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Preface

Welcome to the proceedings of the 8th International Conference on Pervasive
Computing (Pervasive 2010). After Toronto, Sydney and Nara, the conference
has now returned to Europe. Pervasive is one of the most important conferences
in the area of pervasive and ubiquitous computing.

As in the previous year, we had two categories of technical papers: Full Papers
and Notes. Pervasive attracted 157 valid submissions, from which the Technical
Program Committee (TPC) accepted 24 full papers and one note, resulting in
an overall acceptance rate of 16%. The submissions included 628 authors from
27 countries representing all the continents (except Antarctica). As we can see
from these figures, Pervasive is a truly global highly competitive conference.

A major conference such as Pervasive requires a rigorous and objective pro-
cess for selecting papers. This starts with the selection of a high-quality TPC.
We were fortunate to be able to draw on the wisdom and experience of our 28
TPC members, from the most prestigious universities and research labs in Eu-
rope, North America, and Asia. This committee was aided by the input of no
less than 238 external reviewers chosen on the basis of their domain knowledge
and relevance to pervasive computing.

The papers were selected using a double-blind review, with four peer reviews
per paper, a discussion phase among the reviewers, and a discussion of the papers
in the TPC meeting, which was held in Palo Alto during December 12-13, 2009.
We thank Nokia Research Center for hosting the meeting.

The keynote of the conference was delivered by Henry Tirri, Senior Vice
President, Head of Nokia Research Center. The conference program also included
posters, demonstrations and video presentations. The rector of the University
of Helsinki gave a reception in connection with the poster, demonstrations and
video session. At this event, companies also presented their products.

The first day of the conference was dedicated to workshops and a doctoral
colloquium. This year we had an especially rich set of workshops. The last day
of the conference included four high-class tutorials.

The conference was organized by the Department of Computer Science at
University of Helsinki and Helsinki Institute for Information Technology HIIT,
which is a joint research institute of Aalto University and the University of
Helsinki. Aalto University is a new university in Finland, resulting from the
merger of Helsinki University of Technology TKK, Helsinki School of Economics
and the University of Art and Design Helsinki.

We collaborated with the Ubiquitous Computing Cluster Programme in Fin-
land, which is part of the Centre of Expertise Programme (OSKE), and with
the ICT SHOK DIEM Programme, which made real-life testing of services for
an intelligent conference as part of the arrangements of the conference.



VI Preface

We thank the organizers, sponsors, committee members, reviewers, authors,
student volunteers and conference participants for making this all happen.

We especially thank our Conference Manager Greger Lindén for making such
an outstanding contribution to the arrangements of the conference.

We hope that the conference provided the participants with an inspiring and
interesting program and a pleasant spring-time stay in Helsinki to remember!

May 2010 Patrik Floréen
Antonio Krüger

Mirjana Spasojevic
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Mirjana Spasojevic, Nokia Research Center
Tutorials Bob Kummerfeld, University of Sydney

Thomas Strang, German Aerospace Center
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Eve Schooler
James Scott
Masatoshi Sekine
Junaith Shahabdeen
Mike Sharples
Naoki Shinohara
Rich Simpson
Joshua Smith
Timothy Sohn
Thad Starner
Thomas Strang
Jing Su
Anbumani Subramanian
Shivani Sud
Yasuyuki Sumi
Petra Sundström
Rahul Swaminathan
Kaz Takashio
Michiharu Takemoto
Hiroshi Tamura
Charlotte Tang
Tsutomu Terada
Lucia Terrenghi
Georgios Theocharous
Niwat Thepvilojanapong

Yoshito Tobe
Hideyuki Tokuda
Zachary Toups
Khai Truong
Joe Tullio
Ersin Uzun
Kaisa Vaananen-

Vainio-Mattila
Anna Vallg̊arda
Kristof Van Laerhoven
Toni Vanhala
Alexander Varshavsky
Frank Vetere
Nicolas Villar
Felix von Reischach
Stephan von Watzdorf
Katarzyna Wac
Juergen Wagner
Steven Wall
Jamie Ward
Alexander Wiethoff
Amanda Williams
Woontack Woo
Ken Wood
Tatsuya Yamazaki
Svetlana Yarosh
Keiichi Yasumoto
Koji Yatani
Hyoseok Yoon
Jaeseok Yun
Xuemei Zhang

Best Paper Award Nominees

Jog Falls: A Pervasive Healthcare Platform for Diabetes Management
Lama Nachman, Amit Baxi, Sangeeta Bhattacharya, Vivek Darera, Piyush Desh-
pande, Nagaraju Kodalapura, Vincent Mageshkumar, Satish Rath, Junaith Sha-
habdeen, Raviraja Acharya



Organization XI

Virtual Compass: Relative Positioning to Sense Mobile Social Interactions
Nilanjan Banerjee, Sharad Agarwal, Paramvir Bahl, Ranveer Chandra, Alec Wol-
man, Mark Corner

Common Sense Community: Scaffolding Mobile Sensing and Analysis for Novice
Users
Wesley Willett, Paul Aoki, Neil Kumar, Sushmita Subramanian,
Allison Woodruff



Table of Contents

Positioning

Virtual Compass: Relative Positioning to Sense Mobile Social
Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Nilanjan Banerjee, Sharad Agarwal, Paramvir Bahl,
Ranveer Chandra, Alec Wolman, and Mark Corner

The Geography of Taste: Analyzing Cell-Phone Mobility and Social
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Francesco Calabrese, Francisco C. Pereira, Giusy Di Lorenzo,
Liang Liu, and Carlo Ratti

Indoor Positioning Using GPS Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Mikkel Baun Kjærgaard, Henrik Blunck, Torben Godsk,
Thomas Toftkjær, Dan Lund Christensen, and Kaj Grønbæk

Navigation and Tracking

Specification and Verification of Complex Location Events with
Panoramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Evan Welbourne, Magdalena Balazinska, Gaetano Borriello, and
James Fogarty

Tactile Wayfinder : Comparison of Tactile Waypoint Navigation with
Commercial Pedestrian Navigation Systems . . . . . . . . . . . . . . . . . . . . . . . . . 76

Martin Pielot and Susanne Boll

Applications

Jog Falls: A Pervasive Healthcare Platform for Diabetes Management . . . 94
Lama Nachman, Amit Baxi, Sangeeta Bhattacharya, Vivek Darera,
Piyush Deshpande, Nagaraju Kodalapura, Vincent Mageshkumar,
Satish Rath, Junaith Shahabdeen, and Raviraja Acharya

EyeCatcher: A Digital Camera for Capturing a Variety of Natural
Looking Facial Expressions in Daily Snapshots . . . . . . . . . . . . . . . . . . . . . . . 112

Koji Tsukada and Maho Oki

TreasurePhone: Context-Sensitive User Data Protection on Mobile
Phones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Julian Seifert, Alexander De Luca, Bettina Conradi, and
Heinrich Hussmann



XIV Table of Contents

Tools, Modelling

Recruitment Framework for Participatory Sensing Data Collections . . . . 138
Sasank Reddy, Deborah Estrin, and Mani Srivastava

Out of the Lab and into the Fray: Towards Modeling Emotion in
Everyday Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Jennifer Healey, Lama Nachman, Sushmita Subramanian,
Junaith Shahabdeen, and Margaret Morris

The Secret Life of Machines – Boundary Objects in Maintenance,
Repair and Overhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Matthias Betz

Studies

Automatic Assessment of Cognitive Impairment through Electronic
Observation of Object Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Mark R. Hodges, Ned L. Kirsch, Mark W. Newman, and
Martha E. Pollack

Further into the Wild: Running Worldwide Trials of Mobile Systems . . . 210
Donald McMillan, Alistair Morrison, Owain Brown,
Malcolm Hall, and Matthew Chalmers

Studying the Use and Utility of an Indoor Location Tracking System
for Non-experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Shwetak N. Patel, Julie A. Kientz, and Sidhant Gupta

Activity Recognition

Object-Based Activity Recognition with Heterogeneous Sensors on
Wrist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Takuya Maekawa, Yutaka Yanagisawa, Yasue Kishino,
Katsuhiko Ishiguro, Koji Kamei, Yasushi Sakurai, and
Takeshi Okadome

GasSense: Appliance-Level, Single-Point Sensing of Gas Activity in the
Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Gabe Cohn, Sidhant Gupta, Jon Froehlich, Eric Larson, and
Shwetak N. Patel

Transferring Knowledge of Activity Recognition across Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

T.L.M. van Kasteren, G. Englebienne, and B.J.A. Kröse
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Virtual Compass: Relative Positioning to Sense
Mobile Social Interactions

Nilanjan Banerjee1, Sharad Agarwal2, Paramvir Bahl2, Ranveer Chandra2,
Alec Wolman2, and Mark Corner3

1 University of Arkansas Fayetteville
2 Microsoft Research Redmond

3 University of Massachusetts Amherst
nilanb@uark.edu, {sagarwal,bahl,ranveer,alecw}@microsoft.com,

mcorner@cs.umass.edu

Abstract. There are endless possibilities for the next generation of mo-
bile social applications that automatically determine your social context.
A key element of such applications is ubiquitous and precise sensing of
the people you interact with. Existing techniques that rely on deployed
infrastructure to determine proximity are limited in availability and ac-
curacy. Virtual Compass is a peer-based relative positioning system that
relies solely on the hardware and operating system support available on
commodity mobile handhelds. It uses multiple radios to detect nearby
mobile devices and places them in a two-dimensional plane. It uses adap-
tive scanning and out-of-band coordination to explore trade-offs between
energy consumption and the latency in detecting movement. We have im-
plemented Virtual Compass on mobile phones and laptops, and we eval-
uate it using a sample application that senses social interactions between
Facebook friends.

1 Introduction

Imagine a suite of social applications running on your mobile phone which senses
your precise social context, predicts future context, and logs and recalls social
interactions. The possibilities for such applications are myriad [1], from alerting
you about an impending contact with a business associate and reminding you
of their personal details, to a game that utilizes the relative physical positioning
of its players, or a service that tracks the frequency and tenor of interactions
among colleagues and friends.

These next generation applications will use continual sensing of social context
at an extremely fine granularity. Recent examples of mobile social applications
include Loopt [2] which displays the location of a user’s friends and Dodgeball [3]
which finds friends of friends within a 10 block radius. Unfortunately, these
and other widely deployed technologies that implement localization on mobile
handhelds are limited by accuracy, coverage and energy consumption.

The most widely used localization technology in mobile handsets is GPS, but it
rarely works indoors. Furthermore, its accuracy degrades in urban environments,

P. Floréen, A. Krüger, and M. Spasojevic (Eds.): Pervasive 2010, LNCS 6030, pp. 1–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and the energy consumed by GPS devices is a significant deterrent. Cell-tower
based localization [4] is widely available but can provide very poor accuracy
without a fingerprint profile, or outside city centers. Wi-Fi localization, when
available, provides reasonable accuracy in dense urban environments, but is also
much less effective in other areas [5].

People spend the majority of their time indoors. As a result, many of the most
common opportunities for social interaction occur in indoor environments such
as offices, hotels, malls, restaurants, music and sports venues, and conferences.
In these environments, to detect the interaction with, or even the opportunity to
interact with someone requires relatively fine-grained location accuracy. Even in
environments where indoor Wi-Fi based localization schemes [6] could provide
the needed coverage and accuracy, most of today’s environments do not have this
infrastructure deployed and the barriers to deployment lead us to believe that
this will be the case for some time to come. Techniques that rely on ultrasound or
detecting the phase offset of transmitted radio waves [7] are difficult to implement
using the hardware and APIs available on commodity mobile phones.

We present the design and implementation of Virtual Compass, a peer-based
localization system for mobile phones. Virtual Compass does not require any
infrastructure support, but instead uses multiple, common radio technologies to
create a neighbor graph: a fine grained map of the relative spatial relationships
between nearby peers. Virtual Compass allows nearby devices to communicate
directly, and provides multi-hop relaying so that the neighbor graph can include
others who are not within direct communication range.

Virtual Compass leverages short-range radio technologies, such as Bluetooth
and Wi-Fi, available in today’s mobile handhelds. These radios consume a signif-
icant amount of energy during scanning, and we consider energy management as
a fundamental design pillar. Hence, Virtual Compass includes three techniques
to reduce energy consumption: 1) use of adaptive scanning triggered on topology
changes to update the neighbor graph; 2) selection of the appropriate radio based
on its energy consumption characteristics; and 3) using the wide-area wireless
network when available with a cloud-based service to assist with coordination
and notification of potential changes to the neighbor graph.

Mobile social applications are heavily driven by the relative positioning of peo-
ple, and less by absolute location. Sensing the precise placement of individuals
relative to one another yields the social context needed for many useful appli-
cations, and the quality of location information produced by Virtual Compass
increases as the density of devices increases.

We have implemented Virtual Compass on Windows based mobile phones and
laptops. Through extensive experimentation we evaluate the latency, location ac-
curacy, and energy consumption characteristics of Virtual Compass as a function
of system scale. In a typical experiment we found the average error in spatial
placement of nine nodes in a 100m2 area was 1.9 meters. We show significant
accuracy gains in simultaneously using multiple radios for distance estimation,
and our algorithm for spatial placement. Additionally, we are able to locate a
new device within 25 seconds of its arrival. Applying our energy conservation
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techniques yields four-fold to nine-fold improvements in battery lifetime over a
naive scheme that does not use any energy management. We also present the
design and evaluation of a sample application built on top of Virtual Compass.

2 Related Work

As a key ingredient for sensing, localization has been the subject of extensive
work, both core technologies, and systems that leverage and reason about loca-
tion. A comprehensive review of localization research is in [8]. Here, we compare
and contrast our work by broadly dividing the corpus of prior work into two
categories: infrastructure-based and peer-based, and review the most relevant.

Infrastructure-based localization techniques can be broadly classified by their
core technology: GSM [9, 10, 5], Wi-Fi [11, 12, 6], GPS, ultrasound with RF [13,
14], Infrared [15], RFID [16], and UWB [17]. The most successful techniques
have leveraged infrastructure that was put in place for other reasons (GSM and
Wi-Fi localization) and it seems likely that peer-based localization will follow a
similar trend relying on technologies such as Wi-Fi and Bluetooth. GPS is the
only exception, but it is unique in that it only works outdoors. Several indus-
trial startups [3, 2, 18, 19] have cropped up which use localization to support
social applications, relying on the infrastructure-based localization support in
mobile phones which is typically Wi-Fi-, GSM- or GPS-based. However, such
schemes are limited in coverage and accuracy, making it impossible to support
the full range of social applications—especially in situations that require fine-
grained proximity information. For example, Wi-Fi localization requires a dense
deployment of access points and accurate profiling (not available in many indoor
scenarios), and GSM localization can exhibit poor accuracy without a detailed
profile or away from dense urban areas.

Peer-based localization techniques attempt to either infer the proximity of a
pair of devices, or infer the actual distances between multiple devices and place
them in a virtual map. Proximity-based placement schemes such as Humming-
bird [20] and NearMe [21] detect if two devices are within 30 to 100 meters of
each other. Beep Beep [22] achieves high accuracy using sound, but does not spa-
tially place more than two nodes, nor nodes that are out of earshot. BlueHoo [23]
uses Bluetooth discovery to detect friends within Bluetooth range and People-
Tones [24] uses GSM-based relative positioning. Virtual Compass measures the
distances between multiple nearby nodes, uses multi-hop communication to ex-
pand coverage, and spatially places them relative to each other on a 2D plane.
Moreover, our system uses algorithms which balance energy consumption with
low-latency and accurate localization. Relate [25] and DOLPHIN [26] rely on cus-
tom ultrasound hardware which is typically unavailable in commodity devices.
RIPS [7] requires signal processing of received radio waves, which is possible on
custom hardware such as MICA2 motes but hard to do with off the shelf mobile
phones and standard SDKs. MSP [27] uses sensor event distribution to locate
nodes in a static sensor network. Bulusu [28], Sextant [29] and Calibree [30] use
the location of a subset of nodes (e.g. equipped with GPS units) to derive the
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locations of a larger set of nodes. LOCALE [31] also uses GPS equipped nodes
to locate other nodes using dead reckoning. Our goal is to design a peer-based
localization system that works in the absence of fixed infrastructure or reference
points, which can be hard to obtain using GPS in indoor settings.

Moore et al. [32], Spotlight [33], and Vivaldi [34] address the problem of plac-
ing nodes relative to each other in a multi-dimensional plane. Moore et al. [32]
and Spotlight [33] use custom sensors for relative localization while Virtual Com-
pass focuses on commodity cellular phones. While their algorithms can be used
in Virtual Compass, we use a simpler Vivaldi [34] variant in our implementation.

3 Peer Localization

The goal of Virtual Compass is to generate a two-dimensional layout of nearby
mobile devices. It uses radios that allow peer-to-peer communication, such as Wi-
Fi and Bluetooth, to exchange messages directly between devices. This exchange
serves two purposes. Each pair of devices that are in communication range uses
the received signal strength of these messages to estimate the distance between
them. The message itself contains the list of neighbors and their distances, which
allows nodes that are further away to map devices that are not in their immediate
communication range. Virtual Compass leverages the collective knowledge of
distances between peers learned in this way to calculate the 2D layout.

Figure 1 shows an example. Mobile node A periodically sends messages to its
neighbors B, C, and D. Each of these nodes uses the received signal strength
indication (RSSI) of these messages to calculate its distance to A, as described
in § 3.1. The nodes exchange these messages on multiple radios to reduce the
inherent error of distance estimation via RSSI, as described in § 3.2. They embed
these distances in the messages that are exchanged between neighbors so that
each node discovers the distances between other nodes. So in this way, C learns
of the distance between A and D. Furthermore, nodes such as E that are far away
can learn where A, B and D are. Virtual Compass solves the constraints imposed
by these distances to create a relative map using the technique in § 3.3. Note
that the underlying RSSI-based mechanism detects distance but not direction.
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Fig. 1. Each line represents a mobile
node’s ability to directly communicate be-
tween the two end-points using a radio
such as Bluetooth or Wi-Fi. A,B,C and D
are in communication range of each other,
while E is only in range of C
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Fig. 2. An example of using RSSI mea-
surements from multiple radios (Blue-
tooth and Wi-Fi) to reduce the error in
computing distance
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3.1 Estimating Distance

In Virtual Compass, nodes periodically exchange messages on radios with omni-
directional antennas. § 5 describes these messages in detail. We use the RSSI
of these messages to estimate the distance between sender and receiver. Even
though we rely on RSSI, if techniques such as propagation time become feasible,
Virtual Compass can easily use them instead. While translating RSSI to distance
has been studied in prior work [35, 36], Virtual Compass enhances that work by
incorporating the uncertainty in distance measurements to provide two benefits.
First, as Virtual Compass is meant to be used in a broad range of unknown
environments, modeling the uncertainty reduces the dependence on the environ-
ment in which the measurements were taken. Secondly, and more importantly,
the error model provides a basis for composing information from different radios.
To translate each RSSI reading to a distance estimate with an error bound, we
use empirical models that we built by running several propagation experiments
in two indoor office environments at Microsoft Research Redmond, and Univer-
sity of Massachusetts Amherst (details of the experiments can be found in our
technical report [37]). We have evaluated our distance estimation scheme in § 6.

3.2 Using Multiple Radios

To reduce the error in estimating distance from RSSI, Virtual Compass uses
multiple peer-to-peer radios simultaneously. For ease of exposition, we describe
how our scheme works for two radios, Wi-Fi and Bluetooth. This approach works
for any radio with an RSSI to distance conversion, or when using more than two
radios.

Consider Figure 2 where a node receives a message from the sender over
Bluetooth and one over Wi-Fi and attempts to calculate the distance between
the two nodes. Let RSSI1 be the RSSI of the message received over Bluetooth,
and RSSI2 be the RSSI of the message received over Wi-Fi. We obtain a distance
estimate for each, x1 and x2 (see [37] for details). We also obtain the uncertainties
(error), u1 and u2, each of which is the distance between the 10th and 90th

percentiles for the measured model. The goal of the composition is to combine
the two sources of information in order to reduce uncertainty in measurement.
The mid-point of the two RSSI distance estimates is P = (x1 +x2)/2. We apply
a displacement from P for each measurement, which are F1 = (P − x1) ∗ u1/2
and F2 = (P −x2)∗u2/2. Intuitively, the sum of the forces should push the node
in the direction of a source which has a smaller uncertainty in measurement. The
final estimate of the distance is given by the midpoint displaced by a normalized
sum of displacements D = P + 2(F1 + F2)/(u1 + u2). The normalization ensures
that the estimate of distance always falls within the range of estimates given
by the two RSSI readings. In the rare case where the uncertainties from the
two readings do not intersect, we simply use P as the final distance. We have
evaluated our multi-radio composition scheme in § 6.

In this way, each pair of nodes that can directly communicate with each other
estimate the distances between them, while reducing error. These distances are
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embedded in the messages that are exchanged between them so that ultimately,
each node knows the distances between any two nodes that can communicate
in the vicinity. The next step in Virtual Compass is to calculate a 2D spatial
placement of these nodes that satisfies these distance constraints.

3.3 Spatial Placement

Consider a 2D Euclidean space where each node’s position is determined by its
(x, y) coordinates. Each distance estimate rij between nodes i and j forms a con-
straint: (xi −xj)2 +(yi−yj)2 = r2

ij . An optimal algorithm would simultaneously
solve this set of non-linear (quadratic) constraints to calculate coordinates for
peer nodes. However, this is known to be NP-Hard [38]. Furthermore, since the
distances between nodes are measured independently and are subject to error,
it is possible in some cases that there is no solution that satisfies all the distance
constraints.

We instead use the Vivaldi [34] method to calculate node positions. Vivaldi
uses estimates of distances between nodes to calculate a force vector, and then
iteratively improves each node’s coordinates by moving it along the resulting
force. Vivaldi has been shown to produce good results with little computation
overhead. However, the choice of starting all nodes at the origin can sometimes
lead to local minima or a large number of iterations to converge. Hence, to pro-
duce a relative map of all nodes, we first calculate a very approximate but quick
placement in phase 1, and then feed that to a simple Vivaldi implementation in
phase 2 for iterative refinement.

Phase 1 calculates an approximate set of coordinates that will help Vivaldi
converge faster and to more accurate results in phase 2. Consider the example
where node A is calculating a placement for itself with respect to 2 other nodes
B and C and begins by placing itself at the origin. It finds the peer, B, that is
the smallest distance (r1) away, and places it at (0, r1). Next, we choose node
C that is constrained by both A and B. The algorithm Virtual Compass uses
to place C is defined in Algorithm 1. We run this algorithm multiple times with
different constraint orderings and we use an average of the coordinates from each

Algorithm 1. Spatial placement for calculating rough 2D coordinates during Phase 1 for a node

Input: Set of constraints C = {C1, ..., Cn}, Ci = (x − xi)2 + (y − yi)2 = r2
i

loop
For every pair of constraints (Ci, Cj), find intersection points (x1, y1) and (x2, y2)

end loop
P = {{(x1

1, y1
1), (x1

2, y1
2)}, ..., {(xk

1 , yk
1 ), (xk

2 , yk
2 )}} (set of intersection coordinates).

Initialize solution set S = {(x1
1, y1

1)}
loop

For each element E = {(xj
1, yj

1), (xj
2, yj

2)} ∈ P

S = S ∪ arg min{
∑

(xj,yj)∈S

√
(xj

1 − xj)2 + (yj
1 − yj)2,

∑
(xj,yj)∈S

√
(xj

2 − xj)2 + (yj
2 − yj)2}

end loop
return Node coordinate: ((1/|S|) · ∑

xi∈S xi, (1/|S|) · ∑
yi∈S yi)
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iteration as the starting placement for phase 2. Experimentally, we determined
that 10 iterations produces a sufficiently accurate initial placement with little
impact on run time. While we could have used other algorithms, the goal of this
phase is to produce a starting point for Vivaldi that is more reasonable than the
origin for all nodes.

Phase 2 uses the coordinates from phase 1 as the starting placement and uses
a simple implementation of Vivaldi [34] to iteratively refine the coordinates to
reduce the error between the placement and the measured pairwise distances. In
each iteration, Vivaldi calculates forces that are applied between nodes – each
force represents the difference between the measured distance between a pair of
nodes and their distance in the virtual coordinate space. The resulting force on
each node then determines the direction and amount of movement for the node
in the virtual coordinate space. This process is repeated in each iteration. We
have experimentally determined that 100 iterations produces accurate results
with extremely marginal benefit from additional iterations. In § 6, we present
the latency overhead of this computation, and it is dwarfed by the network
communication time.

As an example, consider node A at (x1, y1) with a neighbor B whose coordi-
nates are (x2, y2). The measured distance between them is r12. The magnitude
of the force F between them as applied on A is r12 −

√
(x1 − x2)2 + (y1 − y2)2

and its direction is given by the unit vector ((x1 − x2), (y1 − y2)). There may
be other forces applied on A (due to measured distances to other neighbors),
and we calculate the resulting single force [34]. The coordinates for A are then
changed in this iteration to (x1 + Fx ∗ t, y1 + Fy ∗ t), where Fx and Fy are the
components of F in the x and y direction and t is a constant. For Virtual Com-
pass we experimented with different values of t and found t = 0.1 works best in
our environment. Applying a force at each node that is proportional to the error
minimizes the mean-square error and converges to a set of coordinates which
satisfy the distance constraints (see [34] for proof).

4 Energy-Efficient Peer Localization

As with any system targeted at mobile devices, energy consumption is a critical
concern. If the lifetime of the device is severely impacted, users will eschew appli-
cations that rely on our system. Virtual Compass depends on frequent commu-
nication between peers to provide timely updates to changes in the social graph.

Table 1. Energy consumption of radios on fully-charged HTC Touch Cruise phones

Radio Power (mW) Lifetime (hours)
GSM (idle) 24.4 203.0
Bluetooth (idle) 45.5 109.8
Bluetooth (scanning) 507.6 9.8
Wi-Fi (idle) 849.9 5.9
Wi-Fi (scanning) 1305.4 3.8
GPS (idle) 859.9 5.8
GPRS (transfers) 1031.2 4.8
HSDPA (transfers) 1099.6 4.5
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As has been observed in prior work [39], communication consumes a significant
portion of a mobile phone’s energy budget. To place our work in a common
frame of reference, we include Table 1 which shows the energy consumption of
our implementation platform. With no communication, a typical phone will last
for 203 hours on a single battery charge. However, if it continuously scans for
other peer devices, the battery is completely exhausted within 10 hours when
using Bluetooth, and under 4 hours using Wi-Fi.

To mitigate this, Virtual Compass must balance the energy devoted to sensing
and maintaining the social graph against the accuracy of the system. Scans that
are too frequent will drain energy, and scans that are too infrequent will increase
the latency for peer localization – device arrival or departure will go undetected
until the next scan interval. Virtual Compass uses three techniques to reduce
the number of scans without significantly degrading localization accuracy.

4.1 Adaptive Bluetooth Scanning

We observe that repeated scans are unnecessary in a static environment, such
as when there are no other devices around, or when none are moving. Virtual
Compass uses this observation to adapt the scan interval. Every device keeps
track of changes in its neighbor graph and accordingly adjusts its scan interval
– aggressively scanning the environment when the neighbor graph changes, and
increasing the scan interval otherwise. To track the change in its neighbor graph,
a device calculates the number of one hop, N1 (2 paths in Figure 3), and two
hop paths, N2 (1 path in Figure 3), that have changed between successive scans.
We compute a change metric as p ∗ N1 + (1 − p) ∗ N2, where p is a constant.
When this metric is less than a threshold x, we increase the inter-scan interval
by 10 seconds. If the metric is above a threshold y, we halve the scan interval.
We do not scan more frequently than once every 10 seconds and we do not allow
the scan interval to increase beyond 10 minutes. We use values of 0.9, 1 and 1
for p, x and y respectively. While these values are arbitrary and could be tied
to an application, they work well in our experiments. The results of a simple
experiment showing the behavior of this technique are shown in Figure 4. The
scan interval additively increases until new devices are introduced or removed
in the neighbor graph, at which point the scan interval is halved. This method
can be easily extended to other metrics. For instance, an application may care
about sensing small changes in the distance between peers or may want to weight
different peers based on their significance in the social network.

Between two successive scans, which can be as long as 10 minutes, we leave
the Bluetooth radio on since the idle energy consumption of Bluetooth is small
(see Table 1). Moreover, with the Bluetooth radio on, it can respond to its peer’s
scans and the corresponding neighborhood graph is always complete. In contrast,
the idle power consumption for Wi-Fi is comparable to scanning. Therefore, the
radio needs to be turned off between scans. However, this implies that adaptive
scanning for Wi-Fi is infeasible—if different peers wake up at different times,
their scans will result in incomplete neighbor graphs. Therefore, for Wi-Fi we
periodically (every 1 minute at wall clock time) turn on the radio and put it
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Fig. 3. An example illustrating the calcu-
lation of the change metric for adapting
the Bluetooth scan interval. In this exam-
ple, the change metric between T1 and T2

is 1.9, which is high enough to trigger a
reduction in the scan interval.

Fig. 4. This graph shows the Bluetooth
scan interval for a device over time. After
10 minutes, we introduced a second peer
device, and at 12 minutes a third peer de-
vice. At 18 minutes we removed one de-
vice, and then a second one at 20 minutes.

in scan mode. Mobile phones synchronize their wall clock time with the cellular
infrastructure. Even if disconnected from the cellular network, clock drift in the
order of one or two seconds is not a significant issue since Wi-Fi scanning takes
several seconds (see § 6).

4.2 Cloud Coordination

There are significant periods of time when a device is completely alone. Figure 5
shows how often Bluetooth scans by 150 participants [40] found other devices. On
average, each mobile phone found no other Bluetooth devices 41% of the time.
While it is possible that other devices were present but did not have Bluetooth
discovery enabled, or were discoverable over the longer range of Wi-Fi, this
finding fuels our belief that there are periods of time when a device is completely
alone. Hence we can save energy on devices during these periods by keeping Wi-
Fi off and not initiating Bluetooth scans until a new device arrives. However,
the primary challenge is to detect device arrival without using Bluetooth and
Wi-Fi. We observe that many mobile devices are almost always connected to
the Internet via a cellular data connection such as 3G. Hence, a simple service
running on the Internet can inform the device when there are other devices in
the vicinity.

In Virtual Compass, each mobile device uploads its approximate geographic
location to this service. This location is calculated using low-energy, coarse
grained GSM localization. The list of GSM cellular towers that are in the vicinity
and the RSSI values are used to compute a rough geographic location. Each time
its location changes, the device updates the service. When the device believes it
is alone (no neighbors in Bluetooth and Wi-Fi scans), it will periodically ask this
Web service whether there are any other devices in the vicinity running Virtual
Compass. If there are no peers around it, the device will keep its Wi-Fi radio
off and not scan on Bluetooth. Otherwise, it adjusts its scan interval and Wi-Fi
wakeup interval as described previously. Since periodic polling on a radio such
as 3G consumes a considerable amount of energy, Virtual Compass uses a push-
based technique to notify the device when other nodes are around. Inspired by
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Fig. 5. CDF of the number of Bluetooth
devices seen in periodic scans from 150
Nokia N95s [40]
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Fig. 6. Architecture of Virtual Compass

Cell2Notify [41], a Virtual Compass device uploads a Request-for-Notification
(RFN) bit to the Web service when it thinks it is alone. For each device with
the RFN bit set, the Web service keeps track of other device arrivals in the
vicinity of the sleeping device and will notify it, which then resumes Wi-Fi and
Bluetooth scanning. We describe our implementation of this notification in the
next section.

4.3 Leveraging Application Behavior

In addition to exploiting user mobility to reduce energy consumption, a cloud
service allows us to also exploit application behavior. Some applications that
use peer localization may not need the neighbor graph maintained all the time,
even though the applications are still running. For example, an application that
shows the user a map of nearby friends and how to get to them does not need
the neighbor graph if the user is not interacting with the phone. Scanning in this
scenario wastes energy. However, not scanning, and hence not participating in
multi-hop discovery, could degrade localization accuracy for other devices where
their users are actively interacting with the phone. We suspect that there are
significant periods of time when every phone in the vicinity is simultaneously
not in use. To detect this scenario, Virtual Compass detects when the back-light
for the screen on a mobile device turns off. We then assume that the user is
not using the application and upload this bit of information to the Web service
along with the device’s rough geographic location. When Virtual Compass polls
the Web service to find out how many devices are in the vicinity or uses the
notification service, it also learns how many of them have the back-light on. If
no devices are actively being used, then it keeps the Wi-Fi radio off and does not
scan on Bluetooth. If any one device in the vicinity has the back-light on, then
it resumes normal discovery behavior. Unfortunately, if an application uses peer
localization to log social interaction in the background, instead of displaying an
interactive map, then this technique cannot be used.
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Fig. 8. Screen shots of the simple UI in
FriendMeter

5 Implementation

We have implemented Virtual Compass on the Windows Mobile 6.0 operating
system that runs on a variety of mobile phones. While we have also ported Virtual
Compass to the Windows Vista operating system, we focus on the mobile phone
version in this section. Virtual Compass runs entirely at the application layer,
and does not require modifications to the Bluetooth and Wi-Fi drivers, nor to
the network stack. Our software architecture, depicted in Figure 6, consists of
four main components: native radio modules, cloud services, peer localization
service and applications.

Native radio modules: Virtual Compass interacts with many radios (GPS,
Bluetooth, Wi-Fi, and GSM) using native APIs exposed by the Windows Mobile
OS. To access the Wi-Fi radio when the device is in suspension state S3, we use a
PPN UNATTENDED state. This consumes slightly more energy than S3, but allows
us to access the Wi-Fi radio.

For device discovery and propagating the neighbor graph, as described in
§ 3, Virtual Compass requires every device to periodically broadcast its ID and
the IDs of and distance to each of its peers. The application layer provides the
ID to be used in Virtual Compass. To broadcast this information without the
additional latency of explicitly forming a network, we use the Beacon-Stuffing
approach [42] for Wi-Fi, and a similar technique for Bluetooth. Our beacon for-
mats for Bluetooth and Wi-Fi are in Figure 7. For Bluetooth beacons we modify
the 2048 bytes available for the device name, while for Wi-Fi beacons we embed
this information in the 32 byte SSID. The small size of the Wi-Fi SSID limits
the size of the neighbor graph that can be encoded in the beacon. To solve this
problem, we could use two techniques proposed by Beacon-Stuffing [42]: use 256
byte IE blobs, or fragment large strings across beacons that are then reassem-
bled at the receiver. We have not implemented either solution, and in our current
implementation, we limit the neighbor graph embedded in beacons to immedi-
ate one-hop peers, thus effectively limiting peer localization to a maximum of
two-hops.

One problem with using the Bluetooth radio for peer localization is that it may
interfere with Bluetooth headset usage during phone conversations. A scan in the
middle of a conversation will disrupt the phone call. To avoid this problem, we
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trap the incoming phone call and phone call talking events from the Windows
Mobile OS and stop Bluetooth scanning if either event is active. We resume
scanning once these events have ended.

Cloud services: Virtual Compass uses the SQL Server Database Service
(SSDS)[43] over the Internet for coordinating Wi-Fi radio wake-ups and Blue-
tooth scans, as described in § 4.2. SSDS has the following components: (a) Au-
thority: this is the top-most level of containment hierarchy under which all the
data for a particular SSDS login is stored. (b) Container: an authority is a collec-
tion of containers. (c) Entities: each entity inside a container stores any number
of user-defined properties and values. Virtual Compass uses a single author-
ity, under which there is a separate container for each geographic region, under
which there is a separate entity for each device. The peer localization service
moves the device’s entity to the appropriate container based on cellular tower
IDs and RSSIs from the GSM radio and updates a bit indicating whether the
screen back-light is on. Virtual Compass can use a push (notification-based) and
polling scheme to download information on neighbor positions. For polling it
periodically downloads the contents of the containers to determine if it is alone.

When using the notification scheme, each Virtual Compass device uploads its
current position based on cell tower IDs and RSSIs. When a device does not find
any neighbors on a Bluetooth and Wi-Fi scan it uploads a RFN (Request for
Notification) bit and the device’s phone number to the cloud and stops scanning
on Bluetooth and switches off Wi-Fi. A notification service runs on an Internet
server which constantly downloads the location of all Virtual Compass devices
using SSDS. It calculates whether any Virtual Compass device is near a node
with its RFN bit set. If so, it uses a Skype client on the server to make a phone
call to the device using a special caller ID number. The device traps the incoming
phone call event, and if it recognizes the special caller ID number, it ends the
call and resumes scanning on Bluetooth and Wi-Fi.

Peer localization service: The location service runs the distance estimation
and spatial placement algorithms from § 3 to produce a 2D map of where peer
devices are. The distance estimation model that we use to convert a RSSI mea-
surement to distance and uncertainty is described in our technical report [37]. We
used extensive measurements in two office environments at Microsoft Research
Redmond, and University of Massachusetts Amherst to derive these models. The
service also manages the Wi-Fi radio sleep and scan schedule, Bluetooth scan-
ning interval and interfaces with the cloud services to reduce energy consumption
as described in § 4. It feeds the entire map to the application layer.

Applications: We have implemented the FriendMeter application using Virtual
Compass. FriendMeter uses Virtual Compass to sense the distances between the
user and her friends who are in the vicinity. Several applications such as gaming
and file transfer amongst friends can be considered as instances of FriendMeter.
FriendMeter is designed with two purposes in mind – a short-term use and a
long-term use for the sensed information. In the short-term, the results from
Virtual Compass are used to show the user a map that can be used to find
and meet her friends. In the long-term, the time-varying distances measured
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between the user and her friends can be used to infer social interactions. These
inferences can be used to cluster friends in social applications, such as Facebook,
based on proximity. Each friend can be metered by the amount of physical social
interaction. Our implementation shows the user a map and records a history of
the map, but currently does not alter their friends list.

FriendMeter uses the Facebook API to connect to Facebook, authenticate
the user and get her list of friends. It uses a unique numerical Facebook login
id—provided by Facebook as the mobile device’s ID. This facilitates identifying
the user on each peer device, but as we note in § 7, there are some privacy im-
plications. FriendMeter displays a map of all the user’s friends in the vicinity.
It also displays the photographs of the nearby users and their interests, hob-
bies, and other information. Screen shots from the application are in Figure 8.
Even though the underlying peer localization service provides a map with many
devices, FriendMeter filters out those that are not in the user’s friend list.

6 System Evaluation

We evaluate the performance of Virtual Compass by focusing on the following
three key questions: (1) How accurate are Virtual Compass’s distance estimates
and spatial placement? (2) How much energy does Virtual Compass consume?
(3) How quickly does Virtual Compass adapt to changes (e.g., when a new
device arrives, or one departs)? In answering these questions, we also examine
the impact of scale: how does the number of devices affect Virtual Compass?

Experimental Setup: We evaluate Virtual Compass on the Windows Mobile
and Windows Vista operating systems. Our testbed consists of ten devices – an
HTC TyTNII mobile phone, an HTC Touch Cruise mobile phone, four laptops,
and four desktops. All ten devices have IEEE 802.11b and Bluetooth interfaces,
and are connected to the Internet via 3G cellular on the phones or Ethernet
on the laptops and desktops. In most experiments, we deploy the devices in a
100m2 indoor office area, but we also evaluate larger areas of 900m2 and 2500m2

where indicated. Many experiments involve statically-placed nodes, but in those
evaluating latency, we move a device into or out of the deployment area. When
evaluating energy consumption, we measure the lifetime of the fully charged
mobile phones while running Virtual Compass and leaving the GSM radio on.

Accuracy of Localization: The primary goal of Virtual Compass is to accu-
rately localize nearby peers. We evaluate this accuracy in two ways – (1) error
in pairwise distance between nodes – what is the difference between the physical
distance and the distance that Virtual Compass predicts? (2) spatial placement:
for a number of nodes, how different is the 2D placement that Virtual Com-
pass presents from their actual placement?

Pairwise distance accuracy: Figure 9 shows how well Virtual Compass esti-
mates the distance between two nodes as their physical distance is varied. Virtual
Compass comes very close to perfectly estimating distance. When Virtual Com-
pass does deviate from the actual distance, it does so by a small amount as the
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Fig. 9. Distance and deviation predicted
by Virtual Compass

Fig. 10. CDF of the error in distance

Table 2. Average error for nine devices in a 100m2 indoor area reported by the different
systems

System Average Error (meters)
Bluetooth 3.40

Wi-Fi 3.91
Virtual Compass 1.41

error bars indicate. Figure 10 shows the CDF of this error over a large number
of placements. The median error is only 0.9 meters, and over 90% of the time,
the error is under 2.7 meters. To examine why Virtual Compass is so accurate in
pairwise distance estimation, we present Table 2, which shows the advantage of
our multi-radio approach. If Virtual Compass were to use only Bluetooth radios,
the average error would be quite high at 3.40 meters, or 3.91 with just Wi-Fi
radios. However, by simultaneously using both Bluetooth and Wi-Fi, Virtual
Compass reduces the average error to 1.41 meters.

Spatial placement accuracy: We evaluate spatial placement in Figure 11. Vir-
tual Compass’s 2D spatial placement (dark dots) almost exactly matches the
actual placement (light dots) – the average distance between a light dot and the

Fig. 11. This figure shows a map of 9
devices using light dots. We overlay the
spatial placement map from Virtual Com-
pass on this figure using dark dots. The
spatial placement was generated at the
node on the desk between “3” and “4”.

Fig. 12. Using multiple experiments sim-
ilar to Figure 11, we calculate the average
error in 2D placement as we vary the num-
ber of devices
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Fig. 13. This graph shows the lifetime of
Virtual Compass on a fully-charged sta-
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Fig. 14. The lifetime of Virtual Com-
pass on a fully-charged mobile phone for
the same setup as Figure 13. In the
“polling” bars, Virtual Compass period-
ically queries the cloud service for node
arrivals and in the “notification” bars, Vir-
tual Compass uses the push-based tech-
nique.

corresponding dark dot is 1.9 meters. Our accuracy is dependent on two factors:
our multi-radio RSSI-based distance estimation, and our 2D spatial placement
algorithm. To tease apart these two factors, we applied our 2D spatial placement
to the actual pairwise distances between these nodes (as opposed to the RSSI-
based estimates) and the average error is 0.6 meters.

The accuracy of our 2D placement algorithm also depends on the density of
devices – the more devices we have, the more constraints we have that allow the
placement to converge faster. In Figure 12, we repeat our placement experiments
while varying the number of devices, and the placement of these devices. As the
number of devices is lowered, the error increases because every node is constrained
by fewer neighbors. With just 2 nodes (with one placed at the origin), the average
error is purely a reflection of the RSSI-based distance estimation error.

Energy Consumption: While accuracy in localization is the primary goal of
Virtual Compass, energy consumption is a critical concern for mobile devices. We
now evaluate the benefits of the energy saving techniques from § 4. Figure 13
shows the lifetime as the number of nearby peers is varied. The “no energy
mgmnt” bars, the lifetime of a mobile phone with Wi-Fi and Bluetooth always
on and scanning every 1 minute and 10 seconds respectively is dismal, at 4.8
hours with no peers and 3.8 hours with 9 peers. The slight drop in lifetime with
the number of peers is because Virtual Compass has to connect over Bluetooth
to every peer to get the RSSI value (this is a limitation of the Windows Mobile
Bluetooth API). However, when we turn Wi-Fi on and off every 1 minute and
adaptively change the Bluetooth scan interval, we see significant energy savings
in the “adaptive scan” bars, from 18.0 hours with no peers to 14.8 hours with
9 peers. Even though the devices do not move, there is a drop in lifetime with
the number of peers because of the Bluetooth connect issue and because
with more devices, variations in the environment can temporarily appear as
slight neighbor graph changes. When we include the cloud coordination scheme
in the “adaptive scan + cloud” bars, the lifetime actually reduces. Periodically
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Table 3. This figure shows the lifetime of
Virtual Compass on a fully-charged mo-
bile phone, with the back-light optimiza-
tion from § 4.3 turned off or on. We used
a synthetic workload based on the Reality
Mining data [44] to emulate phone usage

back-light optimization lifetime (hours)
off 12.07
on 15.42

Table 4. This Figure shows the lifetime
of Virtual Compass on a fully-charged mo-
bile phone, with 9 peers nearby, across dif-
ferent sizes of regions. In each experiment,
the devices did not move.

Density Lifetime 1-hop 2-hop 3-hop
(meter2) (hours) peers peers peers

100 11.19 9 0 0
900 11.92 5 4 0

2500 12.05 5 3 1

polling the Web service when alone (0 peers) is a significant drain on the battery.
Even when not alone, our devices keep uploading their location to the Web ser-
vice because of variations in the RSSI from GSM cell towers and re-association
with a different GSM cell tower, despite the nodes being static in this exper-
iment. GSM localization that is more robust to such variations should help.
In Figure 14, we show the advantage of using a notification system instead of
polling. When there are no other devices around, the savings are tremendous –
lifetime increases from 15.7 hours to 35 hours. Since there are no devices around,
the device keeps Wi-Fi off and does not scan over Bluetooth, and does not need
to poll the service over 3G.

We now evaluate the improvement offered by the back-light optimization from
§ 4.3. The previous experiments do not use this optimization because we lack
accurate usage models of our application. Hence in Table 3, we present an eval-
uation of this optimization based on emulation of the Reality Mining data [44].
The data covers a large number of users across many days and indicates when
their phones are idle versus in use. We pick 10 users at random and focus on
their behavior for a random day. For periods of time when all the devices are
idle, we follow our technique from § 4.3 and keep Wi-Fi off and do not scan
on Bluetooth. We repeat these emulations multiple times by picking 3 different
days at random, and 3 different sets of 10 users, and present average numbers in
Table 3. While this emulation may not perfectly match real usage, these results
show that this optimization has the potential to increase lifetime by 30%.

Finally, we present Table 4 where we evaluate the energy consumption of
Virtual Compass as we vary the density of deployment. The lifetime does not
significantly vary with density. There is a slight increase in lifetime as density
decreases, and this is because there are fewer peers that are directly reachable
over Bluetooth, and hence fewer connections need to be setup to measure RSSI.

Latency: Latency is another important metric – Virtual Compass should sense
changes in the neighbor graph fast enough for applications that want to de-
tect social interactions, and for those that provide maps in real-time to users.
Figure 15 shows the overhead of different components of Virtual Compass. Blue-
tooth scanning is particularly slow, and we discuss this in more detail in § 7.
Bluetooth pairing is needed to work around a limitation of the Bluetooth in-
terface in Windows Mobile. The Windows Vista Bluetooth stack does pass up
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Fig. 15. This graph shows the latency of
various tasks in Virtual Compass, along
with error bars indicating variance across
several runs. A total of 10 stationary de-
vices were placed in a 100m2 area. “app
initialization” is dominated by communi-
cation with the Facebook Web site.

Table 5. This figure shows the stability of
the neighbor graph when using just Blue-
tooth, just Wi-Fi, or both. We placed 2
devices 10m apart, and ran experiments
for 2 hours.

System Neighbor graph stability
Bluetooth 14%

Wi-Fi 90%
Virtual Compass 94%
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Fig. 16. This graph shows the latency of
Virtual Compass detecting a peer moving
into or moving out of the vicinity, with dif-
ferent numbers of nearby, stationary peer
devices
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Fig. 17. This graph shows the trade-off
between the latency of detecting a peer
moving into or moving out of the vicinity,
against the lifetime of Virtual Compass .
We varied the Wi-Fi scan interval between
30 seconds and 4 minutes.

RSSI values from a Bluetooth scan without having to pair and connect, and so
we are confident that this problem is not inherent to Bluetooth.

The time taken to detect the arrival of a new peer depends not only on the
latency of Wi-Fi and Bluetooth scans, but also on how reliable scanning is. In
Table 5, we present the probability of finding a peer device with a Bluetooth
scan, Wi-Fi scan and both. Bluetooth is particularly poor because when two
adjacent devices are scanning (and hence frequency-hopping) simultaneously,
the probability of both being on the same channel and hence discovering each
other is very low. This problem is specific to Bluetooth, as the stability of Wi-
Fi is much higher. Since Virtual Compass uses both radios, it can detect the
presence of a peer device more reliably than either alone.

We now evaluate how quickly Virtual Compass detects peer movement. In
particular, we consider: (1) time elapsed between a peer entering the vicinity of
a device and the peer showing up on the map, and (2) time elapsed between a
peer leaving the vicinity and it disappearing from the map. We evaluate both
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latencies in Figure 16. The latency of detecting a new peer is dominated by the
frequency of scanning – in steady state, Bluetooth scanning occurs once every
10 minutes, but Wi-Fi occurs every minute. Since the graph shows the average
across many runs, the average latency for detecting a new peer is 30 seconds,
because of Wi-Fi scanning. Peer departure can be a higher latency operation as
the number of peers increases because all peers have to remove the exiting peer
from their neighbor graph, else it will still appear in the map due to multi-hop
discovery. Hence Bluetooth’s slower scan time dominates peer departure latency.

Reducing the scan interval of Wi-Fi and Bluetooth can reduce latency, but
it comes at the cost of energy. Figure 17 explores this trade-off. The second
set of bars at 11.36 hours corresponds to the 5 peers bars from Figure 16. We
can double the lifetime to 23.28 hours at the cost of doubling latency. However,
halving the lifetime to 6.35 hours does not significantly reduce latency. Hence
we believe that our choice of the Wi-Fi wake-up and scan interval of 1 minute
and the Bluetooth limits of 10 seconds to 10 minutes offer the best trade-off.

7 Discussion

We now discuss performance optimizations for Virtual Compass.
Improving accuracy: While Virtual Compass uses a single RSSI-distance pro-

file, we could use different profiles for different environments, such as outdoors
versus indoors. This would require a mobile device to determine if it is outdoors,
and then apply the corresponding RSSI-distance profile. We are exploring two
ways to solve the problem of detecting that the user is outdoors. First, if a GPS
signal is available, then we can assume the user is outdoors. Second, we can use
user feedback.

Reducing Latency: Virtual Compass’s latency in detecting node movement is
significantly impacted by Bluetooth scanning. Two devices that simultaneously
scan over Bluetooth can miss each other because each may use a different fre-
quency hopping sequence such that the two devices never end up on the same
channel at the same time. To alleviate this problem, we are investigating certain
Bluetooth 1.2 chipsets that allows enhanced inquiry which is supposed to make
discovery reliable and fast (less than 5 seconds).

Reducing energy consumption: Not all mobile devices have similar energy
budgets. A laptop has a larger battery than a mobile phone. Furthermore, some
environments may have desktops with wireless interfaces. We posit that it is ben-
eficial for mobile phones to offload the task of aggressively scanning for device
movement to nomadic infrastructure that is energy rich. The nomadic infras-
tructure can scan very frequently, and if it detects that a new device has come
into range, or a device has moved or left, then it can signal other devices to scan
and re-compute the neighbor graph. We are presently investigating schemes for
efficiently offloading computation to more powerful infrastructure.

Privacy and security: There are privacy and security issues that we have not
addressed in Virtual Compass. In our current implementation, a user’s numeric
Facebook ID is her mobile device’s ID in peer localization. In our application,
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she only sees her Facebook friends. However, our underlying peer localization
component has a complete map of all the devices in the vicinity. A wily user could
potentially misuse this information. As a solution, we could use a periodically
changing random number for the device ID. Each device would register this ID
with an applet on Facebook. Any device that wants to discover the user identity
will have to query the applet, which can verify if that user is a friend.

8 Conclusion

Most of today’s mobile social applications use absolute location to locate nearby
peers, which is often difficult to obtain with reasonable accuracy in indoor envi-
ronments. In this paper, we describe Virtual Compass, a peer-based localization
system for mobile phones, which provides relative positioning by placing peers
in a 2D plane without requiring any infrastructure support. Virtual Compass
enables many emerging mobile applications that want the ability to sense social
interactions: it provides the distance between different people which can then be
combined with external information about those people’s social relationships.
A key area of future work is to use this information to build applications that
automatically infer of social context of such interactions.

Virtual Compass leverages the multiple radios available on today’s smart-
phones to provide the accuracy needed for the above applications. It uses several
energy management techniques that frugally use radios without compromising
location accuracy. We have implemented Virtual Compass for Windows Mobile
phones. We have implemented a simple application, FriendMeter, which uses
Virtual Compass to sense the distances between a user and her Facebook friends
who are in the vicinity. We evaluate Virtual Compass on a nine node testbed,
and our results show that it places a device with an average distance error of
only 1.9 meters. Virtual Compass’s energy management algorithms produce a
battery lifetime that is four to nine times that of a device that does not use
sophisticated energy management to provide peer localization.
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Abstract. This paper deals with the analysis of crowd mobility during
special events. We analyze nearly 1 million cell-phone traces and asso-
ciate their destinations with social events. We show that the origins of
people attending an event are strongly correlated to the type of event,
with implications in city management, since the knowledge of additive
flows can be a critical information on which to take decisions about events
management and congestion mitigation.

1 Introduction

Being able to understand and predict crowded events is a challenge that any
urban manager faces regularly, particularly in big cities. When it is not possible
to determine the exact numbers (e.g., from ticket sales), the typical approach is
based on intuition and experience. Even when the exact number of event atten-
dees is known, it is still difficult to predict their effect on the city systems when
traveling to and from the event. During the last years, the Pervasive Computing
community has developed technologies that now allow us to face the challenge
in new ways. Due to their ubiquity, GSM, bluetooth or WiFi localization tech-
nologies such as in [1,2,3] can now be explored at a large scale.

The development of methodologies that allow for an accurate characteriza-
tion of events from anonymized and aggregated location information has further
potential implications for Pervasive Computing research, namely enhancing the
context awareness. Location based services can be imagined that take into ac-
count the predicted effect of events in the city. For example, navigation systems
that try to avoid the predicted congested areas, social applications that lead
people to (or away from) the “crowds” or interactive displays that adapt to the
expected presence of people. Other applications could include inference of points
of interest or emergency response planning.

In this paper, we present our work on the combination of analysis of anonymized
traces from the Boston metropolitan area with a number of selected events that
happened in the city attracting considerably sized crowds. The objective is to
characterize the relationship between events and its attendees, more specifically
of their home area. The hypothesis is that different kinds of events bring people

P. Floréen, A. Krüger, and M. Spasojevic (Eds.): Pervasive 2010, LNCS 6030, pp. 22–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events 23

from different areas of the city according to distribution patterns that maintain
some degree of constancy. The rationale is that people maintain regular patterns of
preferences throughout time (e.g., a sports fan will often go watch games; a family
that has children will often go to family events). While we make no assumptions
on the distributions of “types of people” among areas of a city, it is reasonable to
assume that aggregate patterns of “types of neighborhoods” will emerge.

The next section is dedicated to further understanding the motivation and
context of this work, followed by a review of related work. The explanation of the
data involved in this study is then made in section 4 while the core of the paper
is presented in section 5, where we present our methodology and experimental
results.

2 Motivation

In 2008, a study from the U.S. Federal Highway Administration [4] was dedi-
cated to investigate the economic and congestion effects of large planned special
events (PSEs) on a national level. The clearer understanding of the scale of PSEs
and their economic influence is essential to achieve a more efficient transporta-
tion planning and management of traffic logistics of such events. In that study,
the authors find that there are approximately 24,000 PSEs annually with over
10,000 in attendance across USA, or approximately 470 per week. These num-
bers, possibly similar in other parts of the world, call for application of efficient
techniques of crowd analysis. From the point of view of Pervasive Computing,
besides the very task of analyzing digital footprints obtained from ubiquitous de-
vices, which lies in the crux of this research, other questions arise that transcend
this area.

One question is understanding the stability of crowd patterns in medium to
large scale events. If regularity is confidently demonstrated, then pattern sensi-
tive services can be developed that improve the events experience (e.g. provid-
ing mobility advisory for evacuation after the event). The converse question is
also relevant, namely the characterization of different neighborhoods by knowing
what kinds of events their residents prefer to attend. This would allow for the
construction of emotional/hobby maps of each block, becoming in turn contex-
tual information about space, adding value to location aware systems.

Perhaps the most obvious problems at the local scale and those that we will
illustrate in this paper comprise one-off spatial events which involve the move-
ment of large numbers of people over short periods of time. These largely fall
within the sphere of entertainment although some of them relate to work, but
all of them involve issues of mobility and interaction between objects or agents
which generate non trivial problems of planning, management, and control. The
classic example is the football match but rock concerts, street parades, sudden
entry or exit of crowds from airports, stations, subway trains, and high buildings
could be included. Particularly these types of event, however, have tended to re-
sist scientific inquiry, and have never been thought to be significant in terms of
their impact on spatial structure, or to be worthy of theory.
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3 State of the Art

Before describing the related work, we bring some definitions that collect rela-
tive agreement in the literature. Within the topic of crowd analysis, we consider
event inference and crowd modeling. The detection of an existence of a crowd
given available data (e.g. images about a place, aggregated communications) is
the objective of event inference. Such event may or may not be predictable or
correspond to an actual public special event. The task of crowd modeling con-
sists of building patterns or descriptions of (a) crowd(s) that enable prediction
or simulation of crowd behaviour. A successful crowd model allows for useful ap-
plications such as predicting the use of a space, planning accessibility, preventing
dangerous situations or planning an emergency evacuation, for example.

Following [5,6] we propose to organize crowd modeling according to three
levels: microscopic, macroscopic, mesoscopic. At the microscopic level, the in-
dividual is the object of study, while at the macroscopic level, we work with
groups. The mesoscopic model combines the properties of the previous two, ei-
ther keeping a crowd as a homogeneous mass but considering an internal force
or keeping the characters of the individuals while maintaining a general view of
the entire crowd [6].

From the point of view of data collection, the traditional approach consists of
aggregating data from control points (e.g. number of tickets sold; nights in hotels,
number of people per room; counting people) as well as from surveys provided
to randomly chosen individuals (e.g. [7]). During the nineties, research from
computer vision brought alternative (and non-intrusive) methods that allowed
to extract crowd related features, namely on detecting density (quantity of people
over space), location, speed and shape (e.g. [8]). Although such properties allow
for useful analysis, they are restricted to the space of study (or spaces of study,
depending on the number of cameras available).

The often mentioned outburst of mobile phones during late 20th century ac-
companied by the more recent trend of sensors and advanced communication sys-
tems (e.g. GPS, digital cameras, Bluetooth, WiFi) allow for unforeseen amounts
of data from urban areas through which to study both groups [9,10,11] , indi-
viduals [12] or both [3].

The afore mentioned technologies present different challenges and potential
regarding event inference. The traditional methods are slow and precise when
the event is controlled in space but with little precision in the opposite case
(e.g. [7]). Computer vision allows for automatic inference of events also provid-
ing some properties such as those referred above but limited to areas with visual
data (e.g. [8]). Using digital footprints such as communication or GPS traces, we
can reach wider areas but with lower precision in comparison to these methods.
In [13], the authors analyse the presence of tourists in a wide area (Lower Man-
hattan) during a public art installation (the “NYC waterfalls”) for 4 months
using cell-phone activity. In the Reality Mining project, 100 students from the
MIT campus carried smart-phones over 9 months and their social and individ-
ual behaviours were analysed using Cell ID and Bluetooth [3]. In a case study of
tourism loyalty in Estonia, Ahas et al [14] show that the sampling and analysis
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of passive mobile positioning data is a promising resource for tourism research
and management. They show that this type of aggregated data is highly corre-
lated with accommodation statistics in urban touristic areas. In a case study in
Tawaf during the Hajj, Koshak and Fouda [11] verified how GPS and GIS data
can be utilized to perform tempo-spatial analysis of human walking behavior in
an architectural or urban open space.

In terms of level of detail, traditional methods are generally adequate for
macroscopic detail (unless individualized data is collected), computer vision al-
lows for any of the levels but is particularly suited to macro- and mesoscopic
analysis while digital footprints can be useful for any of the levels discussed,
namely microscopic when individual privacy is properly protected. Of course,
the precision is dependent on the penetration rate of the technology of study
(e.g. number of cell-phone users in the crowd).

As for modeling of crowd behaviour, related work can be found at several
distinct fields. In computer vision, crowd models are built as representations
of recurrent behaviours by analysing video data of the crowd through vision
methods. In physics, many approaches have been built inspired by using fluid
dynamics [15], swarms [16,17] or cellular automata [18]. In literature, there is no
characterization of particular “special events” bounded in time and space and in
general their goals are at the mesoscopic level (model group from aggregated in-
dividual modeling). Also, these studies of digital footprints have used aggregated
information of people, rarely reaching the (anonymized) individual detail.

4 Data Description

The data analyzed corresponds to an area of 15×15 kilometers within Boston, as
shown in Figure 1. This area includes the main event venues in the state of Mas-
sachusetts and some of the most densely populated residential areas of Greater
Boston. We analyzed cellphone mobility and events happening in that area for
the period from July 30th to September 12th of 2009, as we describe next.

4.1 Cellphone Mobility Data

The dataset used in this project consists of anonymous cellular phone signaling
data collected by AirSage[1], which turns this signaling data into anonymous
locations over time for cellular devices. This aggregated and anonymous cellular
device information is used to correlate, model, evaluate and analyze the location,
movement and flow of people in the city. The dataset consists of 130 millions of
anonymous location estimations - latitude and longitude - from close to 1 mil-
lion devices (corresponding to a share of approximately 20% of the population,
equally spread over space) which are generated each time the device connects to
the cellular network, including:

– when a call is placed or received (both at the beginning and end of a call);
– when a short message is sent or received;
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Fig. 1. Study area

– when the user connects to the internet (e.g. to browse the web, or through
email programs that periodically check the mail server).

Since the location measurements are generated based on signaling events, i.e.
when the cellphone communicates with the cell network, the resulting traces are
far from regularly sampled. Besides, cellphone-derived location data has a greater
uncertainty range than GPS data, with an average of 320 meters and median of
220 meters as reported by AirSage [1] based on internal and independent tests.

4.2 Events Data

Events in the Boston metropolitan area were selected to evaluate whether people
from different areas of the city chose to attend different types of events. For the
selection of events, it was important to find the largest set that occurs during
the time window of the study and that complies with a number of requirements:

– The attendance should have relevant size in order to allow for a significant
number of identified users.

– Be isolated in space with respect to neighboring events. To avoid ambiguity
in the interpretation of results, we decided to give a minimum margin of one
kilometer in any direction to any other large size simultaneous event.
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– The venue of the event should correspond to a well defined area with con-
siderable dimensions. It is also important to minimize the potential to mis-
interpret people staying in other places for event attendees (e.g. staying in
a restaurant nearby).

– Be isolated in time to any other big event (i.e. not be in the same day).
For a proper analysis, it is also important to guarantee that the statistics
of presence (or absence) of people in the events is minimally dependent on
external events as this would lead to erroneous conclusions.

– Have a duration of at least 2 hours. The assumption is that attendees are at
the venue specifically for the event. With small time durations, it becomes
difficult to distinguish occasional stops from actual attendance.

Our goal was to reduce the influence of dependencies between different events
and the ambiguity in determining whether a person is attending an event or
simply staying in a place near. Another concern was to select events from a
variety of categories, namely Performance Arts, Sports events, Family events,
Music and Outdoor Cinema.

We analyzed the Boston Globe event website [19] and selected 6 different
venues, corresponding to a total of 52 events. We also contacted the organizers
of some events in order to get their attendance estimations. In Table 1, we show
a summary of the events.

It is notable that two of the cases violate one or more of the requirements,
namely indoor cinema in the Museum of Science at the same time as the cinema
sessions in the Hatch Shell and with an intersection with the Children’s museum
event. The Cirque du Soleil event also conflicts with the summer concerts at
the Hatch Shell. The reason is that, since the venues are far apart and only one
has space for very large crowds (Hatch Shell), the overall results should not be
affected. In figure 2, we show the event locations.

Table 1. Event list

Venue Events Type Date Time

Fenway Park 11 Red Sox games Sports 10, 11, 12, 25 and 26 Aug, 7-10pm
(baseball) 8, 9 September

Agganis Arena Cirque du Soleil Performance 26, 27 of Aug. 7:30-10pm
Alegria (2 times) Arts

DCR Hatch Shell Friday flicks (5) Cinema 31 July, 7, 14, 21 and 8-10pm
28 August

DCR Hatch Shell Summer concerts (5) Music 5, 12, 29 and 7-9pm
26 August, 2 September

Museum of Science Friday nights (7) Cinema 31 July, 7, 14, 21 and 5-9pm
28 August, 4 and 11 Sep.

Boston Common Shakespeare on the Performance 31 July, 1, 2, 4-9, 8-10pm
Boston Common (15) Arts 11-16 August

Children’s museum Target fridays (7) Family 31 July, 7, 14, 21 and 5-9pm
28 August, 4 and 11 Sep.
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Fig. 2. Event locations

4.3 Data Preparation

The data as provided does not directly allow determining mobility traces of users.
We then applied a process to perform an estimation of the mobility choices each
user takes over time. The process involves two steps:

– Inferring what we call stops : places in which a person has stopped for a
sufficiently long time.

– Inferring the home location of each user.
– Performing a spatio-temporal analysis of the sequence of stops to detect

which users are attending a given event.

In order to infer the sequence of stops that each user makes, we first charac-
terized the individual calling activity and verified whether that was frequent
enough to allow monitoring the user’s movement over time with fine enough
temporal resolution. As we said in the section 4.1. each location measurement
mi, collected for every cellphone, is characterized by a position pi, expressed in
latitude and longitude, and a timestamp, ti. For each user we measured the in-
terevent time i.e. the time interval between two consecutive network connections
(similar to what was measured in [20]). The average interevent time measured
for the whole population is 260 minutes, much lower than the one found in [20].
Since the distribution of interevent times for an individual spans over several
decades, we further characterized each calling activity distribution by its first
and third quantile and the median. Fig. 3 shows the distribution of the first and
third quantile and the median for the whole population. The arithmetic average
of the medians is 84 minutes (the geometric average of the medians is 10.3 min-
utes) which results small enough to be able to detect changes of location where
the user stops as low as 1.5 hours (time comparable to the average length of the
considered social events).
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Fig. 3. Characterization of individual calling activity for the whole population. Me-
dian (solid line), first quantile (dash-dotted line) and third quantile (dashed line) of
individual interevent time.

The analysis above tells us that the cellphone data can be used to extract
users’ movements as it changes over the course of the day. To extract the se-
quence of stops, we first extracted trajectories from the individual location mea-
surements. A trajectory is a sequence of chronological locations visited by a
user.

Traj = {p1 → p2 → .... → pn}
A sub-trajectory is obtained by segmenting the trajectory with a spatial thresh-
old ΔS, where distance(pi, pi+1) > ΔS, i = 1..n. The segmentation aims at
removing spatial gaps between two recorded points (pi, pi+1) of more than ΔS.
If a gap is found, pi becomes the end point of the last sub-trajectory, and pi+1
becomes the starting point of the new sub-trajectory. Once sub-trajectories are
detected, we first resampled with a constant sampling time Tc and then applied
to them a low pass filter in order to eliminate some measurement noise contained
in the data (as done in [21] [22]). For each sub-trajectory we determined the time
at which the user stops traveling, and call the location stop s.

The extraction of a stop depends on two parameters: time distance threshold
(Tth) and a spatial distance threshold (Sth). Therefore, a single stop s can be
regarded as a virtual location characterized by a group of consecutive location
points

P = {ps, ps+1, ...., pm},
where ∀s ≤ i, j ≤ m, max(distance(pi, pj)) < Sth and tm − ts > Tth.

Once the stops have been extracted, the home location of each user is then
estimated as the most frequent stop during the night hours.
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The information about the stops and home location allows us to derive the
mobility choices of users, and detect whether they are attending an event, and
the origin of the trip to attend the event.

Hence, we first grouped together users that live close in space (their home
location is close), creating a grid in space where the side of each cell is 500
meters. Then, to understand if a user is attending an event we checked the
following assumptions: i) the user stops in the same cell of the event location,
ii) the stop overlaps at least 70 percent with the duration of the event, and iii)
the user’s home location is different from the event location. The Figure 4 shows
the idea behind these assumptions. We do not require a full overlap to take into
account the fact that we are not able to detect locations of users with a very
high frequency, and so might not consider users just because they do not connect
to the network at the beginning and end of the event.

Fig. 4. Audience detection algorithm: if intersection of duration of user stop and du-
ration of the event is greater than 70 percent and user’s home is not the same as the
event location, then we mark the user as audience of the event

Finally, the mobility choices are derived by inferring the spatial origins’ dis-
tribution of the people that attempt to the events. Given an event, for each cell
of the grid we count the number of people attending to that event and whose
home location falls inside that cell. This spatial distribution can then be plot on
a map to show the areas of the city which are more interested in attending the
event. Examples of such map are shown in the following section.

5 Methodology

Our methodology for describing events through mobility choices is based on the
use of the estimated origins of people attending to the events. Figure 5 shows
some examples of spatial variation of the estimated origins of people attending
different events.

Sport events such as baseball games (Figure 5(a)) attract about double the
number of people which normally live in the Fenway Park area. Moreover, those
people seem to be predominantly attended by people living in the surrounding
of the baseball stadium, as well as the south Boston area (Figure 5(b)).

Performing arts events such as the “Shakespeare on the Boston Common”
(Figure 5(c) and 5(d)) which his held yearly, attract people from the whole
Boston metropolitan area, and very strongly people which live in the immediate
surroundings of the Boston Common (average distance lower than 500 meters).
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(a) Number of users over time (b) Boston Red Sox vs. Baltimore
Orioles at Fenway Park, 2009-9-9
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(c) Number of users over time (d) Shakespeare on the Boston
Common, 2009-8-13
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(e) Number of users over time (f) Friday flicks at DCR Hatch
Shell, 2009-8-21 21:00-23:00
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(g) Number of users over time (h) Friday night at Museum of
Science, 2009-8-21 18:00-22:00

Fig. 5. Examples of events in Boston. Figures a, c, e and g show the number of users
at the locations of events over the course of the day of the event (solid line) compared
to an average day (dash-dotted line). Note that number of users are scaled with respect
to the maximum in an average day. Figures b, d, f and h show the locations of the
events (diamond) and estimated origins distribution of people attending the events:
shade from light (low) to dark (high).
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The number of people attending the event is instead about 1.5 times greaten
than what it is usually found in the Boston Common.

By comparing the two images in Figures 5(b) and 5(d) it is easy to understand
that most of the people attending to one type of event are most probably not
attending the other type of events, showing a complementary role of sports and
arts events in attracting different categories of people.

Finally, Figures 5(e), 5(f), 5(g), 5(h) show the spatial distribution of origins
of people for two events (movie screening) happening almost at the same time
in two very close areas in Boston (DCR Hatch Shell and Museum of Science).

Since the origins of people attending an event are strictly related to the loca-
tion and type of events, we argue that by using just this information we would
be able to predict the type of event. If a relationship between origin of people
and type of event is found, it would be possible to determine the abnormal and
additive travel demand due to a planned event by just considering the type of
that event. It would then be possible to provide a city with critical information
on which to take decisions about changes in the transportation management,
e.g. increasing the number of bus lines connecting certain areas of the city to
the venue of the event.

In the next section we will show 8 different models that we have developed
to perform the prediction of the type of event starting from the mobility data
associated with it.

Note that the number of attendees we are able to detect is strictly related
to the share of the telecom operator partnering with Airsage. We empirically
tested that the number of users correspond to about 20% of the population (as
reported by the latest US census) and is equally distributed over the different
zipcodes. Since we selected only events with relevant size, this allowed us to
detect significant numbers of users per event. We verified that those numbers are
also consistent for events of the same type, proving that there is a significant and
consistent number of detected attendees allowing us to perform the comparative
analysis reported in the next section. Estimating the actual number of attendees
is still an open problem, considering also that ground truth data to validate
models is sometime absent or very noisy (usually based on head counts or aerial
photography).

5.1 Prediction

The task at hand is to understand the relationships between events and origins
of people. Particularly, we seek for the predictive potential of events in respect to
mobility phenomena. This can be seen from two perspectives: a classification task
in which we want to understand how a vector of features (e.g., attendees origin
distribution) predicts a classification (e.g., an event name or type); a clustering
task, in which the feature vectors are distributed according to similarity among
themselves.

