presented
RSA based tree signature schemes. Naturally for tree-based signatures, the signa-
ture size is logarithmic in the maximal number of signatures that can securely be
issued. In 1999, Gennaro, Halevi, and Rabin [17] and independently Cramer and
Shoup [11] presented the first hash-and-sign signature schemes that are secure in
the standard model under a (stronger) variant of the RSA assumption – the Strong
RSA assumption. Based on this work, several SRSA-based signature schemes fol-
lowed in the next years [8, 14, 19, 22, 25, 26]. In 2009, Hohenberger and Waters
presented a new RSA signature scheme that is provably secure under the RSA as-
sumption if the signer maintains and regularly updates a counter-value [20]. Later
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in this year, Hohenberger and Waters then presented the first stateless RSA-based
hash-and-sign signature scheme in the standard model [21].

2 Preliminaries

2.1 Notation

For a, b ∈ Z, a ≤ b we write [a; b] to denote the set {a, a + 1, . . . , b − 1, b}.
For a string x, we write |x|2 to denote its bit length. For a set S, we use |S|
to denote its size. By s ∈R S we indicate that s is drawn from S uniformly
at random. For X ∈ {0, 1}k, let X = x1 . . . xk be the binary presentation of
X with xi ∈ {0, 1} for i ∈ [1; k]. We denote by X(i) = 0k−ix1 . . . xi ∈ {0, 1}k
the (zero-padded) prefix of X that consists of k − i zeroes and the first i bits
of X . We use QRn to denote the set of quadratic residues modulo n ∈ N, i.e.
QRn = {x|∃y ∈ Z∗

n : y2 = x mod n}. For an algorithm A we write A(x1, x2, . . .)
to denote that A has input parameters x1, x2, . . . while y ← A(x1, x2, . . .) means
that A outputs y when given the input values x1, x2, . . . . We use κ ∈ N to
indicate the security parameter while 1κ describes the string that consist of κ
ones. Let l = l(κ) and lX = lX(κ) be polynomials with lX ≤ l. We will also make
use of a prime mapping function nextprime : {0, 1}lX → Pl that maps lX -bit
strings to the set of primes Pl ⊆ [1; 2l].1 The function nextprime maps to the
smallest prime that is equal or greater than the input value (when interpreted
as a natural number).

2.2 Signature Scheme

A digital signature scheme S = (Gen,Sign,Verify) consists of three polynomial-
time algorithms.

– Gen(1κ) generates a public key pair (SK, PK).
– Sign(SK, m) outputs the signature σ.
– Verify(PK, m, σ) verifies if σ is a signature on m signed by the holder of

the secret key corresponding to PK; on success it outputs 1 otherwise 0.

2.3 Strong Existential Unforgeability

According to the standard definition of security by Goldwasser, Micali and Rivest
[18] a signature scheme S = (Gen,Sign,Verify) is existentially unforgeable
under an adaptive chosen message attack if no forger that has q-time access to a
signing oracle O(SK, ·) can produce a new valid signature on a new message. In
this work we consider an even stronger version of this security definition called
strong existential unforgeability. Now, the message output by the adversary may
not necessarily differ from the previous oracle queries.
1 If we choose lX such that 2lX ≈ 2l/l we can guarantee by the prime number theorem

that |Pl| ≈ 2lX .
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Definition 1. We say that the signature scheme S is (q, t, ε)-secure, if for all
t-time adversaries A that send at most q queries m1, . . . , mq to the signing oracle
O(SK, ·) and receive q answers σ1, . . . , σq it holds that

Pr
[

(SK, PK)← Gen(1κ), (m∗, σ∗)← AO(SK,·)(PK),
Verify(PK, m∗, σ∗) = 1, (m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)}

]
≤ ε,

where the probability is taken over the random coins of Gen and A.

Our new signature scheme solely relies on the original RSA assumption [23].

Definition 2 (RSA assumption (RSA) ). Given an RSA modulus n = pq,
where p, q are sufficiently large primes, a prime α < φ(n) with gcd(α, φ(n)) = 1,
and an element u ∈ Z∗

n, we say that the (tRSA, εRSA)-RSA assumption holds if
for all tRSA-time adversaries A

Pr [(x)← A(n, u, α), x ∈ Z
∗
n, xα = u mod n] ≤ εRSA,

where the probability is over the random choices of u, n, α and the random coins
of A.

2.4 Prime Mapping Function

Let n = pq be an RSA modulus and l = l(κ) be such that 2l < φ(n). We will now
construct a function t : {0, 1}lX → Pl for mapping bit strings to Pl that is very
similar to the prime mapping function used by Hohenberger and Waters [21]
(Appendix B). An essential feature of this function is that the probability of the
first polynomial (in the security parameter) inputs to produce collisions is negli-
gible. Basically the construction consists of a keyed pseudo-random permutation
fk : {0, 1}lX → {0, 1}lX with key space K and key k ∈R K such that log(|K|)
is a polynomial in κ. We also need another random value s ∈R {0, 1}lX that is
XORed with the output of fk prior to applying nextprime. The final definition
of t is t(X) = nextprime(s ⊕ fk(X)). We note that nextprime is invertible for
any prime y ∈ Pl although there are possibly several input values that map to
y. For convenience we additionally define a new function T : {0, 1}lX → N as
T (X) =

∏lX
i=1 t(X(i)). We surely have that T (Xi) 	= T (Xj) ⇒ Xi 	= Xj . Ob-

serve that if t is collision-free for the first q inputs, T is also injective such that
T (Xi) 	= T (Xj)⇔ Xi 	= Xj .

Remark 1. As in the Hohenberger-Waters proof, the value s is important for
embedding the RSA challenge in the security reduction, as it allows the simulator
to program t for a single input/output relation. Suppose the simulator wishes
to have input X be mapped to the output prime y. It can accomplish this by
simply setting s such that nextprime(s⊕ fk(X)) = y.

3 A New RSA-Based Signature Scheme

We now define our new RSA signature scheme S. Let l = l(κ), lo = lo(κ),
lm = lm(κ), and lp = lp(κ) be polynomials and lr = lm + lo, ln = 2lp. For
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simplicity we assume (lr + 1), lm, l ≤ lp. Messages are interpreted as values in
{0, 1}lm. We can sign longer messages by first applying a collision-resistant hash
function h : {0, 1}∗ → {0, 1}lm. In the following we often interpret binary strings
as values in Z.

– Gen(1κ): outputs an RSA modulus n with |n|2 = ln and its factorization
SK = (p, q). For simplicity we restrict ourselves to the case p = 2p′ + 1,
q = 2q′ +1 where p, p′, q, q′ are primes and the modulus is balanced, i.e. lp =
|p|2 = |q|2. Next Gen(1κ) chooses three generators e, f, g of QRn . Finally,
it draws k ∈R K and s ∈R {0, 1}lX and publishes PK = (n, e, f, g, k, s).

– Sign(SK, m): chooses r ∈R {0, 1}lr and X ∈R {0, 1}lX . Next, it computes

z = (efmgr)1/T (X) mod n.

The final signature is σ = (z, X, r)
– Verify(PK, m, σ): checks if it holds for (z, X, r) that

zT (X) ?= efmgr mod n.

4 Strong Existential Unforgeability of S
Theorem 1. Assume the (tRSA, εRSA)-RSA assumption holds. Then, S is
(q, t, ε)-secure against adaptive chosen message attacks provided that

q = qRSA, t ≈ tRSA,

ε ≤ 9qlXεRSA/2 + 9 · 2−(lp−2) + 3 · 2−lo + 3q2/2lX + 3(qlX)2(l + 2)/2l.

Proof. Assume that A is a forger that (q, t, ε)-breaks the strong existential un-
forgeability of S. Then, we can construct a simulator B that breaks the RSA
assumption in time tRSA with probability εRSA.

We assume that the adversary makes q queries m1, . . . , mq and receives q
responses (z1, X1, r1), . . . , (zq, Xq, rq). We differentiate between three types of
forgeries (m∗, (z∗, X∗, r∗)).

– In a Type I Forgery, there exists a non-empty set J ⊆ [1; q] such that for
all j ∈ J it holds that T (X∗) = T (Xj). Also, there exists at least one j′ ∈ J
such that r∗ 	= rj′ .

– For a Type II Forgery, there exists a non-empty set J ⊆ [1; q] such that
for all j ∈ J it holds that T (X∗) = T (Xj) but there exists no j′ ∈ J with
r∗ 	= rj′ .

Observe that if t is collision-free for the Xi with i ∈ [1; q] and their prefixes it
follows that |J | = 1 and X∗ = Xj′ for Type I and Type II forgeries.

– Finally, for a Type III Forgery there exists no j ∈ [1; q] such that T (X∗) =
T (Xj).
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We let B guess upfront (with probability at least 1
3 ) which type of forgery

A is going to output. Theorem 1 then follows by a standard hybrid argument.
Suppose B is given the RSA challenge instance (u, α, n). Let Pr[Si] denote the
success probability of an attacker to successfully forge signatures in Gamei.

Type I Forger. Suppose B correctly guesses that A outputs Type I Forgeries.

Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks S
when interacting with the signing oracle O(SK, ·). We have that,

Pr[S0 ] = ε. (1)

Game1. In this game B computes the Xi upfront. First it draws v ∈R [1; q] and
q values X1, . . . , Xq ∈R {0, 1}lX . Next it draws s ∈ {0, 1}lX uniformly at random
from the set of values with t(Xv) = nextprime(fk(Xv) ⊕ s) = α. Since A does
not know α the values are distributed exactly as in the previous game.

Pr[S1 ] ≥ Pr[S0 ]. (2)

Game2. In this game, B aborts if the Xi are not all pairwisely different. By a
union bound we get

Pr[S2 ] ≥ Pr[S1 ]− q2/2lX . (3)

Game3. Now, B aborts if there is a collision in the prime mapping function,
meaning that there exists X

(j)
i , X

(j′)
i′ with i, i′ ∈ [1; q], j, j′ ∈ [1; lX ], and X

(j)
i 	=

X
(j′)
i′ such that t(X(j)

i ) = t(X(j′)
i′ ). Altogether we must consider qlX different

inputs (the lX prefixes of the q Xi values). By the prime number theorem the
number of primes in the interval [1; 2l] is larger than 2l/(l + 2) for l > 6 [24]. By
a union bound we get that

Pr[S3 ] ≥ Pr[S2 ]− (qlX)2(l + 2)/2l. (4)

Game4. This game differs from the previous one in the way the elements e, f, g ∈
QRn are chosen. First, B draws three random elements we, wf , wg from Z(n−1)/4

and c ∈R {0, 1}lr . Next, B computes e, f , and g as

e = u2(we

∏q
i=1 T (Xi)+c

∏q
i=1,i�=v T (Xi)) mod n

f = u2wf

∏q
i=1 T (Xi) mod n

g = u2(wg

∏q
i=1 T (Xi)−

∏q
i=1,i�=v T (Xi)) mod n.

Let us now show that the so generated values are indistinguishable from the real
attack game. Without loss of generality let p′ > q′. It holds that (n − 1)/4 =
p′q′ + (p′ + q′)/2 > p′q′ which implies that

Pr[x ∈R Z(n−1)/4, x /∈ Zp′q′ ] =
(p′ + q′)

(2p′q′ + p′ + q′)
<

1
q′ + 1

< 2−(lp−2).

So, the distribution of values uniformly drawn from Z(n−1)/4 is statistically close
to those drawn from Zp′q′ . Therefore e, f, g are indistinguishable (with the same
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probability) from random group elements in QRn. By a union bound we get
that,

Pr[S4 ] ≥ Pr[S3 ]− 3 · 2−(lp−2). (5)

Game5. Now B simulates the signing oracle. For each query mj with j ∈
{1, . . . , q}\{v}, B computes a random rj ∈ {0, 1}lr . Then B outputs the signature
σj = (zj , Xj , rj) where zj is computed as

zj = (efmjgrj )
1

T (Xj )

= u2(we+wf mj+wgrj)
∏q

i=1,i�=j T (Xi)+2(c−rj)
∏q

i=1,i�=j,i�=v T (Xi) mod n.

In the case j = v the signature is set to σv = (zv, Xv, c) and zv is computed as

zv = (efmvgc)
1

T(Xv ) = u2(we+wf mv+wgc)
∏q

i=1,i�=v T (Xi) mod n.

These values are exactly distributed as in the previous game. So,

Pr[S5 ] ≥ Pr[S4 ]. (6)

Game6. Now assume the adversary outputs the forgery (m∗, (z∗, X∗, r∗)). By
assumption there exists a non-empty set J ⊆ [1; q] such that for all j ∈ J it
holds that T (X∗) = T (Xj). In the previous games we have ensured that the Xi

are distinct and collision-free, thus we have that |J | = 1. Hence it must be the
case for (the only element) j′ ∈ J that r∗ 	= rj′ . In this game, if v 	= j′ then B
aborts. Therefore,

Pr[S6 ] ≥ Pr[S5 ]/q. (7)

Game7. For the forgery it now holds that

(z∗)T (X∗) = (z∗)T (Xv)

= u2(we+wf m∗+wgr∗)
∏q

i=1 T (Xi)+2(c−r∗)
∏q

i=1,i�=v T (Xi) mod n.

Since t(Xv) = α we equally have

(
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)α
∏ lX−1

j=1 t(X(j)
v )

(8)

= u2(c−r∗)
∏q

i=1,i�=v T (Xi) mod n.

In the last step we must consider the probability for the event that α|2(c −
r∗)

∏q
i=1,i�=v T (Xi). In this case the simulator aborts. Since the Xi are all distinct

and collision-free we get that α does not divide
∏q

i=1,i�=v T (Xi). Since we only
consider odd primes (gcd(φ(n), α) = 1) we must finally only analyze whether
α|(c − r∗). Observe that c is hidden from A’s view. However, A might just by
chance compute r∗ such that α|(c− r∗). If that happens B aborts. Since 3 is the
smallest prime α can take on, A will fail with probability at least 2/3. Therefore,

Pr[S7 ] ≥ 2Pr[S6 ]/3. (9)
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In this case, B can compute values β0, β1 ∈ Z with

gcd

⎛⎝α, 2(c− r∗)
q∏

i=1,i�=v

T (Xi)

⎞⎠ = β0α + β12(c− r∗)
q∏

i=1,i�=v

T (Xi) = 1.

It surely holds that

u = uβ0α+β12(c−r∗)
∏q

i=1,i�=v T (Xi)

= uβ0α ·
(
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)β1α
∏ lX−1

j=1 t(X(j)
v )

mod n.

Using Equation (8), B can compute a solution to the RSA challenge as

u1/α = uβ0 ·
(
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)β1
∏ lX−1

j=1 t(X(j)
v )

mod n.

Finally,
Pr[S7 ] = εRSA. (10)

Putting together Equations (1)-(10) we get that

ε ≤ 3qεRSA/2 + 3 · 2−(lp−2) + q2/2lX + (qlX)2(l + 2)/2l.

Type II Forger. Now suppose B correctly expects A to be a Type II Forger.
We only present the differences to the previous proof.

Game4. Now c is chosen uniformly from [0; 2lr + 2lm − 2]. Then, B draws three
random elements we, wf , wg from Z(n−1)/4 and computes e, f , and g as

e = u2(we

∏q
i=1 T (Xi)+c

∏q
i=1,i�=v T (Xi)) mod n

f = u2(wf

∏q
i=1 T (Xi)−

∏q
i=1,i�=v T (Xi)) mod n

g = u2(wg

∏q
i=1 T (Xi)−

∏q
i=1,i�=v T (Xi)) mod n.

Observe that only f is constructed differently from the proof of Type I forgeries.
By the same arguments as above e, f, g are indistinguishable from random group
elements in QRn. We again get that,

Pr[S4 ] ≥ Pr[S3 ]− 3 · 2−(lp−2). (11)

Game5. B simulates the signing oracle. For each query mj with j ∈ {1, . . . , q} \
{v}, B computes a random rj ∈ {0, 1}lr . Then B outputs the signature σj =
(zj , Xj, rj) where zj is computed as

zj = (efmjgrj )
1

T (Xj )

= u2(we+wf mj+wgrj)
∏q

i=1,i�=j
T (Xi)+2(c−mj−rj)

∏q
i=1,i�=j,i�=v

T (Xi) mod n.
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In the case j = v, B at first checks whether there exists a string rv ∈ {0, 1}lr such
that c = mv + rv. If not, B aborts. We can easily upper bound the probability
that B will abort as

Pr
[
c ∈R [0; 2lr + 2lm − 2], mv ← A, c−mv /∈ [0; 2lr − 1]

]
≤ Pr

[
c ∈R [0; 2lr + 2lm − 2], c /∈ [2lm − 1; 2lr − 1]

] ≤ 2−lo .

Otherwise, the signature is set to σv = (zv, Xv, rv) and zv is computed as

zv = (efmvgrv)
1

T(Xv ) = u2(we+wf mv+wgrv)
∏q

i=1,i�=v
T (Xi) mod n.

These values are exactly distributed as in the previous game.
Therefore,

Pr[S5 ] ≥ Pr[S4 ]− 2−lo . (12)

Game6. Now assume the adversary outputs the forgery (m∗, (z∗, X∗, r∗)). By
assumption there exists a non-empty set J ⊆ [1; q] such that for all j ∈ J it
holds that T (X∗) = T (Xj) but there exists no j′ ∈ J such that r∗ 	= rj′ . Since
the Xi are pairwisely different and t is collision-free we have that |J | = 1 what
implies X∗ = Xj′ and r∗ = rj′ for some j′ ∈ J . If v 	= j′ then B aborts. So,

Pr[S6 ] ≥ Pr[S5 ]/q. (13)

Game7. For the forgery it now holds that

(z∗)T (X∗) = (z∗)T (Xv) =
(
efm∗

gr∗)
= u2(we+wf m∗+wgr∗)

∏q
i=1 T (Xi)+2(c−m∗−r∗)

∏q
i=1,i�=v T (Xi) mod n

or (
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)α
∏ lX−1

j=1 t(X(j)
v )

= u2(c−m∗−r∗)
∏q

i=1,i�=v T (Xi) mod n.

In the last step we must consider the probability for the event that α|2(c−m∗−
r∗)

∏q
i=1,i�=v T (Xi). Observe that we must have m∗ 	= mt because otherwise we

have σ∗ = σt (and A did not output a valid forgery). So we surely have that
c−m∗−r∗ 	= 0. With the same arguments as above we must only check whether
α|(c−m∗ − r∗) in which case B will abort. Since c is hidden from A’s view the
probability for this to happen is at most 1/3. Thus,

Pr[S7 ] ≥ 2Pr[S6 ]/3. (14)

Otherwise B can compute values β0, β1 ∈ Z with

gcd

⎛⎝α, 2(c−m∗ − r∗)
q∏

i=1,i�=v

T (Xi)

⎞⎠
= β0α + β12(c−m∗ − r∗)

q∏
i=1,i�=v

T (Xi) = 1.
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It surely holds that

u = uβ0α+β12(c−m∗−r∗)
∏q

i=1,i�=v T (Xi)

= uβ0α ·
(
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)β1α
∏ lX−1

j=1 t(X(j)
v )

mod n.

Using Equation (15) B can compute a solution to the RSA challenge as

u1/α = uβ0 ·
(
z∗u−2(we+wf m∗+wgr∗)

∏q
i=1,i�=v T (Xi)

)β1
∏ lX−1

j=1 t(X(j)
v )

mod n.

Finally,
Pr[S7 ] = εRSA. (15)

Putting together Equations (1)-(15) we get that

ε ≤ 3qεRSA/2 + 3 · 2−(lp−2) + 2−lo + q2/2lX + (qlX)2(l + 2)/2l.

Type III Forger. Now suppose B correctly guesses thatA is a Type III Forger.
For convenience, let X be the set of all prefixes of the Xi, i.e. X = {X(j)

i |i ∈
[1; q], j ∈ [1; lX ]}. Clearly, |X | ≤ qlX . Let SX denote the set of all binary strings
s = s1 . . . sk with k ∈ [1; lX ] such that s1 . . . sk−1 ∈ X but s /∈ X . If X = ∅, i.e.
A made no query, we define SX = {0, 1}. Surely, |SX | ≤ qlX .

Game1. In this game B computes the Xi ∈R {0, 1}lX for i ∈ [1; q] upfront. Then
B chooses X̄ ∈R SX . Next, B draws s ∈ {0, 1}lX uniformly at random from the
set of values with t(X̄) = nextprime(fk(X̄)⊕ s) = α. Since A does not know α
the values are distributed exactly as in the previous game.

Pr[S1 ] ≥ Pr[S0 ] . (16)

Game2. Now the elements e, f, g ∈ QRn are constructed. B draws three random
elements we, wf , wg from Z(n−1)/4 and B computes e, f , and g as

e = u2we

∏q
i=1 T (Xi) mod n

f = u2wf

∏q
i=1 T (Xi) mod n

g = u2wg

∏q
i=1 T (Xi) mod n.

With the same arguments as above we have

Pr[S2 ] ≥ Pr[S1 ]− 3 · 2−(lp−2) . (17)

Game3. Now B simulates the signing oracle. For each queries mj with j ∈
{1, . . . , q}, B computes rj ∈R {0, 1}lr and outputs the signature σj = (zj, Xj , rj)
where zj is computed as

zj = (efmjgrj )
1

T (Xj) = u2(we+wf mj+wgrj)
∏q

i=1,i�=j
T (Xi) mod n.
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We have that
Pr[S3 ] = Pr[S2 ]. (18)

Game4. Let (m∗, (z∗, X∗, r∗)) be A’s forgery. By assumption there exists no
j ∈ [1; q] such that T (X∗) = T (Xj). This means that there is at least one new
prime factor in T (X∗). So there must be a prefix X∗(k) with k ∈ [1; lX ] that lies
in SX . If X̄ 	= X∗(k) B aborts. We have

Pr[S4 ] ≥ Pr[S3 ]/qlX . (19)

Game5. From the verification equation we know that

(z∗)T (X∗) = (z∗)α
∏ lX

j=1,j �=k t(X∗(j)) =
(
efm∗

gr∗)
= u2(we+wf m∗+wgr∗)

∏q
i=1 T (Xi) mod n.

Since we, wf , wg are hidden from the adversary’s view it holds with probability
at least 2/3 that gcd(α, we + wfm∗ + wgr

∗) = 1.

Pr[S5 ] ≥ 2Pr[S4 ]/3 . (20)

Now we can compute two values β0, β1 ∈ Z with

gcd

(
α, 2(we + wfm∗ + wgr

∗)
q∏

i=1

T (Xi)

)

= β0α + β12(we + wfm∗ + wgr
∗)

q∏
i=1

T (Xi) = 1

and find a response to the RSA challenge as

u1/α = uβ0(z∗)β1
∏ lX

j=1,j �=k t(X∗(j)) mod n .

Finally,
Pr[S5 ] = εRSA . (21)

Putting together Equations (1)-(21) we get that

ε ≤ 3qlXεRSA/2 + 3 · 2−(lp−2).

5 Signing Message Blocks

Our new signature scheme can easily be extended to support signing message
blocks. Assume we want to sign u ∈ N message m1, . . . , mu ∈ {0, 1}lm. The
modified scheme looks as follows.
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– Gen(1κ): is exactly the same as in our main RSA signature scheme except
that it now chooses u+2 generators e, f1, . . . , fu, g ofQRn. Next, it computes

z =

(
egr

u∏
i=1

fmi

i

)1/T (X)

mod n.

The final signature is σ = (z, X, r)
– Verify(PK, m1, . . . , mu, σ): to verify a signature (z, X, r) the verifier checks

whether

zT (X) ?= egr
u∏

i=1

fmi

i mod n.

The security proof for this scheme closely follows the proof for the main RSA
signature scheme. In all three types of forgery, the fi are constructed exactly
like f above. The main difference is in Game4 of the proof of Type II forg-
eries. We now have to draw c from [0; u(2lm − 1) + 2lr − 1]. In Game5 we
have to upper bound the probability for the event that given the attacker’s
query (mv,1, . . . , mv,u) we cannot find rv ∈ {0, 1}lr such that rv = c−∑u

i=1 mi:
Pr[Game5] ≥ Pr[Game4] − u2−lo . In Game7 (where X∗ = Xt and r∗ = rt for
some t ∈ [1; q]), we then have to analyze whether α|(c −∑u

i=1 m∗
i − r∗). This

again holds with probability at least 2/3.

6 Protocol for Signing Committed Messages

In [8], Camenisch-Lysyanskaya also presented an interactive zero-knowledge pro-
tocol between a signer and a user u for issuing signatures on committed val-
ues. This protocol can easily be adapted to our signature scheme. The com-
mon inputs to this protocol are the public values (n, k, s) and the generators
e, f, g ∈ QRn of the RSA signature scheme. Additionally u provides a public
key to a commitment scheme that consists of an RSA modulus nu, two gen-
erators eu, fu of QRnu , and a commitment [12, 16] Cu of m ∈ {0, 1}lm under
randomness wu: Cu = fm

u gwu
u mod nu. In the first step the user generates a com-

mitment on m using the signer’s parameters and a new randomness w such that
C = fmgw mod n. Additionally u delivers three non-interactive zero knowledge
proofs. The first one proves that C and Cu commit to the same value [9]. The sec-
ond proves knowledge of m and w [15]. The third proof shows that m ∈ {0, 1}lm
and w ∈ {0, 1}lr−1 [3,9]. Next the signer generates a signature on C by choosing
r′ ∈R {0, 1}lr−1 and X ∈R {0, 1}lX and computing

z =
(
Cgr′

e
)1/T (X)

mod n.

The values (z, X, r′) are given to u. Finally u can compute a signature on m as
(z, X, r′ + w).
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7 Extensions

Our design methodology can be transferred to the existing SRSA signature
schemes by Fischlin [14] and Zhu [25, 26]. This is because, similar to the
Camenisch-Lysyanskaya scheme, their security proofs also consider three forgers
among which two actually reduce to the RSA assumption. The main tasks con-
sists of substituting the prime component of the signature with X ∈R {0, 1}lX .
Moreover, we can also use our technique to build a Cramer-Shoup-like RSA
signature scheme. The proof for the Cramer-Shoup signature scheme [11] also
considers three different forgers but only one of them actually reduces to the
SRSA assumption. Similar to before we can modify the Cramer-Shoup scheme
by substituting the prime element in the signature with T (X). In general, our
modifications have the consequence that signature verification takes much more
time in the RSA schemes because the prime exponents have to be generated
using t(·) what includes costly primality tests.

8 Conclusion

In this work we have presented a new signature scheme that is secure under the
RSA assumption. The scheme can easily be extended to sign several blocks of
messages. Additionally it supports protocols to issue signatures on committed
values. As a drawback the signature length is longer (by one component) than
the Hohenberger-Waters scheme’s.
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Appendix

A The Camenisch-Lysyanskaya Signature Scheme

– Gen(1κ): computes a balanced RSA modulus n = pq with p = 2p′ + 1 and
q = 2q′ + 1 for primes p, q, p′, q′. Then it chooses three generators a, b, d of
QRn. It publishes PK = (n, a, b, d) and sets SK = (p, q).

– Sign(SK, M): to sign a message M ∈ {0, 1}lm the signing algorithm at first
chooses a random lw bit prime t with lw ≥ lm +2. Then it chooses a random
r ∈ {0, 1}lm+|n|2+l where l = l(κ) is security parameter. Finally it computes
v = (abMdr)1/w mod n and outputs σ = (w, r, v).

– Verify(PK,M, σ): checks, given a signature σ = (w, r, v), whether vw =
abMdr mod n and if w, r and v have the correct bitsize.

B The Hohenberger-Waters Signature Scheme

We subsequently present the Hohenberger-Waters signature scheme that is secure
against generic chosen message attacks under the RSA assumption [21].

– Gen(1κ): Choose a key s for a pseudo-random function v : {0, 1}∗ →
{0, 1}l. Choose an RSA modulus n with n = pq. Choose u ∈R Z∗

n and
r ∈R {0, 1}l. Next, define the function v′ : {0, 1}∗ → {0, 1}l as v′(M) :=
nextprime(vs(M)⊕ r). Set SK = (p, q) and publish PK = (u, n, s, r).

– Sign(SK, M): To sign a message M ∈ {0, 1}∗ compute the signature as
σ = u1/(

∏ l
i=1 v′(M(i)) mod n.

– Verify(PK,M, σ): If it holds that σ
∏ l

i=1 v′(M(i)) = u mod n output 1, else
output 0.
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Abstract. A fair blind signature is a blind signature with revocable
anonymity and unlinkability, i.e. an authority can link an issuing session
to the resulting signature and trace a signature to the user who requested
it. In this paper we first revisit the security model for fair blind signatures
given by Hufschmitt and Traoré in 2007. We then give the first practical
fair blind signature scheme with a security proof in the standard model.
Our scheme satisfies a stronger variant of the Hufschmitt-Traoré model.

Keywords: Blind signatures, revocable anonymity, standard model,
Groth-Sahai proof system.

1 Introduction

A blind signature scheme is a protocol for obtaining a signature from an is-
suer (signer) such that the issuer’s view of the protocol cannot be linked to
the resulting message/signature pair. Blind signatures are employed in privacy-
related protocols where the issuer and the message author are different parties
(e.g., e-voting or e-cash systems). However, blind signature schemes provide per-
fect unlinkability and could therefore be misused by dishonest users. Fair blind
signatures were introduced by Stadler, Piveteau and Camenisch [SPC95] to pre-
vent abuse of unlinkability. They allow two types of blindness revocation: linking
a signature to the user who asked for it and identifying a signature that resulted
from a given signing session. A security model for fair blind signatures was in-
troduced by Hufschmitt and Traoré [HT07].

We first revisit this security model and propose a stronger variant. We then
present the first efficient fair blind signature scheme with a standard-model secu-
rity proof (i.e. without resorting to the random-oracle heuristic) in the strength-
ened model. We make extensive use of the non-interactive proof system due to
Groth and Sahai [GS08] and of the automorphic signatures recently introduced
by Fuchsbauer [Fuc09]; we do not rely on interactive assumptions. We note that
this is an extended abstract and refer to the full version [FV10] for detailed
proofs and an improved scheme based on recent results in [Fuc09].

1.1 Prior Work

The concept of blind signatures was introduced by Chaum in [Cha83]. A blind
signature scheme is a cryptographic primitive that allows a user to obtain from

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 16–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the issuer (signer) a digital signature on a message of the user’s choice in such
a way that the issuer’s view of the protocol cannot be linked to the resulting
message/signature pair. Blind signatures have numerous applications including
e-cash: they prevent linking withdrawals and payments made by the same cus-
tomer. However, the impossibility of this linking might lead to frauds (money
laundering, blackmailing, . . . ); some applications therefore require means to
identify the resulting signature from the transcript of a signature-issuing protocol
or to link a message/signature pair to user who requested it.

Fair blind signatures were introduced by Stadler, Piveteau and Camenisch in
[SPC95] to provide these means. Several schemes have been proposed since then
[SPC95, AO01, HT07] with applications to e-cash [GT03] or e-voting [CGT06]. In
[HT07], Hufschmitt and Traoré presented the first formal security model for fair
blind signatures and a scheme based on bilinear maps satisfying it in the random
oracle model under an interactive assumption. In a recent independent work,
Rückert and Schröder [RS10] proposed a generic construction of fair partially
blind signatures [AF96].

1.2 Our Contribution

As a first contribution, we strengthen the security model proposed in [HT07]. In
our model, opening a transcript of an issuing session not only reveals information
to identify the resulting signature, but also the user that requested it.

We give a definition of blindness analogously to [Oka06], but additionally
provide tracing oracles to the adversary; in contrast to [HT07], this models
active adversaries. We propose a traceability notion that implies the original
one. Finally, we formalize the non-frameability notions analogously to [BSZ05],
where it is the adversary’s task to output a framing signature (or transcript)
and a proof. (In [HT07] the experiment produces the proof, limiting thus the
adversary.) We believe that our version of signature non-frameability is more
intuitive: no corrupt issuer can output a transcript, an opening framing a user,
and a proof. (In [HT07] the adversary must output a message/signature pair
such that an honest transcript opens to it.) (See §2.3 for the details.)

In 2008, Groth and Sahai [GS08] proposed a way to produce efficient non-
interactive zero-knowledge (NIZK) and non-interactive witness-indistinguishable
(NIWI) proofs for (algebraic) statements related to groups equipped with a bilin-
ear map. In particular, they give proofs of satisfiability of pairing-product equa-
tions (cf. §4.2 and [BFI+10] for efficiency improvements for proof verification). In
[Fuc09], Fuchsbauer introduced the notion of automorphic signatures whose ver-
ification keys lie in the message space, messages and signatures consist of group
elements only, and verification is done by evaluating a set of pairing-product
equations (cf. §5). Among several applications, he constructed an (automorphic)
blind signature in the following way: the user commits to the message, and gives
the issuer a randomized message; the issuer produces a “pre-signature” from
which the user takes away the randomness to recover a signature. The actual
signature is then a Groth-Sahai NIWI proof of knowledge of a signature, which
guarantees unlinkability to the issuing.
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In this paper, we modify Fuchsbauer’s blind signature scheme in order to
construct the first practical fair blind signature scheme with a security reduc-
tion in the standard model. Our security analysis does not introduce any new
computational assumptions and relies only on falsifiable assumptions [Nao03]
(cf. §3). First, we extend Fuchsbauer’s automorphic signature so it can sign
three messages at once. Then, to achieve blindness even against adversaries pro-
vided with tracing oracles, we use Groth’s technique from [Gro07] to achieve
CCA-anonymous group signatures: instead of just committing to the tracing in-
formation, we additionally encrypt it (using Kiltz’ tag-based encryption scheme
[Kil06]) and provide NIZK proofs of consistency with the commitments. In order
to achieve the strengthened notion of non-frameability, we construct simulation-
sound NIZK proofs of knowledge of a Diffie-Hellman solution which consist of
group elements only and are verified by checking a set of pairing-product equa-
tions (i.e. they are Groth-Sahai compatible).

Since messages and signatures consist of group elements only and their ver-
ification predicate is a conjunction of pairing-product equations, our fair blind
signatures are Groth-Sahai compatible themselves which makes them perfectly
suitable to design efficient fair e-cash systems following the approach proposed
in [GT03]. In addition, our scheme is compatible with the “generic” variant1 of
Votopia [OMA+99] proposed by Canard, Gaud and Traoré in [CGT06]. Com-
bined with a suitable mix-net (e.g. [GL07]), it provides a practical electronic
voting protocol in the standard model including public verifiability, and com-
pares favorably with other similar systems in terms of computational cost.

2 The Model

2.1 Syntax

Definition 1. A fair blind signature scheme is a 10-tuple

(Setup, IKGen, UKGen, Sign, User, Ver, TrSig, TrId, ChkSig, ChkId)

of (interactive) (probabilistic) polynomial-time Turing machines ((P)PTs):

Setup is a PPT that takes as input an integer λ and outputs the parameters pp
and the revocation key rk. We call λ the security parameter.

IKGen is a PPT that takes as input the parameters pp and outputs a pair
(ipk, isk), the issuer’s public and secret key.

UKGen is a PPT that takes as input the parameters pp and outputs a pair
(upk, usk), the user’s public and secret key.

Sign and User are interactive PPTs such that User takes as inputs pp, the
issuer’s public key ipk, the user’s secret key usk and a bit string m; Sign
takes as input pp, the issuer’s secret key isk and user public key upk. Sign
and User engage in the signature-issuing protocol and when they stop, Sign
outputs completed or not-completed while User outputs ⊥ or a bit string σ.

1 This variant was used during the French referendum on the European Constitution
in May 2005.
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Ver is a deterministic PT (DPT) that on input the parameters pp, an issuer
public key ipk and a pair of bit strings (m, σ) outputs either 0 or 1. If it
outputs 1 then σ is a valid signature on the message m.

TrSig is a DPT that on input pp, an issuer public key ipk, a transcript trans of
a signature-issuing protocol and a revocation key rk outputs three bit strings
(upk, idσ, π).

TrId is a DPT that on input pp, an issuer public key ipk, a message/signature
pair (m, σ) for ipk and a revocation key rk outputs two bit strings (upk, π).

ChkSig is a DPT that on input pp, an issuer public key ipk, a transcript of a
signature issuing protocol, a pair message/signature (m, σ) for ipk and three
bit strings (upk, idσ, π), outputs either 0 or 1.

ChkId is a DPT that on input pp, an issuer public key ipk, a message/signature
pair (m, σ) for ipk and two bit strings (upk, π), outputs either 0 or 1.

For all λ ∈ N, all pairs (pp, rk) output by Setup(λ) all pairs (ipk, isk) output by
IKGen(pp), and all pairs (upk, usk) output by UKGen(pp):

1. if Sign and User follow the signature-issuing protocol with input (pp, isk, upk)
and (pp, usk, ipk, m) respectively, then Sign outputs completed and User out-
puts a bit string σ that satisfies Ver(ipk, (m, σ)) = 1;

2. on input ipk, the transcript trans of the protocol and rk, TrSig outputs three
bit strings (upk, idσ, π) s.t. ChkSig(pp, ipk, trans, (m, σ), (upk, idσ, π)) = 1;

3. on input ipk, the pair (m, σ) and rk, TrId outputs two bit strings (upk, π)
such that ChkId(pp, ipk, (m, σ), (upk, π)) = 1.

2.2 Security Definitions

To define the security notions for fair blind signatures, we use a notation similar
to the one in [BSZ05] used in [HT07]:

HU denotes the set of honest users and CU is the set of corrupted users.
AddU is an add-user oracle. The oracle runs (upk, usk) ← UKGen(pp), adds

upk to HU and returns it to the adversary.
CrptU is a corrupt-user oracle. The adversary calls it with a pair (upk, usk) and

upk is added to the set CU.
USK is a user-secret-key oracle enabling the adversary to obtain the private key

usk for some upk ∈ HU. The oracle transfers upk to CU and returns usk.
User is an honest-user oracle. The adversary impersonating a corrupt issuer

calls it with (upk, m). If upk ∈ HU, the experiment simulates the honest
user holding upk running the signature issuing protocol with the adversary
for message m. If the issuing protocol completed successfully, the adversary
is given the resulting signature. The experiment keeps a list Set with entries
of the form (upk, m, trans, σ), to record an execution of User, where trans is
the transcript of the issuing session and σ is the resulting signature. (Note
that only valid σ’s (i.e. the protocol was successful) are written to Set.

Sign is a signing oracle. The adversary impersonating a corrupt user can use it
to run the issuing protocol with the honest issuer. The experiment keeps a
list Trans in which the transcripts transi resulting from Sign calls are stored.
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Challengeb is a challenge oracle, which (w.l.o.g.) can only be called once. The
adversary provides two user public keys upk0 and upk1 and two messages m0
and m1. The oracle first simulates User on inputs (pp, ipk, uskb, mb) and then,
in a second protocol run, simulates User on inputs (pp, ipk, usk1−b, m1−b).
Finally, the oracle returns (σ0, σ1), the resulting signatures on m0 and m1.

TrSig (resp. TrId) is a signature (resp. identity) tracing oracle. When queried on
the transcripts (or messages) emanating from a Challenge call, they return ⊥.

Figure 1 formalizes the experiments for the following security notions:

Blindness. Not even the issuer with access to tracing oracles can link a mes-
sage/signature pair to the signature-issuing session it stems from.

Identity Traceability. No coalition of users can produce a set of signatures
containing signatures which cannot be linked to an identity.

Signature Traceability. No coalition of users is be able to produce a mes-
sage/signature pair which is not traced by any issuing transcript or two
pairs which are traced by the same transcript.

Identity Non-Frameability. No coalition of issuer, users and tracing author-
ity should be able to provide a signature and a proof that the signature
opens to an honest user who did not ask for the signature.

Signature Non-Frameability. No coalition of issuer, users and tracing au-
thority should be able to provide a transcript that either wrongfully opens
to an honest signature or an honest user.

We say that a fair blind signature achieves blindness if for all p.p.t. adversaries
A, the following is negligible: |Pr[Expblind-1

A = 1]−Pr[Expblind-0
A = 1]− 1

2 . The
remaining security notions are achieved if for all p.p.t. A, the probability that
the corresponding experiment returns 1 is negligible.

2.3 A Note on the Hufschmitt-Traoré Security Notions

Blindness. In [HT07], the challenge oracle (called “Choose”) is defined as fol-
lows: the adversary provides two user public keys upk0 and upk1 and a message,
and obtains a signature under upkb. This gives a weak security guarantee, as
the adversary—who should impersonate the issuer—cannot actively participate
in the issuing of the challenge signature. We define our oracle in the spirit of
[Oka06]: the adversary chooses two users (and messages) which interact with him
in random order; he gets to see both resulting signatures and has to determine
the order of issuing.

Traceability Notions. Intuitively, identity traceability means that no coali-
tion of users and the authority can create a message/signature pair that is not
traceable to a user, which is what was formalized in [HT07].

We propose the following experiment leading to a stronger notion: the adver-
sary gets the authority’s key and impersonates corrupt users, who, via the Sign
oracle can request signatures from the honest issuer. The latter is simulated by
the experiment and keeps a set Trans of transcripts of oracle calls. Eventually,
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Expblind-b
A (λ)

(pp, rk) ← Setup(1λ); (ipk, isk) ← IKGen(pp)

b′ ← A(pp, ipk, isk : AddU, CrptU, USK, Challengeb, User, TrSig, TrId)

return b′

ExpIdTrac
A (λ)

(pp, rk) ← Setup(1λ); (ipk, isk) ← IKGen(pp); Trans ← ∅
(m1, σ1, . . . , mn, σn) ← A(pp, ipk, rk : AddU, CrptU, USK, Sign)

for i = 1 . . . |Trans| do (upki, idi, πi) ← TrSig(pp, rk, ipk, transi)

for i = 1 . . . n do (upk′
i, π

′
i) ← TrId(pp, rk, ipk, mi, σi)

if ∃ i : upk′
i = ⊥ or ChkId(pp, ipk, (mi, σi), upk′

i, π
′
i) = 0 then return 1

if some upk appears more often in (upk′
1, . . . , upk′

n) than in

(upk1, . . . , upk|Trans|) then return 1; else return 0

ExpIdNF
A (λ)

(pp, rk) ← Setup(1λ); (ipk, isk) ← IKGen(pp)

Set ← ∅; HU ← ∅; CU ← ∅
(upk, m, σ, π) ← A(pp, ipk, isk, rk : AddU, CrptU, USK, User)

if Ver(pp, ipk, m, σ) = 0 or ChkId(pp, ipk, m, σ, upk, π) = 0 then return 0

if (upk, m, ·, σ) /∈ Set and upk ∈ HU then return 1; else return 0

ExpSigTrac
A (λ)

(pp, rk) ← Setup(1λ); (ipk, isk) ← IKGen(pp); Trans ← ∅
(m1, σ1, m2, σ2) ← A(pp, ipk, rk : AddU, CrptU, USK, Sign)

let Trans = (transi)
n
i=1; for i = 1 . . . n do (upki, idi, πi) ← TrSig(pp, rk, ipk, transi)

if Ver(pp, ipk, m1, σ1) = 1 and

∀ i : ChkSig(pp, ipk, transi, m1, σ1, upki, idi, πi) = 0 then return 1

if (m1, σ1) �= (m2, σ2) and Ver(pp, ipk, m1, σ1) = 1 and Ver(pp, ipk, m2, σ2) = 1

and ∃ i : ChkSig(pp, ipk, transi, m1, σ1, upki, idi, πi) =

= ChkSig(pp, ipk, transi, m2, σ2, upki, idi, πi)) = 1

then return 1; else return 0

ExpSigNF
A (λ)

(pp, rk) ← Setup(1λ); (ipk, isk) ← IKGen(pp)

Set ← ∅; HU ← ∅; CU ← ∅
(trans∗, m∗, σ∗, upk∗, id∗

σ , π∗) ← A(pp, ipk, isk, rk : AddU, CrptU, USK, User)

let Set = (upki, mi, transi, σi)
n
i=1

if ∃ i : trans∗ �= transi and ChkSig(pp, ipk, trans∗, mi, σi, upk∗, id∗
σ , π∗) = 1

then return 1

if ( ∀ i : upk∗ = upki ⇒ trans∗ �= transi )

and ChkSig(. . . , trans∗, m∗, σ∗, upk∗, id∗
σ , π∗) = 1

then return 1; else return 0

Fig. 1. Security experiments for fair blind signatures

the adversary outputs a set of message/signature pairs. The experiment opens
all transcripts to get a list of users to which signatures were issued. Another list
of users is constructed by opening the returned signatures. The adversary wins if
there exists a user who appears more often in the second list than in the first, or
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if ⊥ is in the second list, or if any of the proofs output by the opening algorithm
do not verify. Note that the notion of [HT07] is implied by ours.

Non-Frameability Notions. Non-frameability means that not even a coalition
of everyone else can “frame” an honest user. For example, no adversary can
output a signature which opens to a user who did not participate in its issuing.
In [HT07], the adversary outputs a message/signature pair, which is then opened
by the experiment to determine if it “framed” a user. Analogously to [BSZ05]
(who defined non-frameability for group signatures), we define a strictly stronger
notion requiring the adversary to output an incriminating signature, an honest
user, and a valid proof that the signature opens to that user. Note that only
this formalization makes the π output by the tracing algorithms a proof, as it
guarantees that no adversary can produce a proof that verifies for a false opening.

Identity Non-Frameability. In [HT07], the adversary wins if it produces a
pair (m, σ) such that, when opened to upk, we have (m, σ, upk) /∈ Set. This seems
to guarantee strong unforgeability where an adversary modifying a signature
returned by the experiment wins the game. This is however not the case in the
scheme proposed in [HT07]: the final signature is a proof of knowledge of some
values computed by the issuer made non-interactive by the Fiat-Shamir heuristic;
hence from a given signature issuing session the user may derive several valid
signatures on a message m. For that reason, the model in [HT07] considers two
signatures different only if the underlying secrets are different. We adopt the
same convention in this paper in that we consider two signatures equivalent if
they have the same (public) identifier.

Signature Non-Frameability. Non-frameability of signature tracing intu-
itively means: even if everyone else colludes against an honest user, they cannot
produce a transcript that opens to an honest signature. In the definition pro-
posed in [HT07], the adversary plays the issuer in that he gets his secret key.
However, he has no possibility to communicate with honest users since the chal-
lenger plays the issuer in the signature-issuing sessions with honest users and the
adversary only gets the transcripts. His goal is to produce a new message/sig-
nature pair (one that does not emanate from a User-oracle call) such that an
honest transcript opens to it.

We give the following security notion which we think is more intuitive. No
corrupt issuer can produce a transcript of an issuing session and one of the
following: either a public key of an honest user and a proof that this user par-
ticipated in the transcript whereas she did not; or a signature identifier of an
honest signature coming from a different session and a proof that the transcript
opens to it. Similarly to signatures we consider two transcripts equivalent if the
contain the same user randomness and the same issuer randomness.

Unforgeability. Consider an adversary that breaks the classical security notion
for blind signatures, one-more unforgeability, i.e. after q − 1 Sign-oracle queries,
he outputs q signatures on different messages. We show that the adversary must
have broken signature traceability: indeed since there are more signatures than
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transcripts, either there is a signature which no transcripts points to, or there is
a transcript that points to two signatures.

3 Assumptions

A (symmetric) bilinear group is a tuple (p, G, GT , e, G) where (G, ·) and (GT , ·)
are two cyclic groups of prime order p, G is a generator of G, and e : G × G →
GT is a non-degenerate bilinear map, i.e. ∀U, V ∈ G ∀ a, b ∈ Z : e(Ua, V b) =
e(U, V )ab, and e(G, G) is a generator of GT .

The Decision Linear (DLIN) Assumption [BBS04], in (p, G, GT , e, G) states
that given (Gα, Gβ , Grα, Gsβ , Gt) for random α, β, r, s ∈ Zp, it is hard to decide
whether t = r + s or t is random.

The following two assumptions were introduced by [FPV09] and [Fuc09], re-
spectively. Under the knowledge of exponent assumption [Dam92], the first is
equivalent to SDH [BB04] and the second is equivalent to computing discrete
logarithms.

Assumption 1 (q-DHSDH). Given (G, H, K, X =Gx) ∈ G4 and q − 1 tuples(
Ai = (KGvi)

1
x+di , Ci = Gdi , Di = Hdi , Vi = Gvi , Wi = Hvi

)q−1
i=1 ,

for di, vi ← Zp, it is hard to output a new tuple (A, C, D, V, W ) ∈ G5 satisfying

e(A, XC) = e(KV, G) e(C, H) = e(G, D) e(V, H) = e(G, W ) (1)

The next assumption states that, given (G, H, T ) ∈ G3, it is hard to produce a
non-trivial (Gm, Hm, Gr, Hr) such that Gm = T r.

Assumption 2 (HDL). Given a random triple (G, H, T ) ∈ G3, it is hard to
output (M, N, R, S) 	= (1, 1, 1, 1) such that

e(R, T ) = e(M, G) e(M, H) = e(G, N) e(R, H) = e(G, S) (2)

4 Tools

We recall some tools from the literature which we use to construct our scheme.

4.1 A Signature Scheme to Sign Group Elements

We present the signature scheme from [Fuc09], which is secure against chosen-
message attacks under Assumptions 1 and 2. Its message space is the set of
Diffie-Hellman pairs DH := {(A, B) ∈ G2 | ∃α : A = Gα, B = Hα} w.r.t. two
fixed generators G, H ∈ G. Note that (A, B) ∈ DH iff e(A, H) = e(G, B).

Scheme 1 (Sig1).

Setup1 Given (p, G, GT , e, G), choose additional generators H, K, T ∈ G.
KeyGen1 Choose sk = x← Zp and set vk = Gx.
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Sign1 To sign (M, N) ∈ DH with secret key x, choose d, r ← Zp and output(
A := (KT rM)

1
x+d , C := Gd, D := Hd, R := Gr, S := Hr

)
,

Verify1 (A, C, D, R, S) is valid on (M, N) ∈ DH under public key vk = X iff

e(A, XC) = e(KM, G) e(T, R)
e(C, H) = e(G, D)
e(R, H) = e(G, S)

(3)

4.2 Groth-Sahai Proofs

We sketch the results of Groth and Sahai [GS08] on proofs of satisfiability of
sets of equations over a bilinear group (p, G, GT , e, G). Due to the complexity
of their methodology, we present what is needed for our results and refer to the
full version of [GS08] for any additional details.

We define a key for linear commitments. Choose α, β, r1, r2 ← Zp and define
U = Gα, V = Gβ , W1 := U r1 , W2 := V r2 , and W3 which is either

– soundness setting: W3 := Gr1+r2 (which makes 
u a binding key); or
– witness-indistinguishable setting: W3 := Gr1+r2−1 (making 
u a hiding key)

Under key ck = (U, V, W1, W2, W3), a commitment to a group element X ∈ G

using randomness (s1, s2, s3)← Z
3
p is defined as

Com
(
ck, X ; (s1, s2, s3)

)
:=

(
Us1W s3

1 , V s2W s3
2 , XGs1+s2W s3

3

)
.

In the soundness setting, given the extraction key ek := (α, β), the committed
value can be extracted from a commitment c = (c1, c2, c3). On the other hand,
in the witness-indistinguishable (WI) setting, c is equally distributed for every
X . The two settings are indistinguishable under the DLIN assumption.

A pairing-product equation is an equation for variables Y1, . . . ,Yn ∈ G of the
form

n∏
i=1

e(Ai,Yi)
n∏

i=1

n∏
j=1

e(Yi,Yj)γi,j = tT ,

with Ai ∈ G, γi,j ∈ Zp and tT ∈ GT for 1 ≤ i, j ≤ n.
To prove satisfiability of a set of equations of this form, one first makes com-

mitments to a satisfying witness (i.e. an assignment to the variables of each
equation) and then adds a “proof” per equation. Groth and Sahai describe how
to construct these: they are in G 3×3 (or G3 when all γi,j = 0). In the soundness
setting, if the proof is valid then Extr extracts the witness satisfying the equa-
tions. In the WI setting, commitments and proofs of different witnesses which
both satisfy the same pairing-product equation are equally distributed.

4.3 Commit and Encrypt

In order to build CCA-anonymous group signatures, Groth [Gro07] uses the fol-
lowing technique: a group signature consists of linear commitments to a certified
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signature and Groth-Sahai proofs that the committed values constitute a valid
signature. CPA-anonymity follows from WI of GS proofs: once the commitment
key has been replaced by a perfectly hiding one, a group signature reveals no in-
formation about the signer. However, in order to simulate opening queries in the
WI setting, some commitments are doubled with a tag-based encryption under
Kiltz’ scheme [Kil06] and a Groth-Sahai NIZK proof that the committed and
the encrypted value are the same. To produce a group signature, the user first
chooses a key pair for a one-time signature scheme, uses the verification key as
the tag for the encryption and the secret key to sign the group signature.

By Sigot = (KeyGenot, Signot, Verot) we will denote the signature scheme dis-
cussed in §5.2 which satisfies the required security notion. By CEP (commit-
encrypt-prove) we denote the following:

CEP(ck, pk, tag, msg; (ρ, r)) :=(
Com(ck, msg; ρ), Enc(pk, tag, msg; r), NizkEq(ck, pk, tag; msg, ρ, r)

)
where Enc denotes Kiltz’ encryption and NizkEq denotes a Groth-Sahai NIZK
proof that the commitment and the encryption contain the same plaintext (cf.
[Gro07]). We say that an output ψ = (c, C, ζ) of CEP is valid if the ciphertext
and the zero-knowledge proof are valid.

5 New Tools

5.1 A Scheme to Sign Three Diffie-Hellman Pairs

We extend the scheme from §4.1, so it signs three messages at once; we prove
existential unforgeability (EUF) against adversaries making a particular chosen
message attack (CMA): the first message is given (as usual) as a Diffie-Hellman
pair, whereas the second and third message are queried as their logarithms; that
is, instead of querying (Gv, Hv), the adversary has to give v explicitly. As we
will see, this combines smoothly with our application.

Scheme 2 (Sig3).

Setup3(G) Given G = (p, G, GT , e, G), choose additional generators H, K, T ∈ G.

KeyGen3(G) Choose sk = (x, �, u)← Z
3
p and set vk = (Gx, G�, Gu).

Sign3((x, �, u), (M, N, Y, Z, V, W )) A signature on ((M, N), (Y, Z), (V, W ))∈DH3

under public key Gx, is defined as (for random d, r ← Zp)(
A := (KT rMY �V u)

1
x+d , C := Gd, D := Hd, R := Gr, S := Hr

)
Verify3 (A, C, D, R, S) is valid on messages (M, N), (Y, Z), (V, W ) ∈ DH under

a public key (X, L, U) iff

e(A, XC) = e(KM, G) e(T, R) e(L, Y ) e(U, V )
e(C, H) = e(G, D)
e(R, H) = e(G, S)

(4)
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Theorem 1. Sig3 is existentially unforgeable against adversaries making cho-
sen message attacks of the form ((M1, N1), m2, m3).

Proof. Let (Mi, Ni, yi, vi) be the queries, (Ai, Ci, Di, Ri = Gri , Si) be the re-
sponses. Let (M, N, Y, Z, V, W ) and (A, C, D, R = Gr, S) be a successful forgery.
We distinguish 4 types of forgers (where Yi := Gyi , Vi := Gvi):

Type I ∀ i : T riMiY
�
i V u

i 	= T rMY �V u (5)

Type II ∃ i : T riMiY
�
i V u

i = T rMY �V u ∧ MiY
�
i V u

i 	= MY �V u (6)

Type III ∃ i : MiY
�
i V u

i = MY �V u ∧ MiV
u
i 	= MV u (7)

Type IV ∃ i : MiY
�
i V u

i = MY �V u ∧ MiV
u
i = MV u (8)

Type I is reduced to DHSDH. Let
(
G, H, K, (Ai, Ci, Di, Ei, Fi)

q−1
i=1

)
be an in-

stance. Choose and t, �, u ← Zp and set T = Gt, L = G� and U = Gu.
A signature on (Mi, Ni, Yi, Zi, yi, Vi, Wi, vi) is (after a consistency check)
answered as (Ai, Ci, Di, (EiM

−1
i Y −�

i V −u
i )1/t, (FiN

−1
i Z−�

i W−u
i )1/t). After a

successful forgery, return (A, C, D, RtMY �V u, StNZ�Wu), which is a valid
DHSDH solution by (5).

Type II is reduced to HDL. Let (G, H, T ) be an HDL instance. Generate the
rest of the parameters and a public key and answer the queries by signing.
After a successful forgery return the following, which is non-trivial by (6):

(MY �V uM−1
i Y −�

i V −u
i , NZ�WuN−1

i Z−�
i W−u

i , RiR
−1, SiS

−1) .

Type III is reduced to HDL. Let (G, H, L) be an instance. Choose K, T ← G

and x, u ← Zp and return the parameters and public key (X = Gx, L, U =
Gu). Thanks to the yi in the signing queries, we can simulate them: re-
turn ((KT riMiL

yiV u
i )

1
x+di , Gdi , Hdi , Gri , Hri). We have MV uM−1

i V −u
i =

Y �
i Y −� = Lyi−y from (7), so from a successful forgery, we can return

(MV uM−1
i V −u

i , NWuN−1
i W−u

i , YiY
−1, ZiZ

−1) ,

which is non-trivial by (7).
Type IV is also reduced to HDL. Let (G, H, U) be an HDL instance. Choose

K, T ← G and x, � ← Zp and return the parameters and public key (X =
Gx, L = G�, U). Thanks to the vi in the signing queries, we can simulate
them: return ((KT riMiY

�
i Uvi)

1
x+di , Gdi , Hdi, Gri , Hri). From a successful

forgery of Type IV we have MM−1
i = Uvi−v from (7), we can thus return

(MM−1
i , NN−1

i , ViV
−1, WiW

−1), which is non-trivial, (M, N, Y, Z, V, W )
being a valid forgery and (Y, Z) = (Yi, Zi) by (8). ��
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5.2 A Simulation-Sound Non-interactive Zero-Knowledge Proof of
Knowledge of a CDH Solution

Let (G, F, V ) be elements of G. We construct a simulation-sound non-interactive
zero-knowledge (SSNIZK) proof of knowledge (PoK) of W s.t. e(V, F )=e(G, W ).
We follow the overall approach by Groth [Gro06]. The common reference string
(CRS) contains a CRS for Groth-Sahai (GS) proofs and a public key for a EUF-
CMA signature scheme Sig. A proof is done as follows: choose a key pair for
a one-time signature scheme Sigot, and make a witness-indistinguishable GS
proof of the following: either to know W , a CDH solution for (G, F, V ) or to
know a signature on the chosen one-time key which is valid under the public key
from the CRS;2 finally sign the proof using the one-time key. A SSNIZKPoK
is verified by checking the GS proofs and the one-time signature. Knowing the
signing key corresponding to the key in the CRS, one can simulate proofs by
using as a witness a signature on the one-time key.

We require that a proof consist of group elements only and is verified by check-
ing a set of pairing-product equations. This can be achieved by using Scheme 1
and a one-time scheme to sign group elements using the commitment scheme in
[Gro09] based on the DLIN assumption.3

6 A Fair Blind Signature Scheme

The basis of our protocol is the blind automorphic signature scheme from [Fuc09]:
the user randomizes the message to be signed, the issuer produces a pre-signature
from which the user obtains a signature by removing the randomness; the final
signature is a Groth-Sahai (GS) proof of knowledge of the resulting signature.

In our scheme, in addition to the message, the issuer signs the user’s public key,
and an identifier of the signature, which the issuer and the user define jointly.
Note that the issuer may neither learn the user’s public key nor the identifier.
To guarantee provable tracings, the user signs what she sends in the issuing
protocol and the final signature. To prevent malicious issuers from producing a
transcript that opens to an honest signature, the proof contains a SSNIZK proof
of knowledge of the randomness introduced by the user. To achieve blindness
against adversaries with tracing oracles, the elements that serve as proofs of
correct tracing are additionally encrypted and the transcript (and final signature)
is signed with a one-time key (cf. §4.3).
2 [Gro06] shows how to express a disjunction of equation sets by a new set of equations.
3 The strong one-time signature scheme from [Gro06] works as follows: the verification

key is an (equivocable) Pedersen commitment to 0; to sign a message, the commit-
ment is opened to the message using the trapdoor; putting a second trapdoor in the
commitment scheme, we can simulate one signing query and use a forger to break
the binding property of the commitment. In [Gro09], Groth proposes a scheme to
commit to group elements which is computationally binding under DLIN. Using his
scheme instead of Pedersen commitments, we can construct an efficient one-time
signature on group elements s.t. signatures consist of group elements (see the full
version [FV10] for the details).
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To open a signature (i.e. to trace a user), the authority extracts tracing in-
formation from the commitments as well as signatures that act as proofs.

6.1 A Blind Signature Scheme

Setup. Choose a group G := (p, G, GT , e, G) and parameters (H, K, T ) for Sig3.
Pick F, H ′ ← G, a commitment and extraction key (ck, ek) for GS proofs, a key
pair for tag-based encryption (epk, esk) and sscrs, a common reference string for
SSNIZKPoK. Output pp := (G, G, H, K, T, F, H ′, ck, epk, sscrs) and rk := ek.

Key Generation. Both IKGen and UKGen are defined as KeyGen, i.e. the key
generation algorithm for Sig1.

Signature Issuing. The common inputs are (pp, ipk = Gx), the issuer’s addi-
tional input is isk=x, the user’s inputs are (upk=Gy, usk=y, (M, N) ∈ DH).

User Choose η, v′ ← Zp and set P = Gη, Q = F η, V ′ = Gv′
, W ′ = F v′

.
Produce ξ ← SSNIZKPoK(sscrs, (P, V ′), (Q, W ′)). 4

Choose (vk′
ot, sk

′
ot)← KeyGenot(G) and set Σ′ ← Sign(usk, vk′

ot).
5

Send the following
1. Y = Gy , Z = Hy, vk′

ot, Σ′;
2. cM = Com(ck, M); cN := Com(ck, N),

ψP , ψV , 
ψξ, with ψ� := CEP(ck, epk, vk′
ot,�),

a proof φM that (M, N) ∈ DH and a proof φξ of validity of ξ;

3. J := (KMLyUv′
)

1
η ;

4. a zero-knowledge proof ζ of knowledge of η, y and v′ such that
– Y = Gy,
– cV commits to Gv′

, and
– cM commits to JηL−yU−v′

K−1;
5. sig′ ← Signot(sk

′
ot, (Y, Z, Σ′, cM , cN , ψP , ψV , 
ψξ, φM , φξ, J, ζ, vk′

ot)).

Issuer If Σ′, ψP , ψV , 
ψξ, φM , φξ, sig′ and the proof of knowledge are valid,
choose d, r, v′′ ← Zp and send:

A′ := (JT rUv′′
)

1
x+d C := Gd D := F d R′ := Gr S′ := Hr v′′

The user does the following:

1. set A := (A′)η, R := (R′)η, S := (S′)η, V := Gv′+ηv′′
, W := Hv′+ηv′′

and
check if (A, C, D, R, S) is valid on

(
(M, N), (Y, Z), (V, W )

)
under ipk;

2. choose (vkot, skot)← KeyGenot and define Σ ← Sign(y, vkot);
4 A simulation-sound non-interactive proof of knowledge of Q and W ′ such that

e(V ′, F ) = e(G, W ′) and e(P, F ) = e(G, Q). (cf. §5.2).
5 The message space for Sig is the set of DH pairs w.r.t. (G, H ′). Since all logarithms

of vkot are known when picking a key, the user can complete the second components
of the DH pairs.
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3. make commitments cA, cC , cD, cR, cS to A, C, D, R, S under ck;
4. run CEP(ck, epk, vkot, ·) on Y, Z, Σ; let ψY , ψZ , 
ψΣ denote the outputs;
5. make a proof φY that (Y, Z) ∈ DH and proofs φS and φΣ of validity of

the signatures (A, C, D, R, S) and Σ;
6. set sig← Signot

(
skot, (V, W, M, N, cA, cC , cD, cR, cS ,

ψY , ψZ , 
ψΣ , φY , φS , φΣ , vkot)
)
.

The signature on (M, N) is

(V, W, cA, cC , cD, cR, cS , ψY , ψZ , 
ψΣ, φY , φS , φΣ , vkot, sig) .

Verification. A signature is verified by verifying sig under vkot, checking the
proofs φY , φS and φΣ , and verifying the encryptions and NIZK proofs in ψY ,
ψZ and 
ψΣ.

Remark 1. As mentioned by [Fuc09], there are two possible instantiations of
the zero-knowledge proof of knowledge in Step 4 of User: either using bit-by-bit
techniques (which makes the protocol round-optimal); or optimizing the amount
of data sent by adding 3 rounds using interactive concurrent Schnorr proofs.

Theorem 2. The above scheme is an unforgeable blind signature (in the classi-
cal sense) under the DLIN, the DHSDH and the HDL assumption.

The proof of unforgeability is by reduction to unforgeability of Scheme 2, anal-
ogously to the proof in [Fuc09]. Note that by additionally extracting y and v′

from the proof of knowledge, the simulator can make the special signing queries.
The proof of blindness is analogous, too.

Opening of a Transcript (“Signature Tracing”). Given a transcript

(Y, Z, Σ′, cM , cN , ψP , ψV , 
ψξ, φM , φξ, J, ζ, vk′
ot, sig

′) , v′′

verify Σ′, sig′, the proofs φM and φξ and the ciphertexts and proofs in ψP , ψV

and 
ψξ. If everything is valid, use rk = ek to open the commitments in ψP , ψV

and 
ψξ to P, V ′ and ξ respectively and set V := V ′P v′′
= Gv′+ηv′′

.
Return idσ := V , upk = Y and π := (V ′, P, v′′, ξ, Σ′). The proof π is verified

by checking V = V ′P v′′
, verifying ξ on V ′ and P , and verifying Σ′ under Y .

Opening of a Signature (“Identity Tracing”). Given a valid signature

(V, W, cA, cC , cD, cR, cS , ψY , ψZ , 
ψΣ , φY , φS , φΣ , vkot, sig) ,

open the commitments in ψY , ψZ and 
ψΣ using ek and return upk = Y and
π = Σ. A proof π is verified by checking if Σ is valid on (V, W ) under Y .

7 Security Proofs

Theorem 3. The above scheme is a secure fair blind signature scheme (in the
model defined in §2) under the DLIN, the DHSDH and the HDL assumptions.

Due to space limitation, we sketch the security proofs of all security notions.
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Blindness (under DLIN). In the WI setting of GS proofs, commitments and
proofs do not reveal anything—and neither do the ciphertexts. Furthermore, for
every M and V , there exist η and v′ that explain J . In more detail: we proceed
by games, Game 0 being the original game. In Game 1, we use the decryption
key for the tag-based encryptions to answer tracing queries. Soundness of the
NIZK proofs in the ψ’s guarantee that the committed and the encrypted values
are the same; the games are thus indistinguishable.

In Game 2, we replace the commitment key ck by a WI key (indistinguishable
under DLIN). In Game 3, we simulate the NIZK proofs in the ψ’s and in Game
4, we replace the ciphertexts in the ψ’s by encryptions of 0. Games 3 and 4
are indistinguishable by selective-tag weak CCA security of Kiltz’ cryptosystem
(which follows from DLIN): by unforgeability of the one-time signature, the
adversary cannot query a different transcript (or signature) with the same tag
as the target transcript (signature), we can thus answer all tracing queries.

In Game 5, we simulate the zero-knowledge proofs in Step 4. In this game,
the adversary’s view is the following: J = (KMLyUv′

)
1
η and M∗, V ∗ which are

either M and Gv′+ηv′′
or not. Let small letters denote the logarithms of the

respective capital letters. Then for every m∗ = log M∗, v∗ = log V ∗ there exist
η, v′ such that v∗ = v′+ηv′′ and j = 1

η (k+m∗+yl+v′u), i.e. that make M∗, V ∗

consistent with J . In Game 5, which is indistinguishable from the original game,
the adversary has thus no information on whether a given transcript corresponds
to a given signature.

Identity Traceability (under DHSDH+HDL). An adversary wins if he
can produce a set of valid pairs (mi, σi) s.t. either (I) for one of them the tracing
returns ⊥ or the proof does not verify, or (II) a user appears more often in the
openings of the signatures than in the openings of the transcripts. By soundness
of Groth-Sahai, we can always extract a user public key and a valid signature.
If an adversary wins by (II), then we can use him to forge a Sig3 signature:

Given parameters and a public key for Sig3, we set up the rest of the pa-
rameters for the blind signature. Whenever the adversary queries his Sign ora-
cle, we do the following: use ek to extract (M, N) from (cM , cN ), extract η, y
and v′ from the zero-knowledge proof of knowledge ζ. Choose v′′ ← Zp and
query (M, N, y, v′ + ηv′′) to signing oracle, receive (A, C, D, R, S) and return
(A

1
η , C, D, R

1
η , S

1
η , v′′). If the adversary wins by outputting a set of different

(i.e. with distinct identifiers (V, W )) blind signatures with one user appearing
more often than in the transcripts then among the Sig3 signatures extracted
from the blind signatures there must be a forgery.

Identity Non-Frameability (under DLIN+DHSDH+HDL). Using a suc-
cessful adversary, we can either forge a signature by the user on vk′ot or a one-time
signature (which is secure under DLIN). More precisely, we call an adversary of
Type I if it reuses a one-time key from the signatures it received from the User
oracle. Since the signature that A returns must not be contained in Set, it is dif-
ferent from the one containing the reused one-time key. The contained one-time
signature can thus be returned as a forgery.
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An adversary of Type II uses a new one-time key for the returned signature.
We use A to forge a Sig signature. The simulator is given parameters (H ′, K, T )
and a public key Y for Sig, sets it as one of the honest users’ upk and queries
its signing oracle to simulate the user. Having set H = Gh, the simulator can
produce Z = Hy = Y h in the User oracle queries. Since the vk′

ot contained A’s
output was never queried, we get a valid forgery.

Signature Traceability (under DHSDH+HDL). If the adversary wins by
outputting a message/signature pair with an identifier (V, W ) s.t. no transcript
opens to it, we can extract a Sig3 signature on (M, N, Y, Z, V, W ) without hav-
ing ever queried a signature on any (·, ·, ·, ·, V, W ). The simulation is done analo-
gously to the proof of identity traceability. If the adversary outputs two different
signatures they must have different identifiers; one of the ChkSig calls in the ex-
periment returns thus 0. Note that with overwhelming probability two identifiers
from different issuing sessions are different (since v′′ is chosen randomly by the
experiment after the adversary chose v′ and η).

Signature Non-Frameability (under DLIN+DHSDH+HDL). There are
two ways for an issuer to “wrongfully” open a transcript: either he opens it to a
user (not necessarily honest) and an identifier of a signature which was produced
by an honest user in another session; or it opens to an honest user who has not
participated in the issuing session.

Framing an honest signature. Suppose the adversary impersonating the
issuer manages to produce a new opening of a transcript that leads to an hon-
estly generated signature. We reduce this framing attack to break CDH, whose
hardness is implied by DLIN. Let (G, F, V ′) be a CDH challenge, i.e. we seek to
produce W ′ := F (logG V ′). Set up the parameters of the scheme setting H = Gh

and knowing the trapdoor for SSNIZKPoK. In one of the adversary’s User oracle
calls, choose η ← Zp and use V ′ from the CDH challenge. Simulate the proof
of knowledge of W ′. Let v′′ be the value returned by the adversary, and let
(V := V ′P η, W := V h) be the identifier of the resulting signature.

Suppose the adversary produces a proof (V̄ ′, P̄ , v̄′′, π̄, Σ̄) with (V̄ ′, P̄ ) 	=
(V ′, P ) for the honest identifier (V, W ). By simulation soundness of SSNIZKPoK,
we can extract W̄ ′ = F (logG V̄ ′) and Q̄ = F (logG P̄ ). From V ′Gηv′′

= V = V̄ ′P̄ v̄′′

we get V ′ = V̄ ′P̄ v̄′′
G−ηv′′

; thus W ′ = W̄ ′Q̄v̄′′
F−ηv′′

is a CDH solution. If the
adversary recycles (V ′, P ) then it must find a new v′′ which leads to a V of an
honest signature, and thus has to solve a discrete logarithm.

Framing an honest user. Suppose the adversary outputs an opening of a
transcript and a proof revealing an honest user that has never participated in
that transcript. Analogously to the proof for signature traceability, we can use
the adversary to either forge a signature under a user public key or to forge a
one-time signature.
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8 Conclusion

We presented the first practical fair blind signature scheme with a security proof
in the standard model. The scheme satisfies a new security model strengthening
the one proposed by Hufschmitt and Traoré in 2007. The new scheme is efficient
(both keys and signatures consist of a constant number of group elements) and
does not rely on any new assumptions. As byproducts, we proposed an extension
of Fuchsbauer’s automorphic signatures, a one-time signature on group elements,
and a simulation-sound non-interactive zero-knowledge proof of knowledge of a
Diffie-Hellman solution, all three compatible with the Groth-Sahai methodology.
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Abstract. It is well-known that blind signature schemes provide full
anonymity for the receiving user. For many real-world applications, how-
ever, this leaves too much room for fraud. There are two generalizations
of blind signature schemes that compensate this weakness: fair blind
signatures and partially blind signatures. Fair blind signature schemes
allow a trusted third party to revoke blindness in case of a dispute. In
partially blind signature schemes, the signer retains a certain control over
the signed message because signer and user have to agree on a specific
part of the signed message.

In this work, we unify the previous well-studied models into a gener-
alization, called fair partially blind signatures. We propose an instantia-
tion that is secure in the standard model without any setup assumptions.
With this construction, we also give a positive answer to the open ques-
tion of whether fair blind signature schemes in the standard model exist.

Keywords: Blind signatures, generic construction, security model.

1 Introduction

Blind signatures, proposed by Chaum in 1982 [7], are interactive signature
schemes between a signer and a user with the property that the message is
hidden from the signer (blindness). Simultaneously, the user cannot produce
more signatures than interactions with the signer took place (unforgeability).
As one of the first applications of blind signatures, Chaum proposed untraceable
digital payment (e-cash). In this context, Chaum pointed out that such a high
degree of privacy enables an adversary to doubly spend an electronic coin if no
countermeasures are taken. Further fraud scenarios are given in [25]. Another
potential loophole in ordinary blind signature schemes, first mentioned by Abe
and Okamoto [2], is that the signer entirely loses control over the signed mes-
sage. Consider, e.g., vouchers with a predetermined expiration date. The signer
is willing to blindly sign the voucher but wants to ensure that the receiving user
cannot control the expiry date. For both weaknesses, two different countermea-
sures have been proposed, namely, fair blind and partially blind signatures.
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Fair blind signatures, suggested by Stadler, Piveteau, and Camenisch [24],
involve a trusted third party, which is able to revoke blindness in case of a dispute
between signer and user. The revocation mechanism works in two directions: it
either uniquely identifies an obtained signature from the signer’s view of a specific
session (signature tracing), or connects a given signature with a specific session
of the protocol (session tracing). The trusted party is offline, i.e., there is no
initial setup phase and the signature issue protocol does not involve this party.
It is only appealed to in case of irregularities, such as fraud or other crimes.

A second approach by Abe and Fujisaki [1], named partially blind signatures,
compensates for the potential loophole that the signer entirely loses control over
the signed message. Reconsider the example of vouchers with a predetermined
expiration date. Signer and user both agree on some piece of information, such
as the expiry date. Here, verification only works if user and signer agree on
the same date. As soon as the user tries to change this auxiliary information,
verification will fail.

The goal of our work is to establish a unified model of fair partially blind
signatures that encompasses all previous concepts and their security models and
to find provably secure instantiations. We motivate the need for the generaliza-
tion of both concepts with the following simple example that can be transferred
to other, more complex, application scenarios: consider the scenario where a
bank issues electronic coins of different value. With ordinary blind signatures,
the bank has to apply different keys for different values and cannot be sure that
no malicious user doubly spends the coin. The use of partially blind signatures
schemes allows the signer to work with a single key, while including the value of
the coin as auxiliary information. Still, criminal investigations will be hindered
by the customer’s irrevocable anonymity. On the other hand, using fair blind
signatures allows for revocable anonymity but then it is again necessary for the
signer to use multiple keys.

Thus, with fair partially blind signature schemes, we are able to get the best
of both worlds. A bank that employs fair partially blind signatures only needs a
single key pair, while simultaneously being able to remove blindness if necessary.
Note that the revocation will probably not be done by the bank itself but by
a law enforcement agency or a trusted notary. We believe that combining both
concepts is most suitable for real-world applications, where the individual needs
of customers (blindness), service providers (partial control), and those of the
authorities (fairness) have to be satisfied.

Related Work. Since Stadler, Piveteau, and Camenisch described the idea of
fair blind signatures in 1995 [24], many constructions have been proposed, e.g.,
[14,19,21,20,3,17]. Unfortunately, some of these constructions cannot be con-
sidered “blind” in the sense of Juels et al. [18] and thus Abe and Ohkubo [3]
developed a formal security model. Unfortunately, all previous results either pro-
vide only security arguments, or are provably secure in the random oracle model,
which is discouraged by the work of Canetti, Goldreich, and Halevi [6]. We are
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not aware of any instantiation in the standard model. Partially blind signatures,
due to Abe and Fujisaki [1], are also well-studied and several instantiations have
been proposed, e.g., [1,2,8,22]. Recently, the first instantiation without random
oracles or setup assumptions has been proposed in [22].

In [17], Hufschmitt and Traoré consider dynamic fair blind signatures, a con-
cept that is inspired by dynamic group signatures [5]. They require that each
user of the blind signature scheme has to register before being able to obtain
signatures. We also discuss the relation to our model.

Contribution. We propose a novel security model, which is a generalization of
the well-studied models of Juels, Luby, and Ostrovsky [18] and Pointcheval and
Stern [23] for blind signatures, the model of Abe and Ohkubo [3] for fair blind
signatures, and that of Abe and Fujisaki [1] for partially blind signatures. With
our model for fair partially blind signatures, we provide a unified framework that
can be used to instantiate blind, fair blind, and partially blind signature schemes
under a strong security model. We present a provably secure instantiation within
this model. The construction, which is inspired by the works of Fischlin [11] and
Hazay et al. [16], relies on general assumptions and is provably secure in the
standard model without any setup assumptions. By eliminating the auxiliary
information, our scheme solves the longstanding problem of instantiability of
fair blind signature schemes in the standard model [24]. Removing the trusted
third party also yields the first partially blind signature scheme based on gen-
eral assumption which is provably secure in the standard model, again without
any setup assumptions. Independently of our work, Fuchsbauer and Vergnaud
construct the first efficient instantiation of fair blind signatures in the standard
model [15].

Organization. After recalling basic definitions and notations, Section 2 intro-
duces the concept of fair partially blind signatures along with a security model
and a discussion of the various security properties. Section 3 is a warm-up for
Section 4 to make it more accessible. Then, we provide a provably secure instan-
tiation from general assumption in Section 4.

2 Fair Partially Blind Signatures

Notation. We use the following notation for interactive executions between
algorithms X and Y. The joint execution between X and Y is denoted by
(a, b) ← 〈X (x),Y(y)〉, where x is the private input of X and y is the private
input of Y. The private output of algorithm X is a and b is the private out-
put of Y. If an algorithm Y can invoke an unbounded number of executions
of the interactive protocol with X , then we write Y〈X (x),·〉∞(y). Accordingly,
X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) means that X can execute arbitrarily ordered executions
with Y(y0) and Y(y1), but only once. An algorithm is efficient, if it runs in
probabilistic polynomial-time.
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2.1 Definition

The concept of fair partially blind signature schemes generalizes the idea of
partially blind signatures and fair blind signatures. A partially blind signature
scheme is a blind signature scheme such that signer and user agree on some
piece of information, denoted with info. The signature should only be valid if
both parties use this specific info element during the signature issue protocol.

Fair blind signatures have a revocation mechanism, enforceable by a trusted
third party, which can revoke blindness upon disputes between signer and user.
Revocation works in both directions. Whenever we need to find the signature
that corresponds to a certain session, we query the revocation authority with
a view of a session and obtain a signature identifier idSig. Now, when given a
signature, we can verify whether it corresponds to idSig or not. If, instead, we
would like to find the session that resulted in a certain signature, we query
the revocation authority with this signature to obtain a session identifier idSes.
Again, we can easily verify whether a given session corresponds to idSes or not.

In both cases, the trusted party outputs an identifier, which uniquely asso-
ciates an execution with a signature. In the following definition, we combine both
types of blind signatures.

Definition 1 (Fair Partially Blind Signature Scheme). A fair partially
blind signature scheme FPBS consists of the following efficient algorithms:

Key Generation. Kg(1n) generates a key pair (sk, pk).
Revocation Key Generation. RevKg(1n) outputs a key pair (rsk, rpk).
Signature Issuing. The joint execution of the algorithms S(sk, rpk, info) and
U(pk, rpk, m, info) with message m ∈ {0, 1}n and information element info ∈
{0, 1}n, generates the private output σ of the user and the private view view
of the signer, (view, σ)← 〈S(sk, rpk, info),U(pk, rpk, m, info)〉.

Verification. Vf(pk, rpk, m, info, σ) outputs a bit, indicating the validity of σ.
Signature Revocation. SigRev takes as input the signer’s view view of a ses-

sion and the secret revocation key rsk. It outputs an identifier idSig, which
corresponds to the signature that the user obtained in this same session.

Session Revocation. When queried with a message m, with an information
element info, with a (valid) signature σ and with the secret revocation key
rsk, SesRev discloses the session identifier idSes.

Signature Tracing. On input (idSig, σ), SigVf outputs a bit indicating whether
idSig matches σ.

Session Tracing. On input (idSes, view), SesVf returns 1 if idSes matches to view
and 0 otherwise.

It is assumed that a fair partially blind signature scheme is complete:

– For any n ∈ N, any (sk, pk) ← Kg(1n), any (rsk, rpk) ← RevKg(1n), any
info ∈ {0, 1}n, any message m ∈ {0, 1}n and any σ output by U(pk, rpk,
m, info) after the joint execution with S(sk, rpk, info), we have Vf(pk, rpk, m,
info, σ) = 1.
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– For any n ∈ N, any (sk, pk) ← Kg(1n), any (rsk, rpk) ← RevKg(1n), any
message m ∈ {0, 1}n, any info ∈ {0, 1}n, any σ output by U(pk, rpk, m,
info) in the joint execution with S(sk, rpk, info), and any view, as observed
by the signer, we have SigVf(SigRev(rsk, view), σ) = 1 and SesVf(SesRev(rsk,
m, info, σ), view) = 1.

Note that the algorithms SigRev and SesRev may get additional public param-
eters as input if needed. As for info, we point out that signer and user agree
on it before engaging in the signature issue protocol. This process is application
specific and will not be addressed here. Furthermore, note that restricting m
and info to {0, 1}n is no limitation in practice because one can always extend it
to {0, 1}∗ via a collision resistant hash function.

2.2 Security of Fair Partially Blind Signatures

Our security model for fair partially blind signature schemes is related to the
security model for blind signatures [18,23,13], to the model for partially blind
signatures [2], and to that for fair blind signatures [3]. In fact, it unifies the
various types of blind signature schemes into a single model.

Security of blind signature schemes requires two properties, namely, unforge-
ability and blindness [18,23]. Unforgeability demands that a malicious user should
not be able to produce more signatures than there were successful interactions
with the signer. Here, the user is allowed to choose the messages as well as the
information elements adaptively.

In the context of partially blind signatures, we want unforgeability to be
stronger than in the classical case since “recombination” attacks should be con-
sidered. That is, an adversarial user should not be able to generate a valid
signature for a new info instead of just for a new message. Depending on the
application, one might even want to consider the stronger notion of “strong
unforgeability”. There, the adversary also wins if it outputs a new signature.

Definition 2 (Unforgeability). A fair partially blind signature scheme FPBS
is called unforgeable if for any efficient algorithm U∗ the probability that exper-
iment ForgeFPBS

U∗ (n) evaluates to 1 is negligible (as a function of n) where

Experiment ForgeFPBS
U∗ (n)

(rsk, rpk) ← RevKg(1n)
(sk, pk) ← Kg(1n)
For each info, let kinfo denote the number of successful, complete interactions
((m1, info, σ1), . . . , (mkinfo+1, info, σkinfo+1)) ← U∗〈S(sk,rpk,·),·〉∞(pk, rsk, rpk)
Return 1 iff

mi �= mj for 1 ≤ i < j ≤ kinfo + 1, and
Vf(pk, rpk,mi, info, σi) = 1 for all i = 1, 2, . . . , kinfo + 1.

Partial blindness is a generalization of blindness. It allows the malicious signer
S∗ to choose a public key, two messages m0, m1, and info on its own. The signer
then interacts with two honest user instances. Based on a coin flip b, the first
user obtains a signature for mb and the second obtains one for m1−b. If both
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protocol executions were successful, S∗ gets the signatures σ0, σ1 for m0, m1,
respectively, in the original order. The task is to guess b.

Definition 3 (Partial Blindness). FPBS is partially blind if for any efficient
algorithm S∗ (working in modes find, issue, and guess) the probability that the
following experiment FPBlindFPBS

S∗ (n) outputs 1 is negligibly close to 1/2, where

Experiment FPBlindFPBS
S∗ (n)

(rsk, rpk) ← RevKg(1n)
(pk,m0,m1, info, stfind) ← S∗(find, rpk, 1n)
b← {0, 1}
stissue ← S∗〈·,U(...,mb)〉1,〈·,U(...,m1−b)〉1(issue, stfind, rpk)
Let σb and σ1−b be the private outputs of U(pk, rpk,mb) and U(pk, rpk,m1−b).

and let view0 and view1 be the corresponding views of S∗.
Set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
Return 1 iff b = b∗.

As already mentioned in [3], it is possible to strengthen the notion of partial
blindness even further by giving the adversarial signer access to conditional
signature and session revocation oracles. There, the signer is allowed to query
the oracles on any but the “relevant” signatures σ0, σ1 or sessions view0, view1.
We call this stronger notion strong partial blindness.

Fairness of (partially) blind signatures consists of signature and session trace-
ability. Signature traceability means that, given the revocation key rsk every
message-signature pair can be related to exactly one execution of the signature
issue protocol. This intuition is formalized in the following experiment, where
a malicious user tries to output a valid message-signature tuple such that no
matching protocol instance can be found. The second possibility to win the ex-
periment is to output two message-signature pairs corresponding to the same
protocol instance.

In the context of partially blind signatures, we give a strengthened definition
in the following sense. The malicious user even succeeds with a valid message-
signature tuple (m, info, σ) such that no session corresponding to the same info
exists. Thus, the adversary merely needs to find a message-signature tuple, whose
view matches that of info′ 	= info. Observe that the adversary has access to rsk.

For each info, let kinfo be the number of successful, complete interactions and
let Vinfo be the set of corresponding protocol views. Let V∗ =

⋃
Vinfo contain

all views and assume that the adversary U∗ asks its signature oracle at most
|V∗| ≤ q times.

Definition 4 (Signature Traceability). FPBS is signature traceable if for
any efficient algorithm U∗ the probability that experiment SigTraceFPBS

U∗ (n) eval-
uates to 1 is negligible (as a function of n), where
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Experiment SigTraceFPBS
U∗ (n)

(rsk, rpk)← RevKg(1n)
(sk, pk)← Kg(1n)
((m1, info1, σ1), (m2, info2, σ2))← U∗〈S(sk,rpk,·),·〉∞(pk, rsk, rpk)
Return 1 if

for one of the message-signature tuples, denoted by (m, info, σ), we have:
Vf(pk, rpk, m, info, σ) = 1 and SigVf(idSig, σ) = 0
for all idSig ← SigRev(view, rsk) with view ∈ Vinfo,

or if (m1, info1) 	= (m2, info2) and
Vf(pk, rpk, mi, infoi, σi) = 1, i = 1, 2, and there exists a view ∈ V∗ s.t.
SigVf(idSig, σ0) = SigVf(idSig, σ1) = 1 where idSig ← SigRev(rsk, view).

Given, on the other hand, a view of a protocol execution, the trusted party can
uniquely determine the message-signature tuple that was generated. This prop-
erty is called session traceability. In the following experiment, the adversarial
user tries to output a message-signature tuple such that either no session corre-
sponds to this signature or such that at least two sessions can be associated to
it. Again, we give a stronger definition by letting the attacker win if the output
signature matches to a session for a different info and we let it have rsk.

Definition 5 (Session Traceability). FPBS is session traceable if for any
efficient algorithm U∗ the probability that experiment SesTraceFPBS

U∗ (n) evaluates
to 1 is negligible (as a function of n), where

Experiment SesTraceFPBS
U∗ (n)

(rsk, rpk)← RevKg(1n)
(sk, pk)← Kg(1n)
(m, info, σ)← U∗〈S(sk,rpk,·),·〉∞(pk, rsk, rpk)
Let idSes ← SesRev(rsk, m, info, σ).
Return 1 iff

Vf(pk, rpk, m, info, σ) = 1 and SesVf(idSes, view) = 0 for all view ∈ Vinfo

or there exist distinct view1, view2 ∈ V∗ such that
SesVf(idSes, view1) = SesVf(idSes, view2) = 1.

As already observed in [17] and others, unforgeability is implied by traceabil-
ity. Thereby, we obtain the following definition of “security”.

Definition 6. FPBS is secure if it is partially blind, signature traceable, and
session traceable.

Relation tothe SecurityNotionofHufschmitt andTraoré. As already
mentioned in the introduction, the security model of [17] for fair blind signatures
is inspired by dynamic group signatures [5]. In contrast to blind signatures, group
signature consider a fixed group where each member is statically registered. Dy-
namic group signatures allow in addition members to dynamically join and leave
the group. Although this may be common in many practical scenarios, it compli-
cates the definitions. In our work, we want to keep the definitions as simple as
possible (and we want to follow the widely accepted notion of blind signatures).
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Signer S(sk) CRS:pkE , ρ User U(pk, m)
U←−−−−−−− let U ← com(m)

let B ← DS.Sign(sk, U) B−−−−−−−→ compute C ← Enc(rpkE , U ||B)
π : {C correct for (m)}

Fig. 1. Fischlin’s protocol

With our approach, we also demonstrate that registration procedures are not at
all necessary to construct provably secure and flexible fair and partially blind sig-
natures. Therefore, we do not consider their alternative security model.

3 A Warm-Up — Fischlin’s Blind Signature Scheme

Our blind signature scheme relies on an elegant construction due to Fischlin [11]
that is provably secure in the common reference string (CRS) model. We review
a simplified version of Fischlin’s scheme ([11] presents a strongly unforgeable
scheme) and then propose a partial solution to fair partially blind signatures.
Fischlin’s scheme performs the following steps:

Setup. The CRS contains a public key pkE for a semantically secure public-key
encryption scheme, and a string ρ used as a CRS for the non-interactive
zero-knowledge proof.

Key Generation. The key generator runs the key generation algorithm of a
standard signature scheme (pk, sk)← DS.Kg(1n) and returns both keys.

Signing. The interactive protocol in which the user U derives a signature on a
message m is as follows:
– U computes a commitment U ← com(m) and sends it to the signer.
– S signs the commitment B ← DS.Sign(sk, U) and sends B.
– U checks whether the signature is valid and aborts if it is invalid. Oth-

erwise, the user computes C ← Enc(rpkE , U ||B) together with a NIZK
proof π that a valid signature is encrypted properly. Then it outputs the
signature (C, π).

Verification. To verify that (C, π) is a valid signature on m (w.r.t. pk), the
verification algorithm checks that π is a valid proof (w.r.t. ρ).

We briefly discuss the security of the scheme and then how to derive a fair
partially blind signature scheme out of Fischlin’s blind signature scheme.

Unforgeability of the scheme follows from the unforgeability of the regular sig-
nature scheme and from the binding property of the commitment. On the other
hand, the hiding property of the commitment scheme prevents the malicious
signer from learning any information about the message during the issue proto-
col. Furthermore, the semantically secure encryption scheme hides the encrypted
message-signature pair and the non-interactive zero-knowledge proof discloses no
information about the plaintext in C.

Fair Partially Blind Signatures: a Partial Solution. In order to adapt
Fischlin’s scheme and avoid the CRS, we have several difficulties to overcome.
In the following, we describe these problems together with our solutions.
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– Removing CRS ρ: We apply the technique of Hazay et al. [16] to remove
the CRS. Thus, we rely on ZAPs [9] rather than on NIZKs (a ZAP is a two
round witness-indistinguishable proof system, we give a formal definition in
the following section).

– Achieving fairness: In order the obtain a “fair” scheme, we have to guarantee
that each message-signature pair can, given a revocation key, be related to
exactly one execution (and vice versa). To do so, we let the signer choose a
random session identifier and (verifiably) include it in the signature as well
as in the user’s encryption of the signature.

– Achieving partial message control: We allow the signer to control a certain
part info of the signed message by including it in its signature. Simultane-
ously, the user must include the same info in the encryption of the message.
Thus, one-sided changes to info result in an invalid signature.

4 An Instantiation from General Assumptions

Before presenting our generic construction, we review the required primitives.

Indistinguishable Encryption Under Chosen-Plaintext Attacks

(IND-CPA). A public-key encryption scheme PKE is secure in the IND-CPA
model if no efficient adversary A can distinguish ciphertexts for messages of its
choice. The corresponding experiment gives A access to an encryption oracle,
which is initialized with a public key rpk and a bit b. The encryption oracle takes
as input two equally sized messages (m0, m1) and returns Enc(rpk, mb). The ad-
versary wins if it is able to guess b with probability noticeable greater than 1/2.
We assume in this construction that the message expansion c is deterministic,
i.e., the length of the ciphertext is c(n) for all messages of length n.

Strongly Unforgeable Signature Scheme. A digital signature DS is
strongly unforgeable under adaptive chosen message attacks if there is no ef-
ficient algorithm, which queries a signing oracle on messages of its choice, that
manages to output a new signature for a (possibly) queried message. We assume
all signature to be encoded as l(n) bit strings.

Proof of Knowledge (PoK). Let’s consider an NP-Language L with relation
RL := {(s, w) | s ∈ L and w is a witness for s}. Informally, we call an interactive
proof protocol between a prover P and a verifier V a proof of knowledge if no
malicious prover P∗ can cheat but with negligible probability. If P∗ convinces
the verifier with noticeable probability then there exists an efficient algorithm
Extract, the extractor, which is able to extract a value y from P∗ such that
(x, y) ∈ RL. We refer the interested reader to [4] for further details.

Witness-Indistinguishability. In the case that an NP-Language L has at
least two witnesses w1 and w2 for some string s ∈ L, we can define witness-
indistinguishable proofs. Basically, a witness-indistinguishable interactive proof
system [12] allows the prover to prove some statement, without revealing the
witness (w1 or w2) used during the proof. This condition even holds if the verifier
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knows both witnesses. Thus, a witness-indistinguishable proof of knowledge (WI-
PoK) hides the used witness and simultaneously allows its extraction.

ZAP. Roughly speaking, a ZAP is a two round public coin witness-indistinguish-
able protocol [9] with the useful property that the first round (a message from
verifier V to prover P) can be made universal for all executions and therefore
be part of the public key of V . Dwork and Naor showed that ZAPs can be build
upon any trapdoor permutation [9].

Definition 7 (ZAP). Let Lp(n) := L ∩ {0, 1}≤p(n) for some polynomial p.
A ZAP is 2-round public coin witness-indistinguishable protocol for some NP-
language L with associated relation RL. It consists of two efficient interactive
algorithms P ,V such that

– The verifier V outputs an initial message ρ on input 1n;
– The prover P gets as input ρ, a statement s ∈ Lp(n), and a witness w such

that (s, w) ∈ RL. It outputs a proof π;
– The verifier V outputs a decision bit when queried with ρ, s and π.

A ZAP is complete if for any n ∈ N and any (s, w) ∈ RL, we have V(ρ, s,
P(ρ, s, w)) = 1. Furthermore, ZAPs satisfy the following properties (see Figure 2
for the experiments):

Witness-Indistinguishability. A ZAP is witness-indistinguishable if for any
efficient algorithm V∗ (working in modes find and guess) the probability that
experiment WitIndZAP

V∗ outputs 1 is negligibly close to 1/2.
Adaptive Soundness. A ZAP satisfies adaptive soundness if for any algo-

rithm P∗ the probability that experiment AdSndZAP
P∗ outputs 1 is negligible.

Experiment WitIndZAP
V∗

b ← {0, 1}
(ρ, s1, . . . , s�, (w0

1, . . . , w
0
� ),

(w1
1 , . . . , w1

� ), stfind) ← V∗(find, 1n)
Return 0 if (si, w

0
i ), (si, w

1
i ) �∈ RL for i ∈ [1, �].

πi ← P(ρ, s1, w
b
i ) for i ∈ [1, �].

b′ ← V∗(guess, stfind, ρ, (π1, . . . , π�), (s1, . . . , s�))
Return 1 iff b′ = b.

Experiment AdSndZAP
P∗

ρ ← V(1n)
(s, π) ← P∗(ρ, 1n)
Return 1 iff V(ρ, s, π) = 1 and s �∈ L.

Fig. 2. Experiments describing witness-indistinguishability and adaptive soundness

4.1 Construction

From a high-level point of view, the idea of our construction is as follows. In the
first step, the user encrypts a message m together with info under the public key
rpk of the trusted third party and sends this encryption to the signer. The signer
then concatenates the encryption with info and a unique session identifier ssid,
signs the resulting string using an ordinary signature scheme and sends the signa-
ture back to the user. Finally, the user encrypts (again under the public key of the
trusted party) the first message as well as the signature and proves that the valid
signature is properly encrypted. Note that we use two (not necessarily distinct)
encryption schemes in order to handle the different input/output lengths.
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Signer S(sk, rpk, info) User U(pk, rpk, m, info)
choose ssid ← {0, 1}n choose u, v0, v1 ← {0, 1}n

let U ← Enc(rpk1, m||info||v0||v1; u)

validate U
U←−−−−−−−

WI-PoK−−−−−−−→←−−−−−−− verify−−−−−−−→
let B ← DS.Sign(sk, U ||info||ssid)

ssid,B−−−−−−−→
abort if DS.Vf(pk, U ||info||ssid, B) = 0
compute C0 ← Enc′(rpk2, U ||B||ssid; v0)
compute C1 ← Enc′(rpk2, 0

n; v1)
set s ← C0||C1||pk||rpk||info||m
set w ← u||v0||v1||ssid||B||0n

let π ← P(s,w)
output (U, B, info, ssid) output (m, info, σ) ← (m, info, (C0, C1, π))

Fig. 3. Issue protocol of the fair partially blind signature scheme FPBS

Key Generation. Kg(1n) executes the key generation algorithm of the signa-
ture scheme (sk, pk)← DS.Kg(1n). It chooses a suitable one-way function f ,
two elements x0, x1 ← {0, 1}n and sets y0 ← f(x0) and y1 ← f(x1). Kg also
computes the verifier’s first message ρ← V(1n) for the ZAP. The public key
is pk← (pk, y0, y1, ρ) and the corresponding secret key is sk← (sk, x0, x1).

Revocation Key Generation. RevKg(1n) runs the key generation algorithm
of both public-key encryption schemes (rsk1, rpk1)← EncKg(1n), (rsk2, rpk2)
← EncKg′(1n) and outputs the secret revocation key rsk← (rsk1, rsk2) and
the corresponding public key rpk← (rpk1, rpk2).

Signature Issue Protocol. The signature issue protocol is shown in Figure 3.
Note that user and signer both include the same info in their computations,
thus if one of the parties changes their mind about info during the execution
then no valid signature can be produced.
– The user encrypts the message m together with the info element and

the randomness for the second encryption under the public key of the
trusted party, and sends U to the signer.

– The signer checks that the components U is of the correct form, namely a
block-wise encryption of four fields of length n (each). Such an encryption
scheme can be realized by concatenating IND-CPA secure encryptions
of the individual fields. This check is essential. Otherwise, a malicious
user can easily break the scheme.1 It then initiates an interactive

1 The malicious user U∗ in the unforgeability experiment executes the signer on a
random message m ∈ {0, 1}n and an arbitrary info element info ∈ {0, 1}n/2. It
selects another info′ ∈ {0, 1}n/2, computes U according to the protocol and sends
U ′ ← U ||info′ to the signer. Following the protocol, U∗ receives the signature B,
computes σ ← (C,π) and returns the tuple (m, info′||info, σ). This tuple is a valid
forgery because U∗ never queried S on info′′ ← info′||info.



Fair Partially Blind Signatures 45

witness-indistinguishable proof of knowledge, where the signer proves
knowledge of either f−1(y0) or f−1(y1).2

– The signer sends its signature B and the randomly chosen session iden-
tifier ssid.

– U encrypts the signature B and computes a ZAP proving that the en-
cryption either contains a valid message-signature pair or a preimage of
y0 or y1. We now define the corresponding NP-relation. Recall that L
is an NP-language and that a ZAP is witness-indistinguishable. Thus,
we can include a second witness (the “or ...” part below), which allows
full simulation during the security reduction. To compute the final proof,
the user computes the ZAP π with respect to the first message ρ (stored
in the public key) for s ← C0||C1||pk||rpk||info||m ∈ L with witness
w ← u||v0||v1||ssid||B||x such that membership in L is established by:

U ← Enc(rpk1, m||info||v0||v1; u) ∧C0 = Enc′(rpk2, U ||B||ssid; v0)
∧DS.Vf(pk, U ||info||ssid, B) = 1

or C1 = Enc′(rpk2, x; v1) ∧ f(x) ∈ {y0, y1}.
Signature Verification. Vf(pk, rpk, m, info, σ) parses the signature σ as (C0,

C1, π). It returns the result of V(s, π) for s← C0||C1||pk||rpk||info||m.
Signature Revocation. SigRev(rsk, view) parses the view view as (U, B, info,

ssid). It decrypts U , computing m||info||v0||v1 ← Dec(rsk1, U) and extracts
the randomness v0. SigRev then encrypts U ||B||ssid using the randomness
v0, obtaining C′

0 ← Enc′(rpk2, U ||B||ssid; v0) and outputs idSig ← C′
0.

Session Revocation. SesRev(rsk, m, info, σ) takes as input a message-signature
tuple (m, info, (C0, C1, π)) and the secret revocation key rsk = (rsk1, rsk2).
It extracts B′, computing U ||B′||ssid ← Dec(rsk2, C0) and returns idSes ←
(B′, ssid).

Signature Tracing. SigVf(idSig, σ) parses idSig as C′
0 and σ as (C0, C1, π). It

outputs 1 iff C′
0 = C0.

Session Tracing. SesVf(idSes, view) parses idSes as (B′, ssid′) and view as (U, B,
info, ssid). It returns 1 iff B′ = B and ssid′ = ssid.

Theorem 1 (Partial Blindness). Let DS be a strongly unforgeable signature
scheme, (EncKg, Enc, Dec) and (EncKg′, Enc′, Dec′) be two IND-CPA secure en-
cryption schemes, and (P ,V) be a ZAP. Then FPBS is partially blind.

Proof. We prove partial blindness similar to [11,16]. That is, we transform the
way the signatures are computed such that both signatures are, in the end,
completely independent of the bit b. We then argue that the success probability,
while transforming the experiment, does not change the success probability of
the adversary more than in a negligible amount.

In the first step, we modify the experiment of fair partially blind signature
scheme in the following way: During signature issue, the user algorithm U0 exe-
cutes the extraction algorithm Extract of the witness-indistinguishable proof of
knowledge (WI-PoK) and computes the signature using the extracted witness.
2 This proof allows the simulator in the blindness experiment to extract the witness

and to use it instead of the signature.
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In case the proof is valid, but extraction fails, the experiment outputs a random
bit. At the end of the issue protocol, the user computes the signature using the
extracted witness (all other algorithms remain unchanged). More precisely:

Signature Issue Protocol (FPBS′). The issuing protocol is as before, except
for the user U0. It runs the extraction algorithm x′ ← Extract of the proof of
knowledge. It aborts if f(x′) 	∈ {y0, y1}. Otherwise, U0 executes P on input
(s, w) ← (C0||C1||pk||rpk||info||m, 04n||0l(n)||x′), where l(n) is the length of
a signature. It outputs σ ← (C0, C1, π). U1 remains unchanged.

It follows easily from the witness-indistinguishability property that both, exper-
iment BlindFPBS

S∗ and BlindFPBS′
S∗ , output 1 with the same probability (except for

a negligible deviation).
In the next step, we modify the signature issue protocol of FPBS′ such that

the user algorithm sends an encryption to all-zero strings in the first round and
computes the proof with the previously extracted witness again:

Signature Issue Protocol (FPBS′′). The signature issue protocol remains the
same, except for the user algorithm that computes U ← Enc(rpk1, 0

4n; u),
and C1 ← Enc′(rpk2, x

′; v1).

We denote the modified scheme with FPBS′′. The IND-CPA property of the
encryption scheme guarantees that this modification goes unnoticed (negligible
change in S∗’ success probability).

In the last step, the user algorithm encrypts only all-zero strings in C0 and
the previously extracted witness x in C1.

Signature Issue Protocol (FPBS′′′). The user U calculates C0 ← Enc′(rpk2,
04c(n)||0l(n)||0n; v0) and C1 ← Enc′(rpk2, x

′; v1).

Denoting the scheme with FPBS′′′, we argue by the IND-CPA property that the
success probability of S∗ stays essentially the same (except for a negligible devi-
ation). In this protocol, the signature σ = (C0, C1, π) is completely independent
of U and B. We conclude that the malicious signer S∗ (against FPBS) cannot
predict the bit b with noticeable advantage over 1/2. ��
Theorem 2 (Signature Traceability). Let DS be a strongly unforgeable sig-
nature scheme, (EncKg, Enc, Dec) and (EncKg′, Enc′, Dec′) be two IND-CPA se-
cure encryption schemes, and (P ,V) be a ZAP. Then FPBS is signature traceable.

Proof. First of all recall that an adversary A has three possibilities to win the
signature traceability experiment. The first is to compute a message-signature
tuple (m, info, σ) such that there exists no matching view. Note that since only
views with respect to info are considered, the second possibility is to output a
message-signature tuple corresponding to an execution with a different infor-
mation element info′. The third way the attacker A may win the game is to
return two message-signatures related to the same view. In the following proof,
we distinguish these three cases:
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– An adversary is called a type-1 attacker, denoted by A1, if it manages to
output a valid message-signature tuple (m, info, σ), where σ = (C, π), such
that SigVf(idSig, view) = 0 for all idSig ← SigRev(rsk, view) with view ∈ V∗.

– An algorithm is called a type-2 attacker, denoted by A2, if it outputs a valid
message-signature tuple (m, info, σ) such that there exists a view ∈ V∗ \ Vinfo

with SigVf(idSig, σ) = 1 for idSig ← SigRev(rsk, m, view).
– An attacker is called a type-3 attacker, denoted by A3, if it returns two valid

message-signature tuple (m1, info1, σ1) and (m2, info2, σ2) with m1 	= m2
such that SigVf(idSig, σ1) = SigVf(idSig, σ2) = 1 for idSig ← SigRev(rsk, view)
and some view ∈ V∗.

Before proving the theorem, recall that the ZAP π only guarantees that either
a valid signature or a value x, with f(x) ∈ {y0, y1}, has been encrypted. Thus,
we have to distinguish these two cases throughout all proofs. In the first part of
the proof, we show how to invert the one-way function f if a preimage x of y0
or y1 is encrypted. We stress that we show the reduction only once because it is
the same in all proofs.

Type-1 Attacker. For the first type of adversaries, we have to distinguish,
again, two cases: a) the encryption C contains a value x such that f(x) ∈ {y0, y1}
and b) C contains U ||B||ssid. We begin the proof with the type-1a adversaries,
denoted with A1a, showing how to invert the one-way function f if x is encrypted
by applying the technique of Feige and Shamir [12]. We cover the type-1b adver-
saries, denoted with A1b, showing how to forge the underlying signature scheme
if U‖B‖ssid is encrypted.

Let A1a be an efficient algorithm, which succeeds in the signature traceability
experiment with noticeable probability. We show how to build an algorithm B1a

that efficiently inverts the one-way function f . Note that A1a may either encrypt
the preimage of y0 or the preimage of y1. Thus, we describe the algorithm that
extracts the preimage of y0 and argue, in the analysis, that the same algorithm
can be used to extract the preimage of y1 by “switching” y0 and y1.

Setup. Algorithm B1a gets as input an image y of a one-way function f . It se-
lects a value x1 ∈ {0, 1}n at random, sets y1 ← f(x1), generates a key pair for
the signature scheme (sk, pk)← DS.Kg(1n), as well as a key pair for the sim-
ulation of the trusted party (rsk, rpk)← RevKg(1n), and computes the first
message of the ZAP ρ← V(1n). B1a runs A1a on input ((pk, y, y1, ρ), rsk, rpk)
in a black-box simulation.

Signing Queries. If A1a initiates the signing protocol with its signing oracle
then B1a behaves in the following way. It receives the first message U and
info from A1a. It first checks that U has four fields, each of length c(n). If
so, it executes the witness-indistinguishable protocol (using the witness x1)
and, after terminating the protocol, B1a randomly selects a session identifier
ssid. It returns ssid and B ← DS.Sign(sk, U ||info||ssid).

Output. Finally, A1a stops, outputting a tuple (m, info, σ) with σ = (C, π).
Algorithm B1a computes x′ ← Dec(rsk, C) and outputs x′.
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For the analysis, it is assumed that A1a outputs a valid message-signature tuple,
either containing a witness for f−1(y0) or for f−1(y1), with noticeable probability
ε(n). With εb(n), we denote the probability that A1a encrypts a witness x for
f−1(yb). Obviously, either ε0(n) ≥ ε(n)/2 or ε1(n) ≥ ε(n)/2 and, according to the
description of B1a, we assume w.l.o.g. that the former holds. But if ε0(n) is not
negligible then we already have a contradiction because B1a outputs a preimage
x′ = f−1(y0). Thus, ε0(n) must be negligible and ε1(n) has to be noticeable.

In this case, however, we can execute the same algorithm with switched public
keys, i.e., we run A1a on input y1, y instead of y, y1. Thanks to the witness-
indistinguishability of the proof system, one can show (cf. [10]) that switching
y and y1 changes the success probability of A1a only in a negligible amount.
Therefore, |ε0(n)− ε1(n)| is negligible.

Next, we show that the second type of adversary (A1b) directly contradicts
the unforgeability of the underlying signature scheme. We build an algorithm
B1b, which uses A1b in a black-box simulation.

Setup. B1b takes as input a public verification key pk and has access to a singing
oracle. It executes the key generation algorithm of the encryption scheme
(rsk, rpk)← EncKg(1n), selects two elements x0, x1 at random and sets y0 ←
f(x0), y1 ← f(x1). The algorithm then computes the first round of the ZAP
ρ← V(1n) and executes A1b on input ((pk, y0, y1, ρ), rsk, rpk).

Signing Queries. Whenever A1b invokes the interactive signing protocol on
some message U and some info element info, algorithm B1b behaves as follows.
It first checks that U comprises four fields of length c(n). If the assertion
holds, it follows the witness-indistinguishable protocol using the witness x1.
Afterwards, B1 selects a session identifier ssid at random and invokes its
signing oracle on m← U ||info||ssid, receiving the signature σ. Algorithm B1b

sends ssid, B ← σ back to A1b.
Output. Finally, A1b stops, outputting a possibly valid tuple (m′, info′, σ′) with

σ′ = (C′, π′). B1b decrypts C obtaining U ′||B′||ssid′. It outputs (m∗, σ∗) ←
(U ′||info′||ssid′, B′).

For the analysis, first note that B1b is efficient since A1b is and that B1b performs
a perfect simulation from A1b’s point of view. We assume that A1b is successful
and that C does not contain the encryption of a witness. Since there is no
matching view view = (U, B, info, ssid), it follows that either B1b never queried
m∗ to its oracle or never received the same signature B for the message m∗.
Thus, B1b succeeds whenever A1b does.

Type-2 Attacker. The second class of attackers (A2) manages to output
a message-signature tuple (m, info, σ) with σ = (C, π) such that a “foreign”
matching view exists, i.e., SigVf(idSig, σ) = 1 for idSig ← SigRev(rsk, view) with
view ∈ V∗ \ Vinfo. We show that if a matching view exists, then the message, the
information element, and the session id have to be the same.

Let the matching view be view = (U ′, B′, info′, ssid′) and let U ||B||ssid ←
Dec(rsk, C) be the decryption of the signature received from the malicious user.
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Since the verification algorithm evaluates to 1, and because x such that f(x) ∈
{y0, y1} is not contained in C, it follows that C′ = C (otherwise SigVf(idSig, σ) =
0). This, however, implies that U = U ′, ssid = ssid′, and B = B′. Thus m′ = m,
info′ = info, and v′ = v where m′||info′||v′ ← Dec(rsk, U ′) is the decryption of
U ′ contained in view. Thus, such an attacker does not exist.

Type-3 Attacker. Let A3 be an adversary, which outputs two valid message-
signature tuples (m1, info1, σ1) and (m2, info2, σ2) with σi = (Ci, πi), for i = 1, 2,
such that (m1, info1) 	= (m2, info2). We first show that the tuples (m1, info1, σ1)
and (m2, info2, σ2) cannot stem from the same view.

W.l.o.g., suppose that view = (U, B, info, ssid) ∈ V∗ is the corresponding
view to the message-signature tuple (m1, view1, σ1). Recall that the signature
revocation algorithm SigRev reveals the randomness v from view, computing
m||info||v ← Dec(rsk, U), and generates C′ ← Enc(rpk, U ||B||ssid; v). Since view
is also a matching view for the first message-signature tuple, we infer that
C′ = C1 and consequently C′ = C2. Otherwise, the verification algorithm would
not return 1 on both inputs. Since σ2 = (C2, π2) is a valid signature, the prove π2
is valid and it follows that C2 is the ciphertext for U2||B2||ssid2. But this string
equals U1||B1||ssid1 and therefore m1 = m2, info1 = info2, and v1 = v2. This,
however, contradicts the assumption that (m1, info1) 	= (m2, info2) and therefore
such a pair cannot exist. ��

Theorem 3 (Session Traceability). Let DS be a strongly unforgeable signa-
ture scheme, (EncKg, Enc, Dec) and (EncKg′, Enc′, Dec′) be two IND-CPA secure
encryption schemes and (P ,V) be a ZAP. Then FPBS is session traceable.

Proof. We first show that if a signature verifies then it is always possible to
disclose the corresponding session and second, that each signature has a unique
identifier and therefore a unique session. Analogously to the proof of signature
traceability, we distinguish three cases:

– An algorithm A1, which outputs a valid message-signature tuple (m, info, σ),
where σ = (C, π), such that SesVf(idSes, view) = 0 for all view ∈ V∗ with
idSes ← SesRev(rsk, m, info, σ).

– An attacker A2, which returns a valid message-signature tuple (m, info, σ),
such that there exists a view ∈ V∗ \ Vinfo with SesVf(idSes, σ) = 1 for idSes ←
SesRev(rsk, m, info, σ).

– An adversary A3, which manages to output a valid message-signature tuple
(m, info, σ), such that there exist two distinct views view1, view2 ∈ V∗ with
SesVf(idSes, view1) = SesVf(idSes, view2) = 1 for idSes ← SesRev(rsk, m, info, σ).

The reductions for the first two cases are identical to the first two reductions in
the proof of Theorem 2. Thus, we omit it here.

What is left to show is that two different views cannot match to a single
execution. This follows from the fact that the signer generates a new session
identifier ssid during each execution. Thus, with overwhelming probability over
the choice of ssid, each execution yields a new view. ��
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By combining the above results with an observation in Section 2, we get the
following corollary.

Corollary 1 (Unforgeability). Let DS be a strongly unforgeable signature
scheme, (EncKg, Enc, Dec) be an IND-CPA secure encryption scheme with mes-
sage expansion function c, and (P ,V) be a ZAP. Then FPBS is unforgeable.
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Lattice reduction is the search for short and orthogonal vectors in a lattice.
The algorithm used for lattice reduction in practice today is the BKZ algorithm of
Schnorr and Euchner [SE91]. It consists of two main parts, namely an exhaustive
search (’enumeration’) for shortest, non-zero vectors in lower dimensions and the
LLL algorithm [LLL82] for the search for short (not shortest) vectors in high di-
mensions. The BKZ algorithm is parameterized by a blocksize parameter β, which
determines the blocksize of the exhaustive search algorithm inside BKZ.

Algorithms for exhaustive search were presented by Kannan [Kan83] and by
Fincke and Pohst [FP83]. Therefore, the enumeration is sometimes referred to
as KFP-algorithm. Kannan’s algorithm runs in 2O(n log n) time, where n denotes
the lattice dimension. Schnorr and Euchner presented a variant of the KFP
exhaustive search, which is called ENUM [SE91]. Roughly speaking, enumeration
algorithms perform a depth first search in a search tree that contains all lattice
vectors in a certain search space, i.e., all vectors of Euclidean norm less than
a specified bound. The main challenge is to determine which branches of the
tree can be cut off to speed up the exhaustive search. Enumeration is always
executed on lattice bases that are at least LLL reduced in a preprocessing step,
as this reduces the runtime significantly compared to non-reduced bases.

The LLL algorithm runs in time polynomial in the lattice dimension and
therefore can be applied in high lattice dimensions (n > 1000). The runtime
of all known exhaustive search algorithms is exponential in the dimension, and
therefore can only be applied in blocks of smaller dimension (n � 70). With
this, the runtime of BKZ increases exponentially in the blocksize β. As in BKZ,
enumeration is executed very frequently, it is only practical to choose blocksizes
up to 50. For high blocksize, our experience shows that ENUM takes 99% of the
time of BKZ.

There are numerous works on parallelization of LLL [Vil92, HT98, RV92,
Jou93] [Wet98, BW09]. Parallel versions of lattice enumeration were presented in
the masters theses of Pujol [Puj08] and Dagdelen [Dag09] (in french and german
language, respectively). Both approaches are not suitable for GPU, since they
require dynamic creation of new threads, which is not possible for GPUs.

Being able to parallelize ENUM means to parallelize the second (more time
consuming) building block of BKZ, which reduces the runtime of the most
promising lattice reduction algorithm in total.

As a platform for our parallel implementation we have chosen graphical pro-
cessing units (GPUs). Because of their design to perform identical operations on
large amounts of graphical data, GPUs can run large numbers of threads in par-
allel, provided the threads execute similar instructions. We can take advantage
of this design and split up the ENUM algorithm over several identical threads.
The computation power of GPU rises faster than that of CPUs over the last
years, with respect to floating point operations per second (GFlops). This trend
is not supposed to stop, therefore using GPUs for computation will be a useful
model also in the near future.

Our Contribution. In this paper we present a parallel version of the enumeration
algorithm of [SE91] that finds a shortest, non-zero vector in a lattice. Since the
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enumeration algorithm is tree-based, the main challenge is splitting the tree in
some way and executing subtree enumerations in parallel. We use the CUDA
framework of NVIDIA for implementing the algorithm on graphics cards. Be-
cause of the choice for GPUs, parallelization and splitting are more difficult than
for a CPU parallelization. Firstly we explain the ideas of how to parallelize enu-
meration on GPU. Secondly we present some first experimental results. Using
the GPU, we reduce the time required for enumeration of a random lattice in
dimensions higher than 50 by a factor of almost 5. We are using random lattices
in the sense of Goldstein and Mayer [GM03] for testing our implementation.

The first part of this paper, namely the idea of parallelizing enumeration, can
also be applied on multicore CPU. The idea of splitting the search tree into
parts and search different subtrees independently in parallel is also applicable
on CPU, or other parallel computing frameworks. As mentioned above, BKZ is
only practical using blocksizes up to 50. As our GPU version of the enumeration
performs best in dimensions n greater than 50, we would expect to speed up
BKZ with high blocksizes only.

In contrast to our algorithm, Pujol’s idea [Puj08] is to predict the number of
enumeration steps in a subtree beforehand, using a volume heuristic. If the num-
ber of expected steps in a subtree exceeds some bound, the subtree is split recur-
sively, and enumerated as different threads. Dagdelen [Dag09] bounds the height
of subtrees that can be split recursively. Both ideas differ from our approach,
as we use a real-time scheduling; when a subtree enumeration has exceeded a
specified number of enumeration steps it is stopped, to balance the load of all
GPU kernels. This fits best into the SIMD structure of GPUs, as both existing
approaches lead to a huge number of diverging subthreads.

Structure of the Paper. In Section 2 we introduce the necessary preliminaries
on lattices and GPUs. We discuss previous lattice reduction algorithms and
the applications of lattices in cryptography. The GPU (CUDA) programming
model is shortly introduced, explaining in more detail the memory model and
data types which are important for our implementation. Section 3 explains our
parallel enumeration algorithm, starting from the ENUM algorithm of Schnorr
and Euchner and ending with the iterated GPU enumeration algorithm. Section
4 discusses the results obtained with our algorithm.

2 Preliminaries

A lattice is a discrete subgroup of Rd. It can be represented by a basis matrix
B = {b1, . . . ,bn} (n ≤ d). We call L(B) = {∑n

i=1 xibi, xi ∈ Z} the lattice
spanned by the column basis vectors bi ∈ Rd (i = 1 . . . n). The dimension n of a
lattice is the number of linear independent vectors in the lattice, i.e. the number
of basis vectors. When n = d the lattice is called full dimensional.

The basis of a lattice is not unique. Every unimodular transformation M,
i.e. integer transformation with detM = ±1, turns a basis matrix B into a
second basis MB of the same lattice.
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The determinant of a lattice is defined as det(L(B)) =
√

det (BT B). For full
dimensional lattices we have det(L(B)) = | det(B)|. The determinant of a lattice
is invariant of the choice of the lattice basis, which follows from the multiplica-
tive property of the determinant and the fact that basis transformations have
determinant ±1.

The length of a shortest vector of a lattice L(B) is denoted λ1(L(B)) or in
short λ1 if the lattice is uniquely determined.

The Gram-Schmidt algorithm computes an orthogonalization of a basis. It is
an efficient algorithm that outputs B∗ = [b∗

1, . . . ,b
∗
n] with b∗

i orthogonal and μi,j

such that B = B∗ · [μi,j ], where [μi,j ] is an upper triangular matrix consisting of
the Gram-Schmidt coefficients μi,j for 1 ≤ j ≤ i ≤ n. The orthogonalized matrix
B∗ is not necessarily a basis of the lattice.

2.1 Lattice Basis Reduction
Problems. Some lattice bases are more useful than others. The goal of lattice
basis reduction (or in short lattice reduction) is to find a basis consisting of short
and almost orthogonal lattice vectors. More exactly, we can define some (hard)
problems on lattices. The most important one is the shortest vector problem
(SVP), which consists of finding a vector v ∈ L \ {0} with ‖v‖ = λ1(L(B)).
In most cases, the Euclidean norm ‖·‖2 is considered. As the SVP is NP-hard
(at least under randomized reductions) [Din02, Kho05, RR06] people consider
the approximate version γ-SVP, that tries to find a vector v ∈ L \ {0} with
‖v‖ ≤ γ · λ1(L(B)).

Other importantproblems like the closest vector problem (CVP) that searches for
a nearest lattice vector to a given point in space, its approximation variant γ-CVP,
or the shortest basis problem (SBP) are listed and described in detail in [MG02].

Algorithms. In 1982 Lenstra, Lenstra, and Lovász [LLL82] introduced the LLL
algorithm, which was the first polynomial time algorithm to solve the approx-
imate shortest vector problem in higher dimensions. Another algorithm is the
BKZ block algorithm of Schnorr and Euchner [SE91]. In practice, this is the
algorithm that gives the best solution to lattice reduction so far. Their paper
[SE91] also introduces the enumeration algorithm (ENUM), a variant of the
Fincke-Pohst [FP83] and Kannan [Kan83] algorithms. The ENUM algorithm is
the fastest algorithm in practice to solve the exact shortest vector problem using
complete enumeration of all lattice vectors in a suitable search space. It is used
as a black box in the BKZ algorithm. The enumeration algorithm organizes lin-
ear combinations of the basis vectors in a search tree and performs a depth first
search above the tree.

In [PS08] Pujol and Stehlé analyze the stability of the enumeration when using
floating point arithmetic. In [HS07], improved complexity bounds for Kannan’s
algorithm are presented. This paper also suggests some better preprocessing of
lattice bases, i.e., the authors suggest to BKZ reduce a basis before running
enumeration. This approach lowers the runtime of enumeration. In this paper
we consider both LLL and BKZ pre-reduced bases. [AKS01] show how to solve
SVP using a randomized algorithm in time 2O(n), but their algorithm requires
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exponential space and is therefore impractical. The papers [NV08] and [MV10]
present improved sieving variants, where the Gauss-sieving algorithm of [MV10]
is shown to be really competitive to enumeration algorithms in practically inter-
esting dimensions.

Several LLL variants were presented by Schnorr [Sch03], Nguyen and Stehlé
[NS05], and Gama and Nguyen [GN08a]. The variant of [NS05] is implemented
in the fpLLL library of [CPS], which is also the fastest public implementation
of ENUM algorithms. Koy introduced the notion of a primal-dual reduction in
[Koy04]. Schnorr [Sch03] and Ludwig [BL06] deal with random sampling reduc-
tion. Both are slightly different concepts of lattice reduction, where primal-dual
reduction uses the dual of a lattice for reducing and random sampling combines
LLL-like algorithms with an exhaustive point search in a set of lattice vectors
that is likely to contain short vectors.

The papers [SE91, SH95] present a probabilistic improvement of ENUM,
called tree pruning. The idea is to prune subtrees that are unlikely to con-
tain shorter vectors. As it leads to a probabilistic variant of the enumeration
algorithm, we do not consider pruning techniques here.