We used the Weka open source platform [23], which contains a wide range
of choices for data analysis. For classification, we use a Multilayer Perceptron,
with one hidden layer and the typical heuristic of (classes+attributes)/2 for the
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number of nodes. For clustering, we apply the K-Means algorithm (with K = #
event types or K = # event places). In each experiment, we used 10-fold cross-
validation, in which a tenth of the dataset is left aside for testing the algorithm
while using the remaining for training. This train-test process is ran 10 times
(one for each tenth of the dataset).

6 Experiments

We aggregated attendees in terms of zipcode area and distance to event, dis-
cretized in 2000 bins. We did so because if we were to use a geographic coordinate
of individuals, the resulting data would be sparse. Instead, by aggregating data
geographically, we could find useful patterns. To avoid the strong bias towards
attendees in the neighborhood of the event, we also remove those that live in
the same area of the event (their home location falls in the same 500m x 500m
cell of the event) because we would not be able to distinguish between event and
home.

For each event, we created an instance that contains the corresponding at-
tendee origin pattern distribution, evaluated at the level of the zipcode area (with
average size of 4.5km2). For example, for one showing of the Shakespeare’s “Com-
edy of Errors” at the Boston Common, we have 96 attendees (users monitored
by the system, with a share of about 20% of the population) and then count the
total number of people coming from each zipcode.

Our goal is to test whether similar events show similar geographical patterns.
More specifically, given origin pattern distribution, the goal is to predict the type
of event (as defined in Table 1).

We met this goal by testing 8 prediction models, and we measure their accu-
racy in terms of fraction of correctly identified event types.

Before training our algorithms, we analyzed the overall distribution of events
to get the classifier baselines. The principle is to know the accuracy of a classifier
that simply selects randomly any of the 5 event types or that always chooses the
same event type, and use them as a baseline to compare for the improvement
of the quality. The average value of this baseline is 23.34% (standard deviation
of 4.03) for random classification. Differently, if the classifier chooses the event
with highest probability (performing arts), the accuracy will be 35%.

The first experiment was to use all vectors as just described, applied to a
Multilayer Perceptron. The result is a surprising 89.36% of correctly classified
events in the test set. From the clustering analysis, we see that mostly attendees
come from the event’s zipcode area, suggesting that people who live close to
an event are preferentially attracted by it. To focus on effects other than close
proximity, we created a new prediction model considering only people coming
from zipcode different from the event’s.

The result is 59.57%, which still indicates the recurrence of origin patterns
for events of the same type. A clustering analysis brings the distributions that
we can see in Figure 6.

Further analyses were made by putting a minimum threshold of at least 10
attendees for each zipcode area and by using home-event distance instead of
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(a) Cinema (b) Family

(c) Music (d) Performing arts

(e) Sports

Fig. 6. Spatial visualization of clusters centroids. The circles correspond to the zip-
code areas with value greater than zero. The shade from light (low) to dark (high) is
proportional to the value.

zipcode (distance discretized in 2000 meter bins). The overall process of feature
selection and attendee aggregation is the same as described above, and Table 2,
shows the results. The item “Improvement” corresponds to the difference to the
best baseline (fixed).

A first aspect that easily comes out of the predictions performed, is the clear
difference between our classifiers and the baselines, indicating a consistency in
the patterns found.

By comparing the results of the two predictions made using the zipcode areas,
it is clear that the improvements found are consistent, and do not depend on
small number of attendees that can be found sometimes in some zipcode areas.
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Table 2. Summary of prediction results

All attendees Exc. event zipcode

Features Precision Improv. Precision Improv. Observation

Fixed baseline 35% Always choose same class
Random baseline 23.34% Random choice
Zipcode 89.36% 54.36% 59.57% 24.57% All attendees

95.74% 60.74% 53.19% 18.19% All attendees when count>10
Distance 51.06% 16.06% 48.9% 13.9% All att. Resolution 2000m

Interesting conclusions can be taken by comparing the improvement of the
models using zipcode and distance. In fact the lower improvement shows that
not only distance affects the event choices of people, but also where they live.

6.1 Limitations

Our methodology has two limitations. The location data is not continuously
provided but is available only when users are active (call, SMS, data connection).
This results in narrowing down the number of users we can analyze.

Secondly, we assign origins to users’ home locations regardless of where their
trips start. This does not hinder our analysis because we are interested in char-
acterizing the taste of the local communities.

Further studies considering larger datasets of events and cell-phone users
should be performed to obtain more statistically significant results.

7 Conclusions

Based on our analysis of nearly 1 million cell-phone traces we correlated social
events people go to with their home locations. Our results show that there is a
strong correlation in that: people who live close to an event are preferentially
attracted by it; events of the same type show similar spatial distribution of
origins. As a consequence, we could partly predict where people will come from
for future events.

In the future, we will run the same study on datasets of cities other than
Boston to verify to which extent the city’s individual characteristics affect the
patterns found.

Explicit spatial knowledge about crowd environment could also be considered
to improve the proposed model.
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Abstract. It has been considered a fact that GPS performs too poorly inside
buildings to provide usable indoor positioning. We analyze results of a mea-
surement campaign to improve on the understanding of indoor GPS reception
characteristics. The results show that using state-of-the-art receivers GPS avail-
ability is good in many buildings with standard material walls and roofs. The mea-
sured root mean squared 2D positioning error was below five meters in wooden
buildings and below ten meters in most of the investigated brick and concrete
buildings. Lower accuracies, where observed, can be linked to either low signal-
to-noise ratios, multipath phenomena or bad satellite constellation geometry. We
have also measured the indoor performance of embedded GPS receivers in mobile
phones which provided lower availability and accuracy than state-of-the-art ones.
Finally, we consider how the GPS performance within a given building is depen-
dent on local properties like close-by building elements and materials, number of
walls, number of overlaying stories and surrounding buildings.

1 Introduction

Applying the visions of ubiquitous computing to a variety of domains requires posi-
tioning with (i) pervasive coverage and (ii) independence from local infrastructures.
Examples of such domains are fire fighting [1], search and rescue, health care and polic-
ing. Furthermore, also many other position-based applications would benefit from po-
sitioning technologies that fulfill both requirements [9]. One technology fulfilling (ii)
is positioning by GPS. However, it has been considered as a fact that GPS positioning
does not work indoors and therefore does not fulfill the coverage requirement (i). Due
to recent technological advances, e.g, high-sensitivity receivers and the promise of an
increase in the number of global navigation satellites, this situation is changing.

In 2005, LaMarca et al. [11] studied GPS availability with an off-the-shelf receiver
for tracking the daily tasks of an immunologist, a home maker and a retail clerk. For
the three studied persons, the availability was on average only 4.5% and the average
gap between fixes was 105 minutes. To address these shortcomings they proposed
fingerprinting-based positioning [8] as a solution. However, for the previously men-
tioned domains fingerprinting-based solutions are less suitable, given the requirement
of fingerprinting collection, the vulnerability to hacking, that e.g. fires might alter the
building and the unknown factor of whether or not fingerprinted base stations are taken
out, e.g. by a fire.

P. Floréen, A. Krüger, and M. Spasojevic (Eds.): Pervasive 2010, LNCS 6030, pp. 38–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We have conducted a measurement campaign at several indoor sites, including
wooden and brick houses, a public school, a warehouse, a shopping mall and a tower
block, to determine to what extent GPS is usable indoors and which performance to
expect from it. Furthermore, we intended to link the measured performance to the type
of errors affecting GPS as well as to local properties of the buildings like dominating
materials and proximity to external walls and windows or surrounding buildings.

In this paper we argue that—when using state-of-the-art receivers GPS— GPS in-
door performance is better than suggested in earlier literature. The results of our mea-
surement campaign, which is to our knowledge the most comprehensive of its kind,
show good GPS availability in many buildings except for larger ones with thick roofs or
walls. The horizontal RMS error in our measurements was below five meters in wooden
and below ten meters in most of the brick and concrete buildings investigated. Lower
accuracies could be linked to low signal-to-noise ratios, multipath phenomena or bad
satellite constellation geometry. We also considered GPS receivers embedded in mobile
phones which provided lower availability and accuracy than dedicated receivers.

The rest of this paper is structured as follows: In Section 2 we give a brief intro-
duction and overview of research on GPS and satellite based navigation with a focus
on indoor usage. In Section 3 we present our measuring methodology. In Section 4 we
present our analysis of the measurement campaign. Finally, Section 5 concludes the
paper and provides directions for future work.

2 GPS Primer

GPS satellites send signals for civilian use at the L1 frequency at 1.575 GHz; these sig-
nals are modulated with a Pseudo-Random Noise (PRN) code unique to each satellite.
A GPS receiver tries to acquire each GPS satellite’s signal by correlating the signal
spectrum it receives at L1 with a local copy of the satellite’s PRN code. An acquisition
is successful, once the local copy is in sync with the received signal, which requires
shifting the copy appropriately both in time and in frequency. The latter shift is due to
the Doppler effect caused by the satellite’s and the user’s relative motion. Once a satel-
lite’s signal has been acquired, the receiver tracks it, that is, the receiver continuously
checks the validity of the shift parameters above and updates them if necessary.

Each satellite’s signal is modulated not only with its PRN code but additionally with
a navigation message, which contains almanac data (for easier acquisition of further
satellites) as well as its precise ephemeris data, that is the satellite’s predicted trajectory
as a function of time, allowing GPS receivers to estimate the current position of the
satellite. Finally, to achieve precise 3D positioning with a standard GPS receiver via
trilateration, the positions of and distances to at least 4 satellites have to be known; those
distances can be computed from the time shift maintained while tracking the respective
satellites. As a general rule, the more satellites can be tracked, and the wider they are
spread over the sky as seen by the user, the more precise the positioning – due to the
additional distance data and a satellite geometry resulting in less error-prone lateration.

A popular enhancement of GPS positioning is given by Assisted GPS (A-GPS) [17].
A-GPS provides assistance data to GPS receivers via an additional communication
channel e.g. a cellular network. This assisting data may consist of e.g. ephemerides
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and atmospheric corrections. Also, a cellular network provides means for a rough posi-
tioning of the GPS enabled device. A-GPS eases satellite acquisition and can therefore
drastically reduce the time to first fix and the initial positioning imprecision of a receiver
in cold start (i.e. when no initial information about satellite constellations is available):
Essentially, A-GPS allows for a hot start (precise ephemerides for all satellites avail-
able), once the assisting data has been transmitted. Furthermore, A-GPS can improve
positioning accuracy by eliminating systemic error sources [12, Chapter 13.4].

GPS performance degrades in terms of both coverage and accuracy when experi-
encing problematic signal conditions, e.g. in urban canyons and especially in indoor
environments. The cause for this is termed signal fading, subsuming two fundamen-
tal signal processing obstacles: First, when GPS signals penetrate building materials,
they are subjected to attenuation, resulting in lower signal-to-noise ratio (SNR). Fur-
thermore, the signal is subject to multipath phenomena: Reflection and refraction of
the signal results in multiple echoes of the line-of-sight (LOS) signal arriving at the re-
ceiver. Low signal-to-noise ratios and multipath handicap both acquiring and tracking
GPS signals and usually result in less reliable positioning due to less suitable satellite
geometry and individual time shifts measurements being less accurate. High-Sensitivity
GPS (HSGPS) [10] receivers are specifically designed for difficult signal conditions, i.e.
to alleviate the above problems. HSGPS is claimed to allow tracking for received GPS
signal strengths down to -190 dBW: three orders of magnitude less than to be expected
in open-sky conditions [12]. These thresholds are constantly being improved using new
processing techniques [17, Ch. 6]. Note, that for acquiring signals at cold start, a some-
what (around 15dBW) higher signal strength is usually necessary, as during acquisition
reliable time and frequency shifts of the signal have not only to be maintained, but
instead searched for in a wide spectrum.

With respect to future improvements towards satellite based indoor positioning, note
also that the upcoming Galileo system is a Global Navigation Satellite Systems(GNSS),
like GPS, and will soon be interoperable with the latter, resulting in roughly a doubling
of GNSS satellites available [12, Ch. 3]. Combined satellite constellations will yield, in
effect, better geometries at the user position, improving positioning accuracy, especially
indoors, where signals from only parts of the sky may be available. Other upcoming
improvements for indoor GNSS are provided by the modernized public signal structures
of GPS and Galileo, allowing improved tracking of weakened signals via pilot channels,
and yielding additional protection against multipath-induced inaccuracies [2]. In the
GNSS community indoor positioning and respective obstacles and improvements are
being investigated, see, e.g., Teuber et al. [16], Paonni et al. [13], Lachapelle et al. [10],
Watson et al. [18] and references therein. This paper adds to this line of work but from
an application-oriented perspective using real-world measurements to investigate where
and to what extent one can employ GPS for indoor positioning.

3 Measurement Campaign Methodology

In the following, we describe the measurement campaign, the equipment used, as well
as methodology regarding measurement collection procedures and choice of in-building
locations; for a more thorough justification of the chosen methodology see also [3].
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3.1 Receiver Equipment Employed

Throughout our campaign, we employed a u-blox LEA-5H Evaluation Kit and a SiRF-
Star III BU-353 USB GPS receiver as examples of dedicated receivers, and a Nokia
N95 8GB driven by Texas Instruments’ NaviLink 4.0 GPS5300 chip as an example
for a currently used in-phone GPS receiver system. The u-blox receiver is specified
to have a -190dBW (-175dBW) threshold for tracking (respectively, acquisition) and
was connected to a 48x40x13mm u-blox ANN-MS patch antenna, providing 27dB gain
and specified with a 1.5dB noise figure. We will focus on the measurements obtained
with this dedicated receiver and note in passing, that the SiRF product performered
equivalently, though slightly poorer which might be solely due to the u-blox’s high
quality external patch antenna. To obtain A-GPS assistance data [17], we connected the
u-blox receiver to a N95 phone.

The two classes of receivers considered differ not only in performance but also in
price, energy consumption and size: Whereas the larger and more power consuming
dedicated receivers will be used in specific scenarios mentioned in the introduction,
such as search and rescue operations, the Nokia N95 in-phone receiver represents typ-
ical hardware for the every-day consumer use of location based services. Furthermore,
given the pace of development the chosen dedicated receiver allows an outlook on the
performance of future in-phone GPS receivers used, e.g., for location-based services.1

3.2 Data Collection Procedures

During our campaign, we focused on static measurements at a number of locations
per building, partially in order to eliminate effects from the receiver’s recent history of
measurements. Consequently, we reset the receivers prior to each measurement, thereby
minimizing the effects of, e.g. Kalman filtering techniques, which exploit recent mea-
surement history and therefore potentially pollute static measurements w.r.t. both loca-
tions and durations, see, e.g., Brown and Hwang [4].

To focus on and to fairly compare signal conditions at individual indoor locations,
we also decided against an on-person receiver setup. Instead, each of the GPS enabled
devices was mounted on the seat of a light-weight wooden chair, spaced 20 cm apart
from the other receiver devices to remove the chance of any near-field interference. Note
though, that the measurements carried out within the shopping mall, the warehouse and
the tower block were conducted during business hours, providing realistic pedestrian
traffic conditions, see also [14] for the impact of pedestrian traffic on GPS performance.
The chair was then placed at the in-building measurement locations chosen and we
collected GPS measurements using the following procedure:

After initializing the programs for logging GPS data at 1 Hz, we “hot started” the
Nokia and the u-blox receivers. Note, that by hot start we refer to a initialization using
A-GPS data. If the hot start of the u-blox receiver was successful, i.e., if it within 10
minutes produced a position fix, we subsequently logged the u-blox receivers’ NMEA
formatted data for 5 minutes; then we repeated as above, but this time cold starting
the receivers without A-GPS. In case the hot start of the u-blox was not successful, we

1 The generation 6 of the u-blox receiver has been improved over the version used here, specifi-
cally focusing on low energy consumption, allowing for more economic use in mobile gadgets.
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produced a successful hot start at a nearby location and walked back to the measure-
ment location. If the receiver still produced position fixes upon arrival, we logged the
receivers’ data for 5 minutes.

3.3 Choosing Measurement Locations

For choosing where to measure GPS reception within the buildings, we overlaid the
larger buildings’ floor plans with a regular grid, choosing measurement locations as the
centers of the grid cells, where feasible, i.e. where these centers fall within the respective
building. We chose this strategy to avoid biases induced by alternative approaches in
which locations are picked so to reflect environmental conditions which are—by a priori
hypotheses—associated with specific GPS signal reception conditions.

4 Results

Using the measurement procedures described above allows us to explore the perfor-
mance of GPS positioning in various environments using state-of-the-art receiver
technology. In section 4.1 we will introduce the environments investigated in our mea-
surement campaign and characterize them with regards to availability, the most fun-
damental measure for GPS performance. Subsequently, we will cover further GPS
performance measures, namely time-to-first-fix in Section 4.2 and positioning accuracy
in Section 4.3. Throughout this section, we not only present performance measures for
the individual measurement locations, but also elaborate on general rules which govern
GPS indoor performance, as observable in the analysis of our measurement campaign.
In Section 4.4 we give results for measurements using the Nokia N95 in-phone receiver,
comparing them to the measurements obtained from dedicated receivers.

4.1 GPS Availability and Signal Strength

The GPS availability results for the eight environments chosen for our campaign are
illustrated in Figure 1. The figure shows for each in-building measurement location
whether and by which means we were able to acquire GPS fixes. As described by the
figure legend, we categorize availability performance into 4 categories: (i) both hot
start and cold start (indicated by a green circle) were successful; (ii) a hot start but no
cold start (indicated by a blue square) was successful; (iii) neither hot or cold starts
were successful, but tracking was, that is acquiring a GPS position at a location with
high GPS availability and moving to the measurement location where GPS upon arrival
continued to produce position fixes (indicated by a purple triangle); (iv) and finally
blocked where no GPS position fixes could be established (indicated by a red cross).

A main factor impacting to which extent and quality one can get GPS fixes at specific
in-building locations are the surrounding building structures and elements. Therefore,
complementing Figure 1, we listed in Table 1 for the environments investigated the
respective dominating materials used for external and internal building elements. The
table also contains approximations, compiled from various sources [6,15,19], for
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(a) Wood 1 (13m x 9m) (b) Wood 2 (12m x 12m)

(c) Brick 1 (18m x 11m) (d) Brick 2 (12.50m x 8m, floor sep.:2.80m)

(e) Warehouse (82m x 38m) (f) School (136m x 134m, floor sep.:4m)

(g) Shopping Mall (242m x 150m) (h) Tower block (60m x 15m, floor sep.:4m)

Note, that the distances between floors are modified in the figure in order for all grid points to become visible.

Fig. 1. Overview of GPS availability in various building types
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Table 1. Building materials and their attenuation properties in the buildings investigated

Walls
Building Type External dB Internal dB Roof dB
Wood 1 Wood 2.40 Wood 2.40 Tiles 5.19
Wood 2 Wood 2.40 Wood 2.40 Tiles 5.19
Brick 1 Double Brick 10.38 Brick 5.19 Fiber Cement N/A
Brick 2 Double Brick 10.38 Brick 5.19 Tiles 5.19
School
main building + right wing Double Brick 10.38 Brick 5.19 Tiles 5.19
annex + left wing Brick and Concrete 14.76 Concrete 9.57 Tiles 5.19
Warehouse Fiber Cement and N/A Equipment N/A Fiber Cement N/A

Curtains/Openings N/A
Shopping Mall Reinforced Concrete 16.70 Brick 5.19 Flagstone N/A

Tinted Glass 24.44 Sand 2
Glass 2.43 Felt roofing N/A

Concrete 9.57
Tower block Double Brick 19.95 Brick 5.19 Tiles 5.19

around Concrete

the attenuation (w.r.t. GPS L1 frequency signals and assuming an incident angle of
0 degree) caused by the respective building materials (assuming common respective
thicknesses).2 The attenuation values listed directly impact the signal-to-noise-ratio
of GPS signals indoors, since, as a rule of thumb, a penetrated material’s attenuation
value is to be subtracted from the received signal-to-noise-ratio as experienced outside
the given building. For signals penetrating multiple layers of building materials, atten-
uation can be considered at least additive. The average signal-to-noise-ratio over time
for the 4 satellites with the strongest received SNR is shown in Figure 2 for all mea-
surements, grouped by building, see, e.g., Misra and Enge [12] for relating signal-to-
noise-ratios and GPS signal power. Differences in the SNR figures within one building
are naturally due to properties of the individual in-building locations. Such properties
include the number and distances to building elements such as walls and roofs: For ex-
ample, Teuber et al. [16] concluded from their measurements, that the power of received
GNSS signals does not only depend on the building materials penetrated, but also fur-
ther decreases with the distance traveled after the respective penetrations. In general,
our measurements confirmed that observation.

Per-case availability analysis. When looking at Figure 1 the GPS availability seems
promising for both the two wooden houses 1(b) and 1(a) as well as for the two brick
houses 1(c) and 1(d), of which only the last one is a multi-story building. However,
in the other buildings GPS is only partially available, and in order to understand these
variations we will go deeper into the analysis of these particular buildings.

The larger 82m x 38m warehouse 1(e) is a relatively open environment, with just
cloth curtains between roof and lowered outer walls, and four 50cm wide skylights

2 For GNSS frequencies lower than L1, e.g., L2 and L5, the attenuation for most of the listed
materials is somewhat lower, see, e.g., [6, Table 3]. For further studies on the strength of GPS
frequency signals in indoor environments see also [5, Ch. 9.4.2] and references therein.
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Fig. 2. Averaged signal-to-noise ratio at individual measurement locations

along the roof. Consequently, it allows for proper GPS fixes. Further analysis shows
that reception was difficult and SNR low for signals which had to penetrate interior el-
ements of the warehouse—whereas signals entering close to or through skylights were
received much stronger. That GPS signals are received strongly only from certain parts
of the sky is observable in the skyplots [7] in Figure 3 for two exemplary measurement
locations close to exterior walls of the warehouse. In the skyplots, the 3 concentric cir-
cles represent 0, 30, and 60 degrees elevation, respectively. Depicted are the location
of the satellites, tracked by the receiver during the respective hot start measurement
period. Individual satellites are identified by the id of the PRN code, they are sending,
respectively. The individual positions over time of each shown satellite are depicted by
“+” symbols, where the symbol’s color indicates signal-to-noise ratio, as experienced
by the u-blox receiver at the respective measurement location and according to the color
scale given in the figure. A green arrow trailing the orbit of a satellite signals its direc-
tion of movement. The pseudorange error for each satellite and for each individual time
instance of reception during the measurement period are sketched in blue color, accord-
ing to the scale given in the figure, and—for presentation purposes—perpendicular to
the respective satellite’s direction of movement.3

The school building at Figure 1(f) forms an H with two single-story wings and one
three-story middle section and finally a single-story annex. First, due to the skylight
windows signals have easy access to locations in the two wings. In the annex and also in
the middle section on the second floor strong signals were present. Second, the first floor
allowed for receivable but weaker signals, in particular at the location at the center of
the middle section. Here a cold start was not successful, possibly due to the attenuation
caused by the top floor, and due to the location being in a wide part of the building.
Third, in the basement the signals are attenuated by the two top floors and only due to
the relatively open area at the center were we able to track the signal there. At another
basement location no GPS fixed were achieved at all.

3 Note that while a GPS receiver can only output pseudorange errors w.r.t. the estimated posi-
tion, they can be transformed into pseudorange errors w.r.t. the actual receiver position, given
properly surveyed ground truth by means of, e.g., satellite imagery, building floor plans and
laser ranging, as done by the authors, see also [3, Ch.3].
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Fig. 3. Skyplots of measurements at two locations inside the warehouse

Figure 1(g) depicts the middle floor a three-story shopping mall. The grid points will
be refereed to by coordinate tuples, where the bottom left corner would be (1,4), and the
upper right would be (8,1),which is consistent with Figure 9, which will be discussed
in Section 4.3 and which depicts most of the mall’s middle floor plan, overlaid with
skyplots. The center (3-5,3) of the middle floor is covered by a top floor of smaller size,
and some other locations (2,2-4), (3-8,1), (7,1-3) are not only covered by a roof, but also
by a parking deck. As a first observation, the grid points where both a cold and a hot
start was possible are located in the single-story part of the building where only a top
felt roof attenuates the GPS signals, with the exception of one grid point at the bottom
of the second most right row (7,3), which is covered by the parking deck. Second,
the signal could at least be tracked at all grid points that are covered by the second
story, which consists of shops, offices and an atrium-like opening from the top floor
roof down to the basement. Third, hot starts could also be performed at the grid points
(4,3) and (5,3)—most likely due to the closeness to the glass atrium covering all floors.
This hypothesis is supported by the relatively high SNR values experienced at these
two locations (as compared with other measurement locations beneath the same heavy
roof structure). Third, grid point (1,4), located in another atrium, presumably depicts
the highly attenuating effect of tinted glass, see Table 1, resulting in comparatively low
SNR values and allowing only for a hot, but not for a cold start. Fourth, all 5 blocked
locations are among the 11 grid points covered by the top floor parking lot, where the
separation to the middle floor consists of layers of steel-reinforced concrete, sand and
flagstones. With the exception of point (7,3) only tracking is possible at the remaining 6
points, implying that GPS reception is still difficult. Note also, that, though not depicted
in Figure 1(g), measurements were performed also in the basement, which provided
position fixes only near exits and near the atriums spanning all floors.

Figure 1(h) shows all stories except the ground floor of a seven-story office building
built in a tower block fashion. Averaged over the in-building measurement locations,
this building showed the highest signal attenuations experienced in any of the explored
buildings. This is only partially due to the outer double-brick and concrete walls. Ad-
ditionally, our measurements showed that SNR was significantly impacted by the inner
walls or ceilings, the respective signals had to penetrate. Fittingly, all blocked locations,
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Fig. 4. Skyplots of measurements on 2nd (left) and 7th (right) floor of a tower block

apart from those residing on the staircase, are in narrow aisles surrounded by small of-
fices. Furthermore, the two measurement locations at the 2nd and 3rd floor where hot
starts were possible are both located adjacent to a two story library which means that
GPS signals from lower elevation satellites have to penetrate only the external walls.
Similarly, reception was possible at all three locations on the top floor, where signals
can pass with less attenuation, not being obstructed by multiple inner building elements.

The poor reception on the lower floors can also be attributed to an additional shield-
ing effect caused by two adjacent four-story buildings. These are placed in the same
major direction as the building depicted and in immediate continuation and on opposite
sides of what is depicted as the rightmost end of the building. The signal attenuation
by these two buildings are contributing to the GPS unavailability on the second, third
and fourth floor in the staircase to the right, additional to the attenuation caused by
the concrete-built staircase as well as building elements further above. Consistent with
this explanation, on the same staircase, but on the highest three level (clear from the
shielding buildings), tracking, and for the 5th and 7th even hot starts, were successful.

To illustrate exemplary the effects of attenuation by multiple building stories,
Figure 4 shows skyplots [7] for the middle location in Figure 1(h) on the 2nd and 7th
floor, respectively. The observed SNR values are generally, and especially around the
zenith, higher at the location on the highest floor, since the latter is separated from open
sky by less elements of its own (as well as of the neighboring) building(s). Noteworthy,
the low SNR values around the zenith are typical for the measurements we carried out
at lower levels of multi-story buildings, but stand in contrast to the outdoor situation
where SNR values generally increase with the satellites’ elevation w.r.t. the receiver po-
sition. Both skyplots depict also the positive effect of the tower block’s windows in east
and west direction, adding to the proper signal reception from low elevation satellites.

Summary. We have found that both signal-to-noise-ratios as well as, in result, the
availability of GPS indoors—using today’s receiver technology—is generally more
promising than suggested by earlier positioning literature. Furthermore, covering many
different building types, we found, mostly in confirmation with empirical studies for
different individual environments, that GPS availability is negatively impacted by: the
number of overlaying stories, the roof material, e.g. reinforced steel, in contrast to more
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favorable materials such as felt roofing or fiber-cement, as well as wall materials and
the number of walls, the distance to the walls separating the receiver from the outside
and the closeness to surrounding buildings.

4.2 Time To First Fix

The time to first position fix is prolonged, where acquisition of weaker and refracted
signals is necessary, in particular indoors. Figure 5 plots on a logarithmic scale time to
first fix in seconds for hot and cold starts of the u-blox receiver in three environments.
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Fig. 5. Time to first fix for three measurement sites

Inside both buildings ‘wood 2’ and ‘brick 1’ the u-blox receiver shows a fast hot
acquisition of less than four seconds. As expected, the cold starts take longer, around 40
seconds on average, with some faster at half a minute and some slower. In comparison,
for outdoor use the technical specification of the u-blox receiver states that hot starts
take less than one second and cold starts take about 29 seconds. In the shopping mall
the hot starts take around ten seconds on average but at three locations the time increases
to several minutes. Comparing SNR and time to first fix for each measurement location,
one can observe a strong dependency between the weakness of signals and the time
it takes to acquire the signals. This implies that in locations with weak signals one
can expect high values for time to first fix. For cold starts the average time-to-first-fix is
around 60 seconds but at the three last locations cold start were not even possible within
the 10 minute time limit.

4.3 Accuracy

To study the GPS positioning accuracy in the environments investigated using a dedi-
cated receiver we have compared the u-blox receiver’s GPS position fixes with manually
surveyed ground truth positions. Figure 6 shows for each measurement location,which
allowed for a hot start or tracking the root mean squared 2D and 3D positioning errors,
averaged over the five minutes of data gathered. Figure 7 shows per building the cu-
mulative 2D error distribution, averaged over all position fixes gathered at in-building
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Fig. 6. RMS positioning error in 2 and 3 dimensions

measurement locations. These CDFs yield popular comparative measures of GPS qual-
ity, implying an order on the investigated buildings—which is noticeably invariant for
most of the popular confidence intervals, e.g., 50th, 67th (i.e. RMS), and 95th per-
centile. Note, that u-blox claims to allow for a horizontal RMS position error of 3m or
less, a claim which holds for outdoor measurements we carried out in open-sky sur-
roundings. The accuracy achieved for cold starts (not shown) averaged over 5 minutes
is as expected lower due to the usually small number of satellite ephemerides known
and the resulting poor DOP values, when achieving first position fixes without assis-
tance data. The accuracy, though, usually converges over time to the one for hot starts,
as more parts of the almanac and precise ephemerides for newly acquired satellites can
be decoded. For the remainder, when referring to or visualizing measurement details,
we implicitly refer to ‘hot start’ measurements where successful and to ‘tracking’ ones,
where not.

Similar to the performances measures of availability and time to first fix, also ac-
curacy is impaired by signal attenuation. This is mainly due to the following two rea-
sons: First, signal attenuation may lead to fewer satellites being tracked and therefore
to less favorable satellite constellation geometries. Second, low signal-to-noise-ratio of
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Fig. 8. RMS 2D positioning error and respective horizontal DOP

received signals may result in less precise tracking of the signal, and therefore in less
accurate measurements of the distance to the satellite. Figure 8 shows both the RMS 2D
error as well as the horizontal DOP value, as an indicator for the negative impact of the
satellite geometry with values below 1 being considered ideal. In an outdoor setting, a
linear dependency of DOP value and positioning inaccuracy should be observable, and
so it is also, to a large extent, in our measurements. Deviations from this linear depen-
dency are mostly constituted by the second main reason for GPS inaccuracy indoors:
multipath phenomena. In the following, we will discuss both positioning accuracy and
the impact of multipath phenomena in a per-environment analysis, relying foremost on
analysing skyplot visualizations yielding SNR and the pseudorange errors for individual
satellites received at the measurement locations. Note, that within a GPS receiver the
measured pseudoranges are the main basis for the subsequent positioning computation
via lateration.

For the wooden buildings (see Figure 1(a) and Figure 1(b), respectively) positioning
accuracy is close to outdoor levels, at 3.6m and 4.0m, respectively, for the average over
the RMS 2D positioning errors shown in Figure 6. The good accuracy is partially due
to the low attenuation of wooden building materials. Additionally, the small size of
the building means closeness to outer walls and few or none obstructing inner building
elements. Finally, multipath phenomena are weak, because the line-of-sight signal is as
expected strong, and because the time-of-arrival difference between line-of-sight signal
and echoes is small, since reflecting buildings elements are generally close by. For the
two brick houses the positioning errors were on average, at 5.0m and 6.7m, respectively,
only slightly larger than the smaller houses built from less attenuating wood. Together
with the results from the recent sections, this suggests that modern dedicated receivers
can cope well with the indoor challenges within small houses.

Within the school depicted in Figure 1(f) the 2D positioning errors are significantly
larger for locations buried deep inside the building, i.e., in the center and especially in
the basement of the building, increasing the average error to 7.8m, whereas for other
locations the error is on the same level as for the brick houses.

The measurements in the warehouse (Figure 1(e)) showed an average 2D error of
8.8m and the average HDOP of 1.7 was considerably higher than for the buildings
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Fig. 9. Measurement locations in the shopping mall, overlaid with skyplots showing SNR and
pseudorange error, as observed by the u-blox receiver

mentioned above, suggesting that the large window and skylight areas allow for easy
access for GPS signals, but only from certain parts of the sky, as visible in Figure 3.

Within the main floor of the shopping mall, depicted in Figure 1(g), the RMS posi-
tioning errors, averaging at 14.8m in the plane, deviated more than in any of the building
mentioned above; this observation correlates with the heterogeneity of both architecture
and building materials used in the mall. To support the discussion of the different signal
conditions and resulting accuracies observable, Figure 9 shows skyplots, as introduced
in Section 4.1, for all measurement locations in the center part of the mall’s main floor.
All locations in the top row and and rightmost column lie beneath the mall’s parking
lot—causing low SNR values. Interestingly, the pseudorange errors for satellites around
the zenith are not necessarily large. Notably, though, location (7,2) shows different data:
Mostly in the sky part below which windows lie, reflections through these windows
seem to be stronger than the line-of-sight signals, resulting in large multipath-induced
errors.4 The biased pseudorange measurements lead to strongly biased positioning,

4 Note, that multipath-induced errors can be con- or destructive: Depending on the relative phase
of the incoming signal versions, they either lengthen or shorten the pseudorange measured.
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resulting in the largest horizontal RMS error of all locations in the mall, except (4,1).
At the latter location tracking was possible only for 4 satellites and for a short amount
of time, leading to the within the mall by far largest horizontal DOP values of over 4.

Another area where accuracy is strongly impacted by multipath phenomena is under
the atrium roof. The atrium located between locations (4,3) and (5,3) spans all three
roof and provides signal echoes easy access especially to locations (3-5,3) which are
otherwise covered by the mall’s top floor. Consequently, the skyplots for (3,3) and (5,3)
suffer from large pseudorange errors indicating that the echoes hinder precise tracking
of the line-of-sight (versions of the) GPS signals, resulting in biased position fixes,
deviating in particular directions from the true location. Such an effect does not occur
and the pseudorange error is small, in case a satellite is received in direct line of sight
through the atrium, as e.g., PRN 23 as received from (4,3).

When rerunning measurements at day-times yielding considerably different satellite
constellations, we noted only minor changes in GPS performance measures. Exceptions
occurred where SNR is rather good, but multipath phenomena impact the positioning
strongly, depending on the current satellite constellation: Of all mall locations inves-
tigated, location (4,3) showed the largest deviation in 2D error, from an original 8.1m
RMS to 17.2m for the rerun of the measurement, averaged over 5 minutes, respectively.

The tower block (Figure 1(h)) exhibits, averaging over measurement durations and
locations, the by far poorest SNR (of 23), and the highest HDOP (of 2.7) and, conse-
quently, also the largest horizontal errors (of 21.7m RMS) amongst all investigated en-
vironments. While the highest floor shows acceptable reception, SNR and pseudorange
errors are worse on lower floors as shown for the 2nd floor in Figure 4. Consequently
and consistent with the results obtained in the other investigated buildings, the atten-
uated and indirect signals yield here a much larger HDOP value of 5.8 and horizontal
RMS error of 62.1m than on the top floor with 1.5 and 12.2m, respectively.

Summary. The accuracy in the four wooden and brick houses investigated was good us-
ing the dedicated u-blox receiver due to it being separated from the outside both by only
few building elements and also only short distances, resulting in low signal attenuation
and dispersion and in only small delays of multipath echoes. If more building elements
get between the receiver and the outside, as in the basement of a school or a mall, under
a roof parking lot or deep inside a tall building, signal attenuation impacts both avail-
ability and positioning accuracy, since only few satellites and only in restricted parts of
the sky can be acquired leading to poor satellite constellation geometries.

Especially in environments of heterogeneous architecture like in the investigated
mall, GPS accuracy varies considerably and can be strongly biased and impaired by
multipath phenomena, e.g., when window areas allow for echoes being potentially
stronger than the line-of-sight signal which may have to penetrate strongly attenuat-
ing building elements to be received directly.

4.4 Embedded GPS Receivers

Embedded GPS receivers in mobile phones are restricted both in terms of power con-
sumption and antenna type and size. In result, such receivers are less sensitive than those
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Fig. 10. Horizontal RMS errors and DOP values, using the N95 in-phone receiver

typically used for standalone receivers, implying less sensitive antennas and weaker am-
plification stages, see also [5, Ch. 9.4.2.1]. Therefore, it is relevant to consider how well
an embedded GPS receiver performs compared to the state-of-the-art receiver we relied
on in the previous sections. As mentioned in Section 3, we collected data with a Nokia
N95 8GB phone which employs a Texas Instruments GPS chip launched in 2006.

Figure 10 shows the horizontal RMS error and the average horizontal DOP value for
each measurement location in the six environments where we collected measurements
using the N95 embedded receiver. The labellings at the bottom of the figure include
the number of measurement locations for each environment. By comparing for each
environment the latter number to the number of bars shown, one can comment on the
availability for the N95. Generally, the N95 allows for GPS positioning in fewer loca-
tions than the u-blox receiver, except for the house ‘wood 1’ and the warehouse, where
availability was equivalent.

The horizontal RMS errors measured in the four houses average around 10 meters,
for the warehouse and the shopping mall even higher. Particularly for the four houses,
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the RMS values are twice as bad as when using the u-blox receiver. Due to the N95 ac-
quiring consistently fewer satellites than the more sensitive u-blox receiver, the HDOP
results for the N95 are usually higher than 2 and twice as large as for the u-blox, which
yields the main explanation for the lower positioning accuracy of the N95. The time to
first fix for hot starts is shown on a logarithmic scale in Figure 11. For the ‘wood 2’ and
‘brick 1’ environments it is around 10 seconds, thus longer than the 1-3 seconds used by
the u-blox receiver. For the shopping mall it averages around 90 seconds—much more
than the on average 10 seconds used by the u-blox.

In summary, the embedded N95 GPS receiver is able to provide positioning in con-
siderably fewer indoor environments than the u-blox receiver. Furthermore, the time to
first fix is considerably longer and positioning errors are twice as large.

5 Conclusions

In this paper we improve on the understanding of indoor GPS reception characteristics
by analyzing results from a measurement campaign covering eight different buildings.
We have found that both signal-to-noise-ratios as well as, in result, the availability of
GPS indoors using state-of-the-art receiver technology is generally more promising than
suggested in the positioning literature. Furthermore, covering many different building
types, we found that GPS availability is negatively impacted by: the number of over-
laying stories, the roof material, as well as wall materials and the number of walls and
the closeness to surrounding buildings. Time to first fix with at hot starts, i.e. using
A-GPS, generally took less than ten seconds. However, at some locations longer time
was required, occasionally more than a minute. Especially for battery-powered devices
this might be a drawback as longer time to first fix will consume extra power.The 2D
root mean squared accuracy of the measurements was below 5 meters in the wooden
and below 10 meters in most of the brick and concrete buildings. Low accuracies can
be linked, depending on the environment’s characteristics, to either low signal-to-noise
ratios, multipath phenomena or poor satellite constellation geometries. We also carried
out measurements using GPS receivers, embedded in mobile phones, which provided
considerably lower availability, lower accuracy and longer time to first fix than the state-
of-the-art receivers employed in the campaign.

Our results indicate for the application domains mentioned in the paper, that GPS can
be used as a positioning technology to provide situational awareness at a building-part
granularity, especially when A-GPS is available, yielding an accuracy level of tens of
meters and a time to first fix in the range from a few seconds to minutes. GPS though,
does not currently provide instantly available indoor positioning accurate to the meter
as might be crucial for some indoor applications, e.g. fire fighters navigating in burning
buildings. Therefore, another use of indoor GPS would be as a complementary indoor
positioning technology, e.g., to help fighting the error growth over time of inertial po-
sitioning systems when available. The results are also indicative for the performance of
future embedded GPS devices, as state-of-the-art receivers are being constantly minia-
turized and power optimized.

The line of work presented in this paper naturally gives rise to further items of re-
search, potentially inspiring or giving input to improved GPS positioning algorithms. It



Indoor Positioning Using GPS Revisited 55

would be relevant to study systematically to which extents in-building position param-
eters like distance and angle to the closest wall, window or room corner affect signal
strength and quality as measured at the receiver position. Whereas such dependencies
were found and formulated already by Teuber et al. using data gathered in a single
office building, a validation of such dependencies in other real-world indoor environ-
ments is yet to be done. Furthermore, it would be relevant to conduct new measurement
campaigns to evaluate the impact on indoor GNSS performance of the new GPS and
Galileo signals and satellites as they become available.
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Abstract. We present the design and evaluation of Panoramic, a tool
that enables end-users to specify and verify an important family of com-
plex location events. Our approach aims to reduce or eliminate criti-
cal barriers to deployment of emerging location-aware business activity
monitoring applications in domains like hospitals and office buildings.
Panoramic does not require users to write code, understand complex
models, perform elaborate demonstrations, generate test location traces,
or blindly trust deterministic events. Instead, it allows end-users to spec-
ify and edit complex events with a visual language that embodies natural
concepts of space and time. It also takes a novel approach to verifica-
tion, in which events are extracted from historical sensor data traces
and then presented with intelligible, hierarchical visualizations that rep-
resent uncertainty with probabilities. We build on our existing software
for specifying and detecting events while enhancing it in non-trivial ways
to facilitate event specification and verification. Our design is guided by
a formative study with 12 non-programmers. We also use location traces
from a building-scale radio frequency identification (RFID) deployment
in a qualitative evaluation of Panoramic with 10 non-programmers. The
results show that end-users can both understand and verify the behavior
of complex location event specifications using Panoramic.

1 Introduction

Intelligent behavior in location-aware computing is driven by location events.
Applications detect events by dynamically evaluating spatio-temporal relation-
ships among people, places, and things. For example, a location-aware to-do list
might detect simple events like “Alice is near the library” to trigger reminders.
In contrast, many new applications for real-time location systems (RTLS) rely
on complex events that contain sequences of interactions [1,27]. For example, a
hospital workflow tracker may log a “cardiology exam” whenever a patient is
detected exiting the hospital after meeting with a cardiologist and then spend-
ing time with a nurse and an electrocardiogram machine. With the RTLS mar-
ket expected to soon exceed $2 billion US [15], support for complex events is
crucial.
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A fundamental part of support for complex events is event specification; users
must be able to specify new events to meet their evolving needs. Applications
achieve this by leveraging event detection systems (e.g., context-aware com-
puting infrastructures) that allow new events to be formally specified in some
manner. However, while existing systems allow developers to specify new events
using low-level APIs [3,30,33] or a declarative query language [10,14], dependence
on developers is a costly inconvenience for both individuals and organizations.
Indeed, a recent survey of location systems in hospitals cited the cost of tuning
vendor software to site requirements as a critical barrier to deployment [34]. A
compelling alternative is to allow direct specification of complex events by end-
users. This is challenging, however, because it requires translation of high-level
concepts into conditions on diverse, low-level, and uncertain sensor data. Un-
fortunately, existing systems for end-user event specification are either limited
by inexpressive interfaces [17,24] or require iterative and potentially unfeasible
training demonstrations for machine learning models [8].

It is equally important that end-users be able to verify event specifications and
debug those that do not work. Verification is difficult because it requires a system
to produce high-level evidence of a specification’s behavior over sensor traces
that may be too complex for an end-user tool to generate. Moreover, because
bugs can occur at the sensor level (e.g., calibration errors) or in the specification
design, users must be able to understand detected events and evaluate their
relationship to sensor data. This is impractical or impossible when events are
specified with inscrutable machine learning models or when they do not represent
uncertainty. As such, existing systems for end-user event specification are limited
by inadequate support for verification and debugging.

We present Panoramic, a web-based tool that enables end-users to specify
and verify complex location events. Panoramic does not require users to write
code, understand complex models, perform elaborate demonstrations, generate
test traces, or blindly trust deterministic events. Instead, it offers an intuitive
visual language for specification and an intelligible verification interface that
uses readily available historical sensor data. Specifically, we contribute:
1. A significant upgrade to our existing event detection system, Cascadia [37];

we facilitate event specification and verification by integrating Lahar [28], a
new type of probabilistic event detector (Section 3).

2. Extensions that prevent errors and increase the expressive power of Scenic,
our existing event specification tool. Our changes are guided by a formative
user study with 12 non-programmers (Sections 3 and 4).

3. A novel approach to verification that leverages both historical sensor traces
and a user’s knowledge of past events while explicitly but intuitively repre-
senting the probabilistic nature of sensor data and events (Section 5).

4. Verification interface widgets that provide end-users with an intelligible and
hierarchical visualization of context. The widgets also allow users to distin-
guish sensor errors from errors in a specification’s design (Section 5).

5. A qualitative evaluation of event verification in Panoramic with 10 non-
programmers. The study uses actual radio frequency identification (RFID)
location traces collected from a building-scale deployment (Section 7).



Specification and Verification of Complex Location Events with Panoramic 59

Fig. 1. The Panoramic system architecture. Events are iteratively specified in
Panoramic, detected over historical location traces by Cascadia, and then displayed
in Panoramic’s verification interface.

2 The RFID Ecosystem

We design and evaluate Panoramic using RFID traces, an increasingly common
type of location data [29,34]. Our deployment, the RFID Ecosystem, models an
enterprise RTLS deployment using 47 EPC Gen-2 RFID readers (160 antennas)
installed throughout our 8,000 m2 building. In addition, more than 300 passive
(e.g., unpowered) tags carrying unique identifiers are attached to people and
objects. When a tag passes an antenna it may wirelessly transmit its identifier
to a reader, which in turn creates and sends a timestamped tag read event of the
form (antenna location, tag ID, time) to a server for storage and processing.
However, our antennas are only deployed in corridors (not inside offices), and
past work has shown that factors like RF-absorbency and mobility in an everyday
environment may prevent tags from being read [36,39]. Thus, like many location
systems, the RFID Ecosystem may produce sporadic, imprecise location streams.

3 Specifying and Detecting Events

In this section, we describe Cascadia, Scenic, and extensions we make to support
Panoramic. We also present a taxonomy for the events Panoramic can specify.

3.1 Integrating Lahar into Cascadia

Cascadia is a system for specifying, detecting, and managing RFID events [37]. It
accepts declarative event specifications and detects the specified events over in-
coming RFID data, producing one event stream per specification. Cascadia copes
with uncertainty by transforming intermittent RFID streams into smoothed,
probabilistic Markovian Streams (MStreams) [19] that capture both the uncer-
tainty of a tag’s location at each time step (e.g., a distribution over which rooms
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Fig. 2. Cascadia transforms raw, uncertain location data into smoothed, probabilistic
Markovian streams over which Lahar detects complex events

the tag might be in) and the correlations between a tag’s possible locations (e.g.,
distributions over entire paths through a building). MStreams abstract away the
complexities of sporadic and imprecise data to expose a more uniform model
of location over which event specifications are expressed, thus considerably sim-
plifying the requirements of an event specification language. At the heart of
Cascadia is the PEEX event detection engine, which uses an SQL-like event
specification language and extracts probabilistic events from MStreams.

We upgrade Cascadia by replacing PEEX with the Lahar event detection en-
gine. Lahar’s query language is based on regular expressions that are represented
internally with finite state machines (FSMs). The language’s pattern matching
constructs, together with standard query predicates, offer a more intuitive way
to express sequential spatio-temporal events. This streamlines translation from
Panoramic specifications into Lahar queries and provides end-users with an eas-
ily comprehended mental model of the event detection process. Lahar produces
a single probabilistic query signal for each MStream it processes. The query sig-
nal for an event specification, or event signal, consists of timestep-probability
pairs <t,p> which indicate that the event occurred at timestep t with prob-
ability p (see Figure 2). Each probability p is derived from an MStream using
well-established query answering techniques for probabilistic databases [19,28].

Lahar is an evolving research prototype that is currently limited to answering
event queries over a single MStream. Panoramic, however, creates event speci-
fications that reference multiple MStreams (e.g., multiple people and objects).
As such, we developed a new Event Manager module for Cascadia that answers
queries over multiple MStreams. The Event Manager translates specifications
into sets of single MStream queries after which it orchestrates their execution
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Fig. 3. The event specification interface employs a storyboard metaphor

with Lahar and merges the resulting event signals. This module also manages
metadata on MStreams and caches intermediate event signals for reuse when
answering other queries. Overall, our upgrades make Cascadia more expressive
and provide cleaner semantics because all queries map to state machines.

3.2 Enhancing Scenic

Scenic is a tool that allows end-users to specify events for PEEX [37,38]. It uses
an iconic visual language designed to support common location events and their
composition through sequencing and conjunction. A storyboard layout describes
how people and objects enact an event through a sequence of movements between
places (see Figure 3). Users drag and drop Actors (people, objects and places)
and Primitives (instantaneous events) onto Scenes. A Sequence of Scenes specifies
a complex event as a sequence of spatio-temporal sub-events. Actors are specified
using other end-user tools discussed in prior work [38].

While end-users understood Scenic [37], translation of specifications into
PEEX queries was complex and imposed awkward constraints on the interface.
For example, only certain combinations of Primitives could appear in a Scene
and transitions between Scenes had to be of fixed length (e.g., one second). By
designing Panoramic to target Lahar, we were able to remove these constraints
and add several new features that increase expressiveness (see Figure 3). We
added explicit Connectors between Actors and Primitives, enabling any combi-
nation of Primitives to appear within a single Scene. We also added Transitions
between Scenes that are set explicitly by the user as occurring either instantly
(i.e., in one timestep) or over time (i.e., some time may pass before the next
scene occurs). Finally, we included simple constraints on absolute time (e.g.,
“before 12pm on Weekdays”) as a convenience.
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Fig. 4. A Single Scene event: “I’m in my office ”, translates into a single state FSM
that enters the accept state whenever the user is inside his office

Fig. 5. A Consecutive Sequence event: “I enter my office”, translates into a linear FSM
that enters accept state when Scenes are satisfied consecutively

3.3 Supported Events

In a survey of location events in pervasive computing applications [37] we found
that six instantaneous events were used most often: with, without, inside, outside,
near, and far; and that these events were frequently composed using conjunction,
repetition, and sequencing. A large fraction of these events can be expressed in
Panoramic and translated directly into FSM queries for Lahar. We now describe
and illustrate the set of location events Panoramic supports.

Single Scene Events. Single Scene events use connected Primitves and Ac-
tors to describe a set of instantaneous events that occur simultaneously. Scenes
including one person or object (i.e., one MStream) can be translated into a FSM
query having a single accept state and a single incoming edge that is satisfied
when the Scene’s Primitives are true (see Figure 4). When the Scene includes
multiple people or objects, the Event Manager breaks the query into multiple
single-state FSM queries, answers each, and merges the results by assuming their
mutual independence and computing their conjunction. The set of events that
can be represented by a single Scene is greatly extended by Connectors. Single
Scene events form the basis of all location-aware computing applications and are
sufficient to account for 24% of events recorded in the survey.

Consecutive Sequences. Consecutive Sequences contain Scenes separated
by instantaneous Transitions. They are translated into linear FSM queries that
have a single accept state preceded by a sequence of states and edges as shown
in Figure 5. In the case of multiple objects or people, the Event Manager pro-
cesses each Scene as though it were a Single Scene event, joins the results into
a composite stream of independent events, and then runs a linear FSM query
that corresponds to the Sequence. Consecutive Sequences are useful for detecting
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Fig. 6. A Sequence event with a gap: “Alice, Nikhil and Prof. Chen begin a meeting in
Prof. Chen’s office”. This event occurs as soon as the last participant enters the office.
A FSM with a self-loop is used to wait for the last participant.

state transitions like entering or exiting a place, approaching an object, or be-
ginning a trajectory; such events account for another 42% of surveyed events.

Sequences with Gaps. Sequences may also contain Transitions that allow
time (and potentially other events) to pass between one Scene and the next.
Panoramic translates these Sequences into linear FSMs having a self-loop edge
that is satisfied by the negation of the condition on the edge which leads to
the next state. For example, the self-loop edge in Figure 6 ensures that the
FSM remains in “pre-meeting” state until Alice, Nikhil, and Prof. Chen are
all in Prof. Chen’s office. Sequences with gaps represent a class of events not
previously supported by Cascadia, thus increasing the flexibility and expressive-
ness of specifications. They also account for another 11% of the events in our
survey.

Disjunctions of Sequences. A disjunction of Sequences may represent dif-
ferent orderings of instantaneous events or alternate paths in a workflow. While
such events comprise less than 5% of events in the surveyed literature, they are
of growing importance in emerging domains like workflow monitoring in hos-
pitals [27]. Panoramic does not directly support disjunctions, but users may
specify multiple Sequences and compose their disjunction within an application.
Here we stress that Cascadia has the capability to support disjunctions of Se-
quences and that we plan to extend Panoramic to directly specify them in future
work.

Actor variables also create disjunctions of Sequences. Most surveyed events
can be usefully modified with variables. For example, instead of “Alice meets
Nikhil in her office”, one could express “Two researchers meet in any room”.
These events are translated into a disjunction of Sequences where the vari-
ables in each Sequence are replaced with a different combination of possible
values. This is effective for events with few variables that range over a limited
domain.

Unsupported Events. There are another 18% of surveyed events for which
Panoramic provides limited or no support. This includes repeating sequences,
which can be translated into FSMs with cycles. These queries are computa-
tionally difficult to answer over probabilistic data, but can be approximated
by unrolling the cycle. Other common and unsupported location events involve
precise 3D location and events involving speed of transition (i.e., velocity).
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3.4 Formative Evaluation

In addition to the move from PEEX to Lahar, the design of Panoramic’s event
specification interface was driven by a formative user study. In this study, 12 non-
programmers were given a brief tutorial on Panoramic and asked to complete
a series of event specification tasks while talking aloud. Each task presented
participants with an example application and usage scenario for which they
were asked to specify an appropriate event. After participants declared a task
complete, a researcher would then review the produced specification and explain
exactly how Panoramic would interpret it. Participants could then revise their
specification if the researcher’s explanation did not match their intention.

As a result of the study, we identified a variety of usability and expressivity
problems which we addressed with the design features presented above. However,
we also observed several more fundamental problems regarding user ability to
understand and verify the behavior of a created specification. We discuss these
problems in the next section.

4 Problems in Specifying an Event

Even with the enhancements to the Scenic interface, users encountered a variety
of difficulties while authoring an event specification with Panoramic. Here, we
summarize and discuss those most frequently observed in our formative study.

4.1 Syntax Errors

Nearly all participants produced one or more syntactically illegal specification.
Most syntax errors were the result of forgotten connections or targeting er-
rors while rapidly creating a Scene. In a few cases, participants made mistakes
because they did not clearly understand how Actors and Primitives could be
connected. We addressed these problems with three new features (see Figure 3).
First, we constrained the interface to allow only legal connections between Ac-
tors and Primitives, thereby eliminating the possibility of syntax errors. We also
added an information panel below each Scene that displays English explanations
for fully connected Primitives in that Scene. Finally, we included a status flag
in the information panel that shows a green checkmark when a Scene is legally
specified or an under construction symbol when more work needs to be done. If
more work is needed, the information panel provides a hint as to what elements
(e.g., Actors, Primitives, Connectors) are needed to complete the Scene.

4.2 Design Problems

A problem encountered by 3 of the first 5 participants was in deciding on a
specification design that would meet the task’s requirements. While 1 participant
had difficulty reasoning about what needed to be specified, others knew what
they wanted to specify but weren’t sure how the available widgets could be
composed to do it. To address both of these problems, we introduced event
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templates, stock specifications that provide examples of common events with
their usage scenarios - at least one for every type of event in the taxonomy.
The last 7 participants in our formative study were provided with a library of
templates during the study session; those that encountered design challenges
were able to use the template library to decide on a design.

4.3 Problems with Timing

Half of the participants chose to revise a completed specification due to prob-
lems with timing. These problems consisted in use of the wrong Transition type
(e.g., instantly instead of over time) or in using one Scene when two Scenes were
needed. For example, a participant intended to specify “the custodian leaves the
lab and goes to the closet” as two Scenes separated by an instantaneous Tran-
sition. This specification was flawed because a custodian cannot move instantly
between rooms. Another participant used a single Scene to tell a context-aware
notifier to send her an email when a meeting occurs. While the single Scene would
effectively detect a meeting and send an email, it would also occur repeatedly
throughout the meeting, causing many emails to be sent. Event templates helped
to reduce problems with timing, but some more subtle problems remained, forc-
ing participants to revise their specifications. We therefore developed additional
solutions to timing problems which we present in Section 5.

4.4 Tuning the Level of Specificity

A critical challenge faced by all participants while designing and revising their
specifications was to determine the appropriate level of specificity. Some partic-
ipants routinely under-specified events by leaving out Actors or Primitives. One
explained her under-specification by saying “I wanted it to cover every case so I
only need one event,” another simply explained that it took two revisions before
he realized that another object was needed. Over-specification was also common.
In such cases, participants often explained that they added non-essential Actors,
Primitives, or Scenes because they weren’t confident that Panoramic would de-
tect the intended event without them. For example, one participant constrained
a “group meeting” event to occur only when all group members were together
in a room with laptops and coffee mugs. He explained that “they could be in the
room for some other reason, but if they all have laptops and coffee then they’re
probably in a meeting.” Whether an event is over or under specified, the result
is a specification that does not fit the user’s intention.

While mismatches in specificity may be less of a problem when users are
reasoning about events in their own life with which they are intimately familiar,
some tuning is likely to be required whenever a new event is specified. Many
participants adopted a trial and error methodology when specifying an event,
using the researcher’s explanation to “test” an event’s behavior over multiple
design iterations. This motivated the design of additional interface components
that support users in understanding and verifying the behavior of a specification.
We discuss these components in the next section.
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5 Understanding and Verifying Events

In response to the problems discussed in the previous section, we extended
Panoramic to support end-users in understanding and verifying their event speci-
fications. Here we face the hard problem of generating test data for specifications.
Our approach is to allow users to assess the correctness of a specification by run-
ning it on historical data. We use Cascadia to detect the event together with the
timeline-based and map-based widgets presented below to visualize the results.
The advantage of this approach is that it does not require complex simulations
or synthetic data which may not be truly representative. Instead, it reveals the
behavior of the event on real, readily available sensor data. The obvious con-
straint is that the tested event must have already been recorded by user’s RFID
deployment. This is a reasonable sacrifice for scenarios like hospitals and office
environments where both simple events and complex workflows occur repeatedly.

5.1 Timeline Overview

We developed a timeline widget (see Figure 7) that provides a rapid overview
of detected event results as horizontal bars in a timeline where a bar’s start
and end points correspond to a detected event. Events are organized in groups
of sub-events (e.g., sub-sequences, Scenes, Primitives) in order to provide an
in-depth explanation as to why an event was or was not detected. Each group
of events is displayed in its own band, with one band for the event itself along
with its sub-sequences, and one band for each Scene with its Primitives. By
correlating the sub-event bars with the presence or absence of an event bar, users
can gain an understanding of how each sub-event contributes to or detracts from
the detection of the event. For under-specified events, this process can reveal
that frequently occurring sub-events result in a larger than intended number
of detections. In the case of over-specification, it can show a user that absent
sub-events are preventing the event from being detected. Timing problems are
also visible as unexpectedly long or short event durations.

The timeline further facilitates the verification process with exploratory
browsing functions. The timeline can be dragged left or right to move through
time, and two zoomed-out bands (one for hours and one for days) provide ad-
ditional context for large datasets. By default, event bands are rendered with
minute-level granularity but may be zoomed in or out using the mouse scroll
wheel. Checkbox labels on the left side of each band describe the contents of
each sub-event group in that band. The bars representing a sub-event can be
shown or hidden from the timeline view by checking or unchecking that sub-
event’s checkbox. Selecting a checkbox label will highlight all occurrences of an
event and its sub-events in the timeline. Finally, clicking a bar in the timeline
brings up a bubble containing a thumbnail image of the corresponding event or
sub-event along with an English description and precise timing information.

The timeline-based design is particularly well-suited for display of sequential
data and allows users to leverage their natural ability for reasoning about tem-
poral events [16]. With a suitably large dataset, we anticipate that the timeline
view can help users to quickly gather evidence of a specification’s behavior.
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Fig. 7. The timeline reviews the event “Alice enters her office with her helmet”

Filtering Event Signals. The timeline must present a simple, discrete view of
the complex probabilistic data it displays. As such, we take several steps to trans-
form raw event signals from Lahar into discrete event streams that are amenable
to visualization. First, because the probability of a true event occurrence may
vary widely, we identify and flag all local maxima in a signal as potential event
occurrences. We then filter out all spikes (i.e., peaks lasting less than 2 seconds)
from this set. Spikes are unlikely to correspond to a true event because they
are faster than any action humans commonly perform. They may occur in an
entered-room event signal, for example, when a user passes but does not enter the
room. After removing spikes, we transform the remaining “humps” into discrete
events having the same duration and which can be displayed on the timeline.

5.2 Detailed Playback

Though it provides a useful overview and a direct look at the cause for Sequence
and Scene events, the timeline does not explain why a given Primitive event does
or does not occur. This is a crucial question when working with real historical
sensor traces because missed RFID readings can lead to false positives or neg-
atives that are indistinguishable from unexpected behavior in the timeline. For
example, a “group meeting” event may match a user’s intention but fail to work
in practice because one group member’s RFID tag is routinely missed. Using
only the timeline, it would be impossible to distinguish an absent group member
from a tag that needs to be replaced. To help users identify problems that are
rooted in sensor errors rather than in a specification, we developed a map-based
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Fig. 8. The playback widget reviews traces for Alice and her helmet. Person and helmet
icons represent raw location data. Particle icons display a probability distribution over
a tracked entity’s possible locations.

trace playback widget. The widget allows a user to semantically drill-down into
any point in the timeline and review both the sensor trace and the MStream
starting at that time.

The playback widget renders at the right side of the timeline (see Figures 1
and 8) whenever a user clicks the “Cue Playback” button in the pop-up bubble
for a timeline bar. At the same time, a playback cursor appears over the timeline
to designate the current time in the trace to be replayed. Users may also be
interested in portions of the timeline that contain no detected events, as such,
they can drag the timeline to any location to cue playback there. Standard video
controls (e.g., pause, play, stop, rewind and fast-forward) provide a familiar
interface for reviewing segments of the trace. Playback occurs in a collection of
map panels that show RFID readings and MStream data (i.e., particles from the
particle filter) overlaid on a map of the RFID deployment. The timeline scrolls
synchronously with the map-based playback. Each such panel follows a particular
person or object from the trace, automatically panning and switching floors as
needed. The user may also choose to show multiple traces in a single map panel
by selecting checkboxes above the map that correspond to additional traces.
RFID readings and MStream data may be switched on and off in a given map
panel using the “Show Data” and “Show Model” checkboxes. Unneeded map
panels can be collapsed to facilitate side-by-side comparison of traces. Labels at
the top of the playback widget show the current time in the trace and summarize
the collection of people and objects being viewed in the trace.
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6 Implementation

Panoramic’s event specification and verification interfaces are entirely web-based
and built using the Google Web Toolkit [12]. The playback widget was built using
Google Maps [11], and a customized version of MIT’s Simile Timeline [31] was
used to implement the timeline widget. In total, Panoramic contains 152 Java
classes that control the interface and orchestrate AJAX communication with a
server. An additional 42 classes were added to Cascadia to support translation
and execution of Panoramic events with Lahar.

7 Evaluation

We ran a qualitative study of Panoramic’s event verification capabilities with 10
non-programmers. Participants were offered $20 to perform 60 minutes of event
verification tasks. In addition to a 10 minute tutorial, participants were prepared
with a background story that described a week in the life of Alice, a fictional
student. The story included precise information on events that occurred (e.g.,
“group meeting on Monday at 11”) as well as information on events that often
occur (e.g., “Nikhil often stops by Alice’s office to talk”). Each task included a
specification, a description of the application and usage scenario for which Alice
created the specification, and the corresponding detected events from the week
of Alice’s data. Participants were asked to talk aloud as they used Panoramic
in combination with what they knew about Alice’s week to decide how each
specification worked, whether it met her needs, and how it could be fixed.

The week of historical data was spliced together from traces collected in the
RFID Ecosystem and for which we have ground truth information on when and
where events occurred. We combined a set of high fidelity traces with a small
number of highly ambiguous traces (e.g., traces with a large number of missed
tag reads). The first four tasks were presented in random order with one task
having a specification that clearly succeeded over the week of data and three that
failed because they were over-specified, under-specified, or contained a timing
error. A fifth task contained a specification that should have met Alice’s needs
but was not detected over the week’s data as a result of ambiguous sensor traces.

7.1 Observations and Enhancements

Overall, participants were able to complete the tasks, averaging 15-20 minutes
for the task involving ambiguous traces and 10-15 minutes for all other tasks.
All participants understood the behavior of specifications and could distinguish
sensor errors from specification errors. Participants were also able to grasp the
intended behavior of a specification both from the usage scenario and from the
specification itself. As such, they used the timeline and playback widgets as a
means for verifying intuitions about a specification’s behavior rather than for ex-
ploring its overall behavior. Moreover, though overconfident participants initially
declared a flawed specification to be correct in 6 of 50 tasks, they quickly changed
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their minds after comparing the timeline to their knowledge and intuitions about
events. All participants were comfortable using Panoramic and several remarked
that it was fun or “like a game”. However, while they did not encounter any crit-
ical barriers to task completion, many participants faced recurring difficulties for
which we have developed preliminary solutions (see Figure 9).

First, participants often checked the timeline for consistency with the events
they knew occurred during Alice’s week. In many cases the first question they
tried to answer was “how many times was the event detected?”. The timeline
does not directly answer this question, so participants had to scroll through the
week to count event occurrences. We addressed this problem by adding a count
for each event beside that event’s label at the left side of the timeline.

The task involving an under-specified event required participants to further
constrain the specification by adding an object. This was difficult because the set
of available objects was buried in the specification interface, leaving participants
unsure of what objects were available. Moreover, without the ability to review
traces for other Actors alongside the currently loaded trace, it was difficult to
decide whether or not another Actor was relevant to an event. While this problem
may be less critical when users reason about people and objects they know, we
did introduce a new section to the legend at the top of the playback panel that
shows other Actors which may be relevant to the event. By clicking the checkbox
next to an Actor, users can load a new map panel that plays the trace for that
Actor. The set of displayed Actors is currently chosen as those that are proximate
to, or move in the same time window as the currently loaded trace. This is a
reasonable compromise to the unscalable alternative of displaying every possible
Actor because proximate or moving Actors are likely to be more relevant.

Two additional recurring frustrations were voiced by participants when using
the playback widget. First, they had difficulty understanding the visualization of
the MStream as a set of particles. After explaining the particles as “Panoramic’s
guess at where a person or object is,” participants were better able to understand
but still had difficulty reasoning about sensor errors and missed detections as a
result of ambiguity. As such, we changed our rendering of particles to include an

Fig. 9. Enhancements to the timeline and playback widgets
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opacity level that corresponds to a particle’s probability. This helped the last 8
of 10 participants to identify sensor errors in the ambiguous trace 3-5 minutes
faster than the 2 who did not have this feature available. A second difficulty
was that participants felt it was difficult to correlate the trace playback with
the events in the timeline. Although the timeline was animated to correspond to
the trace, participants were uncomfortable looking back and forth between the
trace and the timeline. One participant explained her difficulty with the playback
widget by saying “it shows where Panoramic thinks the people are, but not what
it thinks about the events, you have to keep looking back at the timeline to see
the events, that’s hard”. This problem could be addressed in future work by
arranging the timeline below the playback widget, or by embedding pop-ups in
the playback maps that mark when and where events occur.

7.2 Limitations

Panoramic currently has several key limitations. First, while it supports spec-
ifications with Actor variables, verification of such events is tedious because
users may need to review multiple sets of historical traces - one for each possi-
ble parameterization of the variables. Panoramic is also limited by its minimal
support for debugging suggestions. While a list of potentially relevant Actors is
useful, more intelligent suggestions could be made by assessing the how sensi-
tive the event detection results are to slight changes in a specification. Finally,
Panoramic’s reliance on historical data may be problematic for events that sel-
dom occur. Here it may be possible to automatically generate synthetic test data
for a particular specification using techniques similar in spirit to recent work by
Olston et al. [25]. Future work will address these and other limitations.

8 Related Work

Here we review and discuss a variety of end-user software engineering techniques
for sensor systems. We focus on specification and verification of events, omitting
discussion of techniques that specify event-triggered behaviors.

Specification Languages. Event specification systems for end-users are dif-
ficult to design because they must lower the barrier to entry without compro-
mising expressive power. One approach is to create a specification language
with abstractions that represent high-level concepts in the target application
domain. For example, early systems like PARCTAB [35], Stick-e Notes [26], and
SPECs [17] used scripts to describe primitive location events. More recent work
with Semantic Streams [40] and probabilistic context-free grammars [22] can de-
tect some complex and even uncertain events in sensor networks. While these
systems use data processing techniques similar to those in Cascadia, they expose
languages that are not well-suited to end-users.

Specification Interfaces. Several systems have made specification more ac-
cessible with graphical interfaces that declaratively specify events. EventMan-
ager [24] used four drop-down boxes to specify a small set of primitive location
events. CAMP [33] specifies non-sequence (i.e., instantaneous) events with a
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magnetic poetry interface that answers the questions: who, what, where and
when. The Topiary [20] design tool also specifies instantaneous events, but uses
an interface with an active map and a storyboard. Panoramic is quite similar
to iCAP [32], a visual interface for specifying spatio-temporal sequence events.
However, CAMP, iCAP, and Topiary are all less expressive than Panoramic be-
cause they rely on custom-coded event detection modules instead of a flexible
event detection engine like Lahar. Moreover, they do not explicitly support event
detection over uncertain sensor data like Panoramic.

Programming by Demonstration. Another approach is programming by
demonstration (PBD), in which users supply example sensor traces to train an
event detector. a CAPpella [8] is a PBD system that allows users to train a Dy-
namic Bayesian Network with labeled sensor traces. Apart from low detection
rates, a CAPpella is difficult to use in our motivating scenarios because it requires
5 or more traces for training. Other systems focus on detecting simpler events
with fewer examples and rapid feedback. For example, Crayons [9] and Eye-
patch [23] enabled users to rapidly train visual classifiers using a demonstration-
feedback loop. The Exemplar system [13] employs a similar loop featuring an
algorithm that requires only one demonstration. Exemplar focuses on expos-
ing an intelligible and editable visualization of its model, addressing the fact
that automatically learned models are often inscrutable [5,18]. These prior PBD
methods become impractical for complex events that involve the simultaneous
movement of people and objects.

Verifying Specifications. Past work has shown that end-users must be able
to verify that a specification works as intended [5,18]. Verification identifies three
broad categories of error: (1) syntactic errors that make specifications illegal or
ambiguous, (2) semantic errors that make valid specifications behave in unex-
pected ways, and (3) sensor errors that cause event detectors to erroneously
detect or miss events. Most languages and declarative interfaces use interactive
visual feedback (e.g., error flags, prompts for disambiguation) to cope with syn-
tactic errors [20,32]. Semantic errors are often identified by testing with sensor
traces (as discussed below). However, both CAMP and Panoramic can reveal
semantic errors in non-sequence events by generating high-level English descrip-
tions - in Panoramic these are descriptions of Primitives. Most systems provide
no support for identifying sensor problems beyond what may be inferred from
detection errors. In contrast, Panoramic directly supports discovery of sensor er-
rors by providing a visualization that correlates sensor data with detected (and
missed) events.

Trace-Driven Debugging. Test traces are commonly generated using either
Wizard of Oz [20,32], in which the user simulates sensor traces with a special inter-
face, or demonstration [8,13], in which the user enacts an event while recording it
with sensors. Both of these techniques become prohibitively demanding for com-
plex events. The Wizard of Oz approach also fails to capture the impact of uncer-
tainty in real sensor data. Panoramic avoids these problems by using pre-recorded
traces.Moreover, thoughother systems couldadoptPanoramic’s approach, theydo
not provide the support for archiving, exploration, and visualization of uncertain
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events and sensor data that Panoramic does. Debugging also requires that users
correct erroneous specifications. This is a simple matter of modifying the specifica-
tion in declarative interfaces like iCAP and Panoramic. It is much less straightfor-
ward in PBD systems [5], and may require that entirely new sets of demonstrations
be recorded.

Intelligible Context Models. Several papers have established and articu-
lated the need for intelligible models of context [4,6,21]. A few systems have also
explored support for intelligible context. Cheverst et al. [6] supported users with
scrutable decision tree rules and context histories. The PersonisAD [2] frame-
work allowed developers to access supporting evidence for context items. Dey
and Newberger [7] support intelligibility in the Context Toolkit using Situation
components that expose application logic to developers and designers. Panoramic
adds to this body of work by providing an intelligible, scrutable context model
for complex location events. Moreover, Panoramic contributes a context man-
agement system that directly copes with uncertainty using probabilities while
not requiring users to explicitly specify probability thresholds.

9 Conclusion

In this paper we presented the design and evaluation of Panoramic, an end-
user tool for specifying and verifying RFID events. Our design leverages and
extends the Cascadia system and the Scenic tool in significant ways, and is
informed by feedback from a formative study with 12 non-programmers. We also
contributed the design of an interface for verifying complex location events that
was motivated by problems observed in the formative study. We evaluated our
verification interface with 10 non-programmer study participants and found that
in spite of minor difficulties with the interface, all users were able to complete five
representative verification tasks. Overall, we have presented a tool that satisfies
a growing need in a way that is accessible to end-users and which works in spite
of inevitable sensor errors. Moreover, we demonstrated techniques that support
intelligible context for applications that use complex location events.
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Abstract. In this paper we report on a field study comparing a commer-
cial pedestrian navigation system to a tactile navigation system called
Tactile Wayfinder. Similar to previous approaches the Tactile Wayfinder
uses a tactile torso display to present the directions of a route’s way-
points to the user. It advances those approaches by conveying the loca-
tion of the next two waypoints rather than the next one only, so the user
already knows how the route continues when reaching a waypoint. Us-
ing a within-subjects design, fourteen participants navigated along two
routes in a busy city centre with the Tactile Wayfinder and a commer-
cial pedestrian navigation system. We measured the acquisition of spatial
knowledge, the level of attention the participants had to devote to the
navigation task, and the navigation performance. We found that the
Tactile Wayfinder freed the participants’ attention but could not keep
up with the navigation system in terms of navigation performance. No
significant difference was found in the acquisition of spatial knowledge.
Instead, a good general sense of direction was highly correlated with
good spatial knowledge acquisition and a good navigation performance.

Keywords: Tactile Displays, Pedestrian Navigation, Wayfinding,
Tactons.

1 Introduction

With the success of the iPhone and similar platforms the navigation software
known from our cars has become available in our pocket (see Fig.1). Offering
routing modes for pedestrians we can have these applications guide us to un-
known places, turning them into personal navigation devices (PND). The inter-
action with those applications has not changed much: our position is displayed on
an interactive map and the route to the destination is highlighted. Additionally,
we are given route instructions by speech, text, and visual cues.

Pedestrians, however, use these applications in different contexts than car
drivers. No cage of steel is protecting them from environmental interferences,
such as sun, rain, or noise. While walking it is hard to read a visual display and
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Fig. 1. Using a PND for (pedestrian) navigation in an urban environment

pay attention to the environment at the same time. In addition, if e.g. sunlight
reflects from the screen it can become difficult to identify anything. Using speech
and sound can help, but auditory information via speakers can be missed (due
to noise) or be socially inappropriate (if the user does not want to stand out).
Headphones can solve both problems but cut the user off from the only sense that
allows sensing potential threats all around the user, such as a car approaching
from behind. Thus, audio-visual displays can be unsuited in many situations
that pedestrians typically face when navigating.

Utilizing the sense of touch for navigation as a solution has been proposed
by several groups [24,28,27,10]. These groups used tactile displays to convey the
direction of the next waypoint or the destination. It has been shown that such
systems can decrease the cognitive workload [6], and support the interpretation
of geographic maps [22,18]. However, it has yet to be shown that tactile waypoint
navigation can outperform traditional PNDs.

In this paper we report from a field study comparing this tactile waypoint
navigation concept to a commercial PND. While we confirmed that waypoint
navigation with tactile displays can free the users’ attention, the navigation
performance was worse compared to the PND. Beyond the navigation system
we found that the user’s sense of direction was a major factor for the navigation
performance. We argue that therefore good navigation systems should support
the sense of direction.

2 Related Work

Presenting route instructions on mobile devices has received a lot of attention
in the community already. Kray et al. [13] discussed means for providing route
instructions on mobile devices, including 2D and 3D maps. In a pilot study they
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found that females prefer 3D maps, while males prefer 2D maps, which could,
however, be attributed to the fact that the male participants had a higher level
of experience with 2D maps. Ishikawa et al. [11] investigated the wayfinding be-
haviour depending what method was used to learn the route. They compared
PNDs, paper maps, and learning the route by self-experience, i.e. being guided
along it. PNDs performed significantly worse in terms of spatial knowledge ac-
quisition, navigation performance, and subjective difficulty rating.

While recent PNDs present distances to inform the user’s about the location
of waypoints (e.g. enter round-about in 200m), humans tend to use landmarks
instead [17]. Photos of landmarks combined with route instructions outperforms
paper maps and reduces the mental workload [7]. Still this approach requires
interacting with a tiny display. Rukzio et al. [21] therefore proposed presenting
route instructions on public displays instead of the mobile device. The public
display is used to point into the direction the pedestrian has to proceed. In a
follow-up study [20] they could show that such public navigation displays can
reduce the mental workload and the frustration level.

In order to overcome the problems with auditory and visual display Tan and
Pentland [23] proposed the use of tactile display for navigation. Bosman et al. [2]
showed that providing turning directions by two vibrotactile actuators worn at
the wrists outperformed follwing signposts in an indoor navigation task. Tsukada
et al. [24] proposed a tactile torso display called ActiveBelt for - amongst other
things - waypoint navigation. The display consists of an array of vibrotactile
actuators attached to a belt. When it is worn around the waist, the actuators get
equally distributed around the torso. The vibrotactile signals produced around
the torso can intuitively be interpreted as horizontal directions [25]. Field studies
[28,27] showed the feasibility of such tactile belts for waypoint navigation. It
could also be shown that the tactile modality reduces the overall cognitive load
and improves situation awareness compared to visual user interfaces [6,22].

It has yet to be shown that tactile displays can overcome the issues of audio-
visual interfaces regarding pedestrian navigation systems in urban environments.
Existing studies either lack a baseline [24,28,27], compare tactile waypoint nav-
igation with other aids than route-instructions [2,22], or were conducted in non-
urban environments [6].

3 Limitations of Today’s Navigation Systems for
Pedestrian Navigation

Navigation systems for pedestrians still employ the same visual interaction
metaphor as car navigation systems. Figure 2 shows an example of a commercial
navigation application with a pedestrian mode. The user’s position is shown on
a street map. The route to the destination is highlighted. The map is aligned
so the forward direction of the user’s movement corresponds to ”up” in the
display. Speech output is used to announce the distance to the waypoint and
the proposed turning direction in regular intervals. To overcome the positioning
technologies’ inherent inaccuracy, the user’s position is approximated by a tech-
nique called map matching. Assuming that cars typically will not leave the road
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the technique maps the GPS position onto the nearest street, in cases where the
satellite signal is inaccurate. While these systems are quite successful in cars,
recent user studies have highlighted limitations that arise due to the situational
context of pedestrians.

Fig. 2. CoPilot for iPhone as
an example for a pedestrian
navigation system (http://
www.alk.com/copilot/ with
courtesy of ALK Technologies)

Spatial Knowledge Acquisition. Good navigation
systems not only guide user to a destination,
but also support them in understanding the
environment, so they ultimately become able
to reach the destination on their own. Under-
standing the environment also allows identify-
ing alternative routes, e.g. shortcuts or along
places worth seeing. This is only possible if users
can acquire spatial knowledge about the envi-
ronment when using a PND. Providing route
instructions has, however, been shown to dis-
engage the users from the environment [15] and
make it difficult to understand the spatial layout
of the environment [1,11].

Workload and Attention. According to theories
and models about human cognition, such as the
Multiple Resource Theory [30] or the Prenav
model [26], the capacity of cognitive processing
is a limiting factor when interacting with mobile
devices. If a sense is already under high work-
load, it becomes difficult to process additional
information through that sense. When walking
through e.g. a crowded city centre the visual and
auditory senses can be heavily occupied. There-
fore, navigation information conveyed through
visual and auditory displays might not be pro-
cessed by the user. Studies with paper maps in-
dicate that people can get very distracted by their navigation aid when navigat-
ing in unfamiliar environments [18]. Consequently, the users focus less attention
on the environment. This is especially dangerous when passing through places
with a high level of traffic, for example busy streets or crowded pedestrian zones.

Navigation Performance. Providing directions by navigation systems is usually
quite effective in guiding travellers to their destinations. In particular, previous
research indicates that people lose their orientation frequently when navigating
in unfamiliar environments [11,18]. Recent studies suggest that people prefer
paper maps over PNDs and navigate more efficiently with them [11,20]. Also,
interacting with a mobile device is known to reduce the average walking speed
[12], in general. Thus, navigating with a PND still offers room for improving the
navigation performance.
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4 Design of the Tactile Wayfinder

In this section we address the limitations of PNDs by advancing the concept of
waypoint navigation with a tactile torso display. The basic idea is to convey the
direction of the waypoint in relation with the user’s heading. Previous groups
have shown that this concept can effectively be used for waypoint navigation.
[28,27,6,10]. In this work we employed this concept in a prototype called Tactile
Wayfinder.

While being known that tactile waypoint navigation can reduce the cognitive
workload, it conveys less spatial information than PNDs. Instead of showing
a map that the user can use to learn how the route continues up ahead, the
previously employed concept of tactile waypoint navigation just provides the
location of the next waypoint. This reduced amount of spatial information might
render it difficult to efficiently acquire spatial knowledge about the route. Thus,
we investigated to enrich the spatial knowledge about the route presented by
the tactile display. Our idea was to not only display the next waypoint, but
the location of the subsequent waypoint as well. The subsequent waypoint then
serves as a look-ahead, giving the user a cue about how the route will continue
once the next waypoint has been reached (see Fig. 3). However, to realise this
concept, we had to design a way of presenting the locations of the next waypoint
and the look-ahead waypoint through different tactile cues.

Fig. 3. Route visualisation through a tactile look-ahead: in alternating order the cur-
rent waypoint and the subsequent waypoint are displayed. The user can anticipate how
the route will continue beyond the current waypoint.

4.1 Tactons for Designing Tactile Cues

By introducing the notion of tactile icons (Tactons) Brewster and Brown [3] of-
fered a concept to systematically design tactile cues. Tactons are abstract mes-
sages that can encode multidimensional information. In the case of the Tactile
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Wayfinder we aimed at creating two two-dimensional Tactons where one infor-
mation dimension encodes the direction of the waypoint and the other informa-
tion dimension encodes the waypoint’s type (next or look-ahead).

Six different tactile parameters can be used to encode information dimensions:
amplitude, frequency, duration, waveform, rhythm, and body location. These
parameters can then be combined to compose multidimensional messages where
each parameter is mapped to one information dimension, e.g. the body location
encodes the direction and rhythm encodes the type. Tactons composed of two
or three different parameters can be encoded with a fairly high recognition rate
of 70%, 81% [4,5]. However, in these studies the parameter space was limited to
three levels of body location and rhythm, and two levels of waveform.

Which parameters can be used for Tacton design depends on the tactile ac-
tuators. For our work, we used a tactile belt with 12 vibration motors using
off-centred weights to generate vibrotactile stimulations (see Fig. 4). These ac-
tuators are sewn into flexible fabrics, distributing themselves equally around the
torso when worn. In order to indicate the location of a waypoint, the actua-
tor which points most accurately into the waypoint’s direction is activated. A
built-in compass allows displaying absolute positions (e.g. North) independent
from the user’s orientation. Due to the off-centred weights the parameter space
is limited. Changing the stimulus waveform is not possible with such actuators.
Frequency and amplitude cannot be altered independently from each other, as
they both depend on the applied voltage level, i.e. how fast the motor rotates.
In the this paper we refer to this combined parameter as intensity. This leaves
us with four parameters for designing waypoint Tactons: intensity, duration,
rhythm, and body location.

Fig. 4. The tactile belt we used for the Tactile Wayfinder

4.2 Design of the Waypoint Tactons

For presenting several waypoints to the user we needed to encode the waypoints
direction and make them identifiable by encoding some form of waypoint type.
Thus, we decided not to display distances in favour of a simpler Tacton design,
since Veen et al. [28] have shown displaying the distance to a waypoint does not
affect navigation performance.
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As mapping body location to directions has shown to be intuitive and easy to
understand [19,25] we incurred this concept. However, as we aimed at presenting
two waypoints, we had to decide whether to present them simultaneously or
successively. While presenting directions simultaneously has successfully been
used [16] we decided against it, as distinguishing more than one waypoint in the
same direction would not be possible. Instead, we chose to present the waypoints
alternately.

Rhythm was used as parameter for encoding the waypoint type (next or look-
ahead) since the study by Veen et al. [28] showed that different rhythms can
be distinguished well when walking. In a set of informal tests we tested several
rhythm patterns outdoors to ensure that the patterns could be easily identified
when walking. The rhythm pattern that were finally used to encode the waypoint
type are illustrated in Figure 5. The next waypoint is encoded by a heartbeat-
like pulse which is repeated five times. The look-ahead waypoint is presented
with a single pulse. Both Tactons are repeatedly presented with a duration of
approximately four seconds per cycle.

Fig. 5. The used Tactons: the heartbeat-like pulse (left) indicated the direction of the
next waypoint. A single pulse (right) is used for the look-ahead waypoint.

4.3 Tactile Wayfinder Implementation

The tactile route visualisation with the waypoint look-ahead was integrated into
the Tactile Wayfinder prototype. It was implemented using the open source
Companion Platform for rapid mobile application prototyping [29]. As hardware
platform we used a HTC Windows Mobile PDA. The belt was connected to the
PDA via Bluetooth. A G-Rays 2 GPS receiver was used for obtaining the user’s
geo location. It was connected via Bluetooth as well.

5 Evaluation Method

To investigate if the concept of tactile waypoint navigation can overcome chal-
lenges of commercial PNDs we conducted an experimental field study. Partic-
ipants had to use the Tactile Wayfinder and a commercial PND to reach a
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destination in an urban environment (see Figure 6). The study took place on
three consecutive Saturdays in May 2009. It took place in the city centre of Old-
enburg. With its narrow, winding alleys the layout is rather complex and even
residents sometimes have their problems in orienting themselves. Saturdays were
chosen, as the city centre is most crowded on weekends. A complex layout and
a crowded environment were suspected to increase the general cognitive load. In
particular we investigated the effect of the navigation systems on the acquisition
of spatial knowledge, the attention and cognitive workload, and the navigation
performance. Our hypotheses were that:

– (H1) The Tactile Wayfinder will allow a better understanding of the envi-
ronment in terms of landmark and survey knowledge than the PND,

– (H2) Users navigating with the Tactile Wayfinder will pay more attention
to their environment compared to the PND, and

– (H3) The navigation performance of the Tactile Wayfinder will at least not
be worse compared to the PND.

Fig. 6. A participant familiarises himself with the Tactile Wayfinder

5.1 Material

Two routes were created for the field study. Each route was about 800m long
and contained six decision points. Both routes did not represent the shortest
path to the destination and included awkward detours. Thus, good knowledge
about the city centre was not privileged as the participants could not anticipate
how the route would proceed beyond what the navigation system showed.

As PND, we chose TomTom1 since it belongs to the state-of-the-art of pedes-
trian navigation systems. In a pilot test we investigated how to configure the
PND most optimal. We found that map matching worked well in most cases.
1 http://www.tomtom.com/

http://www.tomtom.com/
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Sound was however turned off, as the pilot testers found it embarrassing and
too hard to perceive. We configured TomTom to make use of the same type of
bluetooth GPS receiver that the Tactile Wayfinder used. This ensured that the
quality of the user position information was similar for both navigation systems.

5.2 Participants

Fourteen participants, seven female and seven male, took part in the study. The
age ranged from 20 to 30 with a mean age of 25.33 (SD 4.51). In average, they
rated their familiarity with the city centre to be slightly above average (2.71, SD
1.38 on a scale from 1=very good to 5=very bad). We also assessed their sense
of direction through the SBSOD questionnaire by Hegarty et al. [9]. In average,
our participants showed a neutral sense of direction (50.57, SD 17.62). However,
there was a wide variability in the SBSOD scores. All participants signed an
informed consent prior to the study. They were not paid for their participation.

5.3 Design

The navigation system served as independent variable. The Tactile Wayfinder
represented the experimental condition while TomTom was used as control condi-
tion. The study used a within-subjects design. Thus, all participants contributed
to both conditions. The order of conditions was counter-balanced to avoid se-
quence effects. The following dependent measures were taken in order to evaluate
the acquisition of spatial knowledge, workload & attention, and the navigation
performance:

Spatial Knowledge Acquisiton. The acquisition of spatial knowledge was mea-
sured by two tests that have been reported by Aslan et al. [1]. While the photo
recall test is more focussed on landmark knowledge the route drawing test ex-
amines the survey knowledge. The photo recall test requires participant to recall
how they turned at different decision points along route. These decision points
are presented on photos and participants have to mark if they turned left, right,
or went straight (if applicable). The score is taken by summarising the number
of wrong answers. In the route drawing test the participants had to reproduce
the route they just walked on a sheet of paper. As a reference, the sheet showed
the starting point, the destination, and the outer bounds of the city centre. To
determine the score for this test, we measured how accurate in terms of cen-
timetres the waypoints of the route were drawn compared to a map of the city
centre.

Workload and Attention. The level of attention was measured by assessing the
subjective workload and counting how often the participants experienced near-
accidents. Near-accidents were defined as situations where a participant nearly
collided with another person or an obstacle. The participant had to be closer
than 1 metre and perform a visible evasive manoeuvre. The subjective workload
was assessed through self-report using the Nasa Task Load Index (TLX) [8].
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Navigation Performance. The performance of the navigation task was measured
in terms of completion time, disorientation time, and number of navigation er-
rors. Disorientation events were counted when a participant explicitly mentioned
to have lost orientation or when the participant stood still for more than 10 sec-
onds. The event was considered ongoing until the participant continued to walk
into the correct direction. Navigation errors were counted when the participants
entered a street they were not supposed to. The completion time was the time
it took the user to reach the destination.

5.4 Procedure

For each session the experimenters and the participants met near the starting
point of the first route at a well known place. Before starting the actual eval-
uation, the participants had to fill out a questionnaire providing demographic
information, judging their familiarity with the city centre, and answering the
SBSOD items. The participants also learned that they had to complete spatial
knowledge tests so they should pay attention to the route. The experimenters
then explained the Tactile Wayfinder to the users and demonstrated the use of
TomTom. The participants tested both devices before the measurements started.
In alternating order, one of the navigation systems was then chosen for the first
route. During the navigation task, the participants were asked to hold the GPS
receiver in their hands during the evaluation. This was done to avoid the GPS
signal being further distracted by being inside a pocket close to the body. Two ex-
perimenters followed the participants in some distance and noted near-accidents,
navigation errors, and the number and length of disorientation events. When the
participants arrived at the end of the first route they were asked to perform the
two spatial knowledge tests (photo recall and route drawing) and rate the sub-
jective workload. Then, the navigation system was changed and the participants
started with the second route. Arriving at the second route’s destination, the
participants performed the spatial knowledge tests and filled out the Nasa TLX
again.

6 Results

Spatial Knowledge. The score for the photo recall test was calculated by counting
the number of wrong turning directions in the participants’ responses. If the
participants did not remember how they turned at an intersection shown on a
photo we counted an error as well. If participants approached the decision point
from an unexpected direction due to a previous navigation error, we compared
the participants’ answers to how they actually had turned. The results of the
photo decision point recall test are shown in Figure 7. In average, TomTom users
made 0.79 errors per route while Tactile Wayfinder users made 0.64 errors per
route. There was no significant difference (p = .34).

Figure 8 shows one of the route drawings of the participants. The quality of
these reproduced routes was quantified by comparing it with the actual route. We
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Fig. 7. The results of the spatial knowledge tests. The average errors in the photo
recall test are shown on the left. The error score in cm from the participants’ route
drawing are shown on the right. In both tests there were no significant differences.

Fig. 8. One of the routes drawn by a participant after the evaluation. How accurate the
participants could reproduce the routes were used to compare the spatial knowledge
between the two conditions.

therefore scanned the drawings, printed them on transparent material, and put in
on a map with the same scale. The distance in cm between each drawn waypoint
and its correct counterpart served as error score. Figure 7 shows the average
drawing error for both conditions. It was 8.02cm for TomTom and 9.25cm for
the Tactile Wayfinder users 9.25cm. There was no significant difference (p = .27).

The participants’ scores in the spatial knowledge tests had a small/medium
correlation with the sense of direction SBSOD score (r = −.21 and r = −.30).
This means that participants with a good sense of direction also had higher
scores in both spatial knowledge tests.

Workload and Attention. Workload and attention were measured by self-report
through the NasaTLX score and the number of near-accidents. Figure 9 shows
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the average scores for both measures. As suggested in [8] we asked the partic-
ipants to rate importance of each NasaTLX item for the navigation task. All
possible pairs of items were presented and the participants had to choose the
more important one. Mental demand and frustration were rated most impor-
tant. Physical and temporal demands were rated least important. In average,
TomTom users rated the workload with 2.78 and Tactile Wayfinder with 2.65.
A higher score indicates a higher workload and seven was the highest score pos-
sible. There was no significant difference (p = .40). Figure 9 shows the number of
near accidents. In average, TomTom users experienced 0.79 near-accidents/route
while Tactile Wayfinder users had 0.14 near-accidents/route. Thus, significantly
less near-accidents occurred with the Tactile Wayfinder (p < .01).

Fig. 9. Subjective workload rated by a Nasa TLX questionnaire (left). Number of near
accidents (right).

There was also a noteworthy correlation between the sense of direction and
the number of near-accidents. The seven participants with the lowest SBSOD
score had 1.43 near accidents while those seven with the highest SBSOD only ex-
perienced 0.14 near accidents. Comparing the results of those groups statistically
revealed a significant difference (p < .001).

Navigation Performance. The navigation performance was measured by the
completion time, the number of navigation errors, and the time the participants
were disoriented. Figure 10 shows the average results for both conditions. The
average completion time was 763s/route with TomTom and 840s/route with the
Tactile Wayfinder. There was no significant difference (p = .09). The number
of navigation errors was 0.29/route for TomTom and 0.79/route for the Tac-
tile Wayfinder. Participants with the Tactile Wayfinder made significantly more
navigation errors (p < .05). The loss of orientation was measured in terms of
how often and how long participants were disoriented. However, since both re-
sults are highly correlated (r = .78) we only report the disorientation time. The
average disorientation time was 23.71s/route for TomTom and 36.00s/route for
the Tactile Wayfinder. There was no significant effect (p = .22).

Completion time and loss of orientation count were highly correlated (r = .77).
Thus, participants who often lost orientation were very likely to need more time
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Fig. 10. The average performance measures for both conditions: completion time in
seconds (left), navigation error count (right), disorientation time in seconds (bottom)

to complete the route. The number of navigation errors and the waypoint posi-
tion errors while re-drawing the route were highly correlated (r = .73). Therefore,
participants who made many navigation errors were also more likely to draw the
walked route more inaccurately.

Gender Differences. In the experimental condition there were significant differ-
ences in the navigation performance between the genders. In average, female
participants took longer to complete the routes (p < .01), made more navigation
errors (p < .05), and lost their orientation more often (p < .05), as shown in
table 1. However, this could only be observed with the Tactile Wayfinder. The
navigation performance in the control condition was not significantly different.

Comments and Observations. Regarding TomTom the participants mainly con-
centrated on the route and their position shown on the map to navigate. To
our surprise, none of the participants seemed to follow the turning instructions.
This was a good idea since GPS was sometimes considerably inaccurate. It even

Table 1. The navigation performance with the Tactile Wayfinder split by gender

Completion Navigation Disorientation
Time (s) Errors Count

Female 925 2.43 3.29
Male 754.29 0.71 1.29
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occurred that TomTom’s map matching algorithm located people in the wrong
street. Since the tactile belt employed a compass while TomTom depended on
the GPS positioning update, there was a notable delay in updating the route.
This turned into a problem for some of the participants as they turned into a
new street but it took TomTom a few seconds to reflect that new situation. So,
beyond each turning point there was a short period of ”blind navigation”.

Most errors with the tactile belt occurred at a y-formed junction of the sec-
ond route where two paths continued almost in parallel direction. The tactile
direction cueing combined with GPS inaccuracies was sometimes to coarse for
the participants to clearly decide for one of the path. In some cases this caused
the participants to choose the wrong path. This did not cause too much delay,
since there was a connection between the two paths later on.

Regarding the subjective workload, the participants had divergent opinions:
one half expressed that they found it exhausting to focus on the tactile cues. The
other half stated that they could pay more attention to the environment. Many
participants missed a map to get an overview about their environment. Some
felt to be ”bossed around” by the Tactile Wayfinder. Participants complained
quite often that wearing the belt was uncomfortable due to the constant tactile
feedback. Some suggested a tactile volume control or a pause function in order
to be able to reduce the amount of feedback.

7 Discussion

In summary, both navigation aids enabled the participants to reach the given
destinations. No difference in the participants’ spatial knowledge acquisition
could be found between the Tactile Wayfinder and TomTom. Using the Tac-
tile Wayfinder the participants experienced fewer near-accidents but made more
navigation errors. Having a better sense of direction correlated with fewer near-
accidents and better spatial knowledge acquisition. Male participants had a bet-
ter navigation performance with the Tactile Wayfinder than female participants.

Hypothesis H1 (the Tactile Wayfinder will allow a better understanding of
the environment in terms of landmark and survey knowledge than the PND)
could not be confirmed. Both spatial knowledge tests were insignificant. Thus,
the tactile visualisation of the two upcoming waypoints could not improve the
spatial knowledge acquisition compared to the PND. Instead, having a good
sense of direction went along with better spatial knowledge scores. The sense of
direction might therefore play a more important role in understanding the spatial
layout of an environment than the actual navigation aid. Therefore, navigation
aid designers should consider how to improve the general sense of direction along
with the navigation instructions.

Hypothesis H2 (users navigating with the Tactile Wayfinder will pay more
attention to their environment compared to the PND) could be confirmed. The
Tactile Wayfinder allowed participants to spend significantly more attention to
the environment so they were less likely to (nearly) collide with other people
or obstacles. These findings confirm the predictions by Wickens’ Multiple Re-
source Theory [31] or van Erp’s Prenav model [26] that conveying information
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via different senses reduces the overall cognitive workload. They also go conform
with the results of Duistermaat et al. [6]. The subjective workload did however
not decrease significantly. One explanation could be that the participants had to
focus on the tactile output every now and then as there was no other source of
directions. This goes along with the complaint that some participants felt to be
”bossed around” by the Tactile Wayfinder. This could be countered by giving
the participants a better overview of their situation, e.g. by combining tactile
feedback with maps, as proposed in [22,18]. There was also a high correlation
between a good sense of direction and few near-accidents. Thus, participants
with a bad sense of direction paid less attention to the environment. It therefore
seems important to specifically consider the group of users with a bad sense of
direction in navigation system design.

Hypothesis H3 (navigation performance of the Tactile Wayfinder will at least
not be worse compared to the PND) was refuted. The participants made signif-
icantly more navigation errors with the Tactile Wayfinder. The high correlation
between completion time and disorientation events suggest that the participants
lost most of their time when they were disoriented. On the other hand, this
suggests that both navigation systems performed similar when the participants
were well oriented.

The results also indicate that female participants had more problems nav-
igating with the Tactile Wayfinder. Since the experimenter cannot assign the
gender to the participants, gender-related results have to be analysed carefully.
A simple explanation might be that the male participants were more tech-savvy
in average. Another more interesting explanation can be found in the use of
different wayfinding strategies reported in the literature. According to Lawton
[14] women prefer a wayfinding strategy based on route-knowledge (e.g. at the
shop turn left) while men prefer a survey-knowledge strategy (e.g. keep track of
the own position on a map). Assuming our participants applied the respective
wayfinding strategies, tactile waypoint navigation might not be compatible with
route-knowledge-based strategies.

8 Conclusions

In this paper we investigated an approach to overcome existing limitations in
commercial pedestrian navigation systems by advancing the concept of tactile
waypoint navigation. To improve the spatial knowledge acquisition we conveyed
two instead of a single waypoint at the same time. In a field study conducted
in an urban environment, a commercial PND was compared with our Tactile
Wayfinder in a navigation task. We could replicate previous findings that tactile
information presentation can reduce cognitive load. On the other hand, the Tac-
tile Wayfinder was outperformed by the commercial navigation system in terms
of navigation errors.

The users’ sense of direction turned out to be closely related to most of our
results. A better sense of direction correlated with better spatial knowledge
acquisition and a positive effect on the users’ cognitive workload. In addition, a
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better completion time was highly correlated with less disorientation events. The
results also let us suggest that wayfinding based on survey knowledge (keeping
track of the own location in related to reference points) is correlated to a more
successful navigation performance. Thus, being well oriented is important for
spatial knowledge acquisition, cognitive workload, and navigation performance.
Hence, future navigation systems should be designed to support the users’ sense
of orientation.

In summary trying to replace the traditional audio-visual interaction by tactile
cues might not be the best idea. Instead we should look at how to combine the
advantages of the tactile display’s reduced required attention and the audio-
visual systems’ superior navigation performance. One fruitful approach therefore
seems to be complementing those interactions, as e.g. proposed by [22,18].
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Abstract. This paper presents Jog Falls, an end to end system to manage diabe-
tes that blends activity and energy expenditure monitoring, diet-logging, and 
analysis of health data for patients and physicians.  It describes the architectural 
details, sensing modalities, user interface and the physician’s backend portal.  
We show that the body wearable sensors accurately estimate the energy expen-
diture across a varied set of active and sedentary states through the fusion of 
heart rate and accelerometer data.  The GUI ensures continuous engagement 
with the patient by showing the activity goals, current and past activity states 
and dietary records along with its nutritional values.  The system also provides 
a comprehensive and unbiased view of the patient’s activity and food intake 
trends to the physician, hence increasing his/her effectiveness in coaching the 
patient. We conducted a user study using Jog Falls at Manipal University, a 
leading medical school in India. The study involved 15 participants, who used 
the system for 63 days. The results indicate a strong positive correlation be-
tween weight reduction and hours of use of the system. 

Keywords: Personal Health Monitoring, Diabetes Management, Energy Ex-
penditure Analysis, Activity monitoring. 

1   Introduction 

Metabolic syndrome is emerging as a major public health issue across the world. It is 
a group of symptoms (e.g. central obesity, high blood pressure, insulin resistance) that 
increase the risk of heart disease, type-2 diabetes and stroke.  Healthy life style char-
acterized by increased physical activity and moderation of eating habits plays a key 
role in reducing these risk factors and slowing down the progression of type-2 diabe-
tes or possibly even reversing it. 

To empower patients to better manage their disease, we envision a system that al-
lows them to continuously monitor their physical activity and food intake, set goals 
and monitor progress towards these goals, allow them to reflect on their trends over 
an extended period of time and draw some actionable conclusions.  Since physicians 
play an important role in coaching the patients, this system should be an effective tool 



 Jog Falls: A Pervasive Healthcare Platform for Diabetes Management 95 

 

in enabling physicians to be better coaches.  Specifically we envision a backend portal 
giving physicians comprehensive and unbiased visibility into the patients’ life styles 
with respect to activity and food intake, as well as enabling them to track their pro-
gress towards agreed upon goals.  To accomplish this vision, we worked closely with 
physicians to design a system for diabetes management which we call Jog Falls. 

In this paper we describe our Jog Falls system, its high level architecture and  
detailed design, highlighting the novel contributions in the different tiers of this archi-
tecture. Jog Falls is an integrated system for diabetes management providing the pa-
tients with continuous awareness of their diet and exercise, automatic capture of 
physical activity and energy expenditure, simple interface for food logging, ability to 
set and monitor goals and reflect on longer term trends. Its backend interface enables 
the physician to view the progress and compliance of the patients, hence facilitating 
personalized coaching. Finally its novel method for fusing Heart Rate (HR) and ac-
celerometer data improves the accuracy of energy expenditure estimation, a key fea-
ture in enabling weight loss. We conducted a user study using Jog Falls at a leading 
medical school in India. India is on the verge of being the diabetes capital of the 
world [1], which calls for a comprehensive study in the Indian context. The study 
involved 15 participants, who used the system for a period of 63 days. We report the 
results of the study and discuss the effectiveness of this system in helping patients 
manage their lifestyles.  Specifically the results indicate a strong positive correlation 
between weight reduction and hours of use of the system.  

The rest of the paper is organized as follows.  We first present an overview of re-
lated work in section 2.  We then describe the system design and implementation in 
section 3 and follow up with the details of our user study and the key learnings in 
section 4.   We conclude with section 5.  

2   Related Work 

Currently available solutions for diabetes management are discrete and disconnected. 
Activity and calorie expenditure monitoring devices such as pedometers quantify 
activity in terms of “number of steps” walked or calories expended. They use either 
spring based mechanical sensors [2], piezoelectrics [3] or accelerometers [4], [5] for 
activity monitoring. These devices are comparatively inexpensive and provide a rea-
sonable solution for quantifying limited states like walking and running. However, 
they are not suitable for comprehensive activity tracking and are also susceptible to 
vibration errors.  BodyBugg [6] uses additional sensors like heat flux, skin conductiv-
ity and temperature along with an accelerometer to improve the accuracy of calorie 
estimation. Several studies have positively evaluated the validity of BodyBugg in 
laboratory conditions [6]. The device is harnessed using an armband, which makes it a 
user friendly solution for long term monitoring. However, the lack of a user friendly 
way to track and set calorie goals is a major drawback of this system. Polar [7] uses 
Heart Rate (HR) to quantify activity in terms of calories, and is ideal for sports and 
fitness training applications. However, it is not designed for tracking continuous  
energy expenditure over extended time and doesn’t compensate for psychological 
factors that affect HR in sedentary conditions. Moreover, this device uses a generic 
calibration curve (HR vs MET value) for all users, which reduces its accuracy.  
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UbiFit [8] is a system developed to encourage individuals to self-monitor their 
physical activity and incorporate regular and varied activity into everyday life. The 
system components like glanceable display, interactive application, and a fitness de-
vice [9] provides valuable features like instant feedback on goals, long term log and 
journaling of activities and automated inference of several day to day activities. How-
ever, the system does not estimate calories burned while performing different activi-
ties. Other solutions like Houston [10], SHAKRA [11] and Fish’n’Steps [12] also 
suffer from the same limitation. Houston and Fish’n’Steps use pedometers to track 
step counts while SHAKRA uses cell phone signal strength variation patterns to track 
user activity. In Houston and SHAKRA, users can view real-time and historical step 
count/activity on the phone and also share this information with a group of friends. In 
Fish’n’Steps, user activity is presented as a game designed to encourage behavior 
change via social co-operation and competition. 

For dietary tracking, a major gap in today’s systems is keeping track of calories 
consumed in real-time. Websites like Nutrition Vista [13], Body Media [14], and 
FitDay [15] provide calorie intake estimates when the user enters the diet consumed, 
making them susceptible to recollection errors and hindering real-time self awareness. 
Myfoodphone [16] tracks food intake using photographs of the food captured by the 
users, thereby creating a photo-journal. The photos are sent using GSM/GPRS to a 
dietician, who assigns a goodness score based on preset targets. It also incorporates 
social facilitation, enabling the user to see progress of others. This system lacks real-
time, automated feedback and requires regular intervention from the nutritionist. An 
iPhone app from Weight Watchers [18] features a large menu of food options, a point 
calculator that gives a score to users based on diet, and recipes that can be used to 
meet the point targets of the users. 

MAHI [17] is a solution to help newly diagnosed diabetics develop reflective 
thinking skills through social interaction with diabetes educators. It supports capture 
of interesting events that “disrupt regular activities” as opposed to capturing prede-
fined activities like meals and exercise. While MAHI provides the user the flexibility 
to log experiences using voice notes and photographs as well as consult with diabetes 
educators, it does not support real-time activity and calorie expenditure/intake  
monitoring.   

It is clear that there is no solution that encompasses all the above elements in an in-
tegrated, simple and usable manner. Other features not readily available include ena-
bling physicians to set goals remotely, regularly monitoring the patient’s condition, 
his/her adherence to food and activity goals, and coaching and motivating the patient 
to modify his/her lifestyle on a continuous basis. We tried to address these gaps by 
providing an integrated, usable and comprehensive framework that encompasses and 
manages all the above elements of diabetes management. 

3   System Design and Implementation 

We defined the requirements of our Jog Falls system by working closely with physi-
cians.  The main goal of the system is to empower patients to manage their life style 
with respect to diet and exercise hence lowering their risk factors for metabolic  
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syndrome, and enable physicians to be more effective in helping their patients reach 
their goals.  To accomplish these objectives, the following requirements were defined: 

• The system needs to enable patients to monitor their diet and exercise and give 
them continuous awareness of caloric intake and expenditure.  Since a change in 
behavior is required, patients need to first understand how different activities and 
diet choices impact their calorie expenditure and intake, and how these two factors 
can be balanced to achieve their final goal.  

• The system should enable the physician to help the patients set and reach these 
goals. To be effective, the physician needs a comprehensive and objective visibility 
into the patients’ diet and exercise, instead of relying on their recollection, which 
may be incomplete, inaccurate or both. The physician needs access to this data on 
weekly basis without any user intervention. 

• The system needs to continuously log physical activity along with accurate (within 
80%) translation to energy expenditure.  Due to the comprehensive nature of activ-
ity logging (all daily activities), this logging needs to be automated. 

• Since food intake is intermittent, it is acceptable to have the users manually enter 
what they consume, but the system needs to calculate the resulting calories based 
on food choices.  The food options need to be customized to Indian diet. 

• The system needs to be available for at least 15 hours per day (to cover the “wak-
ing hours”) and should only require charging once per day (overnight) 

• The system should enable goal setting for energy expenditure and food intake as 
wells as track and inform the user of the progress. Real-time positive feedback as 
well as intervention when not meeting the goals are necessary.  

On-body
sensing
(Tier-1)

User Interface 
(Tier-2)

Server

Doctor’s
Interface 
(Tier-3)

 

Fig. 1. Jog Falls is a three tier system for diabetes and metabolic syndrome management 

3.1   System Overview 

To satisfy the requirements of this application, we designed Jog Falls, an end to end 
solution for management of diabetes, pre-diabetes and metabolic syndrome. Jog Falls 
has a 3 tier architecture as shown in Fig. 1. The first tier consists of the sensor devices 
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responsible for collecting the physiological and activity data, and as a result need to 
be continuously worn on the body.  The second tier consists of a smart phone, which 
is responsible for communicating with the sensors via bluetooth, aggregating and 
storing the sensor data, calculating the energy expenditure and intake, providing the 
user interface for logging, alarming and data review, and communicating with the 
third tier through GPRS. GPRS was chosen due to its availability and the relative lack 
of broadband or landlines in India.  The third tier consists of a backend server that is 
responsible for aggregating and storing the data from all users, and providing the user 
interface for the physician.  

3.2   Tier 1: Sensing Components 

To provide accurate estimation of Energy Expenditure (EE) i.e calories burned, we 
chose to fuse accelerometer and heart rate data.  Heart Rate (HR) can be used to 
measure EE, since EE is fairly linearly proportional to sub-maximal Heart Rate (HR). 
However, HR can be influenced by psychological & emotional factors, drugs and 
caffeine which will result in inaccurate EE estimation.  Accelerometer based sensors 
are used to estimate the current physical activity [19] which can be mapped to energy 
expenditure, and are not affected by emotions or drugs.  However, they can only rec-
ognize a limited set of activities that they were trained for, and are not able to accu-
rately estimate effort.  For example, it won’t be able to distinguish between walking 
and walking with a heavy backpack . Previous studies show that combining acceler-
ometer data from chest and hip provides better estimation of physical activity in com-
parison to using single accelerometer [20]. Jog Falls uses two body-wearable sensors 
(HR-SHIMMER and MSP) for continuous monitoring of a user’s activity throughout 
the day. A data fusion algorithm uses Heart Rate (HR) and accelerometer data to 
improve the EE accuracy by addressing the limitations of these individual modalities. 
Apart from these sensors, off-the-shelf sensors were used to keep track of user’s 
blood pressure (twice a day) and weight (once a week). 

3.2.1   Mobile Sensing Platform 
The Mobile Sensing Platform (MSP) [22], shown in Fig. 2 (c), is a battery operated 
device equipped with multiple sensors like, 3D accelerometer, light, barometer, hu-
midity, microphone and temperature. The platform supports many applications, like 
inertial navigation, and user activity inference and can be worn on the waist. We de-
veloped a hierarchical adaptive boosting classifier that uses the accelerometer data to 
discern states like sitting, standing, laying, strolling, brisk walking and running. The 
hierarchy allowed us to make better use of the feature space in accurately estimating 
both sedentary and active states. The classified decision vector containing the most 
probable user activity and speed of the user is sent to the aggregator every 5 seconds 
to facilitate further processing. The inferred activity is also used directly by the ag-
gregator for real time user feedback and trend analysis. Since these users were ex-
pected to be sedentary quite often, further classification within the sedentary states 
was important to accurately estimate total energy expenditure. 
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Fig. 2. Sensors for monitoring heart rate (a,b) and physical activity monitoring (c) 

3.2.2   HR-SHIMMER 
HR-SHIMMER, shown in Fig. 2 (b) is a battery operated device, which can be worn 
on the chest by means of a conductive fabric chest belt (Fig. 2 (a)), and is used to 
estimate the intensity of activity and Energy Expenditure (EE). This device, based on 
the SHIMMER platform [23], has an ECG front-end to measure Heart Rate (HR), a 3-
axis accelerometer to measure upper body movements, a microcontroller and a Blue-
tooth interface. Some of its key features are: 

• Quantification of upper body movement: Energy spent in low intensity sedentary 
activities (e.g. working on PC, bending, desk work, cooking, ironing) forms a  
major part of the Total Daily Energy Expenditure (TDEE), making accurate EE  
estimation of such activities quite important. To address this requirement, HR-
SHIMMER quantifies the intensity of upper body movements using its internal ac-
celerometer. The frequency and magnitude of the resultant signal from the three 
axes are used to estimate the intensity of even the most subtle body movements in 
terms of a derived parameter called Sedentary Metabolic Equivalents (S-METs). 
This enables accurate quantification of low intensity activities (less than 3 METs) 
usually carried out while sitting or standing. Since the effect of psychological fac-
tors on HR is more pronounced when the user is sedentary, using S-MET (instead 
of HR) for quantification of sedentary activities reduces the effect of such factors. 
For activities with intensity equal to or greater than slow walk (S-MET greater than 
3 METs), the EE is estimated from HR. This helps prevent EE overestimation 
while traveling in vehicles. 

• Off-body Detection: In order to understand the device usage patterns it is essential 
to know when and for what duration, the device is worn on the body. To enable 
this requirement, an algorithm on HR-SHIMMER analyses the ECG baseline sta-
bility, presence of noise and absence of ECG signal to detect when the device is 
off-the-body. During off-body condition, HR calculation is disabled and the device 
sends “off-body” status to the Aggregator. 

• Individualized HR calibration: For estimating EE, most commercial heart rate 
monitors assume a common HR calibration curve for all individuals. This approach 
results in EE estimation errors since the change in HR of an individual when sub-
jected to an exercise load depends on the fitness level. Hence it is necessary to 
calibrate HR with respect to exercise load (which is quantified in terms of METs), 
for each individual. Current HR calibration techniques based on Oxygen Uptake 
(VO2) require specialized equipment like oxygen and carbon dioxide gas analyzers, 
treadmill in a lab setting [24][25], which limits their use. In order to enable HR 
calibration in the field, we developed a novel simplified HR calibration technique 
for EE estimation from HR with a comparable level of accuracy. Our calibration 
procedure involves measuring the HR at rest and at different exercise loads (slow 
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walk, medium walk, brisk walk and jog). The walking speed is calculated by 
measuring the time required to cover a known distance. An application on the Ag-
gregator device computes the METs for each walking speed (using published MET 
values [26]), the corresponding HR, and then builds an individualized HR v/s 
METs calibration curve. Fig. 3 shows calibration curves for two users using our 
calibration method compared to the VO2 calibration method. Fig. 5 shows the EE 
estimation accuracy using this calibration technique relative to EE estimated using 
VO2. Re-calibration may be required if the fitness level changes significantly. 

 

 

Fig. 3. Comparison of our calibration technique with VO2 method. Dashed line is based on our 
Calibration algorithm and continuous line is based on VO2 method. 

3.2.3   HR + Accelerometer (HR+A) Data Fusion 
Estimation of EE in an accurate and reliable manner was a firm requirement of our 
application. Current techniques for estimating EE in ambulatory condition involve 
sensors like heart rate, accelerometer, body temperature and galvanic skin response 
used either individually or in combination. However, existing systems fail to address 
low intensity upper body activities, psychological effects on heart rate in sedentary 
states and data losses from the sensors. In addition the existing approaches use a sin-
gle accelerometer [27], which reduces the accuracy of physical activity estimation 
[28], in turn affecting EE estimation. To address the above limitations, we developed 
a data fusion algorithm (HR+A), shown in Fig. 4, which fuses HR with accelerometer 
data from HR-SHIMMER (upper body) and MSP (lower body). Our algorithm (Fig. 
4) running on the aggregator, chooses the correct sensor to calculate the metabolic 
equivalent value using features like offset, forward difference, resting heart rate, to-
gether with lower and upper body movement intensity from the accelerometers. 

The algorithm was based on a lab experiment that we conducted in the Human Per-
formance Laboratory of Oregon Health Science University. Four subjects wearing a 
hip mounted accelerometer, Body Bug [6], and Polar HR monitor [7] were also con-
nected to a Calorimeter. Required parameters like, lower / upper body movement, 
heart rate, and EE from the calorimeter were logged. The data from the experiment 
was used to train a Bayesian network to choose the sensor for EE calculation that will 
maximize proximity to the Calorimeter. Cases like exercise recovery, upper body 
workout and exertion effect were captured accurately in the training. Other effects 
like emotions and moving vehicles were added later, due to the difficulty of collecting 
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such data in a lab setting. The experiment data was split in two, where the data from 
two users was used for training the Bayesian network and the data from other two was 
used to validate the network. Graphs comparing the EE estimated using our algo-
rithm, and EE estimated from calorimeter are shown in Fig. 5. 

 

Fig. 4. Data Fusion algorithm and comparison with VO2 method 

 

Fig. 5. Comparison of our EE estimation with VO2 method 

The EE estimation accuracy was also tested in free living conditions with Body-
Bugg [6], a state-of-the-art multi-sensor device, the results of which are shown in 
Table 1. The ability to perform partial inference using Bayesian network allowed us 
to operate with nominal accuracy even with missing data. This feature proved essen-
tial given the sensor data loss in the field due to battery depletion or user error. 

Table 1. Comparison of EE accuracy of HR+A algorithm with BodyBugg 

Test HR+A(kcal) Bodybugg(kcal) % difference 
Home Activities 319 340 -6% 
Working at Desk 128 125 2% 
Full Day Test 1308 1378 -5% 
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3.3   Tier 2: Aggregator 

We chose the HTC Touch smart phone (201 MHz processor, 128 MB RAM, 
1800mAh battery pack, Microsoft Windows Mobile 6 OS) as the aggregator and built 
our application on top of a custom framework that provided sensor communication, 
data storage and data synchronization with the backend and the ability to plug in dif-
ferent analysis and UI modules to customize the application. We used Merge Replica-
tion (a feature provided by MSSQL server) over GPRS to synchronize the data with 
the backend server. GPRS was chosen since we found that Wi-fi/WIMAX has mini-
mal penetration among the users of our evaluation. Data would be sent over the GPRS 
network every night, between 11pm to 6am while the device was charging to mini-
mize effect on battery life. If the synchronization process failed consecutively on 3 
nights, the application would try to send the data during the day, at the risk of stop-
ping data collection from the sensors. Some of its key features are: 

Self Awareness: To provide users continuous self awareness of their exercise and 
diet, we designed the MyDay screen as shown in Fig. 6(a). It is a responsive glance-
able display to encourage users to view on the go their Energy Expenditure (EE), 
Calorie Intake (CI), Heart Rate (HR) and activity type and intensity. The HR of the 
user is shown in the top left of the screen. This is updated every 5 seconds. The 2 
status bars show the calorie intake and expenditure for the current day. The calorie 
expenditure is updated on this screen every minute. The status bars show how the user 
is tracking to the ‘target’ that has been set by the physician, based on the user’s BMI 
and medical history. If the user is ‘trailing’ the target at a given time in the day, the 
numbers turn RED in color. 

A turtle avatar (a turtle symbolizes luck and the fact that ‘slow and steady wins the 
race’) was chosen to showcase different states, according to the current activity of the 
user (as inferred by the MSP activity sensor). The state of the turtle is updated every 5 
seconds. The different states of the turtle are shown in Fig. 6(b). It also provides rec-
ommendations to the user based on user state, and the state and color of the turtle 
indicate to the user how well he is doing at a given point in the day with respect to his 
activity goals. If the user has been sedentary (sitting or lying down) for more than ’x’ 
minutes over the past ’y’ hours (x and y can be set by the physician), the shell of the 
turtle turns RED to indicate that action is required by the user, and stays RED as long 
as the condition is true. There is also a dialog box next to the turtle where custom 
messages can be displayed to motivate users to do some form of physical activity on 
regular basis. 

Trends: Self-awareness is also supported through trend information. This provides 
opportunities for the user to notice patterns of success and failure, and hence improve 
in the long term. Weekly and daily views of calorie expenditure, calorie intake, activ-
ity intensity and activity type (Fig. 7) are provided. It can also show past measure-
ments of Blood Pressure, Weight and Blood Glucose (first graph in Fig. 7). 

Goal Setting: Since the system is intended for long term use, it was desired to en-
able tweaking goals to challenge users, in accordance with behavioral theories like the 
Goal Setting Theory [29]. Based on body weight, BMI and physical activity, the de-
sired target weight loss is calculated by the physician. This target is then mapped to 
food intake and activity goals based on discussions with the user and possible consul-
tation with a nutritionist. It is important to enable readjusting these targets over time 
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based on the user’s performance.  Since goal setting is envisioned to be a shared re-
sponsibility between patient and physician, the system allows for remote setting of 
these goals from the backend tool (calorie intake and expenditure), which are trans-
mitted to the aggregator and refreshed on the subsequent day. 

 

 

Fig. 6. MyDay screen on the Aggregator (a) and different activities depicted by the turtle (b) 

 

Fig. 7. Example trend graphs 

Diet Logging: Users can log their diet intake using photograph method and/or item 
entry (Fig. 8). In the photograph method, the user can snap a picture of the meal, 
which is time-stamped and stored in the phone, and later transmitted to Tier 3. This 
method requires minimal user input, but the user does not get real-time feedback of 
the calories consumed. The phone contains a comprehensive database of Indian food 
items along with their caloric values, and a picture of that item. The calorie intake is 
calculated based on this information. The food item entry has been designed for easy 
and quick entry. The default food menu depends on time of day simplifying data en-
try. There is also a provision for alphabetical search. Once the user finds the desired 
food item, he is required to enter the quantity and the size of the item that has been 
consumed. There are 3 options for size entry: small, medium and large. The picture of 
the food item corresponds to a ‘medium’ portion of the food item, to help the user 
understand that the meaning of each subjective term. 
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Most Indian foods are usually not eaten in isolation, but with an accompanying 
gravy/vegetable. To simplify data entry, a list of associated food items (up to 3) ap-
pear in the same screen as the main entry. The user is also shown the calories of the 
food items that he has selected to facilitate learning. After all food items have been 
entered, the user is shown all selected items in a review screen for confirmation. 

Finally, the user can enter weight, blood sugar and blood pressure values and look 
at trends of these values over a period of time. The system also supports setting of 
reminders for medicine intake. A reminder is displayed on the top-right corner of the 
MyDay screen as seen in Fig. 6(a). 

 

 
Fig. 8. User interface for food logging 

Behavior Change Strategy: Jog Falls employs several persuasion techniques like goal-
setting, positive-feedback, comprehensive-behavior-coverage [29], reduction, tunnel-
ing, tailoring, self-monitoring, surveillance, conditioning [30] and just-in-time sug-
gestions [30][31] to motivate behavior change. It supports self-monitoring via simple 
interfaces (reduction). Goal-setting, surveillance (external observation) and tunneling 
(guided persuasion) are achieved via the involvement of a physician. Tailored sugges-
tions like “You have been sedentary for too long! Please get active!” are provided at 
the right time to encourage physical activity. Furthermore, positive reinforcements 
(conditioning) like “Great Job, Keep Going!!” are used to encourage desirable behav-
ior. Lastly, Jog Falls supports energy expenditure computation for all activities (com-
prehensive-behavior-coverage) hence not limiting the user’s activities.  

3.4   Tier 3: Backend Application 

Dia-Graph is the backend application software running on a web server and can be 
securely accessed from remote client machines over IP network. The Dia-Graph ap-
plication is designed to enable the physician to study the patient’s life style and pro-
vide necessary advice/coaching to better manage chronic disease conditions. In order 
to fulfill these requirements, Dia-Graph offers the following key features: 

• Energy expenditure and calorie intake mapping:  One of the challenges in manag-
ing diabetes is to keep track of one’s energy expenditure and calorie intake on a 
continuous basis. Dia-Graph bridges this gap by providing a time synchronized EE 
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and Calorie Intake mapping display to enable the physician to track the progress of 
both diet and energy expenditure in a simplified manner. 

• Activity distribution: Dia-Graph can represent the activity distribution over an 
extended duration. It support two types – activity type and activity intensity graphs. 
Using these graphs, the physician gains insight into the type of activity the user is 
performing and the times of the day the user is most active and provide coaching 
accordingly.  Energy expenditure is also displayed facilitating user education with 
regards to the impact of different activities. 

• Target and reminder settings: Another key feature of Dia-Graph is to enable the 
physician to remotely set goals/targets for the users based on activity and diet, 
track their progress and provide coaching tips to help motivate them. The physician 
could also set reminders (e.g. medicine intake) using the Dia-Graph.  

• Consolidated report generation: Dia-Graph allows the physician to automatically 
generate a consolidated report on various user parameters and print out the report.  

 

 
 

Fig. 9. Dia-graph application for the physician 

4   Evaluation Study 

To evaluate the effectiveness of Jog Falls against the stated goals, we conducted a 
pilot study at Manipal University in collaboration with the co-PI Dr Acharya. The 
trial involved 15 participants, who evaluated the system for a period of 63 days. 
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4.1   Study Design and Participants 

Participants were selected based on a certain set of inclusion and exclusion criteria. 
Some of the inclusion criteria included (a) adults between 18 to 60 years of age, (b) 
family history of diabetes, (c) impaired glucose tolerance, (d) high risk of type 2 dia-
betes mellitus (e.g. obese/overweight) and (e) willingness to participate with a basic 
aptitude to handle a cell phone. No discrimination was made based on sex or profes-
sion. The only exclusions involved people with serious medical illnesses and pregnant 
women. Out of the final 15 participants selected, 3 had diabetes and 11 were at risk 
due to one or more of the following factors - overweight, obesity, family history, 
increased lipids or hypertension; 1 participant was female and the rest were male. At 
the start of the study, participants were given a demonstration of the system and a 
short training. They were given an HTC touch phone with installed software, an MSP 
sensor and a HR-SHIMMER sensor with polar chest belt. Furthermore, they were 
instructed to: 

• Use the system throughout the day, between 6am and 9pm and charge the phone 
and sensors during night hours. 

• Not use the system when swimming, having a bath and when traveling by air. 
• Refer to the provided troubleshooting instructions and user manual and/or contact 

co-PI. They were asked to maintain a logbook of problems faced and comments. 
• Meet with the co-PI every Saturday, to discuss issues, track their progress and 

provide feedback about the system. During these visits the co-PI analyzed the 
weekly data of each participant and provided appropriate recommendations. 

Fixed calorie intake and expenditure goals were set per participant, by the co-PI, to 
achieve a 5% weight reduction over the duration of the study. Personal details of 
participants like identification data, demographic data, education, socioeconomics, 
technology background, behavioral attributes and relevant background health infor-
mation were collected at the start of the study. Participant feedback was collected at 
the end of the first week, during visits with the co-PI and at the end of the study. 

4.2   Study Results 

At the end of the study, we analyzed participant feedback and system usage data to 
evaluate whether JogFalls operated as expected, was useful to the participants and the 
physician, and whether it influenced participant health behaviors. 

4.2.1   Effectiveness of the System in Weight Reduction 
Overall, the results give convincing statistical evidence on actual clinical usefulness 
of the system. There was significant mean 0.85 ± 1.68 kg (0.72 ± 1.52% of target) and 
median weight loss 0.99kg among subjects at the end of the trial. We used historical 
control wherein weight records of the patients with similar clinical profile and weight 
reduction needs were collected from the case sheets. Mean weight change of such 
nine subsequent subjects with components of metabolic syndrome in medical OPD of 
Manipal University who received standard care and advice on weight reduction 
(without device but with bi-weekly or monthly sessions with physicians) and life style 
measures had mean weight gain of 0.33 kilograms over two months period. The other 
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striking outcome from the analysis of the intensity of the use was very strong positive 
correlation (P value 0.001) between weight reduction and hours of use by subjects, as 
shown in Fig. 10(a). 

(a) (b)  

Fig. 10. (a) Weight loss vs system usage and (b) Average food entries and pictures per day 

4.2.2   Usability 
We analyzed the usage patterns to determine system usability. We found, that with the 
inclusion of non-usage of system due to technical reasons, travel by subjects, etc., the 
system was substantially used (85% of the days, and 12.7 hrs per day on average). 

Participant feedback showed that overall, most participants found the system easy 
to use. A few participants faced problems with the chest belt, requiring either read-
justing the belt, or remoistening of the lead area of the chest belt, or changing belts 
during the day to avoid discomfort due to excessive sweating. Some participants also 
developed rashes due to the belt which later subsided with medication and regular 
washing of the belt. Overall, 8 participants found wearing the chest belt easy, 6 found 
it to be manageable and 1 found it to be difficult. Participants also preferred to carry 
fewer devices and suggested that the number of devices be reduced from 3 to either 1 
or 2. Regarding the MSP, two participants faced problems due to the MSP falling off 
the waist and 5 participants had broken MSP clips. Participants also found the blink-
ing lights on the MSP uncomfortable, since it tended to draw undue attention. 5 par-
ticipants expressed that they would like the MSP to be more rounded and less bulky, 
with reduced vertical height to increase comfort.  Additionally, participants expressed 
a desire for longer battery life of the sensors. 

We also analyzed the logged data in the backend and on the phone to evaluate the 
usage of some of the application features. The analysis revealed that the food logging 
feature was used on 93% of the days and that people had made an average of 10 food 
entries per day. This large number of per day food entries is expected given the nu-
merous items taken per Indian meal. We also found that people had taken about 2.24 
pictures per day. This is close to the expectation of 3 pictures per day for the 3 main 
meals of the day. During the weekly visits, we observed that the co-PI would correlate 
the pictures with the food logging entry and, if required, correct the notion of the 
‘small’, ‘medium’ and ‘large’ portions. Thus, over a period of a few visits, users were 
calibrated to the meaning of these terms. The distribution of the average number of 
per day food entries and photos taken is shown in Fig. 10(b). We believe that this data 
indicates ease of use and acceptance of these features by the participants. Feedback 
from the participants confirmed this and brought up some interesting issues. Partici-
pants reported that they were hesitant about taking food pictures in public since it 
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attracted undue attention. They also pointed out that Indians mostly eat with their 
hands/fingers and take several food servings, which make it difficult to take pictures 
of subsequent servings. These social issues need to be taken into account in the next 
design. There were no usability concerns with regard to Dia-Graph. The co-PI found 
the software easy-to-use, and the interface to be efficient. 

 

Fig. 11. (a) Average replications per day and (b) Average percentage sensing coverage 

4.2.3   System Performance 
We faced minor technical problems during the deployment. Initially participants re-
ported a number of problems with the HR-SHIMMER like connection problems with 
the phone and low battery life. As a result, all the HR-SHIMMERs were recalled, 
tested and treated for moisture protection at the end of two weeks.  

Initially, a few participants complained about too many synchronization attempts 
occurring during the daytime resulting in interrupting system usage. This was due to 
the fact that the system was set up to attempt a daytime synchronization if it failed the 
previous night. When we changed the condition for a daytime synchronization to 
failure on 3 consecutive nights, participants experienced far less problems. Overall, 
we found that the number of daytime synchronizations was less than 1 on average 
(Fig. 11(a)) and the total time taken by synchronization over the study was 10 hours 
on average per participant. Synchronization took an average of 26 minutes.  

Since some of the participants reported that their sensors often ran out of charge, 
we analyzed the data logged on the phones to estimate daily sensing coverage. The 
results of our analysis are shown in Fig. 11(b). Participants were covered by both or 
either sensor for about 87% of the application runtime, on average. We find this to be 
a high percentage, given that sensors were generally disabled during the synchroniza-
tion process. An important point to note here is that participant 15, who regularly 
charged the sensors as instructed, had a sensing coverage of more that 99%. This 
shows that the system worked as expected when the protocol was strictly followed. 
Finally we found the MSP to last longer than the HR-SHIMMER. 

4.2.4   Usefulness 
Feedbacks from the participants like ``Makes one self conscious; acts as a constant 
reminder,'' ``Really got conscious of calorie contents of various items,'' and ``After 
using these gadgets realized that I end up eating more than required almost daily for I 
always thought that I was a poor eater,'' show that the system was helpful in various 
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ways. While for some, it served as a constant reminder, for others, it helped improve 
their understanding of their diet and activity habits. In fact, 13 participants reported to 
have gained a better understanding of their diet and activity habits after using the 
system. All participants claimed that it helped improve their diet while all but one said 
that it helped increase their physical activity. 

We also evaluated the usefulness of each of the system features. Participant feed-
back revealed that they found all the application features useful to varying degrees. 
The EE and CI bars seemed to be the most popular followed by heart rate information 
and trends display. Participants reported viewing the MyDay screen and the trends 
screen frequently, ranging from 2-5 times per day to more than 10 times per day. 
Majority viewed the MyDay screen greater than 10 times a day and the trends screen 
2-5 times a day. One participant commented ``I keep checking the calorie count as 
frequently as checking the watch for time.” Thus, overall, participants seemed to find 
the system useful and were willing to continue use of the system over a long-term. 10 
participants felt that the change produced by the system will continue even after the 
study. Almost all except one said they would recommend this type of system to their 
close friends who are in need of better life style management.  

4.3   Lessons Learned 

This study brought to light several insights. First and foremost, such long-term-wear 
systems should be unobtrusive and easy to wear. Moreover they should involve as 
few components as possible (for easy carrying and charging). We realize that though 
at present, wearing multiple sensors and the chest belt is cumbersome for everyday 
use, we believe that in future these sensors would become smaller, energy efficient, 
more wearable and integrated into a single device (e.g. embedded in clothing, watch 
or a phone). We also learned that such systems should not attract undue attention to 
the wearer in a public setting (as with the blinking lights on the MSP and the need to 
photograph the food in public). To improve robustness, the system should gracefully 
handle sensor disconnection (e.g when sensors are separated from the phone). Cach-
ing the data on the sensors and transferring the data later when the connection to the 
phone is reestablished is a possibility. We also found that calorie intake and energy 
expenditure information, and caloric values of individual food items are key to influ-
encing behavior change in individuals suffering from metabolic syndrome based 
chronic diseases. While participants were excited about long-term use of the device, 
when asked if they might get bored of the device in the long run, 6 said that they 
weren’t sure while 4 said that it was likely that they would. Hence, it’s critical that 
user-fatigue be considered while designing such a device in order to support long term 
use. Finally, access to granular user activity and diet information help physicians 
provide personalized and better quality of care to individuals. 

5   Conclusion 

Diabetes is emerging as a major public health concern. Empowering the user to lead a 
healthy lifestyle by increasing physical activity and moderating eating habits plays a 
key role in self-management of this syndrome. Lifestyle is highly diverse and depend-
ent on cultural factors. To be effective, a pervasive lifestyle management system has 
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to be comprehensive as well as customized to personal preferences. There have been 
studies in developed countries regarding efficacy of self-management intervention in 
lifestyle modification using pervasive healthcare with mixed results. India is on the 
verge of being the diabetes capital of the world, which calls for a comprehensive 
study in the Indian context. 

Though recent clinical studies have indicated that increased physical activity and 
diet modification can effectively retard diabetes progression, currently there is no 
reliable system available to objectively monitor and manage their physical activity, 
calories spent and food consumed on an ongoing basis. Hence, to overcome this defi-
ciency and empower the patients with a reliable system that provides actionable in-
formation, Jog Falls was developed and evaluated in a user study. Objectives of the 
study were to evaluate the reliability, acceptability, usability and usefulness of the 
system and to improve the system based on the observations, results and feedback. 

Overall, the system was accepted by the users, was used extensively and emerged 
as an easy to use system for lifestyle management. Self-awareness of caloric values of 
food and ease of calorie intake/expenditure logging were well appreciated by the 
users. Statistically significant weight reduction was observed in users and there was 
very strong correlation between hours of use of the system and weight reduction. The 
research evaluation revealed that simplification of food data entry and automation of 
calorie intake would improve the usability of the system. Additionally, reduction in 
form factor, number of devices, simple charging mechanisms and longer battery life 
would further simplify the use of the system.  
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Abstract. This paper proposes a novel interactive technique, the Eye-
Catcher, which helps photographers capture a variety of natural looking
facial expressions of their subjects, by keeping the eyes of the subjects
focused on the camera without the stress usually associated with being
photographed. We develop a prototype system and verify the effective-
ness through evaluation and discussion.

1 Introduction

As digital cameras have become increasingly popular in recent years, people have
come to take more pictures in their daily lives. In particular, people often take
snapshots of their families, friends or pets. However, many people experience
difficulties in capturing the natural facial expressions of their subjects for sev-
eral reasons: many subjects become stressed when facing a camera, while other
“camera-wise” subjects –those accustomed to being photographed– often make
stage faces. Moreover, it is often quite difficult to take pictures of children, since
they often look away from the camera.

This paper proposes a novel interactive technique, the EyeCatcher, to help
photographers capture a variety of natural looking facial expressions by keeping
the eyes of subjects focused on the camera without the stress of photography
(Fig. 1).

2 EyeCatcher

The main concepts of the EyeCatcher are as follows:

1. Keeping the eyes of the subjects focused on the camera
2. Reducing the stress associated with being photographed
3. Extending existing digital cameras

First, the EyeCatcher can help to keep the eyes of the subject focused on the
camera. Some people who are not comfortable with being photographed often

P. Floréen, A. Krüger, and M. Spasojevic (Eds.): Pervasive 2010, LNCS 6030, pp. 112–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The goal of the EyeCatcher is to help photographers capture a variety of more
natural looking facial expressions of subjects by keeping the eyes of the subjects focused
toward the camera without stress

Fig. 2. The basic concept of the EyeCatcher is to keep the eyes of the subjects focused
toward the camera, while turning their attention to the content shown in a small display
attached above the lens on the front of the camera

turn their eyes away when they are faced with a camera. Moreover, since chil-
dren tend to move around restlessly, photographers often experience difficulty in
keeping their eyes towards the camera.

Second, the EyeCatcher can reduce “camera-stress” on subjects. When pho-
tographers take pictures of subjects, many subjects become stressed since their
attention is centered on the camera; other “camera-wise” subjects –those ac-
customed to being photographed– often create stage faces, and their faces look
almost the same in every picture.

To solve these problems, we attach a small display to the front of the camera.
By presenting images or videos (e.g., friends, pets, or animation characters) on
the display, we can (1) keep the eyes of the subjects focused toward the camera,
and (2) turn their attention to content shown in the display and away from the
stress of being photographed(Fig. 2).

Third, we can extend the versatility and practicability of existing digital cam-
eras. Since many photographers have their favorite cameras, it is likely they
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Fig. 3. Hot shoe connector of a high-end compact digital camera (Ricoh GR Digital2).
There are 5 signal terminals at center, and ground terminals on each side.

would like to apply this innovation to their current cameras rather than use
completely new ones. For this reason, we designed the system so that the small
display can be attached to existing digital cameras using a “hot shoe connec-
tor”. The hot shoe connector is an extension connecter mainly used for strobes
by experienced photographers on many digital cameras; both single lens reflex
cameras and high-end compact cameras (Fig. 3).

The function of the hot shoe connector is to connect the camera with an ex-
ternal device both “physically” and “electrically”. For example, when a strobe
is attached to the camera via the hot shoe connector, the camera can transmit
many commands to the strobe via electrical signals, thereby controlling aper-
tures, shutter speeds, zooms, shutter button status, and so on.

Using a hot shoe connector to attach our novel device, we can not only stably
fit the device on the camera, but also detect input signals from the camera (e.g.,
shutter button status) and use them to control the device. Moreover, we can
avoid parallax problems using the hot shoe connecter since it is usually located
directly above the lens, as will be explained in greater detail in the “discussion”
section.

3 Implementation

In this section, we explain the implementation of the EyeCatcher prototype.
First, we selected a high-end compact digital camera (Richo GR Digital2) for
attachment of the EyeCatcher. The GR Digital2 is famous for its picture quality,
and is used extensively as the camera of choice by professional and semiprofes-
sional photographers. Fig. 4 shows an image of the prototype.

The prototype system consists of three main components: (1) a presentation
component on the front, (2) a selection component on the back, and (3) a control
component located between the two.

The presentation component consists of an organic EL display, 4D Systems
uOLED-160-G1 (Fig 5 bottom left). The uOLED-160-G1 is a full-color organic
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Fig. 4. The prototype EyeCatcher

Fig. 5. The system architecture of the prototype. 1. organic EL display (uOLED-
160-G1), 2. organic EL display (uOLED-96-Prop), 3. joystick, 4. micro con-
troller(PIC18F2550), 5. hot shoe connector.

EL display. The resolution and size are 160 x 120 pixels and 32mm x 40mm,
respectively. It has much higher visibility than ordinary LCDs; i.e, it is much
brighter and has a wider angle of view (about 180 degrees). Dots, lines, shapes,
text, and image or video content can easily be displayed by sending several bytes
of commands via a UART communication link. Moreover, it has a micro SD
slot as an external memory, so we can easily update content using an everyday
personal computer. We use the uOLED-160-G1 for displaying various content to
the subjects.

The selection component consists of an organic EL display, 4D Systems
uOLED-96-Prop, and a joystick, CTS 252A103B60NA (Fig. 5 bottom right).
The uOLED-96-Prop is a full-color organic EL display, with specifications al-
most the same as those of the uOLED-160-G1, apart from resolution and size
(96 x 64 pixels and 23mm x 25.7mm). The joystick detects the movement of the
stick with 2 variable resisters, and outputs 2 analog signals. It also works as a
push button by pressing the stick. We use the joystick and the uOLED-96-Prop
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Fig. 6. The control board and hot shoe connector for the prototype

EL display for selecting content for visual feedback, as will be explained in detail
in the following section.