In [GN08b] Gama and Nguyen compare the NTL implementation [Sho] of float-
ing point LLL, the deep insertion variant of LLL and the BKZ algorithm. It is the
first comprehensive comparison of lattice basis reduction algorithms and helps
understanding their practical behavior.

In [Vil92, HT93, RV92] the authors present parallel versions for n and n2

processors, where n is the lattice dimension. In [Jou93] the parallel LLL of Vil-
lard [Vil92] is combined with the floating point ideas of [SE91]. In [Wet98] the
authors present a blockwise generalization of Villards algorithm. Backes and
Wetzel worked out a parallel variant of the LLL algorithm for multi-core CPU
architectures [BW09]. For the parallelization of lattice reduction on GPU the
authors are not aware of any previous work.

Applications. Lattice reduction has applications in cryptography as well as in
cryptanalysis. The foundation of some cryptographic primitives is based on the
hardness of lattice problems. Lattice reduction helps determining the practical
hardness of those problems and is a basis for real world application of those
hash functions, signatures, and encryption schemes. Well known examples are
the SWIFFT hash functions of Lyubashevsky et al. [LMPR08], the signature
schemes of [LM08, GPV08, Lyu09, Pei09a], or the encryption schemes of [AD97,
Pei09b, SSTX09]. The NTRU [HPS98, otCC09] and GGH [GGH97] schemes do
not provide a security proof, but the best attacks are also lattice based.

There are also attacks on RSA and similar systems, using lattice reduction
to find small roots of polynomials [CNS99, DN00, May10]. Low density knap-
sack cryptosystems were successfully attacked with lattice reduction [LO85].
Other applications of lattice basis reduction are factoring numbers and comput-
ing discrete logarithms using diophantine approximations [Sch91]. In Operations
Research, or generally speaking, discrete optimization, lattice reduction can be
used to solve linear integer programs [Len83].
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2.2 Programming Graphics Cards

A Graphical Processing Units (GPUs) is a piece of hardware that is specifically
designed to perform a massive number of specific graphical operations in parallel.
The introduction of platforms like CUDA by NVIDIA [Nvi07a] or CTM by
ATI [AMD06], that make it easier to run custom programs instead of limited
graphical operations on a GPU, has been the major breakthrough for the GPU
as a general computing platform. The introduction of integer and bit arithmetic
also broadened the scope to cryptographic applications.

Applications. Many general mathematical packages are available for GPU, like
the BLAS library [NVI07b] that supports basic linear algebra operations.

An obvious application in the area of cryptography is brute force searching us-
ing multiple parallel threads on the GPU. There are also implementations of AES
[CIKL05, Man07, HW07] and RSA [MPS07, SG08, Fle07] available. GPU imple-
mentations can also be used (partially) in cryptanalysis. In 2008, Bernstein et
al. use parallelization techniques on graphics cards to solve integer factorization us-
ing elliptic curves [BCC+09]. Using NVIDIA’s CUDA parallelization framework,
they gained a speed-up of up to 6 compared to computation on a four core CPU.
However, to date, no applications based on lattices are available for GPU.

Programming Model. For the work in this paper the CUDA platform will be
used. The GPUs from the Tesla range, which support CUDA, are composed
of several multiprocessors, each containing a small number of scalar processors.
For the programmer this underlying hardware model is hidden by the concept of
SIMT-programming: Single Instruction, Multiple Thread. The basic idea is that
the code for a single thread is written, which is then uploaded to the device and
executed in parallel by multiple threads.

The threads are organized in multidimensional arrays, called blocks. All blocks
are again put in a multidimensional array, called the grid. When executing a
program (a grid), threads are scheduled in groups of 32 threads, called warps.
Within a warp threads should not diverge, as otherwise the execution of the
warp is serialized.

Memory Model. The Tesla GPUs provide multiple levels of memory: registers,
shared memory, global memory, texture and constant memory. Registers and
shared memory are on chip and close to the multiprocessor and can be accessed
with low latency. The number of registers and shared memory is limited, since
the number available for one multiprocessor must be shared among all threads
in a single block.

Global memory is off-chip and is not cached. As such, access to global memory
can slow down the computations drastically, so several strategies for speeding
up memory access should be considered (besides the general strategy of avoid-
ing global memory access). By coalescing memory access, e.g. loading the same
memory address or a consecutive block of memory from multiple threads, the
delay is reduced, since a coalesced memory access has the same cost as a sin-
gle random memory access. By launching a large number of blocks the latency
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introduced by memory loading can also be hidden, since other blocks can be
scheduled in the meantime.

The constant and texture memory are cached and can be used for specific
types of data or special access patterns.

Instruction Set. Modern GPUs provide the full range of (32 and) 64 bit floating
point, integer and bit operations. Addition and multiplication are fast, other
operations can, depending on the type, be much slower. There is no point in
using other than 32 or 64 bit numbers, since smaller types are always cast to
larger types. Most GPUs have a specialized FMAD instruction, which performs
a floating point multiplication followed by an addition at the cost of only a single
operation. This instruction can be used during the BKZ enumeration.

One problem that occurs on GPUs is the fact that today GPUs are not able
to deal with higher precision than 64 bit floating point numbers. For lattice
reduction, sometimes higher bit sizes are required to guarantee the correct ter-
mination of the algorithms. For an n-dimensional lattice, using the floating point
LLL algorithm of [LLL82], one requires a precision of O(n logB) bits, where B
is an upper bound for the length of the d-dimensional vectors [NS05]. For the L2

algorithm of [NS05], the required bit size is O(n log2 3), which is independent of
the norm of the input basis vectors. For more details on the floating point LLL
analysis see [NS05] and [NS06].

In [PS08] the authors state that for enumeration algorithms double precision
is suitable up to dimension 90, which is beyond the dimensions that are prac-
tical today. Therefore enumeration should be possible on actual graphics cards,
whereas the implementation of LLL-like algorithms will be more complicated
and require some multi-precision framework.

3 Parallel Enumeration on GPU

In this section we present our parallel algorithm for shortest vector enumeration
in lattices. In Subsection 3.1 we briefly explain the ENUM algorithm of Schnorr
and Euchner [SE91], which was used as a basis for our algorithm. Next, we
present the basic idea for multi-thread enumeration in Subsection 3.2. Finally,
in Subsection 3.3, we explain our parallel algorithm in detail.

The ENUM algorithm of Schnorr-Euchner is an improvement of the algo-
rithms from [Kan83] and [FP83]. The ENUM algorithm is the fastest one today
and also the one used in the NTL [Sho] and fpLLL [CPS] libraries. Therefore we
have chosen this algorithm as basis for our parallel algorithm.

3.1 Original ENUM Algorithm

The ENUM algorithm enumerates over all linear combinations [x1, . . . , xn] ∈ Zn

that generate a vector v =
∑n

i=1 xibi in the search space (i.e., all vectors v with
‖v‖ smaller than a specified bound). Those linear combinations are organized in
a tree structure. Leafs of the tree contain full linear combinations, whereas inner
nodes contain partly filled vectors. The search for the tree leaf that determines
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the shortest lattice vector is performed in a depth first search order. The most
important part of the enumeration is cutting off parts of the tree, i.e. the strategy
which subtrees are explored and which ones cannot lead to a shorter vector.

Let i be the current level in the tree, i = 1 being at the bottom and i = n
at the top of the tree (c.f. Figure 1). Each step in the enumeration algorithm
consists of computing an intermediate squared norm li, moving one level up or
down the tree (to level i′ ∈ {i− 1, i + 1}) and determining a new value for the
coordinate xi′ .

Let ri = ‖b∗
i ‖2. We define li = li+1 + y2

i ri with yi = xi − ci and ci =
−∑n

j=i+1 μj,ixj . So, for a certain choice of coordinates xi . . . xn it holds that lk ≥
li (with k < i) for all coordinate vectors x that end with the same coordinates
xi . . . xn. This implies that the intermediate norm li can be used to cut off
infeasible subtrees. If li > A, with A the squared norm of the shortest vector
that has been found so far, the algorithm will increase i and move up inside the
tree. Otherwise, the algorithm will lower i and move down in the tree. Usually,
as initial bound A for the length of the shortest vector, one uses the norm of the
first basis vector.

The next value for xi′ is selected in an interval of length
√

A−li′+1
ri′

centered
at ci′ . The interval is enumerated according to the zig-zag pattern described
in [SE91]. Starting from a central value 	ci′
, ENUM will generate a sequence
	ci′
 + 1, 	ci′
 − 1, 	ci′
 + 2, 	ci′
 − 2, . . . for the coordinate xi′ . To be able to
generate such a pattern, helper vectors Δx ∈ Zn are used. We do not require to
store Δ2x as in the orginal algorithm [SE91, PS08], as the computation of the
zigzag pattern is done in a slightly different way as in the original algorithm. For
a more detailed description of the ENUM algorithm we refer to [PS08].

3.2 Multi-thread Enumeration

Roughly speaking, the parallel enumeration works as follows. The search tree of
combinations that is explored in the enumeration algorithm can be split at a high
level, distributing subtrees among several threads. Each thread then runs an enu-
meration algorithm, keeping the first coefficients fixed. These fixed coefficients
are called start vectors. The subtree enumerations can run independently, which
limits communication between threads. The top level enumeration is performed
on CPU and outputs start vectors for the GPU threads.

When the number of postponed subtrees is higher than the number of threads
that we can start in parallel, then we copy the start vectors to the GPU and
let it enumerate the subtrees. After all threads have finished enumerating their
subtrees we proceed in the same manner: caching start vectors on CPU and start-
ing a batch of subtree enumerations on GPU. Figure 1 illustrates this approach.
The variable α defines the region where the initial enumeration is performed.
The subtrees where GPU threads work are also depicted in Figure 1.

If a GPU subtree enumeration finds a new optimal vector, it writes back the
coordinates x and the squared norm A of this vector to the main memory. The
other GPU threads will directly receive the new value for A, which will allow
them to cut away more parts of the subtree.
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Fig. 1. Illustration of the algorithm flow. The top part is enumerated on CPU, the
lower subtrees are explored in parallel on GPU. The tiny numbers illustrate which
subtrees are enumerated in the same iteration.

Early Termination. The computation power of the GPU is used best when as
many threads as possible are working at the same time. Recall that the GPU
uses warps as the basic execution units: all threads in a warp are running the
same instructions (or some of the threads in the warp are stalled in the case of
branching).

In general, more starting vectors than there are GPU threads are uploaded
in each run of the GPU kernel. This allows us to do some load balancing on the
GPU, to make sure all threads are busy. To avoid the GPU being stalled by a few
long running subtree enumerations, the GPU stops when just a few subtrees are
left. We call this process, by which the GPU stops some subtrees even though
they are not finished, early termination.

At the end of Section 3.3 details are included on the exact way early termina-
tion and our load balancing algorithm works. For now it suffices to know that,
because of early termination, some of the subtree enumerations are not finished
after a single launch of the GPU kernel. This is the main reason why the en-
tire algorithm is iterated several times. At each iteration the GPU launches a
mix of enumerations: new subtrees (start vectors) from the top enumeration and
subtrees that were not finished in one of the previous GPU launches.

3.3 The Iterated Parallel ENUM Algorithm

Algorithm 1 shows the high-level layout of the GPU enumeration algorithm.
Details concerning the updating of the bound A, as well as the write-back of
newly discovered optimal vectors have been omitted. The actual enumeration is
also not shown: it is part of several subroutines which are called from the main
algorithm.

The whole process of launching a grid of GPU threads is iterated several times
(line 2), until the whole search tree has been enumerated either on GPU or CPU.

In line 3, the top of the search tree is enumerated, to generate a set S of starting
vectors xk for which enumeration should be started at level α. More detailed, the
top enumeration in the region between α and n outputs distinct vectors

xk = [0, . . . , 0, xk,α, . . . , xk,n] for k = 1 . . .numstartpoints −#T .
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Algorithm 1. High-level Iterated Parallel ENUM Algorithm
Input: bi(i = 1, . . . , n), A, α, n

Compute the Gram-Schmidt orthogonalization of bi1

while true do2

S = {(xk,Δxk, Lk = α, sk = 0)}k ← Top enum: generate at most3

numstartpoints − #T vectors
R = {(x̄k,Δxk, Lk, sk)}k ← GPU enumeration, starting from S ∪ T4

T ← {Rk : subtree k was not finished}5

if #T < cputhreshold then6

Enumerate the starting points in T on the CPU.7

Stop8

end9

end10

Output: (x1, . . . , xn) with
∥∥∑n

i=1 xibi

∥∥ = λ1(L)

The top enumeration will stop automatically if a sufficient number of vectors
from the top of the tree have been enumerated. The rest of the top of the tree
is enumerated in the following iterations of the algorithm.

Line 4 performs the actual GPU enumeration. In each iteration, a set of
starting vectors and starting levels {xk, Lk} is uploaded to the GPU. These
starting vectors can be either vectors generated by the top enumeration in the
region between α and n (in which case Lk = α) or the vectors (and levels)
written back by the GPU because of early termination, so that the enumeration
will continue. In total numstartpoints vectors (a mix of new and old vectors)
are uploaded at each iteration. For each starting vector xk (with associated
starting level Lk) the GPU outputs a vector

x̄k = [x̄k,1, . . . , x̄k,α−1, xk,α, . . . , xk,n] for k = 1 . . .numstartpoints

(which describes the current position in the search tree), the current level Lk,
the number of enumeration steps sk performed and also part of the internal
state of the enumeration. This state {x̄k,Δxk, Lk} can be used to continue the
enumeration later on. The vectors Δxk are used in the enumeration to generate
the zig-zag pattern and are part of the internal state of the enumeration [SE91].
This state is added to the output to be able to efficiently restart the enumeration
at the point it was terminated.

Line 5 will select the resulting vectors from the GPU enumeration that were
terminated early. These will be added to the set T of leftover vectors, which will
be relaunched in the next iteration of the algorithm. If the set of leftover vectors
is too small to get an efficient GPU enumeration, the CPU takes over and finishes
off the last part of the enumeration. This final part only takes limited time.

GPU Threads and Load Balancing. In Section 3.2 the need for a load balanc-
ing algorithm was introduced: all threads should remain active and to ensure
this, each thread in the same warp should run the same instruction. One of the
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problems in achieving this, is the length difference of each subtree enumeration.
Some very long subtree enumeration can cause all the other threads in the warp
to become idle after they finish their subtree enumeration.

Therefore the number of enumeration steps that each thread can perform on
a subtree is limited by M. When M is exceeded, a subtree enumeration is forced
to stop. After this, all threads in the same warp will reinitialise: they will either
continue the previous subtree enumeration (that was terminated by reaching M)
or they will pick a new starting vector of the list S ∪ T delivered by the CPU.
Then the enumeration starts again, limited to M enumeration steps.

In our experiments, numstartpoints was around 20-30 times higher than
numthreads, which means that on average every GPU thread enumerated 20-
30 subtrees in each iteration. M was chosen to be around 50-200.

4 Experimental Results

In this section we present some results of the CUDA implementation of our
algorithm. For comparison we used the highly optimized ENUM algorithm of the
fpLLL library in version 3.0.11 from [CPS]. NTL does not allow to run ENUM
as a standalone SVP solver, but [Puj08] and the ENUM timings of [GN08b]
show that fpLLL’s ENUM runs faster than NTL’s (the bit size of the lattice bases
used in [GN08b] is higher than what we used, therefore a comparison with those
timings is to be drawn carefully).

The CUDA program was compiled using nvcc, for the CPU programs we used
g++ with compiler flag -O2. The tests were run on an Intel Core2 Extreme CPU
X9650 (using one single core) running at 3 GHz, and an NVIDIA GTX 280
graphics card. We run up to 100000 threads in parallel on the GPU. The code
of our program can be found online.1

We chose random lattices following the construction principle of [GM03] with
bit size of the entries of 10 ·n. This type of lattices was also used in [GN08b] and
[NS06]. We start with the basis in Hermite normal form and LLL-reduce them
with δ = 0.99. At the end of this section, we present some timings using BKZ-20
reduced bases, to show the capabilities of stronger pre-reduction.

Both algorithms, the enum of fpLLL (run with parameter -a svp) and our
CUDA version, always output the same coefficient vectors and therefore a lat-
tice vector with shortest possible length. We compare now the throughput of
GPU and CPU concerning enumerations steps. Section 3.1 gives the explana-
tion what is computed in each enumeration step. On the GPU, up to 200 million
enumeration steps per second can be computed, while similar experiments on
CPU only yielded 25 million steps per second. We choose α = n − 11 for our
experiments, this shapes up to be a good choice in practice. Table 1 and Figure 2
illustrate the experimental results. The figure shows the runtimes of both algo-
rithms when applied to five different lattices of each dimension. One can notice
that in dimension above 44, our CUDA implementation always outperforms the
fpLLL implementation.
1 http://homes.esat.kuleuven.be/∼jhermans/gpuenum/index.html
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Fig. 2. Timings for enumeration. The graph shows the time needed for enumerating
five different random lattices in each dimension n. It compares the ENUM algorithm
of the fpLLL-library with our parallel CUDA version.

Table 1. Average time needed for enumeration of LLL pre-reduced lattices in each
dimension n. The table presents the percentage of time that the GPU version takes
compared to the fpLLL version.

n 40 42 44 46 48 50 52 54 56 60

fpLLL - ENUM 0.96s 2.41s 17.7s 22.0s 136s 273s 2434s 6821s 137489s -
CUDA - ENUM 2.75s 4.29s 11.7s 11.4s 37.0s 63.5s 520s 1504s 30752s 274268s

286% 178% 66% 52% 27% 23% 21% 22% 22% -

Table 1 shows the average value over all five lattices in each dimension. Again
one notices that the GPU algorithm demonstrates its strength in dimensions
above 44, where the time goes down to 22% in dimensions 54 and 56 and down
to 21% in dimension 52. Therefore we state that the GPU algorithm gains big
speedups in dimensions higher than 45, which are the interesting ones in practice.
In dimension 60, fpLLL did not finish the experiments in time, therefore only
the average time of the CUDA version is presented in the table.

Table 2 presents the timing of the same bases, pre-reduced using BKZ algo-
rithm with blocksize 20. The time of the BKZ-20 reduction is not included in
the timings shown in the table. For dimension 64 we changed α (the subtree
dimension) from the usual n− 11 to α = n − 14, as this leads to lower timings
in high dimensions. First, one can notice that both algorithms run much faster

Table 2. Average time needed for enumeration of BKZ-20 pre-reduced lattices in each
dimension n. The time for pre-reduction is omitted in both cases.

n 48 50 52 54 56 58 60 62 64

fpLLL - ENUM 2.96s 7.30s 36.5s 79.2s 190s 601s 1293s 7395s 15069s
CUDA - ENUM 3.88s 5.42s 16.9s 27.3s 56.8s 119s 336s 986s 4884s

131% 74% 46% 34% 30% 20% 26% 13% 32%
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when using stronger pre-processing, a fact that was already mentioned in [HS07].
Second, we see that the speedup of the GPU version goes down to 13% in the
best case (dimension 62).

As pruning would speed up both the serial and the parallel enumeration, we
expect the same speedups with pruning.

It is hard to give an estimate of the achieved speedup compared to the number
of threads used: since GPUs have hardware-based scheduling, it is not possible
to know the number of active threads exactly. Other properties, like memory
access and divergent warps, have a much greater influence on the performance
and cannot be measured in thread counts or similar figures. When comparing
only the number of double fmadds, the GTX 280 should be able to do 13 times
more fmadd’s than a single Core2 Extreme X9650.2 Based on our results we fill
only 30 to 40% of the GPUs ALUs. Using the CUDA Profiler, we determine that
in our experiments around 12% of branches was divergent, which implies a loss
of parallelism and also some ALUs being left idle. There is also a high number of
warp serializations due to conflicting shared and constant memory access. The
ratio warp serializations/instructions is around 35%.

To compare CPUs and GPUs, we can have a look at the cost of both platforms
in dollardays, similar to the comparison in [BCC+09]. We assume a cost of
around $2200 for our CPU (quad core) + 2x GTX295 setup. For a CPU-only
system, the cost is only around $900. Given a speedup of 5 for a GPU compared
to a CPU, we get a total speedup of 24 (4 CPU cores + 4 GPUs) in the $2200
machines and only a speedup of 4 in the CPU-only machine, assuming we can
use all cores. This gives 225 · t dollardays for the CPU-only system and only
91 · t dollardays for the CPU+GPU system, where t is the time. This shows that
even in this model of expense, the GPU implementation gains an advantage of
around 2.4.

5 Further Work

Further improvements are possible using multiple CPU cores. Our implementa-
tion only uses one CPU core for the top enumeration and the rest of the outer
loop of the enumeration. During the subtree enumerations on the GPU, the main
part of the algorithm, the CPU is not used. When the GPU starts a batch of
subtree enumerations it would be possible to start threads on the CPU cores as
well. We expect a speedup of two compared to our actual implementation using
this idea.

It is possible to start enumeration using a shorter starting value than the first
basis vectors norm. The Gaussian heuristic can be used to predict the norm of the
shortest basis vector λ1. This can lead to enormous speedups in the algorithm.
We did not include this improvement into our algorithm so far to get comparable
results to fpLLL.
2 A GTX280 can do 30 double fmadds in a 1.3GHz cycle, a single Core2 core can do

2 double fmadds in every two 3GHz cycle, which gives us a speedup of 13 for the
GTX280.



Parallel Shortest Lattice Vector Enumeration on Graphics Cards 65

Acknowledgments

We thank the anonymous referees for their valuable comments. We thank Özgür
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[CPS] Cadé, D., Pujol, X., Stehlé, D.: fpLLL - a floating point LLL implementa-
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Abstract. Recent developments in multivariate polynomial solving al-
gorithms have made algebraic cryptanalysis a plausible threat to many
cryptosystems. However, theoretical complexity estimates have shown
this kind of attack unfeasible for most realistic applications. In this pa-
per we present a strategy for computing Gröbner basis that challenges
those complexity estimates. It uses a flexible partial enlargement tech-
nique together with reduced row echelon forms to generate lower degree
elements–mutants. This new strategy surpasses old boundaries and obli-
gates us to think of new paradigms for estimating complexity of Gröbner
basis computation. The new proposed algorithm computed a Gröbner ba-
sis of a degree 2 random system with 32 variables and 32 equations using
30 GB which was never done before by any known Gröbner bases solver.

Keywords: Algebraic cryptanalysis, Gröbner basis, Complexity, HFE.

1 Introduction

The standard way to represent the polynomial ideal is to compute a Gröbner
basis of it. Solving a system of multivariate polynomial equations is one of the
most important application of Gröbner bases. The complexity of algorithms
for computing a Gröbner basis of an ideal depends on how large the subset of
elements of the ideal used during the computation is. Minimizing the size of this
subset is an extremely important target for research in this area.

Suppose P is a finite set of degree 2 polynomials. For d ≥ 2 consider the set

Hd := {t · p | t is a term, p ∈ P, deg(tp) ≤ d} (1)

It is well known that for d large enough, a row echelon form of Hd is a Gröbner
basis for 〈P 〉 (see Section 1.1 for a definition of row echelon form and other
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notations used in this introduction). However, systems that appear in algebraic
cryptanalysis and their corresponding degrees needed to solve them are so large,
that constructing Hd is unfeasible. Usually memory is the main constraint. A
key strategy we have been and are following is to explore and do computation in
Hd for large enough d, but without storing the whole set Hd at any given time.

A first breakthrough came with the concept of mutant polynomials [4,5]. In-
formally, a polynomial p is called mutant, if p ∈ span(Hd) \ span(Hd−1) but its
degree is strictly less than d. If x is a variable, then the polynomial xp belongs
to span(Hd+1), however, since its degree is less than d+1 we can reduce it using
only elements from Hd.

A second breakthrough came with the partial enlargement technique [9]. By
partitioning the set X×Hd according to leading variables, it is possible to explore
Hd+1 one step at a time without being forced to store the whole set at once. In [8]
the MXL3 algorithm was introduced which uses an optimized mutant strategy,
the partial enlargement technique and a mutant based termination criterion.

In this paper we introduce an efficient algorithm, called Mutant-based Gröbner
Basis algorithm (MGB), that uses a more flexible partial enlargement to omit
some parts of Hd and still satisfies MXL3’s criterion. Similar heuristics were at-
tempted by Gotaishi and Tsujii in [7]. The MGB algorithm is fully implemented in
C++. We give experimental results that compare the performance of MGB with
both MXL3 and the Magma’s implementation of F4 algorithm [6]. Our experi-
ments are based on randomly generated MQ systems and HFE cryptosystems.
We show that MGB computed a Gröbner basis of a degree 2 random system with
32 variables and equations in 2.3 days using only 30 Gigabytes.

This paper is organized as follows. In Section 2 we discuss the theoretical
foundation of the new proposed algorithm. In Section 3 we present the MGB
algorithm and exemplify its operation in Section 4. A complexity analysis of the
algorithm is discussed in Section 5 and experimental results are presented in
Section 6. Finally, we conclude the paper and give the future work in Section 7.
Before continuing let us introduce the necessary notation.

1.1 Notation

Let X := {x1, . . . , xn} be a set of variables, upon which we impose the following
order: x1 > x2 > . . . > xn. (Note the counterintuitive i < j imply xi > xj .) Let

R = F2[x1, . . . , xn]/〈x2
1 − x1, ..., x

2
n − xn〉

be the Boolean polynomial ring in X with the terms of R ordered by the graded
lexicographical order <glex. We represent an element of R by its minimal repre-
sentative polynomial over F2 where degree of each term w.r.t any variable is 0
or 1. We denote by Td(xj1 , . . . , xjs) the set of terms of degree d in the variables
xj1 , . . . , xjs , and by Td all the terms of degree d.

Let P = {p1, . . . , pm} be set of polynomials in R. A row echelon form is simply
a basis for span(P ) with pairwise distinct head terms, (see [8] for definition). We
will denote by P(op)d the subset of all the polynomials of degree (op)d in P , where
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(op) is any of {=, <,>,≤,≥}. We define the leading variable of p ∈ P , denoted
by LV(p), as the largest variable in HT(p) according to the order defined on the
variables set.

Suppose that all polynomials in P are of degree d. We define Pxj as the
set of all polynomials in P with leading variable xj , so that P is partitioned
in n sets Px1 , . . . , Pxn . We refer to these sets as variable-partitions. Given a
pair (x, p) in the Cartesian product X × P , we define its leading variable to be
LV(x, p) := max(x,LV(p)) (note that in general LV(x, p) �= LV(xp)). Consider
also the partition of the Cartesian product X × P in n sets, L1(P ), . . . , Ln(P )
defined by

Lj(P ) := {(x, p) ∈ X × P | LV(x, p) = xj} , (2)

and note that that for (x, p) ∈ Lj(P ), LV(xp) ≤ xj or deg(xp) < d + 1.

2 A More Flexible Partial Enlargement

The partial enlargement technique introduced first in [9] is effective in reducing
the number of polynomials needed at the highest degree D where mutants start
to appear. However, it offers no advantage over generating the whole set Hd for
d < D (as defined in equation (1)). We propose a method for systematically
omitting subsets of Hd whenever a given condition is met. In this section we
provide the theoretical foundation for this method.

The partial enlargement technique introduced in [9] can be described as fol-
lows. Let P2 be a finite set of degree 2 polynomials in R and assume P2 is in
row echelon form. Initialize the set G with P2. Then, enlarge P2 one variable at
a time, i.e., for j = n, n− 1, . . . , 1 (in that order), construct the set Lj(P2), then
append the set {xp | (x, p) ∈ Lj(P2)} to G and compute a row echelon form of
G. If no mutants are found in G, make P3 the set of new polynomials in G and
repeat the process for P3 only.

While no mutants are produced, we produce a sequence of sets P2, P3, . . .
such that for p ∈ Pd, deg(p) = d and span(Pd) = span(Hd). We have observed,
that often, the largest variable-partitions of each Pd are full, meaning that they
have as many linearly independent polynomials as they can possibly have. So,
there exist Jd < n such that for all term t ∈ Td such that LV(t) ≥ xJd

, there
exist p ∈ Pd such that t = HT(p). Note that if the j partition of Pd is full,
necessarily the j partition for Pd+1 is also full. Hence, the sequence J2, J3, . . . is
non-decreasing.

If the j partition of Pd is full, we propose to omit the j partition from any
subsequent PD (D > d), under the certainty that it will be full. The problem is
that when mutants appear, it is possible that the head term of a mutant happens
to be precisely one of the omitted head terms, thus failing to be completely
reduced, in the sense that its head term is already in the ideal generated by the
head terms of the elements in G.

To remedy this situation, we compute row reduced echelon forms instead of
just any row echelon form, by means of which, we are able to perform reductions
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in advance, and ensure polynomials are fully reduced with respect to the omitted
partitions. The following proposition states this result precisely.

Proposition 1. Let Pd be a finite subset of degree d polynomials from K[x ] in
row-echelon form. Suppose there exist J < n such that for all term t ∈ Td such
that LV(t) ≥ xJ , there exist p ∈ Pd such that t = HT(p). Let

G := Pd ∪
n⋃

j=J+1

{xp | (x, p) ∈ Lj(Pd)} ,

G̃ the row reduced echelon form of G and

Pd+1 := {p ∈ G̃ | deg(p) = d + 1} .

Then for j > J , (x, p) ∈ Lj(Pd+1) and any term s ∈ Td+1 such that LV(s) ≥ xJ ,
the term s is not a term in xp.

Proof. Let j > J , (x, p) ∈ Lj(Pd+1) and s ∈ Td+1 such that LV(s) ≥ xJ .
From the definitions of G and Pd+1, all terms of degree d + 1 in p belong to
Td+1(xJ+1, . . . , xn) thus s is not a term in p.

Since Pd+1 is a subset of G̃, the row reduced echelon form of G, and all terms
of degree d with leading variables ≥ xJ appear as head term of an element of
Pd ⊂ G, then such terms do not appear in p, i.e. all terms of degree d in p are
elements of Td(xJ+1, . . . , xn). Moreover, x < xJ since j > J , hence, there is no
term t in p with degree d that satisfies xt = s. Therefore, s is not a term in xp.

The importance of this proposition is that the polynomials of degree d + 1 with
leading variables x1, . . . , xJ are not needed to reduce polynomials coming from
Lj(Pd+1) for j > J . Hence, when enlarging P we may omit the polynomials
coming from L1(P ), . . . , LJ(P ). This does not imply that this polynomials are
not needed ever again, but just that their computation can be postponed yet
obtaining sets of polynomials row reduced with respect to this missing polyno-
mials. This observation leads to the heuristic strategy described in the following
section. Section 4 illustrates the operation of the algorithm.

3 The MGB Algorithm

In this section we introduce the MGB algorithm to compute Gröbner bases over
the function ring R under the graded lexicographic order. The MGB is based on
the MXL3 algorithm [8], and differs in a heuristic method to omit some variable-
partitions based on the flexible partial enlargement explained in Section 2. The
heuristic consists in enlarging up to the first full partition. By this way many
partitions are omitted, yet enough polynomials are enlarged.

Algorithms 1, 2, 3 and 4 provide a detailed description of the MGB algorithm.
The most important difference with MXL3 is the extra condition

|P=D−1(x1, . . . , x)| = |T=D−1(x1, . . . , x)|
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in line 20 of the Enlarge subroutine (Algorithm 4). It means that all the terms
of degree D − 1 with leading variable ∈ x1, . . . , x appear as leading terms in P .
When the condition is met, the flag newExtend is set to true, which forces D
to be increased in the next call to Enlarge.

Throughout the operation of the algorithm a degree bound D is used. This
degree bound denotes the maximum degree of the polynomials contained in P .
An elimination degree bound ED is used as a bound for the degrees of poly-
nomials in P that are being eliminated. RREF(P,ED) means the reduced row
echelon form of P≤ED. We mean by the new elements the set of all polynomi-
als produced during the previous enlargement. The set M stores the mutants
obtained during the Echelonization process. We define the array S to keep the
the largest leading variable at each degree level. Note that the content of P is
changed throughout the operation of the algorithm.

Algorithm 1. Algorithm1(P )
Require: P is a finite sequence from R
1: D = max{deg(p) | p ∈ P}
2: ED = D
3: M = ∅
4: S = {si = x1 : 1 ≤ i ≤ D}
5: x = x1

6: newExtend = true
7: loop
8: Echelonize(P, M, ED)
9: G =Gröbner(P, M, D, ED)

10: if G �= ∅ then
11: return G
12: end if
13: Enlarge(P, M, S, x, D, ED, newExtend)
14: end loop

Algorithm 2. Echelonize(P,M,ED)
1: Consider each term in P as a new variable
2: P = RREF(P,ED)
3: M = {p ∈ P : P is a new element and deg(p) < ED }

On an actual implementation we do not compute the full row reduced echelon
form of the constructed matrix in each step. For the columns corresponding to
highest degree terms we only clear entries under the pivot. For the rest of the
columns we clear above and below the pivot. The idea of using the full reduction
in this case is creating the vertical hole of the unextended partitions as explained
in the previous section and illustrated in the next section.
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Algorithm 3. Gröbner(P,M, S,D,ED)
1: G = ∅
2: if M<ED = ∅ and (ED < D or newExtend = true) then
3: s = S[ED − 1]
4: if |P=ED−1| = |T=ED−1(s, . . . , xn)| then
5: if s < x1 then
6: Recover(P, ED, S)
7: end if
8: G = P<ED

9: end if
10: end if
11: return G

Algorithm 4. Enlarge(P,M, S, x,D,ED, newExtend)
1: if M �= ∅ then
2: k = min{deg(p): p ∈ M}
3: Select a necessary number of mutants NM from M=k

4: y = max{LV(p) : p ∈ NM}
5: Multiply selected mutants by all variables ≤ y
6: Remove the selected mutants from M
7: Add the new polynomials to P
8: ED = k + 1
9: else

10: if newExtend then
11: D = D + 1
12: x = min{LV(p) : p ∈ P=D−1}
13: newExtend = false
14: else
15: x = min{LV(p) : p ∈ P=D−1 and LV(p) > x}
16: end if
17: S[D] = x
18: Multiply all p ∈ PD−1 that has leading variable x by all the variables ≤ x

without redundancy
19: Add the newly obtained polynomials to P
20: if |P=D−1(x1, . . . , x)| = |T=D−1(x1, . . . , x)| or (x = x1) then
21: newExtend = true
22: end if
23: Set ED = D
24: end if

The Recover function in line 6 of Algorithm 3 enlarges all partitions of P≤Ed

that were omitting during the enlargement process and echelonizes P . Also, it
multiplies any mutants found.

The correctness of the MGB algorithm is guaranteed by the following propo-
sition, first stated and proved in [8].
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Proposition 2. Let G be a finite subset of R with D being the highest degree of
its elements. G is a Gröbner basis if it satisfies the following conditions:

1. G contains all the terms of degree D as leading terms; and
2. if H := G ∪ {t · g | g ∈ G, t a term and deg(t · g) ≤ D + 1}, there exists H̃,

a row echelon form of H, such that H̃≤D = G,

The MGB algorithm terminates only when it returns the set G = P<ED that is
computed by the Gröbner subroutine. We are going now to prove that G is a
Gröbner basis of the ideal generated by P .

The first if statement of Algorithm 3, line 2, guarantees the second condition
of Proposition 2 since all the polynomials up to degree ED − 1 are extended
one degree more without producing any mutants (M<ED = ∅). The second if
statement of Algorithm 3, line 4, represents a second difference from MXL3. It
means that all the terms of leading variable ∈ s, . . . , xn appear as leading terms
in P=Ed−1. This will guarantee the first condition of Proposition 2 as follows.

In case of s = x1, P<ED contains all terms of degree ED−1 as leading terms.
In case of s < x1, MGB needs to recover P≤ED as explained above. This leads to
satisfying the two conditions of Proposition 2 since these unextended partitions
have full rank.

Therefore MGB returns the set G = P<ED that satisfies the two conditions of
Proposition 2. Then it is a Gröbner basis. The worst case of MGB is to reproduce
the MXL3 algorithm. So MGB terminates since MXL3 terminates, theorem 1 in
[8]. As an important note, for the experiments run so far, the recovering process
was never necessary.

4 The Algorithm in Action

We describe the behavior of the algorithm in a concrete example, a sequence of
24 degree 2 polynomials in 24 variables. We refer to Figure 1 for a schematic
representation of the process.

After Echelonization, the leading variables of the original polynomials range
from x1 to x2 as depicted at the bottom of Figure 1. Then, the x1 and x2 partitions
are enlarged and echelonized to obtain degree 3 polynomials with leading variables
ranging from x1 to x3. Here we encounter that the variable partitions for x1 and
x2 are full and we represent it with the darker shading in Figure 1.

So in the next step, only the x2 and x3 partitions are enlarged to degree 4.
After Echelonization we obtain polynomials of degree 4 with leading variables
ranging from x2 to x5. Note that since the two partitions x1 and x2 of degree 3
polynomials are full, no term with leading variable x1 or x2 of degree 3 appears
in the degree 4 polynomials. This is depicted in Figure 1 with vertical stripes.

At degree 4, the variable partitions corresponding to x2, x3 and x4 are full,
so only the x4 and x5 partitions are enlarged to degree 5. After Echelonization,
we obtain polynomials of degree 5 with leading variables ranging from x4 to x12.
Note that by Proposition 1, no term with leading variable x1 of degree 4 appears
in the degree 5 polynomials, and Echelonization clears x2 through x4.
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Fig. 1. Behavior of the algorithm for a sequence of 24 degree 2 equations in 24 variables.
Horizontal stripes represent variable-partitions, darker ones are full. Vertical stripes
represent terms that do not appear in the given polynomials.

At degree 5, the variable partitions from x4 to x11 are full, so only the x11
and x12 partitions are enlarged to degree 6. In fact, once the x12 partition is
enlarged and echelonized, mutants are produced and after a few steps of enlarging
mutants and echelonization, we arrive at a situation in which the MXL3 criterion
is satisfied and the algorithm terminates.

5 Complexity Analysis

Studies of the complexity of Gröbner basis computation have mostly focused
on the maximum degree of the polynomials that occur during computation. For
example, [2] provides an exact formula for computing the degree of regularity
(Dreg) of a homogeneous semi-regular sequence. In the case of a somehow generic
sequence, this degree coincides with the maximum degree of the polynomials that
occur during computation using the F5 algorithm. If the system is homogeneous,
they argue that linear algebra over a square matrix of size the number of terms
of degree Dreg would solve the system and use this as an upper bound. This line
of argument is sound in the case of a homogeneous semi-regular sequence.

For non-homogeneous semi-regular sequences we should add the lower degree
terms to obtain

Dreg∑
d=0

(
n

d

)
The algorithm proposed in this paper puts in question the sharpness of this bound.
For example, in Section 4 we described the behavior of the algorithm for a random
system of 24 degree 2 polynomials in 24 variables, in which the size of the largest
matrix produced by the new algorithm was 26 409× 33 245. This contrasts with
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Fig. 2. Experimental results compared with number of terms at the degree of regularity

the number of terms up to degree 6 in 24 variables which is 190 051. Such small
size was achieved because some partitions were omitted at different degrees and
as a consequence some terms never appeared in the computation.

The complexity of the algorithm presented in this paper depends not only on
the highest degree D of the system and the number of variables n, but also on
the sequence n1, n2, . . . , nD of variables omitted at each degree d. The number
of columns of the largest matrix is given by

D∑
d=1

(
n− nd

d

)
+ 1

Figure 2 compares matrix size estimated solely based on degree of regularity with
experimental results. It shows a significant gap between the number of terms up
to degree Dreg and the number of columns of the new algorithm and even that
of the F4 algorithm (for a more complete report on the results see Section 6).

Although we don’t have a way to predict or even estimate the sequence
n1, n2, . . . , nD, It is very clear in this case that omitting substantial number
of partitions could drastically change the complexity to solve the corresponding
system, however it remains very speculative how this will really work and we
will explore this case in a subsequent paper.

6 Experimental Results

We present our experiments to compare the efficiency of MGB with both MXL3
and F4 algorithms. We tested them with random systems generated by Courtois
[3] and HFE systems generated by the code of John Baena. We run all the
experiments in a Sun X4440 server, with four “Quad-Core AMD OpteronTM

Processor 8356” CPUs and 128 GB of main memory. Each CPU is running at
2.3 GHz. We used only one out of the 16 cores.

Tables 1 and 2 show the main experiments of dense random systems with
many solutions and the experiments of HFE systems of univariate degree 288,
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Table 1. Experiments for dense random systems

F4 MXL3 MGB
n D max. matrix D max. matrix D max. matrix
24 6 207150×78637 6 50367×57171 6 26409×33245
25 6 248495×108746 6 66631×76414 6 37880×47594
26 6 298592×148804 6 88513×102246 6 55063×67815
27 6 354189×197902 6 123938×140344 6 92296×99518
28 6 420773×261160 6 201636×197051 6 132918×148976
29 6 499222×340254 6 279288×281192 6 173300×224941
30 6 1283869×374081 6 332615×351537 6 265298×339236
31 6 868614×489702 6 415654×436598 6 349778×381382
32 ran out of memory ran out of memory 7 437172×507294

Table 2. Experiments for HFE(288,n) systems

F4 MXL3 MGB
n D max. matrix D max. matrix D max. matrix
30 5 149532×136004 5 86795×130211 5 68468×109007
35 5 200302×321883 5 155914×296872 5 116737×254928
36 5 219438×382252 5 173439×344968 5 125133×297503
37 5 247387×444867 5 192805×399151 5 142460×345635
38 5 274985×512311 5 212271×459985 5 153181×399855
39 5 305528×588400 5 234111×528068 5 171985×460727
40 ran out of memory 5 258029×604033 5 192506×528849
49 ran out of memory 5 561972×1765465 5 371368×1584984
50 ran out of memory ran out of memory 5 382392×1766691
51 ran out of memory ran out of memory 5 410169×1964756

respectively. We denote the number of variables and equations by n and the
highest degree of the iteration steps by D. We also show the maximum matrix
size. It is evident from Table 1 and 2 how the new strategy improves MXL3.

Figure 3 displays a comparison between MGB, MXL3 and F4 in terms of
space and time. It is clear from Figure 3(a) that the MGB algorithm uses less
memory than both MXL3 and Magma’s F4 since it constructs smallest matrices.
However, it is not much faster than MXL3 in terms of the size of the system
becomes bigger as shown in Figure 3(b). The reason is that the new algorithm
uses a row-reduced echelon form while MXL3 uses only the row echelon form.
Also, the gap between MGB and MXL3 becomes a little smaller as the size of
the system increased.

Table 3 shows the detailed result of computing a Gröbner basis of a dense
random system with 32 variables by MGB. For each step we give the degree
(D), the matrix size, the rank of the matrix (Rank), a set of leading variable
of the level partitions, the number of variables in the degree D terms (nD),
the number of lowest degree mutants found (NM), the number of used mutants
(UM), and finally the lowest degree of mutants found (MD).
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(a) Memory in megabyte

(b) Time in seconds

Fig. 3. Comparison between MGB, MXL3, and F4 for dense random systems

Table 3. Results for the system Random-32 with the MGB algorithm

Step D Matrix Size Rank partitions nD NM UM MD
1 2 32×529 32 {x1, x2} 32 0 0 -
2 3 1056×5489 1056 {x1, x2, x3} 32 0 0 -
3 4 11798×36954 11776 {x2, x3, x4} 31 0 0 -
4 5 93534×179460 91378 {x3, . . . , x7} 30 0 0 -
5 6 389286×475470 372679 {x6, . . . , x16} 27 0 0 0
6 7 437172×507294 437172 {x15, . . . , x26} 18 21445 2158 5
7 6 305685×314056 305685 {x9, . . . , x27} 24 18589 199 4
8 5 175490×179460 175490 {x3, . . . , x28} 30 3910 16 3
9 4 36875×36954 36875 {x2, . . . , x29} 31 6 1 1
10 2 535×529 528 {x1, . . . , x31} 32 25 0 1

Table 3 explains how the MGB algorithm works. As the degree D is going up
the number of variables in degree D terms goes down. Starting from step 3, the
number of variables of degree 4 terms starts to decrease. At step 6 the degree of
the system reaches 7 by extending only two partitions of degree 6 polynomials
(x15, x16), while the number of variables in degree 7 terms is only 18. The system
starts to generate mutants. It generates 21445 mutants of degree 5. Only 2158 of
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them are used. All of these mutants have leading variable x9. So by multiplying
them with variables ≥ x9, we have new polynomials of degree 6 with leading
variables at most x9. We do not multiply mutants by x6, x7, and x8 since their
partitions are not needed in the Gaussian elimination of step 7. This leads to
decreasing the dimension of the matrix of the step. The system continuously
generates low degree mutants until 6 linear mutants are produced at step 9.
Another 25 linear ones are generated at step 10. By multiplying all mutants of
degree ≤ 2, the system does not produce more mutants which in turn leads to a
Gröbner basis of the ideal generated by the initial 32 polynomials.

For F4, we used Magma version V2.13-10 implementation of Faugère’s F4
algorithm which is considered the best available implementation of F4. When
we use the new version of Magma (V2.16), we found no big difference between
them. the new version is worse in terms of memory, while it is a little bit faster.
For both, the MGB algorithm and the MXL3 algorithm, we used our C++
implementation. For the Echelonization step, we used an adapted version of
M4RI [1], the dense matrix linear algebra over F2 library. Our adaptation was
in changing the strategy of selecting the pivot during Gaussian elimination to
keep the old elements in the system intact. We use the M4RI method that has
complexity O(n3/logn) [1].

7 Conclusions and Future Work

This paper presents a new strategy to improve algorithms to compute efficiently
Gröbner bases. This new strategy is to use a more flexible partial enlargement
technique that avoids computing polynomials at different degrees. As the first
application of this strategy, we produced a new algorithm that has the ability of
computing Gröbner bases more efficiently than the MXL3 algorithm, which al-
ready performed better than the F4 in Magma. Our experiments confirm that the
new proposed algorithm is substantially better than MXL3 and F4 algorithms in
both randomly generated instances of MQ and HFE systems and the experiment
data also suggests that the complexity of the new algorithm challenges known
theoretical estimates. Our preliminary complexity analysis of this new algorithm
suggested that this new strategy may change substantially our thinking on the
hardness of computing Gröbner bases and this new strategy of flexible partial
enlargement may leads to new paradigms in Gröbner bases computation.

We plan to study the connection between the complexity of the algorithm
presented in this paper and the complexity of other Gröbner bases algorithms.
We are working on a priory complexity estimates for the algorithm and secu-
rity levels of various cryptosystems based on this new algorithm. We are also
experimenting with other heuristics that exploit the new strategy.
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Abstract. This paper discusses the factorization of the RSA modulus
N (i.e., N = pq, where p, q are primes of same bit size) by reconstructing
the primes from randomly known bits. The reconstruction method is a
modified brute-force search exploiting the known bits to prune wrong
branches of the search tree, thereby reducing the total search space to-
wards possible factorization. Here we revisit the work of Heninger and
Shacham in Crypto 2009 and provide a combinatorial model for the
search where some random bits of the primes are known. This shows
how one can factorize N given the knowledge of random bits in the least
significant halves of the primes. We also explain a lattice based strategy
in this direction. More importantly, we study how N can be factored
given the knowledge of some blocks of bits in the most significant halves
of the primes. We present improved theoretical result and experimental
evidences in this direction.

Keywords: Factorization, Prime reconstruction, Random known bits,
RSA.

1 Introduction

The RSA [12] public key cryptosystem uses two primes p, q (usually of the same
bit size, i.e., q < p < 2q or p < q < 2p). The RSA modulus is N = pq. The
factorization of N cannot be done efficiently on classical computational model
without the knowledge of p, q, and this provides the security of RSA. However,
there may be different possibilities to know partial information regarding the
secret parameters (through side channel attacks, say) and it is necessary to
study how that can affect the security of a cryptosystem. In addition, the basic
problem of integer factorization is of great interest in literature.

An extensive amount of research has been done in RSA factorization and we
refer the reader to the survey papers by Boneh [1] and May [10] for a complete
account. One major class of RSA attacks exploit partial knowledge of the RSA
secret keys or the primes. Rivest and Shamir [11] pioneered these attacks using
Integer Programming and factored RSA modulus given two-third of the LSBs of a
factor. This result was improved in the seminal paper [4] by Coppersmith, where
factorization of the RSA modulus could be achieved given half of the MSBs of
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a factor. His method used LLL [9] lattice reduction technique to solve for small
solutions to modular equations. This method triggered a host of research in
the field of lattice based factorization, e.g., the works by Howgrave-Graham [7],
Jochemsz and May [8].

These attacks require knowledge of contiguous blocks of bits of the RSA secret
keys or the primes. In a different model, one may not get contiguous blocks,
but may gain the knowledge of random bits of the RSA secret keys through
cold boot or other side channel attacks. In [6], it has been shown how N can
be factored with the knowledge of a random subset of the bits (distributed
over small contiguous blocks) in one of the primes. Later, a similar result has
been studied by Heninger and Shacham [5] to reconstruct the RSA private keys
given a certain fraction of the bits, distributed at random. This is the work [5]
where the random bits of both the primes are considered unlike the earlier works
(e.g., [4,2,6]) where knowledge of the bits of a single prime have been exploited.

This paper studies how the least (respectively most) significant halves of the
RSA primes can be completely recovered from some amount of randomly chosen
bits from the least (respectively most) significant halves of the same. Thereafter
one can exploit the existing lattice based results towards factoring the RSA
modulus N = pq when p, q are of the same bit size. It is possible to factor
N in any one of the following cases in poly(logN) time: (i) when the most
significant half of any one of the primes is known [4, Theorem 4], (ii) when the
least significant half of any one of the primes is known [2, Corollary 2.2].

Road Map. In Section 2, we analyze the algorithm of [5] using a combinatorial
model for reconstruction. The knowledge of random prime bits and existing
lattice based method [2] allows us to factor N efficiently given certain fraction of
the bits of p and q, namely about 0.5 fraction of the bits from the least significant
halves of the primes when N is 1024 bits. In certain cases, the strategy presented
in Section 2 does not work well. To overcome this, we present a lattice based
strategy in Section 3. More importantly, we propose in Section 4 an idea to
reconstruct the upper half of a prime using the knowledge of certain fraction
of bits in p and q. Once one obtains the top half of any one of the primes, the
factorization of N is possible using existing lattice based method [4]. Theoretical
results as well as extensive experimental evidences are presented to corroborate
our claims.

2 The LSB Case: Combinatorial Analysis of [5]

In this section, we analyze the reconstruction algorithm by Heninger and
Shacham [5, Section 3] from combinatorial point of view. Though the algorithm
extends to all relations among the RSA secret keys, we shall concentrate our
attention to the primary relation N = pq for the sake of factorization. The algo-
rithm is a smart brute-force method on the total search space of unknown bits
of p and q, which prunes the solutions those are infeasible given the knowledge
of N and some random bits of the primes. Henceforth, we shall denote by lN the
bit size of N , i.e, lN = �log2 N
.
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2.1 The Reconstruction Algorithm

Definition 1. Let us define X [i] to be the i-th bit of X with X [0] being the LSB.
Also define Xi to be the partial approximation of X through the bits 0 to i.

Then Algorithm 1 (described below) creates all possible pairs (pi, qi) by append-
ing (p[i], q[i]) to the partial solutions (pi−1, qi−1) and prunes the incorrect ones
by checking the validity of the available relation. A formal outline of Algorithm 1,
which retrieves the least significant t many bits of both p, q, is as follows. It is
easy to see that the correct partial solution till the t many LSBs will exist in the
set of all pairs (pt−1, qt−1) found from Algorithm 1.

Input: N, t and p[i], q[j], for some random values of i, j
Output: Contiguous t many LSBs of p, q
Initialize: i = 1 and p0 = p[0] = 1, q0 = q[0] = 1 (as both are odd);1

for all (pi−1, qi−1) do2

for all possible (p[i], q[i]) do3

pi := APPEND(p[i], pi−1);4

qi := APPEND(q[i], qi−1);5

if N ≡ piqi (mod 2i+1) then6

ADD the pair (pi, qi) at level i;7

end

end

end
if i < t − 1 then8

i := i + 1;9

GOTO Step 2;10

end
REPORT all (pt−1, qt−1) pairs;11

Algorithm 1. The search algorithm

As one may notice, there are at most 4 possible choices for (p[i], q[i]) branches
at any level i. Algorithm 1 works with all possible combinations of the bits
p[i], q[i] at level i and hence one may want to obtain a relation between p[i] and
q[i] in terms of the known values of N, pi−1, qi−1 so that it poses a constraint on
the possibilities. Heninger and Shacham [5, Section 4] uses Multivariate Hensel’s
Lemma to obtain such a relation

p[i] + q[i] ≡ (N − pi−1qi−1)[i] (mod 2). (1)

Now, this linear relation between p[i], q[i] restricts the possible choices for the
bits. Thus, at any level i, instead of 4 possibilities, the number cuts down to 2.

If we construct the search tree, then these possibilities for the bits at any
level give rise to new branches in the tree. The tree at any level i contains all
the partial solutions pi, qi up to the i-th LSB (the correct partial solution is one
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among them). It is quite natural to restrict the number of potential candidates
(i.e., the partial solutions) at any level so that the correct one can be found
easily by exhaustive search among all the solutions and the space to store all
these solutions is within certain feasible limit. This calls for restricting the width
of the search tree at each level. Let us denote the width of the tree at level i by
Wi. Now we take a look at the situations (depending on the knowledge of the
random bits of the primes) that control the branching behavior of the tree.

2.2 Growth of the Search Tree

Consider the situation where we have a pair of partials (pi−1, qi−1) and do not
have any information of (p[i], q[i]) in Step 3 of Algorithm 1. Naturally there are
4 options, (0, 0), (0, 1), (1, 0) and (1, 1) for getting (pi, qi). However, Equation (1)
and the knowledge of N , pi−1, qi−1 impose a linear dependence between p[i], q[i]
and hence restrict the number of choices to exactly 2. If (N−pi−1qi−1)[i] = 0 then
we have p[i] + q[i] ≡ 0 (mod 2) and (N − pi−1qi−1)[i] = 1 implies p[i] + q[i] ≡ 1
(mod 2). Hence the width of the tree at this level will be twice the width of the
tree at the previous one, as shown in Figure 1.

Fig. 1. Branching when both the bits p[i], q[i] are unknown

Next, let us have a look at the situation when exactly one of p[i], q[i] is known.
First, the number of branches restricts to 2 by Equation (1), as discussed before.
Moreover, the knowledge of one bit fixes the other in this relation. For example,
if one knows the value of p[i] along with N, pi−1, qi−1 in Equation (1), then q[i]
gets determined. Thus the number of choices for p[i], q[i] and hence the number
of pi, qi branches reduces to a single one in this case. This branching, which keeps
the tree-width fixed, may be illustrated as in Figure 2 (p[i] = 0 is known, say).

Though the earlier two cases are easy to understand, the situation is not so
simple when both p[i], q[i] are known. In this case, the validity of Equation (1)
comes under scrutiny. If we fit in all the values p[i], q[i], N, pi−1, qi−1 in Equation
(1) and it is satisfied, then we accept the new partial solution pi, qi at level
i and otherwise we do not. In the case where neither of the possibilities for
pi, qi generated from pi−1, qi−1 satisfy the relation, we discard the whole subtree
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Fig. 2. Branching when exactly one bit of p[i], q[i] is known

rooted at pi−1, qi−1. Thus, the pruning procedure not only discards the wrong
ones at level i, but also discards subtrees from level i − 1, thereby narrowing
down the search tree. An example case (p[i] = 0 and q[i] = 1 are known, say)
may be presented as in Figure 3.

Fig. 3. Branching when both the bits p[i], q[i] are known

Based on our discussion so far, let us try to model the growth of the search
tree following Algorithm 1. As both p, q are odd, we have p[0] = 1 and q[0] = 1.
Thus the tree starts from W0 = 1 and the expansion or contraction of the tree
at each level can be modeled as follows.

– p[i] = UNKNOWN, q[i] = UNKNOWN: Wi = 2Wi−1.
– p[i] = KNOWN, q[i] = UNKNOWN: Wi = Wi−1.
– p[i] = UNKNOWN, q[i] = KNOWN: Wi = Wi−1.
– p[i] = KNOWN, q[i] = KNOWN: Wi = γiWi−1.

Here, we assume that the tree narrows down to a γi fraction (0 < γi ≤ 1) from
the earlier level if both the bits of the primes are known. One may note that
Heninger and Shacham [5, Conjecture 4.3] conjectures the average value of γi

(call it γ) to be 1
2 . We shall discuss this in more details later.
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Suppose that randomly chosen α fraction of bits of p and β fraction of bits
of q are known (by some side channel attack, e.g., cold boot). Then the joint
probability distribution table for the bits of the primes will be as follows.

↓ q[i], p[i] → UNKNOWN KNOWN
UNKNOWN (1 − α)(1 − β) α(1 − β)

KNOWN (1 − α)β αβ

As shown before, the growth of the search tree depends upon the knowledge of
the bits in the primes. Hence, we can model the growth of the tree as a recursion
on the level index i:

Wi = (1− α)(1 − β)2Wi−1 + α(1 − β)Wi−1 + (1− α)βWi−1 + αβγiWi−1

= (2− α− β + αβγi)Wi−1.

If we want to restrict Wi (that is the growth of the tree) as a polynomial of
i (that is the number of level), we would like (roughly speaking) the value of
(2 − α − β + αβγi) close to 1 on an average. Considering the average value
γ (instead of γi at each level), we get, 2 − α − β + αβγ ≈ 1 which implies
1 − α − β + αβγ ≈ 0. If we assume that the same fraction of bits are known
for p and q, then α = β and we get 1 − 2α + α2γ ≈ 0 ⇒ α ≈ 1−√

1−γ
γ . If

we assume [5, Conjecture 4.3], then γ ≈ 0.5 and hence α ≈ 2 − √2 ≈ 0.5858,
as obtained in [5, Section 4.4]. One may note that our idea is simpler compared
to the explanation in [5]. This simplification is achieved here by using average
value for γi in the recurrence relation of Wi.

The most natural strategy is to first apply Algorithm 1 to retrieve the least
significant half of any one of the primes and then apply the result of Boneh
et. al. [2, Corollary 2.2] to factorize N . One may note that [5] utilizes their
prime reconstruction algorithm to reconstruct the whole primes p, q whereas
our idea is to use lattice based results after reconstructing just one half of any
prime. This is more practical as it requires the knowledge of lesser number of
random bits of the primes, namely, just about 0.5858× 0.5 ≈ 0.3 fraction of bits
(from the LSB half) instead of 0.5858 fraction of the primes as explained in [5].
Moreover, factorization being the main objective, one need not reconstruct the
primes completely, but just requires to obtain enough information that suffices
for factoring the product N based on the existing efficient techniques. In this
direction, let us first present the following result.

2.3 Known Prime Bits: Complementary Sets for p, q

Theorem 1. Let N = pq, when p, q are primes of same bit size. Let S =
{0, . . . , �lN/4
}. Consider U ⊆ S and V = S \ U . Assume that p[i]’s for i ∈ U
and q[j]’s for j ∈ V are known. Then one can factor N in poly(logN) time.

Proof. Let us apply Algorithm 1 in this case to retrieve the bits of the primes
at each level. We shall use induction on the index of levels in this case.
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For level 0, we know that p[0] = 1 and q[0] = 1. Hence, the width of the search
tree is W0 = 1 and we have a single correct partial (p0, q0). Let us suppose that
we have possible pairs of partials (pi−1, qi−1) at level i− 1, generated by Algo-
rithm 1. At level i, two cases may arise. If i ∈ U then we know p[i], N, pi−1, qi−1
which restricts the branching to a single branch and keeps the width of the
tree fixed (Wi = Wi−1). Else one must have i ∈ V (V = S \ U) and we know
q[i], N, pi−1, qi−1. This restricts the branching to a single branch as well and
keeps the width fixed (Wi = Wi−1). Hence, by induction on i, Wi = Wi−1 for
i = 0, . . . , �lN/4
. As W0 = 1, this boils down to Wi = 1 for i ≤ �lN/4
.

Thus we obtain a single correct partial pair pi, qi at level i = �lN/4
 using
Algorithm 1 in O(log3 N) time (�lN/4
 iterations and O(log2 N) computing time
for each iteration) and O(lN/2) space (actually we need space to store a single
partial pair at the current level). This provides us with the least significant half
of both the primes and using any one of those two, the lattice based method of [2,
Corollary 2.2] completes the factorization of N = pq in poly(logN) time. ��
It is interesting to analyze the implications of this result in a few specific cases.
An extreme case may be U = S, that is we know all the bits in the least significant
half of a single prime p and do not know any such bits for q. In this scenario, one
need not apply Algorithm 1 at all and the lattice based method in [2, Corollary
2.2] suffices for factorization. Second case is when |U | = |S| − x, i.e., missing x
bits of p at random positions. In such a case, one can use a brute force search
for these missing bits and apply lattice based factoring method [2, Corollary 2.2]
for all of the 2x possibilities, if x is small. However, for large x, e.g., x ≈ |U |, i.e.,
around half of the random bits from the least significant halves of p as well as
q are known, then the brute force strategy fails, and one must use Algorithm 1
before applying the lattice based method in [2, Corollary 2.2].

2.4 Known Prime Bits: Distributed at Random

Here we consider the case when random bits of p, q are available, lifting the
constraint V = S \U . That is, here we only consider U, V to be random subsets
of S. For 512-bit primes, we observed that knowledge of randomly chosen half of
the bits from least significant halves of p, q is sufficient to recover the complete
least significant halves of p as well as q using Algorithm 1.

Now let us present a select few of our experimental results in Table 1. The first
column represents the size of the RSA primes and the second column gives the
fraction of bits known randomly from the least significant halves of the primes
(call these αp, βq respectively). The value of t in the third column is the target
level we need to run Algorithm 1 for, and is half the size of the primes. Wt is
the final width of the search tree at the target level t. This denotes the number
of possible partial solutions for p, q at the target bit level t, whereas the next
column gives us the maximum width of the tree observed during the run of
Algorithm 1. The last column depicts the average value of the shrink ratio γ, as
we have defined earlier.
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Table 1. Experimental results corresponding to Algorithm 1

Size |p|, |q| Known αp, βq Target t Final Wt maxt
i=1 Wi Average γ

256, 256 0.5, 0.5 128 30 60 0.56
256, 256 0.5, 0.5 128 2816 5632 0.52
256, 256 0.47, 0.47 128 106 1508 0.54
256, 256 0.45, 0.45 128 6144 6144 0.49
512, 512 0.5, 0.5 256 352 928 0.53
512, 512 0.5, 0.5 256 8 256 0.55
512, 512 0.5, 0.5 256 716 3776 0.53
512, 512 0.5, 0.5 256 152 2240 0.59
512, 512 0.55, 0.45 256 37 268 0.51
512, 512 0.55, 0.45 256 64 334 0.51
512, 512 0.6, 0.4 256 1648 13528 0.55
512, 512 0.6, 0.4 256 704 5632 0.56
512, 512 0.7, 0.3 256 158 1344 0.53
512, 512 0.7, 0.3 256 47 4848 0.52
1024,1024 0.55, 0.55 512 1 352 0.53
1024,1024 0.53, 0.53 512 16 764 0.53
1024,1024 0.51, 0.51 512 138 15551 0.54
1024,1024 0.51, 0.5 512 17 4088 0.52

A few crucial observations can be made from the data presented in Table 1.
We have run the experiments for different sizes of RSA keys, and though the
theoretical requirement for the fraction of known bits (α, β) is 0.5858, we have
obtained better results when lN ≤ 2048. For 512 bit N , the knowledge of just
0.45 fraction of random bits from the least significant halves of the primes proves
to be sufficient for Algorithm 1 to retrieve the halves, whereas for 1024 and 2048
bit N , we require about 0.5 fraction of such bits. The main reason is that the
growth of the search tree increases with increasing size of the target level t. As
we have discussed before, the growth will be independent of the target if we
know 0.5858 fraction of bits instead. One may also note that for 1024 bit N , we
have obtained successful results when the fraction of bits known is not the same
for the two primes. For such skewed cases, the average requirement of known
bits stay the same, i.e, 0.5 fraction of the least significant halves. The examples
for (0.7, 0.3) in such skewed cases provides interesting results compared to the
result by Herrmann and May [6]. Knowing about 70% of the bits of one prime
is sufficient for their method to factorize N , but the runtime is exponential in
the number of blocks over which the bits are distributed. By knowing 35% of
one prime (70% from the least significant half) and 15% of the other (30% of
the least significant half), Algorithm 1 can produce significantly better results
in the same direction.

Another important point to note from the results is the average value of the
shrink ratio γ. It is conjectured in [5] that γ = 0.5. However, our experiments
clearly show that the value of γ is more than 0.5 in most (17 out of 18) of the
cases. A theoretical explanation of this anomaly may be of interest.
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2.5 Known Prime Bits: Distributed in a Pattern

In addition to these results, some interesting cases appear when we consider the
knowledge of the bits to be periodic in a systematic pattern, instead of being
totally random. Suppose that the bits of the primes p, q are available in the
following pattern: none of the bits is known over a stretch of U bits, only q[i] is
known for Q bits, only p[i] is known for P bits and both p[i], q[i] are known for
K bits. This pattern of length U + P + Q + K repeats over the total number
of bits. In such a case, one may expect the growth of the tree to obey the
following heuristic model – grows in doubles for U bits, stays the same for Q+P
length and shrinks thereafter (approximately by halves, considering γ = 0.5) for
a stretch of K bits. If this model is followed strictly, one expects the growth of
the tree by a factor of 2U2−K = 2U−K over each period of the pattern. The
total number of occurrences of this pattern over the stretch of T bits is roughly

T
U+Q+P+K . Hence the width of the tree at level T may be roughly estimated by

WT ≈
[
2U−K

] T
U+Q+P+K = 2

T (U−K)
U+Q+P+K . A closer look reveals a slightly different

observation. We have expected that the tree shrinks in half if both bits are
known, which is based on the conjecture that γ ≈ 1/2 on an average. But in
practical scenario, this is not the case. So, the width WT at level T , as estimated
above, comes as an underestimate in most of the cases.

Let us consider a specific example for such a band-LSB case. The pattern
followed is [U = 5, Q = 3, P = 3, K = 5]. Using the estimation formula above,
one expects the final width of the tree at level 256 to be 1, as U = K. But in
this case, the final width turns out to be 8 instead. The reason behind this is
that the average value of γ in this experiment is 0.55 instead of 0.5.

It is natural for one to notice that the fraction of bits to be known in this band-
LSB case is (P+K)/(U+Q+P+K) for the prime p and (Q+K)/(U+Q+P+K)
for the prime q. If we choose Q = P and U = K, then this fraction is 0.5. Thus,
by knowing 50% of the bits from the least significant halves of the primes, that
is, knowing just 0.25 fraction of bits in total, Algorithm 1 can factorize N = pq
in this case. One may note that the result by Herrmann and May [6] requires the
knowledge of about 70% of the bits distributed over arbitrary number of small
blocks of a single prime. Thus, in terms of total number of bits to be known
(considering both the primes), our result is clearly better.

An extension of this idea may be applied in case of MSBs. Though we can
retrieve information about the primes from random bits at the least significant
side, we could not exploit similar information from the most significant part. But
we could do better if bands of bits are known instead of isolated random bits.
A novel idea for reconstructing primes based on such knowledge is presented in
Section 4.

3 The LSB Case: Lattice Based Technique

Consider the scenario when a long run (length u) of p[i], q[i] is not known, for
k < i ≤ k+u say, starting at the (k+1)-th bit level. In such a case, Algorithm 1
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will require large memory as the width of the tree will be at least 2u at the u-th
level. If u is large, say u ≥ 50, then it will be hard to accommodate the number
of options, which is greater than 250. We describe a lattice based method below
to handle such situation.

For basics related to lattices and solution to modular equations using lattice
techniques, one may refer to [4,7,8]. First we recall the following result from [7].

Lemma 1. Let g(x, y) ∈ Z[x, y] be a polynomial which is the sum of ω many
monomials. Suppose g(x1, y1) ≡ 0 mod n, where |x1| < X1 and |y1| < Y1. If
‖ g(xX1, yY1) ‖2 < n√

ω
, then g(x1, y1) = 0 holds over integers.

We apply resultant techniques to solve for the roots of the bivariate polyno-
mials. It may sometimes happen that the resultant between the two bivariate
polynomials is zero. There is no way to avoid this and it is a common problem
in bivariate Coppersmith method. Thus one cannot always find common roots
using this method. Though our technique works in practice as noted from the ex-
periments we perform, we formally state the following assumption, which proves
to be crucial in Theorem 2.

Assumption 1. Let {f1, f2} be two polynomials in two variables sharing com-
mon roots of the form (x1, y1). Then it is possible to find the roots efficiently by
calculating the resultant of {f1, f2}.
Now we will state and prove the main result of this section.

Theorem 2. Let N = pq where p, q are of same bit size. Suppose τlN many
least significant bits (LSBs) of p, q are unknown but the subsequent ηlN many
LSBs of both p, q are known. Then, under Assumption 1, one can recover the
τlN many unknown LSBs of p, q in poly(logN) time, if τ < η

2 .

Proof. Let p0 correspond to the known ηlN many bits of p and q0 correspond
to the known ηlN bits of q. Let p1 correspond to the unknown τlN many bits
of p and q1 correspond to the unknown τlN bits of q. Then we have (2τlNp0 +
p1)(2τlN q0 + q1) ≡ N mod (2(τ+η)lN ). Let T = 2(τ+η)lN . Hence we are interested
to find the roots (p1, q1) of f(x, y) = (2τlNp0 + x)(2τlN q0 + y)−N over ZT .

Let us take X = 2τlN and Y = 2τlN . One may note that X,Y are the upper
bounds of the roots (p1, q1) of f(x, y), neglecting small constants. For a non
negative integer m, we define two sets of polynomials

gi,j(x, y) = xif j(x, y)Tm−j , where j = 0, . . . ,m, i = 0, . . . ,m− j and
hi,j(x, y) = yif j(x, y)Tm−j, where j = 0, . . . ,m, i = 1, . . . ,m− j.
Note that gi,j(p1, q1) ≡ 0 mod (Tm) and hi,j(p1, q1) ≡ 0 mod (Tm). We call

gi,j the x-shift and hi,j the y-shift polynomials, as per their respective construc-
tions following the idea of [8].

Next, we form a lattice L by taking the coefficient vectors of the shift polyno-
mials gi,j(xX, yY ) and hi,j(xX, yY ) as basis. One can verify that the dimension
of the lattice L is ω = (m + 1)2. The matrix containing the basis vectors of
L is lower triangular and has diagonal entries of the form X i+jY jTm−j, for
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j = 0, . . . ,m and i = 0, . . . ,m − j, and XjY i+jTm−j for j = 0, . . . ,m and
i = 1, . . . ,m− j, coming from gi,j and hi,j respectively. Thus, one can calculate

det(L) =

⎡⎣ m∏
j=0

m−j∏
i=0

X i+jY jTm−j

⎤⎦⎡⎣ m∏
j=0

m−j∏
i=1

XjY i+jTm−j

⎤⎦ = Xs1Y s2T s3

where s1 = 1
2m

3 +m2 + 1
2m, s2 = 1

2m
3 +m2 + 1

2m, and s3 = 2
3m

3 + 3
2m

2 + 5
6m.

To utilize resultant techniques and Assumption 1, we need two polynomials
f1(x, y), f2(x, y) which share the roots (p1, q1) over integers. From Lemma 1,
we know that one can find such f1(x, y), f2(x, y) using LLL lattice reduction
algorithm [9] over L when det(L) < Tmω, neglecting the small constants. Given
det(L) and ω as above, the condition becomes Xs1Y s2T s3 < Tm((m+1)2), i.e.,
Xs1Y s2 < T s0 , where s0 = m((m + 1)2) − s3 = 1

3m
3 + 1

2m
2 + 1

6m. Putting
the values of the bounds X = Y = 2τlN , and neglecting o(m3) terms, we get
τ
2 + τ

2 < τ+η
3 and thus get the required bound for τ . Now, one can find the

root (p1, q1) from f1, f2 under Assumption 1. The claimed time complexity of
poly(logN) can be achieved as

– the time complexity of the LLL lattice reduction is poly(logN); and
– given a fixed lattice dimension of small size, we get constant degree poly-

nomials and the complexity of resultant calculation is polynomial in the
sum-of-degrees of the polynomials.

This completes the proof of Theorem 2. ��

This lattice based technique complements Algorithm 1 by overcoming one of its
limitations. As we discussed before, the search tree grows two-folds each time
we do not have any information about the bits of the primes. Hence in a case
where an initial chunk of LSBs is unknown for both the primes, one can not use
Algorithm 1 for reconstruction as it would require huge storage space for the
search tree. This lattice based technique provides a feasible solution in such a
case. We present a few experimental results in Table 2 to illustrate the operation
of this technique. All the experiments have been performed in SAGE 4.1 over
Linux Ubuntu 8.04 on a Compaq machine with Dual CORE Intel(R) Pentium(R)
D CPU 1.83 GHz, 2 GB RAM and 2 MB Cache.

Table 2. Experimental runs of the Lattice Based Technique with lattice dimension 64

# of Unknown # of Known Time in Seconds
bits (τ lN) bits (ηlN) LLL Algorithm Resultant Calculation Root Extraction

40 90 36.66 25.67 < 1
50 110 47.31 35.20 < 1
60 135 69.23 47.14 < 1
70 155 73.15 58.04 < 1
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The limitation of this technique is that it asks for double or more the number
of missing bits for both the primes. If one misses 60 LSBs for the primes say, this
method requires the next 120 or more bits of both the primes to be known to
reconstruct all 60 + 120 = 180 LSBs. In the practical scenario, the requirement
of bits to be known is 135 (shown in Table 2), instead of 120, as we use limited
lattice dimensions in the experiments. In all the cases mentioned above, we miss
the first τlN LSBs of the primes. If we miss the information of the bits of the
prime in a contiguous block of size τlN somewhere in the middle, after the i-th
level say, then this method offers similar solution if we have η > 2τ + 2i/lN .

4 The MSB Case: Our Method and Its Analysis

In this section, we put forward a novel idea of reconstructing the most significant
half of the primes p, q given the knowledge of some blocks of bits. To the best of
our knowledge, this has not been studied in a disciplined manner in the existing
literature. As before, N = pq, and the primes p, q are of the same bit size. For
this section of MSB reconstruction, let us propose the following definition to
make notations simpler.

Definition 2. Let us define X [i] to be the i-th most significant bit of X with
X [0] being the MSB. Also define Xi to be the partial approximation of X where
Xi shares the most significant bits 0 through i with X. Let lX denote the bit size
of X, i.e, lX = �log2 X
.

4.1 The Reconstruction Idea

The idea for reconstructing the most significant halves of the primes is quite
simple. We shall use the basic relation N = pq. If one of the primes, p say, is
known, the other one is easy to find by q = N/p. Now, if a few MSBs of one
of the primes, p say, is known, then we may obtain an approximation p′ of p.
This allows us to construct an approximation q′ = �N/p′
 of the other prime q
as well. Our idea is to use the known blocks of bits of the primes in a systematic
order to repeat this approximation process until we recover half of one of the
primes. A few obvious questions may be as follows.

– How accurate are the approximations?
– How probable is the success of the reconstruction process?
– How many bits of the primes do we need to know?

We answer these questions by describing the reconstruction algorithm in Sec-
tion 4.2 and analyzing the same in Section 4.3. But first, let us present an outline
of our idea.

Suppose that we have the knowledge of MSBs {0, . . . , a} of prime p. This
allows us to construct an approximation pa of p, and hence an approximation
q′ = �N/pa
 of q. Lemma 2, discussed later in Section 4.3, tells us that q′

matches q through MSBs {0, . . . , a−t−1}, i.e, q′ = qa−t−1, with some probability
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depending on t. Now, if one knows the MSBs {a− t, . . . , 2a} of q, then a better
approximation q2a may be constructed using qa−t−1 and these known bits. Again,
q2a facilitates the construction of a new approximation p′ = �N/q2a
, which by
Lemma 2, satisfies p′ = p2a−t−1 with some probability depending on t. With the
knowledge of MSBs {2a− t, . . . , 3a} of p, it is once again possible to construct
a better approximation p3a of p. This process of constructing approximations is
recursed until one reconstructs the most significant half of one of the primes. A
graphical representation of the reconstruction process is illustrated in Figure 4.

Fig. 4. The feedback mechanism in MSB reconstruction

4.2 The Reconstruction Algorithm

Let S = {0, . . . , T} denote the set of bit indices from the most significant halves
of the primes. Let us assume that k = 	T/a� is odd in this case. Consider
U, V ⊆ S such that U = {0, . . . , a}∪{2a− t, . . . , 3a}∪· · ·∪{(k−1)a− t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}. Also consider that
p[i]’s are known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 2
reconstructs T many contiguous most significant bits of the prime q.

The subroutine CORRECT used in Algorithm 2 (and Algorithm 4 later) takes
as input a partial approximation Y of X and a set of contiguous known bits,
X [i] for i ∈ Σ, say. It outputs a better approximation Z of X by correcting
the bits of the partial approximation Y using the knowledge of the known bits.
Formally, the subroutine works as described is Algorithm 3.

In the case where k = 	T/a� is even, Algorithm 2 needs to be tweaked a little
to work as expected. One may consider a slightly changed version of U, V ⊆ S
such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {ka − t, . . . , T} and V =
{a− t, . . . , 2a}∪{3a− t, . . . , 4a}∪· · ·∪{(k−1)a− t, . . . , ka}. As before, p[i]’s are
known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 4 reconstructs
T many contiguous most significant bits of the prime p.

4.3 Analysis of the Reconstruction Algorithm

Algorithm 2 and Algorithm 4 follow the same basic idea of reconstruction as
discussed in Section 4.1, and differs only in a minor issue regarding the practical
implementation. We have stated both the algorithms in Section 4.2 for the sake
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Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of q
Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

qa−t := � N
pa

�;3

for i from 2 to k − 1 in steps of 2 do4

qia := CORRECT(q(i−1)a−t, q[j] for j ∈ {(i − 1)a − t, . . . , ia} ⊂ V );5

pia−t−1 := � N
qia

�;6

p(i+1)a := CORRECT(pia−t−1, p[j] for j ∈ {ia − t, . . . , (i + 1)a} ⊂ U);7

q(i+1)a−t−1 := � N
p(i+1)a

�;8

end
qT := CORRECT(qka−t−1, q[j] for j ∈ {ka − t, . . . , T} ⊂ V );9

REPORT qT ;10

Algorithm 2. The MSB reconstruction algorithm [k odd]

Input: Y and X[i] for i ∈ Σ
Output: Z, the correction of Y
for j from 0 to lX do1

if j ∈ Σ then Z[j] = X[j]; // Correct the j-th MSB if the bit X[j]2

is known

else Z[j] = Y [j]; // Keep the j-th MSB of Y as X[j] is not known

end
REPORT Z;3

Algorithm 3. Subroutine CORRECT

of completeness. But in case of the analysis and the experimental results, we
shall consider only one of them, Algorithm 2 say, without loss of generality.

Algorithm 2 requires the knowledge of at most (T − ka + 1) + k(a + t + 1) ≤
k(a+ t)+ (k+a) ≤ T (1+ t

a )+ (k+a) many bits of p and q to (probabilistically)
reconstruct T contiguous MSBs of one prime. The runtime of Algorithm 2 is
linear in terms of the number of known blocks, i.e, linear in terms of k = 	T/a�.
If we set the target T = lN/4, then Algorithm 2 outputs the most significant half
of one of the primes in O(k) steps with some probability of success depending
on a and t. In this context, we propose Theorem 3 to estimate the probability
of success of Algorithm 2. Before that, let us introduce the following technical
result (Lemma 2) which is necessary to prove Theorem 3.

Lemma 2. If X and X ′ are two integers with same bit size and |X−X ′| < 2H,
then the probability that X and X ′ share lX − H − t many MSBs for some
0 ≤ t ≤ H is at least Pt = 1− 1

2t .

Proof. We know that |X − X ′| < 2H , i.e, X = X ′ + Y or X ′ = X + Z where
0 ≤ Y, Z < 2H , say. Let us consider the case X = X ′ + Y first, and the other
case will follow by symmetry between X and X ′.
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Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of p
Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

for i from 1 to k − 3 in steps of 2 do3

qia−t−1 := � N
pia

�;4

q(i+1)a := CORRECT(qia−t−1, q[j] for j ∈ {ia − t, . . . , (i + 1)a} ⊂ V );5

p(i+1)a−t−1 := � N
q(i+1)a

�;6

p(i+2)a := CORRECT(p(i+1)a−t−1, p[j] for7

j ∈ {(i + 1)a − t, . . . , (i + 2)a} ⊂ U);
end

q(k−1)a−t−1 := � N
p(k−1)a

�;8

qka := CORRECT(q(k−1)a−t−1, q[j] for j ∈ {(k − 1)a − t, . . . , ka} ⊂ V );9

pka−t−1 := � N
qka

�;10

pT := CORRECT(pka−t−1, p[j] for j ∈ {ka − t, . . . , T} ⊂ U);11

REPORT pT ;12

Algorithm 4. The MSB reconstruction algorithm [k even]

Let us split X ′ = 2HX0 + X1. Then, clearly X = 2HX0 + (X1 + Y ). The
addition of Y < 2H affects the lower part X1 directly and the carry from the
sum (X1 + Y ) affects the first half X0 up to a certain level. Our goal is to find
out the probability that the carry affects less than or equal to t bits of X0 from
the lower side. Let us assume that the probability of (X1 +Y ) generating a carry
bit is pc. We also know that this carry bit will propagate through the lower bits
of X0 until it hits a 0, and we can assume any bit of X0 to be 0 or 1 randomly
with equal probabilities of 1/2 each. Then, the probability of the carry bit to
propagate less than or equal to t bits of X0 from the lower side is
P [carry propagation ≤ t]

= P [no carry] +
∑t

i=1 P [carry]P [carry propagation = i]
= P [no carry] +

∑t
i=1 P [carry]P [first 0 occurs at i-th LSB of X0]

= (1− pc) +
∑t

i=1 pc
1
2i = 1− pc

2t .

Now, one may expect the probability of carry generated from the sum (X1+Y )
to be pc ≈ 1/2. A careful statistical modelling of the difference Y will reveal a
better estimate of pc. As we do not assume any distribution of Y here, we consider
the trivial bound pc ≤ 1. Thus the probability of X and X0, and hence X and
X ′, sharing lX −H − t many MSBs is 1− pc

2t ≥ 1− 1
2t . ��

At this point, we can state and prove the main result of this section, the following
theorem.

Theorem 3. Let S = {0, . . . , T} and k = 	T/a� is odd. Suppose U, V ⊆ S
such that U = {0, . . . , a} ∪ {2a− t, . . . , 3a} ∪ · · · ∪ {(k − 1)a − t, . . . , ka}, V =
{a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}, where p[i]’s are known
for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, Algorithm 2
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reconstructs T many contiguous most significant bits of one of the primes cor-
rectly in O(k) steps with probability at least Pa,t(T ) =

(
1− 1

2t

)�T/a�
.

Proof. The success of Algorithm 2 relies on the correct construction of the ap-
proximations at various levels. The CORRECT function produces correct ap-
proximations with probability 1 given the known sets of bits U, V , as mentioned
before. Hence, success probability of Algorithm 2 depends on the correctness of
{qa−t−1, p2a−t−1, q3a−t−1, . . . , p(k−1)a−t−1, qka−t−1}.

Let us first consider the case p > q. We know that in such a case, as p, q are
of the same bit size, one must have

√
N/2 < q <

√
N < p <

√
2N . Suppose

that there exists an approximation pha of p, sharing the MSBs {0, . . . , ha} for
some 1 ≤ h ≤ k. In this case, |p − pha| < 2lp−ha. Using pha, one constructs
an approximation q′ = �N/pha
 of q. Then we have |q − q′| ≈

∣∣∣N
p − N

pha

∣∣∣ =
N

ppha
|p− pha| < |p−pha| < 2lp−ha, as p, pha >

√
N . If pha <

√
N from the initial

approximation, we reassign pha = �√N
 as a better approximation to p. The
case p < q produces an approximation q′ of q with |q−q′| < 2|p−pha| < 2lp−ha+1.

Then, we know for sure that |q − q′| < 2lp−ha+1. Thus, by Lemma 2, setting
H = lp−ha+1, we get that q and q′ share the first lp−(lp−ha+1)−t = ha−t−1
MSBs with probability at least Pt = 1− 1

2t . In other words, the probability that q′

correctly represents qha−t−1 is at least Pt = 1− 1
2t . The probability of correctness

is the same in case of the approximations of p by pga−t−1 for all 1 < g < k.
Now, the k approximations of p, q at different bit levels, as mentioned above,

can be considered independent. Hence, the probability of success of Algorithm 2
in constructing T many contiguous MSBs of q (or p in another case) is at least
Pa,t = P k

t =
(
1− 1

2t

)k =
(
1− 1

2t

)�T/a�
. ��

Once the most significant half of any one of the primes is known using Algo-
rithm 2, one may use a lattice based method of to factorize N = pq. In this
context, let us present the following result for factoring the RSA modulus N
using Algorithm 2.

Corollary 1. Let S = {0, . . . , lN/4} and k = 	lN/4a� is odd. Suppose U, V ⊆
S such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {(k − 1)a − t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , lN/4}, where p[i]’s are
known for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, one
can factor N in poly(logN) time with probability at least Pa,t =

(
1− 1

2t

)�lN /4a�
.

Proof. By setting T = lN/4 in Theorem 3 we obtain that Algorithm 2 is able to
recover contiguous lN/4 many MSBs of one of the primes p, q in O(lN/4) steps
with probability at least Pa,t =

(
1− 1

2t

)�lN /4a�. Since one call of CORRECT
costs O(lN ), thus the total time complexity is O(log2 N).

Once we get these lN/4 MSBs, that is the complete most significant half, of one
of the primes, one can use the existing lattice based method [4] by Coppersmith
to factor N = pq in poly(logN) time. ��
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4.4 Experimental Results for the Reconstruction Algorithm

We present some experimental results in Table 3 to support the claim in Theo-
rem 3. The blocksize for known bits, i.e, a, and the approximation offset t are
varied to obtain these results for lN = 1024. The target size for reconstruction is
T = 256 as the primes are 512 bits each. We have run the experiment 1000 times
for each pair of fixed parameters a, t. The first value in each cell represents the
experimental percentage of success in these cases and illustrate the practicality
of our method. The second value in each cell is the theoretical probability of
success obtained from Theorem 3.

Table 3. Percentage of success of Algorithm 2 with 512-bit p, q, i.e., lN = 1024

a t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
10 0, 0 2.5, 0.07 16.8, 3.55 41.5, 19.9 64.5, 45.2 82.1, 67.5 90.6, 82.2 95.0, 90.7 97.2, 95.2 -
20 1.8, 0.02 18.7, 3.17 44.5, 20.1 65.7, 46.1 81.9, 68.3 90.6, 82.8 94.8, 91.0 97.5, 95.4 98.5, 97.7 99.3, 97.6
40 15.5, 1.6 42.8, 17.8 66.7, 44.9 81.8, 67.9 90.8, 82.7 95.2, 91.0 97.8, 95.4 98.6, 97.7 99.3, 98.8 99.9, 99.4

60 29.1, 6.3 55.6, 31.6 75.7, 58.6 86.6, 77.2 91.7, 88.1 95.3, 93.9 97.4, 96.9 98.9, 98.4 99.5, 99.2 99.9, 99.7

80 41.9, 12.5 66.4, 42.2 82.9, 67.0 91.0, 82.4 95.7, 90.9 98.3, 95.4 99.1, 97.7 99.4, 98.8 99.7, 99.4 100, 99.7

100 50.6, 25.0 74.4, 56.2 86.6, 76.6 93.7, 87.9 97.1, 93.8 98.8, 96.9 99.6, 98.4 99.8, 99.2 99.9, 99.6 100, 99.8

One may note that our theoretical bounds on the probability (second value
in each cell) is an underestimate compared to the experimental evidences (first
value in each cell) in all the cases. This is because we have used the bound on
the probability of carry loosely as pc ≤ 1 in Lemma 2, whereas a better estimate
should have been pc ≈ 1

2 . As an example, let us check the case with a = 40, t = 3.
Here, the theoretical bound on the probability with pc ≤ 1 is 44.9% whereas with
pc = 0.5, the same bound comes as 67.9%. The experimental evidence of 66.7%
is quite clearly closer to the second one. But we could not correctly estimate the
value of pc and hence opted for a safe (conservative) margin.

The results in italic font are of special interest. In these cases one can factorize
N in poly(logN)time, with probability greater than 1

2 by knowing less than 70%
of the bits of both the primes combined, that is, by knowing approximately just
35% of the bits of each prime p, q. Note that the result by Herrmann and May [6]
requires about 70% of the bits of one of the primes in a similar case where the
known bits are distributed over small blocks. Their result factorizes N in time
exponential in the number of such blocks, whereas our method produces the
same result in time polynomial in the number of blocks.

5 Conclusion

Our work discusses the factorization of RSA modulus N by reconstructing
the primes from randomly known bits. The reconstruction method exploits the
known bits to prune wrong branches of the search tree and reduces the total
search space. We have revisited the work of Heninger and Shacham [5] in Crypto
2009 and provided a combinatorial model for the search where certain bits of the
primes are known at random. This, combined with existing lattice based tech-
niques, can factorize N given the knowledge of randomly chosen prime bits in the
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least significant halves of the primes. We also explain a lattice based strategy to
remedy one of the shortcomings of the reconstruction algorithm. Moreover, we
study how N can be factored given the knowledge of some blocks of bits in the
most significant halves of the primes. We propose an algorithm that recovers the
most significant halves of one or both the primes exploiting the known bits. An
obvious open question in this direction is to attack this problem when random
MSBs (as in the case for LSBs) instead of certain blocks are available.
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Abstract. A proof of a shuffle is a zero-knowledge proof that one list
of ciphertexts is a permutation and re-encryption of another list of ci-
phertexts. We call a shuffle restricted if the permutation is chosen from
a public subset of all permutations. In this paper, we introduce a general
technique for constructing proofs of shuffles which restrict the permuta-
tion to a group that is characterized by a public polynomial. This gen-
eralizes previous work by Reiter and Wang [22], and de Hoogh et al. [7].

Our approach also gives a new efficient proof of an unrestricted shuffle
that we think is conceptually simpler and allow a simpler analysis than
all previous proofs of shuffles.

Keywords: cryptographic protocols, election schemes, mix-nets, proof
of a shuffle.

1 Introduction

Mix-Nets. Suppose that N senders S1, . . . , SN each wish to send a message, but
remain anonymous within the group of senders, e.g., the senders could be voters
in an election. Chaum [5] introduced the notion of a mix-net (or anonymous
channel) to solve this problem. A mix-net is a cryptographic protocol executed
by k mix-servers M1, . . . ,Mk, where k typically is much smaller than N . All
provably secure mix-nets proposed in the literature take as input a list L0 of
ciphertexts and order the mix-servers in a chain. Each mix-server Mj in the
chain takes as input the output Lj−1 of the previous mix-server in the chain.
It processes each ciphertext in Lj−1 by decrypting and/or re-encrypting it, and
then forms its output Lj as the processed ciphertexts in random order. This
operation is called a shuffle. If the ciphertexts are not decrypted during process-
ing, the mix-servers then perform a joint verifiable decryption of the final list
Lk. In some applications, the final output of the mix-net may be a list of the
ciphertexts themselves, in which case no joint decryption takes place.

In Chaum’s original construction a generic cryptosystem is used. A sender
encrypts its message mi as Epk1

(Epk2
(· · ·Epkk

(mi) · · · )), where pk j is the pub-
lic key of the jth mix-server, and the mix-servers use standard decryption when
processing the ciphertexts. Park et al. [18] observed that if a homomorphic cryp-
tosystem is used, the increase in the size of the submitted ciphertext can be
avoided. Another, perhaps more important, consequence of using a homomor-
phic cryptosystem is that it simplifies the construction of a zero-knowledge proof

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 100–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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that a mix-server shuffles its input correctly, a so called proof of a shuffle. We
give a detailed account of previous work on such protocols later, but first we
conclude the discussion on mix-nets.

Although the mix-servers use the homomorphic properties of the cryptosys-
tem constructively, Pfitzmann [20] points out that a non-malleable cryptosystem
must be used in the submission phase. There are several ways to achieve this in
a provably secure way.

The security of a mix-net as a whole was first formalized by Abe and Imai [1]
in a standalone model, but they did not provide a construction that satisfied
their definition. The first definition of security in the UC framework [4] and the
first mix-net provably secure as a whole was given by Wikström [25]. Later work
[26] gave simpler and more efficient constructions.

Previous Work On Proofs of Shuffles. As far as we know the first proof of a
shuffle appears in Sako and Kilian [24] based on a previous protocol by Park
et al. [18]. They give a cut-and-choose based zero-knowledge proof of a shuffle
with soundness 1/2. Its soundness can be increased using repetition, but this be-
comes computationally expensive if the number of ciphertexts is large. The first
efficient proofs of shuffles were given independently by Neff [17] and Furukawa
and Sako [11]. Both approaches were subsequently optimized and generalized, in
particular by Groth [13] and Furukawa [9] respectively. Wikström [26] presented
a proof of a shuffle based on an idea distinct from both that of Neff and that of
Furukawa and Sako.

These shuffles have all been optimized and/or generalized in various ways,
e.g., for proving re-encryption and partial decryption shuffling [10], for shuffling
hybrid ciphertexts [12], or to reduce communication complexity [15].

A different approach to mix-nets was introduced by Adida and Wikström[3,2].
They investigate to what extent a shuffle can be pre-computed in such a way
that the shuffling can be done in public and the online processing of the mix-
servers can be reduced to joint decryption. The construction in [2] is conceptually
appealing, but inefficient, whereas the construction in [3] is very efficient as long
as the number of senders is relatively small.

In a recent paper, Wikström [27] shows that any proof of a shuffle can be
split in an offline part and an extremely efficient online part. The offline part
is executed before, or at the same time, that senders submit their inputs and
consists of a commitment scheme for permutations and a zero-knowledge proof
of knowledge of correctly opening such a commitment. The online part is a
commitment-consistent proof of a shuffle, where the prover shows that it cor-
rectly uses the committed permutation to process the input. This drastically
reduces the online complexity of provably secure mix-nets.

Motivated by insider attacks, Reiter and Wang [22] construct a proof of a
rotation (they use the term “fragile mixing”). A rotation is a shuffle, where the
permutation used is restricted to a random rotation of the ciphertexts. Their idea
is to reduce the incentive of insiders to reveal any input/output-correspondence,
since this would reveal the complete permutation used, which is assumed to be
associated with a cost for the insider. Recently, a more efficient proof of a rotation
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is given by de Hoogh et al. [7]. In fact, they give two protocols: a general protocol
for any homomorphic cryptosystem and rotation, and a more efficient solution
which requires some mild assumptions on the homomorphic cryptosystem used.

De Hoogh et al. lists several possible applications of proofs of rotations be-
yond the classical application of proofs of shuffles for mix-nets, e.g., secure inte-
ger comparison [21], secure function evaluation [16], and submission schemes in
electronic election schemes [23].

1.1 Our Contribution

We introduce a novel technique for restricting the class of permutations in
a proof of a shuffle of N ciphertexts by showing that π is chosen such that
F (xπ(1), . . . , xπ(N)) = F (x1, . . . , xN ) for some public polynomial F . In particu-
lar, we can prove that the permutation is contained in the automorphism group
of a (directed or undirected) graph on N elements.

A concrete general proof of rotation with efficiency comparable to that of
de Hoogh et al. [7] is trivially derived from our technique, but several other
natural concrete examples are derived just as easily, e.g. the list of ciphertexts
may be viewed as a complete binary tree and the set of permutations restricted
to isomorphisms of the tree.

Furthermore, the basic principle behind our technique can be used in a nat-
ural way to construct a novel efficient proof of an unrestricted shuffle with an
exceptionally simple analysis. Given the large and unwieldy literature on how to
construct efficient proofs of shuffles we think this conceptual simplification is of
independent interest.

1.2 Informal Description of Our Technique

We briefly describe our results and the technique we use, but before we do so we
recall the definition of Pedersen’s perfectly hiding commitment scheme [19], or
more precisely a well known generalization thereof. The commitment parameters
consist of N +1 randomly chosen generators g, g1, . . . , gN in a group Gq of prime
order q in which the discrete logarithm assumption holds. To commit to an array
(e1, . . . , eN) ∈ ZN

q , the committer forms gs
∏N

i=1 g
ei

i . Below we use the fact that
sigma proofs can be used to efficiently prove any polynomial relation between
the values e1, . . . , eN .

A New Proof of a Shuffle. We describe how to prove that a matrix M ∈ Z
N×N
q

over a finite field Zq hidden in a Pedersen commitment is a permutation matrix.
Let 〈·, ·〉 denote the standard inner product in ZN

q and let x = (x1, . . . , xN ) be a
list of variables. If M does not have exactly one non-zero element in each column
and each row, then

∏N
i=1〈mi, x〉 �=

∏N
i=1 xi where mi denotes the ith row of M .

This can be tested efficiently by Schwarz-Zippel’s lemma, which we recall states
that if f(x1, . . . , xN ) is a non-zero polynomial of degree d and we pick a point e
from ZN

q randomly, then the probability that f(e) = 0 is at most d/q.
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To prove that M is a permutation matrix, given that it has exactly one non-
zero element in each row and column, is of course trivial; simply show that the
elements of each row sum to one.

We observe that proving both these properties can be done efficiently using
the matrix commitment scheme used in [11,27]. The commitment parameters
of this scheme consists of independently chosen generators g, g1, . . . , gN of a
group Gq of prime order q. To commit to a matrix M , the committer computes
(a1, . . . , aN ) = (gs1

∏N
i=1 g

mi,1
i , . . . , gsN

∏N
i=1 g

mi,N

i ). which allows publicly com-
puting a commitment of all 〈mi, e〉 as

∏N
j=1 a

ej

j = g〈s,e〉 ∏N
j=1 g

〈mi,e〉
i . The prover

may then use standard sigma proofs to show that
∏N

i=1〈mi, e〉 =
∏N

i=1 ei. To
show that the sum of each row is one it suffices to prove that

∏N
j=1 aj/

∏N
j=1 gj

is on the form gs for some s.
At this point we may invoke the commitment-consistent proof of a shuffle in

[27] to extend the above to a complete proof of an unrestricted shuffle, but we
also present a more direct construction.

Restricting the Set of Permutations. In the interest of describing the techniques,
we consider how to restrict the set of permutations to the automorphism group
of an undirected graph G . Let the graph have vertices V = {1, 2, 3, . . . , N} and
edges E ⊆ V × V and encode the graph as a polynomial FG (x1, . . . , xN ) =∑

(i,j)∈E xixj in Zq[x1, . . . , xN ]. Observe that π is contained in the automor-
phism group of G if and only if FG (xπ(1), . . . , xπ(N)) = FG (x1, . . . , xN ).

Suppose that a prover has shown that a committed matrix M ∈ ZN×N
q is

a permutation matrix corresponding to a permutation π. If π is not contained
in the automorphism group of G , it follows from Schwartz-Zippel’s lemma that
Pr

[
FG (eπ(1), . . . , eπ(N)) = FG (e1, . . . , eN)

]
is exponentially small, when e ∈ Zq

is randomly chosen by the verifier. Since Me = (eπ(1), . . . , eπ(N)) the veri-
fier can easily compute a commitment of the permuted random exponents as∏N

j=1 a
ej

j = g〈s,e〉 ∏N
j=1 g

eπ(i)
i . The prover can then use a standard sigma proof

to prove the equality, for example by proving correct computation of each gate
in the arithmetic circuit for the polynomial.

Note that it is not important that the polynomial comes from a graph. Hence,
we can apply the same technique to prove that π satisfies F (eπ(1), . . . , eπ(N)) =
F (e1, . . . , eN) for any public polynomial F .

2 Notation and Tools

We use n as the security parameter and let q denote an n-bit prime integer. The
field with q elements is denoted by Zq. Our protocols are employed in a group
Gq of prime order q with standard generator g, in which the discrete logarithm
problem is assumed to be hard. We use bars over vectors to distinguish them
from scalars. The angle bracket 〈a, b〉 denotes the inner product

∑N
i=1 aibi of two

vectors a, b ∈ ZN
q . For a list u = (u1, . . . , uN ) ∈ GN

q and a vector e ∈ ZN
q we

abuse notation and write ue =
∏N

i=1 u
ei

i . Throughout, we use S ⊆ Zq to denote
the set from which the components of our random vectors are chosen.
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If R1 and R2 are relations we denote by R1 ∨R2 the relation consisting of
pairs ((x1, x2), w) such that (x1, w) ∈ R1 or (x2, w) ∈ R2.

Matrix Commitments. We use a variation of Pedersen commitments [19] in
a group Gq, to commit to a matrix over Zq. The commitment parameter
ck needed to commit to an N × 1 matrix consists of a description of the
group Gq with its standard generator g and randomly chosen group elements
g1, . . . , gN ∈ Gq. An N × 1-matrix M over Zq is committed to by comput-
ing a = Cck (M, s) = gs

∏N
i=1 g

mi

i , where s ∈ Zq is chosen randomly. We
abuse notation and omit the commitment parameter when it is clear from the
context. An N × N -matrix M is committed to column-wise, i.e., C (M, s) =(C (

(mi,1)N
i=1, s1

)
, . . . , C (

(mi,N )N
i=1, sN

))
, where in this case s is chosen ran-

domly in ZN
q . By committing to a matrix M column-wise we get the useful

identity

C (M, s)e =
N∏

j=1

gsjej

N∏
i=1

g
mi,jej

i = g〈s,e〉
N∏

i=1

g
∑ N

j=1 mi,jej

i = C (Me, 〈s, e〉) .

This feature plays a central role in our approach. It is easy to see that the
commitment scheme is perfectly hiding. The binding property is known to hold
under the discrete logarithm assumption in Gq, see [11] for a proof.

We construct protocols that are sound under the assumption that the binding
property of the above protocol is not violated. We define Rcom to be the relation
consisting of pairs ((ck , a), (M, s,M ′, s′)) such that a = Cck (M, s) = Cck (M ′, s′),
i.e., finding a witness corresponds to violating the binding property of the com-
mitment scheme.

Σ-proofs. Recall that a sigma proof is a three-message protocol that is both
special sound and special honest verifier zero-knowledge [6]. The first property
means that the view of the verifier can be simulated for a given challenge, and
the second property means that a witness can be computed from any pair of
accepting transcripts with identical first messages and distinct challenges. It is
well known that if a prover P∗ convinces the verifier with probability δ, there
exists an extractor running in expected time O(

T/(δ − ε)
)

for some polynomial
T and some negligible knowledge error ε. Given a statement x, we denote the
execution of a sigma proof of knowledge of a witness w such that (x,w) ∈ R by
Σ-proof [w |(x,w) ∈ R ].

We need to prove knowledge of how to open commitments such that the
committed values satisfy a public polynomial relation, i.e. to construct a sigma
proof

Σ-proof
[
e ∈ Z

N
q , s ∈ Zq

∣∣a = C (e, s) ∧ f(e) = e′
]

given a commitment a = C (e, s), a polynomial f ∈ Zq[x1, . . . , xN ], and a value
e′ ∈ Zq. We remind the reader how this can be done.

The parties agree on an arithmetic circuit over Zq that evaluates the polyno-
mial f . The prover constructs new commitments ai to each individual value ei
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hidden in a and proves that it knows how to open all commitments consistently
with a proof of the form

Σ-proof
[
e ∈ Z

N
q , s, s1, . . . , sN ∈ Zq

∣∣a = C (e, s) ∧ ∀N
i=1(ai = C (ei, si))

]
.

The resulting commitments a1, . . . , aN are considered the input of the arith-
metic circuit. For each summation gate, the two input commitments of the gate
are multiplied to form the output of the gate. For each product gate with in-
put commitments a1 = C (e1, s1) and a2 = C (e2, s2), the prover forms a new
commitment a3 = C (e3, s3) and proves that e3 = e1e2 with a sigma protocol

Σ-proof
[
e2, s2, s

′
3 ∈ Zq

∣∣∣a3 = gs′
3ae2

1 ∧ a2 = C (e2, s2)
]

.

Finally, the output a of the entire circuit is shown to be a commitment of e′

using a protocol of the form

Σ-proof
[
s ∈ Zq

∣∣∣a/ge′
1 = gs

]
.

Special soundness and special honest verifier zero-knowledge allow us to ex-
ecute all these protocols in parallel using a single challenge from the verifier,
thus forming a new sigma protocol. Together with the binding property of the
commitment scheme, this implies that the prover knows e ∈ ZN

q and s ∈ Zq such
that C (e, s) = a ∧ f(e) = e′.

We remark that it is sometimes possible to do better than the general tech-
nique above. In particular when proving that a shuffle is a rotation, one has to
prove that a polynomial of the form

∑N
i=1 xiyi has a certain value. This can be

done efficiently by evaluating the polynomial as an inner product between the
vectors x and y using a linear algebra protocol from [14].

Polynomial Equivalence Testing. We use the Schwartz-Zippel lemma to analyze
the soundness of our protocols. The lemma gives an efficient, probabilistic test
of whether a polynomial is identically zero.

Lemma 1 (Schwartz-Zippel). Let f ∈ Zq[x1, . . . , xN ] be a non-zero multi-
variate polynomial of total degree d ≥ 0 over Zq, let S ⊆ Zq, and let e1, . . . , eN

be chosen randomly from S. Then

Pr [f(e1, . . . , eN ) = 0] ≤ d

|S| .

3 Proof of Knowledge of Permutation Matrix

We show how to prove knowledge of how to open a Pedersen commitment of a
matrix such that the matrix is a permutation matrix. Wikström [27] constructs
a commitment-consistent proof of a shuffle for any shuffle-friendly map, based on
the same permutation commitment we use here. Thus, it is trivial to construct
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a proof of a shuffle by combining the protocol below with the online protocol
in [27].

Our protocol is based on a simple probabilistic test that accepts a non-
permutation matrix with negligible probability.

Theorem 1 (Permutation Matrix). Let M = (mi,j) be an N × N -matrix
over Zq and x = (x1, . . . , xN ) a vector of N independent variables. Then M is
a permutation matrix if and only if

∏N
i=1〈mi, x〉 =

∏N
i=1 xi and M1 = 1.

Proof. Consider the polynomial f(x) =
∏N

i=1〈mi, x〉 in the multivariate poly-
nomial ring R = Zq[x1, . . . , xN ], where mi is the ith row of M . It is clear that
M1 = 1 and f(x) =

∏N
i=1 xi if M is a permutation matrix. Conversely, suppose

that M1 = 1 and f(x) =
∏N

i=1 xi. If any row mi were the zero vector, then f
would be the zero polynomial. If all rows of M were non-zero, but some row mi

contained more than one non-zero element, then f would contain a factor of the
form

∑
j∈J mi,jxj with |J | ≥ 2 and mi,j �= 0 for j ∈ J . Since R is a unique

factorization domain, this contradicts the assumption that f(x) =
∏N

i=1 xi. If
the jth column contained more than one non-zero element, then degxj

f ≥ 2,

again contradicting f =
∏N

j=1 xj . Thus there is exactly one non-zero element in
each row and column and since M1 = 1, the non-zero element must equal one.

Protocol 1 (Permutation Matrix).
Common Input: Matrix commitment a ∈ GN

q and commitment parameters
g, g1, . . . , gN ∈ Gq.
Private Input: Permutation matrix M ∈ ZN×N

q and randomness s ∈ ZN
q such

that a = C (M, s).

1. V chooses e ∈ SN ⊆ ZN
q randomly and hands e to P .

2. P defines t = 〈1, s〉 and k = 〈s, e〉. Then V outputs the result of

Σ-proof

[
t, k ∈ Zq

e′ ∈ ZN
q

∣∣∣∣∣C (
1, t

)
= a1 ∧ C (e′, k) = ae ∧

N∏
i=1

e′i =
N∏

i=1

ei

]
.

We remark that V could instead hand a random seed to P and define e as the
output of a PRG invoked on the seed. This reduces the amount of randomness
needed by the verifier, which is important in applications where the role of V is
played by a multiparty coin-flipping protocol. Since this trick is well known (cf.
[27]) and complicates the exposition, we do not detail it here.

Proposition 1. Protocol 1 is a perfectly complete, 4-message honest verifier
zero-knowledge proof of knowledge of the relation Rπ ∨Rcom, where the relation
Rπ consists of pairs ((ck , a), (M, s)) such that M is a permutation matrix and
a = Cck (M, s).

Under the discrete logarithm assumption, it is infeasible to find a witness of
the relation Rcom for the commitment parameter (g, g1, . . . , gN ). Thus, for a
randomly chosen commitment parameter, the proposition may be interpreted as
a proof of knowledge of the relation Rπ.
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3.1 Proof of Proposition 1

The completeness and zero-knowledge properties follows from the completeness
and zero-knowledge properties of the sigma protocol and the hiding property of
the commitment scheme. What remains is to show that the protocol is a proof of
knowledge by creating an extractor. We do this by extracting witnesses (e′, t, k)
from the sigma proof for N linearly independent vectors e and use them to
recover the matrix M . Finally, we show that if M is not a permutation matrix,
then we are able to extract a witness of the commitment relation Rcom.

Three-Message Protocol. We first make a conceptual change that allows us to
view our four-round prover as a particular three-round prover of a standard
sigma-protocol. Given a prover P∗, we denote by P+ the interactive machine
that chooses e ∈ ZN

q randomly itself instead of letting V choose it, and then
simulates P∗. We denote by V+ the corresponding verifier that accepts e as part
of the first message in the sigma proof.

Basic Extractor. We augment the common input with a list of linearly indepen-
dent vectors e1, . . . , el ∈ Z

N
q where l < N , let P⊥ be identical to P+, and define

V⊥ to be identical to V+ except that it only accepts if e is linearly independent
of these. If P∗ convinces V with probability δ, then P⊥ clearly convinces V⊥ with
probability at least δ − 1

|S| , since the probability that e is linearly dependent of
e1, . . . , el ∈ ZN

q is bounded by 1
|S| .

It is well known that the sigma proof has an extractor E⊥ running P⊥ as a
black-box that given linearly independent e1, . . . , el ∈ ZN

q extracts an e that is
linearly independent of the former vectors and a corresponding witness (e′, t, k)
of the sigma proof. Furthermore, E⊥ runs in expected time T/(δ − 1

|S| − ε) for
some polynomial T (n) in the security parameter n, where ε is the knowledge
error of the sigma proof. Denote by EN the extractor that computes witnesses
(el, tl, e

′
l, kl) = E⊥(e1, . . . , el−1, a, g, g1, . . . , gN ) for l = 1, . . . , N . Then EN runs

in expected time O(
NT/(δ − 1

|S| − ε)
)
.

Computation of Committed Matrix. From linear independence follows that there
exists αl,j ∈ Zq such that

∑N
j=1 αl,jej is the lth standard unit vector in ZN

q . We
conclude that:

al =
N∏

j=1

aαl,jej =
N∏

j=1

C (
e′j , kj

)αl,j = C
⎛⎝ N∑

j=1

αl,je
′
j ,

N∑
j=1

αl,jkj

⎞⎠ .

Thus, we have a = C (M, s), where
∑N

j=1 αl,je
′
j is the lth column of a matrix

M ∈ ZN×N
q and s =

( ∑N
j=1 α1,jkj , . . . ,

∑N
j=1 αN,jkj

) ∈ ZN
q is the random

vector used to commit.

Product Inequality Extractor. We expect that the matrix M is a permutation
matrix, but if this is not the case we must argue that we can find a non-trivial
representation of 1 in Gq. We augment the original input with a non-permutation
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matrix M which we assume satisfy M1 = 1. We will see that had M1 �= 1, we
would have been able to extract a witness of Rcom. Let Pπ be identical to P+,
and define Vπ to be identical to V+ except that it only accepts if∏N

i=1
〈mi, e〉 �=

∏N

i=1
ei . (1)

From Theorem 1 and Schwartz-Zippel’s lemma follows that the probability that
the additional requirement is not satisfied is at most N/|S|. Thus, if P∗ convinces
V with probability δ, then Pπ convinces Vπ with probability at least δ −N/|S|.
Again, a standard argument implies that there exists an extractor Eπ with black-
box access to P∗ running in time O(

T ′/(δ− N
|S| − ε)

)
, which extracts (e, t, e′, k)

such that C (e′, k) = ae and Equation (1) is satisfied.

Main Extractor. Denote by E the extractor that proceeds as follows:

1. It invokes EN to find a matrix M and randomness s such that a = C (M, s).
If M is a permutation matrix, then E has found the witness (M, s) of
relation Rπ.

2. If M does not satisfy M1 = 1, then set e′′ = M1 and note that

e′′ �= 1 and C (
1, t1

)
= a1 = C (

e′′, 〈s, 1〉) .

Then E has found the witness (a1, 1, t1, e′′, 〈s, 1〉) of the commitment relation
Rcom.

3. If M satisfies M1 = 1, but is not a permutation matrix, then E invokes Eπ

with the additional input M to find (e, t, e′, k) such that C (e′, k) = ae and
Equation (1) holds. Define e′′ = Me and note that

e′′ �= e′ and C (e′, k) = ae = C (e′′, 〈s, e〉) .

The former holds, since
∏N

i=1 e
′
i =

∏N
i=1 ei �=

∏N
i=1 e

′′
i . Then E has found the

witness (ae, e′, k, e′′, 〈s, e〉) of the commitment relation Rcom.

Note that the the expected running time of the extractor E is bounded by
O(

(NT + T ′)/(δ − N
|S| − ε)

)
as required and that it always finds a witness of

either Rπ or Rcom. �

4 Proof of Knowledge of Restricted Permutation Matrix

We now detail how one can restrict π to the subset SF of permutations that sat-
isfies F (x′

1, . . . , x
′
d) = F (x1, . . . , xd) for a multivariate polynomial F (x1, . . . , xd)

in Zq[x1, . . . , xd] where x′
i = (xi,π(1), . . . , xi,π(N)). We remark that d = 1 in many

instances, in which case the polynomial F will just depend on a single list of N
variables.

The protocol below is an extension of Protocol 1. Thus, to simplify the expo-
sition we denote by Pπ(a, t, e, e′, k) the predicate used to define the sigma proof
of Protocol 1, i.e., C (

1, t
)

= a1 ∧ C (e′, k) = ae ∧∏N
i=1 e

′
i =

∏N
i=1 ei.
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Protocol 2 (Restricted Permutation Matrix).
Common Input: Matrix commitment a ∈ GN

q , commitment parameters
g, g1, . . . , gN ∈ Gq, and a polynomial invariant F .
Private Input: Permutation matrix M ∈ ZN×N

q for a permutation π ∈ SF and
randomness s ∈ ZN

q such that a = C (M, s).

1. V chooses e1, . . . , ed ∈ SN ⊆ ZN
q randomly and hands e1, . . . , ed to P .

2. P defines t = 〈1, s〉 and kι = 〈s, eι〉 for ι = 1, . . . , d. Then V outputs the
result of

Σ-proof

⎡⎣ e′1 ∈ ZN
q , t, k1 ∈ Zq

e′2, . . . , e
′
d ∈ ZN

q

k2, . . . , kd ∈ Zq

∣∣∣∣∣∣
Pπ(a, t, e1, e

′
1, k1) = 1∧d

j=1 C
(
e′j , kj

)
= aej∧

F (e′1, . . . , e
′
d) = F (e1, . . . , ed)

⎤⎦ .

Proposition 2. Protocol 2 is a perfectly complete 4-message honest verifier
zero-knowledge proof of knowledge of the relation RG ∨Rcom, where the relation
RG consists of pairs ((ck , a, F ), (M, s)) such that M is a permutation matrix of
π ∈ SF and a = Cck (M, s).

The proof, given in the full version, is a slight modification of the proof of
Proposition 1.

4.1 Encoding Graphs as Polynomials

So far, we have not discussed where the polynomials would come from. In this
section we describe how a graph can be encoded as a polynomial which is invari-
ant under automorphisms of the graph.

The edge set E of an undirected graph G with N vertices can be encoded
by the polynomial FG (x) =

∑
(i,j)∈E xixj where x is a list of N independent

variables. This encoding is generalized in the natural way to a hypergraph with
edge set E by defining FG (x) =

∑
e∈E

∏
i∈e xi. Both encodings allow multiple

edges and self-loops.
Notice that the encoding above does not preserve information about the di-

rection of the edges. For directed graphs, we instead introduce new variables
y1, . . . , yN and use the polynomial FG (x, y) =

∑
(i,j)∈E xiyj, where xi and yi

represent the origin and destination of a directed edge from and to vertex i re-
spectively. For example, the cyclic group CN of rotations of N elements arise as
the automorphism group of the directed cyclic graph on N vertices. This graph
can be encoded by the polynomial FG (x, y) =

∑
(i,j)∈E xiyj so we can use a

proof of a restricted shuffle to show that one list of ciphertexts is a rotation of
another.

This trick of adding more variables can be generalized to encode the order of
the vertices in the edges of a hypergraph.

Theorem 2. Let FG (x1, . . . , xd) be the encoding polynomial of a (directed or
undirected) graph or hypergraph G . A permutation π is an automorphism of G
if and only if



110 B. Terelius and D. Wikström

FG (x1, . . . , xd) = FG (x′
1, . . . , x

′
d) ,

where x′
i = (xi,π(1), . . . , xi,π(N)).

Proof. Recall that an automorphism is a permutation of the vertices which maps
edges to edges. Since FG is an encoding of the edge set and the edge sets are equal
if and only if the permutation is an automorphism, it follows that the encoding
polynomials are equal if and only if the permutation is an automorphism. �

5 Proofs of Restricted Shuffles

We immediately get an 8-message proof of a restricted shuffle for any shuffle-
friendly map and any homomorphic cryptosystem by combining our result with
the protocol in [27]. Here we give a 5-message proof of a restricted shuffle for
the important special case where each element in the groups of ciphertexts and
randomness have prime order q, e.g. El Gamal [8].

Recall the definition of shuffle-friendly maps from [27], where we use Cpk and
Rpk to denote the groups of ciphertexts and randomness for a public key pk .

Definition 1. A map φpk is shuffle-friendly for a public key pk ∈ PK of a homo-
morphic cryptosystem if it defines a homomorphic map φpk : Cpk ×Rpk → Cpk .
For example, the shuffle-friendly map1 of a shuffle where the ciphertexts are re-
encrypted and permuted is defined by φpk (c, r) = c · Epk (1, r). All the known
shuffles of homomorphic ciphertexts or lists of ciphertexts can be expressed simi-
larly (see [27] for more examples).We let PF (a, t, {eι, kι, e

′
ι}d

ι=1) denote the pred-
icate Pπ(a, t, e1, e

′
1, k1)∧F (e′1, . . . , e

′
d) = F (e1, . . . , ed)∧ C(e′j, kj) = aej for all j,

i.e., the predicate that was used to define the sigma proof in Protocol 2.

Protocol 3 (Proof of Restricted Shuffle).
Common Input: Commitment parameters g, g1, . . . , gN ∈ Gq, a polynomial F ,
public key pk , and ciphertexts c1, . . . , cN , c′1, . . . , c

′
N ∈ Cpk .

Private Input: A permutation π ∈ SF and randomness r ∈ RN
pk such that

c′i = φpk

(
cπ(i), rπ(i)

)
.

1. Let M ∈ ZN×N
q be the permutation matrix representing π. P chooses s ∈ ZN

q

randomly, computes a = C (M, s), and hands a to V .
2. V chooses e1, . . . , ed ∈ SN ⊆ ZN

q randomly and hands e1, . . . , ed to P .
3. P defines e′ι = Meι, t = 〈1, s〉, kι = 〈s, eι〉 for ι = 1, . . . , d, and u = 〈r, e1〉.

Then V outputs the result of

Σ-proof

[
{e′ι ∈ ZN

q , kι ∈ Zq}d
ι=1

t ∈ Zq, u ∈ Rpk

∣∣∣∣∣ PF (a, t, {eι, kι, e
′
ι}d

ι=1) = 1∏N
i=1(c

′
i)

e′
1,i = φpk

(∏N
i=1 c

e1,i

i , u
) ]

.

1 We remark that nothing prevents proving a shuffle of other objects than ciphertexts,
i.e., any groups Cpk and Rpk of prime order q, and any homomorphic map φpk defined
by some public parameter pk can be used.
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In the full version we give a concrete instantiation of the above sigma proof
for an unrestricted shuffle which has efficiency comparable to some of the most
efficient proofs of a shuffle in the literature. We also explain how a shuffle of a
complete binary tree can be derived with essentially no additional computational
cost.

Proposition 3. Protocol 3 is a perfectly complete 5-message honest verifier
zero-knowledge proof of knowledge of the relation Rφpk

∨Rcom, where Rφpk
con-

sists of pairs ((ck , a, F, pk , c, c′), (M, s, r)) such that M is a permutation matrix
of π ∈ SF , a = Cck (M, s) and c′i = φpk

(
cπ(i), rπ(i)

)
.

A proof of the proposition is given in the full version.

6 Variations and Generalizations

There are many natural variations and generalizations of our approach. Below
we briefly mention some of these.

An alternative encoding of a graph is found by switching the roles of multipli-
cation and addition in the encoding polynomial, e.g., the encoding polynomial of
an undirected graph G could be defined as FG (x1, . . . , xN ) =

∏
(i,j)∈E(xi + xj).

Direction of edges can also be represented in an alternative way using powers
to distinguish the ends of each edge, e.g, given a directed graph G the encoding
polynomial could be defined by FG (x1, . . . , xN ) =

∑
(i,j)∈E xix

2
j . We can com-

bine these ideas, turning exponentiation into multiplication by a scalar, and get
the encoding polynomial FG (x1, . . . , xN ) =

∏
(i,j)∈E(xi + 2xj + 1) for our di-

rected graph. The additive constant 1 is needed to fix the scalar multiple of each
factor since factorization in the ring Zq[x1, . . . , xN ] is only unique up to units.
The same ideas can be extended to hypergraphs and oriented hypergraphs, i.e.
hypergraphs where the edges are ordered tuples rather than sets of vertices.

It is easy to generalize the protocol to proving that f(xπ(1), ...xπ(N)) =
g(x1, ...xN ) for an arbitrary function g. In the body of the paper, we dealt with
the important special case where f = g, but by choosing g different from f , it is
possible to prove that the permutation belong to a set that is not necessarily a
group. For example, one can prove that the permutation is odd by choosing

f(x1, ...xN ) =
∏
i<j

(xi − xj) and g(x1, ...xN ) = −
∏
i<j

(xi − xj) .

However, it will generally not be possible to create a chain of mix-servers unless
the permutation is restricted to a set that is closed under composition.

For utmost generality, one can modify the protocol to prove that
f(x1, ...xN , xπ(1), ...xπ(N)) = 0 or even f(x1, ...xN , xπ(1), ...xπ(N)) �= 0 for any
function f that can be computed verifiably. Given a commitment y = C (b, s),
the prover can demonstrate that b �= 0 by computing t = 1/b, z = gs′

yt and
running a sigma proof of the form

Σ-proof
[
r, t, s′

∣∣∣z = gs′
yt ∧ z/g1 = gr

]
.
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As an example, one can prove that a permutation is a derangement, i.e. that
π(i) �= i for all i by verifying

∏N
i=1

(
xπ(i) − xi

) �= 0.
In our exposition we assume for clarity that q is prime, but this is not essential.

Composite q can be used, but this requires a more delicate analysis to handle the
possibility of non-invertible elements and zero-divisors in the ring Zq, e.g., the
random vectors are no longer vectors, but elements in a module. Even the case
where q is unknown can be handled using an approach similar to that of [27].
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Batch Range Proof for Practical Small Ranges

Kun Peng and Feng Bao
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Abstract. A batch proof and verification technique by Chida and Ya-
mamoto is extended to work in a more general scenario. The new batch
proof and verification technique is more useful and can save more cost
than the original technique. An application of the new batch proof and
verification technique is range proof, which proves that a secret integer
is in an interval range. Like the most resent and advanced range proof
protocol by Camenisch, Chaabouni and Shelat in Asiacrypt2008, the new
range proof technique is especially suitable for practical small ranges, but
more efficient and stronger in security than the former. The new range
proof technique is very efficient and more efficient than the existing so-
lutions in practical small ranges. Moreover, it achieves stronger security
and stronger privacy (perfect honest-verifier zero knowledge) than most
of the existing range proof schemes.

1 Introduction

In cryptographic applications, it is often needed for a party to prove that he
knows a secret integer in an interval range. The party chooses an integer from
an interval range R, encrypts it or commits to it and publishes the ciphertext or
commitment. Then he has to prove that the integer encrypted in the ciphertext or
committed in the commitment is in R. The proof cannot reveal any information
about the integer except that it is in the range. This proof operation is called
range proof. The following security properties must be satisfied in a range proof
protocol, while high efficiency is very important as well.

– Correctness: if the integer is in the range and the prover knows the integer
and strictly follows the proof protocol, he can pass the verification in the
protocol.

– Soundness: if the prover passes the verification in the protocol, the integer
is guaranteed with an overwhelmingly large probability to be in the range.

– Privacy: no information about the integer is revealed in the proof except
that it is in the range.

The most straightforward range proof technique is ZK (zero knowledge) proof
of partial knowledge [9], which proves that the committed integer may be each
integer in the range one by one and then link the multiple proofs with OR logic.
It has a drawback: the number of computations it needs is linear to the size of
the range, which leads to very low efficiency.