The control component consists of a micro controller (Microchip Technology
PIC18F2550), an original hot shoe connector, and peripheral circuits (Fig. 6).
The size of the board is about 22mm x 65mm1. The hot shoe connector is de-
signed for the hot shoe socket of the GR Digital2 shown in Fig. 3 2. As mentioned
above, the hot shoe connector works (1) to physically attach the EyeCatcher de-
vice to the camera and (2) to electrically connect the signal lines between the two
components. Thus, the EyeCatcher can detect several camera operations (e.g.,
the pressing of the shutter button only halfway) by analyzing signals from the
hot shoe connector. The control component is connected to the presentation and
selection components via pin headers, and controls these devices via the micro
controller. We use a lithium ion battery (3.7V) as a power supply3.

Finally, we developed the outer package of the prototype using ABS plastics.
Since we have integrated all components into the outer package, the EyeCatcher
device can be easily be connected or removed like an external strobe.

3.1 Content

In this section, we explain the content shown in the EyeCatcher. We define the
conditions for selecting content as follows:

1 This size is smaller than the upper surface of the GR Digital2.
2 The layout of the electrical contacts of the hot shoe connectors vary between man-

ufacturers. Although this prototype works only with Richo cameras, we believe it
would not be difficult to support cameras from other manufacturers by designing
corresponding connectors.

3 We initially planned to supply power from the hot shoe connector, since there was
a contact that supplies about 3V. However, since this voltage was not sufficient to
operate the organic EL displays (which need 3.6V), we passed over this idea in the
current prototype.
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1. Content for attracting the attention of subjects
2. Content familiar with subjects
3. Content for producing various expressions or poses

The first point is to attract the attention of the subjects at a glance. For ex-
ample, displaying images of human faces is better suited to keeping the sub-
jects’ attention[1]; whereas animation is usually more attractive than still images
(Fig. 7 left top). Moreover, since the display size of the current prototype is rel-
atively small, a simple composition may be more desirable than a complex one.

Secondly, EyeCatcher uses content that is familiar to the subjects as an at-
tempt to invoke the most reaction. For example, the system uses pictures of
friends or associates rather than those of complete strangers (Fig. 7 top right).
The system also uses pictures of actors, artists or animation characters which
are well-known to many people.

The third point is that some contents may help people produce various ex-
pressions or poses. For example, silhouettes of poses may trigger unique poses
(Fig. 7 bottom right), while face icons may help subjects produce similar faces
(Fig. 7 bottom left).

Figure 7 shows examples of the content which meet the above conditions.

Fig. 7. Examples of content for use in the EyeCatcher

Next, we explain how users select the content to present to subjects with
EyeCatcher. We designed a virtual matrix menu suited for control with the
joystick. Users can directly select the menu by moving the stick in any of 8
directions. The menu consists of 2 hierarchies: there are 8 category folders and
each of them has 8 options (Fig. 8).

The procedures for selecting and presenting content are as follows:

1. First, the photographer browses the categories for content by moving the
joystick in any of the 8 directions. The category title and a typical image of
the selected category are shown in the back display.
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2. When the joystick is kept in the same direction for a few seconds4, the
category folder opens.

3. Next, the photographer can browse the options within the selected folder
by moving the joystick again. The title and image of the selected option are
again shown in the back display. The user can return to the category menu
by pressing the joystick.

4. After selecting the content for display, the photographer points the camera
at the subject, and presses the shutter button halfway. Since the status of the
shutter button is automatically detected by the system, the selected image
is shown in the front display (Fig. 9)5. Moreover, since the selected content
is shown to the subjects just before the picture is taken, the photographer
can easily capture the reactions of the subjects.

5. A few seconds6 after the shutter button is pressed, the content shown in the
front display is cleared.

Fig. 8. Procedure for selecting content. Users can browse contents in the matrix menu
by moving the joystick in 8 directions. They can select a content option by keeping
the stick in the same direction for a few seconds. Information regarding the current
category or content is shown in the back display.

We have designed these control procedures to be easily used with the thumb
when the photographer is holding the camera in his or her hands. Moreover,
when the photographer learns the menu structure, he or she may select content
without looking at the back display. Therefore, this method may also be useful
for single lens reflex cameras, which are mostly used with optical finders7.
4 1 second in the current prototype.
5 Before this step, content is only shown in the back display; alternatively, several

animated lines, like a screen saver, are shown in the front display.
6 2 seconds in the current prototype.
7 In future implementations, we intend to include feedback functions using clicks or

vibrations.
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Fig. 9. Procedure for displaying content. After previewing a selected content option
in the back display, the user can show it in the front display by pressing the shutter
button halfway.

4 Evaluation

We evaluated the effectiveness of the EyeCatcher prototype with regard to two
aspects: (1) “How the subjects feel about the EyeCatcher?” and (2) “How peo-
ple feel about the pictures captured using the EyeCatcher?”. First, we took pic-
tures of subjects while showing content using the EyeCatcher, and then obtained
subjective feedback from the subjects via a questionnaire. Next, we conducted
another questionnaire survey to examine impressions of the captured pictures.
We define the subjects of the first evaluation as “subjects” and the subjects of
the second evaluation as “respondents” to avoid confusion.

4.1 Photography Evaluation

Method. We selected eight test subjects (7 female and 1 male) from among the
members of our laboratory who had never used the EyeCatcher before. Their
ages ranged between 22 and 52. All participants use of digital cameras (including
camera-equipped cell phones) on a daily basis.

The experimenter took each subject into a room, seated her/him on a chair,
and seated himself across a table from the subject. The distance between the
subject and the experimenter was about 1m. This distance was decided in consid-
eration of the characteristics of the digital camera used in the current prototype
(GR Digital2). As the GR Digital2 is equipped with a wide-angle fixed-focus
lens (28mm), subjects in the pictures taken from farther than 1m appeared too
small for our purposes.

The procedure for this evaluation was as follows. First, the experimenter took
pictures of each subject using the GR Digital2 without the EyeCatcher. Next,
the experimenter took pictures using the EyeCatcher while showing eight content
options in a random sequence. The content options used in this evaluation are
shown in Fig. 108.
8 Content 4 was a simple animation, and all others were still images.
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Fig. 10. The contents used in the evaluation. 1. Food (cake), 2. Face icon (surprised),
3. Japanese actor (Kenichi MATSUYAMA), 4. Animation character, 5. Associate (pro-
fessor), 6. Pose (hands on the waist), 7. Japanese entertainer (Harumi EDO), 8. ID
photo (man wearing a suit).

These content options were selected based on the conditions mentioned in
the “Content” section. That is, (1) all content should have a clear composition
for attracting the attention of subjects at a glance, (2) some of them should be
familiar to the subjects, and (3) others should help the subjects produce various
expressions or poses. We selected content 1, 3 and 4 based on the condition
(2), and content 2, 6 and 8 on condition (3). Content 5 and 7 were selected
as fulfilling both condition (2) and (3). Since the subjects were mostly young
women, we selected “cake” as a food, and a “young male actor” as an actor
taking into account their preferences.

The experimenter did not engage in any verbal communication with the sub-
jects to reduce variables other than the effect of the EyeCatcher. To begin, the
experimenter told each subject “Please act as you usually would, and don’t be
nervous about the experiment.”. After starting the evaluation, the experimenter
did not speak to the subjects apart from briefly replying to the subjects’ ques-
tions. When the evaluation was finished, the experimenter obtained subjective
feedback from the subjects both by questionnaires and discussion.

Figure 11 shows pictures taken using the GR Digital2 without the
EyeCatcher9.

Results. First, we attempted to characterize the subjects by asking them two
questions: (1) “How comfortable are you with being photographed? (1: very
uncomfortable - 5: very comfortable)”, (2) “How emotionally expressive are you

9 Pictures shown in this paper are cropped for greater visibility.
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Fig. 11. Pictures captured without the EyeCatcher

when photographed? (1: very unexpressive - 5: very expressive)” 10 . Figure 12
shows the distribution of the subjects in terms of their response to these two
questions. The subjects were found to be divided into three main groups: (1)
subjects E and G were “comfortable with being photographed” and “expressive”,
(2) subjects B, F and H were “uncomfortable with being photographed” and
“inexpressive”, and (3) subjects A, C and D fell between those in groups (1) and
(2). We will refer to subjects E and G as “camera-wise subjects” and subjects
B, F, and H as “camera-shy subjects,” and discuss the results based on these
terms in the “Consideration” section.

Next, we explain the results of the subjective questionnaire. We set four ques-
tions and scored the answers on a scale of 1 to 5 as follows: (1) “Was your focus
on the camera reduced? (1: not reduced at all – 5: drastically reduced)”, (2) “Was
the photography process pleasant? (1: very unpleasant – 5: very pleasant)”, (3)
“Were your faces captured differently? (1: not different at all – 5: completely
different)”, (4) “Would you want to always use the EyeCatcher in the future?
(1: would never want to – 5: extremely want to)”.

Figure 13 shows the results of this questionnaire. For question (1), 7 of 8
subjects answered that their attention to the camera was reduced (avg= 3.75,
S.D.=1.39). For question (2), 7 of 8 subjects said the photography process was
pleasant (avg=4.25, s.d.=1.03). For question (3), 7 of 8 subjects felt their faces
were captured differently when the EyeCatcher was used (avg=4.13, s.d.=0.99).
For question (4), 7 of 8 subjects answered that they would want to always use

10 All questions and answers presented in this paper are translations from the original
Japanese.
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Fig. 12. Character distribution of the subjects

the EyeCatcher in the future (avg=4.25, s.d.=0.71). In addition, 2 of the 3
camera-shy subjects answered 4 or higher for all the questions. The self-reported
characteristics of the subjects as assessed initially appeared not to affect their
responses to the questions that they were asked after the experiment. Thus, we
argue that the EyeCatcher was effective from the subjects’ perspective.

4.2 Impression Evaluation

Next, we evaluated people’s impression on the resulting images to verify the
effect of the EyeCatcher on the captured pictures.

Method. First, we showed respondents (1) pictures taken without the Eye-
Catcher (“regular pictures”) and (2) pictures taken with the EyeCatcher (“Eye-
Catcher pictures”) at the same time, and obtained feedback regarding their
impression of the EyeCatcher pictures compared to the regular pictures. We
prepared 64 EyeCatcher pictures (8 subjects x 8 content options) and 8 regu-
lar pictures (8 subjects). The sequences in which the pictures were shown were
changed randomly. The respondents were not shown the content used in the
photography evaluation. We selected 9 respondents with ages ranging between
21 and 37 who were not included as subjects in the earlier evaluation.

Results. We asked 2 questions and scored answers on a scale of 1 to 5 as follows:
(1) “Do you notice any difference between the EyeCatcher pictures and regular
pictures? (1: not different at all – 5: completely different)”, (2) “Do you feel
the EyeCatcher pictures are less strained compared to the regular pictures? (1:
very strained – 5: very unstrained)”. We calculated average scores and standard
deviation for all pictures.

The results for question (1) are shown in Fig. 14. The horizontal axis shows
EyeCatcher pictures, and the vertical axis shows average score. First, almost all
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Fig. 13. Results of the subjective evaluation

Fig. 14. Do you notice any difference between the EyeCatcher pictures and regular
pictures?
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Fig. 15. Do you feel the EyeCatcher pictures are less strained compared to the regular
pictures?

of the pictures of subjects A, E, and G obtained high scores (above 4.0). Most
of the respondents felt the EyeCatcher pictures were “5: completely different”
or “4: rather different” to the regular pictures. Second, scores for the pictures
of subjects C, D, F and H were varied, particularly, those for subjects F and H
for whom some pictures were regarded as “different”(above 4.0) whereas others
were regarded as the “same”(under 2.0).

Next, The result of the question (2) is shown in Fig 15. First, 7 of 8 pictures
of the subjects E and G obtained high score (above 4.0). Most respondents
felt their EyeCatcher pictures “5: very unstrained” or “4: unstrained”. Second,
almost all pictures of subjects A and D obtained reasonably high scores above
3.5. Many respondents felt their pictures to be “4: unstrained”. Third, scores for
the pictures of subjects C, F, and H were varied. There were both “unstrained”
pictures (above 4.0) and “little strained” pictures (under 3.0) for each subject.
In particular, some pictures of subject F were felt to be “strained” (under 2.0).

Meanwhile, pictures of subject B obtained low scores for both questions. We
couldn’t observe any effectiveness of the EyeCatcher for subject B.

We have also asked the respondents about their relationships to the subjects.
We found that 4 knew all subjects, 2 knew some of them, and 3 respondents
hardly knew them. Although we have not fully analyzed the results by group,
no significant differences appear to exist.
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Fig. 16. Examples of high-scoring pictures (content 7, Japanese entertainer)

4.3 Consideration

In this section, we consider the results of the evaluations. The EyeCatcher pic-
tures that obtained (1) higher and (2) lower scores in the impression evaluation
are as follows: (1) pictures of content 7 (Japanese entertainer, Harumi EDO)
shown in Fig. 16 and (2) pictures of content 8 (suited man) shown in Fig. 17.

First, we consider the result of the impression evaluation based on the self-
reported characteristics of the subjects shown in Fig. 12. For camera-wise sub-
jects (subjects E and G), most pictures obtained high scores (above 4) both in
terms of “difference” and “unstrained”. This result indicates that the EyeCatcher
helps a photographer capture various natural expressions of camera-wise sub-
jects. In the regular pictures (Fig. 11), camera-ready subjects made stage faces
and paid much attention to the camera. In contrast, they reacted to most of the
content shown using the EyeCatcher since they were very emotional. For this
reason, we could capture various expressions and poses for these subjects. In re-
sponse to content 7 (Fig. 16), for example, subjects E and G struck a similar pose
to that of the entertainer 11. Meanwhile, we selected content 8 (Fig.17jfor taking
pictures suited to use on ID cards. However, the attention of most subjects was
focused on “who is this person?”, and they became confused. For this reason,
the scores of the impression evaluation were lower12. Although subjects E and G
also felt the same impression, they reacted dynamically: subject E bent forward
to the camera and made a confused face; subject G began laughing helplessly.
11 Although subjects A, C and D also struck a similar pose, subjects E and G did not

only strike a similar pose, but also made a similar face.
12 Only subject D understood our intention and stood erect.
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Fig. 17. Examples of low-scoring pictures (content 8, suited man)

For these reasons, even the pictures taken using content 8 obtained high scores.
Although we didn’t expect these reactions, we thought them to demonstrate the
interesting effects possible using the EyeCatcher.

Next, we discuss the camera-shy subjects (subjects B, F and H). The scores for
the pictures of subjects F and H were spread. For example, for the “difference”
question, pictures taken using content 4 were felt to be “hardly different” from
the regular pictures (below 2.0); whereas the pictures taken using content 3, 7
(both subjects F and H) and 1 (subject H) were felt to be “different” from the
regular pictures (above 3.5). For the “unstrain” question, pictures taken using
content 4 and 5 were felt to be a “little strained” compared to the regular pictures
(below 2.7); whereas pictures taken using content 7 (both subjects F and H),
3 (subject F) and 1 (subject H) were felt to be “unstrained” (above score 4.0).
Thus, we could capture natural and unstrained faces when certain content (3 and
7 for subject F; 1 and 7 for subject H) were shown (Fig. 16). In summary, (1)
the faces of subjects F and H were strained in the regular pictures (Fig. 11) since
they were uncomfortable with being photographed and (2) they did not react
to all the content since they were unexpressive. However, when the preferred
content (e.g., cakes, actors, and entertainers) were shown, the EyeCatcher could
help the photographer capture natural smiles even on camera-shy subjects.

Next, we consider subject B. As mentioned above, the EyeCatcher was not
effective for subject B. We think that there were three reasons for this: (1) subject
B was the most unexpressive and the most uncomfortable at being photographed;
(2) the content options were ill-suited to subject B as his sex and age (male,
52) were different from those of the other subjects; and (3) subject B did not
change his face intentionally since he misunderstood the instruction to “please
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act as you usually would” as asking him gnot to change his expression from
his usual look”. However, in the subjective feedback, subject B did respond by
saying that “his focus on the camera was reduced” and “photography process was
pleasant”. Thus, we believe the EyeCatcher can capture natural and unstrained
expressions even for subject B in future by providing more suitable content and
communicating verbally with the subject.

Thus, the EyeCatcher can help a photographer (1) capture various natural
expressions and poses of camera-wise subjects and (2) capture the natural smiles
of camera-shy subjects by showing preferred content.

5 Discussion

In this section, we discuss the basic performance of the EyeCatcher and commu-
nication during photography.

5.1 Visibility of Display

The performance of the EyeCatcher in the field is somewhat influenced by the
visibility of the front display. Therefore, we tested the EyeCatcher under several
sets of conditions and verified the visibility of the display. We selected the 4
content categories (characters, friends, face icons, and poses) shown in Fig.7 and
examined the distance at which a subject could easily recognize the content.
The subject had normal eyesight. Results showed that the subject could easily
recognize all contents from 2 m in a room lit with fluorescent lamps, 1.5 m
outside on a sunny day but without direct light, and 1 m outside on a sunny day
with direct light.

Since most snapshots are usually taken from 1-3 m, the visibility of the current
prototype appears to be practicable.

5.2 Correspondence of Eyes

Generally, in systems equipped with both cameras and displays (e.g., TV confer-
ence systems), the focus of the eyes often becomes a problem since the location of
each device is different[2]. As it was thought that the EyeCatcher may experience
a similar problem, we discuss this topic here.

Minami[2] reported the detection limit of correspondence of eyes is about 2
degree and the allowable limit is about 9 degree. In the EyeCatcher, since the
distance between the lens and the display is about 6 cm, the allowable limit is
crossed when a subject comes closer than 38 cm. However, we think that this
will not become a significant problem since few photographers take photographs
of their subjects at such close range. For example, when the distance between
the EyeCatcher and a subject is 1m, the parallax is about 3.4 degrees, which is
much smaller than the allowable limit. Moreover, there were almost no pictures
taken during the evaluation in which we can observe problems associated with
the focus of the eyes.
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5.3 Communication in Photography

Finally, we discuss communication during photography. When taking snapshots
of people, communication between the photographer and subject is quite im-
portant since the photographer cannot control the subject’s face directly. For
example, professional photographers do not only require various photographic
techniques, but also communication skills to reduce stress or indicate the pose
he feels will be most attractive.

The goal of the EyeCatcher is to capture various natural expressions of the
subject, and it supports communication between the photographer and subject
by creating a new communication channel via the visual content. For example,
it’s usually quite difficult for photographers to pose subjects similar to that
seen in content 6 or 7 in Fig.10 with only verbal instruction. The EyeCatcher
offers useful solutions for such situations. Meanwhile, from the comments re-
ceived during the photography evaluation, some subjects would like to receive
verbal instructions such as “Please mimic it!”. Thus, verbal communication is
also important for photography using the EyeCatcher.

6 Related Work

From the results of PC-based experiments, CheeseCam[3] reported unconscious
reactions of subjects when watching face icons. Based on this research, Samsung
released a digital camera (DualView TL225) with a front display[4]. Similarly,
Howdy[5] is a unique digital camera that looks like a photo frame. It can cap-
ture pictures of the subject and the photographer at the same time using small
cameras attached on both sides of the frame. Since they can look at each others
faces, the photographer can capture less strained images of the subject. These
approaches share the same goal as that of the EyeCatcher, reducing the de-
gree of attention that the subject pays to the camera and thereby capturing the
subjectfs natural expression.

The uniqueness of the EyeCatcher is that (1) it is easily attached to existing
digital cameras and (2) it allows subjects to produce various expressions by the
easy changing of displayed content.

There are several digital cameras that have integrated sensors. ContextCam[6]
proposed a context-aware video camera that provides time, location, person
presence and event information. Likewise, WillCam[7] helps the photographer
capture various information, such as location, temperature, ambient noise, and
photographerfs facial expression, in addition to the photo itself. Capturing the
Invisible[8] designed real-time visual effects for digital cameras using simulated
sensor data. The EyeCatcher focuses on photography process itself, and intends
to capture the various natural expressions observed in our daily lives.

7 Conclusion

This paper proposed a novel interactive technique, the EyeCatcher, which helps
photographers capture various natural expressions on their subjects, by keeping
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eyes of subjects focused toward the cameras without the stress often associated
with being photographed. We developed a prototype system that can be attached
using the hot shoe connector found on existing digital cameras. Moreover, we
verified the effectiveness of the EyeCatcher through evaluation and discussion.
Our study population was small in scale, unbalanced in composition and con-
sisted solely of members of our laboratory, so that they might have been unduly
supportive of the system. Nevertheless, our findings offer positive, if only pre-
liminary, data regarding the potential value of the EyeCatcher system.
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Abstract. Due to increased input and output capabilities, mobile phones hold
many different kinds of (mostly private) data. The need for finer grained pro-
files and integrated data security on mobile phones has already been documented
extensively (e.g. [1]). However, there are no appropriate concepts and implemen-
tations yet to handle and limit access to data on mobile phones. TreasurePhone
has been designed to address this specific problem. It protects the users’ mo-
bile phone data based on their current context. Privacy protection is realized by
spheres, which represent the users’ context-specific need for privacy. That is,
users can define which data and services are accessible in which sphere. Trea-
surePhone exploits context information to support authentication and automatic
activation of spheres by locations and actions. We conducted a user study with
20 participants to gain insights on how well users accept such a concept. One of
the main goals was to find out whether such privacy features are appreciated by
the users even though they make interaction slower and might hinder fast access
to specific data. Additionally, we showed that integration of context information
significantly increases ease-of-use of the system.

1 Introduction

Modern mobile phones support the creation and storage of many kinds of data ranging
from contacts and e-mail to photos and text documents. At the same time, the amount
of stored data is growing enormously which increases the need for securing the privacy
of this data [2]. For instance, the integration of mobile phones into enterprise environ-
ments for mobile handling of e-mail, contacts and other data is enjoying increasing
popularity. However, mobile phones still use a simple privacy/security model that only
distinguishes between locked and unlocked [1].

Users have different contexts in their life such as family and work each with a cor-
responding need for privacy [3]. This makes privacy management of the data stored
on their mobile phones practically impossible. That is, a user who has a single mobile
phone for her working context as well as for private use cannot hide data belonging to
one context while being in the other one. When working for companies that have high
security standards, a user might face additional usage restrictions to avoid exposing
business data to third parties by using the business mobile phone for private use as well.

One solution for this challenge would be to use more than one mobile phone. Users
might have a mobile phone for their work as well as a personal one. From a usability
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perspective this solution is not satisfying as there are usually more contexts than only
work and personal. Therefore, users would need to use one mobile phone for each
context they have.

We argue that privacy protection should be an essential part of the mobile device’s
operating system and should be addressed during the design of mobile systems. In this
paper, we present TreasurePhone which supports context-sensitive protection of the
user’s data by allowing the user to define so called spheres. TreasurePhone uses loca-
tions for automatic activation of spheres and supports interaction with the user’s en-
vironment to activate appropriate spheres on the go. TreasurePhone enables users to
secure their data in each context in a sophisticated way using one mobile phone. Hence,
TreasurePhone reduces the risk of unwillingly disclosing sensitive and private data.

2 Related Work

Work related to TreasurePhone can be generally classified into three categories: con-
ceptual work about data privacy for mobile devices, authentication mechanisms for cell
phones, and context-dependent adaptive mobile devices.

Stajano addresses privacy issues that arise from sharing (willingly or unintended) a
personal digital assistant (PDA) with others [4]. He describes a system for PDAs which
is based on the observation that some data and applications could be used by anybody
who gets access to the PDA. However, other applications and data should be accessible
only by the legitimate owner of the device. Accessing these private areas or “hats”
would require authentication and thus secures the privacy of the user. In their work,
Karlson et al. conducted interviews to find out basic requirements of data privacy on
mobile phones. Their results suggest to use usage profiles that correspond to different
contexts of the user [1]. These would allow sharing the mobile phone to others without
risking disclose of private data. They showed that users would appreciate a security
model for mobile phones that is based on usage profiles enabling privacy management.
However, the concept of usage profiles was not implemented. Nevertheless, this work,
suggesting a role based access model, strongly influenced the design of TreasurePhone.

With SenSay Siewiorek et al. present a mobile phone that adapts its behavior in
a context-based way [5]. This system processes data captured by several sensors and
determines the user’s current context based on the results. SenSay adapts the ringer vol-
ume, vibration and alerts to the current context. It can further provide remote callers
with the ability to communicate the importance of their call which optimizes the avail-
ability of the user. Another contribution with its focus on context-based adaptation is
presented by Krishnamurthy et al. [6]. Instead of using various sensors to determine the
current context of a user, this system makes use of near field communication (NFC).
With NFC, the context can be determined on a fine grained base. This system as well as
SenSay manage to determine the context of the user, but use a different approach. Both
systems do not focus on privacy issues or data security.

TreasurePhone provides a first implementation of a usage profile based system for
mobile devices as suggested by Stajano and Karlson et al. The prototype applies find-
ings presented by Krishnamurthy and Siewiorek and combines them to provide an
advanced security model.
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3 TreasurePhone

Threat model. In this work, we model two main threats against which the described
system is resistant:

The first threat consists in unwillingly disclosing private or unappropriate data to the
“wrong” people. Mobile phones are often borrowed to friends and other people, mostly
to help them by providing a possibility to make phone calls, browse the Internet, etc.
While interacting with the phone, the borrower might accidentally gain access to data
that the owner of the mobile phone might want to keep private (e.g. when browsing the
photos on the mobile device). Using TreasurePhone, a special sphere could be used that
grants access to the call application only to avoid such problems.

The second threat are attackers that willingly try to steal information (e.g. important
business data) from a user. By disabling (and encrypting1) data of other contexts, Trea-
surePhone limits those kind of attacks. For instance, business data can only be stolen
while the device is set to the business sphere.

Concept. Privacy cannot be seen as a fixed state. It rather means dynamically con-
trolling the disclosure and use of personal information [7]. The dynamic character of
privacy is stressed by its context-depended nature [3]. Furthermore, the user’s grasp of
what kind of personal data is considered as private is highly individual [8]. In the field
of sociology and psychology, the concept of faces exists that was proposed by Goff-
man [9]. According to Goffman, people use different faces depending on their current
context; a face defines what information a person reveals to a specific audience.

The concept of TreasurePhone is based on the hypothesis that users are willing to
protect and manage the privacy of their private data stored on their mobile phones.
Based on Goffman’s faces we propose the concept of spheres that allow users to protect
their data privacy. A sphere represents the user’s privacy requirements for data on her
mobile phone in a specific context. That is, the user can define which applications such
as e-mail clients, address books, photo viewers etc. are available in a specific sphere
and furthermore, what exact data is accessible and which is not. One can imagine a
sphere as a filter that lets pass only data that are not private in this sphere. This way,
users could create spheres for their home, family and friends as well as work context
– each providing only as much access to data as desired. The spheres concept includes
one special sphere that allows exclusive administrative actions such as creating, editing
or deleting spheres as well as deleting or changing access rights of data. This sphere
is called Admin Sphere (AS) and requires the user to authenticate before accessing it.
Usually this sphere will only be active when the user wants to perform administrative
work. All other spheres do not allow deleting data or editing access rights of data. Be-
sides the AS, TreasurePhone contains three spheres by default: Home, Work and Closed,
which serve as examples of typical configurations that are not bound to certain contexts
but can be applied in various matching situations. While Home provides access to all
services, Closed denies access to all of them. This set of default spheres was compiled
based on the results of a small study with five participants who used diaries to collect
the contexts for which they would use spheres.

1 Please note that this feature has not been implemented in the prototype.
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Fig. 1. a) Authentication using a personal token that is integrated into a wristband. b) Controlling
a lock using actions. c) Reading a location that is based on an NFC tag integrated in a nameplate.

In order to protect the data, the user chooses the appropriate sphere depending on the
current context. However, to prevent any person other than the legitimate owner from
accessing private data, the activation of other spheres requires the user to authenticate
to the system if the current sphere is not the AS. Fast and secure methods for authen-
tication that do not require manual entry of a PIN minimize the effort for the user [4].
The TreasurePhone prototype supports authentication using a personal token that con-
tains an NFC tag (see Figure 1a). It has to be noted here, that the benefit of the personal
token comes with a security flaw. If an attacker can steal both, the token and the mo-
bile device, full access to the device will be granted. To minimize the effort of spheres
even further, context-dependent activation of spheres by location is supported by the
system. A location in TreasurePhone is a configuration that is associated with a sensor
value such as GPS coordinates, a Wi-Fi network identifier, a Bluetooth identifier or an
RFID tag (see Figure 1c). Whenever a location is recognized, the corresponding sphere
is activated. Besides locations, TreasurePhone supports interaction with the user’s en-
vironment by actions. An example could be a Metro Network (like the Tokyo Metro
system) that supports the use of NFC-enabled mobile phones to handle payment. When
a user leaves the metro network at his work place, touching the gate mechanism with the
phone would activate the Work sphere. Entering the metro network at his work location
on the other hand could switch back to the Closed sphere.

Example Scenario. Using TreasurePhone implies initial effort for configuring the sys-
tem. However, this is not mandatory because of the set of default spheres that are avail-
able. The configuration effort consists of creating individual spheres according to the
user’s needs and contexts in addition to the default spheres. For example, Bob could
create a new sphere named Friends, which he intends to use while he is with friends,
for instance at home or in a pub. He configures this sphere to allow access to messages,
the address book and the photo service. Now Bob can start to create and manage data.
After a while the configuration of Bob’s TreasurePhone looks like the illustration in
Figure 2. In the spheres Home, Friends and Work some contacts and other documents
are visible. The spheres Friends and Home overlap and both allow access to the data in
the intersection. The Admin Sphere encloses all data and Bob can access all data while
this sphere is active.

When Bob turns on his mobile phone the AS is initially activated. After checking
if there are new messages and having a look at today’s appointments at work, Bob
activates the Home sphere. Thereby personal data like photos, messages and contacts
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Admin Sphere Home

Friends

Work
Closed

Fig. 2. The sphere model: The Admin Sphere allows access to all data; other spheres limit access
and might overlap

are accessible, however, all business related data are hidden now. When Bob leaves his
apartment he locks the RFID based lock of the door using his TreasurePhone, which is
also usable as a key (See Figure 1b). This requires the configuration of corresponding
actions for the lock. Bob configured the action Locking Door to activate the Closed
sphere when finished. By using this action Bob does not have to think of changing the
sphere. As Bob arrives at his office, his mobile phone detects the Bluetooth identifier
of his desktop computer, which is associated with the location My Office. The sphere
Work gets activated automatically. Now Bob has access to his calendars, documents,
messages and all other data that is work-related. However, photos of his family and
friends are now hidden.

Prototype Implementation. The TreasurePhone prototype is written in Java ME and
implements the fundamental concepts: spheres, locations, actions and services as well
as an abstraction for data. A sphere management subsystem controls which sphere is
activated and what data and services are accessible. Activation is based on context
information such as sensor data that correspond to locations and actions. The imple-
mentation also contains interfaces for applications which allows access management of
applications that are registered as services.

The TreasurePhone prototype provides basic functionalities of standard mobile
phones such as call, SMS, address book, camera, and a photo viewer. The user interface
changes or grants access depending on whether the AS or another sphere is activated
(see Figure 3). Editing access rights for data is only available while the AS is activated.

The default assignment of data access rights follows the basic rule: data is accessible
in the sphere in which it was created. For instance, if the sphere Home is activated while

Fig. 3. Screens of TreasurePhone (AS activated): a) Editing access rights for a photo. b) Creating
a new sphere named “Friends”. c) Editing contact details.
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the user makes a photo, this picture is accessible by default in this sphere. In case of the
AS being activated, the image would not be accessible in any of the normal spheres.

We chose the Nokia 6131 NFC mobile phone as platform for the first prototype,
which comes with a built-in NFC reader. The prototype allows the user to authenticate
via a personal token, which contains an NFC tag or by entering a PIN. NFC is also used
for locations. The physical correspondence of a location in TreasurePhone is an NFC
tag attached to an object (see Figure 1 c).

4 User Study

We conducted a preliminary evaluation of TreasurePhone to study two basic questions.
First, will users accept the increased complexity of handling the mobile device required
by the privacy features? Second, will the use of automatic sphere switching by context
(locations and actions) have a positive effect on the usability of the system? We ran-
domly recruited 20 volunteers; 8 female and 12 male. Participants were undergraduate
and PhD students with a technical background and aged between 23 and 32 years. They
indicated they had all used mobile phones for at least six years. Half of the subjects use
profiles (like silent, vibrate etc.) of their mobile phone on a daily basis; the others only
occasionally or not at all. 19 of the subjects use PIN authentication when they turn on
their mobile phone while only 3 use PIN authentication after each period of inactivity.
During the study we first explained the system and then a training phase with the pro-
totype was conducted by the participants. For training, each feature of the system was
explained to them and tested with a small task. Next, practical tasks were carried out.
Finally the users filled out a questionnaire regarding the system. Answers were given
on a five point Likert scale (1=worst, 5=best). Overall the procedure took around 40
minutes, up to one hour.

The practical tasks started with a system configuration, in which users had to create
and configure a sphere. This was followed by a series of five tasks in randomized order,
which covered all actions that are specific for the concepts of TreasurePhone (see figure
4). For instance, participants created a contact in the address book and set the access
rights for this contact to ’visible in sphere x’. Other tasks required the participant to
activate different spheres in order to hide or get access to data. These five tasks were
repeated two times in randomized order. One time participants used a prototype that
did not integrate context information and a second time they used a system that sup-
ported context information integration. That is, one time the participants could make
use of token based authentication (a wristband with an integrated NFC transponder),
locations, and actions and the other time they could not. The context free prototype
used an assigned PIN to activate the Admin Sphere and to switch between spheres.

Results of the study show that on average, users consider the system easy to un-
derstand (Avg=4.4, Mdn=4, SD=.5). They appreciate the support given by integrated
context and 19 out of 20 participants stated that they would prefer using a system that
implements locations, actions, and token based authentication. Users rated the general
system’s capabilities to secure privacy as 4.2 (Mdn=4,SD=.8) and the usefulness of
spheres for privacy protection as 4.6 (Mdn=5,SD=.5). However, users estimated their
willingness to store more sensitive data on their mobile phone, if this was running Trea-
surePhone, with 3.2 (Mdn=3,SD=1.1). Nevertheless, users stated that on average (4.1)
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Fig. 4. Task completion times of the practical tasks with and without context information integra-
tion (error bars display the standard deviation)

they would feel more secure when sharing their TreasurePhone secured mobile phone
with others (Mdn=5,SD=1).

Because this is a laboratory experiment, our results should be handled with care.
However, they suggest user acceptance of the security features, and a preference for the
context integration. Users did not mind increased complexity (and even did not consider
it that complex). Also they agreed that their data would be more secure on such a phone.
One user confirmed this by stating “I wouldn’t need to be concerned about my data so
much when I want to share my mobile phone with a friend or when I just leave it at some
place”. One user was especially happy that this system would provide her the possibility
to limit the access to specific applications as well: “I like that I can even define access
policies for facilities such as camera and address book”. The results are already quite
encouraging, even more since none of the participants was in a business that requires
carrying around sensitive data on a mobile device. We expect business users to be even
more concerned about their data privacy.

A detailed analysis of task completion times shows that, not surprisingly, tasks were
completed significantly faster with the prototype that uses context information for task
switching (see Figure 4). The data was analyzed using paired-samples t-tests. For each
task the prototype using NFC was faster than the PIN version. The results for task A
(t(18)=7.26, p<.001), B (t(16)=4.15, p<.003), C (t(15)=5.91, p<.001) and D (t(18)=
3.85, p<.003) were highly significant while the difference in task E was significant
(t(17)=2.89, p<.05). The positive results for the context version are supported by the
users’ opinion. One user explicitly stated “it makes changing the profiles fast and easy”.

5 Conclusions and Future Work

In this work, we presented TreasurePhone, an approach toward a mobile phone operat-
ing system which supports context dependent data privacy for users based on spheres.
Supporting locations and actions for changing spheres makes adapting to the users’ cur-
rent context easier. The results of the user study show that integrating context and fast
authentication makes the system significantly faster in use and is favored by the users
over a system that requires manual authentication and manual sphere switching.
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While our study suggests that users are interested in the security and privacy pro-
vided by TreasurePhone, future studies of long term use would be valuable to deter-
mine whether users prefer using spheres to existing “binary” security models in day to
day use of their phones. Steps toward answering this question include implementing
an advanced prototype, whereas spheres are integrated at the operating system level
in order to meet the requirements for a longterm study. Additionally, we would like
to implement support of further sensors for interaction with locations such as GPS or
Bluetooth identifiers and thus extend TreasurePhone’s context sensitivity. A very in-
teresting aspect with respect to the sensors is which of them are actually suitable for
context switching from a usability’s point of view. That is, which of them can be used
and understood by the users.
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Abstract. Mobile phones have evolved from devices that are just used
for voice and text communication to platforms that are able to capture
and transmit a range of data types (image, audio, and location). The
adoption of these increasingly capable devices by society has enabled a
potentially pervasive sensing paradigm - participatory sensing. A coordi-
nated participatory sensing system engages individuals carrying mobile
phones to explore phenomena of interest using in situ data collection. For
participatory sensing to succeed, several technical challenges need to be
solved. In this paper, we discuss one particular issue: developing a recruit-
ment framework to enable organizers to identify well-suited participants
for data collections based on geographic and temporal availability as well
as participation habits. This recruitment system is evaluated through a
series of pilot data collections where volunteers explored sustainable pro-
cesses on a university campus.

Keywords: Mobile Computing, Participatory Sensing, Urban Sensing.

1 Introduction

The recent proliferation of mobile smart phones combined with the ease of de-
ployment of web services for storage, processing and visualization, has ushered in
a new pervasive data collection model - participatory sensing [1,2,3]. By enabling
people to investigate previously difficult to observe processes with devices they
use everyday, participatory sensing brings the ideals of traditional community
based data collection and citizen science to an online and mobile environment;
offering automation, scalability, and real-time processing and feedback [4,5]. In
participatory sensing, individuals explicitly select the sensing modalities to use
and what data to contribute to larger data collection efforts. Example initiatives
that are enabled by participatory sensing include our pilot data collections, where
individuals collected photos of assets that documented recycling behavior, flora
variety, and green resources to learn more about sustainability at a university.

However, advancing participatory sensing from a potential to a coordinated
reality remains a major challenge. Finding a fit between diverse users and par-
ticipatory sensing projects mirrors traditional selection for volunteer work based
on interest and skill. But because participatory sensing is organized virtually,
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identifying particular participants (individuals who collect, analyze, and share
their data) for campaigns (targeted data collection efforts) can be partially au-
tomated. Identification can rely not only on participants’ reputations as data
collectors based contribution habits, but can also be enhanced by incorporating
participants’ availability in the area of interest [6,7,8]. Specific attention is payed
to the fact that humans have self-will, exhibit varied data collection performance,
and have mobility traits that are opportunistic in nature [9].

This paper proposes a recruitment framework for participatory sensing data
collections. Our work makes the following contributions: (a.) identifies availabil-
ity and data collection performance as core attributes needed to match partic-
ipants to campaigns, (b.) details models and algorithms that can be used to
represent the recruitment factors, and (c.) evaluates the usefulness of the pro-
posed recruitment mechanisms through pilot data collections. The rest of the
paper is organized as follows: Section 2 illustrates example campaigns and mo-
tivates the recruitment problem. Section 3 provides an overview of the approach
taken to address the recruitment challenge. Section 4 describes related work, and
system details are given in Section 5. The paper ends with an evaluation of the
recruitment framework and a discussion passage in Section 6 and 7 respectively.

2 Motivation and Application Examples

The application area for our data collections was an effort to learn more about
sustainability practices at a university. A series of campaigns that documented
various resource use issues were initiated. The data collections were enabled by
a system consisting of a mobile phone client (Android G1 and Nokia n95) along
with web services for data storage (Flickr and sensor database), analysis (Python
application server), and visualization (Google Maps and Charts). Figure 1 a.)
contains the mobile phone and web feedback page user interfaces. The campaigns
involved taking geo-tagged photos, Figure 1 b.), and are described below:

– GarbageWatch: The campus needs to divert 75% of its waste stream from
landfills, and effective recycling can help reach this goal. Participants doc-
umented the contents of outdoor waste bins through photo documentation.
By analyzing the images, one can determine if recyclables (paper, plastic,
glass, or aluminum) are being disposed of in waste bins, and then identify
regions and time periods with low recycling rates.

– What’s Bloomin: Water conservation is a high priority issue for the cam-
pus and efficient landscaping can help. This campaign involved taking geo-
tagged photos of “blooming” flora. Having this inventory enables facilities
to replace high water usage plants with ones that are drought tolerant. This
flora catalog does not exist since the landscape is managed by many groups.

– AssetLog: For sustainable practices to thrive on a campus, the existence
and locations of “green” resources needs to be documented. These resources
include bicycle racks, recycle bins, and charge stations. But with expansion
and re-construction activities, an up to date list is not available. Thus, this
campaign tasked individuals to capture photos of these sustainability assets.



140 S. Reddy, D. Estrin, and M. Srivastava

Paper Aluminum Plastic

Blooming Flowers

Green Assets

b.) Examples of Images from 
Sustainability Campaigns

a.) User Interface on Mobile Phone 
and Feedback Page on the Web

Fig. 1. System User Interface Design and Campaign Image Examples

Participatory sensing campaigns seek individuals willing to collect data about
a particular phenomenon. A recruitment service takes campaign specifications
as input and recommends participants for involvement in data collections. Cam-
paign specifications may involve a number of factors including participants’ de-
vice capabilities, demographic diversity, and social network affiliation. However,
this work concentrates on a specific set of requirements for recruitment: partici-
pants’ reputations as data collectors and availability in terms of geographic and
temporal coverage. Also, our campaigns have an overall budget associated with
them which may include resources needed to run the data collections along with
compensation when incentives are provided for participant involvement. In our
system, reputation is limited to considering participants’ willingness (given the
opportunity, is data collected) and diligence in collecting samples (timeliness,
relevance and quality of data). Availability is learned from previously collected
context-annotated mobility traces (i.e. streams of location, time, and transporta-
tion mode) in the campaign coverage area. Thus, the recruitment step would be
used by campaign organizers to select participants who achieve the highest data
collection utility while adhering to the set campaign budget. Overall, our recruit-
ment framework is best suited for campaigns that have systematically defined
data collection guidelines and are constrained in terms of coverage.

The sustainability campaigns are used to illustrate the features of the re-
cruitment system. For these campaigns, well-suited participants are ones that
regularly walk on campus during daytime hours and cover as much of the cam-
pus area as possible. Individuals that run, bike, or drive may be less likely to
notice the resources of interest, and collecting clear photos is difficult at night.
Furthermore, it is important that participants are willing to make observations
when given the opportunity and that these samples are relevant and high quality.
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3 System Overview

The process of recruiting volunteers for participatory sensing campaigns is analo-
gous to recruiting volunteers or employees in non-virtual environments. Drawing
on this similarity, we have created a recruitment framework, illustrated by Figure
2, that consists of three stages: the qualifier, assessment, and progress review.

– The Qualifier: Participants for campaigns must meet minimum require-
ments. For availability, prerequisites are based on destinations and routes
within time, space, and transportation mode constraints. For participation
reputation, requirements are measures of sampling likelihood, quality, and
validity over several campaigns or by campaign-specific calibration exercises.

– The Assessment: Once participants that meet minimum requirements are
found, the recruitment system then identifies which subset of individuals
maximize coverage over a specific area and time period while adhering to
the required transportation modes. Participants have costs and there exists
a campaign budget which are both considered when selecting participants.

– The Progress Review: As a campaign runs, the recruitment system must
check participants’ coverage and data collection reputation to determine if
they are consistent with their base profile. This check can occur periodically,
and if the similarity of profiles is below a threshold, organizers should be
alerted so that they can provide feedback or recruit additional participants.

The design of the recruitment system takes into account the private nature of
availability and participation data. Thus, the three-stage framework works to be
parsimonious by limiting both the amount and granularity of information that
is shared. Also, our system is designed to be run in coordination with a personal
data vault where all participant information is stored and external queries on
this data are strictly opt-in [10,11]. For the qualifier and progress review, the
query results sent to the data vault will simply be aggregate results of whether
conditions or thresholds are met. In the case of the assessment, more detailed
data in regards to mobility profiles needs to be shared with the recruitment
system since coverage is based on collective participant mobility, but the data is
limited to a particular spatial region, time span, and transportation mode.

Campaign Definition Recruitment Campaign Execution
Coverage, Modality,

Lifetime, Budget

Participant Profiles

Availability,
Reputation, Cost

Coverage, Participation, 
Lifetime, Budget Qualifier

Assessment

Progress Review

Location, Time,
 Transportation Mode, 

Campaign Data

Fig. 2. Recruitment Framework Inputs, Outputs, and Steps
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4 Related Work

An overview of related work in terms of models, algorithms, and systems that
share properties similar to the participatory sensing recruitment system is pro-
vided. First, models used to represent mobility and reputation that exist are
reviewed. Then, details about systems that share a similar purpose of selecting
resources for a task based on set conditions are documented.

4.1 Mobility Models

Location Summarization for Personal Analytics. There has been a sig-
nificant amount of work in regards to coming up with clustering algorithms
to summarize the most significant destinations of a user based on location
traces [12,13,14]. The location traces can come from a GPS receiver, access point
(GSM or WiFi) mappings, or hybrid setups that combine GSM, WiFi, and GPS.
To derive the signification destinations, consecutive location points within a cer-
tain time period are aggregated into clusters. Also, certain systems use map
matching and reverse geo-coding to add additional contextual information (se-
mantic meaning) to the clusters [15]. This information has been used to create
“gazetteers” (geographical dictionaries) for individuals. In terms of the recruit-
ment framework, the qualifier step will have to use a similar clustering scheme
as these systems since the granularity of summarization is on the destination
and route level.

Location Prediction to Adapt Applications. Mobile quality of service
(QoS) and location based services (LBS) have used location prediction in order
to improve and enable applications. The mobile QoS work mainly concentrates
on creating systems that provide predictive and adaptive bandwidth reservation
for mobile phone users based on their short term mobility. These models take a
very microscopic view on mobility, concentrating on determining which “cells”
a user might travel based on transition patterns from previous cells, time spent
in the current cell, and speed/trajectory information [16,17]. Most LBS use the
current location of a user for application adaptation, for instance in traffic, en-
tertainment, and shopping settings. But researchers have proposed to make LBS
more relevant to the user’s next destination. For instance, [18] models transi-
tions of individuals using Markov processes, and [19] incorporates factors such as
land-use information to help with destination prediction. Although the recruit-
ment service does not require this type of short term prediction, the underlying
algorithms to model historical location data is relevant.

Mobility Based Networking. The Mobile AdHoc Networking (MANET)
community has used mobility models that simulate the movements of individuals
to test out performance of networking protocols [20,21]. Early work concentrated
on using a random waypoint model where a node is specified with certain speed,
direction, and duration of travel and then simulated to generate mobility pat-
terns by randomly changing these factors after a period of time. Recently, these
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models have gotten more sophisticated with the inclusion of geographical con-
straints and historical information, but they are still mainly useful for generating
statistically equivalent traces and not for modeling existing real world traces.

Delay tolerant networking (DTN) has also used mobility models in order to
manage routing of messages so that systems would work in situations that do not
have continuous network connectivity. These systems rely on creating location
matrices that model the presence of an individual at different locations and
then compare the profiles of users to figure out where to disseminate a message
so that it will eventually end up in the target location [22,23]. Similar type of
modeling has been used by the Reality Mining project to learn about location
habits of groups [24]. Overall, this work is relevant to the project review step in
the recruitment process since mobility profile similarity checks are needed.

4.2 Reputation Models

Summation and Average. The simplest reputation models are ones that are
summation and average based. In this setup, ratings are aggregated, by summing
or averaging, to create an overall single reputation score [25]. An example of a
summation system is eBay where ratings, which can be either -1 (negative), 0
(neutral), and 1 (positive), are added together [26]. Amazon instead uses aver-
aging and relies on a “star” rating system that ranges from 1-5 where 1 is poor
and 5 is excellent [27]. The advantage of these models is that they are easy to
understand since a single number represents reputation, but the disadvantage is
that they provide a primitive view on an individual’s actions and can cover up
negative ratings if many positive ratings exist in proportion [28].

Discrete Trust Models. An alternative scheme to having reputations being
a numerical value is to use discrete labels. For example, the Slashdot web site
aggregates ratings on actions, such as story submissions, postings, moderation
activities, into “karma” tiers for participants that include terrible, bad, neutral,
positive, good, and excellent [29]. Although this model is helpful for individuals
to quickly determine a meaning for a reputation measure, it is not mathemati-
cally tractable and has no method to determine reputation confidence [28].

Bayesian Systems. Reputation models based on Bayesian frameworks have
been popular for peer-to-peer networks and sensor systems [25,30]. Particularly,
these systems rely on ratings, either positive or negative, and use probability dis-
tributions, such as the Beta distribution, to come up with reputation scores [31].
By taking the expectation of the distribution, reputation can be determined.
The confidence in this reputation score is captured by analyzing the probability
that the expectation lies within an acceptable level of error. Additional features
are easily enabled, such as aging out old ratings by using a weight factor when
updating reputation and dealing with continuous ratings by employing an ex-
tension involving the Dirichlet process [30,31]. Overall, this Bayesian framework,
specifically with the Beta distribution, seems to be appropriate to model partic-
ipant data collection habits.
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4.3 Selection Services

Crowd-Sourcing Sites. Many crowdsourcing services on the web have re-
quirements that need to be met before individuals can take part in a task [32].
Sites like Amazon Mechanical Turk and GURU.com, which are systems that
provide a marketplace to get commissioned work done, keep detailed statistics
tracking the performance of workers. In Amazon Mechanical Turk, work done
by a participant is evaluated in terms of whether it was accepted or rejected
by requesters [33]. In GURU.com, the technical skill, creativity, timeliness, and
communication capabilities of a worker are kept through a star-based rating sys-
tem based on feedback from work requesters [34]. Our work builds on this idea
of monitoring user behavior and provides metrics to evaluate participation and
performance of individuals involved in data collection.

Sensing Systems. Sensor network research has taken place in regards to select-
ing and placing static devices to maximize coverage [35]. Similarly, work exists
to coordinate robotic motion for sensing purposes [36]. Unfortunately, the algo-
rithms for these systems do not apply directly to the recruitment problem since
mobility of individuals is not always controllable and there exists variability in
when and how sampling occurs. Previous work related to mobile phone oppor-
tunistic sensing either concentrate on creating protocols to recognize when sens-
ing should be activated based on pre-defined zones [6,7,37] or choosing how much
sensing should occur depending on privacy restrictions [38]. Our work differs in
that the data collection recruitment problem is directly addressed with partic-
ipant availability, reputation, and coverage/participation inconsistency consid-
ered. Also, our system does not rely on knowing prior distribution information
or having detailed statistical models of the phenomenon of interest.

5 System Details

The steps involved in both availability as well as participation and performance
based recruitment are detailed below. Specifically, we focus on the inputs and
outputs of each of the different steps in the recruitment framework. Also, we
detail the models and algorithms involved in the framework.

5.1 Coverage Based Recruitment

Mobility Information. Coverage based recruitment relies on transforming raw
participant mobility data into building blocks that can be used for processing.
The system assumes that participants have previously collected location traces in
the form of latitude, longitude, and time points for a period of time that represent
their “typical” behavior (e.g. for a profile week). The location traces could be
augmented with sensor-based information which can help in adding context such
as transportation mode (still, walking, running, biking, or driving) [39,40,41].
Having this type of data collected by participants is not far fetched; services
already exist that rely on location check-ins and traces [42,43].
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Qualifier. The transportation mode annotated location traces are transformed
into significant destinations and routes for the qualifier. The system pre-processes
the data by normalizing it to a set sample rate (for instance, every 30 seconds)
and fills in missing values when the GPS signal is lost. For large spatial gaps, the
points are filled by generating likely traces using the Google Maps API. Then,
location points within a certain time period (at least 15 minutes) and distance
bound (50 meters) are grouped into “stays” [44]. Density based clustering is used
to group stays within a certain distance (250 meters) into “destinations” [14].
Routes are points between destinations and are aggregated using hierarchical
clustering where the average minimum point segment distance is the comparison
metric [45]. Qualifier queries use these building blocks to create filters, such as
participants that have at least 5 destinations in a certain area in a week or
individuals that have 7 unique walking routes during day time weekday hours.

Assessment. Next, in the assessment step a subset of qualified individuals
that maximize coverage are identified. Formally, the assessment is an instance
of the budgeted maximum coverage problem [46]. A participant pool, P =
{p1, p2, ..., pn}, exists with non-negative costs, {ci}n

i=1. Spatial and temporal
blocks with an associated transportation mode, E = {e1, e2, ..., en}, are present.
The blocks have utilities, {ui}n

i=1, defined for the campaign as well. The goal
is to find a subset of participants P ∗ ⊆ P , such that the utility of elements
covered, U(P ∗), is maximized while the cost of the subset, C(P ∗), is under a set
campaign budget, B [38,46]. Hence, the optimization can be stated as:

argmax U(P ∗) subject to C(P ∗) ≤ B (1)

This optimization is NP-hard since selecting a participant for the subset changes
the utility for the rest not included. Thus, to find the best solution, all subset
combinations must be searched. Since the utility function is sub-modular (adding
a participant helps more if fewer are already selected) and non-decreasing (utility
of subset is less than the set it is derived from), the greedy algorithm can find an
adequate solution when costs are identical (at least 63% from the optimum) [47].
If costs are not identical, the benefit-cost greedy algorithm can be used where the
ratio of utility to cost is used as the metric to pick participants [38]. Alternatively,
this algorithm can help find the least costly subset to achieve a coverage goal.

Progress Review. While a campaign runs, check-ups are needed to ensure
that participant mobility is consistent with the profile used for recruitment.
Thus, in the progress review the similarity of mobility profiles is checked. To
model mobility for the progress review, a time span (one week) is represented
using an association matrix, A, consisting of m x n entries [22,48]. The m rows
indicate spatial blocks (e.g. 10000 meter2 grids) while the n columns model
distinct time periods (days). An entry in the matrix is the proportion of time
spent in a location performing set transportation modes within the time period
selected. A day is chosen as the representative time period while a week is the
time span based on previous work on human location patterns [24,49].
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Since it is only necessary to compare the dominant mobility patterns, a sum-
marization technique for the association matrix is needed. Thus, Singular Value
Decomposition (SVD) is applied to the association matrix: A = U · Σ · V t. In
this decomposition, U , the left eigenvectors, are referred to as eigenbehaviors
and represent patterns that are common across different time periods (days),
and the singular values Σ represent the variance represented by each pattern.
Consecutive time spans (weeks) are compared by taking the cosine similarity of
the behavior vectors weighted by the singular value importance [22]. Hence, if
there exists two eigenbehaviors, Ut1 and Ut2, representing different time spans,
t1 and t2, with singular value importance, Wt1 and Wt2, the similarity metric is:

Similarity(Ut1, Ut2) =
rank(Ut1)∑

i=1

rank(Ut2)∑
j=1

wt1iwt2j |Ut1i · Ut2j | (2)

Similarity is indexed from 0 (least similar) to 1 (most similar) by normalizing
on the base eigenbehavior similarity.

5.2 Participation and Performance Based Recruitment

Inspired by reputation metrics in other domains (Section 4.2), we divide data col-
lector reputation into two classes: cross-campaign and campaign-specific. Cross-
campaign indicators, such as the number of campaigns volunteered, participated
in, and abandoned, provide a granular view of a participant’s experience across
many campaigns. Campaign-specific metrics measure the quality and quantity of
samples that can be expected for a specific data collection. In our work, we con-
centrate on campaign-specific measures, specifically on participation likelihood.
Other examples include timeliness, relevancy, and quality of samples.

Timeliness represents the latency between when a phenomenon is sampled (or
occurs) and when it is available for analysis. It is influenced by user and upload
delay. Relevancy indicates how well the sample describes the phenomenon of in-
terest. It ranges from describing the item that is desired to not being related at
all. Quality represents the ability of a processing module to determine a partic-
ular feature for further classification. Participation likelihood describes whether
an individual took a sample when given the opportunity. These measures can
be automatically quantified or might require human intervention. The campaign
organizer defines a utility function that combines the importance of each metric
to determine the overall reputation for a participant on a per campaign basis.

Modeling. The Beta distribution is adopted for campaign-specific reputation
since it can be stored and updated efficiently, estimate stochastic (due to the
randomness of the system) and epistemic uncertainty (due to lack of knowledge
about the randomness of the system), and have features such as aging added on
top easily. The distribution is indexed by alpha (α) and beta (β), which define
the number of successful and unsuccessful events and is expressed as follows:

f(p|α, β) =
Γ (α + β)
Γ (α)Γ (β)

pα−1(1 − p)β−1 (3)
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A participant’s reputation can be found by calculating the expectation of the
Beta distribution (stochastic uncertainty), E(α, β) = α / (α + β). Confidence in
this reputation score (epistemic uncertainty) is the posterior probability given
the actual expectation value lies within an acceptable level of error found by cal-
culating the area under the Beta curve [50]. Alpha and beta are set to 1 initially,
which results in a uniform distribution where all values are considered equally
likely. Distributions that represent more evidence for a hypothesis are peaked at
the expectation compared to ones with less evidence. Also, if continuous ratings
are needed an extension of Beta involving the Dirichlet process can be used [30].

Qualifier. Most campaigns will not have a prior participant reputation data as
related to the specific data collection that is of concern. Thus, it is necessary to
go through a “calibration” exercise so that evidence is gathered for the qualifier
step. This exercise commonly involves having an expert gather ground truth on
set paths and directing participants to traverse them as well. In cases where an
expert cannot be involved, participants simply get compared against each other
on these paths. The contributions are evaluated in the Beta framework and the
qualifier step removes individuals that do not have a certain reputation level.

Progress Review. As a campaign runs, the participation and performance of
individuals could change. For example, individuals might be initially very diligent
about data collection but then change their behavior due to loss of interest or
schedule tensions. Thus, it is important to be able to check reputation based
on the most current information. The Beta distribution provides the ability to
consider discounting old information by using an aging factor, w. This aging
is done by discounting existing reputation values at set intervals when updates
occur [31]. Essentially, alpha and beta are transformed as follows:

αnew = wage ∗ αold + αobtained; βnew = wage ∗ βold + βobtained (4)

6 Evaluation

This section analyzes the models and algorithms involved in coverage and repu-
tation based recruitment. The sustainability campaigns provide the data for the
evaluation. Importance is placed on highlighting the features of the framework.

6.1 Campaign Deployment Information

The sustainability campaigns were initiated by engaging individuals from cam-
pus student groups. Individuals were given a phone, trained on what to identify,
and how to use the data collection software. Participants ran a campaign for
at least one week although many continued for additional days (results shown
in Table 1). Before the campaigns started, all individuals performed calibration
exercises where they would go on pre-defined routes to collect data. These routes
were also traversed by “experts” who gathered ground truth. During the cam-
paign, participants did not receive instructions on where and when to sample.
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Table 1. Campaign Participation Data

Campaign
Type

Total
Images

Total
Users

Average
Per User

Maximum
Per User

Minimum
Per User

GarbageWatch 1752 31 56 231 7
What’s Bloomin 4041 22 183 398 4
AssetLog 1488 16 93 266 11

6.2 Coverage Based Recruitment

The usefulness of coverage based recruitment is analyzed with the GarbageWatch
campaign. Specifically, we focus on the assessment and progress review stages.
Participants have already passed the minimum qualification of having routes and
destinations on the campus since they all belonged to the university community.

Assessment: Evaluating the Best Coverage of the Campus. For Garbage-
Watch, the spatial zones of interest are campus waste bin locations, temporal
span is daytime weekday hours, and the transportation mode is walking. The size
of the spatial blocks was set to 10000 m2, which was empirically chosen based
on GPS error and waste bin density, and the temporal block granularity was set
to 1 hour so recycling behavior over time can be monitored. Three participant
selection methods were compared: random, naive, and greedy. Random selects
individuals for campaigns arbitrarily. Naive represents a heuristic where selecting
participants is based on which individual covers the most blocks overall with-
out considering what existing selected participants have covered. Greedy chooses
participants that maximize utility while taking into consideration the coverage
by existing selected participants. Thus, for greedy the participant utilities need
to be re-calculated after an individual is selected. For evaluation purposes, the
block utilities are all the same, the participant costs are set to 1, and the budget
is limited to 15. In essence, 15 individuals are chosen from the pool of 31.
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Fig. 3. Algorithm Comparison for GarbageWatch Campaign Coverage
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The coverage results for the algorithms are shown in Figure 3 a.). The number
of spatial temporal blocks is 6840 made up off 114 spatial blocks (based on 10000
m2 granularity) and 60 time blocks (12 daytime hours per day for 5-weekday
span). Furthermore, Figure 3 b.) shows specific coverage information for the
greedy case, and Figure 3 c.) illustrates the greedy results on a map with the
participant with the most coverage for a spatial block taking ownership. Ran-
dom selection performs much worse then either the naive or greedy algorithms,
specifically picking participants that have less spatial and temporal coverage
and more spatial blocks not covered by anyone. The greedy algorithm performs
better then just the naive heuristic. If more coverage overlap existed between
participants, the performance of the greedy algorithm would be even higher. In
general, considering availability when selecting participants is important. Other-
wise, large coverage gaps could exist, and the opportunities available for sensing
could be low. Also, the more complex instance of this problem, with variable
costs for participants and different utilities for spatial and temporal blocks, can
be handled by using a variant of the greedy algorithm where the benefit to cost
ratio is used to evaluate participants during the selection process [38].

Progress Review: Comparing Coverage Profiles Over Time. As a cam-
paign runs, participants availability might deviate from their established pro-
files. Thus, campaign organizers should be able to run checks on mobility profile
consistency so that actions, such as recruiting additional individuals or provid-
ing feedback to existing participants, can take place if there is coverage loss.
This progress review consistency check is especially important for long running
campaigns since schedules might shift. The usefulness of the progress review is
shown by analyzing two participants involved in the sustainability campaigns.
One participant had a very stable schedule while the other had a significant
shift occur. The mobility profile check is run by calculating similarity between
eigenbehaviors of two weeks using SVD. Participants’ mobility is modeled using
an association matrix which is 114 (number of spatial blocks when consider-
ing a spatial granularity of 10000 m2) by 5 (number of weekdays in a week)
in size that takes into account daytime walking instances on campus during a
week.

The mobility map and similarity score of Participant #9 is shown as Fig-
ure 4 a.), and based on interviewing the individual, we find that the participant
mainly travels between two main hubs on campus and does not typically deviate.
Thus, the similarity score of 0.85 based on comparing eigenbehaviors between
the two weeks makes sense. In some cases, an individual might have a shift in
schedule or a change in the way they travel. This was the case with Participant
#2 who changed their transportation mode between their residence and campus
from walking to driving between weeks. As shown in Figure 4 b.), this individ-
ual’s similarity score is only 0.34. Overall, the SVD based similarity measure
is effective to learn about major availability changes. Also this method has the
advantage of summarizing mobility patterns in a compact manner - aggregating
weeks of similar mobility data into a few dominant eigenbehaviors [8,22,48].
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a.) Participant #9 Base and Comparison 
Profile - Similarity Score of 0.85

b.) Participant #2 Base and Comparison 
Profile - Similarity Score of 0.34

a ) Participant #9 Base and Comparison b ) Participant #2 Base and Comparison

No CoverageCoverage

Fig. 4. Progress Review Consistency Check for Campaign Coverage

6.3 Participation and Performance Based Recruitment

Another factor to consider during recruitment is participants’ reputations as data
collectors. Although factors such as sample timeliness, relevancy, and quality
can play a role in reputation, in our sustainability campaigns we found these
elements to be less applicable since automatic image uploading was occurring,
the items that needed to be sensed were distinctive, and participants took very
few unusable images. Thus, we concentrate on whether a participant is likely to
contribute a sample if they had an opportunity. This metric is used to exercise
the features of the Beta distribution in the qualifier and progress review stages.

Qualifier: Running Calibration Exercise for Initial Reputation. Ini-
tially, for the three campaigns, no prior information existed in terms of sampling
reputation. Thus, calibration exercises were implemented to get an initial sense
of a participant’s likelihood to capture a sample if they had a chance. This was
done by having three specific routes that participants had to traverse for each
campaign. Ground truth information was obtained along these paths by an “ex-
pert”. For the case of GarbageWatch, opportunities to sample were places where
waste bins existed. Similarly, for What’s Bloomin the opportunities were related
to places where flowers existed, and for AssetLog, each route was associated
with a color and items of that color were samples of interest. The calibration
routes were chosen to be paths that individuals on campus are familiar with.
The calibration is run by participants once at the beginning of a campaign.

When designing a calibration exercise, an important factor to consider is
whether there are enough sampling opportunities to be able to be confident
of the reputation that is derived. For instance, in the case of the AssetLog cam-
paign, if one route is only considered instead of all three to calculate initial
reputation, then the campaign organizer might not have confidence in the rep-
utation prediction provided. For example, Figure 5 shows Beta distributions for
a participant where one route is compared to all three routes. As Figure 5 a.)
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shows, even though the reputation of the participant is high with a score of 0.77
(likely to sample the phenomenon when given the chance), our confidence in
his ability is low since the number of check points for sampling is small when
considering only one route. When all three routes are used, Figure 5 b.), the
confidence we have in the overall reputation of 0.81 is much higher. In fact, the
confidence is at a level of 0.97 with all three routes considered as compared to
just 0.61 when one is used. The confidence score was calculated by taking the
area under the Beta curve with an acceptable error of 0.1 around the mean
reputation.
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Fig. 5. Calibration Reputation for Participant in AssetLog Campaign

A question that comes up is whether these calibration exercises are useful
as a predictor of sampling behavior during the actual campaign. To test this
we compare the reputation gathered from the calibration exercises to the rep-
utation derived when the participant ran the actual campaign. Since mobility
traces were collected while the participants were performing the campaigns, we
analyzed when they took images compared to when they had an opportunity.
For GarbageWatch, prior information on all the waste bins locations existed and
for the What’s Bloomin and AssetLog campaigns, collective knowledge gathered
from the participants submissions were used as ground truth. Table 2 shows
the average of the percent difference of reputation for each participant in the
three campaigns. The values are calculated by taking the difference between the
calibration reputation and the reputation derived from the campaign and then
averaging per campaign. The results, an average of 12.5% in reputation differ-
ence when considering all campaigns, indicate that the calibration exercises are
reasonable approximations for participants real campaign reputations.

Table 2. Comparison of Calibration to Real Campaign Reputation

GarbageWatch What’s Bloomin AssetLog
Reputation Difference 10.3% 12.4% 14.8%
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a.) 1st Week

b.) 2nd Week c.) 1st and 2nd No Aging

d.) 1st and 2nd Week
     Aging Factor of .75 mean = 0.46

confidence = 0.93
alpha = 37, beta = 43

mean = 0.15
confidence = 0.99
alpha = 14, beta = 80

mean = 0.30
confidence = 0.99
alpha = 50, beta = 122

mean = 0.14
confidence = 0.99
alpha = 9, beta = 56

Fig. 6. Reputation for Participant Considering Aging Factor

Progress Review: Checking Reputation Over Time. Since there is a
chance that sampling behavior could change as campaigns run, it is important
to check participant reputations at set points as part of a progress review. In-
troducing aging on top of the Beta distribution can help with this checkup since
it can be used to obtain a more current indication of an individual’s reputa-
tion. We exercise this feature by analyzing the contributions of an individual
that was involved in What’s Bloomin for an additional week. Figure 6 shows the
reputation, along with the Beta curves, of this participant based on their first
week, second week, and then two methods to combine their weeks (with and
without aging). During the first week, the participant’s reputation to sample
when given the opportunity was 0.46. But on the second week, their reputation
is much lower at a level of 0.15. At the two week period, if all contributions were
considered equally, the participant’s reputation would be 0.30 but this is not
indicative of the recent performance change. Instead if an aging factor of 0.75
(where 1.0 represents keeping all history and 0.0 is only considering the current
information) is used to discount past reputation daily, then the end reputation
is 0.14 which is a better indicator of the recent behavior shift.

7 Discussion

This section concludes the paper by summarizing lessons learned for campaign
recruitment based on the evaluation results. Also, feedback provided by partici-
pants on their experience of performing campaigns is presented. Finally, future
work that makes the recruitment system more flexible and adaptive is reviewed.

7.1 Recruitment Framework Analysis

The evaluation results reveal some important lessons for the recruitment frame-
work. When analyzing the performance of the different algorithms during the
assessment stage (Section 6.2), we find that selecting individuals based on using
the greedy algorithm significantly improves coverage over random selection but
only slightly compared to the naive approach. If there existed more coverage
overlap between participants, the performance gap between greedy and naive
algorithms would widen. This indicates that our recruitment framework is more
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useful when campaigns have a limited geographic scope (neighborhoods, city
blocks) and have participants with higher mutual coverage.

Several individuals participated in multiple campaigns. When participant per-
formance, in terms of sampling likelihood, was compared across campaigns, the
individuals on the extremes, either on the high end where their reputation was
above normal or vice versa, generally remained at those levels (top or bottom 5
in one campaign stayed in that same range in the others). This indicates that
there is potential in using previous performance in similar campaigns to boot-
strap reputation models. But a larger study with more varied participants needs
to done to verify this conclusion. Also, in our campaign set, participants grew
tired of collecting samples if the campaign lasted for an extended period of time.
When individuals performed the campaigns for an additional week, their repu-
tation was much lower. This points to the usefulness of the progress review step
to check up on participants especially in long running campaigns.

7.2 Participant Experience Feedback

Participants were asked to fill out post-campaign surveys on their experience in
performing the data collections. In terms of capturing data on the mobile phones,
participants indicated that it was important that the act of data capture should
be streamlined so that it can be repeated rapidly. Many participants also wanted
mobile visualizations to help them participate more effectively. For instance,
individuals desired a map interface colored by campaign coverage needs and an
augmented reality browser to help discover nearby locations for participation.
When asked if they would change their routines to participate in campaigns, most
indicated that they would be willing to adhere to minor diversions but drastic
changes would require extra incentives. Finally, participants stated that daily
contribution summaries and in situ reminders would help increase participation.

7.3 Future Work

There are many opportunities to enhance the recruitment framework. The cur-
rent system relies solely on past coverage and participation behavior. But con-
tributors might be aware of impending changes in their schedule or habits. In-
dividuals could specify a level of service they are willing to offer, and organizers
could weight this projection based on participants’ profiles and past negotia-
tion fulfillments. Another area of exploration is whether more complex incentive
models can help fix sensing gaps caused by inconsistent participants. Bonuses
can be given if participants fill immediate campaign needs, and incentives can be
scaled depending on context. Finally, the recruitment system should explicitly
consider participant sampling bias. Ground truth from independent sources and
parameters learned from all participant submissions can quantify this behavior.
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Abstract. We conducted a 19 participant study using a system comprised of 
wireless galvanic skin response (GSR), heart rate (HR), activity sensors and a 
mobile phone for aggregating sensor data and enabling affect logging by the 
user. Each participant wore the sensors daily for five days, generating approxi-
mately 900 hours of continuous data.  We found that analysis of emotional 
events was highly dependent on correct windowing and report results on syn-
thesized windows around annotated events.  Where raters agreed on the timing 
and quality of the emotion we were able to recognize 85% of the high and low 
energy emotions and 70% of the positive and negative emotions.  We also 
gained many insights regarding participant's perception of their emotional state 
and the complexity of emotion in real life. 

Keywords: Affective computing, emotional sensing, mood detection. 