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 114–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The range proof schemes in [4,15,12] improve efficiency of range proof by
discarding the cyclic group with public order in [9]. They notice that gx is a
binding commitment of x maintaining its non-negativity in Z when the order of
g is unknown. So in their range proofs they employ commitment of integers in Z
instead of the traditional commitment of integers with a modulus. This special
commitment function enables them to reduce a range proof in a range R to proof
of non-negativity of integers. Although this method improves efficiency, it has
two drawbacks. Firstly, its soundness depends on a computational assumption:
when the multiplication modulus is a composite hard to factorize multiplication
operation generates a large cyclic subgroup, whose order is secret and hard to
calculate. So its soundness is only computational. Secondly, it cannot achieve
perfect zero knowledge or simulatability. It reveals a statistically small (and
intuitively-believed negligible) amount of information about the secret integer
and only achieves the co-called statistical zero knowledge.

The most recent and advanced range proof scheme is [5]. On one hand it
recognizes that sacrifice of unconditional soundness and perfect zero knowledge
is necessary for high efficiency. On the other hand, it shows that asymptotical
efficiency is not always the dominating factor in efficiency analysis. Actually,
asymptotical efficiency in range proof is only important for large ranges. As the
ranges in most practical applications of range proof are not large, an asymptoti-
cally higher cost may be actually lower in practice. So, the range proof scheme in
[5] ignores asymptotical efficiency but focuses on the actual cost of range proof in
practical small ranges. As a result, although its asymptotical efficiency is not the
highest, it achieves the highest actual efficiency in practical small ranges and is
more efficient in practical applications than the other existing range proof solu-
tions. However, [5] has its drawbacks as well. Besides conditional soundness like
in [4,15,12], its has an additional limitation: its privacy depends on hardness of
a special mathematical problem called (logk)-Strong Diffie Hellman assumption.
Moreover, its efficiency advantage in practical small ranges is not great enough
to dramatically improve efficiency of many applications.

A new range proof scheme is proposed in this paper. It is based on a new batch
proof and verification technique extended from a batch proof and verification pro-
tocol in [7]. The new batch proof and verification protocol can prove and verify in
a batch n instances of knowledge claims, each claiming knowledge of 1-out-of-k
secret discrete logarithms. It is much more efficient than separately proving and
verifying the n instances of knowledge claims. In the new range proof protocol, the
committed integer is represented in a k-base coding system so that range proof in
a range with width b − a is reduced to n instances of range proof in Zk where
b − a = kn. Then the new batch proof and verification technique is employed to
batch the n instances of proof, so that efficiency of range proof in practical small
ranges is greatly improved. The new range proof scheme is much more efficient
than [5], not to mention the other solutions to range proof. Moreover, it achieves
unconditional soundness and perfect zero knowledge (in the random oracle model)
and is stronger in security and privacy (perfect honest-verifier zero knowledge)
than most existing solutions to range proof including [4,15,12,5].
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2 Background

Background knowledge about range proof and batch proof and verification is
recalled in this section.

2.1 Range Proof and the Most Recent Development in [5]

As stated before, the simplest range proof technique [9] has a drawback: low
efficiency. It is well known that it can be optimised by sealing the secret integer
bit by bit and proving each commitment contains a bit. However, the optimised
solution is still not efficient enough.

To improve efficiency of range proof, Boudot proposes [4]. Boudot notices that
gx is a binding commitment of x in Z when the order of g is unknown. Thus
a computationally binding commitment function can be designed and any non-
negative committed integer can be proved to be non-negative by showing that
it is the sum of a square and a non-negative integer in a smaller range. So in
his range proof [4] Boudot employs commitment of integers in Z instead of the
traditional commitment of integers with a modulus. This special commitment
function enables him to reduce a range proof in a range R to a range proof in a
much smaller range. Moreover, it enlarges the smaller range and then compresses
it back to its original size to asymptotically improve precision of range proof in it.
Then, it implements range proof in the smaller range by publishing a monotone
function of the non-negative integer in it and showing that the monotone function
is in another much larger range. This method has several drawbacks. Firstly, the
monotone function reveals some information of the secret integer. To limit the
amount of revealed information, very large parameters (e.g. extra large integers)
must be employed, so that many computations in [4] are more costly than usual.
Secondly, as distribution of the monotone function cannot precisely implies the
exact range of its pre-image, it is necessary to firstly enlarge the smaller range
and then compress it back into its original size. The enlarging and compressing
process has two drawbacks: it is only asymptotically sound and it further enlarges
parameters to further increase the cost of the computations.

Later [15,12] are proposed. They inherit the setting in Z and cyclic groups with
secret orders but do not aim at purely high efficiency (especially in the terms of
the number of exponentiations). Instead they employ more comprehensive anal-
ysis and pursue better balance and trade-off between security properties. Their
soundness is absolutely precise and they do not need extra large parameters.
However, they have their own drawbacks. They only need a constant number of
computations as well, but employ Rabin and Shallit algorithm, which is costly
and needs a lot of computations.

As [4,15,12] employs cyclic groups with secret orders and computations in Z,
they have two drawbacks. Firstly, they depend on hardness of the factorization
problem to ensure that the cyclic groups they employ have secret orders and their
soundness is guaranteed. Secondly, certain computations in Z (e.g. calculation of
response in Z as a monotone function of a secret in zero knowledge proofs) violate
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perfect zero knowledge and can at most achieve statistical zero knowledge. So
their soundness is only computational and their privacy is only statistical.

The most recent and advanced range proof scheme is [5]. As the newest devel-
opment in range proof, [5] has its own focus. It points out that in most practical
applications of range proof the ranges are not large. In [9,5], the size of a range
can be as large as the order of a large cyclic group, which is usually hundreds of
bits long. In [4,15,12], the size of a range has no up-bound. However, in practical
applications the range size is usually not so large. Our own observation agrees
with the point of view in [5]. For example, in some secure e-auction schemes
[8,13,1,16] a bidder has to prove that his secret bid is in an interval range con-
taining the biddable prices; in some secure e-voting schemes [14,12] a voter has
to prove that his secret vote contains the code for one of the candidates. In these
applications, the range size is much smaller than permitted. So asymptotical ef-
ficiency is not so important in range proof as emphasized in [4,15,12,5]. Instead,
the actual cost, especially with a practical small range, is more important. The
range proof protocol in [5] is efficient with a practical small range although it
has lower asymptotical efficiency. It is convincingly illustrated in [5] that the
range proof protocol in it is more efficient than any other existing range proof
solutions when the range is a practical small range. Security of [5] depends on
hardness of (logk)-Strong Diffie Hellman assumption.

To be compared with our new range proof technique, the concrete cost of the
range proof protocol in [5] must be estimated. For fairness of the comparison,
costs of both the range proof protocol in [5] and our new range proof protocol
are measured in the number of multiplications. The range proof and verification
protocol is presented in Fig-3 in [5] and consists of 6 steps where the range size
is denoted as ul. In Step 1, the verifier carries out u + 1 exponentiations; in
Step 2, the prover carries out l exponentiations and then the prover and verifier
run a zero knowledge proof, which costs 12l + 3 exponentiations; in Step 3, the
prover carries out 4l exponentiations; in Step 6 (final verification), the verifier
carries out 4l + 2 exponentiations. In the 6 steps, there are in addition 13l + 2
multiplications.

2.2 Batch Proof and Verification

Batch verification was first formally proposed by Bellare et al [3] to efficiently
verify correctness of multiple exponentiation operations. Bellare et al propose
three batch verification techniques: random subset test, small exponent test
and bucket test. In their most popular test, small exponent test, one equation∏k

i=1 y
ti

i = g
∑k

i=1 tixi is used to check k equations: yi = gxi for i = 1, 2, . . . , k.
As challenges ti for i = 1, 2, . . . , k can be shorter than a full-length integer,
efficiency of computation can be greatly improved. Bellare et al demonstrate
that full length challenges are not necessary in practice and shorter ti can satisfy
soundness in practical sense. Although when full length challenges are used
soundness of the verification can be guaranteed with a probability 1−1/q where
q is a full length parameter (e.g. 256 bits long), very few practical application



118 K. Peng and F. Bao

needs so large a probability of soundness as 1−2−256. So Bellare [3] et al suggest
to make a trade-off between soundness and efficiency. Bellare et al verify the
statements in a batch to improve efficiency, while soundness of the verification is
weakened to a practical level. There is an important parameter in Bellare’s batch
verification technique, which is denoted as L in this paper. Bellare et al illustrate
that if the batch verification succeeds with a probability larger than 2−L, it
guarantees that all the statements are correct. As most of the computational
cost of the batch verification is linear in L, Bellare et al suggest L to be much
shorter than full length such that great efficiency improvement can be achieved.
According to the estimation by Bellare et al 2−L is smaller than one out of
one billion when L = 30 and the achieved soundness is strong enough for most
practical applications like signature verification.

Batch proof and verification [11,2,18,17] is an extension of batch verification.
It also employs the idea in [3] and sacrifice unnecessary strength of soundness to
improve efficiency. Bellare’s batch verification is extended into batch ZK proof
and verification [11] of multiple knowledge claims, all of which are correct. In [17],
batch proof and verification is extended to handle multiple possible knowledge
claims, only one of which is correct. The batch proof and verification techniques
in [3] and [11] only handle multiple claims linked with ALL logic, so cannot be
applied to range proof, which employs OR logic.

2.3 Batch Proof and Verification Technique by Chida and
Yamamoto [7]

A batch proof and verification technique is proposed in [7] to batch prove and
verify multiple zero knowledge proofs of knowledge of 1-out-of-2 discrete log-
arithms. Its main idea is proposed in the so-called Protocol 3 in [7], which is
recalled without any change in Figure 1.

It has been formally proved in [7] that the batch proof and verification protocol
in Figure 1 is perfectly simulatable (and thus perfect zero knowledge) in the
random oracle model and guarantees with an overwhelmingly large probability
that the prover knows logg yi,0 or logg yi,1 for i = 1, 2, . . . , n.

3 Extended Batch Proof and Verification

Our idea is to extend batch proof and verification of knowledge of 1-out-of-2
discrete logarithms to batch proof and verification of knowledge of 1-out-of-k
discrete logarithms where k can be any integer larger than 1. Suppose there
are n instances of proof and in each of them a prover has to prove that he
knows at least one of k secret discrete logarithms. The n instances of proof and
the corresponding verification are batched into a single proof and verification
protocol such that efficiency can be improved. The extended batch proof and
verification protocol is described in Figure 2.

Security of the new batch proof and verification protocol is analysed in Defini-
tion 1, Theorem 1 and Theorem 2 where the symbol W () is defined as witnesses
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Common input: (p, q, g), {(yi,0, yi,1)}i=1,...,n where G is an instance generator such
that (p, q, g) ← G(1ρ) and p, q are primes such that q|p − 1 holds.
Knowledge to prove: bi ∈ {0, 1}, si,bi s.t. yi,bi = gsi,bi .

1. The prover selects r, v, ci,b̄i
∈R Z/qZ and computes

R0 = gr ∏
{i|bi=1} y

ci,0
i,0

R1 = gv ∏
{i|bi=0} y

ci,1
i,1

ci = H(CI ||ci−1||ci−1,0)

ci,bi = ci − ci,b̄i
mod q

z0 = r − ∑
{i|bi=0} ci,0si,0 mod q

z1 = v − ∑
{i|bi=1} ci,1si,1 mod q

where CI is a bit string comprising common inputs in a certain order, c0 = R0,
c0,0 = R1. It then sends (z0, z1, c1, c1,0, . . . , cn,0) to the verifier.

2. The verifier computes

ci,1 = ci − ci,0 mod q

ci+1 = H(CI ||ci||ci,0)

and verifies

c1 = H(CI ||gz0
∏n

i=1 y
ci,0
i,0 ||gz1

∏n
i=1 y

ci,1
i,1 )

Fig. 1. Batch Proof and Verification of knowledge of 1-out-of-2 Discrete Logarithms

of x: W (x)
def
= {w|(x,w) ∈ R} in the beginning of Section 2.1 of [7]. Definition 1,

Theorem 1 and Theorem 2 in this paper are the same as Definition 1, Lemma 1
and Lemma 2 in [7] except necessary fixing of grammar mistakes and that the
special case that k = 2 is extended to the general scenario that k can be any
integer larger than 1. So proof of Theorem 1 and Theorem 2 is almost the same
as the proofs of Lemma 1 and Lemma 2 in [7]. Just extend k = 2 to k ≥ 2 and
repeat some operations k − 1 times, and proofs of Lemma 1 and Lemma 2 in
[7] become proofs of Theorem 1 and Theorem 2 in this paper respectively. The
extended proofs are so straightforward and cannot be regarded as our original
contribution, so are given in Appendix A for the readers who has difficulty in
accessing [7].

Definition 1. (R-incompatibility) Let LR
def
= {y|∃x s.t. (y, x) ∈ R}. For in-

put (y1, y2, . . . , yk, b, xb) such that y1, y2, . . . , yk ∈ LR, b ∈ {1, 2, . . . , k} and
xb ∈ W (yb), if no probabilistic polynomial-time Turing machine can output
xβ ∈ W (yβ) for β ∈ {1, 2, . . . , k} and β �= b except for a negligible error, we
call (y1, y2, . . . , yk) ∈ Lk

R R-incompatible. In particular, we call a set consisting
of R-incompatible elements obtained from the same language R-incompatible set.
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Common input: (p, q, g), {(yi,1, yi,2, . . . , yi,k)}i=1,2,...,n.
Knowledge to prove: bi ∈ {1, 2, . . . , k}, si,bi s.t. yi,bi = gsi,bi mod p for i = 1, 2, . . . , n.
Denotation: Si = {1, 2, . . . , bi − 1, bi + 1, . . . , k} and L is a security parameter.

1. The prover randomly selects r1, r2, . . . , rk from Zq and ci,j for i = 1, 2, . . . , n
and j ∈ Si from Z2L . Then he computes

R1 = gr1
∏

1≤i≤n, bi=1

∏
j∈Si

y
ci,j

i,j mod p

R2 = gr2
∏

1≤i≤n, bi=2

∏
j∈Si

y
ci,j

i,j mod p

. . . . . .

. . . . . .

Rk = grk
∏

1≤i≤n, bi=k

∏
j∈Si

y
ci,j

i,j mod p

ci = H(CI ||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n

ci,bi = ci − ∑
j∈Si

ci,j mod q for i = 1, 2, . . . , n

z1 = r1 − ∑
{i|bi=1} ci,1si,1 mod q

z2 = r2 − ∑
{i|bi=2} ci,2si,2 mod q

. . . . . .

. . . . . .

zk = rk − ∑
{i|bi=k} ci,ksi,k mod q

where CI is a bit string comprising common inputs in a certain order and

c0 = R1

c0,1 = R2

c0,2 = R3

. . . . . .

. . . . . .

c0,k−1 = Rk.

It then sends
(z1, z2, . . . , zk, c1, c1,1, c1,2 . . . , c1,k−1, c2,1, c2,2 . . . , c2,k−1, . . . . . .
cn,1, cn,2 . . . , cn,k−1) to the verifier.

2. The verifier computes

ci,k = ci − ∑k−1
j=1 ci,j mod 2L for i = 1, 2, . . . , n

ci = H(CI ||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n

and verifies

c1 = H(CI ||gz1
∏n

i=1 y
ci,1
i,1 mod p||gz2

∏n
i=1 y

ci,2
i,2 mod p

|| . . . ||gzk
∏n

i=1 y
ci,k

i,k mod p)

Fig. 2. Batch Proof and Verification of knowledge of 1-out-of-k Discrete Logarithms
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Theorem 1. (Simulatability) Let viewR
def
= (z1, z2, . . . , zk, c1, c1,1, c1,2, . . . ,

c1,k−1, c2,1, c2,2 . . . , c2,k−1, . . . . . . , cn,1, cn,2 . . . , cn,k−1). There exists a simulator
that, on input ((p, q, g), {(yi,1, yi,2, . . . , yi,k)}i=1,2,...,n), outputs viewS which is
perfectly indistinguishable from viewR in expected polynomial time in the ran-
dom oracle model.

Theorem 2. (Soundness) Suppose that {(yi,1, yi,2, . . . , yi,k)}i=1,2,...,n in Proto-
col 3 is an R-incompatible set. Then, if the prover is successful in producing
(z1, z2, . . . , zk, c1, c1,1, c1,2, . . . , c1,k−1, c2,1, c2,2 . . . , c2,k−1, . . . . . . , cn,1, cn,2 . . . ,
cn,k−1) accepted by the verifier, the prover has witnesses bi ∈ {1, 2, . . . , k} and
si,bi ∈ Zq s.t. yi,bi = gsi,bi for i = 1, 2, . . . , n with an overwhelmingly large
probability in the random oracle model.

In [7], it is illustrated that the overwhelmingly large probability to guarantee
soundness of batch proof and verification is determined by the length of the
challenges ci,j . We apply the key point emphasized by Bellare [3] but ignored
in [7]: the challenges ci,j are not necessary to be full length. Instead, they can
be much smaller than q, while very strong soundness can still be achieved. For
example, when ci,j for i = 1, 2, . . . , n and j = 1, 2, . . . , k are 40 bits long,

– on one hand, the probability that a cheating prover without the claimed
knowledge can pass the verification is no more than 2−40, a very small prob-
ability negligible in any practical application;

– on the other hand, the cost of an exponentiation with an exponent ci,j is only
40/256 of the cost of an exponentiation with a full-length exponent when q
is 256 bits long.

Like in [3], cost of the new batch proof and verification protocol is measured
in terms of the number of full-length exponentiations. We assume that a full-
length exponent like rj and zj is 256 bits long. An exponentiation with an L-bit
exponent is regarded to be as costly as L/256 full length exponentiation. So in the
new batch proof and verification protocol, the prover’s cost is k+(k−1)nL/256
full exponentiations and the verifier’s cost is full k + knL/256 exponentiations.
In comparison, the standard solution to the n instances of proof of knowledge
of 1-out-of-k discrete logarithms, n instances of zero knowledge proof of partial
knowledge [9], costs the prover 2n(k−1)+n full length exponentiations and the
verifier 2nk full length exponentiations. So efficiency improvement of the new
batch proof and verification protocol is great.

4 The New Range Proof Protocol

The main idea of the new range proof scheme is to represent the secret integer
in a base-k system. Thus proof that an integer x is in a range {a, a + 1, . . . , b}
can be reduced to logk(b − a) instances of proof that each digit of the base-k
representation of x − a is in Zk. Then the logk(b− a) instances of proof can be
batched using the new batch proof and verification of knowledge of 1-out-of-k
discrete logarithms to improve efficiency.
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As most range proof schemes employ the Fujisaki-Okamoto commitment func-
tion [10] or its variants to seal the secret integer, we make the same choice in
commitment function. As illustrated in [10], this family of commitment func-
tions is information-theoretically hiding and does not reveal any information.
Moreover, it is only computationally binding and uniqueness of the committed
integer is only guaranteed when the prover is assumed to be a polynomial party
and cannot solve the DL problem. These two points will not be emphasized
again in this paper. We believe that in practical applications the prover is a
polynomial party and the DL problem is hard, so from now on in this paper
we will use phases like “the integer committed in this commitment”. That does
not mean that we believe a unique integer is unconditionally committed in the
commitment. Moreover, when proving and analysing soundness of our new range
proof protocol we will not focus our attention on the effect of the commitment
function on soundness of the range proof, as it is well known that the effect is
a limitation based on hardness of the DL problem. Instead, we will focus on
soundness of the proof operations themselves. When we claim soundness of the
new range proof protocol without emphasizing its dependence on bindingness
of the commitment function or hardness of the DL problem we do not mean
to ignore this condition, but feel unnecessary to repeat a well known fact. Our
claim only reflects the fact that soundness of our range proof itself does not need
any computational assumption.

A secret integer x is committed to c = gxhr mod p where h is a generator of
G, logg h is unknown and r is a random integer in Zq. x is in an interval range
{a, a+1, . . . , b} where b−a < q. A party with knowledge of x and r has to prove
that the message committed in c is in {a, a + 1, . . . , b}. The proof protocol and
the corresponding verification are as follows.

1. c′ = c/ga mod p and the proof that the integer committed in c is in
{a, a + 1, . . . , b} is reduced to proof that the integer committed in c′ is in
{0, 1, . . . , b− a}.

2. The prover calculates representation of x − a in the base-k system
(x1, x2, . . . , xn) to satisfy x − a =

∑n
i=1 xik

i−1 where for simplicity of de-
scription1 it is assumed (b− a) = kn.

3. The prover randomly chooses r1, r2, . . . , rn in Zq and calculates and publishes
ei = gxihri mod p for i = 1, 2, . . . , n.

4. The prover publicly proves that he knows a secret integer r′ =
∑n

i=1 rik
i−1−

r mod q such that hr′
c′ =

∏n
i=1 e

ki−1

i mod p using zero knowledge proof of
knowledge of discrete logarithm [19].

5. The range proof is reduced to n smaller-scale ranges proofs: the integer
committed in ei is in Zk for for i = 1, 2, . . . , n. Those n instances of proof

1 Sometimes b−a is not an exponentiation, then a generalization mechanism is needed.
A simple example of generalization mechanism is finding k and n such that kn is
s little bit larger than b − a. Firstly, range proof is proved in the a-little-bit-larger
range. Then it is proved that the commited integer is not in the extra part by
showing that it is inequal to every integer in the extra part. More effective and
complex generalization function can be found in [6].
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can be implemented through n instances of proof of knowledge of 1-out-of-k
discrete logarithms

KN(logh ei) ∨KN(logh ei/g) ∨KN(logh ei/g
2) ∨ . . .

∨KN(logh ei/g
k−1) for i = 1, 2, . . . , n (1)

where KN(z) denotes knowledge of z.
6. Proof of (1) can be implemented through batch proof and verification of

knowledge of 1-out-of-k discrete logarithms in Section 3.

The new range proof protocol is correct, sound and achieves zero knowledge
privacy as illustrated in Theorem 3, Theorem 4 and Theorem 5.

Theorem 3. If the message committed in c is in the range {a, a+1, . . . , b}, the
prover can pass the verification in the new range proof protocol.

Proof. If the message committed in c is in the range {a, a+1, . . . , b}, the message
committed in c′ = c/ga = gx−ahr, namely x−a, is in the range {0, 1, . . . , b−a}.
As n = logk(b − a) and x − a =

∑n
i=1 xik

i−1, (x1, x2, . . . , xn) is the base-k
representation of x− a. So

– firstly,

hr′
c′ = h

∑n
i=1 rik

i−1−rgxhr/ga = h
∑ n

i=1 rik
i−1

gx−a

= h
∑ n

i=1 rik
i−1

g
∑n

i=1 xik
i−1

=
∏n

i=1(g
ki−1xihki−1ri)

=
∏n

i=1(g
xihri)ki−1

=
∏n

i=1 e
ki−1

i mod p

and thus the proof in Step 4 of the protocol can pass its verification;
– secondly, each xi, the ith least significant digit in the base-k representation

of x − a, is in Zq and thus the proof in Step 5 of the protocol can pass its
verification.

Therefore, the prover can pass the verification in the new range proof protocol. �

Theorem 4. When b−a is a power of k, if the prover passes the verification in
the new range proof protocol, then it is guaranteed with an overwhelmingly large
probability that the message committed in c is in the range {a, a + 1, . . . , b}.
Proof. As the prover passes the verification in Step 5 of the new range proof
protocol, according to Theorem 2, the message committed in each ei is in Zk with
an overwhelmingly large probability. So the message committed in

∏n
i=1 e

ki−1

i is
in {0, 1, . . . , b− a} with an overwhelmingly large probability as n = logk(b− a).

As the prover passes the verification in Step 4 of the new range proof protocol,
according to the formal proof of soundness in [19] with an overwhelmingly large
probability the prover knows a secret integer r′ such that hr′

c′ =
∏n

i=1 e
ki−1

i mod
p. So the same integer is committed in c′ and

∏n
i=1 e

ki−1

i and thus the message
committed in c′ is in {0, 1, . . . , b− a} with an overwhelmingly large probability.

As it is publicly verifiable that c′ = c/ga mod p, the message committed in c
is in {a, a + 1, . . . , b} with an overwhelmingly large probability. �
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Theorem 5. The new range proof protocol is perfect zero knowledge in the ran-
dom oracle model.

Proof. The new range proof protocol consists of two proof primitives: zero knowl-
edge proof of knowledge of discrete logarithm [19] and batch proof and verifi-
cation of knowledge of 1-out-of-k discrete logarithms in Section 3. The former
has been formally proved in [19] to be perfect zero-knowledge when an interac-
tive challenge is generated by an honest verifier or a non-interactive challenge
is generated by a hash function in the random oracle model. Theorem 1 has
proved that batch proof and verification of knowledge of 1-out-of-k discrete log-
arithms in Section 3 is perfect zero knowledge in the random oracle model. As its
both employed proof primitives are perfect zero knowledge in the random oracle
model, the new range proof protocol is perfect zero knowledge in the random
oracle model. �

5 Comparison of Efficiency and Security

The new range proof scheme is compared with the existing range proof schemes
in Table 1. In analysis of communicational cost, the number of transfered bits
are counted. In analysis of computational cost, both the prover’s and the ver-
ifier’s operations are included and the number of multiplications are counted,
where each exponentiation is counted in terms of a number of multiplications
according to the length of its exponent. When we say a range proof scheme is
unconditionally sound, we mean soundness of the proof itself is achieved with
an overwhelmingly large probability and without any assumption on hardness
of mathematical problems. We emphasize that this conclusion does not take the
commitment function into account. More precisely, if an unconditionally hiding
and computationally binding commitment function is employed to seal the secret
integer before the range proof starts, uniqueness of the committed integer de-
pends on hardness of the mathematical problem bindingness of the commitment
function is based on.

Range proof though proof of partial knowledge [9] needs a cost linear in the
size of the range, so is inefficient both in the asymptotical sense and with small
ranges. Although none of [4,15,12] has given a comprehensive cost analysis and
range proof though bit-by-bit proof of partial knowledge is not specifically and
formally proposed in any paper, it has been convincingly illustrated in [5] that
they have no advantage with practical small ranges. u in [5] is actually k in the
new scheme and l in [5] is actually n in the new scheme. So in efficiency analysis
of both [5] and the new range proof scheme, k and n are used to measure the
cost to achieve a clearer comparison. |G1|, |GT | and |Zp| are symbols used
in [5]. |G1| and |Zp| are estimated as 256 here in [5] and for fairness of the
comparison, a full-length integer is assumed to be 256 bits long in our scheme
as well. In the new range proof scheme, L = 40. As emphasized in Section 2.2,
an important method to improve efficiency in batch proof and verification is
employing challenges shorter than a full-length integer, as Bellare et al have
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demonstrated that full length challenges are not necessary in practice. Bellare
et al [3] and Peng et al [18] show that a 40-bit challenge is already long enough
to guarantee very strong soundness (only failing with a probability 2−40) in any
practical applications. An exponentiation with a full-length exponent is regarded
as 23−1 + 256 + 256/(3 + 1) = 314 multiplications. Product of n L-bit powers is
regarded as 23−1n+ 40 +n40/(3 +1) = 14n+ 40 multiplications. So, in our new
range proof scheme,

– in Step 3, n full-length integers are transfered and n full-length exponentia-
tions and n instances of log2 k-bit-exponent exponentiations are needed;

– in Step 4, ZK proof of knowledge of discrete logarithm transfers 2 full-length
integers and costs 3 full-length exponentiations;

– in Step 5 and Step 6, batching of n instances of ZK proof of knowledge of
1-out-of-k discrete logarithm transfers k full-length integers and n(k−1)+1
L-bit integers and costs k instances of product of n powers and k instances
of product of n + 1 powers.

So, altogether the new range proof scheme cost 256(n+k+2)+40n(k−1)+40
bits in communication and 314(n + 3) + k(28n + 94) + n(1.25 log2 k + 4) =
28kn + 1.25n log2 k + 318n + 94k + 1256 multiplications in computation.

Although the new range proof technique is not the most efficient in the asymp-
totical sense, it is the most efficient with practical small ranges. When the range
b − a is smaller than 1010, nk is no more than 100 and thus our range proof is
much more efficient than [5], not to mention costly pairing operations are needed
and every independent verifier has to repeat the proof in [5].

Table 1. Comparison of range proof schemes

proof range soundness privacy computation communication
[9] unconditional perfect ZK no advantage in no advantage in

small ranges small ranges
[9] unconditional perfect ZK no advantage in no advantage in

bit by bit small ranges small ranges
[4] computational statistical ZK no advantage in no advantage in

asymptotical small ranges small ranges
[15,12] computational statistical ZK no advantage in no advantage in

small ranges small ranges
[5]a computational computational 314k + 6597n (k + 2n − 4)|GT |+

ZK +1884 +4n|Zp| + n|G1| =
+ pairing 942k + 3454n − 3768

for every verifier for every verifier
new unconditional perfect ZK 28kn + 1.25n log2 k+ 256(n + k + 2)+

318n + 94k + 1256 40n(k − 1) + 40

a Note that in [5], communication of 256(k + 1) bits and computation of 314k mul-
tiplications can be resued later in a new range proof of another secret integer with
the same verifier.
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6 Conclusion

The new batch proof and verification technique proposed in this paper is more
general and can save more cost than the batch proof and verification technique
in [7]. With practical small ranges, the new range proof scheme proposed in
this paper is much more efficient than [5], not to mention the other solutions.
Moreover, it achieves unconditional soundness and perfect zero knowledge (in the
random oracle model) and is stronger in security than most existing solutions to
range proof.
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Appendix

A Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. A simulator performs the following procedure for input
((p, q, g), {(yi,0, yi,2, . . . yi,k)}i=1,...,n).

1. Select r̃1, r̃2, . . . , r̃k, c̃1,1, c̃1,2, . . . , c̃n,k−1, c̃n,k from Zq.
2. Compute

R̃j = gr̃j
∏n

i=1 y
c̃i,j

i,j for j = 1, 2, . . . , k
c̃i =

∑
j=1 kci,j mod q for i = 1, 2, . . . , n

z̃j = r̃j mod q for j = 1, 2, . . . , k

3. Output viewS
def
= (z̃1, z̃2, . . . , z̃k, c̃1, c̃1,1, . . . , c̃n,k−1).

Assume that H(.) is a random function that maps {0, 1}∗ to Zq, however,
it returns c̃i when the string (CI||c̃i−1||c̃i−1,1|| . . . ||c̃i−1,k−1 is input, where
c̃1 = R̃1, c̃1,1 = R̃1, . . . c̃1,k−1 = R̃k. Then it is clear viewS is accepted by V and
viewR and viewS are perfectly indistinguishable. �

Proof of Theorem 2. To prove Theorem 2, we first consider its interactive version
with a prover P and an honest verifier V in Figure 3.

Let P ∗ be a possibly cheating prover against the interactive proof in Fig-
ure 3. Suppose π represents the proof protocol hereafter. Consider the P ∗-oracle
machine, MP∗

, as described below.

1. P ∗ and V run π. If V does not accept, run π again. Otherwise, set c′i ← ci,
c′i,0 ← ci,0 for i = 1, 2, . . . , n and z′n,j ← zn,j for j = 1, 2, . . . , k (Denote the
successful protocol as πsuc.).
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2. Set l← n.
3. Rewind πsuc to Step 2 of the proof rotocol in Figure 3 and run π from the

step, however, V selects challenge data as c′i for i = 1, 2, . . . , l and ci ∈R Zq

for i = l, l + 1, . . . , n (Denote the successful protocol as πl.). If V does not
accept, run π from the step again.

1. P randomly selects r1, r2, . . . , rk from Zq and ci,j for i = 1, 2, . . . , n and j ∈ Si

from Z2L . and computes

R1 = gr1
∏

1≤i≤n, bi=1

∏
j∈Si

y
ci,j

i,j mod p

R2 = gr2
∏

1≤i≤n, bi=2

∏
j∈Si

y
ci,j

i,j mod p

. . . . . .

. . . . . .

Rk = grk
∏

1≤i≤n, bi=k

∏
j∈Si

y
ci,j

i,j mod p.

It then sends R1, R2, . . . , Rk to V .
2. V selects c1 ∈ Zq and sends it to P .
3. P computes

c1,b1 = c1 − ∑
j∈S1

c1,j

z1,b1 = r1 − c1,b1s1,b1

z1,j = rj for j ∈ S1

and sends c1,1, c1,2, . . . , c1,k−1 to V .
4. Repeat the following steps for i = 2, . . . , n.

(a) V randomly selects ci from Zq and sends it to P.
(b) P computes

ci,bi = ci − ∑
j∈Si

ci,j

zi,bi = zi−1,bi − ci,bisi,bi

zi,j = zi−1,j for j ∈ Si

and sends ci,1, ci,2, . . . , ci,k−1 to V
5. P sends zn,0, zn,1, . . . , zn,k to V .
6. V computes

ci,k = ci − ∑k−1
j=1 ci,j mod q for i = 1, 2, . . . , n

and verifies

gzn,j = Rj

∏n
i=1 y

−ci,j

i,j mod p for j = 1, 2, . . . , k

It then returns accept or reject.

Fig. 3. Batch Proof and Verification of Knowledge of 1-out-of-k Discrete Logarithms
in its Interactive version
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4. Set

Δci = ci − c′i mod q

Δci,0 = ci,0 − c′i,0 mod q

Δci,1 = (ci − ci,0)− (c′i − c′i,0) mod q

Δzj = zn,j − z′n,j mod q

5. Abort if Δcl,j = 0.
6. Select b ∈ {1, 2, . . . , k} such that Δcl,b �= 0 and set

ŝl,b = (Δzb +
∑n

i=l+1,b̂i=b Δci,bŝi,b)/ −Δcl,b (2)

b̂l = b

7. Abort if yl,b̂l
�= g

ŝl,b̂l .
8. Set l← l− 1. If l > 0, go back to Step 3.
9. Output (b̂1, ŝ1,b̂1

) . . . (b̂n, ŝn,b̂n
).

Regarding Step 5 above, if Δcl,j = 0, then cl ≡ c′l(mod q) holds by the setting of
Step 4. However, the probability such that cl ≡ c′l(modq) is negligible because
it is assumed that cl and c′l are randomly selected by V . Therefore, in the above
procedure, the probability such that MP∗

aborts at Step 5 is negligible.
Next, it is shown that the probability such that MP∗

aborts at Step 7 is
negligible. This means yl,b̂l

= g
ŝl,b̂l holds except a negligible error if ŝl,b̂l

is
generated according to (2).

After performing πsuc and πn, the following equations are respectively ob-
tained.

gz′
n,j = Rj

∏n
i=1 y

−ci,j

i,j for j = 1, 2, . . . , k (3)

gzn,j = Rjy
−cn,j
nj

∏n−1
i=1 y

−ci,j

i,j for j = 1, 2, . . . , k (4)

From the case of j = 1 in (3) and (4), gΔz1 = y
−Δcn,1
n,1 holds. This is equiv-

alent to Δz1 = −Δcn,1sn,1(modq). Similarly, Δzj = −Δcn,jsn,j(modq) for
j = 2, 3, . . . , k are obtained from the other cases of the equations. Therefore, for
input ŝn,b = −Δzb/Δcn,b mod q generated according to (2), yn,b = Gŝn,b holds
if Δcn,b �= 0. Note that, as observed before, there exists b ∈ {1, 2, . . . , k} such
that Δcn,b �= 0 with overwhelming probability. On the other hand, Δcn,j = 0
for j ∈ Sn holds because of the Rincompatibility of (yn,1, yn,2, . . . , yn,k).

We next consider the case of l < n. In this case, we see that

Δzj ≡= −∑n
i=l Δci,jsi,j(modq) (5)

holds by the same way as the case of l = n. Equation (5) can be transformed
into

sl,b = (Δzb +
∑n

i=l+1 Δci,bsi,b)/−Δcl,b (6)
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for b ∈ {1, 2, . . . , k} straightforward and (6) is equivalent to (2) if
ci,b = 0 for b �= b̂i. Assume that (b̂l+1, ŝl+1,b̂l+1

), . . . (b̂n, ŝn,b̂n
) satisfying

yl+1,b̂l+1
= gŝl+1,ŝl+1 , . . . , yn,b̂n

= gŝn,ŝn respectively, are already obtained by
performing πl+1 . . . πn and πsuc. Assume also that Δci,b̂i

�= 0 and Δci,j = 0
for j �= b̂i and i = l + 1, l + 2, . . . , n and Δci,b̂i

are already obtained. It is
clear that these assumptions hold when l = n − 1. Then, there exist b in
{1, 2, . . . , k} such that cl,b �= 0 and yl,b = gsl,b can be computed according
(6). Then set (b̂l, ŝl,b̂l

← (b, sl,b). Since the probability such that Δcl,j = 0 for
j = 1, 2, . . . , k is negligible as observed before, the probability such that MP∗

aborts at Step 7 is negligible in this stage. Finally, it is shown that Δcl,1−b̂l
= 0

for the validity of the assumptions as stated before. If Δcl,1−b̂l
�= 0, sl,1−b̂l

such that yl,1−b̂l
= g

sl,1−b̂l can be computed. However, this contradicts the
R-incompatibility of yl,1, yl,2, . . . , yl,k. �
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Abstract. Priced oblivious transfer (POT) is a two-party protocol be-
tween a vendor and a buyer in which the buyer purchases digital goods
without the vendor learning what is bought. Although privacy properties
are guaranteed, current schemes do not offer fair exchange. A malicious
vendor can, e.g., prevent the buyer from retrieving the goods after receiv-
ing the payment, and a malicious buyer can also accuse an honest vendor
of misbehavior without the vendor being able to prove this untrue. In
order to address these problems, we define the concept of optimistic fair
priced oblivious transfer and propose a generic construction that extends
secure POT schemes to realize this functionality. Our construction, based
on verifiably encrypted signatures, employs a neutral adjudicator that is
only involved in case of dispute, and shows that disputes can be resolved
without the buyer losing her privacy, i.e., the buyer does not need to
disclose which digital goods she is interested in. We show that our con-
struction can be instantiated with an existing universally composable
POT scheme, and furthermore we propose a novel full-simulation secure
POT scheme that is much more efficient.

Keywords: Priced oblivious transfer, verifiably encrypted signatures,
fair exchange.

1 Introduction

The protection of privacy in e-commerce is necessary both from a marketing per-
spective, since privacy concerns discourage buyers from online purchasing [1,2],
as well as from a legal perspective, since different authorities have promulgated
regulations to enforce the fulfillment of privacy policies and the confidentiality
of buyer’s personal data [3]. Additionally, buyers, feeling themselves in an unfa-
vorable position at the payment phase, worry that malicious vendors can, e.g.,
deliver inappropriate or defective goods later on, and thus e-commerce protocols
are normally analyzed in order to prove their fairness [4].

Priced oblivious transfer (POT) is a two-party protocol that provides pri-
vacy in e-commerce of digital goods by hiding from the vendor which items are
bought. More formally, a vendor V sells a set of messages m1, . . . ,mN with prices
p1, . . . , pN to a buyer B. At each purchase, B chooses τ ∈ {1, . . . ,N }, gets mτ

and pays pτ without V learning any information.

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 131–147, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Existing POT schemes [5,6,7] employ a prepaid mechanism where, initially,
B makes a deposit, and, at each purchase, subtracts pτ from the deposit with V
learning neither pτ nor the new value of the deposit. Therefore, B has to trust
that V , after receiving the payment, will deliver the requested goods. Further-
more, a malicious V can claim that B ran out of funds, and it is impossible for
B to prove this untrue. On the other hand, a malicious B can claim that V is
not fulfilling his delivery obligations or that her current funds are larger, and
again V cannot prove the contrary. We propose the concept of optimistic fair
POT (OFPOT) as a countermeasure.

Previous Work. Fair e-commerce is often seen as a particular case of fair ex-
change. Early work on fair exchange [8,9] follows the approach of dividing the
items to be exchanged into small pieces and exchanging them piece by piece. As
noted in [10], the resulting protocol is unfair in the exchange of the last piece.

More recent work proposes the involvement of a neutral third party [11], which
can be split up into several entities to avoid dependence on the reliability of a
single entity [12]. When the third party is only involved in case of dispute, the
protocol is called optimistic. Some of these protocols are based on verifiably
encrypted signatures [13,14,15]. In a nutshell, B sends V a verifiably encrypted
signature in her request, and, after V fulfills his delivery obligations, reveals
a valid signature. If B does not reveal the signature, V sends the verifiably
encrypted signature to the third party, which returns a valid signature after V
demonstrates that he has fulfilled his obligations.

To the best of our knowledge, there were no previous attempts to design
a fair e-commerce protocol based on POT. Existing privacy-preserving fair e-
commerce protocols [16] provide buyers with anonymity, i.e., they hide from
vendors the identity of buyers. As noted in [5,7], anonymous purchase has some
disadvantages, like hindering customer management or making the use of cur-
rently deployed online payment methods impossible.

Our Contribution. We define an ideal functionality for OFPOT and we propose
a construction that, taking a secure POT scheme as a building block, turns it
into an OFPOT scheme. Our definition and construction involve a neutral third
party, an adjudicator A, which is only active in case of dispute.

Our construction is based on the use of verifiably encrypted signatures and, to
some extent, resembles non-privacy preserving fair e-commerce protocols based
on them. Nevertheless, we note that, since in these protocols privacy is not
protected, it is trivial for V to show to A that he has fulfilled his obligations,
and for A to verify this fact, because B discloses which item she requests. One
of the main contributions of our work is to show that A can handle complaints
from V and B by learning neither the list of items offered by V nor which ones
are requested by B.

To be proven full-simulation secure, our construction has to be instantiated
with a full-simulation secure POT scheme. We show that the universally com-
posable scheme in [7] is suitable for such an instantiation. However, the schemes
in [5,6] are only half-simulation secure (vendor’s security definition follows the
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ideal-world/real-world paradigm, but buyer’s security definition is an indistin-
guishability argument [17]), and thus they are not suitable. Since the scheme in
[7] is rather inefficient, we propose a novel and efficient full-simulation secure
POT scheme based on the oblivious transfer scheme in [18].

Outline of the Paper. In Section 2 we recall the ideal functionality for POT given
in [7] and we describe our novel POT scheme. In Section 3 we define an ideal
functionality for OFPOT and we depict our OFPOT scheme. Finally, Section 4
draws a conclusion and discusses future work.

2 Efficient Priced Oblivious Transfer

2.1 Technical Preliminaries

A function ν is negligible if, for every integer c, there exists an integer K such
that for all k > K, |ν(k)| < 1/kc. A problem is said to be hard (or intractable) if
there exists no probabilistic polynomial time (p.p.t.) algorithm that solves it with
non-negligible probability (in the size of the input or the security parameter).

Bilinear maps. Let G and Gt be groups of prime order p. A map e : G×G → Gt

must satisfy bilinearity, i.e., e(gx, gy) = e(g, g)xy ; non-degeneracy, i.e., for all
generators g ∈ G, e(g, g) generates Gt; and efficiency, i.e., there exists an efficient
algorithm BMGen(1κ) that outputs the pairing group setup (p,G,Gt, e, g) and
an efficient algorithm to compute e(a, b) for any a, b ∈ G.

Security Assumptions. Let (p,G,Gt, e, g) be a pairing group setup. The
Strong Diffie-Hellman assumption (l-SDH) [19] states that, on input (g, gx, . . . ,

gxl

) ∈ Gl+1 for x ← Zp, it is hard to output a pair (c, g1/(x+c)) for c ← Zp.
The Power Decisional Diffie-Hellman assumption (l-PDDH) [18] states that, on
input (g, gx, . . . , gxl

, H) ∈ Gl+1 × Gt for random H and x ← Zp, it is hard to
distinguish between the vector (Hx, Hx2

, . . . , Hxl

) ∈ Gl
t and a random vector

T ∈ Gl
t. As shown in [20], the l-PDDH assumption is implied by the l-BDHE

assumption [21].

Signature Schemes. A signature scheme consists of the algorithms (Kg, Sign,
Vf). Kg(1κ) outputs a key pair (sk , pk ). Sign(sk ,m) outputs a signature σ on mes-
sage m. Vf(pk , σ,m) outputs accept if σ is a valid signature on m and reject other-
wise. A signature scheme must be correct and unforgeable [22]. Informally speak-
ing, correctness implies that Vf always accepts a valid signature. Unforgeability
means that no p.p.t adversary should be able to output a message-signature pair
(σ,m) unless he has previously obtained a signature on m.

We employ the weakly secure signature scheme in [19], which utilizes the
SDH assumption. This scheme is existentially unforgeable under a weak chosen
message attack, where the adversary submits all signature queries before see-
ing the public key. The setup consists of the pairing group setup (p,G,Gt, e, g).
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WKg(1κ) picks random x ← Zp and outputs a key pair (sk , pk) = (x, gx).
WSign(sk ,m) computes σ = g1/(x+m). WVf(pk , σ,m) outputs accept if e(σ, pk ·
gm) = e(g, g).

Commitment schemes. A non-interactive commitment scheme consists of the
algorithms (ComS,Com,Open). ComS(1κ) generates the parameters of the com-
mitment scheme parcom . Com(parcom , x, open) outputs a commitment C to x us-
ing auxiliary information open. A commitment is opened by revealing (x, open)
and checking whether Open(parcom , C, x, open) outputs accept. A commitment
scheme has a hiding property and a binding property. Informally speaking, the
hiding property ensures that a commitment C to x does not reveal any informa-
tion about x, whereas the binding property ensures that C cannot be opened to
another value x′. When it is clear from the context, we omit the commitment
parameters parcom .

We employ the commitment scheme proposed by Pedersen [23]. PEComS(1κ)
picks random generators g, h of a group G of prime order p and outputs parcom =
(g, h). PECom(parcom , x, openx) outputs C = gxhopenx on input x ∈ Zp and
randomness openx ∈ Zp. PEOpen(parcom , C, x′, open′

x) outputs accept if C =
gx′

hopen′
x . This scheme is information theoretically hiding and computationally

binding under the discrete logarithm assumption.

Proofs of Knowledge. A zero-knowledge proof of knowledge [24] is a two-
party protocol between a prover and a verifier. The prover proves to the verifier
knowledge of some secret input that fulfills some statement without disclosing
this input to the verifier. The protocol should fulfill two properties. First, it
should be a proof of knowledge, i.e., a prover without knowledge of the secret
input convinces the verifier with negligible probability. More technically, there
exists a knowledge extractor that extracts the secret input from a successful
prover with all but negligible probability. Second, it should be zero-knowledge,
i.e., the verifier does not learn any information about the secret input. More
technically, for all possible verifiers there exists a simulator that, without knowl-
edge of the secret input, yields a distribution that cannot be distinguished from
the interaction with a real prover.

We use several existing results to prove statements about discrete logarithms:
(1) proof of knowledge of a discrete logarithm modulo a prime [25]; (2) proof
of knowledge of the equality of some element in different representations [26];
(3) proof of knowledge that a value α lies in a given interval [0, A) [27]; and (4)
proof of the disjunction or conjunction of any two of the previous [28]. These
results are often given in the form of Σ-protocols but they can be turned into
zero-knowledge protocols using efficient zero-knowledge compilers [29,30], and
they can be turned into non-interactive proofs in the random oracle model via
the Fiat-Shamir heuristic [31].

When referring to the proofs above, we follow the notation introduced by
Camenisch and Stadler [32] for various proofs of knowledge of discrete log-
arithms and proofs of the validity of statements about discrete logarithms.
NIPK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧A ≤ α ≤ B} denotes a “non-interactive
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zero-knowledge proof of knowledge of integers α, β, and δ such that y = gαhβ,
ỹ = g̃αh̃δ and A ≤ α ≤ B holds”, where y, g, h, ỹ, g̃, and h̃ are elements of some
groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that
some elements in the representation of y and ỹ are equal.) The convention is that
letters in the parenthesis, in this example α, β, and δ, denote quantities whose
knowledge is being proven, while all other values are known to the verifier.

We employ the range proof proposed in [27] to prove that a value α lies
in an interval [0, da). The proof has an initialization phase where the verifier
provides the prover with signatures that allow the prover to write the value
α in base-d . First, the verifier runs InitVer(1κ,Dmax ), which runs WKg(1κ) to
get a key pair (sk , pk) and computes signatures Ai = WSign(sk , i) on d -ary
digits, i.e., i ∈ Zd. It also runs PEComS(1κ) to get parcom and sets parran =
(pk , {Ai}i∈Zd

, parcom). The verifier sends parran to the prover. The prover runs
InitP(parran) to verify the signatures by running, for i ∈ Zd, WVf(pk ,Ai, i).
After this initialization phase, prover and verifier can run multiple proofs. The
verifier receives as input a commitment C, and the prover values (α, openα) such
that C = PECom(parcom , α, openα). The prover runs RProve(parran, α, openα),
which picks vj ← Zp and computes Vj = A

vj
αj for every j ∈ Za such that

α =
∑

j∈Za
αjd j , and a proof pok = NIPK{(openα, {αj , vj}j∈Za) : C = hopenα∏

j∈Za
(gdj

)αj ∧ Vj = gvj/(sk+αj)}. (We abbreviate it as NIPK{(α, openα) : 0 ≤
α < da ∧ C = PEComS(parcom , α, openα)}.) The prover sends ({Vj}j∈Za , pok)
to the verifier.

Public Key Encryption. A public key encryption scheme consists of the
algorithms (Kg,Enc,Dec). Kg(1κ) outputs a key pair (sk , pk). Enc(pk ,m) outputs
a ciphertext ct on input pk and a message m. Dec(sk , ct) outputs the message m.

2.2 Definition

We define security following the ideal-world/real-world paradigm [33]. In the
real world, a set of parties interact according to the protocol description in the
presence of a real adversary E , while in the ideal world dummy parties interact
with an ideal functionality that carries out the desired task in the presence of an
ideal adversary S. A protocol ψ is secure if there exists no environment Z that
can distinguish whether it is interacting with adversary E and parties running
protocol ψ or with the ideal process for carrying out the desired task, where
ideal adversary S and dummy parties interact with an ideal functionality Fψ.
More formally, we say that protocol ψ emulates the ideal process when, for any
adversary E , there exists a simulator S such that for all environments Z, the
ensembles IDEALFψ,S,Z and REALψ,E,Z are computationally indistinguishable.
We refer to [33] for a description of how these ensembles are constructed.

We recall the ideal functionality FPOT for priced oblivious transfer in [7].
Every functionality and every protocol invocation should be instantiated with a
unique session-ID that distinguishes it from other instantiations. For the sake of
ease of notation, we omit session-IDs from our description.
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Functionality FPOT

Parameterized with the number of messages N , the message length l , the
maximum price pmax , and the maximum deposit Dmax , and running with a
vendor V and a buyer B, FPOT works as follows:

- On input a message (init,m1, p1, . . . ,mN , pN ) from V , where each mi ∈
{0, 1}l and each pi ∈ [0, pmax ], it stores (m1, p1, . . . ,mN , pN ) and sends
(init, p1, . . . , pN ) to B.

- On input a message (deposit, ac), where ac ∈ [0,Dmax ), if a (init, . . .)
message was not received before, then it does nothing. Otherwise, it
stores ac and sends (deposit, ac) to V .

- On input a message (request, τ) from B, where τ ∈ {1, . . . ,N }, if either
messages (init,m1, p1, . . . ,mN , pN ) and (deposit, ac) were not received
before or ac−pτ < 0, then it does nothing. Otherwise, it sends (request)
to V and receives (response, b) in response. If b = 0, it sends (response,⊥)
to B. If b = 1, it updates ac = ac − pτ and sends (response,mτ ) to B.

2.3 Intuition Behind Our Construction

Our POT scheme is based on the adaptive oblivious transfer scheme in [18]. It is
an assisted decryption scheme in which there is an initialization phase and several
purchase phases. At the initialization phase, V sends B a collection of ciphertexts
that encrypt the messages m1, . . . ,mN to be sold, and at each purchase V helps B
to decrypt one of them. As noted in [34], this design approach leads to purchase
phases with constant communication and computation complexity, and ensures
that V cannot modify the messages after the initialization phase.

Each ciphertext Ci consists of a unique price1 pi, a signature on the price
Ai and an encryption Bi = e(h, Ai) · mi, where h is the secret key of V . To
compute a request for mτ , B sends V a blinded value V = Av

τ together with
a zero-knowledge proof that B possesses a valid signature Aτ and that V is
correctly computed. V computes a blinded decryption W = e(h, V ) and proves
that the secret key h was used to compute W . Finally, B unblinds W to decrypt
the message mτ via Bτ/(W 1/v).

To allow for oblivious payments, our POT scheme follows the prepaid mech-
anism by [7]. At the initialization phase, B makes a deposit ac0 and sends a
commitment D0 to the deposit and its opening to V . At purchase phase i, B
sends a commitment Di to the new value of the account aci along with a zero-
knowledge proof that aci = aci−1 − pτ and that aci ∈ [0,Dmax ), to prove that
the account is correctly updated and that B has enough funds to buy mτ . For
the latter, we employ the range proof recently proposed in [27].
1 If several messages have the same price, unique prices can be obtained by adequately

scaling prices and accounts [5].
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We prove that our scheme realizes FPOT under the SDH and PDDH assump-
tions (used in [18]), and under the assumption the binding and hiding properties
of the commitment scheme hold. In the description of the scheme given below,
we compute non-interactive proofs via Fiat-Shamir heuristic [31] and thus the
construction is secure in the random oracle model [35]. This is convenient when
using the scheme as a building block of the OFPOT scheme depicted in Section
3, because it allows A to verify requests and responses non-interactively. Nev-
ertheless, for other uses of the scheme interactive proofs of knowledge can be
employed, yielding a construction in the standard model.

2.4 Description of the Scheme

We begin with a high level description of the POT scheme. Details on the algo-
rithms can be found below.

POT

Initialization phase. On input (init,m1, p1, . . . ,mN , pN ), in which each
price is unique, V runs POTInitV(1κ,m1, p1, . . . ,mN , pN ,Dmax ) in or-
der to obtain a database commitment T and a key pair (pkV , skV),
and sends (pkV ,T ) to B. On input (deposit, ac0), B runs (P ,D

′
0) ←

POTInitB(1κ, pkV ,T , ac0) and aborts if the output is reject. Other-
wise, B sends the payment message (P) to V and pays an amount
of ac0 through an arbitrary payment channel. V runs (D0, ac0) ←
POTGetDep(skV ,P ,Dmax ) and checks that ac0 corresponds to the
amount of money received. V stores state information V0 = (T , skV ,
pkV ,D0) and outputs (deposit, ac0), and B stores state information
B0 = (pkV ,T ,D

′
0).

Transfer phase. On input (request, τi), B runs POTReq(pkV ,T ,D
′
i−1, τi)

to get a request Q and private state (Q
′
,D

′
i ). B sends (Q) and stores

(Q
′
,D

′
i ). On input (response, b), if b = 0 V sends (⊥) to B. If b = 1,

V runs POTVerReq(pkV ,Di−1,Q) and ignores the request if the out-
put is reject. Otherwise V runs POTResp(pkV , skV ,Q) to obtain a re-
sponse R and state Di, and sends (R) to B. B runs POTVerResp(pkV ,R)
and outputs (response,⊥) it the output is reject. Otherwise B runs
POTComplete(T ,R,Q

′
) to obtain mτi . V stores state information Vi =

(skV ,T , pkV ,Di), and B stores state information Bi = (T , pkV ,D
′
i ) and

outputs (response,mτi).

POTInitV(1κ,m1, p1, . . . ,mN , pN ,Dmax ) computes a pairing group setup Φ =
(p,G,Gt, e, g), picks a random generator h ∈ G and sets H = e(g, h). It
runs InitVer(1κ,Dmax ) to obtain parran (which includes parameters of the
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commitment scheme parcom) and Kg(1κ) to obtain (sk enc, pk enc).
2 It also

runs WKg(1κ) to obtain a key pair (sk , pk ) for the signature scheme, and,
for i = 1 to N , it computes Ai = WSign(sk , pi) and Bi = e(h, Ai) ·mi. It sets
Ci = (Ai, Bi, pi). It computes a non-interactive proof π1 = NIPK{(h) : H =
e(g, h)}. It outputs skV = (skenc, h), pkV = (Φ,H , parran, pk , pk enc, π1) and
T = (C1, . . . ,CN ).

POTInitB(1κ, pkV ,T , ac0) parses, for i = 1 to N , Ci as (Ai, Bi, pi), and checks
whether WVf(pk , Ai, pi) outputs accept. It also verifies π1 and checks parran

via InitP(parran). Then it runs Enc(pk enc, ac0) to obtain an encryption ct
and computes a commitment D0 = PECom(parcom , ac0, openac0) for random
openac0 .

3 It sets P = (ct , openac0) and D
′
0 = (ac0, openac0 ,D0). It outputs

(P ,D
′
0).

POTGetDep(skV ,P ,Dmax ) runs Dec(skenc, ct) to obtain ac0 and checks that
ac0 ∈ [0,Dmax ). It computes D0 = PECom(parcom , ac0, openac0) and outputs
(D0, ac0).

POTReq(pkV ,T ,D
′
i−1, τ) calculates aci = aci−1 − pτ , picks random (openp ,

openaci) ← Zp, and computes Dp = PECom(parcom , pτ , openp) and Di =
PECom(parcom , aci, openaci

). It picks random v ∈ Zp and computes V = Av
τ .

It computes a non-interactive proof4 π2:

NIPK{(pτ , openp , aci, openaci
, v, α) :

e(V, pk ) = e(V, g)−pτ e(g, g)v ∧ (1)
Dp = PECom(parcom , pτ , openp) ∧ (2)
Di = PECom(parcom , aci, openaci) ∧ (3)

Di−1/(DiDp) = h̃α ∧ (4)
0 ≤ aci < Dmax}. (5)

Equation 1 proves that V = Av
τ and that Aτ is a signature computed by

V . Equations 2 and 3 prove knowledge of the committed price pτ and aci

respectively, where pτ is the value signed in Aτ . Equation 4 proves that aci =
aci−1 − pτ , and Equation 5 proves that aci is non-negative. The algorithm
outputs Q = (V,Dp ,Di, π2), Q

′
= (v, τ) and D

′
i = (aci, openaci

,Di).
POTVerReq(pkV ,Di−1,Q) verifies π2 and outputs either accept or reject.
POTResp(pkV , skV ,Q) parses Q as (V,Dp ,Di, π2) and computes W = e(h, V )

and a proof π3 = NIPK{(h) : H = e(g, h) ∧ W = e(V, h)} that W is
computed correctly by using the request V and the secret key h. It outputs
R = (W,π3) and Di.

POTVerResp(pkV ,R) verifies π3 and outputs either accept or reject.
POTComplete(T ,R,Q

′
) parses Q

′
as (v, τ), R as (W,π3) and Cτ as (Aτ , Bτ , pτ ).

It outputs mτ = Bτ/(W 1/v).

2 We can employ any IND-CPA secure encryption scheme.
3 Although it would be possible to use a fixed value openac0 , this allows B to hide her

deposit from the adjudicator in the OFPOT scheme.
4 h̃ is included in the parameters of the commitment scheme parcom = (g̃, h̃).
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Theorem 1. This POT scheme securely realizes FPOT.

We prove this theorem in the full version [36]. The proof follows the proof of
the oblivious transfer scheme in [18] and of the priced oblivious transfer scheme
in [7]. Buyer security holds under the assumption that the commitment scheme
is hiding and under the extractability and zero-knowledge properties of proofs
of knowledge. Vendor security holds under the (N + 1, d + 1)-SDH assumption,
under the (N + 1)-PDDH assumption and under the binding property of the
commitment scheme. Security is proven under static corruptions.

As for efficiency, we note that the communication and computation cost of our
protocol is roughly that of the OT scheme in [18], plus the overhead introduced
by the range proof in [27]. We refer to [34] for a comparison of the efficiency of
several OT schemes, and to [27] for efficiency measurements of the range proof.

3 An Optimistic Fair POT Scheme

3.1 Technical Preliminaries

Verifiably Encrypted Signatures. A verifiably encrypted signature (VES)
scheme consists of algorithms (Kg,AdjKg, Sign,Vf,Create,VesVf,Adj). Algorithm
Kg(1κ) outputs a key pair (sk , pk). AdjKg(1κ) outputs a key pair (ask , apk)
for the adjudicator. Sign(sk ,m) computes a signature σ under sk on a mes-
sage m. Vf(pk , σ,m) outputs accept if σ is a valid signature on m under pk .
Create(sk , apk ,m) outputs a verifiably encrypted signature ω on input the secret
key sk , the adjudicator’s public key apk and the message m. VesVf(pk , apk , ω,m)
outputs accept if ω is a valid verifiably encrypted signature on input the public
key pk , the adjudicator’s public key apk and the message m. Adj(pk , ask , apk , ω,
m) outputs an ordinary signature σ on m if ω is valid.

A VES scheme is complete if, for all key pairs (sk , pk) computed by Kg(1κ)
and for all key pairs (ask , apk ) computed by AdjKg(1κ), it holds that VesVf(pk ,
apk ,Create(sk , apk ,m),m) outputs accept and algorithm Vf(pk ,Adj(pk , ask , apk ,
Create(sk , apk ,m),m),m) outputs accept.

Security for verifiably encrypted signatures [13,15] is defined via four proper-
ties: unforgeability, opacity, extractability and abuse-freeness. Roughly speaking,
unforgeability ensures that it is intractable to compute a verifiably encrypted
signature on behalf of another user. Opacity ensures that nobody but the ad-
judicator and the signer can obtain an ordinary signature from a verifiably en-
crypted signature. Extractability means that the adjudicator is able to extract
an ordinary signature from a valid verifiably encrypted signature with all but
negligible probability. Abuse-freeness prevents an adversary that colludes with
the adjudicator from forging verifiably encrypted signatures.

3.2 Definition

Previous work on defining optimistic fair exchange in the ideal-world/real-world
paradigm only covers the case where buyer’s privacy is not protected [37]. We
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define an ideal functionality FOFPOT for OFPOT that extends FPOT. It describes
the functionality provided by our construction when the adjudicatorA is neutral,
and we prove security under this restriction. (We explain more intuitively the
functionality provided by FOFPOT in Section 3.3.) We also recall the description
of a functionality FCRS given in [38], which is used when the POT scheme used
to instantiate the OFPOT scheme operates in the FCRS-hybrid model, where
parties have access to an honestly-generated common reference string.

Functionality FCRS

Parameterized with a distribution D and a set of participants P , on input
(crs) from party P , if P /∈ P it aborts. Otherwise, if there is no value r
recorded, it picks r ← D and records r . It sends (crs, r) to P .

Functionality FOFPOT

Parameterized with (N , l , pmax ,Dmax ), and running with a vendor V , a
buyer B and an adjudicator A, FOFPOT works as follows:

- On input a message (init,m1, p1, . . . ,mN , pN ) from V , it behaves as FPOT.
- On input a message (deposit, ac0) from B, it behaves as FPOT.
- On input a message (request, i, τ) from B, where τ ∈ {1, . . . ,N }, if mes-

sages (init, . . .) or (deposit, . . .) were not received before, i does not equal
the number of the transfer t , aci − pτ < 0, or disputei = 1, then it does
nothing. Otherwise, it sends (request, i) to V and receives (response, i, b)
in response. It stores (i, τ, b). If b = 0, it sends (response, i,⊥) to B. If
b = 1, it sends (response, i,mτ ) to B. B returns a message (complete, i, c),
which is handed to V . If c = 1, it sets aci = aci−1 − pτ and updates the
number of transfers t = t + 1. If c = 0, it sets disputei = 1.

- On input a message (complainV , i) from V , if disputei = 0 or t �= i, then
it sends (compInvV) to V and (complainV , i, inv) to A. Otherwise it sets
aci = aci−1 − pτ , updates the number of transfers t = t + 1 and sends
(compSolvedV) to V , (compRespV , i,mτ) to B and (complainV , i, solved)
to A.

- On input a message (complainB, i, τ) from B, if t �= i or if there ex-
ists a tuple (i, τ, b) and τ �= τ ′, then it sends (compInvB) to B and
(complainB, i, inv) to A. Otherwise it sends (complainB, i) to V . Upon
receiving (collaborate, i, b) from V , if b = 0 it sends (guiltyV) to V and
B and (complainB, i, guiltyV) to A. If b = 1 it sets aci = aci−1 − pτ ,
updates the number of transfers t = t + 1, sends (compRespB, i,mτ ) to
B, (compSolvedB) to V and (complainB, i, solved) to A.
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3.3 Intuition Behind Our Construction

Our OFPOT scheme extends a full-simulation secure POT scheme with a fair
exchange protocol based on verifiably encrypted signatures. In a nutshell, at a
purchase phase, B computes her request following the POT scheme and a veri-
fiably encrypted signature that signs the request. Then V computes a response
following the POT scheme. If B is satisfied, B reveals a valid signature on her
request, and otherwise B complains. V also complains when he computed his
response honestly and B did not reveal a valid signature.

More concretely, the initialization phase follows that of the POT scheme.
Additionally, B signs the payment message she sends to V , A hands its public
key to V and B, and A receives the public keys of V and B. At purchase phase i,
B computes a request Qi following algorithm POTReq of the POT scheme, and
computes a verifiably encrypted signature ωi on H(i,Qi), where H is a collision-
resistant hash function. V rejects the request if i is not the valid purchase index,
i.e., if V did not receive a signature σi on H(i−1,Qi−1) or if V already received a
signature on H(i,Q ′

i). Otherwise V computes a response R following algorithm
POTResp of the POT scheme. Finally, B obtains the message mτ by running
algorithm POTComplete and reveals to V a signature σi on H(i,Qi).5

When B does not reveal σi, V complains by sending to A the request (i,Qi, ωi)
and the response R. A verifies both request and response, sends R to B, extracts
σi from ωi and sends σi to V . Verification by A can be done without knowing
the choice τ of B. We note that a malicious V cannot produce fake requests on
behalf of B thanks to the unforgeability property of the VES scheme. Moreover,
if B did not reveal σi because the response R′ from V was not correct, after V
complains A ensures that B receives a valid response.

When the response sent by V is not correct, B complains by sending to A a
request (i,Qi, ωi).6 A tells V to send (j,Qj , σj) for j = i − 1 in order to check
if the complaint is valid. (When i = 1, V should send the signature on the
payment message.) If V sends it for j ≥ i, then A states that the complaint is
invalid because this means that B has already shown conformity for purchase
i, and if j < i − 1, then it asks B to send a request with index j.7 If V does
not reveal any signature, A finds V guilty. (We note that V cannot produce
signatures on behalf of B thanks to the opacity property of the VES scheme.)
Otherwise,A verifies the request from B and sends it to V . If V returns a different
tuple (i,Q ′

i, ω
′
i), then A states that the complaint is invalid because this may

mean that a malicious B already obtained the message requested in Q ′
i , and is

trying to obtain a different message. Otherwise, if V returns a valid response R,
A forwards R to B and reveals σi to V . If not, A finds V guilty.

5 In practical implementations, this message can be sent together with the next request
in order to save communication rounds.

6 We note that B can complain without previously interacting with V, but this does
not give a malicious B any advantage over V.

7 We note that V should always send the larger index j for which he possesses a
signature, because otherwise he would be claiming that some purchases did not
happen, thus increasing the account of B.
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We prove that our scheme realizes FOFPOT if it is instantiated with a full-
simulation secure POT scheme (which realizes FPOT) and under the assumptions
that the VES scheme is unforgeable, opaque and extractable, and that A is
neutral. The abuse-freeness property of the VES scheme gives B some protection
when V and A collude: they cannot produce fake requests. However, once B
sends a request, a malicious A can reveal σi to V without sending R to B.
(Nevertheless, privacy of B is still preserved.) Similarly, when B and A collude,
V is not protected.

When our construction is instantiated with the universally composable POT
scheme in [7] (which we summarize in the full version [36]), we obtain a UC secure
construction in the common reference string model. (In the description given
below, we include the common reference string as input of the algorithms, but it
should be removed when unnecessary.) When instantiated with the POT scheme
proposed in Section 2, we obtain a full-simulation secure and more efficient
scheme.

Finally, we point out that our scheme does not ensure that all the buyers
receive the same messages, or that the messages that V sells fulfill the expec-
tations of B. Nevertheless, there already exist countermeasures which employ a
third party against these problems [39], and A can apply them. Basically, these
countermeasures ensure that all the buyers obtain the same messages from V . We
can achieve this by ensuring that they obtain the same database commitment T .

3.4 Description of the Scheme

We begin with a high level description of the OFPOT scheme. Details on the
algorithms can be found below. We recall that the scheme is parameterized with
(N , l , pmax ,Dmax ).

OFPOT

Initialization phase. On input (init,m1, p1, . . . ,mN , pN ), V queries FCRS
with (crs), which runs POTGenCRS(1κ, pmax ,Dmax ) and returns (crs,
crs). B and A also query FCRS with (crs), which returns (crs, crs). V
runs POTInitV(crs ,m1, p1, . . . ,mN , pN ,Dmax ) to get a database com-
mitment T and a key pair (skV , pkV), and sends (pkV ,T ) to B. On
input (deposit, ac0), B computes (P ,D

′
0) ← POTInitB(crs , pkV ,T , ac0)

to obtain a payment message P and the opening of the commit-
ment to the account D

′
0, and aborts if the output is reject. Other-

wise, B runs (skB, pkB, σ0) ← OFInitB(crs ,D
′
0) to obtain a key pair

(skB, pkB) and a signature σ0 on D0, sends (P , pkB, σ0) and pays
ac0 to V through an arbitrary payment channel. V runs (D0, ac0) ←
POTGetDep(crs , skV ,P ,Dmax ) to obtain the commitment D0 and checks
that ac0 equals the amount of money paid. V runs OFInitV(pkB, σ0,D0)
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to check σ0 and aborts if the output is reject. A runs (ask , apk ) ←
OFInitA(crs) and sends apk to V and B. V and B retrieve apk . V (B)
sends (pkV , pkB) ((pk ′

V , pk
′
B)) to A, A checks equality of the public

keys and stores (pkV , pkB, ask). (Alternatively, A, V and B can use a
PKI.) V stores state information V0 = (skV ,T , pkV , pkB, apk ,D0, σ0)
and outputs (deposit, ac0), and B stores state information B0 =
(skB,T , pkB, pkV , apk ,D

′
0) and outputs (init, p1, . . . , pN ).

Transfer phase. On input (request, i, τ), B does nothing if B has pre-
viously received (request, i, . . .). Otherwise B runs (Qi,Q

′
i ,D

′
i ) ←

POTReq(crs , pkV ,T ,D
′
i−1, τ) to compute a request message Qi, trap-

door information Q
′
i and opening D

′
i , and ωi ← OFReq(skB, apk , i,Qi)

to obtain a verifiably encrypted signature ωi on Qi. B sends the re-
quest (i,Qi, ωi) and stores (Q

′
i ,D

′
i ). Upon receiving (i,Qi, ωi), if i

does not equal the number of the transfer t , V does nothing. Other-
wise, on input (response, b), if b = 0 V sends (⊥) to B. If b = 1 V
runs POTVerReq(crs , pkV ,Di−1,Qi) and OFVerReq(pkB, apk , ωi, i,Qi).
If any of the two algorithms outputs reject, V rejects the request. Other-
wise V runs (R) ← POTResp(crs , pkV , skV ,Qi), sends the response (R)
and keeps state (i,Qi, ωi). If the output of POTVerResp(crs , pkV ,R)
is reject, B outputs (response, i,⊥) and proceeds with the complaint
phase. Otherwise, B runs (mτ ) ← POTComplete(crs ,T ,R,Q

′
i ) and

outputs (response, i,mτ ). On input (complete, c, i), if c = 0, B sends
(⊥), and, if c = 1, B runs σi ← OFComplete(skB, i,Qi) and sends
(σi). B stores state information Bi = (skB,T , pkB, pkV , apk ,D

′
i ). V

runs OFVerComp(pkB, σi, i,Qi) and, if the output is reject, V outputs
(complete, i, 0) and proceeds with the complaint phase. Otherwise V
stores state information Vi = (skV ,T , pkV , pkB, apk ,Qi, σi), increments
the number of the transfer t = t + 1 and outputs (complete, i, 1).

Vendor complaint. On input the tuple (complainV , i), if no valid request
(i,Qi, ωi) was previously received, V does nothing. Otherwise V runs
POTResp(crs , pkV , skV ,Qi) and sends the request-response pair ((i,Qi,
ωi), (R)) to A, along with the signature of the previous transfer (i− 1,
Qi−1, σi−1) ((0,D0, σ0) when i = 1). A parses Qi−1 to obtain Di−1
and runs POTVerReq(crs , pkV ,Di−1,Qi), OFVerReq(pkB, apk , ωi, i,Qi),
OFVerComp(pkB, σi−1, i − 1,Qi−1) (OFInitV(pkB, σ0,D0) when i = 1)
and POTVerResp(crs , pkV ,R) and, if any of them outputs reject, sets
σi = ⊥ and R = ⊥ and outputs (complainV , i, inv). Otherwise A runs
σi ← OFAdj(pkB, ask , apk , ωi, i,Qi). A sends σi to V and (i,R) to B
and outputs (complainV , i, solved). V runs OFVerComp(pkB, σi, i,Qi)
and outputs (compSolvedV) if the output is accept. B runs (mτ ) ←
POTComplete(crs ,T ,R,Q

′
i ), where Q

′
i corresponds to the request for

transfer i, and outputs (compRespV , i,mτ ).
Buyer complaint. On input (complainB, i, τ), if a request (i,Qi, ωi) was

previously computed B sends it to A. Otherwise, B sends to A a new re-
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quest computed by running POTReq and OFReq. A sends (i) to V , which
returns (j,Qj , σj) ((0,D0, σ0) if i = 1). Then A proceeds as follows:
– If σj is invalid, A sends (guiltyV) to V and B and outputs

(complainB, i, guiltyV).
– If σj is valid but j ≥ i, A sends (compInvB) to B and outputs

(complainB, i, inv).
– If σj is valid and j = i − 1, A parses Qi−1 to obtain Di−1, runs

POTVerReq(crs , pkV ,Di−1,Qi) and, if the output is reject, sends
(compInvB) to B and outputs (complainB, i, inv). V (possibly) sends
another request (i,Q ′

i , ω
′
i). A verifies it and, if it is correct, but

(i,Q ′
i , ω

′
i) �= (i,Qi, ωi), A sends (compInvB) to B and outputs

(complainB, i, inv). Otherwise A sends (i,Qi, ωi) to V . V verifies
the request, runs (R) ← POTResp(crs ,T , skV ,Qi) and sends (R)
to A. A verifies the response via POTVerResp(crs , pkV ,R) and, if it
is not valid, A sends (guiltyV) to B and V and outputs (complainB,
i, guiltyV). If it is valid, A sends R to B and σi ← OFAdj(pkB, ask ,
apk , ωi, i,Qi) to V , and outputs (complainB, i, solved). B retrieves
mτ via POTComplete and outputs (compRespB, i,mτ ), while V out-
puts compSolvedB.

Algorithms POT* correspond to those of the POT schemes (see Section 2.4
and the full version [36]). Algorithms OF* are defined as follows:

OFInitB(crs ,D
′
0) chooses a collision resistant hash function H : {0, 1}∗ → Zp

and runs (sk , pk) ← Kg(1κ) of the VES scheme for the pairing group setup
contained in crs . Then it parses D

′
0 to obtain the commitment to the deposit

D0 and signs σ0 ← Sign(sk , H(0,D0)). It outputs skB = sk , pkB = (H, pk)
and σ0.

OFInitV(pkB, σ0,D0) outputs the result of Vf(pk , σ0, H(0,D0)).
OFInitA(crs) runs AdjKg(1κ) and outputs a key pair (ask , apk) for the pairing

group setup contained in crs .
OFReq(skB, apk , i,Qi) outputs a verifiably encrypted signature ωi ← Create

(skB, apk , H(i,Qi)).
OFVerReq(pkB, apk , ωi, i,Qi) outputs the result of VesVf(pk , apk , ωi, H(i,Qi)).
OFComplete(skB, i,Qi) outputs σi ← Sign(skB, H(i,Qi)).
OFVerComp(pkB, σi, i,Qi) outputs Vf(pk , σi, H(i,Qi)).
OFAdj(pkB, ask , apk , ωi, i,Qi) outputs Adj(pk , ask , apk , ω,H(i,Qi)).

Theorem 2. This OFPOT scheme securely realizes FOFPOT.

We prove this theorem in the full version [36]. We prove security under static
corruptions and under the assumption that A is neutral. If the A colludes either
with V or with B, the privacy properties of the underlying POT scheme still hold,
but fairness does not hold anymore. Buyer security holds under the assumption
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that buyer’s security in the POT scheme holds, under the unforgeability and
opacity properties of the VES scheme, and under the assumption that H is
collision-resistant. Vendor security holds under the assumption that vendor’s
security in the POT scheme holds and under the extractability of the VES
scheme. We note that the proof that buyer’s privacy also holds with respect to
A follows the proof given with respect to V , because the view of A and V with
respect to B is equivalent.

As for efficiency, we note that the overhead in terms of computation and
communication cost introduced by the VES scheme are small compared to the
cost of the POT scheme. Therefore, a secure POT can efficiently be extended to
provide optimistic fair exchange.

4 Conclusion

Our contribution is twofold. First, we have designed a full-simulation secure POT
scheme that is more efficient than previous work. Second, we have proposed a
generic construction that provides any secure POT scheme with optimistic fair
exchange.

We leave open the definition of a more general ideal functionality for fair
privacy-preserving e-commerce protocols. Another interesting open problem is
the design of a fair POT scheme that is abuse-free in the sense of [40]. Further
research also needs to be conducted to show how to integrate e-commerce pro-
tocols based on POT with digital rights management systems, and to analyze
the compliance of such e-commerce protocols with e-commerce legislation.
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Abstract. Exposing a secret-key is one of the most disastrous threats
in cryptographic protocols. The key-insulated security is proposed with
the aim of realizing the protection against such key-exposure problems.
In this paper, we study key-insulated authentication schemes with
information-theoretic security. More specifically, we focus on one of
information-theoretically secure authentication, called multireceiver
authentication codes, and we newly define a model and security
notions of information-theoretically secure key-insulated multireceiver
authentication codes (KI-MRA for short) based on the ideas of both
computationally secure key-insulated signature schemes and multi-
receiver authentication-codes with information-theoretic setting. In
addition, we show lower bounds of sizes of entities’ secret-keys. We
also provide two kinds of constructions of KI-MRA: direct and generic
constructions which are provably secure in our security definitions. It is
shown that the direct construction meets the lower bounds of key-sizes
with equality. Therefore, it turns out that our lower bounds are tight,
and that the direct construction is optimal.

Keywords: information-theoretic security, key-insulated security,
multireceiver authentication-code, unconditional security.

1 Introduction

1.1 Background

The security of most of present cryptographic techniques is based on the assump-
tion of difficulty of computationally hard problems such as the integer factoring
or discrete logarithm problems. However, taking into account recent rapid devel-
opment of algorithms and computer technologies, such a scheme based on the
assumption of difficulty of computationally hard problems might not maintain
sufficient long-term security. In fact, it is known that quantum computers can
solve the factoring and discrete logarithm problems in polynomial time [19]. From
these aspects, it is necessary and interesting to consider cryptographic techniques
whose security does not depend on any computationally hard problems.

One of the most serious threats in cryptographic protocols is exposure of
secret-keys. For example, digital signature schemes require use of the secret-keys
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to sign a message, and if a secret-key is compromised, this implies an attacker
gaining ability to generate a signature of all messages. Hence, it leads to a total
break of the systems. However, we would want to minimize the risk of damage
even if such an unfortunate situation as exposure of secret-keys does occur. For
this purpose, there have been several approaches proposed to minimize the risk of
key-exposure: Key-splitting is a method which divides portions of a single secret-
key among multiple entities so that no entity will have the ability to reconstruct
a whole secret-key [3][5][20]; Another approach is to consider key-evolution to
realize forward-secure schemes [1][2][4] where lifetime of systems is divided into
discrete periods and a secret-key is updated at each new period. It ensures that
the security of past periods remains uncompromised even if the current secret-
key is exposed. The security notion that is one solution to the key-exposure
problems is proposed by Dodis et al., and it is called Key-Insulated Security
[7][8], which is based on the ideas of combining key-splitting and key-evolution.
This method extracts benefits from both approaches: having the information
manageable in case of loss of key and leaving authentication as a stand-alone
user operation at the same time.

In the model of key-insulated signature schemes, a signer has two kinds of
devises: a trusted device (e.g. a smart card, USB flash memory) in which a
master-key is stored; and an insecure device in which a signer’s secret-key is
stored. The actual secret-key updating is performed in the insecure device. When
the signer wants to get a signing-key at a period j, the following process is
performed in the beginning of the period j: first, the trusted device generates
key-updating information by using the master-key and sends it to the signer; and
then, the signer updates his secret-key by using the key-updating information,
and he deletes the previous secret-key. In key-insulated signature schemes, if
the trusted device is not compromised, then signer’s secret-keys of at most γ
periods can be exposed without losing security, where γ is a predefined number.
In addition, even if the trusted device is exposed, the system will not be violated
if no signer’s secret-key is exposed. This property is called strong key-insulation
[7][8]. Hence the system having strong key-insulation guarantees the security
against two different types of attacks: (i) the attack to steal a secret-key stored
in an insecure device via a network; and (ii) the attack to steal a master-key
stored in a (physically-protected) secure device directly. We consider that the
property of strong key-insulation is important and useful when using a system
in the real world.

As mentioned earlier, the first constructions of key-insulated schemes are pro-
posed in [7][8]. Since then, many papers on this subject have been reported to
give theoretical and practical key-insulated schemes. Also, Itkis et al. proposed
an extended version of key-insulated signature schemes, Intrusion-resilient sig-
natures [13]. The security of most of key-insulated schemes described so far is
based on the assumption of difficulty of computationally hard problem such as
the integer factoring or discrete logarithm problems. In this paper, we study
key-insulated schemes in the setting of the information-theoretic security (a.k.a.
unconditional security) rather than the computational security.
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1.2 Our Contribution

Confidentiality (secrecy) and authenticity (integrity) are currently funda-
mental cryptographic functions, and encryption and authentication/signature
schemes are usually used for providing confidentiality and authenticity, respec-
tively. As key-insulated schemes with information-theoretic security, Hanaoka
et al. first proposed the information-theoretically secure key-insulated en-
cryption schemes [11]. However, information-theoretically secure authentica-
tion/signature schemes with key-insulated security have not proposed so far.
Therefore, we study authentication schemes which have both information-
theoretic and key-insulated security, and the purpose of this paper is to consider
a simple model of information-theoretically secure key-insulated authentication
schemes.

We note that information-theoretically secure signature schemes were pro-
posed by Shikata et al. in [12] [18]. Thus, one may consider the information-
theoretically secure key-insulated signature schemes. However, the model of those
schemes in [12] [18] is not so simple, since it requires complicated security no-
tions. On the other hand, we note that the model of multireceiver authentication
codes (MRA-codes for short) was proposed by Desmedt et al. in [6] and later
generalized by Safavi-Naini et al. [17] and Johansson [14]. The MRA-code is
one of the information-theoretically secure authentication schemes which allows
a single honest sender to transmit an authenticated message to a group of re-
ceivers via a broadcast channel. And each receiver can individually verify the
authenticated message. Note that the model of MRA-codes is simpler than that
of information-theoretically secure signature schemes.

In this paper, we study the model of key-insulated MRA-codes (KI-MRA
for short), which are information-theoretically secure authentication schemes
with key-insulated security, rather than information-theoretically secure key-
insulated signature schemes, since the model of MRA-codes is simpler than
that of information-theoretically secure signature schemes. More specifically, we
newly introduce the model and security definitions, and show lower bounds and
constructions of KI-MRA. We begin by formalizing the model and security no-
tions of KI-MRA based on those of MRA-codes and computationally secure key-
insulated signature schemes. In particular, the notion of strong key-insulation
is formalized along with our model. In addition, we show lower bounds of sizes
of entities’ secret-keys. We also provide two kinds of constructions of KI-MRA,
direct and generic constructions which are provably secure in our security def-
initions: we propose the direct construction by using polynomials over finite
fields; and we provide the generic construction of KI-MRA starting from cover-
free-families(CFF) [9] and MRA-codes. Furthermore, it is shown that the direct
construction meets the lower bounds of key-sizes with equality. Therefore, it
turns out that our lower bounds are tight, and that the direct construction is
optimal.

The rest of this paper is organized as follows. In Section 2, we introduce the
model of KI-MRA based on the ideas according to [7], [8], [17], and formalize
the security notions of KI-MRA. We also show lower bounds of memory-sizes of
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secret-keys of entities. In Section 3, we propose two kinds of constructions: direct
and generic constructions which are provably secure in our security notions.
Finally, in Section 4, we give concluding remarks of the paper.

2 The Model and Security Definitions

In this section, we introduce the model and security notions of KI-MRA, based
on those of key-insulated signatures with computational security and those of
MRA-codes with information-theoretic security.

2.1 The Model

We show the model of KI-MRA, which is the model of MRA-codes with key-
insulated security. As in the models of many schemes with information-theoretic
security (e.g. [16] [17] [18]), we assume that there is a trusted authority whose
role is to generate and to distribute secret-keys of entities. We call this model the
trusted initializer model as in [16]. In KI-MRA, there are n+3 entities, a sender
S, a secure device H , n receivers R1, R2, . . . , Rn and a trusted initializer TI.
We assume that the sender is honest in the model. In our model, the notion of a
secure device implies that it is usually isolated from a network (e.g. the Internet
or LAN) and that the attacker can neither wiretap nor substitute information
stored in the device via the network. For example, a smart card or USB flash
memory seems to be a candidate of such devices. In addition, in KI-MRA, we
assume that lifetime of the system is divided into N periods. For simplicity, we
consider a one-time model of KI-MRA, in which the sender is allowed to generate
and broadcast an authenticated message at most only once per period1.

Informally, KI-MRA is executed as follows. In the initial phase, TI generates
secret-keys on behalf of S, H and Ri (1 ≤ I ≤ n). After distributing these
secret-keys via a secure channel, TI deletes them in his memory. For updating
the sender’s secret-key for the period j, S receives key-updating information from
H by connecting with H , and S computes a secret-key at the period j by using
the secret-key of the previous period and the key-updating information. S then
deletes the secret-key of the previous period and the key-updating information.
On the other hand, each receiver’s secret-key used to check the validity of an
authenticated messages will not be updated at each period as key-insulated
signature schemes with computational security. If S generates and broadcasts an
authenticated message α at a period j, each receiver, Ri, can check the validity
of α by using his secret-key. Formally, we give the definition as follows.

Definition 1 (KI-MRA). A key-insulated multireceiver authentication codes
(KI-MRA for short) Π involves n + 3 entities, TI, S, H and R1, R2, . . . , Rn,
1 We can consider a more general setting: the number up to which the sender is

allowed to generate authenticated messages is more than one per period. However,
the one-time model of KI-MRA is simpler than this model in terms of the number
of generating authenticated messages. Therefore, we focus on the model since our
purpose is to study a simple model as mentioned in Section 1.2.
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and consists of a five-tuple of algorithms (KGen, KUpd∗, KUpd, KAuth, KVer)
with eight spaces, M, A, I, T , T̃ , MK, ES and ER, where all of the above
algorithms except KGen are deterministic and all of the above spaces are finite.
In addition, Π is executed with four phases as follows.

– Notation:
- TI is a trusted initializer, S is a sender, H is a secure device and Ri

(i = 1, 2, . . . , n) is a receiver. Let R := {R1, R2, . . . , Rn} be a set of
receivers.

- M is a set of possible messages with a probability distribution PrM.
- A is a set of possible authenticated messages.
- I is a set of possible key-updating information.
- T := {1, 2, . . . , N} is a set of time periods. Let T̃ := T ∪ {0}.
- MK is a set of possible master-keys for the device H with a probability

distribution PrMK.
- E(j)

S is a set of possible secret-keys at the period j for the sender with a
probability distribution Pr

E
(j)
S

. Let ES := E(0)
S ∪ E(1)

S ∪ . . . ∪ E(N)
S .

- Ei is a set of secret-keys for a receiver Ri with a probability distribution
PrEi

. Let ER := E1 ∪ E2 ∪ . . . ∪ En.
- KGen is a key generation algorithm which on input a security parameter

1k, outputs a master-key, a sender’s secret-key and each receiver’s secret-
key.

- KUpd∗: MK×T̃ ×T → I is a key-updating algorithm for the device H .
- KUpd : ES × I → ES is a key-updating algorithm for the sender S.
- KAuth: ES ×M → A is an authentication algorithm for producing au-

thenticated messages.
- KVer : ER ×A× T → {true, false} is a verification algorithm.

1. Key Generation and Distribution by TI. In the initial phase, TI gen-
erates the following keys by using KGen: a master-key mk ∈MK; an initial
secret-key e

(0)
S ∈ E(0)

S (i.e., a secret-key at the period 0) for the sender;
and the receiver Ri’s secret-key ei ∈ Ei (i = 1, 2, . . . , n). These keys are
distributed to corresponding entities via secure channels. After distributing
these keys, TI deletes these keys from his memory. And, H , S, and Ri keep
their keys secret, respectively.

2. Updating Sender’s Secret-keys. For updating a sender’s secret-key for a
period j from a period h, H generates key-updating information mk(h,j) =
KUpd∗(mk, h, j) ∈ I by using the master-key mk, the information on periods
h ∈ T̃ , j ∈ T and KUpd∗, and then sends it to S via a secure channel. After
that, S computes a secret-key e

(j)
S =KUpd(e(h)

S ,mk(h,j)) ∈ E(j)
S at the period

j. Then, S deletes e
(h)
S and mk(h,j) from his memory.

3. Authentication. During a period j, for a message m ∈M, S generates an
authenticated message α =KAuth(e(j)

S , m) ∈ A by using a secret-key e
(j)
S at

the period j. Then, S sends the authenticated message with information on
j, namely (α, j), to all receivers via a broadcast channel.
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4. Verification. After receiving (α, j) from S, each receiver Ri can verify the
validity of it by using secret-key ei and KVer. If KVer(ei, α, j) = true, then
Ri accepts (α, j) as valid, and rejects it otherwise.

In the model of KI-MRA, we require the following equation holds: for all possible
j ∈ T , m ∈ M, e(j)

S ∈ E(j)
S , and ei ∈ Ei, we have

KVer(ei,KAuth(e(j)
S ,m), j) = true

The above requirement implies that any legal authenticated message can be
accepted without error if entities correctly follows the specification of KI-MRA.

In addition, we define several notation as follows. Let ω be the number of
possible colluders, and let γ be the number of possible periods at which sender’s
secret-keys may be exposed. And, for any set Z and any nonnegative integer z, let
P(Z, z) := {Z ⊂ Z||Z| ≤ z} be the family of all subsets of Z whose cardinality
is less than or equal to z. And also, let W := {Ri1 , Ri2 , . . . , Riω} ∈ P(R,ω)
be a set of possible colluders and EW := Ei1 × Ei2 . . . × Eiω be a set of possible
secret-keys held by W . Furthermore, let Γ := {j1, j2, . . . , jγ} ⊂ P(T , γ) be a
set of periods at which sender’s secret-keys are exposed, and EΓ := E(j1)

S × E(j2)
S

× . . . × E(jγ)
S be a set of sender’s secret-keys exposed. With these notation, we

will discuss KI-MRA in the following sections.

2.2 Security Notions and Their Formalization

We now provide security notions and their formalization of KI-MRA in the
one-time model based on key-insulated signature schemes with computational
security [7] [8] and MRA-codes[17]. In MRA-codes, there are two kinds of attacks:
impersonation attack and substitution attacks (see Appendix A for the detail of
those attacks). Therefore, we consider similar attacks in KI-MRA. In the model
of KI-MRA, we assume that the adversary can corrupt at most ω dishonest
receivers among R, and we do not think about any attack by the sender, since
he is assumed to be honest in the model as in that of MRA-codes. In addition,
we need to consider the following two types of exposure as in [7] [8]:

– Type A: Sender’s secret-key exposure, which models compromise of sender’s
secret-keys from the insecure device.

– Type B: Master-key exposure, which models compromise (robbery) of the
secure device by physical means.

Therefore, by combining two kinds of attacks (i.e., impersonation and substi-
tution attacks) in MRA-codes and two types of key-exposure (i.e., Types A and
B) above, we consider four kinds of security notions of KI-MRA as follows.

Definition 2 (Security of KI-MRA). Let Π be a KI-MRA. The scheme Π
is said to be an (n, ω; N , γ; εA, εB)-one-time secure if PΠ,A ≤ εA and PΠ,B ≤ εB,
where PΠ,A and PΠ,B are defined as follows.
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A-1) Impersonation attack in the exposure type A. The adversary who
corrupts at most ω receivers tries to generate a fraudulent authenticated
message at a period t, (α, t), that has not been legally generated by the
sender S but will be accepted by a receiver Ri. Here, we assume that Ri is
not included in the colluders, and the adversary can gather information by
pooling secret-keys of corrupted receivers, at most γ sender’s secret-keys
exposed (but, the adversary cannot obtain the secret-key at the target pe-
riod t). The success probability of this attack denoted by PΠ,IA is defined
as follows: For any set of colluders W ∈ P(R,ω), any set of key-exposure
periods Γ ∈ P(T , γ), any targeted honest receiver Ri /∈ W and target
period t /∈ Γ , we define PΠ,IA(Ri, W , Γ , t) as

PΠ,IA(Ri,W, Γ, t) := max
eW

max
eΓ

max
(α,t)

Pr(KVer(ei, α, t) = true|eW , eΓ ),

where the probability is taken over random choice of KGen, and the max-
imum is taken over: all possible sets of the colluders’ secret-keys eW ∈
EW ; all possible sets of sender’s secret-keys eΓ ∈ EΓ exposed such that
e
(t)
S /∈ eΓ ; and all possible authenticated messages (α, t) ∈ A × T . Then,

the probability PΠ,IA is defined as PΠ,IA := max
Ri,W,Γ,t

PΠ,IA(Ri,W, Γ, t).

A-2) Substitution attack in the exposure type A. The adversary who
corrupts at most ω receivers tries to generate a fraudulent authenticated
message at a period t, (α, t), that has not been legally generated by the
sender S but will be accepted by a receiver Ri, after observing a valid
authenticated message at the same period, (α′, t). Here, we assume that
Ri is not included in the colluders, and the adversary can gather infor-
mation by pooling secret-keys of corrupted receivers, at most γ sender’s
secret-keys exposed (but, the adversary cannot obtain the secret-key at
the target period t). The success probability of this attack denoted by
PΠ,SA is defined as follows: For any set of colluders W ∈ P(R,ω), any
set of key-exposure periods Γ ∈ P(T , γ), any targeted honest receiver
Ri /∈ W and target period t /∈ Γ , we define PΠ,SA(Ri, W , Γ , t) as

PΠ,SA(Ri,W, Γ, t) := max
eW

max
eΓ

max
(α′,t)

max
(α,t) �=(α′,t)

Pr(KVer(ei, α, t) = true|eW , eΓ , (α′, t)),

where the probability is taken over random choice of KGen, and the max-
imum is taken over: all possible sets of the colluders’ secret-keys eW ∈
EW ; all possible sets of sender’s secret-keys exposed eΓ ∈ EΓ such that
e
(t)
S /∈ eΓ ; and all possible authenticated messages (α′, t), (α, t) ∈ A × T

such that α �= α′. Then, the probability PΠ,SA is defined as PΠ,SA :=
max

Ri,W,Γ,t
PΠ,SA(Ri,W, Γ, t). And, we define PΠ,A := max(PΠ,IA , PΠ,SA).

B-1) Impersonation attack in the exposure type B. The adversary who
corrupts at most ω receivers tries to generate a fraudulent authenticated
message (α, t) that has not been legally generated by the sender S but
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will be accepted by a receiver Ri. Here, we assume that Ri is not included
in the colluders, and the adversary can gather information by pooling
secret-keys of corrupted receivers and a master-key exposed. The success
probability of this attack denoted by PΠ,IB is defined as follows: For any
set of colluders W ∈ P(R,ω), any targeted honest receiver Ri /∈ W and
target period t, we define PΠ,IB (Ri,W, t) as

PΠ,IB (Ri,W, t) := max
eW

max
mk

max
(α,t)

Pr(KVer(ei, α, t) = true|eW ,mk),

where the probability is taken over random choice of KGen, and the maxi-
mum is taken over: all possible sets of the colluders’ secret-keys eW ∈ EW ;
all possible master-keys exposed mk ∈ MK; and all possible authenti-
cated messages (α, t) ∈ A× T . Then, the probability PΠ,IB is defined as
PΠ,IB := max

Ri,W,t
PΠ,IB (Ri,W, t).

B-2) Substitution attack in the exposure type B. The adversary who
corrupts at most ω receivers tries to generate a fraudulent authenticated
message at a period t, (α, t), that has not been legally generated by the
sender S but will be accepted by a receiver Ri, after observing a valid
authenticated message at the same period, (α′, t). Here, we assume that Ri

is not included in the colluders, and the adversary can gather information
by pooling secret-keys of corrupted receivers and a master-key exposed.
The success probability of this attack denoted by PΠ,SB is defined as
follows: For any set of colluders W ∈ P(R,ω), any targeted honest receiver
Ri /∈ W and target period t, we define PΠ,SB (Ri,W, t) as

PΠ,SB (Ri,W, t) := max
eW

max
mk

max
(α′,t)

max
(α,t) �=(α′,t)

Pr(KVer(ei, α, t) = true|eW ,mk, (α′, t)),

where the probability is taken over random choice of KGen, and the maxi-
mum is taken over: all possible sets of the colluders’ secret-keys eW ∈ EW ;
all possible master-keys exposed mk ∈ MK; and all possible authenti-
cated messages (α′, t), (α, t) ∈ A× T such that α �= α′. Then, the proba-
bility PΠ,SB is defined as PΠ,SB := max

Ri,W,t
PΠ,SB (Ri,W, t). And, we define

PΠ,B := max(PΠ,IB , PΠ,SB ).

Instead of Definition 2, one can consider a more general attacking model as
follows: in addition to information in Definition 2, the adversary may observe
authenticated messages in all periods which are generated by the honest sender,
since he can broadcast at most one authenticated message per period. However,
this model is not so simple. Furthermore, even if we consider the general at-
tacking model, we will obtain the very similar results (i.e., lower bounds and
constructions) shown in Sections 2.3 and 3. Therefore, we consider the attacking
model in Definition 2, since the purpose of this paper is to consider a simple
and essential model of multireceiver authentication systems with key-insulated
security.
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2.3 Lower Bounds

In this section, we derive lower bounds of success probabilities of attacks and
memory-sizes required for an (n, ω; N , γ; εA, εB)-one-time secure KI-MRA. Let
A(t) := {α ∈ A|KAuth(e(t)

S ,m) = α for some e
(t)
S ∈ E(t)

S ,m ∈ M} be a set of
possible authenticated messages which can be generated at a period t by the
sender. Also, let I(h,j) ⊂ I be a finite set of possible key-updating information
which is used for key-updating process from a period h to a period j. And, let
I(h,j), EW and EΓ be random variables which take values on I(h,j), EW and EΓ ,
respectively. And also, let (A(t), Ã(t)) be a joint random variable which takes
values on the set A(t) ×A(t) such that A(t) �= Ã(t).

We assume that there exist the following mappings in the model of KI-MRA,
π(j) : E(j)

S → E(j)
1 × . . . × E(j)

n and fi : Ei → E(1)
i × . . . × E(N)

i , where E(j)
i

is a set of possible Ri’s keys which are actually used at the period j2. Note
that the assumption is natural and not so strange, since we will actually see
these mappings in our constructions in Section 3. In the following, let E

(j)
i be a

random variable which takes values on E(j)
i .

Then, we can derive lower bounds of success probabilities of attacks as follows.
The proof of sketch is given in Appendix C.

Theorem 1. For any i ∈ {1, 2, . . . , n}, any colluding group W with Ri �∈ W ,
any t ∈ T , and any set of key-exposed time periods Γ with t �∈ Γ , we have the
following inequalities:

1. PΠ,IA(Ri, W , Γ , t) ≥ 2−I(A(t);E(t)
i |EW ,EΓ ),

2. PΠ,SA(Ri, W , Γ , t) ≥ 2−I(Ã(t);E(t)
i |EW ,EΓ ,A(t)),

3. PΠ,IB (Ri, W , t) ≥ 2−I(A(t);E(t)
i |EW ,MK),

4. PΠ,SB (Ri, W , t) ≥ 2−I(Ã(t);E(t)
i |EW ,MK,A(t)),

where I(X ;Y |Z) means the conditional mutual information of random variables
X and Y given Z.

We next show lower bounds of memory-sizes of entities in KI-MRA. From The-
orem 1, we obtain the following lower bounds of memory-sizes.

Theorem 2. Let Π be an (n, ω; N , γ; ε, ε)-one-time secure KI-MRA. Let
q := ε−1. Then, for any i ∈ {1, 2, . . . , n}, j ∈ T and h ∈ T̃ , we have: (i)
|E(j)

S | ≥ q2(ω+1); (ii) |Ei| ≥ q2(γ+1); (iii) |MK| ≥ q2γ(ω+1); (iv) |I(h,j)| ≥ q2(ω+1);
and (v) |A(j)| ≥ 2H(M)qω+1. In particular, if PrM is the uniform distribution,
|A(j)| ≥ qω+1|M|.
Proof. The proof is given in Appendix B.

As we will see in the next section, the above lower bounds are tight. Therefore,
we define optimality of constructions of KI-MRA as follows.

2 Note that, e
(j)
i , a Ri’s key actually used for a period j, may be a part of an entire

key ei or may be equal to the entire key itself.
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Definition 3. A construction of (n, ω;N , γ; ε, ε)-one-time secure KI-MRA is
said to be optimal if it meets all the inequalities (i)-(v) in Theorem 2 with
equalities.

3 Constructions

In this section, we propose two kinds of constructions of KI-MRA, direct and
generic constructions.

3.1 Direct Construction

We provide a direct construction which is one-time secure KI-MRA in our model
by using polynomials over finite fields. In addition, it is shown that the direct
construction meets the lower bounds of key-sizes with equalities. Therefore, it
turns out that the direct construction is optimal. The construction is given as
follows.

1. Key Generation Algorithm KGen. For a security parameter 1k, the
algorithm KGen outputs matching secret-keys e

(0)
S ,mk, ei(1 ≤ i ≤ n) for

S, H , Ri(1 ≤ i ≤ n) as follows. KGen picks a k-bit prime power q, where
q > max(n,N), and constructs the finite field Fq with q elements. We assume
that the identity of each receiver Ri is also denoted by Ri and that Ri ⊂
Fq \ {0}. Also, we assume M ⊂ Fq \ {0}, T = {1, 2, . . . , N} ⊂ Fq \ {0} and
T̃ := T ∪ {0} ⊂ Fq by using appropriate encoding. And, KGen takes two
random polynomials over Fq:

F (x, z) =
ω∑

i=0

1∑
k=0

ai,0,kx
izk

mk(x, y, z) =
ω∑

i=0

γ∑
j=1

1∑
k=0

ai,j,kx
iyjzk,

where each coefficient ai,j,k is chosen uniformly at random from Fq , and we
define x0 = z0 = 1. KGen also computes n + 1 polynomials e

(0)
S (x, z) :=

F (x, z) and ei(y, z) := F (x, z)|x=Ri + mk(x, y, z)|x=Ri (1 ≤ i ≤ n). Then,
the algorithm KGen outputs secret-keys e(0)

S := e
(0)
S (x, z), mk := mk(x, y, z)

and ei := ei(y, z) (1 ≤ i ≤ n) for S, H and Ri, respectively.
2. DeviceKey-UpdatingAlgorithmKUpd∗ andSender’sKey-Updating

AlgorithmKUpd. For two periods h ∈ T̃ , j ∈ T and mk = mk(x, y, z), the
algorithm KUpd∗ generates a polynomial mk(h,j)(x, z) := mk(x, y, z)|y=j −
mk(x, y, z)|y=h. Then, KUpd∗ outputs key-updating information mk(h,j) :=
mk(h,j)(x, z). For mk(h,j) and e

(h)
S := e

(h)
S (x, z), the algorithm KUpd gen-

erates the polynomial e
(j)
S (x, z) := e

(h)
S (x, z) + mk(h,j)(x, z). Then, KUpd

outputs the secret-key at the period j, e(j)
S := e

(j)
S (x, z).
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3. Authentication Algorithm KAuth. For a message m ∈ Fq and
e
(j)
S = e

(j)
S (x, z), the algorithm KAuth generates the polynomial α(x) :=

e
(j)
S (x, z)|z=m, and outputs the authenticated message at the period j,

α := (m, α(x)).
4. Verification Algorithm KVer. For an authenticated message at a period

t, (α, t) (α = α(x)), and ei = ei(y, z), the algorithm KVer outputs true if
α(x)|x=Ri = ei(y, z)|y=t,z=m holds, and otherwise outputs false.

We can show security of the above construction as follows. The proof of sketch
is given in Appendix C.

Theorem 3. The resulting KI-MRA by the above construction is (n,w;N, γ;
1
q ,

1
q )-one-time secure. Furthermore, the required memory-sizes of secret-keys and

the size of authenticated messages are given as follows.

|E(j)
S | = q2(ω+1), |Ei| = q2(γ+1), |MK| = q2γ(ω+1)

|I(h,j)| = q2(ω+1), |A(j)| = qω+1|M |.
Therefore, the above construction is optimal.

3.2 Generic Construction

We propose a generic construction (i.e., a black box construction) of one-time
secure KI-MRA by using CFFs (cover free families) and MRA-codes. In gen-
eral, the merit to consider a generic construction lies in that it is possible to
take general settings of parameters in the construction starting from underlying
primitives, though it is often the case that generic constructions are inefficient
compared to direct constructions. From this point of view, we propose a generic
construction of KI-MRA by using both CFFs and MRA-codes. As we will see, our
construction is simple and better CFFs and MRA-codes lead to better KI-MRAs.
We start with describing the definition of CFF and the model of MRA-codes as
follows.

Definition 4 (CFF[9]). Let L := {l1, l2, . . . , ld} be a universal set and F :=
{F1, F2, . . . , FN} be a family of subsets of L. Then, we call it (d,N, γ)-CFF
(Cover Free Family) if Fi0 �⊂ Fi1 ∪ Fi2 ∪ . . . ∪ Fiγ for all Fi0 , Fi1 . . ., Fiγ ∈ F
where Fij �= Fik

if j �= k.

A trivial CFF is the family consisting of single-elements subsets, in which we
have N = d i.e., L = {1, 2, . . . , d} and F = {{1}, {2}, . . . , {d}}. We note that
there exist non-trivial constructions of CFFs. The constructions of CFFs are
studied in various areas in mathematics such as finite geometry, design theory
and probability theory. We also note that concrete methods for generating CFFs
are given in [9][15]. Next, we describe a model of MRA-codes in [17].

MRA-codes. We consider the scenario where there are n + 1 entities, a sender
S̃ and n receivers R̃1, . . . , R̃n. The MRA-code Π̃ consists of a three-tuple of
algorithms (MGen, MAuth, MVer) with four spaces, M̃, D, U and V , where M̃



Information-Theoretically Secure Key-Insulated MRA Codes 159

is a finite set of possible messages, D is a finite set of possible authenticated mes-
sages, U and V are finite sets of possible secret-keys for the sender and receivers,
respectively. MGen is a key generation algorithm, which takes security param-
eter on input and outputs matching keys u ∈ U and vi ∈ V (i = 1, 2, . . . , n),
where u and vi are secret-keys for S̃ and R̃i, respectively. MAuth is an algorithm
for generating an authenticated message, and it is used when the sender wants
to broadcast the authenticated message to all verifiers via an insecure broadcast
channel. MAuth takes a secret-key u ∈ U and message m ∈ M̃ on input and
outputs an authenticated message δ ∈ D, and we write δ =MAuth(u,m) for
it. On receiving δ, the receiver R̃i can check the validity of it by using MVer.
MVer takes a secret-key vi ∈ V and an authenticated message δ ∈ D on input,
and outputs true or false, where true is output if and only if δ is valid, and we
write true=MVer(vi, δ) or false=MVer(vi, δ) for it. In MRA-codes, there are two
kinds of attacks: the impersonation attack and substitution attack. The formal
definitions of those attacks are given in Appendix A.

Our generic construction of KI-MRA is given as follows.

1. Key Generation Algorithm KGen. For a security parameter 1k, the al-
gorithm KGen outputs matching secret-keys for S, H R1, . . . , Rn as follows.
KGen generates (d,N, γ)-CFF L := {l1, . . . , ld} and F := {F1, . . . , FN},
and makes them public to all entities. And KGen calls MGen N times with
taking on input the security parameter 1k. Let (u(j)

0 , v(j)
1,0, . . . , v

(j)
n,0) be the

j-th output from MGen (1 ≤ j ≤ N). Similarly, KGen calls MGen d times,
and let (u(lj)

1 , v(lj)
1,1 , . . . , v(lj)

n,1 ) be the j-th output (1 ≤ j ≤ d)3. Also, it sets

U (0) := ∅. Then, the algorithm KGen outputs secret-keys e
(0)
S := (u(1)

0 , u(2)
0 ,

. . . , u(N)
0 , U (0)), mk := (u(l1)

1 , u(l2)
1 , . . . , u(ld)

1 ) and ei := (v(1)
i,0 , v(2)

i,0 , . . . , v(N)
i,0 ,

v
(l1)
i,1 , v(l2)

i,1 , . . . , v(ld)
i,1 ) for S, H and Ri, respectively.

2. DeviceKey-UpdatingAlgorithmKUpd∗ andSender’sKey-Updating
Algorithm KUpd. For two periods h ∈ T̃ , j ∈ T and mk = (u(l1)

1 , . . . ,
u

(ld)
1 ), KUpd∗ generates U (j) := {u(l)

1 |l ∈ Fj}. Then, KUpd∗ outputs the
key-updating information mk(h,j) := U (j).

For mk(h,j) and e
(h)
S = (u(1)

0 , . . . , u(N)
0 , U (h)), KUpd generates the secret-

key at the period j, e(j)
S := (u(1)

0 , . . . , u(N)
0 , U (j)), and outputs it.

3. Authentication Algorithm KAuth. For a message m ∈ M and e
(j)
S =

(u(1)
0 , . . . , u

(N)
0 , U (j)), KAuth generates the authenticated message at the

period j, α := (m, δ
(j)
0 , δ

(j)
i1

, . . . , δ
(j)
i|Fj |), where δ

(j)
0 :=MAuth(u(j)

0 ,m) and

δ
(j)
ig

:=MAuth(u(ig)
1 ,m) for all ig ∈ Fj . KAuth then outputs α.

4. Verification Algorithm KVer. For an authenticated message at a pe-
riod j, (α, j), where α = (m, δ

(j)
0 , δ

(j)
l1

, . . ., δ
(j)
l|Fj |) and ei = (v(1)

i,0 , . . . ,

v
(N)
i,0 , v

(l1)
i,1 , . . . , v

(ld)
i,1 ), KVer outputs true if MVer(v(j)

i,0 , δ
(j)
0 ) =true and

MVer(v(lg)
i,1 , δ

(j)
lg

) =true for all lg ∈ Fj , and otherwise outputs false.

3 We note that (u(lj)

1 , v
(lj)

1,1 , . . . , v
(lj)

n,1 ) is corresponding to lj ∈ L.
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The security of the above generic construction is shown as follows. The proof
of sketch is given in Appendix C.

Theorem 4. Given a (d,N, γ)-CFF F and an (n, ω, ε)-secure MRA-code Π̃,
then the KI-MRA Π formed by the above construction based on the CFF and
Π̃ is (n, ω;N, γ; εA, εB)-one-time secure, where εA ≤ εφ and εB ≤ ε. Here,
φ := min(|Fi0 −{Fi1 ∪ . . .∪Fiγ }|), where the minimum is taken over all Fi0 , Fi1 ,
. . ., Fiγ ∈ F . Furthermore, required memory-sizes of authenticated messages and
secret-keys are given as follows:

|E(j)
S | = (N + |Fj |)|U|, |Ei| = (N + d)|V|, |MK| = d|U|

|I(h,j)| = |Fj ||U|, |A(j)| = (|Fj |+ 1)|D|.

Remark 1. In [17], the generic construction of MRA-codes by combining CFFs
and A-codes [10][21] is proposed. Therefore, by combining our generic construc-
tion and the one in [17], KI-MRA can be constructed by using two kinds of
simple primitives, CFFs and A-codes.

4 Concluding Remarks

In this paper, we studied information-theoretically secure authentication schemes
with key-insulated security. Specifically, we introduced a model of information-
theoretically secure multireceiver authentication codes (KI-MRA), and proposed
security notions and their formalizations in our model. In addition, we derived
tight lower bounds of memory-sizes required for the KI-MRA. Furthermore, we
provided two kinds of constructions: direct and generic constructions which were
provably secure in our security definition. In particular, It was shown that the
direct construction was optimal.

In this paper, for simplicity, we discussed the one-time model of KI-MRA.
However, it would be interesting to extend our one-time model to the multi-use
model of KI-MRA. Also, it would be a future research to study information-
theoretically secure key-insulated signature schemes which have security notions
stronger than those of KI-MRAs.
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Appendix A: Security Notions of MRA-Codes

We describe the security notions of MRA-codes shown in [6], [17], [14]. In MRA-
codes, two kinds of attacks are considered: impersonation attack and substitution
attack. We describe the formal definitions of those security notions as follows.

Definition 5. [17] Let Π̃ be a MRA-codes. The scheme Π̃ said to be (ñ, ω̃, ε̃)-
secure if max(PΠ̃,I , PΠ̃,S) ≤ ε̃ where PΠ̃,I and PΠ̃,S are defined as follows.

1) Impersonation Attack: The adversary who corrupts at most ω̃ receivers
tries to generate a fraudulent authenticated message δ that has not been
legally generated by the sender S̃ but will be accepted by a receiver R̃i.
Here, we assume that R̃i is not included in the colluders, and the adver-
sary can obtain information by pooling secret-keys of corrupted receivers.
Success probability of this attack denoted by PΠ̃,I is defined as follows. For
any W̃ ∈ P(R̃, ω̃) and R̃i /∈ W̃ , we define PΠ̃,I(R̃i, W̃ ) as follows.

PΠ̃,I(R̃i, W̃ ) := max
eW̃

max
δ

Pr(MVer(vi, δ) = true|eW̃ )

where the probability is taken over random choice of MGen, and the maxi-
mum is taken over: all possible sets of the colluders’ secret-keys eW̃ ∈ EW̃ ;
and all possible authenticated messages δ ∈ D. Then, the probability PΠ̃,I is
defined as PΠ̃,I := max

R̃i,W̃
(R̃i, W̃ ).

2) Substitution Attack: The adversary who corrupts at most ω̃ receivers tries
to generate a fraudulent authenticated message δ that has not been legally
generated by the sender S̃ but will be accepted by a receiver R̃i, after observ-
ing the transmitted authenticated message δ′. Here, we assume that R̃i is
not included in the colluders, and the adversary can obtain information by
pooling secret-keys of corrupted receivers. Success probability of this attack
denoted by PΠ̃,S is defined as follows. For any W̃ ∈ P(R̃, ω̃) and R̃i /∈ W̃ ,
we define PΠ̃,S(R̃i, W̃ ) as follows.

PΠ̃,S(R̃i, W̃ ) := max
eW̃

max
δ′

max
δ �=δ′

Pr(MVer(vi, δ) = true|eW̃ , δ′)

where the probability is taken over random choice of MGen, and the maxi-
mum is taken over: all possible sets of the colluders’ secret-keys eW̃ ∈ EW̃ ;
and all possible authenticated messages δ′, δ ∈ D such that δ �= δ′. Then, the
probability PΠ̃,S is defined as PΠ̃,S := max

R̃i,W̃
(R̃i, W̃ ).

Appendix B: Proof of Theorem 2

The proof of Theorem 2 follows from Lemmas 2-6 below.
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Lemma 1. Let Ri be a receiver and t be a period. For any W ∈ P(R, ω) and
any Γ ∈ P(T , γ) such that Ri �∈ W and t �∈ Γ , we have PΠ,SA(Ri,W, Γ, t) ≥
2−H(E(t)

i |EW ,EΓ ,A(t)).

Proof. The lemma follows from Theorem 1 straightforwardly, since I(Ã(t);E(t)
i

| EW , EΓ , A(t)) = H(E(t)
i |EW , EΓ , A(t)) − H(E(t)

i | EW , EΓ , Ã(t), A(t)) ≤
H(E(t)

i |EW , EΓ , A
(t)). �

Lemma 2. |E(j)
S | ≥ q2(ω+1) for any j ∈ T̃ .

Proof. We first prove that H(E(j)
S |EΓ ) ≥ 2(ω + 1) log q for any Γ ∈ P(T , γ) and

j ∈ T with j �∈ Γ . Let Wi := {R1, . . . , Ri−1, Ri+1, . . . , Rω+1}. Then, for any
Γ ∈ P(T , γ) and j ∈ T with j �∈ Γ , we have

ω+1∏
i=1

PΠ,IA(Ri,Wi, Γ, j)PΠ,SA(Ri,Wi, Γ, j) ≥ 2−
∑ ω+1

i=1 H(E(j)
i |E(j)

1 ,...,E
(j)
i−1,EΓ )(1)

= 2−H(E(j)
1 ,...,E

(j)
ω+1|EΓ )

≥ 2−H(E(j)
S |EΓ ), (2)

where (1) follows from Theorem 1 and Lemma 1, and (2) is shown by considering
the mapping π(j) : E(j)

S → E(j)
1 × . . .× E(j)

n .
Since

∏ω+1
i=1 PΠ,IA(Ri,Wi, Γ, j)PΠ,SA(Ri,Wi, Γ, j) ≤

∏ω+1
i=1 (1

q )2 = (1
q )2(ω+1),

we obtain 2−H(E(j)
S |EΓ ) ≤ (1

q )2(ω+1) and hence H(E(j)
S |EΓ ) ≥ 2(ω + 1) log q.

Therefore, we have |E(j)
S | ≥ q2(ω+1), since H(E(j)

S |EΓ ) ≤ log |E(j)
S |. �

Lemma 3. |Ei| ≥ q2(γ+1) for any i ∈ {1, 2, . . . , n}.
Proof. Let Γj := {1, . . . , j − 1, j + 1, . . . , γ + 1}. Then, for W = ∅, we have

γ+1∏
j=1

PΠ,IA(Ri,W, Γj , j)PΠ,SA(Ri,W, Γj , j) ≥
γ+1∏
j=1

2−H(E(j)
i |E(1)

S ,...,E
(j−1)
S ) (3)

≥
γ+1∏
j=1

2−H(E(j)
i |E(1)

i ,...,E
(j−1)
i ) (4)

= 2−H(E(1)
i ,...,E

(γ+1)
i )

≥ 2−H(Ei). (5)

In the above expressions, (3) follows from Theorem 1 and Lemma 1, (4) is shown
by considering the mapping p

(k)
i ◦ π(k) : E(k)

S → E(k)
i for 1 ≤ k ≤ j − 1, where

p
(k)
i : E(k)

1 × . . . × E(k)
n → E(k)

i is the i-th projection, and (5) is shown by
considering the mapping fi : Ei → E(1)

i × . . .× E(N)
i .

Since
∏γ+1

i=1 PΠ,IA(Ri,W, Γj , j)PΠ,SA(Ri,W, Γj, j) ≤
∏γ+1

i=1 (1
q )2 = (1

q )2(γ+1),
we obtain |Ei| ≥ 2H(Ei) ≥ q2(γ+1). �
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Lemma 4. |MK| ≥ q2γ(ω+1).

Proof. For any Γ = {k1, k2, . . . , kγ} ∈ P(T , γ) with |Γ | = γ, and j ∈ T such
that j �∈ Γ , we have

H(MK) ≥ H(MK|E(j)
S )

≥ I(E(k1)
S , . . . , E

(kγ )
S ;MK|E(j)

S )

= H(E(k1)
S , . . . , E

(kγ)
S |E(j)

S )

=
γ∑

i=1

H(E(ki)
S |E(j)

S , E
(k1)
S , . . . , E

(ki−1)
S )

≥ 2γ(ω + 1) log q, (6)

where (6) follows from the proof of Lemma 2. Therefore, we have |MK| ≥
2H(MK) ≥ q2γ(ω+1). �

Lemma 5. |I(h,j)| ≥ q2(ω+1) for any h ∈ T̃ and j ∈ T .

Proof. From the deterministic algorithm (i.e., mapping) KUpd : ES × I → ES , it
follows that H(I(h,j)|E(h)

S ) ≥ H(E(j)
S |E(h)

S ). Thus, we have

H(I(h,j)) ≥ H(I(h,j)|E(h)
S ) ≥ H(E(j)

S |E(h)
S ) ≥ 2(ω + 1) log q,

where the last inequality follows from the proof of Lemma 2. Therefore, we have
|I(h,j)| ≥ 2H(I(h,j)) ≥ q2(ω+1). �

Lemma 6. |A(j)| ≥ 2H(M)qω+1 for any j ∈ T . In particular, if PrM is the
uniform distribution, we have |A(j)| ≥ qω+1|M | for any j ∈ T .

Proof. For any j ∈ T and any Γ ∈ P(T , γ) such that j �∈ Γ , we have
I(A(j);ES |EΓ ) ≥ I(A(j);E1, . . . , Eω+1|EΓ ) by considering the mapping π :
ES → E1 × · · · × En. Let Wi := {R1, R2, . . . , Ri−1}. Then, we have

2−I(A(j);ES |EΓ ) ≤ 2−I(A(j);E1,...,Eω+1|EΓ )

= 2−
∑ ω+1

i=1 I(A(j);Ei|E1,...,Ei−1,EΓ )

≤
ω+1∏
i=1

2−I(A(j);E(j)
i |E1,...,Ei−1,EΓ ) (7)

≤
ω+1∏
i=1

PΠ,IA(Ri,Wi, Γ, j) (8)

≤ (PΠ,A)ω+1 ≤
(

1
q

)ω+1

,

where (7) is shown by considering the mapping fi : Ei → E(1)
i × . . .× E(N)

i , and
(8) follows from Theorem 1. In addition, for Γ = ∅, we have

2−I(A(j);ES|EΓ ) = 2−H(A(j))+H(A(j)|ES) ≥ 2H(M)

|A(j)| ,
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where the last inequality follows from the deterministic algorithm KAuth: ES ×
M→ A. Therefore, we obtain |A(j)| ≥ 2H(M)qω+1. �

Appendix C: Sketch Proofs

Sketch Proof of Theorem 1. The proof can be shown in a way similar to the proof
of Theorem 3.2 in [17]. Here, we only show a sketch proof of the first inequality.
We define a characteristic function XIA as follows.

XIA((α, t), e(t)
i , eW , eΓ ) =

{
1 if KVer(ei, α, t) = true ∧ Pr((α, t), e(t)

i , eW , eΓ ) �= 0
0 otherwise.

Then, from Definition 2, we can express PΠ,IA(Ri,W, Γ, t) as

PΠ,IA(Ri,W, Γ, t) = max
eW

max
eΓ

max
(α,t)

∑
e
(t)
i

XIA((α, t), e(t)
i , eW , eΓ )Pr(e(t)

i |eW , eΓ ).

By a way similar to the proof of Theorem 3.2 in [17], we have PΠ,IA(Ri, W , Γ ,
t) ≥ 2−I(A(t);E(t)

i |EW ,EΓ ). Similarly, other inequalities can also be proved. �

Sketch Proof of Theorem 3. The proof can be directly shown as in the proofs of
constructions of MRA (For example, see [17] [14]). Here, we only describe the
outline of the proof of PΠ,S ≤ 1

q , since other ones can be shown by a similar
idea. To succeed in the substitution attack in the exposure type A, the adver-
sary will generate a fraudulent authenticated message at a period t (α, t), where
α = (m,α(x)), under the following conditions: the adversary can obtain γ ex-
posed secret-keys for the sender, ω secret-keys for corrupted receivers and a valid
authenticated message at the same period (α′, t), where α′ �= α. However, the
degrees of F (x, z) + mk(x, y, z) with respect to x, y and z are at most ω, γ and
1, respectively. Thus, for the message m, the adversary cannot guess the polyno-
mial α(x) = F (x,m) + mk(x, t,m) with probability more than 1/q. Therefore,
we have PΠ,SA ≤ 1

q . In a manner similar to this, we can prove that PΠ,IA ≤ 1
q .

Thus, we have PΠ,A = max(PΠ,IA , PΠ,SA) ≤ 1
q . Similarly, we can also prove that

PΠ,B = max(PΠ,IB , PΠ,SB ) ≤ 1
q . Furthermore, it is straightforward to evaluate

memory-sizes required in the construction. �

Sketch Proof of Theorem 4. The proof of security can be directly shown by the
definition of CFF and security of MRA. Here, we only describe the outline of
the proof of PΠ,SA ≤ εφ, since other ones can be shown by a similar idea. The
adversary can know γ sets U (1), U (2), . . . , U (γ) from γ exposed secret-keys for
the sender. However, from the definition of CFF, the adversary cannot obtain at
least φ elements of the set U (t) = {u(l)

1 |l ∈ Ft}. Therefore, the adversary needs
to forge at least φ authenticated messages of the underlying MRA-code. Thus,
we have PΠ,SA ≤ εφ. In a manner similar to this, we can prove that PΠ,IA ≤ εφ.
Thus, we have PΠ,A = max(PΠ,IA , PΠ,SA) ≤ εφ. Similarly, we can also prove that
PΠ,B = max(PΠ,IB , PΠ,SB ) ≤ ε. Furthermore, it is straightforward to evaluate
memory-sizes required in the construction. �
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active adversary. These protocols are important as they are fundamental crypto-
graphic protocols with important applications in research [3,5]. In the (r-phase,
n-channel) model, a sender wishes to securely send a secret to a receiver. This
transmission should occur in r phases with n channels connecting the sender and
receiver. The adversary is able to corrupt up to t network nodes.

In [2] it was shown that if r = 2, n ≥ (2t + 1) is a necessary and sufficient
condition for PSMT. In this paper we present a protocol which is the most ef-
ficient in the literature for the transmission of a single message. Our protocol
achieves this in polynomial time and with O(n2) communication complexity.
This improves on the O(n3) communication complexity of previous protocols.
Optimum results for two phase protocols with regards to transmission rate have
only recently been achieved. One of these results was that of [1] at CRYPTO
2006. The paper presented a protocol with O(n) transmission rate but exponen-
tial computational complexity. These results were improved at EUROCRYPT
2008 in [7] where the authors presented a polynomial 2-phase PSMT protocol
able to achieve O(n) transmission rate. The communication complexity for this
protocol is however O(n3), while the one we present is O(n2). Despite the work
of [7] which achieves linear transmission rate the protocol they present is only
optimal for communication with a large number of messages. For applications
which require the perfectly secure transmission of a single message, the protocol
we present is the most efficient in the literature.

Different variations on the security of message transmission schemes exist in
the literature [2,6,9,13]. In [2] the authors showed that a necessary and sufficient
condition for PSMT to occur when r = 1 is that n ≥ 3t+1. For these conditions
the authors also provided a protocol achieving perfect security with optimum
communication complexity. In [4] the authors considered perfect security with
probabilistic reliability. In such protocols, reliability of message transmission
may fail with a bounded probability. The work was important as it presented
the sizable gap between the connectivity required to achieve perfect as opposed
to probabilistic security. In [8] Kurosawa and Suzuki considered almost secure
(1-phase, n-channel) message transmission when n = 2t+1. The authors showed
that almost secure message transmission can be achieved provided we are will-
ing to accept a small probability that the protocol will fail. A lower bound in
communication complexity for this type of transmission was given and an expo-
nential time protocol achieving this bound was presented. Srinathan et al. [12]
improved on this by presenting a polynomial time protocol achieving similar se-
curity. We also present a polynomial time almost secure message transmission
protocol. Contrary to the protocol presented in [12] which can transmit O(n)
messages, the protocol we present is for the transmission of a single message
only. The protocol we present is computationally more efficient requiring in the
order of n less computation than the protocol of [12]. For applications where
the almost secure transmission of a single message is required, the protocol we
present is the most efficient and appropriate to use.

Both protocols we present are of interest to both theoretical and practical
purposes. Whereas previous protocols have sought to optimize transmission rate
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only [7,8,12], we have concentrated on making protocols more efficient with re-
gards to communication and computation complexities. The protocols we present
are theoretically the most efficient regarding these complexities. They are also
important for practical purposes. In real world practical applications, compu-
tational cryptography is generally used. When these are not available or are
broken, in order to initialize these, new keys will have to be exchanged between
communicating parties. In such circumstances it makes no sense to send multiple
messages.

In this paper we also look at different security definitions for message trans-
mission schemes which exist in the literature. These seem to vary from paper to
paper and different aspects to security of message transmission are termed in a
different way by various authors. We aim to resolve this confusion by introduc-
ing and formalizing new security parameters to message transmission protocols
which we feel are missing and necessary in the literature.

2 Background

2.1 Environment of Message Transmission Protocols

In a message transmission protocol the sender starts with a message MA drawn
from a message space M with respect to a certain probability distribution. We
assume that the message spaceM is a subset of a finite field F. At the end of the
protocol, the receiver outputs a message MB. We consider a synchronous setting
in which messages between sender and receiver are sent in phases. A phase is
thus a transmission from sender to receiver or vice-versa.

We will assume an unconditionally secure setting where the adversary is com-
putationally unbounded. We consider an active adversary which can take control
of t internal nodes in a network. The adversary is assumed to know the com-
plete protocol specification, message space M and the complete structure of the
network graph. We will only consider static adversaries which must choose the
nodes to corrupt before the protocol begins. The adversary is able to view all
the behavior (randomness, computation, messages received) and can take full
control of any node which is compromised.

The communication network is modeled as a directed graph G = G(V,E)
whose nodes are the parties and whose edges are point-to-point reliable and
private communication channels. The network model which will be considered
consists of bidirectional channels between a sender and a receiver. Disjoint paths
between a sender and a receiver are referred to as wires and will be termed so
from now on. As the adversary can take control of t internal nodes in a network,
the adversary has the capability to control t wires.

2.2 Security Definition

Here we present the current security definitions for message transmission proto-
cols which exist in the literature. We argue why we think these definitions are
incomplete and formalize new security parameters we believe should be included.
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Current Security Definition - Probabilistic Reliability. The following
definition is taken from Franklin and Wright [4] and defines (ε, δ)-security.

1. Let δ < 1
2 . A message transmission protocol is δ-reliable if, with probability

at least 1 - δ, B terminates with MB = MA. The probability is over the
choices of MA and the coin flips of all nodes.

2. A message transmission protocol is perfectly reliable if it is 0-reliable.
3. ε refers to the privacy that is achieved. As we will be considering perfect

privacy we refer the reader to [4] for the definition of ε-privacy.
4. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-

reliable.

Current Security Definition - Probabilistic Failure. Almost secure mes-
sage transmission was considered in [8] with the following security definition:

Definition 1. We say that a (1-phase, n-channel) message transmission scheme
is (t, δ)-secure if the following conditions are satisfied for any adversary A who
can corrupt at most t out of n channels.

Privacy. A learns no information on MA. More precisely when R denotes the
random variable,

Pr(R = MA|Xi1 = xi1 , · · · , Xit = xit) = Pr(R = MA)

for any MA ∈ M and any possible xi1 , · · · , xit messages observed by A on
adversary controlled wires.

General Reliability. The receiver outputs MB = MA or ⊥ (failure). The
receiver thus never outputs a wrong secret.
Failure. Pr(Receiver outputs ⊥) < δ.

Comparison of the Two Security Definitions. The above security defini-
tions refer to two very different security properties. The definition of reliability
from [4] only considers executions that terminate and always output a message.
The protocol outputs the correct message with a bounded probability. However,
the reliability definition of [8] identifies two types of executions. The first of these
are executions that terminate but do not produce an output (i.e. output ⊥). The
second of these are executions that terminate and always produce the correct
result. Reliability in these definitions refers to both types of executions.

We propose a new security definition that reconciles the above definitions. This
is done by introducing new security parameters which capture the authenticity of
the received message and the availability of the message transmission protocol.
Executions that terminate but do not produce a correct output can be seen as
an attack on authenticity of the message. Executions that output failure can be
seen as an attack on the availability of the transmission protocol. This leads us
to propose the following definition.

New Security Definition. The first security parameter we call the availability
of a transmission protocol and is defined as follows:
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– Let γ ≤ 1. A message transmission protocol achieves γ-availability if, with
probability at least 1 - γ, B accepts a message, i.e. B accepts ⊥ with proba-
bility γ.

Availability considers executions that were captured by the δ parameter in the
security definition of [8].

Authenticity is the second security parameter we introduce. Assuming the
sender transmits MA and the receiver accepts MB ∈ {M,⊥}, δ-authenticity is
achieved by the following conditional probability.

δ = P (MA �= MB|ReceiverAccepts).

The above covers both the reliability definition of [4] and the executions of [8]
which terminate and always produce the correct result.

ε-privacy remains the same as defined in [4]. This type of security from now
on will be referred to as (ε, δ, γ)-security. It should be pointed out that perfectly
secure message transmission protocols (i.e. the work of [2,6,10]) achieve (0, 0, 0)-
security under this new definition. In our work we will present a polynomial
1-phase (0, 0, γ)-secure protocol in Section 3 and in Section 5 we consider 2-
phase (0, 0, 0)-secure protocols.

2.3 Secret Sharing Schemes

An m-out-of-n threshold secret sharing scheme allows for a secret message MA

to be distributed as a selection of n shares {s1,. . . ,sn} so that the following
properties are achieved:

1. Any collection of m shares is able to reconstruct the secret message MA.

2. Any subset of (m− 1) or less shares reveals no information about MA.

Variant of Shamir Secret Sharing Scheme. Shamir secret sharing [11] allows
for the reconstruction of a secret using polynomial interpolation. When secret
sharing is used in the literature it is assumed that the x-coordinates of points to
be used are available in a public database and shares sent to participants (or in
our case across wires) are the y-coordinates of the points. When using Shamir
secret sharing in message transmission protocols, denoting as p the polynomial
from which the shares are constructed, it is usually the norm to transmit share
p(i) across wire wi - where 1 ≤ i ≤ n and n denotes the number of wires
connecting sender and receiver.

In this paper we will use a variant of the above for the protocol of Section 3.
The only thing that will vary is that the x-coordinates of points to be used will
be private and shares sent will be the (x, y)-coordinates of the points.

3 Polynomial 1-Phase Almost Secure Message
Transmission

We now describe our 1-phase almost secure message transmission protocol for
n = (2t + 1). As our protocol is relatively simple we first present the main idea
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of our protocol. We then describe the main techniques used in the protocol. We
then formally present the security and complexity proof - showing that it is a
polynomial algorithm regarding computation and communication complexities.

3.1 Main Idea

As our protocol is a 1-phase protocol, communication can only occur one way
from sender to receiver. Denoting as MA the secret message of the transmission,
the sender will construct a (t+1)-out-of-n secret sharing code of MA. The sender
thus has n shares (s1, . . . , sn) of MA. For each one of the n shares the sender
will then carry out a (t+1)-out-of-n secret sharing (these new shares are termed
as sub-shares for clarity) and will transmit these sub-shares to the receiver -
the way this is done is outlined in Section 3.2. The receiver will then check the
correctness of the shares of MA and considering only the correct shares will
proceed to carry out error detection. This is also outlined in Section 3.2. If no
error is detected the receiver accepts the message interpolated by the shares. If
at least one error is detected, the receiver accepts ⊥. When the receiver accepts
a value the protocol terminates. As in some cases the receiver accepts ⊥ and in
all other cases the receiver accepts the correct message with perfect secrecy and
authenticity the protocol achieves (0, 0, γ)-security.

3.2 Main Protocol Techniques

In this section we outline three main techniques used in the protocol. The first
is the encoding and transmission of the secret message executed by the sender.
The other two are carried out by the receiver and are the identification of faulty
wires and error detection schemes.

Message Encoding and Transmission. Denoting as MA the secret message
of the transmission, the sender will carry out a (t+ 1)-out-of-n secret sharing of
MA - obtaining shares (s1, . . . , sn). The sender does this by choosing a random
polynomial p of degree at most t over GF (q) such that p(x) = MA + a1x

1 +
· · ·+atx

t - where a1, . . . , at are uniformly random elements of GF (q) and q � n
denotes the size of the finite field. The n shares (s1, . . . , sn) are obtained by
evaluating (p(1), . . . , p(n)).

For 1 ≤ i, j ≤ n the sender proceeds to construct a (t + 1)-out-of-n secret
sharing scheme of share si and transmit the constructed shares in the following
manner:

1. The sender chooses a random polynomial pi of degree at most t over GF (q)
such that pi(x) = si + ai1x

1 + · · · + aitx
t where ai1, . . . , ait are uniformly

random elements of GF (q).
2. n different uniformly random elements (ri1, . . . , rin) over the finite field are

then selected.
3. The n sub-shares of si are computed by evaluating pi at (ri1, . . . , rin) to

obtain (si1 = pi(ri1), . . ., sin = pi(rin)).
4. The random elements with the corresponding sub-shares are coupled to-

gether to obtain ((ri1, si1), . . ., (rin, sin)).
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5. The definition of polynomial pi is transmitted over wire wi.
6. The sender transmits the pair (rij , sij) over wire wj .

Faulty Wire Detection. This technique is carried out by the receiver at the
end of the protocol phase. Identification of faulty wires is done in the following
way:

– Initialize set FAULTY := ∅, REPEATFLAG := TRUE.
– Do the following while (REPEATFLAG = TRUE):

a REPEATFLAG := FALSE.
b For i := 1, . . . , n

1. IF wire wi ∈ FAULTY GOTO Step 6.
2. Denote as pi the polynomial definition received from wire wi.
3. Considering only the ith pair of values - (rji, sji), received from wires

wj /∈ FAULTY .
4. IF pi(rji) = sji for at least (t + 1) pair of values received from

different wires, then do nothing.
5. ELSE wire wi is identified as a faulty wire. Add wi to FAULTY .

Set REPEATFLAG := TRUE.
6. End of loop.

The faulty wire detection scheme described above identifies faulty wires. How-
ever, it cannot guarantee that wires identified by the scheme as non-faulty are
not controlled by the adversary and that changes were not carried out. As will be
outlined later, adversary controlled wires can still pass the test of this scheme -
even if changes were carried out. In short, adversary controlled wires can achieve
this if any alterations carried out on polynomial definitions still result in the al-
gorithm finding at least (t + 1) pair of values passing the test of Step 4.

It is easy to see that the computational complexity of the above scheme is
polynomial. The while loop can be repeated at most t times (as overall at most
t faulty wires can be identified in different instances of the while loop).

Error Detection. Error detection is carried out in the following manner. Con-
sidering only wires wi /∈ FAULTY , evaluate pi(0) for the polynomial received
from wire wi to obtain share si and denote as m the number of shares obtained.
Carry out error detection on the m shares in the following manner. Select t + 1
random shares from the m shares to obtain polynomial p. If any of the remaining
m−(t+1) shares do not lie on p then an error has been detected and the receiver
outputs ⊥. Otherwise the receiver accepts p(0) of the obtained polynomial as
the message of the transmission.

It is clear to see that the computational requirements of this error detection
process is polynomial.

3.3 Security and Efficiency

Theorem 1. The above protocol achieves (0, 0, γ) security for appropriately
large q.
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Proof. We first prove the perfect privacy of the protocol. The secret message MA

is secret shared using a (t + 1)-out-of-n secret sharing scheme. The adversary
can only learn t of these shares - those whose polynomial definitions are sent on
adversary controlled wires. For the secret sharing of the remaining shares the
adversary only learns t sub-shares of each and thus cannot learn any of these
shares. As the adversary learns t shares, no information is obtained about the
secret message. The protocol thus achieves perfect privacy.

Perfect authenticity is achieved as the receiver accepts a message only when
no errors are detected. This is proven by the following lemma.

Lemma 1. The faulty wire detection scheme will always identify as correct wires
the set of t + 1 non-faulty wires.

Proof. The faulty wire detection scheme identifies as a correct wire those whose
polynomial definitions correspond to at least (t + 1) received sub-shares. As
honest wires do not alter any information and as there are at least (t+1) honest
wires, honest wires will always be identified as correct wires. �

Due to the above lemma, at least (t+1) original shares of MA will be considered
by the sender in the error detection scheme. Because of this, no matter what
changes the adversary carries out the receiver will never accept a wrong message.
This is because the degree of the polynomial used in the secret sharing of MA is
at most t. This means that any alterations the adversary carries out cannot result
in a different t-degree polynomial which includes all the honest (t + 1) shares
(corresponding to honest wires) of MA . Therefore no matter what alterations the
adversary carries out to share values, at least one error will always be detected.
The receiver will thus never accept a message different to the message sent by
the sender. Perfect authenticity is therefore achieved.

We now calculate the availability. Failure of message transmission (i.e. when
the receiver outputs ⊥) occurs when an error is detected in the error detection
scheme of Section 3.2. An error is detected by this technique only when the
adversary successfully alters at least one share of the secret message. This can
only be achieved when a polynomial definition transmitted over a faulty wire is
altered and after the execution of the faulty wire detection technique, the specific
wire does not belong in the set FAULTY . For this to occur the adversary must
ensure that at least (t + 1) sub-shares received over all wires lie on the altered
polynomial. Assuming that the adversary controls t wires (all of which do not
belong in the set FAULTY ) - and in turn controls t sub-shares, any strategy
followed by the adversary must ensure that at least one sub-share not controlled
by the adversary lies on the polynomial definition to be altered by the adversary.

The reader is reminded that shares in the scheme are a pair (rx, sy) where rx

is a random field element representing the x-value of a point on a 2-dimensional
plane and sy is the evaluation of rx for a particular polynomial. As the adversary
knows the polynomial definition transmitted on adversary controlled wires, the
adversary knows the value of all possible sub-shares ((rx, sy) pairs) that could be
constructed using that polynomial. What the adversary does not know is which
specific (t+ 1) sub-shares were transmitted over the honest wires. As the values
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rx were uniformly randomly chosen by the sender, in order for the adversary
to succeed in an attack against the protocol availability, the best strategy the
adversary could follow is to guess these rx values. (Note that from the original
polynomial and a correct rx value, the adversary knows the corresponding sy.)
Given that the adversary controls t wires the adversary is able to rule out t of
these rx possible values over the finite field - leaving (q − t) possible values for
rx sent over the (t + 1) honest wires.

As mentioned earlier, it is sufficient that at least one sub-share not controlled
by the adversary lies on the altered polynomial. The adversary can try to guess
up to t of these sub-shares1. The probability that at least one is successful, is
one minus the probability that all t guesses are wrong. All being wrong means,
that all t were not chosen by the sender, which obviously means they came from
the q − (2t + 1) remaining ones. So, the probability of success is then given by:

1−

(
q − 2t− 1

t

)
(
q − t

t

)
The above analysis is for the case the adversary decides to alter a single

polynomial. If the adversary were to change the polynomial definition of two
wires and the attack of one wire failed, this would mean that for the other wire
attack to succeed, it would require for two sub-shares transmitted over honest
wires to be guessed correctly. This makes the full analysis more complex and
due to space reasons will appear in the full version of the text. �

We now analyze the complexity of the protocol. Denoting as |F| the bit length
of the field elements, the communication complexity of the protocol is O(n2|F|).
The computational complexities of both sender and receiver are polynomial.

We have thus presented a polynomial almost secure polynomial protocol im-
proving on the exponential time protocol presented in [8].

4 Comparison of Protocol to Previous Work

In this section we compare the protocol presented in the previous section to
previous work and argue as to why it is a valuable addition to the knowledge.

Comparison of Protocol to Suzuki and Kurusawa Protocol. The work
presented by Suzuki and Kurusawa in ICITS 2007 [8] was important as it proved
the lower bound of communication complexity required for almost secure message
transmission. Despite the authors presenting a protocol achieving this bound,
1 As the degree of the polynomial is at most t the adversary cannot guess more that

t of the remaining sub-shares. This is because (t + 1) correct sub-shares interpolate
the original polynomial. If the adversary guesses more than t sub-shares and more
than t are correct this means that the original polynomial will be interpolated and
in effect the adversary carries out no changes.
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the computational complexity of the protocol was exponential which makes the
protocol inefficient with regard to time for large values of n.

The protocol presented in the previous section, despite having a greater com-
munication complexity of O(n2) - as opposed to the optimal O(n), is of polyno-
mial computation time making it a more appropriate protocol for use.

Comparison of Protocol to Srinathan et al. Protocol. The work presented
by Srinathan et al. in PODC 2008 [12] was important as it presented an almost
secure message polynomial time transmission protocol which achieves the opti-
mal transmission rate of O(n) with a communication complexity of O(n2). For
the protocol to achieve this transmission rate O(n) messages are transmitted.

The protocol presented in the previous section also has a communication
complexity of O(n2), but only a single message is transmitted.

When these two protocols are compared it may seem that the Srinathan et
al. protocol is the best protocol to use as more messages can be sent with the
same communication complexity.

Even though this is true, if the two protocols were to be compared with respect
to their computational complexities, it will be found that the protocol presented
in the previous section requires much less computation to complete than the
Srinathan et al. protocol.

The protocol of Srinathan et al. decides on whether to accept a message or
⊥ using error detection. For the Srinathan et al. protocol to accept a message a
total of n error detections need to be carried out. For ⊥ to be accepted between
one and n error detections need to be carried out - the actual number depending
on the actions of the adversary. Contrary to this, the protocol presented in the
previous section accepts a message or ⊥ within only a single error detection.
Because of this, the protocol presented in this paper requires in the order of n
less computation than the protocol of Srinathan et al.

This makes the presented protocol very useful for situations where the almost
secure transmission of a single message is required. This can include the trans-
mission of an encryption key in wireless sensor networks. In such a situation
the keys can be transmitted with the least amount of computation carried out
by receivers - in this case wireless sensors, which is an important factor for the
preservation of the wireless sensor battery life.

Note: Transforming the Desmedt-Wang Protocol to a (0, 0, γ) Proto-
col. We now describe how to transform the protocol presented in Section 3 of
[15] as a (0, δ) protocol (following the security definition of [4]) to a (0, 0, γ)
protocol with γ = δ.

The protocol works by sharing a secret using a (t + 1)-out-of-(2t + 1) secret
sharing scheme. Using message authentication codes (MAC’s) each share is au-
thenticated (2t + 1) different times using authentication keys specific to each
wire. Each share is then sent to the receiver only once and upon each wire only
one share is sent. The authentication codes of the shares are sent over the same
wire the share is sent on and the authentication keys are sent on their respective
wires. Although not stated in the description of the protocol, this process can be
carried out in a single phase. Correct shares are classified as those shares which



176 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

are authenticated by at least (t+ 1) different MAC’s. As the authors considered
(0, δ) security the protocol reliability fails with a small probability.

The protocol can be transformed to a (0, 0, γ) protocol by simply carrying out
error detection on the correct shares in the same way as described in Section
3.2. The same decision as described in the presented error detection scheme will
also be taken.

With this transformation, this protocol also becomes a one phase (0, 0, γ)
protocol for a single message with a communication complexity of O(n2). In
effect this protocol is equivalent to the (0, 0, γ) protocol presented in the previous
section2.

5 Efficient Perfectly Secure Message Transmission

We now turn our attention to two-phase perfectly secure message transmission.
The protocol we present achieves perfectly secure message transmission of a
single message with O(n2) communication complexity and transmission rate
in polynomial time. This greatly improves on previous protocols [7,10] which
achieve this with O(n3) communication complexity and transmission rate.

We first present the main idea of our initial protocol and proceed to describe
the main techniques that will be used in the protocol. In Section 5.3 we formally
present our protocol and then present the security and complexity proof.

5.1 Main Idea

As our protocol is a two phase protocol, like most two phase protocols, in the
first phase the receiver will send random elements of the finite field to the sender.

At the end of the first phase, the sender will observe the received data and
identify possible errors that may have occurred in the transmission of the first
phase. Different types of errors may have occurred and these will be outlined
in Section 5.2. These errors will be sent via broadcast to the receiver in the
transmission phase of the second phase. The sender will also send via broadcast
correcting information so that the random elements sent in the first phase will
constitute shares of the secret shared message of the transmission.

At the end of the second phase, using the identified errors, the receiver is
able to identify all wires which were active during the transmission of the first
phase. Using the correcting information, the receiver is able to securely obtain
the secret message of the communication. The receiver is able to do this as it
can ignore the shares that correspond to the identified faulty wires.

5.2 Main Protocol Techniques

Broadcast. Broadcast will be used in the second phase of our protocol. When
the sender broadcasts information, the sender will send the same information
over all n wires which connect the sender and receiver. As the adversary is
able to corrupt at most t of these n wires, the receiver correctly receives the
information via a majority vote.
2 Using other authentication codes it is trivial to lower the transmission complexity.
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Transmission of Random Elements. We now describe how random elements
are sent from the receiver to the sender in the first phase of the protocol 3. For
simplicity we first describe the transmission of one random element r.

The receiver constructs the shares of r using a (t + 1)-out-of-n secret sharing
scheme. The receiver thus chooses a random polynomial p of degree at most t
such that p(x) = r+a1x

1+ · · ·+atx
t. The n shares (s1, s2,. . . , sn) are computed

by evaluating p(x) at x1, x2,. . . , xn.
The receiver then proceeds to send share si via wire wi (1 ≤ i ≤ n). The

receiver also transmits the t coefficients (a1, . . . , at) and r - which define p,
across a single wire.

In our protocol n parallel executions of the above will be carried out. n random
elements (r1,. . ., rn) will be selected. The corresponding n random polynomials
(p1,. . ., pn) will also be constructed. For each random element, using the cor-
responding polynomial n shares will be constructed. For reasons of clarity we
denote as (si1,. . ., sin) the n shares for the ith random element. Upon each of the
n wires, n shares will be transmitted as will the definition of a single polynomial.
The definition of polynomial pi will be transmitted on wire wi (1 ≤ i, j ≤ n).
The sij share constructed from this polynomial will be sent on wire wj .

Error Detection and Identification of Faulty Wires. The above technique
described what will occur and what will be transmitted in the first phase of the
protocol. At the end of the first phase, the sender will receive n shares and a
definition of a polynomial from each wire. Using this, the sender carries out error
detection as follows.

For i, j := 1, . . . , n and for polynomial pi received from wire wi the sender
considers the n shares received as the ith share from each wire. The sender checks
each of the shares and identifies as error shares the shares whose value does not
agree with the definition of polynomial pi. Share sij received from wire wj is
thus identified as an error share if sij �=pi(xj). The sender proceeds to broadcast
the identified error shares to the receiver 4.

We now show that with this information the receiver can identify wires that
were active in the first phase of the protocol. For clarity we assume that each
error share is denoted as esij - with j indicating the wire wj and i indicating the
position from which the share was received by the sender (1 ≤ i, j ≤ n). The i
position of the share indicates that the share corresponds to the ith polynomial
received by the sender (from wire wi).

The receiver checks the following cases to identify faulty wires:

Case 1: If the value of error share esij is different to the corresponding share
sent out by the receiver in phase 1 then wire j is identified as a faulty wire.

Case 2: If the value of error share esij is equal to the corresponding share sent
out by the receiver in phase 1 then wire i is identified as a faulty wire.

3 This scheme is similar to the encoding scheme of Section 3.2. It also resembles
techniques used in [14].

4 This requires the sender to send a triple (j, i, v) to the receiver for each error share
- indicating the ith share of wire wj with its value v. Alternatively if n2 ≤ |F| a pair
of values (k, v) could be sent - where k = j ∗ n + i.
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Lemma 2. The above cases correctly identify faulty wires of the first phase.

Proof. Case 1: In Case 1, the error value received by the sender at the end of
the first phase is identified to be different to the value sent by the receiver at
the start of the phase. The only way this could have occurred is if the wire
upon which the share was transmitted was actively controlled and the share was
altered. The specific wire is thus correctly identified as a faulty wire.

Case 2: In Case 2, the value of the error received by the sender at the end of
the first phase is identified to be the same as that sent by the receiver. The only
way that a correct value of a share could be identified as an error by the sender
is if it does not correspond to the corresponding polynomial. The only way this
could occur is if the polynomial had been altered from its original form. The
wire upon which the specific polynomial was sent is thus identified as a faulty
wire. Following on from this we also prove the following lemma. �

Lemma 3. If the adversary alters the polynomial transmitted across an adver-
sary controlled wire, the specific wire will always be identified as faulty.

Proof. As all polynomials are of degree at most t and as shares sent on honest
wires cannot be altered, if the adversary alters a polynomial the maximum num-
ber of shares transmitted on honest wires that can be included on the altered
polynomial is t. 5 This is a direct result from coding theory which states that
polynomials of degree at most t can share at most t common points between
them. As a result of this, there will always be at least one share transmitted
on an honest wire which will be identified as an error by the sender at the end
of the first phase. Following on from this, the adversary controlled wire will be
identified as earlier described. �

5.3 Formal Protocol Description

We now formally present our protocol. For our protocol we assume the message
of the transmission is MA ∈ F.

Step 1: The receiver does the following for i, j := 1, . . . , n:
1. The receiver selects random element ri.
2. The receiver constructs a (t + 1)-out-of-n secret sharing scheme of ri

using the random polynomial pi of degree at most t to obtain n shares
(s1i, s2i,. . . , sni).

3. The receiver sends polynomial pi on wire wi and share sij is sent on wire
wj .

Step 2: The sender does the following
1. The sender constructs a (t+ 1)-out-of-n secret sharing scheme of MA to

obtain n shares (m1,m2,. . . ,mn).

5 The adversary can trivially carry out this alteration as the adversary knows the
polynomial definition and thus all the shares.
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2. For i := 1, . . . , n the sender receives polynomial pi from wire wi. The
sender evaluates pi(0) as ri. The sender calculates the value di := ri⊕mi.
These are termed correcting information.

3. For i := 1, . . . , n using the ith shares received from each wire, error shares
are identified. sij received from wire wj is an error share if sij �=pi(xj).

4. The set of all identified error shares is sent to the receiver via broadcast.
5. The set of correcting information - (d1, d2,. . . , dn), is sent to the receiver

via broadcast.
Step 3: The receiver does the following:

1. The receiver uses the technique of Section 5.2 to identify the set of active
wires of the first phase. The set of honest wires (indicated as HONEST )
is also constructed.

2. Using HONEST the receiver computes shares of the secret message MA.
This is done by computing mwi := rwi ⊕ dwi where wi ∈ HONEST .

3. Using the computed shares from the step above, the receiver interpolates
and obtains the secret message.

5.4 Security and Efficiency

Theorem 2. The above protocol achieves perfectly secure message transmission
((0, 0, 0)-security).

Proof. We first prove the perfect privacy of the protocol. As the secret message is
secret shared using a (t+1)-out-of-n secret sharing scheme and as the adversary is
t-bounded, the adversary can only learn a maximum of t shares. This is because
only t of the random elements received by the sender in Step 2 are learned
by the adversary. These are the random elements whose polynomial definitions
were transmitted on adversary controlled wires (these may have been altered
by the adversary). The remaining t + 1 random elements are not learned by
the adversary. This is because all random elements are secret shared using a
(t + 1)-out-of-n secret sharing scheme and the adversary only learns t shares of
each one. As a result, the adversary can only learn t shares of the secret shared
message. Perfect privacy is therefore achieved.

Perfect authenticity of the protocol is achieved as the receiver only considers
shares of the secret message whose corresponding random element was correctly
received by the sender. This is achieved using the technique of identifying faulty
wires described in Section 5.2. As shown, if the adversary alters the polynomial
transmitted on an adversary controlled wire, the wire will always be identified as
a faulty wire. Because of this, only correct shares are used in the reconstruction
of the secret and thus perfect authenticity is achieved. Perfect availability is
achieved as the receiver always accepts a message. The protocol is thus a perfectly
secure message transmission protocol. �

We now analyze the complexity of the protocol. We denote as |F| the bit length
of the field elements, COM(1) and COM(2) the communication complexity of
the first and second phase of the protocol.



180 Y. Desmedt, S. Erotokritou, and R. Safavi-Naini

As the receiver in the first phase of the protocol sends n shares and a poly-
nomial (defined by t + 1 field elements) across each wire the communication
complexity of COM(1) is O(n2).

The most expensive part of phase two in terms of communication complexity
is the broadcast of the error shares identified in Step 2 of the protocol. As there
are only t+1 honest wires, the minimum number of shares not identified as error
shares by the sender will always be (t+1)2. The maximum number of error shares
is n2 − (t + 1)2. This is O(n2). Therefore, for the broadcast of the error shares
O(n3) communication complexity is required. The communication complexity of
COM(2) is thus O(n3). As only one message is sent, the transmission rate of
the protocol is O(n3).

It is easy to see that the computational costs of both sender and receiver are
both polynomial.

5.5 2-Phase PSMT with O(n2) Transmission Rate

The protocol of Section 5.3 in its current form achieves O(n3) transmission rate.
This is because of the O(n3) communication complexity of COM(2) for the
transmission of only one secret. We now describe how to decrease the transmis-
sion rate of the protocol to O(n2). The most expensive step in our two-phase
protocol is the broadcast of the error shares by the sender to the receiver. The
protocol is optimized by using a technique which allows for the reliable trans-
mission of the error shares to take place with O(n2) communication complexity
(as opposed to its current O(n3)).

The technique of generalized broadcast was first presented in [14] and later
used in [1,7]. The technique assumes the receiver knows the location of a number
f of faulty wires. Generalized broadcast is then able to authentically transmit
up to (f + 1) field elements between a sender and a receiver using codes that
can correct any (remaining) errors that may occur. This enables the authentic
transmission of (f + 1) field elements between a sender and a receiver with
a communication complexity of O(n) instead of O(n2) which allows for more
efficient protocols. For a definition of generalized broadcast the reader is referred
to Appendix A or [1,7,14].

As everything else in the protocol remains the same, the security proof of this
version of the protocol remains the same as before. In the second phase of the
protocol the sender uses generalized broadcast to transmit the error shares and
broadcasts the n correcting information to allow for the secret message recovery
on the receiver side. The second phase communication complexity - similar to
the first phase, is now O(n2) and as only one message is transmitted so is the
transmission rate of the protocol.

To the best of our knowledge this version of our protocol is the most efficient
2-phase polynomial perfectly secure transmission protocol for the transmission
of a single message which exists in the literature. Previous efficient protocols
included [10] and the protocol of Section 4 of [7].
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6 Conclusion

In this paper we have introduced and formalized new security parameters to
message transmission protocols.

We have also presented a polynomial protocol achieving almost secure message
transmission for a single message. The protocol is of polynomial time and has
O(n2) communication complexity. It remains an open question whether a poly-
nomial time protocol with the lower bound of O(n) communication complexity
(as proven in [8]) can be created.

We have also presented a polynomial 2-phase perfectly secure message trans-
mission protocol with O(n2) communication complexity for a single message.
It would be nice to see if a more efficient protocol with lower communication
complexity (for either one or both phases) could be achieved. Following on from
this, it is also an open question to find a polynomial time protocol with linear
transmission rate and a communication complexity lower than O(n3).

Acknowledgements. The authors would like to thank the anonymous referees
for their valuable comments on improving the presentation of this paper.
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Appendix

A Generalized Broadcast

In this section we describe generalized broadcast and its use in the protocol
of Section 5.5. Generalized broadcast is a technique which combines broadcast
and error correcting codes thus achieving a more efficient broadcast of the error
shares. As mentioned in Section 5.5 generalized broadcast is used to decrease the
communication complexity of phase two of the protocol from O(n3) to O(n2).

As generalized broadcast only concerns the second phase of the protocol, we
assume that phase one has completed and the sender has identified all error
shares that may have occurred. We now describe the further steps the sender
carries out in order to transmit the error shares more efficiently.

The sender first defines the undirected graph Ge. An edge of the graph rep-
resents an error share that has been identified by the sender. The two vertices
of an edge are the two wires involved with the error share - the wire from which
the share was received and the wire whose polynomial definition the share is
meant to correspond to. What is important to note here is that each edge of Ge

always involves at least one faulty wire. This is because two honest wires can
never cause an error share as no alterations occur on honest wires.

Definition 2. A matching M of a graph G = (V,E) is a set of pairwise non-
adjacent edges. This means that no two edges in M share a common vertex. A
maximum matching of a graph G is a matching that contains the largest possible
number of edges.

The sender proceeds to compute a maximum matching MGe of Ge. Denoting as
Ms the size of MGe this indicates that there are Ms number of edges in MGe .
It should be noted that Ms ≤ t. Because of this, the sender is able to broadcast
the maximum matching MGe of Ge to the receiver with O(n2) communication
complexity. For each edge of MGe the sender will broadcast the received value
esij of the error share, the wire wr from which the share was received and the
wire wa with which it is associated with. As every edge in Ge (and thus in MGe)
always involves at least one faulty wire, this allows the receiver to identify Ms
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number of faulty wires (in the same way as described in Section 5.2). What is
important for the encoding and transmission of all the error shares is that the
sender is aware of this.

Suppose that the sender wants to send Ms number of elements (e1, . . . , eMs)
to the receiver. The sender finds a polynomial p of degree at most Ms such that
p(1) = e1, . . . ,p(Ms) = eMs . The sender computes p(Ms + i) and transmits the
value on wire wi where 1 ≤ i ≤ n. The receiver in turn will receive n shares of
an (Ms + 1)-out-of-n secret sharing scheme. This kind of code has a minimum
Hamming distance of n−Ms = 2t+1−Ms. As Ms ≤ t this code does not allow
the receiver to correct the maximum number of errors that may occur. However,
as the receiver knows Ms number of faulty wires - through the broadcast of MGe ,
the receiver can ignore all shares received from these wires. The shortened code
the receiver now considers is an (Ms + 1)-out-of-(n−Ms) secret sharing scheme
with a minimum Hamming distance of n −Ms −Ms = 2t + 1 −Ms −Ms =
2(t −Ms) + 1. This kind of code allows the receiver to correct t −Ms number
of errors which also equates to the number of faulty wires that have yet to be
identified. The use of this shortened code thus allows the receiver to correct all
remaining errors that may occur, reconstruct the same polynomial p and with
perfect authenticity obtain the Ms elements (e1, . . . , eMs). With the transmission
of n elements (one share per wire) the sender is thus able to communicate with
perfect authenticity Ms elements to the receiver.

Following on from the above, as the size of the maximum matching is Ms this
means that 2Ms vertices (which correspond to wires) appear in MGe and Ge.
As at most n error shares can be associated with each wire the number of error
shares that will need to be transmitted to the receiver are at most 2Msn. As
shown, Ms elements can be transmitted using n elements and as there are at
most 2Msn error shares to transmit this can be carried out in 2n independent
executions of the generalized broadcast method.

All of the error shares can thus be communicated from sender to received with
perfect authenticity with O(n2) communication complexity. Because of this, the
communication complexity of the second phase of the protocol is now reduced
from O(n3) to O(n2).
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Abstract. Verifiable Secret Sharing (VSS) is a fundamental primitive
used in many distributed cryptographic tasks, such as Multiparty Com-
putation (MPC) and Byzantine Agreement (BA). It is a two phase (shar-
ing, reconstruction) protocol. The VSS and MPC protocols are carried
out among n parties, where t out of n parties can be under the influence
of a Byzantine (active) adversary, having unbounded computing power.
It is well known that protocols for perfectly secure VSS and perfectly se-
cure MPC exist in an asynchronous network iff n ≥ 4t+1. Hence, we call
any perfectly secure VSS (MPC) protocol designed over an asynchronous
network with n = 4t + 1 as optimally resilient VSS (MPC) protocol.

A secret is d-shared among the parties if there exists a random degree-
d polynomial whose constant term is the secret and each honest party
possesses a distinct point on the degree-d polynomial. Typically VSS is
used as a primary tool to generate t-sharing of secret(s). In this paper, we
present an optimally resilient, perfectly secure Asynchronous VSS (AVSS)
protocol that can generate d-sharing of a secret for any d, where t ≤ d ≤
2t. This is the first optimally resilient, perfectly secure AVSS of its kind
in the literature. Specifically, our AVSS can generate d-sharing of � ≥ 1
secrets from F concurrently, with a communication cost of O(�n2 log |F|)
bits, where F is a finite field. Communication complexity wise, the best
known optimally resilient, perfectly secure AVSS is reported in [2]. The
protocol of [2] can generate t-sharing of � secrets concurrently, with the
same communication complexity as our AVSS. However, the AVSS of [2]
and [4] (the only known optimally resilient perfectly secure AVSS, other
than [2]) does not generate d-sharing, for any d > t.

Interpreting in a different way, we may also say that our AVSS shares
�(d + 1 − t) secrets simultaneously with a communication cost of
O(�n2 log |F|) bits. Putting d = 2t (the maximum value of d), we no-
tice that the amortized cost of sharing a single secret using our AVSS is
only O(n log |F|) bits. This is a clear improvement over the AVSS of [2]
whose amortized cost of sharing a single secret is O(n2 log |F|) bits.
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As an interesting application of our AVSS, we propose a new opti-
mally resilient, perfectly secure Asynchronous Multiparty Computation
(AMPC) protocol that communicates O(n2 log |F|) bits per multiplica-
tion gate. The best known optimally resilient perfectly secure AMPC
is due to [2], which communicates O(n3 log |F|) bits per multiplication
gate. Thus our AMPC improves the communication complexity of the
best known AMPC of [2] by a factor of Ω(n).

Keywords: Verifiable Secret Sharing, Multiparty Computation.

1 Introduction

VSS or MPC protocol is carried out among a set ofn parties, sayP = {P1, . . . , Pn},
where every two parties are directly connected by a secure channel and t parties
can be under the influence of a computationally unbounded Byzantine (active) ad-
versaryAt. The adversaryAt completely dictates the parties under its control and
can force them to deviate from a protocol, in any arbitrary manner.

VSS: Any VSS scheme consists of two phases: (i) a sharing phase in which a
special party in P , called dealer (denoted as D), on having a secret s ∈ F (an
element from a finite field F), shares it among all the parties; (ii) a reconstruction
phase, in which the parties reconstruct the secret from their shares. Informally,
the goal of any VSS scheme is to allow D to share his secret s during the sharing
phase, among the parties in P in such a way that the shares would later allow for
a unique reconstruction of s in the reconstruction phase. Moreover, if D is hon-
est, then the secrecy of s from At should be preserved until the reconstruction
phase. VSS is one of the fundamental building blocks for many secure distributed
computing tasks, such as MPC, Byzantine Agreement (BA), etc. VSS has been
studied extensively over the past three decades in different settings and compu-
tational models (see [5,23,15,14,16,17] and their references).

MPC: MPC [25,10,5,23] allows the parties in P to securely compute an agreed
function f , even in the presence of At. More specifically, assume that the agreed
function f can be expressed as f : Fn → Fn and party Pi has input xi ∈ F, where
F is a finite field and |F| ≥ n. At the end of the computation of f , each honest
Pi gets yi ∈ F, where (y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior
of At (Correctness). Moreover, At should not get any information about the
input and output of the honest parties, other than what can be inferred from
the input and output of the corrupted parties (Secrecy). In any general MPC
protocol, the function f is specified by an arithmetic circuit over F, consisting
of input, linear (e.g. addition), multiplication, random and output gates. We
denote the number of gates of these types in the circuit by cI , cA, cM , cR and
cO respectively. Among all the different type of gates, evaluation of a multipli-
cation gate requires the most communication complexity. So the communication
complexity of any general MPC is usually given in terms of the communication
complexity per multiplication gate [3,2,1,20].
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The VSS and MPC problem has been studied extensively over synchronous
network, which assumes that there is a global clock and the delay of any message
in the network channel is bounded. However, VSS and MPC in asynchronous
network has got comparatively less attention, due to its inherent hardness. As
asynchronous networks model the real life networks like Internet more appropri-
ately than synchronous networks, the fundamental problems like VSS and MPC
are worthy of deep investigation over asynchronous networks.

1.1 Definitions
Asynchronous Networks: In an asynchronous network, the communication
channels have arbitrary, yet finite delay (i.e the messages are guaranteed to
reach eventually). To model this, At is given the power to schedule delivery of
all messages in the network. However, At can only schedule the messages com-
municated between honest parties, without having any access to them. Here the
inherent difficulty in designing a protocol comes from the fact that when a party
does not receive an expected message then he cannot decide whether the sender
is corrupted (and did not send the message at all) or the message is just delayed.
So a party can not wait to consider the values sent by all parties, as waiting for
them could turn out to be endless. Hence the values of up to t (potentially hon-
est) parties may have to be ignored. Due to this the protocols in asynchronous
network are generally involved in nature and require new set of primitives. For
comprehensive introduction to asynchronous protocols, see [8].

Asynchronous Verifiable Secret Sharing (AVSS) [4,8]: Let (Sh, Rec) be a
pair of protocols in which a dealer D ∈ P shares a secret s from a finite field
F using Sh. We say that (Sh, Rec) is a t-resilient perfectly secure AVSS scheme
with n parties if the following hold for every possible At:

• Termination: (1) If D is honest then each honest party will eventually ter-
minate protocol Sh. (2) If some honest party has terminated protocol Sh, then
irrespective of the behavior of D, each honest party will eventually terminate
Sh. (3) If all the honest parties have terminated Sh and all the honest parties
invoke protocol Rec, then each honest party will eventually terminate Rec.

• Correctness: (1) If D is honest then each honest party upon terminating
protocol Rec, outputs the shared secret s. (2) If D is faulty and some honest
party has terminated Sh, then there exists a fixed s ∈ F, such that each honest
party upon completing Rec, will output s.

• Secrecy: If D is honest and no honest party has begun Rec, then At has no
information about s.
The above definition of AVSS can be extended for secret S containing multiple
elements (say � with � > 1) from F.

Asynchronous Multi Party Computation (AMPC) [8]: A perfectly secure
AMPC should satisfy the Correctness and Secrecy property of MPC. In ad-
dition, it should also satisfy Termination property, according to which, every
honest party should eventually terminate the protocol.
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d-sharing and (t, 2t)-sharing [1,3]: A value s ∈ F is d-shared among a set of
parties P ⊆ P with |P| ≥ d + 1 if there exists a degree-d polynomial f(x) with
f(0) = s such that each honest Pi ∈ P holds si = f(i). The vector of shares of
s belonging to the honest parties is called d-sharing of s and is denoted by [s]d.
A value s is said to be (t, 2t)-shared among the parties in P , denoted as [s](t,2t),
if s is simultaneously t-shared, as well as 2t-shared among the parties in P .

A-cast[9,8]: It is an asynchronous broadcast primitive, which allows a special
party in P (called the sender) to distribute a message identically among the
parties in P . If sender is honest, then every honest party eventually terminates
A-cast with the sender’s message. For a corrupted sender, if some honest party
terminates with some message, then every other honest party will eventually ter-
minate with same message. A-cast is elegantly implemented in [7] with n = 3t+1,
which incurs a private communication of O(n2b) bits, for a b-bit message.

Agreement on Common Subset (ACS)[2,6]: It is an asynchronous primi-
tive presented in [4,6]. It is used to determine and output a common set, con-
taining at least n−t parties, who correctly shared their values. Each honest party
will eventually get a share, corresponding to each value, shared by the parties in
the common set. ACS requires private communication of O(poly(n) log |F|) bits.

1.2 Our Contributions and Comparison with Existing Results

Our Contribution: From [4,8], perfectly secure AVSS and AMPC is possible
iff n ≥ 4t + 1. Hence, we call any perfectly secure AVSS (AMPC) protocol
with n = 4t + 1 as optimally resilient, perfectly secure AVSS (AMPC) protocol.
Typically, AVSS is used as a tool for generating t-sharing of secrets. In this paper,
we present a novel optimally resilient, perfectly secure AVSS protocol that can
generate d-sharing of � secrets concurrently for any d, where t ≤ d ≤ 2t, with a
private communication of O(�n2 log(|F|)) bits and A-cast of O(n2 log(|F|)) bits.
Interpreting in a different way, we may also say that the amortized cost of sharing
a single secret using our AVSS is only O(n log |F|) bits (this will be discussed in
detail after the presentation of AVSS protocol in section 4).

To design our AVSS, we exploit several interesting properties of (n, t)-star (a
graph theoretic concept presented in section 4.4.2 of [8]) in conjunction with some
properties of bivariate polynomial with different degree in variable x and y. The
(n, t)-star was used to design a perfectly secure optimally resilient AVSS protocol
in [8] (the details of (n, t)-star is presented in Section 2 of current article). While
the properties of (n, t)-star that our AVSS explores were not required in the
AVSS of [8] (which generates only t-sharing of secrets), our AVSS uses them for
the first time for generating d-sharing of secrets, where t ≤ d ≤ 2t.

As an interesting application of our AVSS, we design a new optimally resilient,
perfectly secure AMPC protocol that communicates O(n2 log |F|) bits per multi-
plication gate. This solves an open problem posed in [20]. Using our AVSS, we



188 A. Patra, A. Choudhury, and C. Pandu Rangan

first design an efficient protocol that generates (t, 2t)-sharing of a secret with a
communication cost of O(n2 log |F|) bits. Then following the approach of [11,2],
given (t, 2t)-sharing of a secret, a multiplication gate is evaluated by communicat-
ing O(n2 log |F|) bits. This is how our AMPC attains quadratic communication
complexity per multiplication gate.

Comparison of Our AVSS with Existing AVSS Protocols: In Table 1, we
compare our AVSS with existing optimally resilient, perfectly secure AVSS proto-
cols. We emphasize that the AVSS protocols of [4,2] does not generate d-sharing
for any d > t. When negligible error probability is allowed in Termination
and/or Correctness, we arrive at the notion of statistical AVSS. Statistical
AVSS is possible iff n ≥ 3t + 1 [9,6]. To the best of our knowledge, the AVSS
protocols of [9,6,19,18] are the only known optimally resilient statistical AVSS
(i.e., with n = 3t + 1). As these protocols have comparatively high communica-
tion complexity and are designed with n = 3t + 1 (with which perfectly secure
AVSS is impossible), we do not compare our AVSS with the statistical AVSS
protocols of [9,6,19,18]. Recently in [20], a statistical AVSS with n = 4t+1 (i.e.,
with non-optimal resilience) is reported. Clearly, our AVSS achieves stronger
properties than the AVSS of [20] (the AVSS of [20] involves a negligible error
probability, while our AVSS is perfect), though both of them generate d-sharing
for any t ≤ d ≤ 2t, with same communication complexity. For achieving perfect-
ness, we use techniques which are completely different from [20].

Table 1. Our AVSS vs with Existing Optimally Resilient Perfectly Secure AVSS

Reference # Secrets Shared Type of Sharing Generated Communication Complexity
In Bits (CCIB)

[4] 1 Only t-sharing Private–O(n3 log(|F|));
A-cast–O(n2 log(|F|))

[2] � ≥ 1 Only t-sharing Private– O(�n2 log(|F|));
A-cast–O(n2 log(|F|))

This article � ≥ 1 d-sharing, for any t ≤ d ≤ 2t Private– O(�n2 log(|F|));
A-cast–O(n2 log(|F|))

Comparison of Our AMPC with Existing AMPC Protocols: In Table 2,
we compare our AMPC protocol with the existing optimally resilient, perfectly
secure AMPC protocols in terms of communication complexity.

Table 2. Comparison of Our AMPC
with Existing Optimally Resilient
Perfectly Secure AMPC Protocols

Reference CCIB / Multiplication Gate
[4,8] O(n6 log(|F|))
[2] O(n3 log(|F|))

This Article O(n2 log(|F|))

We observe that our AMPC gains by a fac-
tor of Ω(n) as compared to the best known
perfectly secure AMPC of [2]. If negligible er-
ror probability is allowed in Termination
and/or Correctness, we arrive at the no-
tion of statistical AMPC. Statistical AMPC
is possible iff n ≥ 3t + 1 [6]. Optimally re-
silient statistical AMPC protocols (i.e., with
n = 3t + 1) are reported in [6,18]. As these
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protocols have very high communication complexity and are designed with n =
3t+1 (with which perfectly secure AMPC is impossible), we do not compare them
with our AMPC protocol. Statistical AMPC withn = 4t+1 (i.e., with non-optimal
resilience) are reported in [24,22,20]. Among them, the AMPC reported in [20] is
the best, which communicatesO(n2 log(|F|)) bits per multiplication gate. Though
the protocol of [20] attains the same communication complexity as our AMPC pro-
tocol (per multiplication gate), our protocol is perfect in all respects, while the pro-
tocol of [20] has error probability in both Termination and Correctness.

2 Finding (n, t)-star Structure in a Graph

We now describe an existing solution for a graph theoretic problem, called finding
(n, t)-star in an undirected graph G = (V,E). Our AVSS protocol exploits several
interesting properties of (n, t)-star.
Definition 1 ((n, t)-star[8,4]:). Let G be an undirected graph with the n parties
in P as its vertex set. We say that a pair (C,D) of sets with C ⊆ D ⊆ P is an
(n, t)-star in G, if the following hold: (i) |C| ≥ n− 2t; (ii) |D| ≥ n − t; (iii) for
every Pj ∈ C and every Pk ∈ D the edge (Pj , Pk) exists in G.
Ben-Or et. al [4] have presented an elegant and efficient algorithm for finding
an (n, t)-star in a graph of n nodes, provided that the graph contains a clique of
size n − t. The algorithm, called Find-STAR outputs either an (n, t)-star or the
message star-Not-Found. Whenever the input graph contains a clique of size
n− t, Find-STAR always outputs an (n, t)-star in the graph.

Actually, algorithm Find-STAR takes the complementary graph G of G as
input and tries to find (n, t)-star in G where (n, t)-star is a pair (C,D) of sets with
C ⊆ D ⊆ P , satisfying the following conditions: (i) |C| ≥ n− 2t; (ii) |D| ≥ n− t;
(iii) there are no edges between the nodes in C and nodes in C ∪D in G. Clearly,
a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in G. Recasting the
task of Find-STAR in terms of complementary graph G, we say that Find-STAR
outputs either a (n, t)-star, or a message star-Not-Found. Whenever, the input
graph G contains an independent set of size n− t, Find-STAR always outputs an
(n, t)-star. For simple notation, we denote G by H . The algorithm Find-STAR is
presented in the following table. For properties of Find-STAR, please see [8].

Algorithm Find-STAR(H)

1. Find a maximum matching M in H . Let N be the set of matched nodes (namely,
the endpoints of the edges in M), and let N = P \ N .

2. Compute output as follows (which could be either (n, t)-star or a message
star-Not-Found):
(a) Let T = {Pi ∈ N |∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is

called the set of triangle-heads.
(b) Let C = N \ T .
(c) Let B be the set of matched nodes that have neighbors in C. So B = {Pj ∈

N |∃Pi ∈ C s. t. (Pi, Pj) ∈ E}.
(d) Let D = P \ B. If |C| ≥ n − 2t and |D| ≥ n − t, output (C,D). Otherwise,

output star-Not-Found.
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3 AVSS for Generating d-Sharing of a Single Secret

We now present a novel AVSS protocol consisting of two sub-protocols, namely
AVSS-Share-SS and AVSS-Rec-SS. The AVSS-Share-SS allows a dealer D ∈ P
(dealer can be any party from P) to d-share a single secret from F, among the
parties in P , where t ≤ d ≤ 2t. Protocol AVSS-Rec-SS allows the parties in P
to reconstruct the secret, given its d-sharing. The structure of AVSS-Share-SS is
divided into a sequence of following three phases.

1. Distribution Phase: As the name suggests, in this phase, D on having a
secret s, distributes information to the parties in P .

2. Verification & Agreement on CORE Phase: Here parties jointly per-
form some computation and communication in order to verify consistency of
the information distributed by D in Distribution Phase. In case of suc-
cessful verification, all honest parties agree on a set of at least 3t+ 1 parties
called CORE, satisfying certain property (mentioned in the sequel).

3. Generation of d-sharing Phase: If CORE is agreed upon in previous
phase, then here every party performs local computation on the data received
(during Verification & Agreement on CORE Phase) from the parties
in CORE to finally generate the d-sharing of secret s.

An honest party will terminate AVSS-Share-SS, if it successfully completes the
last phase, namely Generation of d-sharing Phase. If D is honest then each
honest party will eventually terminate the last phase. Moreover, if D is corrupted
and some honest party terminates the last phase, then each honest party will
also eventually terminate the last phase (and hence AVSS-Share-SS).

Remark 1. The sharing phase of statistical AVSS protocol of [20] is also struc-
tured into above three phases. However, our implementation of Verification &
Agreement on CORE Phase is completely different from [20]. More impor-
tantly, the last two phases in [20] involves a negligible error probability, whereas
our implementation of all the three phases are perfect (error free) in all respects.

3.1 Distribution Phase

Here D on having a secret s, selects a random bivariate polynomial F (x, y)
of degree-(d, t) (i.e., the degree of the polynomial in x is d and the degree of
the polynomial in y is t), such that F (0, 0) = s and sends fi(x) = F (x, i) and
pi(y) = F (i, y) to party Pi. As in [20], we will call the degree-d fi(x) polynomials
as row polynomials and degree-t pi(y) polynomials as column polynomials.

Protocol Distribution-SS(D,P, s, d)
Code for D:

1. Select a random bivariate polynomial F (x, y) of degree-(d, t) over F, such that
F (0, 0) = s. Send fi(x) = F (x, i) and pi(y) = F (i, y) to party Pi, for i = 1, . . . , n.
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3.2 Verification and Agreement on CORE Phase

The goal of this phase is to check the existence of a set of parties called CORE.
If a CORE exists then every honest party will agree on CORE, where CORE
is defined as follows

Definition 2 (Property of CORE). CORE is a set of at least 3t+ 1 parties
such that the row polynomials (received in Distribution Phase) of the honest
parties in CORE define a unique bivariate polynomial say, F (x, y) of degree-
(d, t). Moreover, if D is honest, then F (x, y) = F (x, y), where F (x, y) was chosen
by D in Distribution Phase.

The property of CORE ensures that for every j ∈ {1, . . . , n}, the jth point
on row polynomials of honest parties in CORE define degree-t column polyno-
mial pj(y) = F (j, y). So once CORE is constructed and agreed upon by each
honest party then pj(0) can be privately reconstructed by Pj with the help of
the parties in CORE by using online error correction (OEC) [8] 1. This will
generate d-sharing of s = F (0, 0), where s will be d-shared using degree-d poly-
nomial f0(x) = F (x, 0) and each (honest) Pj will have his share f0(j) = pj(0)
of s. Moreover, if D is honest, then s = s as F (x, y) = F (x, y). Note that even
though the degree of row polynomials is more than t (if d > t), we create a
situation where parties need not have to reconstruct them. To obtain the shares
corresponding to d-sharing of s, the parties need to reconstruct degree-t column
polynomials only. We now give an outline of this phase.

Outline of Current Phase: Here the parties upon receiving row and column
polynomials (from D), interact with each other to check the consistency of their
common values (on their polynomials). After successfully verifying the consis-
tency, parties A-cast OK signals. Using these signals, a graph with the parties as
vertex set is formed and applying Find-STAR on the graph, a sequence of distinct
(n, t)-stars are obtained. The reason for constructing a sequence of (n, t)-stars will
be clear in the sequel. Each (n, t)-star in such a graph defines a unique bivariate
polynomial of degree-(d, t).

For every generated (n, t)-star, D tries to find whether CORE can be gener-
ated from it. The generation process of CORE attempts to use several interesting
features of (n, t)-star (mainly its C component). We show that if D is honest and
C component of some (n, t)-star (C,D) contains at least 2t + 1 honest parties,
then CORE will be eventually generated from (C,D). Moreover, we also show
that if D is honest, then eventually some (n, t)-star (C,D) will be generated,
where C will contain at least 2t+1 honest parties (though the dealer D may not
know which (n, t)-star it is). These two important properties of (n, t)-star in our
context are the heart our AVSS protocol. Furthermore, we show that if CORE
is generated from some (n, t)-star (C,D) (irrespective of whether D is honest
or corrupted), then both CORE, as well as (C,D) define the same bivariate
polynomial of degree-(d, t).

1 OEC allows to reconstruct a degree-t polynomial by applying error correction in an
online fashion in asynchronous settings. For details see [8].
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The generation of many (n, t)-stars in our case is essential as the C component
of the first (n, t)-star may not contain at least 2t + 1 honest parties and hence
may never lead to CORE. This implies that if our protocol stops after generating
the first (n, t)-star then the protocol may not terminate even for an honest D.
However, we stress that existing AVSS of [4] need not generate a sequence of

Protocol Verification-SS(D,P, s, d)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.
1. Wait to receive polynomials fi(x) of degree-d and pi(y) of degree-t from D. Upon

receiving, send fij = fi(j) and pij = pi(j) to party Pj , for j = 1, . . . , n.
2. Upon receiving fji and pji from Pj , check if fi(j)

?= pji and pi(j)
?= fji. If both

the equalities hold, A-cast OK(Pi, Pj).
3. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk) in

Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and (b) OK(Pj , Pk) from
the A-cast of Pj .

ii. Code for D: Only D executes this code.
1. For every new receipt of some OK(∗, ∗) update GD. If a new edge is added to GD,

then execute Find-STAR(GD). Let there are α ≥ 0 distinct (n, t)-stars that are
found in the past from different executions of Find-STAR(GD).
(a) Now if an (n, t)-star is found from the current execution of Find-STAR(GD)

that is distinct from all the α (n, t)-stars obtained before, do the following:
i. Call the new (n, t)-star as (Cα+1,Dα+1).
ii. Create a list Fα+1 as follows: Add Pj to Fα+1 if Pj has at least 2t + 1

neighbors in Cα+1 in GD.
iii. Create a list Eα+1 as follows: Add Pj to Eα+1 if Pj has at least d + t + 1

neighbors in Fα+1 in GD.
iv. For every γ, with γ = 1, . . . , α update Fγ and Eγ :

A. Add Pj to Fγ , if Pj �∈ Fγ and Pj has at least 2t + 1 neighbors in Cγ

in GD.
B. Add Pj to Eγ , if Pj �∈ Eγ and Pj has at least d + t + 1 neighbors in

Fγ in GD.
(b) If no (n, t)-star is found or an (n, t)-star that has been already found in the

past is obtained, then execute step (a).iv(A-B) to update existing Fγ ’s and
Eγ ’s.

(c) Now let β be the first index among already generated {(E1,F1), . . . , (Eδ,Fδ)}
such that both Eβ and Fβ contains at least 3t + 1 parties (Note that if step
(a) is executed, then δ = α + 1; else δ = α). Assign CORE = Eβ and A-cast

((Cβ,Dβ), (Eβ,Fβ)).

iii. Code for Pi: Every party Pi ∈ P (including D) executes this code.
1. Wait to receive ((Cβ,Dβ), (Eβ,Fβ)) from the A-cast of D.
2. Wait until (Cβ,Dβ) becomes a valid (n, t)-star in Gi.
3. Wait until every party Pj ∈ Fβ has at least 2t + 1 neighbors in Cβ in Gi.
4. Wait until every party Pj ∈ Eβ has at least d + t + 1 neighbors in Fβ in Gi.
5. Accept CORE = Eβ.
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(n, t)-stars because it has to generate only t-sharing. Hence the AVSS of [4]
stops after generating the first (n, t)-star and then using the D component of
the generated (n, t)-star, it could generate t-sharing of s. Finally, once CORE is
obtained, it is then verified and agreed among the set of all honest parties in P .
The steps of this phase are given in protocol Verification-SS.

Lemma 1. For any (n, t)-star (C,D) in graph Gk of honest Pk, the row polyno-
mials held by honest parties in C define a unique polynomial of degree-(d, t), say
F (x, y), such that column polynomial pj(y) held by every honest Pj ∈ D satisfies
pj(y) = F (j, y). Moreover, if D is honest, then F (x, y) = F (x, y).

Proof. For any (n, t)-star (C,D), |C| ≥ n − 2t and |D| ≥ n − t. So C and D
contain at least n− 3t ≥ t + 1 and n− 2t ≥ 2t + 1 honest parties, respectively.
Let l and m be the number of honest parties in C and D respectively where
l ≥ t+ 1 and m ≥ 2t+ 1. Without loss of generality, we assume that P1, . . . , Pl,
respectively P1, . . . , Pm are the set of honest parties in C and D. Now by the
construction of (n, t)-star, for every pair of honest parties (Pi, Pj) with Pi ∈ C
and Pj ∈ D, the row polynomial fi(x) of honest Pi and the column polynomial
pj(y) of honest Pj satisfy fi(j) = pj(i). We now prove that the above statement
implies that there exists a unique bivariate polynomial F (x, y) of degree-(d, t),
such that for i = 1, . . . , l, we have F (x, i) = fi(x) and for j = 1, . . . ,m, we have
F (j, y) = pj(y). The proof is similar to the proof of Lemma 4.26 of [8]. Due to
space constraints, we give the complete proof in full version of the paper [21].

Lemma 2. For an honest D, an (n, t)-star (Cβ ,Dβ) with Cβ containing at least
2t + 1 honest parties will be generated eventually.

Proof. For an honest D, eventually the edges between each pair of honest parties
will vanish from the complementary graph GD. So the edges in GD will be either
(a) between an honest and a corrupted party OR (b) between a corrupted and
another corrupted party. Let β be the first index, such that (n, t)-star (Cβ,Dβ)
is generated in GD, when GD contains edges of above two types only. Now, by
construction of Cβ (see Algorithm Find-STAR), it excludes the parties in N (set
of parties that are endpoints of the edges of maximum matching M) and T (set
of parties that are triangle-head). An honest Pi belonging to N implies that
(Pi, Pj) ∈M for some Pj and hence Pj is corrupted (as the current GD does not
have edge between two honest parties). Similarly, an honest party Pi belonging
to T implies that there is some (Pj , Pk) ∈M such that (Pi, Pj) and (Pj , Pk) are
edges in GD. This clearly implies that both Pj and Pk are surely corrupted. So
for every honest Pi outside Cβ, at least one (if Pi belongs to N , then one; if Pi

belongs to T , then two) corrupted party also remains outside Cβ . As there are
at most t corrupted parties, Cβ may exclude at most t honest parties. But still
Cβ is bound to contain at least 2t + 1 honest parties.

Notice that the above event happens after finite number of steps. This is
because D applies Find-STAR on GD every time after an edge is added to GD

and there can be O(n2) edges in GD. So there can be O(n2) distinct (n, t)-stars
generated by D. Now (Cβ ,Dβ) with Cβ containing at least 2t+ 1 honest parties
will be one among these O(n2) (n, t)-stars. ��
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Lemma 3. In protocol Verification-SS, if D is honest, then eventually CORE
will be generated.

Proof. By Lemma 2, the honest D will eventually generate an (Cβ,Dβ) in GD,
with Cβ containing at least 2t + 1 honest parties. Furthermore, if D is honest
then eventually there will be edges between every pair of honest parties in the
graph Gi of every honest Pi (including GD). Thus, as all honest parties in P
will have edges with the honest parties in Cβ, they will be eventually added to
Fβ . Similarly, as all honest parties in P will have edges with the honest parties
in Fβ , they will be eventually added to Eβ . Hence |Eβ | ≥ n− t and |Fβ | ≥ n− t
will be satisfied and CORE will be obtained by D. �

Lemma 4. If an honest Pi has accepted CORE, then the row polynomials of
the honest parties in CORE define a unique bivariate polynomial of degree-(d, t).

Proof. If an honest Pi has accepted CORE, then he has received ((Cβ ,Dβ), (Eβ ,
Fβ)) from the A-cast of D and checked their validity with respect to his own
graph Gi. By Lemma 1, the row polynomials of the honest parties in Cβ define a
unique bivariate polynomial of degree-(d, t), say F (x, y). So the row polynomial
held by an honest Pi ∈ C satisfies fi(x) = F (x, i). Now by the construction of
Fβ , every honest Pj ∈ Fβ has at least 2t+ 1 neighbors in Cβ which implies that
fkj values received from at least 2t + 1 parties in Cβ lie on column polynomial
pj(y). This clearly implies pj(y) = F (j, y), as t+ 1 out of these 2t+ 1 values are
sent by honest parties in C, who define F (j, y).

Similarly, by construction of Eβ , every honest Pj ∈ Eβ has at least d + t + 1
neighbors in Fβ which implies that pkj values received from at least d + t + 1
parties in Fβ lie on fj(x). This implies that fj(x) = F (x, j), as at least d + 1
out of these d+ t+1 values are sent by honest parties in Fβ , who define F (x, j).
Hence row polynomials of the honest parties in CORE define F (x, y). �

3.3 Generation of d-Sharing Phase

Assuming that the honest parties in P have agreed upon a CORE, protocol
d-Share-Generation-SS generates d-sharing in the following way: From the prop-
erties of CORE, the row polynomials of honest parties in CORE define a unique
bivariate polynomial say F (x, y) of degree-(d, t), such that each honest party Pi

in CORE possesses fi(x) = F (x, i). So the jth point on fi(x) polynomials corre-
sponding to all honest Pi’s in CORE, define degree-t polynomial pj(y) = F (j, y).
Furthermore, |CORE| ≥ 3t+1. So the parties in CORE can enable each Pj ∈ P
to privately reconstruct pj(y) using OEC [8]. Once this is done, every Pj can
output pj(0) as the share of D’s committed secret. Since f0(j) = pj(0), it
follows that f0(0)(= F (0, 0)) will be d-shared using the degree-d polynomial
f0(x) = F (x, 0). Clearly if D is honest, D’s secret s will be d-shared using poly-
nomial f0(x) = F (x, 0), as F (x, y) = F (x, y) for honest D. The protocol for this
phase is as follows:
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Protocol d-Share-Generation-SS(D,P, s, d)

Code for Pi:

1. Apply On-line Error Correcting (OEC) technique [8] on fji’s received from every
Pj in CORE (during Protocol Verification-SS) and reconstruct degree-t polyno-
mial pi(y) and output si = pi(0) = f0(i) as the ith share of s and terminate. s is
now d-shared using polynomial f0(x).

Lemma 5. Assume that every honest party has agreed on CORE where the row
polynomials of the honest parties in CORE define a unique bivariate polynomial
of degree-(d, t), say F (x, y). Then protocol d-Share-Generation-SS will generate
d-sharing of s = F (0, 0).

Proof. See [21] for complete details. �

3.4 Protocol AVSS-Share-SS and AVSS-Rec-SS

Protocol AVSS-Share-SS(D,P, s, d)

(a) D executes Distribution-SS(D,P , s, d);
(b) Each party Pi participates in Verification-SS(D,P , s, d);
(c) After agreeing on CORE, each party Pi participates in d-Share-Generation-

SS(D,P , s, d) and terminates AVSS-Share-SS after locally outputting the share
corresponding to D’s committed secret.

Protocol AVSS-Rec-SS(D,P, s, d)
Party Pi ∈ P sends si, the ith share of s to every Pj ∈ P . Party Pi applies OEC on
received sj ’s, reconstructs s and terminates AVSS-Rec-SS.

Theorem 1. Protocols (AVSS-Share-SS, AVSS-Rec-SS) constitute a valid per-
fectly secure AVSS scheme for d-sharing a single secret from F.

Proof. Termination: Part (1) of Termination says that if D is honest then
every honest party will terminate AVSS-Share-SS eventually. By Lemma 3, D
will eventually generate CORE and A-cast the corresponding information i.e.
((Cβ ,Dβ), (Eβ ,Fβ)). By the property of A-cast (and as graph Gi is constructed
on the basis of A-casted information) every honest party will receive, verify the
validity of D’s A-casted information with respect to his own graph Gi and agree
on the CORE. Now the proof for this part follows from Lemma 5.

Part (2) of Termination says that if an honest party terminated AVSS-Share-
SS, then every other honest party will terminate AVSS-Share-SS eventually. An
honest Pi has terminated the protocol implies that he has agreed on CORE. This
means that Pi has received and verified the validity of D’s A-casted information
with respect to his own graph Gi. The same will happen eventually for all other
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honest parties. Hence they will agree on CORE. Now the proof follows from
Lemma 5. Part (3) of Termination follows from the correctness of OEC.

Correctness: If the honest parties terminate AVSS-Share-SS, then it implies
that s(= F (0, 0)) is properly d-shared among the parties in P (by Lemma 5),
where F (x, y) is the unique bivariate polynomial of degree-(d, t) defined by the
honest parties in CORE. Moreover if D is honest then F (x, y) = F (x, y) (follows
from Lemma 1 and Lemma 4) and hence s = s. Now the Correctness follows
from the correctness of OEC.

Secrecy: Let At controls P1, . . . , Pt. So At will know f1(x), . . . , ft(x) and p1(y),
. . . , pt(y). Throughout the protocol, the parties exchange common values (on row
and column polynomials), which do not add any extra information to the view
of At. Now by the property of bivariate polynomial of degree-(d, t), d − t + 1
coefficients of f0(x) = F (x, 0) will remain secure, where F (x, y) is the polynomial
used by D to hide his secret s. So s = f0(0) = F (0, 0) will remain secure. �

Theorem 2. AVSS-Share-SS privately communicates O(n2 log |F|) bits and A-
casts O(n2 log |F|) bits. Protocol AVSS-Rec-SS privately communicates
O(n2 log |F|).
Proof. See the full version of the paper [21]. �

4 AVSS for Generating d-Sharing of Multiple Secrets

We now present an AVSS protocol consisting of two sub-protocols, namely
AVSS-Share-MS and AVSS-Rec-MS: AVSS-Share-MS allows a dealer D ∈ P to
d-share � ≥ 1 secret(s) from F, denoted as S = (s1, . . . , s�), among the parties in
P , with t ≤ d ≤ 2t; AVSS-Rec-MS allows the parties to reconstruct the secrets,
given their d-sharing. Notice that we can generate d-sharing of S by concurrently
executing protocol AVSS-Share-SS (given in the previous section) � times, once
for each si ∈ S. But this will require a private communication of O(�n2 log(|F|))
and A-cast of O(�n2 log(|F|)) bits. However, our protocol AVSS-Share-MS re-
quires a private communication of O(�n2 log |F|) and A-cast of O(n2 log |F|) bits.
Thus, the A-cast communication of our AVSS-Share-MS protocol is independent
of �. The idea behind protocol AVSS-Share-MS is same as AVSS-Share-SS. Pro-
tocol AVSS-Share-MS is divided into a sequence of same three phases, as in
AVSS-Share-SS. We now present the corresponding protocols.

Protocol Distribution-MS(D,P, S = (s1, . . . , s�), d)
Code for D:

1. For l = 1, . . . , �, select a random bivariate polynomials F l(x, y) of degree-(d, t),
such that F l(0, 0) = sl and send the row polynomial f l

i (x) = F l(x, i) and column
polynomial pl

i(y) = F l(i, y) to Pi.
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Protocol Verification-MS(D,P, S = (s1, . . . , s�), d)

i. Code for Pi: Every party Pi ∈ P (including D) executes this code.

1. Wait to receive f l
i (x) and pl

i(y) for all l = 1, . . . , �, from D.
2. Upon receiving, check whether (i) f l

i (x) is a degree-d polynomial for all l =
1, . . . , �; and (ii) pl

i(y) is a degree-t polynomial for all l = 1, . . . , �. If yes, then
send f l

ij = f l
i (j) and pl

ij = pl
i(j) for all l = 1, . . . , �, to Pj .

3. Upon receiving f1
ji, . . . , f

�
ji and p1

ji, . . . , p
�
ji from Pj , check if f l

i (j)
?= pl

ji and

f l
ji

?= pl
i(j) for all l = 1, . . . , �. If the equality holds, then confirm the consistency

by A-casting OK(Pi, Pj).
4. Construct an undirected graph Gi with P as vertex set. Add an edge (Pj , Pk) in

Gi upon receiving (a) OK(Pk, Pj) from the A-cast of Pk and (b) OK(Pj , Pk) from
the A-cast of Pj .

ii. Code for D: (Only D executes this code): Same as in Protocol Verification-SS.

iii. Code for Pi: (Every party Pi ∈ P (including D) executes this code): Same as
in Protocol Verification-SS.

Protocol d-Share-Generation-MS(D,P, S = (s1, . . . , s�), d)

Code for Pi:

1. For l = 1, . . . , �, apply On-line Error Correcting (OEC) technique on f l
ji’s re-

ceived from every Pj in CORE (during Protocol Verification-SS) and reconstruct
degree-t polynomial pl

i(y) and output sl
i = pl

i(0) = f l
0(i) as the ith share of sl

and terminate. sl is now d-shared using polynomial f l
0(x).

Protocol AVSS-Share-MS and AVSS-Rec-MS are now given in the following table.

Protocol AVSS-Share-MS(D,P, S = (s1, . . . , s�), d)

(a) D executes Distribution-MS(D,P , S = (s1, . . . , s�), d);
(b) Each party Pi participates in Verification-MS(D,P , S = (s1, . . . , s�), d);
(c) After agreeing on CORE, each party Pi participates in d-Share-Generation-

MS(D,P , S = (s1, . . . , s�), d) and terminates AVSS-Share-MS after locally out-
putting the shares corresponding to D’s committed secrets.

Protocol AVSS-Rec-MS(D,P, S = (s1, . . . , s�), d)

1. For l = 1, . . . , �, each party Pi ∈ P privately sends the ith share of sl, namely sl
i,

to every party Pj ∈ P .
2. For l = 1, . . . , �, party Pi ∈ P applies OEC on the received sl

j ’s to privately
reconstruct sl and terminate AVSS-Rec-MS.

Theorem 3. (AVSS-Share-MS,AVSS-Rec-MS) constitute a perfectly secure AVSS
scheme for sharing � ≥ 1 secret(s) from F. AVSS-Share-MS privately communicates
O(�n2 log |F|) bits and A-casts O(n2 log |F|) bits. AVSS-Rec-MS privately commu-
nicates O(�n2 log |F|) bits.
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4.1 A Different Interpretation of AVSS-Share-MS

In AVSS-Share-MS, every secret sl for l = 1, . . . , � is d-shared using degree-d
polynomial f l

0(x) = F l(x, 0). Now by the Secrecy proof of AVSS-Share-SS, given
in Theorem 1, we can claim that (d+ 1)− t coefficients of f l

0(x) are information
theoretically secure for every l = 1, . . . , �. This implies that AVSS-Share-MS
shares �(d + 1 − t) secrets with a private communication of O(�n2 log |F|) bits
and A-cast O(n2 log |F|) bits. As the A-cast communication is independent of �,
we may ignore it and conclude that the amortized cost of sharing a single secret
using AVSS-Share-MS is only O(n log |F|). This is because by setting d = 2t,
we see that AVSS-Share-MS can share �(t + 1) = Θ(�n) secrets by privately
communicating O(�n2 log |F|) bits. Now putting it in other way, D can share
�(t+1) secrets using AVSS-Share-MS by choosing a random polynomial f l

0(x) (of
degree d = 2t) with lower order t + 1 coefficients as secrets and then choosing
a random degree-(d, t) bivariate polynomial F l(x, y) with F l(x, 0) = f l

0(x) for
l = 1, . . . , � and finally executing AVSS-Share-MS with F 1(x, y), . . . , F �(x, y).

Through we do not elaborate, we now mention another application of AVSS-
Share-MS which uses the above interpretation. We can design an Asynchronous
BA (ABA) protocol with an amortized communication cost of O(n2 log |F|) bits
for reaching agreement on a single bit. To the best of our knowledge, there is
only one ABA with 4t + 1 due to [13] which requires very high communication
complexity (though polynomial in n).

Remark 2. The best known AVSS of [2] requires an amortized cost O(n2 log |F|)
bits for sharing a single secret. Hence AVSS-Share-MS shows a clear improvement
over the AVSS of [2].

Remark 3. The idea of hiding multiple secrets in a single polynomial was ex-
plored earlier in [12] in the context of passive adversary in synchronous network.
Doing the same in asynchronous network, in the presence of active adversary is
bit tricky and calls for new techniques. Though we can hide (d + 1 − t) secrets
in each degree-d polynomial f l

0(x) using protocol AVSS-Share, we hide only one
secret, namely sl in f l

0(x). This is because in our AMPC protocol, we require
that each degree-d polynomial hides only one secret. However, hiding multiple
secrets in a degree-d polynomial will be useful in the context of ABA.

5 Protocol for Generating (t, 2t)-Sharing

We now present a protocol called (t,2t)-Share-MS that allows a dealer D ∈ P to
concurrently generate (t, 2t)-sharing of � ≥ 1 secrets. We explain the idea of the
protocol for a single secret s. D invokes AVSS-Share-MS to t-share s. Let f(x) be
the degree-t polynomial using which s is t-shared. D also invokes AVSS-Share-MS
to (2t− 1)-share a random value r. Let g(x) be the degree-(2t− 1) polynomial
using which r is (2t− 1)-shared. It is easy to see that h(x) = f(x) + xg(x) will
be a degree-2t polynomial, such that h(0) = s. So if party Pi locally computes
h(i) = f(i) + i · g(i), then this will generate the 2t-sharing of s. Protocol (t,2t)-
Share-MS follows this principle for all the � secrets concurrently.
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Theorem 4. Protocol (t,2t)-Share-MS satisfies the following properties:

1. Termination: (a) If D is honest, then each honest Pi will terminate (t,2t)-
Share-MS. (b) If D is corrupted and some honest Pi terminates (t,2t)-Share-
MS, then all honest parties will also eventually terminate the protocol.

2. Correctness: If honest parties terminate (t,2t)-Share-MS, then there are �
values, that are (t, 2t)-shared among the parties in P.

3. Secrecy: At will have no information about the secrets of an honest D.
4. Communication Complexity: The protocol privately communicates O(�n2

log |F|) bits and A-cast O(n2 log |F|) bits.

Proof. Follows from the properties of AVSS-Share-MS and protocol steps. �

Protocol (t,2t)-Share-MS(D,P, S = (s1, . . . , s�))
Code for D:

1. Invoke AVSS-Share-MS(D,P , S = (s1, . . . , s�), t) and AVSS-Share-MS(D,P , R =
(r1, . . . , r�), 2t − 1), where the elements of R are random.

Code for Pi:

1. Participate in AVSS-Share-MS(D,P , S = (s1, . . . , s�), t) and AVSS-Share-

MS(D,P , R = (r1, . . . , r�), 2t − 1). Wait to terminate AVSS-Share-MS(D,P , S, t)
with ith shares of S = (s1, . . . , s�), say (ϕ1

i , . . . , ϕ
�
i). Wait to terminate AVSS-

Share-MS(D,P , R, 2t − 1) with ith shares of R = (r1, . . . , r�), say (χ1
i , . . . , χ

�
i).

2. For l = 1, . . . , �, locally compute ψl
i = ϕl

i + i ·χl
i, output ϕl

i and ψl
i as ith share of

s corresponding to t and 2t-sharing respectively and terminate (t,2t)-Share-MS.

Remark 4. In [2] the authors presented a perfectly secure protocol, that privately
communicatesO(�n3 log |F|) bits and A-castsO(n2 log |F|) bits to generate (t, 2t)-
sharing of � secrets (For complete details, see [21]). Thus (t,2t)-Share-MS gains
a factor of Ω(n) in communication complexity for generating (t, 2t)-sharing. In
fact, it is this gain of Ω(n), which helps our AMPC protocol to gain Ω(n) in
communication complexity, compared to the AMPC of [2]. In [20], a protocol
with same communication complexity as ours is given for generating (t, 2t)-
sharing. However, the protocol has negligible error probability in correctness

and termination.

6 AMPC Protocol Overview

Once we have an efficient protocol for generating (t, 2t)-sharing, our AMPC
protocol proceeds in the same way as that of [2,20]. Specifically, our AMPC
protocol is a sequence of three phases: preparation, input and computation. In
the preparation phase, corresponding to each multiplication and random gate, a
(t, 2t)-sharing of random secret will be generated. In the input phase the parties
t-share their inputs and agree on a common set of at least n − t parties who
correctly t-shared their inputs. In the computation phase, based on the inputs of
the parties in this common set, the actual circuit will be computed gate by gate,
such that the output of the intermediate gates are always kept as secret and are
t-shared among the parties. We now elaborate on each of the three phases.
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6.1 Preparation Phase

The goal of protocol PreparationPhase is to generate (t, 2t)-sharing of cM + cR

random secrets. For this, each individual party acts as a dealer and (t, 2t)-share
cM+cR

n−2t random values. Then an instance of ACS protocol is executed to agree on
a common set C of n− t parties, who have correctly (t, 2t)-shared cM+cR

n−2t values.
Out of these n−t parties, at least n−2t are honest, who have indeed (t, 2t)-shared
random values, which are unknown to At. So if we consider the (t, 2t)-sharing
done by the honest parties (each of them has done cM+cR

n−2t (t, 2t)-sharing) in
common set C, then we will get cM+cR

n−2t ∗ (n − 2t) = cM + cR random (t, 2t)-
sharing. For this, we use Vandermonde Matrix [11] and its ability to extract
randomness which has been exploited in [11,2]. The same approach is also used
in the preparation phase of [20]. Due to space constraint, we present the protocol
in [21] and state only the following lemma:

Lemma 6. Each honest party will eventually terminate PreparationPhase. The
protocol generates (t, 2t)-sharing of cM + cR secret random values, unknown
to At, by privately communicating O((cM + cR)n2 log |F|) bits, A-casting
O(n3 log |F|) bits and executing one instance of ACS.

6.2 Input Phase

In protocol InputPhase, each party acts as a dealer and t-share his input(s) by
executing an instance of AVSS-Share-MS. The parties then execute ACS to agree
on a common set C of n − t parties, whose instances of AVSS-Share-MS have
terminated. As the input(s) of the parties in C will be considered for computation
(of the circuit), each party considers the t-sharing of all the inputs shared by
parties, only in C. As the protocol is very straight forward, we present it in [21]
and state the following lemma:

Lemma 7. Each honest party terminates InputPhase. The protocol generates t-
sharing of the inputs of the parties in C, such that At has no information about
the inputs of the honest parties in C, by privately communicating O(cIn

2 log |F|)
bits, A-casting O(n3 log |F|) bits and executing one ACS.

6.3 Computation Phase

Once the input phase is over, in the computation phase, the circuit is evaluated
gate by gate, where all inputs and intermediate values are t-shared among the
parties. As soon as a party holds his shares of the input values of a gate, he
joins the computation of the gate. Due to the linearity of the used t-sharing,
linear gates can be computed locally simply by applying the linear function
to the shares. With every random gate, one random (t, 2t)-sharing (from the
preparation phase) is associated, whose t-sharing is directly used as outcome
of the random gate. With every multiplication gate, one random (t, 2t)-sharing
(from the preparation phase) is associated, which is then used to compute t-
sharing of the product, following the technique of [11]: Let z = xy, where x, y
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are the inputs of the multiplication gate, where x, y are t-shared, i.e. [x]t, [y]t.
Moreover, let [r](t,2t) be the (t, 2t)-sharing associated with the multiplication
gate, where r is a secret random value. For computing [z]t, the parties compute
[Λ]2t = [x]t.[y]t + [r]2t. Then Λ is privately reconstructed by every Pi ∈ P . Now
every party defines [Λ]t as the default sharing of Λ and computes [z]t = [Λ]t−[r]t.
The secrecy of z follows from [11,2]. The same approach is also used in the
computation phase of AMPC protocol of [2,20]. Due to space constraint, we
present the protocol in [21] and state the following lemma:

Lemma 8. Each honest party will eventually terminateComputationPhase.Given
(t, 2t)-sharing of cM + cR secret random values, the protocol securely evaluates the
circuit by privately communicating O((cMn2 + cOn) log |F|) bits.

6.4 Final AMPC Protocol

Now our new AMPC protocol called AMPC for evaluating function f is: (1).
Invoke PreparationPhase (2). Invoke InputPhase (3). Invoke ComputationPhase.

Theorem 5. Protocol AMPC is an optimally resilient, perfectly secure AMPC
protocol that privately communicates O(((cI + cM + cR)n2 + cOn) log |F|) bits,
A-casts O(n3 log |F|) bits and requires 2 invocations to ACS. Each honest party
will eventually terminate AMPC.

Acknowledgement. We would sincerely like to thank Tal Rabin for giving
several insightful remarks on the earlier version of this paper which significantly
improved the presentation of the protocols.
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
499–510. Springer, Heidelberg (2008)

17. Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The round complexity
of verifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 487–504. Springer, Heidelberg (2009)

18. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient asynchronous multiparty
computation with optimal resilience. Cryptology ePrint Archive, Report 2008/425
(2008)

19. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient asynchronous Byzantine
Agreement with optimal resilience. In: PODC, pp. 92–101 (2009)

20. Patra, A., Choudhary, A., Pandu Rangan, C.: Unconditionally secure asynchronous
multiparty computation with quadratic communication per multiplication gate.
Cryptology ePrint Archive, Report 2009/087 (2009)

21. Patra, A., Choudhary, A., Pandu Rangan, C.: Communication Efficient Perfectly
Secure VSS and MPC in Asynchronous Networks with Optimal Resilience Cryp-
tology ePrint Archive, Report 2010/007 (2010)

22. Prabhu, B., Srinathan, K., Pandu Rangan, C.: Trading players for efficiency in un-
conditional multiparty computation. In: Cimato, S., Galdi, C., Persiano, G. (eds.)
SCN 2002. LNCS, vol. 2576, pp. 342–353. Springer, Heidelberg (2003)

23. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: STOC, pp. 73–85 (1989)

24. Srinathan, K., Pandu Rangan, C.: Efficient asynchronous secure multiparty dis-
tributed computation. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS,
vol. 1977, pp. 117–129. Springer, Heidelberg (2000)

25. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)



Avoiding Full Extension Field Arithmetic in
Pairing Computations

Craig Costello�, Colin Boyd, Juan Manuel González Nieto,
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Abstract. The most costly operations encountered in pairing compu-
tations are those that take place in the full extension field Fpk . At high
levels of security, the complexity of operations in Fpk dominates the
complexity of the operations that occur in the lower degree subfields.
Consequently, full extension field operations have the greatest effect on the
runtime of Miller’s algorithm. Many recent optimizations in the literature
have focussed on improving the overall operation count by presenting
new explicit formulas that reduce the number of subfield operations
encountered throughout an iteration of Miller’s algorithm. Unfortunately,
almost all of these improvements tend to suffer for larger embedding
degrees where the expensive extension field operations far outweigh the
operations in the smaller subfields. In this paper, we propose a new way
of carrying out Miller’s algorithm that involves new explicit formulas
which reduce the number of full extension field operations that occur in
an iteration of the Miller loop, resulting in significant speed ups in most
practical situations of between 5 and 30 percent.

Keywords: Pairings, Miller’s algorithm, Tate pairing, ate pairing.

1 Introduction

At the beginning of this century, pairing-based cryptography became extremely
popular after the first practical identity-based encryption scheme was constructed
using the powerful bilinearity property of pairings [13]. Accompanied by many
other exciting breakthroughs that resulted from pairings, the discovery of ID-
based encryption heightened the demand for practical pairings which can be com-
puted efficiently. Since then, much research has been invested towards achieving
faster pairings and consequently the speed of computing Miller’s algorithm [34] for
calculating pairings has significantly increased. Initial improvements in pairing
computations were spearheaded by evidence that the Tate pairing was much
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more efficient than the Weil pairing, since the final exponentiation in the Tate
pairing facilitates several clever simplifications in the Miller iterations [4,6,7,35].
The continual evolution of security requirements and standards has lead to a
large emphasis being placed on obtaining secure curve constructions for a range
of embedding degrees. As a result, the construction of pairing-friendly curves
has become an active field of research in itself [5,14,36,20,8,24,10,21,30], so that
cryptographers can now choose from an array of flexible curve options that offer
high levels of efficiency in pairing computations [22]. More recently, Hess, Smart
and Vercauteren [27] generalized prior work by Duursma and Lee [19] and Barreto
et al. [3] to develop the ate pairing which benefits from a truncated loop length
and is usually much faster than the Tate pairing. The ate pairing has since enjoyed
its own improvements [33,32], to the point where ate pairing variants can now be
computed with optimal loop lengths [37,26].

In very recent times, researchers have achieved further speedups by deriving
fast explicit formulas for specific stages of a Miller iteration [15,18,28,1,16,17], so
that each iteration requires less subfield operations, resulting in a faster pairing.
Unfortunately, such improvements are less effective when applied to the Tate
pairing because the operations that are saved occur in the base field Fp, and as
the embedding degree k gets large, the complexity of the operations occurring in
the full extension field Fpk dominates the complexity of those operations occurring
in Fp, so that the relative speedup resulting from savings in the base field becomes
much less. In the ate pairing with a twist of degree d, faster explicit formulas
save operations in the subfield Fpk/d , the complexity of which grows at the same
rate as the complexity of operations in Fpk , so that an increased embedding
degree will not drastically effect the relative speedup. Nevertheless, optimized
implementations of the ate pairing make use of the highest available twist for a
given k, so that the complexity of operations in Fpk/d is much less than those in Fpk .
For example, the ate pairing computed on a BN curve [8] where k = 12 uses a sextic
twist (d = 6), so that any computations saved through faster explicit formulas are
those in the much smaller field Fp2 . An optimized construction of the extension
field [31,9] results in the complexity of operations in Fp12 being no less than 15
times greater than the analogous operations in Fp2 , so that any speedups that
result from faster explicit formulas are still greatly overshadowed by the expensive
operations in Fp12 . At any level, full extension field operations greatly outweigh
subfield operations for both Tate-and ate-like pairings.

Eisenträger, Lauter and Montgomery [29] managed to avoid full extension
field arithmetic in pairing computations by combining two linear Miller functions
into a single function of degree 2, which they call a parabola, and achieving
a speedup by replacing two multiplications by the two linear functions with
a single multiplication by the parabola. However, the algorithm in [29] has
limited application in state-of-the-art pairing implementations because it only
applies to stages of the algorithm that require point addition, and optimized
implementations will choose loop parameters with low Hamming weight that
minimize the occurrence of these additions. Blake, Murty and Xu [12] extended
the observations in [29] to form combinations of Miller lines that apply to every
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iteration of the Miller loop, proposing a version of Miller’s algorithm that is
somewhat analogous to the 2n-ary windowing methods for general exponentiation
(cf. [2, §9]), using a window of size n = 2. Again, the techniques proposed in [12] are
not optimized for modern implementations of Miller’s algorithm because the main
benefit of the combined linear functions in their case was to avoid field divisions, a
problem that became obsolete after the introduction of denominator elimination
in [4]. In this paper, we extend the notion of combining Miller lines into higher
degree polynomials and present a more general approach, which we call Miller
2n-tuple-and-add. Specifically, we show how to combine explicit formulas from
n consecutive Miller double-and-add iterations into more complicated explicit
formulas for one Miller 2n-tuple-and-add iteration. The price we pay for spending
more subfield operations to evaluate these more complicated formulas is greatly
rewarded by the large savings that result from avoiding costly arithmetic in the full
extension field. For both Tate and ate-like pairings, we show that the Miller 2n-
tuple-and-add algorithm achieves significant speedups over the standard Miller
double-and-add routine for the majority of pairing-friendly embedding degrees.
Our method offers (among others) the following important advantages over the
prior work in [12]:

– Our method works for general n ≥ 1. All prior work (except for n = 2 in
[12]) has used n = 1.

– Our method handles any addition steps encountered in Miller’s 2n-tuple-
and-add algorithm in exactly the same way, regardless of the 2n-ary
representation of the loop parameter. The method in [12] for n = 2 uses
formulas that differ depending on the quarternary representation of the loop
parameter. An important consequence of this is that higher values of n do
not result in more complex additions, as they do for n = 2 in [12].

– The techniques and analyses in [12] focus on reducing the number of field
divisions (inversions) that occur in the affine representation of the Miller
lines. Field inversions are extremely costly in pairing implementations and
have been phased out thanks to denominator elimination and the application
of non-affine (projective) coordinate systems to pairing computations that
eliminate field inversions altogether. The explicit formulas herein are derived
using projective coordinates, and these formulas are reduced to give much
faster operation counts.

The rest of this paper is organized as follows. Section 2 provides a brief
background on pairings and Miller’s algorithm. In Section 3 we describe the
general Miller 2n-tuple-and-add algorithm, before discussing a general strategy
to obtain explicit formulas for 2n-tuple-and-add in Section 4. In Section 5,
we derive explicit formulas for the cases of Miller quadruple-and-add (n = 2)
and Miller octuple-and-add (n = 3), and obtain operation counts for a typical
iteration in each scenario. In Section 6, we compare the operation counts for the
quadruple-and-add and octuple-and-add algorithm with the standard double-
and-add algorithm. We draw conclusions in the same section.
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2 Background

Let E be an elliptic curve over Fp. Assume E is given by the short Weierstrass
equation y2 = x3 + ax + b and let O be the neutral element on E. For the
points R,S ∈ E, let lR,S and vR,S respectively be the sloped and vertical lines
in the standard chord-and-tangent addition of R and S, the divisors of which are
div(lR,S) = (R)+(S)+(−(R+S))−3(O) and div(vR,S) = (−(R+S))+(R+S)−
2(O). When R = S, we have lR,R and vR,R as the sloped and vertical lines in the
point doubling of R. Herein we let gR,S represent the quotient gR,S = lR,S/vR,S ,
with associated divisor div(gR,S) = (R) + (S) − (R + S) − (O). For v ∈ Z, let
fv,R be a function with divisor

fv,R = v(R)− ([v]R)− (v − 1)(O).

Let k be the embedding degree of E with respect to some large prime r and let
E[r] denote the group of r-torsion points on E. We use πp to denote the p-power
Frobenius endormorphism on E and we define two groups G1 and G2 using the
two eigenspaces of πp as G1 = E[r]∩ ker(πp− [1]) and G2 = E[r]∩ ker(πp− [p]).

For two points P ∈ G1 and Q ∈ G2, the Tate pairing er : G1 × G2 → G3

is computed as er(P,Q) = fr,P (Q)(p
k−1)/r. Let T = t − 1, where t is the trace

of the Frobenius on E. The ate pairing aT : G2 × G1 → G3 is computed as
aT (Q,P ) = fT,Q(P )(p

k−1)/r. In the coming sections, we treat both pairings
simultaneously by letting the required pairing be computed as fm,R(S)(p

k−1)/r,
where it is understood that in the Tate pairing we have m = r, R ∈ G1 and
S ∈ G2, whilst in the ate pairing we have m = T , R ∈ G2 and S ∈ G1.

When counting field operations, we use M and S to denote the respective
costs of a multiplication and a squaring in the field Fpk , and we use m and s to
represent the costs of a multiplication and a squaring in the subfield Fpe , where
e = 1 for Tate-like pairings and e = k/d for ate-like pairings with twists of degree
d. In some instances it is necessary to count operations in more than two fields,
in which case we avoid ambiguities by letting mi and si denote the costs of a
multiplication and a squaring in the field Fpi . Lastly, we report the cost of a
multiplication by a curve constant (or a small power of a curve constant) as d.

Since the introduction of the original ate pairing [27], several variants with
even shorter loop lengths have emerged [33], including the R-ate pairing [32]
which often achieves the optimal loop length [37,26]. All of these variants also
take R ∈ G2 and S ∈ G1 and compute fm,R(S), the only difference being the
construction (and size) of the loop parameter m. We refer to all such pairings
collectively as ate-like pairings (a : G2 × G1 → G3), and hereafter we make no
specifications regarding the loop length, since it plays no role in the results of
this paper. Identically, we put the twisted ate pairing [27] under the umbrella
of Tate-like pairings (e : G1 × G2 → G3), since the twisted ate pairing takes its
respective inputs from the same groups as the Tate pairing.

Using fi+j,R = fi,R · fj,R · g[i]R,[j]R, the usual version of Miller’s algorithm
computes the required function in �log2(m)� iterations by initializing f1,R(S) =
1 and progressively building the functions fv,R(S) (for v < m) to approach
fm,R(S) in a double-and-add-like fashion, as summarized in Algorithm 1.
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Algorithm 1. Miller double-and-add Algorithm
Input: R, S, m = (ml−1...m1, m0)2.
Output: fm,R(S).

1: T ← R, f ← 1.
2: for i = l − 2 to 0 do
3: Compute g = gT,T (S)
4: T ← [2]T .
5: f ← f2 · g.
6: if mi �= 0 then
7: Compute g = gT,R(S)
8: T ← T + R.
9: f ← f · g.

10: end if
11: end for
12: return f .

At the beginning of an iteration of Algorithm 1, let the intermediate multiple
of the point R be T = [v]R, so that the current Miller function f relating to the
point T has divisor

div(fv,R) = v(R)− ([v]R)− (v − 1)(O).

Miller’s double-and-add algorithm forms the function f2v,R relating to the point
[2]T = [2v]R as f2v,R = f2

v,R · g[2]T , where div(g[2]T ) = 2(T )− ([2]T )− (O), so
that f2v,R has divisor

div(f2v,R) = div(f2
v,R · g[2]T ) = 2 · div(fv,R) + div(g[2]T )

= 2 · (v(R)− ([v]R)− (v − 1)(O)
)

+ (2(T )− ([2]T )− (O))
= 2v(R)− ([2v]R)− (2v − 1)(O).

We obtain the Miller function f2v,R by squaring the Miller function fv,R and
multiplying this result by the “line” function(s) involved in the point doubling
of T . In a standard implementation of Miller’s algorithm, the functions fv,R and
gT,T are contained in the full extension field, so that the function update (step
5 of Algorithm 1) comes at a cost of 1M + 1S. Assuming (for now) that no
intermediate addition operations are required (i.e. mi = 0 for n consecutive i’s
in Algorithm 1), n consecutive iterations of Miller’s double-and-add algorithm
above transform the function fv,R into the function f2nv,R. The cost of the n
function updates that occur in n such iterations is then nM + nS.

3 2n-ary Pairings: Miller 2n-tuple-and-add

In this section we generalize the above (double-and-add) method by combining
n consecutive doubling steps into one 2n-tupling step and we show that this
reduces the number of expensive function updates that occur in Fpk . For any
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n, we naturally refer to this process as the Miller 2n-tuple-and-add algorithm.
Consider n consecutive squarings on the function fv,R, which equates to raising
fv,R to the power 2n. The divisor of the resulting function is given as

div
(
(fv,R)2

n)
= 2n · div(fv,R) = 2nv(R)− 2n([v]R)− 2n(v − 1)(O).

(1)

To obtain the desired Miller function f2nv,R from fv,R, we must now find
a function f∗ such that div((fv,R)2

n

) + div(f∗) = div(f2nv,R) = 2nv(R) −
([2nv]R)− (2nv − 1)(O). We construct f∗ as

f∗ =
n∏

i=1

(g[2i−1]T,[2i−1]T )2
n−i

, (2)

the divisor of which is

div(f∗) =
n∑

i=1

2n−i · div(g[2i−1]T,[2i−1]T )

=
n∑

i=1

2n−i · (2([2i−1]T )− ([2i]T )− (O))

= 2n(T )− ([2n]T )− (2n − 1)(O). (3)

Substituting T = [v]R into (3) and combining this with (1) reveals that
div((fv,R)2

n

)+div(f∗) = div(f2nv,R), so that f∗ is indeed the required function.
We note that the construction of f∗ is intuitive. Namely, f∗ is simply the product
of the n different g’s that are formed throughout each of the n equivalent double-
and-add iterations, each of which accumulates a different exponent depending
on how many squarings it encounters in the iterations that follow. In this light,
Miller 2n-tuple-and-add is much the same as Miller double-and-add; the major
difference is that in Miller 2n-tuple-and-add we do not multiply the Miller
function by its update g immediately after it is squared. Rather, we form a
product f∗ of n powers of such g’s and we delay the multiplication of f∗ by f so
that it occurs only once in what is the equivalent of n double-and-add iterations.

For the addition step in the Miller 2n-tuple-and-add algorithm, we now have
to consider adding some multiple [w]R of R (w < 2n) to the intermediate point
and updating the Miller function accordingly. Suppose the intermediate point
is T = [v]R and the related Miller function prior to the addition has divisor
div(fv,R) = v(R)− ([v]R)− (v− 1)(O) as before. We require a function f+ such
that div(fv,R)+div(f+) = div(f(v+w),R) = (v+w)(R)−([v+w]R)−(v+w−1)(O).
The straightforward way to construct such a function is

f+ =
w−1∏
i=0

gT+[i]R,R, (4)



Avoiding Full Extension Field Arithmetic in Pairing Computations 209

the divisor of which is

div(f+) =
w−1∑
i=0

div(gT+[i]R,R)

=
w−1∑
i=0

[
(R) + (T + [i]R)− (T + [i + 1]R)− (O)

]
= w(R) + (T )− (T + [w]R)− w(O).

Again, substituting T = [v]R gives div(f+) = w(R)+([v]R)−([v+w]R)−w(O),
so that div(fv,R) + div(f+) = div(f(v+w),R), and we see that f+ is clearly the
desired function. However, if we compute f+ in the above fashion, we have to
compute the product of w different addition lines, and since w can take any value
between 1 and 2n − 1, computing the addition step with the explicit formulas
that result from the product in (4) can become quite costly. Instead, consider an
alternative method of computing the addition line as follows. Let f+

alt be such
that div(f+

alt) = div(f+) and take

f+
alt = fw,R · g[v]R,[w]R, (5)

so that div(f+
alt) = div(fw,R)+div(g[v]R,[w]R) = w(R)+([v]R)−([v+w]R)−w(O).

The advantage of the computation of f+
alt over the computation of f+ is that

f+
alt is comprised of only two functions, regardless of the size of w. Moreover,

the function fw,R is the same function throughout the entire Miller 2n-tupling
loop and does not change depending on where the addition/s occurs. Thus, the
fw,R’s can be precomputed (for all necessary values of w) prior to entering the
Miller 2n-tupling loop so that we must only construct one new line function
(g[v]R,[w]R) at each addition stage. Importantly, this addition line is computed
by applying the standard addition formulas to the coordinates of the point [v]R,
which changes in each iteration, and the point [w]R whose coordinates can be
cached initially. From here on, the construction of f+ refers to the construction
of f+

alt described in (5). We summarize in Algorithm 2, where we note that the
first value in the base 2n representation of m will not be ml−1 = 1 in general,
so that we begin with an addition before entering the loop when ml−1 �= 1.

In regards to full extension field arithmetic only, one standard iteration of
Algorithm 2 (which usually has mi = 0) requires 1M + nS. When n = 1,
we recover the usual Miller double-and-add algorithm which requires �log2(m)�
iterations, each incurring 1M + 1S. For n = 2, the algorithm requires half as
many iterations (�log4(m)�) that each incur a cost of 1M + 2S, offering a 1M
saving over two equivalent standard double-and-add iterations. For general n, we
save (n − 1)M for each of the �log2n(m)� iterations of the Miller 2n-tuple-and-
add algorithm, giving a relative saving of n−1

n M over each equivalent standard
double-and-add iteration. Therefore the larger we allow n to become, the more
full extension field arithmetic we can avoid in the pairing computation.
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The price we pay for increasing n is an increase in the complexity of the
formulas required to compute the function f∗. As n grows, the size of f∗ (in
its explicit form) grows rapidly so that many more operations are required to
compute it. However, these operations are performed in substantially smaller
subfields of the full extension field, where the computations are much cheaper.
We can achieve significant speedups in the pairing computation if the price we
pay for computing the more complex product of line functions f∗ in the smaller
subfields of Fpk is less than the savings we obtain in Fpk itself.

In the following section we shed light on the details concerning the
combination of steps 6 and 7 and the combination of steps 10 and 11 that are
summarized in Algorithm 2.

Algorithm 2. Miller 2n-tuple-and-add Algorithm
Input: R, S, m = (ml−1...m1, m0)2n , and the necessary precomputed values of w[R]

where w < 2n.
Output: fm,R(S).

1: T ← R, f ← 1.
2: Compute function f+ as the product described in (5) with w = ml−1.
3: f ← f · f+.
4: T ← T + [ml−1]R.
5: for i = l − 2 to 0 do
6: Compute function f∗ in the 2n-tupling of T .
7: T ← [2n]T .
8: f ← f2n · f∗.
9: if mi �= 0 then

10: Compute function f+ as the product described in (5) with w = mi.
11: T ← T + [mi]R.
12: f ← f · f+.
13: end if
14: end for
15: return f .

4 A Strategy for Obtaining Explicit Formulas

This section provides the details for deriving explicit formulas for Miller 2n-tuple-
and-add implementations. We pay close attention to the steps in Algorithm 2
that require deeper explanations.

Line 6 of Algorithm 2: Algorithm 3 (below) uses the standard doubling formulas
to construct the affine line product f∗ for Miller 2n-tupling in accordance with
(2). We note that Algorithm 3 computes the product g under the assumption of
an even embedding degree, so that the denominator vi of the i-th product update
gi = li/vi can be eliminated and the gi’s simply become the li’s described at the
beginning of Section 2. In the following sections we use different projections on
the affine form of f∗ depending on the curve model.
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Algorithm 3. Constructing explicit formulas for f∗

Input: R = (x1, y1) and S = (xS, yS).
Output: f∗.

1: (x, y) ← (x1, y1), f∗ ← 1.
2: for i = 1 to n do
3: λ ← (3x2 + a)/(2y).
4: x′ ← λ2 − 2x.
5: y′ ← λ(x − x′) − y.
6: g ← λ(x − xS) + yS − y.
7: f∗ ← f∗ · g2n−i

.
8: (x, y) ← (x′, y′).
9: end for

10: return f∗.

Line 7 of Algorithm 2: Depending on the formulas derived for f∗, there are two
possibilities that need to be considered for computing the point multiplication
[2n]T . The first option would be to output the explicit formulas for x′ and y′

in Algorithm 3. These compounded formulas would obviously be much more
complicated than the standard point doubling formulas (i.e. computing [2]T ),
however the more complicated explicit formulas for computing [2n]T = (x′, y′)
may end up sharing many common subexpressions with the explicit formula for
f∗ so that the overall count would be less. The second option simply involves
repeating n consecutive doublings on the point T . The heuristic argument would
suggest that optimized formulas for computing [2n]T directly should require
no more operations than those required in the repetitive doublings, suggesting
that the first option should always take preference. However, our experiments
indicated that attempts to optimize 2n-tupling formulas always tend to reduce
to the same formulas that arise from n repeated doublings. For the sake of
simplicity, we therefore opt for the latter suggestion and perform n repetitive
doublings to compute [2n]T . Furthermore, it also tends to be the case that the
higher degree subexpressions obtained in the explicit formulas for computing
[2n]T directly do not appear in the simplified expressions for f∗. However,
many operations used in the very first doubling of T also appear readily in the
components of f∗ and we make use of these common subexpressions. Namely,
the doubling formulas used to compute [2]T are chosen so that the simultaneous
computation of f∗ and [2]T comes at minimal cost. Therefore, it is often the
case that the formulas used to compute [2]T may not be the same formulas as
those used to compute the n− 1 doublings that follow.

Lines 10 and 11 of Algorithm 2: In the addition stage of Miller 2n-tuple-and-add,
we are required to add some multiple w[R] of R (w < 2n) to the intermediate
point T . Here we simply cache the value [w]R before the iterations start and
perform a standard point addition. The Miller function update f+ required in
line 7 of Algorithm 2 requires the computation of the product f+ = fw,R(S) ·
gT,[w]R(S). By definition, gT,[w]R(S) is the line function corresponding to the
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addition of T to [w]R, evaluated at the point S. Therefore, the combination
of lines 11 and 12 of Algorithm 2 can simply be viewed as a standard point
addition between T and [w]R, as well as the extra multiplication of gT,[w]R(S)
by the cached value fw,R(S).

5 Miller Quadrupling and Octupling

In this section we focus on applying the generalized algorithm in Section 3 to
the cases n = 2 and n = 3. We present reduced explicit formulas that arise for
the Miller quadruple-and-add and Miller octuple-and-add algorithms on curves
of the form E : y2 = x3 +b (j(E) = 0) and E : y2 = x3 +ax (j(E) = 1728), since
these are the most efficient curve shapes used in practice [22]. We focus solely on
the 2n-tupling stage of the algorithm (i.e. steps 6 and 7 in Algorithm 2), since
optimized loop parameters will result in very few additions. We therefore delay
any discussion of the additions until the following section.

5.1 Miller Quadruple-and-add

We begin by setting n = 2 in (3) to obtain the Miller update f∗ corresponding
to the quadrupling of T as

f∗ =
2∏

i=1

(g[2i−1]T,[2i−1]T )2
2−i

=
(
gT,T

)2 · (g[2]T,[2]T
)
,

which has divisor 4(T )− ([4]T )− 3(O).

Quadruple-and-add on y2 = x3 + b. We obtain f∗ as the affine output of
Algorithm 3 with n = 2. For curves of this form, the fastest explicit formulas for
the n = 1 case were derived using homogeneous projective coordinates [16,17].
Our experiments1 indicated that these coordinates also give the fastest results
for n ≥ 1, so we substitute x1 = X1/Z1 and y1 = Y1/Z1 into f∗ to obtain the
projectified version, F ∗, as

F ∗ = α · (L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xSyS + L0,0),

where α = −Z3
1 (X1(X3

1 − 8bZ3
1) − 4Z1(X3

1 + bZ3
1 ) · xS)2/(64Z7

1Y
5
1 (27X6

1 −
36X3

1Y
2
1 Z1 + 8Y 4

1 Z2
1 )) can be eliminated to give F̂ ∗ = F ∗/α, where the Li,j

coefficients are

L2,0 = −6X2
1Z1(5Y 4

1 + 54bY 2
1 Z

2
1 − 27b2Z4

1),

L0,1 = 8X1Y1Z1(5Y 4
1 + 27b2Z4

1 ),

L1,1 = 8Y1Z
2
1 (Y 4

1 + 18bY 2
1 Z

2
1 − 27b2Z4

1 ),

L0,0 = 2X1(Y 6
1 − 75bY 4

1 Z2
1 + 27b2Y 2

1 Z4
1 − 81b3Z6

1 ).

L1,0 = −4Z1(5Y 6
1 − 75bZ2

1Y
4
1 + 135Y 2

1 b2Z4
1 − 81b3Z6

1).

1 We searched through a range of different coordinate systems (cf. [11]) to find the
coordinate system which gave the most simple projectified line coefficients.
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We let (XDn : YDn : ZDn) = [2n](X1 : Y1 : Z1) and compute the first doubling
with small extra computation as

XD1 = 4X1Y1(Y 2
1 − 9bZ2

1), YD1 = 2Y 4
1 + 36bY 2

1 Z
2
1 − 54b2Z4

1 , ZD1 = 16Y 3
1 Z1

The calculation of the Li,j coefficients and the intermediate point (XD1 : YD1 :
ZD1) = [2](X1, Y1, Z1) requires 11me + 11se + 3d. To calculate (XD2 : YD2 :
ZD2) = [4](X1, Y1, Z1), we double the point (XD1 : YD1 : ZD1) using the
doubling formulas in [17] which cost 3me + 5se + 1d. The multiplication of each
of the four Li,j �= L0,0 by xi

Sy
j
S costs em1 (cf. [17]). As discussed in Section 3, the

extension field arithmetic required in line 8 of Algorithm 2 costs 1M+2S. Thus,
the total cost for the quadrupling stage is 14me + 16se + 4em1 + 4d + 1M + 2S
(see Appendix A.1 for the sequence of operations, and see Appendix B for a
Magma script that computes the Miller quadruple-and-add algorithm using the
formulas in A.1).

Quadruple-and-add on y2 = x3 + ax. For curves of this shape, the fastest
formulas for the standard double-and-add case were derived in weight-(1, 2)
coordinates in [17]. Again, our experiments agree with these coordinates for
such curves for n ≥ 1, so we subsitute x1 = X1/Z1 and y1 = Y1/Z

2
1 into f∗ (the

output of Algorithm 3) to obtain F ∗ as

F ∗ = α · (L1,0 · xS + L2,0 · x2
S + L0,1 · yS + L1,1 · xSyS + L0,0),

where α = −Z6
1(−4X1Z1(X2

1 + aZ2
1 )xS + (X2

1 − aZ2
1 )2)2 can be eliminated to

give F̂ ∗ = F ∗/α, where the Li,j coefficients are

L1,0 = −2X1Z1(5X8
1 + 4aX6

1Z
2
1 + 38a2X4

1Z
4
1 + 20a3X2

1Z
6
1 − 3a4Z8

1 ),

L2,0 = −Z2
1(15X8

1 + 68aX6
1Z

2
1 + 10a2X4

1Z
4
1 − 28a3X2

1Z
6
1 − a4Z8

1),

L0,1 = 4Y1X1Z1(5X6
1 + 13aX4

1Z
2
1 + 15a2X2

1Z
4
1 − a3Z6

1),

L1,1 = 4Y1Z
2
1 (X2

1 − aZ2
1 )(X4

1 + 6aX2
1Z

2
1 + a2Z4

1 ),

L0,0 = X2
1 (X8

1 − 20aX6
1Z

2
1 − 26a2X4

1Z
4
1 − 20a3X2

1Z
6
1 + a4Z8

1 ).

Again, we compute the first doubling with small extra computation as

XD1 = (X2
1 − aZ2

1 )2, YD1 = 2Y1(X2
1 − aZ2

1 )(X4
1 + 6X2

1aZ
2
1 + a2Z4

1 ), ZD1=4Y 2
1 .

The calculation of the Li,j coefficients and the intermediate point (XD1 : YD1 :
ZD1) = [2](X1, Y1, Z1) requires 10m + 14s + 2d. To calculate (XD2 : YD2 :
ZD2) = [4](X1, Y1, Z1), we double the point (XD1 : YD1 : ZD1) using the doubling
formulas in [17] which cost 1m+6s+1d. Thus, the total cost for the quadrupling
stage is 11me + 20se + 4em1 + 3d + 1M + 2S (see Appendix A.2).

5.2 Miller Octuple-and-add

We begin by setting n = 3 in (3) to obtain the Miller update f∗ corresponding
the octupling of T as
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f∗ =
3∏

i=1

(g[2i−1]T,[2i−1]T )2
3−i

=
(
gT,T

)4 · (g[2]T,[2]T
)2 · (g[4]T,[4]T

)
,

which has divisor 8(T )− ([8]T )− 7(O).

Octuple-and-add on y2 = x3 + b. For the octupling line product, we use
homogeneous projective coordinates to give F ∗ as

F ∗ = α · (L4,0 · x4
S + L3,0 · x3

S + L2,0 · x2
S + L1,0 · xS

+ L3,1 · x3
SyS + L2,1 · x2

SyS + L1,1 · xSyS + L0,0),

where α is again contained in a proper subfield of Fpk and can be eliminated to
give F̂ ∗ = F ∗/α. The Li,j coefficients are

L4,0 = (−9X2
1Z

2
1) · S4,0, L3,0 = (−12Z2

1Y
2
1 ) · S3,0, L2,0 = (−54X1Y

2
1 Z1) · S2,0

L1,0 = (−36X2
1Y

2
1 ) · S1,0, L0,0 = ((Y 2

1 + 3bZ2
1)Y 2

1 ) · S0,0, L3,1 = (8Y1Z
3
1 ) · S3,1

L2,1 = (216X1Y1Z
2
1 ) · S2,1, L1,1 = (72X2

1Y1Z1) · S1,1, L0,1 = (8Y 3
1 Z1) · S0,1

with

Si,j =
11∑

k=0

ci,j,k · (Y 2
1 )11−k(bZ2

1 )k,

where ci,j,k is the coefficient of (Y 2
1 )11−k(bZ2

1)k belonging to Li,j (see Appendix
A.3). As an example, we have

L0,0 = (Y 2
1 (Y 2

1 + 3bZ2
1)) · (Y 22

1 − 3375bY 20
1 Z2

1 − 262449b2Y 18
1 Z4

1

− 2583657b3Y 16
1 Z6

1 + 47678058b4Y 14
1 Z8

1 − 40968342b5Y 12
1 Z10

1

− 272740770b6Y 10
1 Z12

1 + 738702990b7Y 8
1 Z14

1 − 669084219b8Y 6
1 Z16

1

− 23914845b10Y 2
1 Z20

1 + 14348907b11Z22
1 + 206730549b9Y 4

1 Z18
1

)
.

We describe a general method to compute each of the terms of the form
(Y 2

1 )11−k(bZ2
1 )k that are required to compute the Li,j coefficients, where 0 ≤

k ≤ 11. In general, it is best to compute each one of these products rather than
attempting to factorize, particular when each of these terms is present in every
Li,j . We compute every required even power of Y1 by first repetitively squaring
Y1 until we have all necessary terms of the form Y 2t

1 that are less than the
largest power of Y1 occuring in the summations of the Li,j. That is, we compute
Y 2t

1 for t = 1, 2, 3, 4 since Y 22
1 is the largest power of Y1 occuring in the Li,j

summations. Using {Y 2
1 , Y 4

1 , Y 8
1 , Y 16

1 }, we can compute all other (Y 2
1 )z < (Y 2

1 )16,
z �= 2t using one squaring each for each z. For example, we can compute Y 12

1 as
Y 12

1 = Y 8
1 · Y 4

1 = ((Y 8
1 + Y 4

1 )2 − Y 16
1 − Y 8

1 )/2, although in practice we compute
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2Y 12
1 to avoid the division by 2. To compute the remaining (Y 2

1 )t > Y 16
1 , we use

a field multiplication2. We do the same for each of the (bZ2
1)k terms.

We do not count multiplications by the ci,j,k, although we make no attempt
to disguise the extra cost that is incurred as their sizes grow. We do however,
point out that it is often the case that the ci,j,k’s for a fixed k (but different
i,j’s) share large common factors so that we need not multiply (Y 2

1 )11−k(bZ2
1 )k

by each of the ci,j,k’s, but rather we combine previous products to obtain most
of these multiplications at a much smaller (mostly negligible) cost.

The total operation count for the point octupling and the computation of the
octupling line product is 40me +31se+8em1 +2d+1M+3S (see Appendix A.3).

Octuple-and-add on y2 = x3 + ax. Following the trend of the fastest
formulas for the n = 1 and n = 2 cases for curves of this shape, we again
projectify f∗ using weight-(1, 2) coordinates to give

F ∗ = α · (L4,0 · x4
S + L3,0 · x3

S + L2,0 · x2
S + L1,0 · xS

+ L3,1 · x3
SyS + L2,1 · x2

SyS + L1,1 · xSyS + L0,0),

where we ignore the subfield cofactor α to give F̂ ∗ = F ∗/α. The Li,j coefficients
are given as

L4,0 = (−4X2
1Z

4
1 ) · S4,0, L3,0 = (−16X3

1Z
3
1) · S3,0, L2,0 = (−8X4

1Z
2
1) · S2,0

L1,0 = (16X5
1Z1) · S1,0, L0,0 = (4X6

1 ) · S0,0, L3,1 = (4Y1Z
4
1 ) · S3,1

L2,1 = (4X1Y1Z
3
1 ) · S2,1, L1,1 = (4X2

1Y1Z
2
1 ) · S1,1, L0,1 = (4X3

1Y1Z1) · S0,1,

with

Si,j =
16∑

k=0

ci,j,k · (X2
1 )16−k(bZ2

1 )k,

where ci,j,k is the coefficient of (X2
1 )16−k(bZ2

1 )k belonging to Li,j (see Appendix
A.4). As an example, we have

L2,0 = −8X14Z12 · (189X32
1 + 882bX30

1 Z2
1 + 6174b2X28

1 Z4
1 − 26274b3X26

1 Z6
1

− 1052730b4X24
1 Z8

1 − 449598b5X22
1 Z10

1 − 1280286b6X20
1 Z12

1

− 1838850b7X18
1 Z14

1 − 23063794b8X16
1 Z16

1 − 1543290b9X14
1 Z18

1

+ 539634b10X12
1 Z20

1 + 646922b11X10
1 Z22

1 + 1386918b12X8
1Z

24
1

+ 75846b13X6
1Z

26
1 + 17262b14X4

1Z
28
1 + 922b15X2

1Z
30
1 − 35b16Z32

1 ).

The total operation count for the point octupling and the computation of the
octupling line product is 31me + 57se + 8em1 + 5d + 1M + 3S (see Appendix
A.4).
2 We point out that if higher degree terms also required computation it may be

advantageous to compute Y 32
1 so that each of the terms (Y 2

1 )t > Y 16
1 can be

computed using field squarings instead of multiplications. This advantage would
depend on the platform (the s:m ratio) and the number of (Y 2

1 )t > Y 16
1 terms

required.
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6 Comparisons

We draw comparisons between 6 standard loops of Miller double-and-add, 3
standard loops ofMiller quadruple-and-addand 2 standard loops ofMiller octuple-
and-add, since each of these equates to one 64-tuple-and-add loop, and this is the
most primitive level at which a fair comparison can be made. We note that the
estimatedpercentage speedups inTable 1 are for the computation of theMiller loop
only and do not take into account the significant fixed cost of final exponentiation.
We neglect additions since low hamming-weight loop parameters used in pairing
implementations will result in a similar amount of additions regardless of n, and
we saw in sections 3 and 4 that additions come at approximately the same cost for
differentn.The counts forn = 1 aredue to the fastest formulas given for curveswith
j(E) = 0 and j(E) = 1728 in [17]. We multiply these counts and those obtained
for n = 2 and n = 3 in Section 5 accordingly.

Table 1. Operation counts for the equivalent number of iterations of 2n-tuple and add
for n = 1, 2, 3

j(E) Doubling: n = 1 Quadrupling: n = 2 Octupling: n = 3
(6 loops) (3 loops) (2 loops)

0 12me + 42se + 12em1 42me + 48se + 12em1 80me + 64se + 16em1

+6M + 6S +3M + 6S +2M + 6S
1728 12me + 48se + 12em1 33me + 60se + 12em1 64me + 114se + 16em1

+6M + 6S +3M + 6S +2M + 6S

Table 1 shows that the number of subfield operations increases when n gets
larger, whilst the number of full extension field multiplications decreases. To
determine whether these trade-offs become favorable for n = 2 or n = 3, we
adopt the standard procedure of estimating the equivalent number of base field
operations for each operation count [27,17]. We assume that the higher degree
fields are constructed as a tower of extensions, so that for pairing-friendly fields
of extension degree z = 2i · 3j , we can assume that mz = 3i · 5jm1 [31]. We split
the comparison between pairings on G1 ×G2 (the Tate pairing, the twisted ate
pairing) and pairings on G2 ×G1 (the ate pairing, R-ate pairing, etc). For each
pairing-friendly embedding degree reported, we assume that the highest degree
twist is utilized in both settings; the curves with j(E) = 0 utilize degree 6 twists
whilst the curves with j(E) = 1728 utilize degree 4 twists. To compare across
operations, we follow the EFD [11] and present two counts in each scenario: the
top count assumes that sz = mz, whilst the bottom count assumes that sz =
0.8mz. When quadrupling (n = 2) or octupling (n = 3) gives a faster operation
count, we provide an approximate percentage speedup for the computation of
the Miller loop, ignoring any additions that occur.