1   Introduction 

Today’s mobile devices allow far more than making phone calls and browsing the 
web. Thanks to advances in sensing, higher computation power and continuous con-
nectivity, many new applications are emerging from logging physical activity, to 
measuring and communicating individuals’ vital signs, to locating nearby services and 
friends. Due to their proximity to the users throughout their day, these devices provide 
a continuous and comprehensive perspective of the user. In our research, we build 
upon this accessibility aspect to monitor people’s emotional state throughout the day.  
This can be an extremely effective tool for self reflection and self help, especially 
when coupled with the detection of other contexts, such as activity and social interac-
tion. Awareness of one’s current emotional state is a necessary step in the ability to 
reflect on one’s emotional patterns across time and situations. This self-reflective 
ability, sometimes called mindfulness, is associated with both physical and mental 
health [1]. A variety of clinical and self-help programs for stress reduction revolve 
around mindfulness training [2].   

Emotion and its physiological correlates have been rigorously studied by psycho-
physiologists. Most psycho-physiological experiments are conducted in a laboratory 
environment where emotional responses are either performed or primed. This labora-
tory research reduces the ambiguity of the ground truth determination and focuses on 
the emotional recognition.  However, these laboratory measurements may not reflect 
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the ranges and patterns of emotional experiences that are present in everyday settings.  
Our intent was to focus precisely on the complex, noisy emotions that emerge in eve-
ryday life. To this end, we conducted an experiment on 19 users for 5 days each, in 
which we monitored heart-rate data, Galvanic Skin Response data, and physical activ-
ity through accelerometer data.  Participants were instructed to log their emotional 
state on smart phones. This self report data was associated with the sensor data and 
used to develop models for passive monitoring of emotional states. In this paper, we 
describe our system design for sensor and annotation collection, our experiment de-
sign and our data analysis. We also present challenges we encountered in establishing 
ground truth and their implications for future research design. 

2   Related Work 

A long history of research has examined the physiology of emotion. Emotion theorist 
William James first began correlating physiological responses to emotion 1884[3]. 
Karl Jung used GSR fluctuations to identify “negative complexes” in word associa-
tion tests in 1906 [4] and the first lie detectors, where changes in GSR and HR were 
related to guilty stress, were introduced in the 1940s [5]. Recent work in affective 
computing [6] has for the most part also involved laboratory situations. The majority 
of reported recognition rates are gathered through priming by stimuli or asking par-
ticipants to perform an emotion, each of which can cause non-emotion based physio-
logical change. There are many valid reasons for these controlled experiments: the 
monitoring equipment was traditionally large and difficult to move, real emotions are 
often complex and difficult to reliably stimulate and in the real world are often caused 
by events that would be considered too cruel to cause intentionally.  Some experi-
ments have ventured into the real world, but were still very constrained and used 
priming. For example, Picard’s 2005 study measured driver’s stress reaction in the 
real world [7], but the stress levels were primed by known driving routes and condi-
tions. These controlled experiments did not focus on capturing the range of emotions 
present in natural settings.  

There have been many instances of capturing emotions in everyday life through 
emotion journaling. Applied psychologists have often had subjects capture their emo-
tional experience in everyday life by recording them on paper [8]. More recently the 
logging of experience has been possible on smart phones [9]. These emotion journal-
ing studies have either involved sparse annotations or have primarily been designed 
for targeted intervention, e.g. purposes of anger or stress management.  

Ambulatory physiological recording has been possible for medical purposes since 
the 1960s with the advent of Holter ECG [10].  Since then various medical telemetry 
devices have become available, including arm and finger blood pressure, respiration, 
motion for activity and tremor detection, temperature and galvanic skin response 
[11,12]. In general, these devices have been clunky, single purpose and designed to 
measure a specific physical or psychiatric medical condition such as Hypertension, 
Panic Attacks or Parkinson’s disease.  The devices have also mainly been recording 
devices without significant interaction and where the analysis is done offline by 
medical professionals.     
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A new era of mobile sensing is being made possible by the availability of wearable 
physiological sensors and ultra-mobile computing devices.  The combination of these 
two components into a single system allows real time data recording of physiological 
signals and real time analysis and interaction [13,14].  New systems are also specifi-
cally being designed for robust wearability extreme circumstances, such as the moni-
toring of children [15].  A recent study, Mobile Heart Health, used wireless ECG and  
mood sampling to to trigger therapeutic interventions on the phone  to invite self-
awareness and coping in everyday life [16,9].  

Our system was designed to automatically monitor physiological responses and 
correlate these with emotion journaling. We measured both heart rate and galvanic 
skin response physiological signals. We aimed to capture emotions as they happen in 
uncontrolled, natural environments, while people are driving, singing, chatting with 
friends, attending a boring meeting and even while going to the dentist.      

3   System Architecture and Design 

The system comprises of wearable sensors and an aggregation device. The sensor 
devices monitor physiological signals, such as heart rate (HR), and galvanic skin 
response (GSR), along with physical activity. The phone aggregator connects to the 
GSR platform and Mobile sensing platform (MSP) using Bluetooth, gathers data from 
these sensors and stores it in a mobile database. The watch (Polar R800) aggregates 
the data from the polar heart rate sensor using a proprietary radio connection. 

3.1   Mobile Sensing Platform 

Mobile sensing platform (MSP) [17] was used for monitoring physical activity (see 
Fig. 1(a)). The platform aims at supporting a wide range of applications, like inertial 
navigation, and user activity inference [18]. The package allows the platform to be 
worn on the waist (belt clip). MSP is a battery operated device equipped with multiple 
sensors including a 3D accelerometer, which was used for modeling physical activity. 
Statistical features like mean, variance, min, and max of all 3-axis of the accelerome-
ter were used to build an adaptive boosting classifier to discern activities like sitting, 
standing, laying, strolling, brisk walking and running. The accelerometer signal was 
processed every 5 seconds and the classified decision vector containing the most 
probable user activity was sent to the aggregator to facilitate analysis of the effect of 
physical movement on the physiological signal.  

3.2   Polar Heart Rate Sensors 

Polar WearLink along with RS800 logging watch[19] were leveraged as is for moni-
toring HR and HRV (see Fig. 1(b)). The sensor attaches to a conductive fabric chest 
belt and transmits data to the RS800 watch where the data is logged. The watch and 
the logging phone were time synchronized to ensure a common time base across the 
system. The data from the watch was downloaded using the Polar ProTrainer software 
[19] software for further analysis. 
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Fig. 1. Sensor Devices included MSP for activity sensing, Polar HR and SHIMMER GSR 

3.3   GSR Sensor 

Galvanic Skin Response is a measure of change in the conductivity of the skin due to 
an individual’s psychological state and is widely used as a modality for monitoring 
stress and mood related changes [20, 15]. The principle of operation of GSR is based 
on the change in conductance due to the amount of sweat level in the eccrine sweat 
gland [21]. We are not aware of commercially available GSR solutions that meet our 
requirements. Hence we developed a sensor board capable of measuring change in 
conductance and connected it to the SHIMMER platform [22], which acted as the 
processing and communication unit. The device was harnessed to a wrist band and a 
neural electrode was attached to the fingers for monitoring the change in conductance 
(see Fig. 1(c)). The data from the sensor board was sampled at 4Hz and transmitted to 
the aggregator via Bluetooth. 

3.4   Mobile Phone Aggregator 

An HTC Touch Pro phone was leveraged for data storage and user interface. The 
phone implemented the software architecture described below and acted as an aggre-
gator for the data transmitted from the sensor devices (MSP, GSR).  The data was 
time-stamped and stored in a mobile database for offline processing. The phone was 
also used to collect ambient audio data at 11 KHz and stored it into wav files.  

3.5   Software Architecture 

Fig. 2 describes the software architecture of our aggregator device.  It consists of a 
proprietary framework (Carson Springs) that provides sensor communication, data 
storage and the ability to plug in application level modules like user prompter, GSR 
and MSP data processors and user interface. We used the polar heart rate sensor and 
aggregator as is and the aggregation mechanism is not described here.  All the com-
ponents listed below are implemented in S/W and run on the phone. 

Carson Springs Framework: This is an internal framework developed at Intel  
consisting of four major components, the sensor controller module along with the 
Bluetooth communication module allowed the application to connect to the sensor 
nodes to send / receive data. The data exchange module allowed the application level 



160 J. Healey et al. 

 

components to register for data from sensors for processing and connection verifica-
tion. The MSP data processor module parsed the result vector from MSP and ex-
tracted the most likely physical activity. This information was forwarded to user 
prompter and data storage modules through data exchange. Finally the data storage 
module comprised of data access and DB Writer acts as an interface to store and  
retrieve data from the mobile database. 

User Prompter/ GSR Analysis Module: The prompter module implemented the an-
notation reminder logic. User prompting was triggered at thirty minute intervals and 
when the system detects an interesting signal changes. We developed a naïve process-
ing algorithm for GSR that detected rate of change in the signal and specific patterns 
in the tonic level to identify an interesting event. The information from MSP was used 
to filter out events generated during active states. The events generated during seden-
tary state were used to trigger an annotation prompt by playing a sound file on the 
phone. In order to minimize annoyance to the user, we programmed the algorithm to 
prompt the user at most once every 15 minutes.  Events that occurred within 15 min-
utes of a previous event were not prompted. The signal events and the periodic events 
were stored in the database along with the annotations to facilitate further processing. 

Sensor Controller

User Prompter

Data
Store

GSR Analysis
Module

Data
Exchange

DB 
Writer

MSP Data 
Processor

General UI/App

Persistent 
Connection

 

Fig. 2. Sensing and aggregation architecture 

Persistent Connection: The distributed nature of the system introduces several op-
portunities for connection loss between the aggregator and sensor devices. The persis-
tent connection module monitors the sensor data traffic to determine connectivity with 
the sensor devices. If the data flow is broken from a sensor device the module identi-
fies the disconnected sensor device and periodically attempts to reconnect. It also 
communicated the loss of connection to the UI. Connection loss is a common problem 
in wireless body worn devices as discussed in [23]. The ability to reconnect signifi-
cantly improved the reliability of data collection. 
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User Interface: The main purpose of the module was to allow the user to start/stop 
the data collection and annotate their emotional states. It also provided feedback to 
the user about sensor connectivity. The annotation part of the interface is described in 
detail in section 4.2. 

Time Synchronization: Use of off the shelf polar heart rate monitor prevented us 
from having a single aggregator due to radio incompatibility. We had to synchronize 
both phone and watch aggregator to a specific laptop to ensure synchronization of 
heart rate data with data from other sensors. The laptop was in turn synchronized to 
an NTP server through the Intel network. The synchronization was repeated daily 
during the download/interview process to compensate for clock drift in the platforms. 

4   Experiment and Study Design 

Our main goal for the study was to gather “ground truth data” by having participants 
report their affective states for a period of days. Alongside these self-reports, we used 
sensors to record physiological signals and audio of the participant. The ground truth 
data was intended to help us develop inference algorithms for affective state detection 
in ambulatory settings and to understand what is possible to detect via sensing.  

4.1   Recruitment  

Nineteen full-time professionals enrolled to participate in the study (12 men and 7 
women). Our participants were a convenience sample of colleagues at Intel Corpora-
tion.  These full time professionals were predominantly engineers (n=16) and the rest 
worked in marketing or management. No participants were on heart-altering  
medication. The majority of our participants were in their late 20s and 30s, and 6 were 
older than 35. Participants were recruited via email sent to a pool of our contacts and 
referrals.  

4.2   Study Protocol 

Participation involved an introduction meeting, daily interviews, and a final interview. 
In the introductory meeting, participants reviewed a consent form, and the process for 
annotating their moods and operating/wearing the sensor. Daily interviews, conducted 
at the end of each work day, were held to understand participants’ annotations and to 
add annotations that they did not make during the day. These interviews began with 
guided open-ended questions about participants’ affective states during the day, and 
included queries about high and low points in their day, comparison of the morning 
and afternoon time segments, and comparisons of that day to the previous one. Next 
we asked targeted questions about specific times of the day based on their sensor data 
and annotations. Lastly we reviewed the day’s sensor data with our participants. The 
final interview included a review of the entire week and a discussion of their high/low 
points of the week and any insights participants gleaned about their emotional  
patterns. We also used this interview to gather feedback on the trial, such as wearabil-
ity of the devices and/or usability of the interface. For the duration of the study, par-
ticipants wore the three sensors described (GSR, heart rate, and accelerometer) and 
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carried an HTC Touch Pro smart phone for eight or more hours a day. They were 
instructed to log their affective states on these phones every time they experienced a 
change in their affective state or when their behavior might influence their physio-
logical data, e.g. eating, drinking of caffeinated beverages, or adjusting the elec-
trodes). In total, participants annotated anywhere from 5 to 40 times a day, averaging 
19 annotations a day. 

 

Fig. 3. Users annotate their emotions using the Mood Map (a) and emotion term specification 
and free text description (b). They also are able to immediately view their graph annotation 
entries for the day (c). 

For each annotation, participants indicated their current affective state as a point on 
the Mood Map [16,9]. The Mood Map was previously developed as a touch screen 
translation of the circumplex model of emotion [24] that allowed for intuitive and 
accurate mood reporting. This interface was found to invite self-awareness and reflec-
tion. The circumplex model is well evidenced in psychology research and the Mood 
Map was extensively tested and revised in previous field tests [9]. In this 2-
dimensional map, the Y axis represents low to high arousal and the X axis represents 
negative to positive valence. As a result of iterative testing, a couple of revisions were 
made to the interface: the arousal axis was labeled as “energy” and emotional descrip-
tors (e.g., happy, excited, angry) were removed from the quadrants. These terms were 
intended as a loose guide for Mood Map entries, but gave some participants the incor-
rect impression that they needed to rate the valence and intensity of each term. For the 
current study we used the Mood Map without emotional terms in the quadrants, but 
added mood word selection as a second stage of input. This two stage entry allowed 
the Mood Map coordinates to be collected independently from the word selection 
(See Fig 3(b)). A set of affective state labels were chosen based on the words used in 
early testing of the Mood Map [16] and other terms commonly used by our 
participants in pilot studies. An option for “other” allowed participants to specify a 
word not in the menu.  We also included an area for freeform text which was intended 
both for data patterning/validation and as stimulus for daily interviews.   
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Participants could also review the points they had selected throughout the day on 
the Mood Map as shown in Fig. 3(c). Sensor data was not displayed during the day to 
avoid influencing participants’ behavior. However, participants could review their 
sensor data at the end of each daily interview. The sensor data, like the annotations, 
were used as stimuli for interview discussion. The peaks and valleys were used to 
trigger discussion about emotional experiences that may have been forgotten.   

In addition to these annotations, the smart phones allowed participants to capture 
audio recordings. Again, these recordings were used to aid recall in daily interviews. 
We also requested participants’ permission to have an automated system analyze 
these audio recordings to extract auditory features, such as pitch and volume, without 
processing their speech content. Participants could opt-in to this part of the study and 
could control when they wanted to capture these audio recordings. 

4.3   Incentives 

We wanted to recognize participants’ time and efforts in this trial for carrying four 
extra devices, making frequent annotations, and making room in their schedules for 
daily interviews and troubleshooting. To alleviate these burdens and to encourage 
active engagement in the study, we used an approach of compensating participation 
with a base structure (an Apple iPod shuffle) and incremental rewards; specifically 
iTunes gift cards ranging from $5-$20 per day based on the number of annotations 
they made. An annotation was considered as a mood map selection, a mood word 
selection, and extra information that the participant entered about their context at the 
time. We gave $5 for up to 10 annotations/day, $10 for up to 20 annotations/day, $15 
for up to 30 annotations/day, and $20 for over 30 annotations. We also awarded a 
bonus gift card each week to the participant who made the most annotations.  

5   Data Analysis and Key Learnings 

Our initial approach to the data analysis was to assume that users would annotate 
emotional events soon after experiencing them.  The system design included software 
algorithms that automatically detect physiological events as the users experience them 
and prompt them to annotate. These algorithms were derived from previous experi-
ments in emotion recognition and long term stress detection.  In our initial analysis 
plan, we allowed for a one minute “eye-closing” period immediately preceding each 
emotional event annotation.  During this eye-closing period we did not “look” at the 
data because we assumed the emotional response would be corrupted during this time 
due to the reflection inherent in the act of annotation.   Therefore we only used the 
data preceding this period for analysis.  We experimented with fixed time windows of 
different lengths as shown in Fig. 4. The signal during the eye-closing period is high-
lighted in red and each of the preceding windows highlighted in a different color.  For 
example, the five minute window would include data from the blue, pink, black and 
green segments as indicated by the line labeled “5 min” extending across this period. 

From each of these fixed windows we planned to extract features of the GSR and 
heart rate that have been previously hypothesized to differentiate emotions [25,26,20] 
These included: the mean and variance; median and inter-quartile range as more  
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robust estimators of average and spread; and features reflecting the overall shape of 
the signal such as the slope and kurtosis. In addition, we considered features that were 
specific to each sensing modality, including peak frequency and rise/falls times of the 
GSR and root mean successive difference (RMSSD) of the heart rate to estimate heart 
rate variability [9].  

From previous studies, we realized that motion would be a confounding factor in 
the analysis, so we eliminated the data from time periods where the user’s physical 
activity exceeded strolling. This was done using the MSP as mentioned earlier.   

 

Fig. 4. Fixed time window preceding the user annotation was initially assumed. Sensor data 
from these time windows was annotated with the emotional event. 

For each time window (1 minute, 3 minutes, 5 minutes), sets of features were cal-
culated for both GSR and HR (where valid data existed).  Data was labeled according 
to several aspects based on where the subject had tapped on the Mood Map and the 
chosen emotion word.  For example, to train a  “high” vs. “low” arousal classifier, all 
the segments labeled with a tap in the “high arousal” and “low arousal” section of 
map were used. Similarly to train the “positive valence” vs. “negative” valence classi-
fier, segments with tap values on the left and right of the mood map were used. We 
additionally tried to build classifiers based on emotion word clusters. Each of the 
feature sets was evaluated in WEKA [27] using ten-fold cross validation (every tenth 
sample is reserved for the test set) and a selection of learning algorithms including: 
Bayes Net, Naïve Bayes, Adaboost, and the J48 Decision Tree. Results were analyzed 
for all subjects collectively and for each subject individually. The results showed that 
the only classifier to perform better than naively guessing the most popular class was 
the J48 decision tree for an individual, unfortunately these trees proved to be over-fit. 
We tried different methods of dividing the training and test set, but balanced sets of 
“high” vs. “low” arousal features were still showing 51% error rates. Finally we in-
cluded all of the data in the training set, and even when testing on data the classifier  
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was trained on, the error rate for the Bayes Net classifier was still 50%. This con-
vinced us that this fixed window data did not contain differentiating information and 
could not be used to develop a classifier.   

We discovered that the data features were highly dependent on both window length 
and placement. To illustrate this point, Fig. 5 shows the GSR signal of the same event 
viewed through three different time windows.  Features extracted from each of these 
windows vary considerably as demonstrated in Table 1. As a result, choosing the 
correct time window is crucial. 

 

Fig. 5. Effect of time windows: The different figures shows the same GSR signal mapping of 
the same event using 3 different time windows 

Table 1. Effect of time window selection on feature calculation 

Feature 5 sec window 10 sec window 60 sec window 
Mean 3314 3312 3083 
St Dev 18.5 23 217 
Slope 43 -69 697 

 
We also discovered that users didn’t necessarily annotate directly following an 

emotional event resulting in variable time delay between the start of an emotional 
event and the annotation.  For example, one user commented in their free text notes: 
“annoyed in an argument 15 minutes ago”.  It was also evident from a review of the 
annotations that different emotional episodes lasted different lengths of time.  For 
example one participant reported eight emotions in the space of an hour with no two 
successive emotions in the same affective quadrant.  Another user reported being 
either stressed irritated or frustrated over a single cause for almost three hours.   
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From these observations we determined that having a time window customized to 
each emotional experience was important for extracting the correct features for analy-
sis. Since these windows were not available from the subjects directly, we used all 
available evidence (emotion words, taps and end of day interviews) to make the best 
estimate of these windows. An initial rater (R1) looked to group extended periods of 
similar emotions periods (e.g. angry, irritated, and stressed) into longer windows 
called “emotion arcs.” Each arc was then assigned a valence and an energy label 
where the valence was labeled as positive, neutral or negative and the energy was 
labeled as high, neutral or low.  R1 used the GSR signal as a guide to determine likely 
transitions and to determine where the data was valid. Features were extracted from 
80% of the R1 arcs and used to train two BayesNet classifiers using WEKA [27], one 
for energy and one for valence.  The remaining 20% of the R1 arcs were withheld 
from the classifier and given to a second rater, R2, who independently assessed the 
valence and energy and was allowed to adjust arc duration for the test set.   

R2 agreed on the timing for 42% of the arcs (tBoth). In most cases when R2 dis-
agreed on the time it was because R2 saw a transition (e.g. from high to neutral) and 
ended the arc sooner. We looked at how well the raters agreed with respect to energy 
and valence over the agreed arcs (tBoth) and over all of time periods chosen by R2 
(tR2). The results were similar for both sets of windows. Table 2 shows that the raters 
agreed exactly on one of the three energy levels (high, neutral, low) for 50% of the 
tBoth windows (46% for tR2) and agreed exactly on the valence level (negative, neu-
tral, positive) for 44% of the tBoth windows (64% for tR2). The disagreements were 
rarely in opposition and raters were within one emotion level of each other (e.g. 
“high” vs. “neutral”) 81% of the time for energy and 93% of the time for valence over 
the tBoth windows with similar results for tR2.   

Table 2. Agreement between emotion arc ratings 

 Exact tBoth +/-1 tBoth Exact  tR2  +/- 1  tR2 
Energy 50% 81% 46% 82% 
Valence 44% 93% 64% 91% 

 
We created four test sets from the 20% of the data withheld from the classifier, two 

sets using features from data extracted from the tR2 windows and two sets from the 
tBoth windows.  The two sets were sets where R1 and R2 agreed exactly on the emo-
tional state, likely indicating obvious expression of the emotion, and where R1 and R2 
disagreed on the emotional state, likely indicating a more ambiguous expression of 
emotion.  The results are shown in Table 3. 

Table 3. Recognition accuracy using emotion arcs 

 Disagree 
(tR2) 

Disagree 
(tBoth) 

 Agree 
(tR2) 

Agree 
(tBoth) 

Energy accuracy 55% 33% 80% 85% 
Valence accuracy 50% 54% 60% 70% 
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These results show that the highest recognition accuracy was obtained when raters 
agreed on time windows and emotion labels.  These instances were likely more proto-
typical expressions and therefore easier to discriminate.  Analysis of the energy classi-
fier showed that the most differentiating features were GSR mean and the slope.  
Analysis of the valence classifier showed that most differentiating features for valence 
were the GSR mean, the maximum peak rise time of the orienting response and the 
maximum slope. 

Previous results have reported in lab discrimination of 66-92% for four quadrant 
arousal valence discrimination in the lab [6] and 78-86% in intelligent tutoring sys-
tems for high vs. low discrimination of Confident, Frustrated, Excited and Interested 
[28]. If we consider only the least ambiguous emotion states in our test set, our results 
of 85% for high and low arousal and 70% for positive and negative valence approach 
these results.  However, in the real word we face the problem of ambiguous emotional 
states which may confound real time discrimination using physiology alone.  This 
problem may be solved by modeling the user’s context. Carroll and Russell showed 
that context was a key element in human emotion discrimination.  Using only proto-
typical facial expressions, human recognition accuracy was 69%, but with supporting 
context information recognition increased to 74-100% . For our system, supportive 
context information might be added by modeling what the user is doing and who they 
are with as well as by incorporating other sensor channels such as voice analysis and 
facial expression which have been shown to increase recognition accuracies [28].  
Given the current low overall accuracies, the best use for the current system may be 
using the results in aggregate over longer periods of time, for example comparing 
afternoons where the user went to lunch with friends versus eating at his desk over 
several months.  In aggregate, the system should be able to differentiate between these 
two cases even if the instance by instance accuracies are low.  These long term results 
could give the user insight into the real effects of daily choices and aid in long term 
behavior planning for better life balance.   

6   Discussion 

6.1   Difficulties of Accurate Self Reporting 

Capturing truly objective “ground truth” data about people’s affective states was chal-
lenging due to apparent disparities between the Mood Map points, affective state 
words, and participants’ descriptions in the freeform text and interviews.  

We compared the specified affective words with Mood Map coordinates, finding a 
wide range of points on the Mood Map across participants and even across an indi-
vidual’s annotations. An example below (Fig. 6(a)) illustrates how the word “calm” 
correlated with points that were in both the low and high energy quadrants of the map. 
And, though most of the points were in the positive half of the graph, there were a 
handful of points in the negative half of the graph. The spread was surprising and we 
consider several explanations.  
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Fig. 6. Selection of “calm” were associated with both high and low energy. Selection of “anx-
ious” were associated with both positive and negative valence. These ranges could reflect a 
misinterpretation of the center of the Mood Map or the complexity of an emotional state.  

Different responses to the Mood Map in the current study may relate to the differ-
ent goals and durations of the studies. In contrast to the previous Mood Map work, the 
current study focused on identifying specific emotional states for use in a machine 
learning model. And in contrast to the month long deployment of the past study, the 
current study gathered data over a one week period. In the longer study, participants 
calibrated their responses over time [33]. In the current study, some participants ap-
peared to interpret the center of the graph as (0,0) and therefore the lowest in terms of 
energy. This tendency would explain why many of the annotation points were col-
lected at the center of the graph rather than towards the bottom of the graph, even 
when participant explicitly described themselves as low energy. Alternatively, it is 
possible that people felt energetically calm in some moments and sleepily calm in 
others. And while calm is usually associated with positive experiences, it can also be 
associated with boredom, a negative state. This exemplifies the complexity of emo-
tion and emotional measurement. 

Another potential reason for the wide distribution of annotation points is that 
affective states are complex and generally one word does not summarize a state in 
some consistent way. Participants chose the “best fit” label and sometimes their 
understanding of a label was broad enough to be applied to a few different emotional 
states. For example, the word “calm” was used to describe times when a person was 
meditating (actively trying to achieve a state of positive peacefulness), but then also 
anytime a person was in a “neutral” or “fine” state. Similarly, one commonly reported 
state was “happy”, for instance “happy to be out of that meeting” or “happy was 
stressed, but happy now that this problem is resolved”. Happy in these contexts was 
describing a sense of relief, which is a very different than the sense of happiness when 
“eating cookies!”. The word “anxious” was another label that we found had surprising 
variance across on the Mood Map, spanning both the positive and negative quadrants 
(Fig. 6 (b)).  We found that the word “anxious” could be correlated both with 
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hopefulness and stress/nervousness. This finding was observed in previous research 
on the Mood Map. [9]  

Another issue that we came across in our study was a strong trend towards positive 
affective states in terms of Mood Map annotations. Fig. 7 shows the mean for the 
collective values of all the taps associated with each of the emotion words. Most emo-
tions words show means trending towards the positive side compared to our initial 
assessment of the location of such words. There are a couple possible reasons for this 
positive bias in the data. One possibility is people’s desire to be perceived as positive, 
which would significantly affect their annotations. People seemed to view annotations 
that were meant to describe a specific moment in their day as a reflection on their 
overall self. For example, some picked a label such as “annoyed” and during the 
interview they would make it clear how irritated they were, and yet their quadrant 
point would be somewhere in the right half of the graph on the positive side. This 
positive bias was prevalent across participants in their graph annotations. This bias 
may have been more evident in the graph vs. the labels because the graph axis was 
explicitly labeled “positive” and “negative”. Also, the review pane of the interface 
allowed participants to review only their graph clicks. Both of these factors may have 
influenced people to want to annotate a general positive state with which they wanted 
to represent themselves. One participant explained this by stating “There were several 
times when I picked a mood word for a specific annotation, and ‘on purpose’ placed 
my mood in a quadrant that might have seemed contradictory to my mood word.  This 
wasn’t because I was uncomfortable reporting my information, but rather that I 
perceived a difference between a specific “in the moment mood” as indicated by a 
word, and my overall general mood.” “In general, I am a person who spends most of 
my day in a positive mood, but there are incidents throughout the day that can annoy, 
frustrate, etc.. If I was annoyed/frustrated, I would denote that point, and it wouldn’t 
have been uncommon for me to sometimes list that I was still in a positive mood.”   

Retrospective bias may also be at work. People often remembered an event very 
differently after the event occurred rather than during [31,32]. For example,  one of 
our participants told us that he was very nervous for a presentation he was planning to 
give. In the days leading up to the presentation he expressed concern and anxiousness 
about the upcoming presentation and he described that he was very stressed 
beforehand because his manager asked him to change several things shortly before the 
presentation was scheduled to begin. However his annotations (made immediately 
after he presented) stated that he was calm and positive. He explained this saying 
“Yeah, I was stressed before that presentation, but I was fine. It wasn’t really a 
negative feeling.” This discrepancy appears to reflect coloring of his past mood by his 
current mood, a finding well established in cognitive psychology. As mentioned, we 
designed the system to prompt the user during key moments when we detected 
interesting sensor data activity to encourage them to annotate  and explain these key 
moments. However, almost all of our participants turned off the sound or vibrations 
on the phone during the study. Since the phone was with them at all times, they did 
not want the phone to accidentally ring during a meeting, so they did not hear or 
receive any of these prompts. Also, although our study was designed to have people 
annotate as often as possible while “in the moment”, sometimes this was not possible 
such as during a dentist visit or while giving a presentation.  
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Fig. 7. Each emotion word is plotted based on the mean of all taps associated with each word 

6.2   Effective Study Design Decisions 

We gained insight from this study into a few design decisions that had significant 
positive impact on gathering ground truth data. We learned that the process of review-
ing the data with participants on a daily basis motivated them to make more frequent 
and better targeted annotations. We found that the data really engaged participants 
and often incentivized them to want to take more detailed notes about their happen-
ings once they saw that their sensor data captured finer grained details than they  
expected. 

We also found that having a step ladder of gifts (daily iTunes gift cards) in addition 
to a base participation gift (iPod shuffle) was an effective means to maintain motiva-
tion throughout the week. There are several approaches we could have taken towards 
rewarding participants. We selected this approach, believing that it would bias par-
ticipants towards responding, but not responding in a particular direction. A potential 
side effect of this approach is that participants may exaggerate what constitutes for a 
change in state. However, we did not reward based on the content of the annotation, 
but rather on the amount of information within an annotation. Additionally, winners 
of the bonus gift card were excited by their accomplishment.  

Conducting the interviews at the end of each work day was crucial for effective 
participant reflections. On a few occasions we had to postpone these end-of-day inter-
views to the morning after and we found that participants had a great deal of trouble 
remembering events from the previous day. Our interviews were most successful 
when we did these reflections at the end of the day while the events of the day were 
still fresh in people’s minds. 

Finally, of the separation of the graph and the mood words was illuminating. We 
found that participants had very different notions of which words associated with an 
area on the graph and this association constrained their input. In the first week of the 
trial, we tested loading specific mood words in our dropdown depending on which 
quadrant the participant selected. Participants described that they sometimes chose a 
point on the Mood Map that they did not feel described their state in terms of valence 
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and energy levels just so they could select a specific mood word. Although separating 
the graph and mood words brought up a lot of the inconsistency issues as mentioned 
earlier, it also allowed participants to describe their state in a more accurate way.  

6.3   System Level Issues 

The system described above is slightly different from our original design and the 
changes mainly aimed at ensuring a reliable data collection. The major change is the 
heart rate sensor, our initial design consisted of the SHIMMER [22] device with an 
ECG sensor that connected to the phone via Bluetooth. Limited availability of the 
SHIMMER-ECG device, coupled with the hardware failures during the first two 
weeks of the experiment prevented us to continue the usage of SHIMMER so we 
switched to Polar instead. This change also affected the user prompter module in the 
aggregator, where the logic for triggering events based HR changes was unused due 
to the lack of data. 

6.4   Data Quality Issues 

Gathering physiological data from novice users through a distributed wireless system 
is challenging due to many factors.  For this study these included: subjects wearing 
the sensors incorrectly, subjects failing to fully charge the sensors, subjects re-using 
the pre-gelled electrodes after the conductive gel pad had been compromised, chest 
straps losing contact with the body due to movement and lack of moisture, subjects 
losing wireless connectivity by walking away from the device and subjects acciden-
tally turning off either the sensors or the phone.  As a result of the above issues our 
data yield was less than 50% of the data that could have been harvested from both 
GSR and HR. In near future experiments, we plan to alleviate these issues with more 
detailed documentation and videos describing the system and how to wear the sen-
sors, asking the subjects to thoroughly wet the HR strap and instructing subjects to 
use fresh GSR pads every time the GSR becomes dislodged.  Additionally, we plan to 
have automatic data quality assessment algorithms running on the system, have data 
replicated back to the server periodically for visual inspection and make the system 
more robust to disconnects.  Our vision for the future would be that these sensors 
would ultimately disappear into clothing and that HR and GSR could be sensed 
through fabric electrodes on the body [30], near the chest for HR; and in socks or 
insoles to measure  GSR from the foot  [13].  These sensors would be ultra low power 
or zero net energy by harvesting motion and heat energy from the body.  These de-
vices would have ubiquitous connectivity with any trusted source and data would 
always find a path back to the server or the user’s personal mobile platform.  

7   Future Work 

In this paper, we have presented the results from a study aimed at capturing and corre-
lating physiological data and emotions. The data collected in this study were intended 
for the development of inference algorithms for automatic affective state detection in 
ambulatory settings. We have described a set of key findings and challenges involved 
in the capture of physiological and emotional data in everyday life, namely issues 
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with accurate self-reporting of emotion, the varying time spans of emotions, and the 
fact that energy levels are more easily distinguishable physiologically than valence 
levels. 

In future work we plan to enrich the user annotation experience by allowing cus-
tomized windowing of events and automatically annotating the user’s day with high 
level activities and people proximity using technologies currently under development. 
We will address the issues of Mood Map and mood label interpretations, bias, and 
inconsistencies by focusing on a smaller set of emotions and allowing people to input 
their state on a spectrum. To better capture other aspects of emotion, we also envision 
using affective analysis of voice, captured by a mobile device and facial expression 
analysis when the user is seated in front of a camera-enabled computer. We believe 
that capturing this data is complementary to the physiological data and such fusion 
will help improve the valence estimation accuracy. Also, to mitigate privacy issues 
with voice recording, we plan to extract features from the voice and not record any 
raw audio.  Future work should also address individual differences in emotional reac-
tivity, a complex but important health indicator.  
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Abstract. The increasing level of automation in tight just-in-time subcontract-
ing relationships in the automotive industry makes the complex, weak  
structured, knowledge intense and highly cooperative practice of Reactive 
Maintenance (RM) in Maintenance Repair and Overhaul (MRO) in this branch 
a demanding and stressful job. In this paper two typical breakdown situations 
are presented which occurred in a participative observation to gain insights to 
this field. Based on the analysis of the observations and the existing MRO re-
lated IT infrastructure we refer to the theoretical concept of ‘boundary objects’ 
to understand the practice in this field. Finally, implications for design for a 
MRO supporting pervasive computing environment are derived from this con-
ceptualization. We highlight the potentials of attaching relevant information to 
physical objects in place to support and motivate documentation by bridging the 
physical world of machines with the virtual information space and to enhance 
the discovering of relevant information in breakdowns situations. 

Keywords: maintenance, repair, overhaul, collaboration, boundary-objects, his-
tories, practice, observation, UbiComp, autoID, physical, sensor-networks. 

1   Introduction 

Modern mass-production, especially the production of automotive-components is 
complex and time-critical. With the introduction of Lean-Production and the perva-
siveness of Just-In-Time logistics the need for storage capacity was reduced at the 
cost of an increasing dependency on the availability and reliability of production 
facilities. In production settings with a high level of automation, machines are com-
plex conglomerates of different technologies like pneumatics, hydraulics, electronics, 
programmable controllers, interfaces to information systems like production data 
acquisition, enterprise-resource-planning systems etc. Additionally, machines in 
mass-production are also embedded into complex workflows, i.e. inputs and outputs 
of different machines are connected in complex interdependencies. Due to the in-
creasing requirements regarding availability and reliability of the technical equipment 
the routine character of maintenance, repair and overhaul (MRO) work in such set-
tings develops towards a time-critical more “first responder” like work. Beyond that, 
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the increasing complexity of the production facilities in terms of heterogeneity of 
machinery-vendors, age, compositions of different equipment types, standards, work-
flows, breakdown-situations etc. makes MRO work a hardly predictable, weak struc-
tured and knowledge-intense process. To increase the reliability and the availability of 
the technical equipment in time-critical production settings the support of MRO is an 
important factor in this domain.  

This contribution summarizes the results of an empirical study in a MRO depart-
ment of a medium-size company for plastic shaping. It focuses on the questions how 
maintenance workers deal with repair-related information, how this information is 
related to objects and places and to which extend those objects can be seen as bound-
ary-objects for the involved groups of actors. Consequently – from a HCI perspective 
– the question arises how maintenance workers could be supported in collaboration, 
i.e. finding relevant information, artifacts and experts for efficiently bringing facilities 
back into a productive state. After providing an overview of current concepts and 
approaches in supporting MRO work with information technology the methods and 
findings of the empirical work in the MRO department will be summarized. Based on 
the findings, implications for the design of pervasive IT support of MRO workers will 
be presented based on the theoretical concept of ‘boundary objects’ (c.f. [1, 2, 3]). 
Following [3] especially the aspect of information reuse of recorded states of bound-
ary objects in time, i.e. the MRO history of machines, is taken into account. 

2   MRO in Research: Terms and Focus in IT Support 

Focusing on MRO in the literature there is only little research in the area of mainte-
nance and reliability. Given the significance of MRO to manufacturing competitive-
ness, it is surprising how little research is being carried out in this area. Within the 
CSCW research there are some MRO related works, e.g. the investigations on main-
tenance and repair of copy and printing machines at Xerox. As stated in [4] mainte-
nance is a highly non-routine work with combined social and technical complexities: 
Individual machines have idiosyncrasies that defy understanding; replacement parts 
often don't work; work rotation sometimes has one technician invading another's 
service territory, neither the regular technician nor the interloper knows the history of 
the machine (which turns out to be very important in this contribution). All these 
social and technical complexities make this apparently routine work highly  
non-routine. The work practices of these technicians require constant improvisation. 
Additionally, MRO in industry is even more complex due to the fact that industrial 
facilities are complex systems of buildings, infrastructures and machines [5]. 

2.1   Terms, Classifications, Policies 

To minimize risks and to increase productivity and efficiency, there are different 
investigations and policies from the field of operational research. Paz et al. [6] sum-
marize two broad classes of policies for maintaining and reliability. First: Policies for 
reducing the frequency of failures, e.g. (a) preventive maintenance, (b) early equip-
ment replacement, (c) predictive maintenance and (c) overbuilding of equipment. 
Second: Policies for reducing the severity of failures, e.g. (a) speeding the repair task 
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by modular equipment design and (b) providing alternate output during repair by 
alternate job routings, standby machines or buffer inventories. 

Following [6] it is also useful to classify maintenance on the basis of when the 
work must be done: (1) emergency, breakdown or reactive maintenance (RM) is work 
that must be done immediately; (2) routine or planned maintenance (PM) is work that 
must be done in the finite, foreseeable future; and (3) preventive maintenance (PM) is 
work that must be carried out on a planned schedule. However, the difference be-
tween PM and RM is more of a continuum than a dichotomy in many situations and 
there is a need for further investigations in the complex relationship between PM and 
RM to integrate breakdown and preventive maintenance. For this it is necessary to 
understand the nature of RM from a practitioner’s perspective which is the aim of this 
contribution. 

2.2   MRO in Research 

There are already some interesting contributions in the literature of CSCW around 
MRO. Kovalainen et al. [7, 8] performed a large scale investigation on the work of 
operators in Finish paper mills. They tried to understand the role of Organizational 
Memory for the support of communication between workers of different shifts. They 
introduced an electronic diary and analyzed the conversations articulated in this diary 
and compared the changes in practice with the usage of a prior paper based diary. 

Legner and Thiesse [5] focus on Ubiquitous Computing to support the facility 
maintenance at Frankfurt Airport. Due to the strict fire-prevention policies the re-
quirements for a standardized and controllable process regarding to accuracy, com-
pleteness and documentation they introduced RFID to support PM in this highly de-
manding field. However, they do not focus on RM; but for a successful and efficient 
MRO work they identified three criteria which are also relevant in the field presented 
and described in this paper: (1) precise and timely information on the objects to be 
maintained, (2) real-time transfer of information on critical incidents, and (3) fast 
access to the knowledge and means necessary to overcome problems caused by the 
incidents. There are already research investigations in designing technologies to sup-
port maintenance work but under different perspectives and different aims. Lampe et 
al. [9, 10] worked on the potentials of Ubiquitous Computing technologies to support 
the maintenance work on airplanes by introducing a RFID-based asset management 
system. However, they do not analyze the work of maintainers itself, they just offer a 
tool to deal with the concrete problem of managing and tracking tools because losing 
a tool in an airplane’s engine is dangerous. 

Though, from the management perspective there are some approaches to create 
policies to shift maintenance from a reactive to more preventive and predictive type of 
intervention to minimize the unpredictable and risky character of RM. Nevertheless, 
there are still unpredictable and unforeseen breakdown situations maintenance work-
ers have to deal with and always will be. Through the increasing requirements regard-
ing availability and reliability of the technical equipment in production facilities, 
further investigations are necessary especially in the support of reactive maintenance 
(RM). To understand this weak structured, knowledge intense and highly cooperative 
work, insights of this particular practice are necessary to provide appropriate techno-
logical support. From a theoretical perspective Phelps and Reddy [1] reflect on the 
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critical role boundary objects play in construction project teams. In this domain, 
boundary objects extend beyond their traditional role as information artifacts used to 
communicate between teams to serve a more influential role as guides for team col-
laboration. The theoretical concept of ‘boundary objects’ in those settings has been 
used in several former contributions to provide a better understanding how communi-
cation and cooperation is organized around relevant information artifacts (c.f. [1, 2, 3, 
11, 12]). 

2.3   Field, Methods and Theoretical Grounding 

To design technologies to support reactive maintenance (RM) work in the complex 
field of production facilities it is necessary to understand how maintenance workers 
work and how they deal with the complex and time critical task of breakdown inter-
vention. To get a deep understanding and to prepare the design and development of an 
appropriate technology the author of this paper started with an ethnographic phase 
based on a Grounded Theory approach [13, 14]. To collect the empirical data the 
author conducted three weeks of participant observations in a MRO department of a 
medium enterprise in the domain of plastic moulding for automotives, two weeks in 
the morning shift and one week in the late shift. 

The collection of data and the documentation of the observed practices were sub-
ject to several restrictions. Because of the high pressure of competition in this domain 
and lack of trust in the beginning of the observation, the management of the company 
prohibited documentation with photos, audio- or video recordings. Therefore, the 
documentation was limited to field notes and the creation of a successive narrative 
documentation in form of a diary to capture the observations and experiences the 
author made. Observed dialogues were reconstructed immediately in every break after 
they occurred and written down as a field note [3]. Every day, after the end of the 
shift, the field notes have been integrated with and supplemented by protocols based 
on retrospections and memories of the day [13]. 

Upcoming questions during the observations have been made to a subject of dis-
cussions with local actors in ad-hoc interviews in coffee- and cigarette-breaks. The 
observations were rather passive in the beginning but after a few days of becoming 
acquainted with the workers in the department, the observations developed towards a 
more active participation in terms of assistance of maintenance workers and self-
responsible conduction of simple tasks like running errands, cleaning a machine dur-
ing PM activities etc. After two weeks of participating in the company, the author was 
allowed to make some photos, but only under permission of the head of the MRO 
department. The result of the documentation is a series of 44 photos and 42 pages of 
handwritten pages of field notes in the diary. 

It was possible to get an insight of the used documents in the department. There 
were several individual paper-based handwritten documents, a cabinet with folders for 
each of the 54 machines containing the complete documentation including technical 
drawings for hydraulics, electrics (place is marked with (d) in Fig. 1). The folders also 
contain the list of spare parts for each machine with order codes. There was also a 
network drive containing all digital representations of hydraulic and electric drawings 
as unsearchable TIF files named and ordered by the IDs of the machines accessible 
from all PCs in the MRO department. During the observations the field notes have 
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been successively analyzed to identify patterns in the work routines to build up cate-
gories. The results have been combined with the findings from the document structure 
analysis [13]. These categories provide a mask for successively sharpen the focus of 
the observation on the aspect of boundary objects, location and locality of machines, 
persons, tools and information resources in the work practice of the actors in the 
MRO department. 

Additionally, the analysis was supported by researchers from HCI, CSCW and so-
cial-sciences within three interpretation workshops to provide external perspectives 
on the collected data. The interpretation sessions were held after each week of obser-
vation. Each session was structured in three cycling phases. The observer created a 
report and a presentation about the observations he made in field. During presentation 
the scientists of each discipline wrote down open questions which were answered by 
the observer after the presentation. The purpose of this technique was to gain the 
observer’s retrospection and to enrich the field notes with additional data. Questions 
which could not be answered by the observer were included into the next observation 
phase. The sessions were also used to recognize patterns in the observed work to 
sharpen the next phase of observation. After finishing three weeks of observation, the 
collected material has been analyzed by the same group to finish the category-
building process and summarize the findings. 

3   MRO in the Domain of Injection Moulding 

The domain of automotive production is a cornerstone of the German industry and in 
particular the domain of plastic moulding is an important sub-domain for subcontract-
ing for the automotive production and assembly industry. The subcontracting condi-
tions mostly are based on just-in-time logistics. Therefore, breakdown situations have 
a critical impact on the reliability in those tight contracting relationships. Within that 
setting, technological support for the MRO activities seems to be important to reduce 
the risks of breakdowns and especially to react fast and effectively on unpredictable 
breakdown situations. 

3.1   The ‘Automotive Plastics Inc.’ 

The participant observation took place in the MRO department of a small and medium 
enterprise (SME) in the domain of plastic molding. In this paper the enterprise is 
called “Automotive Plastics Inc.” which is not its real name. The company offers 
concept and series development of automotive interiors with focus on kinematic  
solutions like ashtrays, cup holders, sunroofs etc. The enterprise as a whole has ap-
proximately 1200 employees and the MRO department hosts 7 electricians, 1 mecha-
tronician, 6 mechanicians, 1 lacquerer and painter, 2 office workers (assistance of 
head and dispatching) and 1 leading engineer (head of the department). The members 
of the MRO department are responsible for maintaining 54 injection moulding ma-
chines, the corresponding infrastructure for cooling, heating, granulate material logis-
tics and the facility, power- and energy-management. 

As illustrated in Fig. 1. (left) the department resides within an own building on the 
area of the company (MRO). The production, were all 54 injection moulding  
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machines reside, is distributed over three different factory buildings (KV1-3). The 
MRO department is responsible for managing the spare part storage which is located 
in the basement of the KV1 next to the plastic granulate drying facilities, which are 
also located in the basement. 

The MRO department building is divided in several areas itself: (a) marks the of-
fice of the head of the department. From this office the leading engineer organizes the 
division of labor, creates schedules of planned overhauls and calibrations in tight 
coordination with the head of production, leads meetings of the department, acts as an 
intermediate between the head of production and the MRO department. During the 
time of observation the head was involved in planning of investments in new facili-
ties. Therefore he was not available at least half of the day. The neighbor-room (b) is 
the office of the two dispatchers. The dispatchers are responsible for receiving incom-
ing repair claims coming from the production department. They are also responsible 
for ordering spare parts. Both rooms are directly connected by a door which stands 
open most of the time except in case of meetings in the head’s office. Therefore, if the 
head is working in his office, he is very aware of repair claims reaching the dispatch-
ers via phone. The group of mechanicians usually works in the area marked with (d). 
They have a massive workbench and the walls around it are completely covered with 
tools they use to work with. Nearby (e) the electricians and the mechatronician have 
their own workshop separated with glass-walls from the rest of the MRO department. 
Within this room there are many cabinets for special spare parts and components for 
the work of the electricians. There is a workbench in the middle of the room where 
every electricians and the mechatronician has its own desktop-like area. In the area of 
(f) there are cabinets and shelves for screws and several small parts which are needed 
by all MRO members. 

3.2   Existing Structures, Routines and IT Support 

To organize the different maintenance, repair and overhaul tasks in terms of internal 
cost allocation the observed MRO department uses a SAP-PM module (SAP-Planned-
Maintenance) to manage each maintenance and repair task and process. In summary, 
there are 6 desktop-PCs in the maintenance workshop with TFT display, mouse, key-
board and unrestricted Internet access. They are running a SAP-PM Client, a browser 
(Internet-Explorer) and unrestricted Internet access. 

Regarding the classification in section 2.1 the observed MRO work is divided in 
two different categories: Planned (or Preventive) maintenance (PM) and Reactive 
Maintenance (RM). An example for PM-activities is the routinely performed calibra-
tion of the injection moulding machines which is important for the accuracy and qual-
ity of the products. These tasks are fully integrated within the production plan and 
structured by a step-by-step instruction which is part of each machine’s documentation. 
The head of the production coordinates these regular tasks together in cooperation with 
the head of the MRO. He constitutes teams of electricians and mechanicians (2-3 peo-
ple) and gives them the order when and where the calibration has to take place. 

The official process of dealing with an unplanned breakdown is organized as fol-
lows: The operator of a machine recognizes failures or quality loss of the output of an 
injection moulding machine or she is not able to operate the machine anymore be-
cause the machine stops and switches into an error state. Then she asks her fitter to 
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help her solving the problem. If they are not able to fix the problem autonomously, 
the fitter calls the MRO department. The dispatcher registers the breakdown and clari-
fies how urgent the machine is needed within the production plan. She creates a new 
repair task within the SAP-PM by typing a short description of the case, assigning a 
responsible MRO worker, estimating the effort in hours and printing out a documenta-
tion- and time-sheet (c.f. DIN-A4 sheets in Fig. 2.3). After that, the dispatcher  
commits this sheet to the responsible maintenance worker. In urgent cases the mainte-
nance worker has to interrupt her current task to directly start with fixing the actual 
breakdown. After she successfully finished her work, she has to do the documentation 
of the finished case. She has to use the time sheet to fill in the time needed, a short 
description of what she did, which spare parts she took from the store and finally has 
to sign for confirming the accuracy of the information. After that she hands back the 
complete time sheet to the dispatcher. The dispatcher enters the information from the 
sheet into the SAP-PM, orders spares removed from the store and finishes the task. 
The collected data is used later on to calculate the internal cost allocation and calcu-
lating and anticipating the needed man-power of the MRO department. 

4   The Observed Practice 

In the following we provide some observed examples of the complex work of diag-
nosing, intervention and documentation which provides a good basis for identifying 
weaknesses and gaps in the current processes and gives an insight of the observed 
MRO work. Especially cooperative aspects around relevant objects and their locality 
and location during the diagnosis phase are taken into consideration. Consequently 
the documented cases focus on the “first-responding” like practice of RM within the 
MRO department - which is often embedded into PM activities. 

4.1   Case 1: “Just” a Broken Ventilator Grid 

A new repair-claim arrives at the MRO department. There is a broken ventilator grid 
at a machine from the vendor “Arburg” in KV1. Due to some safety restriction it is 
not allowed to run the machine as long as it is not fixed. Therefore, the responsible 
fitter (Mark) from the production department calls the department and articulates a 
repair-claim. The dispatcher (Paul) creates a repair task in the SAP-PM and assigns it 
to an electrician (Peter). Paul states that there are some grids left in the spare store. 
Peter walks to the machine and measures the broken grid to identify the right form 
factor and makes some notes in his personal diary. After that he walks into the spare 
store to get the right grid. After 10 minutes of searching Peter states that there are lots 
of grids but not one that fits. He then walks back to the machine and describes the 
problem to the fitter Mark. After that he calls the dispatcher Paul with his cordless 
telephone (DECT). The dispatcher orders the missing spare part and states that is will 
arrive by no longer than the day after tomorrow, maybe earlier. Mark blocks the ma-
chine in the production plan and alternates to another machine. 

In the meantime Peter receives a call from a colleague (Josh) who is working at 
another ‘Arburg’ machine in the ‘KV2’ which is 15 years old. Arriving at the machine 
the problem has reached another MRO worker - a mechanician (Andy). He arrives at 
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the same time as Peter. Josh immediately starts to explain the problem with the han-
dling. After this short introduction all three MRO workers in place try to reconstruct 
the complete repair history to figure out if there were similar cases in the past and 
who was responsible. During the discussion everybody points to several components 
of the machine, walk around it, watching the handling from different perspectives. 
After approximately 15 minutes of diagnosing and discussion Peter walks back to the 
MRO department to fetch the documentation of the machine. 10 Minutes later Peter is 
back from the MRO department. He had some problems finding the right folder with 
the documentation. 

Then, another electrician colleague named Kevin calls Josh. He has received a 
breakdown of the central drying facilities. Josh states that he has no time at the mo-
ment to help with that. Josh asks Peter to walk down in the basement to help Kevin. 
After that Peter and Andy leave Josh to visit Kevin. In the basement - nearby the 
spare parts store - Kevin waits by the main drying unit of the KV1. The drying unit is 
responsible to prepare the plastic granulate to transfer it from the delivery state into 
production state. The material has to be very dry (dew point under -60° Celsius) to 
ensure high quality standards. He states that the head of production reported problems 
with some products (bubbles and foam) and the production data acquisition confirmed  
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the suspicion of humid material. Humid material in a centralized material management 
could cause a complete stop of production in KV1 which has a deep impact on the just-
in-time delivery to the customers. After a short discussion everybody recommends 
exchanging the heating elements of the drying unit. After fetching some new heating-
elements from the store nearby Peter leaves the basement and goes back to the MRO 
department to have a break. After 10 minutes he calls Kevin, who is still in the base-
ment. He figures out that Kevin seems to be still very nervous because after the heater 
element exchange the temperature of the drying unit does not increase but does not 
decrease as well - which is probably a good sign. 

After the call Peter makes some notes in his diary. He explains, that they have to 
document their work after completion and hand over the filled in time sheet to the 
dispatcher. But after the break he has to start working on a recalibration of a machine 
in KV2 and therefore he has no time to do the documentation work directly after the 
tasks. He states - while pointing on a stack of timesheets on his workbench - that he 
collects the time sheets until he has to work in the late shift. From his point of view, 
late shifts are not that busy. To recall the relevant information he takes some notes in 
his personal diary (cf. Fig. 2.3). He states that all his colleagues have the same strat-
egy and some of them do not even make notes. Finally, Josh returns the MRO de-
partment. He looks satisfied and reports correctly running handling at the “Arburg”. 
There was corrosion at a plug which hindered vertical movements of the handling. 

4.2   Case 2: Diagnosing a Machine-Breakdown 

A fitter from KV1 calls Josh directly at his phone without calling the dispatcher. Josh 
states that he knows him very well and he calls him regularly. He reports a breakdown 
of a machine from the vendor “Demag”. The fitter tries to explain the problem by 
describing the current state of the machine and the error-code prompted at the display. 
Josh quits the call by promising that he will come over to take a look at that. On the 
way to KV1 he meets the head of the department, Mr. Sheppard. He describes him the 
actual breakdown situation and the name of the machine. Mr. Sheppard has already 
heard from the new breakdown because he comes from KV1. He states the case is 
trivial and easy to fix. He worked on the 12 year old machine several times and re-
members the error pattern very well. The solution is to remove all cartridges of the 
PLC control unit, clean them and treat the contacts with a special spray. After that he 
should reboot the machine. It would work again “…like if it was new.” 

Then, Josh meets the mechanician Andy and tells him about the new breakdown. 
Because Andy likes the older “Demag” machines in the park and Josh is much 
younger and works just half a year with the company he accompanies him on his way 
to the machine. The fitter is already waiting and begins to explain the current issue 
coupled with pointing at the display and recalling the situation in which the machine 
stopped working. Josh opens the switchgear cabinet and directly puts his head into it. 
He states that this is a typical way to identify fused electrical components. He smells 
nothing unusual and opens the doors of the cabinet completely. 

Meanwhile, Andy started to move the mould manually by switching the machine 
into the manual mode. He is irritated because nothing happens. He takes a look at the 
display and sees some error codes (c.f. Fig. 2.1/2/4.). The responsible fitter states that 
the error codes do not say that much about the state of the machine. The display 
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shows error codes all the time but works without any problems. Kevin passes by and 
asks if he could help. Josh shuts down the machine and starts to apply the workaround 
of Mr. Sheppard. After removing all cartridges (c.f. Fig. 2.1) he figures out that one of 
them is darker than the others and smells a little bit smoky. 

After that Kevin, the fitter and Andy started a discussion about the breakdown his-
tory of the machine and the proposed workaround of Mr. Sheppard. Andy is not sure 
if Mr. Sheppard has enough expertise and experience to make helpful suggestions. 
Josh joins the discussion and shows the probably fused cartridge. Kevin smells at it 
and is not sure if it is fused. Josh cleans it, uses the spray and puts all cartridges back 
into the PLC control. He calls the dispatcher and asks him if there is an appropriate 
replacement part in the store. The dispatcher is not sure, because this machine is rela-
tively old compared with the rest of the park. Andy walks downstairs and tries to find 
a new cartridge. 

The fitter (who is part of the production- and not of the MRO-department) states 
that approximately one year ago a maintenance worker did a complete reset of the 
PLC unit. As far as he remembers, it was the head of the MRO, Mr. Sheppard. Kevin 
calls him and asked him about the reset. Mr. Sheppard remembers the reset and states 
that there is a paper with the instruction. But he is not sure where it is. He proposes to 
have a look into the documentation folder of the machine which resides in the related 
cabinet in the MRO department. 

 

Fig. 2. (1/2/4) Diagnosis as a cooperative and discursive practice in place, with directly refer-
encing to relevant objects between different experts (mechanician in front and electrician 
behind) | (3) A personal diary containing a list of tasks with the needed time in hours. Stacks of 
uncompleted time sheets in the MRO department. 
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Kevin walks back from KV1 to the MRO department and starts to look for the 
right folder which takes some time. After he finds it he goes back to his colleagues 
and they start to search the folder for the sheet of paper. After 10 minutes of browsing 
the folder they surrender and Kevin calls Mr. Sheppard again. He promises to come 
around and as he joined the others he pointed to a compartment on the inner surface 
of the switchgear cabinet’s door (cf. Fig. 1.2). Mr. Sheppard tells everybody how this 
paper was created several years ago. The reset to factory defaults was not part of the 
original documentation of the machine. In those days, the instructions were dictated 
by an external service man via phone and written down with a typewriter. Mr. 
Sheppard is sure that the copy they found in the cabinet is the last copy the company 
has and he recommends making a new copy and putting it into the documentation 
folder. Josh starts immediately resetting the machine by following the step-by-step 
instructions. After that, the machine still displays error messages and does not work. 
The fitter points at the electro-static hydraulic-oil-filtering-device which is plugged 
into the machine. This is a PM task the fitters have to perform autonomously. He 
states that older PLCs sometimes crash if a filtering device is plugged into a machine. 
After the fitter has switched off the filtering device, Josh reboots the machine again. 
There is no error message anymore and the fitter installs the actual program again. 
The machine works normally, in automatic and manual mode. Josh and Andy go back 
to the MRO department and discuss the electrostatic effect on older PLCs. They state 
that this was definitely something new and a lesson learned. 

5   Findings 

The descriptions of the two typical cases illustrate the complexity of the work in a 
MRO department in the addressed domain. In the following the model of a standard 
RM process is used as a basis to structure the observed MRO practice. Within each 
phase relevant groups of actors are identified. The analysis focuses on broken ma-
chines on-site and their role as ‘Boundary Objects’ in the cooperative process of re-
pair and overhaul (c.f. [1, 2, 3]). From the findings implications for a design are intro-
duced to provide a guideline to design information technology to support the coopera-
tive MRO work around those Boundary Objects – involving the actual groups of 
interest and additional new groups in future. 

5.1   Breakdown and Repair Claim 

Especially small and medium enterprises are social systems where people know each 
other very well. Hence, in case of a machine’s breakdown, there are different ways of 
getting help: the first and official way is calling the dispatcher. This strategy has a 
“fire and forget” character and the dispatcher is responsible to find the right mainte-
nance worker. A dominant observed practice is directly calling somebody you already 
know. In this case the dispatcher does not know something about the breakdown, 
therefore, the time sheet has to be created and filled out afterwards. A similar way to 
get help is to ask a maintenance worker who walks by or works at another machine 
nearby. Repair claim and diagnosis is often an interwoven process. The diagnosis 
often starts during the phone call before the maintenance worker has reached the  
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defective machine because the responsible operator or fitter in-place starts to talk 
about the new case to isolate possible error sources. MRO workers avoid those situa-
tions by quitting the calls. As observed in both cases MRO workers prefer to visit the 
machine and talk face to face and have look at the affected objects. In the early phase 
of breakdown and repair claim maintenance workers which are not directly involved 
often feel responsible for the actual case without an official assignment of the dis-
patcher. If a maintenance worker needs help and has to act in time critical conditions, 
he seeks for the help of other maintainers without requesting it from the dispatcher. 
Therefore lots of repair claims also come directly from maintenance colleagues. 
Maintainers seek the help of those colleagues which seem to have the appropriate 
profession and/or experience to make a helpful contribution. They try to find out, 
which colleague has worked with the affected machine in the past.  

In summary, actors from various involved parties use the broken machine as a 
meeting-point for the discussion of possible reasons for and consequences of the cur-
rent breakdown. This forms the stage for the next phase, the diagnosis. 

5.2   Diagnosis 

The main diagnosis phase usually starts when the maintenance worker reaches the 
defective machine. Local actors like operators and fitters are important initial coun-
terparts in early stages of the diagnosing process. Regarding the involvement of the 
different actors in place the isolation of the error source is a highly cooperative, crea-
tive and improvisational practice. In all observed breakdown situations maintainers 
asked their direct colleagues and the responsible operators and fitters to have a look at 
the problem and to take part in a discursive diagnosing conversation. By observing 
and listening to the discussions it is noticeable that every observed discursive diagno-
sis situation is based on the reconstruction of the past. The history of a machine seems 
to be very important for the isolation of the source of error. Maintenance workers 
experience that the older a machine is, the probability increases that the actual break-
down happens before. Hence, discussions often are led by the challenge to reconstruct 
the ‘machines life’. The discursive reconstruction is strongly connected to the physi-
cal presence of the broken machine. This was observable in the integration of the 
machine’s parts into the discussion by pointing and touching. 

To increase the accuracy of the reconstruction it is very important to include other 
maintenance workers into the discussion - especially the older and more experienced. 
Relevant information is often hidden in aspects of what happened in the past around a 
particular machine and who was involved. It was never observed that a maintainer 
browsed the SAP-PM for reconstruction purposes which is caused by the weak docu-
mentation (as described later on). Especially older machines have a history which 
often blends over into a world of myths, e.g. stories about persons who are no more 
part of the team since years. In comparison to the effort of fixing a particular problem 
diagnosis work is very time intensive. Diagnosis work can tie up 3 persons for 30 
minutes just for isolating the possible error source. Dependent on the profession, 
maintainers use all senses to isolate the possible defective component of a machine. 
Mechanicians mostly switch the machine into manual mode and move the mould back 
and forth. While doing this the listen to the sounds of pumps, gears and joints. They 
touch several components to feel the vibrations. Everything which seems to be  
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uncommon is a possible source of error. Electricians often use their nose to smell if 
electrical components are fused (cf. [15]).  

5.3   Intervention 

It was observed that repairing is often an integral part of the diagnosis work. Looking 
at Case 2, after isolating possible error sources the maintenance workers used spare 
parts and exchanged possible defective components to exclude possible error sources 
systematically. If the defective part is found the new part resides into the machine and 
the intervention is finished successfully. Therefore, spare parts play an important role 
in the intervention phase. The selection of the right spare part is determined by the 
spare part list which is part of the machine’s documentation folder. This paper based 
folder is an important abstraction of the concrete machine and often provides alterna-
tive views on it. Due to their complexity and level of abstraction the construction 
plans of the machines are exclusively used by the MRO workers and are living docu-
ments; i.e. they are annotated by MRO workers during PM and RM activities. They 
are also used as boundary objects to support the communication and the collaboration 
between different professions within the MRO department. However, the documenta-
tion folders are experienced as an inconvenient medium, hard to find and hard to 
browse. The use of the documentation folder sometimes is concurrent: the documen-
tation folders in the MRO department are needed by different MRO members. The 
dispatcher needs the replacement spares list to order new parts if they were taken 
from the store. The maintenance workers need the documentation for PM activities 
like recalibrations and for diagnosing and intervention in RM. In this case sharing this 
paper based resource leads in a centralized storage in the MRO department which 
causes time intensive and exhaustive ‘legwork’ (c.f. section 3.4 Documentation).  

5.4   Documentation 

The documentation within the SAP-PM generated time sheets often is quite poor. 
Studying several hundred cases within SAP-PM reveals that more than 80% of the 
documentation of the performed repair activities consists of only one sentence: “Main-
tained and repaired.” As observed in the first case the maintenance workers have a 
batching strategy of filling out the time sheets. One week between the performed task 
and its documentation is not unusual. From an analytical point of view there are several 
interdependent reasons for that phenomenon: The SAP-PM has a process-oriented 
structure. The time- and documentation-sheet has to be filled out at the end of a suc-
cessful performed repair claim. As illustrated in the first case sometimes spare parts are 
not available from the store. In consequence, the MRO worker has to postpone finish-
ing the task until the new part arrives. Only when he has got the parts and finished the 
task he is able to fill out the form on the sheet (date and time of breakdown, time 
needed, date and time of finishing the task, used spare parts, affected machine, etc.). 
From a process perspective several repair tasks run in parallel for days which leads to a 
batch-strategy documented in the first case. Another reason is a motivational problem: 
maintainers have no direct benefit from providing a detailed documentation. The SAP-
PM database is not comfortably searchable and the access to the database is only pos-
sible by leaving the place of the defective machine or facility and walking back to the 
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MRO department. In consequence distances of walking from KV1 to the MRO de-
partment and back can summarize up to 500m by walking. 

6   Implications for Design 

From the different perspectives of the involved actors machines or any other equip-
ment in the observed setting have two facets. First, from the perspective of the pro-
duction department, machines are necessary resources for the production processes 
and need to be always up and running for reliable production planning in tight just-in-
time logistics. That is, they act as an infrastructure for productive processes. On the 
other side, from a MRO perspective, machines, their (spare) parts and their abstract 
representations (e.g. the construction plans) are the centerpiece of consideration. They 
are not infrastructures for a particular purpose; they are the artifact to work on. In that 
role they act as boundary objects by enhancing the coordination and communication 
between different stakeholders in breakdown situations.  

Star et al. [16] define ‘Boundary Objects’ as “… objects which are both plastic 
enough to adapt to local needs and constraints of the several parties employing them, 
yet robust enough to maintain a common identity across sites. They are weak struc-
tured in common use, and become strongly structured in individual-site use. They 
may be abstract or concrete. They have different meanings in different social worlds 
but their structure is common enough to more than one world to make them recogniz-
able means of translation. The creation and management of boundary objects is the 
key in developing and maintaining coherence across intersecting social worlds.” 

Especially the diagnosis and isolation of defective parts is a highly cooperative and 
discursive task where the broken machine and its parts in certain places serve as 
physical meeting points for different involved groups of stakeholders. They are used 
as mental ‘drawing tables’ for information exchange between different groups in the 
organization and outside. All involved groups gather around them to exchange infor-
mation about their experiences to make contributions to solve the current problem. 
Following this, machines and spare parts serve as boundary objects to enhance the 
development of a common understanding between all involved actors around a ma-
chine breakdown. To enrich physical objects in the observed domain to emphasize 
their role as boundary objects in MRO work the following guidelines are derived from 
the findings. 

Support documentation work 
Documentation is an important basis to build up the breakdown history of each ma-
chine, facility or infrastructure the MRO department probably has to deal with in 
future. In the current state the documentation work is experienced by the MRO work-
ers as an extra workload, performed out of the concrete working context and - from 
the workers perspective - provides no benefit for the practice. However, as illustrated 
in case 2, maintenance workers already use paper based handwritten notes to build up 
personal maintenance histories (c.f. [17]). They are weak structured informal notes 
but never the less accessible and useful on-site. Referring to the introduced theoretical 
framework of boundary objects, the documentation history should be accessible for 
every involved actor in-situ. The actual documentation-work should be performed 
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during all phases of intervention and the complete documentation history should be 
directly associated with the relevant objects. IT support should extend the relevant 
physical objects to provide a surface, plastic enough to enable every involved actor to 
express whatever they think is useful for others in the future. The challenge probably 
still is motivating the workers to document their work - especially if there is no direct 
benefit for them. As observed in the field, most of the MRO workers are motivated to 
document their work because they take advantage from those personal notes in future. 
‘Publishing’ those notes and associating them to the objects could be an important 
first step. The motivational challenge could also be faced by partially automating the 
documentation of involved persons, used spare parts, date and time of the breakdown 
and the completion of the task. Ubiquitous computing technologies like autoID sys-
tems could be used to identify involved actors and used spare parts around machines. 

Bridging between the machines and documentation 
To support maintenance workers finding relevant information repositories have to be 
searchable and browseable from the place where the action is: the defective machine 
or facility. As described in the both cases - especially during the diagnosis phase - the 
responsible MRO workers walk around the machines, point to relevant objects and try 
to reconstruct the breakdown history of the machine. In the current state of IT support 
the relevant information about the history of the machine is stored case by case and 
process-oriented in the SAP-PM system. MRO work is an object-oriented work; 
strongly rooted in the physical, therefore a layer of ‘bookmarks’ providing a direct 
access to relevant information attached at the affected objects would be useful to 
improve the often speculative and error-prone diagnosing work of reconstructing the 
past. Those ‘markers’ or ‘hooks’ should be brought out by the MRO workers them-
selves while they are  coping with a breakdown situation because they have the ex-
perience and the expertise to associate the right object with the relevant information. 

Provide access to local and remote experts 
The third and probably most important aspect is finding the right local experts who 
have the knowledge and experience to help in a particular breakdown situation (cf. 
[18, 19]). The identification and documentation of involved persons in certain break-
downs is an important aspect of supporting indirectly the MRO worker’s work. Sup-
port for finding the right colleague for a discussion about the current problem in the 
diagnosis phase is an important contribution for a more efficient and effective diagno-
sis. Because the diagnosing phase is time consuming efficiency and effectiveness in 
this phase is a promising contribution to reduce downtime of production-critical ma-
chines. To involve other potential stakeholders this locally created and stored infor-
mation should be accessible from other places to enable MRO workers to browse the 
whole information space for similar or related cases in other places. In very compli-
cated and persistent breakdowns it is also possible to enhance the cooperation with 
external experts, e.g. from a particular vendor, by giving them access to a machine’s 
history. In this case, the information space around augmented machines could also 
work as a boundary object to involve external experts and provide all relevant infor-
mation about the history to them, too (c.f. Fig. 3 ‘external actors’).  
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Fig. 3. Machines as boundary objects for supporting collaboration between related stakeholders 
in the organization of MRO and MRO related activities 

7   Conclusion and Future Work 

The current IT support in the observed setting is too office-, process- and manage-
ment-oriented to fulfill the information needs for the operative MRO workers. The 
observations reveal that RM activities are still an important part in MRO. In current 
research - especially against the background of the increasing application of  
embedded computing technologies - there are only few contributions which give prac-
tical insights of this work and discussing them against paradigms of pervasive and 
ubiquitous computing. The enrichment of physical objects with embedded ubiquitous 
information technology has two key characteristics which are highly relevant in the 
addressed domain: First, relevant information moves in places where the need of 
information occurs - embedded into the existing practices. Second, the same informa-
tion, created and explicated in-situ gets available independent from the location. 

The applied qualitative ethnographic methods revealed some important findings 
which lead to implications for design of IT support in the addressed domain. Regard-
ing their special characteristics we propose the introduction of Ubiquitous Computing 
technologies to embed relevant information into the locally contextualized practice 
around objects on-site especially to support the cooperative and discursive reconstruc-
tion of the breakdown history in-situ. Augmenting the physical objects in place could 
provide a plastic semi-virtual surface where maintainers and other involved groups 
exchange information. This would bring the defective machines into the role of 
boundary objects that mediate between all involved groups of actors in breakdown 
situations. Due to the limited observation time in-place and the limitations regarding 
the gathering of empirical data the next step is to build first design sketches and intro-
duce them in the observed practice with the aim of gathering more data about this 
indeed very complex domain and to observe early signs of appropriation to inform the 
further design. E.g. autoID-technologies could be a first appropriate means to enable 
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the MRO workers to annotate affected objects with links to information like involved 
persons, relevant spare parts and folders in the machine documentation cabinet (cf. [2, 
3, 4]). The next evolution of this approach will be the introduction of ad-hoc deploy-
able and interconnected sensor notes to automatically gather additional information 
about a machine’s history like deviating vibrations and temperatures to both enhance 
the prediction of breakdowns and to support the reconstruction of the past. Further 
investigations have to consider if autoID systems and wireless sensor networks work 
in environments with lots of metal or if they sustain on temporally hot surfaces. 
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Abstract. Indications of cognitive impairments such as dementia and
traumatic brain injury (TBI) are often subtle and may be frequently
missed by primary care physicians. We describe an experiment where we
unobtrusively collected sensor data as individuals with TBI performed
a routine daily task (making coffee). We computed a series of four fea-
tures of the sensor data that were increasingly representative of the task,
and that we hypothesized might correlate with severity of cognitive im-
pairment. Our main result is a significant correlation between the most
representational feature and an apparent indicator of general neuropsy-
chological integrity, namely, the first principal component of a standard
suite of neuropsychological assessments. We also found suggestive but
preliminary evidence of correlations between the computed features and
a number of the individual tests in the assessment suite; this evidence
can be used as the basis of larger-scale studies to validate significance.

1 Introduction

Cognitive impairments such as dementia and traumatic brain injury (TBI) can
be difficult to detect and assess—one study showed that up to 75% of cases
of dementia or probable dementia go undiagnosed by primary care physicians
[1]. Additionally, cognitive ability may vary from day to day and, since ther-
apists cannot observe patients on a daily basis, they are often forced to rely
on questioning patients about their activities and to “play detective” using the
answers given [2]. This paper describes work to automatically assess cognitive
impairments caused by traumatic brain injury by using wireless sensors to ob-
serve individuals performing an everyday task, and then extracting features that
are correlated to important neuropsychological assessments. The use of simple
wireless sensors can potentially enable unobtrusive assessment on a daily basis
in a naturalistic setting.

We asked individuals with TBI to make a pot of coffee and electronically ob-
served them by placing RFID tags on relevant objects and having the subjects
wear a bracelet with an RFID reader. We chose coffee making as a common
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functional task that serves as a proxy for everyday activity performance. We
analyzed the collected sensor data and compared it to the subjects’ scores on
a standard suite of neuropsychological assessments. Our analysis considered a
series of four features computed from the data, which were increasingly rep-
resentative of the task. We found a significant correlation between the most
representational feature—edit distance from a correct task plan—and the first
principal component of the assessment suite, which appears to serve as an in-
dicator of general neuropsychological integrity. Because of the large number of
tests in the neuropsychological suite, we were unable to collect sufficient data
to demonstrate statistical significance between our computed features and indi-
vidual tests, but we did find suggestive yet preliminary evidence of correlations,
which can be used to structure larger scale investigations.

2 Motivation

The study we report on in this paper involved subjects who were being treated
for traumatic brain injury (TBI). TBI is not uncommon: approximately 0.46%
of Americans are hospitalized for brain injury each year and individuals aged
15-24 are far more likely than any other age group with over 0.9% hospitalized
each year for brain injury [3]. Regrettably, TBI is frequently seen in wounded
veterans returning from the Iraq War. Improved body armor has helped soldiers
survive explosions that they might not have survived before, but many soldiers
are suffering brain damage as a result of the blasts. The increase in Traumatic
Brain Injury has been so dramatic that it has been called the “signature wound”
of the Iraq War [4]—in one study of servicemembers arriving at Walter Reed
Army Medical Center with injuries caused by explosions, 59% of the soldiers
were found to have TBI and 56% of those were considered moderate or severe
[5]. The existence and severity of TBI can be difficult to assess, in part because
it cannot always be detected with imaging tests [6].

While our study was restricted to subjects with TBI, we anticipate that the
approach we are using can generalize to other causes of cognitive impairment,
notably including dementia. This is important, because the world’s population
is aging. In 2000, 12.4% of the U.S. population was aged 65 and older, and it is
predicted to increase to 19.6% by 2030 and 20.6% by 2050. The oldest subgroup,
that of individuals aged 80 and older, is expected to rise even more dramatically,
more than doubling from 3.3% of the population in 2000 to 5.4% in 2030 and
8.0% in 2050 [7]. Trends worldwide are similar [8]. Dementia becomes much more
common with age, affecting fewer than 1% of individuals in North America aged
60-64, but nearly 13% aged 80-84 and more than 30% of those over age 85 [9].
Without scientific advances to lower the incidence rates or the progression of
Alzheimer’s—the most common form of dementia—it is estimated that between
7.98 and 12.95 million people in the United States will have Alzheimer’s Dis-
ease in 2050, four times the number that did in 2002 [10]. While our work overall
is motivated by the challenges in assessing a wide range of cognitive impairments,
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it is important to keep in mind that we have so far only conducted tests using
patients with traumatic brain injury.

By using wireless sensors placed in a home environment, passive and ongo-
ing observation and re-evaluation may be possible without disruption of the
individual’s life or schedule. This would allow the observation of subjects over
an extended period of time to provide information about both short-term and
long-term changes in impairment. Short-term changes, for example improvement
caused by successful medication or treatments, or sudden degradation resulting
from a side-effect of medication, could be quickly detected and acted upon.
Simplifying long-term observation means subtle changes could be more easily
detected and that day-to-day variation could be distinguished from long-term
changes.

3 Background

3.1 Automated Detection of Cognitive Impairments

Researchers at the Oregon Health & Science University are developing several
techniques for the automatic detection of cognitive impairments, including au-
tomatically observing users play a modified version of the game FreeCell. One
study focuses on mouse movement during the game [11] while others focus on
the subjects’ performance over time, comparing it to the performance of an au-
tomated solver. Using the results, it was possible to differentiate the three mildly
cognitively impaired subjects from the six others [12]. Work with several other
computer games, specially created to perform assessments of cognitive impair-
ments is underway with some promising early results [13]. They have also studied
automatically monitoring mobility because slowed mobility may be a predictor
of future cognitive decline. The time to answer a phone call was used to measure
mobility [14], as were passive infrared detectors and several models to infer the
mobility of subjects more directly as they move about a residence [15].

Research by Glascock and Kutzik used various sensors to observe activities
of daily living (ADLs) in a subject’s home. The output from the sensors, how-
ever, was analyzed manually [16]. Other research by Barger, Brown, and Al-
wan observed subjects using motion detectors to detect behavioral patterns.
Although basic analysis of behavioral patterns was performed, this analysis was
only loosely tied to performed activities [17]. Finally, Hoey, et al use an estimate
of the subject’s functionality in their system that assists a user with dementia
during handwashing. This estimate is updated over time as the user completes
the handwashing task. While detection of cognitive impairments was not the
focus of that research and accuracy results are not given for their system, this
approach could potentially be expanded to those goals [18].

Similar ideas have been used to address other conditions such as automati-
cally observing autism using accelerometers placed on the wrists and chest [19].
Preliminary studies have also examined using toys with sensors to support as-
sessment of a child’s development [20].



Automatic Assessment of Cognitive Impairments 195

3.2 Activity Recognition

Activity recognition is an active field of research that uses various sensors to
monitor individuals, applying interpretation algorithms to recognize the activ-
ities they are performing. While we do not perform activity recognition in the
current study—we instead assess the performance of known activities—there
are clearly connections between the two tasks. Different applications in activity
recognition focus on a wide range of activities. Recognizing whether a subject
is moving in ways such as jumping or walking [21], identifying a user’s common
destinations in a city [22], and differentiating whether a user is taking medica-
tion, making cereal, or eating cereal [23] are all examples of tasks distinguished
by activity recognition systems.

Several types of sensors can be used to observe interactions with objects,
such as RFID readers, motion detectors and accelerometers designed to detect
object-use interactions, as well as electric current and water flow detectors [24].
In each case, the sensors measure approximations of object usage: with RFID
readers, for example, proximity of a hand and an object is used as a proxy for
object interaction; with accelerometers, movement of the object serves as a proxy.
Several techniques have been used to analyze this data, including probabilistic
methods and decision trees [24,25].

There are also many approaches to activity recognition that are not based on
the analysis of interactions with objects, including the use of GPS [22], small
wearable sensing platforms that have several sensors including accelerometers
[26], and data-rich sensors such as video cameras or microphones [21].

4 Methodology

Our study involved subjects performing an everyday activity that could be mon-
itored using wireless sensors. We hypothesized that patterns of errors made in
the performance of such activities are associated with the severity and type of a
patient’s cognitive impairment and further, that we could use wireless sensors to
accurately detect those errors. We were concerned both with predicting overall
neuropsychological integrity, and with identifying more specific neuropsycholog-
ical profiles, such as isolated difficulties with memory, attention, or executive
reasoning.

4.1 Selection of a Task

We chose to observe subjects preparing a pot of coffee using a drip coffee maker
common in North America. This task was selected because it is performed by
many people on a regular basis, so individuals could be assessed as they per-
form their daily routine. Variation in the ways that individuals make coffee is
somewhat limited so patterns can be analyzed more easily, but there is still
opportunity for mistakes or inefficiencies when the subjects perform the task.
The same task was used successfully in our previous study of behavioral pat-
terns [27]. In the current study, subjects did not fully prepare a cup of coffee
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but only started the coffee pot brewing so that they did not handle hot liq-
uids, discussed more in section 4.3. While the particular task we used, coffee
making, was selected for reasons just given, in the end it is simply a common
functional task that serves as a proxy for everyday activity performance. We
expect that studying a range of similar tasks would be necessary before our
methodology would be put into place in individuals’ households, so that an in-
dividual who was, say, a tea- rather than coffee-drinker could still benefit from
the approach.

4.2 Selection of Technology

Radio Frequency Identification (RFID) technology has been used successfully to
study object-use interactions in several activity recognition projects (as discussed
in section 3.2). RFID uses tags placed throughout an environment, along with
readers that detect nearby tags. An important advantage of this technology
is that one can use passive RFID tags which require no power source. Other
advantages to using RFID are that tags are available in a small form factor
(approximately the size of a postage stamp) and that they are inexpensive (less
than $0.20).

Following earlier work in automated activity recognition, we had each sub-
ject wear an RFID reader on the wrist, and we thereby recognized the objects
with which the subject was interacting. Specifically, our subjects wore the Intel
iBracelet, with a range of about 10cm, that is depicted in Figure 1 [28].

Fig. 1. The Intel iBracelet RFID Reader

This design is beneficial for privacy concerns as well: a subject may take off
the bracelet to avoid observation. Likewise, other individuals will not confuse
the system as long as they don’t wear the bracelet. Disadvantages include the
fact that the bracelet is somewhat bulky and has a relatively short battery life
(about three hours). If our methodology were used in the home environment,
however, the subject would only need to wear the bracelet when making coffee,
and could remove it for the rest of the day.
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4.3 Experimental Setup

Sixteen subjects with traumatic brain injuries and full neuropsychological eval-
uations were recruited to participate in the study. For each trial, the subject was
to start a pot of coffee—putting in water, a filter and ground coffee and turning
the coffee maker’s power on. Subjects were each asked to perform five trials on
five different days (13 completed at least three trials and 10 completed all five
trials).

The subjects performed the trials in a kitchen at the medical center where
they were receiving care for their cognitive impairment. The coffee pot and all
supplies were placed on a counter in the kitchen, next to a sink for water. Subjects
were asked if they knew how to make coffee and given basic instructions if they
did not. No physical demonstrations were given. If subjects asked how much
material to put in, they were told to use enough for six cups of coffee (about
half the capacity of the coffee pot).

The material that was set out included the coffee pot and carafe, a canister
of ground coffee, a bag of filters, a mug and a spoon. Twelve tags were used:
four on the coffee pot, four on the canister of ground coffee, and one each on
the other objects. Multiple tags are needed for some objects to reliably detect
interaction due to the range of the iBracelet (the shorter range is desirable to
avoid a higher rate of false positives).

The experimental setup was influenced by the fact that the subjects had cog-
nitive impairments and were performing the task within the clinic. We placed the
supplies on the counter, rather than away in cabinets, to make the task easier for
the subjects to complete in order to avoid causing frustration by having subjects
searching in an unfamiliar kitchen if they forgot where a supply was located.
This should not be necessary when observing subjects in a home environment.1

5 Automatic Assessments

The sensor data collected in each trial consists of a series of time-stamped in-
teractions with RFID tags, a sample of which is shown in Figure 2. From the
collected sensor data, we computed four features that we hypothesized might
correlate with the subjects’ cognitive impairments. The features are increasingly
representative of the task, ranging from very simple—how long does it take the
subject to complete the trial—to much more detailed—how “far off” is the sub-
ject’s behavior from a correct instance of task performance.
1 Out of an abundance of caution and on the advice of the clinic staff, we also did not

have subjects pour out a cup of coffee once the pot had brewed. This was to ensure
that the individuals would not be handling hot liquids and decrease the potential
of injuring patients at the medical facility. This should not be a barrier to using a
similar system in-home since we expect that many cognitively impaired individuals
regularly make coffee and, anecdotally, several participants in our study noted that
they regularly made coffee at home (the percentage of participants who make coffee
regularly is unknown since that was not part of the formal interview).
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Time Stamp Tag Detected
1200503935 Carafe
1200503935 Filters
1200503936 Filters
1200503939 Ground Coffee 3
1200503956 Ground Coffee 1
1200503989 Coffee Maker Lid 3

Fig. 2. Stream of time-stamped interactions from a portion of a trial. When multiple
tags are placed on one object, a number is given indicating which tag has been detected.

5.1 Trial Duration

Our first hypothesis was that a more severely impaired individual might take
longer to prepare the pot of coffee than a less impaired individual, as a result of
confusion, mistakes, or simply performing steps more slowly. Therefore, the first
feature we computed is the duration of the trial: how long it takes the subject
to complete the task.

Given a trial with n detected interactions, we define this feature using the fol-
lowing formula: TrialDuration(t) = EndT imen−StartT ime1 where StartT imei

and EndT imei indicate the start and end times of the ith action in the temporal
sequence of trial t. That is, the feature is simply measured as the time between
the first interaction that is detected and the last.

5.2 Action Gaps

Note that the trial duration feature is extremely simple and has very limited
representational power: it would not distinguish between two people who are
behaving in very different ways, provided only that the total amount of time for
each trial was the same. We next moved to a somewhat more representational
feature, which is based on the hypothesis that more severely impaired individ-
uals might have more periods during which they were not interacting with any
objects, on the assumption that during those periods they are considering what
step to take next. The second feature measures these periods of inactivity during
the trial which we call Action Gaps. We define the number of Action Gaps with
length g of trial t:

ActionGapsg(t) =
n−1∑
i=1

{
1, if StartT imei+1 − EndT imei > g

0, otherwise

We examine the number of brief action gaps using g = 3 seconds and the number
of longer action gaps using g = 10 seconds.

5.3 Object Misuse

We next moved to a feature that accounts for the specific objects used in task
performance. One way of determining whether someone is being effective in
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carrying out a task is to examine the number of times he or she interacts with
each object used in the task. We thus hypothesized that failure to interact with a
required object—e.g. to “touch” the coffee filters—indicates a problem, as does
an excessive number of interactions. For the simple task of making coffee, we
manually determined a reasonable range of interactions with each object, shown
in Table 1. The filters, for example, may be used once or twice—once to open the
bag of filters and perhaps again if the user closes the bag in a separate interaction
(remember that the tag is on the bag of filters, not individual filters themselves).
Note that we do not state a maximum number of accepted interactions with the
Ground Coffee or the Mug or Carafe (to get water) because these are difficult to
define—unlike closing the lid which is one distinct interaction, putting ground
coffee in the coffee pot may involve touching the ground coffee multiple times
to get several scoops and filling the water may require using the mug multiple
times to fill the coffee pot. The Spoon is not included in this feature because it
was rarely detected—it would also be difficult to use since it is not required but,
like the Grounds, may be used multiple times.

For each trial, we then counted the number of times the subject interacted
with each object b (touchb) and determined whether that number was outside
the accepted range and, if so, how far outside the range it was.2

ObjectMisuse(t) =
∑

b∈Objects

⎧⎪⎨
⎪⎩

0, minb ≤ touchb ≤ maxb

minb − touchb, touchb < minb

touchb − maxb, touchb > maxb

Table 1. Number of Accepted Interactions for each Object

Object b minb maxb

Lid 2 2
Ground Coffee 1 ∞
Filters 1 2
Mug or Carafe (Getting Water) 1 ∞
Power Switch 1 1

5.4 Edit Distance

Our final approach to automatically measuring performance moves even further
in the direction of matching the subject’s performance to an explicit model
of correct performance. With this approach, we begin with a representation of
how to make coffee—a “plan” for the task. The plan we used in our analysis
2 We also investigated a few variations of the Object Misuse metric, to address the

possibility that touching an object too many times could have a disproportionately
large impact compared with touching too few times. These variations were approxi-
mately as successful as the basic metric here; because the variations and results did
not appear to be interesting, they are not presented in this paper.
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is a partial order over object interaction, depicted in Figure 3, with “Water”
indicating using the carafe, mug, or both to get water from the sink and put
it into the coffee maker. Note that the use of the partial order allows us to
score as “correct” alternative task executions that are reasonable: we score as
correct both executions in which water is added before the filter and ground
coffee and those in which those actions are reversed. However, we judge to be
incorrect executions in which the power switch is turned on before the filters are
used.

We then further constrain our plan for correct executions to those in which
object interactions are not interleaved and using filters is followed directly with
using ground coffee. These two criteria are added for the same reason: for a
basic task like making coffee, we hypothesize that it is more likely that a mistake
occurred than that the individual chose to interleave actions (like getting ground
coffee, then water, and then ground coffee again). Using filters and ground coffee
are kept together because we view them as really one general action: putting
ground coffee in the coffee maker.3

Fig. 3. Partially Ordered Plan of Object Interaction for Making Coffee

Although we manually created the plan to represent making coffee, other
research on activity recognition has addressed the question of automatically
constructing plans for everyday activities by mining the web for descriptions of
these activities [29]. Such an approach could be adopted to extend our work.

Once we have a plan that models correct task executions in terms of ob-
ject interactions, we next have to define a measure of deviations from that
plan. For that, we adopted the notion of edit distance, which is frequently used
in the literature on natural language processing [30], but which has also been
used in prior work on activity recognition [25]. More specifically, we make use
of the Levenshtein distance which allows the insertion, deletion, or substitu-
tion of a character [31]. We compute the distance between the sequence of ob-
served object interactions and each of the legal executions of the plan for the
task.

3 The assumptions we have made in our model may be too constraining—perhaps
many unimpaired individuals do interleave using filters and grounds with get-
ting water, for example. This suggests a further elaboration, in which the plans
are probabilistic—with the probabilities representing the plausibility of certain se-
quences being performed. This elaboration, however, is outside the scope of this
project.



Automatic Assessment of Cognitive Impairments 201

Note that to compute the edit distance, we merge consecutive interactions
with the same object (for example, multiple usages of the ground coffee are just
shown once as long as no other objects are used in between). We then define
EditDistance(t):

EditDistance(t) = mine∈LegalExecutions(Distance(t, e))

With our very simple plan, there are only two legal executions: the one in which
placement of the filters and the ground coffee precedes the filling of the water
canister, and the one in which these occur in the reverse order. Hence Edit
Distance is easy to compute, involving determination of just two distances.

The edit distance is intended to provide a fairly fine-grained measure of the
relationship between the “correct” task performance, at least as modeled in our
plan, and the subject’s actual performance.

6 Neuropsychological Assessment

Neuropsychological impairments are assessed with a battery of tests that sample
a broad range of cognitive domains. Many of these tests assess general func-
tioning, such as intellectual ability. Others are very specific, having been cho-
sen because they are known to be associated with functioning that is mediated
by a specific brain locus (e.g., left versus right hemisphere, anterior or lateral
frontal lobe, specific sub-regions of the areas that mediate expressive or recep-
tive language), or because they provide critical information about a cognitive
domain that is central to performance of everyday activities (e.g., attentional
shifting). The measures employed for this type of assessment are meticulously
normed, often in the context of multiple samples, such that statements can of-
ten be made about a patient’s performance relative to the population at large,
to specific cohorts (e.g., those of same gender and similar age or education),
or relative to specific clinical comparison groups (e.g., is the profile most con-
sistent with a cerebro-vascular accident, dementia, or depression) [32,33,34].
The neuropsychological assessments we used are given in Table 4 in the ap-
pendix.

We obtained the results of neuropsychological tests from the patient records
of our 16 subjects to use as ground truth. We then computed the correlations of
our computed features with the individual neuropsychological assessments listed,
using an individual’s average value over the five trials for each computed feature
and applying one-tailed non-parametric evaluation. In addition to the individual
neuropsychological assessments, we applied principal component analysis (PCA)
to the complete set of neuropsychological assessment data for the subjects in
order to examine how well our computed features correlate with larger trends in
the assessment data. PCA is a standard statistical technique that finds linearly
independent components that explain as much variance in the data as possible.
Each component is a linear combination of the assessments where the sum of the
squares of the component coefficients is one. The first principal component is the
linear combination that has the largest possible variance; the second principal
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component is the linear combination that has the largest possible variance and
is uncorrelated with the first principal component; the third is uncorrelated with
either of the first two components, and so on. To perform the PCA, some of the
summary assessments in Table 4 were replaced with their component scores, a
standard statistical practice.

The first principal component of the neuropsychological data we used accounts
for 26.4% of the total variance in the data and the top five principal components
together account for 72.0% of the total variance. Table 5 in the appendix shows
the first five principal components and the variance explained by each compo-
nent. Table 4 indicates which factors, if any, each assessment (or any subtest of
that assessment) has a loading of 0.6 or higher.

After computing the principal components, the domain expert on our team
(Kirsch) interpreted them. The first principal component includes a diverse set
of measures of general intelligence. It appears to be a good proxy for general neu-
ropsychological integrity, including measures of intellectual functioning, verbal
and nonverbal reasoning, memory, and complex attention. The interpretation of
the lower-order components is less clear, although the second could be seen as
a measure of general motor integrity; the third as representing verbal memory
and concept formation; the fourth, the ability to retain verbal information over
time; and the fifth, strategy formation and modification.

7 Results

7.1 Assessing Neuropsychological Integrity

Recall that the main question we ask in this study is whether we can assess
a patient’s cognitive status by observing performance of an everyday activity
using wireless sensor networks. Our main result is quite promising: we found a
statistically significant correlation (p < 0.01) between the Edit Distance feature
and the first principal component of the neuropsychological assessments, which,
as just described, can serve as a proxy for overall generalized neuropsychological
integrity. Importantly, we did not find such a correlation with any of the simpler
features (Trial Duration, Action Gaps, or Object Misuse). The ability to predict
neuropsychological integrity, at least within the scope of this experiment and in
particular for the population of TBI patients involved, is a strong indication that
it is possible to conduct the types of automatic assessments that motivate this
work. Figure 4 shows the plot of Edit Distance and the first principal component,
with the regression line.

7.2 Assessing Other Metrics of Impairment

Although general neuropsychological integrity is a very important metric, it is
also interesting to see how our features assess other metrics of cognitive impair-
ments. The reason for doing this is based on domain practice—in addition to a
concern with overall neuropsychological integrity, it is often important for a reha-
bilitation team to understand different aspects of a patient’s impairment: does it
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Fig. 4. Plot and Regression Line of Edit Distance with the First Principal Component
of the Neuropsychological Assessments

involve memory impairment? Problems with focus of attention? Decreased mo-
tor coordination? There is a potential for these to be blurred in a single measure
of overall integrity, important though that summary measure is. For instance,
an individual whose impairment involves decreased motor coordination or pro-
cessing speed may have unimpaired executive function, and thus still be able to
follow a “plan” for making coffee successfully, but perform the task more slowly.
An increased Total Duration might help tease out the types of cognitive diffi-
culties facing this patient. To address this, we also look at the next four (the
second through fifth) principal components as well as the twenty-nine individual
assessments.

Additional statistical analysis such as a Bonferroni correction is required to
state that a correlation between two variables exists with statistical significance.
However, because of the large number of assessments and features, achieving
statistical significance at this strict level would require the collection of data
from a huge number of subjects—many more than were in the scope of this
project. Nonetheless, our results on the individual tests in this section are im-
portant as exploratory data analysis and as a foundation for further research
in the area. Although we recognize that correlations at the variable level are of
questionable significance because of the number of analyses performed, we are
nevertheless presenting these findings because the coherence of the relationships
and the number of associations we found provide important direction for fu-
ture research. Additionally, while only suggestive, the variable level correlations
provide tentative guidance in regard to further refinement of “markers” that
clinicians can use when attempting to make a determination of the mechanisms
for a patient’s failure. Analysis of mechanisms (e.g., decreased processing speed
vs. executive functioning) may then lead, in turn, to choices on the clinician’s
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part about interventions that are specifically targeted to the underlying impaired
cognitive mechanism.

Beyond this, it is noteworthy that we saw more correlations than would have
been expected by chance (22 actual correlations for the individual assessments
versus 14.5 expected by chance), especially when looking at what would be strict
p-values if the Bonferroni correction were not required (p < .01: 8 actual cor-
relations versus 2.9 by chance). Moreover, many of the identified correlations
“make sense” from a neuropsychological standpoint, in a manner similar to the
example in the previous paragraph. The results from correlations with prin-
cipal components will also be presented, although the number of correlations
with the second through fifth principal components (2) is what was expected by
chance.4

Edit Distance. The Edit Distance feature achieved the best results with the
individual evaluations as well, having a suggestive correlation with the fourth
principal component as well as with 7 of the 29 (24%) neuropsychological assess-
ments.5 Recall that the fourth principal component appeared to represent the
ability to retain verbal information over time. The correlations with individual
evaluations are predominantly and compellingly with memory features; we spec-
ulate that they could also be said to measure the integrity of the
left-cerebral hemisphere and the capacity to engage in sequential and logical
thinking. Generally the assessments that have suggestive correlations with Edit
Distance are also factors with a high loading in the principal components with
which Edit Distance is correlated but the slightly weaker interpretation is likely
due to the less efficient analysis of individual assessments. Table 2 summarizes
the Edit Distance results and compares them to the other features. Table 3 shows
more detail, giving the assessments with which Edit Distance had a suggestive
correlation.

Table 2. Summary of Results from each Feature

Feature Correlations with # Suggestive Correlations with
Principal Components Individual Features

Edit Distance 1st (p < 0.01) 7
Suggestive: 4th

Total Duration - 6
Action Gaps (≥ 3s) - 5
Object Misuse - 3

4 These numbers include the results from the additional five variations of Object
Misuse noted in Section 5.3 although those results are not presented here.

5 We identify a suggestive correlation whenever there would be a statistically signifi-
cant correlation if the Bonferroni correction were not needed. Because it is necessary,
these correlations are not significant but are still of interest for their value in guiding
future studies.
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Table 3. Suggestive Correlations between Neuropsychological Assessments and Com-
puted Features (Assessments with no suggestive correlations are not shown)

Computed Feature
Edit Total Action Gaps Object

Assessment Distance Duration ≥ 3s Misuse
WAIS III Processing Speed * #
WMS-R Visual Reproduction II * * *
CVLT II Total *
CVLT II Long Delay Free Recall * * *
CVLT II Discriminability * *
Trails B * #
Animals * * *
WRAT 4 Reading * #
TPT Memory *
Finger Tapping - Dominant *
Finger Tapping - Non-Dominant * # * #
GPB - Non-Dominant * # * #
* indicates a suggestive correlation.
# notes additional coverage: a metric not also correlated with Edit Distance.

Total Duration and Action Gaps. Total Duration and Action Gaps also
proved to be promising features. Though neither had suggestive correlations
with any of the principal components, they did with a number of neuropsy-
chological assessments. Total Duration had a suggestive correlation with 6 of
the 29 (21%) neuropsychological assessments. Similarly, Action Gaps of 3
seconds or greater suggestively correlated with 5 (17%) of the neuropsycho-
logical assessments. These results are less coherent from a neuropsychological
perspective than the Edit Distance results but the correlation between process-
ing speed and Total Duration is very logical. And while the results are not as
good as the Edit Distance results, they are still valuable: between the three
features presented thus far, there are suggestive correlations with over 12 of
the 29 neuropsychological tests (40%), including 5 that did not have sugges-
tive correlations with Edit Distance. We also tested Action Gaps of 10 seconds
or greater but this only had a suggestive correlation with one metric (GPB -
Non-Dominant which also correlated with two other features); we hypothesize
that the poor result for this feature is due to the low frequency of gaps that
long.

Object Misuse. The results from the Object Misuse feature were the least
successful—as shown in Table 3 the feature had fewer suggestive correlations
than Edit Distance, Total Duration or Action Gaps of 3 Seconds, and none with
assessments that were not also correlated with Edit Distance.
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8 Discussion and Conclusion

We have presented an approach to using RFID-based sensing of individuals as
they perform a simple task, with the aim of assessing their level of cognitive im-
pairment. We presented four features, with increasingly representational power,
that can be computed from the collected sensor data, and evaluated them using
the results of the subjects’ performance on standard neuropsychological assess-
ments as well as with the principal components of those assessments. The most
knowledge-rich feature we computed, Edit Distance, had a statistically signif-
icant correlation with the meaningful first principal component, a measure of
general neuropsychological integrity. We also presented the results of exploratory
analysis of the correlations between the four types of features and the individual
assessments; these results are helpful to guide future research into other metrics
of impairment without the need for a massive amount of data collection.

There are many practical concerns for the in-home implementation of a sys-
tem that could automatically assess impairments. Compliance with the system
is important since the user must wear the bracelet and complete the task to be
assessed; individuals at risk for or developing an impairment may be particu-
larly forgetful about doing this. Other sensor modalities, such as accelerometers
placed on the objects, motion detectors, or current or water-flow sensors might
be considered which do not have this drawback. On the other hand, the privacy
implications of observing individuals in a home environment are important to
address and we feel these may be somewhat alleviated by using a system which
can clearly be prevented from observing an individual’s behavior (by taking the
bracelet off).

A great deal of future work remains, including collecting additional data and
performing further analysis to investigate the suggestive individual correlations
identified in this study. Additionally, further study is needed to examine whether
these or similar techniques can successfully differentiate impaired from unim-
paired subjects. Observation of other kinds of impairments (particularly demen-
tia) and longitudinal studies of individuals at risk for cognitive impairments are
necessary to understand the ability of these techniques to detect the onset of
impairment and potentially to develop new techniques to observe change in an
individual’s performance over time. There are a number of ways in which the
scope of the research can be expanded, particularly applying these assessment
techniques to other activities beyond coffee making and using them in a home
environment. Lastly, studying other types of clinical assessments (such as speech
and occupational therapy) as well as development of other computed features,
particularly those that might correlate with different assessments from the com-
puted features presented here, are also areas for future work.
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Appendix: Neuropsychological Assessments Tables
Table 4 lists the individual neuropsychological assessments that we use as ground
truth to measure the severity of a subject’s impairment, with any principal
components for which the assessment had a loading of 0.6 or higher. Table 5
gives the percentage of variation attributed to each principal component.

Table 4. List of Standard Neuropsychological Assessments Used. Parentheses Indicate
Principal Components in Which the Assessment has a Loading of 0.6 or More.

Wechsler Adult Intelligence Scale (WAIS) III Verbal Comprehension (1)
WAIS III Perceptual Reasoning (1)
WAIS III Working Memory (1)
WAIS III Processing Speed (1,3)
Wechsley Memory Scale-Revised (WMS-R) Logical Memory I (3)
WMS-R Logical Memory II (3)
WMS-R Visual Reproduction I
WMS-R Visual Reproduction II
California Verbal Learning Test II (CVLT II) Total (1)
CVLT II Long Delay Free Recall (4)
CVLT II Recall Discriminability (4)
Trails A
Trails B (2,5)
Booklet Category Test (BCT) Error Total
Wisconsin Card Sorting Test (WCST) Concepts (3)
WCST Perseverative Errors (5)
Controlled Oral Word Association Test (COWAT-FAS) Total (1)
Animals (1)
Wide Range Achievement Test (WRAT) 4 Reading (1)
WRAT 4 Mathematics (5)
Peabody Individual Achievement Test-Revised (PIAT-R) Reading Comprehension
Peabody Picture Vocabulary Test-Revised (PPVT-R) (1)
Tactual Performance Test (TPT) Total (2)
TPT Memory (1)
TPT Location (2)
Finger Tapping Test - Dominant
Finger Tapping Test - Non-Dominant
Grooved Pegboard (GPB) - Dominant (2)
GPB - Non-Dominant (2)

Table 5. Principal Component Analysis of Neuropsychological Assessments

Component % of Variance Cumulative %
1 26.4 26.4
2 15.0 41.5
3 12.8 54.2
4 9.0 63.3
5 8.7 72.0
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Abstract. Many studies of ubiquitous computing systems involve deploying a 
system to a group of users who will be studied through direct observation, in-
terviews and the gathering of system log data. However, such studies are often 
limited in the number of participants and duration of the trial, particularly if the 
researchers are providing the participants with hardware. Apple’s App Store 
and similar application repositories have become popular with smartphone us-
ers, yet few ubiquitous computing studies have yet utilised these distribution 
mechanisms. We describe our experiences of running a very large scale trial 
where such a distribution model is used to recruit thousands of users for a mo-
bile system trial that can be run continuously with no constrained end date. We 
explain how we conducted such a trial, covering issues such as data logging and 
interviewing users based in several different continents. Benefits and potential 
shortcomings of running a trial in this way are discussed and we offer guidance 
on ways to help manage a large and disparate user-base using in-application 
feedback measures and web-based social networking applications. We describe 
how, through these methods, we were able to further the development of a piece 
of ubiquitous computing software through user-informed design on a mass 
scale.  

Keywords: Evaluation Techniques, Large Scale Deployment, Trial Methods. 

1   Introduction 

It is often considered beneficial to conduct trials of ubiquitous computing (ubicomp) 
systems ‘in the wild’ i.e. in uncontrolled contexts and environments that are typical of 
everyday use of many modern technologies [1]. In contrast to the lab-based environ-
ment of more traditional usability-style studies, it has been argued that experiments 
carried out in situ can help evaluators gain insight into how people fit systems into 
their existing practices and contexts of use, and how people change their contexts and 
practices to accommodate or take advantage of new systems. While this approach has 
its benefits, the staging of ubicomp system trials may give rise to a number of practical 
issues that inhibit evaluators’ ability to draw substantive conclusions on system use. 
For example, many trials involve providing each participant with a mobile device on 
which to run the system under investigation. This in itself can introduce biases into the 
trial: participants are dealing with a device with which they are not familiar, and there 
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will likely be a period of acclimatisation during which they might not use the new 
technology as naturally, or with the same degree of skill, as more experienced users. 
Merely having to carry around an extra device during a long-term trial might have an 
effect on some participants—it is likely that they will already be carrying mobile 
phones and perhaps also cameras, so the obligation to carry around additional hardware 
might affect participants’ perceptions of the system, or they may simply not always 
carry the trial device around or use it as much as experimenters hope or expect. 

Another limiting factor that arises when providing participants with new hardware 
on which to run a system under investigation is the number of devices that can be 
supplied, and therefore the number of participants available for the trial. Most re-
search projects have a specific budget for trial hardware, but this rarely stretches to 
pay for thousands or even hundreds of devices such as smartphones, and so the size of 
experiment that can be conducted is necessarily limited to a relatively small number, 
e.g. 10–20. Such hardware may be shared by several experiments in the same project, 
or in several projects, and this may create pressure to keep trials short so that different 
experiments can take place.  

Furthermore, if participants are supplied with devices by researchers, it is common 
practice to recruit these users from the researchers’ local area. Many university-based 
research teams will use student volunteers as participants, for example, or other par-
ticipants who reply to adverts placed around the campus. Although many interesting 
findings are of course possible from such a user-base, an evaluator could not realisti-
cally extrapolate these insights into conclusive statements in a global sense; how a 
group of university undergraduates adopt a particular technology may not be typical 
of the wider community in the same urban area, and communities in a different conti-
nent may be even more different. So, not only does a local participant set give rise to 
the dangers of basing findings on a very narrow subset of a technology’s potential 
user-base, it also leaves no possibility for studying cultural differences by comparing 
many geographically distant groups of users. 

A step towards addressing some of these issues is running a trial of a ubicomp 
software system not on experimenter-supplied devices, but on devices the participants 
already own and use daily. Only in very recent years have we seen mobile phones that 
are both numerous enough to afford a large trial as well as advanced enough to sup-
port downloading and installation of researcher-supplied software. Market research 
firm IDC [2] suggests that, at the end of 2009, 15.4% of the mobile phone market 
consisted of smartphones, an increase from 12.7% in 2008. So, while still not the 
predominant type of handset, we suggest that smartphones have been adopted into 
mainstream use. While running a trial solely with smartphone owners may not be 
selecting a user-base that is representative of the population at large, it is not now 
using only the most advanced ‘early adopters’. By recruiting smartphone owners, we 
may be able to avoid or reduce some of the issues outlined earlier, in particular the 
small number of hardware devices that a research project can generally supply and the 
length of time that a trial can last for. 

In this paper we describe our tools and techniques for recruiting smartphone owners 
for ubicomp trials, deploying systems amongst them, directing questions to users and 
encouraging social interaction among them. We document our experience of a sys-
tem’s deployment among 8676 active users. A key element of our recruitment and 
deployment was our use of a public software repository rather than directly supplying 
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software to trial participants. Although a recent phenomenon, such repositories are a 
well-established means of deploying software to smartphone users. Apple’s App Store 
has proved to be a very popular and effective means by which iPhone users can access 
new software, and several other mobile platforms now have similar repositories. De-
spite their popularity, the potential for such repositories to be used as a distribution 
mechanism for research prototypes, while having been touched upon in [3], has not yet 
been explored and documented, and yet several potential benefits of such a mechanism 
are apparent, e.g. such repositories already offer means for users to browse and find 
software they are interested in, and so researchers can effectively advertise a system 
and recruit participants for a trial by putting the system into a repository.  

This paper describes our experiences of making a free application available in this 
way, a mobile multiplayer game called Hungry Yoshi. This is a new version of Feeding 
Yoshi, a seamful game that we ported to the Apple iPhone and updated. Feeding Yo-
shi’s main trial was described in [4] as a “long-term, wide-area” trial “being played over 
a week between three different cities” in the UK. We wished to scale up our deploy-
ments and trials as part of a project, Contextual Software, that explores system support 
for collaboration with communities of users in the design and adaptation of software to 
suit users’ varied and changing contexts [5]. Distribution in the App Store style, along 
with our new tools and infrastructure, allowed for a trial that involved a much larger 
number of participants than before, who were far more geographically dispersed than 
we could previously handle, and which lasted longer than any trial we have ever run. At 
the time of writing, the current trial of the new Yoshi system has been running for five 
months and has involved thousands of users from all around the world. 

The following section describes work related to this and other examples of large-
scale trials, as well as outlining the original Yoshi system and trial. This is followed 
by a description of the re-design of Yoshi for use on the Apple iPhone and wide-scale 
distribution. Thereafter we describe the processes involved in distributing the game to 
a global audience, managing a trial involving a large and widely distributed user-base, 
and involving those users in development of a new system feature. We then discuss 
some methodological and practical issues before we offer our conclusions. 

2   Related Work  

Several ubicomp projects have featured data collected from large numbers of people 
via mass-scale sensing. An example is the Cityware project [6], which collected data 
from scans of Bluetooth devices detectable by static recording equipment at various 
locations around a city in order to measure densities and flows of people in particular 
urban areas, which in turn were to be used in architecturally based models of those 
areas. In a related theme, abstractions similar to those of the Cityware work but at an 
even larger scale were shown in [7], which involved the generation of coarse-grained 
city-scale maps of people’s density based on concentrations of mobile phone signals 
sampled from GSM infrastructure. While this work undoubtedly exhibits great scale, 
it is different to the area we are investigating in that sensor data is collected and ag-
gregated, rather than data on the use of applications. Also, such techniques do not 
directly feed into qualitative investigations of social and personal behaviour, a useful 
combination that we aim to support. 
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In 2008 Nokia Research Centre released Friend View, a “location-enhanced mi-
croblogging application and service” [8] via Nokia’s Beta Labs. This site allows its 
community members to contribute feedback to in-development and experimental 
software, but this study reported only on statistical analysis of social network patterns 
based on anonymised log data representing 80 days’ use by 7000 users. Like City-
ware, this serves as an example of many quantitative studies in which potentially 
interesting analyses were carried out, but no interaction with users is described that 
would allow analysis to be contextualised with user experience, or determine how 
users’ opinions, behaviour or systems might change in the light of such analyses.  

One of the early landmarks of large-scale deployment of ubicomp applications was 
Mogi Mogi. As reported by Licoppe and Inada [9], this location-based mobile multi-
player game was released commercially in Japan, and in 2004 had roughly 1000 ac-
tive players. Some basic aggregate analyses involved system profiles, e.g. gender and 
age group, but almost all the presented analysis is based on more ethnographic inter-
views and observations of ten players who were, apparently, strangers to each other. 
This method afforded rich detail of the ways that they fit the game into urban contexts 
and lifestyles, based on months of game play, including occasional social interactions 
between players. 

In 2006, we trialled Feeding Yoshi, running what we called “the first detailed study 
of a long-term location-based game, going beyond quantitative analysis to offer more 
qualitative data on the user experience” [4]. The participants consisted of four groups 
of four people and, as mentioned above, the main study lasted a week. The partici-
pants in each group knew each other before the trial, and collaboration and social 
interaction was observed during the trial. The study drew on participant diaries and 
interviews, supported by observation and analysis of system logs. Somewhat like the 
study by Licoppe and Inada, it focused on how players “interweaved the game into 
everyday life” and how wireless network infrastructure was experienced as a ‘seam-
ful’ resource for game design and user interaction.  

Observational techniques founded in ethnography may be well suited in principle 
to studying ubicomp systems, but in practice they are often hampered because  
keeping up with the activity is difficult, small devices such as mobile phones and 
PDAs can easily be occluded from view, and people’s use may be intimately related 
to and influenced by the activity of others far away [10]. Several video cameras may 
be used to record activities in several locations set within some larger activity, but this 
brings the practical problem of synchronisation, and how to gain an overview of this 
material and combine it with other relevant data, such as system logs gathered from 
the mobile devices. Furthermore, network connectivity may be intermittent or costly 
enough to hamper attempts to keep in continuous contact with users and their devices, 
e.g. to stream log data back to evaluators or developers. Consequently, some re-
searchers have explored ‘experience sampling’ methods, in which a questionnaire 
appears on-screen when the mobile device detects that it is in a context of interest 
[11]. Carter and Mankoff developed Momento [12], which supports experience sam-
pling, diary studies, capture of photos and sounds, and messaging from evaluators to 
participants. It uses SMS and MMS to send data between a participant’s mobile de-
vice and an evaluator’s desktop client. Replayer [13] similarly combined quantitative 
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and qualitative data in order to offer a more holistic view of systems in use, and to let 
researchers study users acting in greater numbers, and at larger geographic and time 
scales, than they can directly observe. In particular, it used spatial properties within 
quantitative log data so as to make analysis of qualitative data less time-consuming 
and therefore allow larger trials to be run. 

3   Hungry Yoshi  

Feeding Yoshi [4] was a mobile multiplayer game for Windows Mobile PDAs. It was 
re-implemented for the Apple iPhone and renamed Hungry Yoshi. It uses wireless 
networks infrastructure as part of its design. Players’ mobile devices perform regular 
scans of the WiFi access points visible in the current area, classify each of these ac-
cess points according to its security settings and display it to the player. Each pass-
word-protected access point is deemed to be a creature called a ‘yoshi’ whereas a 
network without password protection appears as a ‘plantation’ growing a certain type 
of fruit. Yoshis ask players for particular fruit, and players score by picking these fruit 
from the correct trees and taking them to the yoshis. Yoshis also provide seeds that 
enable players to grow new fruit in empty plantations. A research objective of the 
2006 study of Feeding Yoshi was to establish how players could interweave playing a 
long-term game with their everyday lives. Four teams of four players were used in the 
trial, each being paid for taking part, with a competitive element introduced such that 
the members of the team with the highest combined score received double the stan-
dard participation fee. 

Hungry Yoshi has some differences to Feeding Yoshi. Perhaps the biggest change 
is that, with the availability of the iPhone’s data connections over cellular networks, 
the system can generally maintain a globally synchronous game world. In the old 
game, yoshis and plantations visited and their contents were stored only on players’ 
mobile devices, so two players might visit the same plantation and see it containing 
different contents. By storing such details on a centralised server, one player can seed 
a plantation with a fruit type and another can pick the fruit when they grow. A new 
piece of functionality in the iPhone version of Yoshi is the ability to change pieces of 
fruit for a small cost. Players are able to insert fruit into a fruit swapper (Figure 1-
right) that returns a different type of fruit at random. To use this swapper, players are 
charged tokens, which can be earned by performing tasks. Section 4.3 explains why 
this task mechanism was important for helping us interact with the users during the 
trial. 

Another difference from the original trial is that the game no longer has any ex-
plicit team element: each player participates as a solo entity. However, the score table 
is retained as a form of motivation for players, though with the difference that now 
there is no prize at the end of the trial and indeed no defined end to the playing of the 
game. Separate score tables are maintained for overall score, score this week and 
score today, the latter two being used because new players might join in at any time 
and could be months behind the early users. The table screen is divided into a top 
section showing the top players, and underneath, a section showing the players around 
the user’s current position. 
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Fig. 1. The list of nearby yoshis and plantations (left), a yoshi screen (centre), and the fruit 
swapper (right) 

4   Engaging Users Worldwide in Iterative Design  

This section describes how Yoshi was evaluated and modified in the course of our 
trial. It discusses our approach to distribution, management, data gathering, analysis 
and redesign, coupling them together in a form of iterative design suited to the large 
scale of our trial. We outline how we interacted with trial participants, how users 
interacted with each other, and how these interactions fed into a new version of Yoshi 
so as to begin another design iteration. 

4.1   Distribution 

Hungry Yoshi was released in early September 2009. At the time of writing it has 
been publicly available for five months. Distributing software via a public repository 
means using a mechanism that users are already very comfortable with, again possibly 
leading to more naturalistic interactions than with a more contrived physical meeting 
and handover of a device or software. Yoshi appears in the ‘games’ section on the 
store, and so benefits from recruiting users who deliberately seek out this type of 
application and who will hopefully therefore be more keen to engage with the game. 
An unanticipated but welcome benefit to this form of distribution is free advertising 
outside of the store and beyond our own announcements of the trial, e.g. in interview-
ing one of Yoshi’s users, we learnt that she first heard of the game in a review in an 
Italian technology blog. In releasing a research prototype through a public market-
place, we harness some of the enthusiasm of amateur and professional writers who 
regularly scour the store for new applications to try and discuss. 

Figure 2 charts the number of downloads of the game over the time that the game 
has been available. When the game was first released, and when updated versions are 
made available, it features near the top of the store’s “most recent” lists, providing a 
boost in the number of downloads that day.  
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Fig. 2. Number of downloads of Yoshi per day since release 

It can be seen that there was a peak of interest in the first few days following the 
game being launched, after which download figures were around 600 per day. There 
appears to be a gradual trend upwards, perhaps falling off only in the last month or so. 
Occasional spikes, such as that at 40 days, correspond to the release of new versions. 
At the time of writing there have been 137367 downloads in total. This figure in-
cludes people updating to new versions of the game; we recorded 94642 unique 
downloaders. Figure 3 shows the proportion of players of the game each day who are 
playing it for the first time, as compared to those who have played the game before. It 
can be seen that by the end of this period, the proportion of returning players is in-
creasing although around 25% of players are playing for the first time each day. 

 

Fig. 3. Proportion of new and returning players per day of the trial 

Having installed the game and on opening the Yoshi application for the first time, 
users are presented with an information page, written in English, French, German and 
Japanese, that explains that the system is created as part of a research project and that 
details the various forms of information that will be logged during interaction with the 
game. The page also states that researchers might contact users to enquire about their 
use of the software, but that these communications can be ignored and would cease on 
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request. Only by agreeing that they have read and understood these terms can players 
proceed into the game. Further to this, we state that log data will be stored securely, 
that users can opt out at any time, that we will destroy the data logged about them on 
request and that all the data will be destroyed following the end of the project. To 
date, no such requests have been received.  Links are provided to an email address for 
the trial organisers, and to a public Web forum where users can either chat amongst 
themselves or seek clarification on any aspect of the game or research trial from the 
organisers. The data logging process is described below in Section 4.2. At the time of 
writing, 24408 out of the 94642 downloaders registered with the game and agreed to 
be part of the trial. This reduction may be because people were wary of having their 
data logged in the manner described, were perhaps apprehensive over being contacted 
by researchers or were deterred by having to register a user account. Of those 24408, 
many only briefly interacted with the game, but 8676 played for long enough to pro-
duce log data that could be studied. Although this represents only around 9% of the 
total number of downloaders, the number of players is still very large.  

Quantitative analysis benefits from having such a large user-base. Having informa-
tion gathered from thousands of users allows many inferences to be made with a 
much higher degree of confidence than if an experiment had been run with, for exam-
ple, the 16 participants we had in 2006. Results of our quantitative analyses are cov-
ered in the following section, and we offer some reflections on this scaling up in the 
later Discussion section. 

4.2   Quantitative Analysis 

To aid our evaluation of Yoshi, system log data is generated from every trial partici-
pant’s phone. The system makes use of our SGLog logging framework (described in 
detail in [5]), which manages data collection on the phone and periodic uploads to a 
server using the same data connection required to run the game. The data logged in-
cludes activities within the game, such as feeding a particular yoshi, and general con-
textual information. Uploaded data from each user is timestamped and stored on a 
database on a central server. To protect the privacy of participants, this framework 
uses TLS to encrypt data sent between phones and the server. 

 

Fig. 4. The distribution of players’ average system use per day, with a mode of 6 minutes 
(20.5% of players) 



218 D. McMillan et al. 

 

Figure 4 shows the distribution of the average amount of time each user played the 
game each day. This time was calculated by looking at timestamped game events 
registered on the server, rather than simply the times at which the application was 
running, so times when the device was sitting idle do not contribute to the figures. It 
can be seen that there is a range of levels of activity, with several players playing for 
over an hour a day on average.  

One player’s average daily play was significantly longer than the rest. Over the 
first two months of the trial, she had an average of more than 2.5 hours of play per 
day and at the time of writing has played the game for over 200 hours. She is the 
game’s top player, and has been at the top of the overall score table since the early 
days of the trial, with around double the overall score of the second highest-scoring 
player. In any trial it is probable that researchers will observe a variety in the level of 
engagement shown by users. In running an experiment with hundreds or thousands of 
participants, it is likely that this spread will be wider, and that some of these users will 
be more enthusiastic. For example, in the original trial of Yoshi [4], the longest time a 
player spent playing the game in any one day was 2.5 hours, whereas here this figure 
is almost 7.5 hours. 

 

Fig. 5. A visualisation of one of the most active players’ use over the first 100 days of the trial. 
In the upper section, the x-axis shows days since the trial began and the y-axis shows the 24 
hours of the day, with blue shading showing the periods at which the participant was playing 
the game. The lower section shows the number of ‘sessions’ per day for the same user, with 
‘session’ meaning a period with less than five minutes between each user action. 

Figure 5 shows one of the top-scoring players’ activity in greater detail. The num-
ber and lengths of lines give a quick impression of the amount of activity this user has 
engaged in, and the length of these lines shows whether the user favours long sessions 
or quicker games, squeezing a short burst of play into a spare few minutes. We also 
see daily patterns, e.g. finding a strongly shaded row in the plot would indicate regu-
lar play around that time of day. Quantitatively-based visualisations such as these 
were useful both in themselves, in letting us see basic patterns of use, but also in feed-
ing into qualitative analysis, e.g. in selecting participants to interact with more di-
rectly, and in preparing for such interactions—as described in section 4.3. 

4.3   Interacting with Participants  

One of the challenges of conducting a worldwide system trial lies in managing  
interaction with participants: maintaining a presence with participants, harnessing  
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feedback and supporting qualitative analysis. As we would not be able to regularly 
meet participants, as one might do in a more standard trial with locally sourced trial 
subjects, alternative means were sought to keep in contact with our users. We used 
two mechanisms: tools for communication within Yoshi, and communication via a 
social networking web site. 

In-Game Communication with Users 

Rather than have communication with users happen in a way that clashed with the 
user experience, we built bi-directional communication into the functionality of the 
Yoshi game. Section 3 introduced the fruit exchange mechanism, which users were 
charged tokens to use. These tokens were earned by players performing tasks, set by 
researchers throughout the course of the trial. In this way, we could relay messages to 
participants, ask specific questions and receive feedback as appropriate.  

The tasks set to users in this manner took a number of forms. Simple factual ques-
tions such as age, gender and continent of residence were asked, with users selecting 
answers from drop-down lists. This provided a simple means for us to build up demo-
graphic profiles of the user-base. More open-ended questions which allowed free text 
responses were also set, such as what a player liked about the game, and whether 
he/she had any suggestions or bugs to report—as we detail later. This system proved 
to be of particular benefit because the tasks could be dynamically updated in real-time 
during the course of the trial, and because specific questions could be targeted to-
wards a particular user or set of users in response to some interesting activity we ob-
served in their log data or our interactions with them. The tasks available to a player 
are downloaded from the server each time the player visits the task list screen. There-
fore, although the system is deployed to a worldwide user-base, and we could not 
access devices to update the software on them, we could alter the questions at any 
point during the trial. Once edited, the new task set becomes live immediately, thus 
supporting adaptation of our research interests. 

The task and token-earning functionality proved popular with users, with 28442 re-
sponses in total. Before the trial, we were unsure whether players would use this fea-
ture ‘honestly’ or would provide dummy answers. As no checks were in place, free 
text answers could be submitted as empty or with a few random characters, and play-
ers would still be rewarded tokens by the automated system. However, results proved 
that users were willing to engage with this feature, providing answers of varying 
length, but in the main making an attempt to answer in a useful way. As an example, a 
task asking demographic information from the user was completed 2406 times, with 
all but 73 being sensible answers to the question. While the tasks themselves were in 
English, care was taken to ensure that where possible the grammar and vocabulary 
used fell within the Common European Framework of Reference for Language’s A2 
level bounds, a level achievable by most attending public school in westernised coun-
tries where English is taught as a second language [14]. 

Interacting with Participants through Facebook  

Although the task system provided a basic communication mechanism between re-
searchers and participants, more powerful external tools were also used in order to 
facilitate more in-depth dialogues and to support communication between participants 
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themselves. We elected to use Facebook, a popular online social networking applica-
tion, as a means of supporting such interactions. Facebook has more than 300 million 
active users, 50% of whom log on to Facebook in any given day [15], making it an 
appealing choice of platform for this task. Also of benefit was Facebook Connect, a 
service with an iPhone API that allows users to verify themselves and log in to third 
party sites and applications using their Facebook account. On starting Yoshi, players 
are required to log in to their game account in order to track their score across de-
vices, and to allow multiple people using the same device to have individual accounts. 
This can be done either through Facebook Connect or by creating a username and 
password specifically for the game (which we called ‘Lite mode’). 

Though we still wanted non-Facebook users to be able to play the game, we sought 
to encourage users to login through the Facebook Connect method to provide the 
benefits outlined above. As such, we limited use of the fruit swapper described earlier 
to only Facebook-logged in users; users logged in via Lite mode were prompted to 
login to Facebook when attempting to access this functionality. Additionally, we 
allowed users to post their Yoshi progress to their Facebook Feed (which shared their 
scores and rankings with all their Facebook contacts). This served both as an entice-
ment to use the Facebook version, and as further user-generated advertising for the 
game. Of our 8676 users who agreed to the terms and played the game, 6732 elected 
to use the Facebook login, including 44 of the top 50 scorers. 

In addition to providing a login mechanism, we also used content on the Facebook 
site itself both to provide features for the user and in contacting users to aid in the 
management of the trial. We created a Facebook application—a series of PHP-based 
web pages displayed within Facebook—that showed the ranked scores in greater 
detail and provided statistics on the players’ game play, such as their most visited 
yoshis. More importantly, Facebook has a set of well-established means of communi-
cation both in one-to-one and one-to-many models. For example, as players had pro-
vided us with their login IDs, we could send emails to their Facebook accounts, and 
we set up a forum for players to communicate with each other and discuss potential 
new ideas. 

4.4   Qualitative Analysis 

Section 4.2 described quantitative analysis performed on log data. With such data, 
gaining an in-depth understanding of individual player behaviour is challenging. 
While we could visualise various aspects of play, this did not necessarily make a 
player’s motives and reasoning comprehensible. We now describe allied forms of 
qualitative analysis, centred on interviews that let us explore and clarify issues more 
adaptively than if, for example, we had used an on-line questionnaire to gather quali-
tative data. As will be discussed, some of the processes already described such as 
visualisations and Facebook tools were useful resources for this form of analysis.  

Interview Process 

The process of interviewing participants worldwide is not quite as straightforward as 
in a more traditional experiment involving locally based users. Whereas in a tradi-
tional setup researchers are likely to have met participants before the trial begins, 
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perhaps to deploy the system or to explain the trial, we had no direct contact with 
users at the beginning of our qualitative analysis process. Although all the users had 
agreed to a series of terms before playing the game, that explained that we might try 
to contact them, they had also been informed that they could feel free to ignore this 
communication or to tell us that they were not interested in participating. More posi-
tively, having over 8500 users gave us an opportunity to focus on interviewees that 
we deemed the most relevant to a design issue or potentially significant in terms of 
use and user experience. For example, we could choose the most active players, i.e. 
those who had accumulated the most game time, those who had answered a particular 
in-game question, or those who had a particular pattern of use in their system logs. 

 

Fig. 6. A snapshot from a tool used to select participants for interview, showing which days 
each participant used the application. From a chart showing all the trial participants, ten users 
have been selected who exhibit contrasting patterns of use. This figure shows the filtered set. 

Selecting participants for interview began by using the information publicly avail-
able to application developers via the Facebook API to first filter our participant data-
base to show only those over the age of 18. Thereafter, we used visualisations of log 
data to examine participant use over time. For example, Figure 6 has a separate row 
for each participant, and shades days, shown on the x-axis, if the user played the game 
on that day. We were interested in speaking to a set of users with a diverse amount of 
engagement, so used the visualisation to select rows with contrasting patterns. Figure 
6 shows such a subset of users. As can be seen, there is a wide variety of use, with 
user 1 playing every day, user 10 playing for a few days near the start of the trial 
before giving up and user 9 joining the game later than the others, but having played 
every day since starting until the current time. Simpler methods of selecting inter-
viewees would obviously have been possible, such as choosing the highest-scoring 
players, but we were interested in using our methods of selection to interview a set of 
players which showed a broader range of activity in playing the game. 

Having identified our interviewee set of choice, Facebook again proved a useful 
tool in making contact. We emailed users, enquiring whether they were interested in 
taking part in an interview over VoIP or telephone in exchange for $25 of iTunes or 
Amazon vouchers. We interviewed 10 of these players, from 5 different countries and 
3 different continents. 5 were male and 5 were female, and they ranged in age from 22 
to 38. As the trial progressed, we noted a shift in participants’ willingness to be  
interviewed. In the first months of the trial, requests for interviews were met with 
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enthusiasm and even pleasure at being given the opportunity to participate. However, 
the number of users willing to take part in the feedback process seemed to drop as the 
trial continued. We speculate that this is perhaps a result of the self-selection of par-
ticipants involved in this type of trial; early adopters willing to download software on 
release and persevere through initial versions seem to have more interest in the proc-
ess and greater willingness to participate than those who joined the trial later. 

In addition to the visualisation shown in Fig. 6, other tools were useful in interview 
preparation. The tool seen in Fig. 5, showing activity across different hours of the 
day, helped to make the interviewer aware of the overall level of engagement the 
player had shown, as well as raise specific items of interest to ask about, such as if a 
player seemed to be using the application for five minutes every day at lunch time. 
Similarly, the answers that the interviewee had submitted to tasks were surveyed 
before the interview commenced, again to prime any potentially interesting aspects to 
ask about. Each interview began with another explanation of the trial and of who we 
are, and typically lasted between 15 and 45 minutes. All were transcribed afterwards.  

Findings from Analysis of Interviews  

In order to explore our research issue of running trials at a distance, we asked as many 
questions about the trial mechanism itself as about the application. Unsurprisingly 
perhaps, many of the same game experience themes arose in interviews as had been 
reported in the original Yoshi trial. For example, several participants mentioned that 
awareness of other players’ scores, as shown in the table on Facebook and within the 
game itself, was a strong motivating factor for them. It should be noted that, unlike 
the first trial of Yoshi, no prizes are awarded to the best players; presenting names on 
the score table and the ability to share their success with all their friends, players and 
non-players, via Facebook, proved to be enough of an incentive for many players. 

Our use of Facebook also afforded more direct interaction between players. By 
having full names visible on the scoreboard, and as the game had clear links to Face-
book, users appeared to have a ‘ticket to talk’ to each other. For example, one partici-
pant (A) reported seeking out another player (B) on Facebook, to ask about what was 
perceived as unusual scoring patterns. From seeing B’s name, A made assumptions 
about where B was likely to be based in the world and was confused about the times 
of day that B appeared to be accumulating points: “I really couldn't figure out how 
they could have all those points when I was asleep”. After exchanging a few emails 
with each other, A discovered that B lived in a different continent. Their email con-
versation has continued, and they now consider themselves friends. 

Turning now to the user trial mechanisms, interviewees were enthusiastic about the 
range of feedback mechanisms made available to them. In particular, players we in-
terviewed were very positive about the task mechanism, with one saying “I think it’s a 
pretty good idea that I can answer certain questions for [tasks] so I can give feedback 
there. Even free-text feedback. And it’s really good.” 

This trend is in accord with our analysis of task response rates and the number of 
sensible answers received. One interviewee specifically addressed having noticed that 
it was possible to just get tokens from submitting empty responses, but still felt he 
should give proper answers: “Sometimes, you scan through, and just try and hit the 
submit button … you're just like, gimme these tokens, I wanna get on with it… But 
most times, I answer honestly, about 98% of the time.” 
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This enthusiasm for the task response mechanism extended to being emailed over 
Facebook to request an interview, with all interviewees responding positively when 
asked how they felt on being contacted, with one commenting: “I find it really nice 
that [you are] contacting me and asking me my opinion. I guess it’s a really nice 
thing.” Indeed, at the end of their interviews, two of the ten interviewees actually 
declined the payment that had earlier been agreed, saying that they were happy to 
participate. We speculate that this is maybe because we had provided a free game that 
these players evidently value. Of course, players who do not enjoy the game stop 
playing it and are not available for logging or interview—thus potentially biasing our 
‘sampling’ of users. By targeting users with the task mechanism, Facebook messages 
and email we were able to quiz those who declined interview requests on their reasons 
for doing so. The response rate was low but those we did receive fell evenly into cate-
gories of general refusal, e.g. ‘I don’t have time.’, and refusal based on perceived lack 
of language skills, e.g. ‘I don’t speak English.’  

Users are playing of their own free will rather than perhaps feeling obligated by 
having agreed to participate in a system trial, and so their play is more ‘natural’ than 
those who use the system out of a sense of obligation or for financial benefit. As a 
result, compared to our experience of earlier trials of other systems, we observed that 
players had more good will towards ‘giving something back’ than we have observed 
in more traditional trials. 

Although time-consuming to arrange and conduct, these interviews offered valu-
able insights into player behaviour and their reactions to the trial process and provided 
a valuable, rich communication channel through which detailed contextual under-
standing of logged data could be sought.  

4.5   Redesign 

Given the flexibility of the tools for interacting with users and studying log data, we 
were able to use the tools to ease the task of redesign. This reflects one of our re-
search goals, which is developing means to quickly and appropriately adapt software 
to suit the changing contexts and interests of users.  

For example, as an answer to the task “What could be improved about Yoshi?”, 
one user (anonymised here as Helen) commented that plantations were often too full. 
Helen was invited for interview, and the interviewer then raised this point to obtain 
further detail. Helen explained that, as plantations auto-generate fruit at a rate of one 
per hour, they would often be full, which she felt was to the detriment of the game. In 
particular, Helen described a situation where she would empty a plantation before 
leaving for work in the morning, and wanted to collect a seed from work to plant 
when she got home. However, by this time the previously empty plantation would 
have around 10 pieces of fruit in it again, which would have to be picked first and fed 
to unwilling yoshis, leading to a points penalty. 

Following this interview, the game designers agreed that this was a valid criticism 
that should be addressed if it reflected a common concern or problem among users. 
We again used the task mechanism to consult our user-base at large. A question was 
added as a task in the game, in the form of a vote as to whether to introduce this  
feature, and exactly what form it should take. We presented three options: (A) leaving 
the game unchanged, (B) players could burn empty plantations to stop them  
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re-growing (as suggested by our interviewee) and (C) even full plantations could be 
burned, which would also destroy all the fruit that had grown. 17% voted in favour of 
leaving the game as it was, while 29% were keen to see option B and 54% selected 
option C. The chosen feature was therefore implemented and distributed in a new 
Yoshi version, thus beginning another iteration in our design process. 

On detecting that Helen had installed the new version, we contacted her again to 
gauge her reaction towards the new feature and she replied positively, agreeing that 
the version implemented, although not the design she had suggested, was the better of 
the new options. Around the same time, we included another vote on the new feature, 
consulting the opinion of the user-base at large after they had had a chance to use it. 
Users responded with approval, with 94% agreeing that they liked the new feature. 
This demonstrated to us a significant benefit in this iterative approach of conducting 
design by engaging with users at both a micro and macro-scale, and letting the results 
of one feed into the other. 

System bug handling was dealt with in the same way. One user was having stability 
issues that were reported in-game through the task mechanism. Upon contacting the 
user for more information, the problem was narrowed down to be specific to his model 
and operating system version combination in areas of high access point saturation. This 
problem was resolved and the next update to the game was released. Over the five 
months the software has been live, seven versions have been released to the public. 

By having interaction with evaluators integrated into the game dynamic, users are 
able to report issues directly within the relevant context of use. While these reports 
are generally brief, they provide a hook back to the context of use they were created 
in. In this respect, the log data was an invaluable tool for helping the user recall the 
context of use and therefore the detail and qualitative texture of the problem or sug-
gestion he/she had reported previously. Placing the user at the scene of the problem or 
suggestion by discussing their location, the game actions they took leading up to the 
report, and how their pattern of play had evolved to the point where they noticed a 
problem gave interviewers a valuable means to elicit the detail necessary to pinpoint 
problems and ground suggestions. 

5   Discussion  

The tools and techniques described in the previous section let us carry out a relatively 
normal iterative design process but at an unusually large scale. Methodologically, 
when we compare our approach to more standard trials, we see both advantages and 
disadvantages. The large number of users is helpful in statistical terms, but the vol-
ume of data can inhibit the move from quantitative aggregates to qualitative detail. 
While we sometimes used common database query tools to work with the ‘raw’ log 
data, we found it beneficial to also develop our own visualisations to better under-
stand patterns and detail in the data and to choose where to focus requests for inter-
views. Compared to more traditional trials that involve local participants who are paid 
to use our software in a trial, we suggest that our process of ‘recruitment’ led to more 
realistic conditions in that users were using software that they themselves chose to 
use—without inducement from us or obligation on their part to keep using it even 
though they did not want to. However, this advantage has to be weighed against is-
sues such as our inability to gather data from those who dislike the application, and 
our reduced knowledge of local context and culture. 
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In practical terms, our methods incurred expenses in terms of development time 
and interviewer effort. The language skills of the group were put to the test as we 
created French, German and Japanese internationalisations—giving greater access to 
those for whom English is not their first language. Initial worries about our ability to 
interview users with limited English and a first language outwith the skill set of the 
team proved to be irrelevant, however. The nature of the interview selection process 
meant those who were not confident in their language skills were less likely to volun-
teer to be interviewed. Again we note a potential bias: potentially significant inter-
view subjects could decline to be interviewed due to their lack of confidence. 

Communicating across time zones can cause delays and sometimes involved the 
scheduling of out-of-hours interview times in order to fit in to the daily schedules of 
our users. Taking into account the time differences when considering the rapidity of 
response from users is another aspect; users generally expect ‘timely’ responses to 
any messages they send—no matter how many time zones away from the developers 
they are. We found that taking careful note of the sender’s time of day when a mes-
sage was created, and addressing their perception of the passage of time until we 
responded, was important in building relationships with users, e.g. a reply which will 
not be read until the ‘next day’ in the user’s time zone should be phrased to take into 
account the user’s likely perception of a slow response.  

In our trial we found that relative wealth scales also played a part, with the level of 
entry to our trial set at having an Apple iPhone—still a relatively expensive item 
which is not price-normalised to match local incomes. In rough terms, and taking into 
account countries’ populations, we observed that as the average income of a country 
decreased so did the density of Yoshi users there. We suggest that this pattern may 
not appear with software for more widespread, price-normalised mobile phones—
potentially leading to a larger proportion of users in countries with lower average 
incomes taking part in trials. Similarly, although the trial software was developed on 
the latest iPhone hardware, firmware and OS, care was taken to ensure that the game 
was backwards compatible with older versions to try to maximise potential user-base. 
In practical terms this meant compiling for the earliest possible OS version and ensur-
ing that features relying on later OS versions degraded gracefully. 

As explained in Section 4.1, users were prevented from starting the game without 
first stating that they had read and understood the terms and conditions, which ex-
plained the nature of the trial and the data that would be logged about their use of the 
system. However, when speaking to participants, it emerged that none of those inter-
viewed had understood the game was part of an academic trial. A task was subse-
quently presented to users, further explaining the nature of the trial and asking 
whether they had understood this, with 70% responding that they had not. This mir-
rors findings by the Federation Against Software Theft [16] where the percentage of 
users who reported reading EULA’s on the desktop was 28%, with 72% routinely 
agreeing to them “without taking any notice of exactly what they are agreeing to.” 
This highlights a potential ethical issue for all researchers distributing software in this 
manner as, opposed to a traditional face-to-face handover where participants’ under-
standing can be gauged and explanations repeated or re-worded as necessary, the 
understanding of remote participants is assumed on the basis of clicks on a checkbox 
and can only be verified after they have become involved in the trial.  
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6   Conclusions and Future Work 

We have described running a worldwide trial of Hungry Yoshi, and the means by 
which this application was distributed to users, on a scale beyond that usually found 
in ubicomp field trials. A central aim was to push the upper limit on the number of 
participants as far as we could while still combining quantitative and qualitative ap-
proaches in ways that usefully and efficiently fed into the redesign process. We used a 
distribution method that made the system available to the general public, comprehen-
sive system logging, a means of interacting with users that was integrated with the 
user experience of Yoshi, and interaction via a social networking web site. The bene-
fits of such mechanisms include a significant reduction in the effort and monetary cost 
of field trials—particularly the cost of devices for such field trials—as well as an 
increase in the numeric and geographic scale of the user-base. 

The worldwide nature of the trial meant that we had to adapt our tools and methods 
to maintain awareness of participants. We described how we used quantitative and 
qualitative assessments to assess the activity and engagement of our user-base, and 
how we used this to perform targeted interaction with participants, how that interac-
tion took place on a variety of scales, and how we embedded feedback mechanisms 
within the system and encouraged their use. The Facebook social networking site 
served as a means to contact users, to give them awareness of other users’ activity, 
and as a means for them to interact with each other. In combination, these features let 
us run a trial involving a very large number of participants for a long period of time, 
and yet have relatively quick redesign cycles set within that process. We offer these 
summarising points for researchers taking a similar approach: 

• Expect low percentages of uptake and participation. Software on mobile  
devices has become a ‘disposable’ form of entertainment; expect your soft-
ware to be treated in the same manner as any other. 

• Be inclusive. In order to maximise user engagement, lower technical and  
social barriers to participation not relevant to research issues. 