Unsurprisingly, Table 2 illustrates that the relative speed up for pairings on
G1×G2 grows as the embedding degree grows. This is due to the increasing gap
between the complexity of operations in G1 (which is defined over Fq) and G2
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Table 2. Comparisons for Miller double-and-add, Miller quadruple-and-add and Miller
octuple-and-add at various embedding degrees

Pairings on G1 × G2 Best Pairings on G2 × G1 Best
(Tate, twisted ate) (%) (ate, R-ate) (%)

k j(E) n = 1 n = 2 n = 3 n = 1 n = 2 n = 3
(6 loops) (3 loops) (2 loops) (6 loops) (3 loops) (2 loops)

4 1728 180 186 266 n = 1 180 186 266 n = 1
159.6 163.2 232.4 - 159.6 163.2 232.4 -

6 0 246 237 280 n = 2 246 237 280 n = 2
219.6 209.4 249.2 5% 219.6 209.4 249.2 5%

8 1728 408 360 426 n = 2 528 546 782 n = 1
366 315.6 370.8 14% 466.8 477.6 681.2 -

12 0 618 519 536 n = 2 726 699 824 n = 2
555.6 455.4 469.2 18% 646.8 616.2 731.6 5%

16 1728 1080 870 890 n = 2 1560 1614 2314 n = 1
973.2 760.8 770 22% 1376.4 1408.8 2011.6 -

18 0 990 801 792 n = 3 1206 1161 1368 n = 2
891.6 701.4 689.2 22% 1074 1023 1214 5%

24 0 1722 1353 1288 n = 3 2154 2073 2440 n = 2
1551.6 1181.4 1113.2 28% 1916.4 1824.6 2162.8 5%

32 1728 3072 2376 2250 n = 3 4632 4794 6878 n = 1
2770.8 2072.4 1935.6 30% 4081.2 4178.4 5970.8 -

36 0 2826 2187 2040 n = 3 3582 3447 4056 n = 2
2547.6 1907.4 1757.6 31% 3186 3033 3594 5%

48 0 5010 3831 3512 n = 3 6414 6171 7256 n = 2
4515.6 3335.4 3013.2 33% 5701.2 5425.8 6424.4 5%

(which is defined over Fqk). In this case we see that 6 ≤ k ≤ 16 favor Miller
quadruple-and-add, whilst Miller octuple-and-add takes over for k > 16, where
it is clear that it is worthwhile spending many more operations in the base field
in order to avoid costly arithmetic in Fqk . For pairings on G2 × G1, we have
a consistent speed up across all embedding degrees that utilize sextic twists.
This is due to the complexity of the subfield operations in Fqe growing at the
same rate as the complexity of operations in Fqk . Table 2 indicates that Miller
double-and-add is still preferred for ate-like pairings using quartic twists, where
we could conclude that the gap between operations in Fqk/4 and those in Fqk

isn’t large enough to favor higher Miller tupling.
The large improvements in Table 2 certainly present a case for the investigation

of higher degree Miller tupling (n ≥ 4). At these levels however, the formulas
become quite complex and we have not reported any discoveries from these degrees
due to space considerations. Namely, the size of the 2n-tupling line in (2) grows
exponentially as n increases (i.e. the degree of the affine 2n-tupling line formula is
twice that of the 2n−1-tupling line). The fact that quadrupling was still preferred
over octupling in most cases seems to suggest that larger n might not result in
significant savings, at least for embedding degrees of this size.
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We conclude by acknowledging that (in optimal implementations) the
speedups in Table 2 may not be as large as we have claimed. In generating
the comparisons, we reported the multiplication of the intermediate Miller value
f by the Miller update g as a full extension field multiplication in Fpk , with
complexity M = mk = 3i · 5j for k = 2i · 3j . Although the value f is a general
full extension field element, g tends to be sparse, especially when sextic twists
are employed. For even degree twists, g takes the form g = g1α+g2β+g0, where
g ∈ Fpk , g0, g1, g2 ∈ Fpk/d and α and β are algebraic elements that do not affect
multiplication costs (cf. [17]). For sextic twists, a general element of Fpk would be
written as a polynomial over Fpe with six (rather than three) different coefficients
belonging to Fpk/6 . In this case, multiplying two general elements of Fpk would
clearly require more multiplications than performing a multiplication between a
general element (like f) and a sparse element (like g). Since the techniques in
this paper gain advantage by avoiding multiplications between f and g, reporting
a lesser complexity for this multiplication would decrease the relative speedup.
Nevertheless, Miller quadruple-and-add and Miller octuple-and-add still strongly
outperform the standard Miller double-and-add routine if we take mk 
 3i · 5j ,
particularly for pairings on G1 ×G2 with large embedding degrees.
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A Explicit Formulas

In each of the following four scenarios, we provide the sequence of operations
required to compute the first point doubling and the 2n-tupling line function,
followed by the additional formulae required to compute the subsequent point
doublings.

A.1 Quadrupling Formulas for y2 = x3 + b

A = Y
2
1 , B = Z

2
1 , C = A

2
, D = B

2
, E = (Y1 + Z1)2 − A − B, F = E

2
, G = X

2
1 , H = (X1 + Y1)2 − A − G,

I = (X1 + E)2 − F − G, J = (A + E)2 − C − F, K = (Y1 + B)2 − A − D, L = 27b
2

D, M = 9bF, N = A · C,

R = A · L, S = bB, T = S · L, U = S · C, X
D1 = 2H · (A − 9S), Y

D1 = 2C + M − 2L, Z
D1 = 4J,

L1,0 = −4Z1 · (5N + 5R − 3T − 75U), L2,0 = −3G · Z1 · (10C + 3M − 2L), L0,1 = 2I · (5C + L),

L1,1 = 2K · Y
D1 , L0,0 = 2X1 · (N + R − 3T − 75U).

F
∗ = L1,0 · xS + L2,0 · x

2
S + L0,1 · yS + L1,1 · xSyS + L0,0, A2 = Y

2
D1 , B2 = Z

2
D1 , C2 = 3bB2,

D2 = 2X
D1 · Y

D1 , E2 = (Y
D1 + Z

D1 )2 − A2 − B2, F2 = 3C2, X
D2 = D2 · (A2 − F2),

Y
D2 = (A2 + F2)2 − 12C

2
2 , Z

D2 = 4A2 · E2.

The above sequence of operations costs 14me + 16se + 4em1.

http://eprint.iacr.org/2008/292
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A.2 Quadrupling Formulas for y2 = x3 + ax

A = X
2
1 , B = Y

2
1 , C = Z

2
1 , D = aC, X

D1 = (A − D)2, E = 2(A + D)2 − X
D1 ,

F = ((A − D + Y1)2 − B − X
D1 ), Y

D1 = E · F, Z
D1 = 4B, G = A

2
, H = D

2
, I = G

2
, J = H

2
,

K = (X1 + Z1)2 − A − C, L = K
2

, M = (Y1 + K)2 − L − B, N = ((G + H)2 − I − J), R = aL, S = R · G,

T = R · H, L1,1 = 2C · Y
D1 , L0,1 = M · (5A · (G + 3H) + D · (13G − H)),

L2,0 = −C · (15I + 17S + 5N − 7T − J), L1,0 = −K · (5I + S + 19N + 5T − 3J),

L0,0 = A · (I − 5S − 13N − 5T + J). F
∗ = L1,0 · xS + L2,0 · x

2
S + L0,1 · yS + L1,1 · xSyS + L0,0, A2 = X

2
D1 ,

B2 = Y
2
D1 , C2 = Z

2
D1 , D2 = aC2, X

D2 = (A2 − D2)2, E2 = 2(A2 + D2)2 − X
D2 , Z

D2 = 4B2,

F2 = ((A2 − D2 + Y
D1 )2 − B2 − X

D2 , Y
D2 = E2 · F2.

The above sequence of operations costs 11me + 20se + 4em1.

A.3 Octupling Formulas for y2 = x3 + b

Y1,2 = Y
2
1 , Z1,s = Z

2
1 , Z1,2 = bZ1,s, Z1,s2 = Z

2
1,s A = X

2
1 , B = b

2
Z1,s2 C = (X1 + Y1)2 − A − Y1,2,

D = (Y1 + Z1)2 − Y1,2 − Z1,s, E = 9Z1,2, X
D1 = C · (Y1,2 − E), Y

D1 = (Y1,2 + E)2 − 108B,

Z
D1 = 4Y1,2 · D, Y1,4 = Y

2
1,2, Y1,8 = Y

2
1,4, Y1,16 = Y

2
1,8, Y1,6 = (Y1,2 + Y1,4)2 − Y1,4 − Y1,8,

Y1,10 = (Y1,8 + Y1,2)2 − Y1,16 − Y1,4, Y1,12 = (Y1,8 + Y1,4)2 − Y1,16 − Y1,8,

Y1,14 = (Y1,8 + Y1,6)2 − Y1,16 − 2Y1,12, Y1,18 = Y1,16 · Y1,2, Y1,20 = Y1,16 · Y1,4,

Y1,22 = Y1,16 · Y1,6, Z1,4 = B, Z1,8 = Z
2
1,4, Z1,16 = Z

2
1,8, Z1,6 = (Z1,2 + Z1,4)2 − Z1,4 − Z1,8,

Z1,10 = (Z1,8 + Z1,2)2 − Z1,16 − Z1,4, Z1,12 = (Z1,8 + Z1,4)2 − Z1,16 − Z1,8,

Z1,14 = (Z1,8 + Z1,6)2 − Z1,16 − 2Z1,12, Z1,18 = Z1,16 · Z1,2, Z1,20 = Z1,16 · Z1,4, Z1,22 = Z1,16 · Z1,6,

C
Y Z
0 = Y1,22, C

Y Z
1 = Y1,20 · Z1,2, C

Y Z
2 = Y1,18 · Z1,4, C

Y Z
3 = Y1,16 · Z1,6, C

Y Z
4 = Y1,14 · Z1,8,

C
Y Z
5 = Y1,12 · Z1,10, C

Y Z
6 = Y1,10 · Z1,12, C

Y Z
7 = Y1,8 · Z1,14, C

Y Z
8 = Y1,6 · Z1,16,

C
Y Z
9 = Y1,4 · Z1,18, C

Y Z
10 = Y1,2 · Z1,20, C

Y Z
11 = Z1,22, F = A · Z1,s, G = (Y1,2 + Z1,s)2 − Y1,4 − Z1,s2 ,

H = C · D, I = C
2

J = Y1,2 · (Y1,2 + 3Z1,2), K = D · Z1,s, L = C · Z1,s, M = A · D, N = Y1,2 · D,

L4,0 = −18F · (−9565938C
Y Z
10 + 95659380C

Y Z
9 − 101859525C

Y Z
8 + 14880348C

Y Z
7 + 57100383C

Y Z
6

− 52396146C
Y Z
5 + 14332383C

Y Z
4 − 4578120C

Y Z
3 − 513162C

Y Z
2 + 15732C

Y Z
1 + 7C

Y Z
0 ),

L3,0 = −12G · (−14348907CY Z
11 + 239148450CY Z

10 − 643043610CY Z
9 + 350928207CY Z

8 − 60407127CY Z
7

− 8575227CY Z
6 − 7841853CY Z

5 + 12011247CY Z
4 − 3847095CY Z

3 − 1325142CY Z
2 + 56238CY Z

1 + 35CY Z
0 ),

L2,0 = −27H · (−54206982C
Y Z
10 + 157660830C

Y Z
9 − 120282813C

Y Z
8 + 50368797C

Y Z
7 − 25747551C

Y Z
6

+ 10693215C
Y Z
5 − 3826845C

Y Z
4 + 777789C

Y Z
3 + 35682C

Y Z
2 + 4102C

Y Z
1 + 7C

Y Z
0 + 4782969C

Y Z
11 ),

L1,0 = −18I · (−4782969C
Y Z
11 + 28697814C

Y Z
10 − 129317310C

Y Z
9 + 130203045C

Y Z
8 − 48479229C

Y Z
7

+ 11593287C
Y Z
6 − 619407C

Y Z
5 + 1432485C

Y Z
4 − 883197C

Y Z
3 + 32814C

Y Z
2 − 1318C

Y Z
1 + C

Y Z
0 ),

L0,0 = 2J · (14348907C
Y Z
11 − 47829690C

Y Z
10 + 413461098C

Y Z
9 − 669084219C

Y Z
8 + 369351495C

Y Z
7

− 136370385C
Y Z
6 − 20484171C

Y Z
5 + 23839029C

Y Z
4 − 2583657C

Y Z
3 − 524898C

Y Z
2 − 6750C

Y Z
1 + C

Y Z
0 ),

L3,1 = 8K · (−28697814C
Y Z
10 + 95659380C

Y Z
9 − 61115715C

Y Z
8 + 6377292C

Y Z
7 + 19033461C

Y Z
6 − 14289858C

Y Z
5

+ 3307473C
Y Z
4 − 915624C

Y Z
3 − 90558C

Y Z
2 + 2484C

Y Z
1 + C

Y Z
0 ),

L2,1 = 216L · (3188646C
Y Z
10 − 7085880C

Y Z
9 + 4546773C

Y Z
8 − 3779136C

Y Z
7 + 5084775C

Y Z
6 − 3601260C

Y Z
5

+ 1192077C
Y Z
4 − 363744C

Y Z
3 − 56610C

Y Z
2 + 1960C

Y Z
1 + C

Y Z
0 ),

L1,1 = 72M · (−9565938C
Y Z
10 + 10628820C

Y Z
9 − 11160261C

Y Z
8 + 20549052C

Y Z
7 − 24360993C

Y Z
6

+ 11674206C
Y Z
5 − 2214945C

Y Z
4 + 434808C

Y Z
3 − 112266C

Y Z
2 + 8148C

Y Z
1 + 7C

Y Z
0 ),
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L0,1 = 8N · (−14348907CY Z
11 + 28697814CY Z

10 − 77590386CY Z
9 + 208856313CY Z

8 − 152208639CY Z
7

+ 87333471CY Z
6 − 19135521CY Z

5 + 543105CY Z
4 − 2329479CY Z

3 + 508302CY Z
2 − 4138CY Z

1 + 21CY Z
0 ),

F
∗ = α · (L4,0 · x

4
S + L3,0 · x

3
S + L2,0 · x

2
S + L1,0 · xS + L3,1 · x

3
SyS + L2,1 · x

2
SyS + L1,1 · xSyS + L0,0),

A2 = Y
2
D1 , B2 = Z

2
D1 , C2 = 3bB2, D2 = 2X

D1 · Y
D1 , E2 = (Y

D1 + Z
D1 )2 − A2 − B2, F2 = 3C2,

X
D2 = D2 · (A2 − F2), Y

D2 = (A2 + F2)2 − 12C
2
2 , Z

D2 = 4A2 · E2.

A3 = Y
2
D2 , B3 = Z

2
D2 , C3 = 3bB3, D3 = 2X

D2 · Y
D2 , E3 = (Y

D2 + Z
D2 )2 − A3 − B3, F3 = 3C3,

X
D3 = D3 · (A3 − F3), Y

D3 = (A3 + F3)2 − 12C
2
3 , Z

D3 = 4A3 · E3.

The above sequence of operations costs 40me + 32se + 8em1.

A.4 Octupling Formulas for y2 = x3 + ax

X1,2 = X
2
1 , B = Y

2
1 , Z1,s = Z

2
1 , Z1,2 = aZ1,s, X

D1 = (X1,2 − Z1,2)2, E = 2(X1,2 + Z1,2)2 − X
D1 ,

F = (X1,2 − Z1,2 + Y1)2 − B − X
D1 , Y

D1 = E · F, Z
D1 = 4B, Z1,s2 = Z

2
1,s, Z1,s4 = Z

2
1,s2 , X1,2 = X

2
1 ,

X1,4 = X
2
1,2, X1,8 = X

2
1,4, X1,16 = X

2
1,8, X1,32 = X

2
1,16, X1,6 = (X1,2 + X1,4)2 − X1,4 − X1,8,

X1,10 = (X1,2 + X1,8)2 − X1,4 − X1,16, X1,12 = (X1,4 + X1,8)2 − X1,8 − X1,16,

X1,14 = (X1,8 + X1,6)2 − X1,16 − 2X1,12, X1,18 = (X1,16 + X1,2)2 − X1,32 − X1,4,

X1,20 = (X1,16 + X1,4)2 − X1,32 − X1,8, X1,22 = (X1,16 + X1,6)2 − X1,32 − 2X1,12 ,

X1,24 = (X1,16 + X1,8)2 − X1,32 − X1,16, X1,26 = (X1,16 + X1,10)2 − X1,32 − 2X1,20,

X1,28 = (X1,16 + X1,12)2 − X1,32 − 2X1,24, X1,30 = (X1,16 + X1,14)2 − X1,32 − 4X1,28 , Z1,4 = a
2

Z1,s2 ,

Z1,8 = a
4

Z1,s4 , Z1,16 = Z
2
1,8, Z1,32 = Z

2
1,16, Z1,6 = (Z1,2 + Z1,4)2 − Z1,4 − Z1,8,

Z1,10 = (Z1,2 + Z1,8)2 − Z1,4 − Z1,16, Z1,12 = (Z1,4 + Z1,8)2 − Z1,8 − Z1,16,

Z1,14 = (Z1,8 + Z1,6)2 − Z1,16 − 2Z1,12 , Z1,18 = (Z1,16 + Z1,2)2 − Z1,32 − Z1,4,

Z1,20 = (Z1,16 + Z1,4)2 − Z1,32 − Z1,8, Z1,22 = (Z1,16 + Z1,6)2 − Z1,32 − 2Z1,12,

Z1,24 = (Z1,16 + Z1,8)2 − Z1,32 − Z1,16 , Z1,26 = (Z1,16 + Z1,10)2 − Z1,32 − 2Z1,20,

Z1,28 = (Z1,16 + Z1,12)2 − Z1,32 − 2Z1,24, Z1,30 = (Z1,16 + Z1,14)2 − Z1,32 − 4Z1,28, C
XZ
0 = X1,32,

C
XZ
1 = X1,30 · Z1,2, C

XZ
2 = X1,28 · Z1,4, C

XZ
3 = X1,26 · Z1,6, C

XZ
4 = X1,24 · Z1,8,

C
XZ
5 = X1,22 · Z1,10, C

XZ
6 = X1,20 · Z1,12, C

XZ
7 = X1,18 · Z1,14 , C

XZ
8 = X1,16 · Z1,16,

C
XZ
9 = X1,14 · Z1,18, C

XZ
10 = X1,12 · Z1,20, C

XZ
11 = X1,10 · Z1,22 , C

XZ
12 = X1,8 · Z1,24,

C
XZ
13 = X1,6 · Z1,26, C

XZ
14 = X1,4 · Z1,28, C

XZ
15 = X1,2 · Z1,30, C

XZ
16 = Z1,32,

G = (X1,2 + Z1,s2 )2 − X1,4 − Z1,s4 , H = (X1 + Z1)2 − X1,2 − Z1,s, II = H
2

, J = H · II,

K = (X1,4 + Z1,s)2 − X1,8 − Z1,s2 , L = (H + X1,4)2 − II − X1,8, M = (Y1 + Z1,s2 )2 − B − Z1,s4 ,

N = (Y1 + Z1,s)2 − B − Z1,s2 , R = H · N, S = II · Y1, T = (X1,2 + Y1)2 − X1,4 − B, U = T · H,

L4,0 = −2G · (63CXZ
0 + 546CXZ

1 − 17646CXZ
2 − 86058CXZ

3 − 944238CXZ
4 − 925278CXZ

5

− 4412322CXZ
6 − 2092730CXZ

7 − 318342CXZ
8 + 1595958CXZ

9 + 2710846CXZ
10 + 441618CXZ

11

+ 325074C
XZ
12 + 21510C

XZ
13 + 2930C

XZ
14 − 46C

XZ
15 + C

XZ
16 ),

L3,0 = −2J · (105C
XZ
0 + 756C

XZ
1 − 15990C

XZ
2 − 84112C

XZ
3 − 1082058C

XZ
4 − 610644C

XZ
5

− 2610994C
XZ
6 − 2003688C

XZ
7 − 13594266C

XZ
8 − 674868C

XZ
9 + 164566C

XZ
10 + 223168C

XZ
11

+ 232998C
XZ
12 − 492C

XZ
13 + 2226C

XZ
14 + 56C

XZ
15 − 7C

XZ
16 ),
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L2,0 = −4K · (189C
XZ
0 + 882C

XZ
1 + 6174C

XZ
2 − 26274C

XZ
3 − 1052730C

XZ
4 − 449598C

XZ
5

− 1280286C
XZ
6 − 1838850C

XZ
7 − 23063794C

XZ
8 − 1543290C

XZ
9 + 539634C

XZ
10 + 646922C

XZ
11

+ 1386918C
XZ
12 + 75846C

XZ
13 + 17262C

XZ
14 + 922C

XZ
15 − 35C

XZ
16 ),

L1,0 = 4L · (9C
XZ
0 − 3666C

XZ
2 + 2580C

XZ
3 + 263226C

XZ
4 + 328248C

XZ
5

+ 1359882C
XZ
6 + 1017948C

XZ
7 + 11998650C

XZ
8 + 1661904C

XZ
9 + 1958226C

XZ
10 + 178956C

XZ
11

− 315222C
XZ
12 − 39560C

XZ
13 − 4842C

XZ
14 − 252C

XZ
15 + 7C

XZ
16 ),

L0,0 = 2X1,6 · (CXZ
0 − 42C

XZ
1 − 834C

XZ
2 − 8702C

XZ
3 − 38898C

XZ
4 + 80886C

XZ
5

+ 654642C
XZ
6 + 450098C

XZ
7 + 3346502C

XZ
8 + 450098C

XZ
9 + 654642C

XZ
10 + 80886C

XZ
11

− 38898C
XZ
12 − 8702C

XZ
13 − 834C

XZ
14 − 42C

XZ
15 + C

XZ
16 ),

L3,1 = 2M · (8C
XZ
0 + 73C

XZ
1 − 2718C

XZ
2 − 12087C

XZ
3 − 110316C

XZ
4 − 143283C

XZ
5

− 603830C
XZ
6 − 159171C

XZ
7 + 1273368C

XZ
8 + 301915C

XZ
9 + 286566C

XZ
10 + 27579C

XZ
11

+ 48348C
XZ
12 + 1359C

XZ
13 − 146C

XZ
14 − C

XZ
15 ),

L2,1 = R · (216CXZ
0 + 1719CXZ

1 − 49530CXZ
2 − 225297CXZ

3 − 2336292CXZ
4 − 1899741CXZ

5

− 8313570CXZ
6 − 3992373CXZ

7 − 6366840CXZ
8 + 1434309CXZ

9 + 2776722CXZ
10 + 427917CXZ

11

+ 107508C
XZ
12 + 10017C

XZ
13 + 2122C

XZ
14 − 7C

XZ
15 ),

L1,1 = S · (504CXZ
0 + 3055CXZ

1 − 38146CXZ
2 − 226593CXZ

3 − 3358356CXZ
4 − 982485CXZ

5

− 3428010CXZ
6 − 4734229CXZ

7 − 46394904CXZ
8 − 2925939CXZ

9 − 560070CXZ
10 + 510845CXZ

11

+ 849828C
XZ
12 + 15897C

XZ
13 + 3570C

XZ
14 − 7C

XZ
15 ),

L0,1 = U · (168C
XZ
0 + 417C

XZ
1 + 26106C

XZ
2 + 19449C

XZ
3 − 808860C

XZ
4 − 981963C

XZ
5

− 3150686C
XZ
6 − 1673251C

XZ
7 − 16203528C

XZ
8 − 1636605C

XZ
9 − 889746C

XZ
10 + 58347C

XZ
11

+ 226252C
XZ
12 + 2919C

XZ
13 + 630C

XZ
14 − C

XZ
15 ).

F
∗ = α · (L4,0 · x

4
S + L3,0 · x

3
S + L2,0 · x

2
S + L1,0 · xS + L3,1 · x

3
SyS + L2,1 · x

2
SyS + L1,1 · xSyS + L0,0),

A2 = X
2
1 , B2 = Y

2
1 , C2 = Z

2
1 , D2 = aC2, X

D2 = (A2 − D2)2, E2 = 2(A2 + D2)2 − X
D2 , Z

D2 = 4B2,

F2 = ((A2 − D2 + Y1)2 − B2 − X
D2 , Y

D2 = E2 · F2.

A3 = X
2
1 , B3 = Y

2
1 , C3 = Z

2
1 , D3 = aC3, X

D3 = (A3 − D3)2, E3 = 2(A3 + D3)2 − X
D3 , Z

D3 = 4B3,

F3 = ((A3 − D3 + Y1)2 − B3 − X
D3 , Y

D3 = E3 · F3.

The above sequence of operations costs 32me + 57se + 8em1.

B Explicit Formulas

The following MAGMA code is a simple implementation of the Miller quadruple-
and-and and Miller octuple-and-add algorithms. We specify curves of the form
y2 = x3+b and condense the code due to space considerations. The main function
Miller2nTuple takes as inputs the two points R and S on E, the value r which
is the order of R, the two curve constants a and b, the integer n (for 2n-tupling)
and the full extension field K, so that R,S ∈ E(K). Miller2nTuple either calls
the function Quadruple or the function Octuple for n = 2 and n = 3 respectively
(the call to Octuple is currently commented out).
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function Dbl(X1,Y1,Z1, xQ, yQ,b) A:=X1^2; B:=Y1^2; C:=Z1^2; D:=3*b*C; E:=(X1+Y1)^2-A-B; F:=(Y1+Z1)^2-B-C; G:=3*D; X3:=E*(B-G);

Y3:=(B+G)^2-12*D^2; Z3:=4*B*F; L10:= 3*A; L01:=-F; L00:=D-B; F:=L10*xQ+L01*yQ+L00; return X3,Y3,Z3,F; end function;

function Add(X1, Y1, Z1, X2, Y2, Z2, xQ, yQ) c1:=X2-xQ; t1:=Z1*X2; t1:=X1-t1; t2:=Z1*Y2; t2:=Y1-t2; F:=c1*t2-t1*Y2+t1*yQ;

t3:=t1^2; X3:=t3*X1; t3:=t1*t3; t4:=t2^2; t4:=t4*Z1; t4:=t3+t4; t4:=t4-X3; t4:=t4-X3; X3:=X3-t4; t2:=t2*X3; Y3:=t3*Y1; Y3:=t2-Y3;

X3:=t1*t4; Z3:=Z1*t3; return X3, Y3, Z3, F; end function;

function Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b)

A:=Ty^2; B:=Tz^2; C:=A^2; D:=B^2; E:=(Ty+Tz)^2-A-B; F:=E^2; G:=Tx^2; H:=(Tx+Ty)^2-A-G; I:=(Tx+E)^2-F-G; J:=(A+E)^2-C-F;

K:=(Ty+B)^2-A-D;

L:=27*b^2*D; M:=9*b*F; N:=A*C; R:=A*L; S:=b*B; T:=S*L; U:=S*C; X3:=2*H*(A-9*S); Y3:=2*C+M-2*L; Z3:=4*J;

L10:=-4*Tz*(5*N+5*R-3*T-75*U);

L20:=-3*G*Tz*(10*C+3*M-2*L); L01:=2*I*(5*C+L); L11:=2*K*Y3; L00:=2*Tx*(N+R-3*T-75*U); F:= L10*Sx+L20*Sx2+L01*Sy+L11*SxSy+L00;

A2:=Y3^2;

B2:=Z3^2; C2:=3*b*B2; D2:= 2*X3*Y3; E2:=(Y3+Z3)^2-A2-B2; F2:=3*C2; X3:= D2*(A2-F2); Y3:=(A2+F2)^2-12*C2^2; Z3:=4*A2*E2;

return X3,Y3,Z3,F;

end function;

function Octuple(X1, Y1, Z1, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b)

Y12:=Y1^2; Z1s:=Z1^2; Z12:=b*Z1s; A:=X1^2; B:=3*Z12; C:=(X1+Y1)^2-A-Y12; DD:=(Y1+Z1)^2-Y12-Z1s; E:=3*B; X3:=C*(Y12-E);

Y3:=(Y12+E)^2-12*B^2; Z3:=4*Y12*DD; Xt,Yt,Zt:=Dbl(X1,Y1,Z1,Sx,Sy,b); Z14s:=Z1s^2; Y14:=Y12^2; Y18:=Y14^2; Y116:=Y18^2;

Y16:=(Y12+Y14)^2-Y14-Y18; Y110:=(Y18+Y12)^2-Y116-Y14; Y112:=(Y18+Y14)^2-Y116-Y18; Y114:= (Y18+Y16)^2-Y116-2*Y112; Y118:=Y116*Y12;

Y120:=Y116*Y14; Y122:=Y116*Y16; Z14:=b^2*Z14s; Z18:=Z14^2; Z116:=Z18^2; Z16:=(Z12+Z14)^2-Z14-Z18; Z110:=(Z18+Z12)^2-Z116-Z14;

Z112:=(Z18+Z14)^2-Z116-Z18; Z114:= (Z18+Z16)^2-Z116-2*Z112; Z118:=Z116*Z12; Z120:=Z116*Z14; Z122:=Z116*Z16; YZ0:=Y122;

YZ1:=Y120*Z12; YZ2:=Y118*Z14; YZ3:=Y116*Z16; YZ4:=Y114*Z18; YZ5:=Y112*Z110; YZ6:=Y110*Z112; YZ7:=Y18*Z114; YZ8:=Y16*Z116;

YZ9:=Y14*Z118; YZ10:=Y12*Z120; YZ11:=Z122; FF:=A*Z1s; G:=(Y12+Z1s)^2-Y14-Z14s; H:=C*DD; II:=C^2; J:=Y12*(Y12+3*Z12); K:=DD*Z1s;

L:=C*Z1s; M:=A*DD; N:=Y12*DD;

F40 := -18*FF*(-9565938*YZ10+95659380*YZ9-101859525*YZ8+14880348*YZ7+57100383*YZ6-52396146*YZ5+14332383*YZ4-4578120*YZ3-513162*YZ2

+15732*YZ1+7*YZ0);

F30:=-12*G*(-14348907*YZ11+239148450*YZ10-643043610*YZ9+350928207*YZ8-60407127*YZ7-8575227*YZ6-7841853*YZ5 +12011247*YZ4

-3847095*YZ3-1325142*YZ2+56238*YZ1+35*YZ0);

F20:=-27*H*(-54206982*YZ10+157660830*YZ9-120282813*YZ8+50368797*YZ7

-25747551*YZ6+10693215*YZ5 -3826845*YZ4+777789*YZ3+35682*YZ2+4102*YZ1+7*YZ0+4782969*YZ11);

F10 := -18*II*(-4782969*YZ11+ 28697814*YZ10 -129317310*YZ9+130203045*YZ8-48479229*YZ7+11593287*YZ6-619407*YZ5+1432485*YZ4

-883197*YZ3+32814*YZ2-1318*YZ1+YZ0);

F00 :=2*J*(YZ0-6750*YZ1-524898*YZ2-2583657*YZ3 +23839029*YZ4-20484171*YZ5-136370385*YZ6+369351495*YZ7-669084219*YZ8+413461098*YZ9

-47829690*YZ10+14348907*YZ11);

F31 := 8*K*(2484*YZ1-915624*YZ3-90558*YZ2-28697814*YZ10+YZ0+95659380*YZ9- 61115715*YZ8+6377292*YZ7 +19033461*YZ6 - 14289858*YZ5

+3307473*YZ4);

F21 := 216*L*(YZ0+1960*YZ1-56610*YZ2-363744*YZ3+1192077*YZ4-3601260*YZ5 +5084775*YZ6 -3779136*YZ7 +4546773*YZ8 -7085880*YZ9

+3188646*YZ10);

F11 := 72*M*(8148*YZ1-112266*YZ2+434808*YZ3-2214945*YZ4 +11674206*YZ5-24360993*YZ6

+20549052*YZ7-11160261*YZ8+10628820*YZ9-9565938*YZ10+7*YZ0); F01 :=8*N*(-14348907*YZ11+28697814*YZ10-77590386*YZ9+208856313*YZ8

-152208639*YZ7+87333471*YZ6-19135521*YZ5+543105*YZ4-2329479*YZ3 +508302*YZ2-4138*YZ1+21*YZ0);

F:=F01*Sy+F11*SxSy+F21*Sx2Sy+F31*Sx3Sy+F00+F10*Sx+F20*Sx2+F30*Sx3+F40*Sx4; Y32:=Y3^2; Z3s:=Z3^2;

Z32:=b*Z3s; A:=X3^2; B:=3*Z32;

C:=(X3+Y3)^2-A-Y32; DD:=(Y3+Z3)^2-Y32-Z3s; E:=3*B; X3:=C*(Y32-E); Y3:=(Y32+E)^2-12*B^2; Z3:=4*Y32*DD; Y32:=Y3^2; Z3s:=Z3^2;

Z32:=b*Z3s; A:=X3^2; B:=3*Z32; C:=(X3+Y3)^2-A-Y32; DD:=(Y3+Z3)^2-Y32-Z3s; E:=3*B; X3:=C*(Y32-E); Y3:=(Y32+E)^2-12*B^2;

Z3:=4*Y32*DD;

return X3,Y3,Z3,F;

end function;

function Miller2nTuple(R, S, r, a, b, n, K)

Rx:=R[1]; Ry:=R[2]; Rz:=R[3];

Sx:=S[1]; Sy:=S[2]; Sx2:=Sx^2; Sx3:=Sx^3; Sx4:=Sx^4; SxSy:=Sx*Sy; Sx2Sy:=Sx2*Sy; Sx3Sy:=Sx3*Sy;

Rmultiplesmatrix:=[[Rx, Ry, Rz]];

for i:=2 to (2^n-1) by 1 do

iR:=i*R;

Rmultiplesmatrix:=Append(Rmultiplesmatrix, [iR[1], iR[2], iR[3]]);

end for;

fRaddvec:=[K!1]; addproduct:=fRaddvec[1];

ptx, pty, ptz, F := Dbl(Rx,Ry,Rz,Sx,Sy,b);

addproduct*:= F;

fRaddvec:=Append(fRaddvec, addproduct);

for i:=3 to (2^n-1) by 1 do

ptx, pty, ptz, faddvalue := Add(ptx, pty, ptz, Rx, Ry, Rz, Sx, Sy);

addproduct*:=faddvalue;

fRaddvec:=Append(fRaddvec, addproduct);

end for;

Tx:=Rx; Ty:=Ry; Tz:=Rz;

f1 := 1; B := IntegerToSequence(r,2^n);

if B[#B] ne 1 then

Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[#B]][1], Rmultiplesmatrix[B[#B]][2], Rmultiplesmatrix[B[#B]][3], Sx, Sy);

F:=F*fRaddvec[B[#B]];

f1:=f1*F;

end if;

for i:=#B-1 to 1 by -1 do

Tx, Ty, Tz, F:=Quadruple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, b);

//Tx, Ty, Tz, F:=Octuple(Tx, Ty, Tz, Sx, Sy, Sx2, SxSy, Sx3, Sx4, Sx2Sy, Sx3Sy, b);

f1:=f1^(2^n)*F;

if B[i] ne 0 then

Tx, Ty, Tz, F:= Add(Tx, Ty, Tz, Rmultiplesmatrix[B[i]][1], Rmultiplesmatrix[B[i]][2],

Rmultiplesmatrix[B[i]][3], Sx, Sy);

F:=F*fRaddvec[B[i]];

f1:=f1*F;

end if;

end for;

return f1;

end function;
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1 Introduction

How long does it take to solve the elliptic curve discrete logarithm problem
(ECDLP) on a given elliptic curve using given hardware? This question was ad-
dressed recently for the Koblitz curve defined in the Certicom challenge ECC2K-
130 for a variety of hardware platforms [2]. This paper zooms into Section 6 of [2]
and describes the implementation of the parallel Pollard rho algorithm [17] for
the Synergistic Processor Elements of the Cell Broadband Engine Architecture
(CBEA) in detail. We discuss our choice to use the technique of bitslicing [7]
to accelerate the underlying binary-field arithmetic operations by comparing a
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Many optimization techniques for the non-bitsliced version do not require
independent parallel computations (batching) and are therefore not only relevant
in the context of cryptanalytical applications but can also be used to accelerate
cryptographic schemes in practice.

To the best of our knowledge this is the first work to describe an implemen-
tation of high-speed binary-field arithmetic for the CBEA. We plan to put all
code described in this paper into the public domain to maximize reusability of
our results.

Organization of the paper. In Section 2 we describe the features of the CBEA
which are relevant to this paper. To make this paper self contained we briefly
recall the parallel version of Pollard’s rho algorithm and summarize the choice
of the iteration function in Section 3. Section 4 discusses different approaches
to a high-speed implementation of the iteration function on the CBEA. In Sec-
tions 5 and 6 we describe the non-bitsliced and the bitsliced implementation,
respectively. We summarize the results and conclude the paper in Section 7.

2 A Brief Description of the Cell Processor

The Cell Broadband Engine Architecture [12] was jointly developed by Sony,
Toshiba and IBM. Currently, there are two implementations of this architecture,
the Cell Broadband Engine (Cell/B.E.) and the PowerXCell 8i. The PowerX-
Cell 8i is a derivative of the Cell/B.E. and offers enhanced double-precision
floating-point capabilities and a different memory interface. Both implementa-
tions consist of a central Power Processor Element (PPE), based on the Power 5
architecture and 8 Synergistic Processor Elements (SPEs) which are optimized
for high-throughput vector instructions. All units are linked by a high-bandwidth
(204 GB/s) ring bus.

The Cell/B.E. can be found in the IBM blade servers of the QS20 and QS21
series, in the Sony Playstation 3, and several acceleration cards like the Cell
Accelerator Board from Mercury Computer Systems. The PowerXCell 8i can be
found in the IBM QS22 servers. Note that the Playstation 3 only makes 6 SPEs
available to the programmer.

The code described in this paper runs on the SPEs directly and does not inter-
act with the PPE or other SPEs during core computation. We do not take advan-
tage of the extended capabilities of the PowerXCell 8i. In the remainder of this
section we will describe only those features of the SPE which are of interest for
our implementation and are common to both the Cell/B.E. and the PowerXCell
8i. Therefore we may address the Cell/B.E. and the PowerXCell 8i jointly as the
Cell processor or Cell CPU. Further information on the current implementations
of the Cell Broadband Engine Architecture can be found in [14].

Each SPE consists of a Synergistic Processor Unit (SPU) as its computation
unit and a Memory Flow Controller (MFC) which grants access to the ring bus
and therefore in particular to main memory.
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2.1 SPU – Architecture and Instruction Set

The SPU is composed of three parts: The Synergistic Execution Unit (SXU) is
the computational core of each SPE. It is fed with data either by the SPU Regis-
ter File Unit (RFU) or by the Local Storage (LS) that also feeds the instructions
into the SXU.

The RFU contains 128 general-purpose registers with a width of 128 bits
each. The SXU has fast and direct access to the LS but the LS is limited to
only 256 KB. The SXU does not have transparent access to main memory; all
data must be transferred from main memory to LS and vice versa explicitly by
instructing the DMA controller of the MFC. Due to the relatively small size
of the LS and the lack of transparent access to main memory, the programmer
has to ensure that instructions and the active data set fit into the LS and are
transferred between main memory and LS accordingly.

Dual-issuing. The SXU has a pure RISC-like SIMD instruction set encoded into
32-bit instruction words; instructions are issued strictly in order to two pipelines
called odd and even pipeline, which execute disjoint subsets of the instruction
set. The even pipeline handles floating-point operations, integer arithmetic, log-
ical instructions, and word SIMD shifts and rotates. The odd pipeline executes
byte-granularity shift, rotate-mask, and shuffle operations on quadwords, and
branches as well as loads and stores.

Up to two instructions can be issued each cycle, one in each pipeline, given that
alignment rules are respected (i.e., the instruction for the even pipeline is aligned
to a multiple of 8 bytes and the instruction for the odd pipeline is aligned to a
multiple of 8 bytes plus an offset of 4 bytes), that there are no interdependencies
to pending previous instructions for either of the two instructions, and that there
are in fact at least two instructions available for execution. Therefore, a careful
scheduling and alignment of instructions is necessary to achieve peak performance.

2.2 MFC – Accessing Main Memory

As mentioned before, the MFC is the gate for the SPU to reach main memory as
well as other processor elements. Memory transfer is initiated by the SPU and
afterwards executed by the DMA controller of the MFC in parallel to ongoing
instruction execution by the SPU.

Since data transfers are executed in background by the DMA controller, the
SPU needs feedback about when a previously initiated transfer has finished.
Therefore, each transfer is tagged with one of 32 tags. Later on, the SPU can
probe either in a blocking or non-blocking way if a subset of tags has any out-
standing transactions. The programmer should avoid to read data buffers for
incoming data or to write to buffers for outgoing data before checking the state
of the corresponding tag to ensure deterministic program behaviour.

2.3 LS – Accessing Local Storage

The LS is single ported and has a line interface of 128 bytes width for DMA
transfers and instruction fetch as well as a quadword interface of 16 bytes width
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for SPU load and store. Since there is only one port, the access to the LS is
arbitrated using the following priorities:

1. DMA transfers (at most every 8 cycles),
2. SPU load/store,
3. instruction fetch.

Instructions are fetched in lines of 128 bytes, i.e., 32 instructions. In the case
that all instructions can be dual issued, new instructions need to be fetched
every 16 cycles. Since SPU loads/stores have precedence over instruction fetch,
in case of high memory access there should be an lnop instruction for the odd
pipeline every 16 cycles to avoid instruction starvation. If there are ongoing DMA
transfers an hbrp instruction should be used giving instruction fetch explicit
precedence over DMA transfers.

2.4 Determining Performance

The CBEA offers two ways to determine performance of SPU code: performance
can either be statically analysed or measured during runtime.

Static analysis. Since all instructions are executed in order and dual-issue
rules only depend on latencies and alignment, it is possible to determine the
performance of code through static analysis. The “IBM SDK for Multicore Ac-
celeration” [13] contains the tool spu timing which performs this static analysis
and gives quite accurate cycle counts.

This tool has the disadvantage that it assumes fully linear execution and
does not model instruction fetch. Therefore the results reported by spu timing
are overly optimistic for code that contains loops or a high number of memory
accesses. Furthermore, spu timing can only be used inside a function. Function
calls—in particular calling overhead on the caller side—can not be analyzed.

Measurement during runtime. Another way to determine performance is
through an integrated decrementer (see [14, Sec. 13.3.3]). Measuring cycles while
running the code captures all effects on performance in contrast to static
code analysis.

The disadvantage of the decrementer is that it is updated with the frequency
of the so-called timebase of the processor. The timebase is usually much smaller
than the processor frequency. The Cell/B.E. in the Playstation 3 (rev. 5.1) for
example changes the decrementer only every 40 cycles, the Cell/B.E. in the
QS21 blades even only every 120 cycles. Small sections of code can thus only be
measured on average by running the code several times repeatedly.

For cycle counts we report in this paper we will always state whether the
count was obtained using spu timing, or measured by running the code.

3 Preliminaries

The main task on solving the Certicom challenge ECC2K-130 is to compute
a specific discrete logarithm on a given elliptic curve. Up to now, the most
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efficient algorithm known to solve this challenge is a parallel version of Pollard’s
rho algorithm running concurrently on a big number of machines.

In this section we give the mathematical and algorithmic background neces-
sary to understand the implementations described in this paper. We will briefly
explain the parallel version of Pollard’s rho algorithm, review the iteration func-
tion described in [2], and introduce the general structure of our implementation.

3.1 The ECDLP and Parallel Pollard rho

The security of elliptic-curve cryptography relies on the believed hardness of the
elliptic curve discrete logarithm problem (ECDLP): Given an elliptic curve E
over a finite field Fq and two points P ∈ E(Fq) and Q ∈ 〈P 〉, find an integer k,
such that Q = [k]P . Here, [k] denotes scalar multiplication with k.

If the order of 〈P 〉 is prime, the best-known algorithm to solve this problem
(for most elliptic curves) is Pollard’s rho algorithm [17]. In the following we
describe the parallelized collision search as implemented in [2]. See [2] for credits
and further discussion.

The algorithm uses a pseudo-random iteration function f : 〈P 〉 → 〈P 〉 and de-
clares a subset of 〈P 〉 as distinguished points. The parallelization is implemented
in a client-server approach in which each client node generates an input point
with known linear combination in P and Q, i.e. R0 = [a0]P + [b0]Q with a0 and
b0 generated from a random seed s. It then iteratively computes Ri+1 = f(Ri)
until the iteration reaches a distinguished point Rd. The random seed s and
the distinguished point are then sent to a central server, the client continues by
generating a new random input point.

The server searches for a collision in all distinguished points sent by the
clients, i.e. two different input points reaching the same distinguished point Rd.
The iteration function is constructed in such a way that the server can compute
ad and bd such that Rd = adP + bdQ from a0 and b0 (which are derived from
s). If two different input points yield a collision at a distinguished point Rd, the
server computes the two (most probably different) linear combinations of the
point Rd in P and Q: Rd = [ad]P + [bd]Q and Rd = [cd]P + [dd]Q. The solution
to the discrete logarithm of Q to the base P is then

Q =
[
ad − cd

bd − dd

]
P.

The expected number of distinguished points required to find a collision depends
on the density of distinguished points in 〈P 〉. The expected amount of iterations

of f on all nodes in total is approximately
√

π|〈P 〉|
2 assuming the iteration func-

tion f is a random mapping of size |〈P 〉| (see [11]).

3.2 ECC2K-130 and Our Choice of the Iteration Function

The specific ECDLP addressed in this paper is given in the Certicom challenge
list [9] as challenge ECC2K-130. The given elliptic curve is a Koblitz curve
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E : y2 + xy = x3 + 1 over the finite field F2131 ; the two given points P and Q
have order l, where l is a 129-bit prime. The challenge is to find an integer k such
that Q = [k]P . Here we will only give the definition of distinguished points and
the iteration function used in our implementation. For a detailed description please
refer to [2], for a discussion and comparison to other possible choices also see [1]:

We define a point Ri as distinguished if the Hamming weight of the x-
coordinate in normal basis representation HW(xRi) is smaller than or equal
to 34. Our iteration function is defined as

Ri+1 = f(Ri) = σj(Ri) + Ri,

where σ is the Frobenius endomorphism and

j = ((HW(xRi)/2) (mod 8)) + 3.

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with some scalar
r. For an input Ri = aiP + biQ the output of f will be Ri+1 = (rjai + ai)P +
(rjbi + bi)Q. When a collision has been detected, it is possible to recompute the
two according iterations and update the coefficients ai and bi following this rule.
This gives the coefficients to compute the discrete logarithm.

3.3 Computing the Iteration Function

Computing the iteration function requires one application of σj and one elliptic-
curve addition. Furthermore we need to convert the x-coordinate of the resulting
point to normal basis, if a polynomial-basis representation is used, and check
whether it is a distinguished point.

Many applications use so-called inversion-free coordinate systems to represent
points on elliptic curves (see, e.g., [10, Sec. 3.2]) to speed up the computation of
point multiplications. These coordinate systems use a redundant representation
for points. Identifying distinguished points requires a unique representation, this
is why we use the affine Weierstrass representation to represent points on the el-
liptic curve. Elliptic-curve addition in affine Weierstrass coordinates on the given
elliptic curve requires 2 multiplications, one squaring, 6 additions, and 1 inver-
sion in F2131 (see, e.g. [6]). Application of σj means computing the 2j-th powers
of the x- and the y-coordinate. In total, one iteration takes 2 multiplications, 1
squaring, 2 computations of the form r2m

, with 3 ≤ m ≤ 10, 1 inversion, 1 con-
version to normal-basis, and one Hamming-weight computation. In the following
we will refer to computations of the form r2m

as m-squaring.

A note on the inversion. To speed up the relatively costly inversion we can
batch several inversions and use Montgomery’s trick [16]: m batched inversions
can be computed with 3(m− 1) multiplications and one inversion. For example,
m = 64 batched elliptic curve additions take 2 · 64 + 3 · (64− 1) = 317 multipli-
cations, 64 squarings and 1 inversion. This corresponds to 4.953 multiplications,
1 squaring and 0.016 inversions for a single elliptic-curve addition.
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4 Approaches for Implementing the Iteration Function

In the following we discuss the two main design decisions for the implementation
of the iteration function: 1.) Is it faster to use bitslicing or a standard approach
and 2.) is it better to use normal-basis or polynomial-basis representation for
elements of the finite field.

4.1 Bitsliced or Not Bitsliced?

Binary-field arithmetic was commonly believed to be more efficient than prime-
field arithmetic for hardware but less efficient for software implementations. This
is due to the fact that most common microprocessors spend high effort on ac-
celerating integer- and floating-point multiplications. Prime-field arithmetic can
benefit from those high-speed multiplication algorithms, binary-field arithmetic
cannot. However, Bernstein showed recently that for batched multiplications, bi-
nary fields can provide better performance than prime fields also in software [3].
In his implementation of batched Edwards-curve arithmetic the bitslicing tech-
nique [7] is used to compute (at least) 128 binary-field multiplications in parallel
on an Intel Core 2 processor.

Bitslicing is a matter of transposition: Instead of storing the coefficients of
an element of F2131 as sequence of 131 bits in 2 128-bit registers, we can use
131 registers to store the 131 coefficients of an element, one register per bit.
Algorithms are then implemented by simulating a hardware implementation –
gates become bit operations such as AND and XOR. For one element in 131 registers
this is highly inefficient, it may become efficient if all 128 bits of the registers
are used for 128 independent (batched) operations. The lack of registers—most
architectures including the SPU do not support 131 registers—can easily be
compensated for by spills, i.e. storing currently unused values on the stack and
loading them when they are required.

The results of [3] show that for batched binary-field arithmetic on the Intel
Core 2 processor bitsliced implementations are faster than non-bitsliced imple-
mentations. However, the question whether this is also the case on the SPU of
the Cell processor is hard to answer a priori for several reasons:

– The Intel Core 2 can issue up to 3 bit operations on 128-bit registers per
cycle, an obvious lower bound on the cycles per iteration is thus given as the
number of bit operations per cycle divided by 3. The SPU can issue only one
bit operation per cycle, the lower bound on the performance is thus three
times as high.

– Bernstein in [3, Sec. 3] describes that the critical bottleneck for batched
multiplications are in fact loads instead of bit operations. The Core 2 has
only 16 architectural 128-bit registers and can do only 1 load per cycle, i.e.
one load per 3 bit operations.

The SPUs have 128 architectural 128-bit registers and can do one load per
bit operation. However, unlike on the Core 2, the load operations have to com-
pete with store operations. Due to the higher number of registers and the lower
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arithmetic/load ratio it seems easier to come close to the lower bound of cycles
imposed by the number of bit operations on the SPUs than on the Core 2. How
much easier and how close exactly was very hard to foresee.

– Bitsliced operations rely heavily on parallelism and therefore require much
more storage for inputs, outputs and intermediate values. As described in
Section 2, all data of the active set of variables has to fit into 256 KB of
storage alongside the code. In order to make code run fast on the SPU
which executes all instructions in order, optimization techniques such as
loop unrolling and function inlining are crucial; these techniques increase
the code size and make it harder to fit all data into the local storage.

– Montgomery inversions require another level of parallelism, inverting for ex-
ample 64 values in parallel requires 64 ·128 field elements (131 KB) of inputs
when using bitsliced representation. This amount of data can only be han-
dled using DMA transfers between the main memory and the local storage.
In order to not suffer from performance penalties due to these transfers, they
have to be carefully interleaved with computations.

We decided to evaluate which approach is best by implementing both, the bit-
sliced and the non-bitsliced version, independently by two groups in a friendly
competition.

4.2 Polynomial or Normal Basis?

Another choice to make for both bitsliced and non-bitsliced implementations
is the representation of elements of F2131 : Polynomial bases are of the form
(1, z, z2, z3, . . . , z130), so the basis elements are increasing powers of some element
z ∈ F2131 . Normal bases are of the form (α, α2, α4, . . . , α2130

), so each basis
element is the square of the previous one.

Performing arithmetic in normal-basis representation has the advantage that
squaring elements is just a rotation of coefficients. Furthermore we do not need
any basis transformation before computing the Hamming weight in normal basis.
On the other hand, implementations of multiplications in normal basis are widely
believed to be much less efficient than those of multiplications in polynomial basis.

In [19], von zur Gathen, Shokrollahi and Shokrollahi proposed an efficient
method to multiply elements in type-2 normal basis representation. Here we
review the multiplier shown in [2]; see [2] for further discussion and history:

An element of F2131 in type-2 normal basis representation is of the form

f0(ζ + ζ−1) + f1(ζ2 + ζ−2) + f2(ζ4 + ζ−4) + · · ·+ f130(ζ2130
+ ζ−2130

),

where ζ is a 263rd root of unity in F2131 . This representation is first permuted
to obtain coefficients of

ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ131 + ζ−131,

and then transformed to coefficients in polynomial basis

ζ + ζ−1, (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)131.
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Applying this transform to both inputs allows us to use a fast polynomial-basis
multiplier to retrieve coefficients of

(ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ + ζ−1)262.

Applying the inverse of the input transformation yields coefficients of

ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ262 + ζ−262.

Conversion to permuted normal basis just requires adding appropriate coeffi-
cients, for example ζ200 is the same as ζ−63 and thus ζ200 + ζ−200 is the same
as ζ63 + ζ−63. To obtain the normal-basis representation we only have to apply
the inverse of the input permutation.

This multiplication still incurs overhead compared to modular multiplication
in polynomial basis, but it needs careful analysis to understand whether this
overhead is compensated for by the above-described benefits of normal-basis
representation. Observe that all permutations involved in this method are free
for hardware and bitsliced implementations while they are quite expensive in
non-bitsliced software implementations.

5 The Non-bitsliced Implementation

For the non-bitsliced implementation, we decided not to implement arithmetic
in a normal-basis representation. The main reason is that the required permu-
tations, splitting and reversing of the bits, as required for the conversions in
the Shokrollahi multiplication algorithm (see Section 4.2) are too expensive to
outweigh the gain of having no basis change and faster m-squarings.

The non-bitsliced implementation uses a polynomial-basis representation of
elements in F2131 ∼= F2[z]/(z131+z13+z2+z+1). Field elements in this basis can
be represented using 131 bits, on the SPE architecture this is achieved by using
two 128-bit registers, one containing the three most significant bits. As described
in Section 3 the functionality of addition, multiplication, squaring and inversion
are required to implement the iteration function. Since the distinguished-point
property is defined on points in normal basis, a basis change from polynomial
to normal basis is required as well. In this section the various implementation
decisions for the different (field-arithmetic) operations are explained.

The implementation of an addition is trivial and requires two XOR instructions.
These are instructions going to the even pipeline; each of them can be dispatched
together with one instruction going to the odd pipeline. The computation of the
Hamming weight is implemented using the CNTB instruction, which counts the
number of ones per byte for all 16 bytes of a 128-bit vector concurrently, and the
SUMB instruction, which sums the four bytes of each of the four 32-bit parts of
the 128-bit input. The computation of the Hamming weight requires four cycles
(measured).

In order to eliminate (or reduce) stalls due to data dependencies we interleave
different iterations. Our experiments show that interleaving a maximum of eight
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Algorithm 1. The reduction algorithm for the ECC2K-130 challenge used in the
non-bitsliced version. The algorithm is optimized for architectures with 128-bit
registers.
Input: C = A ·B = a+b ·z128 +c ·z256 , such that A, B ∈ F2[z]/(z131 +z13 +z2 +z+1)

and a, b, c are 128-bit strings representing polynomial values.
Output: D = C mod (z131 + z13 + z2 + z + 1).
1: c ← (c � 109) + (b � 19)
2: b ← b AND (219 − 1)
3: c ← c + (c � 1) + (c � 2) + (c � 13)
4: a ← a + (c � 16)
5: b ← b + (c � 112)
6: x ← (b � 3)
7: b ← b AND 7
8: a ← a + x + (x � 1) + (x � 2) + (x � 13)
9: return (D = a + b · z128)

iterations maximizes performance. We process 32 of such batches in parallel,
computing on 256 iterations in order to reduce the cost of the inversion (see
Section 3). All 256 points are converted to normal basis, we keep track of the
lowest Hamming weight of the x-coordinate among these points. This can be
done in a branch-free way eliminating the need for 256 expensive branches.
Then, before performing the simultaneous inversion, only one branch is used to
check if one of the points is distinguished. If one or more distinguished points
are found, we have to process all 256 points again to determine and output the
distinguished points. Note that this happens only very infrequently.

5.1 Multiplication

If two polynomials A,B ∈ F2[z]/(z131 + z13 + z2 + z + 1) are multiplied in
a straight-forward way using 4-bit lookup tables, the table entries would be
134-bit wide. Storing and accumulating these entries would require operations
(SHIFT and XOR) on two 128-bit limbs. In order to reduce the number of required
operations we split A as

A = Al + Ah · z128 = Ãl + Ãh · z121.

This allows us to build a 4-bit lookup table from Ãl whose entries fit in 124 bits
(a single 128-bit limb). Furthermore, the product of Ãl and an 8-bit part of B
fits in a single 128-bit limb. While accumulating such intermediate results we
only need byte-shift instructions. In this way we calculate the product Ãl ·B.

For calculating Ãh ·B we split B as

B = Bl + Bh · z128 = B̃l + B̃h · z15.



ECC2K-130 on Cell CPUs 235

Then we calculate Ãh · B̃l and Ãh · B̃h using two 2-bit lookup tables from B̃l and
B̃h. We choose to split 15 bits from B in order to facilitate the accumulation of
partial products in

C = A · B = Ãl ·Bl + Ãl ·Bh · z128 + Ãh · B̃l · z121 + Ãh · B̃h · z136

since 121 + 15 = 136 which is divisible by 8.
The reduction can be done efficiently by taking the form of the irreducible

polynomial into account. Given the result C from a multiplication or squar-
ing, C = A · B = CH · z131 + CL, the reduction is calculated using the trivial
observation that

CH · z131 + CL ≡ CL + (z13 + z2 + z1 + 1)CH mod (z131 + z13 + z2 + z + 1).

Algorithm 1 shows the reduction algorithm optimized for architectures which
can operate on 128-bit operands. This reduction requires 10 XOR, 11 SHIFT and
2 AND instructions. On the SPU architecture the actual number of required SHIFT
instructions is 15 since the bit-shifting instructions only support values up to 7.
Larger bit-shifts are implemented combining both a byte- and a bit-shift instruc-
tion. When interleaving two independent modular multiplication computations,
parts of the reduction and the multiplication of both calculations are interleaved
to reduce latencies, save some instructions and take full advantage of the avail-
able two pipelines.

When doing more than one multiplication containing the same operand, we
can save some operations. By doing the simultaneous inversion in a binary-tree
style we often have to compute the products A · B and A′ · B. In this case, we
can reuse the 2-bit lookup tables from B̃l and B̃h. We can also save operations
in the address generation of the products Ãl · Bl, Ãl · Bh, Ã′

l · Bl and Ã′
l · Bh.

Using these optimizations in the simultaneous inversion a single multiplication
takes 149 cycles (spu timing) averaged over the five multiplications required
per iteration.

5.2 Squaring

The squaring is implemented by inserting a zero bit between each two consecutive
bits of the binary representation of the input. This can be efficiently implemented
using the SHUFFLE and SHIFT instructions. The reduction is performed according
to Algorithm 1. Just as with the multiplication two squaring computations are
interleaved to reduce latencies. A single squaring takes 34 cycles (measured).

5.3 Basis Conversion and m-Squaring

The repeated Frobenius map σj requires at least 6 and at most 20 squarings,
both the x- and y-coordinate of the current point need at most 3 + 7 = 10
squarings each (see Section 3), when computed as a series of single squarings.
This can be computed in at most 20 × 34 = 680 cycles ignoring loop overhead
using our single squaring implementation.
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To reduce this number a time-memory tradeoff technique is used. We precom-
pute all values

T [k][j][i0 + 2i1 + 4i2 + 8i3] = (i0 · z4j + i1 · z4j+1 + i2 · z4j+2 + i3 · z4j+3)2
3+k

for 0 ≤ k ≤ 7, 0 ≤ j ≤ 32, 0 ≤ i0, i1, i2, i3 ≤ 1. These precomputed values are
stored in two tables, for both limbs needed to represent the number, of 8×33×16
elements of 128-bit each. This table requires 132 KB which is more than half of
the available space of the local store.

Given a coordinate a of an elliptic-curve point and an integer 0 ≤ m ≤ 7 the
computation of the m-squaring a23+m

can be computed as

32∑
j=0

T [m][j][�(a/24j)� mod 24].

This requires 2 × 33 LOAD and 2 × 32 XOR instructions, due to the use of two
tables, plus the calculation of the appropriate address to load from. Our assembly
implementation of the m-squaring function requires 96 cycles (measured), this is
1.06 and 3.54 times faster compared to performing 3 and 10 sequential squarings
respectively.

For the basis conversion we used a similar time-memory tradeoff technique. We
enlarged the two tables by adding 1×33×16 elements which enables us to reuse the
m-squaring implementation to compute the basis conversion. For the computation
of the basis conversion we proceed exactly the same as for the m-squarings, only
the initialization of the corresponding table elements is different.

5.4 Modular Inversion

From Fermat’s little theorem it follows that the modular inverse of a ∈ F2131

can be obtained by computing a2131−2. This can be implemented using 8 multi-
plications, 6 m-squarings (using m ∈ {2, 4, 8, 16, 32, 65}) and 3 squarings. When
processing many iterations in parallel the inversion cost per iteration is small
compared to the other main operations such as multiplication. Considering this,
and due to code-size considerations, we calculate the inversion using the fast rou-
tines we already have at our disposal: multiplication, squaring and m-squaring,
for 3 ≤ m ≤ 10. In total the inversion is implemented using 8 multiplications, 14
m-squarings and 7 squarings. All these operations depend on each other; hence,
the interleaved (faster) implementations cannot be used. Our implementation of
the inversion requires 3784 cycles (measured).

We also implemented the binary extended greatest common divisor [18] to com-
pute the inverse. This latter approach turned out to be roughly 2.1 times slower.

6 The Bitsliced Implementation

This section describes implementation details for the speed-critical functions
of the iteration function using bitsliced representation for all computations. As
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explained in Section 4, there is no overhead from permutations when using bit-
slicing and therefore the overhead for normal-basis multiplication is much lower
than for a non-bitsliced implementation. We implemented all finite-field oper-
ations in polynomial- and normal-basis representation and then compared the
performance. The polynomial-basis implementation uses F2131 ∼= F2[z]/(z131 +
z13 + z2 + z + 1) just as the non-bitsliced implementation.

Due to the register width of 128, all operations in the bitsliced implementation
processes 128 inputs in parallel. The cycle counts in this section are therefore
for 128 parallel computations.

6.1 Multiplication

Polynomial basis. The smallest known number of bit operations required to
multiply two degree-130 polynomials over F2 is 11961 [4]. However, converting
the sequence of bit operations in [4] to C syntax and feeding it to spu-gcc does
not compile because the size of the resulting function exceeds the size of the
local storage. After reducing the number of variables for intermediate results
and some more tweaks the compiler produced functioning code, which had a
code size of more than 100 KB and required more than 20000 cycles to compute
a multiplication.

We decided to sacrifice some bit operations for code size and better-scheduled
code and composed the degree-130 multiplication of 9 degree-32 multiplications
using two levels of the Karatsuba multiplication technique [15]. One of these
multiplications is actually only a degree-31 multiplication; in order to keep code
size small we use degree-32 multiplication with leading coefficient zero. We use
improvements to classical Karatsuba described in [3] to combine the results of
the 9 multiplications.

The smallest known number of bit operations for degree-32 binary polynomial
multiplication is 1286 [4]. A self-written scheduler for the bit operation sequence
from [4] generates code that takes 1303 cycles (spu timing) for a degree-32
binary polynomial multiplication. In total our degree-130 multiplication takes
14503 cycles (measured). This includes 11727 cycles for 9 degree-32 multiplica-
tions, cycles required for combination of the results, and function-call overhead.

Reduction modulo the pentanomial z131 + z13 + z2 + z + 1 takes 520 bit
operations, our fully unrolled reduction function takes 590 cycles (measured), so
multiplication in F2131 takes 14503 + 590 = 15093 cycles.

Normal basis. The normal-basis multiplication uses the conversion to poly-
nomial basis as described in Section 4.2. For both, conversion of inputs to
polynomial basis and conversion of the result to normal basis (including re-
duction) we use fully unrolled assembly functions. As for multiplication we im-
plemented scripts to schedule the code optimally. One input conversion takes
434 cycles (measured), output conversion including reduction takes 1288 cy-
cles (measured), one normal-basis multiplication including all conversions takes
16653 cycles (measured).
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6.2 Squaring

Polynomial basis. In polynomial-basis representation, a squaring consists of
inserting zero-bits between all bits of the input and modular reduction. The
first part does not require any instructions in bitsliced representation because
we do not have to store the zeros anywhere, we only have to respect the zeros
during reduction. For squarings, the reduction is cheaper than for multiplications
because we know that every second bit is zero. In total it needs 190 bit operations,
hence, squaring is bottlenecked by loading 131 inputs and storing 131 outputs.
One call to the squaring function takes 400 cycles (measured).

Normal basis. In normal basis a squaring is a cyclic shift of bits, so we only
have to do 131 loads and 131 stores to cyclically shifted locations. A call to the
squaring function in normal-basis representation takes 328 cycles (measured).

6.3 m-Squaring

Polynomial basis. In polynomial basis we decided to implement m-squarings as
a sequence of squarings. A fully unrolled code can hide most of the 131 load and
131 store operations between the 190 bit operations of a squaring – implementing
dedicated m-squaring functions for different values of m would mostly remove
the overhead of m− 1 function calls but on the other hand significantly increase
the overall code size.

Normal basis. For the normal-basis implementation we implemented m-
squarings for all relevant values of m as separate fully unrolled functions. The
only difference between these functions is the shifting distance of the store loca-
tions. Each m-squaring therefore takes 328 cycles (measured), just like a single
squaring.

Conditional m-Squaring. The computation of σj cannot just simply be re-
alized as a single m-squaring with m = j, because the value of j is most likely
different for the 128 bitsliced values in one batch. Therefore the computation of
r = σj(xRi) is carried out using 3 conditional m-squarings as follows:
r ← x23

if xRi [1] then r ← r2

if xRi [2] then r ← r22

if xRi [3] then r ← r24

return r,
where xRi [k] denotes the bit at position k of xRi . The computation of σj(yRi)
is carried out in the same way.

When using bitsliced representation, conditional statements have to be re-
placed by equivalent arithmetic computations. We can compute the k-th bit of
the result of a conditional m-squaring of r depending on a bit b as

r[k] ← (r[k] AND ¬b) XOR (r2m

[k] AND b).

The additional three bit operations per output bit can be interleaved with loads
and stores needed for squaring. In particular when using normal-basis squaring
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(which does not involve any bit operations) this speeds up the computation: A con-
ditional m-squaring in normal-basis representation takes 453 cycles (measured).

For the polynomial-basis implementation we decided to first compute an m-
squaring and then a separate conditional move. This cmov function requires 262
loads, 131 stores and 393 bit operations and thus balances instructions on the
two pipelines. One call to the cmov function takes 518 cycles.

6.4 Addition

Addition is the same for normal-basis and polynomial-basis representation. It
requires loading 262 inputs, 131 XORs and storing of 131 outputs. Just as squar-
ing, the function is bottlenecked by loads and stores rather than bit operations.
One call to the addition function takes 492 cycles (measured).

6.5 Inversion

For both polynomial and normal basis the inversion is implemented using Fer-
mat’s little theorem. It involves 8 multiplications, 3 squarings and 6 m-squarings
(with m = 2, 4, 8, 16, 32, 65). It takes 173325 cycles using polynomial basis and
136132 cycles using normal basis (both measured). Observe that with a suffi-
ciently large batch size for Montgomery inversion this does not have big impact
on the cycle count of one iteration.

6.6 Conversion to Normal Basis

Polynomial basis. For the polynomial-basis implementation we have to convert
the x-coordinate to normal basis to check whether we found a distinguished
point. This basis conversion is generated using the techniques described in [5]
and uses 3380 bit operations. The carefully scheduled code takes 3748 cycles
(measured).

6.7 Hamming-Weight Computation

The bitsliced Hamming-weight computation of a 131-bit number represented in
normal basis can be done in a divide-and-conquer approach (producing bitsliced
results) using 625 bit operations. We unrolled this algorithm to obtain a function
that computes the Hamming weight using 844 cycles (measured).

6.8 Control Flow Overhead

For both, polynomial-basis and normal-basis representation there is additional
overhead from additions, loop control, and reading new input points after a
distinguished point has been found. This overhead accounts for only about 8
percent of the total computation time. Reading a new input point after a dis-
tinguished point has been found takes about 2,009,000 cycles. As an input point
takes on average 225.7 ≈ 40, 460, 197 iterations to reach a distinguished point,
these costs are negligible and are ignored in our overall cycle counts for the
iteration function.
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6.9 Complete Iteration

To make the computation of the iteration function as fast as possible we used
the largest batch size for Montgomery inversions that allows us to fit all data
into the local storage. Our polynomial-basis implementation uses a batch size of
12 and needs 113844 cycles (measured) to compute the iteration function. The
normal-basis implementation uses a batch size of 14 and requires 100944 cycles
(measured). Clearly, the overhead caused by the conversions for multiplications
in the normal-basis implementation is outweighed by the benefits in faster m-
squarings, conditional m-squarings, and the saved basis conversion.

6.10 Using DMA Transfers to Increase the Batch Size

To be able to use larger numbers for the batch size we modified the normal-basis
implementation to make use of main memory. The batches are stored in main
memory and are fetched into LS temporarily for computation.

Since the access pattern to the batches is totally deterministic, it is possible to
use multi-buffering to prefetch data while processing previously loaded data and
to write back data to main memory during ongoing computations. Even though 3
slots—one for outgoing data, one for computation, and one for incoming data—
are sufficient for the buffering logic, we use 8 slots in local memory as ringbuffer
to hide indeterministic delays on the memory bus. We assign one DMA tag to
each of these slots to monitor ongoing transactions.

Before computation, one slot is chosen for the first batch and the batch is
loaded to LS. During one step of the iteration function, the SPU iterates multiple
times over the batches. Each time, first the SPU checks whether the last write
back from the next slot has finished using a blocking call to the MFC on the
assigned tag. Then it initiates a prefetch for the next required batch into this
next slot. Now—again in a blocking manner—it is checked whether the data for
the current batch already has arrived. If so, data is processed and finally the
SPU initiates a DMA transfer to write changed data back to main memory.

Due to this access pattern, all data transfers can be performed with mini-
mal overhead and delay. Therefore it is possible to increase the batch size to
512 improving the runtime per iteration for the normal basis implementation
by about 5 percent to 95428 cycles (measured). Measurements on IBM blade
servers QS21 and QS22 showed that neither processor bus nor main memory
are a bottleneck even if 8 SPEs are doing independent computations and DMA
transfers in parallel.

7 Conclusions

To the best of our knowledge there were no previous attempts to implement
fast binary-field arithmetic on the Cell. The closest work that we are aware of
is [8], in which Bos, Kaihara and Montgomery solved an elliptic-curve discrete-
logarithm problem over a 112-bit prime field using a PlayStation 3 cluster of
200 nodes. Too many aspects of both the iteration function and the underlying
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Table 1. Cycle counts per input for all operations on one SPE of a 3192 MHz Cell
Broadband Engine, rev. 5.1. For the bitsliced implementations, cycle counts for 128
inputs are divided by 128. The value B in the last row denotes the batch size for
Montgomery inversions.

Non-bitsliced, Bitsliced, Bitsliced,
polynomial basis polynomial basis normal basis

Squaring 34 3.164 2.563
m-squaring 96 m × 3.164 2.563
Conditional m-squaring — m × 3.164 + 4.047 3.539
Multiplication 149 117.914 130.102
Addition 2 3.844
Inversion 3784 1354.102 1063.531
Conversion to normal basis 96 29.281 —
Hamming-weight computation 4 6.594

Pollard’s rho iteration 1148 (B = 256) 889.406 (B = 12)
788.625 (B = 14)

745.531 (B = 512)

field arithmetic are different from the implementation in this paper to allow a
meaningful comparison.

From the two implementations described in this paper it is clear that on
the Cell processor bitsliced implementations of highly parallel binary-field arith-
metic are more efficient than standard implementations. Furthermore we show
that normal-basis representation of finite-field elements outperforms polynomial-
basis representation when using a bitsliced implementation. For applications that
do not process large batches of different independent computations the non-
bitsliced approach remains of interest. The cycle counts for all field operations
are summarized in Table 1 for both approaches.

Using the bitsliced normal-basis implementation—which uses DMA transfers
to main memory to support a batch size of 512 for Montgomery inversions—on
all 6 SPUs of a Sony Playstation 3 in parallel, we can compute 25.57 million
iterations per second. The expected total number of iterations required to solve
the ECDLP given in the ECC2K-130 challenge is 260.9 (see [2]). Using the soft-
ware described in this paper, this number of iterations can be computed in 2654
Playstation 3 years.
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Abstract. This article investigates the relevance of the theoretical
framework on profiled side-channel attacks presented by F.-X. Standaert
et al. at Eurocrypt 2009. The analyses consist in a case-study based on
side-channel measurements acquired experimentally from a hardwired
cryptographic accelerator. Therefore, with respect to previous formal
analyses carried out on software measurements or on simulated data,
the investigations we describe are more complex, due to the underlying
chip’s architecture and to the large amount of algorithmic noise. In this
difficult context, we show however that with an engineer’s mindset, two
techniques can greatly improve both the off-line profiling and the on-line
attack. First, we explore the appropriateness of different choices for the
sensitive variables. We show that a skilled attacker aware of the regis-
ter transfers occurring during the cryptographic operations can select
the most adequate distinguisher, thus increasing its success rate. Sec-
ond, we introduce a method based on the thresholding of leakage data
to accelerate the profiling or the matching stages. Indeed, leveraging on
an engineer’s common sense, it is possible to visually foresee the shape
of some eigenvectors thereby anticipating their estimation towards their
asymptotic value by authoritatively zeroing weak components containing
mainly non-informational noise. This method empowers an attacker, in
that it saves traces when converging towards correct values of the secret.
Concretely, we demonstrate a 5 times speed-up in the on-line phase of
the attack.

1 Introduction

Side-channel attacks are cryptanalytic techniques that exploit unintentional in-
formation leakage from cryptographic devices during their operation. In the case
of symmetrical encryption or decryption, side-channel attacks aim at recovering
the secret key. As a consequence, there is a strong interest in efficient implementa-
tion of countermeasures against such attacks. In the meantime, researchers have
tackled the difficult task to formalize the study of attacks and countermeasures. A
seminal theoretical study dealing with physical attacks is presented to the cryp-
tographic community by S. Micali and L. Reyzin in [11]. In order to be practically
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usable, this paradigm requires a specialization, grounded on practical side-channel
leakage simulations or measurements. This milestone is achieved by F.-X. Stan-
daert et al. in [21], where the information theory is solicited to process the side-
channel data. More precisely, in [21,20], F.-X. Standaert et al. discuss two metrics
to measure two independent aspects: the first is the robustness evaluation of a
target circuit and the second is the estimation of the power of an attack. For this
purpose, two kinds of adversaries should be taken into consideration:

1. The adversary with an access to a certain amount of a priori information,
such as the circuit leakage model and the algorithm being executed.

2. The adversary with an access to a clone of the attacked device. In this case,
she would be free to manipulate it, in order to indirectly understand the
behavior of the target device containing the secret information.

In this paper, we consider the second case. It unfolds in two stages. In a first
stage of profiling, some estimations are carried out to extract information. In a
second stage, a classification is carried out to perform the on-line attack.

The rest of the paper is organized as follows. Section 2 introduces the theo-
retical notions employed in the forthcoming concrete analyses. The first attack
improvement we investigate is related to the adequate choice of the sensitive
variable. This study is detailed for both evaluation and attack metrics in Sec. 3.
The second improvement concerns an analysis of the dates with maximal leakage.
In Sec. 4, we indeed observe that a thresholding that anticipates the irrelevance
of some side-channel samples is beneficial to both the evaluation and the attack
metrics. A discussion about the impact of these two findings on the interpreta-
tion of the a priori evaluation metric and of the a posteriori attack metrics is
given in Sec. 5. Finally, conclusions and perspectives are in Sec. 6.

2 Theoretical Framework for the Practice-Oriented
Side-Channel Study

2.1 Prerequisites

Based on some axioms, the theoretical analysis of the physical attacks detailed
in [11] formalize the leakage by specifying “where, how, and when” the target
circuit leaks information. Those axioms give a reliable description of the physical
phenomena observable in practice. In this context, two technical definitions must
be taken into consideration: the leakage function and the adversary.

Leakage Function. The leakage function L(C,M,R) is a function of three pa-
rameters. C is the current internal configuration of the circuit / algorithm, which
incorporates all the resources whose side-channels are measurable in principle;
M is a set of measures and R is a random string which represents the noise.

This function is an important element in the rest of this article. Indeed, from
this notion we will create distinguishers that will enable us to evaluate the circuit
by quantifying its side-channel information, or to be used by an adversary to
recover the key.
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Adversary. In [11], the adversary is chosen so as to be the strongest possible and
therefore can be different at each attack. In [20], the adversary uses a divide-and-
conquer strategy to retrieve separately parts of the secret key. In other words,
it defines a function f : K �→ SK which maps each key k onto a class sk = f(k)
such that |SK | 
 |K|. The aim of a side-channel adversary is to guess a key
class sk with non negligible probability.

For example, in the case where the considered encryption algorithm is DES
(Data Encryption Standard), k will be the 56-bit key for encryption, and Sk

is the 6-bit subkey generated by the key schedule from the master key k and
consumed at the substitution box (sbox) input.

According to the given definitions, the evaluation of the physical security of
a device is based on the quality of the circuit and the strength of the adversary.

These two aspects urge to study the information quantity given by a leakage
function. This will be taken advantage of to conduct a successful attack.

2.2 How to Quantify the Information Amount?

The concept of entropy was introduced by C. Shannon in [17]. It is a reliable
measurement of uncertainty associated with a random variable. In our case, we
use Shannon entropy to characterize the information leaked from a cryptographic
device in order to extract its secret key. We denote by:

– SK the target key class discrete variable of a side-channel attack, and sK a
realisation of this variable;

– X the discrete variable containing the inputs of the target cryptographic
device, and x the realisation of this variable;

– L a random variable denoting the side-channel observation generated with
inputs of the target device, and l a realisation of this random variable;

– Pr[sK | L] the conditional probability of a key class sK given a leakage l.

One reason to quantify the information is to measure the quality of the circuit
for a given leakage function. For this purpose, we use the conditional entropy,
defined in Sec. 2.2. The other goal is to measure how brightly this information
(leakage) is used to successfully recover the key. In the sequel, we consider the
success rate, defined in Sec. 2.2, to assess the strength of the adversary.

These two metrics enable us subsequently to ensure the circuit security (know-
ing its leakage) against a more or less strong adversary.

The Conditional Entropy. According to the definition of the conditional
Shannon entropy, the conditional uncertainty of SK given L, denoted H(SK | L),
is defined by the following equations:

H(SK | L) .=
∑
sK

∑
l

− Pr(sK , l) · log2 Pr(sK | l)

= −
∑
sK

Pr(sK)
∑

l

Pr(l | sK) · log2 Pr(sK | l) . (1)



246 M.A. Elaabid and S. Guilley

We the define conditional entropy matrix as:

HsK ,sKc

.= −
∑

l

Pr(l | sK) · log2 Pr(sKc | l) , (2)

where sK and sKc are respectively the correct subkey and the subkey candidate.
From (1) and (2), we derive:

H(SK | L) =
∑
sK

Pr(sK) HsK ,sK . (3)

The value of diagonal elements from this matrix needs to be observed very
carefully. Indeed, theorem 1 in [21] states that if they are minimum amongst all
key classes sK , then these key classes can be recovered by a Bayesian adversary.

The Success Rate. The adversary mentioned in 2.1 is an algorithm that aims
at guessing a key class sK with high probability. Indeed with some queries, the
adversary would estimate the success rate from the number of times for which
the attack is successful. The success rate quantifies the strength of an adversary
and thereafter evaluates the robustness of a cryptographic device in front of its
attack.

2.3 Profiled Side-Channel Attacks in Practice

There exist many operational contexts in which an attack can be setup. Some
attacks consist solely of an on-line phase. The earliest attacks of this kind exploit
explicitly the linear dependency between the secret data and the leakage, as in
the Differential Power Attack (DPA, [9]) and the Correlation Power Analysis
(CPA, [3]). Recently, the Mutual Information Analysis (MIA, [6]) has extended
those attacks to non-linear dependencies. Profiled attacks are attacks mounted
by a rather strong adversary that can benefit from a long period of training
(i.e. profiling) on a clone device, before launching the attack itself on the target
device. Template attacks [4,2,7] and stochastic attacks [16,15] belong to this
class, because they exploit all the information extracted during the training
step. In this paper we concentrate on template attacks, as described in [2],for
computing the success rates.

Template Attacks. During the training phase the attacker gathers a large
number of traces, corresponding to random values of plaintexts and keys. As
the clone system is in full control of the attacker, this number is limited only
by time and available storage. The observed traces are then classified according
to functions L that capture one modality of the circuit’s leakage. A trace t
is considered as the realisation of a multivariate Gaussian random variable in
RN . For each set Sk, k ∈ [0, N ′[ the attacker computes the average μk and the
covariance matrix Σk. These are estimated by:

μk =
1
|Sk|

∑
t∈Sk

t and Σk =
1

|Sk| − 1

∑
t∈Sk

(t− μk)(t− μk)T . (4)

The ordered pair (μk, Σk) is called the template associated with value k of the
subkey.
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The difficult part of this attack is the size of the Σk matrices, namely (N×N),
with N ≈ 104. In our experiments, N = 20, 000. To overcome this a few special
indices can be chosen in [0, N [, called interest points, which contain most of the
useful information. Various techniques are used to select these points: points with
large differences between the average traces [4], points with maximal variance [7],
and, more generally, principal component analysis (aka PCA [8].)

Template Attacks in PCA. The PCA consists in computing the eigenvectors
EVi, i ∈ [0, N ′[ of empirical covariance matrix of all traces together, computed
by:

S =
1

N ′ − 1

N ′−1∑
k=0

TTT where μ̄ =
1
N ′

N ′−1∑
k=0

μk and T =

⎛⎜⎜⎜⎝
μT

1 − μ̄T

μT
2 − μ̄T

...
μT

N − μ̄T

⎞⎟⎟⎟⎠ .

Let EV be the matrix containing the most significant eigenvectors. In practice,
only a few eigenvectors is sufficient to represent all data samples. In the case of
our unprotected circuit, the leakage is well captured by one direction only, irre-
spective of the choice of the leakage function L. The mean traces and covariance
matrices defined in (4) are then expressed in this basis by:

νk = (EV )Tμk and Λk = (EV )TΣk(EV ) .

In addition to the (EV ) matrix, they constitute the templates of the PCA.
The attack phase consists then in acquiring the trace τ of an encipherement

performed by the target system using the secret key κ, projecting it into this
latter basis and matching it against the patterns using Bayes’ rule. The attack
is successful iff:

κ = argmaxk

(
1√

(2π)N ′ |Λk|
exp

(
−1

2
· (EV (τ − μk))TΛ−1

k (EV (τ − μk))
))

.

Applications of Templates in PCA to SecMat. The investigations are
done on an unprotected DES cryptoprocessor with an iterative architecture. We
estimate the conditional entropy and the success rate for various leakage models:
in fact, models are constructed from distinguishers for trace classification during
the profiling attack. Altogether, this comparison will allow us characterize better
the leakage.

We are facing the problem of choosing the relevant sensitive variable.
Actually, it has already been pointed out, for instance in Section 2 of [20], that

there are variables more sensitive than others from the attacker point of view.
Thus, the security of a cryptographic device should not be treated generally, but
must depend on each sensitive variable.

We must choose a variable that is sensitive (i.e. linked to the key) and pre-
dictable (i.e. the size N ′ of the subkey is manageable by an exhaustive search).
This leads to several questions:
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– where to attack? For instance at the input or at the output of an sbox?
– plain values or distance between two consecutive values? In the latter case,

do we need the schematic of the algorithm implementation in the circuit?
– considering a transition as sensitive variable, is it worth considering the

Hamming distance instead of the plain distance1?

To find the best compromise security / attacker, our experiments will attempt
to respond to these issues. We study the following leakage models. Model A is
the input of the first sbox, a 6-bit model. Model B is the output of the first
sbox, a 4-bit model. Model C is the value of the first round corresponding to
the fanout of the first sbox, a 4-bit model. Model D is the transition of model
C. Model E is the Hamming weight of the model D.

We illustrate our study on the first round; the last round yields similar results.
The mathematical definition of the models A to E is given in Tab. 1, using the
notation of NIST FIPS 46 for the internal functions of DES and S as a shortcut
for S1||S2|| · · · ||S8. For a better readability, we also provide with a dataflow
illustration in Fig. 1.

Table 1. The five leakage models confronted in this paper

Model Mathematical Abbre- Nature Dist-

index description -viation -ance

A (R0 ⊕ K1)[1 : 6] R0+K1 Combi. (shallow) No
B S(R0 ⊕ K1)[1 : 4] S(R0+K1)Combi. (deep) No
C R1{9, 17, 23, 31} =

P−1(R1)[1 : 4] = (S(R0 ⊕
K1)) ⊕ P−1(L0))[1 : 4]

R1 Sequential No

D (R0 ⊕ R1){9, 17, 23, 31} R0+P1 Sequential Yes
E |(R0 ⊕ R1){9, 17, 23, 31}| |R0+R1| Sequential Yes

We use the term “model” to designate the choice of the variable that depends
on the plaintext or the ciphertext, and whose values determine the number of
templates. This vocabulary can be misleading since it has also been used in the
past to represent other quantities. In the original paper about the DPA [10],
the model is actually called a “selection function”. In [14], the term “leakage
model” qualifies the way a sensitive variable is concretely leaked; for instance,
according to their terminology, the choice for the Hamming weight is a model
of “reduction” of the sensitive variable. In this respect, they would say that E
approximately models the leakage of D. We do not use this vocabulary, since
we think that an attacker cannot tell the difference between an internal leakage
and an externally observable one. This detail is rather a sophistication of the
attack, best captured by the concepts behind the stochastic attacks [16]. The
notion of “sensitive variable” is neither adequate, because it holds only if there
1 Given two bitstrings x0 and x1 we call their plain distance the word x0 ⊕ x1, as

opposed to their Hamming distance defind as the integer |x0 ⊕ x1|.
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is a straightforward link in the leakage and a value present in the algorithm
specification (like our model A, B or C), Now, it seems difficult to qualify of
sensitive variable a Hamming distance between two internal values taken by a
sensitive variable, because it is unrelated to the algorithm itself. So, to sum up,
we recall that we employ the term model to define the mapping between a trace
and its template.

We note that these models can be viewed as two families of distinguishers.
The models A and B are concerned with moments during the encryption, while
models B, C and D focus on registers. Each studied case corresponds to one
number of templates. Model A uses 64 = 26 templates because it predicts the
activity of the sbox input, whereas model B applies to 16 = 24 templates that are
the sbox output values. Models C and D are also made up of 16 templates, and
finally, model E focuses on 5 templates that are classifications of the different
values of a 4 bit Hamming distance.

The acquisition campaign consists in a collection of 80, 000 traces. Half of
these traces are used for profiling and the other half for the on-line attack. Tem-
plates as shown above are in practice a set of means and covariances for classes
constructed from models. In addition PCA allows to construct eigenvectors that
will be useful to reduce our data samples for online attack. In practice we use
only the first eigenvector in order to project circuit consumption data. Indeed it
is the most important vector since it relates to the greatest variance. We can also
use the second or third eigenvectors if they are relevant, namely if they corre-
spond to a large variance. Thus, we can increase the attacker’s strength. On the
other hand, using a bad eigenvector only contributes to damage our attack. In
figure 2 we can see the difference between a good (the second one) and a bad (the
thirteenth one) eigenvector. With an unprotected circuit, it appears clearly that
the leakage is well localized in time. Therefore a good eigenvector (corresponding
to a high eigenvalue) is also almost null everywhere but at the leaking dates. We
will take advantage of this property in the second improvement presented later
on in Sec. 4.

According to the eigenvectors represented in Fig. 3, we can see precisely when
our circuit leaks information in the modality A, B, D, E or F. The highest the
eigenvector at a sample, the largest the leakage there.
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Fig. 2. Difference between “good” and “bad” eigenvectors for model B
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Fig. 3. Eigenvectors, for models A, B, C, D & E (left to righ, up to down)
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3 Improvement of the Attacks Thanks to an Adequate
Leakage Model

3.1 Success Rate

Success rates are depicted in Fig. 4 as a function of two parameters: the first
one is the off-line profiling trace count and the second is the on-line attack trace
count. For all curves, we notice that the success rate is an increasing function in
terms of either trace count.
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Fig. 4. Success rate, for models A, B, C, D & E (left to right, up to down)

Model A seems better than B. Intuitively, we would have expected a similar
attack performance, as the traversal of the sbox is a quasi-bijective function. This
is not exactly true on DES, since the sbox of DES has a fanin of 6 and a smaller
fanout of 4. However, they are designed in such a way that if two input bits are
fixed, the sbox becomes bijective (in answer for a balancing requirement).

Therefore, the reason for B to be slightly worse than A is related to the
implementation. Indeed, in the round combinational logic, B addresses a deeper
leakage than A. Thus B is more subject to intra-clocking cycle timing shifts
in the transitions and to the spurious glitching activity that characterizes the
CMOS combinational parts.
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Following this discussion, we could also expect the model C to be better than
A, since C models the activity of a register. However, this is false in practice.
One explanation is that the eigenvector of A has more peaks than that of C, and
thus collects more information scattered in the trace.

Figure 5(a) illustrates that the model D and E are by far the best to conduct
an attack. Indeed, few traces are required for the attack success probability to
reach one. Only about 200 traces, allow to have a 90% probability of success.
With 250 traces, the probability rises to 100%. The conclusion is that the knowl-
edge of the register transfers in a circuit can significantly enhance the attack.
In an unprotected CMOS circuit, these models are unrivaled. These intuitions
were already evoked in the literature (for instance in [3] or in [20]), but never
demonstrated. Through our experiment, we indeed formally concur on this point:
distances between consecutive states are leaking more than values in CMOS
circuits.
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Fig. 5. Success rate comparison, (a) between all models for the same number of pre-
characterization traces and (b) between models D and E for the same number of pro-
filing traces per class

Eventually, we intend to compare models D (template-like [4]) and E
(stochastic-like [16]). To be fair, we compute the success rate for a common
number of traces used in each template; namely, 16/5 more traces are required
to profile D. The result, given in Fig. 5(b) shows without doubt that D achieves
better than E. The reason is that E is an approximate model. Figure 6 indeed
shows that the degeneracy of identical Hamming weight classes is not perfect in
practice; however, for a given number of measurements dedicated to profiling, E
is favored.

3.2 Conditional Entropy

As shown in Figure 7(a), the conditional entropy is roughly decreasing with the
number of traces used in the profiling phase. We do not comment on the very be-
ginning of the curves, since for small numbers of traces in the profiling phase, the
entropy estimation yields false results. However, we notice that the conditional
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Fig. 7. Conditional entropy comparison. (a) over 2000 traces; (b) zoom after the esti-
mation has converged.

entropy tends towards a bounded value. As expected, this asymptotically value
is less than or equal to 6 bits. Indeed, the keys we attack have 6 bits of entropy.
The smaller the conditional entropy for a chosen model, the more vulnerable the
circuit against one attack using this model.

In this comparison, we have tried to ensure having the same number of traces
during the profiling phase. But this was not possible for model A that needs
more measurements as it has more classes (64) than the others (16 or 5).

Therefore, we had the number of traces live in [0,600] for model A and in
[0,2000] for the other models. By comparing the different models, it appears
clearly that the models D and E are more favorable to side-channel leakage. Fig-
ure 7(b) confirms that asymptotically, the conditional entropy for models D and
E is smaller than other models, and that D is better than E. Therefore, the choice
of the sensitive variable is an important element to be taken into account in a
security evaluation. Basically, we observe that the conditional entropy classifies
the models in the same order as the success rate.

Now, we warn that in theory, the success rate and the conditional entropy are
definitely not the same concept. However, in this study, it appears that there
is necessarily a similarity between them. This is certainly due to the choice of
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models, and also to the adequation in terms of relationship adversary/security.
Indeed, on the contrary, we must be aware of some pitfalls of interpretation, like
for instance the risk that a circuit may seem very well protected against a bad
adversary.

But to sum up, this study of different models shows that the entropy is actually
a good way to evaluate a circuit.

3.3 Hidden Models

We say that a leakage model L1 is more adequate than L2 if the success rate of
an attack using L1 is greater than with L2. In the SecMat circuit we studied, the
distance between the consecutive values of a sensitive variables held in registers
corresponds to the leakage function E. Discovering this better model is always
possible, provided however that the attacker has a thorough knowledge of the cir-
cuit’s architecture. More specifically, the value of a sensitive variable is accessible
from anyone in possession of the algorithm specifications; on the contrary, the
knowledge of the variables sequence requires that of the chip’s register transfer
level (RTL) architecture, such as for instance its VHDL or Verilog description.
Even in the absence of these pieces of information, an attacker can still attempt
to retrieve the expression of the sensitive variables (or its sequence) as a function
of the algorithm inputs or outputs, depending the attack is in known plaintext
or known ciphertext context. Indeed, the attack acts as an oracle: if it fails to
recover the key, it means that the leakage function is irrelevant. However, in
hardware circuits, these functions are of high algebraic degree, especially when
the next pipeline stage is a register that is one round inside the algorithm. This
makes its prediction chancy, unless having some hints about a possible class of
leakage functions. Refer to articles about SCARE [12,13] for a more complete
overview of this problem.

We notice that the best leakage model (the most physical one) can be un-
known willingly or as a backdoor. The algorithm pipeline can be indeed very
complicated.

4 Improvement of the Attacks Thanks to Leakage
Profiles Noise Removal by Thresholding

As already emphasized in Fig. 2, an adversary able to understand the shape of
the eigenvectors is more likely to master the speed of the success rate of her
attack. In a similar way, a security evaluator may require an ideal eigenvector
to have a very clear idea of the expertized device security.

In the case of a noisy vector, we must seek the best moments of leakage
and eliminate the noise. In this context we suggest to improve the success rate
or degree of evaluation by creating a threshold th ∈ [0, 1] on the eigenvectors.
Generally speaking, in the case where we have infinite traces, the eigenvector will
tend towards a denoised curve that reflects perfectly the temporal information
for the leakage. In concrete evaluation and attack scenarios, we experience time
or space constraints, and therefore we seek a better way to refine the eigenvectors.
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4.1 Success Rate

Figure 8(a) shows the significant gain which may be attributed to an adversary
who perfectly knows how to exploit eigenvectors. This experiment was done with
noisy traces different from those used in previous sections. The model chosen is
the model A, which shows a significant increase in the rate of success (about
×5). There, the optimal threshold thopt is either 3/4 or 4/5 of the maximum
value of the eigenvector. Actually, we see that for an eigenvector whose noise is
eliminated, the success rate becomes higher. Threshold choice is a compromise:
when it is too high (th ≈ 1), some noise remains, whereas when it is too low
(th ≈ 0), it eliminates informative parts provided by the profiling phase.

Figure 8(b) shows on the example of model C how the success rate improves
depending on the chosen threshold. For models of the same family (based on
the value instead of on a distance), such as A and C, it can be noted that an
adversary may be mistaken about the success rate, believing that such model is
better than the other. In our case, if we do not take a threshold it is believed
that the model A is better than C. However, with a thresholding, the conclusions
are inverse, as depicted in Fig. 9.
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Fig. 8. Success rate comparison (a) without and with threshold for model A and (b)
with different thresholds for model C
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4.2 Conditional Entropy

In the same way as the success rate, an evaluator may be mistaken about the
security of a device. Any model may seem safer than another especially when
models are related. The figure 10 shows that the non-use of thresholding leads
us to err on the model C which appears equivalent or worse than A.
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Fig. 10. Conditional entropy improvements with threshold

5 Discussion

The goal of this section is to discuss the impact of the two improvement tech-
niques to the side-channel framework of [21]. Basically, we warn that those two
techniques can make an evaluation unfair if they convey an advantage dissym-
metry to the attacker at the expense of the evaluator. To illustrate our argu-
mentation, we resort to the same diagram as presented in [18]. The evaluator
(noted E) computes the x position whereas the attacker (noted A) computes
the y position. This type of diagram can be seen as real world a posteriori (i.e.
post mortem using forensic terminology) results as a function of forecast a priori
predictions.

For instance, it seems reasonable that some links between evaluation and
attack metric can be put forward if they are computed on the same circuit
with the same signal processing toolbox. Let us take the example of a chip we
intend to stress, in order to exacerbate its leakage. Typically increasing the die’s
temperature T (or its supply voltage) will increase its consumption and thus the
amount of side-channel. In these experiments, we expect the condition entropy
and the attack success rate to evolve in parallel. And even more, this tendency
should be independent on the chosen leakage model. These conclusions hold
provided the temperature of the device during the evaluation is the same as
during the attack. This is depicted in Fig. 11(a). Now, if the evaluator performs
the evaluation at nominal temperature but that the attacker is able to attack
at higher temperatures, he will be undoubtedly advantaged. This characterizes
typically an asymmetric relationship between the attacker and the evaluator;
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Fig. 11. Evaluation vs attack metrics diagram in a (a) symmetrical and (b) asymmet-
rical situation

we can also say that the attacker “cheats”2 since she makes use of an extra
degree of freedom unavailable to the attacker. This addition power changes the
balance between the evaluation and the attack sides, as shown in Fig. 11(b).
In concrete cases, for instance when the circuit to attack is a tamper-proof
smartcard, the temperature, the voltage and all the operating conditions are
monitored. Therefore, a priori, neither the evaluator nor the attacker can be
advantaged.

The two contributions of this paper show however how to create a dissymme-
try even when the evaluator and the attacker work in similar conditions (even
better: on exactly the same traces [22]). The section 3 illustrates a situation
of dissymmetry in a priori knowledge. It is sketched in Fig. 12(a). When the
attacker knows that L2 is more adequate than L1, her attack will require in
average less traces to be successful than that of the evaluator that is stuck at
L1. The section 4 details the effect of a dissymmetry in expertise about the ob-
jects manipulated. Imagine a laboratory, such as an ITSEF, applying an attack
“from the textbooks”, as presented in Sec. 2. Then this ITSEF faces the risk of
overestimating the security of its target of evaluation if it is not aware of the
thresholding “trick”.

In summary, we warn that the evaluator can be fooled into being too confident
in a circuit’s security, not having anticipated a weakness in the leakage model or
in the attack processing stages. Thus routine in the evaluation can be harmful in
the projected trust in the circuit. This fact is illustrated in Fig. 13; if an evaluator
has evaluated many cryptographic components that were found to lay within the
same region, e.g. corresponding to a common assurance evaluation level (“EAL”
notion of the Common Criteria [5]), he will be tempted to limit its analysis to
the measurement of an information theoretic metric. However, if an attacker
comes up with either more knowledge about the device that the evaluator does
or better signal processing techniques, the previsions of the ITSEF can turn out
be too optimistic, since conservative (believing erroneously that “anyone attacks
like I do”).

2 We mean that the attacker uses a strategy outside of the security model.
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Our two attack improvement techniques do not invalidate the framework
of [21], but simply warn that the notions it introduces shall be manipulated
with care and not overseen. Otherwise, incorrect predictions can be done, thus
ruining the confidence we can have in it.
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Fig. 12. Leakage vs attack diagram for our two attack optimizations: (a) adequate
leakage models, (b) thresholding for non-informative samples
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6 Conclusions and Perspectives

In this article, we have put in practice the “unified framework for the anal-
ysis of side-channel key recovery attacks” [21], on the example of the “DPA
contest” [22] real-world measurements. In our work, we place the evaluator, in
charge of quantifying the amount of information leakage, and the attacker, in
charge of exploiting the leakage to retrieve the secret, both on an equal footing
regarding the experimental skill: both use the same acquisition campaign. We
take advantage of these results to test another asymmetry in the evaluator /
attacker couple, namely an asymmetry in initial knowledge. We concretely illus-
trate that any knowledge about the target’s architecture or about the leakage
structure in time can greater favor whichever actor takes advantage of it. From
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the perspective of the attacker, we provide two improvements over straightfor-
ward attacks. First of all, we show that the care with which the sensitive variable
is chosen influences qualitatively the attack outcome. In the studied hardware
accelerator, the choice of the adequate sensitive variable is connected to its RTL
architecture. Second, we illustrate that if the attacker knows that the leakage is
localized in a few samples amongst the large number of sample making up the
traces, she can intuit early (before the attack has converged to a unique key can-
didate) that some samples will mostly bring noise instead of useful information.
Thanks to an innovative thresholding technique, we show that by ruling those
samples out, the attacker can indeed speed-up the attack. Finally, we conclude
about the usefulness of the framework [21] in terms of security predictions when
both the evaluator and the attacker can play with the same degrees of freedom.
However, we warn that an attacker, especially in cryptography, can always come
up with “out-of-the-box” strategies that might empower her with an advantage
unanticipated by the evaluator.

Further directions of research will consist notably in assessing the question
of the existence of an optimal leakage model. Or is the best evaluation / attack
obtained from an analysis involving concomitantly many leakage models? But in
this case, what technique is the most suitable to combine coherently various leak-
age models? Techniques to exploit the side-channel information from multiple
channels have already been presented. For instance, various EM are combined
in [1]. Also, in [19], the simultaneous knowledge of power and EM leakage is
taken advantage of to reduce the number of interactions with the cryptographic
device under attack. However, in those two examples, the same leakage model is
assumed. We endeavor in the future to get rid off this constraint. Additionally,
we envision to port our techniques of leakage eigenvectors thresholding to attacks
using an on-line profiling, such as the MIA [6], and to quantify the advantage it
brings.
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Abstract. HC-128 is a high speed stream cipher with a 128-bit secret
key and a 128-bit initialization vector. It has passed all the three stages
of the ECRYPT stream cipher project and is a member of the eSTREAM
software portfolio. In this paper, we present a differential fault analysis
attack on HC-128. The fault model in which we analyze the cipher is
the one in which the attacker is able to fault a random word of the
inner state of the cipher but cannot control its exact location nor its new
faulted value. To perform the attack, we exploit the fact that some of
the inner state words in HC-128 may be utilized several times without
being updated. Our attack requires about 7968 faults and recovers the
complete internal state of HC-128 by solving a set of 32 systems of linear
equations over Z2 in 1024 variables.

1 Introduction

HC-128 [9] is a high speed stream cipher that has passed all the three phases
of the ECRYPT eSTREAM competition and is currently a member of the eS-
TREAM software portfolio. The cipher design is suitable for modern super-scalar
processors. It uses a 128-bit secret key and 128-bit initialization vector. At each
step, it produces a 32-bit keystream output word. The inner state of the cipher
is relatively large and amounts to 32768 bits, consisting of two arrays, P and Q,
of 512 32-bit words, each. HC-256 [10] is another cipher similar in structure to
HC-128 but uses a 256-bit key and 256-bit IV. Only HC-128 participated in the
eSTREAM competition. Along with the HC-128 proposal [9], an initial security
analysis pointed out to a small bias in the least significant bit of the output words
which allows a distinguisher based on 2151 outputs. Contrary to the claims of the
cipher designer [9], in [6] it was shown that the distinguisher can be extended to
other bits as well, due to the bias occurring in the operation of addition of three
n-bit integers, which is utilized in HC-128. However, the initial security claim
[9] that there exists no distinguisher for HC-128 that uses less than 264 bits [9]
has not been even nearly contradicted. In [11], Zenner presented a cache timing
analysis of HC-256 but this attack is not directly applicable to HC-128.

In this paper, we present a differential fault analysis (DFA) attack on HC-128.
Our attack requires around half the number of fault injections when compared
to the attack [4] on RC4 in the equivalent fault model. In general, fault analysis
attacks [2] fall under the category of implementation dependent attacks, which
include side channel attacks such as timing analysis and power analysis. In fault
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analysis attacks, some kind of physical influence such as ionizing radiation is ap-
plied to the cryptographic device, resulting in a corruption of the internal memory
or the computation process. The examination of the results under such faults of-
ten reveals some information about the cipher key or the secret inner state. The
first fault analysis attack targeted the RSA cryptosystem in 1996 [2] and subse-
quently, fault analysis attacks were expanded to block ciphers (e.g., [1], [3]) and
stream ciphers (e.g., [4], [5]). The threat of fault analysis attacks became more
realistic after cheap and low-tech methods were found to induce faults.

2 HC-128 Specifications and Definitions

The following notation is used throughout the paper:

+ and � : addition mod 232 and subtraction mod 512.
⊕: bit-wise XOR.
<<, >>: left and right shift, respectively, defined on 32 bit values.
<<<, >>>: left and right rotation, respectively, defined on 32 bit values.
xb: The bth bit of a word x.
xc..b, where c > b: The word xc|xc−1|..|xb.
s′i〈P [f ]〉, s′i〈Q[f ]〉: The faulty keystream, where the fault is inserted while
the cipher is in state i = 268 and occurs at P [f ], Q[f ], respectively.

The secret inner state of HC-128 consists of the tables P and Q, each con-
taining 512 32-bit words. The execution of the cipher is governed by two public
counters i and j. The functions g1, g2, h1 and h2 in Fig. 1, are defined as follows:

g1(x, y, z) = ((x >>> 10)⊕ (z >>> 23)) + (y >>> 8),
g2(x, y, z) = ((x <<< 10)⊕ (z <<< 23)) + (y <<< 8),
h1(x) = Q[x7..0] + Q[256 + x23..16], h2(x) = P [x7..0] + P [256 + x23..16].

The key and IV initialization procedures are omitted since they are not relevant
to our attack. We say that HC-128 is in state i, if i steps have been executed,

The HC-128 Keystream Generation Algorithm

1: i = 0
2: repeat until enough keystream bits are generated
3: j = i mod 512
4: if (i mod 1024) < 512
5: P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511])
6: si = h1(P [j � 12]) ⊕ P [j]
7: else
8: Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511])
9: si = h2(Q[j � 12]) ⊕ Q[j]
10: i = i + 1

Fig. 1. The HC-128 Keystream Generation Algorithm
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counting from the initial inner state. We will denote the iteration in which the
cipher goes from state i to i + 1 by step i.

Definition 1. Let Ps[j] denote the P [j] value after it has been updated for s
times by the HC-128 KGA. Similarly, let Qs[j] denote the Q[j] value after it has
been updated for s times, j = 0, . . . 511.

Definition 1 allows representing P and Q values at different cipher states as
follows. If s ∈ {1, 2, . . .}, j ∈ {0, . . .511} and HC-128 is in state i, then

P [j] =
{
P0[j], i ∈ {0, . . . j}
Ps[j], i ∈ {1024× (s− 1) + j + 1, . . . 1024× s + j}

Q[j] =

⎧⎨⎩
Q0[j], i ∈ {0, . . .512 + j}
Qs[j], i ∈ {1024× (s− 1) + 512 + j + 1, . . .

1024× s + 512 + j}
To simplify the notation, regardless of whether h1 or h2 was called, the input
value will be called the h input value. Both functions take a 32-bit word on the
input. However, only the least significant byte and third least significant byte of
the input value are used. Let x denote the input to the corresponding h function
called in step i. Define Ai = x7..0 and Bi = 256 + x23..16.

3 The Attack Overview

The fault model in which we analyze the cipher is the one in which the attacker
is able to fault a random word of the inner state tables P and Q but cannot
control its exact location nor its new faulted value. We also assume that the
attacker is able to reset the cipher arbitrary number of times. To perform the
attack, the faults are induced while the cipher is in state 268 instead of state
0. Such a choice reduces the number of required faults to perform the attack.
Throughout the rest of the paper, whenever it is referred to a fault occurrence,
it is assumed that the fault occurs when the cipher is in step i = 268. The aim of
the attack is to recover the tables P1 and Q1, i.e. P and Q tables of the cipher in
step i = 1024. Since the iteration function of HC-128 is 1−1, the inner state can
then be rewind to the initial state i = 0. The attack can now be summarized as
follows. First, the faults are induced and the corresponding output is collected
as follows:

- Repeat the following steps until all of the P , Q words have been faulted at
least once

- Reset the cipher, iterate it for 268 steps and then induce the fault
- Store the resulting faulty keystream words s′i, i = 268, . . .1535

Then, the h input values, as defined in the previous section, are recovered for
certain steps as follows:

- Recover the h input values in steps 512, . . .1023 (details are provided in
section 5.1)

- Recover a subset of the h input values in steps 1024, . . .1535 (the size of the
recovered subset is quantified in section 5.2)
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The inner state is recovered, bit by bit, in 32 phases. In phase b = 0, the bits
P 0

1 [i], Q0
1[i], i = 0, . . . 512 are recovered. Then, in phases b = 1, . . . 30, assum-

ing the knowledge of P b−1..0
1 [i], Qb−1..0

1 [i], i = 0, . . . 512, the bits P b
1 [i], Qb

1[i] are
recovered. In each phase, a system of linear equations over Z2 in P b

1 [i], Qb
1[i] is

generated as follows:

- Generate 512 equations of the form (P b
1 [Ai] + P b

1 [Bi]) ⊕ Qb
1[i] = sb

i , i =
512, . . .1023 (section 5.3)

- Recover a subset of the P b
1 [0], . . . P b

1 [255] and a subset of Qb
1[0], . . .Qb

1[255]
values and add the recovered information to the system (section 5.4)

- Generate more equations in P b
1 [i], Qb

1[i] values by considering the relations
between faulty and non-faulty keystreams (section 5.5)

- Solve the obtained system of linear equations

Finally, the most significant bits of all the P and Q words are recovered by phase
b = 31.

4 The Faulty Value Position and Difference

In this section, two algorithms are provided. The first one is used to recover the
XOR difference between certain faulty and non-faulty inner state values after
the fault has been induced and the cipher is iterated for certain number of steps.
The algorithm is useful since the XOR differences between the non-faulty and
the faulty inner state values is used to perform differential cryptanlaysis when
the corresponding inner state values are reused in future cipher iterations. The
second algorithm is used to recover the position of the induced fault. Before
describing these two algorithms, an analysis of how the fault propagates as the
cipher iterates is provided. Namely, we show that the position of the fault in
the P or the Q tables uniquely determines the way by which the difference
propagates through the corresponding table. This is due to the fact that, in HC-
128, the update steps 5 and 8 in Fig. 1 use indices which are independent of the
current state. Furthermore, although the indices used in the keystream output
generation steps 6 and 9 depend on the inner state information, this does not
impede the recovery of initial fault position, as will be shown below. To illustrate
the above argument, assume that the fault occurred at Q[f ] while the cipher is
in state i = 268. Since, according to line 5 of Fig. 1, the faulty value Q′[f ] is
surely not referenced is during steps i = 0, . . . 511, it follows that P ′

1[l] = P1[l],
l = 0, . . . 511. Also, according to the update line 8 of Fig. 1, by which values
Q[j], Q[j � 3], Q[j � 10] and Q[j � 511] are referenced, the first time in which
Q′[f ] will be referenced is during the state in which Q[f − 1] is updated, i.e., in
step i = 512 + f − 1. Thus, Q1[f − 1] �= Q′

1[f − 1]. More generally, define

ΔQ1[j] =
{

0, if Q1[j] = Q′
1[j]

1, if Q1[j] �= Q′
1[j].

(1)

Applying the same logic to follow the propagation until state 1024, for 1 ≤ f ≤
501, it is straightforward to check that
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(ΔQ1[j])512j=0 = 00 . . .0︸ ︷︷ ︸
j=0,...f−2

110110110 111 . . .11︸ ︷︷ ︸
j=f+8,...511

The difference propagation in the inner state is also partially projected to the
keystream. For instance, if the fault occurs at Q[f ], then sj = s′j holds for
512 ≤ j < 512+ f − 1. The first difference occurs at i = 512+ j, j = f − 1, after
the value Q[f − 1] is affected and then referenced for the output in the same
step. We define

Δsi =
{

0 if si = s′i
1 if si �= s′i

(2)

to track the difference propagation in the keystream output. In the presented rea-
soning, we implicitly assume that any difference in the right-hand side values of
lines 5,6,8 or 9 of Fig. 1 always causes a difference in the corresponding left-hand
sides. For 100, 000 times, the inner state of HC-128 has been randomly initialized,
iterated for 268 times and then faulted at random word. In all the 100, 000 ex-
periments, the correctness of our assumption was verified. The following Lemmas
provide the complete difference propagation patterns for both the inner state and
the keystream. The proofs are omitted since they are straightforward.

Lemma 1. If the fault occurred in the P table, its position f uniquely deter-
mines the sequence (ΔP1[j])512j=0. Similarly, if the fault occurred in the Q table,
its position f uniquely determines the sequence (ΔQ1[j])512j=0. The corresponding
sequences, depending on the fault positions, are given in Table 1.

Table 1. The effect of faults induced during state 268 on the P and Q tables

Fault at P [f ] (ΔP1[j])512j=0

f = 0 1 0 . . . 0︸ ︷︷ ︸
j=1...510

1

f ∈ {1, . . . 257} 0 . . . 0︸ ︷︷ ︸
j=0...f−1

1 0 . . . 0︸ ︷︷ ︸
j=f+1...511

f ∈ {258, . . . 264} 0 . . . 0︸ ︷︷ ︸
j=0...f−1

1000000000100100100110110110 1 . . . 1︸ ︷︷ ︸
j=f+28...511

f ∈ {265, 266, 267, 268} 0 . . . 0︸ ︷︷ ︸
j=0...f−1

100100100110110110 1 . . . 1︸ ︷︷ ︸
j=f+18...511

f ∈ {269, . . . 511} 0 . . . 0︸ ︷︷ ︸
j=0...f−2

110110110 1 . . . 1︸ ︷︷ ︸
j=f+8...511

Fault at Q[f ] (ΔQ1[j])512j=0

f = 0 100100100110110110 1 . . . 1︸ ︷︷ ︸
j=18...511

f ∈ {1, . . . 501} 0 . . . 0︸ ︷︷ ︸
j=0...f−2

110110110 1 . . . 1︸ ︷︷ ︸
j=f+8...511

f ∈ {502, . . . 508} 0 . . . 0︸ ︷︷ ︸
j=0...f−503

100100100110110110 1 . . . 1︸ ︷︷ ︸
j=f−484...511

f ∈ {509, 510, 511} 0 . . . 0︸ ︷︷ ︸
j=0...f−510

100100110110110 1 . . . 1︸ ︷︷ ︸
j=f−493...511
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Lemma 2. If the fault occurred in the P table, the fault position uniquely de-
termines sequence (Δsi)511i=256|(Δsi)1279i=1024. Similarly, if the fault occurred in the
Q table, the fault position uniquely determines sequence (Δsi)1023i=512. The corre-
sponding sequences, depending on the fault position, are provided in Table 2.

Table 2. The effect of faults induced during state 268 on the keystream

Fault at Q[f ] (Δsi)1023i=512

f = 0 100100100110110110 1 . . . 1︸ ︷︷ ︸
i=18...511

f ∈ {1, . . . 499} 0 . . . 0︸ ︷︷ ︸
i=0...f−2

110110110 1 . . . 1︸ ︷︷ ︸
i=f+8...511

f = {500, 501} 0 . . . 0︸ ︷︷ ︸
i=0..f−501

1 0 . . . 0︸ ︷︷ ︸
i=f−499...498

1101101101111

f ∈ {502, . . . 508} 0 . . . 0︸ ︷︷ ︸
i=0...f−503

101100100110110110 1 . . . 1︸ ︷︷ ︸
i=f−484...511

f = {509, 510, 511} 0 . . . 0︸ ︷︷ ︸
0..f−510

100100110110110 1 . . . 1︸ ︷︷ ︸
i=f−494...511

Fault at P [f ] (Δsi)511i=256|(Δsi)1279i=1024

f ∈ {0, . . . 247} 0 . . . 0︸ ︷︷ ︸
i=0...254+f

110110110 1 . . . 1︸ ︷︷ ︸
i=263+f...511

f ∈ {248, . . . 255} 0 . . . 0︸ ︷︷ ︸
i=0...254+f

110110110︸ ︷︷ ︸
i=255+f...511

f = 256 0 . . . 0︸ ︷︷ ︸
i=0...11

1 0 . . . 0︸ ︷︷ ︸
i=13...510

1

f = 257 0 . . . 0︸ ︷︷ ︸
i=0...12

1 0 . . . 0︸ ︷︷ ︸
i=14...511

f ∈ {258, . . . 264} 0 . . . 0︸ ︷︷ ︸
i=0...f−247

101100100110110110 1 . . . 1︸ ︷︷ ︸
i=f−228...511

f ∈ {265, . . . 267} 0 . . . 0︸ ︷︷ ︸
i=0...f−254

100100110110110 1 . . . 1︸ ︷︷ ︸
i=f−238...511

f = 268 0 . . . 0︸ ︷︷ ︸
i=0...11

100100100110110110 1 . . . 1︸ ︷︷ ︸
i=30...511

f ∈ {269, . . . 511} 0 . . . 0︸ ︷︷ ︸
i=0...f−258

110110110 1 . . . 1︸ ︷︷ ︸
i=f−248...511

4.1 Recovering the Differences between Faulty and Non-faulty
Words

After a fault is introduced, other P and Q values are affected as the cipher
iterates. In this section, we show how to derive the difference between these
affected faulty values and their original counterparts. For illustration, assume
that the fault occurred at Q[f ]. In step i = 512+f−1, the faulty and non-faulty
keystream words will be produced by

s512+f−1 = h2(Q[f − 13])⊕Q[f − 1], s′512+f−1 = h2(Q′[f − 13])⊕Q′[f − 1].
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However, since Q′[f − 13] = Q[f − 13], it follows that s512+f−1 ⊕ s′512+f−1 =
Q[f − 1]⊕Q′[f − 1], which allows the recovery of Q1[f − 1]⊕Q′

1[f − 1]. For a
fault position f , define the set S(f) as follows:

l ∈ S(f)⇔ 0 ≤ l ≤ 511 and l ∈ {f − 1, f, f + 2, f + 3, f + 5, f + 6, (3)
f + 8, f + 9, f + 10, f + 13, f + 16, f + 19}

where “+” and “-” denote addition and subtraction in the set of integers Z. In
other words, given a fault at position f in the P or Q tables, the set S(f) defines
the set of positions for which the difference from the original counterpart words
can be recovered as given by the following two Lemmas.

Lemma 3. Let HC-128 be in step 268 when a fault occurs in P [f ], 269 ≤ f ≤
511. Then, for l ∈ S(f), we have

P1[l]⊕ P ′
1[l] = sl ⊕ s′l (4)

Proof. The distribution of corrupted values in P1 when f ≥ 269 is provided in
Table 1. If l = f − 1, then

sf−1 = h1(P1[f − 13])⊕ P1[f − 1], s′f−1 = h1(P ′
1[f − 13])⊕ P ′

1[f − 1]

According to Table 1, P1[f − 13] = P ′
1[f − 13] and since there is no corrupted

values in the Q table, (4) follows. Similar proof follows for the other l ∈ S(f)
values, 269 ≤ f ≤ 511.

Lemma 4. Let HC-128 be in state 268, when a fault occurs in word Q[f ], 0 ≤
f ≤ 501. Then, for l ∈ S(f), we have

Q1[l]⊕Q′
1[l] = s512+l ⊕ s′512+l (5)

The proof of Lemma 4 is analogous to the proof of Lemma 3. Note that the upper
bound on f in Lemma 4 allows a simplified treatment of recoverable differences.
Namely, if the fault is on Q[f ] for f > 501, the propagation starts as early as in
step i = 512 and the set of recoverable differences differs from S(f).

Given the fault position P [f ] or Q[f ], the above two Lemmas establish that
for l ∈ S(f), P [l] ⊕ P ′[l] or Q[l] ⊕ Q′[l] can be recovered. A converse question
can also be posed: Given a position, say Q[l], which fault positions in the Q
table will allow the recovery of Q1[l]⊕Q′

1[l]? For that purpose, it is convenient
to define the set S−1

Q (l) for 0 ≤ l ≤ 511 as follows

f ∈ S−1
Q (l)⇔ 0 ≤ f ≤ 501 and f ∈ {l + 1, l, l− 2, l− 3, l− 5, l− 6, (6)

l − 8, l− 9, l− 10, l− 13, l− 16, l− 19}
Now, given a position Q[l], the set S−1

Q (l) provides all fault positions such that
Q1[l]⊕Q′

1[l] = s512+l⊕ s′512+l according to Lemma 4. Similarly, given a position
268 ≤ l ≤ 511 in the P table, the set S−1

P (l) defined by

f ∈ S−1
P (l)⇔ 269 ≤ f ≤ 511 and f ∈ {l + 1, l, l− 2, l− 3, l − 5, l− 6, (7)

l − 8, l − 9, l− 10, l− 13, l− 16, l− 19}
provides the fault positions f such that P1[l]⊕ P ′

1[l] = sl ⊕ s′l can be recovered
according to Lemma 3.
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4.2 Recovering the Position of the Fault

In this section, we provide an algorithm to deduce the position where the fault
occurred. Since, according to Lemmas 1 and 2, the fault position uniquely de-
termines the corresponding sequences, the following functions can be defined:

φP : f �→ (Δsi)511i=256|(Δsi)1279i=1024, φQ : f �→ (Δsi)1023i=512

The functions are explicitly given in Table 2. By checking that no two right-hand
side sequences in both parts of the Table 2 are equal, it follows that

Lemma 5. The functions φP and φQ are 1-1.

Let ΔP = φP ({0, . . . 511}) and ΔQ = φQ({0, . . . 511}). If the fault does not cause
(Δsi)1023512 ∈ ΔP and (Δsi)511i=256|(Δsi)1279i=1024 ∈ ΔQ at the same time, which, as
will be shown, happens with negligible probability, then Algorithm 1 returns the
fault position.

Algorithm 1. Fault Position Recovery

INPUT: (Δsi)1279i=256 = (si ⊕ s′i)1279i=256

OUTPUT: The position where the fault occurred

1: If both (Δsi)1023512 ∈ ΔP and (Δsi)511i=256|(Δsi)1279i=1024 ∈ ΔQ, return undefined

2: If (Δsi)1023i=512 ∈ ΔP , return φ−1
P ((Δsi)1023i=512)

3: If (Δsi)511i=256|(Δsi)1279i=1024 ∈ ΔQ, return φ−1
Q ((Δsi)511i=256|(Δsi)1279i=1024)

From line 1 of Algorithm 1, if there is conflicting information on whether
the fault occurred in the P or the Q table, the algorithm returns undefined. To
estimate the probability of this unwanted event, let FP [f ] and FQ[f ] denote the
event that the fault occurs at position P [f ] and Q[f ], respectively. Let U denote
the event that Algorithm 1 returns undefined. Then we have

Prob[U ] =
511∑
f=0

Prob[U ∩ FP [f ]] +
511∑
f=0

Prob[U ∩ FQ[f ]] =

1
1024

(
511∑
f=0

Prob[U |FP [f ]] +
511∑
f=0

Prob[U |FQ[f ]]) (8)

where Prob[U ∩ FP [f ]] = Prob[FP [f ]]Prob[U |FP [f ]] and also Prob[U ∩ FQ[f ]] =
Prob[FQ[f ]]Prob[U |FQ[f ]]. To expand the probability Prob[U |FP [f ]], let n0 and
n1 denote the number of faulty values among the values P [0], . . . P [255] and
P [256] . . . P [511], respectively, at state 512, given that the fault occurred at P [f ].
Also, let p = n0+n1

256 − n0n1
2562 . If n(δ′i) is the number of 1 values in a 512-element

sequence δ′i ∈ ΔQ, then

Prob[U |FP [f ]]=
∑

δ′
i∈ΔQ

Prob[(Δsi)1023i=512 =δ′i|FP [f ]]=
∑

δ′
i∈ΔQ

pn(δ′
i)(1− p)512−n(δ′

i)
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As for the probability Prob[U |FQ[f ]], let n0 and n1 denote the number of faulty
words among Q[0], . . .Q[255] and Q[256], . . .Q[511], respectively, at state 268,
given that the fault occurred at Q[f ]. Let n2 and n3 denote the number of
faulty words among Q[0], . . .Q[255] and among Q[256], . . .Q[511], respectively,
at state 1024, given that the fault occurred at Q[f ]. Let p0 = n0+n1

256 − n0n1
2562 and

p1 = n2+n3
256 − n2n3

2562 . If m0(δ′i) and m1(δ′i), denote the number of 1 values among
δ′12, . . . δ

′
255 and δ′256, . . . δ

′
511, respectively, where δ′i ∈ ΔP , then

Prob[U |FQ[f ]] =
∑

δ′
i∈ΔP

Prob[(Δsi)511i=256|(Δsi)1279i=1024 = δ′i|FQ[f ]] =

=
∑

δ′
i∈ΔP

p
m0(δ′

i)
0 (1− p0)244−m0(δ′

i)p
m1(δ′

i)
1 (1− p1)256−m1(δ′

i)

Calculating the sets ΔP and ΔQ and substituting the corresponding values using
Table 2 allows the computation of the sums in Eq. (8) as 1

1024

∑511
f=0 Prob[U |FP [f ]]

= 2−66.293 and 1
1024

∑511
f=0 Prob[U |FQ[f ]] = 2−30.406. Thus, the probability that

Algorithm 1 returns undefined as fault position is is Prob[U ] = 2−30.406.

5 Using DFA to Generate Equations

As described in section 3, the attack is performed by introducing faults until
every P and Q word is faulted. Let T be the number of fault injections required
to fault each of the 1024 words in the P and Q tables at least once. The expected
number of required faults, E(T ), is given by E(T ) = 7698.4 (see the coupons’
collector problem in [7].) After inducing that number of faults, the average num-
ber of faults at a particular word P [i] or Q[i] will be 7698.4/1024 ≈ 7.52. As
stated in section 3, the attack proceeds in 32 phases. Each phase b relies on the
knowledge of P b−1..0

1 [i], Qb−1..0
1 [i], i = 0, . . . 511, recovered in previous phases.