• Stay in the application. Communication within the bounds of the application 
is more acceptable to users, and therefore achieves a much greater response 
rate. We found an order of magnitude less participation for every step ‘out of 
the game’ users were asked to take. 

In our future work, we will be exploring further ways to enhance users’ engagement 
in reporting problems, proposing new design suggestions and discussing game play 
and game development. We will offer means for a user to use Facebook to gain access 
to data collected from his/her device, and consequent analyses and comparisons, and 
thus create a resource to change his/her own system use and to participate further in 
the design process. We are also aware of the way that some of our mechanisms may 
be particular to games, such as tasks that users are motivated to carry out for game 
advantage. We are therefore considering how to generalise this mechanism to other 
application areas. Finally, we are exploring breaking up our applications into software 
components that can be flexibly combined, so as to support finer-grained updates and 
to support users’ customisation of software configurations appropriate to their con-
texts, preferences and behaviours. We see such customisation as particularly appro-
priate given the variety of contexts and uses that become open to study as techniques 



 Further into the Wild: Running Worldwide Trials of Mobile Systems 227 

 

such as those presented in this paper allow us to increase the scale of system trials 
beyond the limits of currently standard methods and techniques. 
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Abstract. Indoor location tracking systems have been a major focus of ubiqui-
tous computing research, and they have much promise to help in collecting ob-
jective, real time data for applications and supporting studies. However, due to 
their typically difficult and time consuming installation process, few have ex-
plored the extent to which they can be used by non-experts. In this research, we 
studied how one location tracking system, PowerLine Positioning, could be 
used by non-technology expert rehabilitation researchers to study the mobility 
patterns of wheelchair users in their homes. We determined that indoor location 
tracking systems are not only usable by non-experts, but they can also be useful 
in allowing them to achieve their own research goals of obtaining objective 
mobility data. Based on the results, we provide areas for future exploration and 
implications for designers of location-based and other types of sensing systems 
which aim to be end-user deployable. 

Keywords: Location, indoor location sensing, end-user deployable, accessibil-
ity, wheelchair users, PowerLine Positioning, user study. 

1   Introduction and Motivation 

The ability to sense a person’s location, both indoors and outside, has been a long-
term goal of technology designers in pervasive and ubiquitous computing. The prom-
ise of knowing precisely where a person may be at any given time has many potential 
uses, from context-aware computing, to location-based services [19], to tracking and 
monitoring behavior [3, 4, 24]. A number of researchers, both within the ubicomp 
community and beyond, have an interest in using location tracking systems as a 
means of collecting data they can use for assessing people’s behaviors, activities, and 
whereabouts. This may be useful for application designers who wish to provide loca-
tion-based services, but also for researchers hoping to better understand people’s 
behaviors using a more objective means. 

One difficulty with current sensing systems, especially indoor location sensing, is 
that the systems typically require extensive setup and have significant installation 
burdens on end-users [4]. Thus, their use often requires an expert to help install the 
application or requires significant training on the part of the end-user. These aspects 
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limit the number of locations that a sensing system may be deployed as well as the 
number of people that can be studied. Because of these factors, the usefulness and 
utility of location sensing systems by non-technical users has been underexplored.  

In this research, we wanted to determine whether the promise of easy-to-deploy in-
door location systems could live up to the usefulness predicted by many location 
system designers. Thus, we explored whether one indoor location tracking system, 
designed to be easy-to-deploy and low-cost, could be used by a set of non-expert 
users to achieve their goals for location tracking research. In particular, we studied a 
group of rehabilitation researchers who used the PowerLine Positioning (PLP) [25] 
system to track the mobility patterns of wheelchair users within their homes to aug-
ment interviews having the goal of uncovering accessibility barriers and everyday life 
experiences. In particular, we focused on how well end-users were able to install, 
calibrate, and use PLP in the homes of the wheelchair users they wanted to study. We 
also studied the usefulness of PLP in achieving the goals of the researchers by identi-
fying whether researchers were able to uncover more information about accessibility 
barriers by using PLP in combination with interviews than interviews alone. Overall, 
we found that PLP was easy to deploy and maintain by the rehabilitation researchers 
and helped them to uncover more barriers to accessibility in the wheelchair users’ 
homes than interviews alone. 

The research we present in this paper helps motivate one particular need for indoor 
location tracking systems as well as show how a ubiquitous sensing system can be 
designed to support use by the non-expert end-user. We provide a number of implica-
tions that other technology designers can use to design their systems to be both usable 
and useful by end-users. These implications can also be used for the design of sensing 
systems beyond just location tracking. This helps bring the field of ubiquitous com-
puting closer to achieving the goal of sensing on a larger scale by creating guidelines 
for easy-to-deploy and maintain sensing systems. 

The rest of this paper is organized as follows. We begin with a discussion of the re-
lated work, where we describe what motivated this work and where this work fits 
within the larger scheme of the pervasive computing literature. We next describe the 
design of our study, including details about the PowerLine Positioning technology we 
had users deploy in this study as well as the research questions the rehabilitation re-
searchers wanted to address. Next, we describe the details of the study findings, in-
cluding data on the ease of use and usefulness of the technology for the rehabilitation 
researchers. We follow the findings with a discussion of the results and describe im-
plications and lessons learned from this process and then end with the conclusion.  

2   Related Work 

In this section, we outline the related work for this research and how it builds upon 
existing technology and studies. In particular, we discuss indoor location tracking 
systems and their challenges for domestic use, studying human activity in the home, 
and studying end-user deployment of sensing systems. 
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2.1   Indoor Location Tracking Systems and Their Challenges 

Indoor positioning has been a very active area of research in pervasive and ubiquitous 
computing for the past decade, and many commercial systems are beginning to 
emerge. Several characteristics distinguish different solutions, such as the underlying 
signaling technology, line-of-sight requirements, accuracy, and cost of scaling the 
solution over space and over number of items [31]. The first indoor solutions intro-
duced new infrastructure to support localization [1, 14, 22, 27]. Despite some success, 
as indicated by commercialized products [10, 12, 16, 30, 32], the cost and effort of 
installation are major drawbacks to wide-scale deployment, particularly in domestic 
settings. Thus, new projects in location-based systems research reuse existing  
infrastructure to ease the burden of deployment and lower the cost. The earliest dem-
onstrations leveraged 802.11 access points [6, 8], and more recent examples explore 
Bluetooth [20] and wireless telephony infrastructure, such as GSM [19, 23] or FM 
transmission towers [18]. A concern is that individuals may not be able to control the 
characteristics of this infrastructure and the operational parameters of the infrastruc-
ture may change without warning, resulting in the need to recalibrate. The desire to 
control the infrastructure and to scale inexpensively inspired the work on the Power-
Line Positioning system [25], which we used in this research. 

Deployment time and ease-of-use are other essential considerations for indoor lo-
cation systems, especially for studies in domestic settings. Investigators have limited 
time they can spend in a participant’s home, thus the entire installation process must 
be as short as possible. In addition, technical expertise can also vary greatly, so an 
easy-to-use solution is always desirable. One way to address this challenge is to 
minimize the number of components used in the system, which is the case of the PLP 
system. Studies have also shown that homeowners are concerned with the appearance 
of their home after adding any additional instrumentation [7, 15]. PLP’s minimal 
components made it an ideal system for us to use in this study. 

2.2   Studying Human Activity in the Home 

With the advent of new, affordable technologies, there has been a trend in research to 
shift from building technology to supporting office and home life. Abowd and Mynatt 
point out a need for studying domestic settings to inform the design of new 
technologies [1]. Edwards and Grinter echo similar sentiments in that people are using 
technologies in new and interesting ways in the home [11]. Thus, a key research 
problem for designing for the home is first to study the home’s everyday workings, 
such as how people live in the home, what they do, and the role that technologies 
play.  

The initial foray in studying the home has been with ethnography. For example, 
Crabtree et al. present a series of ethnographic studies that aimed to uncover 
communication routines and how people use particular spaces in the home [9]. They 
provide guidelines for placing technology in appropriate locations in the home. More 
recent work has looked at collecting emprical evidence for studying the domestic 
space. For example, Intille et al. presents techniques for acquiring data about people, 
their behavior, and their use of technology in a natural setting [17].  
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With the proliferation of portable electronic devices in the home, researchers are 
interested in studying the complex interactions between household residents and their 
devices. Aipperspach et al. [3, 4] looked at using sensor-based visual records of the 
physical movement of people and devices to facilitate in-depth discussion during 
interviews, but they also report challenges in installing the Ubisense location tracking 
system, which impacted the number deployments. Rowan and Mynatt installed strain 
sensors on the underside of the first floor of an elder’s home to deploy their Digital 
Family Portrait application [28]. By detecting the weight of a person standing on the 
floor, these sensors allow the Digital Family Portrait to portray movement informa-
tion in the home. 

Tapia, et al. describe MITes (MIT environmental sensors), which are low-cost, 
wireless devices for collecting real-time data of human activities in natural settings 
[29]. The system includes five wearable sensors: on body acceleration, heart rate, 
ultra-violet radiation exposure, RFID reader wristband, and location beacons. Patel et 
al. demonstrated the use of Bluetooth for tracking the proximity of users to their mo-
bile phone to study their affinity to their mobile phone and reasons for separation 
[24]. Philipose, et al. present the use of an RFID-enabled glove to monitor activities 
of daily living [26]. A person wearing the glove interacts with RFID-tagged objects, 
and the system recognizes activities based on interactions with objects. Thus, many of 
the current sensing approaches aim to address particular behaviors and location is 
often implicitly inferred. Just sensing alone cannot always gather meaningful informa-
tion on people’s activities, and thus must be coupled with an annotation or survey 
procedure. This line of research shows a need for developing and testing robust, scal-
able sensing systems for the home, as we have done with this work. In addition, we 
highlight the value of augmenting self-report with real-time location sensing data. 

2.3   Studying End-User Sensor Deployments  

Researchers have explored the acceptance of sensors in the home as well as end-user 
deployment considerations, which provided us with some guidelines for designing our 
location tracking solution. Hirsch, et al. examined the social and psychological factors 
that influence the design of elder care sensing systems and applications [15]. Among 
their findings is a concern that technology may be rejected if it detracts from the aes-
thetics of the home. Beckmann, et al. presented a study of end-user sensor installation 
and reaction to sensors in the home [7]. They had end-users install vibration sensors, 
in-line electricity monitoring sensors, motion detectors, cameras, and microphones. 
They found that end-users made a variety of errors, often due to the directional re-
quirements of sensors or uncertainty over exactly where a sensor needs to be posi-
tioned. They also found many negative reactions to the intrusion of sensors into the 
living space, including objections to the potential for damage caused by the adhesive 
used for installation, concerns that sensors were placed in locations accessible by 
children or pets, and objections to the placement of cameras and microphones in the 
home. We use some of these principles in the design of our deployable system in 
addition to offering new insights in building non-expert or end-user deployable loca-
tion tracking solutions for home. 
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3   Study Design 

In this section, we describe the overall design of our study. We begin with the motiva-
tion and design of the rehabilitation researchers’ study and the questions they aimed 
to answer, describe our method for studying them, and then discuss the technology we 
used to support the rehabilitation researchers. The overall aim of this our study was to 
answer the following research questions: 

• Can an indoor location tracking system be easy enough to deploy for non-experts, 
and what is the typical deployment time for a standard home? 

• Can an indoor location tracking system provide objective, empirical data for 
location-based studies in the home? 

• Does using automatically-sensed location and mobility data facilitate a richer 
interview process that produces higher quality data? 

3.1   Motivation for Studying Mobility of Wheelchair Users in the Home 

Increased activity and participation for people with disabilities is a goal of the U.S. 
Americans with Disabilities Act (ADA) [5] and the New Freedom Initiative [21]. The 
aim is to reduce environmental barriers and increase access to assistive technologies 
in order to increase the ability of people with disabilities to integrate into the commu-
nity, have a sense of autonomy, and lower dependence on societal resources. The 
assumption for this population is that wheelchairs are necessary for mobility, and 
mobility is the means to performing activities and community participation. However, 
in order to dress, eat, or bathe in a wheelchair, the home environment needs to be 
accessible (e.g., wide enough doorways, wheelable ground surfaces, etc.). Studying 
and understanding the mobility patterns of wheelchair users in their homes can pro-
vide useful insights on where environmental barriers exist, how better to design assis-
tive devices, and how to improve the architecture of homes and offices. However, 
collecting this data is a difficult task. 

New technological methods are needed to understand activity and participation in 
the everyday lives of wheelchairs users, especially in the home. The development of 
objective indoor measures is critical to understanding how people use mobility de-
vices in the home and can be used to document where, when, and how people are 
using these devices. In addition, it can help understand how specific environments in 
the home can facilitate or hinder a person's use of a particular device or the perform-
ance of a specific activity. In the rehabilitation research community, current meas-
urement of indoor activities among wheelchair users in the home has been limited to 
self-report questionnaires, such as the Home Accessibility Survey [13]. Disability 
researchers have also used diaries to gather mobility problems when they occur. 
However, researchers have found that many incidents are missed with both of these 
methods. Indoor tracking technology can provide simple, automatic, and objective 
data about the activity and participation of individuals in a space.  

Table 1 shows some the types of questions that researchers are interested in gather-
ing about wheelchair users. The questions are based on current literature in the area. 
For each question, we briefly highlight how automatic location tracking can play an 
important role alone and when used in combination with interviews. 
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Table 1. Questions the rehabilitation researchers are interested in and how location tracking 
technology can help answer them 

1. Where do people go to perform what activity? 
         Location data can show where people tend to spend a lot of time, and the interview can probe the 

participants about what activity is going on at those times. 
2. How do people who use mobility devices make use of spaces in the home, and how does it 

differ from non-disabled family members? 
        Location data can show traces of where disabled and non-disabled members tend to go. 
3. What mobility devices do people use for a particular activity (e.g., walker to enter the  

bathroom, shower chair in the bath, and wheelchair in the hallway)? 
         Tagging all mobility aids will give information about which are used in which parts of the home. 

Participants can be queried about particular situations to determine the reason for the transition. 
4. What is the frequency and duration of mobility device (e.g., walker, cane, wheelchair, etc.) 

use in each room? 
        Location data can provide this information automatically and more accurately than self-report. 
5. What routes do individuals take throughout the home?  How have people adapted their 

homes (or not) and how does that impact mobility device use? 
         Location data can be aggregated to show time varying route information for each individual. The 

interview process can potentially reveal why certain routes are taken, such as the result of an  
environmental barrier. 

6. What parts of the home are completely inaccessible? 
         Location data can show the parts of the house where people rarely go, and the interview can 

determine the reasons (e.g., inaccessible or just not used). 
7. What are key facilitators in people's homes (e.g., caregivers, devices, furniture, etc.)? 
         Location data can show the routes people take and if an aid was used. If it is not shown being used, 

then during the interview the participant can be probed about other types of mobility assistance  
they may use (e.g., help from a family member). 

In large clinical trials, it is often necessary to recruit participants in distant loca-
tions. In addition, because of the individual’s mobility disability, they may have  
limited ability to deploy any technology themselves. A deployable system has to be 
comprised of minimal components that can be installed by anyone, such as by a care-
giver or family member. Presumably, researchers would conduct many simultaneous 
studies to produce a rich and generalizeable result, which argues for a cost-effective 
and easy-to-deploy solution. PowerLine Positioning is an appealing choice to address 
this need, where the infrastructure requirements are two plug-in modules, and the 
calibration step consists of a house walkthrough. 

3.2   Technology Used in Study 

The indoor location tracking system we chose for this study is the PowerLine 
Positioning system we previously developed [25]. PowerLine Positioning is an 
affordable, whole-house indoor localization system that works in the vast majority of 
households, scales cost-effectively to support the tracking of multiple objects 
simultaneously, and does not require the installation of any new infrastructure. The 
solution requires the installation of two small, plug-in modules at the extreme ends of 
the home (e.g., the upstairs northwest corner and the basement southeast corner). 
These modules inject a mid-frequency signal throughout the electrical system of the 
home. Simple receivers, or positioning tags, listen for these signals radiated off the 
power line and wirelessly transmit their positioning readings back to the environment.  
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We re-engineered and built a deployable version of the PLP system, which 
conforms to the U.S. FCC Part 15 regulations. In addition, we incorporated a multi-
staged tuned tag design (see Figure 1) and used different power line transmission 
frequencies: 500 kHz and 600 kHZ (see Figure 2). This new design yielded better 
performance and resolution (86% classification at 1-meter regions) in our test 
deployments.  

 

       

Fig. 1. Left: Redesigned and deployable PowerLine Positioning tags. Middle: The encasement 
used for larger devices, such as wheelchair and walkers. The larger case housed a higher capac-
ity battery. Right: The tag installed on a user’s wheelchair. 

The new location tags we developed featured a zigbee wireless backchannel that 
reported a 16-bit unique ID, two 12-bit signal values, and a single bit indicating if the 
button on the tag is pressed back to the basestation in the home. The RF receiver 
connected to the personal computer was able to able receive data from up to 25 tags 
(base station limitation). An application 
running on the laptop parsed the data, 
handled the fingerprinting algorithm, 
and provided location services to the 
visualizer. The tag had an on/off switch 
and a single position push button. The 
button was used to indicate a special 
action to the remote computer, which 
was used to indicate that the tag is in 
site survey or calibration mode. The 
tags also incorporate motion detection, 
so the tag will go into a sleep mode if 
no motion is present for 30 seconds and 
reactivate itself on the next motion event. This approach greatly reduced the overall 
power consumption of the tag. With the tag duty cycling 40% of the time, the tag 
could easily last the entire duration of the study using a 750 mAh lithium ion battery 
source. 

To convey the location data for the interviews, we developed a simple visualization 
tool that used the data provided from PowerLine Positioning. The visualization al-
lowed researchers to enter a timeframe and view either the concentration of activity 
levels in a given area in the house for a particular mobility aid or participant or view 
the routes that users or mobility aids traveled throughout the home (see Figure 3). The 
routes could also be animated to play back the exact path. The visualization tool  

      

Fig. 2. Left: The signal generating plug-in 
modules. Right: Inside back cover of the 
outlet housing the signal generating circuitry. 
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provided a simple means to scan a large amount of location data in a meaningful way, 
by superimposing graphics on top of a floor map of the participant’s home, drawn by 
rehabilitation researchers using a free online mapping tool. 

  

Fig. 3. Visualization of PowerLine Positioning data used during the interviews. Left: Size of 
red dot provides length of time tracked entities were at particular locations. Colored vertical 
bars represent movement of the corresponding entity. Right:  Mobility traces or routes of the 
tracked objects and people. Black bounding bars on the timeline indicate how trail length 
shown on map. The routes are drawn as a line segment to show the origin and destination. 

3.3   Study Details 

The deployment study involved rehabilitation researchers studying the mobility pat-
terns of four different households (see Table 2). The participants were recruited by the 
rehabilitation researchers and were selected through their patient pool of wheelchair 
users by sending out recruitment emails and letters. Each household was enrolled in 
the study for 6 weeks during which 7 interviews (3 current practice self-report and 4 
prompted-recall) were administered on an approximately 1-week basis (see Table 3). 
Rehabilitation researchers also conducted interviews regarding the obtrusiveness and 
acceptance of the technology on the days of instrumentation installation and removal. 
The installation of PLP was carried out entirely by two rehabilitation researchers 
while we played only an observer role. The backgrounds of the researchers were in 
anthropology and design, and neither had previous experience with setting up or using 
location tracking systems. For each of the four deployments, a rehabilitation re-
searcher installed PLP, and we also evaluated the installation and maintenance for 
each. We trained the two researchers prior to deployment, which involved a 30-
minute tutorial and an installation example in a laboratory. During this tutorial, they 
were asked to install the system themselves under our supervision (setup and install 
the hardware for tracking 4 tags and calibrate the software). A PLP installation man-
ual was also provided to the installers to read beforehand if they chose to do so. For 
the actual deployment, each of the two installers installed PLP in two homes. We 
timed how long each installation took and interviewed those conducting the installa-
tion to determine ease-of-use and problem spots during the installation. 

For the study, we attached a location tag to each mobility device used and gave a 
tag to each member of the household. We built custom mounts that allow easy  
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attachment to round surfaces, such as the frame of a wheelchair or a walker (see Fig-
ure 1). Individuals were asked to wear their tag around the neck on a lanyard. The 
batteries for each tracking tag were replaced or recharged during each weekly inter-
view. However, we found that weekly recharging was unnecessary, because the tags 
ended up lasting over one month.  

For the current practice self-report interviews, the researchers administered a Home 
Accessibility Survey [13], which is an interview process that captures the subject’s 
knowledge, comfort, and satisfaction with their mobility aids and perceived environ-
mental barriers to their mobility device usage during the past week. This tool is a 
hybrid survey the rehabilitation researchers created that synthesizes various well-
known interview questions from the disability mobility community. Current research 
measures on environmental barriers in the home are limited to self-report and how 
barriers are subjectively experienced by the user. We maintained this process so that 
we could compare the self-report data with data gathered from the prompted semi-
structured interviews based on the mobility pattern data provided by the tracking 
system. For the promoted-recall interviews, rehabilitation researchers reviewed the 
position traces using the visualization tool (captured with PowerLine Positioning, see 
Figure 3) with the participant from the previous day and “prompted” them with ques-
tions based on the mobility data. Because of the richer data, these interviews were 
typically limited to reviewing the participant’s prior day. The interviews were sched-
uled such that different days of the week were gathered (e.g., weekend vs. weekday). 
Table 3 shows the duration of the study and the interview schedule. 

The aim was to compare the level of detail and quality of data researchers could 
obtain by using the sensed data as part of the interview process, in contrast to relying 
on self-report alone. For example, one metric of success was the determination of the 
number of environmental barriers to mobility for that person. Thus, we compared how 
many more barriers were found with the PLP-based interviews than self-report data to 
assess its effectiveness. 

Table 2. Demographic information for each household of the wheelchair mobility participants 
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Other quantitative measures of activity gathered through the self-report question-
naire included metrics such as the length of time they spend out of the bed, the fre-
quency that they move from one end of the home to the other, the percentage of the 
time participants spend using each mobility aid, and where they use the mobility aids. 
With the location data, we aimed to evaluate the accuracy of self-report responses 
using these objective measures. Finally, we interviewed the investigators conducting 
these studies to evaluate the ease-of-use of the pattern traces and their usefulness 
during the interview process. 

A total of 6 different interviewers from the research team conducted the interviews 
with the four mobility participants (or households). For a given mobility participant, 
the interviewer that conducted the HAS-based interviews (current best practice) was 
different from the interviewer conducting the PLP-based interviews using the mobil-
ity traces. The reason for this was to ensure that the two interview processes did not 
bias each other. In order to address the issue of the differences between the two inter-
viewers, we attempted to recruit interviewers that had similar experience levels both 
in conducting interviews and in the disability research community. In addition, we 
alternated the roles of the interviewer for each participant to counterbalance the inter-
views and varied when the non prompted-recall interview was administered during 
the 6-week period.  

Table 3. Timeline of interviews conducted with members of each home during the course of 
the 6-week study. H = HAS-based interview, P = Prompted-recall, A = Interview on the accep-
tance and obtrusiveness of technology. 

 

Week of Study 
 

1 2 3 4 5 6 

H1 H,A P H,P P H P,A 

H2 P,A H,P P H P H,A 

H3 H,A P H,P P H P,A 
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H4 P,A H P H,P P H,A 

 
One important consideration was the potential concern participants may have re-

garding privacy, especially in the home where it is a very personal space. Although 
the location data did not produce the same level of detail as video recordings, it was 
still important to be sensitive to what the participants were willing to reveal. We ad-
dressed this concern in two ways. The first was by giving the participants the ability 
to stop collecting location data at any moment by pressing the button on their location 
tag. Pressing the button again would restart data collection. The second was by creat-
ing a trusting relationship with the interviewer during the data review and interview 
process. This was accomplished by initially sharing with them their mobility trace 
data. Trust was also established by making participants a partner in the research proc-
ess and having them drive the interview by asking them to walk through their day 
with the interviewer. The interviewer in turn asked more specific questions based on 
what the participant chose to reveal and what they saw from the mobility trace. In 
addition, the interviewers were instructed to be sensitive to questions and/or issues 
participants might find invasive and uncomfortable.  
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4   Results 

In this section, we describe the findings from the study we conducted. We first de-
scribe the usability of the PowerLine Positioning system by the end-users. We then 
outline the results of the study on the usefulness of the PLP system in achieving the 
goals of the researchers, as compared to traditional data gathering means. 

4.1   Usability of the PLP Tracking System by Non-experts 

We assessed both the performance of the PowerLine Positioning system in these de-
ployments as well as the ease of deployment by observing the installation procedure 
and interviewing the installers. Overall, both systems were successfully deployed in 
all four homes. We merely observed the installation procedure and did not directly 
assist them in the installation in any way. When the tracking system reported at least 
95% accuracy from 20 random locations throughout the home, the installation process 
was concluded. PLP took an average about 32 minutes to install (H1 = 25, H2 = 29, 
H3 = 41, H4 = 33), which is encouraging considering the overhead other approaches 
would have had if there was additional hardware that needed to be installed in the 
home. This time includes the planning, physical installation, calibration, and testing of 
the system. Most of the time was attributed to the site survey or calibration. Homes 1 
and 2 were installed by one person and Homes 3 and 4 by a second. 

The installers appreciated the minimal amount of devices that needed to be de-
ployed in the home since PLP required very little hardware that actually needed to be 
physically installed. During the study, the installers conducted performance tests 
when meeting with the participants for their interviews to determine whether recali-
bration was necessary. A recalibration was determined to be necessary if more than 
10% of the tests failed to produce a correct position reading. Only one installer re-
ported having to conduct another site survey (Home 1) in the middle of the study. The 
reason was during the interview process, she noticed two regions of the home were 
not being tracked, thus she needed to update the signal map with a denser survey. 
Home 1 required part of the living room and master bedroom to be resurveyed during 
the second week. The other 3 homes required no additional surveys. 

To assess the researcher’s proper maintenance and overall installation of PLP, we 
evaluated the overall accuracy of the system for the entire duration of the study. For 
this, we had the wheelchair users manually provide labeled ground truth data 
throughout the day by simply pressing a button on a wireless module placed at fixed 
location in the house (10 per home). We typically put these near frequented areas, 
such as the dining room table, office or computer desk, night stand, and coffee table. 
We asked them to simply press the button when they noticed it and had the opportu-
nity. Since we knew the exact position of those buttons, we were able assess the  
performance of PLP (the classification accuracy for that sub-room) at those known 
locations. PLP correctly indicated the person’s location (within a 2 meter circle) at the 
time the button was pressed. Over 97% (507 out of 523) of the button presses were 
identified correctly with PLP across all homes. 
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4.2   Utility of Indoor Location Tracking System 

The four households that were enrolled in the study each had researchers conduct four 
PLP-based prompted-recall interviews and three prior practice self-report interviews. 
The prompted-recall interview consisted of a 1-hour meeting with each participant 
and a walkthrough of his or her previous day (two days if time allowed) using the 
PLP tracking data. The participants were allowed to dictate what was shown on the 
tracking interface to talk about any detail they chose, but the interviewers were in-
structed to follow the interview guide as much as possible. The tracking data was used 
to help prompt the participants about interesting situations that might have occurred 
with their mobility aid. In addition, the data was also used to encourage the partici-
pants to reflect on their usage of various mobility aids. The non-prompted interview 
was conducted using an adapted version of the rehabilitation researcher’s current 
practice surveys (the HAS). These interviews also lasted about one hour, and the 
interviewers were asked to follow the interview guide. The interview was very similar 
to the prompted-recall interviews except that the tracking data was not available. The 
interviewers asked each participant to reflect on their previous two days during their 
interview, although they were not limited to that.  

Each interview was audio-recorded, and the PLP tracking software logged when 
various features of the software were used. The interviewers also took notes during 
the interview. After the completion of the study, the interviews were transcribed for 
further analysis. We also analyzed the PLP tracking data to extract quantitative meas-
ures, such as time spent in each room, percentage of time spent in each room through-
out the day, etc., to compare against the participants’ recall of that information. 

The interview notes and transcripts were used to extract relevant statements and 
discussion points generated during the interviews, which in turn were used to produce 
themes that emerged from all the interviews relating to mobility problems. Two reha-
bilitation researchers independently categorized the statements in the transcripts and 
notes to determine the themes. The two coders produced a total of 19 themes, eight of 
which were common across the two coders. Thus, 11 unique themes were included 
after discussion and resolving overlaps between the different themes. A third inde-
pendent coder re-categorized the statements using these 11 themes and we calculated 
inter-rater reliability using the categorizations from the three coders using two meas-
ures: observed agreement and Cohen’s Kappa (see Table 4). 

Table 4. Inter-rater reliability for each theme: (1) Observed agreement, measured by agree-
ments divided by total number of statements coded and (2)  Cohen’s Kappa. Measures are 
between 0 and 1, with 1 indicating perfect agreement between coders. 

Cluster 1 2 3 4 5 6 7 8 9 10 11 

Observed 
Agreement 

.96 1 .96 .98 .95 .95 1 .96 1 1 .95 

Cohen’s 
Kappa (k ) 

.92 .96 .83 .95 .79 .80 .96 .79 .94 .96 .80 

 
 



240 S.N. Patel, J.A. Kientz, and S. Gupta 

The following themes emerged after the data analysis: 

1. Mechanical problems: physical problems with the mobility aid itself, such as 
a broken wheel, faulty brake, etc. 

2. Mobility aid form factor or design problems: the aid does not serve its  
purpose or intended function 

3. Doorway, hallway, or threshold barriers: problem in locomotion in the 
home because of environmental barriers 

4. Reach problems: items of interest being out of reach 
5. Level access problems: includes accessing items that are hard to maneuver 

to, which can result from not being able to rotate the wheelchair, cluttered 
room, etc. 

6. Exercising: tasks relating to regaining mobility strength, such as home 
physical therapy 

7. Safety concerns: afraid of falling or not being confident enough to go to a 
particular region of the house or perform a particular task 

8. Person assistance: task requires assistance from an able-bodied individual 
9. Floor conditions: the characteristics of the floor contribute to mobility  

concerns, such as using a walker on carpet or slippery floors 
10. Self-conscious: reluctant to show they used a mobility aid 
11. Medical procedures: recent medical procedures or changes in health  

affecting overall mobility 

 

Fig. 4. Percentage of discussion points resulting from prompted-recall and non-promoted-recall 
interviews for each theme 

Both interview methods (prompted-recall and non-prompted-recall) produced re-
sponses in 9 of the 11 themes (see Figure 4). However, two themes (Theme 6 and 10) 
only emerged from the prompted-recall data. In addition, a higher percentage of dis-
cussion points relating to Themes 5, 7, and 8 were produced from the prompted-recall 
data. Thus, there were some clear advantages to having the tracking data available 
during the interview process. For example, in the case of exercising, participants often 
talked about using a particular mobility aid for the purposes of strengthening their legs 
or muscles. However, it was not until participants actually saw their activity data did 
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they recall this detail. Similarly, seeing their tracking data prompted discussions about 
other individuals having to help with a particular task. Participants also discussed situa-
tions where they did not take a particular route in their home or use a particular aid in 
certain parts of the home because they were afraid of falling (Theme 7). Another inter-
esting result from the prompted-recall data was that participants not only talked about 
physical barriers in their environment, but also social pressures (Theme 10). For exam-
ple, there was one instance where the data showed that a participant started to use a 
different aid that was not normally used. When she saw this, she stated that she did not 
want to her grandchildren to see her in a wheelchair, so she made a conscious effort to 
use the walker during their visit. Another participant reported using a manual wheel-
chair when his friend would come over, who also used a manual wheelchair. 

In addition to counting the number of themes that emerged with each approach, a 
second coding scheme was introduced to rate the quality of the coded discussion points 
as determined by the needs of the rehabilitation researchers. Two coders rated each of 
the 113 statements or discussion points around that statement with a rating of 1 or 2. A 
value of 1 referred to a statement that was mentioned, but the participant did not engage 
in supporting details or examples during that discussion, while a value of 2 was given to 
a discussion point that involved the participant giving specific details. We also calcu-
lated a percentage agreement and Cohen’s Kappa for the rating scheme for the 113 
statements, which resulted in an observed agreement of .96 and a Cohen’s Kappa of .88. 
The aim of this coding scheme was to determine the number of rich discussion points 
that resulted from using the prompted-recall method compared to the standard inter-
view. In general, we saw a higher quality level of statements gathered using the 
prompted-recall (σ = 1.85) than we did with the interviews alone (σ = 1.4), which a two-
tailed T-Test showed to be significant (p < 0.01). The higher rating of the prompted-
recall interviews could be a result of the participants having something to explain or 
narrate when using the tracking data. In the self-report data, it was often the case that 
participants rarely remembered details around their actions during the prior days. One 
participant referred to the tracking data as, “the next best thing to a video camera with-
out a camera,” alluding to the usefulness of the context it offered during the interviews. 

5   Discussion 

The results of this study show that the use of an indoor location tracking system is 
feasible and acceptable for study participants and helps to meet the needs of  
non-experts. The study enabled us to uncover interesting results and implications for 
designers of other sensing systems, as well as those conducting studies of sensing 
systems in the home. Here we discuss the value of location-based sensing and the 
future avenues that can be explored, the implications we found for conducting these 
types of studies, and describe the limitations to this study. 

5.1   Value of Sensing for Non-experts 

One of the main contributions of this study was to show that location-based systems 
can be both usable and useful to non-experts. We believe this opens a number of 
doors for researchers and helps to validate much of the location-based technology 
research. Beyond the domain of sensing the location of wheelchair users, we believe 
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there are other application areas that are made possible by this line of work. For ex-
ample, research applications in eldercare [17] have made use of location data as a 
peace-of-mind application. These applications could be simplified and are feasible for 
end-users to deploy in their homes with the PowerLine Positioning system. Another 
potential application area is for architects who wish to study the use of built environ-
ments. Occupants could wear tags to allow designers to see which parts of homes are 
used and which are not to help determine how spaces could be redesigned or reno-
vated to better use the space. Finally, this type of technology could benefit  families of 
children with special needs, who could consider using indoor tracking systems to 
identify which rooms children are in when they exhibit different behaviors, which 
could help determine the causes of the behaviors and better address their needs. 

5.2   Implications and Considerations 

As a result of this work, we determined a number of implications for designers of 
future sensing systems for the installation and use by non-expert users and researchers 
who may want to use these techniques to study human behavior. 

• Visualization of Data – One of the most important aspects of a sensing system 
designed for non-experts is an effective means of visualizing the data in a way 
that is relevant and easy to understand. The tools we built for visualization were 
rudimentary, and while they allowed the rehabilitation researchers to do the job, 
more design consideration could make the tools easier to use and understand. 
Understandable visualization of location data remains an area for exploration. 

• Initial Calibration – During the site survey, the installers did not get feedback 
about the performance of their system until the very end of the calibration proce-
dure. Providing feedback about the accuracy should be shown as they did the 
survey so they know if they need to do a denser survey to achieve the desired 
level of accuracy. This could help reduce installation time even further. 

• Interview Timing– One thing rehabilitation researchers noticed about interviews 
with the prompted-recall data was that participants often became fascinated with 
viewing their own location traces, especially the first time they saw it. This may 
add to the length of the interview time during the first visit, since the participant 
may want to explore their own data. We do not think this is a negative aspect, but 
should be considered when scheduling prompted-recall interviews. 

• Re-calibration – In the deployment of PLP for the non-experts, we instructed the 
installers to place a location tag in a fixed location that would serve as a means 
for measuring when the system would need to be calibrated. This manual check-
ing worked in our study, but would be helpful if it sent a notification to the  
installers that a recalibration was necessary. This is especially important for 
longer-term installations. 

• Data Transparency to the Participants and Privacy – Participants in the wheel-
chair mobility study appreciated that they were able to view their own data and 
see what the researchers could see about their movement patterns. This helped 
them feel more comfortable and reduce some of the concerns over privacy. We 
also provided a means for the participants to delete data after it was recorded if 
they chose, which gave them control over what was recorded. Although this fea-
ture was infrequently used, participants expressed comfort in its existence and 
that the PLP data was much less invasive than cameras. 
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• Simplified Data Views – At some times during the prompted interviews, the data 
became too overwhelming and confusing for the study participants. Providing 
ways for researchers to hide some of the complexity at times to make it more un-
derstandable to the participants may help make some of the interviews go more 
smoothly. However, viewing the full data set should always be an option to pre-
serve the data transparency guideline provided above. 

• The Importance of Unobtrusiveness in Domestic Spaces – Echoing some of the 
previous work in this space, the participants in the wheelchair mobility study ex-
pressed an appreciation for how minimally intrusive the PowerLine Positioning 
system was to the aesthetics of their home. Most participants agreed that this type 
of system could remain in their home indefinitely due to its unobtrusiveness. 

5.3   Study and Technology Limitations 

Although the results of this study were promising in showing the value of sensing and 
lead to a number of design implications, there were several limitations that we would 
like to discuss. First, the sample size studied was fairly small, and we were limited to 
only one group of rehabilitation researchers, who conducted pilot deployments in four 
households. Thus, the issue of scaling deployments to a large size is still an opportu-
nity to explore. We believe that scaling this study to a larger set of users will be pos-
sible, since we found that non-experts were able to install the location-tracking system 
with minimal training and in about 30 minutes. They were also able to maintain it 
with very little external technical assistance. Although the non-experts only required 
minimal training, we would still like to get to the point where the sensing technology 
could be deployed without professional or expert help, such as by creating a compre-
hensive installation guide and demonstration video. 

With regard to the technology, there were a few problems we encountered that 
could be improved. For example, positioning tags were still large and did not attach 
well to the smaller mobility aids, such as canes and grabbers. Thus, some data col-
lected by the system may not be entirely accurate if location tags slip off. In addition, 
we believe that because PLP is nearly invisible, the non-experts had some difficulty 
establishing a good mental model of it.  In the case of House 1, if they did not feel 
they were getting a good signal, they would move the plug-in modules to other plugs. 
Thus, we could provide a better sense of how the system works to end-users. Overall, 
compliance was still very high across all four participants and they all indicated no 
major challenges with the tags attached to their primary mobility aids. 

6   Conclusion 

In this paper, we discussed the usability and utility of a low-cost indoor location 
tracking system in the context of being used by non-technology expert rehabilitation 
researchers to study the mobility patterns of wheelchair users in their homes. We have 
encouraging results that such indoor location tracking systems are not only usable by 
non-experts, but they can also be useful in allowing non-experts to achieve their own 
research goals of finding more barriers to access and achieving higher quality, more 
detailed responses from participants. We hope to entice more work in applying ubiq-
uitous computing technology and building tools to help researchers in other communi-
ties wanting to collect objective data about human activity and behavior. In addition, 
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focusing on the non-expert deployability of these sensing technologies is going to be 
critical for attaining the scale for ubiquitous and pervasive computing we hope to 
achieve in the future. 
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Abstract. This paper describes how we recognize activities of daily liv-
ing (ADLs) with our designed sensor device, which is equipped with het-
erogeneous sensors such as a camera, a microphone, and an accelerometer
and attached to a user’s wrist. Specifically, capturing a space around the
user’s hand by employing the camera on the wrist mounted device en-
ables us to recognize ADLs that involve the manual use of objects such as
making tea or coffee and watering plant. Existing wearable sensor devices
equipped only with a microphone and an accelerometer cannot recognize
these ADLs without object embedded sensors. We also propose an ADL
recognition method that takes privacy issues into account because the
camera and microphone can capture aspects of a user’s private life. We
confirmed experimentally that the incorporation of a camera could sig-
nificantly improve the accuracy of ADL recognition.

Keywords: Wearable sensors; Recognizing daily activities; Experiment.

1 Introduction

Activity recognition is one of the most important tasks in pervasive comput-
ing applications. This task has a wide range of applications in, for example,
context-aware systems, life logging and monitoring and has thus been the sub-
ject of a large amount of research. Two main approaches are used for activity
recognition studies: environment augmentation and wearable sensing. The envi-
ronment augmentation approach attempts to recognize users’ activities by using
sensors embedded in indoor environments. In the computer vision community,
activity recognition tasks are accomplished by using cameras installed in a given
environment. For example, hand washing and operating medical appliances can
be recognized by domain specific solutions [23,28]. However, the task has be-
come dominated by various types of embedded small sensors. Recently, many
researchers in the field of ubiquitous computing have tried to recognize activi-
ties based on dense object usage sensors such as RFID tags and switch sensors
installed in indoor environments [25,32,14]. With this approach, many studies
recognize activities of daily living (ADLs) such as using the toilet, making coffee,
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washing dishes, and taking medicine by using object usage sensors that are em-
bedded in or attached to such daily use indoor objects and appliances as toilets,
coffee makers, sinks, and cups.

The wearable sensing approach tries to recognize a user’s activities by em-
ploying such sensors as body-worn accelerometers and microphones to capture
characteristic repetitive motions, postures, and sounds of activities [19,20,2,3,16].
Using these types of wearable sensors, sensing studies have successfully recog-
nized such activities as walking, bicycling, brushing teeth, speaking and laugh-
ing, and workshop activities such as sawing and drilling that have characteristic
motions and/or sounds. An advantage of this approach is that it does not re-
quire environment embedded sensors. That is, this approach incurs no cost in
terms of money or time for embedding sensors in indoor objects and furniture.
Also, users can easily turn off their wearable devices when they want to pre-
serve their privacy. The ADL recognition method proposed in this paper also
uses body-worn sensors. However, because most existing studies use only such
sensors as accelerometers and microphones, they cannot recognize ADLs that
have no characteristic motions or sounds. For example, recognizing such ADLs
as making tea and taking medicine, which the environment augmentation ap-
proach can achieve by using object usage sensors, is difficult when using only
accelerometers and microphones. This study tries to recognize ADLs that involve
object use by employing many kinds of sensors including cameras, microphones,
and accelerometers attached to a single point on the body. In particular, to recog-
nize these ADLs, we leverage visual features of objects, obtained from a camera
on a user’s wrist with which we may also easily capture such other features as
the motion and sound of the ADLs. One of the characteristics of this study is
that it incorporates the visual features of object use into wearable sensing. This
permits us to recognize various kinds of ADLs that involve object use without
the need for environment embedded sensors. To our knowledge, no work has re-
ported object based ADL recognition employing the vision, sound, and motion
features of object use captured by wrist worn sensors.

First, we describe the design of our proposed practical wearable sensor de-
vice, which is attached to one point on the body to recognize ADLs that involve
object use, and then we build a prototype of the device. We report our design
of a wristband type sensor device equipped with such sensors as a camera and a
microphone. The device captures sensor data such as images of used objects and
the sound emitted when a user performs an ADL and sends them wirelessly to a
host PC. Second, we propose a supervised machine learning based ADL recogni-
tion method that uses the multi-modal sensor data. Note that, because the raw
data obtained from a camera and a microphone on the user’s wrist include pri-
vate information, we design a recognition method where the sensor device does
not send raw private information but abstracted information. Third, we collect
sensor data by using the implemented prototype device. We capture ADLs that
involve object use such as making tea, making green tea, taking medicine, vacu-
uming, washing dishes, and feeding fish, and annotate the collected data. Finally,
we evaluate our recognition method by using the collected data and investigate
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Fig. 1. (a) Conceptual image of wristband type sensor device and (b) prototype device

the contributions of each sensor. In summary, our contributions reported in this
paper are (1) the design of a wearable device that enables us to recognize ADLs
that involve object use without environment embedded sensors, (2) the proposal
of an ADL recognition method that can detect ADLs involving object use, and
(3) an experimental evaluation of the proposed method.

2 Practical Sensor Device

Our goal is to recognize ADLs that involve the use of objects. Designing a sen-
sor device to achieve this goal, we must choose which types of sensor the device
should be equipped with and select which point on the body the device should
be attached to. We selected a camera, a microphone, an accelerometer, an il-
luminometer, and a digital compass from the range of commonly used sensors.
We can expect both the cost and size of such sensors to decrease. Specifically, a
camera captures visual information about objects used in ADLs. For example,
an image (frame) including a coffee maker that is captured when a user makes
coffee can be useful for recognizing the ADL of making coffee. The other four
types of sensors are usually used for wearable activity recognition [19,16]. Also,
we attach just one wristband type device equipped with the above five sensors to
a user’s dominant wrist. We attach the device to a single body location because
wearing multiple devices on different parts of the body such as the waist, arms,
and legs may place a large burden on the user in her daily life. Because almost all
ADLs that involve object use are performed by hand, a sensor device attached
near the hand can capture ADL characteristics well. Moreover, we can embed
these sensors in a wristwatch.

Fig. 1 (a) shows our ideal wristband sensor device designed based on the above
discussion. We assume that the device sends preprocessed data obtained from
the five sensors wirelessly to a host PC. Feature extraction and ADL recognition
are performed on the PC (as shown in Fig. 4). The camera lens is placed on
the inside of the wrist to capture the space around the wearer’s hand because
then the camera can capture objects held by the user and objects around her
hand. Based on these assumptions, we fabricated the prototype wristband type
sensor device shown in Fig. 1 (b) for the experiment. We fixed together a USB
camera, a wired microphone, and a USB cable wired sensor board with a 3-axis
accelerometer, an illuminometer, and a 3-axis digital compass and attached them
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to the wristband. The USB camera captures 352 by 288 pixel 24-bit color JPEG
images at about 6 fps with an automatic focus and white balance function. We
used a monaural omni-directional microphone with a sampling rate of 44.1 kHz.
The sampling rates of the other three sensors on the sensor board were all about
30 Hz. The frequency of the accelerometer was sufficient compared with the 20
Hz frequency that is required to access daily activities [4]. We selected a small
camera and a thin USB cable to avoid disturbing the user’s activities. We also
bound the sensor cables together with tape. The bundle was fixed in place with
a band worn on the brachial region. These sensors are connected to a laptop
carried in a backpack via the cables and they send their data to the laptop.

3 Proposed Method

We model each ADL class trained with annotated training data and use the
models to classify test data. To recognize ADLs by using sensor data, training
data should be acquired in each user’s environment because these sensor data
are environment dependent. For example, the sound of vacuuming may depend
on the type of vacuum cleaner used in the environment. That is, users should
label each ADL collected in their environment during a certain period of time.
Models of ADL classes for ADL recognition are then generated by using features
extracted from the annotated training data.

3.1 Annotating Training Data in Our Approach

To label an ADL, users should specify its ADL class and its start and end points.
Our sensor device is equipped with a camera thus making it superior to those
without a camera as regards labeling tasks. Assume that the sensor data are
acquired from a sensor device with a microphone and an accelerometer on a cer-
tain day. After the data acquisition, it is almost impossible for users to annotate
the acquired data solely by listening to the recorded sound. Here, we introduce
two approaches that deal with the problem. The first is a method where users
annotate the data while watching video recordings captured by cameras embed-
ded in the environment [17]. However, it is very expensive to install cameras in
various rooms in the users’ houses to track their activities. The second approach
uses an experience sampling method that permits users to make annotations in
real time [12]. In one example, users carry a PDA that is used as a timing device
to trigger self-reported activity entries. Although this approach is inexpensive,
users have to be continuously aware of the annotation process. This may result
in biased or unrealistic data [14]. To solve these problems, [14] proposes a voice
based annotation method, which permits users to make annotations easily in real
time via a headset. However, real time annotation methods have another prob-
lem in that users cannot easily modify mistakenly created labels. During long
periods of training data acquisition, users are certain to produce incorrect labels.
However, in an environment with no video recording, it is almost impossible for
users to review them solely by referring to captured non-visual sensor data. In
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Fig. 2. Example camera and acceleration data for making cocoa

contrast, because our device has a camera, users can make an accurate label set
by viewing image sequences recorded by the camera. Because the label set is
used for training the models, it is very important to obtain training examples
that are as accurate as possible [14].

As above, users annotate the sensor data while viewing an image sequence
obtained by the camera and a chart of time-series acceleration data obtained
from the device on our implemented annotation tool. By using the track bar of
the tool, users can display an image captured at an arbitrary time on a panel
component of the tool. Users can also play recorded image sequences and sound.

3.2 Classification Features

We extract features from annotated training data that are used to model and
recognize ADL classes. We deal with time-series data obtained from various types
of sensors with different sampling rates. Thus, after extracting features from the
sensor data for each sensor type in an appropriate size window, we combine
them into one second windows with a 50% overlap and compute averages for
each feature in each window. The 50% overlap has been employed successfully
in past studies [2]. We perform ADL modeling and recognition by using a feature
vector sequence generated by combining features extracted from all the sensors.
Here, we describe how to extract features from each sensor data.

Visual features. If we can detect which object the user is currently employing
from the camera images, the information may be very useful for ADL recognition.
In the following, after describing the characteristics of images captured by the
camera and problems with the images such as privacy concerns, we use them
as a basis for determining what kind of visual features are used to model ADL
classes. Also, to achieve real time ADL recognition, we must extract the features
from the image quickly. Note that we compute features for each captured image.
[Characteristics of camera images]
We introduce images captured by the camera in a data acquisition experiment.
Fig. 2 shows a sequence of images and a chart of time-series acceleration data
that were captured while a participant made cocoa. Fig. 2 (a) shows an image
of when he took the cocoa tin from the cabinet, (b) shows an image of when
he was spooning the cocoa powder, (c) shows an image of when he was mov-
ing toward the refrigerator, (d) shows an image of him holding a milk carton,
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(e) shows an image of him holding the cocoa tin prior to storing it in the cabinet,
and (f) shows an image of him stirring the cocoa. Images of objects captured
by the wrist mounted camera have the following characteristics: (1) Objects are
captured from various angles. (2) Most images show only a portion of the ob-
jects. (3) Objects seen in most images are blurred because of hand movement.
(4) The brightness of an object can vary depending on the relationship between
the lighting, camera, and object positions. Many studies try to detect objects
from images while taking occlusion, rotation, scale, and blur into account [27,18].
However, to detect an object from images captured from various angles, we must
generate a model of the object from many images of objects. This may place a
large burden on the end user because we must generate expensive models for each
end user environment. Also, most existing object recognition algorithms are very
costly if they are designed to achieve real time ADL recognition. On the basis
of the above, we consider that we can leverage only rough visual information.
[Problems with camera images]
We describe two problems related to images captured by the wrist camera. The
first concerns privacy. We assume that the sensor device sends such sensor data
wirelessly as camera images to a host PC. Users may feel reluctant to send images
related to their private lives wirelessly, e.g., those captured in a toilet. The second
problem relates to communication traffic. Continuously transmitting raw images
in real time occupies a communication band constantly. Our implemented device
requires about 90 KB/sec for raw image transmission. This may also exhaust the
device batteries very quickly. As a result, we determined that the device should
send images consisting of small quantities of abstracted data.
[Summary of our approach to visual feature extraction]
Based on the above, we decided to extract rough visual features from an ab-
stracted image sent from the device. The data volume of this image is small and
the image is secure. Specifically, we use a color histogram of an image sent from
the device. Some studies also achieve fast object recognition/tracking [30,7] by
comparing histograms and object models prepared in advance. In our approach,
by using a histogram sent from the device, we simply count the number of pixels
in the image (histogram) that are similar to a color characteristic of an ADL. For
example, if a color of a cocoa tin is magenta, the number of pixels whose color
is similar to magenta in an image may be useful for recognizing cocoa making
activities. For each ADL, we obtain several characteristic colors from annotated
training data in advance. For each characteristic color, we count the number of
pixels in the histogram whose color is similar to the characteristic color. The
result is used for the visual feature. Our purpose in using the histograms and
characteristic colors is to achieve rough visual feature extraction with low com-
munication and computation costs. In the following, we describe how to find
the colors characteristic of each ADL, how to generate histograms, and how to
compute features.
[Finding characteristic colors of each ADL]
We obtain the colors characteristic of each ADL in advance by using images of
the annotated training data. Fig. 3 (a) shows the procedure. (I) We cluster all the
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Fig. 3. (a) Clustering pixels of all images of an ADL class and ranking the clusters
(features) by their computed information gains, and (b) clustering color pixels of an
image and constructing a histogram from the clusters

color pixels in all the raw images labeled as the ADL into 64 clusters by using the
k-means algorithm in the hue, saturation, and brightness (HSB) color space with a
slight modification. Then, we compute the average color of each cluster. This pro-
cedure provides 64 representative colors of the ADL. Here, we focus on the HSB
color space because it has a brightness axis. As mentioned above, the brightness
of an object can change depending on the positional relationship of the lighting,
camera, and object. Thus, we multiply the brightness values of the pixels by 0.5
to reduce the importance of the brightness axis. (II) From the obtained 64 candi-
date (representative) colors of the ADL, we extract the top-m candidate colors as
the characteristic colors of the ADL. We rank the 64 candidate colors in terms of
information gain. The information gain is usually used to find distinguishable at-
tributes (features) of instances. The information gain of an attribute increases the
better the attribute classifies the instances. We compute each attribute’s informa-
tion gain when distinguishing images (instances) of the ADL class from those of
other ADL classes by using the attribute values of the images. In this case, each
attribute corresponds to the number of pixels in an image whose colors are similar
to each candidate color. (How to count the similar pixels is mentioned below.) We
compute the information gain of each attribute by using the computed attribute
values of the images and then rank the attributes by their information gains to
obtain the top-m attributes as characteristic colors of the ADL. Note that, before
obtaining the top-m attributes (colors), we remove colors that are similar to other
higher ranked colors from the ranking.

Here, we provide an example. Assume that the color of a cocoa tin used in mak-
ing cocoa is magenta and other ADLs do not include objects whose colors are
similar to magenta. The number of magenta pixels in an image captured while
making cocoa is large and so the information gain of the attribute (the number of
magenta pixels) becomes high because the attribute contributes to distinguish the
cocoa making images from the others. (An image in which the number of magenta
pixels is above a certain threshold may correspond to cocoa making images.) See
[34] for detailed explanation of computing the information gain. From the above
procedure, we can obtain m characteristic colors for each ADL.
[Histogram generation]
Fig. 3 (b) shows the procedure. (I) The device reduces the color of an image to
64 colors simply by using the k-means algorithm to cluster the pixels in the image
into 64 clusters. The representative color of each cluster corresponds to an average
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value for the colors in the cluster. (II) We compute a histogram of the image with
64 bins where each bin corresponds to one color of the 64 representative colors of
the clusters. (The histogram is different from the commonly used color histogram.)
The histogram includes only HSB data of each color (bin) and the number of pix-
els of the color in the reduced image. Comparing a characteristic color with colors
of bins enables us to count the number of pixels in the image whose color is similar
to the characteristic color. The histogram also permits us to compress an image
into 64 pairs of 24 bit HSB data and 32 bit numeric data, i.e., (24+32)*64 = 3584
bit = 448 bytes. This enables us to reduce the communication traffic of our device,
which captures images at 6 fps, to about 2.7 KB/sec. Moreover, we can solve the
privacy problem because it is impossible to restore the original image from the his-
togram. Here, we use k-means clustering for color reduction in the device. We can
process the algorithm at high speed by using a special purpose processing circuit
[24]. We consider that all sensor data processing should be performed on special
purpose circuits. Note that, in our prototype device shown in Fig. 1 (b), the host
PC performs the color reduction and histogram generation offline. Also, to anno-
tate training data, our approach requires raw captured images as described above.
The device should be designed to store raw images in its flash memory card during
training data acquisition periods. This enables users to safely transmit the data
to the PC via the card.
[Visual feature extraction]
For each characteristic color, on the host PC, we count the number of pixels
in the histogram whose color is similar to the characteristic color to model and
recognize ADLs. The similarity is computed by using the Euclidean distances
between the colors in the modified HSB color space. That is, we simply count the
number of pixels whose similarity is smaller than a threshold th. The approach is
identical to that used for the characteristic color extraction. Then, we normalize
the result by dividing it by the dimensions of the image. The normalized result
corresponds to the visual feature. That is, the number of visual features extracted
from one image corresponds to the number of characteristic colors.

We employ this simple method because it requires low computational power.
In fact, this method can extract visual features from a histogram in about 0.5
msec on a PC with a 2.4 GHz CPU by using 75 characteristic colors. We set
m = 5 and th = 15 because they resulted in good performance in a preliminary
experiment.

Sound features. We extract features from sound that is emitted during ADLs
that involve object use. For example, the sound of using a vacuum cleaner, tooth
brushing, and running water may be useful for ADL recognition. We focus on
the characteristic frequencies of such sounds. In [8], the Mel-Frequency Cep-
stral Coefficient (MFCC) is reported to be the best transformation scheme for
environmental sound recognition. [5] achieves the highly accurate recognition
of bathroom activities such as showering, flushing, and urination by using the
MFCC. Thus, we decided to use the MFCC to recognize ADL related environ-
mental sounds. Computing the MFCC is not expensive because it is based on
Fast Fourier Transform (FFT). Note that sound recorded by the microphone
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has problems related to data volume and privacy as well as the camera images.
We thus extract sound features on the sensor device and send only them to the
host PC. Also, the extraction of sound features from all sound data captured at
a high sampling rate is costly. Thus, we intermittently capture short periods of
sound and then compute a 13 order MFCC of each captured sound windowed by
a Hamming window. In this implementation, we record 25 milliseconds of sound
six times a second. From the sound data, we can obtain twelve features.

Acceleration features. We can extract features of postures and repetitive
hand movements from acceleration data. For example, we can find a charac-
teristic frequency in the acceleration data captured while the participant was
stirring cocoa as shown in Fig. 2 (f). We extract features based on the FFT
components of each 64 sample window acceleration data. We use the mean, en-
ergy, frequency-domain entropy, and dominant frequency as features. The mean
can characterize the hand posture. For example, the hand posture during tooth
brushing may have particular characteristics. The mean is the DC component of
the FFT. The energy can be used to distinguish low intensity activities such as
standing from high intensity activities such as walking [33]. The energy feature is
calculated by summing the magnitudes of the squared discrete FFT components.
For normalization, the sum was divided by the window length. Note that the DC
component of the FFT is excluded from this summation. The frequency-domain
entropy and dominant frequency can distinguish between repetitive motions with
similar energy values. For example, the major FFT frequency components of stir-
ring cocoa were between about 2 and 4 Hz in our experiment. Those of brushing
teeth were between about 4 and 6 Hz. The frequency-domain entropy is cal-
culated as the normalized information entropy of the discrete FFT component
magnitudes [2]. The dominant frequency is the frequency that has the largest
FFT component, and this component is three times larger than the average com-
ponent of all the frequencies in this implementation. If there is no frequency that
satisfies the conditions, we set the feature at zero. As above, we extract a total
of twelve features from the 3-axis acceleration data.

Illuminance and direction features. We use raw sensor data captured by
the illuminometer and 3-axis digital compass directly as features. The digital
compass captures the characteristic human orientation of each ADL. Assume
that a user habitually brushes her teeth in front of a sink in her house. Her
orientation during brushing may always be the same.

3.3 Classification Methodology

We model ADL classes in advance by using annotated training data and the ob-
tained feature vector sequence. We classify each feature vector in the test data
into an estimated ADL class. The classification approaches used in machine
learning are divided into two groups: one group uses discriminative techniques
that learn the class boundaries and the other uses generative techniques that
model the conditional density functions of the data classes. The classification
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Fig. 4. Overview of the classification method

performance of the discriminative techniques, which find discriminant features
of the classes, often outperform those of generative techniques. By contrast,
handling missing data is often easier with the generative techniques. The ML
community has shown increasing interest in a hybrid discriminative/generative
approach that can combine the advantages of the two techniques [13,26]. State-
of-art activity recognition studies also achieve high accuracy by employing this
approach [15,16,11]. In addition, because we deal with time-series data, incor-
porating the hidden Markov model (HMM), which is a generative model that
can be used to model activities with temporal patterns [20,14], into the hybrid
approach, can improve the performance and smoothness of ADL recognition.

These facts provide our motivation for using the hybrid discriminative/
generative approach with HMMs. Hybrid classification employs two main mod-
ules: static classifiers and HMM classifiers as shown in Fig. 4. The input of the
first module is the extracted feature vector sequence. The first module consists
of some discriminative binary classifiers trained with feature vector sequences.
We build each binary classifier to recognize its corresponding ADL class. That
is, the number of binary classifiers n corresponds to the number of ADLs the
method learns. Each binary classifier computes the class probability for each
feature vector in the feature vector sequence. That is, each binary classifier out-
puts the class probability sequence. The input of the second module consists of
the class probability sequences computed by the n binary classifiers. The second
module also comprises some HMM classifiers trained with a sequence of output
class probabilities of the static classifiers. We also build each HMM to recognize
its corresponding ADL class, that is, each HMM also outputs the likelihood of its
corresponding ADL. The class with the highest likelihood is the classified class.
We train the HMMs using the class probabilities of the static classifiers, which
provide high levels of performance. The use of HMMs can smooth out sporadic
errors of the static classifiers.

4 Data Collection

For our experimental evaluation, we collected sensor data from participants by
using our prototype device shown in Fig. 1 (b). Then, each participant annotated
her own data using our annotation tool. In this study we learned the fifteen
ADLs listed in Table 1. We selected these ADLs, which involve daily objects, by
referring to ADLs dealt with by some reported ADL recognition studies.
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Table 1. ADLs and their average duration (min)

ADL duration (min) ADL duration (min)

A brush teeth 3.65 I make juice 1.77
B cook pasta 5.98 J make tea 1.37
C cook rice 4.33 K practice aromatherapy 0.66
D feed fish 0.40 L take supplement 0.82
E listen to music 1.69 M vacuum 1.26
F make cocoa 1.37 N wash dishes 3.68
G make coffee 1.63 O water plants 0.27
H make green tea 1.16

4.1 Data Set

The most natural data would be acquired from the normal daily lives of the par-
ticipants. However, obtaining sufficient samples of such data is costly because
researchers have to observe their normal daily lives. We collect sensor data by
using a semi-naturalistic collection protocol [2] that permits greater variability in
participant behavior than laboratory data. In the protocol, participants perform
a random sequence of ADLs (obstacles) following instructions on a worksheet.
The participants are relatively free as regards how they perform each ADL be-
cause the instructions on the the worksheet are not very strict, e.g., “vacuum
the room” and “listen to an arbitrary track from a CD in the rack.”

Data were collected from 10 participants who wore our prototype device in
our experimental environments. The participants were workers (not researchers)
in our laboratory. Because the features of the sensor data obtained from our
device may vary depending on the environment, we collected sensor data in two
environments: environment 1 and environment 2, and tested our method by using
each data set. That is, we evaluated the test data obtained in environment 1 by
using a classifier trained on training data also obtained in environment 1 and vice
versa. Environment 1 is our home-like experimental environment [21]. We had
equipped the environment with a cabinet, break time items, cooking utensils, etc.
to emulate a home environment. In the experiment, we used objects originally
installed in the environment. Also, four video cameras were fixed to the ceiling
of the environment. The participants were familiar with environment 1 because
they entered and left it many times every day. Because environment 2 is simply
a room in our laboratory, we equipped it with new objects required for the ADLs
for our experiment. We taught the participants the locations of the objects before
undertaking data collection. Each data collection session included a random
sequence of the fifteen ADLs listed in Table 1. We conducted fourteen sessions,
which correspond to about two weeks data, in each environment. That is, each
participant took part in a total of about three sessions in two environments.
When performing the ‘brush teeth,’ ‘cook rice,’ and ‘wash dishes’ ADLs, they
used sinks outside the environments. During data collection in environment 2, the
participants used a timing device. The timing device is a PDA and can record
the time at which its button is pushed. The participants can easily annotate
collected data by referring to the recorded times. For example, they can push
the button just before starting to vacuum.
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The data obtained in this experiment were various and practical. Because
the experiments were conducted from 9 a.m. to 6 p.m., images obtained under
various light conditions are included. Also, because the experiment involved ten
participants, their ways of performing the ADLs differed. For example, some
participants made tea while standing and others while sitting. Of course, the
participants’ clothes, which were sometimes captured by the camera, were also
different in different sessions. Furthermore, the experiment involved various kinds
of objects such as those with complex textures, e.g., floral and arabesque patterns
and translucent objects. Also, colors of some objects were similar with each other.

4.2 Labeling Sensor Data

The participants annotated their own collected data by using our tool. We asked
them to select the start and end points of labels as they liked. After they had
completed the task, we asked them to provide comments about the tasks. To
enable us to compare our annotation method with conventional labeling in lab-
oratory settings, the participants also annotated their data for environment 1
by watching video recordings captured by the cameras fixed to the ceiling. We
call the label sets of environments 1 and 2 obtained by using the sensor data
provided by our device label sets 1A and 2. We call the label set of environment
1 obtained using the video recordings provided by the fixed cameras label set 1B.

The average times needed to label the sensor data for one session were 44.1 and
36.4 min for set 1A and set 2, respectively. The participants annotated the data
of environment 2 while referring to a printed list of times recorded by the timing
device. Although we found no significant difference between two sets of results
with a two-tail t-test (p > 0.05), all the participants commented that the timing
device was useful. When end users annotate sensor data obtained during training
data acquisition periods in their daily lives, they should determine their ADLs
from sensor data obtained over long periods. Thus, the timing device may be
useful to end users. The timing function should be embedded in our wristband
device. The average labeling time for label set 1B was 27.0 min. While this
approach is very costly, the average time was shorter than that of our device.
Also, some participants commented that the images captured with our device
can cause motion sickness. However, they also commented that labeling by using
the images provided by our device was easier than they had thought because they
could easily recognize routinely used objects in the images.

In label set 1A, there were three incorrect labels: a ‘cook pasta’ label did
not include about half of a boil water activity in the ADL, a ‘make juice’ label
ended while the participant was using a juicer, and a ‘vacuum’ label included
part of another ADL. In label set 2, a participant forgot to label a ‘feed fish’
ADL. In label set 1B, there were two incorrect labels: a ‘cook pasta’ label did
not include about half of a boil water activity and a ‘listen to music’ label did
not cover the whole ADL. We could not find any significant differences between
label sets 1A and 1B in terms of labeling accuracy. We asked the participants
to correct these mistakes. In addition, each participant had a different labeling
strategy. When labeling ‘brush teeth’ and ‘wash dishes,’ six participants selected



258 T. Maekawa et al.

start and end points to include walking with related objects such as a dish rack
from the environment to the sink. The labels of four other participants did not
include this. In addition, some labels of the two participants did not include the
ADL preparation time. For example, when making cocoa, the participants have
to prepare a cup, a cocoa tin, and a milk carton. We should instruct end users
in the same environment to establish a consensus on labeling strategy. We asked
the participants in the minority to modify their labels in accordance with those
of the majority.

5 Evaluation

We evaluated the performance of our method by using the annotated sensor data
(label sets 1A and 2). We conducted a ‘leave-one-session-out’ cross validation
evaluation. That is, we tested one session by using a classifier trained on thirteen
other sessions. In this evaluation experiment, we used AdaBoost M1 and the
C4.5 decision tree implemented on the Weka toolkit [34] as binary classifiers.
AdaBoost is a boosting algorithm that combines weak classifiers to construct a
strong classifier. We use a decision stump as a weak classifier.

5.1 Performance of Our Method

Table 2 lists the accuracies of the various recognition methods in some metrics.
The AdaBoost+HMM (window) and C4.5+HMM (window) columns present
precisions and recalls calculated based on feature windows (vectors). That is,
precision is the ratio of the number of feature windows correctly classified into
an ADL class to the number of all feature windows classified into the class. Re-
call is the ratio of the number of feature windows correctly classified into an
ADL class to the number of actual feature windows of the class. C4.5+HMM,
which uses C4.5 as a discriminative binary classifier and HMMs as a genera-
tive classifier, achieves relatively high accuracies for many ADLs and outper-
forms AdaBoost+HMM, which uses AdaBoost and HMMs. The accuracies of
AdaBoost+HMM for certain ADLs such as ‘feed fish,’ ‘take supplement,’ and
‘water plants’ whose duration was short were zero. Because of the short duration
of these ADLs, few feature windows were labeled as these ADLs. The AdaBoost
algorithm combines weak classifiers, which usually ignore a minor class because
they can achieve high accuracy by classifying all instances (windows) into a ma-
jor class. This led to zero accuracies for these ADLs. [16] achieved the highly
accurate recognition of primitive activities such as walking and sitting with a
combination of AdaBoost and HMM. However, it was difficult to use this com-
bination to recognize complex and/or brief ADLs.

The accuracies of C4.5+HMM for short duration ADLs such as ‘feed fish,’
‘practice aromatherapy,’ ‘take supplement,’ and ‘water plants’ were also rela-
tively low. This was caused by the head and foot margins of the labels. Hand-
crafted labels inevitably start and end with margins with no distinguishable
feature window. For example, in ‘take supplement,’ the margin can correspond



Object-Based Activity Recognition with Heterogeneous Sensors on Wrist 259

Table 2. Averaged accuracies (precision / recall) of the recognition methods. The
values are percentages.

AdaBoost+HMM C4.5+HMM AdaBoost+HMM C4.5+HMM
(window) (window) (instance) (instance)

Env. 1 Env. 2 Env. 1 Env. 2 Env. 1 Env. 2 Env. 1 Env. 2

A: brush teeth 42.1/73.0 75.2/91.4 74.3/79.0 84.3/88.1 27.5/78.6 50.0/92.9 92.9/92.9 77.8/100
B: cook pasta 97.3/86.4 99.2/90.4 97.2/83.7 98.7/84.7 100/92.9 100/100 100/100 100/92.9
C: cook rice 76.2/93.1 79.1/96.0 88.3/85.1 88.3/87.5 54.2/92.9 66.7/100 81.2/92.9 87.5/100
D: feed fish 44.9/3.0 0.0/0.0 60.5/67.7 74.1/58.7 0.0/0.0 0.0/0.0 92.3/85.7 88.9/57.1
E: listen to music 86.7/81.2 50.2/65.3 84.7/90.1 58.4/82.4 80.0/85.7 45.0/64.3 93.3/100 72.2/92.9
F: make cocoa 0.0/0.0 87.9/72.0 74.6/64.4 85.2/76.4 0.0/0.0 84.6/78.6 91.7/78.6 92.9/92.9
G: make coffee 36.4/61.3 49.2/77.8 73.8/66.5 85.2/90.4 24.2/57.1 40.7/78.6 69.2/64.3 93.3/100
H: make green tea 16.4/16.6 69.9/7.0 50.1/13.8 34.5/72.9 18.8/21.4 100/7.1 40.0/14.3 45.8/84.6
I: make juice 86.1/72.9 27.0/53.1 79.7/78.2 76.4/70.4 92.3/85.7 17.9/50.0 93.3/100 92.3/85.7
J: make tea 0.0/0.0 72.1/47.8 24.5/70.3 72.7/42.3 0.0/0.0 60.0/42.9 47.6/71.4 75.0/42.9
K: practice aroma. 66.2/38.7 97.4/57.7 72.8/68.6 77.1/75.4 83.3/35.7 90.9/71.4 100/85.7 100/85.7
L: take supplement 0.0/0.0 0.0/0.0 50.8/69.2 73.7/62.4 0.0/0.0 0.0/0.0 70.6/85.7 90.9/71.4
M: vacuum 96.8/82.0 89.4/80.1 89.0/87.8 93.2/83.1 100/85.7 86.7/92.9 100/100 100/92.9
N: wash dishes 98.3/80.9 97.6/77.5 93.1/82.6 94.3/89.9 100/85.7 100/92.9 93.3/100 93.3/100
O: water plants 100/88.4 0.0/0.0 84.5/92.4 40.5/59.8 100/100 0.0/0.0 100/100 100/71.4

Average 56.5/51.8 59.6/54.4 73.2/73.3 75.8/75.0 52.0/54.8 56.2/58.1 84.4/84.8 87.3/84.7

to a time duration where a participant walks from a chair to a cabinet to get
a pill case. Feature windows involved in these margins may be wrongly classi-
fied. For an ADL with a short duration, the ratio of the time duration of its
margins to those of the whole label is large and so the accuracy becomes rela-
tively low. However, in C4.5+HMM, most feature windows in each label were
correctly classified. For ease of understanding, the AdaBoost+HMM (instance)
and C4.5+HMM (instance) columns in Table 2 show instance based accuracies,
which are computed based on majority voting. That is, we compute the accura-
cies based on the strategy: In an ADL instance, we regard the instance itself to be
classified into the majority vote of the recognition results of each feature window
included in the instance. While our recognition method depends on environmen-
tal conditions, C4.5+HMM achieved high accuracies in both environments.