Only the first phase, b = 0, does not require any previous bit knowledge. In each
phase, a linear system of equations over Z2 in P b

1 [i], Qb
1[i], i = 0, . . . 511 is gen-

erated and solved. Phase b = 31 proceeds with minor modifications compared to
phases 0 ≤ b ≤ 30, as explained below.

5.1 The Recovery of h Input Values for Steps 512, . . . 1023

In every HC-128 step, one of the two h functions is called, i.e., either h1 or h2.
The input for the h functions is a 32-bit value, out of which only 16 bits, Ai, Bi,
play a role in the computation. In this section, we describe a method to recover
all of the Ai, Bi values, for i = 512, . . .1023.

To recover Ai, assume that the fault occurred at P [f ] while the cipher was
in state 268. As can be seen from Table 1, if 1 ≤ f ≤ 255, then as the cipher
iterates through steps i = 512, . . .1023, no other P values gets corrupted. Also,
the Q table does not get corrupted. Thus, in case 1 ≤ f ≤ 255, the non-faulty
and the faulty keystream words in step 512 ≤ i ≤ 1023 are

si = (P1[Ai] + P1[Bi])⊕Q1[j], s′i〈P [f ]〉 = (P ′
1[Ai] + P1[Bi])⊕Q1[j]
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Since P ′
1[Ai] �= P1[Ai] implies that Ai = f , then we have

si �= s′i〈P1[f ]〉 ⇒ Ai = f (9)

In case f = 0, the fault does propagate to P [511] and if si �= s′i〈P [0]〉, then it is
unclear whether Ai = 0 or Bi = 511, or both equalities hold. However, if there
exists no faulty keystream for 1 ≤ f ≤ 255 such that (9) is true, then Ai = 0. As
for Bi, assume that a fault is inserted at word P [f ], 256 ≤ f ≤ 268, while the
cipher is in state 268. From Table 1, it is clear that at state 1024, none of the
P [0], . . . P [f − 1] values will be corrupted and the value P [f ] will necessarily be
corrupted. Similarly, if the fault is inserted at P [f ] where 269 ≤ f ≤ 511, none of
the values P [0], . . . P [f − 2] get corrupted and the value P [f − 1] will necessarily
be corrupted. Thus, if fmax denotes the maximal f such that si �= si〈P [f ]〉, then

Bi =
{
fmax if fmax ∈ {256, . . .268}
fmax − 1 if fmax ∈ {269, . . .510}

Finally, if fmax = 511, it is not clear whether Bi = 510 or Bi = 511. To
differentiate between these two cases, it should be verified whether si �= s′i also
holds for any f which does not corrupt P [511], for instance for f = 507. The
recovery of Ai, Bi, for all 512 ≤ i ≤ 1023 is given by Algorithm 2.

Algorithm 2. Recovery of Ai and Bi, for some i = 512, . . . 1023

INPUT: Step i ∈ {512, . . . 1023}
OUTPUT: Ai, Bi

1: If exists 1 ≤ f ≤ 255 such that si �= s′i〈P [f ]〉: Ai = f
2: else Ai = 0
3: Find fmax, the maximum f such that si �= si〈P [f ]〉
4: If 256 ≤ fmax ≤ 268: Bi = fmax

5: else if 269 ≤ fmax ≤ 510: B′
i = fmax − 1

6: else if si = si〈P [507]〉: Bi = 510
7: else Bi = 511
9: Return Ai, Bi

Given the definition of h2 and by noting that j = i mod 512, the recovered
Ai and Bi values are in fact

Ai =
{
Q7..0

0 [j � 12] if i ∈ {512..523}
Q7..0

1 [j � 12] if i ∈ {524..1023} (10)

Bi =
{
Q23..16

0 [j � 12] + 256 if i ∈ {512..523}
Q23..16

1 [j � 12] + 256 if i ∈ {524..1023} (11)
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5.2 The Recovery of the h Input Values for Steps 1024, . . . 1535

In this subsection, Ai, Bi values for a subset of i = 1024, . . .1535 are recovered.
While Bi values will be recovered by a method similar to the one from the
previous subsection, the same method is not applicable for Ai recovery and we
will utilize the reuse of inner state words to recover the Ai values.

As for the recovery of Bi for i = 1024, . . .1535, from Table 1 it can be observed
that if for some 1 ≤ f ≤ 501, Q[f ] is faulted at step 268, the value Q[f + 7] will
remain unchanged and the values Q[f + 8], . . .Q[511] will surely be corrupted.
Thus, if fmin denotes the minimal 249 ≤ f ≤ 501 such that si = s′i〈Q[f ]〉, then
Bi = fmin+7. Also, since Q[509], Q[510] and Q[511] will get corrupted regardless
of the fault position in Q, it is not possible to distinguish which of values 509,
510 or 511 Bi was equal to.

Thus, if for given step i, Bi < 509 holds, Bi will be recovered. Moreover, if
Bi < 500, Q7..0

1 [Bi] will be recovered by (11). Assuming that Bi < 500 for step
i, then Ai can be recovered as follows. Consider the faulty keystream s′i〈Q[f ]〉
where f ∈ S−1

Q (Bi). According to Lemma 4 and (6)

Q1[Bi]⊕Q′
1[Bi] = s512+Bi ⊕ s′512+Bi

Thus, Q
′7..0
1 [Bi] can be recovered by Q

′7..0
1 [Bi]= Q7..0

1 [Bi] ⊕ s7..0
512+Bi

⊕ s
′7..0
512+Bi

.
After being used in step 512 + Bi, the value Q[Bi] is reused in step i as follows

si = (Q1[Ai] + Q1[Bi])⊕ P2[j], s′i〈Q[f ]〉 = (Q′
1[Ai] + Q′

1[Bi])⊕ P ′
2[j]

If 257 ≤ f ≤ 501, Q1[Ai] = Q′
1[Ai] holds according to Table 1. Also, the P

table remains uncorrupted and thus P2[j] = P ′
2[j]. Thus, focusing on the least

significant byte and XORing the previous two values yields

s7..0
i ⊕ s

′7..0
i 〈Q[f ]〉 = (Q7..0

1 [Ai] + Q7..0
1 [Bi])⊕ (Q7..0

1 [Ai] + Q
′7..0
1 [Bi]) (12)

Since s7..0
i ⊕ s

′7..0
i , Q7..0

1 [Bi] and Q
′7..0
1 [Bi] are known, (12) represents a test that

allows eliminating some wrong candidates for Q7..0
1 [Ai] value. One test of the

form (12) will be generated for each faulty instance for which the fault position
is Q[f ], where f ∈ S−1

Q (Bi). Consequently, an 0 ≤ Ai ≤ 255 can be discarded if
the corresponding Q7..0

1 [Ai] recovered by (11) does not satisfy (12).
The test (12) can be reformulated so that the third least significant byte is

used as follows

s23..16
i ⊕ s

′23..16
i =

(Q23..16
1 [Ai] + Q23..16

1 [Bi] + σi)⊕ (Q23..16
1 [Ai] + Q

′23..16
1 [Bi] + σ′

i) (13)

where σi is a carry corrector defined to be 1 if Q15..0
1 [Ai] + Q15..0

1 [Bi] ≥ 216

and 0 otherwise. Another carry corrector, σ′
i, is defined analogously. The value

Q
′23..16
1 [Bi] is obtained in the same way as the value Q

′7..0
1 [Bi] above. If 0 ≤

Ai ≤ 255 and the corresponding Q23..16
1 [Ai] are substituted in (13) and none of

σi, σ
′
i ∈ {0, 1} satisfy the test, then Ai is discarded.
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Algorithm 3. Recovery of Ai and Bi, for some i = 1024, . . . 1535

INPUT: Step i ∈ {1024, . . . 1535}
OUTPUT: Ai or undef , Bi or undef

1: Calculate F = {257 ≤ f ≤ 501|si = s′i〈Q[f ]〉}
2: If |F | = 0: Bi = undef
3: Else Bi = min(F ) + 7
4: If Bi > 500 Ai = undef ; Return Ai, Bi

5: Else: let Cand(Ai) = {0, 1, ..255}
6: For each f ∈ S−1

Q (Bi)

7: Deduce Q
′7..0
1 [Bi] = Q7..0

1 [Bi] ⊕ s7..0
512+Bi

⊕ s
′7..0
512+Bi

8: For Ai = 0, . . . 255
9: If s7..0

i ⊕ s
′7..0
i �= (Q7..0

1 [Ai] + Q7..0
1 [Bi]) ⊕ (Q7..0

1 [Ai] + Q
′7..0
1 [Bi])

10: Eliminate Ai from Cand(Ai)
11: If for every σi,σ′

i ∈ {0, 1}, s23..16
i ⊕ s

′23..16
i �= d, where

12: d = (Q23..16
1 [Ai] + Q23..16

1 [Bi] + σi) ⊕ (Q23..16
1 [Ai] + Q

′23..16
1 [Bi] + σ′

i)
13: Eliminate Ai from Cand(Ai)
14: If |cand(Ai)| = 1, let Ai be the unique cand(Ai) member
15: Else: Ai = undef
16: Return Ai, Bi

In what follows, we estimate the expected number of steps for which both the
Ai and Bi values are recovered by the presented method. Let 1024 ≤ i ≤ 1535
be a step of HC-128. If, for example, for step i, 257 ≤ Bi ≤ 492, then the Bi

value will surely be recovered as provided by the above method. Furthermore,
for such a particular value Bi, |S−1

Q (Bi)| = 12 will hold. Since for each f ∈
S−1

Q (Bi) around 7.52 faults occur at Q[f ], as shown at the beginning of section
5, around 7.52 × 12 = 90.24 tests given by Eq. (12) and the same number of
tests given by Eq. (13) will be applied to the set of candidates for Ai. According
to our experimental results, such a number of tests is sufficient to discard all
the false candidates for Ai. In particular, an experiment in which Algorithm 3
was executed for all 512 steps i ∈ {1024, . . .1535} for 10, 000 times, with random
HC-128 instantiations, was conducted. On average, in 472.7 out of the 512 steps,
both Ai and Bi values were recovered.

5.3 Equations of the Form P b
1 [Ai] ⊕ P b

1 [Bi] ⊕ Qb
1[j] = sb

i ⊕ ci,b

After the steps givenby subsections 5.1 and 5.2 have been executed, the attack pro-
ceeds in 32 phases, each consisting of 3 parts, as presented by the attack overview
in section 3. In this subsection, the first part of b-th attack phase is presented.

The first part of b-th phase, in which starting 512 equations are generated,
proceeds as follows. In steps i ∈ {512, . . .1023}, the keystream output word is
generated as (P1[Ai] + P1[Bi])⊕Q1[j] = si where j = i mod 512. Since Ai and
Bi for i ∈ {512, . . .1023} have been recovered in subsection (5.1), focusing on
the b-th bit yields 512 bits equations of the form
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P b
1 [Ai]⊕ P b

1 [Bi]⊕Qb
1[j] = sb

i ⊕ ci,b, i = 512, . . .1023 (14)

where ci,b is a known carry corrector which is equal to 1 if there is carry
in (P b−1..0

1 [Ai] + P b−1..0
1 [Bi]) and 0 otherwise. In case b ∈ {0, . . . 7} or b ∈

{16, . . .23}, relying on the knowledge obtained by (10) and (11), the system
can be extended by adding information Qb

1[w] = aw, w = 0, . . . 499, regarded as
equations. However, for b /∈ {0, . . . 7, 16, . . .23} such equations are unavailable.
Hence, a method to systematically add more equations to the system (14) that
works for all b = 0, . . . 31, i.e., that makes the corresponding system of rank
1024, is necessary. In order to provide a generic treatment for all b values, in
what follows, equations derived from information given by (10) and (11) will not
be utilized.

5.4 Recovering Bits P b
1 [0], . . . P b

1 [255] and Qb
1[0], . . . Qb

1[255]

In the second part of the b-th phase of the attack, the system of equations
given by (14) is expanded. Note that in steps 512 ≤ i ≤ 1023, the output is
generated by si = (P1[Ai] + P1[Bi])⊕Q1[j], whereas in steps 1024 ≤ i ≤ 1535,
the output is generated by si = (Q1[Ai]+Q1[Bi])⊕P2[j]. The idea is to corrupt
P1[Bi] and Q1[Bi] in the previous two relations and recover P1[Ai] and Q1[Ai] by
observing how these values react to addition of different values. The difference
of the corrupted values is controlled by utilizing the reuse of P1[Bi] and Q1[Bi]
over different states of the cipher. The analysis results in the recovery of a subset
of the P b

1 [0], . . . P b
1 [255] and also a subset of the Qb

1[0], . . . Qb
1[255] values.

As for recovering P b
1 [0], . . . P b

1 [255], let 512 ≤ i ≤ 1023 and 268 ≤ Bi ≤ 511.
Consider a fault at position P [f ], so that f ∈ S−1

P (Bi). Using Lemma 3 and
(7), define δ = sBi ⊕ s′Bi

= P1[Bi] ⊕ P ′
1[Bi]. Assume that for the faulty cipher

instance in question, δb = 1. Consider the difference

Δ = si ⊕ s′i = (P1[Ai] + P1[Bi])⊕ (P1[Ai] + P ′
1[Bi]),

and denote by cb and c′b the carry from the b − 1 to b-th bit in the sums
P1[Ai] + P1[Bi] and P1[Ai] + P ′

1[Bi], respectively. If cb = c′b, then the bit P b[Ai]
is recovered as follows

P b
1 [Ai] =

{
δb+1 ⊕Δb+1, if cb = c′b = 0
δb+1 ⊕Δb+1 ⊕ 1, if cb = c′b = 1 (15)

If cb �= c′b, the bit P b
1 [Bi] is not uniquely determined and will not be recovered.

To recover P b
1 [Ai], the explained procedure is repeatedly applied using each

fault occurring at P [f ], f ∈ S−1
P (Bi). Let p1 = Prob[δb = 1] and p2 = Prob[cb =

c′b], then the probability of success can be lower bounded as follows:

Prob[P b
1 [Ai] recovery succeeds] ≥

511∑
Bi=256

1
256

(
1− (1− p1p2)|S

−1
P (Bi)|

)
(16)
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The values |S−1
P (Bi)| are given by Table 4 and Prob[δb = 1] = 1

2 . As for
Prob[cb = c′b], it can be modelled as the probability that there exists a carry
at bit b in two random sums [8]. It achieves a minimum for b = 31 and thus the
lower bound for the success probability over possible bit positions is given by
Prob[Recovery of P b

1 [Ai] succeeds] ≥ 0.908.
Now, the probability that for some particular k ∈ {0, . . .255}, the value P b

1 [k]
will not be recovered in some particular step i is then less than 1− 1

256 × 0.908.
Let Zk = 1 if P b

1 [k] has not been recovered after applying the algorithm for all
steps i = 512, . . .1023. Otherwise, let Zk = 0. The number of P b

1 [k], 0 ≤ k ≤ 255
values not recovered can then be estimated as

E(
255∑
k=0

Zk) =
255∑
k=0

E(Zk) ≤ 256× (1 − 1
256

× 0.908)512 = 41.511 (17)

Thus, the method presented in this section when applied on steps i = 512, . . .1023,
is expected to recover more than 256 − 41.511 = 214.49 of the P b

1 [0], . . . P b
1 [255]

values. The exact procedure is presented by Algorithm 4.

Algorithm 4. Recovery of P b
1 [Ai], for some i = 512, . . . 1023

INPUT: Step i ∈ {512, . . . 1023}
OUTPUT: Bit P b

1 [Ai], or undef

1: For every faulty keystream, where the fault occurred at P [f ], f ∈ S−1
P (Bi)

2: Calculate δ = sBi ⊕ s′Bi
and Δ = si ⊕ s′i

3: If P b−1..0
1 [x] + P b−1..0

1 [Bi] < 2b, set cb = 0, else set cb = 1
4: If P b−1..0

1 [x] + P ′b−1..0
1 [Bi] < 2b, set c′b = 0, else set c′b = 1

5: If cb = c′b:
6: Return P b

1 [Ai] calculated according to (15)
7: Return undef

As for recovering Qb
1[0], . . . Qb

1[255], an analogous technique, applied on steps
i = 1024, . . .1535, is used. The exact procedure is presented by Algorithm 5. The
expected number of recovered values is calculated analogously to (16), whereas it
needs to be taken into account that Ai and Bi, i ∈ {1024, . . .1535}, need to be
successfully recovered by subsection 5.2. The |S−1

Q (Bi)| values, given at Table 3,
are more favorable than the corresponding |S−1

P (Bi)| values in (16). The expected
number of Qb

1[0], . . .Qb
1[255] values to be recovered is 218.01.

5.5 Utilizing Equations in Faulty Bits

In this subsection, the system constructed in subsections 5.3 and 5.4 is expanded
further for the purpose of attaining the full rank of the system. Consider the faulty
output word in steps 512, . . . 1023, s′i = h2(Q′

1[j �12])⊕Q′
1[j]. Evidently, regard-

ing the previous relation as an equation is useless since it includes faulty inner
state bits. Below, a method to transform the faulty inner state bits participating
in the equation to original inner state bits is provided. Again, the reuse of inner
state words is utilized.
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Algorithm 5. Recovery of Qb
1[Ai], for some i = 1024, . . . 1535

INPUT: Step i ∈ {1024, . . . 1535}
OUTPUT: Bit Qb

1[Ai], or undef

1: If Ai or Bi are unknown, return undef
2: For every faulty keystream, where the fault occurred at Q[f ], Q ∈ S−1

Q (Bi)
3: Calculate δ = s512+Bi ⊕ s′512+Bi

and Δ = si ⊕ s′i
4: If Qb−1..0

1 [x] + Qb−1..0
1 [Bi] < 2b, set cb = 0, else set cb = 1

5: If Qb−1..0
1 [x] + Q′b−1..0

1 [Bi] < 2b, set c′b = 0, else set c′b = 1
6: If cb = c′b = 0: Return: δb+1 ⊕ Δb+1

6: If cb = c′b = 1: Return δb+1 ⊕ Δb+1 ⊕ 1
8: Return undef

Table 3. The number of fault positions which allow the recovery of Q1[l] ⊕ Q′
1[l]

l 0 1 2 3 4 5 6 7 8 9
|S−1

Q (l)| 2 2 3 4 4 5 6 6 7 8
l 10 11 12 13 14 15 16 17 18 19, . . . 500

|S−1
Q (l)| 9 9 9 10 10 10 11 11 11 12

l 501 502 503 504 505 506 507 508 509 510 511
|S−1

Q (l)| 11 10 10 9 8 8 7 6 6 5 4

Table 4. The number of fault positions which allow the recovery of P1[l] ⊕ P ′
1[l]

l 268 269 270 271 272 273 274 275 276 277 278
|S−1

P (l)| 1 2 2 3 4 4 5 6 6 7 8
l 279 280 281 282 283 284 285 286 287 288, . . . 510 511

|S−1
P (l)| 9 9 9 10 10 10 11 11 11 12 11

Let the fault position be Q[f ], where f ∈ S−1
Q (l) and 244 ≤ l ≤ 499. The

non-faulty and the faulty instances of the cipher in step i0 = 512 + l + 12 are

si0 = h2(Q1[l])⊕Q1[l + 12], s′i0 = h2(Q′
1[l])⊕Q′

1[l + 12] (18)

Note that Q7..0
1 [l] = Ai0 and Q23..16

1 [l] = Bi0−256 are known according to subsec-
tion 5.1 and that the differenceQ′

1[l]⊕Q1[l] can be calculated as δ = Q′
1[l]⊕Q1[l] =

s512+l ⊕ s′512+l, according to Lemma 4. Thus, A′
i0

and B′
i0

can be recovered as

A′
i0 = Q7..0

1 [l]⊕ δ7..0, B′
i0 = Q23..16[l]⊕ δ23..16 + 256 (19)

So, the second equation in line (18), considering only bit b, can be rewritten as

s
′b
i0 ⊕ ci0,b = P b

1 [A′
i0 ]⊕ P b

1 [B′
i0 ]⊕Q

′b
1 [l + 12] (20)

where A′
i0

and B′
i0

are known and ci0,b is an indicator of the carry in P b−1..0
1 [A′

i0
]+

P b−1..0
1 [B′

i0 ] which is also known due to the assumption that bits b − 1, . . . 0 of



276 A. Kircanski and A.M. Youssef

all the P and Q words are known. Finally, to add equation (20) to the system
constructed in the previous sections, the variableQ

′b
1 [l+12] needs to be eliminated.

Once again, to reexpress Q
′b
1 [l + 12], the idea is to wait for this value to be reused

once more during steps 1024, . . .1535.
Due to the assumed lower bound 244 ≤ l, it follows that l+12 ≥ 256. Hence, it

is possible for the Bi index in some step 1024 ≤ i ≤ 1535 to take the value l + 12
which was used in step i0. If such a step exists, denote it by i1. Also, assume that
Ai1 < f − 1, so that Q1[Ai1 ] = Q′

1[Ai1 ]. Finally, assume that both Ai1 and Bi1

have been successfully recovered by the procedure given in subsection 5.2. Then, if
j1 = i1 mod 512, the non-faulty and faulty keystream words are si1 = (Q1[Ai1 ] +
Q1[Bi1 ]) ⊕ P2[j1] and s′i1 = (Q1[Ai1 ] + Q′

1[Bi1 ]) ⊕ P2[j1] and the difference can
be computed as

si1 ⊕ s′i1 = (Q1[Ai1 ] + Q1[Bi1 ])⊕ (Q1[Ai1 ] + Q′
1[Bi1 ]) (21)

Extracting bit b from (21) and cancelling out Q1[Ai1 ] yields

sb
i1 ⊕ s

′b
i1 = Qb

1[Bi1 ]⊕ ci1,b ⊕Q
′b
1 [Bi1 ]⊕ c′i1,b (22)

where ci1,b and c′i1,b are carry indicators for Qb−1..0
1 [Ai1 ] + Qb−1..0

1 [Bi1 ] and

Qb−1..0
1 [Ai1 ] + Q

′b−1..0
1 [Bi1 ], respectively. The carry indicator ci1,b is calculated

trivially and as for c′i1,b, it is necessary to find Q
′b−1..0
1 [Bi1 ]. For that, it suffices to

focus on the bits b− 1, . . . 0 in equation (21), since all values except Q
′b−1..0
1 [Bi1 ]

are known and the required value can be calculated as

Q
′b−1..0
1 [Bi1]=((sb−1..0

i1
⊕ s

′b−1..0
i1

)⊕(Qb−1..0
1 [Ai1]+Qb−1..0

1 [Bi1]))−Qb−1..0
1 [Ai1] (23)

After finding ci1,b and c′i1,b, from (22) and since Bi1 = l + 12, Q′
1[l + 12] can be

expressed in terms of Q1 bits as

Q
′b
1 [l + 12] = sb

i1 ⊕ s
′b
i1 ⊕Qb

1[Bi1 ]⊕ ci1,b ⊕ c′i1,b (24)

Substituting (24) in (20) yields

s
′b
i0 ⊕ ci0,b = P b

1 [A′
i0 ]⊕ P b

1 [B′
i0 ]⊕ sb

i1 ⊕ s
′b
i1 ⊕Qb

1[Bi1 ]⊕ ci1,b ⊕ c′i1,b (25)

which is added to the system of equations without introducing any new variables.
The described procedure is summarized by Algorithm 6.

Let N denote the number of equations generated by repeating the procedure
above for all f ∈ S−1

Q (l) and 244 ≤ l ≤ 499. To estimate E(N), let ρ(l + 12) be
the step number i, 1024 ≤ i ≤ 1535, for which Bi = l + 12, if such a step exists.
Also, let I denote the indicator function, returning 1 if the condition in question is
true and returning 0 otherwise. Finally, let FLTQ[f ] be the number of faults that
occurr at position Q[f ]. Then

N =
499∑

l=244

∑
f∈S−1

Q (l)

FLTQ[f ] × I[ρ(l + 12) exists]× I[Aρ(l+12) < f − 1]

× I[Aρ(l+12), Bρ(l+12) known]
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Algorithm 6. Add equations by expressing the faulty with non-faulty bits

INPUT: Faulty keystream for a fault occuring at Q[f ], f ∈ S−1
P (l), 244 ≤ l ≤ 499

OUTPUT: An equation of form (25)

1: Let δ = s512+l ⊕ s′512+l and i0 = 512 + l + 12
2: Calculate A′

i0 and B′
i0 according to (19)

3: If P b−1..0
1 [A′

i0 ] + P b−1..0
1 [B′

i0 ] < 2b set ci0,b = 0, else ci0,b = 1
4: For 1024 ≤ i1 ≤ 1535 such that Ai0 and Bi0 are known
5: If Bi0 = l + 12 and Ai0 < f − 1
6: If Qb−1..0

1 [Ai1 ] + Qb−1..0
1 [Bi1 ] < 2b, let ci1,b = 0, else ci1,b = 1

7: Calculate Q
′b−1..0
1 [Bi1 ] according to (23)

8: If Qb−1..0
1 [Ai1 ] + Q

′b−1..0
1 [Bi1 ] < 2b, let c′i1,b = 0, else c′i1,b = 1

9: Return equation (25)

Recall that E(FLTQ[f ]) = 7.52. Also, E(I[ρ(l + 12) exists]) ≈ 1 − (255
256 )512. If

f > 257, E(I[Aρ(l+12) < f − 1]) = 1 and otherwise f−2
256 . Finally, according to

subsection 5.2, E(I[Aρ(l+12), Bρ(l+12) known]) ≥ 472.7
512 . Substituting the values

above and using additivity of E(·) yields that E(N) ≥ 18380.1.

6 Attack Complexity and Experimental Results

Adding the number of equations generated by the algorithms presented in subsec-
tions 5.3, 5.4 and 5.5 gives a lower bound of 512 + 214.49 + 218.01 + 18380.1 =
19324.6 equations expected to be in the final system for bits b ∈ {0, . . .30}. The
correctness of the system and the uniqueness of the solution have been verified
experimentally as follows. For 100 times HC-128 was randomly initialized and the
faults have been simulated as specified by the attack. The procedures specified by
by subsections 5.3, 5.4 and 5.5 have been executed and the rank of the resulting
system of equations for bits b ∈ {0, . . . 30} was verified to be 1024 in all the 100
times. As for bit b = 31, the procedures from subsection 5.4 are not applicable,
leaving out the system to be generated only by subsections 5.3 and 5.5, yielding
about 512+18380.1 = 18892.1 equations. Again, throughout the 100 experiments,
the rank of resulting system for bit b = 31 was 1022 each time. Thus, to yield a
complete HC-128 inner state, the missing two bits need to be guessed. The correct-
ness of the guessed bits is easily verified by running the cipher and comparing the
resulting key stream with the observed one. As for the attack complexity, around
7698.4 faults at random inner state words are required, as given by the beginning
of section 5. The most expensive computational factor in the attack is solving the
linear system of equations in 1024 bit variables for 32 times.

7 Conclusion

In this paper, a DFA attack on HC-128 was presented. The adopted attack model
assumes that the attacker is able to fault a random word of the inner state of the
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cipher but cannot control its exact location nor its new faulted value. The attack
operates by constructing 32 systems of linear equations over Z2, each of 1024 bit
variables representing the inner state values. It also utilizes what we called the
reuse of inner state words in different states of the cipher in order to facilitate the
differential fault analysis.
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Abstract. The market for RFID technology has grown rapidly over the
past few years. Going along with the proliferation of RFID technology is
an increasing demand for secure and privacy-preserving applications. In
this context, RFID tags need to be protected against physical attacks
such as Differential Power Analysis (DPA) and fault attacks. The main
obstacles towards secure RFID are the extreme constraints of passive
tags in terms of power consumption and silicon area, which makes the
integration of countermeasures against physical attacks even more diffi-
cult than for other types of embedded systems. In this paper we propose
a fresh re-keying scheme that is especially suited for challenge-response
protocols such as used to authenticate tags. We evaluate the resistance
of our scheme against fault and side-channel analysis, and introduce a
simple architecture for VLSI implementation. In addition, we estimate
the cost of our scheme in terms of area and execution time for various
security/performance trade-offs. Our experimental results show that the
proposed re-keying scheme provides better security (and does so at less
cost) than state-of-the-art countermeasures.

1 Introduction

Radio-Frequency Identification (RFID) is an emerging technology that enables
identification of non-line-of-sight objects or subjects. Based on cheap RF micro-
circuits—called tags—apposed on or incorporated in the items to identify, the
RFID technology is now widely deployed in our everyday life. Considering the
plethora of applications that are targeted, it is little surprising that security and
privacy issues related to RFID technology have become an important concern in
recent years. Solving these issues has created a need for cryptography-enabled
RFID tags that fulfill stringent constraints on area and power consumption.

Unfortunately, while designing secret-key or public-key cryptographic hard-
ware on an area budget of a few thousand logic gates is challenging enough, the
cost criteria is not the only one to be met by secure RFID tags. In particular, as
these tags often operate in insecure or even hostile environments, they can be
subject to different types of implementation (i.e. physical) attacks. This means
that, instead of targeting the cryptographic algorithms and/or protocols at the
mathematical level, an adversary may directly attack their implementation in
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Fig. 1. Fresh re-keying: basic principle

order to break a system. A considerable number of experiments reported in the
literature during the past ten years demonstrate the low-cost nature of certain
classes of physical attacks, most prominently side-channel attacks (e.g. Simple
Power Analysis, Differential Power Analysis [14]) and fault attacks [1]. The very
same attacks that can break unprotected smart cards also apply to RFID tags
(just slight adaptations of the measurement setup are necessary [10]), which is
no surprise given that both types of devices are manufactured using the same
or similar VLSI technology. As a consequence, the need for low-cost protections
against such physical attacks emerges. The requirement of physical security is
a particularly challenging issue since most published approaches to increase the
resistance against side-channel or fault attacks are rather expensive [19]. Even
worse, there exist only very few combined countermeasures against both types
of attacks. On the other hand, developing and implementing security protocols
with large mathematical security margins is not very worthwhile if the devices
executing these protocols do not provide a similar (or at least reasonable) level
of physical security.

In order to solve these problems, we introduce a simple re-keying scheme to
protect RFID tags and other low-cost devices against Differential Fault Attacks
and a large category of side-channel attacks (namely the “standard” SPA and
DPA attacks as described in Section 2). This scheme, depicted in Figure 1, can
be used in a challenge-response authentication protocol for RFID tags or, more
generally, for physically secure encryption. It contains an encryption function
f (typically, f is a block cipher; we will use the AES as example throughout this
paper) to encrypt every challenge (or, more generally, every message block m)
with a fresh session key k∗. This session key k∗ is obtained with the help of a
function g that uses a master key k and an on-tag generated public nonce r as
input. That is, the tag computes the session key k∗ = gk(r) first and then the
ciphertext c = fk∗(m). At a first glance, it may seem that such a scheme just
shifts the problem of protecting the block cipher f against physical attacks to
the problem of protecting the function g against the same attacks. However, we
argue in this paper that fresh re-keying provides significant advantages, both in
terms of security and performance, over existing countermeasures. Firstly, and
quite simply, it makes attacks based on Differential Fault Analysis unpractical
because the same key is never used twice to encrypt a challenge or message. Sec-
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ondly, it allows for separating the requirements on the two functions. On the one
hand, g has to be low-cost and easy to protect against side-channel attacks, but
does not have to be cryptographically strong. On the other hand, f only needs
to be secure against side-channel attacks with a data complexity bounded to one
single query (i.e. SPA, essentially).

In the following sections of this paper, we define a number of desired properties
for the function g and propose a concrete implementation that we analyze in
detail. We then explore the design space for g and discuss different trade-offs
between performance and resistance against side-channel attacks. Relying on
previous results of evaluations of protected devices, our implementation figures
show that a significant level of physical security can be obtained at reasonable
cost. In particular, we assess the computational difficulty of performing attacks
based on the traditional “divide-and-conquer” strategy in which different parts
of the master key k are recovered separately. We show that the cost of such an
attack is prohibitive for the targeted applications. Regarding fault analysis, we
discuss the protection against differential fault attacks, but do not consider any
of the simple fault attacks that reduce the number of rounds of a block cipher
or output the key instead of the ciphertext. These attack scenarios represent a
more general, scheme-independent threat and are commonly prevented by other
means, e.g. loop invariants or code signatures. Finally, we briefly discuss the
resistance of our scheme against the recently introduced algebraic side-channel
attacks [29]. While the exact evaluation of such advanced techniques is left as a
topic for further research, we sketch solutions to prevent them.

1.1 Related Work

There exists a significant literature on countermeasures to prevent side-channel
attacks. In this section, we summarize the most common countermeasures and
discuss their advantages and limitations. We then argue how our proposal can
be seen as a new trade-off between security and performance.

First, masking (e.g. [7,31]) is a commonly applied and thus well understood
technique to protect a device against side-channel attacks. Its main drawback is
that the performance penalty can be significant because of the need to compute
a correction term on-the-fly, during the encryption process [7]. Masking can be
defeated by higher-order attacks [21] or due to hardware issues such as glitches
[18]. Nonetheless, it is usually considered as an effective ingredient for the pro-
tection of cryptographic hardware. The permutation tables analyzed in [3] have
quite similar properties, both in terms of performance and security [27].

Next to masking, hiding is another frequently applied countermeasure. Many
hiding schemes have been proposed in the literature recently, e.g. different time
randomization tools or side-channel resistant logic-styles featuring an (almost)
data-independent power consumption profile. Such logic-styles can be based on
standard CMOS cell libraries (e.g. WDDL [36]), or require full-custom design
(e.g. SABL [35]). Again, there is a security vs. performance/cost trade-off since
designing full-custom hardware is more expensive than using standard cells, but
provides also more options for fine-tuning and, hence, better security [16].
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Closer to our proposed solution are different protocol-level countermeasures
such as regular key updates. The idea of regular key updates was first described
in [13] and has recently attracted significant attention, see e.g. [22,23]. These re-
keying schemes have the advantage of being formally analyzed, which allows for
a good evaluation of the security level they provide. On the other hand, they still
rely on certain physical assumptions that must be fulfilled by the hardware and
they can be quite inefficient when a chip has to be re-initialized regularly (which
is typically the case in a challenge-response setting). More precisely, as detailed
in [33], a secure initialization process for such constructions using e.g. the AES
would require a tree-based structure with up to n applications of the AES, where
n is the size of the initialization vector. This hardly fits into the RFID realm.

The use of all-or-nothing transforms to prevent certain types of side-channel
attacks is discussed in [15]. Here the idea is to transform the plain- and cipher-
texts with a low-cost mapping that is easy to protect against physical adversaries
and makes the guessing strategy, exploited in most standard DPA attacks, hard
to apply. As this proposal is quite recent, its careful security analysis is still an
open problem. Interestingly, it also shifts the problem of protecting a complete
cipher to the problem of protecting a simpler transform. But as for re-keying
schemes, the initialization and synchronization of an encryption protected with
such all-or-nothing transforms can be expensive. Another drawback is the need
of an additional secret shared between the two parties.

Our fresh re-keying is related to the idea of all-or-nothing transforms and the
standard re-keying schemes. Its big advantage is to provide a low-cost solution
to the initialization problem because a fresh session key is used to encrypt every
block of plaintext. In addition, since we also apply a transform on the key, we
avoid the need of sharing an additional secret as is the case with all-or-nothing
transforms. Finally, the proposed solution is low-cost because we only need one
transform to protect the key rather than two transforms to protect the plaintext
and ciphertext. On the other hand, we share the advantages of these protocol-
level countermeasures. In particular, we do not need to compute correction terms
during the encryption process and can take advantage of masking and hiding to
protect our re-keying scheme, as will be detailed in the following sections. Due
to its high regularity, we can even consider a full-custom implementation.

Note that, because we focus on RFID applications, this paper primarily deals
with implementation efficiency, as will be detailed in Section 4 and 5. In partic-
ular, we demonstrate that for the same or similar gate count, our scheme allows
for implementing more masking and shuffling than if one directly attempts to
protect a block cipher design with similar countermeasures. We believe that this
is an important first step in order to motivate further research on fresh re-keying
schemes. Our security analysis considers an important class of practical attacks
but generalizing it towards more abstract (or general) models of computation
and leakage (e.g. the ones summarized in [24]) and evaluating the performance
penalties that this would imply is an interesting open research question.
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2 Background

As detailed in the introduction, the countermeasure proposed in this paper splits
the problem of physical security into different subproblems. Some parts of our
design are only required to be protected against SPA, whereas other parts also
require DPA-resistance. Since these are all standard notions in the field of cryp-
tographic hardware, we only summarize them and point to references for a more
formal treatment. In addition, we describe DPA attacks exploiting the standard
divide-and-conquer strategy that we consider in our security analysis. Finally, we
discuss how our re-keying scheme can be used in an authentication protocol.

2.1 SPA and DPA

In terms of side-channel resistance, the main requirement for our protocol to be
secure can be summarized as follows:

1. The function f needs to be secure against SPA.
2. The function g needs to be secure against both SPA and DPA.

SPA stands for Simple Power Analysis and corresponds to an attack in which
an adversary directly recovers key material from the inspection of a single mea-
surement trace (i.e. power consumption or EM radiation, typically). DPA stands
for Differential Power Analysis and corresponds to more sophisticated attacks in
which the leakage corresponding to different measurement traces (i.e. different
plaintexts encrypted under the same key) is combined. As a matter of fact, in
absence of an efficient solution to guess the session key k∗ from the master key
k, such attacks can only be applied to the function g in the scheme depicted in
Figure 1. Indeed, for the block cipher f , every plaintext will be encrypted using
a different k∗. For more details about such attacks, we refer to [19].

2.2 Divide-and-Conquer Strategies

Divide-and-conquer attacks, such as the standard DPA described in [20], are
attacks in which the adversary recovers small parts of a master key (also called
subkeys) one by one. Most side-channel attacks published in the open literature
fall into this category. In such a setting, an important skill of the adversary is
the ability to predict some (key-dependent) intermediate computations during
the encryption process (e.g. the first round S-box outputs in a block cipher). As
will be detailed in Section 6.3, this is typically what is made difficult by our fresh
re-keying scheme. If g has good enough diffusion, it should be hard to guess the
intermediate computations of f depending on the master key k. Therefore, only
SPA attacks can be performed against the session key k∗.

2.3 Challenge-Response Protocol

In a challenge-response authentication protocol, one entity sends a challenge
and the other party responds with the encrypted challenge together with some
additional information. Then, the response is checked. Depending on the use
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case, this process can be repeated with swapped roles. As our re-keying scheme
is designed for physically secure encryption, it can be straightforwardly used
in any symmetric-key challenge-response authentication. The tag simply has to
implement the fresh-rekeying as shown in Figure 1. The reader implements the
same scheme, except that the nonce r is provided from outside by the tag.

Regarding the communication overhead, the transmission of the r values does
not necessarily imply that the number of passes in the protocol increases. In a
three-pass mutual authentication protocol (such as described in, e.g., ISO/IEC
9798-2 [11]) the r values can be included in data transported during the passes.
Thus, the number of passes increases at most by one, depending on who starts
the protocol. Note that an important property of our fresh re-keying is that the
adversary should not gain an advantage when resetting the device. That is, after
each reset the tag should compute a fresh nonce r and session key (in a passive
RFID scenario, the tag is reset any time it is taken out of the reader field).

3 Choice of the Function g

In order to investigate the security of the fresh re-keying scheme in Figure 1, one
first needs to determine the two functions f and g. As previously mentioned, a
natural choice for the function f is a block cipher, e.g. AES. Hence, it remains
the choice of the function g, which is, in fact, the most critical both for security
and performance. In this section, we specify the required properties for g and
select an appropriate candidate according to those properties.

3.1 Desired Properties

The following properties for g are motivated by a combination of side-channel
security aspects and hardware implementation aspects.

P1: Diffusion. One bit of the session key k∗ should depend on many bits of the
master key k. In other words, guessing one bit of the session key must be com-
putationally difficult. This property ensures that the divide-and-conquer tech-
nique, usually applied in DPA, cannot be easily carried out.

P2: No need for synchronization. The function g should not have a variable
inner state which needs to be kept synchronous among the parties. The only
inner state should be the static portion k (contrary to [22,23]).

P3: No additional key material. The symmetric key material, which needs to be
distributed in advance among the parties and stored within the devices, should
not be larger than that of classical block encryption. That is, the master key k
should suffice to evaluate both functions f and g (contrary to [15]).

P4: Little hardware overhead. Deriving the session key k∗ in hardware must be
cheaper than protecting the “original” circuit (i.e. the function f) by means
of secure logic-styles and other countermeasures.

P5: Easy to protect against SCA. g should have a suitable algebraic structure
that makes its protection against SCA easier than e.g. block ciphers. Combined
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with the previous property, this means that deriving the session key k∗ with a
protected g should also be lower in cost than protecting f .

P6: Regularity. If possible, the function g should have a high regularity in order
to facilitate its implementation in a full-custom design. This is motivated by the
good security properties that the fine-tuning of such designs allows.

3.2 Candidate

From a cryptographic point of view, the most obvious choice for g would either
be a hash function or an encryption function. However, they would not be useful
in the present context since they are just as complex to implement and protect
as the original block cipher f . In contrast, from an engineering point of view, a
bitwise XOR function would be best. In fact, an XOR fulfills many of the above
properties, but the diffusion remains very weak. Combining these two extremes
led us to select g as the following modular multiplication:

g :
(
GF(28)[y]/p(y)

)2 → GF(28)[y]/p(y) : (k, r) → k ∗ r.

In the later sections of this paper, the polynomial p(y) will be defined as yd + 1
with d ∈ {4, 8, 16}. The actual choice of d will be used as parameter to improve
the diffusion (i.e. P1 ), as will be discussed in Section 6.3. Regarding the other
properties, P2 is fulfilled because the function only depends on the public but
random nonce r and the secret key k; P3 is fulfilled because only one master
key k is needed to evaluate g. P4-P6 are discussed in the next section.

Note that the diffusion property of this modular multiplication significantly
depends on the choice of r. Since r is randomly generated on-chip by the tag,
it allows arguing about the tag’s physical security by showing that the diffusion
is high enough on average. By contrast, on the reader side, the nonce might be
generated by an adversary. Hence, the re-keying will not ensure diffusion (and
physical security) on that side. As a consequence, the (more expensive) reader is
expected to be protected against implementation attacks by other means.

4 Implementation of the Function g

In this section we elaborate on the implementation of g. We start from a general
description of the multiplication algorithm, extend it to a blinded version, and
eventually discuss the use of secure logic for a hardware implementation.

4.1 Unprotected Implementation

The unprotected implementation of the multiplication follows Algorithm 1, the
complexity of which mainly depends on p(y). Thus, the degree of this polynomial
can be used to trade off performance for diffusion. For example, if d = 16 (resp.
d = 8), every bit of the session key k∗ will depend on 64 (resp. 32) bits of the
master key on average (refer to Section 6.3 for details). Note that if d < 16, the
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Algorithm 1. Product-scan algorithm for multiplication.

Require: a, b ∈ GF(28)[y]/yd + 1
Ensure: c = a ∗ b ∈ GF(28)[y]/yd + 1
1: ρ ← rand(), i ← 0, j ← ρ, k ← ρ, l ← 0
2: while k �= ρ − 1 mod d do
3: ACCU ← 0
4: for l = 0 to d − 1 do
5: ACCU ← ACCU + ai · bj

6: if l < d then
7: i ← i − 1 mod d
8: end if
9: j ← j + 1 mod d

10: end for
11: ck ← ACCU
12: k ← k + 1 mod d
13: end while
14: return c

multiplication is simpler, but needs to be applied several times to cover all key
bytes (e.g. twice if d = 8, four times if d = 4).

We opted for a product-scan algorithm [8], in which the result is calculated
digit-wise. That is, in each iteration of the outer loop (lines 4–10), all partial
products which add to the same digit of the final product are computed and
accumulated. The main disadvantage of this algorithm is the out-of-order pro-
cessing of the operands. However, the special choice of p(y) allows to overcome
this problem; this choice will be justified in Section 4.4.

4.2 Improving g’s SPA/DPA Resistance with Shuffling

Due to the structure of the ring we are operating on, the individual digits of the
product are independent (i.e. “carry-free”), which allows one to randomize the
order in which these digits are accumulated. Therefore, shuffling can be applied
as a side-channel countermeasure [19]. Shuffling has the effect that an adversary
who observes a side-channel trace can not directly infer the operations carried
out in different samples (i.e. in our case: which part of the product is processed
at what time), which makes SPA difficult. In addition, shuffling also increases
the data complexity of a DPA attack by d2 [9]. Note that this countermeasure
comes for free in our case because only the starting index of the outer loop has
to be initialized with a random value (line 1 in Algorithm 1).

4.3 Improving g’s SPA/DPA Resistance with Blinding

DPA attacks against a multiplication algorithm usually target the partial prod-
ucts. This is simply because a partial product depends only on one digit of each
operand, which allows for applying a divide-and-conquer strategy. A common
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Algorithm 2. Blinded session key generation.
Require: k, r, bi with i = 1 to m, the masking order
Ensure: k∗ = k ∗ r
1: bk ← k
2: for i = 1 to m do
3: bk ← bk + bi

4: end for
5: k∗ ← bk ∗ r
6: for i = 1 to m do
7: k∗ ← k∗ + bi ∗ r
8: end for
9: return k∗

side-channel countermeasure, which is also applicable in our context, is to use a
redundant representation for the variables. Sharing a variable over (m+ 1) vari-
ables is referred to as mth-order blinding (also called masking in the symmetric
setting [31]). Blinding is a powerful countermeasure, but only efficient when the
computational overhead due to operating on such a redundant representation
is small. Since addition and multiplication are distributive in our algebra, this
condition is nicely satisfied.

Algorithm 2 shows an mth-order blinded version of the function g. In line
3, m random blinds bi are added to k before the multiplication is carried out in
line 5; afterwards, each product bi ∗ r has to be removed again from the result in
line 7. It can be easily verified that this does not change the result. However, it
ensures that any adversary who wants to mount a DPA on g needs to exploit the
joint information of m partial products, thus perform an mth-order DPA. The
number m presents the second parameter in our design space for g. Both the
time and space complexity of g increases linearly with m, while the complexity
of a DPA on g grows exponentially with m [2].

4.4 Improving g’s SPA/DPA Resistance with Protected Logic-Styles

Finally, the main reason why we opted for the product-scan algorithm is because
it facilitates the use of secure logic-styles. More precisely, the part of the memory
that holds sensitive data is small when multiplying operands according to the
product-scan method. While a DPA can be performed on the partial products
during the execution of the multiplication, it is difficult to attack a byte of the
final result directly, as they depend on many bytes of both operands. Since the
product-scan algorithm operates only on one product-byte at a time, only this
byte and the corresponding multiplication in GF(28) have to be protected. In
general, secure logic is expensive compared to standard CMOS; thus it should
be used sparingly. However, this is exactly what our proposed re-keying scheme
allows a designer to achieve. A third parameter in our design space will be the
use of such protected hardware and the resulting impact on area.
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Fig. 2. Block diagram of the random transformation circuit

5 Global Architecture

Following the algorithmic description in the previous section, we now focus on
concrete hardware cost and performance issues. We investigate the design space
of g and present the results of different hardware implementations.

5.1 Block Diagram and Design Space for the Function g

Figure 2 depicts a hardware architecture for g. The diagram contains all com-
ponents necessary to generate k∗, except a random number generator, which we
can reasonably assume to be available on the tag. The three main components
of the architecture are the controller, the memory and the multiply-accumulate
(MAC) unit. Determined by the use of the AES for the function f , the memory
consists of 128-bit registers. Note that the register holding k∗ would be shared
with f , hence it does not contribute to the cost of g’s circuit. The actual size
of the memory is directly related to the second design parameter: the blinding
order. If the blinding order is zero, only two registers are needed. If mth-order
blinding is implemented, (m + 1) additional registers are required.

The control unit is basically invariant across the design space. Changing the
degree of the polynomial only changes loop constants within the controller and
affects the clock cycles needed to carry out an operation. Also the successive
executions of an operation (such as needed for d ∈ {4, 8}) are managed by the
controller. A similar statement holds when changing the blinding order. The co-
re of the architecture is the MAC unit featuring a GF(28) multiplier, a GF(28)
adder, and an 8-bit register. Since the MAC unit targeted for implementation in
secure logic, its size is crucial, as will be analyzed in the next section.
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Table 1. Post synthesis results of an ASIC implementation of g, g-pMAC and the full
re-keying scheme. The protected MAC unit is estimated on basis of iMDPL logic.

Implementation w/o blinding 1st-order 2nd-order 3rd-order

function g 4.5 kG 7.3 kG 8.7 kG 10.2 kG
g-pMAC 11.7 kG 14.6 kG 16.0 kG 17.5 kG
g + AES1 7.9 kG 10.7 kG 12.1 kG 13.6 kG

g-pMAC + AES1 15.1 kG 18.0 kG 19.4 kG 20.9 kG
1AES implementation taken from [5].

5.2 Implementation Results and Performance Evaluation

We evaluated the post-synthesis silicon area of an ASIC implementation of the
function g. The synthesis tool we used was the Design Compiler 2008.09 from
Synopsys, and the library was the Free Standard Cell library from Faraday Tech-
nology for the UMC L180 CMOS technology. Our evaluation is based on typical
corner values and reasonable assumptions for the constraints. Additionally, we
varied the frequency between 1 and 20 MHz, which are reasonably boundaries
for the considered application (typical frequencies are 6 MHz for HF tags and
1 MHz for UHF tags). After several synthesis runs with different constraints and
optimization options, we selected the results with the smallest area. Our results
are summarized in Table 1, including the following information:

1. The area estimation (gate equivalents) for g for different blinding orders.
2. The cost of a MAC unit in a DPA-resistant logic-style (g-pMAC). We used

iMDPL [26] and, hence, a scaling factor of 18 [12] for our estimations.
3. The total area (g + AES) needed for protecting the AES core of Feldhofer

et al. [5] using our fresh re-keying scheme, with the same parameters.

We compared our design to the protected AES circuit presented by Feldhofer
et al. in [6]. Their implementation has an area of approximately 19.5 kG and
is, to the best of our knowledge, the smallest protected AES core that targets
RFID applications. These results show that our fresh re-keying scheme requires
less area than a direct protection of its underlying block cipher, i.e. properties
P4, P5 and P6 in Section 3.1 are indeed fulfilled. More precisely, the implemen-
tation in [6] has a level of security comparable to the one of g featuring either
1st-order blinding or a protected MAC. This is because their implementation
protects parts with masking and other parts with secure logic. In the first case,
our implementation requires approximately 8.8 kG less than theirs, and in the
second case, the difference is approximately 4.4 kG. A combination of the two
countermeasures would still be around 1.5 kG smaller. Note that we could also
implement a blinding order of up to 5 at the same cost.

Table 2 presents the number of clock cycles needed for the generation of a
fresh session key k∗. Contrary to the area requirements, this number is strongly
determined by the polynomial selected for the diffusion. For example, when this
polynomial equals y16 + 1, the time required to complete the computation is
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Table 2. Cycle count for re-keying with different diffusion levels and blinding orders

Blinding order y16 + 1 y8 + 1 y4 + 1

w/o blinding 290 162 98
1st-order 562 360 178
2nd-order 834 504 258
3rd-order 1160 648 338

almost three times longer than when using y4 + 1. The corresponding security
levels will be discussed in the next section. As a consequence, the designer can
easily tune the desired diffusion level towards the needs of the application (in
RFID the throughput is generally not a strict constraint). For comparison, the
performance overhead of the implementation of Feldhofer et al. [6] is between
32 and 1005 clock cycles, depending on the number of dummy instructions.

6 Security Analysis

In this section, we provide a security analysis of our re-keying scheme. We start
with a note on the choice of k. Next, we discuss the security of the complete
scheme against Differential Fault Analysis. Then, we investigate its resistance
against side-channel attacks in three parts. First, we argue about the security
of the function g against SPA and DPA. Second, we discuss the security of the
function f against SPA only. Finally, and most importantly, we aim to analyze
the difficulty of mounting divide-and-conquer attacks against the complete re-
keying scheme. We will conclude the section with some open questions related
to advanced attack techniques exploiting algebraic cryptanalysis.

6.1 The Choice of k

Due to the structure of the ring we use, there exist zero divisors. If k takes the
value of a zero divisor, there exist several r which lead to the same k∗. To avoid
such collisions, we have to reduce the key space K to elements k ∈ K that are
co-prime to the polynomial yd +1. The resulting loss of entropy can be stated as
ΔH = 128−H(K). For d = 16, we get ΔH = 128− log2(255 ∗ 25615) ≈ 0.0056
bits. For d = 8, ΔH doubles, while for d = 4 it becomes four times as large. In
any of the three cases, the reduction of K can be neglected.

6.2 Resistance against Fault Attacks

Even in its most powerful variants, Differential Fault Analysis requires at least
one pair of correct and erroneous outputs to attack cryptographic algorithms
[25]. From such a pair, information about the secret key can be recovered. This
means that an adversary requires to encrypt the same plaintext (at least) twice
with the same secret key, which is prevented by our scheme. In other words, the
combination of re-keying with an initialization process using a fresh r for every
plaintext block provides a solid protection against Differential Fault Attacks.
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6.3 Resistance against Standard Side-Channel Attacks

As mentioned in Section 2.1, the security of our fresh re-keying scheme is based
on two requirements: (1) the function f needs to be secure against SPA; (2) the
function g needs to be secure against both SPA and DPA. In this section, we
elaborate on how our architectural choices allow for fulfilling these requirements
(depending on different security parameters). Thereafter, we analyze in detail
the security of the complete scheme against divide-and-conquer attacks, i.e. we
show that, if the two previous conditions are met, it is computationally hard to
mount such DPA attacks against the functions f and g taken as a whole.

Security of g against SPA and DPA. The proposed architecture for g allows
us to deploy three well-studied countermeasures against DPA attacks, namely
shuffling, blinding and protection via secure logic. For an extensive discussion
of these countermeasures we refer to e.g. [19]; a more theoretical treatment can
be found in [30]. We note that, in addition to the large design space, our scheme
has some specific advantages compared to the straightforward protection of a
block cipher. For example, designing a masking scheme for a software implemen-
tation of a block cipher that has an order higher than 3 is an open problem, as
pointed out in [30]. In our case, thanks to the algebraic structure of the function
g, a generalization to higher orders is as easy as for asymmetric encryption. In
addition, as detailed in the previous section, the low-cost nature of g allows one
to combine several types of countermeasures against side-channel attacks at a
lower cost than if they would be directly applied to the original AES.

Security of the AES against SPA. Although not as difficult to achieve as
DPA resistance, security against SPA is crucial for the AES. In particular, and
since our re-keying scheme implies to run the key scheduling algorithm for any
new encryption, it is important to avoid attacks like the one in [17]. In order to
limit cost overheads, our strategy is to apply the same shuffling that is described
in Section 4.2 to the 16 state bytes of our AES implementation, as well as to the
key expansion. As detailed in [6], this can be done with little overhead (we do
not even need additional memory as we do not make use of dummy cycles).

Security of the Overall Scheme against Divide-and-Conquer Attacks.
The previous paragraphs described solutions for achieving SPA/DPA resistance
for g and SPA resistance for f . They show that the level of security against these
attacks can be easily tuned at the cost of some performance overheads that are
at least lower than those of protecting a stand-alone AES. It now remains to
argue about the security of the combined functions, i.e. can an attacker directly
perform a DPA on the function f by guessing the master key k?

In order to evidence that such attacks are computationally hard, we argue
in the following way. According to [20], a DPA attack against the AES requires
guessing some intermediate computation during the encryption process. In the
simplest case, one bit may be guessed (e.g. one bit after the first key addition
layer). In this context, the number of master key bits on which each bit of the
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Fig. 3. Data vs. time complexity of a standard DPA against the combined f and g

session key k∗ depends only depends on the Hamming Weight (HW) of r. This
is because every bit of k∗ is a sum of all bits of k weighted by the bits of r. Since
all n bits of r are uniformly distributed, the probability that HW(r) ≤ X is

P = Pr[HW(r) ≤ X ] =
X∑

i=0

(
n
i

)
2n

.

This probability can be directly related to the data complexity of a concrete
attack. That is, a small multiple of 1/P traces have to be collected to observe an
r with the desired properties. Figure 3(a) illustrates this relationship between
the Hamming weight of r and the number of traces that have to be collected to
observe such an r. It can be seen that even for a Hamming weight as large as 30
the data complexity is significant as one million traces would be required.

In a typical DPA, there are two effects that improve the diffusion. First, the
adversary will usually not predict the output of the key addition, but rather the
output of the first S-box layer (or even MixColumns), in order to better distin-
guish between the different key candidates. This requires to guess 8 bits of the
session key (or 32 for MixColumns); we denote the number of session key bits
to guess as ng. Second, several traces corresponding to several plaintexts will
generally be combined in a DPA, each one giving rise to a new random r. We
denote this number of traces as nt. Overall, the percentage of bits on which a
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DPA attack depends can be described as a function of the maximally tolerated
Hamming weight X as follows:

1−
(
n−X

n

)nt·ng

.

Figures 3(b)-3(d) show the number of bits of k to guess as a function of the
hypothesis size ng. The different curves show the complexity for nt = 1 (low-
est curve), 5, 10, 20, and 50 (topmost curve). Since between 10 and 50 traces
are usually required to recover an AES key byte with reasonable confidence in
unprotected devices [32], it directly implies that the diffusion and, hence, time
complexity will generally be sufficient to protect RFID tags.

We end this subsection with two basic examples to illustrate how our coun-
termeasure influences the data and time complexities of a divide-and-conquer
attack. First we consider an AES implementation for which the attacker needs
to predict ng = 8 bits of the session key (a usual quantity). Furthermore, we
assume that he needs nt = 10 traces to mount a successful DPA. Even if the
attacker waits for r values with a Hamming weight of 5 (as in Figure 3(b)), he
needs to guess almost 128 bits of the master key to predict 10 times those 8 bits
of the session key. Thus the time complexity of such an attack would be close
to 2128. To assess the data complexity, we additionally look at the probability
of observing such r values. In Figure 3(a), it can be seen that they occur every
270 traces on average. For the second example we assume that guessing ng = 1
bit for nt = 5 traces is enough. Even in this (unlikely) case, the data and time
complexities are still prohibitive. In order to arrive at a more reasonable data
complexity, we wait for r values with Hamming weight 15. This means that we
have to observe (and acquire the traces for) 5 · 244 encryptions on average. The
time complexity in this case would be 260. Note that large data complexities
may be hard to cope with in practical side-channel attacks as even an effective
measurement setup is limited to approximately 20 traces per second.

6.4 Resistance against Algebraic Side-Channel Attacks

By clearly separating the properties of the functions f and g, our proposed re-
keying scheme has pushed the security against side-channel attacks towards an
extreme direction. On the one hand, standard side-channel attacks are thwarted
(as discussed in this paper). On the other hand, the function g that is protected
against such attacks is not very strong from a cryptographic point of view. As
a consequence, it appears to be an interesting target for the recently introduced
algebraic side-channel attacks [28,29]. These attacks are not based on a divide-
and-conquer strategy; they rather interpret the encryption of a plaintext into a
ciphertext as a big system of low-degree boolean equations in which the key bits
are unknown variables. Then, the information leakage corresponding to this en-
cryption is added to the system, also in the form of low-degree equations. As
demonstrated in [29], leaking information about the Hamming weights may be
sufficient to solve the system in practical time limits (minutes, typically). Quite
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naturally, the complexity of solving such a system of equations strongly depends
on the algebraic structure of the target algorithm. For example, the AES is more
robust than the low-cost cipher PRESENT in this context [28].

Looking at our proposal for g, the situation is even worse since this function
is linear. Taking an analogy with stream ciphers, one could see the side-channel
leakage as a filtering function at the output of a linear number generator g. How-
ever, thanks to our flexible architecture, we can also offer positive arguments to
prevent such attacks. Most importantly, algebraic attacks can hardly deal with
erroneous information. Hence, the shuffling that we can perform for free on the
implementation of both f and g will most likely make mounting these attacks
much harder. Because of their recent nature, we leave the exact quantification
of algebraic side-channel attacks as a scope for further research.

7 Conclusions

In this paper, we discussed a new approach for re-keying and explored its use
as a countermeasure against physical attacks. The proposed scheme is tailored
to the security requirements and resource constraints of RFID applications. We
evaluated the architecture and security of the scheme, including its robustness
against DFA, SPA, and DPA. The flexibility and configurability of the proposed
architecture allows for reaching a high level of security at an area cost that is
close to the most efficient solutions available in the literature.

Open problems are in two main directions. First, it would be useful to extend
the present proposal in order to protect the reader side (which is needed to be
protected against physical attacks by other means than the fresh re-keying in
the present proposal). Second, our analysis relies on a simple candidate for the
function g. Investigating alternative ones, possibly trading some performance
overhead for security, is a promising topic for future research. In this context, it
is worth noting that there exist simple ways to improve the diffusion properties
of our scheme. As an illustration, one can generate two random nonces r1 and
r2, and then compress the resulting k ∗ r1 and k ∗ r2 (e.g. by XOR-ing the two
halves together, producing n/2 bits twice), and use the concatenation of the two
compressed strings as k∗. Pushing such a diffusion/performance trade-off even
further, one could also consider randomness extractors as function g (which are
of independent interest in leakage-resilient cryptography [4,34]).

Summarizing, we hope that our new countermeasure and instantiation for g
makes an interesting case compared to traditional approaches to prevent physical
attacks and raises interesting (theoretical and practical) research questions.

Acknowledgements. This work was funded in part by the European Commis-
sion’s ECRYPT II Network of Excellence, by the Belgian State IAP program
P6/26 BCRYPT, by the Walloon region E.USER project, and by the Austrian
Government funded project ARTEUS. François-Xavier Standaert is a Research
Associate of the Belgian Fund for Scientific Research (FNRS – F.R.S.).



Fresh Re-keying: Security against Side-Channel and Fault Attacks 295

References

1. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

3. Coron, J.-S.: A New DPA Countermeasure Based on Permutation Tables. In: Os-
trovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp.
278–292. Springer, Heidelberg (2008)

4. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: Proceedings of
FOCS 2008, Washington, DC, USA, October 2008, pp. 293–302 (2008)

5. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

6. Feldhofer, M., Popp, T.: Power Analysis Resistant AES Implementation for Passive
RFID Tags. In: Proceedings of Austrochip 2008, Linz, Austria, October 8, 2007,
pp. 1–6 (October 2008), ISBN 978-3-200-01330-8

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis: the Duplication
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Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–
251. Springer, Heidelberg (2000)

22. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher
based PRNG Secure Against Side-Channel Key Recovery. In: The Proceedings of
ASIACCS 2008, Tokyo, Japan, March 2008, pp. 56–65 (2008)

23. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

24. Pietrzak, K.: Provable Security for Physical Cryptography. In: The Proceedings of
WEWORC 2009, Graz, Austria (July 2009) (invited talk)

25. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
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Abstract. Distributed-password public-key cryptography (DPwPKC)
allows the members of a group of people, each one holding a small secret
password only, to help a leader to perform the private operation, asso-
ciated to a public-key cryptosystem. Abdalla et al. recently defined this
tool [1], with a practical construction. Unfortunately, the latter applied
to the ElGamal decryption only, and relied on the DDH assumption, ex-
cluding any recent pairing-based cryptosystems. In this paper, we extend
their techniques to support, and exploit, pairing-based properties: we
take advantage of pairing-friendly groups to obtain efficient (simulation-
sound) zero-knowledge proofs, whose security relies on the Decisional
Linear assumption. As a consequence, we provide efficient protocols, se-
cure in the standard model, for ElGamal decryption as in [1], but also for
Linear decryption, as well as extraction of several identity-based cryp-
tosystems [6,4]. Furthermore, we strenghten their security model by sup-
pressing the useless testPwd queries in the functionality.

1 Introduction

Recently, Abdalla et al. [1] proposed the notion of distributed-password public-
key cryptography (DPwPKC), which allows the members of a group of people,
each one holding a small independent secret password, to act collectively (for
the benefit of one of them, who “owns” the group) as the custodian of a private
key in some ordinary public-key cryptosystem — without relying on any secure
(secret and/or authentic) storage — as long as each member remembers his or
her password. Precisely, in DPwPKC, the members initially create a “virtual”
key pair (sk, pk), by engaging in some distributed protocol over adversarial chan-
nels, where only pk is revealed, while sk is implicitly determined by the collection
of passwords. Third parties can perform the public-key operation(s) of the un-
derlying system using pk. Members can help the leader of the group perform
private-key operation(s) in a distributed manner, by engaging in some protocol
using only their knowledge of their respective passwords.

Password-based public-key cryptography is generally considered infeasible be-
cause password-based secret-key spaces are easy to enumerate, and the knowl-
edge of the public key makes it possible to test the correct key from that space,
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without interacting with anyone (offline dictionary attack). In DPwPKC, there
are as many passwords as participants, and (unlike in virtually all applications of
passwords) the passwords are not meant to be shared: they are chosen indepen-
dently by each player. Since the passwords need not be related, they will likely
be diverse, and the min-entropy of their combination ought to grow linearly with
the number of participants, even if every single password is itself minuscule. For
instance, with ten players each holding a random 20-bit password, the virtual
secret key will be a random 200-bit string, which is more than enough to build
a secure public-key system for usual values of the security parameter. This is
what makes sk in DPwPKC resistant to brute-force off-line dictionary attacks,
even though the corresponding pk is public.

The main contribution of [1] was to define general functionalities for dis-
tributed password-based key generation and private computation in the UC
model, and to give a construction for ElGamal decryption as a proof of con-
cept. However, the construction proposed in [1] was merely illustrative because
it required generic simulation-sound non-interactive zero-knowledge (SSNIZK)
proofs for NP languages, which can only be performed efficiently in the random
oracle model [3]. Furthermore, their distributed private computation protocol
could only perform the task of computing csk from the implicit secret key sk,
and the security of their protocol relied on the DDH assumption. Together, these
restrictions limited its applicability to ElGamal decryption.

In this work, we first improve and strengthen the ideal functionalities defined
in [1], by further restricting the information that the adversary can gain from an
attack. This will make any protocol that we can prove to realize those function-
alities stronger, since the simulation will have to work without this information.
(Recall that in the UC model, the functionalities are supposed to capture every-
thing that we allow the adversary (and thus the simulator) to learn.)

Then, we extend the techniques from [1] to support a much broader class of
private-key operations in discrete-log-hard groups, including operations involv-
ing random ephemerals and/or operations in bilinear groups. More precisely, our
construction still targets the distributed computation of csk, but under the De-
cision Linear assumption, which makes the proof more intricate since the DDH
is now verifiable: we had to change the workings of the protocol to introduce
secret values. Furthermore, the construction works for several values of c at
once, and now allows to share random ephemerals in the exponent. It thus al-
lows a much greater variety of public-key cryptosystems to be converted to dis-
tributed password-based cryptosystems, including extraction of identity-based
private keys — thus giving us the new interesting notion of “password-based
distributed identity-based encryption” (DPwIBE). Contrarily to regular IBE,
the “central” key extraction authority is now distributed among a group of peo-
ple (sufficiently many of them trusted), with the “master key” being implicitly
contained in the collections of short independent passwords held by those users.

In the process of strengthening and generalizing the protocols, we also make
them much more efficient. To do so, we develop special-purpose simulation-sound
non-interactive zero-knowledge proofs (SSNIZK) for our languages of interest,
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in the standard model, and show how to use them instead of the inefficient
general SSNIZK considered in [1]. We do this using bilinear maps, in the CRS
model, relying on a classic decisional hardness assumption for bilinear groups.
The SSNIZK proofs we construct revisit the techniques of [12] and use efficient
proofs inspired by the recent Groth-(Ostrovsky)-Sahai sequence of efficient NIZK
construction in bilinear groups [14], but do not trivially follow from them.

A number of new technical challenges had to be solved. We specifically men-
tion the following: 1) the use of pairings not only helps us make efficient zero-
knowledge proofs for various languages, it would also help the adversary verify
the result of the private computation csk in the basic DPwPKC protocol from
[1]. Since the UC model requires that the simulation be carried out until the end
on both correct and incorrect inputs, this will make our new security reduction
somewhat more intricate since the result sent at the end of the simulation is ran-
dom and we do not want the adversary to become aware of it. 2) In connection
with the stronger and simpler functionality definitions we propose, the adversary
is no longer allowed to conduct explicit password compatibility tests prior to the
private-key operation. This should intuitively further complicate the simulation,
though we remarkably note that these queries were indeed useless in the proofs
and thus getting rid of them has no negative impact. 3) Generally speaking, we
achieved much of our security and efficiency gains over [1], by succeeding to make
our protocols being fully robust by the use of public verifications (computations
of pairings) rather than intermediate validity tests (SSNIZK proofs, relying on
the random oracle model in [1]). This is generally both more efficient (no more
SSNIZK proofs) and more secure than testing, but it can lead to significantly
more complex simulations owing to the ideal functionality being less “helpful”.

2 Security Model

Split Functionalities. Throughout this paper, we assume basic familiarity with
the universal composability framework [9]. Without any strong authentication
mechanisms, the adversary can always partition the players into disjoint sub-
groups and execute independent sessions of the protocol with each subgroup,
playing the role of the other players. Such an attack is unavoidable since players
cannot distinguish the case in which they interact with each other from the case
where they interact with the adversary. The authors of [2] addressed this issue
by proposing a new model based on split functionalities which guarantees that
this attack is the only one available to the adversary.

The split functionality is a generic construction based upon an ideal func-
tionality. In the initialization stage, the adversary A adaptively chooses disjoint
subsets of the honest parties (with a unique session identifier that is fixed for the
duration of the protocol). During the computation, each subset H activates a
separate instance of the functionality F . All these functionality instances are in-
dependent: The executions of the protocol for each subset H can only be related
in the way A chooses the inputs of the players it controls. The parties Pi ∈ H
provide their own inputs and receive their own outputs, whereas A plays the
role of all the parties Pj /∈ H .
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Note that the use of these split functionalities already allows the adversary
to try some passwords for users by choosing subgroups of size 1 and trying a
password for each of them while impersonating the other players. They are thus
enough to model on-line dictionary attacks. In [1], additional TestPwd queries
were available to the adversary, thus allowing additional password trials. In this
paper, we limit the adversary against the ideal functionality (i.e. the simulator),
to the unavoidable on-line dictionary attack but in the strict sense, and thus
without any additional TestPwd queries. This means that we give less power to
the simulator. Both the constructions in [1] and ours do not need them in the
security proofs, which means that a stronger security level is reached.

In the sequel, as we describe our two general functionalities FpwDistPublicKeyGen

and FpwDistPrivateComp (the complete descriptions can be found in the full ver-
sion [8]), one has to keep in mind that an attacker controlling the commu-
nication channels can always choose to view them as the split functionalities
sFpwDistPublicKeyGen and sFpwDistPrivateComp, which implicitly consist of multiple in-
stances of FpwDistPublicKeyGen and FpwDistPrivateComp for non-overlapping subsets of
the original players. Furthermore, one cannot preventA from keeping some flows,
which will never arrive. This is modelled in our functionalities by a bit b, which
specifies whether the flow is really sent or not.

The Players and the Group Leader. We denote by n the number of users
involved in a given execution of the protocol. All the computation is done for the
benefit of only one of them, denoted as the group leader. The role of all the other
ones, the players, is to help it in its use of the group’s virtual key. A group is thus
formed arbitrarily and is defined by its composition, which cannot be changed:
a leader, which is the only one to receive the result of a private computation in
the end, and a (ordered or not, according to the secret key computation from
the passwords) set of players to assist it.

The Aim of the Functionalities. The functionalities are intended to capture
distributed-password protocols for (the key-generation and private-key opera-
tion of) an arbitrary public-key primitive, but taking into consideration the un-
avoidable on-line dictionary attacks. More precisely, the aim of the distributed
key generation functionality FpwDistPublicKeyGen is to provide a public key to
the users, computed according to their passwords with respect to a function
PublicKeyGen given as parameter. Moreover, it ensures that the group leader
never receives an incorrect key in the end, whatever the adversary does.

In the distributed private computation functionality FpwDistPrivateComp, the aim
is to perform a private computation for the sole benefit of the group leader,
which is responsible for the correctness of the computation; in addition, it is
the only user to receive the end result. This functionality will thus compute a
function of some supplied input in , depending on a set of passwords that must
define a secret key corresponding to a given public key. More precisely, it will
be able to check the compatibility of the passwords with the public key thanks
to a verification function PublicKeyVer, and if it is correct it will then compute
the secret key sk from the passwords with the help of a function SecretKeyGen,
and from there evaluate PrivateComp(sk, in) and give the result to the leader.
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The function PrivateComp could be the decryption function Dec of a public-key
encryption scheme, or the signing function Sign in a signature scheme, or the
identity-based key extraction function Extract in an IBE system.

Note that SecretKeyGen and PublicKeyVer are naturally related to the func-
tion PublicKeyGen called by the former functionality. In all generality, unless
SecretKeyGen and PublicKeyGen are both assumed to be deterministic, we need
the predicate PublicKeyVer in order to verify that a public key is “correct” with-
out necessarily being “equal” (to some canonical public key). Also note that the
function SecretKeyGen is not assumed to be injective, lest it unduly restrict the
number of users and the total size of their passwords. The distributed compu-
tations should not reveal more information than the non-distributed ones, and
thus the ideal functionalities can make use of these functions as black-boxes.

The Functionalities. We only recall here the main points of the functionalities,
referring the interested reader to [1] for details. But, importantly, as in [10], the
functionalities are not in charge of providing the passwords to the participants.
The passwords are chosen by the environment which then hands them to the
parties as inputs. This guarantees security even in the case where an honest user
executes the protocol with an incorrect password: This models, for instance,
the case where a user mistypes its password. It also implies that the security is
preserved for all password distributions (not necessarily the uniform one) and in
all situations where related passwords are used in different protocols.

The private-computation functionality fails directly at the end of the initial-
ization phase if the users do not share the same (public) inputs. In principle,
after the initialization stage (the NewSession queries) is over, the eligible users
are ready to receive the result. However the functionality waits for the adver-
sary S to send a compute message before proceeding. This allows S to decide
the exact moment when the result should be sent to the users and, in particu-
lar, it allows S to choose the exact moment when corruptions should occur (for
instance S may decide to corrupt some party Pi before the result is sent but
after Pi decided to participate to a given session of the protocol; see [15]). Also,
although in the key generation functionality all users are normally eligible to
receive the public key, in the private computation functionality it is important
that only the group leader receives the output (though he may choose to reveal
it afterwards to others, outside of the protocol, depending on the application). In
both cases, after the result is computed, S can choose whether the group leader
indeed receives it. If delivery is denied (b = 0), then nobody gets it, and it is as
if it was never computed. Otherwise, in the first functionality, the other players
may be allowed to receive it too, according to a schedule chosen by S.

Note that given the public key, if the adversary knows/controls sufficiently
many passwords so that the combined entropy of the remaining passwords is
low enough, he will be able to recover these remaining passwords by brute force
attack. This is unavoidable and has nothing to do with the fact that the system is
distributed: off-line attacks are always possible in principle in public-key systems,
and become feasible as soon as a sufficient portion of the private key is known.
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3 Notations and Building Blocks

The authors of [1] propose a protocol that deals with a particular case of unau-
thenticated distributed private computation [2], as captured by their function-
alities recalled in the former section. Informally, assuming s to be a secret key,
the aim of the protocol is to compute a value cs given an element c of the group.
They claim that this computation can be used to perform distributed BLS sig-
natures [7], ElGamal decryptions [11], linear decryptions [5], and BF or BB1
identity-based key extraction [6,4] but they only focus on ElGamal decryptions,
relying on the DDH assumption.

Here, we show how to really achieve such results, by constructing a protocol
relying on the Decision Linear assumption [5] for compatibility with bilinear
groups. This protocol will easily enable “password-based” Boneh-Franklin IBE
scheme [6]. In the following section, we show how to modify the protocol to obtain
“password-based” Boneh-Boyen (BB1) IBE scheme [4] and linear decryptions [5].

Notations. Let G be a multiplicative cyclic group of prime order p and g3 a
generator of G. The linear encryption works as follows: The private key is a
pair of scalars, sklin = (x1, x2), and the public key, pklin = (g1, g2, g3), where
g1 = g3

1/x1 , g2 = g3
1/x2 . In order to encrypt M ∈ G, one chooses r1, r2

$← Zp,
and the ciphertext consists of C = Epklin

(M ; r1, r2) = (C1, C2, C3) = (g1
r1 , g2

r2 ,
Mg3

r1+r2). The decryption process consists of M = Dpklin
(C) = C3/(C1

x1C2
x2).

This encryption scheme is secure under the Decisional Linear (DLin) as-
sumption, first presented in [5] and stated here for completeness: For random
x, y, r, s ∈ Z∗

p and (g, f = gx, h = gy, f r, hs) ∈ G5, it is computationally in-
tractable given gd to distinguish between the case where d = r + s or d is
random. More precisely, a triple (f r, hs, gd) is named a linear triple in basis
(f, h, g) if d = r + s. We also consider a one-time signature scheme consisting of
the three algorithms (SKG, Sign,Ver).

Passwords, Public Key and Private Key. Each user Pi owns a privately
selected password pwi, to act as the i-th share of the secret key sk (see below).
For convenience, we write pwi = pwi,1 . . . pwi,� ∈ {0, . . . , 2� − 1}, i.e., we further
divide each password pwi into � bits pwi,j , where p < 2� (p is the order of the
group G). Notice that although we allow full-size passwords of up to � bits (the
size of p), users are of course permitted to choose shorter passwords.

The authors of [1] discussed the use of such passwords to combine properly
into a private key sk: the combination should be reproducible, it should allow
to recover either of the passwords from the key and the other passwords, and
it should preserve the joint entropy of the set of paswords. They also discussed
possible cancellation or aliasing effects of the passwords. The preferable solution
is to do standard pre-processing using hashing, i.e. that each user independently
transforms his or her true password pw∗

i into an effective password pwi by ap-
plying a suitable extractor pwi = H(i, pw∗

i , Zi) where Zi is any relevant public
information. We can then safely take sk =

∑
i pwi and be assured that the en-

tropy of sk will closely match the joint entropy of the vector (pw∗
1, . . . , pw

∗
n).
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The discrete-log-based key pair (sk, pk = gsk) is then defined as follows:
sk = SecretKeyGen(pw1, . . . , pwn) def=

∑n
i=1 pwi

pk = PublicKeyGen(pw1, . . . , pwn) def= g
∑

pwi

The password/public-key verification function is then
PublicKeyVer(pw1, . . . , pwn, pk) def=

(
pk ?= g

∑
pwi

)
.

In the following, we focus on a specific format for the PrivateComp function,
defined by (sk, c) �→ m = csk. We show how to perform it in a distributed way,
and how to use if for decryption processes, and private key extraction in IBE.

Building Blocks
Extractable Homomorphic Commitments. As in [1], the first step of
our distributed decryption protocol is for each user to commit to his password
(the details are given in the following section). The commitment needs to be
extractable, homomorphic, and compatible with the shape of the public key.
Generally speaking, one needs a commitment Commit(pw, R) that is additively
homomorphic on pw and with certain properties on R. Instead of ElGamal’s
scheme [11] used in [1], we focus here on linear commitments Commitg(pw, r, s) =
(U1

pwg1
r, U2

pwg2
s, gpwg3

r+s), where (U1, U2, U3 = g) is not a linear triple in basis
(g1, g2, g3) in order to provide extractability, or encryptions Encryptg(pw, r, s) =
(g1

r, g2
s, gpwg3

r+s) (here, g1, g2 and g3 are defined as before and g is a generator
of G). In both cases, the hiding property or the semantic security rely on the
DLin assumption. Extractability is possible granted the private/decryption key
(x1, x2), such that g3 = g1

x1 = g2
x2 , and recalling that the users commit to

bits. Denoting by (c1, c2, c3) the commitment, it is thus enough to check that
c3/(c1x1c2

x2) = 1 or (c3/g)/((c1/U1)
x1(c2/U2)

x2) = 1.

Proofs of Membership. For the robustness and soundness of the protocols,
we need some proofs of honest computations. We use witness-indistinguishable
and SSNIZK proofs/arguments. The difficulty consists in designing such simula-
tion-sound proofs without random oracles: they are described in Section 6. Along
these lines, we use the following kinds of non-interactive proofs:

– CDH(g,G, h,H), to prove that (g,G, h,H) lies in the CDH language: there
exists a common exponent x such that G = gx and H = hx. Granted pairing-
friendly groups, this can be easily done by simple pairing computations;

– WIProofBit(C), to prove that the commitment or the ciphertext C contains
a bit. We will use a WI proof from [13], which basically proves that either C
or C divided by the basis is a linear 3-tuple;

– SSNIZKEqg,c(C1, C2), to prove that the ciphertexts/commitments C1 and C2
contain the same value, possibly in the different bases g and c, that is,
C1 encrypts/commits to ga and C2 encrypts/commits to ca, with the same a.
We use a SSNIZK argument, following the overall approach by Groth [12] to
obtain simulation soundness, but using the Groth-Sahai proof system [14]
for efficiency (see Section 6 – the proof is omitted, but very similar to [12]).
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4 Description of the Protocols

The Distributed Key Generation Protocol. This protocol is described
in Figure 1 and realizes the functionality FpwDistPublicKeyGen. All the users are
provided with a password pwi and want to obtain a public key pk. One of them
is the leader of the group, denoted by P1, and the others are P2, . . . , Pn.

The protocol starts with a round of commitments of these passwords. Each
user sends a commitment Ci of pwi (divided into � blocks pw1,1, . . . , pwi,� of
length L — here, L = 1): it computes Ci,j = (C(1)

i,j , C
(2)
i,j , C

(3)
i,j ) = (U1

pwi,jg1
ri,j ,

U2
pwi,jg2

si,j , gpwi,jg3
ri,j+si,j ) for j = 1, . . . , � and random values ri,j and si,j ,

and publishes Ci = (Ci,1, . . . , Ci,�), with a set of proofs WIProofBit(Ci,j) that
each commitment indeed commits to an L-bit block. As we see in the proof (see
the full version), this commitment needs to be extractable so that the simulator
is able to recover the passwords used by the adversary, which is the reason
why we segmented all the passwords and make commitments of bits, along with
a WIProofBit that the committed value is actually a bit. Each user also runs
the signature key generation algorithm to obtain a signature key SKi and a
verification key VKi. The users will be split according to the values received in
this first flow (i.e. the commitments, the proofs and the verification keys), as we
see in the second flow where they send a signature of all they have received up
to this point. Thus, the protocol cannot continue past this point if some players
do not share the same values as the others (i.e. one of the signatures σi will be
rejected later on and at least a user will abort).

Once this first step is done, the users commit again to their passwords (by
encrypting them, for efficiency reasons), but this time in a single block: C′

i =
(C′

i
(1)

, C′
i
(2)

, C′
i
(3)) = (g1

ti , g2
ui , gpwig3

ti+ui) (with random values ti and ui) and
publish it along with a SSNIZK proof that the passwords committed are the same
in the two commitments: SSNIZKEqg,g(Ci, C

′
i), Ci roughly being the product of

the Ci,j , i.e. a commitment of pwi. The new encryptions C′
i will be the ones used

in the rest of the protocol. They need not be segmented (since we will not extract
anything from them, but just make computations on encrypted values), but we
ask the users to prove that they are compatible with the former commitments.

Each user Pi computes H = H(C1, . . . ,Cn), and sends a signature of the
values that identifies this execution, under an ephemeral one-time signature key,
to avoid malleability and replay from previous sessions: σi = Sign(H ; SKi). This
allows the protocol to realize the split functionality by ensuring that everybody
has received the same values in the first round (more precisely, the players have
been split according to what they received in the first round, so that we can
assume that they have all received the same values). Note that the protocol will
fail if the adversary drops or modifies a flow received by a user, even if everything
was correct. This situation is modeled by the bit b of the key delivery queries in
the functionality, for when everything goes well but some of the players do not
obtain the result.
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The need for an additional extractable commitment Ci of gpwi (and a proof
that the password used is the same, and that everybody received the same value)
is a requirement of the UC model, as in [10]. Indeed, we show later on that
S needs to be able to simulate everything without knowing any passwords: Thus,
he recovers the passwords by extracting them from the commitments Ci made
by the adversary in the first round, enabling him to adjust his own values before
the subsequent encryptions C′

i, so that all the passwords are compatible with
the public key (if they should be in the situation at hand).

After these rounds of commitments/encryptions, the players check the signa-
tures and abort if one of them is not valid. A computation step then allows them
to compute the public key. Note that everything has become publicly verifiable.

Computation starts from the ciphertexts C′
i, and involves two “blinding rings”

to raise sequentially the values
∏

i C
′
i
(3) = g

∑
i pwig3

∑
i(ti+ui), g1, g2 and g3

to some distributed random exponent α =
∑

i αi. The players then broadcast
g3

α(ti+ui) (the values g1 and g2 are only here to check the consistency of the val-
ues ti and ui and avoid cheating), leaving every player able to compute gα

∑
i pwi .

A final “unblinding” allows for the recovery of g
∑

i pwi = pk. We stress that every
user is able to check the validity of this computation (at each step, it checks the
CDH values to ensure that the same exponent was used each time): A dishonest
execution cannot continue without an honest user becoming aware of it (and
aborting). Note however that an honest execution can also be stopped by a user
if the adversary modifies a flow, as reflected by the bit b in the functionality.

The Distributed Private Computation Protocol. This protocol is pre-
sented in Figure 2 and realizes FpwDistPrivateComp. Here, in addition to their pass-
words, the users are also provided a public key pk and a group element c ∈ G.
For this given c ∈ G, the leader wants to obtain m = csk. A big difference with
the previous protocol is that this result will be private to the leader. But before
computing it, everybody wants to be sure that all the users are honest, or at
least that the combination of the passwords is compatible with the public key.

This verification step is exactly the same as the computation step in the
previous protocol. The protocol starts by verifying that they will be able to
perform this computation, and thus that they indeed know a representation of
the secret key into shares. Each user sends a commitment Ci = {Ci,j}j of its
password as before, and the associated set of WIProofBit(Ci,j).

As in the former protocol, once this first step (which enables the users to be
split into subgroups according to what values they have received) is done, the
users commit again to their passwords in the value C′

i, which will be the ones
used in the rest of the protocol, and also send a signature which enables them to
check that they share the same public key pk, the same group element c, and have
received the same values in the first round. It thus avoids situations in which a
group leader with an incorrect key obtains a correct private computation result,
contrary to the ideal functionality. The protocol will thus fail if all these values
are not the same to everyone, which is the result required by the functionality.

Next, the users make yet another encryption Ai of their passwords, but this
time they do a linear encryption of pwi in base c instead of in base g (in the



306 X. Boyen et al.

C
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p
︷

︸︸
︷

(1a) ri,j , si,j
R← Z

∗
p

Ci,j =Commitg(pwi,j , ri,j , si,j)=(U1
pwi,j g1

ri,j , U2
pwi,j g2

si,j , gpwi,j g3
ri,j+si,j )

Π0
i,j = WIProofBit(Ci,j)

(SKi, VKi) ← SKG
Ci={Ci,j}j ,{Π0

i,j}j ,VKi−−−−−−−−−−−−−−−−→

C
om

m
it

m
en

t
S
ec

on
d

S
te

p
︷

︸︸
︷ (1b) H = H(C1, . . . ,Cn, VK1, . . . , VKn) ti, ui

R← Z
∗
p

C′
i = Encryptg(pwi, ti, ui) = (g1

ti , g2
ui , gpwig3

ti+ui)

Ci =
(∏ (

Ci,j
(1)

)2j

,
∏ (

Ci,j
(2)

)2j

,
∏ (

Ci,j
(3)

)2j )
Π1

i = SSNIZKEqg,g(Ci, C
′
i) σi = Sign(H ;SKi)

C′
i,Π1

i ,σi−−−−−−→

B
li
n
d
in

g
R

in
g

︷
︸︸

︷ (1c) abort if one of the signatures σi is invalid
γ

(0)
0 =

∏
i C′

i
(3) = g

∑
i pwig3

∑
i ti+

∑
i ui γ

(1)
0 = g1 γ

(2)
0 = g2 γ

(3)
0 = g3

This round is done sequentially, for i=1,. . . ,n.

Upon receiving (γ(0)
j , γ

(1)
j , γ

(2)
j , γ

(3)
j ) for j = 1, . . . , i − 1,

check CDH(γ(0)
j−1, γ

(0)
j , γ

(1)
j−1, γ

(1)
j ),CDH(γ(0)

j−1, γ
(0)
j , γ

(2)
j−1, γ

(2)
j )

and CDH(γ(0)
j−1, γ

(0)
j , γ

(3)
j−1, γ

(3)
j ); abort if one of them is invalid

αi
R← Z

∗
p γ

(0)
i = (γ(0)

i−1)
αi γ

(1)
i = (γ(1)

i−1)
αi γ

(2)
i = (γ(2)

i−1)
αi

γ
(3)
i = (γ(3)

i−1)
αi

γ
(0)
i ,γ

(1)
i ,γ

(2)
i ,γ

(3)
i−−−−−−−−−−−−→

(1d) given γ
(0)
n = gα

∑
i pwig3

α(
∑

i ti+
∑

i ui) γ
(1)
n = g1

α γ
(2)
n = g2

α γ
(3)
n = g3

α

check CDH(γ(0)
n−1, γ

(0)
n , γ

(1)
n−1, γ

(1)
n ), CDH(γ(0)

n−1, γ
(0)
n , γ

(2)
n−1, γ

(2)
n )

and CDH(γ(0)
n−1, γ

(0)
n , γ

(3)
n−1, γ

(3)
n )

for all i, Pi computes G1,i = (γ(1)
n )ti , G2,i = (γ(2)

n )ui ,

G3,i = (γ(3)
n )ti , G4,i = (γ(3)

n )ui
G1,i ,G2,i,G3,i,G4,i−−−−−−−−−−−−−→

U
n
b
li
n
d
in

g
R

in
g

︷
︸︸

︷ (1e) given, for j = 1, . . . , n G1,j , G2,j , G3,j , G4,j

check CDH(g1, C
′
j
(1)

, γ
(1)
n , G1,j), CDH(g2, C

′
j
(2)

, γ
(2)
n , G2,j),

CDH(γ(1)
n , G1,j , γ

(3)
n , G3,j) and CDH(γ(2)

n , G2,j , γ
(3)
n , G4,j)

ζn+1 = γ
(0)
n /

(∏
j G3,jG4,j

)
= gα

∑
j pwj

This round is done sequentially, for i from n down to 1.

given, for j from n down to i + 1, ζj , check CDH(γ(1)
j−1, γ

(1)
j , ζj , ζj+1)

ζi = (ζi+1)1/αi
ζi−→

(1f) given, for j from i − 1 down to 1, ζj , check CDH(γ(1)
j−1, γ

(1)
j , ζj , ζj+1)

pk = ζ1

Fig. 1. Individual steps of the distributed key generation protocol

above C′
i ciphertext): Ai = Encryptc(pwi, vi, wi) = (g1

vi , g2
wi , cpwig3

vi+wi). The
ciphertexts C′

i will be used to check the possibility of the private computation
(i.e. that the passwords are consistent with the public key pk = gsk), whereas the
ciphertexts Ai will be used to actually compute the expected result csk, hence
the two different bases g and c in C′

i and Ai, respectively. All the users send
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these last two ciphertexts to everybody, along with a SSNIZK argument that the
same password was used each time: Π2

i = SSNIZKEqg,c(C′
i, Ai).

After these rounds of commitments/encryptions, a verification step allows for
all the players to check whether the public key and the passwords are compatible.
Note that at this point, everything has become publicly verifiable so that the
group leader will not be able to cheat and make the other players believe that
everything is correct when it is not. Verification starts from the ciphertexts C′

i,
and involves a blinding and an unblinding ring as described above. This ends
with a decision by the group leader on whether to abort the protocol (when the
passwords are incompatible) or go on to the computation step. Every user is able
to check the validity of the group leader’s decision, as in the former protocol.

If the group leader decides to go on, the players assist it in the computation
of csk, again with the help of a blinding and an unblinding rings, starting from the
ciphertexts Ai. However, note that this time, the group leader does not reveal the
values G′

1,1 = (δ(1)
n )v1 , G′

2,1 = (δ(2)
n )w1 , G′

3,1 = (δ(3)
n )v1 and G′

4,1 = (δ(3)
n )w1 at the

end of the blinding ring, but it is the only one able to compute cβ
∑

j pwj . Instead
of revealing it to the others, it chooses at random an exponent x

R← Z∗
q and

broadcasts the value cβx
∑

j pwj . The unblinding ring then takes place as before,
leading to a public value cβ1x

∑
j pwj that the environment cannot distinguish

from random thanks to the random exponent x. Furthermore, the whole process
is robust, which means that nobody can make the decryption result become
incorrect. Except of course the group leader itself who broadcasts any value it
wants as ζ′n+1, without having to prove anything. But this does not help it to
obtain a computation which it could not do alone, except the result csk.

Note that if at some point a user fails to send its value (denial of service attack)
or if the adversary modifies a flow (man-in-the-middle attack), the protocol will
fail. In the ideal world this means that the simulator makes a computation
delivery query to the functionality with a bit b set to zero. Because of the public
verifications of the CDH values, in these blinding/unblinding rounds exactly the
same sequence of passwords as in the first rounds has to be used by the players.
This necessarily implies compatibility with the public key, but may be an even
stronger condition.

As a side note, observe that all the blinding rings in the verification and com-
putation steps could be made concurrent instead of sequential, to simplify the
protocol. Notice however that the final unblinding ring of csk in the computation
step should only be carried out after the public key and the committed pass-
words are known to be compatible, and the passwords to be the same in both
sequences of commitments/encryptions, i.e. after the verification step succeeded.

All the witness-indistinguishable and SSNIZK proofs and arguments will be
described in Section 6. We show in the full version [8] that we can efficiently
simulate these computations without the knowledge of the pwi’s, so that they
do not reveal anything more about the pwi’s than pk already does. More pre-
cisely, we show that such computations are indistinguishable to A under the
DLin assumption.
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︷ (2a) = (1a)
{Ci,j ,Π0

i,j}j−−−−−−−−→
(2b) = (1b) except vi, wi

R← Z
∗
p

Ai = Encryptc(pwi, vi, wi) = (g1
vi , g2

wi , cpwig3
vi+wi)

Π2
i = SSNIZKEqg,c(C

′
i, Ai)

C′
i,Ai,Π2

i−−−−−−→

B
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R
in

g ︷︸︸︷

(2c) = (1c)
γ
(1)
i ,γ

(2)
i ,Π2

i−−−−−−−−→
(2d) = (1d)

(G1,i,G2,i,G3,i,G4,i)−−−−−−−−−−−−−−→

U
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g ︷︸︸︷ (2e) = (1e)
ζi−→

(2f) = (1f) pk ?= ζ1
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︷
︸︸

︷ (3a) abort if one of the signatures σi is invalid
δ
(0)
0 =

∏
i Ai

(3) = c
∑

i pwig3

∑
i vi+

∑
i wi δ

(1)
0 = g1 δ

(2)
0 = g2 δ

(3)
0 = g3

P1 chooses at random β1
R← Z

∗
p and computes

δ
(0)
1 = (δ(0)

0 )β1 δ
(1)
1 = (δ(1)

0 )β1 δ
(2)
1 = (δ(2)

0 )β1 δ
(3)
1 = (δ(3)

0 )β1

This round is done sequentially, for i=2,. . . ,n.

Upon receiving (δ(0)
j , δ

(1)
j , δ

(2)
j , δ

(3)
j ) for j = 1, . . . , i − 1,

check CDH(δ(0)
j−1, δ

(0)
j , δ

(1)
j−1, δ

(1)
j ), CDH(δ(0)

j−1, δ
(0)
j , δ

(2)
j−1, δ

(2)
j ),

CDH(δ(0)
j−1, δ

(0)
j , δ

(3)
j−1, δ

(3)
j ); abort if one of them is invalid

βi
R← Z

∗
p

δ
(0)
i = (δ(0)

i−1)
βi δ

(1)
i = (δ(1)

i−1)
βi δ

(2)
i = (δ(2)

i−1)
βi δ

(3)
i = (δ(3)

i−1)
βi

δ
(1)
i ,δ

(2)
i−−−−−→

(3b) given δ
(0)
n = cβ

∑
i pwig3

β(
∑

i vi+
∑

i wi) δ
(1)
n = g1

β δ
(2)
n = g2

β δ
(3)
n = g3

β

check CDH(δ(0)
n−1, δ

(0)
n , δ

(1)
n−1, δ

(1)
n ), CDH(δ(0)

n−1, δ
(0)
n , δ

(2)
n−1, δ

(2)
n )

CDH(δ(0)
n−1, δ

(0)
n , δ

(3)
n−1, δ

(3)
n )

for i �= 1, Pi computes G′
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This round is done sequentially, for i from n down to 2.
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(1)
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j , ζ
′
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check CDH(γ(1)
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j , ζ′

j , ζ
′
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P1 gets ζ′
1 = (ζ′

2)1/β1 = cx
∑

pwi = cxsk and finally csk

Fig. 2. Individual steps of the distributed decryption protocol
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Security Theorems. Assuming that the proofs of membership WIProofBit and
SSNIZKEq are instantiated as described in Section 6 (relying on the CDH), we
have the following results, provided that DLin is infeasible in G andH is collision-
resistant. The proofs of these theorems can be found in the full version [8].

Theorem 1. Let F̂pwDistPublicKeyGen be the concurrent multi-session extension of
FpwDistPublicKeyGen. The distributed key generation protocol in Figure 1 securely
realizes F̂pwDistPublicKeyGen for ElGamal key generation, in the CRS model, in the
presence of static adversaries.

Theorem 2. Let F̂pwDistPrivateComp be the concurrent multi-session extension of
FpwDistPrivateComp. The distributed decryption protocol in Figure 2 securely realizes
F̂pwDistPrivateComp for ElGamal decryption, in the CRS model, in the presence of
static adversaries.

As stated above, our protocols are only proven secure against static adversaries.
Unlike adaptive ones, static adversaries are only allowed to corrupt protocol
participants prior to the beginning of the protocol execution.

5 Extensions of the Protocols

Boneh-Franklin IBE Scheme [6]. We need to compute did = H(id)sk where
H(id) is a public hash of a user’s identity. This is analogous to csk, and thus our
protocol works as is.

Boneh-Boyen (BB1) IBE Scheme [4]. Here, did is randomized and of the
form (h0

sk(hid
1 h2)r, h3

r). Since (h0
sk) is a private value, the protocol can be

adapted as follows: 1) In the commitment steps, the user also commits (once)
in (2a) to a value ri, which will be its share of r. 2) Up to (2f), everything works
as before in order to check pk (there is no need to check r, constructed on the fly).
3) The blinding rings are made in parallel, one for (h0

sk)β , one for ((hid
1 h2)r)β ,

and one for (h3
r)β , the CDH being checked to ensure that the same r and βi are

used each time. 4) The players obtain (h0
sk(hid

1 h2)r)β and the unblinding ring
is made globally for this value. An unblinding ring is also done for (h3

r)β , with
the same verification for the exponents βi.

Linear Decryptions [5]. Let (f = g1/x, g, h = g1/y) be the public key of a
linear encryption scheme, (x, y) being the private key. Assuming z = y/x, these
keys can be seen as pk = (hz, hy, h) and sk = (y, z). Using these notations,

c = Epk(m; r) = (c1, c2, c3) = (f r, hs,mgr+s)
m = Dsk(c) = c3(c1xc2

y)−1 = mgr+sg−rg−s

In the first protocol, the players need to use two passwords zi and yi to create
the public key pk. In the second one, the commitment steps are doubled to
commit to both zi and yi. As soon as pk is checked, the blinding rings are made
separately, one for (c1x)β and one for (c2y)β . The players obtain (c1xc2

y)β and
the unblinding ring can be made globally for this value. In both rings, the CDH
is checked to ensure that the same βi is used each time.
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6 Employed Proof Systems

6.1 GOS WI Proof of Commitments Being to Bits

Let (g1, g2, g3) ∈ G3 be a “basis” and let (U1, U2, g) ∈ G3 be a commitment
key (which is in general non-linear w.r.t. (g1, g2, g3), but for simulation purposes
it will be linear). Let C = (Ux

1 g
r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a commitment to x using

randomness (r, s). Groth et al. [13] construct a WI proof system to show that one
of two triples is linear. Applying it to (C1, C2, C3) and (C1U

−1
1 , C2U

−1
2 , C3g

−1)
yields a proof that x ∈ {0, 1}, thus implements WIProofBit, in an efficient way
and without random oracles.

6.2 Simulation-Sound NIZK Arguments for Relations of
Ciphertexts and Commitments

We construct two simulation-sound NIZK argument systems implementing the
proof SSNIZKEq. Given two ciphertexts, the first proves that the encrypted mes-
sages m1 and m2 are in CDH w.r.t. some fixed basis (c, d), i.e., m1 = cμ and
m2 = dμ for some μ. The second SSNIZK proves that for a given linear com-
mitment to x and a linear encryption of gy it holds that x = y. We follow the
overall approach by Groth [12] to obtain simulation soundness, but using the
Groth-Sahai proof system [14] we get an efficient result: the proofs themselves
are efficient, and we need not encrypt some of the witnesses in order to guarantee
extractability, as the employed Groth-Sahai proofs are witness extractable.
Overview. We start with some intuition on how [12] constructs simulation-
sound proofs for satisfiabilityofaset of pairing product equations (PPEs) {Ek}KE

k=1
(and later show how to express the statements we want to prove this way). Let
Σot be a strong one-time signature scheme1 and let Σcma be a signature scheme
that is existentially unforgeable under chosen message attack (EUF-CMA), and
whose signatures σ on a message M are verified by checking a set of PPEs over
a verification key vk and M , denoted {Vk(vk,M, σ)}KV

k=1.
The common reference string (CRS) of our argument system will contain a ver-

ification key vk for Σcma (whose corresponding signing key serves as simulation
trapdoor). When making an argument, one first chooses a key pair (vkot, skot) for
Σot, proves a statement and, at the end, adds a signature under vkot on the in-
stance and the proof. The statement one actually proves is the following: to either
know a witness satisfying Equations {Ek} or to know a signature on vkot valid
under vk. Groth [12] shows how to construct a new set of equations which is sat-
isfiable iff {Ek} or {Vk(vk, vkot, ·)} are satisfiable. Moreover, knowing witnesses
for either of them, one can compute witnesses of the new set of equations. Using
the techniques of [14], one then commits to the witnesses and proves that the
committed values satisfy the new PPEs in a witness-indistinguishable (WI) way.

To simulate an argument, after choosing a pair (vkot, skot), one uses the trap-
door to produce a signature σ on vkot valid under vk and uses σ as a witness
1 A signature scheme is strong one-time if no adversary, after getting a signature σ on

one message m of his choice, can produce a valid pair (m∗, σ∗) �= (m, σ).
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for {Vk(vk, vkot, ·)}. (It follows from WI of the Groth-Sahai proof that this is
indistinguishable from using a witness for {Ek}.) Even after seeing many proofs
of this kind, no adversary is able to produce one for a new false statement: Since
it has to sign the instance and the argument at the end, it must choose a new
pair (vk∗ot, sk

∗
ot) (by one-time security of Σot). Soundness of Groth-Sahai proofs

imposes that to prove a false statement (meaning that the first clause of the dis-
junction is not satisfiable), it must use a witness for the second clause, thus know
a signature on vkot. This however is infeasible by EUF-CMA of Σcma (since we
can extract the witnesses and thus a forged signature). We start by instantiating
the mentioned building blocks.

Building Blocks. The main motivation for our choices of instantiations of these
blocks is that their security is implied by DLin only. We insist that by admitting
more exotic assumptions, the efficiency of our proof system could be improved.

The Strong One-Time Signature Scheme Σot. We pick the scheme de-
scribed in [12] (but any other would equally do), since its security follows from
the discrete-log assumption which is implied by DLin.

The Waters Signature Scheme. The signature scheme from [16] suits our
purposes, it requires no additional assumption and—more importantly—signa-
tures are verified by checking PPEs.

Setup. In a bilinear group (p,G,GT , e, g), define parameters f ← G∗ and h :=
(h0, h1, . . . , h�) ← G�+1. A secret key x← Zp defines a public key X := gx.
For ease of notation, define W(M) := h0

∏�
i=1 h

Mi

i .
Signing. To sign a message M ∈ {0, 1}�, choose r ← Zp and define a signature

as σ := (fxW(M)r, g−r).
Verification. A signature σ = (σ1, σ2) is accepted for message M iff

e(σ1, g) e(W(M), σ2) = e(f,X) (1)

Security. EUF-CMA follows from the computational Diffie-Hellman assumption
which is implied by DLin.

The Groth-Sahai Proof System. Consider a set of pairing product equations
{Ek}KE

k=1 on variables {Xi}n
i=1 in G of the form

n∏
i=1

e(Ak,i, Xi)
n∏

i=1

n∏
j=1

e(Xi, Xj)γk,i,j = Tk (Ek)

for given Ak,i ∈ G, γk,i,j ∈ Zp, and Tk ∈ GT . Groth and Sahai [14] build
a non-interactive witness-indistinguishable proof of satisfiability of {Ek} from
which—given a trapdoor—can be extracted the witnesses Xi (we will use their
instantiation with DLin): the CRS is a (binding) key for linear commitments to
group elements. The proof consists of commitments to each Xi and 9 elements
of G per equation proving that it is satisfied by the committed values. By DLin,
replacing the CRS by a hiding commitment key is indistinguishable. In this
setting now every witness {Xi}n

i=1 satisfying the equations generates the same
distribution of proofs, which implies witness-indistinguishability of the proofs.
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Moreover, we assume a collision-resistant hash function H that maps strings
of elements of G to elements in Zp which we identify with their bit-representation
in {0, 1}�log p�. Thus, when we say we sign a vector of group elements, we actually
mean that we sign their hash values.

Equations for Proof of Plaintexts Being in CDH. Let c, d ∈ G be
fixed and let (g1, g2, g3) be a linear encryption key. Given two ciphertexts
C = (gr

1 , g
s
2,m1g

r+s
3 ) and D = (gt

1, g
u
2 ,m2g

t+u
3 ), we give a set of PPEs that

are satisfiable by a witness a if and only if there exists μ ∈ Zp such that m1 = cμ

and m2 = dμ.

e(C1, g3) = e(g1, a1) e(C2, g3) = e(g2, a2) (2)

e(D1, g3) = e(g1, a3) e(D2, g3) = e(g2, a4) e(C3a
−1
1 a−1

2 , d) = e(c,D3a
−1
3 a−1

4 )

The witness satisfying them is a := (gr
3 , g

s
3, g

t
3, g

u
3 ). The first four equations

prove that the logarithms of the ai’s are those of C1, C2, D1, D2 w.r.t. their
respective bases. Thus, C3a

−1
1 a−1

2 = m1 and D3a
−1
3 a−1

4 = m2 and the last
equation shows that (m1,m2) is in CDH w.r.t. (c, d).

Disjunction of Equations. Following [12] (and optimizing since the pairings
have variables in common), we define a set of equations which we can prove
satisfiable if we have witnesses for either (2) or (1), i.e., if we either know a
satisfying (2) or σ satisfying (1). We first introduce the following new variables:

χ1, χ2 φ1, φ2, φ3, φ4, φ5 ψ1, ψ2, ψ3

We define the following 15 equations expressing a disjunction of (2) and (1),
therefore termed “(2 ∨ 1)”.

Equation for Disjunction: e(g−1χ1χ2, g) = 1
From (1): e(χ2, ψ

−1
1 σ1) = 1 e(χ2, ψ

−1
2 W(M)) = 1 e(χ2, ψ

−1
3 f) = 1

e(ψ1, g) e(ψ2, σ2) e(ψ3, X)−1 = 1

From (2): e(χ1, φ
−1
1 g1) = 1 e(χ1, φ

−1
2 g2) = 1

e(χ1, φ
−1
3 g3) = 1 e(χ1, φ

−1
4 c) = 1 e(χ1, φ

−1
5 d) = 1

e(C1, φ3) e(φ1, a1)−1 = 1 e(C2, φ3) e(φ2, a2) = 1

e(D1, φ3) e(φ1, a3)−1 = 1 e(D2, φ3) e(φ2, a4) = 1

e(C3a
−1
1 a−1

2 , φ5) e(φ4, D3a
−1
3 a−1

4 ) = 1

Completeness. To produce a proof we proceed as follows: If we have an as-
signment a for (2), we choose χ1 := g, χ2 := 1, satisfying thus the first equation.
Moreover, set φ1 := g1, φ2 := g2, φ3 := g3, φ4 := c, φ5 := d. Thus the equations
of the block for (2) are satisfied, because a is a witness for (2). Since χ2 = 1,
we can set ψi := 1 (for all i) as well, which satisfies the block for (1), no matter
what value we set σ.

On the other hand, if we know a signature σ satisfying (1), we choose χ1 :=
φi := 1 (for all i) and χ2 := g, ψ1 := σ1, ψ2 := W(M), ψ3 := f and get a
satisfying assignment for any choice of a.
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Soundness. We show that if (2 ∨ 1) is satisfied then either a satisfies (2) or σ
satisfies (1): From the first equation we have that either χ1 or χ2 must be non-
trivial, which either confines the values of the φi’s to (g1, g2, g3, c, d) or those of
the ψi’s to (σ1,W(M), f). Now this imposes that either a satisfies (2) (by the
last five equations of the block for (2)) or σ satisfies (1) (by the last equation of
the block for (1)).

Equations for Proof of Commitment and Ciphertext Containing the
Same Value. Let (g1, g2, g3) be a key for linear encryption, and let (U1, U2, g) be
an associated commitment key. Let C = (Ux

1 g
r
1, U

x
2 g

s
2, g

xgr+s
3 ) be a commitment

to x and D = (gv
1 , g

w
2 , gygv+w

3 ) be an encryption of gy. We prove that x = y: the
witness is (a1 = Ux

1 , a2 = Ux
2 , a3 = gx, a4 = gr

3 , a5 = gv
3) satisfying

e(a1, U2) = e(U1, a2) e(C1a
−1
1 , g3) = e(g1, a4) e(D1, g3) = e(g1, a5)

e(a1, g) = e(U1, a3) e(C2a
−1
2 , g3) = e(g2, C3a

−1
3 a−1

4 ) e(D2, g3) = e(g2, D3a
−1
3 a−1

5 ) (3)

The equations in the first column show that a1 = Uz
1 , a2 = Uz

2 , a3 = gz for
some z, the second column proves that (C1a

−1
1 , C2a

−1
2 , C3a

−1
2 ) is linear (i.e.,

C commits to z) and the third that D is an encryption of a3 = gz.

Transformation. Transforming Equations (3) and (1) to a set (3 ∨ 1) analo-
gously to the construction of (2 ∨ 1), we get a set of 16 equations we can prove
satisfiable adding 10 new witnesses if either we have a witness for C being a
commitment to some x and D an encryption of gx, or we know a signature.
(Associate the φi’s to U1, a1, g1, g2 and g3.)

Assembling the Pieces. We describe the SSNIZK proof system for “plaintexts
in CDH”. The one for “commitment and ciphertext contain the same value” is
obtained by replacing (2 ∨ 1) by (3 ∨ 1).

Common Reference String. Generate a key pair (vk, sk) for Waters’ sig-
nature scheme, and a CRS crsGS for the Groth-Sahai proof system. Let
crs := (vk, crsGS) and let the simulation trapdoor be sk.

Proof. Let (C,D) ∈ G6 be an instance and a a witness satisfying (2). Generate
a key pair (vkot, skot) for Σot; using witness a, make a Groth-Sahai proof πGS
w.r.t. crsGS of satisfiability of (2∨1) with M := vkot; produce a signature σot
on (C,D, vkot, πGS) using skot. The proof is π := (vkot, πGS, σot)

Verification. Given π, verify σot on (C,D, vkot, πGS) under vkot, and πGS on
the respective equations.

Simulation. Proceed as in Proof, but using sk produce σ on vkot and use
that as a witness for (2 ∨ 1).

Theorem 3. Under the DLin assumption, the above is a simulation-sound NIZK
argument for the encryptions of two linear ciphertexts forming a CDH-pair.

Using the ideas given in the overview, the proof is analogous to that in [12]
except that we do not require perfect soundness and that we use the extraction
key for crsGS to extract a forged signature on vkot directly rather than adding
encryptions to the proof.
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Abstract. Proxy re-encryption (PRE) allows a semi-trusted proxy to
convert a ciphertext originally intended for Alice into one encrypting the
same plaintext for Bob. The proxy only needs a re-encryption key given
by Alice, and cannot learn anything about the plaintext encrypted. This
adds flexibility in various applications, such as confidential email, digital
right management and distributed storage. In this paper, we study unidi-
rectional PRE, which the re-encryption key only enables delegation in one
direction but not the opposite. In PKC 2009, Shao and Cao proposed a
unidirectional PRE assuming the random oracle. However, we show that
it is vulnerable to chosen-ciphertext attack (CCA). We then propose
an efficient unidirectional PRE scheme (without resorting to pairings).
We gain high efficiency and CCA-security using the “token-controlled
encryption” technique, under the computational Diffie-Hellman assump-
tion, in the random oracle model and a relaxed but reasonable definition.

Keywords: proxy re-encryption, unidirection, chosen-ciphertext attack.

1 Introduction

Every application which requires some sort of confidentiality uses encryption as
a building block. As pointed out by Mambo and Okamoto [1], the encrypted
data often needs to be re-distributed in practice, i.e., the data encrypted under
a public key pki should also be encrypted under another independently gener-
ated public key pkj . This can be easily done if the holder of the secret key ski

(corresponding to pki) is online – simply decrypts the ciphertext and re-encrypts
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the plaintext to pkj . However, this is not always practical. It is also undesirable
to just disclose the secret key to some untrusted server to do the transformation
of ciphertexts.

To solve this key management problem which hinders the practical adoption
of encryption, Blaze, Bleumer and Strauss [2] introduced the concept of proxy
re-encryption (PRE). PRE schemes allow a secret key holder to create a re-
encryption key. A semi-trusted proxy can use this key to translate a message
m encrypted under the delegator’s public key into an encryption of the same
message under a delegatee’s public key, as specified by the delegator. This can
be done without allowing the proxy any ability to perform tasks outside of these
proxy delegations. In particular, the proxy can neither recover the delegator’s
secret key nor decrypt the delegator’s ciphertext.

Proxy re-encryption schemes have applications in digital rights management
(DRM) [3], distributed file storage systems [4], law enforcement [5], encrypted
email forwarding [2], and outsourced filtering of encrypted spam [4]. In all these
cases, the gist is that the process of re-encryption, i.e., decrypting under one
key for encryption under another key, should not allow the re-encryptor mod-
ule to compromise the secrecy of encrypted messages. This was related to the
compromise of Apple’s iTunes DRM [3]. With a PRE scheme, the problem is
solved since re-encryption can be performed without awarding the proxy any
information about the encrypted message. Besides DRM, distributed file storage
systems also benefit in the sense that the storage server (proxy) can re-encrypt
the files for different servers without knowing the underlying file content, and
hence it is less attractive for hacker attacks since compromising the server does
not compromise the files. Similarly, email servers can re-encrypt emails for dif-
ferent users with the same effect, say when a user is on vacation and wants to
forward his encrypted emails to his colleague.

1.1 The Use of Pairings in Proxy Re-Encryption

Blaze, Bleumer and Strauss’s seminal work [2] proposed a bidirectional PRE
scheme against chosen plaintext attack (CPA). Afterwards, a number of PRE
schemes have been proposed. Their properties are summarized in Table 1. The
schemes are chronologically arranged.

In this paper, we study unidirectional public-key-based PRE schemes which
are secure against adaptive chosen-ciphertext attack (CCA). As shown in Table
1, most existing PRE schemes most existing PRE schemes no matter ID-based
or not, are realized by pairings. Below we look into two schemes to see why
pairing is a useful “ingredient”. In the bidirectional scheme proposed by Canetti
and Hohenberger [7], the transformation key is simply rki↔j = xj/xi ∈ Zp

for the pair of delegation partners1 pki = gxi and pkj = gxj . The ciphertext
comes with the term pkr

i for randomness r ∈ Zp which can be transformed to
pkr

j easily by using rki↔j . The ciphertext validity can be checked with the help

1 For the bidirectional schemes, once a delegation is made, a delegator becomes a
delegatee and a delegate becomes a delegator simultaneously.
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Table 1. Summary of PRE Schemes

Schemes Uni/Bi Security RO Pairing Collusion
Directional -Free -Free -Resistant
Public-key-based

Ateniese et al. [4] → CPA × × �
Hohenberger et al. [6] → CPA � × �
Canetti-Hohenberger [7] ↔ CCA � × ×
Libert-Vergnaud [8] → RCCA � × �
Libert-Vergnaud-Trace [9] → CPA � × �
Deng et al. [10] ↔ CCA × � ×
Shao-Cao [11] → CCA? × � ×
Ateniese et al. [12] → CPA � × �
Ours → CCA × � �

Identity-based
Green-Ateniese [13] → CCA × × ×
Chu-Tzeng [14] → RCCA � × ×

of the pairing function ê(·, ·) with respect to the generator g and the public
key pki or pkj . For the unidirectional PRE scheme proposed by Libert and
Vergnaud [8] (hereinafter referred as LV08), the transformation key is in the form
rki↔j = gxj/xi . The ciphertext also comes with the term pkr

i and the message
is encrypted by ê(g, g)r. To recover the message, a pairing will be applied to get
ê(gxj/xi , pkr

i ) = ê(g, gr)xj , ê(g, g)r can then be covered with xj . These techniques
for unidirectional transformation and ciphertext validity checking intrinsically
require the pairings. Moreover, the security guarantee provided by LV08 is only
against replayable chosen-ciphertext attacks (RCCA) [15], a weaker variant of
CCA tolerating a “harmless mauling” of the challenge ciphertext.

1.2 Our Contributions

From a theoretical perspective, we would like to have PRE scheme realized under
a broader class of complexity assumptions, and see techniques other than using
pairing in constructing CCA-secure PRE. Practically, we want a PRE scheme
with simple design, short ciphertext size and high computational efficiency2.
Removing pairing from PRE constructions is one of the open problems left by [7].

Recently, Shao and Cao [11] proposed a unidirectional PRE scheme with-
out pairings (referred as SC09). Let N be a safe-prime modulus. SC09 requires
4 to 5 exponentiations in Z∗

N2 for encryption, re-encryption and decryption3,
and incurs an ciphertext overhead of 3 (plus proof-of-knowledge) to 5 Z∗

N2 ele-
ments. The modulus being used is N2. Its performance over pairing-based scheme
2 In spite of the recent advances in implementation technique, compared with modular

exponentiation, pairing is still considered as a rather expensive operation, especially
in computational resource limited settings.

3 Speed-up by Chinese remainder theorem is not possible except 2 exponentiations in
decryption, due to the lack of the factoring of the delegator’s modulus.
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(e.g., LV08), which is instantiated on elliptic curves consist of much shorter group
elements at the same security level, is questionable. Their security proof relies
on the random oracle and the decisional (not computational) Diffie-Hellman
assumption over Z∗

N2 .
Most importantly, we identify flaws in their security proof which translate

to a real-world chosen-ciphertext attack against SC09. A possible fix further
degrades the performance in decryption time. In view of this, we propose an
efficient unidirectional CCA-secure PRE scheme without pairings, under the
standard computational Diffie-Hellman assumption, in the random oracle model.
Our design is based on ElGamal encryption [16] and Schnorr signature [17],
which is (arguably) simple. Our decryption process is more natural and does not
require the input of the delegator’s public key, which is required in SC09.

In this paper, collusion attack refers to any collusion of a proxy and a delegatee
which aimed to comproise the security of the delegator in any meaningful way.4

Finally, to the best of our knowledge, there was no (R)CCA-secure unidirectional
scheme which is collusion-resistant.

2 Our Definitions of Unidirectional Proxy Re-Encryption

2.1 Framework of Unidirectional Proxy Re-Encryption

A unidirectional PRE scheme consists of the following six algorithms [7]:

Setup(κ): The setup algorithm takes as input a security parameter κ and outputs
the global parameters param, which include a description of the message
space M.

KeyGen(): The key generation algorithm generates a public/private key pair
(pki, ski).

ReKeyGen(ski, pkj): The re-encryption key generation algorithm takes as input
a private key ski and another public key pkj . It outputs a re-encryption key
rki→j .

Encrypt(pk,m): The encryption algorithm takes as input a public key pk and a
message m ∈ M. It outputs a ciphertext C under pk.

ReEncrypt(rki→j ,Ci): The re-encryption algorithm takes as input a re-encryption
key rki→j and a ciphertext Ci under public key pki. It outputs a ciphertext
Cj under public key pkj . This can be either deterministic or probabilistic.

Decrypt(sk,C): The decryption algorithm takes as input a private key sk and
a ciphertext C. It outputs a message m ∈ M or the error symbol ⊥ if the
ciphertext is invalid.

4 For example, the collusion-resistance claimed in [11] can be more accurately de-
scribed as delegator-secret-key security (also see Section 2.2), and we listed it as not
collusion-resistant due to the following attack. A collusion of a delegatee of X and
his proxy can recover a weak secret key (wskX) of X. Any re-enryption of ciphertext
of X to other delegatee contains most part of the original one, in particular, it is
decryptable by applying wskX on the original components (also see Section 3.)
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To lighten notations, we omit the public parameters param as the input of the
algorithms. Correctness requires that, for any parameters param, m ∈ M, the
following probabilities are equal to 1:

Pr
[
Decrypt(ski,C) = m

∣∣ (ski, pki)← KeyGen(),C ← Encrypt(pki,m)
]
,

Pr

⎡⎢⎢⎢⎢⎢⎢⎣Decrypt (skj ,Cj) = m

∣∣∣∣∣∣∣∣∣∣∣∣

(ski, pki) ← KeyGen(),
(skj , pkj)← KeyGen(),

rki→j ← ReKeyGen(ski, pkj),

Ci ← Encrypt(pki,m),
Cj ← ReEncrypt(rki→j ,Ci)

⎤⎥⎥⎥⎥⎥⎥⎦
2.2 Security Models for “Token-Controlled” Re-Encryption

Our game-based definitions for single-hop unidirectional PRE systems are adap-
tions of the definitions of the original (second level) ciphertext security and
the transformed (first level) ciphertext security in [8]. As in [7,8] our static
corruption model makes the knowledge of secret key (KOSK) assumption, the
adversary only gets uncorrupted public key or corrupted public/private key pair
from the challenger, and is not allowed to adaptively determine which parties
will be compromised. Compared with [7,8], our definition considers the standard
CCA security instead of RCCA security. However, this is at the expense of a
relaxation requiring additional constraint on the re-encryption key that can be
compromised.

Definition 1 (Game Template of Chosen-Ciphertext Security).

Setup. The challenger C takes a security parameter κ and executes the setup
algorithm to get the system parameters param. C executes the key generation
algorithm nu times resulting a list of public/private keys PKgood,SKgood,
and executes the key generation algorithm for nc times to get a list of cor-
rupted public/private keys PKcorr,SKcorr. A gets param, SKcorr, and PK =
(PKgood ∪ PKcorr) = {pki}i∈[1,nu+nc].

Phase 1. A adaptively queries to oracles OReK, OReE and ODec.
– OReK oracle takes 〈pki, pkj〉 and returns a re-encryption key rki→j .
– OReE oracle takes public keys 〈pki, pkj〉 and a ciphertext C and returns

a re-encryption of C from pki to pkj.
– ODec oracle takes a public key pk and a ciphertext C and returns the

decryption of C using the private key with respect to pk.
Challenge. When A decides that Phase 1 is over, it also decides whether it

wants to be challenged with a original ciphertext or a transformed ciphertext.
It outputs two equal-length plaintexts m0,m1 ∈ M, and a target public key
pki∗ . Challenger C flips a random coin δ ∈ {0, 1}, and sends to A a challenge
ciphertext C∗ depending on pki∗ and mδ

Phase 2. A issues queries as in Phase 1.
Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.
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The public keys supplied by A subject to the following constraints:

1. The public keys involved in all queries must come from PK.
2. The target public key pki∗ is from PKgood, i.e., uncorrupted.

The actual construction of C∗ and the constraints on the queries made by A are
to be defined according to different security notions.

Definition 2 (Original Ciphertext Security). For original ciphertext secu-
rity, the adversary A plays the CCA game with the challenger C as in Definition
1, where the challenge ciphertext is formed by C∗ = Encrypt(pki∗ ,mδ), and A
has the following additional constraints:

1. OReK(pki∗ , pkj) is only allowed if pkj came from PKgood.
2. If A issued OReE(pki, pkj ,Ci) where pkj came from PKcorr, (pki,Ci) cannot

be a derivative of (pki∗ ,C
∗) (to be defined later).

3. ODec(pk,C) is only allowed if (pk,C) is not a derivative of (pki∗ ,C
∗).

Definition 3 (Derivative for Chosen-Ciphertext Security). Derivative of
(pki∗ ,C

∗) in the CCA setting is inductively defined in [11] as below, which is
adopted from the RCCA-based definition in [7]5:

1. Reflexivity: (pki∗ ,C
∗) is a derivative of itself.

2. Derivation by re-encryption: If A has issued a re-encryption query
〈pk, pk′,C〉 and obtained the resulting re-encryption ciphertext C′, then
(pk′,C′) is a derivative of (pk,C).

3. Derivation by re-encryption key: If A has issued a re-encryption key gen-
eration query 〈pk, pk′〉 to obtain the re-encryption key rk, and C′ =
ReEncrypt(rk,C), then (pk′,C′) is a derivative of (pk,C).

Definition 4 (Transformed Ciphertext Security). For transformed ci-
phertext, the adversary A plays the CCA game with the challenger C as
in Definition 1, where A can also specify the delegator pki′ . The challenge
ciphertext is then created by the re-encryption process, specifically, C∗ =
ReEncrypt(rki′→i∗ ,Encrypt(pki′ ,mδ)). The only constraints of A are:

1. ODec(pki∗ ,C
∗) is not allowed.

2. If pki′ came from PKcorr, C would not return rki′→i∗ to A in phase 2.
3. If A obtained rki′→i∗ , A cannot choose pki′ as the delegator in the challenge

phase.

This can be considered as a weaker notion when compared with [8].

Definition 5 (CCA Security of a PRE). We define A’s advantage in attack-
ing the PRE scheme as AdvIND-PRE-CCA

PRE,A =
∣∣ Pr[δ′ = δ]−1/2

∣∣, where the probabil-
ity is taken over the random coins consumed by the challenger and the adversary.

5 These original definitions also consider transitivity – If (pk, C) is a derivative of
(pki∗ , C∗) and (pk′, C′) is a derivative of (pk, C), then (pk′, C′) is a derivative of
(pki∗ , C∗). However, this is irrelevant for single-hop scheme like ours and [11].
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A single-hop unidirectional PRE scheme is defined to be (t, nu, nc, qrk, qre, qd, ε)-
IND-PRE-CCA secure, if for any t-time IND-PRE-CCA adversary A who makes
at most qrk re-encryption key generation queries, at most qre re-encryption
queries and at most qd decryption queries, we have AdvIND−PRE−CCA

PRE,A ≤ ε.

Derivative and Two Different Kinds of Security. Intuitively speaking,
original ciphertext security models the an adversary A challenged with an un-
transformed ciphertext encrypted for a target user i∗. In a PRE scheme, however,
A can ask for the re-encryption of many ciphertexts or even a set of re-encryption
keys. These queries are allowed as long as they would not allow A to decrypt
trivially. For examples, A should not get the re-encryption key from user i∗ to
user j if the secret key of user j has been compromised; on the other hand, A
can certainly get a re-encryption of the challenge ciphertext from user i∗ to user
j as long as j is an honest user and the decryption oracle of user j has not been
queried with the resulting transformed ciphertext. This explains the intuition
behind the notion of derivative and the associated restrictions.

SinceA can derive a transformed ciphertextwith a certain related re-encryption
key, one may wonder why there is another notion about transformed ciphertext
security. This latter notion makes sense when the PRE system is single-hop, i.e., a
transformed ciphertext cannot be re-encrypted further to someone else. If a proxy
colludes with a delegatee, by the correct functionalities of a PRE, this collusion
group can certainly decrypt any original ciphertext of the target user. However,
for a single-hop scheme, there is no reason that this collusion group can decrypt
any transformed ciphertext since it cannot be re-encrypted further. To conclude,
the adversary is allowed to transform an original ciphertext in the former notion,
but there are some re-encryption keys which it is not allowed to get (recall the
constraints related to derivatives); while in the latter, the adversary only sees the
transformed ciphertext but not the original one, and the adversary can get more
re-encryption keys.

Our Definition of Transformed Ciphertext Security. The second con-
straint deserves more discussion. The compromise of rki′→i∗ corresponds to the
fact that the proxy, which is designated by the delegator pki′ for the delegation
to the delegatee pki∗ , is compromised. Ideally, it seems that whether the dele-
gator pki′ is compromised or not in this situation does not affect the security
of the transformed ciphertext for pki∗ . This is also what has been modelled by
the definition in [8]. However, if the adversary A compromised the delegator
pki′ and also the proxy, A can simply ask the proxy to surrender the original
ciphertext Encrypt(pki′ ,mδ) before any actual transformation, and use ski′ to
decrypt trivially. It is true that if the proxy was initially honest and erased the
original ciphertexts after their transformation, the same attack does not apply;
however, ciphertext is by definition public in nature and the adversary may have
captured the ciphertext already and decrypt it when ski′ is obtained. We believe
that the relaxed notion still have significance in the real world.
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Nontransformable (First-Level) Ciphertext. To view the above relaxation
from another angle, one may feel that we lost a possible benefit of a single-hop
scheme – some ciphertexts are not further transformable so very sensitive in-
formation can be encrypted in this form (“first level” ciphertext that can-
not be re-encrypted). Actually, our definition does not rule out this possi-
bility. Our definition given above only considers transformed ciphertext, that
is, the challenge ciphertext which is generated from the re-encryption algo-
rithm. It does not rule out the possibility of having another encryption al-
gorithm Encrypt1 which directly produces nontransformable ciphertext, when
ReEncrypt(rki′→i∗ ,Encrypt(pki′ ,mδ)) and Encrypt1(pki∗ ,mδ) are actually distin-
guishable.

We view this as one way to get CCA security instead of RCCA security.
Using LV08 , it is possible to directly encrypt ciphertexts that cannot be re-
encrypted which is indistinguishable from re-encryption, and the reason is that
re-randomization can be done in the re-encryption process. Recall that the secu-
rity guarantee of LV08 actually allows the adversary to compromise all proxies
of the system; indeed, the re-randomizaation in LV08 can be done by any one
without any secret knowledge – this explains why LV08 is at most RCCA secure.

Of course, it is required to augment the PRE systems with yet another en-
cryption algorithm. However, it is often the case that the original decryption
algorithm sufficies to decrypt ciphertext produced in this way. The interface of
Encrypt1 and its correctness requirement are exactly the same as those of Encrypt.
The security definition is also simple.

Definition 6 (Nontransformable Ciphertext Security). For nontrans-
formable ciphertext, the adversary A plays the CCA game with the chal-
lenger C as in Definition 1, where the challenge ciphertext is given by C∗ =
Encrypt1(pki∗ ,mδ), and A is disallowed from making ODec(pki∗ ,C

∗) query only.
In particular, A can get all the re-encryption keys.

Delegator/Master Secret Security. Delegator secret security6 is considered
in Ateniese et al. [4] which captures the intuition that, even if a dishonest proxy
colludes with the delegatee, they still cannot derive the delegator’s private key in
full. The attack mode is quite simple and can be covered by the nontransformable
/ first-level ciphertext security [8].

3 Analysis of a CCA-Secure Unidirectional PRE Scheme

3.1 Review of Shao-Cao’s Scheme

SC09 [11] is reviewed as below, up to minor notational differences. We use �
to highlight the places which introduce the vulnerability.
6 This notion is named as master secret security in [4] since the delegator’s public key

is the master public key in their secure distributed storage application. It is also
called “collusion-resistance” in some literatures.
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Setup(κ): Given a security parameter κ, choose three hash functions H1 : {0, 1}
→ {0, 1}�1, H2 : {0, 1} → {0, 1}�2, and H3 : {0, 1} → {0, 1}�3, where �1,
�2 and �3 are determined by κ, and the message space M is {0, 1}�2. The
parameters are param = (κ,H1, H2, H3, �1, �2, �3).

KeyGen(): Given a security parameter κ, perform the following steps:
1. Choose two distinct Sophie Germain primes p′ and q′ of κ-bit.
2. Compute safe primes p = 2p′ + 1 and q = 2q′ + 1 (their primalities are

guaranteed since p′ and q′ are Sophie Germain primes).
3. Compute a safe-prime modulus N = pq.
4. Store sk = (p, q, p′, q′) as the long term secret key.
5. Choose a hash function H : {0, 1}∗ → ZN2 .

6. Pick a, b
$← [1, pp′qq′], store wsk = (a, b) as the “weak” secret key.

7. Randomly pick α ∈ Z
∗
N2 , set g0 = α2 mod N2, g1 = ga

0 mod N2, and
g2 = gb

0 mod N2; the public key is pk = (H(), N, g0, g1, g2).
Either secret key can be used to decrypt (any) ciphertexts, but both of them
are required to produce a re-encryption key. Note that in the following de-
scription, the elements from the key of user X contain an additional subscript
of X , e.g., pkX = (HX(·), NX , gX0, gX1 = gaX

X0, gX2).

ReKeyGen(skX , pkY ): On input a long term secret key (pX , qX , p′X , q′X), a weak
secret (aX , bX), and a public key pkY = (HY , NY , gY 0, gY 1, gY 2), it out-
puts the re-encryption key rkX→Y = (rk(1)

X→Y , rk
(2)
X→Y ), where rk

(1)
X→Y =

(Ȧ, Ḃ, Ċ), as follows:

1. Pick β̇
$← {0, 1}�1, compute rk

(2)
X→Y = aX − β̇ mod (pXqXp′Xq′X).

2. Pick σ̇
$← ZNY , compute rX→Y = HY (σ̇‖β̇).

3. Compute Ċ = H1(σ̇)⊕ β̇.
4. Compute Ȧ = (gY 0)rX→Y mod (NY )2.
5. Compute Ḃ = (gY 2)rX→Y · (1 + σ̇NY ) mod (NY )2.

Encrypt(pk = (H(), N, g0, g1, g2),m): To encrypt a message m ∈M:
1. Randomly pick σ ∈ ZN , compute r = H(σ‖m).
2. Compute C = H2(σ) ⊕m.
3. Compute A = (g0)r mod N2, B = (g1)r · (1 + σN) mod N2 and D =

(g2)r mod N2.
4. Run (c, s) ← SoK.Gen(A,D, g0, g2, (B,C)), where the underlying hash

function is H3.7

5. Output the ciphertext C = (A,B,C,D, c, s).

7 A signature of knowledge (c, s) of the discrete logarithm of both y0 = gx
0 w.r.t. base

g0 and y2 = gx
2 w.r.t. base g2, on a message (B, C) ∈ {0, 1}∗ can be computed by first

picking t ∈ {0, . . . , 2|N2|+k−1}, then computing c = H3(y0||y2||g0||g2||gt
0||ht

0||m) and
s = t − cx. This requires 2 exponentiations.
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ReEncrypt(rkX→Y ,CX , pkX , pkY ): On input a re-encryption key rkX→Y =
(rk(1)

X→Y , rk
(2)
X→Y ) and a ciphertext C = (A,B,C,D, c, s) under key pkX =

(HX , NX , gX0, gX1, gX2),
1. Check if c = H3(A‖D‖gX0‖gX2‖(gX0)sAc‖(gX2)sDc |(B‖C)). If not,

return ⊥.
2. Otherwise, compute A′ = Ark

(2)
X→Y .

3. Output CY = (A, A′ , B, C, rk
(1)
X→Y ) = (A,A′, B, C, Ȧ, Ḃ, Ċ).

The only “new” thing in CY is A′ = (gX0)r(aX−β̇) mod (NX)2 = (gX1)r

(gX0)−rβ̇ mod (NX)2. The second equality holds since gX1 = gaX

X0, by the
public key construction in KeyGen.

Decrypt(sk,C): On input a private key and a ciphertext C, parse C,
– If C is an original ciphertext in the form C = (A,B,C,D, c, s):

1. Return ⊥ if c �= H3(A‖D‖g0‖g2‖(g0)sAc‖(g2)sDc‖(B‖C)).
2. If sk is in the form of (a, b), compute σ = B/(Aa)−1 mod N2

N .

3. If sk = (p, q, p′, q′), compute σ = (B/g
w1
0 )2p′q′−1 mod N2

N · π mod N ,
where w1 is computed as that in [18], and π is the inverse of
2p′q′ mod N .

4. Compute m = C ⊕H2(σ).
5. If B = (g1)H(σ‖m) · (1 + σN) mod N2, return m; else return ⊥.

– If C = (A,A′, B, C, Ȧ, Ḃ, Ċ) re-encrypted from pkX to pkY :

1. If sk is in the form of (a, b), compute σ̇ = Ḃ/(Ȧb)−1 mod N2
Y

NY
.

2. If sk = (p, q, p′, q′), similar to decrypting an original ciphertext, com-

pute σ̇ = (Ḃ/g
w1
Y 0)2p′q′−1 mod N2

Y

NY
· π mod NY , .

3. Compute β̇ = Ċ ⊕H1(σ̇).
4. If Ḃ �= (gY 1)HY (σ̇‖β̇) · (1 + σ̇NY ) mod N2

Y , return ⊥.

5. Compute σ = (B/( A′ ·Aβ̇ )− 1 mod N2
X)/NX .

6. Compute m = C ⊕H2(σ).
7. Return m if B = (gX1)HX (σ‖m) · (1 + σNX) mod N2

X ; else ⊥.
The delegator’s public key (HX , NX , gX0, gX1, gX2) is required in the
last few steps. This deviates from our framework in Section 2.

3.2 Our Attack

Shao and Cao [11] claimed that their PRE scheme is CCA-secure. However, in
this section, we demonstrate that it is not the case.

Before describing our attack, we briefly explain how the re-encryption key is
generated in SC09. Their ReKeyGen algorithm follows the “token-controlled en-
cryption” paradigm, which is adopted by [13,14] and our scheme to be presented.
Specifically, ReKeyGen first selects a random token β̇ to “hide” (some form of)
the delegator’s secret key aX (i.e., rk

(2)
X→Y = aX − β̇), and then encrypts this
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token β̇ under the delegatee’s public key (i.e., rk
(1)
X→Y = (Ȧ, Ḃ, Ċ)). First, we

found that any re-encryption query (not necessary of the challenge ciphertext)
reveals partial information about β̇. Moreover, there is no validity check on the
A′ component of the transformed ciphertext. The combined effect leads us to
the following efficient attacker A, which aims to decrypt challenge ciphertext
C∗ = (A,B,C,D, c, s) encrypted for pk∗X = (HX(·), NX , gX0, gX1, gX2).

1. Randomly pick m ∈ M and r ∈ Z(NX)2 , compute C ← Encryptpk∗X (m; r),
i.e., using r as the randomness in the first step of Encrypt.
(Being a public key encryption, anyone can perform the encryption.)

2. Issue a re-encryption oracle query to re-encrypt the ciphertext C from pk∗

to pk, in particular, A obtains Z ′ = g
r(aX−β̇)
X0 as the second component of

the resulting transformed ciphertext C0. (Z ′ here corresponds to A′ in the
above description of SC09.)

3. Since Z ′ is in the form of (gX1)r (gX0)−rβ̇ mod (NX)2, A can compute

(gX0)−rβ̇ ← (Z ′/(gX1)r). (C is prepared by A, so A knows r.)
4. Issue a re-encryption oracle query to re-encrypt the ciphertext C∗ from pk∗

to pk, and obtain C1 = (A,A′, B, C, Ȧ, Ḃ, Ċ) as a result.
(The secret key of pk is not compromised by A, so this is legitimate.)

5. Pick s
$← Z(NX)2 , compute A′ ← A′ · (g−rβ̇

X0 )s and A← A · (gX0)rs.
6. Prepare C′ = (A,A′, B, C, Ȧ, Ḃ, Ċ) issue a decryption oracle query under pk

to decrypt C′, and the result is the message encrypted in C∗.

To see the correctness of the attack, first note that B,C, Ȧ, Ḃ, Ċ just come
from the derivative (pk,C1) of the challenge (pk∗,C∗), and they are the only
values from the ciphertext being used for the first three steps of Decrypt, so the

correct value of β̇ can be recovered. Moreover, in Decrypt (refer to A′ ·Aβ̇ ),

A′Aβ̇ = A′(gX0
−rβ̇)s(A ·gX0

rs)β̇ = A′ ·g−rβ̇s
X0 ·Aβ̇ ·grβ̇s

X0 = A′Aβ̇ , which is exactly
what Decrypt will compute for the challenge.

Finally, C′ is not a derivative of C∗. To check against the definition of deriva-
tive: 1) C∗ �= C′; 2) A has made two re-encryption queries, C has nothing to do
with the challenge C∗, only (pk,C1) is considered as a derivative of the challenge,
but (pk,C′), where C1 �= C′, is not its derivative; and 3) A has not made any
re-encryption key generation oracle query at all.

3.3 Flaws in the Proof and A Possible Fix

This attack originated from some flaws in their proof [11], specifically, two rejec-
tion rules regarding A in the decryption oracle simulation. There is no checking
of A when decrypting a transformed ciphertext in the real scheme, which makes
a noticeable difference to the adversary. The crux of our attack is the formula-
tion of a new A component. One possible fix is to re-compute A in Decrypt and
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check whether it is correctly generated, which requires one more exponentiation
in ZN2 .

4 Our Proposed Unidirectional PRE Scheme

4.1 Construction

Our proposed unidirectional PRE scheme extends the bidirectional scheme pro-
posed by Deng et al. [10], again by the “token-controlled encryption” technique.
As previously discussed in Section 3, however, this should be carefully done to
avoid possible attacks.

Setup(κ): Choose two primes p and q such that q|p − 1 and the bit-length
of q is the security parameter κ. Let g be a generator of group G,
which is a subgroup of Z∗

q with order q. Choose four hash functions
H1 : {0, 1}�0 × {0, 1}�1 → Z∗

q , H2 : G → {0, 1}�0+�1 , H3 : {0, 1}∗ → Z∗
q

and H4 : G → Z∗
q . The former three will be modeled as random oracles

in our security proof. Here �0 and �1 are security parameters deter-
mined by κ, and the message space M is {0, 1}�0. The parameters are
param = (q,G, g,H1, H2, H3, H4, �0, �1).

KeyGen(): Pick ski = (xi,1
$← Z

∗
q , xi,2

$← Z
∗
q) and set pki = (pki,1, pki,2) =

(gxi,1 , gxi,2).

ReKeyGen(ski, pkj): On input user i’s private key ski = (xi,1, xi,2) and user j’s
public key pkj = (pkj,1, pkj,2), this algorithm generates the re-encryption
key rki→j as below:

1. Pick h
$← {0, 1}�0 and π

$← {0, 1}�1, compute v = H1(h, π).
2. Compute V = pkv

j,2 and W = H2(gv)⊕ (h‖π).

3. Define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
. Return rki→j = (rk〈1〉i→j , V,W ).

Encrypt(pki = (pki,1, pki,2),m): To encrypt a plaintext m ∈M:

1. Pick u
$← Z

∗
q and compute D =

(
pk

H4(pki,2)
i,1 pki,2

)u

.

2. Pick ω
$← {0, 1}�1, compute r = H1(m,ω).

3. Compute E =
(
pk

H4(pki,2)
i,1 pki,2

)r

and F = H2(gr)⊕ (m‖ω).
4. Compute s = u + r ·H3(D,E, F ) mod q.
5. Output the ciphertext C = (D,E, F, s).

ReEncrypt(rki→j ,Ci, pki, pkj): On input a re-encryption (user i to user j) key

rki→j = (rk〈1〉i→j , V,W ), an original ciphertext Ci = (D,E, F, s) under public
key pki = (pki,1, pki,2), this algorithm re-encrypts Ci into another one under
public key pkj = (pkj,1, pkj,2) as follows:
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1. If
(
pk

H4(pki,2)
i,1 pki,2

)s

= D ·EH3(D,E,F ) does not hold, return ⊥.

2. Otherwise, compute E′ = Erk
〈1〉
i→j , and output (E′, F, V,W ).

Let r = H1(m,ω), v = H1(h, π), the transformed ciphertext is of the follow-
ing forms:

Cj = (E′, F, V,W ) =
(
gr·h, H2(gr)⊕ (m‖ω), pkv

j,2, H2(gv)⊕ (h‖π)
)
.

Encrypt1(pki = (pki,1, pki,2),m): To create a nontransformable ciphertext under
public key pki of a message m ∈ M:
1. Pick h

$← {0, 1}�0 and π
$← {0, 1}�1, compute v = H1(h, π).

2. Compute V = pkv
j,2 and W = H2(gv)⊕ (h‖π).

3. Pick ω
$← {0, 1}�1, compute r = H1(m,ω).

4. Output the ciphertext C = (E′, F, V,W ).

Decrypt(ski,Ci): On input a private key ski = (xi,1, xi,2) and ciphertext Ci,
parse Ci, then work according to two cases:
– C is an original ciphertext in the form C = (D,E, F, s):

1. If
(
pk

H4(pki,2)
i,1 pki,2

)s

= D · EH3(D,E,F ) does not hold, return ⊥.

2. Otherwise, compute (m‖ω) = F ⊕H2(E
1

xi,1H4(pki,2)+xi,2 ).

3. Return m if E =
(
pk

H4(pki,2)
i,1 pki,2

)H1(m,ω)
holds; else return ⊥.

– C is a transformed ciphertext in the form C = (E′, F, V,W ):
1. Compute (h‖π) = W ⊕H2(V 1/ski,2) and (m‖ω) = F ⊕H2(E′1/h).
2. Return m if V = pk

H1(h,π)
i,2 and E′ = gH1(m,ω)·h hold; else ⊥.

4.2 Security Analysis

The intuition of CCA security can be seen from the below properties.

1. The validity of the original ciphertexts can be publicly verifiable by everyone
including the proxy; otherwise, it will suffer from an attack as illustrated
in [10]. For our scheme, the ciphertext component (D, s) in the original
ciphertext (D,E, F, s) can be viewed as a signature signing the “message”
(E,F ), that is how we get pubic verifiability.

2. The original ciphertexts should be CCA-secure. The original ciphertext pro-
duced by our scheme is indeed a “hashed” CCA-secure ElGamal encryption
tightly integrated with a Schnorr signature.

3. The transformed ciphertexts should be CCA-secure In our scheme, a trans-
formed ciphertext can be viewed as two seamlessly integrated “hashed”
CCA-secure ElGamal encryptions.

We make four observations on the re-encryption key computation.

1. It takes the input of ski, but not skj , so our scheme is unidirectional.
2. Even though h can be recovered by anyone who owns skj , rk

〈1〉
i→j only gives

information about xi,1H4(pki,2) + xi,2 (no matter whom the delegatee j is),
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but not the concrete value of xi,1 or xi,2. This gives an intuition why our
scheme achieves delegator secret security.

3. A collusion of the delegatee and the proxy cannot recover xi,1, which is
needed to decrypt original ciphertexts.

4. If the delegatee j is now a delegator to someone else (say k). Again, only
xj,1H4(pkj,2) + xj,2 is known to a collusion of the delegatee k and a proxy,
which is not useful in recovering the token h in rki→j , hence the chain
collusion attack suffered by [13,14] does not apply.

Theorem 1. Our scheme is IND-PRE-CCA secure in the random oracle model,
if the CDH assumption holds in group G and the Schnorr signature [17] is exis-
tentially unforgeable against chosen message attack.

The detailed proof can be found in the full version of this paper [19]. The proof
first uses Coron’s technique [20] to implant our hard problem to many uncor-
rupted public keys. At the same time, for those uncorrupted public keys which
is generated as usual (without the problem embedded), re-encryption key can
still be generated with non-negligible probability.

To prove the original ciphertext security is relatively simple. For transformed
ciphertext, an implicitly defined random h value which is unknown to the sim-
ulator may be used in the re-encryption key returned as the response to the
oracles query. To answer decryption oracle queries, the simulator can extract
the random h value used from the random oracle and unwrap the given cipher-
text. For the challenge ciphertext generation, our definition of security rules out
the case that both the delegator and the proxy are compromised, so any partial
information regarding the value of h used in the re-encryption key would not
affect the (different) h value associated with the challenge ciphertext.

For nontransformable ciphertext security, the situation is much simpler. The
h value used in the challenge ciphertext is essentially a one-time pad, and the
reduction boils down to the underlying hashed ElGamal encryption, so the sim-
ulator can compute all the re-encryption keys.

4.3 Efficiency Comparisons

In Table 2, we compare our scheme with SC09 [11] with our suggested fix. We use
texp to denote the computational cost of an exponentiation. In our calculation,
a multi-exponentiation (m-exp) (which we assume it multiplies only up to 3 ex-
ponentiations in one shot) is considered as 1.5texp. Encrypt of LV08 , ReEncrypt
and Decrypt(C) of SC09 used 1, 2 and 2 m-exp respectively. In our scheme, we
assume pk

H4(pki,2)
i,1 pki,2 is pre-computed. Even not, it only adds at most 1texp in

Encrypt, ReEncrypt and Decrypt(C) using m-exp, since there are other exponen-
tiations to be done. The comparison indicates that our scheme beats SC09 in all
aspects.
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Table 2. Comparisons of Unidirectional Proxy Re-Encryption Schemes.
C denotes an original ciphertext and C′ denotes a transformed ciphertext, |C| and |C′|
are their size. NX (NY ) is the safe-prime modulus used by the delegator (delegatee).

Schemes SC09 [11] Our Scheme
Encrypt 5texp (in ZN2) 3texp (in G)
ReEncrypt 4texp (in ZN2) 2.5texp (in G)
Decrypt(C) 5texp (in ZN2) 3.5texp (in G)
Decrypt(C′) 5texp (in ZN2) 4texp (in G)
|C| 2k + 3|(NX )2| + |m| 3|G|+|Zq |
|C′| �1 + 3|(NX )2| + 2|(NY )2| + |m| 2|G| + 2|Zq |
Security Not Collusion-Resistant CCA-Secure
Assumption DDH over ZN2 CDH over G

RO-Free × ×
Nature of Decryption of C′ requires No delegator
Decrypt pkX of the delegator public key is required

5 Conclusions

Most existing unidirectional proxy re-encryption (PRE) schemes rely on pairing
except a recently proposed scheme by Shao and Cao [11]. However, we showed
that their CCA-security proof in the random oracle model is flawed, and pre-
sented a concrete attack. Possible fixes of their scheme further degrades either the
decryption efficiency or the transformed ciphertext length. We then presented a
natural construction of CCA-secure unidirectional PRE scheme without pairings
that is very efficient.

Our scheme is single-hop and relies on the random oracle. It would be inter-
esting to construct a multi-hop scheme in the standard model. It seems to be
possible to use the token-controlled encryption approach to build a multi-hop
scheme; however, the design may be inelegant and the efficiency may not be ideal.
We remark that our scheme is proven under a relaxed security definition. We left
it as an open problem to devise a pairing-free CCA-secure scheme without this
relaxation. Another interesting problem, which possibly requires a different set
of techniques, is to construct other schemes in proxy re-cryptography, such as
conditional PRE schemes [21] and proxy re-signatures [22,23], without pairings.
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2 Université catholique de Louvain, Crypto Group, Belgium
3 TU Darmstadt & CASED, Germany
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Abstract. Public-key encryption schemes with non-interactive open-
ing (PKENO) allow a receiver to non-interactively convince third par-
ties that a ciphertext decrypts to a given plaintext or, alternatively,
that such a ciphertext is invalid. Two practical generic constructions for
PKENO have been proposed so far, starting from either identity-based
encryption or public-key encryption with witness-recovering decryption
(PKEWR). We show that the known transformation from PKEWR to
PKENO fails to provide chosen-ciphertext security; only the transforma-
tion from identity-based encryption remains thus valid. Next, we prove
that PKENO can alternatively be built out of robust non-interactive
threshold public-key cryptosystems, a primitive that differs from identity-
based encryption. Using the new transformation, we construct two effi-
cient PKENO schemes: one based on the Decisional Diffie-Hellman as-
sumption (in the Random-Oracle Model) and one based on the Decisional
Linear assumption (in the standard model). Last but not least, we pro-
pose new applications of PKENO in protocol design. Motivated by these
applications, we reconsider proof soundness for PKENO and put for-
ward new definitions that are stronger than those considered so far. We
give a taxonomy of all definitions and demonstrate them to be satisfiable.

Keywords: public-key encryption, non-interactive proofs, security defi-
nitions, constructions.

1 Introduction

Public-key encryption allows a receiver Bob to generate a pair of a private
and a public key (skB, pkB) such that anyone can encrypt messages under pkB

which can only be decrypted by Bob who knows skB. The primitive public-
key encryption with non-interactive opening (PKENO), introduced by Damg̊ard
et al. [DHKT08], allows Bob to prove to a verifier Alice that a given ciphertext
C decrypts to a certain message. By using PKENO, Bob can do so convincingly
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and without further interaction, neither with Alice nor with the original sender
of the ciphertext. More precisely, Bob runs a proving algorithm Prove on inputs
his secret key skB and the intended ciphertext C, thereby generating a proof π.
On the other hand, Alice runs a verification algorithm Ver on inputs Bob’s public
key pkB , ciphertext C, a plaintext m, and an opening proof π. The soundness
property guarantees that the verification algorithm outputs 1 if C was indeed an
encryption of m, and 0 otherwise. An interesting feature of PKENO is that Bob
can also convince Alice of the fact that a given ciphertext C is invalid, i.e., it is
rejected by the decryption algorithm. PKENO turns out to be a useful primitive
for protocol design. In addition to the use of PKENO in multiparty computation
protocols, as highlighted in [DT07, DHKT08], we identify further applications,
which we introduce below.

Secure Message Transmission with PKENO. One of the classical ways to
realize secure message transmission in a public-key setting is to let the sender
encrypt the message and then sign the ciphertext, i.e., the so-called encrypt-
then-sign paradigm [ADR02] in which the transmitted ciphertext also includes
a signature Sign(sks,Enc(pkr, pks||m)||pkr), with sks being the signing key of the
sender and pkr the encryption key of the receiver. If the sender uses a standard
PKE scheme, the receiver is in general not able to provide a non-repudiable
proof for the origin of the received message m. To do so, the receiver should
convincingly open the encryption Enc(pkr, pks||m), which he cannot do, unless he
is willing to expose his decryption key skr. Replacing PKE with PKENO allows
the receiver to prove the origin for the decrypted message, and thus authenticated
encryption with non-repudiation is achieved.

Group Signatures. The most common way to achieve anonymity in group sig-
natures [CvH91] is the following: a group member first encrypts his membership
certificate under the opener’s public key while adding a non-interactive proof of
validity of the encrypted data. The opening authority is then able to identify
the signer by merely decrypting the ciphertext.

In the model of dynamic group signatures given by Bellare et al. [BSZ05], the
opening authority is required to give a proof that it traced the correct user. Us-
ing PKENO rather than plain encryption enables the opener to do so in a simple
manner. In the game modeling the anonymity of signatures in [BSZ05], an adver-
sary is given an opening oracle that opens adversarially-chosen signatures and
outputs proofs of correct opening. The security of the employed PKENO scheme
(together with simulation-sound zero knowledge of the proof of well-formedness)
ensures that an adversary cannot distinguish signatures from distinct users.

1.1 Our Contributions

Difficulty of Building PKENO. Damg̊ard et al. [DHKT08] showed that a
PKENO can be built out of Identity-Based Encryption (IBE). Although IBE can
now be realized under a variety of assumptions and without bilinear maps (see
[BGH07, GPV08, AB09, CHK09, Pei09] for instance), it remains a very special-
ized and powerful cryptographic primitive. Towards narrowing the gap between



PKENO: New Constructions and Stronger Definitions 335

sufficient and necessary conditions for PKENO, it is interesting to see whether it
can be obtained without resorting to all the functionalities provided by IBE (e.g.
non-interactive user key derivation). In [DHKT08], the authors mentioned that
PKENO can also be based upon a seemingly weaker primitive, called public-key
encryption with witness-recovering decryption (PKEWR) [PW08]. In a PKEWR
scheme, the receiver Bob is able to recover the random coins r used to encrypt
a ciphertext C. Damg̊ard et al. proposed to use the coins r as the proof, and
verification proceeds by re-encrypting C′ = Enc(pkB ,m; r) and checking whether
C = C′. However, this approach can only be guaranteed to be sound for valid
ciphertexts, i.e., ciphertexts that have been output by the encryption algorithm.
As a consequence, for invalid ciphertexts “the coins used to construct C” might
not be well defined. Indeed, we show in Section 4.1 how the (apparently) straight-
forward construction of PKENO out of PKEWR fails to provide security in the
sense of [DHKT08]. This then motivates the quest for both new generic and
concrete constructions for PKENO.

Non-Interactive Threshold Cryptosystems Imply PKENO. Somewhat
surprisingly, we show that starting from a robust non-interactive threshold cryp-
tosystem (TPKC), we can construct a PKENO scheme in a generic way. We only
ask the threshold cryptosystem to satisfy some appropriate notion of decryption
consistency. We emphasize that, although this notion is stronger than the one
initially formalized by Shoup and Gennaro [SG98], it remains fairly mild in that
most known robust threshold cryptosystems satisfy it.

Threshold cryptosystems distribute the ability to decrypt among several par-
ties. The private decryption key is shared among n servers such that at least
t servers are needed for decryption. If the combiner wishes to decrypt some
ciphertext C, it sends C to the decryption servers. After receiving at least t
partial decryption shares from the servers, the combiner is able to reconstruct
the plaintext from these shares. A robust TPKC [SG98, BBH06] provides the
additional property that, whenever the decryption of valid ciphertexts fails, the
combiner can sieve out bad decryption shares and reveal the identity of the server
having sent an invalid partial decryption. We show an efficient transformation
from robust TPKC to PKENO. When applied to the schemes in [SG98, AT09],
the conversion provides new practical PKENO schemes based on the Decisional
Diffie-Hellman (in the random oracle model) and the Decisional Linear assump-
tions, respectively.

Stronger Soundness Definitions. The main motivation for introducing
PKENO was protocol design: some player sends a message to Bob securely by
encrypting it under Bob’s public key. If Bob finds out (possibly later) that the
message is somehow “invalid”, he can convince other participants of this fact
without getting back to the (possibly) dishonest sender. Proof soundness ensures
that Bob can do so convincingly; in particular, it states that if a ciphertext C
encrypts a message m, then Bob cannot make a proof for C being an encryption
of a different message m′ (including the case of invalid messages m′ = ⊥). In the
game that formally defines this security notion [DHKT08, Gal09], the challenger
produces a private/public key pair, hands it to the adversary, who outputs a
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message of which he receives an encryption C. The adversary wins if he outputs
a different message and makes a valid proof that this was the opening.

Thus, previous definitions of proof soundness [DHKT08, Gal09] only consid-
ered the case of honestly chosen keys, where a malicious receiver tries to claim
a different decryption result under the genuine keys. In real-world applications,
however, the keys are usually chosen by the users themselves. It seems thus nat-
ural to let the adversary choose the keys in the security experiment to reflect this
fact. Hence, we define two stronger flavors of proof soundness, where the first one
is analogous to the original definition given by [DHKT08], but lets the adversary
choose his keys. The second one is akin to the binding property of commitment
schemes and states that no adversary can find a public key, a ciphertext with
two messages and valid proofs for each of them. We relate all notions formally.

Note that strengthening proof soundness also makes sense for the other ap-
plications given above. It can be used towards reducing the need for trusted
setup in group signatures: the opener could choose his opening key and add cor-
responding information to the public parameters. Strong proof soundness then
guarantees non-frameability even in this setting.

A Note on PKENO From General Assumptions. In [DHKT08], Damg̊ard
et al. already discussed how to construct PKENO from general assumptions using
general but rather inefficient non-interactive zero-knowledge (NIZK) proofs. The
idea of the construction is as follows. The receiver commits initially to its secret
key. Whenever the proof algorithm is executed, it outputs a non-interactive zero-
knowledge proof showing that the secret key committed to corresponds to the
public key, and that decryption of the ciphertext C indeed yields the message m.
Although this construction satisfies the security definitions of [DHKT08], it does
not seem to be sufficient for our stronger soundness definitions. In particular,
this construction does not make any statements about “invalid” ciphertexts.

Nonetheless, we briefly discuss here how to modify the idea in order to satisfy
our stronger definitions, obtaining a scheme under general assumptions meet-
ing our security notions. In our modification, the encryption algorithm adds
a NIZK proof showing the well-formedness of the ciphertext (somehow in the
fashion of [NY90, Sah99]) under the public-key, allowing anyone to detect in-
valid ciphertexts. The prove algorithm then rejects any ciphertext whose NIZK
proof is invalid. If, on the other hand, the NIZK proof in the ciphertext is valid,
then the prove algorithm proceeds as before, computing a second NIZK proof
as described by Damg̊ard et al. We note that, in the scheme by [DHKT08] with
weak soundness, the common reference string (CRS) for the NIZK proofs can
be put into the honestly chosen public key. In contrast, for stronger soundness
with adversarially chosen keys (as in our case), we need to assume that the CRS
is a public parameter (common reference string model).

Future Work. We leave as an open problem the construction of an efficient
PKENO scheme based on a standard assumption like the Decision Diffie-Hellman
assumption in the standard model.
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2 Preliminaries

Notation. If x is a string then |x| denotes its length, while if S is a set then |S|
denotes its size. If k is a natural number, then 1k denotes the string of k ones. If
S is a set then s1, . . . , sn

$← S denotes the operation of picking n elements si of
S independently and uniformly at random. We write A(x, y, . . .) to indicate that
A is an algorithm with inputs x, y, . . . and by z ← A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output. The
abbreviation PPT refers to “probabilistic polynomial-time” algorithms [Gol01].

2.1 Public Key Encryption with Non-interactive Opening

A PKENO scheme PKENO = (Gen,Enc,Dec,Prove,Ver) is a tuple of five PPT
algorithms:

– Gen is a randomized algorithm taking as input a security parameter 1k and
returns a key pair (pk, sk), where the public key pk includes a description of
the message space Mpk.

– Enc is a probabilistic algorithm taking as inputs a public key pk and a message
m ∈Mpk. It returns a ciphertext C.

– Dec is a deterministic algorithm that takes as inputs a ciphertext C and a
secret key sk. It returns a message m ∈ Mpk or the special symbol⊥meaning
that C is invalid.

– Prove is a probabilistic algorithm taking as inputs a ciphertext C and a secret
key sk. It returns a proof π.

– Ver is a deterministic algorithm taking as inputs a public key pk, a ciphertext
C, a plaintext m and a proof π. It returns a result res ∈ {0, 1} meaning
accepted and rejected proof, respectively. In particular, Ver(pk, C,⊥, π) = 1
must be interpreted as the verifier being convinced that C is an invalid
ciphertext.

Correctness requires that for an honestly generated key pair (pk, sk) ← Gen(1k),
it holds that:

– For all messages m ∈ Mpk we have Pr
[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1.

– For all ciphertexts C, Pr
[
Ver

(
pk, C,Dec(sk, C),Prove(sk, C)

)
= 1

]
= 1.

Security of PKENO is defined by indistinguishability under chosen-ciphertext
and prove attacks (IND-CCPA) and proof soundness [DHKT08, Gal09]. We for-
mally define both notions and propose strengthened definitions for proof sound-
ness in Section 3.

Definition 1 (IND-CCPA security). Let us consider the following game be-
tween a challenger and an adversary A:

Setup: The challenger runs Gen(1k) and gives pk to A.
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Phase 1: The adversary issues queries of the form:

a) decryption query to an oracle Dec(sk, ·);
b) proof query to an oracle Prove(sk, ·).
These may be asked adaptively in that they may depend on the answers to
previous queries.

Challenge: At some point, A outputs two equal-length messages m0,m1 ∈
Mpk. The challenger chooses a random bit β and returns C� ← Enc(pk,mβ).

Phase 2: As Phase 1, except that neither decryption nor proof queries on C�

are allowed.
Guess: The adversary A outputs a guess β′ ∈ {0, 1}. The adversary wins the

game if β = β′.

Define A’s advantage as Advind-ccpa
PKENO,A(1k) :=

∣∣ Pr[β′ = β]− 1
2

∣∣. A scheme PKENO
is called indistinguishable against chosen-ciphertext and prove attacks (IND-
CCPA secure) if for every PPT adversary A, Advind-ccpa

PKENO,A(·) is negligible.

We recall the original definition [DHKT08, Gal09] of proof soundness under
genuine keys:

Definition 2 (Proof Soundness). Consider the following game between a
challenger and an adversary A:

Stage 0: The challenger runs Gen(1k) and gives the output (pk, sk) to A.
Stage 1: The adversary chooses a message m ∈Mpk.
Stage 2: The challenger computes C ← Enc(pk,m) and gives it to A which

returns (m′, π′).

A’s advantage is defined as the probability

Advproof-snd
PKENO,A(1k) := Pr [Ver(pk, C,m′, π′) = 1 ∧ m′ �= m] .

A scheme PKENO is proof sound if for every PPT adversary A its advantage is
negligible.

In the above definition it is understood that ⊥ �∈ Mpk and that the adversary
thus also wins if π′ is a valid proof for m′ = ⊥. It is also worth insisting that, since
the adversary obtains the private key at the beginning of the game, decryption
or prove oracles would be redundant.

2.2 Robust Non-interactive Threshold Public-Key Cryptosystems

Non-interactive threshold public-key cryptosystems, as formalized in [SG98], dis-
tribute the ability to decrypt among several parties. The private decryption key
is shared among n servers such that at least t servers are needed for decryption. If
the combiner wishes to decrypt some ciphertext C, it sends C to the decryption
servers. After receiving at least t partial decryption shares from the servers, the
combiner is able to reconstruct the plaintext from these shares. A robust TPKC
[SG98, BBH06] provides the additional property that whenever the decryption
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of valid ciphertexts fails, the combiner can sieve out bad decryption shares and
reveal the identity of the server having sent an invalid partial decryption.
Syntax. We use the same syntax as Boneh-Boyen-Halevi [BBH06] and Shoup-
Gennaro [SG98] for (robust) non-interactive threshold public-key cryptostyems
(TPKC). Formally, a robust TPKC scheme

TPKC = (Setup,Encrypt, ShareDecrypt, ShareVerify,Combine)

consists of the following algorithms:

Setup(n, t, 1k) takes as input a security parameter 1k and integers t, n ∈ N

(with 1 ≤ t ≤ n) denoting the number of decryption servers n and the
decryption threshold t. It outputs a triple (PK,VK,SK), where PK is the
public key, SK = (SK1, . . . ,SKn) is a vector of n private-key shares and
VK = (VK1, . . . ,VKn) is the corresponding vector of verification keys. De-
cryption server i is given the share (i, SKi) that allows to derive decryption
shares for any ciphertext. For each i ∈ {1, . . . , n}, the verification key VKi

is used to check the validity of decryption shares generated using SKi.
Encrypt(PK,M) is a randomized algorithm that given a public key PK and a

plaintext M outputs a ciphertext C.
ShareDecrypt(PK, i, SKi, C) on input of a public key PK, a ciphertext C and

a private-key share (i, SKi), this (possibly randomized) algorithm outputs
either a decryption share μi = (i, μ̂i), or a special symbol (i,⊥).

ShareVerify(PK,VKi, C, μi) takes as input PK, the verification key VKi, a ci-
phertext C and a purported decryption share μi = (i, μ̂i). It outputs either
valid or invalid. In the former case, μi is said to be a valid decryption
share.

Combine(PK,VK, C, {μ1, . . . , μt}) given PK, VK, C and a set of t decryption
shares {μ1, . . . , μt}, this algorithm outputs either a plaintext M or ⊥ if the
set contains invalid decryption shares.

It is required that the consistency of PK with VK be publicly checkable. Namely,
for any t-subset V of VK, there must be an efficient algorithm1, which we call
CheckKeys in the upcoming sections, allowing to make sure that V is a valid set
of verification keys w.r.t. PK.

Correctness. For any (PK,VK,SK) generated by Setup(n, t, 1k), it is required
that

1. For any ciphertext C, if μi = ShareDecrypt(PK, i, SKi, C), where SKi is the
ith private-key share in SK, then ShareVerify(PK,VKi, C, μi) = valid. We
emphasize that this must hold even in the event that μi = (i,⊥) (i.e., if C
is deemed invalid).

2. If C is the output of Encrypt(PK,M) and S = {μ1, . . . , μt} is a set of decryp-
tion shares such that μi = ShareDecrypt(PK, i, SKi, C) for t distinct private-
key shares in SK, then Combine(PK,VK, C, S) = M .

1 Although such an algorithm is not formally required in [SG98, BBH06], it implicitly
exists in all known robust TPKC and it is convenient to be considered here.



340 D. Galindo et al.

The security of robust TPKC is defined via two properties. The first one is
the usual notion of chosen-ciphertext security for public key encryption adapted
to the TPKC setting, while the other one is termed consistency of decryptions.
For the formal security definitions we refer to [SG98].

3 Stronger Proof Soundness Definitions

We define our stronger version of proof soundness with adversarially chosen keys,
as well as a notion similar to the binding property of commitments. Jumping
ahead, we note that both strengthenings imply the original soundness definition
but are themselves incomparable. The application usually determines which ver-
sion should be considered. Arguably, they are both somewhat more realistic to
use than Definition 2 in certain applications such as multiparty protocols, where
parties might be able to cheat by maliciously generating their public key.

Definition 3 (Strong Proof Soundness). Consider the following game be-
tween a challenger and an adversary A:

Stage 1: A(1k) outputs a public key pk and a message m ∈Mpk.
Stage 2: The challenger computes C ← Enc(pk,m) and gives it to A, which

returns (m′, π′).

A’s advantage is defined as the probability

Advs-proof-snd
PKENO,A (1k) := Pr [Ver(pk, C,m′, π′) = 1 ∧ m′ �= m] .

A PKENO scheme is strongly proof sound if any PPT adversary A has negligible
advantage.

An alternative strong notion of soundness (with adversarially chosen keys) fol-
lows the idea that, for any ciphertext, one can only find one valid message-proof
pair. We call this the committing property:

Definition 4 (Committing Property). A PKENO scheme is strongly com-
mitting if for any PPT adversary A that outputs (pk, C,m, π,m′, π′) on input
1k the following probability is negligible:

Advs-com
PKENO,A(1k) := Pr [Ver(pk, C,m, π) = 1 = Ver(pk, C,m′, π′) ∧ m �= m′] .

The following shows that Definitions 3 and 4 are actually achievable—by a prac-
tical scheme.

Theorem 1. Galindo’s PKENO scheme [Gal09] is strongly proof sound and
strongly committing.

The proof is deferred to the full version, where we compare the different notions
of proof of soundness, showing that Definitions 3 and 4 are incomparable while
both are strictly stronger than the original notion of proof soundness (Def. 2).
Comparing the new notions in the “Knowledge of Secret Key” (KOSK) model,
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where the adversary has to prove knowledge of the secret key, we further prove
that the committing property is strictly stronger than strong soundness. We note
that all our proofs preserve IND-CCPA security. As for the separation we further
show that if there exists a proof-sound scheme which is also IND-CCPA, then
there exists an IND-CCPA scheme which is not strongly committing (strongly
proof sound, resp.) but still proof sound. It is also easy to see that the case
of adversarially chosen keys is strictly stronger, independently of the question
whether the PKENO scheme is IND-CCPA secure or not. These results are
formally stated and proven in the full version.

4 On Generic Constructions for PKENO

In this section, we first show that an apparently straightforward PKENO con-
struction (briefly) suggested in [DHKT08] fails to provide chosen-ciphertext se-
curity (as defined in that work). Next, we propose a simple and efficient trans-
formation from robust TPKE to PKENO. Finally, we describe two concrete
PKENO schemes obtained from this transformation. The first relies on the De-
cisional Diffie-Hellman assumption and the Random-Oracle Model, while the
second relies on the Decisional Linear assumption and is proven secure in the
standard model.

4.1 Witness-Recovering Encryption Does Not Suffice

In a PKEWR scheme, decryption recovers the random coins r used to encrypt a
ciphertext C. Damg̊ard et al. [DHKT08] proposed to use r as the opening proof
for a PKENO scheme. Verification then proceeds by re-encrypting the plaintext
m as C′ = Enc(pkB ,m; r), checking whether C = C′, and accepting/rejecting
the proof accordingly. A subtle issue arises when dealing with invalid ciphertexts
C, as in this case the random coins might simply not exist, for instance if C is
not in the range of the encryption algorithm. This could be exploited by an
adversary to abuse the security of the resulting PKENO system. We illustrate
this by sketching an IND-CCPA attack against the candidate PKENO scheme
one would obtain from the IND-CCA secure encryption scheme2 of Peikert and
Waters [PW08].

Let F (·), G(·, ·) be trapdoor functions that can be inverted knowing the cor-
responding secret keys skF , skG; let h be a pairwise independent hash function,
and let (G,S,V) be a strongly unforgeable one-time signature scheme [Mer89].
Then, the challenge ciphertext of plaintext mβ in [PW08] is constructed as
follows: choose a one-time key pair (SSK�, SVK�) ← G(1k), choose x� uni-
formly at random from a certain set of strings, and compute C�

0 = F (x�),
C�

1 = G(SVK�, x�), C�
2 = h(x�) ⊕ mβ , σ� = S (SSK�, (C�

0 , C
�
1 , C

�
2 )). The ci-

phertext is then C� = (SVK�, C�
0 , C

�
1 , C

�
2 , σ

�).

2 In this scheme, not all the sender’s coins are retrieved upon decryption since the
private key of the one-time signature is not recovered. However, these unrecovered
coins have no impact in our setting.
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We show how an IND-CCPA attacker can abuse the prove oracle in the IND-
CCPA game to mount a successful distinguishing attack.

Given the challenge C�, the adversary chooses (SSK, SVK)← G(1k) and sub-
mits C :=

(
SVK, C�

0 , C
�
1 , C

�
2 ,S(SSK, (C�

0 , C
�
1 , C

�
2 ))

)
to the prove oracle. C is in-

valid since SVK used in C is different from SVK� embedded in C�
1 ; but what could

be a proof for this? In [PW08] one can decrypt by either inverting C�
0 = F (x�)

or C�
1 = G(SVK�, x�). Inverting F (x�) and giving x� out to the adversary would

result in trivially recovering mβ ; we are thus left with inverting G(SVK�, x�).
Inversion of G is done using both the secret key skG and the ‘tag’ SVK. This
will result in a pre-image x �= x�, and the question is whether the targeted x�

can be recovered from x and the publicly available information. Alas, this prop-
erty is not covered in the model by [PW08]. Indeed, for certain lossy-trapdoor
functions G(·, ·) the knowledge of such a pre-image x allows recovering x�. For
instance, for the functions by Rosen and Segev [RS08], x = (SVK − SVK�) · x�

with SVK, SVK�, x, x� being integers in a ring, and therefore x� can be trivially
recovered. This results in a successful IND-CCPA attack.

One could wonder whether PKEWR schemes in the Random-Oracle Model
could be of any help here. It is rather straightforward to prove that the PKENO
obtained by using the randomness as a proof in the Fujisaki and Okamoto [FO99]
encryption scheme suffers from a similar attack. Finding a practical generic con-
struction for PKENO from a primitive weaker than identity-based encryption
represents therefore an open problem.

4.2 Stronger Decryption-Consistency Definitions for TPKC

In our generic construction, we need somewhat stronger flavors of decryption
consistency. In the first one, we require the adversary’s advantage to remain
negligible in an enhanced game where the challenger reveals PK and all decryp-
tion shares SK1, . . . ,SKn in the setup phase.

Definition 5 (Decryption Consistency with Known Secret Keys). Let
us consider the following game between a challenger and an adversary A:

Setup: The challenger runs Setup(n, t, 1k) to obtain a triple (PK,VK,SK),
where SK = (SK1, . . . ,SKn), and sends (PK,VK,SK) to the adversary A.

Output: A generates a ciphertext C and two unequal sets S = {μ1, . . . , μt} and
S′ = {μ′

1, . . . , μ
′
t} of decryption shares.

Define A’s advantage Advs-dec-con
TPKC,A (1k) as the probability that the following con-

ditions hold:

1. All decryption shares in S and S′ are valid decryption shares w.r.t. the ver-
ification key VK and the ciphertext C.

2. S and S′ each contain decryption shares from t distinct servers.
3. Combine(PK,VK, C, S) �= Combine(PK,VK, C, S′).

A robust TPKC is decryption consistent with known secret keys if, for every
PPT adversary A, the advantage Advs-dec-con

TPKC,A (1k) is negligible.
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We further strengthen the definition and let the adversary choose the keys on
her own.

Definition 6 (Strong Decryption Consistency). A robust TPKC is strongly
decryption consistent if for every PPT adversary A the advantage in a game that
is similar to the one above is negligible, when A is allowed to generate consistent
encryption/verification keys (PK,VK) on her own without having to publish the
vector of decryption shares SK.

4.3 Robust TPKC Implies PKENO

Let TPKC = (Setup,Encrypt, ShareDecrypt, ShareVerify,Combine) be a robust
threshold cryptosystem providing chosen-ciphertext security and strong decryp-
tion consistency. We turn it into a secure PKENO scheme as follows. We can
essentially restrict ourselves to the case of a single-user threshold scheme, t =
n = 1, but nonetheless state the transformation for general parameters. We
use the threshold cryptosystem in a straightforward way to encrypt messages.
To decrypt ciphertexts in our derived PKENO scheme, we first generate the
decryption shares locally and then run the combiner to recover the message.
The decryption shares also act as a soundness proof and the share verification
determines the proof verification for PKENO. Chosen-ciphertext security of the
threshold cryptosystem guarantees IND-CCPA security of the resulting PKENO
scheme—using the fact that in the attack on the threshold cryptosystem the ad-
versary can request to see decryption shares, which translates to access to a
Prove oracle in the IND-CCPA game. Additionally, decryption consistency of
the underlying threshold scheme provides soundness of the PKENO.

– Gen(1k) Choose arbitrary integers t, n ∈ N such that 1 ≤ t ≤ n and run
Setup(n, t, 1k) to obtain

(
PK,VK = (VK1, . . . ,VKn),SK = (SK1, . . . ,SKn)

)
.

The key pair (pk, sk) for PKENO is defined as pk = (PK,VK, n, t), sk =
SK = (SK1, . . . ,SKn). The plaintext (resp. ciphertext) space of PKENO is
the plaintext (resp. ciphertext) space of TPKC.

– Enc(pk,M) To encrypt M , parse pk as pk = (PK,VK, n, t) and compute
C = Encrypt(PK,M).

– Dec(sk, C) To decrypt C, conduct the following steps:

1. For i = 1, . . . , t, compute μi = ShareDecrypt(PK, i, SKi, C).
2. If there exists j ∈ {1, . . . , t} such that μj = (j,⊥) return ⊥.
3. Otherwise return M = Combine(PK,VK, C, S), where S = {μ1, . . . , μt}

is a set of valid shares.

– Prove(sk, C) A proof for the ciphertext C is computed by parsing sk as
(SK1, . . . ,SKn) and doing the following:

1. For i = 1, . . . , t, compute μi = ShareDecrypt(PK, i, SKi, C).
2. Return the set of decryption shares π = {μ1, . . . , μt}.
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– Ver(pk, C,M, π) parse pk as (PK,VK, n, t) and π as a set of shares {μ1, . . . , μt}.
1. Return 0 if π contains less than t shares or if (VK1, . . . ,VKt) is inconsis-

tent with PK (namely, if CheckKeys(PK, (VK1, . . . ,VKt)) = 0).
2. If there exists j ∈ {1, . . . , t} s.t. ShareVerify(PK,VKj , C, μj) = invalid,

return 0. Otherwise return 1 if M = Combine(PK,VK, {μ1, . . . , μt}) and
0 otherwise.

Theorem 2. Robust TPKC satisfying decryption consistency with known secret
keys (resp. strong decryption consistency) implies PKENO with proof soundness
(resp. strongly committing).

The statement of the above theorem is implied by the following lemmas:

Lemma 1. The above generic PKENO system provides IND-CCPA security if
the underlying robust TPKC is IND-TCCA secure.

Proof. Let A be an IND-CCPA adversary against PKENO. We show how it read-
ily yields a chosen-ciphertext adversary B against the underlying TPKC.
B starts by choosing S = {1, . . . , t − 1} as the set of decryption servers

to corrupt and obtains (PK,VK) as well as ((1, SK1), . . . , (t − 1, SKt−1)) from
her own challenger. The PKENO adversary A is supplied with the public key
pk = (PK,VK, n, t) and starts making decryption and proving queries. When-
ever A queries a proof for some ciphertext C, B is able to compute μi =
ShareDecrypt(PK, i, SKi, C) for i = 1, . . . , t − 1 since she knows SK1, . . . ,SKt−1.
To obtain the missing decryption share, B asks her challenger to reveal μt =
ShareDecrypt(PK, t, SKt, C), which allows constructing π = {μ1, . . . , μt} as
long as TPKC provides correctness. It is not hard to see that A’s decryption
queries can be dealt with exactly in the same way: instead of revealing the set
{μ1, . . . , μt}, B returns the output of Combine(PK,VK, C, {μ1, . . . , μt}).

At the challenge step, A outputs equal-length messages M0,M1 that are trans-
mitted to B’s challenger. The latter replies with a challenge TPKC ciphertext
C�, which B relays to A. In the second stage, A is allowed to make further
decryption/proof queries. Since these never involve the challenge ciphertext C�,
B is always able to answer them by invoking her own challenger as in the first
phase. The game ends with A outputting a bit b ∈ {0, 1}, which is also B’s result.
It is straightforward to observe that if A is successful then so is B. ��
Lemma 2. The above generic PKENO scheme is sound (resp. strongly commit-
ting) if it builds on a robust TPKC satisfying decryption consistency with known
secret keys (resp. strong decryption consistency).

Proof. We first show that if an adversary A defeats the soundness of PKENO in
the sense of Definition 2 then there exists an adversary B breaking the decryption
consistency with known secret keys in TPKC with the same advantage.

Namely, our adversary B obtains PK, VK and SK = (SK1, . . . ,SKn) from her
challenger. The weak-soundness adversary A then receives pk = (PK,VK, n, t),
sk = SK. In Stage 1 of the game, A chooses a plaintext m that B encrypts us-
ing the public key PK of TPKC. Upon receiving the resulting ciphertext C =
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Encrypt(PK,m),A attempts to produce a pair (m′, π′) such that Ver(pk, C,m′, π′)
= 1 and m′ �= m. Since π′ is a valid proof, it can necessarily be parsed as a set
{μ′

1, . . . , μ
′
t} of valid decryption shares. The correctness property of TPKC implies

that, since B knows SK = (SK1, . . . , SKn), it must be able to generate another set
π = {μ1, . . . , μt} of decryption shares such that

m = Combine(PK,VK, C, {μ1, . . . , μt}) .

It follows that the sets π and π′ are valid t-sets of decryption shares that break
the decryption consistency with known secret keys of TPKC.

Proving that the strong decryption consistency of TPKC implies the strong
committing property of PKENO is fairly straightforward: from a strong-commit-
tingness adversary A, we immediately obtain a strong-decryption-consistency
adversary B that returns whatever A outputs. ��
Since in the KOSK model any strongly committing PKENO scheme is also
strongly proof sound, Lemma 2 implies that a strongly proof-sound PKENO
scheme can be obtained from a strongly decryption-consistent TPKC. In gen-
eral, however, it seems that strong decryption consistency is not sufficient to
imply strong proof soundness as well.

It turns out that for concrete TPKC constructions, such as the schemes by
Shoup and Gennaro [SG98] and Arita and Tsurudome [AT09], it is possible to set
n = t = 1 for improved efficiency. For instance, the consistency check between PK
and (VK1, . . . ,VKt) becomes trivial in Step 1 of the verification algorithm. We
recall those TPKC in the full paper and describe the resulting efficient PKENO
schemes in the next section.

Remark 1. The reader might wonder whether an efficient transformation from
PKENO to robust non-interactive threshold cryptosystem exists. The answer is
in the affirmative if we allow3 these primitives to support labels [Sho04]. A label
is an arbitrary string that is given as additional input to every algorithm of the
PKENO and TPKC primitives, except the key generation algorithms. Then, the
transformations from standard PKE to (non-robust) non-interactive threshold
cryptosystem by Dodis and Katz [DK05] yield robust TPKC when replacing
PKE by PKENO. Due to space limitations, we omit the details here but they
follow easily from [DK05, Section 4.2].

5 New PKENO Constructions Implied by TPKC

This section describes new concrete schemes obtained from the transformation
in Section 4.3.
3 The reason of this restriction is the difficulty of efficiently constructing a PKENO

system supporting labels from an ordinary PKENO. The standard black-box tech-
nique to include labels (by simply appending them to the plaintext upon encryption)
in any public key encryption scheme fails to preserve security (in the sense of Defi-
nition 1) in the context of PKENO.
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5.1 PKENO without Pairings in the Random-Oracle Model

In [SG98], Shoup and Gennaro described two CCA2-secure threshold cryptosys-
tems in the random-oracle model. We show in the full version of the paper that
the most efficient scheme TDH2 satisfies strong decryption consistency (although
a weaker notion of consistency was considered in [SG98]). This scheme makes use
of a prime-order group G where the Decision Diffie-Hellman problem4 is assumed
to be hard. It is easily seen to give rise to the following PKENO system.

– Gen(1k): chooses a group G of prime order p > 2k, g, ḡ $← G and x
$← Zp,

and sets h = gx. The public key pk includes g, h, ḡ, the description of the
plaintext spaceMpk = {0, 1}l, where l depends polynomially on k, and hash
functions H0 : G → {0, 1}l, H1, H2 : {0, 1}∗ → Zp (to be modeled as random
oracles). The secret key sk = x.

– Enc(pk,m): to encrypt a message m ∈ {0, 1}l, it proceeds as follows. It chooses
r, s

$← Zp, it sets K = hr and computes

c = H0(hr)⊕m, u = gr, w1 = gs, ū = ḡr, w1 = ḡs, f1 = s + re1,

where e1 = H1(c, u, w1, ū, w1). Let us note that (w1, w1, f1) constitutes
a non-interactive zero-knowledge proof of equality of discrete logarithms
logg u = logḡ ū [CP92]. The ciphertext is C = (c, u, ū, e1, f1).

– Dec(sk, C): given sk = x and C = (c, u, ū, e1, f1), the decryption algorithm
first checks whether e1 = H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 =
ḡf1/ūe1 . If this is not the case, it returns ⊥, meaning that C is invalid.
Otherwise, it returns m = c⊕H0(ux).

– Prove(sk, C): given C = (c, u, ū, e1, f1) and the secret key sk = x, the al-
gorithm first checks if e1 = H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 =
ḡf1/ūe1 . If this is not satisfied, it returns ∅, meaning that the ciphertext
is invalid. Otherwise it computes K = ux, chooses s ← Zp and returns
π = (K, e2, f2), where

w2 = gs, w2 = us, e2 = H2(K,w2, w2), f2 = s + xe2 .

Note that (w2, w2, f2) constitutes a non-interactive zero-knowledge proof of
equality of discrete logarithms logg h = logu K.

– Ver(pk, c,m, π): parses C as (c, u, ū, e1, f1) and π as (K, e2, f2). Then it per-
forms the following tests:
1. e1

?= H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 = ḡf1/ūe1

2. e2
?= H2(K,w2, w2), where w2 = gf2/he2 , w2 = uf2/Ke2

If these tests are both correct and c ⊕ H0(K) = m it returns 1; and 0
otherwise. If Test 1 fails, it outputs 1 iff π = ∅ and m =⊥. In any other case
(e.g., Test 2 fails or can not be computed because π = ∅) it outputs 0.

4 A slightly less efficient threshold cryptosystem described in [SG98] relies on the
Computational Diffie-Hellman assumption (in the random oracle model) and can be
turned into a PKENO system in the same way.
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Since the underlying threshold cryptosystem is IND-TCCA secure and strongly
decryption consistent, it follows that the above PKENO is IND-CCPA secure
and strongly committing.

5.2 PKENO Based on the Decision Linear Assumption

Recently, Arita and Tsurudome [AT09] described an efficient way to thresh-
oldize the decryption algorithm of Kiltz’s tag-based encryption scheme [Kil06]
using bilinear maps to achieve robustness. Their scheme readily yields another
PKENO with strong soundness since it also provides decryption consistency in
the strongest sense. The security proof of the resulting scheme is in the standard
model under the Decision Linear assumption [BBS04] (in bilinear groups), which
is the infeasibility of distinguishing gc+d from random given (g, ga, gb, gac, gbd),
where a, b, c, d

$← Zp.
One of the advantages of this PKENO scheme is that it can be used in

CCA2-anonymous group signatures that rely on the linear encryption technique
[BBS04]. For instance, it can be used to obtain simpler and more efficient proofs
of correct opening (as required by the model of Bellare et al. [BSZ05] in the con-
text of dynamic groups) in Groth’s fully anonymous group signatures [Gro07]:
such a proof only consists of two group elements and its verification only entails
two pairing evaluations, which is significantly cheaper than checking a pairing-
based non-interactive witness indistinguishable proof as in [Gro07].

The description hereafter requires a strongly unforgeable [Mer89, ADR02]
one-time signature scheme Σ = (G,S,V) as in the original CHK transformation
[CHK04], where we assume for simplicity that the scheme’s verification keys SVK
can be embedded in Zp (else one should first hash the key with a target-collision
resistant hash function). We note that shorter ciphertexts can be obtained us-
ing Waters’ technique [Wat05] in the same way as in the encryption scheme of
[BMW05, Section 3.1]: at the expense of longer public keys (comprising O(k)
group elements), ciphertext components SVK and σ can be eliminated.

– Gen(1k): chooses groups (G,GT ) of prime order p > 2k that are equipped with
a bilinear map e : G × G → GT , g $← G and x, y, u, v

$← Zp. The public key
pk comprises (X,Y, U, V ) = (gx, gy, gu, gv), the description of the plaintext
space Mpk = G and that of a strong one-time signature Σ = (G,S,V). The
secret key is sk = (x, y, u, v).

– Enc(pk,m): to encrypt a message m ∈ G, the algorithm first generates a
one-time signature key pair (SSK, SVK) ← G(1k). It chooses r, s

$← Zp and
computes

C1 = Xr, C2 = Y s, D1 = (gSVKU)r, D2 = (gSVKV )s, E = m · gr+s,

and σ=S(SSK, (C1, C2, D1, D2, E)). The ciphertext is C = (SVK, C1, C2, D1,
D2, E, σ).
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– Dec(sk, C): given sk = (x, y, u, v) and C = (SVK, C1, C2, D1, D2, E, σ), the
algorithm checks if V(SVK, σ, (C1, C2, D1, D2, E)) = 1, D1 = C

(SVK+u)/x
1 and

D2 = C
(SVK+v)/y
2 . If these checks fail, it returns ⊥. Otherwise, it outputs

m = E · C−1/x
1 · C−1/y

2 .

– Prove(sk, C): given C = (SVK, C1, C2, D1, D2, E, σ) and sk = (x, y, u, v),
the algorithm returns ∅ if V(SVK, σ, (C1, C2, D1, D2, E)) = 0 or if D1 �=
C

(SVK+u)/x
1 or D2 �= C

(SVK+v)/y
2 . Otherwise it computes and returns π =

(π1, π2) = (C1/x
1 , C

1/y
2 ).

– Ver(pk, c,m, π): parses C as (SVK, C1, C2, D1, D2, E, σ) and π as (π1, π2) ∈ G2

(and outputs 0 if they cannot be parsed properly). Then, it performs the fol-
lowing tests:

1. V(SVK, σ, (C1, C2, D1, D2, E)) ?= 1, e(C1, g
SVKU) ?= e(X,D1),

e(C2, g
SVKV ) ?= e(Y,D2).

2. e(π1, X) ?= e(g, C1), e(π2, Y ) ?= e(g, C2), E
?= m · π1 · π2.

If both tests are correct, it returns 1. If Test 1 fails, it outputs 1 iff π = ∅
and m =⊥. In any other situation, it outputs 0.

In comparison with [Gal09] (if we assume that CCA2-security is acquired using
the technique of [BMW05, Section 3.1] in both schemes), the above system pro-
vides faster decryption (since no pairing evaluation is needed) at the expense
of longer ciphertexts whereas proofs are equally expensive to verify. Its main
advantage over [Gal09], in our opinion, lies in its possible use to provide simple
proofs of correct opening in pairing-based group signatures.

It is also worth mentioning that other cryptosystems [Kil07, Boy07] also admit
CCA2-secure threshold variants which can be proved strongly decryption consis-
tent. They thus imply strongly committing PKENO instances bearing similari-
ties with the above scheme. The Paillier-based TPKE scheme of [FP01] can be
proved decryption consistent in the known secret key setting (cf. Definition 5).
Proving it strongly decryption consistent seems harder.
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Abstract. Modern multi-user communication systems, including popu-
lar instant messaging tools, social network platforms, and cooperative-
work applications, offer flexible forms of communication and exchange
of data. At any time point concurrent communication sessions involving
different subsets of users can be invoked. The traditional tool for achiev-
ing security in a multi-party communication environment are group key
exchange (GKE) protocols that provide participants with a secure group
key for their subsequent communication. Yet, in communication scenar-
ios where various user subsets may be involved in different sessions the
deployment of classical GKE protocols has clear performance and scala-
bility limitations as each new session should be preceded by a separate
execution of the protocol. The motivation of this work is to study the
possibility of designing more flexible GKE protocols allowing not only
the computation of a group key for some initial set of users but also
efficient derivation of independent secret keys for all potential subsets.
In particular we improve and generalize the recently introduced GKE
protocols enabling on-demand derivation of peer-to-peer keys (so called
GKE+P protocols). We show how a group of users can agree on a secret
group key while obtaining some additional information that they can use
on-demand to efficiently compute independent secret keys for any pos-
sible subgroup. Our security analysis relies on the Gap Diffie-Hellman
assumption and uses random oracles.

1 Introduction

Despite more than 20 years of research (see surveys in [6, 29]), group key ex-
change (GKE) protocols are still far from being widely used in practice, espe-
cially if one compares to two-party key (2KE) exchange protocols which found
their deployment in various standards and daily applications. Among the main
reasons for this limited spectrum of applications is the fact that GKE proto-
cols are rather complex, costly to implement, and not versatile enough. Modern
communication platforms, including diverse instant-messaging tools and collab-
orative applications, allow their users to communicate and exchange data within
almost any subset of participants. Had classical GKE protocols been deployed
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in this multi-user environment, then every new communication attempt would
require a different execution of the GKE protocol. This constraint is anchored
in the design rationale behind existing GKE protocols. A possible improvement
would be to design more flexible GKE protocols, which would not only provide
their participants with the group key but would also leave space for the efficient
computation of secret keys for use within any subset of the original group.

Recently, Manulis [28] suggested flexible GKE protocols allowing for a secure
combination of two communication forms: secure communication within a group
and secure communication amongst any two parties from the group. In partic-
ular, he designed GKE protocols enabling on-demand derivation of peer-to-peer
(p2p) keys, denoted GKE+P, which provide any pair of participants with an
independent secure p2p key in addition to the common group key. The main
ingredient of GKE+P constructions in [28] is the parallel execution of the clas-
sical Diffie-Hellman key exchange (PDHKE) protocol [18] and, in particular, the
user’s ability to re-use the same value gx in the computation of group and p2p
keys, where g is a generator and x is the private user’s exponent.

Building on this, we investigate the even more generalized and flexible ap-
proach — the extension of GKE protocols with the ability to compute an inde-
pendent session key for any possible subgroup of the initial GKE participants.
Similar to [28], we are interested in solutions which would allow the derivation of
the subgroup keys in a more efficient way than simply running an independent
session of a GKE protocol for each subgroup. GKE protocols enriched in this
way, which we denote GKE+S, would allow the combination of different forms
of secure communication. For example, a single file deposited in a file sharing
network or broadcasted to the group may contain documents encrypted for the
whole group and different attachments encrypted for different subgroups.

The required independence between different key types imposes further se-
curity challenges on GKE+S protocols: The classical GKE security requirement
concerning the secrecy of the group key with respect to the external parties (typ-
ically called AKE-security [9,23]) should now be preserved even if some subgroup
keys leak, and the independence of any subgroup key implicitly requires us to
handle (collusion) attacks from parties that are external to that subgroup but
internal to the preliminary computation process of the common group key or to
a different subgroup with membership overlap. As a result, the specification of
the adequate security requirements for GKE+S protocols with respect to these
threats appears to be an interesting task from a formal point of view.

The protocols being considered in this paper are all based on the well-studied
Burmester-Desmedt (BD) group key exchange protocol [14]. Interestingly, Man-
ulis [28] had shown that, if users try to use the same exponents in the computa-
tion of group and p2p keys in the original BD protocol, then the AKE-security of
p2p keys could no longer be guaranteed. In this work, we illustrate how a small
modification of the original BD protocol suffices to obtain a secure GKE+P pro-
tocol. Interestingly, this modification of the original BD protocol only applies
to the computation steps and leaves the communication complexity unchanged.
In particular, our GKE+P protocol has better overall complexity than those
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proposed in [28]. After presenting our new GKE+P protocol, we show how to
extend it into a secure GKE+S protocol. Our GKE+S protocol requires only one
additional communication round for setting up any subgroup key as opposed to
the two-round communication that one would need to compute a subgroup key
via an independent protocol execution.

1.1 Related Work

Security of key exchange protocols is usually defined with the requirement of
Authenticated Key Exchange (AKE) security; see [4,15,16,27] for the 2KE case
and [9,11,19,22,23] for the GKE case. AKE-security models the indistinguisha-
bility of the established session group key with respect to an active adversary
treated as an external entity from the perspective of the attacked session. The
signature-based compilation technique by Katz and Yung [23] (see also the work
by Bresson, Manulis, and Schwenk [13]) can be used to achieve AKE-security for
GKE protocols that already provide such indistinguishability but with regard to
the passive attacks only. Besides AKE-security some security models for GKE
protocols (e.g. [11, 12, 19,22]) define optional security against insider attacks.

The notion of GKE+P protocols has been put forth by Manulis [28]. He
showed how to compile the so-called family of Group Diffie-Hellman protocols,
i.e. protocols such as [20,32,14,33,25,26,31,17] which extend the classical Diffie-
Hellman method to the group setting, in such a way, that at the end of the
protocol any pair of users can derive their own p2p key on-demand and without
subsequent communication. The main building block of his GKE+P compiler is
the parallel Diffie-Hellman key exchange (PDHKE) in which each user broadcasts
a value of the form gx and uses x for the derivation of different p2p keys. For
the two efficient two-round unauthenticated GKE protocols by Burmester and
Desmedt (BD) [14] and by Kim, Perrig, and Tsudik (KPT) [25], in which users
need to broadcast gx anyway, Manulis analyzed optimizations based on the re-
use of the exponent x for the computation of both group and p2p keys showing
that KPT remains secure whereas BD not.

We also notice that PDHKE has been used by Jeong and Lee [21] for the
simultaneous computation of multiple two-party keys amongst a set of users,
yet without considering collusion attacks against the secrecy of keys computed
by non-colluding users and without considering group keys. In another work,
Biswas [5] proposed a slight modification to the original Diffie-Hellman protocol
allowing its participants to obtain up to 15 different shared two-party keys.

While GKE+P protocols take the top-down approach in the sense that the
computation of p2p keys for any pair of users is seen as a feature of the GKE
protocol there have been several suggestions, e.g. [30,1,34], that construct GKE
protocols from 2KE protocols used as a building block. For example, Abdalla
et al. [1], as well as Wu and Zhu [34] order protocol participants into a cycle
(in a BD fashion) and a 2KE protocol is executed only between the neighbors.
However, these constructions do not explicitly meet the requirements of GKE+P
protocols as an independent p2p key may not be available for every pair of users.
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1.2 Contributions and Organization

In Section 2, we recall the classical Burmester-Desmedt (BD) protocol [14] and
explain problems behind the re-use of its exponents for PDHKE following the
analysis by Manulis [28]. In Section 3, we propose a slight modification to the
computations steps of the BD protocol such that the overall communication
complexity remains unchanged, yet secure, non-interactive derivation of p2p keys
through the re-use of users’ exponents becomes possible. Our GKE+P protocol
obtained in this way and denoted mBD+P is more efficient than other solutions
proposed in [28].

We then continue in Section 4 with our second contribution — the description
of a GKE+S protocol in which users compute the common group key first and
then any subgroup of these users can agree on an independent subgroup key. Our
GKE+S protocol, denoted mBD+S, requires two-rounds for the computation of
the group key and only one round for the subsequent on-demand computation of
any subgroup key. In comparison to the naive approach of computing a subgroup
key through an independent execution of the full GKE protocol our solution is
more scalable as it halves the number of communication rounds and required
messages.

In Section 5, we formally model the security of GKE+S protocols. We address
AKE-security of both group and subgroup keys whereby security of the latter
is modeled under consideration of possible collusion attacks representing the
main challenge is such protocols. Our model generalizes the security model by
Manulis [28], which considered only derivation of p2p keys.

Finally, we apply the model in Section 6 to prove that mBD+P provides
AKE-security for group and p2p keys and that mBD+S additionally provides
AKE-security for the derived subgroup keys. We conclude our work in Section 7
by comparing the communication and computation complexity of our protocols
with the previous solutions showing the expected efficiency gain.

2 Preliminaries and Background

2.1 Notations and Assumptions

Throughout the paper, unless otherwise specified, by G := 〈g〉 we denote a cyclic
group of prime order Q generated by g. By Hg, Hp, Hs : {0, 1}∗ → {0, 1}κ we de-
note three cryptographic hash functions, which will be used to derive group,
p2p, and subgroup keys, respectively, and by H : G �→ {0, 1}κ an auxiliary hash
function which will be used to slightly modify the computations of the original
Burmester-Desmedt protocol. The symbol “|” will be used for the concatena-
tion of bit-strings. Since we are interested in authenticated protocols we will
further use a digital signature scheme Σ = (KeyGen, Sign, Verify), which we as-
sume to be existentially unforgeable under chosen message attacks (EUF-CMA).
Additionally, we recall the following well-known cryptographic assumption (see
e.g. [7]):
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Definition 1. Let G := 〈g〉 as above and a, b, c ∈R ZQ. The Gap Diffie-Hellman
(GDH) problem in G is hard if the following success probability is negligible:

SuccGDHG (κ) := max
A′

∣∣ Pr
a,b

[A′D(·)(g, ga, gb) = gab
]∣∣,

where D(·) denotes the Decision Diffie-Hellman (DDH) oracle, i.e. D(g, ga, gb, gc)
outputs 1 if c = ab and 0 otherwise.

Note that SuccGDHG (κ) is computed over all PPT adversaries A′ running within
time κ. In other words, the Computation Diffie-Hellman (CDH) problem in G is
assumed to be hard even if the DDH problem in G is easy.

2.2 Burmester-Desmedt Group Key Exchange

The Burmester-Desmedt (BD) protocol from [14] is one of the best known unau-
thenticated GKE protocols. Its technique has influenced many GKE protocols,
including [24,2]. The BD protocol arranges participants U1, . . . , Un into a cycle,
and requires two communication rounds:

Round 1. Each Ui broadcasts yi := gxi for some random xi ∈R ZQ.
Round 2. Each Ui broadcasts zi := (yi+1/yi−1)xi (the indices i form a cycle,

i.e. 0 = n and n + 1 = 1).
Group Key Computation. Each Ui computes the secret group element

k′i := (yi−1)nxi · zn−1
i · zn−2

i+1 · · · zi+n−2 = gx1x2+x2x3+...+xnx1 ,

which is then used to derive the group key.

As shown by Katz and Yung [23] the group element k′i remains indistinguishable
from a randomly chosen element in G under the DDH assumption with regard
to a passive adversary; using the general authentication technique from [23] this
indistinguishability can be extended to resist active attacks.

2.3 Parallel Diffie-Hellman Key Exchange

The following one-round parallelized Diffie-Hellman protocol (PDHKE) with the
additional key derivation step based on a hash function Hp (modeled as a random
oracle) has been deployed by Manulis [28] for the computation of independent
p2p keys between any two users Ui and Uj :

Round 1. Each Ui chooses a random xi ∈R ZQ and broadcasts yi := gxi .
P2P Key Computation. Each Ui proceeds as follows:

– for the input identity Uj compute k′i,j := yxi

j = gxixj ,
– derive ki,j := Hp(k′i,j , Ui|yi, Uj|yj).

(W.l.o.g. we assume that both users Ui and Uj use the same order for the
inputs to Hp.)
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As motivated in [28] the input (Ui|yi, Uj |yj) to Hp in addition to k′i,j = gxixj is
necessary in order to ensure the independence of p2p keys in the presence of col-
lusion attacks. This independence follows from the uniqueness of user identities
and the negligible probability that an honest user Ui chooses the same exponent
xi in two different sessions. It has been shown in [28] that PDHKE provides se-
curity of p2p keys in the presence of passive attacks and that the authentication
technique from [23] is also sufficient to preserve this property in the presence of
active attacks.

2.4 Insecure Merge of BD and PDHKE

Given BD and PDHKE one of the questions investigated by Manulis [28] was
whether a user Ui can safely re-use own exponent xi for the computation of the
group key and any p2p key. In other words whether a two-round merged version
of original BD and PDHKE would result in a secure GKE+P protocol in which
the keys are computed as follows: the group key ki := Hg(k′i, U1|y1, . . . , Un|yn)
and any p2p key ki,j := Hs(k′i,j , Ui|yi, Uj |yj).

The analysis given in [28] shows that this merge is insecure. More precisely,
for any group size n ≥ 3 an attack (possibly by colluding participants) was
presented that would break the AKE-security of any p2p key ki,j .

In the next section we revise this result. We show how to slightly modify the
computation of zi in the original BD protocol in order to allow secure computa-
tion of ki := Hg(k′i, U1|y1, . . . , Un|yn) and ki,j := Hs(k′i,j , Ui|yi, Uj |yj). We stress
that our changes do not increase the original communication complexity of the
BD protocol which is the actual goal for considering its merge with PDHKE.
Then, based on our new construction we show how to obtain a secure GKE+S
protocol where the communication effort for the derivation of subgroup keys re-
quires only one round; this in contrast to two rounds that would be necessary
to establish a subgroup key using the original BD protocol from the scratch.

3 GKE+P Protocol from Modified BD and PDHKE

In order to obtain a secure merge of BD and PDHKE we make use of the follow-
ing trick in the computation of zi: Instead of computing zi := (yi+1/yi−1)xi we
let each Ui first compute k′i,i+1 := yxi

i+1 and k′i−1,i := yxi

i−1 and then compute zi

as an XOR sum H(k′i−1,i)⊕ H(k′i,i+1). This does not introduce new communica-
tion costs to the BD protocol but has impact on the computation of the group
key. We observe that similar trick has been applied for a different purpose by
Kim, Lee, and Lee [24], who considered possible extensions of BD-like protocols
to handle dynamic membership events such as join and leave or to speed up
the computation process, whereas here we use the trick exclusively to achieve
independence between the group and p2p keys.

The actual description of the protocol which we denote mBD+P follows. Since
we are interested in AKE-secure constructions we describe the necessary authen-
tication steps as well. For this we assume that each Ui is in possession of a long-
lived key pair (ski, pki)← KeyGen(1κ) for the EUF-CMA secure digital signature
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scheme Σ = (KeyGen, Sign, Verify). The authentication procedure is similar to
the general authentication technique from [23], except that we construct the ses-
sion id using elements from G as nonces; thus saving the communication costs.
The protocol proceeds in two stages: the group stage involves all members of the
group and results in the computation of the common group key, whereas the p2p
stage is executed on-demand by any two group members wishing to compute an
independent p2p key.

Group Stage. Let the group be defined by pid = (U1, . . . , Un). In the following
description we assume that user indices form a cycle such that U0 = Un and
Un+1 = U1.

Round 1. Each Ui computes yi := gxi for some random xi ∈R ZQ and broad-
casts (Ui, yi).

Round 2. Each Ui proceeds as follows:
– compute sidi := (U1|y1, . . . , Un|yn),
– k′i−1,i := yxi

i−1 and k′i,i+1 := yxi

i+1,
– z′i−1,i := H(k′i−1,i, sidi) and z′i,i+1 := H(k′i,i+1, sidi),
– zi := z′i−1,i ⊕ z′i,i+1,
– σi := Sign(ski, (Ui, zi, sidi)),
– broadcast (Ui, zi, σi).

Group Key Computation. Each Ui checks whether z1 ⊕ . . . ⊕ zn = 0 and
whether all received signatures σj are valid and aborts if any of these checks
fails. Otherwise, Ui proceeds as follows:
– iteratively for each j = i, . . . , i + n− 1: z′j,j+1 := z′j−1,j ⊕ zj ,
– accept ki := Hg(z′1,2, . . . , z

′
n,1, sidi).

P2P Stage. On input any user identity Uj ∈ pidi the corresponding user Ui

proceeds as follows:

– compute k′i,j := yxi

j = gxixj ,
– derive ki,j := Hp(k′i,j , Ui|yi, Uj|yj).

(W.l.o.g. we assume that both users Ui and Uj use the same order for the inputs
to Hp.)

Here we observe that the computation of p2p keys proceeds without any
interaction.

4 GKE+S Protocol from Modified BD and PDHKE

In this section we extend our previous protocol to a secure GKE+S solution.
We call it mBD+S. The design rationale is as follows: Users run the group
stage to compute the group key and then any subgroup can on-demand repeat
the second round of the protocol re-using the exponents from the group stage.
Observe that each subgroup identified by some spid ⊂ pid uniquely determines
its own cycle. However, there can be many subgroups involving the same pair of
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users Ui and Uj in which they are located at neighboring positions. In order to
avoid the use of the same value z′i,j for the derivation of different subgroup keys
we include a subgroup session id ssidi given as the concatenation of all (Ui, yi)
with Ui ∈ spid as additional input to H.

Since the group stage of the current protocol does not change with respect to
the protocol in the previous section, we only present below the subgroup stage.

Subgroup Stage. On input any subgroup spid ⊂ pid the corresponding users
perform the following steps. For the ease of presentation we assume that spid =
(U1, . . . , Um) with m < n and that U0 = Um and Um+1 = U1.

Round 1. Each Ui ∈ spid proceeds as follows:
– extract ssidi := (U1|y1, . . . , Um|ym) from sidi;
– k′i−1,i := yxi

i−1 and k′i,i+1 := yxi

i+1,
– z′i−1,i := H(k′i−1,i, ssidi) and z′i,i+1 := H(k′i,i+1, ssidi),
– zi := z′i−1,i ⊕ z′i,i+1,
– σi := Sign(ski, (Ui, zi, ssidi)),
– broadcast (Ui, zi, σi).

Subgroup Key Computation. Each Ui checks whether z1⊕ . . .⊕zm = 0 and
whether all received signatures σj are valid and aborts if any of these checks
fails. Otherwise, Ui proceeds as follows:
– iteratively for each j = i, . . . , i + m− 1: z′j,j+1 := z′j−1,j ⊕ zj ,
– accept ki,J := Hs(z′1,2, . . . , z

′
m,1, ssidi).

(W.l.o.g. we assume that all users in spid use the same order for the inputs
to Hs.)

Note that for subgroups of size two, i.e. containing only Ui and Uj , both users
can still derive their p2p key without executing the subgroup stage simply as
ki,j := Hs(z′i,j , (Ui|yi, Uj|yj)).

5 Generalized Security Model

Here we generalize the GKE+P model by Manulis [28] towards consideration of
subgroup keys computed by participants of a GKE protocol.

5.1 Participants, Sessions, and Correctness of GKE+P Protocols

Let U denote a set of at most N users (more precisely, their identities which are
assumed to be unique) in the universe. We assume that any subset of n users
(2 ≤ n ≤ N) can be invoked for a single session of a GKE+S protocol P . Each
Ui ∈ U holds a (secret) long-lived key LLi. The participation of Ui in distinct,
possibly concurrent protocol sessions is modeled via an unlimited number of
instances Πs

i , s ∈ N. An instance Πs
i can be invoked for one GKE+S session

with some partner id pids
i ⊆ U encompassing the identities of all the intended

participants (including Ui). An execution of a GKE+S protocol is then split in
two stages, denoted as group stage and subgroup stage, described in the following.
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The group stage results in Πs
i holding a session id sids

i which uniquely iden-
tifies the current protocol session. Any two instances Πs

i and Πt
j are considered

as being partnered if sids
i = sidt

j and pids
i = pidt

j . The success of the group
stage for some instance Πs

i is modeled through its acceptance with some session
group key ks

i .
Each instance Πs

i that has accepted in the group stage can later be invoked for
the subgroup stage on input some subgroup partner id spids

i ⊂ pids
i (which in-

cludes Ui). This invocation can be performed several times for different subgroups
of pids

i . The success of the subgroup stage for some Πs
i is modeled through its

acceptance with some session subgroup key ks
i,J , whereby J denotes the set of

indices of users in spids
i , i.e. it includes all j with Uj ∈ spids

i .

Definition 2 (GKE+S/GKE+P Protocols). P is a group key exchange
protocol enabling on-demand derivation of subgroup keys (GKE+S) if P consists
of the following two protocols/algorithms:

P .GKE(U1, . . . , Un): For each Ui, a new instance Πs
i with pids

i = (U1, . . . , Un)
is created and a probabilistic interactive protocol between these instances is
executed such that at the end every instance Πs

i accepts holding the session
group key ks

i . This protocol defines the group stage.
P .SKE(Πs

i , spid
s
i ): On input an accepted instance Πs

i and a subgroup partner id
spids

i ⊂ pids
i this deterministic (possibly interactive) algorithm outputs the

session subgroup key ks
i,J . This algorithm defines the subgroup stage. (We

assume that SKE is given only for groups of size n ≥ 3 since for n = 2 the
group key is sufficient.)

A GKE+S protocol P is correct if (when no adversary is present) all instances
invoked for the group stage P .GKE accept with identical group keys and for all
instances Πt

j partnered with Πs
i the subgroup stage results in P .SKE(Πt

j , spid
t
j)

= P .SKE(Πs
i , spid

s
i ) if spidt

j = spids
i .

P is a group key exchange protocol enabling on-demand derivation of p2p
keys (GKE+P) if it is a GKE+S protocol in which the only admissible input to
SKE is of the form spids

i = (Ui, Uj). The execution of SKE in this case defines
the p2p stage.

5.2 Adversarial Model and Security Goals

Security of GKE+S protocols must ensure independence of the session group
key ks

i and any subgroup key ks
i,J . In particular the secrecy of ks

i must hold
even if any subgroup key ks

i,J is leaked to the adversary. Similarly, the leakage
of the group key ks

i must guarantee the secrecy of any subgroup key ks
i,J . Since

the computation of subgroup keys is triggered on-demand we must provide the
adversary with the ability to schedule the execution of P .SKE on the subgroups
of its choice.

Additionally, GKE+S protocols must ensure independence amongst different
subgroup keys. That is the knowledge of some ks

i,J should not reveal information
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about any other subgroup key computed by Πs
i or any partner Πt

j . This re-
quirement implicitly assumes that some participants Uj with j �∈ J may collude
during the protocol execution.

Finally, the described independence amongst the group and subgroup keys
must hold across different sessions of GKE+S.

Adversarial Model. The adversary A, modeled as a PPT machine, can sched-
ule the protocol execution and mount attacks through a set of queries:

– Execute(U1, . . . , Un): This query executes the group stage protocol between
new instances of U1, . . . , Un ∈ U and provides A with the execution tran-
script.

– Send(Πs
i ,m) : With this query A can deliver a message m to Πs

i whereby
U denotes the identity of its sender. A is then given the protocol message
generated by Πs

i in response to m (the output may also be empty if m
is unexpected or if Πs

i accepts). A special invocation query of the form
Send(Ui, (′start′, U1, . . . , Un)) creates a new instance Πs

i with pids
i := (U1,

. . . , Un) and provides A with the first protocol message. This query can be
used by A also during the subgroup stage if P .SKE requires interaction.

– SKE(Πs
i , spid

s
i ): This query allows A to schedule the on-demand computa-

tion of subgroup keys. If P .SKE requires interaction then Πs
i returns A its

first message for the subgroup stage; otherwise Πs
i computes the subgroup

key ks
i,J . This query is processed only if Πs

i has accepted and spids
i ⊂ pids

i .
Additionally, this query can be asked only once per input (Πs

i , spid
s
i ).

– RevealGK(Πs
i ): This query models the leakage of group keys and provides

A with ks
i . It is answered only if Πs

i has accepted in the group stage.
– RevealSK(Πs

i , spid
s
i ): This query models the leakage of subgroup keys and

provides A with the corresponding ks
i,J ; the query is answered only if the

algorithm SKE(Πs
i , spid

s
i ) has already been invoked and the subgroup key

computed.
– Corrupt(Ui): This query provides A with LLi. Note that in this case A does

not gain control over the user’s behavior, but might be able to communicate
on behalf of the user.

– TestGK(Πs
i ): This query models indistinguishability of session group keys.

Depending on a given (privately flipped) bit b A is given, if b = 0 a random
session group key, and if b = 1 the real ks

i . This query can be asked only
once and is answered only if Πs

i has accepted in the group stage.
– TestSK(Πs

i , spid
s
i ): This query models indistinguishability of session sub-

group keys. Depending on a given (privately flipped) bit b A is given, if
b = 0 a random session p2p key, and if b = 1 the real ks

i,J . This query is
answered only if the algorithm SKE(Πs

i , spid
s
i ) has already been invoked

and the subgroup key computed.

Terminology. We say that U is honest if no Corrupt(U) has been asked by A;
otherwise, U is corrupted (or malicious). This also refers to the instances of U .
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Two Notions of Freshness. The classical notion of freshness imposes several
conditions in order to prevent any trivial break of the AKE-security. Obviously,
we need two definitions of freshness to capture such conditions for the both key
types.

First, we define the notion of instance freshness which will be used in the
definition of AKE-security of group keys. Our definition is essentially the one
given in [23].

Definition 3 (Instance Freshness). An instance Πs
i is fresh if Πs

i has ac-
cepted in the group stage and none of the following is true, whereby Πt

j denotes
an instance partnered with Πs

i : (1) RevealGK(Πs
i ) or RevealGK(Πt

j) has been
asked, or (2) Corrupt(U ′) for some U ′ ∈ pids

i was asked before any Send(Πs
i , ·).

Note that in the context of GKE+S the above definition restricts A from active
participation on behalf of any user during the attacked session, but implicitly
allows for the leakage of (all) subgroup keys.

Additionally, we define the notion of instance-subgroup freshness which will
be used to specify the AKE-security of subgroup keys.

Definition 4 (Instance-Subgroup Freshness). An instance-subgroup pair
(Πs

i , spid
s
i ) is fresh if Πs

i has accepted in the group stage and none of the fol-
lowing is true, whereby Πt

j is assumed to be partnered with Πs
i and spidt

j =
spids

i : (1) RevealSK(Πs
i , spid

s
i ) or RevealSK(Πt

j , spid
t
j) has been asked, or (2)

Corrupt(Ui) or Corrupt(Uj) was asked before any Send(Πs
i , ·) or Send(Πs

j , ·).
Here A is explicitly allowed to actively participate in the attacked session on
behalf of any user except for Ui and any Uj ∈ spids

i . Also A may learn the group
key ki and all subgroup keys except for ki,J returned by P .SKE(Πs

i , spid
s
i ). This

models possible collusion of participants from pids
i \ spids

i during the execution
of the protocol aiming to break the secrecy of the subgroup key ki,J .

AKE-Security of Group and Subgroup Keys. For the AKE-security of
group keys we follow the definition from [23].

Definition 5 (AKE-Security of Group Keys). Let P be a correct GKE+P
protocol and b a uniformly chosen bit. By Gameake-g,b

A,P (κ) we define the following
adversarial game, which involves a PPT adversary A that is given access to all
queries:

– A interacts via queries;
– at some point A asks a TestGK(Πs

i ) query for some instance Πs
i which is

(and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define
Advake-g

A,P (κ) :=
∣∣∣2 Pr[Gameake-g,b

A,P (κ) = b]− 1
∣∣∣
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and denote with Advake-g
P (κ) the maximum advantage over all PPT adversaries

A. We say that P provides AKE-security of group keys if this advantage is
negligible.

Finally, we define AKE-security of subgroup keys while considering possible col-
lusion attacks, as above but with a TestSK(Πs

i , spid
s
i ) query.

Definition 6 (AKE-security of Subgroup Keys). Let P be a correct GKE+S
protocol and b a uniformly chosen bit. By Gameake-s,b

A,P (κ) we define the following
adversarial game, which involves a PPT adversary A that is given access to all
queries:

– A interacts via queries;
– at some point A asks a TestSK(Πs

i , spid
s
i ) query for some instance-subgroup

pair (Πs
i , spid

s
i ) which is (and remains) fresh;

– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define
Advake-s

A,P (κ) :=
∣∣∣2 Pr[Gameake-s,b

A,P (κ) = b]− 1
∣∣∣

and denote with Advake-s
P (κ) the maximum advantage over all PPT adversaries A.

We say that P provides AKE-security of subgroup keys if this advantage is
negligible.

6 Security of Our GKE+P and GKE+S Protocols

In this section we analyze security of our mBD+P and mBD+S protocols using
our generalized security model. The corresponding proofs of our theorems can
be found in appendix (for the first one) and in the full version of this paper [3]
(for the other ones). The security results hold in the random oracle model. The
following two theorems show that mBD+P is a secure GKE+P protocol.

Theorem 1. If the GDH problem is hard in G then our protocol mBD+P pro-
vides AKE-security of group keys and

Advake-g
mBD+P(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHp)2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
NqHSuccGDHG (κ) +

qHg
2κ

)
with at most (qEx+qSe) sessions being invoked via Execute and Send queries and
at most qHg , qHp, and qH random oracle queries being asked.

Theorem 2. If the GDH problem is hard in G then our protocol mBD+P pro-
vides AKE-security of p2p keys and

Advake-p
mBD+P(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHp)2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
(NqH + qSKEqHp)SuccGDHG (κ)

)
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with at most (qEx + qSe) sessions being invoked via Execute and Send queries, at
most qSKE p2p keys being computed via SKE queries, and at most qHg , qHp , and
qH random oracle queries being asked.

Our next two theorems prove that mBD+S is a secure GKE+S protocol. The
main difference in the security analysis is the consideration of the additional
communication round for the subgroup stage (Theorem 4). Since the group stage
of mBD+S does not differ from that of mBD+P, the proof of Theorem 3 follows
from that of Theorem 1.

Theorem 3. If the GDH problem is hard in G then our protocol mBD+S pro-
vides AKE-security of group keys and

Advake-g
mBD+S(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHs)2

2κ−1

+2NSucceuf-cma
Σ (κ) + 2qSe

(
NqHSuccGDHG (κ) +

qHg
2κ

)
with at most (qEx+qSe) sessions being invoked via Execute and Send queries and
at most qHg , qHs, and qH random oracle queries being asked.

Theorem 4. If the GDH problem is hard in G then our protocol mBD+S pro-
vides AKE-security of subgroup keys and

Advake-s
mBD+S(κ) ≤2N(qEx + qSe)2

Q
+

(qHg + qHs)2

2κ−1 + 2NSucceuf-cma
Σ (κ)

+2qSe
((

N + (N − 1)qSKE
)
qHSuccGDHG (κ) +

qSKEqHs
2κ

)
with at most (qEx + qSe) sessions being invoked via Execute and Send queries, at
most qSKE subgroup stages being invoked via SKE queries, and at most qHg, qHs,
and qH random oracle queries being asked.

7 Performance Comparison

In Table 1 we compare the complexity of our protocols. We measure the commu-
nication costs as a total number of transmitted elements in G, and computation
costs as a number of modular exponentiations per Ui (in the case of BD we
count only exponentiations with xi assuming that |xi| " n). We omit signature
generation and verification costs, which are equal for all considered protocols.

The first part of the table is devoted to GKE+P protocols. By GKE+P BD
we denote the protocol from [28] in which the original Burmester-Desmedt pro-
tocol is executed in parallel with PDHKE, i.e. each user Ui uses two indepen-
dent exponents xi and x̄i for the computation of the group key and any p2p
key, respectively. By GKE+P KPT we denote the tree-based Kim-Perrig-Tsudik
protocol from [25] in which each user Ui holds only one exponent xi and uses
it to compute both types of keys, which has been proven secure in [28]. Since
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Table 1. Performance Comparison of GKE+P and GKE+S Protocols

GKE+P/S Protocols Rounds Communication Computation
(in log Q bits) (in mod. exp. per Ui)

GKE+P BD [28] 2 3n 3
GKE+P KPT [28] 2 2n − 2 n + 2 − i (2n − 2 for U1)
our mBD+P 2 2n 3

GKE+S BD 2 2m 2
our mBD+S 1 m ≤ 2

all GKE+P protocols apply the PDHKE technique for the derivation of p2p
keys we also exclude the computation costs needed to compute a Diffie-Hellman
secret k′i,j that requires constantly one exponentiation per each Uj. Then, we
observe that in comparison to GKE+P BD our mBD+P protocol has better
communication complexity since it requires each Ui to hold only one exponent
xi. Note also that the PDHKE-KPT protocol has asymmetric costs, depending
on the position of Ui in the sequence U1, . . . , Un. Although this asymmetry may
have benefits in groups with heterogeneous devices we remark that in general
this protocol has much worse computation complexity.

The second part of the table compares the effort needed to derive a subgroup
key for any subgroup of size m < n. By GKE+S BD we consider the trivial
solution in which the original BD protocol from [14] is executed for each new
subgroup. We compare it to the subgroup stage of our mBD+S protocol, which
requires only one communication round per subgroup. Observe that the group
stage of mBD+S is executed only once and its complexity is identical to the
complete execution of the BD protocol. By ≤ 2 in the computation costs of
mBD+S we point out that users can re-use the intermediate values k′i−1,i and
k′i,i+1 possibly computed during the group stage or during the subgroup stage
for another subgroup, provided the relative position of Ui−1 and Ui or of Ui

and Ui+1 in the cyclic order of the new subgroup remains the same. In this
way our mBD+S protocol also offers a trade-off between space and computation
complexity depending on whether users wish to cache the intermediate values
that re-occur in different protocol stages.

8 Conclusion

The increasing popularity of multi-user communication systems offering vari-
ous forms of communication can be secured using flexible GKE protocols that
provide more than just a secret group key for the initial set of their partici-
pants. This paper addressed the extension of this basic functionality of GKE
protocols towards the computation of different types of keys allowing a secure
mix of group, subgroup, and peer-to-peer communication. While our mBD+P
protocol with improved complexity compared to the protocols from [28] allows a
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secure mix of group and peer-to-peer communication our mBD+S protocol ex-
tends this approach to obtain the additional secure communication within any
possible subgroup.
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Appendix

A Proof of Theorem 1

In the following we show that the advantage of A in distinguishing ki from some
random element from {0, 1}κ is negligible. We construct a sequence of games
G0, . . . ,G4 and denote by Winake-g

i the event that the bit b′ output by A is
identical to the randomly chosen bit b in the i-th game. Recall that in each game
TestGK(Πs

i ) is answered only if the instance Πs
i is fresh.

Game G0. This is the real execution of mBD+P in which a simulator Δ truly an-
swers all queries of A on behalf of the instances as defined in Gameake-g,b

A,mBD+P(κ).
We assume that A has access to the hash queries for the hash functions H,

Hg, and Hp, which are modeled as random oracles in the classical way, i.e., by
returning new random values for new queries and replaying answers if the queries
were previously made.

Game G1. In this game we exclude for every honest user Ui the collisions of
the transcripts (Ui, yi) and group keys ki computed in different sessions. We also
exclude any collisions between ki and any p2p key ki,j . Regarding the transcripts
we observe that if Ui is honest then its session value yi is randomly distributed in
G (as a result of yi := gxi for xi ∈R ZQ). Thus, according to the birthday paradox
the collision on transcripts occurs with the probability of at most N(qEx+qSe)2/Q
over all possible users (recall that sessions can be invoked via Execute and Send
queries). The uniqueness of transcripts also implies the uniqueness of inputs to
Hg(z′1,2, . . . , z

′
n,1, sidi). By construction inputs to Hg remain always different from

the inputs to Hp. Since Hg and Hp are modeled as random functions we can also
apply the birthday paradox and upper-bound the probability of collisions for ki

and collisions between ki and any ki,j by (qHg + qHp)
2/2κ. Thus,

|Pr[Winake-g
1

]− Pr[Winake-g
0

]| ≤ N(qEx + qSe)2

Q
+

(qHg + qHp)2

2κ
.

Game G2. In this game we assume that Δ fails and bit b′ is set at random
if A queries Send containing (Ui, zi, σi) with σi being a valid signature that
has not been previously output by an uncorrupted oracle Πs

i . In other words
the simulation aborts if A outputs a successful forgery. Following the classical
reductionist argument (see for instance [9]) we can build a forger against the
signature scheme and upper-bound the probability difference

|Pr[Winake-g
2

]− Pr[Winake-g
1

]| ≤ NSucceuf-cma
Σ (κ).
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Game G3. In this game we let Δ guess a value q∗ ∈ [1, qSe] and abort if the
TestGK query is not asked for the session invoked by the q∗-th query. Let Q be
the event that this guess is correct and Pr[Q] = 1/qSe. Thus,

Pr[Winake-g
3

] = Pr[Winake-g
2

]
1
qSe

+
1
2

(
1− 1

qSe

)
.

This implies,

Pr[Winake-g
2

] = qSe

(
Pr[Winake-g

3
]− 1

2

)
+

1
2
.

Game G4. In this game we assume that Δ is given access to the private random
oracle H′ : {0, 1}∗ → {0, 1}κ and computes in the simulation of the q∗-th session
for each pair of consecutive users (Ui, Ui+1) in the cycle z′i,i+1 = H′(i, i + 1).
Clearly both games remain indistinguishable unless A queries H(k′i,i+1) for any
i ∈ [1, n]. However, this query can be used to break the GDH problem in G, i.e. Δ
embeds ga and gb from the challenge of the GDH problem into the corresponding
values gxi and gxi+1, and uses the access to the DDH oracleD in order to identify
k′i,i+1 = gxixi+1 provided by A as input to H. Therefore,

|Pr[Winake-g
4

]− Pr[Winake-g
3

]| ≤ NqHSuccGDHG (κ).

As a result of this game the group key ki computed in the q∗-th session
is the output of Hg(z′1,2, . . . , z

′
n,1, sidi) where all input values z′1,2, . . . , z

′
n,1 are

uniform in {0, 1}κ. Since Hg is modeled as a random oracle and collisions on group
keys computed in two different sessions have been excluded in Game G1 the
probability that A wins without querying Hg(z′1,2, . . . , z

′
n,1, sidi) is 1/2; on the

other hand, the probability thatA asks such a query is given by qHg/2nκ < qHg/2κ

(for the guess of z′1,2, . . . , z
′
n,1). Hence, Pr[Winake-g

4
] ≤ 1/2 + qHg/2κ.

Summarizing the above equations we obtain a negligible advantage

Advake-g
mBD+P(κ) = |2 Pr[Winake-g

0 ]− 1|

≤ 2N(qEx + qSe)2

Q
+

(qHg + qHp)2

2κ−1 + 2NSucceuf-cma
Σ (κ)

+ 2qSe
(
NqHSuccGDHG (κ) +

qHg
2κ

)
.
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Abstract. Physical Unclonable Functions (PUFs) are physical struc-
tures that are hard to clone and have a unique challenge-response be-
haviour. In this paper we propose a new security primitive, the
quantum-readout PUF (QR-PUF): a classical PUF which is chal-
lenged using a quantum state, and whose response is also a quantum
state. By the no-cloning property of unknown quantum states, attack-
ers cannot intercept challenges or responses without noticeably disturb-
ing the readout process. Thus, a verifier who sends quantum states as
challenges and receives the correct quantum states back can be certain
that he is probing a specific QR-PUF without disturbances, even in
the QR-PUF is far away ‘in the field’ and under hostile control. For
PUFs whose information content is not exceedingly large, all currently
known PUF-based authentication and anti-counterfeiting schemes re-
quire trusted readout devices in the field. Our quantum readout scheme
has no such requirement.

We show how the QR-PUF authentication can be interwoven with
Quantum Key Exchange (QKE), leading to an authenticated QKE proto-
col between two parties with the special property that it requires no a priori
secret shared by the two parties, and that the quantum channel is the au-
thenticated channel, allowing for an unauthenticated classical channel.

1 Introduction

1.1 Physical Unclonable Functions

The term PUF was coined by Pappu et al. in [21,22]. Although the use of physical
structures for authentication purposes dates back a long time, the work [21,22]
was the first to introduce the ‘function’ behaviour of such objects and to consider
mathematical unclonability as well (difficulty of modelling). It was shown that
an optical medium with a high density of scatterers makes an extremely good
PUF: A challenge consists e.g. of the angle of incidence of a laser beam; the
response is the speckle pattern resulting from multiple coherent scattering.

By now there is a whole zoo of PUF-like systems that have appeared in the
literature: optical PUFs, delays in integrated circuits [12], dielectric properties
of security coatings [26], two-dimensional fiber-optic configurations [17], radio-
frequent probing of wire configurations [8] and thin-film resonators [30], laser
probing of fibers in paper [4], startup values of SRAM cells [14], butterfly PUFs
[18], phosphor patterns [6], phase-change memory states [19]. What all these
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have in common is a strong dependence on uncontrollable aspects of the manu-
facturing process. A partial overview of the field is given in [27].

Because of the variety of physical systems and security goals involved, the
terminology can be confusing. There exist multiple definitions of a PUF, dif-
fering in their list of properties that must be satisfied. Often mentioned prop-
erties are physical unclonability, mathematical unclonability, uniqueness, tam-
per evidence, high response entropy, large number of different challenges and
read-proofness. Descriptions like Physical One-Way Function, Physical Unknown
Function, Physically Obfuscated/Obscured Key, and Physical Pseudorandom
Function are sometimes used to specify which properties are most important for
a certain application. In this paper we rely only on the following properties of
the pair {physical object, measurement method}:
– Physical unclonability. It is technically/financially infeasible to make a phys-

ical clone of a given QR-PUF (given full knowledge of this QR-PUF), such
that it behaves exactly as the original one for the given measurement method.

– Quantum-computational unclonability. This is a new physical assumption.
It is technically/financially infeasible to build a quantum computer and in-
put/output handling which emulates a given QR-PUF (given full knowledge
of this QR-PUF) with a sufficiently small delay time.

– Uniqueness. Different challenges can be applied to the QR-PUF. The re-
sponses to these challenges (measurements) have to contain enough entropy
so that all the to-be-authenticated QR-PUFs can be distinguished. In fact,
uniqueness is implied by physical unclonability; if there are too few possible
PUFs, then collisions can be created by manufacturing many random PUFs.

The entropy of optical PUFs was studied in [28,29,27]. We stress that the re-
sponses to all challenges, for each QR-PUF, are allowed to be public knowledge.
In this paper, there is no secrecy concerning any aspect of the QR-PUFs.

Note that the PUF literature is concerned with classical physics. The word
‘unclonability’ is an assumption about the effort it takes to produce a clone; it
does not indicate that it is impossible to produce one. There is no relation to the
provable no-cloning theorem [31,9] of unknown quantum states. Our QR-PUF is
classical in itself, but the measurement is quantum, and we will make use of the
no-cloning theorem to detect tampering with the measurement process.

1.2 Getting Rid of the Trusted Remote Reader

Some of the early PUF-based remote authentication protocols rely on the vast-
ness of the PUF’s entropy. At enrolment, Alice measures PUF responses for a
large number of random challenges. She stores the table of challenge-response
pairs (CRPs). Then the PUF is given to Bob. When Alice wants to authenticate
Bob, she sends him a challenge, randomly selected from her CRP table. This is
done over a public channel. Bob feeds the challenge to his PUF and measures the
response. He sends the response to Alice over a public channel. If Bob’s response
is correct, Alice is convinced that he has access to the PUF. Alice deletes the
used CRP from her list.
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The security of such a protocol is based on the following physical assumptions:
(I) Knowledge of eavesdropped CRPs gives negligible information about the
response to a new challenge; (II) It is infeasible for an attacker to characterize
Bob’s PUF in a short amount of time with enough accuracy to predict the
response to a new random challenge.

Although optical PUFs come a long way [28,29], it is not clear whether high-
entropy PUFs will be feasible in practice. In this paper we therefore do not make
assumption II. Even if one gives up the high-entropy property, PUFs are very
useful. For instance1, an authentication method can be designed that is based
solely on physical unclonability. When a PUF gets manufactured, a certification
authority enrolls it. This can be done in either of two ways. (i) An identifier I and
a precise characterization of the PUF are entered into a publicly readable, tamper
proof database; or (ii) the enroller signs a certificate containing I and the PUF
characterization, which certificate is then stored publicly. When a verifier wants
to see if a certain PUF is authentic, he can check its challenge-response behaviour
against the enrolled data. As long as the verifier is certain that responses are
coming directly from a real PUF (as opposed to an emulation or a replay), he is
able to verify that a physical structure is the same as the enrolled one.

In the above scheme the verifier must be in control of the measurement device,
to prevent spoofing. This leads to an extra requirement for remote verification:
trust in a remotely located piece of hardware. One results of our paper is that
we achieve remote PUF authentication without the trusted remote reader.

1.3 Authenticated Quantum Key Exchange

Quantum Key Exchange (QKE), also known as Quantum Key Distribution
(QKD), Quantum Key Agreement, and Quantum Cryptography, was first pro-
posed in 1984 [2] (BB84). QKE is a protocol that allows Alice and Bob to
establish an unconditionally secure shared secret if they have a channel at their
disposal over which they can send quantum states. The security is based on the
laws of physics, in particular the no cloning theorem [31,9]. Since 1984 progress
has been made on all relevant aspects of QKE: single-photon sources, detectors,
fiber optics, attacks and defense, use of entanglement [11], error-correction codes,
privacy amplification and security proof methods. QKE products based on BB84
are now commercially available. Quantum observables other than polarization
have been proposed for QKE, e.g. phase [16] and squeezed coherent states [13].

The classical communication channel between Alice and Bob is allowed to be
public, but it has to be authenticated in order to prevent man-in-the-middle at-
tacks. The aim of QKE is to achieve unconditional security. One way to achieve
information-theoretic authentication is to let Alice and Bob share a short initial
MAC key. Though this may look like cheating, it is not. QKE serves to indef-
initely lengthen an initial shared secret. Another authentication method uses
initial entangled states [24]. This approach has a number of drawbacks, such as
the requirement that the entangled state has to be stored for a long time.
1 Another example is secure key storage, which relies only on read-proofness.
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1.4 Our Contributions

We introduce the concept of a Quantum Readout PUF (QR-PUF): a classical
PUF that is challenged using a quantum state, and whose response is also a
quantum state. Te interaction with the challenge does not affect the PUF; the
challenge states evolves quantum-physically into the response state. The no-
cloning theorem ensures that eavesdropping on challenges or responses cannot
go unnoticed. We rely on physical assumptions about the PUF: physical unclon-
ability and quantum-computational unclonability. A further assumption is that
PUFs are enrolled in a trusted environment and that PUF enrollment data is
available in a tamper-free form. We allow attackers to have access to this data.

We present a protocol for authenticating a QR-PUF remotely without reliance
on a trusted remote reader device. The remote authentication also serves as a
distance bounding protocol. We give a security analysis, allowing all QR-PUF
properties to be public, i.e. the only secrets in the protocol are the challenge
states sent by the verifier. We prove that intercept-resend attacks fail. However,
a QR-PUF can be spoofed by a sufficiently powerful quantum computer, com-
bined with sufficiently fast ways of measuring qubit states as well as transferring
challenge/response states into qubits and back. One of our physical assumptions
says that such a combination of quantum physical techniques is infeasible.

For a PUF which has both transmission and reflection of incoming states, we
show how the authentication can be intertwined with QKE.

– The reflected states are used to authenticate the QR-PUF.
– The QR-PUF is completely ‘transparent’ with respect to transmitted states;

Alice can choose which quantum state reaches Bob after transmission through
the QR-PUF, even if the transmission process is complicated.

We sketch an authenticated QKE protocol. We prove that intercept-resend at-
tacks fail. The scheme achieves interesting security properties:

1. The initial authentication between parties is achieved without any shared
secret (such as a MAC key or entangled state).

2. The security of the initial authentication is based on physical assumptions
about the QR-PUF, combined with trust in the enrolled data. Thus, we
do not have unconditional security. However, we find it worth showing that
physical assumptions can be used in this way.

3. Traditional QKE schemes require an authenticated classical channel. We
have the completely opposite situation: an authenticated quantum channel.
Hence we do not require the classical channel to be authenticated.

4. The authentication is based on the possession of an object. A secret can be
stolen surreptitiously. Theft of an object is usually noticed.

2 Preliminaries

We use the notation [n] = {1, · · · , n}. We use Dirac’s bra-ket notation. We
consider a system with ‘external’ (e.g. direction of motion) and ‘internal’ (e.g.
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spin or polarization) degrees of freedom. This is denoted as a tensor product of
Hilbert spaces: H = Hext ⊗ Hint, where H is the full Hilbert space. We will be
dealing with three types of state:

– Challenge. A quantum state is moving from Alice to Bob’s PUF.
– Reflected. After interaction with Bob’s PUF it moves back to Alice.
– Transmitted. The particle has interacted with Bob’s PUF, and its internal

state has changed. The particle does not return to Alice, but moves on.

These three situations are represented in only two states of motion: moving away
from Alice or towards her. Any state |ψ〉 ∈ H can be decomposed as

|ψ〉 = |out〉 ⊗ |ψ1〉+ |in〉 ⊗ |ψ2〉 (1)

where |out〉, |in〉 ∈ Hext and |ψ1〉, |ψ2〉 ∈ Hint. We have 〈out|in〉 = 0. The follow-
ing notation can also be used, |ψ〉 =

( |ψ1〉
|ψ2〉

)
. (2)

Hint is n-dimensional. The interaction between the quantum system and the
PUF is assumed to be completely coherent: time evolution is determined by the
Schrödinger equation, without any state collapse. We abstractly represent the
interaction with the PUF as a unitary time evolution operator S, also known as
the scattering matrix or S-matrix. S maps ‘before’ states to ‘after’ states. Let
|ψ′〉 ∈ H be the state after the interaction, then in the notation of (2) we have( |ψ′

1〉
|ψ′

2〉
)

= S

( |ψ1〉
|ψ2〉

)
; S =

(
T −R

†

R T
†

)
. (3)

T (the ‘transmission matrix’) describes the internal state when the particle
emerges at the other side of the PUF, and R (‘reflection matrix’) does the
same for reflected states. The unitary evolution (S

†
S = SS

†
= 1) implies that

T
†
T + R

†
R = 1 and that T , T

†
, R and R

†
all commute with each other2. To-

gether R and T completely determine the challenge-response behaviour of the
PUF. Hence, physical unclonability of a PUF means that it is difficult to create
a PUF which behaves precisely according to some pre-specified R and T .

In the rest of the paper we omit reference to the external degree of freedom.
It will always be understood that Challenge and Transmitted states are moving
away from Alice, and that Reflected states are moving towards her.

We assume that there is a lot of freedom in doing measurements and in prepar-
ing quantum states. More precisely, we assume that Alice can prepare basically
any state |ψ〉 ∈ Hint. Similarly, there is a large number of different observables
that Alice and Bob can measure. (In the case of photon polarization there is
even a continuum of observables, namely the polarization component in any di-
rection.) This freedom allows one to define a set of measurements that accurately
characterize a PUF. More details are given in the full version [1].
2 We can write T = U−1ΛU and R = U−1ΓU , where U is a unitary matrix and Λ and

Γ are complex-valued diagonal matrices satisfying |Λi|2 + |Γi|2 = 1 for all i ∈ [n].
The basis vectors contained in U are the eigenmodes of S.
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We assume that a measurement of the internal state is able to discern whether
or not there is a particle present at all. This statement is not trivial. Filter-based
polarization measurements for instance do not see the difference between dark-
ness and polarization perpendicular to the applied filter. Measurements using
a polarization splitter and measurement of differential phase shift [16], on the
other hand, do distinguish between presence and absence of a photon.

3 Remote Authentication of a QR-PUF

We present two protocols for remote authentication. The first one is applicable
when every conceivable projection operator corresponds to an actual measure-
ment that can be performed. The second one is geared to more restricted cir-
cumstances where Alice has only a limited number of projection measurements
at her disposal. Both protocols are based on reflected states only. We consider
the case T = 0.3 In Section 4, a protocol will be discussed with T �= 0.

3.1 Attack Model

Alice wants to verify if Bob has real-time access to a certain QR-PUF. QR-PUF
enrollment occurs in a trusted environment. Alice has access to the enrollment
data in a tamper-proof way (e.g. she is the enroller). The main attack is im-
personation: someone may be trying to trick Alice into believing that he has
access to the QR-PUF. There is a quantum channel between Alice and Bob.
The attacker has physical access to challenge states as well as reflected states.
He can destroy quantum states, perform measurements on them, and insert new
states. However, he cannot clone a state. We allow R and T to be fully known
to the attacker. However, as discussed in Section 1.1, it is assumed infeasible to
create a new QR-PUF whose reflection matrix is R. It is also assumed infeasible
to build an effective quantum computer that emulates the QR-PUF.

3.2 Authentication Protocol 1

It is assumed that Alice can perform a projection measurement onto any state
in the Hilbert space.

Enrollment phase
A QR-PUF with identifier I is accurately characterized. This yields the matrix R.
The QR-PUF is given to Bob.

Authentication phase
Bob claims that he has access to the QR-PUF with identifier I. Alice fetches
the enrollment data R corresponding to I. She initializes counters nret and nok
to zero. She then repeats the following procedure m times:

3 There is no loss of generality; transmitted states can always be re-routed to become
part of the reflected state.
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1. Alice prepares a state |ψ〉 uniformly at random and sends it to Bob.
2. Alice receives either nothing (‘⊥’) or a returning state |ω〉. If she receives a

state4, then

(a) She increases nret by one.
(b) If |ψ〉 was properly reflected by Bob’s QR-PUF, then the returned state

should be |ωψ〉 := R|ψ〉. Alice measures the projection of |ω〉 onto |ωψ〉,
i.e. she performs a measurement of the operator |ωψ〉〈ωψ|, obtaining
either ‘0’ or ‘1’ as the outcome. If the outcome is 1, then she increases
nok by one.

If the fraction nret/m is not consistent with the expected noise level, then the
protocol is aborted. If nok ≥ (1 − ε)nret then Alice is convinced that she has
probed the QR-PUF with identifier I. Here ε is a parameter denoting the toler-
able fraction of wrong responses.

3.3 Security of Authentication Protocol 1

In the above protocol, and the other protocols in this paper, Alice waits for a
returning state before sending her next challenge state. This considerably sim-
plifies the security proofs, since in this setting it suffices to look at the security
of an isolated round without having to worry about (entanglement) attacks on
multiple challenge states. We leave more general protocols and their security
proofs (e.g. using methods developed in [23]) as a subject for future work.

Intercept-resend attacks. We consider the type of attack where an impostor
tries to convince Alice that he has the QR-PUF. A generic intercept-resend
attack consists of the following steps. (a) For each of the m rounds he picks a
random orthonormal basis of the n-dimensional Hilbert space. The corresponding
Hermitian operator is denoted as B, with eigenvalues bj and eigenstates |bj〉 that
form the basis. (b) He measures B, obtaining outcome bk for some k ∈ [n]. (c) He
chooses a state |ζ〉 such that 〈bk|ζ〉 = 0 and a parameter α ∈ [0, π/2] according
to some (possibly probabilistic) strategy A that may depend on B and k. He
computes |χ〉,

|χ〉 = cosα|bk〉+ sinα|ζ〉, (4)

which is his guess for |ψ〉. Finally he prepares a state |ω〉 and sends it to Alice,

|ω〉 = R|χ〉. (5)

Theorem 1. In the intercept-resend attack described above, the impostor’s prob-
ability p1 of success in a single round of protocol 1 is bounded as

p1 ≤ 3
n + 2

.

Proof. See the full version [1] of the paper.
4 A state that arrives too late is counted as ⊥. This is a form of distance bounding.

If Alice has a rough idea where Bob should be located, she knows what round-trip
time to expect.
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Attack by quantum computer. It is possible in theory to break the authen-
tication scheme if one has [i] a sufficiently powerful quantum computer (QC) and
[ii] a sufficiently fast way of transferring challenge states into the QC’s qubits
and transferring the computation result back to a response state.

We give a high-level description of the attack. First the challenge state |ψ〉 is
transferred to the QC memory. This can be done without measuring |ψ〉, namely
by quantum teleportation [3], in particular a form of teleportation that transfers
states from one type of physical system to another [10,20]. Then the QC does a
computation that has the effect of applying R. This is possible in theory since R
is known publicly, and applying R is a unitary operation. The result is teleported
to a response state and sent to Alice over the quantum channel.

Our assumption denoted as ‘quantum-computational unclonability’ states
that it is either technically/financially too difficult to pull off the above given
steps or, if all the hardware works, the attack is too slow.

It is not yet clear to us how to make quantitative statements about the diffi-
culty of ‘quantum’ attacks. For instance, the challengeψ could comprise a random
choice of photon wavelength λ, with the R-matrix depending on λ. How is the in-
formation about λ transferred to the QC memory? How does the attacker know
which R to apply? Does he have to construct a big unitary operation that acts on
all wavelengths simultaneously? That would certainly strain the QC hardware.

Attack with an imperfect physical clone. Consider the case of an attempted
physical clone which is not quite equal to the original one.

Theorem 2. Let δ > 0 be a constant. Let the imperfect clone have a unitary
reflection matrix R′. Let the eigenvalues of R−1R′ be denoted as {eiϕk}k∈[n]. Let
these eigenvalues satisfy

|
∑

k∈[n]

eiϕk |2 ≤ n2(1− δ). (6)

Then the impostor’s per-round probability of success is bounded by

p1 ≤ 1− n

n + 2
δ. (7)

Proof. See the full version [1] of the paper.

3.4 Authentication Protocol 2

The 2nd protocol also considers the case T = 0. The difference with protocol 1
is a restriction on the measurements available to Alice. She can no longer choose
any projection measurement |ψ〉〈ψ|. Instead she has a limited set of s different
observables {Xα}s

α=1 at her disposal. These are Hermitian operators, and hence
they have orthonormal sets of eigenvectors. The i’th eigenstate of Xα is denoted
as |αi〉, with i ∈ [n]. We make two assumptions about the set of observables:

– The Xα all have non-degenerate eigenvalues. This allows Alice to effectively
turn measurement of Xα into a measurement of |αi〉〈αi| for some i.

– For α �= β it holds that ∀i, j ∈ [n] : |〈αi|βj〉| < D, where D ∈ [1/
√
n, 1).
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The impostor has no restrictions on his choice of observable B. There are no
restrictions on the state preparation, neither for Alice nor the impostor.

Enrollment phase
A QR-PUF with identifier I is accurately characterized. This yields the matrix R.
The QR-PUF is given to Bob.
Authentication phase
Bob claims that he has access to the QR-PUF with identifier I. Alice fetches
the enrollment data R corresponding to I. She initializes counters nret and nok
to zero. She then repeats the following procedure m times:

1. Alice draws α ∈ [s] and i ∈ [n] uniformly at random. She prepares the state
R−1|αi〉 and sends it to Bob.

2. Alice receives either nothing (‘⊥’) or a returning state |ω〉. If it is a state,
(a) She increases nret by one.
(b) She performs a measurement of the operator |αi〉〈αi|, obtaining either

‘0’ or ‘1’ as the outcome. If the outcome is 1, then she increases nok.

If the fraction nret/m of returned states is not consistent with the expected noise
level, then the protocol is aborted. If nok ≥ (1 − ε)nret then Alice is convinced
that she has probed the QR-PUF with identifier I. Here ε is a parameter denoting
the tolerable fraction of wrong responses.

3.5 Security of Authentication Protocol 2

The intercept-resend attack is of the same kind as in Section 3.3. The impos-
tor performs a measurement of some B and obtains outcome bk. He has some
strategy A to choose a state |ω〉 as a function of B and k. He sends |ω〉 to Alice.

Theorem 3. In the above described intercept-resend attack on protocol 2, the
per-round success probability p2 is bounded by

p2 <
1 + (s− 1)D

s
.

Proof. See the full version [1] of the paper.

Just as protocol 1, this protocol is vulnerable to a ‘quantum’ attack employing
quantum teleportation and a quantum computer. The attack and the require-
ments are exactly the same as in Section 3.3.

3.6 Limitations on the State Preparation

If there are also restrictions on Alice’s state preparation, it is still possible to
construct an effective authentication scheme. Consider the most pessimistic case:
Alice is only capable of preparing eigenstates of the observables Xα. This is still
sufficient for her to fully characterize Bob’s QR-PUF. All she has to do is select
random α and j, send |αj〉 and do a measurement of Xα on the reflected state. Af-
ter many repetitions, this procedure gives her all the matrix elements 〈αj|R|αk〉.
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That is a perfectly viable method. The only drawback is proof-technical. Proving
security cannot be done by finding a bound on a per-round success probability
of spoofing; even if Bob’s return states are correct, Alice’s measurement results
are stochastic, since in general R|αj〉 is not an eigenstate of Xα. Hence Alice
cannot assign a label ‘correct’ to an isolated round.

4 Combining QR-PUF Authentication with QKE

We combine the authentication with a QKE protocol that is performed on the
Transmitted states. The intuition is as follows. Since Alice knows T , she can
prepare |ψ〉 ∝ T−1|ϕ〉, for arbitrary ϕ, such that Bob receives ϕ if transmission
occurs. In this sense the QR-PUF is ‘transparent’ for the purpose of sending
specific states to Bob, and they can run QKE through the QR-PUF. Some of Al-
ice’s challenges will be reflected back to Alice. She uses these to authenticate the
QR-PUF. We assume that Alice can perform arbitrary projection measurements.

The protocol presented in this section authenticates Bob to Alice. If mutual
authentication is required, the protocol can be run twice: first authenticating
one party, then the other.

4.1 Attack Model

Bob claims that he possesses a QR-PUF with identifier I. Alice’s goal is to
authenticate QR-PUF I and to generate a shared secret key with the party
possessing that QR-PUF. Eve’s goal is to learn the generated key. An impostor’s
goal is to convince Alice that he has real-time access to the QR-PUF even though
he does not.

We make the following assumptions. Alice is honest. Bob may be acting in
one of the following ways: (i) He is honest. (ii) He has access to the QR-PUF
but does not hold it personally. He is in collusion with the party holding the
QR-PUF. (iii) He has access to the QR-PUF but does not hold it personally.
The party holding the QR-PUF is not cooperating with him. (iv) He does not
have access to the QR-PUF.

In cases (i) and (ii) the protocol should result in authentication and a shared
key, even though in case (ii) the secret key is shared between Alice and the PUF
holder, while Bob may not even know the key. Case (iii) should result in authen-
tication without a shared key. Case (iv) should not even result in authentication.

Eve has physical access to Challenge and Reflected states, but not to Trans-
mitted states. She can destroy quantum states, perform measurements on them
and insert new states. However, she cannot clone a state.

Again, we allow R and T to be public information. Creation or real-time emu-
lation of a QR-PUF whose challenge-response matrix is R is assumed infeasible.
We make no such assumption about the T matrix. Again, there is a tamper-proof
source of enrollment data. We stress that the classical channel between Alice and
Bob does not have to be authenticated.



Quantum Readout of Physical Unclonable Functions 379

4.2 Protocol Description

System setup phase
We make use of MACs with the Key Manipulation Security property (KMS-
MAC) [7]. This is necessary since the classical messages are subject to manip-
ulation attacks that influence the key. Use is made of two (publicly known)
information-theoretically secure KMS-MACs M1 : {0, 1}�1×{0, 1}m1 → {0, 1}c1

and M2 : {0, 1}�2×{0, 1}m2 → {0, 1}c2. A MAC over message x using key k will
be denoted as M(k;x). A further public ‘system parameter’ is a universal [5] or
almost-universal [25] hash function F : {0, 1}N × {0, 1}σ → {0, 1}L which maps
an N -bit string onto an L-bit string using σ bits of randomness.

Finally there is an error-correcting code with messages in {0, 1}N and code-
words in [n]b, which is chosen to have sufficient error-correcting capability to
cope with the expected level of noise. The code word size b is somewhat smaller
than m/2, namely the expected number of rounds that yield a shared secret
(corrected for particle loss). The encoding and decoding operations are denoted
as Code and Dec. Addition modulo n (with output in [n]) will be denoted as ⊕.
Enrollment phase
A QR-PUF is labeled with identifier I. The R and T matrix are accurately
measured. The QR-PUF is given to Bob. Two observables X0, X1 are selected.
They may be chosen depending on R and T , or independently. The kth eigenstate
of Xα is denoted as |xαk〉. The eigenstates satisfy |〈x0i|x1j〉|2 = 1/n for all5

i, j ∈ [n]. The R, T , X0 and X1 are public knowledge.

Authentication and key exchange phase

1. Alice fetches the enrollment data for PUF I. For α ∈ {0, 1}, i ∈ [n] she
initializes the following counters to zero: mαi (for counting sent states), gαi

(returned states), cαi (correct return states). She initializes a set V to ∅
(pointers to transmitted states). Alice and Bob both initialize a counter t to
zero.

2. The following steps are repeated m times:
(a) Alice and Bob increase t by 1. Alice selects α ∈ {0, 1} and i ∈ [n]

uniformly at random. She increases mαi. She stores αt = α and it = i.
She prepares the state

|ψαi〉 :=
T−1|xαi〉√〈xαi|(T−1)†T−1|xαi〉

and sends it to Bob. She performs a projection measurement |ωαi〉〈ωαi|,
with

|ωαi〉 :=
RT−1|xαi〉√〈xαi|(T−1)†R†RT−1|xαi〉

. (8)

5 Such inner products can be achieved for instance by having

|x1k〉 =
1√
n

n∑
j=1

(e−i2π/n)kj |x0j〉 ; |x0a〉 =
1√
n

n∑
k=1

(ei2π/n)ka|x1k〉.
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If she detects the existence of a return state, she increases gαi; else she
adds t to V . If her projection measurement yields outcome ‘1’, she in-
creases cαi.

(b) Bob chooses a random bit β. He performs a measurement of Xβ, obtain-
ing either ‘⊥’ (no transmitted state) or the j’th eigenvalue of Xβ. If he
gets ⊥ then he stores βt = ⊥; else he stores βt = β and jt = j.

3. Bob sends the vector β to Alice. Alice runs the following tests:
(a) She checks how many states were lost (t ∈ V ∧ βt = ⊥) and how many

double counts occurred (t /∈ V ∧ βt �= ⊥). If the number of either one of
these occurrences is too high, then the noise level is considered too high
and the protocol is aborted.

(b) She checks if the transmission rates for all α, i were consistent with scat-
tering by the QR-PUF. She does this by verifying if the vector (1 −
g01
m01

, 1− g11
m11

, · · · , 1− g0n

m0n
, 1− g1n

m1n
) is proportional to (τ01, τ11,· · · ,τ0n, τ1n),

where the ταi are the transmission probabilities,

ταi := 〈ψαi|T †T |ψαi〉 =
1

〈xαi|(T †T )−1|xαi〉 . (9)

If there is a significant deviation then authentication has failed and the
protocol is aborted.

(c) For each α ∈ {0, 1}, i ∈ [n] she checks if cαi/gαi ≥ (1 − ε), where ε is a
small constant. If this is not the case, then authentication has failed and
the protocol is aborted.

4. Alice compiles Z = {t : t ∈ V ∧ αt = βt} and randomly selects a subset
G ⊂ Z of size b. She generates random a ∈ {0, 1}N and y ∈ {0, 1}σ. She
computes S = F (a, y) and parses S as S = k1|k2|Srest, with k1 ∈ {0, 1}�1

and k2 ∈ {0, 1}�2. She computes w = ıG ⊕ Code(a), μ1 = M1(k1;G, w, y),
μ2 = M2(k2; β). She sends G, w, y, μ1.

5. Bob computes a′ = Dec(jG ⊕ w) and S′ = F (a′, y). He parses S′ as S′ =
k′1|k′2|S′

rest, with k1 ∈ {0, 1}�1 and k′2 ∈ {0, 1}�2.
He computes μ′

1 = M1(k′1;G, w, y), μ′
2 = M2(k′2; β). He checks if μ1 = μ′

1.
If not, the protocol is aborted. He sends μ′

2.
6. Alice checks if μ′

2 = μ2. If not, the protocol is aborted.

If the protocol does not abort then Alice and Bob have a noiseless shared secret
Srest ∈ {0, 1}L−�1−�2 about which Eve has negligible information, and Alice
knows that she has generated this secret together with someone who has real-
time access to the QR-PUF. Bob knows that he has a shared secret with someone
who has sent challenges over the quantum channel, but has no further knowledge
about this person.

4.3 Remarks

We have deliberately not specified what “too high” means in step 3a, and “sig-
nificant deviation” in step 3b. We give no numbers for m, b, N , L, σ, �1, �2, c1,
c2. These are design choices (threshold values etc.) that have been adequately
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treated in the existing literature on QKE and KMS-MACs. We do not wish to
further elaborate on such design choices in this paper.

The protocol may be modified in numerous ways without changing its essential
properties. The classical communication between Alice and Bob may occur in a
different order. The moment of checking the reflection rates may be shifted, etc.

As remarked before, if Alice and Bob want mutual authentication, the protocol
can be run twice: first with Alice authenticating Bob’s QR-PUF, then the other
way round. The second time, the classical channel is already authenticated (there
is a shared secret Srest), which allows for ordinary information reconciliation and
privacy amplification without the KMS-MACs. The two protocols may also be
run intertwined, i.e. alternating their steps 2a,2b before proceeding to step 3.
States may also be sent through both PUFs, but this will probably lead to more
particle loss.

The KMS-MAC presented in [7] is secure against a ‘linear’ class of attacks on
the MAC key, i.e. the attacker knows which change he is causing to the key, even
though he does know the key itself. In our protocol an attack on the exchanged
classical data gives no such knowledge to the attacker, since manipulation of the
pointer sets Z, G does not reveal it, jt. Hence the construction in [7] is in fact
overkill for our purposes.

We emphasize again that the authentication is in a sense reversed compared to
‘standard’ QKE: The quantum channel is authenticated without any use of the
classical channel, and the data sent over the non-authenticated classical channel
has to be checked for consistency with the exchanged quantum states.

4.4 Security of the Authenticated QKE Protocol

Intercept-resend attacks on the authentication. An impostor has to over-
come several hurdles. The first hurdle is the correct mimicking of the transmission
rates while he does not know α and i accurately. This is nontrivial if the rates
ταi are substantially different. As in Section 3, he chooses an observable B, does
a measurement and obtains an outcome bk. His first choice is whether to return
a fake reflected state or not. From his viewpoint (only the knowledge that the
challenge state projected onto |bk〉) the probability distribution of α and i is

Pr[α, i|B, k] =
Pr[α, i, B, k]

Pr[B, k]
=

Pr[α, i, B, k]∑
α,i Pr[α, i, B, k]

=
|〈bk|ψαi〉|2∑
α,i |〈bk|ψαi〉|2 . (10)

It is interesting to note that there actually exists a strategy that allows him to
correctly mimic all the transmission rates ταi. In general his strategy consists of
a set of probabilities

QBk := Pr[transmit|B, k]. (11)

When Alice sends challenge |ψαi〉 he will transmit with probability

Pr[transmit|α, i]=EB

∑
k∈[n]

|〈bk|ψαi〉|2QBk =〈ψαi|
⎛⎝EB

∑
k∈[n]

QBk|bk〉〈bk|
⎞⎠ |ψαi〉.

(12)
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For all α, i he wants this to be exactly equal to

ταi = 〈ψαi|T †T |ψαi〉 = 〈ψαi|
⎛⎝ ∑

k∈[n]

tk|tk〉〈tk|
⎞⎠ |ψαi〉. (13)

Here we use the notation tk ∈ [0, 1] for the k’th eigenvalue of the Hermitian
operator T †T . (Note that the tk and |tk〉 are public knowledge.) Comparing (13)
to (12), it is clear that equality is obtained by setting B = T †T and QBk = tk.

If the impostor makes any other choice, then Alice will notice that the trans-
mission rates are wrong. Next we show that a measurement of T †T does not give
him enough information to guess α and i. We first give two useful lemmas, and
then prove a bound (Theorem 4) on the per-round success probability.

Lemma 1. Let q0, q1 ∈ [0, 1] be constants. Let |v0〉 and |v1〉 be two normalized
states. Let λmax denote the function that returns the maximum eigenvalue of a
matrix. Then it holds that

λmax

(
q0|v0〉〈v0|+ q1|v1〉〈v1|

)
=

1
2

(
q0 + q1 +

√
(q1 − q0)2 + 4q0q1|〈v0|v1〉|2

)
.

Lemma 2. Let Δ > 0 be a constant. Let |γ0〉 and |γ1〉 be normalized states with
|〈γ0|γ1〉|2 = Δ. Let |k〉 be an arbitrary orthonormal basis. Then it holds that∑

k∈[n]

|〈k|γ0〉|2 · |〈k|γ1〉|2
|〈k|γ0〉|2 + |〈k|γ1〉|2 ≥

Δ

2
.

Theorem 4. Let the impostor use B = T †T , QBk = tk as his strategy for
the intercept-resend attack. Then his per-round probability of success for the
authentication, whenever he decides to send a state to Alice, is bounded by

p≤ 1
2

+
1
4n

∑
ik

√
(|〈tk|ψ1i〉|2 − |〈tk|ψ0i〉|2)2 + 4|〈tk|ψ1i〉|2 · |〈tk|ψ0i〉|2 · |〈ω0i|ω1i〉|2.

(14)

Corollary 1. Let a,Δ > 0 be constants. Let the scattering matrix be such that
for all i:

|〈ψ0i|ψ1i〉|2 ≥ Δ and |〈ω0i|ω1i〉|2 < 1− a. (15)

Then Theorem 4 implies that

p < 1− aΔ

4
.

For proofs we refer to the full version [1].
In summary, the impostor has no choice but to do a measurement that is

essentially equal to T †T ; otherwise Alice will notice that the reflection rates are
wrong. But the knowledge obtained from measuring T †T is not sufficient to learn
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enough about the challenge state |ψαi〉, and the result is a success rate p that
noticeably differs from 100%.

In principle (14) allows p to come close to 1. However, for that situation to
occur the scattering matrix must be quite pathological. The eigenvectors of X1
are maximally removed from those of X0. Something special has to happen in
order to have |ω0i〉 ∝ RT−1|x0i〉 align with |ω1i〉 ∝ RT−1|x1i〉 for some i, let
alone for all i. A randomly created PUF is extremely unlikely to behave like
that; and it can be discarded if it is ever created at all.

Note that the bound in Corollary 1 is not tight. Hence in practice the success
probability is even lower.

Quantum computer attack on the authentication. Again, the authenti-
cation is vulnerable to an attack by Quantum Computer (QC). The attack is
an extension of the one in Section 3.3. It needs [i] fast quantum teleportation,
[ii] fast quantum computation and [iii] fast measurement of the state of the QC.
The third requirement is new.

The QC’s memory consists of two parts: Mem1 for the transmission and Mem2
for the reflection degrees of freedom. The challenge state |ψαi〉 is moved into
Mem1 by teleportation. Mem2 is initialized to zero. Then a unitary operation
is applied that is equivalent to scattering by the QR-PUF, i.e. an operation is

done equivalent to applying the scattering matrix S to
( |ψαi〉

0

)
. The result is

a superposition T |ψαi〉 ⊗ 0 + 0 ⊗ R|ψαi〉. (The tensor product refers to Mem1
and Mem2.) Then a measurement is done that only detects ‘in which memory
the particle is’. If the outcome is ‘2’, then the state of the QC is 0 ⊗ R|ψαi〉;
The state of Mem2 is teleported onto a response state and sent to Alice. If the
outcome is ‘1’, then the state in Mem1 is used for QKE (either by applying an
equivalent of X0 or X1 directly in the QC, or by teleporting the state of Mem1
out and then measuring X0/1).

This attack correctly reproduces all reflection rates, reflected states and trans-
mitted states. It allows an impostor to pass authentication without possessing
Bob’s QR-PUF and to generate a shared secret key with Alice.

However, the attack requires two fast teleportations, a powerful QC and a
fast QC state measurement, which together will present a serious technological
hurdle for quite some time to come.

Security of the key. If there is no ‘quantum’ attack and if Bob’s QR-PUF is
successfully authenticated, then from Alice’s point of view the key is secure. The
argument is straightforward. The authentication can be spoofed only by a quan-
tum attack. Given that there is no quantum attack, successful authentication
implies that Bob really controls the QR-PUF. Hence Alice is truly generating
a key with Bob. With impostors having been excluded, we only have to worry
about eavesdropping. The transmitted states travel through the QR-PUF in a
‘transparent’ way,6 i.e. Alice’s T−1 in the challenge states T−1|xαi〉 undoes the
6 The presence of the QR-PUF may introduce some additional noise. It is well known

how to deal with noise.
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effect of transmission through the QR-PUF, and effectively she sends eigenstates
of X0 or X1 to Bob. Thus, the protocol rounds in which transmission occurs are
completely equivalent to an ordinary QKE scheme, and all the standard security
proofs for QKE apply.

Security trade-offs for authenticated QKE. Below we list the security
properties of three authentication methods for QKE. We find it interesting that
the QR-PUF authentication achieves an unusual type of trade-off: it has no
need for the a priori sharing of a secret, but the security depends on physical
assumptions.

Auth. method Security assumption Remarks
MAC unconditional needs a priori shared secret
entangled state unconditional needs a priori shared secret state;

unpractical because of decoherence.
QR-PUF physical unclonability; needs trusted enrollment data

no quantum emulation (allowed to be public)

5 Summary and Future Work

We have introduced a new security primitive, the Quantum Readout PUF (QR-
PUF), which is a classical PUF that can be read out using quantum states. We
have shown how QR-PUFs can be used to achieve remote authentication with-
out a trusted remote reader device. The security is based on two well known
physical assumptions, physical unclonability and uniqueness, and one new phys-
ical assumption, quantum-computational unclonability. The no-cloning theorem
guarantees that intercept-resend attacks will be detected. Our authentication
scheme is vulnerable to a three-step attack employing quantum teleportation
and a quantum computer. For this reason we need the assumption of quantum-
computational unclonability, which states that this kind of attack, while possible
in theory, is infeasible in practice because of technical or financial issues. What
makes a ‘quantum’ attack especially difficult is the fact that our protocol doubles
as a distance bounding scheme; all steps of the attack have to be extremely fast.

We have sketched how QR-PUF authentication can be intertwined with Quan-
tum Key Exchange. Reflected states are used for authentication, transmitted
states for QKE. This combination achieves authenticated QKE without the need
for an initial shared secret (such as a short MAC key or an entangled state).
The sketched protocol has the unusual property that the quantum channel is
authenticated, allowing for an un-authenticated classical channel. This reversal
necessitates the use of KMS-MACs.

In our schemes Alice waits for a returning state before sending her next chal-
lenge state; this simplifies the security proofs considerably, since in this setting
it suffices to look at the security of an isolated round without having to worry
about (entanglement) attacks on multiple challenge states. We leave more gen-
eral protocols and their security proof as a subject for future work.
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We have not discussed implementations. The biggest question is how to con-
struct a QR-PUF in the first place. The most practical option seems to be a par-
tially transmissive optical PUF that is challengeable by single photon states or co-
herent states through an optical fiber (or open air). The main difficulty is to make
sure that the uniqueness and physical unclonability properties hold, in spite of the
limited number of challenges that can be passed through a fiber. Fibers carry a
limited number of transversal modes, while such modes are the main way of chal-
lenging an ordinary speckle-producing optical PUF [21,22]. We are perhaps aided
by the fact that multiple wavelengths are available as a challenge.

Another question is how to quantify the difficulty of the ‘quantum’ attack,
the most serious threat to QR-PUFs. Here too the availability of different wave-
lengths seems to help us, increasing the required size of the quantum computer.

Our protocols can be extended in a number of obvious ways. For instance,
EPR pairs can be used, as well as anti-eavesdropping countermeasures like ‘decoy
states’ [15]. The QR-PUF can be used for Quantum Oblivious Transfer. Another
option is transmitting states through more than one QR-PUF. It would also be
interesting to see if one can construct a ‘quantum PUF’, i.e. a PUF that has
actual quantum behaviour, resulting in nontrivial (even nonlinear) interaction
between the challenge state and the PUF.
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Abstract. The n-cell GF-NLFSR (Generalized Feistel-NonLinear Feed-
back Shift Register) structure [8] is a generalized unbalanced Feistel net-
work that can be considered as a generalization of the outer function
FO of the KASUMI block cipher. An advantage of this cipher over other
n-cell generalized Feistel networks, e.g. SMS4 [11] and Camellia [5], is
that it is parallelizable for up to n rounds. In hardware implementa-
tions, the benefits translate to speeding up encryption by up to n times
while consuming less area and power. At the same time n-cell GF-NLFSR
structures offer similar proofs of security against differential cryptanal-
ysis as conventional n-cell Feistel structures. We also ensure that paral-
lelized versions of Camellia and SMS4 are resistant against other block
cipher attacks such as linear, boomerang, integral, impossible differen-
tial, higher order differential, interpolation, slide, XSL and related-key
differential attacks.

Keywords: Generalized Unbalanced Feistel Network, GF-NLFSR,
Camellia, SMS4.

1 Introduction

1.1 Background and Motivation

Two very important security properties of block cipher structures are low differ-
ential and linear probability bounds for protection against differential and linear
cryptanalysis. Choy et al. [8] had proven that the “true” differential/linear prob-
abilities of any n rounds of the n-cell GF-NLFSR structure is p2 if the differen-
tial/linear probability of the nonlinear function of each round is p. However, this
result is applicable only if we use a nonlinear function with good provable differ-
ential/linear probability. One option is to use an S-box. However if the nonlinear
function takes in 32-bit input, an S-box of this size would be infeasible to imple-
ment in terms of logic gates in hardware or as a look-up-table in memory. Other
options would be to build a SDS (Substitution-Diffusion-Substitution) structure
[20], use a Feistel structre [2] or even a nested Feistel structure for the nonlinear
function [3], because there are provable bounds for the differential and linear
probabilities of these structures.

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 387–406, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



388 H. Yap, K. Khoo, and A. Poschmann

However these nonlinear functions are too complex, and not suitable for space
and speed efficient implementation. Therefore, the Substitution-then-Diffusion
structure is usually implemented for the nonlinear functions. These structures
are commonly called Substitution Permutation Networks (SPN) in the literature.
Numerous examples of implementations where the SPN structure is used for
the nonlinear functions of Feistel and Generalized Feistel Structures exist. They
include DES [1], Camellia [5], SMS4 [11] and Clefia [21], to name a few. Motivated
by these considerations, we would like to investigate the practical differential and
linear probability bounds of the n-cell GF-NLFSR structure when the nonlinear
function is a SPN structure.

As applications, we would like to parallelize some of the abovementioned ci-
phers, where we replace the (Generalized) Feistel structures by the parallelizable
GF-NLFSR structures, while keeping the internal components like S-boxes and
linear diffusion to be the same. This would make encryption speed faster by up
to n times. Two candidates which we find promising for parallelizing are the
Camellia and SMS4 ciphers.

1.2 Related Works

In order to analyze the resistance of a block cipher against differential and lin-
ear cryptanalysis, we would like to lower bound the number of active S-boxes
(S-boxes which contribute to the differential/linear probability) in any differen-
tial/linear characteristic path over a fixed number of rounds. Using such bounds,
the cipher designer can choose a large enough number of rounds so that there
are too many active S-boxes for differential/linear cryptanalysis to be successful.

Kanda [16] has proven that for a Feistel cipher with an SPN round function
having branch number B (a measure of dispersion, please refer to Section 2 for
the exact definition), the number of active S-boxes in any differential and linear
characteristic path over every 4r rounds is at least rB+ � r

2�. Based on this lower
bound, the authors of [5] designed the block cipher Camellia, which has practical
provable security against differential and linear cryptanalysis.

1.3 Our Contribution

In Section 3, we provide a neat and concise proof of the result that for a 2nr-
round parallelizable n-cell GF-NLFSR structure with an SPN round function
having branch number B, the number of active S-boxes in any differential char-
acteristic path is at least rB + � r

2�. The result holds for any n ≥ 2 in general,
and we expect the result to be useful in the design and analysis of block ci-
pher structures. For the case of a 2-cell GF-NLFSR structure, we have rB+ � r

2�
active S-boxes over every 4r rounds, which is the same as Kanda’s result [16]
for a conventional 2-cell Feistel structure. Motivated by this observation, we
propose in Section 4 a parallelizable version of Camellia, p-Camellia, where we
change the conventional Feistel structure to a 2-cell GF-NLFSR structure but
keep all other components such as S-boxes and linear diffusion maps to be the
same. We also ensure p-Camellia is secure against other cryptanalysis such as
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linear, boomerang, integral, impossible differential, higher order differential, in-
terpolation and slide attacks. In addition, we assess the advantages of hardware
implementations. For this reason we briefly introduce design strategies for hard-
ware implementations. We then show that especially for applications with high
throughput requirements, a 2-cell GF-NLFSR such as p-Camellia offers signif-
icant advantages over a conventional 2-cell Feistel structure such as Camellia.
In particular, we show that an implementation of p-Camellia that processes two
rounds in parallel has a maximum frequency that is twice as high as it would be
for Camellia while having lower area and power demands. We also show that for
fully pipelined implementations a conventional 2-cell Feistel structure requires
twice as many pipeline stages, and hence twice as many clock cycles delay, to
achieve the same frequency as it is the case for a 2-cell GF-NLFSR.

In Section 5, we also apply a 4-cell GF-NLFSR structure to form a paralleliz-
able version of SMS4 called p-SMS4. We change the generalized Feistel structure
in both the main cipher and key schedule of SMS4 to a 4-cell GF-NLFSR struc-
ture but keep all other components such as S-boxes and linear diffusion maps to
be the same. We first prove that p-SMS4 is secure against differential cryptanal-
ysis. In [7], Biryukov et al. showed a powerful related-key differential attack on
AES-256 which can recover the secret key with complexity 2131 using 235 related
keys. We give a proof through the p-SMS4 key schedule that p-SMS4 is resistant
against this attack. We also ensure p-SMS4 is secure against other block cipher
cryptanalysis such as boomerang, integral, impossible differential, higher order
differential, interpolation, slide and XSL attacks. A 4-cell GF-NLFSR structure
offers also implementation advantages for round-based and parallelized hard-
ware architectures. We show that a round-based 4-cell GF-NLFSR structure has
a shorter critical path, and hence a higher maximum frequency, than a con-
ventional 4-cell Feistel structure. In parallelized implementations this advantage
increases to a four times higher maximum frequency while having lower area
and power demands. In general the advantage is dependent on the number of
branches, hence an n-cell GF-NLFSR has an advantage of an n times higher
maximum frequency.

2 Definitions and Preliminaries

In this section, we will list some definitions and summarize the results of Kanda
in [16]. He has proven the upper bounds of the maximum differential and linear
characteristic probabilities of Feistel ciphers with bijective SPN round function.
More explicitly, the round function F -function comprises the key addition layer,
the S-function and the P -function. Here we neglect the effect of the round key
since by assumption, the round key, which is used within one round, consists of
independent and uniformly random bits, and is bitwise XORed with data. The
S-function is a non-linear transformation layer with m parallel d-bit bijective
S-boxes whereas the P -function is a linear transformation layer. In particular,
we have
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S : (GF (2d)m → (GF (2d)m , X = (x1, · · · , xm) �→ Z = S(X) = (s1(x1), · · · , sn(xn)),

P : (GF (2d)m → (GF (2d)m , Z = (z1, · · · , zm) �→ Y = P (Z) = (y1, · · · , yn),

F : (GF (2d)m → (GF (2d)m , X �→ Y = F (X) = P (S(X)).

Definition 1. Let x, z ∈ GF (2d). Denote the differences and the mask values
of x and z by Δx, Δz, and, Γx, Γz respectively. The differential and linear
probabilities of each S-box si are defined as:

DP si(Δx→ Δz) =
#{x ∈ GF (2d)|si(x)⊕ si(x⊕Δx) = Δz}

2d
,

LP si(Γz → Γx) = (2× #{x ∈ GF (2d)|x · Γx = si(x) · Γz

2d
− 1)2.

Definition 2. The maximum differential and linear probabilities of S-boxes are
defined as:

ps = max
i

max
Δx �=0,Δz

DP si(Δx→ Δz),

qs = max
i

max
Γx,Γz �=0

LP si(Γz → Γx).

This means that ps, qs are the upper bounds of the maximum differential and
linear probabilities for all S-boxes.

Definition 3. Let X=(x1, x2,· · · , xm) ∈ GF (2d)m. Then the Hamming weight
of X is denoted by Hw(X) = #{i|xi �= 0}.
Definition 4. [23] The branch number B of linear transformation θ is defined
as follows:

B = min
x �=0

(Hw(x) + Hw(θ(x)).

Consider Feistel ciphers with bijective SPN round functions as described pre-
viously. As mentioned in [16], for the differential case, B is taken to be the
differential branch number, i.e. B = minΔX �=0(Hw(ΔX)+Hw(ΔY )), where ΔX
is an input difference into the S-function and ΔY is an output difference of the
P -function. On the other hand, for the linear case, B is taken to be the linear
branch number, i.e. B = minΓY �=0(Hw(P ∗(ΓY )) + Hw(ΓY )), where ΓY is an
output mask value of the P -function and P ∗ is a diffusion function of mask
values concerning the P -function. Throughout this paper, B is used to denote
differential or linear branch number, depending on the context.

Definition 5. A differential active S-box is defined as an S-box given a non-zero
input difference. Similarly, a linear active S-box is defined as an S-box given a
non-zero output mask value.

Theorem 1. Let D(r) and L(r) be the minimum number of all differential and
linear active S-boxes for a r-round Feistel cipher respectively. Then the maximum
and linear characteristic probabilities of the r-round cipher are bounded by pD(r)

s

and qL(r)

s respectively.
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Note that Theorem 1 applies to any block cipher in general.

Theorem 2. [16] The minimum number of differential (and linear) active S-
boxes D(4r) for 4r-round Feistel ciphers with SPN round function is at least
rB + � r

2�.

3 Practical Security Evaluation of GF-NLFSR against
Differential and Linear Cryptanalysis

GF-NLFSR was proposed by Choy et al. in [8]. It is an n-cell extension of the
outer function FO of the KASUMI block cipher which is a 2-cell structure [8].

Throughout this paper, we consider GF-NLFSR block ciphers with SPN (S-P)
round function, as described in Section 1.2. In this paper, we assume that both
the S-function and P -function are bijective.

.

. . .

. . .

. . .

F

X

X

Y

(    )

(    )

(   +1 )

i

i

i

...
.

Fig. 1. i-th round of GF-NLFSR

With reference to Figure 1 , let X(i) and Y (i) be the input and output data
to the i-th round function respectively. Then the GF-NLFSR block cipher can
be defined as

X(i+n) = Y (i) ⊕X(i+1) ⊕X(i+2) ⊕ · · · ⊕X(i+n−1), for i = 1, 2, · · · . (1)

From equation (1), it can be shown almost immediately that there must be at
least 2 differential active S-boxes over (n+1)-round of n-cell GF-NLFSR cipher.

Proposition 1. The minimum number of differential active S-boxes for (n +
1)-round n-cell GF-NLFSR cipher with bijective SPN round function satisfies
D(n+1) ≥ 2.
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Proof. Without loss of generality, we assume that the n + 1 consecutive rounds
run from the first round to the (n + 1)-th round. Since the SPN round function
is bijective, ΔY (1) = 0 if and only if ΔX(1) = 0. From equation (1), we have

ΔX(n+1) = ΔY (1) ⊕ΔX(2) ⊕ΔX(3) ⊕ · · · ⊕ΔX(n), (2)

from which it follows that there must exist at least two non-zero terms in equa-
tion (2) in order for equation (2) to hold. Therefore

D(n+1) = Hw(ΔX(1)) + · · ·+Hw(ΔX(n+1)) ≥ 2. ��
Lemma 1. Let X = (x1, x2, · · · , xm) and X ′ = (x′

1, x
′
2, · · · , x′

m) ∈ GF (2d)m.
Then

Hw(X ⊕X ′) ≤ Hw(X) + Hw(X ′).

Proof

Hw(X ⊕X ′)
= #{s|xs �= 0 and x′

s = 0}+ #{t|xt = 0 and x′
t �= 0}

+ #{u|xu �= 0 and x′
u �= 0 and xu �= x′

u}
≤ Hw(X) + #{t|xt = 0 and x′

t �= 0}
≤ Hw(X) + Hw(X ′) ��

Lemma 2 is a straightforward generalization of Lemma 1.

Lemma 2. Let X1, X2, · · · , Xk ∈ GF (2d)m. Then

Hw(X1 ⊕X2 ⊕ · · · ⊕Xk) ≤ Hw(X1) + Hw(X2) + · · ·+ Hw(Xk).

As stated in Theorem 1, to investigate the upper bound of the maximum dif-
ferential characteristic probability of the GF-NLFSR cipher, we need to find a
lower bound for D(r), the number of differential active S-boxes for r consecu-
tive rounds of the cipher. Then the differential characteristic probability of the
r-round GF-NLFSR cipher is at most pD

(r)

s .

Lemma 3. For n-cell GF-NLFSR cipher, the minimum number of differential
active S-boxes in any 2n consecutive rounds satisfies D(2n) ≥ B.

Proof. Without loss of generality, we assume that the 2n consecutive rounds
run from the first round to the 2n-th round. For j = 1, · · · , n, note that at least
one of ΔX(j) �= 0. Let i be the smallest integer such that ΔX(i) �= 0, where
1 ≤ i ≤ n. Then

D(2n) = Hw(ΔX(1)) + Hw(ΔX(2)) + · · ·+ Hw(ΔX(2n))
≥ Hw(ΔX(i)) + Hw(ΔX(i+1)) · · ·+ Hw(ΔX(i+n))
≥ Hw(ΔX(i)) + Hw(ΔX(i+1) ⊕ · · · ⊕ΔX(i+n)), by Lemma 2,
= Hw(ΔX(i)) + Hw(ΔY (i))
≥ B. ��
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Remark 1. From the above proof, we see that with probability 1 − 1
M , where

M is the size of each cell, i.e. most of the time, we have ΔX(1) �= 0. In that
case, we are able to achieve at least B number of differential active S-boxes over
(n + 1)-round of n-cell GF-NLFSR cipher.

As a consequence of Lemma 3 and using a similar approach as [16], we have the
following result.

Theorem 3. The minimum number of differential active S-boxes for 2nr-round
n-cell GF-NLFSR cipher with bijective SPN round function satisfies

D(2nr) ≥ rB + �r
2
�.

In particular, when n = 2, the minimum number of differential active S-boxes for
4r-round 2-cell GF-NLFSR cipher with bijective SPN round function is at least
rB + � r

2�. Hence we see that 2-cell GF-NLFSR cipher with bijective SPN round
function has similar practical security against differential cryptanalysis as Feistel
ciphers with bijective SPN round functions. Moreover, 2-cell GF-NLFSR has an
added advantage that it realizes parallel computation of round functions, thus
providing strong motivation for parallelizing ciphers with SPN round functions,
as described in the next section. To conclude this section, we shall investigate
the practical security of 2-cell GF-NLFSR cipher against linear cryptanalysis.
Again from Theorem 1, to investigate the upper bound of the maximum linear
characteristic probability of the 2-cell GF-NLFSR cipher, we need to find a lower
bound for L(r), the number of linear active S-boxes for r consecutive rounds of
the cipher. Then the linear characteristic probability of the r-round cipher is at
most qL

(r)

s .

Lemma 4. For 2-cell GF-NLFSR cipher with bijective SPN round function and
linear branch number B = 5, the minimum number of linear active S-boxes in
any 4 consecutive rounds satisfies L(4) ≥ 3.

Proof. Let the input and output mask values to the i-th round F function
be ΓX(i) and ΓY (i) respectively. Note that since the F function is bijective,
ΓX(i) = 0 if and only if ΓY (i) = 0. Without loss of generality, we assume that
the 4 consecutive rounds run from the first round to the 4th round. Thus the
minimum number of linear active S-boxes over 4 consecutive rounds is given by

L(4) = Hw(ΓY (1)) + Hw(ΓY (2)) + Hw(ΓY (3)) + Hw(ΓY (4)).

From the duality between differential characteristic and linear approximation,
we have

ΓY (i+1) = ΓX(i−1) ⊕ ΓX(i),

for i = 2 and 3. We consider all cases as follows, where L(r)
i denotes the number

of linear active S-boxes over r rounds for case i:
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Case 1: ΓY (1) = 0
This implies that ΓY (2) �= 0 and ΓY (3) = ΓX(2). Hence L(3)

1 ≥ Hw(ΓY (2)) +
Hw(ΓY (3)) = Hw(ΓY (2)) + Hw(ΓX(2)) ≥ B = 5 ≥ 3. Thus L(4)

1 ≥ L(3)
1 ≥ 3.

Case 2: ΓY (1) �= 0 and ΓY (2) = 0
This implies that ΓY (3) = ΓX(1). Hence L(3)

2 ≥ Hw(ΓY (1)) + Hw(ΓY (3)) =
Hw(ΓY (1)) + Hw(ΓX(1)) ≥ B = 5 ≥ 3. Thus L(4)

2 ≥ L(3)
2 ≥ 3.

Case 3: ΓY (1) �= 0, ΓY (2) �= 0 and ΓY (3) = 0
This implies that ΓY (4) = ΓX(2). Hence L(4)

3 ≥ Hw(ΓY (1)) + Hw(ΓY (2)) +
Hw(ΓY (4)) = Hw(ΓY (1)) + Hw(ΓY (2)) + Hw(ΓX(2)) ≥ 1 + B = 6 ≥ 3.

Case 4: ΓY (1) �= 0, ΓY (2) �= 0, ΓY (3) �= 0 and ΓY (4) = 0
Then we obtain L(4)

4 ≥ Hw(ΓY (1)) + Hw(ΓY (2)) + Hw(ΓY (3)) ≥ 1 + 1 + 1 = 3.

Case 5: ΓY (1) �= 0, ΓY (2) �= 0, ΓY (2) �= 0 and ΓY (4) �= 0
Then we obtain L(4)

5 = Hw(ΓY (1)) + Hw(ΓY (2)) + Hw(ΓY (3)) + Hw(ΓY (3)) ≥
1 + 1 + 1 + 1 = 4 ≥ 3 .

Therefore L(4) ≥ 3. ��
Theorem 4. For 2-cell GF-NLFSR cipher with bijective SPN round function
and linear branch number B = 5, we have

(1) L(8) ≥ 7,
(2) L(12) ≥ 11,
(3) L(16) ≥ 15.

Proof. Without loss of generality, we begin from the first round.

(1) From the proof of Lemma 4, over 8 rounds, we only need to check the case
for ΓY (1) �= 0, ΓY (2) �= 0, ΓY (3) �= 0 and ΓY (4) = 0. (In all remaining
cases, there will be at least 7 linear active S-boxes over 8 rounds.) However
ΓY (3) �= 0 and ΓY (4) = 0 correspond to Case 1 of Lemma 4 for the four
consecutive rounds that begin from the 4th round and end after the 7th
round. Hence there will be at least 3+5 = 8 linear active S-boxes. Therefore
L(8) ≥ 7.

(2) From (i), over 12 rounds, we only need to consider the case for ΓY (i) �= 0
for i = 1, · · · , 7 and ΓY (8) = 0. Following a similar argument to (i), we
are definitely ensured of at least 7 + 5 = 12 linear active S-boxes. Hence
L(12) ≥ 11.

(3) The proof is similar to that of (i) and (ii). ��

4 Application 1: Parallelizing Camellia

4.1 Brief Description of Camellia

Camellia was jointly developed by NTT and Mitsubishi Electric Corporation.
According to [5], Camellia uses an 18-round Feistel structure for 128-bit key,
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and a 24-round Feistel structure for 192-bit and 256-bit keys, with additional
input/output whitenings and logical functions called the FL-function and FL−1-
function inserted every 6 rounds. Its F -function uses the SPN (Substitution-
Permutation Network) structure, whereby the non-linear layer comprises eight
S-boxes in parallel while the linear layer can be represented using only bytewise
exclusive-ORs. Note that the F -function is bijective.

For security against differential and linear cryptanalysis, the branch number
of the linear layer should be optimal, i.e. branch number = 5. In addition, the
S-boxes adopt functions affine equivalent to the inversion function in GF (28)
which achieves the best known of the maximum differential and linear probabil-
ities 2−6 [5].

The key schedule of Camellia is slightly different for the 128-bit key ver-
sion and the 192-bit/256-bit key version. Despite the slight differences, the key
schedule is relatively simple and consists of two main steps. One (or two) 128-bit
subkey materials are first derived from the secret key via some Feistel network.
The round keys are then generated by rotating the secret key itself and the
derived subkeys by various amounts.

For more details of the structure of Camellia, readers are referred to [4].

4.2 Parallelizing Camellia: p-Camellia

In this section, we propose another version of the existing Camellia block cipher,
which we call p-Camellia (“parallelizable” Camellia). As described previously,
Camellia uses a Feistel network structure. For the encryption procedure of p-
Camellia, we shall replace the Feistel network with the 2-cell GF-NLFSR block
cipher structure instead, as depicted in Figure 4 of Appendix. Other compo-
nents such as number of rounds, S-function, P -function and the key schedule
etc remain unchanged. In addition, similar to Camellia, there are input/output
whitenings which are represented by the XOR symbols at the beginning/end of
p-Camellia cipher in Figure 4 of Appendix.

4.3 Differential and Linear Cryptanalysis of p-Camellia

Following the same approach in [4], denote the maximum differential and linear
characteristic probabilities of p-Camellia reduced to 16-round by p and q respec-
tively. Recall that since both p-Camellia and Camellia use the same F -function,
in the case of p-Camellia, the maximum differential and linear probability of
the S-boxes are 2−6. From [4], the differential branch numbers is equal to 5. By
considering the P ∗-function of Camellia as in [16], the linear branch number is
verified to be 5.

Over 16 rounds, there are four 4-round blocks. By virtue of Theorem 3, where
n = 2 and r = 4, we have

p ≤ (2−6)4×5+2 = 2−132 < 2−128.

By Theorem 4, we obtain q ≤ (2−6)15 = 2−90. This implies that an attacker
needs to collect at least 290 chosen/known plaintexts to mount an attack, which
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is not feasible in practice. Also, as remarked in [4], both Theorems 3 and 4 apply
to 2-cell GF-NLFSR ciphers in general and so we expect p-Camellia to be more
secure in practice, and this will be verified through computer stimulation with
the results provided in an extended version of this paper.

This implies that there is no effective differential or linear characteristic for
p-Camellia reduced to more than 15 rounds. In other words, p-Camellia offers
sufficient security against differential and linear attack.

4.4 Other Attacks on p-Camellia

In this section, we briefly examine the protection of p-Camellia against various
known attacks. Since p-Camellia uses the same components as Camellia, we
expect that p-Camellia offers similar level of protection against most of the
attacks, as compared to Camellia.

Boomerang Attack. To perform boomerang attack, the cipher is split into
two shorter ciphers E0 and E1 such that the differential probability of each
part is known to be large. Suppose an adversary split 16 rounds into E0 and
E1 with r and 16 − r rounds respectively. By Theorem 3, the characteristic
differential probability of each sub-ciphers would be bounded by p0 ≤ (2−30)�r/4�

and p1 ≤ (2−30)�(16−r)/4�. (Note that we ignore the last term in the upper bound
of Theorem 3 for ease of calculation.) It can be easily verified that �r/4�+�(16−
r)/4� ≥ 3 for r = 1, . . . , 15. Consequently,

p2
0 × p2

1 ≤ 2−60×3 = 2−180 < 2−128,

and thus p-Camellia is secure against boomerang attack.

Impossible Differential Attack. Impossible differential attack is a chosen
plaintext attack and is an extension of differential cryptanalysis. The main idea
of this attack is to construct an impossible differential characteristic which is
then used to filter wrong key guesses. According to [8], there is at least one 4-
round impossible differential in the 2-cell GF-NLFSR, namely (α, 0) �4 (β, β),
where α and β are non-zero fixed differences. We have not found impossible
differentials with more than 4 rounds. As explained in [5], we expect that the
presence of the FL- and FL−1 functions will greatly increase the difficulty of per-
forming impossible differential attack on p-Camellia since the functions change
the differential paths depending on key values.

Integral Attack. In an integral attack, the attacker studies the propagation of
multisets of chosen plaintexts of which part is held constant, and another part
varies through all possibilities (also said to be active) through the cipher. There
is a 4-round integral distinguisher of 2-cell GF-NLFSR [8], namely (A,C) →
(S0, S1), where C is constant, A is active and S0 ⊕ S1 is active. We have not
found integral distinguishers with more than 4 rounds. An adversary can extend
an integral attack distingusher by at most three rounds. That means he would
need to extend the integral attack distinguisher from 4 to 18 − 3 = 15 rounds
which seems unlikely.
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Slide Attack. The slide attack works on ciphers with cyclical structures over a
few rounds. According to [5], the FL- and FL−1- functions are inserted between
every 6 rounds to provide non-regularity across rounds. In addition, different
subkeys are used for every round, making slide attack unlikely.

We now proceed to examine the protection of p-Camellia against higher order
differential attack and interpolation attack. We will adopt a similar approach as
[5], which is somewhat heuristic but adequate for us to have a comprehensive
and insightful discussion.

Higher Order Differential Attack. Higher order differential attack was in-
troduced by Knudsen in [17]. This attack works especially well on block ciphers
with components of low algebraic degree such as the KN-Cipher [13], whereby
the ciphers can be represented as Boolean polynomials of low degree in terms of
the plaintext. The attack requires O(2t+1) chosen plaintext when the cipher has
degree t.

p-Camellia uses exactly the same S-boxes as Camellia and it was confirmed in
[5] that the degree of the Boolean polynomial of every output bit of the S-boxes
is 7 by finding Boolean polynomial for every outpit bit of the S-boxes. Hence,
similar to Camellia, the degree of an intermediate bit in the encryption process
should increase as the data passes through many S-boxes. Indeed, let (αi, βi) be
the input to the (i+1)-th round of p-Camellia. Suppose deg(α0) = deg(β0) = 1.
After the first round, deg(α1) = deg(β0) = 1 while deg(β1) = deg(F (α0)⊕β0) =
7. Continuing this process, we see that the degrees of αi and βi for i = 0, 1, 2, · · · ,
increases as follows: (1, 1), (1, 7), (7, 7), (7, 49), (49, 49), (49, 127), (127, 127), · · ·

That is, the degrees increase exponentially as the number of rounds increase
and reach the maximum degree of 127 after the 6th round, implying that it is
highly unlikely that higher order differential attack will work.

Interpolation Attack. The interpolation attack [14] works on block ciphers
that can be expressed as an equation in GF (2d) with few monomials. p-Camellia
uses the same components as Camellia and it was shown in [5] that as the data
passes through many S-boxes and the P -function, the cipher became a complex
function which is a sum of many multi-variate monomials over GF (28). Hence
we also expect p-Camellia to be secure against interpolation attack.

4.5 Implementation Advantages

Before we discuss the implementation advantages of p-Camellia we briefly in-
troduce hardware implementation strategies for block ciphers that consist of a
round-function that is iterated several times. While software implementations
have to process single operations in a serial manner, hardware implementations
offer more flexibility for parallelization. Generally speaking there exist three
major architecture strategies for the implementation of block ciphers: serial-
ized, round-based, and parallelized. In a serialized architecture only a fraction
of a single round is processed in one clock cycle. These lightweight implemen-
tations allow reduction in area and power consumption at the cost of a rather
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long processing time. If a complete round is performed in one clock cycle, we
have a round-based architecture. This implementation strategy usually offers the
best time-area product and throughput per area ratio. A parallelized architec-
ture processes more than one round per clock cycle, leading to a rather long
critical path. A longer critical path leads to a lower maximum frequency but
also requires the gates to drive a higher load (fanout), which results in larger
gates with a higher power consumption. By inserting intermediate registers (a
technique called pipelining), it is possible to split the critical path into fractions,
thus increasing the maximum frequency. Once the pipeline is filled, a complete
encryption can be performed in one clock cycle with such an architecture. Con-
sequently, this implementation strategy yields the highest throughput at the
cost of high area demands. Furthermore, since the pipeline has to be filled, each
pipelining stage introduces a delay of one clock cycle.

From a lightweight perspective, i.e. if we consider serialized architectures, it
is no wonder that area, power and timing demands stay the same for Camellia
and p-Camellia, since no operation was introduced or removed. Also a round-
based p-Camellia implementation is as efficient as a round-based Camellia im-
plementation. However, if we consider applications that require high throughput,
p-Camellia has significant advantages. If we consider an architecture that im-
plements two rounds in one clock cycle (see Figure 2), Camellia’s critical path
involves two F-functions and two 2-input XOR gates, compared to only one F-
function and one 3-input XOR gate for p-Camellia. Since Camellia inserts every
six rounds the FL and FL−1 functions, it is advantageous to parallelize this
fraction of Camellia/p-Camellia. In this case the critical path of Camellia con-
sists of six F-functions, six 2-input XOR gates and the delay of FL/FL−1 while

A(i)

F

B(i)

F

A(i)

F

B(i)

F

A(i+2) B(i+2)

A(i+2) B(i+2)

p-Camellia

Camellia

critical path
normal signals

Fig. 2. Possible hardware architecture of two rounds of Camellia (left) and p-Camellia
(right)
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p-Camellia’s critical path only consists of three F-functions, three 3-input XOR
gates, and the delay of FL/FL−1. Given the fact that the F-function consists
of a 2-input XOR gate (key addition), several combinatorial gates (S-box) and
an extensive XOR network (P-function), the delay difference between a 2-input
and a 3-input XOR gate is negligible. Hence p-Camellia can achieve a maximum
frequency that is twice as high as it would be for Camellia while having lower
area and power demands. In case pipelining is applied, Camellia requires twice as
much pipelining stages as p-Camellia to achieve the same maximum frequency,
resulting in a delay that is twice as high.

5 Application 2: Parallelizing SMS4

5.1 Brief Description of SMS4

According to [11], SMS4 takes in a 128-bit key and uses a 32-round generalized
Feistel structure to transform the plaintext to the ciphertext. Each round of the
generalized Feistel transformation transforms four 32-bit words Xi, i = 0, 1, 2, 3,
as follows:

(X0, X1, X2, X3, rk) �→ (X1, X2, X3, X0 ⊕ T (X1 ⊕X2 ⊕X3 ⊕ rk)), (3)

where rk denotes the round key. In each round, the nonlinear function T does
the following operations in sequence: 32-bit subkey addition, S-box Subsitution
(layer of four 8-bit S-boxes) and lastly, a 32-bit linear transformation L.

It is well-known that the S-boxes adopt functions affine equivalent to the
inversion function in GF (28) [15,10], which achieves the best known maximum
differential and linear probabilities of 2−6. Furthermore, it can be verified that
the branch number of the linear transformation L is Ld = 5. This gives optimal
spreading effect which increases the number of active S-boxes for protection
against differential and linear cryptanalysis.

The key schedule of SMS4 XORs the secret key MK with a constant FK and
passes it through a nearly-identical 32-round structure as the main SMS4 cipher.
The only difference is that the 32-bit linear transformation L is replaced by a
simpler linear transformation L′, which can be verified to have branch number
L′

d = 4. The 32-bit nonlinear output of the i-th round of the key schedule is
taken to be the i-th round subkey of the main cipher. For more details, please
refer to [11].

5.2 Parallelizing SMS4: p-SMS4

In this section, we propose another version of the existing SMS4 block cipher,
which we call p-SMS4 (“parallelizable” SMS4 ). As described previously, SMS4
uses a generalized Feistel network structure described by equation (3). For the
encryption procedure of p-SMS4, we shall replace the generalized Feistel network
with the 4-cell GF-NLFSR block cipher structure described by:

(X0, X1, X2, X3, rk) �→ (X1, X2, X3, X1 ⊕X2 ⊕X3 ⊕ T (X0 ⊕ rk)). (4)
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Other components such as number of rounds and the T -function, which consists
of four S-boxes and a L-function, remain the same as SMS4. One round of p-
SMS4 corresponds to a 4-cell version of the structure in Figure 1, where the
nonlinear function F (·) is the T -function used in SMS4.

The key schedule of p-SMS4 XORs the secret key MK with a constant FK
and passes it through an identical 32-round structure as the main cipher of p-
SMS4 described by equation (4). The constant FK, S-box and the linear trans-
formation L′ of the key schedule remain the same as SMS4. We need the key
schedule to have the same structure as the main cipher so that it is also paral-
lelizable in hardware, and thus can be made “on-the-fly”.

5.3 Differential Cryptanalysis of p-SMS4

Su et al. proved bounds for the differential characteristic probability of the SMS4
cipher in [18]. One of the results they proved was that in every 7 rounds of the
SMS4 cipher, there are at least 5 active S-boxes. However, there are currently
no known bounds on the linear characteristic probability of SMS4 to the best of
our knowledge.

Similarly for the p-SMS4 cipher, we can easily compute the differential char-
acteristic bound by Theorem 3. Denote the maximum differential probability of
p-SMS4 reduced to 29-round by p (we assume a minus-3 round attack where the
attacker guesses three subkeys with complexity 296).

Recall that both p-SMS4 and SMS4 use the same T -function. In the case of
p-SMS4, the maximum differential probability of the S-boxes is 2−6 and Ld =
5. By virtue of Theorem 3 with n = 4 and r = 5, the first 24 rounds has
5× 3 + �3/2� = 16 active S-boxes. Over the next 5 rounds, we have 2 active S-
boxes by Proposition 1. Therefore the differential characteristic probability over
29 rounds satisfies:

p ≤ (2−6)16 × (2−6)2 = 2−108.

This implies that an attacker needs to collect at least 2108 chosen plaintext-
ciphertext pairs to launch an attack. This is not feasible in practice. Moreover
by Remark 1, for random input differences, we have at least 5 active S-boxes
every 5 rounds with probability 1 − 2−32. Only 2−32 of the time do we need
8 rounds to ensure at least 5 active S-boxes. Thus we expect the bound for
the differential characteristic probability to be even lower. In summary, we have
shown that p-SMS4 offers sufficient security against differential cryptanalysis.

Remark 2. Like the SMS4 cipher, we currently do not have a bound for the
characteristic linear probability of p-SMS4. This shall be studied in an extended
version of this paper.

5.4 Related-Key Differential Attack on p-SMS4

Related-key differential attacks have been shown to have the devastating effect
of recovering the secret key of AES-256 with a complexity of 2131 using 235 re-
lated keys in [7]. In related-key differential attack, there are non-zero differential
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inputs into both the cipher and the key schedule. The adversary tries to find a
differential characteristic path in the key schedule with probability pk and a dif-
ferential characteristic path in the main cipher with probability pc|k that holds,
on the condition that the key schedule differential path is true. The attacker can
then launch the attack with complexity O(1/(pk × pc|k)) where he can tweak
the secret key 1/pk times to get that many related keys. In AES-256, we have
pk = 2−35 and pc|k = 2−93.

Because the p-SMS4 key schedule uses a 4-cell GF-NLFSR structure, we can
try to bound the probability pk of a differential characteristic path in the key
schedule by Theorem 3. However, Theorem 3 cannot be directly applied to the
main cipher to derive the differential characteristic probability pc|k because there
are subkey differential input into every round.

We use the fact that the key schedule uses the inversion S-box with differential
probability 2−6 and that the linear transform L′ has branch number L′

d = 4.
By Theorem 3 with n = 4 and r = 4, every 24 rounds of the key schedule has
4 × 3 + �3/2� = 13 active S-boxes. With a computation similar to Section 5.3,
we have another 2 active S-boxes over the next 5 rounds giving:

pk ≤ (2−6)13 × (2−6)2 = 2−90.

over 29 rounds of the key schedule. That means the complexity of any minus-
3 round related-key differential attack is at least O(290) and uses at least 290

related keys, which is not feasible in practice. Again, by a similar explanation as
in Section 5.3 based on Remark 1, most of the time we have 5 active S-boxes per
5 rounds and we expect pk to be lower and the attack complexity to be higher.

In [6], a related-key boomerang attack on AES-256 with a complexity of 2119

using 4 related keys is presented but it assumes a more powerful adverserial
model. In a similar way, we can show through the p-SMS4 key schedule differ-
ential structure that related-key boomerang attack is infeasible.

5.5 Other Attacks on p-SMS4

Boomerang Attack. Suppose an adversary performs a minus-3 round at-
tack on 29 rounds of p-SMS4. He would need to split 29 rounds into two sub-
ciphers E0, E1 with r and 29 − r rounds respectively, where r = 1, · · · , 28.
By Proposition 1 and Theorem 3, p0 ≤ (2−6)5×� r

8 �+2×� r mod 8
5 � and p1 ≤

(2−6)5×� 29−r
8 �+2×� (29−r) mod 8

5 �. (Note that we ignore the last term in the up-
per bound of Theorem 3 for ease of calculation.) For r = 1, · · · , 28, let
n8 = � r

8�+ � 29−r
8 � and n5 = � r mod 8

5 �+ � (29−r) mod 8
5 �. It can be easily checked

that there are only three combinations of values that n8 and n5 can take, as
summarized in the Table 1.

Now p0 × p1 ≤ (2−6)5n8+2n5 . This implies that

p2
0 × p2

1 ≤ (2−12)5n8+2n5 .

The upper bounds of p2
0 × p2

1 for each combination of n8 and n5 are also given
in Table 1. From Table 1, we see that p2

0 × p2
1 < 2−128. Hence p-SMS4 is secure

against boomerang attack.
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Table 1. Values of n8, n5 and upper bounds of p2
0 × p2

1 for r = 1, · · · , 28

n8 n5 r p2
0 × p2

1

3 0 1, · · · , 4, 9, · · · , 12, 17, · · · , 20, 25, · · · , 28 ≤ (2−12)15 = 2−180

3 1 5, 8, 13, 16, 21, 24 ≤ (2−12)15+2 = 2−204

2 2 6, 7, 14, 15, 22, 23 ≤ (2−12)10+4 = 2−168

Impossible Differential Attack. According to [8,19,22], there is at least one
18-round impossible differential distinguisher in the 4-cell GF-NLFSR, which
results in a 25-round impossible differential attack with complexity 2123 and
uses 2115 chosen plaintext encryptions. An identical attack is applicable to 25-
round p-SMS4 with the same complexity. However, that attack is unlikely to
work on the full p-SMS4 cipher, which has 32 rounds.

Integral Attack. According to [8,19], there is at least one 16-round integral
attack distinguisher in the 4-cell GF-NLFSR starting with one active 32-bit
word. A naive key guessing attack can extend this distinguisher by at most 3
rounds at the end (guessing more rounds of keys may make the complexity too
close to 2128). An adversary may extend the attack by 4 rounds in front, starting
with 3 active words and using the method of [12]. Using these means, we expect
a 4 + 16 + 3 = 23 round attack on p-SMS4 and the full 32 rounds will be secure
against integral attack.

Slide Attack. The slide attack works on ciphers with cyclical structures over
a few rounds. However the subkeys used in every round are nonlinearly derived
from the previous subkey. Thus the subkeys are all distinct and there is no simple
linear relation between them, making slide attack unlikely.

XSL Attack. In [15], Ji and Hu showed that the eprint XSL attack on SMS4
embedded in GF (28) can be applied with complexity 277. A similar analysis can
be applied on p-SMS4 to show that the complexity of the eprint XSL attack on
p-SMS4 embedded in GF (28) is also 277. However, it was shown in [10] by Choy
et al. that Ji and Hu’s analysis might be too optimistic and the actual complexity
of the compact XSL attack on embedded SMS4 is at least 2216.58. We can use
an analysis identical to the ones used in [10] to show that the complexity of the
compact XSL attack on p-SMS4 is also at least 2216.58.

Using a similar approach as [5], we discuss the protection of p-SMS4 against
higher order differential attack and interpolation attack in the remaining of this
section.

Higher Order Differential Attack. As mentioned previously, higher order
differential attack is generally applicable to ciphers that can be represented as
Boolean polynomials of low degree in terms of the plaintext. The attack requires
O(2t+1) chosen plaintext when the cipher has degree t.
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p-SMS4 uses exactly the same S-boxes as SMS4 where the degree of the
Boolean polynomial of every output bit of the S-boxes is 7. Making the as-
sumption that when we compose two randomly chosen S-boxes F,G of degree
t1, t2, F ◦G should have degree t1t2. We expect the degree of an intermediate bit
in the encryption process to increase exponentially as the data passes through
many S-boxes.

Indeed, by the 4th round, every output bit will have degree 7. By the 8th

round, every output bit will have degree 72 = 49. By the 12th round, every
output bit will have degree min(73, 127) = 127 in terms of the plaintext bits.
Therefore p-SMS4 is secure against higher order differential attack.

Interpolation Attack. The interpolation attack works on block ciphers that
can be expressed as an equation in GF (2d) with few monomials. p-SMS4 uses
the same components as SMS4 and as the data passes through many S-boxes
and L-functions, the cipher will became a complex function which is a sum of
exponentially many multi-variate monomials over GF (28). Hence we expect p-
SMS4 to be secure against interpolation attack.

5.6 Implementation Advantages

Similar to p-Camellia we will assess the implementation advantages of p-SMS4
over SMS4 with respect to serialized, round-based and parallelized architectures.
In case of SMS4 the XOR sum of three branches forms the input to the F-function
and its output is XORed to the last branch while p-SMS4 uses one branch as the
input for the F-function and XORs its output to the remaining three branches.
This difference allows more flexible implementations of p-SMS4 compared to
SMS4, because the XOR sum of four signals can be achieved by either using
three 2-input XOR gates or combining a 3-input XOR gate with a 2-input XOR
gate. The first option is faster (0.33 ns vs. 0.45 ns) while the second option
requires less area (256 GE vs. 235 GE), which is an advantage for lightweight
implementations. Beside this flexibility, p-SMS4 has similar characteristics as
SMS4 for a serialized implementation. The critical path of a round-based p-SMS4
implementation is shorter than that of SMS4, since it consists of the F-function
and a 2-input XOR gate compared to a 3-input XOR gate, the F-function and
a 2-input XOR gate for SMS4.

For parallelized implementations p-SMS4 offers even greater advantages. If
we consider an implementation that processes four rounds in one clock cycle
(see figure 3), the critical path of p-SMS consists only of the F-function and two
2-input XOR gates while SMS4’s critical path consists of four F-functions, four 2-
input XOR gates and four 3-input XOR gates. Hence, the maximum frequency
and thus the maximum throughput that can be achieved with p-SMS4 using
such an architecture is more than four times higher while the area and power
consumption are lower compared to a corresponding SMS4 implementation. A
similar frequency can be achieved for SMS4 by inserting three pipelining stages,
which significantly increases the area and power consumption and introduces a
delay of three clock cycles.
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Fig. 3. Possible hardware architecture of four rounds of SMS4 (left) and p-SMS4 (right)

From these estimates it becomes clear that the implementation advantages of
our newly proposed parallelizable Feistel-structure becomes even larger with a
growing number of branches. In fact, an n-cell GF-NLFSR can be implemented
using n rounds in parallel while having the same critical path as for a single
round implementation. This translates to an n times higher maximum frequency
while the area and power consumption are less then for a conventional Feistel
structure.

6 Conclusion

In this paper we proposed the use of n-cell GF-NLFSR structure to parallelize
(Generalized) Feistel structures. We used two examples, p-Camellia and p-SMS4,
and showed that they offer sufficient security against various known existing at-
tacks. At the same time, as compared to their conventional Feistel structure
counterparts Camellia and SMS4, their hardware implementations achieve a
maximum frequency that is n times higher, where n is the number of Feistel
branches, while having lower area and power demands. These estimates indi-
cate that of n-cell GF-NLFSRs are particularly well suited for applications that
require a high throughput.
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Abstract. This paper presents improved collision attacks on round-
reduced variants of the hash function CubeHash, one of the SHA-3 second
round candidates. We apply two methods for finding linear differential
trails that lead to lower estimated attack complexities when used within
the framework introduced by Brier, Khazaei, Meier and Peyrin at ASIA-
CRYPT 2009. The first method yields trails that are relatively dense at
the beginning and sparse towards the end. In combination with the condi-
tion function concept, such trails lead to much faster collision attacks. We
demonstrate this by providing a real collision for CubeHash-5/96. The
second method randomizes the search for highly probable linear differen-
tial trails and leads to significantly better attacks for up to eight rounds.

Keywords: hash function, differential attack, collision, linearization,
SHA-3, CubeHash.

1 Introduction

Hash functions are important cryptographic primitives that transform arbitrary-
length input messages into fixed-length message digests. They are used in many
applications, notably in commitment schemes, digital signatures and message
authentication codes. To this end they are required to satisfy different security
properties, one of them is collision resistance. Informally, a hash function is
collision resistant if it is practically infeasible to find two distinct messages m1
and m2 that produce the same message digest.

Chabaud and Joux [7] presented the first differential collision attack on SHA-0.
Using a linearized model of the hash function, they found message differences
that lead to a collision of the original hash function with a higher probability than
the birthday bound. Similar strategies were later used by Rijmen and Oswald [12]
on SHA-1 and by Indesteege and Preneel [8] on EnRUPT.

Pramstaller et al. [11] related the problem of finding highly probable linear
differences to the problem of finding low weight codewords of a linear code. A
recent work of Brier et al. [4] more precisely analyzed this relation for hash
functions whose non-linear operations only consist in modular additions. They
reformulate the problem of finding message pairs that conform to a linear dif-
ferential trail to that of finding preimages of zero of a condition function. The
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search for such preimages is accelerated by the implicit use of message modifi-
cation techniques. Given a linear differential trail, the concept further allows to
estimate the corresponding complexity of the collision attack.

The success of the attack essentially depends on finding appropriate linear
trails that lead to a low complexity of the attack. Such trails must not only
have low weight, but the distribution of the weights along the trail must also be
considered. A trail that is dense at the beginning and sparse towards the end
yields a lower attack complexity than an arbitrary trail of comparable weight.
This is due to freedom degrees use: initial conditions can be more easily satisfied
than those towards the end of the trail.

Contribution of this Paper. We apply two different methods for finding
appropriate trails for variants of the SHA-3 second round candidate CubeHash.
For several round parameters r and message block sizes b we present better
collision attacks on CubeHash-r/b than those presented so far. Specifically, we
find collisions of CubeHash-5/96 and give a theoretical attack of CubeHash-8/96
with estimated complexity of 280 compression function calls. This improves over
the generic attack with complexity of about 2128 and is the first collision attack
on more than seven rounds.

Previous Results on CubeHash. We refer to part 2. B. 5 of [2] for a complete
survey of cryptanalytic results on CubeHash. The currently best collision attacks
on CubeHash-r/b for message block sizes b = 32, 64 were presented in [4]. For
b = 32 they present attacks of complexity 254.1 and 2182.1 for four and six rounds,
respectively. For b = 64 an attack of complexity 2203 for seven rounds is given.
No collision attack for more than seven rounds was presented so far. Generic
attacks are discussed by Bernstein in the appendix of [1].

Organization. Section 2 reviews the linearization framework and the concept
of condition function presented in [4]. In Section 3 we describe the hash function
CubeHash and define an appropriate compression function. Section 4 details
how to find linear differential trails that, in combination with the concept of
condition function, lead to successful collision attacks. In Section 5 we analyze
CubeHash-5/96 and present a real collision. We conclude in Section 6.

2 Linearization Framework and Condition Function

In this section we fix notations and briefly review the general framework for
collision attacks presented in [4] (see [5] for an extended version).

2.1 Fixed-Input-Length Compression Function

To any hash function we can attribute a fixed-input-length compression function
Compress : {0, 1}m → {0, 1}h, with m ≥ h, such that a collision for the com-
pression function directly translates to a collision of the hash function1 (e.g., we
1 Note that this notion of compression function does not coincide with the frequently

used compression function in the context of Merkle-Damg̊ard and other iterated
constructions.
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can just restrict the domain of the hash function). We suppose that the only
non-linear operations of the compression function consist of modular additions
of w-bit words. For any input M to the compression function denote A(M)
and B(M) the concatenation of all left, and, respectively right addends that
are added in the course of the computation of Compress(M). Analogously define
C(M) as the concatenation of the corresponding carry words. Thus, if na is the
number of additions effected in the course of one evaluation of the compression
function, each of A(M),B(M) and C(M) contains naw bits.

2.2 Linearization and Raw Probability

Let Compresslin be the linear function obtained by replacing all modular additions
of Compress by XORs. For an input Δ to this linearized compression function
denote α(Δ) and β(Δ) the concatenation of the left, and, respectively right
addends that are XORed in the course of the computation of Compresslin(Δ),
setting their most significant bits to zero2.

We say that a message M conforms to the trail of Δ if for all i = 0, . . . , na−1

((Ai ⊕ αi) + (Bi ⊕ βi))⊕ (Ai + Bi) = αi ⊕ βi,

where Ai, Bi, αi and βi respectively denote the ith w-bit word of A(M), B(M),
α(Δ) and β(Δ). According to Lemma 2 in [4], the probability that a randomly
chosen M conforms to the trail of Δ is given by

pΔ = 2−wt(α(Δ)∨β(Δ)),

where wt(·) denotes the Hamming weight. If Δ lies in the kernel of the linearized
compression function, pΔ is a lower bound for the probability that the message
pair (M,M ⊕Δ) is a collision of the compression function. We call pΔ the raw
probability of Δ and y = − log2(pΔ) the number of conditions imposed by Δ.

2.3 The Condition Function

Let Δ be in the kernel of the linearized compression function. The condition func-
tion ConditionΔ has the same domain as the compression function, but outputs
Y of lengths y = wt(α(Δ) ∨ β(Δ)). To shorten the notation we omit the argu-
ment M to A,B,C, and Δ to α,β. Additionally, we use subscripts to denote bit
positions, e.g., Ai is the ith bit of A. Let i0, . . . , iy−1 be the bit positions of the
y non-zero bits in α ∨ β. Define the condition function Y = ConditionΔ(M) by

Yj = (αij ⊕ βij
)Cij ⊕αijBij ⊕ βij

Aij ⊕αij βij
for j = 0, . . . , y − 1.

By Proposition 1 in [4], the problem of finding a message M that conforms to the
trail of Δ is equivalent to the problem of finding M such that ConditionΔ(M) = 0.

Suppose an ideal situation where we are given partitions
⋃�

i=1Mi = {0, . . . ,
m − 1} and

⋃�
i=0 Yi = {0, . . . , y − 1} such that for j = 0, . . . , � the output bits

2 The most significant bits of each addition are linear.
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with position indices in Yj only depend on the input bits with position indices
in

⋃j
i=1Mi. Then we expect to find an M such that ConditionΔ(M) = 0 after

cΔ =
�∑

i=0

2qi

evaluations of the condition function, where qi = |Yi| + max(0, qi+1 − |Mi+1|)
for i = �− 1, . . . , 0 and q� = |Y�|. We call cΔ the theoretical complexity of Δ.

We refer to [5] for a method to approximately determine such partitions and
suitable probabilities 2−pi to keep track of the non-ideality of these partitions.
Theoretical complexities in this paper are computed including the probabilities
2−pi . We further refer to [5] for instructions on implementing the search algo-
rithm with negligible memory requirement.

3 Description of CubeHash

CubeHash [2] is a second-round candidate of the SHA-3 competition [10] of the
National Institute of Standards and Technology. The function is designed with
parameters r, b, and h which are the number of rounds, the number of bytes per
message block, and the hash output length (in bits), respectively. We denote the
parametrized function as CubeHash-r/b. The initial proposal of CubeHash-8/1
was tweaked to CubeHash-16/32 which is about 16 times faster and is now
the official proposal for all digest lengths h = 224, 256, 384 or 512. Third-party
cryptanalysis with larger values of b and fewer number of rounds r is explicitly
encouraged.

3.1 Algorithm Specification

CubeHash operates on 32-bit words. It maintains a 1024-bit internal state X
which is composed of 32 words X0, . . . , X31. The algorithm is composed of five
steps:

1. Initialize the state X to a specified value that depends on (r, b, h).
2. Pad the message to a sequence of b-byte input blocks.
3. For every b-byte input block:

– XOR the block into the first b-bytes of the state.
– Transform the state through r identical rounds.

4. Finalize the state: XOR 1 into X31 and transform the state through 10r
identical rounds.

5. Output the first h bits of the state.

A round consists of the following steps:

– Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
– Rotate Xi to the left by seven bits, for 0 ≤ i ≤ 15.
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– Swap Xi and Xi⊕8, for 0 ≤ i ≤ 7.
– XOR Xi⊕16 into Xi, for 0 ≤ i ≤ 15.
– Swap Xi and Xi⊕2, for i ∈ {16, 17, 20, 21, 24, 25, 28, 29}.
– Add Xi into Xi⊕16, for 0 ≤ i ≤ 15.
– Rotate Xi to the left by eleven bits, for 0 ≤ i ≤ 15.
– Swap Xi and Xi⊕4, for i ∈ {0, 1, 2, 3, 8, 9, 10, 11}.
– XOR Xi⊕16 into Xi, for 0 ≤ i ≤ 15.
– Swap Xi and Xi⊕1, for i ∈ {16, 18, 20, 22, 24, 26, 28, 30}.

In this paper we consider the variants CubeHash-r/b with b = 32, 64 and 96,
always assuming h = 512.

3.2 Defining the Compression Function

Following [4] we define a fixed-input-length compression function Compress for
CubeHash. This compression function is parametrized by a 1024-bit initial value
V and compresses t (t ≥ 1) b-byte message blocks M = M0‖ · · · ‖M t−1. The
output H = Compress(M,V ) consists of the last 1024 − 8b bits of the internal
state after tr round transformations processing M .

A colliding message pair (M,M ⊕Δ) for Compress directly extends to a colli-
sion of CubeHash by appending a pair of message blocks (M t,M t⊕Δt) such that
Δt erases the difference in the first 8b bits of the internal state. The difference
Δt is called erasing block difference.

When searching for collisions of Compress, the parameter V is not restricted
to be the initial value of CubeHash. Specifically, V can be the state after pro-
cessing some message prefix Mpre. Thus, a pair of colliding messages for the hash
function then has the general form

(Mpre‖M‖M t‖M suff ,Mpre‖M ⊕Δ‖M t ⊕Δt‖M suff)

for an arbitrary message suffix M suff .

4 Constructing Linear Differentials

We linearize the compression function of CubeHash to find message differences
that can be used for a collision attack as described in Section 2. Specifically, we
are interested in finding differences with low theoretical complexity. As a first
approach one can search for differences with a high raw probability.

4.1 Searching for High Raw Probability

Let Compresslin be the linearization of Compress obtained by replacing all modu-
lar additions in the round transformation with XORs and setting V = 0. Using
the canonical bases, Compresslin can be written as a matrix H of dimension
(1024− 8b)× 8bt. Let τ be the dimension of its kernel. As noted in [4], the ma-
trix H does not have full rank for many parameters r/b and t, and one can find
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differences with high a raw probability (imposing a small number of conditions)
in the set of linear combinations of at most λ kernel basis vectors, where λ ≥ 1
is chosen such that the set can be searched exhaustively. The results heavily
depend on the choice of the kernel basis. Table 1 compares the minimal number
of conditions for λ = 3 for two different choices of the kernel basis. The results
in the first three rows are obtained using the same algorithm as in [4] to deter-
mine the bases. The results in the last three rows are obtained using the more
standard procedure implemented for example in the Number Theory Library of
Shoup [13].

Table 1. Minimal number of conditions found for λ = 3 using two different algorithms
to determine the kernel bases

b/r 4 5 6 7 8 16
32 156 1244 400 1748 830 2150
64 130 205 351 447 637 1728
96 62 127 142 251 266 878
32 189 1952 700 2428 830 2150
64 189 1514 700 1864 637 1728
96 67 128 165 652 329 928

The inverse raw probability is an upper bound of the theoretical complexity,
and as such, we expect that differences with a high raw probability have a low
theoretic complexity. However, a higher raw probability does not always imply
a lower theoretic complexity. There are differences with lower raw probability
that lead to a lower theoretic complexity than that of a difference with a higher
raw probability. Hence, when searching for minimal complexity of the collision
attack, simply considering the number of conditions imposed by a difference is
not sufficient.

4.2 Searching for Sparsity at the End

As previously observed in [3,7,9,11,14], conditions in early steps of the com-
putation can be more easily satisfied than those in later steps. This is due to
message modifications, (probabilistic) neutral bits, submarine modifications and
other freedom degrees use. Similar techniques are used implicitly when using a
dependency table to find a preimage of the condition function (and thus a col-
lision for the compression function). This motivates the search for differences Δ
such that α(Δ) ∨ β(Δ) is sparse at the end. In general, however, this is not the
case for trails found using the above method and, in contrast, most are sparse
in the beginning and dense at the end. This is due to diffusion of the linearized
compression function.

We note that the linearized round transformation of CubeHash is invertible
and let Compressblin be defined in the same way as Compresslin but with inverse
linearized round transformations. Suppose that Δ′ = Δ0‖ · · · ‖Δt−1 lies in the
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Fig. 1. Computation of Compressblin on input Δ′ = Δ0‖ · · · ‖Δt−1. If Δ′ lies in the
kernel, H = 0 and Δ = Δt‖ · · · ‖Δ1 lies in the kernel of Compresslin.

kernel of Compressblin and Δt equals the (discarded) first 8b bits of the state after
the tr linear inverse round transformations processing Δ′ as shown in Fig. 1.
Then, the difference Δ = Δt‖ · · · ‖Δ1 lies in the kernel of Compresslin and Δ0

is the corresponding erasing block difference. As for the linearized compression
function we determine a basis of the kernel of Compressblin and exhaustively search
for linear combinations of at most λ kernel basis vectors of high raw probability.
Due to the diffusion of the inverse transformation, these trails tend to be dense
at the beginning and sparse at the end.

4.3 Randomizing the Search

The kernel of H contains 2τ different elements. The above method finds the best
difference out of a subset of

∑λ
i=1

(
τ
i

)
elements. We may find better results by

increasing λ or by repeating the search for another choice of the basis. Using
ideas from [11] we propose an alternative search algorithm, that works well for
many variants of CubeHash and does not decisively depend on the choice of the
kernel basis.

Let Δ0, . . . , Δτ−1 be a kernel basis of Compresslin and denote G the matrix
whose τ rows consist of the binary vectors Δi‖α(Δi)‖β(Δi) for i = 0, . . . , τ − 1.
Elementary row operations on G preserve this structure, that is, the rows always
have the form Δ‖α(Δ)‖β(Δ) where Δ lies in the kernel of Compresslin and its raw
probability is given by the Hamming weight of α(Δ) ∨ β(Δ). For convenience,
we call this the raw probability of the row (instead of the raw probability of the
first |Δ| bits of the row). Determine imax, the index of the row with the highest
raw probability. Then iterate the following steps:

1. Randomly choose a column index j and let i be the smallest row index such
that Gi,j = 1 (choose a new j if no such i exists).

2. For all row indices k = i + 1, . . . , τ − 1 such that Gk,j = 1:
– add row i to row k,
– set imax = k if row k has higher raw probability than row imax.

3. Move row i to the bottom of G, shifting up rows i + 1, . . . , τ − 1 by one.
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Table 2. Minimal number of conditions found with the randomized search. Values in
boldface improve over the values in Table 1.

b/r 4 5 6 7 8 16
32 156 1244 394 1748 830 2150
64 130 205 309 447 637 1728
96 38 127 90 251 151 709

Remark. A more specific choice of the column index j in the first step does not
lead to better results. In particular, we tried to prioritize choosing columns
towards the end, or for every chosen column in α(Δ) to also eliminate the
corresponding column in β(Δ).

Table 2 shows the best found raw probabilities after 200 trials of 600 iterations.
Estimating the corresponding theoretic complexities as described in Section 2.3
yields the improved collision attacks presented in Table 3.

Table 3. Logarithmic theoretical complexities of improved collision attacks

b/r 4 5 6 7 8 16
32 180
64 132
96 7 51 80

For CubeHash-r/b there is a generic collision attack with complexity of about
2512−4b. For b > 64 this is faster than the generic birthday attack on hash
functions with output length h = 512. For b = 96, specifically, the generic attack
has a complexity of about 2128. Our attacks clearly improve over this bound.

5 Collision for CubeHash-5/96

This section illustrates the findings of Section 4.2 and provides a collision for
CubeHash-5/96.

5.1 Linear Differentials

We consider two linear differences found by the methods of Section 4.1 and 4.2
respectively. Both consist of two 96-byte blocks, a first block that lies in the kernel
of the linearized compression function and a second one that is the corresponding
erasing block difference. They are given by
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Δ0
a = 40000000 00000000 40000000 00000000 00000000 00000000

00000000 00000000 00200000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000040

00000000 00000040 00000000 00020000 00000000 00000000 ,

Δ1
a = 01000111 01000111 00000000 00000000 8008002A 00000000

08000022 00000000 00000000 00000000 00000000 00000000

00000000 00000000 11040000 00000000 40000101 01000111

00000000 00000000 00002208 00000000 08002000 00000000

and

Δ0
b = 08000208 08000208 00000000 00000000 40000100 00000000

00400110 00000000 00000000 00000000 00000000 00000000

00000000 00000000 0800A000 00000000 08000888 08000208

00000000 00000000 40011000 00000000 00451040 00000000 ,

Δ1
b = 80000000 00000000 80000000 00000000 00000000 00000000

00000000 00000000 00400000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000080

00000000 00000080 00000000 00040000 00000000 00000000 .

The number of conditions imposed by Δa and Δb are 127 and 134, respec-
tively. Despite its lower raw probability, Δa has a theoretical complexity of 231.9

compression function calls, which is much less than 268.7 for Δb. As discussed
above, this is due to the different structure of α ∨ β. We recall that y denotes
the Hamming weight of α ∨ β and let

yi =
32(i+1)∑
k=32i

wt(αk ∨ βk).

That is, yi is the number of conditions imposed by a difference at round i. Table 4
compares the values yi for Δa and Δb. The conditions imposed in the first two
rounds can easily be satisfied by appropriate message modifications, and thus,
do not significantly increase the complexity of the attack — contrary to the
conditions imposed in the last two rounds.

Due to its low theoretical complexity, we can use Δb to find a collision and to
confirm empirically the estimated theoretical complexity.

Table 4. Number of conditions per round theoretical complexities

y1 y2 y3 y4 y5 y log2(cΔ)
a 14 17 23 30 43 127 68.7
b 44 36 25 17 12 134 31.9
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Table 5. Partition sets corresponding to the trail Δb for CubeHash-5/96. Numbers in
Mi are byte indices, whereas numbers in Yi are bit indices.

i Mi Yi qi

0 ∅ ∅ 0.00
1 {2, 6, 66} {1, 2} 2.00
2 {10, 1, 9, 14, 74, 5, 13, 65, 17, 70} {5} 1.35
3 {73, 7, 16, 19, 18, 78, 25, 37, 41} {23, 24} 2.00
4 {69, 77, 24, 33} {21, 22} 2.00
5 {50, 89} {12, 13} 2.00
6 {20, 27, 45, 88} {11} 1.15
7 {57, 4} {38} 1.00
8 {80} {7, 8} 2.00
9 {38, 40, 81, 3, 28, 32} {34} 1.24
10 {49} {41} 1.00
11 {58} {19, 20, 42, 43} 4.00
12 {91} {16, 17} 2.00
13 {23, 34, 44, 83} {29, 30} 2.07
14 {90} {14} 1.07
15 {15, 26} {15} 1.07
16 {36} {37, 55} 2.31
17 {42, 46, 48} {25, 26} 2.12
18 {56} {18, 31, 40} 3.01
19 {59} {48, 79} 2.00
20 {84, 92, 0} {35} 1.00
21 {82} {9, 10, 27, 28, 32, 33} 6.04
22 {31, 51} {44, 56, 64} 3.03
23 {71} {6} 1.00
24 {11, 54, 67} {3} 1.00
25 {75} {78} 1.00
26 {21, 55} {46, 59} 2.00
27 {63} {50} 1.00
28 {79} {45, 49, 65, 70} 4.00
29 {12} {71} 1.06
30 {22} {58, 67, 81, 82, 83} 5.00
31 {29, 62} {63} 1.03
32 {87, 95} {53, 54, 74, 76, 85} 5.01
33 {39, 47} {39} 1.01
34 {53, 8} {69, 88, 89} 3.30
35 {30} {77, 86, 94, 98} 5.04
36 {60, 61} {62, 91, 101, 102} 4.35
37 {35, 52} {61, 90, 103} 4.22
38 {43} {36, 57, 60, 104, 111} 5.77
39 {64} {0} 1.33
40 {68} {4} 2.03
41 {72} {97, 100, 121} 8.79
42 {76} {66, 80, 92, 93} 13.39
43 {85} {47, 112} 16.92
44 {93} {51, 52, 68, 72, 75, 87, 95} 22.91
45 {86, 94} {73, 84, 96, 99, 105, . . . , 110, 113, . . . , 132, 133} 31.87
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5.2 Finding the Collision

According to Section 3.2, we construct a collision for the hash function out of a
collision for the compression function. Using a dependency table at byte-level,
we obtained a partition of the condition function attributed to Δ0

b (see Table 5).
Then, using the tree-based backtracking algorithm proposed in [4], we found
several collisions after 222.41 to 232.25 condition function calls. One of them,
found after 229.1 condition function calls, is given by

Mpre = F06BB068 487C5FE1 CCCABA70 0A989262 801EDC3A 69292196

8848F445 B8608777 C037795A 10D5D799 FD16C037 A52D0B51

63A74C97 FD858EEF 7809480F 43EB264C D6631863 2A8CCFE2

EA22B139 D99E4888 8CA844FB ECCE3295 150CA98E B16B0B92 ,

M0 = 3DB4D4EE 02958F57 8EFF307A 5BE9975B 4D0A669E E6025663

8DDB6421 BAD8F1E4 384FE128 4EBB7E2A 72E16587 1E44C51B

DA607FD9 1DDAD41F 4180297A 1607F902 2463D259 2B73F829

C79E766D 0F672ECC 084E841B FC700F05 3095E865 8EEB85D5 .

For M1 = 0, the messages Mpre‖M0‖M1 and Mpre‖M0 ⊕Δ0
b‖M1 ⊕Δ1

b collide
to the same digest

H = C2E51517 C503746E 46ECD6AD 5936EC9B

FF9B74F9 2CEA4506 624F2B0B FE584D2C

56CD3E0E 18853BA8 4A9D6D38 F1F8E45F

2129C678 CB3636D4 D865DE13 410E966C

under CubeHash-5/96. Instead of M1 = 0, any other M1 can be chosen and,
moreover, the colliding messages can be extended by an arbitrary message suffix
M suff .

6 Conclusion

In this paper we used two methods for finding improved linear differential trails
for CubeHash. The method of backward computation lead to the first practical
collision attack on CubeHash-5/96. The randomized search yielded new highly
probable differential trails which lead to improved collision attacks for up to
eight rounds. Both methods may also apply to collision attacks on other hash
functions.

Our analysis did not lead to an attack on the official CubeHash-16/32.
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under project number GRS-069/07.

References

1. Bernstein, D.J.: Cubehash. Submission to NIST (2008)
2. Bernstein, D.J.: Cubehash. Submission to NIST, Round 2 (2009)
3. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO

2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)
4. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision

Attacks: Application to CubeHash and MD6. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 560–577. Springer, Heidelberg (2009)

5. Brier, E., Khazaei, S., Meier, W., Peyrin, T.: Linearization Framework for Collision
Attacks: Application to CubeHash and MD6 (extended version). Cryptology ePrint
Archive, Report 2009/382 (2009), http://eprint.iacr.org

6. Brier, E., Peyrin, T.: Cryptanalysis of CubeHash. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 354–368.
Springer, Heidelberg (2009)

7. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 246–259. Springer, Heidelberg (2009)

9. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K.: Improved
Collision Search for SHA-0. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 21–36. Springer, Heidelberg (2006)

10. National Institute of Standards and Techonolgy. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithms (SHA-3)
Family. Federal Register, 72 (2007)

11. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision
attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

12. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

13. Shoup, V.: NTL: A Library for doing Number Theory. Version 5.5.2,
http://www.shoup.net/ntl

14. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org
http://www.shoup.net/ntl


Cryptanalysis of the 10-Round Hash and Full
Compression Function of SHAvite-3-512�
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Abstract. In this paper, we analyze the SHAvite-3-512 hash function,
as proposed and tweaked for round 2 of the SHA-3 competition. We
present cryptanalytic results on 10 out of 14 rounds of the hash func-
tion SHAvite-3-512, and on the full 14 round compression function of
SHAvite-3-512. We show a second preimage attack on the hash function
reduced to 10 rounds with a complexity of 2497 compression function
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sion function evaluations and 2128 memory (or complexity 2448 without
memory), and a collision attack with 2192 compression function evalua-
tions and 2128 memory.
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1 Introduction

With the advent of new cryptanalysis [6, 20] of the FIPS 180-2 standard hash
function SHA-1 [14], NIST has initiated an open hash function competition [15].
SHAvite-3 [3, 4], a hash function designed by Biham designed by Biham and
Dunkelman, is a second round candidate in the NIST’s SHA-3 hash function
competition [16]. It is an iterated hash function based on the HAIFA hash func-
tion framework [2]. In this framework, the compression functions also accepts a
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salt and counter input in addition to the chaining value and message block. The
mixing of the salt with the message aims to increase the security of hash-then-
sign digital signatures against offline collision attacks [9,10], whereas the counter
aims to thwart any attempts to mount some generic attacks on the iterated hash
functions [1,8, 11].

The SHAvite-3 compression function consists of a generalized Feistel struc-
ture whose round function is based on the AES. SHAvite-3 proposes two differ-
ent instances called SHAvite-3-256 and SHAvite-3-512 with 12 and 14 rounds
respectively. The first round version of SHAvite-3 has been tweaked for the sec-
ond round of the SHA-3 competition due to a chosen salt and chosen counter
collision attack [18] on the compression function. Recently, Bouillaguet et al. [5]
have proposed the cancellation property to analyse hash functions based on a
generalized Feistel structure. They have applied their method to find second
preimages for 9 rounds of the SHAvite-3-512 hash function.

In this paper, we further analyze SHAvite-3-512 by improving the previous
analysis of Bouillageut et al. [5]. We first present a chosen counter, chosen salt
collision and preimage attack for the full compression function of SHAvite-3-512.
The complexity for the preimage attack is 2384 compression function evaluations
and 2128 memory (or complexity 2448 without memory), and for the collision
attack we get 2192 compression function evaluations and 2128 memory. We then
propose a second preimage attack on the hash function reduced to 10 rounds
with a complexity of 2497 compression function evaluations and 216 memory.

The paper is organised as follows: In Section 2, we briefly describe the SHAvite-
3-512 hash function and in Section 3, we provide the fundamental ideas used in
our attacks. In Section 4, we provide a preimage and collision attacks for the full
14 round compression function. In Section 5, we present a second preimage attack
on the 10 round hash function and we conclude in Section 6.

2 The SHAvite-3-512 Hash Function

SHAvite-3-512 is used for the hash sizes of n = 257, . . . , 512 bits. First, the mes-
sageM is padded and split into � 1024-bit message blocks M1‖M2‖ . . . ‖M�. Then,
each message block is iteratively processed using the 512-bit compression function
C512 and finally, the output is truncated to the desired hash size as follows:

h0 = IV

hi = C512(hi−1,Mi, salt, cnt)
hash = truncn(hi)

The 512-bit compression function C512 of SHAvite-3-512 consists of a 512-bit
block cipher E512 used in Davies-Meyer mode. The input of the compression
function C512 consists of a 512-bit chaining value hi−1, a 1024-bit message block
Mi, a 512-bit salt and a 128-bit counter (cnt) to denote the number of bits
processed by the end of the iteration. The output of the compression function
C512 is given by (+ denotes an XOR addition):

hi = C512(hi−1,Mi, salt, cnt) = hi−1 + E512(Mi‖salt‖cnt, hi−1)
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2.1 State Update

The state update of the compression function consists of a 14-round generalized
Feistel structure. The input hi−1 is divided into four 128-bit chaining values
(A0, B0, C0, D0). In each round i = 0, . . . , 13, these chaining values are updated
using the non-linear round functions Fi and F ′

i by the Feistel structure given as
follows (also see Figure 1):

(Ai+1, Bi+1, Ci+1, Di+1) = (Di, Ai + Fi(Bi), Bi, Ci + F ′
i (Di))

Ai Bi Ci Di

Fi

RKi

F ′
i

RK′
i

Ai+1 Bi+1 Ci+1 Di+1

Fig. 1. Round i of the state update of SHAvite-512

The non-linear functions Fi and F ′
i are keyed by the 512-bit round keys

RKi = (k3
0,i, k

2
0,i, k

1
0,i, k

0
0,i) and RK ′

i = (k3
1,i, k

2
1,i, k

1
1,i, k

0
1,i) respectively. Each

round function is composed of four AES rounds with subkeys k0
0,i and k0

1,i used
as a key whitening before the first AES round and an all zero-key 0128 for the
last internal round. Hence, the round functions Fi and F ′

i are defined as:

Fi(x) = AES(0128, AES(k3
0,i, AES(k2

0,i, AES(k1
0,i, k

0
0,i + x)))) (1)

F ′
i (x) = AES(0128, AES(k3

1,i, AES(k2
1,i, AES(k1

1,i, k
0
1,i + x)))) (2)

2.2 Message Expansion

The message expansion of C512 (the key schedule of E512) takes as input a 1024-
bit message block, a 512-bit salt and 128-bit counter. The 1024-bit message block
Mi is represented as an array of 8 128-bit words (m0,m1, . . . ,m7), the 512-bit
salt as an array of 16 32-bit words (s0, s1, . . . , s15) and the counter as an array
of 4 32-bit words (cnt0, cnt1, cnt2, cnt3).

The subkeys for the odd rounds of the state update are generated using parallel
AES rounds and a subsequent linear expansion step. The AES rounds are keyed
by the salt words. The subkeys for the even rounds are computed using only a
linear layer. One out of r = 0, . . . , 7 rounds of the message expansion is shown in
Figure 2. The first subkeys of round r = 0 are initialized with the message block:
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k0
0,8 k1

0,8 k2
0,8 k3

0,8 k0
1,8 k1

1,8 k2
1,8 k3

1,8

AES
(s0, s1, s2, s3)

AES
(s4, s5, s6, s7)

AES
(s8, s9, s10, s11)

AES
(s12, s13, s14, s15)

AES
(s0, s1, s2, s3)

AES
(s4, s5, s6, s7)

AES
(s8, s9, s10, s11)

AES
(s12, s13, s14, s15)

cnt[2]

cnt[3]

cnt[0]

cnt[1]

k0
0,9 k1

0,9 k2
0,9 k3

0,9 k0
1,9 k1

1,9 k2
1,9 k3

1,9

k0
0,10 k1

0,10 k2
0,10 k3

0,10 k0
1,10 k1

1,10 k2
1,10 k3

1,10

Fig. 2. One round (r = 2) of the message expansion (key schedule) of SHAvite-512
with the counter values (cnt2‖cnt3‖cnt0‖cnt1) added prior to subkey k3

1,9

(k0
0,0, k

1
0,0, k

2
0,0, k

3
0,0, k

0
1,0, k

1
1,0, k

2
1,0, k

3
1,0) = (m0,m1,m2,m3,m4,m5,m6,m7)

Note that in rounds r = 0, 2, 4, 6 of the message expansion, the counter value
(with one word inverted) is added to the subkeys:
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k0
0,1 = k0

0,1 + (cnt0‖cnt1‖cnt2‖cnt3)
k1
0,5 = k1

0,5 + (cnt3‖cnt2‖cnt1‖cnt0)
k3
1,9 = k3

1,9 + (cnt2‖cnt3‖cnt0‖cnt1)
k2
1,13 = k2

1,13 + (cnt1‖cnt0‖cnt3‖cnt2)
We refer to [4] for additional details on the message expansion.

3 Basic Attack Strategy

We first show how we can keep one chaining value of the state update constant
using the cancellation property. Then, we interleave the cancellation property
to simplify the resulting conditions and to keep the chaining value constant for
a larger number of rounds. These properties can be used to construct partial
preimages of the compression function. Note that we define a partial preimage
attack as the task to find a preimage for only parts of the target hash value.
Then, we extend this partial preimage attack to a collision or preimage attack
of the compression function, or a (second) preimage of the hash function.

3.1 The Cancellation Property

The cancellation property was published by Bouillaguet et al. in the analysis
of the SHA-3 candidates Lesamta and SHAvite-3 [5]. Using the cancellation
property, a disturbance introduced in one state variable cancels itself 2 rounds
later again. In our attacks on SHAvite-3-512, the cancellation property is used
to ensure that Bi = Bi+4 in the state update. This is the case if and only
if Fi+3(Bi+3) = F ′

i+1(Di+1) (see Table 1). Hence, a disturbance F ′
i+1(Di+1)

introduced in round i + 1 cancels itself in round i + 3 (also see Figure 3).
Using Bi+3 = Di+1 + Fi+2(Bi+2) and Equations (1) and (2) we get:

AES(0128, AES(k3
0,i+3, AES(k2

0,i+3, AES(k1
0,i+3, k

0
0,i+3 + Di+1 + Fi+2(Bi+2)))) =

AES(0128, AES(k3
1,i+1, AES(k2

1,i+1, AES(k1
1,i+1, k

0
1,i+1 + Di+1)))).

This equation and thus, the characteristic of Table 1, is fulfilled under the
following conditions:

(k3
0,i+3, k

2
0,i+3, k

1
0,i+3) = (k3

1,i+1, k
2
1,i+1, k

1
1,i+1) (3)

Table 1. We use the cancellation property to ensure that Bi = Bi+4. This is the case
if Fi+3(Bi+3) and F ′

i+1(Di+1) are equal.

i Ai Bi Ci Di condition

i ? Bi ? ?
i + 1 ? ? Bi Di+1

i + 2 Di+1 Bi+2 ? Bi + F ′
i+1(Di+1)

Fi+3(Bi+3) =
i + 3 Bi + F ′

i+1(Di+1) Bi+3 Bi+2 ?
F ′

i+1(Di+1)i + 4 ? Bi ? ?
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Ai Bi Ci Di

Ai+1 Bi+1 Ci+1 Di+1

Ai+2 Bi+2 Ci+2 Di+2

Ai+3 Bi+3 Ci+3 Di+3

Ai+4 Bi+4 Ci+4 Di+4

Fi

RKi

F ′
i

RK′
i

Fi+1

RKi+1

F ′
i+1

RK′
i+1

Fi+2

RKi+2

F ′
i+2

RK′
i+2

Fi+3

RKi+3

F ′
i+3

RK′
i+3

Bi

Bi

Di+1

Di+1

Bi ⊕ F ′
i+1(Di+1)

Bi ⊕ F ′
i+1(Di+1)

0

Fig. 3. We need to ensure that Bi = Bi+4 for a number of times. This is the case if
Fi+3(Bi+3) = F ′

i+1(Di+1). However, we use the following sufficient conditions which
can be fulfilled more easily using interleaving: Fi+2(Bi+2) = 0 and RKi+3 = RK′

i+1.

and
k0
0,i+3 + Fi+2(Bi+2) = k0

1,i+1. (4)

Hence, using the cancellation property we always get Bi = Bi+4, no matter
which value Di+1 has. Also differences in Di+1 are cancelled in round i + 4
again. Of course, we can repeat the cancellation property for other rounds as
long as we can fulfill the resulting conditions. The cancellation property is used
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twice in the 9-round hash attack on SHAvite-3-512 by Bouillaguet et al. [5] and
in the 10-round hash attack in Section 5, and 4 times in the 13 and 14-round
attack of the compression function in Section 4.

3.2 Interleaving

In this work, we extend the 9 round attack on SHAvite-3-512 by several rounds.
This is possible by interleaving the cancellation property such that the conditions
can be fulfilled more easily. Note that equation (4) depends on the chaining value
Bi+2. In our attack, we use the following sufficient conditions, which allow us to
fulfill the conditions on the keys and chaining values independently:

Fi+2(Bi+2) = 0 (5)

RKi+3 = RK ′
i+1. (6)

Figure 3 shows that if the output of Fi+2(Bi+2) is zero, the same input Di+1
enters the round functions Fi+3 and F ′

i+1. Hence, if the keys of these non-linear
functions are equal, any disturbance introduced by Di+1 cancels itself two rounds
later. Note that we get equivalent conditions if we continue with Bi+4 = Bi+8
and interleave with Bi+2 = Bi+6. Hence, we get

Bi = Bi+4 = Bi+8 = . . .

Bi+2 = Bi+6 = Bi+10 = . . .

if the following conditions on the chaining values are fulfilled:

Fi+2(Bi+2) = 0, Fi+6(Bi+2) = 0, Fi+10(Bi+2) = 0, . . .
Fi+4(Bi) = 0, Fi+8(Bi) = 0, Fi+12(Bi) = 0, . . .

Since F is an invertible function, all these conditions are fulfilled if we choose
Bi = F−1

i+4(0) and Bi+2 = F−1
i+2(0), and the keys of the respective functions are

the same. Hence, we get the following conditions only on the keys:

RKi+2 = RKi+6 = RKi+10 = . . . (7)

RKi+4 = RKi+8 = RKi+12 = . . . (8)

RKi+3 = RK ′
i+1, RKi+5 = RK ′

i+3, RKi+7 = RK ′
i+5, . . . (9)

An example starting with B3 is given in Table 2.

3.3 From Partial Preimages to Preimages and Collisions

In the following attacks on SHAvite-3-512, we show how to fix one 128-bit output
word Hi of the (reduced) compression function C512 to some predefined value:

H0‖H1‖H2‖H3 = C512(A0‖B0‖C0‖D0,msg, salt, cnt)



426 P. Gauravaram et al.

Table 2. Interleaving

i Ai Bi Ci Di conditions

3 ? B3 ? ?
4 ? ? B3 D4

5 D4 B5 ? B3 + F ′
4(D4) F5(B5) = 0

6 B3 + F ′
4(D4) D4 B5 D6 RK6 = RK′

4

7 D6 B3 D4 B5 + F ′
6(D6) F7(B3) = 0

8 B5 + F ′
6(D6) D6 B3 D8 RK8 = RK′

6

9 D8 B5 D6 B3 + F ′
8(D8) RK9 = RK5

10 B3 + F ′
8(D8) D8 B5 D10 RK10 = RK′

8

11 D10 B3 D8 B5 + F ′
10(D10) RK11 = RK7

. . . . . . . . . . . . . . . . . .

Let’s assume, we are able to construct a partial preimage on H0 with a com-
plexity of 2x < 2128. Then, this partial preimage can be extended to construct a
preimage or collision for the compression function below the generic complexity.

In a preimage attack on the compression function, we have to find some input
values A0‖B0‖C0‖D0,msg, salt, cnt to the compression function for a given out-
put H0‖H1‖H2‖H3. For example, by repeating a partial preimage attack on H0
about 2384 times, we expect to find a chaining value where also H1, H2 and H3
are correct. In other words, we can find a preimage for the (reduced) compression
function of SHAvite-512 with a complexity of about 2384+x.

Similarly, a collision for the compression function can be constructed. If we
can find 2192 inputs A0‖B0‖C0‖D0,msg, salt, cnt such that all produce the same
output value H0, two of the inputs also lead to the same values H1, H2, and
H3 due to the birthday paradox. Hence, we can construct a collision for the
compression function of SHAvite-512 with a complexity of 2192+x.

Further, by using an arbitrary first message block and a standard meet-in-
the-middle attack we can turn the preimage attack on the compression function
into a (second) preimage attack on the hash function. Note that in this case the
salt and cnt values need to be the same for all partial preimages.

4 Attacks on the Compression Function

In this section, we present preimage and collision attacks for the SHAvite-3-512
compression function reduced to 13 and 14 rounds. We first give an outline of
the attack and describe the characteristic used to find partial preimages. Then,
we show how to find a message, salt and counter value according to the condi-
tions of this characteristic. Finally, we extend the attack to find many message,
salt and counter values such that the partial preimage attack can be extended
to find a collision and preimage for 13 and 14 rounds. Note that the given
preimage attack is an s-Pre (enhanced preimage) attack, as defined by Reyhan-
itabar et al. [19]. However, the attacks on the compression fucntion can not be
extended to the hash function, since in the attack we have to choose the salt and
counter value.
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4.1 Outline of the Attack

In the attack on 13 and 14 rounds of the compression function, we use the
same idea as in the 9-round attack in [5], but we extend it to more rounds
by interleaving more cancellations. In detail, we use the cancellation property
four times at rounds 6, 8, 10 and 12. This requires several 128-bit equalities on
the key-schedule. We can satisfy the equalities using the degrees of freedom an
attacker has in the choice of the message, salt, counter and chaining value in an
attack on the compression function. Both, the 13 and 14 round attacks use the
characteristic given in Table 3. For the 13 round attack we omit the last round.

Table 3. Characteristic for the attack on 13 and 14 rounds of the compression function.
We can keep the value Z constant as long as the conditions are fulfilled.

i Ai Bi Ci Di conditions

0 ? ? ? ?
1 ? ? ? ?
2 ? X ? ?
3 ? Z X ?
4 ? Y Z D4

5 D4 Z Y Z + F ′
4(D4) F5(Z) = 0

6 Z + F ′
4(D4) D4 Z D6 RK6 = RK′

4

7 D6 Z D4 Z + F ′
6(D6) RK7 = RK5

8 Z + F ′
6(D6) D6 Z D8 RK8 = RK′

6

9 D8 Z D6 Z + F ′
8(D8) RK9 = RK7

10 Z + F ′
8(D8) D8 Z D10 RK10 = RK′

8

11 D10 Z D8 Z + F ′
10(D10) RK11 = RK9

12 Z + F ′
10(D10) D10 Z ? RK12 = RK′

10

13 ? Z D10 ? RK13 = RK11

14 ? ? Z ?

We start the attack using X,Z, Y, Z for B2, B3, B4, B5. Choosing B3 = B5 =
Z gives slightly simpler and more uniform conditions for the key schedule which
can be fulfilled easier (see Section 4.2 and 4.3). The characteristic requires that
the outputs of the functions F5, F7, F9 and F11 are zero and we get:

F5(Z) = F7(Z) = F9(Z) = F11(Z) = 0 .

As already mentioned in the previous section, the best way to guarantee that the
above conditions hold is to ensure that the four subkeys RK5, RK7, RK9, RK11
and hence, the functions F5, F7, F9, F11 are equal. In this case Z can be easily
computed by Z = F−1

5 (0) and we get the following conditions for the key-
schedule:

RK5 = RK7 = RK9 = RK11 .

Next, we need to ensure that the output of F ′
4(D4) and F6(D4) is equal to one

another such that B7 = Z + F ′
4(D4) + F6(D4) = Z after round 7. In total, the

characteristic specifies that:
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– F ′
4(D4) = F6(D4) such that B7 = Z

– F ′
6(D6) = F8(D6) such that B9 = Z

– F ′
8(D8) = F10(D8) such that B11 = Z

– F ′
10(D10) = F12(D10) such that B13 = Z

and we get the following conditions on the key schedule for i = 4, 6, 8, 10 (also
see Table 3):

RK ′
i = RKi+2 .

If we can find a message, salt and counter value, such that all conditions on
the state values and key-schedule are fulfilled, the characteristic of Table 3 is
followed from round i = 5 to the end. Then, we simply compute backwards to
get the inputs (A0, B0, C0, D0) of the compression function as a function of X ,
Y and Z (see also Table 4). Note that we can choose only values for X and Y
since Z is fixed by the attack:

A0 = Z + F4(Y ) + F ′
2(Y + F3(Z)) + F0(Y + F3(Z) + F ′

1(Z + F2(X))) (10)
B0 = Y + F3(Z) + F ′

1(Z + F2(X)) (11)
C0 = Z + F2(X) + F ′

0(X + F1(Z + F4(Y ) + F ′
2(Y + F3(Z)))) (12)

D0 = X + F1(Z + F4(Y ) + F ′
2(Y + F3(Z))) (13)

Table 4. We get the input of the 14-round characteristic as a function of X,Y and Z
by computing backwards from round i = 4. We only show the updated chaining values
Ai and Ci since Bi = Ci+1 and Di = Ai+1.

i Ai Ci

0 ?
Z + F2(X) + F ′

0(X + F1(Z + . . .
+F4(Y ) + F ′

2(Y + F3(Z))))
1 X + F1(Z + F4(Y ) + F ′

2(Y + F3(Z))) Y + F3(Z) + F ′
1(Z + F3(X))

2 Z + F2(X) Z + F4(Y ) + F ′
2(Y + F3(Z))

3 Y + F3(Z) X

4 Z + F4(Y ) Z

5 D4 Y

6 Z + F ′
4(D4) Z

7 D6 D4

8 Z + F ′
6(D6) Z

9 D8 D6

0 Z + F ′
8(D8) Z

11 D10 D8

12 Z + F ′
10(D10) Z

13 ? D10

14 ? Z
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4.2 Finding the Message

An easy solution to fulfill all the conditions on the subkeys is to ensure that
all keys are equal. This was possible for the round 1 version of SHAvite-512.
By setting the message to the all zero value, each byte of the salt to 0x52 and
the counter to 0, all subkeys are equal to zero [18]. In this case the required
conditions are trivially fulfilled.

For the second round of the SHA-3 competition, SHAvite-512 has been tweaked
and some counter words are inverted to prevent all zero keys. However,by choosing
the counter to be

(cnt3, cnt2, cnt1, cnt0) = (0, 0, 0, 0),

the value (cnt2, cnt3, cnt0, cnt1) added in round 5 of the key schedule is zero (see
Figure 2). In contrast to the attack on the round 1 version, this results in a valid
counter value. If we choose each byte of the salt to be 0x52 and the subkeys of
round 5 to be zero, a large part of the subkeys will remain zero until non-zero
values are added by the counter again. This happens in round 3 and round 7 of
the key schedule. We only require that subkeys with round index i = 4, . . . , 13
are equal. Table 5 shows that indeed all required subkeys can be forced to zero.
By computing backwards we get the message which is given in Appendix A.
Since the key RK5 = 0, we further get for Z = F−1

5 (0) = 0x1919...19.

Table 5. Subkeys in SHAvite-512 where ’0’ denotes an all-zero subkey kj
0,i or kj

1,i, and
’?’ denotes a subkey which is not zero. The counter values are XORed prior to the
subkeys marked by ∗.

i
RKi RK′

i r
k0
0,i k1

0,i k2
0,i k3

0,i k0
1,i k1

1,i k2
1,i k3

1,i

0 ? ? ? ? ? ? ? ? M
1 ?∗ ? ? ? ? ? ? 0

1
2 0 ? ? ? ? 0 0 0
3 0 ? ? ? 0 0 0 0

24 0 ? 0 0 0 0 0 0
5 0 0∗ 0 0 0 0 0 0 3
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0

4
8 0 0 0 0 0 0 0 0
9 0 0 0 0∗ 0 0 0 0

510 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 6
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 ?∗ ? 7

4.3 Using Different Salt Values

Actually, we can relax the previous condition that all required subkeys are zero.
This allows us to use many different salt values. Instead of trying to get the
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Table 6. Subkeys in SHAvite-512 with periodic round keys RKi or RK′
i

i
RKi RK′

i

k0
0,i k1

0,i k2
0,i k3

0,i k0
1,i k1

1,i k2
1,i k3

1,i

i a b c d a b c d
i + 1 e f g h e f g h
i + 2 a b c d a b c d

subkeys to be zero, we try to find subkeys which are periodic (see Table 6). Due to
the nature of the key schedule, we will then get RKi+2 = RK ′

i+2 = RKi = RK ′
i

as long as the counter does not interfere. This will be enough to apply the
cancellation property, and to interleave it.

We can find salts and messages giving such a periodic expanded message by
solving a linear system of equations. The message expansion alternates linear
and non-linear layers, where the non-linear layer is one AES round with the salt
used as the key. Note that the 512-bit salt is used twice in the 1024-bit message
expansion. Hence, if we look for solutions with equal left and right halves, both
halfs will still be equal after the non-linear layer. To find solutions, we construct a
linear system with 1024 binary variables (or 32 32-bit variables), corresponding
to the inputs and outputs of the non-linear layer. Hence, we get 1024 binary
equations stating that the output of the linear layer must be equal to the input
of the non-linear layer, such that the key-schedule will be periodic.

Each solution to this system gives an input and output of the non-linear layer.
The resulting output and input of the single non-linear AES round can easily be
connected by computing the according salt value. Then, we compute the message
expansion backwards to get the message that will give a good expanded message
for the given salt. Surprisingly, the system has many solutions, with a kernel of
dimension 9, given by the following basis:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This means that we can generate 29·32 = 2288 different salt values and corre-
sponding message blocks such that the conditions on the subkeys are fulfilled.
An example of a random salt and message block in this class is given below:

Salt: 7f 51 e2 fb ca a5 95 ac 04 42 40 19 30 0f 17 82

6d 31 01 30 86 30 0d 18 05 dc db 90 96 2f 2a 78

32 71 59 03 e3 bb 97 17 ee 41 bc 97 a3 b2 5c 18

ce af fd 90 d6 8d bf fd ab 11 9d 62 6a 11 13 b6
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Message: e1 c1 44 35 67 84 1b 18 ca ad ac f8 13 4d ea c9

b1 a0 79 d1 e7 a9 11 ca 75 eb 96 82 cc 81 50 4f

7a 69 43 38 8f 5d e8 e4 e0 ce 3f 6b 55 1a 27 4e

8d e6 2d 9a 63 76 78 73 67 10 8e d2 38 02 45 90

12 16 0b cc 6f ab c8 1a ca 0e c8 b7 5b e7 33 93

58 87 01 5f 09 b3 64 c3 a9 a2 5a 15 c9 70 a8 cb

a0 80 ff a8 c7 6d 24 60 09 8e 9d 15 0b b1 af 8d

5c 37 11 26 17 df d7 eb 9f bc f0 82 2d ad 98 e0

4.4 Collision and Preimages for 13 Rounds

If all the conditions on the key-schedule of Table 3 are fulfilled, the characteristic
is followed and we get B13 = Z after 13 rounds. For each value of X and Y
(Z is fixed in the attack), we can compute backward to get the input of the
compression function according to Equation (11) (also see Table 4).

After applying the feed-forward to B0, we get for the output word H1:

H1 = B0 + B13 = Z + Y + F3(Z) + F ′
1(Z + F2(X))

For any value of H1 we can simply choose a value X and compute Y . Hence,
we can construct a partial preimage on 128 bits (on H1) for the compression
function of SHAvite-3-512 reduced to 13 rounds. The complexity is about one
compression function evaluation. In Appendix A, we give 3 examples for inputs
(chaining values) of the compression function of SHAvite-512 leading to outputs
with H1 equal to zero. Note that we can repeat this attack for all choices of X
and hence, 2128 times.

To construct a collision and preimage for the whole output of the compression
function, we need to repeat the partial preimage algorithm 2192 and 2384 times,
respectively. Note that we can construct up to 2128+288 = 2416 partial preimages
using the freedom in X and the message expansion.

4.5 Collision and Preimages for 14 Rounds

The 14-round attack follows the characteristic of Table 3. In order to extend
the 13-round attack to 14 rounds, we simply add one round at the end. In this
case, the conditions on the message, salt and counter value are the same as for
13 rounds. Again, we compute backwards to get the input of the compression
function as a function of X , Y and Z (see Equation (12) and Table 4). Notice
that after applying the feed-forward we get for the output word H2:

H2 = C0 + C14 = F2(X) + F ′
0(X + F1(Z + F4(Y ) + F ′

2(Y + F3(Z))))

which can be rewritten as:

F ′−1
0 (H2 + F2(X)) + X = F1(Z + F4(Y ) + F ′

2(Y + F3(Z))) (14)

This equation is nicely split using X only on the left-hand side, and Y only on
the right-hand side. Any solution X,Y to the equation gives a 128-bit partial
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preimage for any chosen value of H2. Note that we can also shift the characteristic
by one round to get a partial preimage for H1.

One easy way to find solutions for Equation (14) is to use a collision-finding
algorithm: if we compute the left-hand side with 264 random values for X , and
the right-hand side with 264 random values for Y , we expect to find one solution
due to the birthday paradox with complexity 264. Note that this can be done
with a memoryless collision-finding algorithm. The complexity can be reduced
at the cost of higher memory requirements. By first saving 2128 candidates for X
and then computing 2128 candidates for Y we get 2128 solutions for Equation (14)
with a complexity of 2128. Hence, we get an amortized cost of 1 computation per
solution.

More generally, we can make a trade-off between time and memory using a
distinguished point based collision-finding algorithm, as given in [17, Section 4.2].
Using 2k bits of memory (k ≤ 128) and 2l processors, we can generate 2128

solutions choosing 128 bits of the output of the compression with complexity
2192−k/2−l. If we repeat this with several salts, we obtain the following attacks
on the compression function:

– a collision attack in time 2256−k/2−l

– a preimage attack in time 2448−k/2−l

5 Attack on 10 Rounds of the Hash Function

The 10-round attack on the SHAvite-3-512 hash function is an extension of the
9-round attack from [5]. The extension is the same as the extension from 13 to
14 rounds of the compression function. Since the attack does not require freedom
from the salt or counter values, it is a real attack on the 10-round SHAvite-3-512.

5.1 Extending the 9 Round Attack

We extend the 9-round attack by adding one round at the beginning according
to the characteristic of Table 7. In order to satisfy the conditions in round 6 and
8, it is enough to have:

– (k1
0,4, k

2
0,4, k

3
0,4) = (k1

1,6, k
2
1,6, k

3
1,6) and k0

0,4 + k0
1,6 = F5(Z5)

– (k1
0,6, k

2
0,6, k

3
0,6) = (k1

1,8, k
2
1,8, k

3
1,8) and k0

0,6 + k0
1,8 = F7(Z7)

The condition on the keys (k1
0,4, k

2
0,4, k

3
0,4)=(k1

1,6, k
2
1,6, k

3
1,6) and (k1

0,6, k
2
0,6, k

3
0,6)=

(k1
1,8, k

2
1,8, k

3
1,8) will be satisfied by carefully building a suitable message, following

the algorithm given in [5]. Then, Z5 and Z7 are computed to satisfy the remaining
conditions as follows: Z5 = F−1

5 (k0
0,4 + k0

1,6) and Z7 = F−1
7 (k0

0,6 + k0
1,8).

Then, we start with the state B2 = X , B3 = Z7, B4 = Y , and B5 = Z5
and compute backward to the input of the compression function, similar to
Equation (12) and Table 4 of Section 4.1. In particular, we get for the input C0:

C0 = Z7 + F2(X) + F ′
0(X + F1(Z5 + F4(Y ) + F ′

2(Y + F3(Z7))))
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Table 7. Characteristic for the attack on 10 of the hash function. We can fix the output
Ci = Z5 as long as the conditions are fulfilled.

i Ai Bi Ci Di condition

0 ? ? ? ?
1 ? ? ? ?
2 ? X ? ?
3 ? Z7 X ?
4 ? Y Z7 D4

5 D4 Z5 Y Z7 + F ′
4(D4)

6 Z7 + F ′
4(D4) D4 + F5(Z5) Z5 D6 F6(D4 + F5(Z5)) = F ′

4(D4)
7 D6 Z7 ? Z5 + F ′

6(D6)
8 Z5 + F ′

6(D6) D6 + F7(Z7) Z7 ? F8(D6 + F7(Z7)) = F ′
6(D6)

9 ? Z5 ? ?
10 ? ? Z5 ?

and after applying the feed-forward, we get for the output word H2:

H2 = C0 +C10 = Z5 +Z7 +F2(X)+F ′
0(X +F1(Z5 +F4(Y )+F ′

2(Y +F3(Z7))))

Just like in the 14-round attack, we can rewrite this equation such that one side
depends only on X , and one side depends only on Y :

F ′−1
0 (H2 + Z5 + Z7 + F2(X)) + X = F1(Z5 + F4(Y ) + F ′

2(Y + F3(Z7)))

To extend this partial preimage to a full preimage attack on the hash function
we repeat the following steps:

– find a suitable message (cost: 2224);
– find about 2128 solutions X and Y using a memoryless collision-search algo-

rithm (cost: 2196).

This generates 2128 inputs of the compression function such that 128 bits of
the output are chosen. We need to repeat these steps 2256 times to get a full
preimage on the compression function reduced to 10 rounds with a cost of 2480

and negligible memory requirements.

5.2 Second Preimage Attack

Using a first message block and by applying a generic unbalanced meet-in-the-
middle attack, we can extend the preimage attack on the compression function
to a second preimage attack on the hash function reduced to 10 rounds. The
complexity is about 2497 compression function evaluations and 216 memory. By
using a tree based approach [7,12,13], the complexity of the attack can be reduced
at the cost of higher memory requirements. Note that a preimage attack is not
possible as we cannot ensure a correctly padded message block.
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6 Conclusion

SHAvite-3-512 as considered during round 1 of the SHA-3 competition was
shown to be subject to a chosen salt, chosen counter (pseudo) collision attack on
the compression function. As a result, the compression function was tweaked by
the designers. The tweaked SHAvite-3-512, as considered during round 2 of the
SHA-3 competition, is here shown to still be succeptible to attacks in the same
model, albeit at a higher cost. Although these attacks on the compression func-
tion do not imply an attack on the full hash function, they violate the collision
resistance reduction proof of HAIFA. This illustrates that great care most be
taken when salt and counter inputs are added to a compression function design.
Furthermore, our analysis also illustrates that more than 70% (10 out of 14) of
the rounds are not enough to defend the hash function SHAvite-3-512 against
second preimage attacks.
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message block M: d1 58 6a 59 5f 1e ac c3 89 02 6a 23 8b 18 3d 35

a3 7b a6 8d 26 62 da 9a a6 8d 25 50 da 67 1e 62

0d fa 2b 8f a0 08 a4 97 b2 9b 25 0a 3e c3 6d c0

0b f7 12 3b d5 92 dd dc cf fa 79 ec 05 83 6e 9e

94 97 dd 03 4e e7 c1 07 8b f4 3d 9a df da 97 72

cc 24 50 90 0c 0a 0a b3 7c 58 d5 5d 7c 4d f9 ed

41 72 19 1a 8a ce 36 db ed fa 2e 40 23 66 8b d3

fa 1e 72 00 7b 8a 00 23 d3 00 49 88 00 96 79 19

chaining value 1: 73 ae 12 97 3f 8f 59 33 83 e5 b8 79 9f 39 3f d6

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

3f e8 9e 31 8c 13 5b 51 05 f6 26 2f ab 50 d0 2f

7e d4 37 2c 7e b3 6f e2 a3 8c 10 c1 30 cb 43 1f

output 1: f5 bb 28 52 27 67 80 b5 8d 68 2d 1b 66 f2 0c 1e

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

94 49 61 0d cc ed ea 7b 89 2a 90 ee e4 cc 49 0c

9c 3e 2e 17 78 f2 60 44 f5 f9 95 6c c0 dd 70 4f

chaining value 2: 4d 96 cb 1f d7 26 9b f1 b8 84 e7 37 69 20 85 ee

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

9c 0a 66 73 3f 9d 8e 4f 7d 15 85 71 6a cd fb 07

14 e6 c4 31 41 26 44 15 3a f8 a6 db b7 06 9a 4f

output 2: 2a bf 6d c0 ef f7 78 b2 29 88 60 cc 04 63 22 6d

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8b 45 69 a9 7f 67 5e 20 e4 8d 9b 01 d6 74 a9 dd

d3 9c 37 d1 ae ed 12 4d 47 d1 7c 28 72 26 1e 97

chaining value 3: b3 56 96 56 1a 43 91 1e 7b 0c 3f 99 9c f2 6b be

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

70 04 fd 88 dd b1 28 f2 03 6a 04 9c c2 65 b4 7b

2c d9 e6 74 aa 0b c5 78 85 e0 0c 21 89 ba 7f 8e

output 3: 31 a4 76 86 fa 16 f4 41 7a 93 6b 68 33 2d 46 c9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

b1 a3 15 94 bc 41 2d fc 69 83 82 13 76 76 17 92

af 7e d8 93 c5 06 13 8e 05 2b 31 ab 65 cd 2a 51
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