Distinguishing between ‘make green tea’ and ‘make tea’ was difficult in both
environments as also described in Table 3, which shows the confusion matrices
of C4.5+HMM in environments 1 and 2. This is because the motions involved in
making green tea and making tea are the same, and most of the objects used in
these ADLs such as a kettle and a cup are also the same. In addition, each side
of the tea caddy in environment 1 is a single color; red or gold. In many sessions,
the camera on our device could capture only the red colored portion of the caddy
depending on how the caddy was held. Because the green tea caddy is also red,
it was difficult to distinguish these ADLs in environment 1. Also, the recognition
of such ADLs as ‘feed fish,’ ‘take supplement,’ and ‘water plants,’ which involve
small numbers of objects and do not have characteristic sound or hand activities
sometimes failed. In particular, when the colors of objects involved in the ADLs
were similar to those of objects used in other ADLs, it was difficult to distinguish
between these ADLs. In environment 2, for example, the color of the fish food
tin was similar to that of a kettle used for making tea.
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Table 3. Instance based confusion matrices of C4.5+HMM in environments 1 and 2
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B 0 13 0 0 1 0 0 0 0 0 0 0 0 0 0
C 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0
D 1 0 0 8 2 0 0 3 0 0 0 0 0 0 0
E 0 0 1 0 13 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 13 0 1 0 0 0 0 0 0 0
G 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 11 0 2 0 0 0 0 0
I 1 0 0 0 1 0 0 0 12 0 0 0 0 0 0
J 0 0 0 0 0 1 1 5 0 6 0 1 0 0 0
K 1 0 0 0 1 0 0 0 0 0 12 0 0 0 0
L 1 0 0 0 0 0 0 2 1 0 0 10 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 13 1 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0
O 0 0 1 1 0 0 0 2 0 0 0 0 0 0 10

5.2 Contributions of Each Sensor

Table 4 (a) lists the accuracies of the C4.5+HMM recognition results in various
sensor combinations. For example, the ‘only camera’ row shows instance based
accuracies under a condition where the accuracies were computed on the basis of
only features extracted from the camera sensor data. Also, the ‘w/o camera’ row
shows accuracies under a condition where the accuracies were computed without
features extracted from the camera sensor data. Surprisingly, we could achieve
very high accuracies (about 75%) with just the camera. We also found that us-
ing only a camera could achieve almost the same accuracies as when combining
an accelerometer, a microphone, a direction sensor, and an illuminometer. The
camera played a significant role in ADL recognition when using our device. Sen-
sors with a high contribution were the camera, accelerometer, and microphone
in that order. The illuminometer and digital compass barely contributed to the
recognition and sometimes even decreased the accuracy.

Table 4 (b) lists the accuracies of each ADL when we use only the camera
and only the accelerometer. The accuracies of most ADLs when using only the
camera were high. However, it was difficult to distinguish between ‘make tea’
and ‘make green tea’ in environment 1 because the colors of the objects involved
in these ADLs were similar. Also, the accuracies for ‘cook pasta’ and ‘listen to
music,’ which were characterized by their sound features, were not very high.
With only the accelerometer, the accuracies of ‘brush teeth,’ ‘cook rice,’ and
‘wash dishes’ were relatively high. However, without the camera, it was difficult
to distinguish between these ADLs with high accuracy because all three ADLs,
which involved long periods of walking (and the sound of running water), were
similar. Moreover, without a camera, it is very difficult to distinguish such ADLs



Object-Based Activity Recognition with Heterogeneous Sensors on Wrist 261

Table 4. (a) instance based average accuracies (precision/recall) of C4.5+HMM in
various sensor combinations and (b) instance based average accuracies of C4.5+HMM
for each ADL with only camera features and with only accelerometer features

(a) (b)
Sensor Condition Env. Accuracy

camera

1 76.7/73.2only 2 75.1/71.8

w/o 1 77.7/75.2
2 71.8/67.6
1 28.3/32.9

micro- only 2 21.8/28.6
phone w/o 1 84.9/83.3

2 83.8/81.0
1 48.5/44.3

accele- only 2 47.3/43.8
rometer w/o 1 82.1/80.5

2 84.9/79.5
1 0.1/6.7

illumi- only 2 0.4/6.7
nometer w/o 1 81.7/82.4

2 89.6/88.0
1 23.1/21.9

digital only 2 10.8/10.0
compass w/o 1 85.9/84.8

2 89.9/87.0

only camera only accelerometer
Env. 1 Env. 2 Env. 1 Env. 2

A: brush teeth 75.0/85.7 41.2/50.0 71.4/71.4 59.1/92.9
B: cook pasta 88.9/57.1 31.2/35.7 39.3/78.6 47.1/57.1
C: cook rice 70.0/100 72.2/92.9 50.0/78.6 54.5/42.9
D: feed fish 90.9/76.9 88.9/57.1 100/7.1 0.0/0.0
E: listen to music 72.2/92.9 62.5/71.4 53.8/50.0 21.2/50.0
F: make cocoa 66.7/42.9 84.6/78.6 23.5/28.6 61.5/57.1
G: make coffee 84.6/78.6 73.3/78.6 18.8/42.9 23.6/92.9
H: make green tea 35.0/50.0 52.4/84.6 7.7/7.1 0.0/0.0
I: make juice 76.5/92.9 81.8/64.3 100/78.6 60.0/42.9
J: make tea 27.8/35.7 83.3/71.4 9.5/14.3 28.6/28.6
K: practice aroma. 100/71.4 100/92.3 0.0/0.0 100/14.3
L: take supplement 77.8/50.0 81.8/64.3 0.0/0.0 0.0/0.0
M: vacuum 100/78.6 85.7/85.7 86.7/92.9 78.6/78.6
N: wash dishes 85.7/85.7 87.5/100 66.7/71.4 75.0/85.7
O: water plants 100/100 100/50.0 100/42.9 100/14.3

Average 76.7/73.2 75.1/71.8 48.5/44.3 47.3/43.8

as ‘feed fish,’ ‘practice aromatherapy,’ ‘take supplement,’ and ‘water plants.’
These ADLs have few distinguishable features other than visual features. We
consider that, without the camera, it is difficult to recognize the complex ADLs
studied here.

From the above results, we consider that the wrist is a good place on the body
to attach a single sensor device designed to capture ADLs that involve object
use. Hand posture (mean) contributed to the recognition of many ADLs such
as ‘brush teeth’ and ‘make juice’. However, it is difficult to capture the features
when using body locations other than the wrist. Without the mean features,
instance based precision and recall decreased to 82.3 and 79.5 in environment 1.
In addition, the wrist worn camera, which was the best contributor, can easily
capture hand manipulated objects. [22] uses a shoulder mounted robot with a
camera to recognize and record hand activities such as operating a keyboard
and operating a calculator. However, the robot has to control the direction of
its camera to track the hand.

6 Related Work

We introduce related work that relates to vision based wearable sensing. [9]
achieves gait analysis and floor recognition by using a shoe mounted camera and
accelerometers. Floor recognition permits us to know the user’s location. [35] rec-
ognizes kitchen activities by using RFID tags attached to kitchen objects and a
camera that overlooks the kitchen counter. An RFID reader bracelet worn on a
user’s wrist and the camera detect the use of the objects. [6] uses a camera and
a microphone attached to a chest strap to detect location related events such as
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entering an office, kitchen, or courtyard. [29] uses two hat mounted cameras to
determine user’s actions in a game, e.g., aiming a gun. On the other hand, we use
a wrist mounted camera, a microphone, an accelerometer, an illuminometer, and
a digital compass to recognize ADLs that involve object use by capturing various
characteristic features of manually used objects. Also, [1] uses a wrist mounted
camera to realize a virtual keyboard by tracking the fingers with the camera.

There exists some works that recognize activities by using a single sensor
device embedded in a home. These works also attempt to reduce costs of sensor
deployment. For example, HydroSense [10] employs a water pressure sensor to
understand activities that involve water use.

7 Conclusion and Future Work

We implemented a prototype wristband sensor device to recognize ADLs that
involve the manual use of objects. The device is equipped with a camera, a mi-
crophone, an accelerometer, an illuminometer, and a digital compass to capture
various characteristic features of object use. This device enables us to recognize
various kinds of ADLs that existing wearable sensor devices cannot recognize
without environment embedded sensors. In the experiments, we confirmed that
the incorporation of a camera could achieve highly accurate ADL recognition.

As a part of our future work, we plan to solve the problems thrown up by the
experiment. In both the environments, it was difficult to distinguish between
such ADLs as ‘make green tea’ from ‘make tea’ that involve the same hand
activities and the similar colored objects. To cope with such scalability problems,
we should extract more detailed features such as SIFT features [18] from ‘good’
images, e.g., those including logos, while taking account of privacy concerns and
communication costs. Furthermore, our ML-based approach cannot deal with
situations where residents replace objects, e.g., residents frequently replace milk
cartons. Because the types of milk that a family regularly purchases may be
limited, we should instruct end users to prepare ADL training data that include
various product types of such objects or we should realize an object replacement
detection technique to induce users to prepare new training data.

We also plan to develop a new wristband sensor device that works without a
laptop. The device permits us to capture sensor data in real environments and
evaluate the performance of our method by using the data.

Acknowledgments. The authors would like to thank Dr. Takuya Yoshioka for
the helpful comments and discussions.
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Abstract. This paper presents GasSense, a low-cost, single-point sensing 
solution for automatically identifying gas use down to its source (e.g., water 
heater, furnace, fireplace). This work adds a complementary sensing solution to 
the growing body of work in infrastructure-mediated sensing. GasSense 
analyzes the acoustic response of a home's government mandated gas regulator, 
which provides the unique capability of sensing both the individual appliance at 
which gas is currently being consumed as well as an estimate of the amount of 
gas flow. Our approach provides a number of appealing features including the 
ability to be easily and safely installed without the need of a professional. We 
deployed our solution in nine different homes and initial results show that 
GasSense has an average accuracy of 95.2% in identifying individual appliance 
usage. 

Keywords: Ubiquitous Computing, Sustainability, Sensing, Gas. 

1   Introduction and Motivation 

Natural gas is the most widely consumed energy source in American homes [19]. It is 
used for furnaces, water heaters, stoves, fireplaces and, in some cases, clothes dryers. 
In the US, natural gas prices have quadrupled over the past decade due to growing 
demand and limited pipeline capacity [3]. As a result, government agencies and gas 
utilities have scrambled to implement conservation programs to reduce demand and 
better help customers manage energy costs (e.g., [7, 17]). Although recent work in the 
UbiComp and Pervasive research communities has focused on sensing electricity and 
water usage in the home [10, 12, 15, 16, 18], little attention has been directed towards 
sensing natural or propane gas usage. Unlike electricity and water usage, which are 
often the result of direct human actions such as watching TV, doing laundry, or taking 
a shower, gas usage is dominated by automated systems like the furnace or hot water 
heater. This disconnect between activity and consumption leads to a lack of consumer 
understanding about how gas is used in the home and, in particular, which appliances 
are most responsible for this usage [14]. Most people simply have no means of judg-
ing their household gas consumption other than a monthly bill, which, even then, does 
not provide itemized details about what accounts for this consumption.  
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In this paper, we introduce GasSense, a significant step towards eliminating this 
knowledge gap by providing highly granular information about gas usage in the 
home. GasSense is a low-cost, single-point sensing solution that uses changes in 
acoustic intensities of gas events to automatically identify gas use down to its source 
appliance (e.g., water heater, furnace, fireplace) and provide estimates of gas flow. 
GasSense automatically classifies gas use down to its source based on flow volume 
and rate-of-change. Each gas device in the home draws a unique amount of gas when 
activated and the flow rate-of-change is based on the type of appliance and, to some 
extent, its location in the home (i.e., the pipe pathway to the gas appliance). Because 
GasSense analyzes the acoustic signatures of gas events, it does not require direct 
contact with the gas itself to perform its calculations. This is in contrast to traditional 
gas sensing approaches, which only provide aggregate measurements of usage and 
require in-line contact with the gas to operate. 

Previous work in sensing in the home has been motivated by one of two independ-
ent concerns: (1) human activity sensing for assistive care environments (e.g., elder 
care monitoring) [6, 13, 18] or (2) in enabling highly detailed eco-feedback applica-
tions to reduce wasteful consumption practices [2, 15, 16]. Although automatically 
identifying gas usage in the home may indeed provide insights into corresponding 
human activities (e.g., stove use indicates cooking, long hot water use indicates show-
ering), a large majority of gas use stems from automated mechanical systems (e.g., 
from a home’s furnace and water heater), which may or may not directly correspond 
to a human’s current activity.  

Thus, a primary focus of our work is in supporting the second concern, that is, 
enabling new types of eco-feedback [11] about gas usage in the home. Such feedback 
may come in the form of redesigned bills, home internet portals, or ambient home 
displays. The key here is in providing utilities and consumers with sensing data that is 
more than just an aggregate number but rather an itemized breakdown of gas usage 
down to its source. This detailed data should allow residents to make informed deci-
sions about the costs and benefits of how they consume gas in their home (e.g., the 
temperature settings on their hot water heater, using hot water in the clothes washer). 
For example, in a review of the past 25 years of research into the effects of feedback 
on electricity consumption, Fischer found that feedback resulted in typical energy 
savings of between 5 and 12% [8]. It is likely that gas usage feedback will result in a 
similar decrease. Without detailed measurement, however, these sorts of applications 
are not possible. The focus of GasSense, then, is providing an easy to install sensing 
system capable of estimating disaggregated gas usage. 

Given the small number of natural gas appliances in each home, it is tempting to 
consider a distributed direct sensing approach (e.g., [6, 16, 20]) for sensing gas usage 
(e.g., installing a flow sensor behind each appliance). There are three potential chal-
lenges with this approach: first, it requires constructing sensors that are flexible and 
robust enough to fit a variety of pre-existing gas appliance models in a non-invasive 
way; second, it inherently involves multiple sensors, which increases both the technical 
complexity (e.g., network communications) and the complexity of deployment; finally, 
natural gas is a highly combustible compound, so we were particularly interested in 
pursuing sensing approaches that were safe and did not require the help of a profes-
sional for installation. To address these challenges, we adopted an infrastructure-
mediated sensing approach (e.g., [12, 18]), which leverages a home’s existing physical 
infrastructure to sense and infer higher-level information about events in the home.  
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GasSense is the first single-point sensing solution capable of inferring both the fix-
ture source and the flow level of natural gas. In this paper, we show how a standard 
gas meter’s government mandated regulator can be instrumented with a simple mi-
crophone-based sensor to gather acoustic signals of gas usage. We provide an over-
view of our gas fixture identification and flow estimation algorithms and the results of 
an evaluation in nine diverse homes. In particular, we show that we can accurately 
detect and identify gas events with 95.2% accuracy. Unlike previous work in infra-
structure-mediated electricity and water sensing, we focus on both isolated appliance 
usage as well as overlapping usage (i.e., multiple gas appliances in use at the same 
time). Of the 496 gas events that we collected, 175 were recorded in isolation and 321 
were recorded with other appliances on.  

2   Related Work 

There have been two prevailing approaches to sensing home resource consumption at 
the appliance or fixture level: direct sensing, and infrastructure-mediated sensing 
(indirect sensing). Direct sensing is sensing at or near the point of consumption. For 
example, in ViridiScope, Kim et al. [16] use a combination of magnetic, acoustic, and 
light sensors to sense the internal power state of appliances. Similarly, Arroyo et al. 
developed the WaterBot system [2], which senses and provides feedback about water 
usage behaviors at the water fixture itself by using an inline water flow sensor. Others 
have used computer vision [1], microphones placed within the living environment [6], 
and many simple sensors dispersed throughout the home [20]. Although direct sens-
ing can provide highly granular data, wide scale deployment of such an approach is 
often impractical. The installation and maintenance of many direct sensors can be cost 
prohibitive, direct sensing can also create significant privacy concerns and stigmatiza-
tion (especially with cameras or microphones), and introduce concerns over the aes-
thetics in the home, eventually leading to adoption problems [4, 13].  

Recent work has therefore examined home resource sensing using just a handful of 
inexpensive sensors and often just a single sensor at strategic locations in a home’s 
existing infrastructure (e.g., a home’s water [10, 12, 15] or electrical [18] infrastruc-
tures). In contrast to direct sensing, infrastructure mediated sensing leverages the 
existing home infrastructure to mediate the transduction of events. A primary goal of 
these systems is to reduce economic, aesthetic, installation, and maintenance barriers 
to adoption by reducing the cost and complexity of deploying and maintaining the 
sensing infrastructure. The key enabler in applying this approach to gas sensing is that 
the home’s gas infrastructure and, in particular, its gas meter is standardized across 
households due to government regulation. Thus, the gas meter offers a particularly 
attractive installation point, which is safe, accessible, and also provides an indirect 
means to sense gas usage. 

We are unaware of any commercial gas monitoring solutions that attempt to pro-
vide appliance-level data on gas usage. Smart gas meters, which can be remotely read 
by utility companies, typically only provide aggregate data. Small, inline gas sensors 
are also commercially available (e.g., [5]), but suffer from many of the same problems 
as the direct sensing approach (e.g., they require installation by a professional or di-
rect access to the underlying pipe infrastructure). Industrial applications, especially 
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for manufacturing systems, have motivated the development of highly granular ultra-
sonic gas flow meters (e.g., [1]) but these systems can cost over $1000 USD and 
therefore are not well suited for residential usage.  

To the best of our knowledge, acoustic sensing has not been used for appliance-
level identification and gas flow estimation as it is in GasSense. In leak detection, 
however, acoustics play a critical role. For example, several handheld devices, which 
are marketed towards utility companies, use high frequency response microphones to 
detect ultrasonic waves, which are characteristically emitted from small orifices (leak 
holes) in long haul gas pipes. These acoustic solutions only detect the presence of a 
leak and do not try to characterize the flow or any appliance activity. In our approach, 
the acoustic response produced at the gas regulator is at a much lower frequency  
because the chamber and orifice are significantly larger than that of most leaks.  

3   Background and Theory of Operation 

Gas is delivered to homes through a pressurized piping infrastructure. High-pressure 
transmission pipelines move gas from the production company’s cleaning plants to 
gas distribution stations. Regulators and control valves control the high-pressure gas 
as it moves along the pipeline. At city gate stations, regulators reduce the pipeline gas 
pressure to distribution pressure. To provide a constant, measurable gas pressure, 
regulators control the gas pressure just before it enters the gas meter and into the 
home (Figure 1). In the case of propane, the gas is stored in an on-site tank, and enters 
the home only through a pressure regulator, as propane is typically unmetered.  

Gas regulators are mandated by US national code (ANSI code B109.4-1998) to  
deliver safe pressure levels to the home’s piping system. Given these government 
regulations, there is a reasonable level of expectation that the gas regulators are both 
consistent and present across homes. We leverage this fact in our sensing approach. 
The regulator consists of a diaphragm with a spring-loaded case that controls the  
 

 

Fig. 1. (left) A typical US gas meter and pressure regulator. (middle) The location of our mi-
crophone-based sensor on the pressure regulator relief vent. (right) The GasSense prototype and 
sensor mount attached to the relief vent. 
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amount of gas flow (Figure 2). If the regulator senses high or low pressure changes, it 
adjusts accordingly to restrict or increase gas flow. As an added safety feature, relief 
(or breather) valves exist to vent gas harmlessly if a line becomes over-pressurized or 
the regulator malfunctions. This relief valve is connected to the diaphragm chamber 
and expels the gas through an external steel tube (the relief vent). When gas is being 
consumed in the home it is possible to hear the gas flowing through the regulator at 
the inlet valve, which typically sounds like a slight hissing noise. This sound is ampli-
fied by the diaphragm chamber, which acts as a resonant cavity. 

 

Fig. 2. A cross-section of a typical regulator design. We sense gas flowing through the gas flow 
valve via a microphone placed on the relief vent. 

Although a microphone may seem like a rather indirect way of measuring gas flow, 
it has several theoretical foundations. First, for a fixed chamber, the resonant fre-
quency is also fixed, determined entirely by the size of the chamber [9]. This is analo-
gous to resonance in a whistle—even when you blow harder into a whistle, you do not 
change the pitch, just the intensity of the sound. Second, we know that greater flow 
through the tube can only result from greater pressure at one end of the tube. If the 
flow of gas inside the tube is laminar, the relationship between pressure exerted at the 
tube ending is linearly related to the flow through the tube. Moreover, this pressure, 
which is directly proportional to flow, manifests as the amplitude of the resonant 
frequency, and is ideally suited for measurement via a microphone. The relief vent 
(visible in Figure 1, 2 and 3) of the regulator is the only opening in the diaphragm 
chamber for which the sound propagates outward into the environment, making it 
ideally suited for sensor placement. With proper filtering and de-noising techniques, 
this signal can be isolated and calibrated to reflect aggregate gas flow, even in the 
presence of ambient noise (Figure 4 and 5). 
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4   Hardware Implementation and Data Collection Details 

GasSense consists of an electret condenser microphone attached to a small printed 
circuit board (PCB), which contains the required amplification circuitry. The micro-
phone is omni-directional, and has a sensitivity of -44 dB over the frequency range 
100 Hz to 10 kHz. The PCB is attached to a sensor mount, which fits over the end of 
the relief vent on the gas regulator. The mounting bracket ensures that the microphone 
is level, centered directly under the regulator vent, and also protects the microphone 
from wind, rain and dust. Figure 1 (right image) and Figure 3 (right image) show the 
microphone mounted to a natural gas regulator. The microphone PCB requires exter-
nal power which is provided by two AA batteries in a plastic enclosure. 

The initial GasSense prototype is connected to the microphone input of a laptop’s 
soundcard, although future designs could be entirely self-contained with a microcon-
troller and wireless transmitter. We experimentally confirmed in the lab using a signal 
generator that the automatic gain control (AGC) on the laptop’s integrated soundcard 
was not attenuating or distorting the signal.  

   

Fig. 3. (left) A close-up of our prototype system of GasSense with our sensor mount. (right) 
The GasSense unit attached to the relief vent of the pressure regulator.  

4.1   In-Home Data Collection 

In order to validate our sensing approach, we collected labeled data in nine different 
homes of varying size and age located in four cities (Table 1). Each house contained a 
varying level of background noise depending on the locality (proximity to a freeway, 
sidewalk traffic, etc.). In each house, we tested all of the available gas appliances 
including furnace, hot water heater, stove, fireplace (with both manual and electric 
starters), and a pool heater. Although our focus was on natural gas appliances, we also 
tested GasSense on one house that used propane (H5). For each dataset we noted the 
timestamp and appliance, which served as ground truth labels for evaluating our  
approach. 
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Table 1. Demographic data for homes used in our data collection experiments and their avail-
able appliances tested 

House ID /   
Gas Type 

Style / Built Size / Floors Furnace / Water 
Heater / Stove 

Fireplace /  
 Misc 

H1       
Natural Gas 

Single-Family  
1996 

3400 sq. ft. 
2 

Yes / Yes /  
4 burners  

2 Manual Start    

H2       
Natural Gas 

Single-Family  
1998 

3600 sq. ft. 
2 

Yes / Yes /  
4 burners  

2 Electric Start    

H3      
Natural Gas 

Single-Family  
1962 

2000 sq. ft. 
1 

Yes / No /  
No  

1 Manual Start 
/ Pool Heater    

H4       
Natural Gas 

Single-Family  
2003 

2900 sq. ft. 
2 

Yes / Yes /  
6 burners  

1 Electric Start    

H5       
Propane 

Single-Family  
1991 

2100 sq. ft. 
2 

Yes / Yes /  
4 burners  

1 Electric Start    

H6      
 Natural Gas 

Single-Family  
~1960s 

1080 sq. ft. 
1 

Yes / Yes /  
4 burners        

No 

H7   
Natural Gas 

Single-Family  
1994 

3360 sq. ft. 
2 

Yes / Yes /  
4 burners        

1 Manual Start    

H8 
Natural Gas 

Single-Family  
1991 

3000 sq. ft.     
2 

Yes / Yes / 
4 burners  

1 Manual Start    

H9 
Natural Gas 

Single-Family 
1997 

2600 sq. ft. 
2 

Yes / Yes /  
4 burners 

1 Electric Start 

 
All of the data was collected and initially processed using the soundcard from our 

deployment laptops. The audio signal was sampled at 22,050 samples per second, 
enabling frequency analysis on the entire frequency range of the microphone. The raw 
data was recorded in an uncompressed WAV file using a 16-bit integer to represent 
each sample. 

We followed a predefined experimental procedure to ensure that our data was con-
sistent across deployment sites. For each home, we first attached the sensor to the 
relief vent on the gas regulator, as shown in Figure 1 and 3. We then individually 
turned each gas appliance on for a minimum of 15 seconds and then off. This was 
repeated at least three times for each appliance. This procedure allowed us to acquire 
a clean dataset where each appliance was the only gas device on in the entire house.  

Many gas devices do not provide a mechanism to control the amount of gas 
flow—the device is simply on or off (furnaces, water heaters, dryers and some fire-
places). For all of the devices for which we could control flow, we slowly adjusted the 
device through each flow level to capture the effect of variable rate devices. For ex-
ample, with gas stoves we would ramp a single burner from maximum to minimum 
flow and back again (Figure 4). 

In addition to testing each appliance individually, we collected data involving 
more realistic scenarios in which more than one gas appliance was in use simultane-
ously (e.g., we would activate the furnace, water heater, and stove). These compound 
events are likely to be a common occurrence in any home and thus require special 
attention. To simulate compound events, we turned on multiple gas appliances at 15 
second intervals up to four appliances at a time. Figure 4 (right image) shows data 
collected from a compound event test.  

We also collected flow rate information for both automatically controlled (furnace 
and water heater) and manually controlled (stove and fireplace) gas appliances. We 
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used two methods for collecting ground truth gas flow: the natural gas meter and gas 
appliance labels/manuals, neither of which, unfortunately, provided perfectly accurate 
ground truth. Although natural gas meters do indeed provide measurements of gas 
flow, they are not designed to visualize accurate data about instantaneous flow. Even 
when a constant rate of gas is flowing, gas meter dials would commonly stutter and 
then later jump as much as a whole turn. To mitigate these effects, we collected flow 
measurement data over longer periods—typically four minutes or more, which corre-
sponds to at least two cubic feet of gas—and averaged the results to obtain flow rate. 
This method was used on all homes except H5, which used unmetered propane.  

As an alternative to the gas meter, we also used consumption information listed on 
the gas appliance (or its manual) for ground truth. Most large appliances are directly 
labeled with their power consumption (typically in BTU/hr). Using this method pro-
vides estimates for the gas consumption for individual appliances. However, the 
power consumption obtained from the appliance documentation cannot simply be 
converted into a gas flow rate as this conversion varies with temperature, pressure, 
and humidity. Therefore, this method of calibration can only give rough estimates of 
usage. For homes in which there is no meter (e.g. propane gas homes) this may be the 
only method to estimate the flow. For our analysis we used this method on H5, the 
only residence using unmetered propane. 

 

Fig. 4. Flow rate sensed from a calibrated microphone during a typical test deployment 

5   Flow and Event Detection 

We pursued a three-step approach to transforming the collected audio data into gas 
flow estimates and inferring appliance-level activity. First, the raw audio files are 
cleaned using Fourier transforms and band pass filtering. Second, the linear relation-
ship between acoustic intensity and gas flow are used to estimate the amount of gas 
usage. Finally, the calculated gas flow volume and rate-of-change are used to classify 
the appliance source. 
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5.1   Initial Processing 

The initial processing step involves preparing the raw audio files for analysis. For each 
home, the uncompressed WAV recording of the pressure regulator is grouped into non-
overlapping time windows containing one second of data each. Using these one second 
windows, we compute a short-time Fourier transform (i.e., a spectrogram) of the audio 
signal. Figure 5 shows the resulting spectrogram, in decibels, as a function of both time 
and frequency. Notice that, as expected, the hissing sound primarily occupies a specific 
frequency in the spectrogram (in Figure 5, this is at 7.5 kHz). The frequency of reso-
nance can change from regulator to regulator, but for all homes for which we have 
collected data, the resonance frequency stays in the range of 5 – 9 kHz.  

 

Fig. 5. Frequency spectrogram of ambient noise and regulator activity for a stove appliance 
from Home 9 

Like all microphone-based approaches, our audio signal is susceptible to ambient 
noise. Fortunately, most of this noise (e.g., footsteps, wind, lawn-mowers) is low 
frequency (below 4 kHz)—note the wind, airplane and car noise in Figure 5. When 
noise does penetrate the 5 – 9 kHz range, it often has a wide-band frequency signa-
ture, making it easy to identify. In particular, if the mean energy outside the 5 – 9 kHz 
range is greater than one tenth of the energy at the resonance frequency, we discard 
the audio frame during this time and replace it with the median values from two sec-
onds before and two seconds after the noise event (left image in Figure 6). 

After removing environmental noise from the spectrogram, we find the resonant 
frequency by taking the maximum resonance in the range of 5 – 9 kHz. We extract the 
magnitudes of the resonant frequency across time to form a time-series vector of val-
ues (time, resonant frequency intensity) that correlates directly to flow (Figure 6). 
This vector is then smoothed using a moving average filter of five second length. 
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Fig. 6. (left) Raw audio signal with broadband noise detection. (right) Step change detector. 

5.2   Gas Flow and Consumption 

In order to use our acoustic measurements to estimate gas flow, we must first show 
that the acoustic signals correspond in a predictable way with the rate of consumption. 
As described in the theory of operation section, we expect the audio intensity of gas 
passing over the pressure regulator valve to be linearly related to flow. Figure 7 (left 
image) plots the audio intensity vs. ground truth measurements of gas flow for Home 
4, which is representative of our dataset as a whole. Note that because of the afore-
mentioned challenges with ground truth data collection, this graph is not perfectly 
linear, particularly for low-flow values, which are especially difficult to measure. As a 
result, we devised another test for linearity. 

If there is a linear relationship between audio intensity and gas flow, the overall 
audio intensity of a compound event should simply be the sum of its individually 
collected audio intensity parts. This is in the same way that overall gas flow should be 
the sum of the individual flows from each appliance. To test this, we use our indi-
vidually collected (single-event) dataset to compare with our compound event dataset. 
Figure 7 (right) plots the relationship between the expected value based on summing 
the individual appliance intensities with measured audio intensity for both individual 
and compound events. Note that the points lie on a unity slope indicating that rela-
tionship between audio intensity and rate of gas flow is in-fact linear. The slight non-
linearity at high gas flow rates can be attributed to the microphone op-amp distorting 
very high amplitude signals (i.e., slew rate distortion), which can be compensated. 

Using either the flow rate obtained from the meter or the consumption rate ob-
tained from the appliance label/manual, the audio intensity can be calibrated to abso-
lute units of gas flow (such as in CCF or Therms). Because the relationship between 
intensity and flow is linear, we use a simple linear regression to map intensity to flow, 
measured in Centum Cubic Feet (CCF or 100 cubic feet). The regression requires that 
we either have two points on the flow vs. intensity graph or only one point and as-
sume that the origin (background noise level) is part of the dataset. Thus, we can 
calibrate the entire system from two appliances with different flow rates or from a 
single appliance with a variable flow rate. Of course, providing additional data points 
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from additional appliances can improve the regression and, consequently, the gas flow 
estimate. 

At very high volumes (when all appliances are on) the microphone op-amp begins 
to distort the signal and introduce a non-linearity due to its insufficient dynamic 
range. Future deployments will include a gain control to automatically reduce the 
volume if distortion occurs. After data analysis, it was discovered that this non-
linearity was significant in H8 and H9 where the sound produced by the regulator was 
louder than other homes. To compensate for this effect, a quadratic regression was 
used to map intensity to flow. The data used to form the regression equation was not 
used for testing.  

 

Fig. 7. (left) The linearity curve obtained from calibrating using the gas meter and appliance 
ratings as ground truth. (right) The linearity curve obtained from plotting observed step in-
creases vs. expected increases in the audio signal. 

5.3   Appliance-Level Event Detection and Identification 

We use the smoothed resonant frequency vector as input to both our gas event detec-
tion and appliance identification algorithms. To identify gas usage events, we apply a 
sliding window step detector, which continuously looks for changes in magnitude of 
the resonant frequency intensity (e.g., Figure 4 or right image in Figure 6). The step 
detector triggers when it encounters a monotonically increasing or decreasing signal 
with a rate of change that is greater than a learned threshold. The threshold was de-
termined for each house during calibration. The threshold is set to an arbitrarily large 
number and decreased in small steps. For each step, we segment a random subset of 
events that occur in isolation. If the correct number of events is calculated, the thresh-
old is accepted. If not, the threshold is decreased and the process repeats. For exam-
ple, if the subset contains four events, there should be four step increases and four 
step decreases segmented. We monotonically decrease the detection threshold until 
this pattern is seen. In this way, the threshold is set with minimal supervision. 

After the step detector locates a step in the signal, the signal is passed to the appli-
ance identification algorithm, which extracts three features: (1) the relative magnitude 
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of the step change in flow, (2) the slope of the change-in-flow, (3) and the rise or fall 
time of the unknown event. The first feature (the step size) provides an estimate of the 
amount of gas the appliance consumes. This feature is useful in disambiguating appli-
ances that have fixed flow rates (e.g., a water heater typically uses less gas than a 
furnace). Interestingly, the step size is also useful in disambiguating appliances that 
have variable flow (e.g., a stove or fireplace). This is because these systems are de-
signed to turn on at maximum flow during activation, providing a reliable step in-
crease. The second and third features (the step slope and rise time) are useful because 
electromechanically switched appliances have very steep operating slopes when com-
pared with manually or human controlled appliances. Though it may seem that the 
slope does not add any additional information given the step change and rise time as 
features, we found that some of our datasets performed better by as much as 4.6% 
when using the slope. 

Feature vectors are generated for each segmented event and then used to build a k-
nearest neighbor (KNN) model using the Weka Toolkit [21]. KNN is used to auto-
matically determine the source of the gas events. We applied KNN (k = 3) with a 
Euclidean distance metric and inverse weighting, which is well suited for this kind of 
feature vector because a small distance in the N-dimensional space corresponds to gas 
events having similar flow and slope. These parameters were derived through experi-
mentation and cross validation of our entire dataset. 

6   Performance Evaluation and Results 

Our total dataset includes 496 gas events collected over nine homes and five separate 
appliance types (furnace, water heater, stove, fireplace, and pool heater). Of the 496 
gas events, 175 were recorded in isolation and 321 were recorded in compound. In 
this section, we present the results of our event detection and appliance identification 
algorithms. 

6.1   Event Detection 

To evaluate the accuracy of our event detection algorithm, we iterated over each gas 
appliance event in our dataset (including both single and compound events). We 
compared the output of the event detection algorithm to our ground truth labels. We 
were able to correctly detect 98.22% (1st column in Table 2) of all gas events, even 
in the presence of considerable ambient noise. For example, leaf blowers, passing 
cars, and speech were present in many of our datasets, but were not the cause of any 
failures. In fact, all homes, with the exception of H5, had 100% accuracy. H5, how-
ever, is a special case—it is the only home in our dataset that used propane rather 
than utility supplied natural gas. Unlike natural gas meters, which rely on a single 
pressure regulator to stabilize incoming gas, propane homes use two regulators (for 
safety and efficiency reasons). Since these two regulators do not regulate the pres-
sure proportionally, the quantity of gas flow cannot accurately be determined by 
monitoring only one regulator. The gas stove events, for example, were completely 
missed on four separate trials. 
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6.2   Appliance Classification 

Once a gas event is detected and isolated, its features are sent to our appliance classifica-
tion algorithm to identify the source of the event. To test the accuracy of our appliance 
classification algorithm, we ran a 10-fold cross validation experiment across each de-
tected gas event for every home. The 2nd column in Table 2 shows the results of this 
experiment. The aggregate accuracy across all homes was 95.2% and the worst perform-
ing home, H5, was still above 85% accuracy. Again, the issue with H5 was with the 
intensity of the audio signal when monitoring only one of the two propane gas regulators. 

Table 2. Overall performance of event detection and classification categorized by home 

Home 
(N=# of gas  

events collected) 

Events 
Detected 

10-Fold Cross Validation 
Classification Results 

Classification Results 
Using Minimal  
Training Set 

H1 (N=72) 100% 93.05% 88.24% 
H2 (N=87) 100% 98.85% 99.05% 
H3  (N=24) 100% 100% 100% 
H4 (N=102) 100% 95.07% 98.34% 
H5 (N=50) 84% 85.71% 86.12% 
H6 (N=22) 100% 100% 83.34% 
H7 (N=32) 100% 100% 100% 
H8 (N=58) 100% 87.75% 80.98% 
H9 (N=49) 100% 96.55% 49.8% 

Aggregate (N=496) 98.22% 95.22% 87.32% 

Table 3. Overall performance of event detection and classification categorized by fixture 

Classification Results Using  
Minimal Training Set 

Appliance Type 
(N=# of gas  

events collected)  

10-Fold Cross 
Validation 

Classification 
Results Appliance On Appliance Off 

Furnace (N=108) 98.13% 100% 98.5% 
Water Heater (N=88) 93.02% 100% 76.1% 

Stove (N=206) 97.56% 96.8% 84.8% 
Fireplace (N=88) 91.66% 100% 93.2% 

Pool Heater (N=6) 100% 100% 100% 
Aggregate (N=496) 96.07% 99.36% 90.52% 

Table 4. Confusion matrix from 10-fold cross validation classification 

 Fireplace Furnace Stove Water Heater Pool Heater 
Fireplace 77 0 2 5 0 
Furnace 1 105 0 1 0 

Stove 3 0 200 2 0 
Water Heater 4 2 0 80 0 
Pool Heater 0 0 0 0 6 
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Table 3 presents an alternate view of the same data as in Table 2 but categorized by 
appliance rather than by home. The cross validation reveals that the poorest appliance 
classification accuracies involved fireplaces and water heaters. Upon further analysis 
we observed that 75% of the incorrect water heater classifications, were misclassified 
as fireplace events. As we discuss later, there is a characteristic low frequency thump, 
which can be used to differentiate fireplace and water heater events. Note that our 
data was labeled according to individual appliance, not appliance type. This enabled 
us to investigate whether we could automatically distinguish between appliances of 
the same type but in different locations in the home. The H2 dataset, for example, 
contained two different fireplaces that were correctly distinguished from one another 
with 100% accuracy. 

The 10-fold cross validation shows that our particular KNN-based classifier per-
formed well at correctly classifying gas events down to the source appliance. Table 4 
presents the confusion matrix summarizing the classifier’s prediction. However, in 
real-world deployment scenarios, our training dataset will likely be smaller. That is, a 
homeowner would likely only be willing to provide one example use of each appli-
ance. To test this sort of scenario, we trained solely on one or two individual gas 
events for each appliance and tested on the rest of the dataset. These results are pre-
sented in the far right column of Table 2 and the last two columns in Table 3. The low 
accuracy in H9 is the result of the introduction of non-linearity to the sensed signal, 
which affected both H8 and H9 (as mentioned in Section 5.2). The induced non-
linearity in the dataset made it impossible to find a calibration subset that effectively 
represented all data collected. As a result, step increases during compound events 
were not representative of the trained step increases. After thorough analysis, we 
found that this was due to the low dynamic range of the microphone op-amp. Future 
deployments will include a gain control to automatically reduce the volume if distor-
tion occurs. We also noticed that as more gas appliances are running simultaneously 
(i.e., higher overall flow), the noise is also amplified, which explains some of the 
misclassifications for compounded events (especially small loads). Unlike the mini-
mal training set results, H9 performs well in cross validation. This can be explained 
by the larger set of training data. Cross validation randomly selects 90% of total in-
stances for training and rest for testing in each fold. This results in a classifier that 
learns from the nonlinear instances too, resulting in a more robust model. 

7   Discussion 

Our initial results show significant promise for appliance-level single-point sensing of 
all gas appliances in the home using a simple microphone-based sensing approach. 
After taking data from nine homes, we have shown that individual appliances can be 
reliably detected and classified with an average overall accuracy of 95.2%. This is an 
important advancement in gas monitoring, and we are not aware of any prior work in 
appliance-level single-point sensing of gas. Our microphone-based approach has the 
added advantage of being safely installed by a non-professional. In this section, we 
discuss potential implementations for the end-user calibration process, alternative 
sensing approaches we explored, and outline the next steps and potential future work. 
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7.1   End-User Calibration 

Our approach requires two training procedures by an end user: the association of rela-
tive flow produced by GasSense to absolute flow volume and providing ground truth 
labels of appliances to their respective audio signatures. We can imagine users employ-
ing one of three calibration methods for associating the relative flow inferred by our 
sensing approach to absolute consumption (such as in CCF or Therms). The first would 
involve using the readings from the home’s gas meter as we did in our own experi-
ments. The second involves reading the flow ratings on certain appliances, such as the 
water heater or furnace (again, this is an approach we used in our experiments). Large 
appliances are typically required by national code to show their gas consumption. This 
method is particularly useful for homes that use propane as they do not typically have a 
gas meter. The third, less intensive method is to use the measurements reported on the 
gas bill. Since GasSense can record the duration of gas usage and its relative flow, we 
can use this term to calculate the total gas consumed over a period of time. In this way, 
the first gas bill (or even a set of sparse measurements from the meter) can be used to 
calibrate the system to absolute units of flow. The homeowner would only need to 
enter the dates of use and aggregate gas usage. Although many gas utilities in the 
United States charge gas consumption in units of energy (typically in Therms), the bill 
also reports the total volume of gas measured by the meter (typically in CCF), enabling 
the use of this type calibration method. For associating appliance labels to events, we 
can imagine the user simply activating each appliance in sequence and then entering 
the sequence of labels through a user interface. 

7.2   Alternative Sensing Solutions 

Before deciding on a microphone-based sensing solution, we explored the idea of 
using a methane sensor placed in the relief vent. This solution proved to be inadequate 
due to the sensitivity and response time of the sensor. The methane sensing approach 
relies on trace amounts of gas that escape from the regulator during changes in gas 
flow. However, for many appliances the flow is not great enough to exert backpres-
sure on the regulator, and no methane escapes from the relief valve. Moreover, pellis-
tor and infrared methane gas sensors both suffer from inadequate response times. 
Because we use the slope of the step increase in flow to classify appliances, response 
time proved to be a crucial issue. We also experimented with a thermistor placed just 
inside the relief vent. The idea behind this approach is that as the escaping gas leaves 
the pressurized atmosphere of the regulator, it cools as it expands into the ambient air. 
Unfortunately, the volume of gas released through the relief valve was not sufficient 
to reliably affect the thermistor. 

7.3   Additional Potential Features 

During our experimentation we also observed a potentially useful feature of furnaces 
and hot water heaters that could be included into future classification. Furnaces and 
water heaters produce a low frequency thump from their ignition modules when the 
valve opens and closes (Figure 8). These appliances have two-state solenoid valves to 
mechanically control the flow of gas, producing a characteristic thump as the solenoid 
slams the valve into position. This thump is easily sensed using the microphone, and 
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varies significantly between appliances which may be used to help differentiate simi-
lar events. Unfortunately, the microphone also picks up substantial low frequency 
noise from people walking outside the home, cars passing by or other sources from 
the ambient environment. This makes feature extraction at these frequency levels 
inherently unreliable. Noise cancelling hardware would likely help alleviate this prob-
lem. Instead of probing the lower frequencies for features continuously, we envision 
using the low frequency analysis to disambiguate appliances that cannot reliably be 
distinguished based solely on flow. In H1, for instance, this feature would help to 
disambiguate the water heater from the fireplace, which were sometimes confused for 
one another. 

A second interesting structural pattern that we observed during our analysis of the 
signal was a low frequency modulation of the intensity of the hissing sound. At first 
we speculated that it could be an appliance specific phenomenon, but after conducting 
a thorough analysis, we attributed it to the mechanical operation of the meter. House-
hold gas meters are positive displacement diaphragm meters where the gas flows 
through two chambers making a piston move. The gas needs to exert pressure on 
these pistons for this movement, which in turn creates a small backpressure on the 
inlet side causing the regulator’s diaphragm to slightly move to compensate. As the 
gas flows from one chamber to another, the pistons move back to their original posi-
tion. This repeated motion manifests itself as an oscillating pressure change. 

 

Fig. 8. An example of a low frequency thump caused by the ignition module in a gas furnace 

7.4   Addressing Limitations and Future Work 

GasSense has been primarily tested with natural gas meters supplied by the public 
utility; however, a single home was tested using a propane tank, which demonstrates 
that GasSense may also be a viable option for propane. Most homes with propane 
have two regulators instead of one, a regulator at the outlet of the tank and one at the 
inlet to the house. The additional regulator causes several complications for GasSense 
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because it cannot be assumed that the task of regulating the pressure is shared equally 
by the two regulators, and it therefore may be necessary to monitor both regulators.  

In future implementations, we will experiment with using a directional micro-
phone to eliminate some background noise. In addition, non-linear signal distortion 
will be remedied with a higher dynamic range microphone op-amp and a gain control 
to automatically reduce the volume before distortion occurs. We will explore the use a 
second microphone near the main microphone, but not underneath the vent of the 
regulator, which can be used for noise cancellation. This would dramatically increase 
our signal to noise ratio and allow us to measure extremely quiet hissing.  

We also plan to perform long-term deployments of GasSense to explore the reli-
ability of the system over time in a naturalistic usage setting. In particular, we would 
like to study the effects of the environmental variables such as temperature, humidity, 
and barometric pressure on the acoustic signal produced by the regulator. Addition-
ally, we would like to explore the possibility of classifying events that occur at the 
exact same time, despite the low probability of this occurrence (e.g., a furnace and hot 
water heater turning on simultaneously). 

8   Conclusion 

In this paper we have presented GasSense, a new complementary infrastructure-
mediated sensing solution for the gas infrastructure. GasSense is extremely cost-
effective using only a commodity microphone for its sensing approach and provides a 
novel single-point solution for sensing gas use down to the appliance level. Our ap-
proach provides a number of appealing features including having the ability to be 
easily and safely installed without the need of a professional. We deployed our solu-
tion in nine different homes and found that a KNN classifier could be used to classify 
audio signals to their appliance source with an accuracy of 95.2%. We hope to  
combine this solution with past infrastructure-mediated sensing systems to provide a 
complete picture of whole-house activity as well as support new eco-feedback appli-
cations that provide users with disaggregated energy consumption information.  
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Abstract. A problem in performing activity recognition on a large scale
(i.e. in many homes) is that a labelled data set needs to be recorded
for each house activity recognition is performed in. This is because most
models for activity recognition require labelled data to learn their param-
eters. In this paper we introduce a transfer learning method for activity
recognition which allows the use of existing labelled data sets of various
homes to learn the parameters of a model applied in a new home. We
evaluate our method using three large real world data sets and show our
approach achieves good classification performance in a home for which
little or no labelled data is available.

1 Introduction

Automatically recognizing activities, such as cooking, sleeping and bathing, in a
home setting allows many applications in areas such as intelligent environments
[2,7] and healthcare [1,22,29]. It is to be foreseen that in the near future activity
recognition systems will be installed on a large scale (i.e. in many homes). Most
state of the art activity recognition models are supervised models that require
labelled data to learn the model parameters [10,16,25,27]. Because of differences
in both the layout of houses and the behaviour of their inhabitants, a model
trained for one house cannot be used for another house. This means that a
labelled dataset needs to be recorded for each house. Since this is expensive,
we propose to use transfer learning [3,5,24] to transfer knowledge from labelled
datasets to situations where no or little labelled data is available.

Transfer learning has been successfully applied to independent and identically
distributed (i.i.d.) data, using discriminative models [14,21]. Activity recogni-
tion, however, presents us with two important challenges: First, our measure-
ments are part of a time series, and are therefore not i.i.d. Second, we deal with
situations where the data from a house is largely unlabelled, hence making dis-
criminative models inadequate. In this paper, we propose a method for applying
transfer learning to time series (where the data points are not independent),
using a generative model to allow the use of both labelled and unlabelled data
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during learning. We apply our method in the health care domain where the goal
is to recognize activities of daily living (ADL) from wireless sensor network data.
The list of ADLs is a well recognized fixed list of activities which are good indi-
cators for the cognitive and physical wellbeing of elderly [13]. In our experiments
we recognize the same set of ADLs in different houses, having different sensor
networks. Three large real world datasets are used to evaluate the performance
of our method in activity recognition.

The rest of this paper is organized as follows. Chapter 2 describes related
work of both activity recognition and transfer learning. In chapter 3 we describe
our transfer learning approach in detail. Chapter 4 discusses the experiments
and results. Finally, in chapter 5 we sum up our conclusions.

2 Related Work

This section describes the related work of activity recognition systems and trans-
fer learning approaches. Furthermore, the terminology is introduced which is
used throughout the rest of the paper.

2.1 Activity Recognition Systems

Activity recognition systems consist of a sensing system for obtaining observa-
tions and a recognition model which interprets these observations and recognizes
which activities are performed. Sensing systems may include camera’s [10], RFID
[19,30], wearables [11,15] and wireless sensor networks [23,27].

Several models for activity recognition have been proposed, mainly of prob-
abilistic nature. Good results are obtained using generative models such as the
hidden Markov model (HMM) [19,27] and discriminative models such as condi-
tional random fields (CRF) [6,27]. Extensions to these models such as hierarchi-
cal models [16,18] and segment models [10,25], have been proposed to deal with
the long term dependencies in activities.

All these models are supervised models and therefore require labelled data to
learn the model parameters. Some models have been proposed that somewhat
reduce the need for supervised data such as a hybrid generative and discrimina-
tive model [12] or models that use common-sense knowledge from the web [31].
Such models provide interesting new opportunities for modelling activity recog-
nition. However, the advantage of our method is that any existing or upcoming
generative model that has proven itself in the field of activity recognition can be
used without altering the model. That is, we can simply use the proposed model
and learn its parameters using our transfer learning approach.

2.2 Transfer Learning

Transfer learning refers to techniques that learn model parameters for a classifica-
tion task by incorporating training data from different, but related classification
tasks. We distinguish between source tasks that provide us with training data,
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and a target task which is the actual classification task we are interested in. Early
work on transfer learning primarily focused on multi-task learning in which sev-
eral tasks were learned jointly, yielding a better performance than learning the
tasks separately [3,5,24].

For example, the goal in newsgroup classification tasks is to classify which
newsgroup a particular document belongs [9,21]. One task is to recognize if
a document comes from a newsgroup about space or about hardware. When
including training data of other newsgroups such as religion, baseball and mo-
torcycles the performance improves significantly [21]. This is because the other
newsgroups provide information about the co-occurrence of words. A word such
as ‘moon’ might often occur together with the word ‘rocket’. If the word ‘rocket’
did not occur in the space newsgroup dataset but the word ‘moon’ did, the clas-
sifier can still learn that ‘rocket’ is descriptive for the space newsgroup. Because
it occurs often together with ‘moon’ in the other datasets.

The optimal way to perform transfer learning is still an active topic of re-
search. One approach that seems to work well with probabilistic models is the
use of a prior distribution over the model parameters. The prior provides an
initial estimate of the model parameters for target task and is learned from the
source tasks [14,21]. The influence of the prior decreases as more training data
is observed, therefore providing a natural mechanism to balance the effect of the
prior distribution and the training data while learning the model parameters.

3 Transfer Learning for Activity Recognition

When applying transfer learning to activity recognition each classification task
corresponds to a house in which we perform activity recognition. We distinguish
between a target house, for which there is little or no training data available,
and a number of source houses for which we have large labelled datasets. The
same list of ADLs is used for each house, while the sensor network for each house
is different. To perform transfer learning from the source houses to the target
house, two problems need to be solved:

1. How do we deal with differences in sensor networks due to the different layout
of houses?

2. How can we learn model parameters such that differences in behaviour of
the inhabitants are taken into account?

The first problem involves differences in feature spaces between the houses. Be-
cause each house has a different layout, the sensor network in each house has a
different configuration, resulting in a different feature space. For example, one
house might have a separate room for the toilet and bathroom, while these may
be built together in another. As a result, the sensors used will differ, both in
number and in function. To solve this we need to introduce some kind of map-
ping allowing us to have a single common feature space that can be used for
all houses. We use meta features [14] for this mapping, which are features that
describe the properties of the actual features. Each sensor is described by one
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Fig. 1. Graphical representation of transfer learning framework. For each source house
i training data is used to learn model parameters θ(i). All the source model parameters
are used to learn the hyperparameters Ψ of the prior distributions. Which in turn is
used to learn the target model parameters θ(R) together with any available data from
that house.

or more meta features, for example, a sensor on the microwave might have one
meta feature describing the sensor is located in the kitchen, and another that
the sensor is attached to a heating device.

The second problem involves differences in behaviour between inhabitants.
Even though for each house the same activity labels are used, there may still
be differences in how activities are performed. For example, one person might
often have cereal for breakfast, while another prefers toast. Such differences in
behaviour require different sets of parameters to allow the model to recognize
the corresponding activities. Therefore, we use a separate model for each house,
each having its own set of model parameters. A prior distribution is learned
from the source houses and used to provide a sensible initial value for the model
parameters of the target house. Specific behaviour can then be accounted for by
further updating the parameters using unlabelled and/or labelled training data
from the target house. The entire approach is shown in a diagram in Figure 1.

In the rest of this section we first explain the type of mapping and the ac-
tivity recognition model that we use. Then we explain how we learn the prior
distribution and how this prior distribution is used to learn the parameters of
the target model.

3.1 Mapping Using Meta Features

We define a sensor feature space as the original feature space in which each sensor
of a house represents a feature, while the meta feature space is represented by
meta features. There is a separate sensor feature space for each house, while
the meta feature space shared by all houses. Choosing a proper mapping is
difficult, since the optimal choice is not clear and a wrong decision can strongly
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Table 1. Example of sensors (horizontal) being represented by meta features (vertical)
for two houses
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House A
Microwave 0 0 1 0 0 0 0 0 0
Stove 0 0 1 0 0 0 0 0 0
. . .

House B
Microwave 0 0 1 0 0 0 0 0 0
Refrigerator 0 0 0 1 0 0 0 0 0
. . .

affect the performance of the model. In previous work on transfer learning for
activity recognition a comparison of mappings was made [26]. The mapping that
combined sensor readings in a single feature based on their function (e.g. sensors
used during cooking) gave the best results. We use the same type of mapping in
the form of meta features, by defining meta features that describe the function
of sensors (Table 1).

It is important to notice is that we do not first map all the sensor data from
the sensor feature space to the meta feature space. Instead, as can be seen in
Figure 1, this mapping occurs when learning the prior distribution, and using
the prior to learn the target model parameters. However, it is possible to first
map all the sensor data to the meta feature space and then create a single model
for all houses. This approach was taken in [26] and we compare the performance
of our approach to that approach in the experiment section.

3.2 Model for Activity Recognition

To recognize the activities from sensor data we use the hidden Markov model
(HMM), which has been shown to perform well in this domain [19,27]. The HMM
is defined in terms of an observable variable xt (the features in the sensor feature
space) and a hidden variable yt (the activities to recognize) at each time slice.
Two dependency assumptions specify the model,

– The hidden variable at time t, namely yt, depends only on the previous
hidden variable yt−1 (Markov assumption [20]).

– The observable variable at time t, namely xt, depends only on the hidden
variable yt at that time slice.

These assumptions allow us to factorize the joint probability over all variables
as follows

p(y1:T ,x1:T ) = p(y1)
T∏

t=1

p(xt | yt)
T∏

t=2

p(yt | yt−1). (1)
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Table 2. Overview of the distributions used in the HMM, parameterized by the model
parameters θ = {π, A, B}. And the corresponding prior distribution, parameterized by
the hyperparameters Ψ = {η, ρ, ω, υ}.

Factor Model Distribution Prior Distribution

Name Name Parameters Name Hyperparameters
Initial State Multinomial π Dirichlet η
Transition Multinomial A Dirichlet ρ
Observation Binomial B Beta ω,υ

The different factors represent: the initial state distribution p(y1) parameterized
by π; the observation distribution p(xt | yt) parameterized by B; the transi-
tion distribution p(yt | yt−1) parameterized by A. The entire model is therefore
parameterized by a set of three parameters θ = {π, A, B}.

For more technical details about distributions used in the HMM we refer the
reader to appendix A.

3.3 Learning the Prior Distribution

In Bayesian statistics a prior is said to be conjugate if the resulting posterior is
of the same functional form as the prior [4]. The parameters of prior are typically
called hyperparameters Ψ , to clearly distinguish them from the model parameters
θ. We use conjugate priors in this work, an overview of all the distributions and
their parameters can be found in Table 2.

To learn the hyperparameters we first learn the model parameters of the source
houses. Because we have large labelled datasets for the source houses, we can
easily learn those parameters using maximum likelihood. These source model
parameters provide us with examples of what the model parameters look like
and are used to learn the hyperparameters.

Learning the hyperparameters of the initial state distribution and the tran-
sition distributions is straightforward, because the dimensionality of the model
parameters is the same for all houses. We can calculate them efficiently using
numerical methods [17].

Estimating the hyperparameters of the observation distributions is more in-
volved because of the different sensor feature spaces in each house. This is where
the earlier proposed mapping comes into play. We map the learned observation
model parameters of the source houses to the meta feature space. Then we use
those values to learn the hyperparameters using numerical methods.

For more technical details about learning the hyperparameters we refer the
reader to appendix B.

3.4 Using the Prior to Learn the Target Model Parameters

To learn the model parameters of the target house we use the EM algorithm. In
the E-step any available unlabelled and/or labelled data from the target house
is used to calculate the expectations. During the M-step these expectations are
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used to calculate the new set of parameters, only this time the prior distribution
is added to that calculation.

For the initial state distribution and the transition distribution this is straight-
forward, because the hyperparameters are of the same dimensionality as the
model parameters. However, the observation hyperparameters are stored in the
meta feature space and therefore need to be mapped to the sensor feature space
of the target house. The EM algorithm is run until it converges, after which
transfer learning the target model parameters is completed.

For more technical details about learning the hyperparameters we refer the
reader to appendix C.

4 Experiments

We want to find a good method for transfer learning in activity recognition. Our
proposed approach is characterized by three elements: 1. Meta features are used
to map between the sensor feature space and to a common meta feature space;
2. A separate model is used for each house to take into account the differences
in behaviour of the inhabitants and 3. A generative model is used to allow the
inclusion of unlabelled data of the target house during the learning process.

To validate how well this approach works we perform the following experi-
ments. First, we compare the performance of a model using the meta-feature
space for representing the sensor data, to a model using the original sensor fea-
ture representation. Second, we compare the performance of using a separate
model for each house, to the performance of a single model for all houses. Third,
we compare the performance of using both labelled and unlabelled data, to the
performance of using only labelled data.

We first give a description of the houses and the datasets recorded in them
and provide details of our experimental setup. Then we present the results and
discuss the outcome.

4.1 Sensor System

In this work we apply our method to wireless sensor network data, using both
existing and novel real world datasets. Our wireless sensor network consists of
several wireless network nodes to which sensors can be attached. Examples of
sensors used include reed switches to measure open-close states of doors and
cupboards; pressure mats to measure sitting on a couch or lying in bed; mercury
contacts for movement of objects (e.g. drawers); passive infrared (PIR) to detect
motion in a specific area; float sensors to measure the toilet being flushed. Sensor
output is binary and represented in a feature space which is used by the model
to recognize the activities performed.

4.2 Data

Our sensor system was used to record datasets in three houses. One three room
apartment (house A), one two room apartment (house B) and one two story
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(a) House A
(b) House B

Fig. 2. Floorplan of houses A and B, the red boxes represent wireless sensor nodes.
(created using: http://www.floorplanner.com/)

house (house C), an overview of the datasets can be found in table 3. The
datasets are available at: http://www.science.uva.nl/~tlmkaste.

The layout of the houses differs strongly, for example, there are two toilets in
house C, the toilet in house B is in the same room as the shower, while the toilet
and shower in house A are in separate rooms. Furthermore, the inhabitants differ
as well, house A was occupied by a 26 year old male, house B by a 28 year old
male and house C by a 57 year old male. To further illustrate the differences
between the houses we have included the floorplans of houses A and B (Fig. 2)
and house C (Fig. 3).

We asked the inhabitants to annotate their behaviour using eight activities
based on the list of activities of daily living (ADLs), a health care standard for
monitoring elderly [13]. The activities in house A and B were annotated using
a wireless bluetooth headset, the inhabitant recorded the start and end point
of an activity while performing it. In house C activities were annotated using
a handwritten diary. The activities annotated are the same for all three houses

Table 3. Information about the datasets recorded in three different homes using a
wireless sensor network

House House A House B House C
Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6
Duration 25 days 13 days 18 days
Sensors 14 23 21
Recorded by Authors Authors Authors
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(a) House C: First floor (b) House C: Second floor

Fig. 3. Floorplan of house C, the red boxes represent wireless sensor nodes. (created
using: http://www.floorplanner.com/)

and can be found in Table 4. Timeslices for which no annotation is available are
collected in a separate activity labelled as ‘other activity’.

4.3 Experimental Setup

In all experiments the HMM was used as activity recognition model. All map-
pings that are performed use the meta feature list shown in Table 1, as discussed
in section 3.1. Sensor data is discretized in timeslices of length Δt = 60 seconds.
This time slice length is long enough to provide a discriminative sensor pattern
and short enough to provide high resolution labelling results. After discretization
we have a total of 35486 timeslices for house A, 17350 timeslices for house B and
26236 timeslices for house C.

We split our data into a test and training set using a ‘leave one day out’
approach. In this approach, one full day of sensor readings is used for testing
and the remaining days are, depending on the experiment, either partly or fully
used for training. We use each day as a test day once and report the average of
the performance measure.

We evaluate the performance of our models using the F-measure, which is
calculated from the precision and recall scores. We are dealing with a multi-class
classification problem and therefore define the notions of true positive (TP), false
negatives (FN) and false positives (FP) for each class separately as shown in a
confusion matrix in Table 5, where N is the total number of classes.
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Table 4. The activities that were annotated in the different houses. The ‘Num.’ column
shows the number of times the activity occurs in the dataset. The ‘Time’ column shows
the percentage of time the activity takes up in the dataset. All unannotated timeslices
were collected in a single ‘Other’ activity.

House A House B House C
Activity Num. Time Num. Time Num. Time
Leave house 33 50.5% 16 50.6% 47 45.7%
Toileting 114 1.0% 28 0.6% 89 1.0%
Take shower 23 0.8% 8 0.6% 14 0.8%
Brush teeth 16 0.1% 12 0.2% 26 0.4%
Go to bed 24 33.2% 11 30.7% 19 29.2%
Prepare Breakfast 20 0.3% 7 0.5% 18 0.6%
Prepare Dinner 9 0.9% 2 0.2% 11 1.1%
Get drink 20 0.2% 11 0.2% 10 0.1%
Other - 13.0% - 16.4% - 21.1%

Precision =
1
N

N∑
i=1

TPi

TPi + FPi
(2)

Recall =
1
N

N∑
i=1

TPi

TPi + FNi
(3)

F-Measure =
2 · precision · recall

precision + recall
(4)

4.4 Experiment 1: Meta-features vs. Sensor Feature Space

In this experiment we compare the performance of using the original sensor
feature space to the performance of using the meta feature representation. We
do not use any form of transfer learning in this experiment because it is not
possible to do transfer learning using the original sensor feature space. Instead
we train the model parameters using only data from a single house by performing
maximum likelihood estimation, so no prior is used in learning the parameters.

Table 5. Confusion Matrix showing the true positives (TP), false negatives (FN) and
false positives (FP) for each class. The εij terms show the error between true class i
and inferred class j. FN is the sum of the error terms in the same row, FP the sum of
the error terms in the same column.

Inferred
True 1 2 3 FN

1 TP1 ε12 ε13 FN1

2 ε21 TP2 ε23 FN2

3 ε31 ε31 TP3 FN3

FP FP1 FP2 FP3 Total
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In the case of the meta feature space the sensor data is mapped to the meta
feature space. For the sensor feature space the sensor data can be used as it is.
This allows us to do a fair comparison of the two feature spaces.

Figure 4 shows the results for all three houses. The X-axis shows the number
of days of labelled data that was used, any remaining unlabelled data was also
included during learning. The plot shows that the performance of the model
using the meta feature space is slightly less than the model using the sensor
feature space. This is because several sensors are combined into a single meta
feature which gives the model less information for distinguishing activities.

4.5 Experiment 2: Separate Model vs. Single Model vs. No Transfer
Learning

This experiment compares our transfer learning approach in which a separate
model is used for each house with a transfer learning approach which uses a
single model for all houses. A single house is used as target house, while the
remaining two houses are used as source house. We compare the performance
of these two transfer learning approaches to the performance of the model from
the previous experiment in which no transfer learning and no mapping was used.
This way we are able to see which transfer learning method works best and what
the difference in performance is compared to not doing transfer learning.

Figure 5 shows the results for all three target houses. The X-axis show the
number of days of labelled data that was used, any remaining unlabelled data
was also included during learning. First of all we see that both our approach
and the single model approach strongly outperform the ‘no transfer learning’
approach in all three houses when 0 days of labelled training data are used. This
is because the ‘no transfer learning’ approach has no labelled data to learn its
parameters, while the two transfer learning approaches can use the labelled data
of the source houses.

Furthermore, we see that our approach strongly outperforms the ‘single model’
approach in case of house A. This shows the benefit of having a separate model
for each house, as can be seen from the jump in performance of going from 0
days of labelled data to 1 day of labelled data. Our approach is able to learn
model parameters that take into account the specific behaviour for that house.
The ‘single model’ on the other hand only gains a slight performance increase
from this extra data, because it still shares the labelled data with the labelled
data from the source houses. This makes the weight of the labelled data of the
target house much less than when a prior is used.

Our approach also outperforms the ’no transfer learning’ approach, although
the difference in performance decreases as the number of labelled days increases.
This clearly shows how the use of a prior helps in learning the model parameters
and that its effect decreases as more labelled data is used.

In the house B plot we see the ‘no transfer learning’ approach sometimes
outperforms the transfer learning approach. This phenomenon is called negative
transfer [5] which means that sometimes transfer learning can have a negative
effect on the learning process. The reason for this is that it is not clearly defined
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Fig. 4. Results of experiment 1, com-
paring the performance of the HMM
using the meta-feature space and the
original feature space. The x-axis are
in log-scale and show the number of
labelled days of data that were used
for training.
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Fig. 5. Results of experiment 2, com-
paring the performance of our trans-
fer learning approach using a separate
model for each house with a trans-
fer learning approach using a single
model for all houses and with an ap-
proach where no transfer learning is
used. The x-axis are in log-scale and
show the number of labelled days of
data that were used for training.
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which parts of data in the source houses are useful for the target house and
which or not. Including training data from the source houses during learning
can therefore sometimes pull the choice of parameters away from the optimal
solution.

The house B plot also shows that our approach does slightly worse than the
‘single model’ approach when using 1 day of labelled data, but does better when
more days of labelled data are included. This shows the advantage of using a
prior, as more target data becomes available the learning method has to rely
less on the prior (which caused the negative transfer). On the other hand, in
the single model approach the data from both the source and target houses are
all considered as valid training data for the single model. Therefore, a lot more
target house data needs to be observed before it can outweigh the source house
data, which is causing the negative transfer.

Finally, in the house C plot we see the ‘single model’ outperforms our approach
when few days of labelled data are used, but as more days are added our approach
manages to perform better or equal. This is similar to what we observed in
the house B plot. Our approach slightly outperforms the ‘no transfer learning’
approach when a large number of labelled days is used.

4.6 Experiment 3: Labelled vs. Unlabelled Data

The use of generative models allows us to include unlabelled data during the
learning process. In this experiment we compare performance of using both un-
labelled and labelled data to using only labelled data. In both cases we use our
transfer learning approach to learn the model parameters. The results for the
various houses can be found in Figure 6.

We see that adding unlabelled data increases performance for house A, gives
more or less equal performance for house B and decreases performance for house
C, compared to the labelled only approach. The explanation of these mixed
results is that the success of adding unlabelled data depends on the quality of
the labelled data. We suspect that the use of a hand written diary for annotation
(used in house C) results in less accurate annotation than using the bluetooth
headset method (used in houses A and B). Although this less accurate annotation
does not affect the learning process when using unlabelled data. It does affect
the validation process when verifying if the inferred labels are correct.

4.7 Discussion

The results of our experiments show that our transfer learning method works well.
Especially when no labelled data is available for a target house, our transfer learn-
ing approach is able to provide a good estimate of the parameters. But also in
the presence of labelled data it can help in learning the model parameters. In
some cases negative transfer can result in a lower performance compared to a non-
transfer learning approach. This phenomenon has been reported in other transfer
learning scenarios as well, but it is not well understood how to solve it [5].
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Fig. 6. Results of experiment 3, comparing the performance of using only labelled data
with using both labelled and unlabelled data. The x-axis are in log-scale and show the
number of labelled days of data that were used for training. In the case where unlabelled
data is also included, the remaining days of unlabelled data are added during training.

An important factor in successfully applying transfer learning is the use of
a proper mapping. In this work we manually defined the mapping beforehand.
An alternative is to learn the mapping automatically from data [8,32]. However,
because we are working with time series data trying various kinds of mappings
might result in too high computation times for the approach to be feasible.

In terms of future work, it would be interesting to apply transfer learning
to several other models. For example, the use of hierarchical models might be
better fit for transfer learning because the different levels of the hierarchy al-
low a better abstraction between houses. Comparing the performance gain due
to transfer learning between several models can provide interesting insights on
how to accurately model data. It would also be interesting to apply our transfer
learning approach to other sensing modalities such as camera’s or wearables.
Creating a proper mapping for those modalities will be challenging. Finally, it
would be interesting to perform transfer learning across different sensing modal-
ities. For example, using source houses in which camera’s and wearables are used
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to perform activity recognition and a target house in which a wireless sensor
network is used.

5 Conclusion

We have addressed the problem of learning model parameters when little or no
labelled data is available for the house activity recognition is to be performed
in. Our main contribution is the introduction of a transfer learning method
for activity recognition, which uses a prior to transfer general knowledge about
activity recognition and allows the use of labelled and unlabelled data to learn
house-specific behaviour.

Using experiments on three large real world datasets we showed our method
gives good performance in activity recognition for a house for which little or no
labelled data is available. The method can outperform a model trained using
conventional maximum likelihood estimation. Furthermore, it can outperform a
previously introduced transfer learning method in which a single model is used
for all houses.
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A Probability Distributions Used in the Hidden Markov
Model

The HMM factorizes the joint probability over the observations and activities as

p(y1:T , x1:T ) = p(y1)
T∏

t=2

p(yt | yt−1)
T∏

t=1

p(xt | yt). (5)

The individual factors are distributed as

p(y1) ≡
K∏

i=1

π
δ(y1−i)
i (6)

p(yt | yt−1 = i) ≡
K∏

j=1

a
δ(yt−j)
ij (7)

p(xt | yt) =
N∏

n=1

p(xn
t | yt) (8)

(xn
t = v | yt = i) = (μin)v(1 − μin)1−v (9)

where δ(x) is the dirac delta function giving 1 if x = 0 and 0 otherwise.
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We use conjugate priors for the model distributions of the HMM.

Dir(π | η) =
Γ (

∑K
k=1 ηk)

Γ (η1) . . . Γ (ηK)

K∏
k=1

πηk−1
k (10)

Dir(ai | ρ) =
Γ (

∑K
k=1 ρk))

Γ (ρ1) . . . Γ (ρK)

K∏
k=1

aρk−1
ik (11)

Beta(μin | α, β) =
Γ (α + β)
Γ (α)Γ (β)

μα−1
in (1 − μin)β−1. (12)

where Γ (.) is the gamma function. The parameters α and β are further para-
meterized as αin = υT

i fn and βin = ωT
i fn, where fn is a row vector of binary

meta-features as shown in Figure 1. The hyperparameters υ and ω are positioned
in the meta feature space.

An overview of the probability distributions and their parameters is given in
Table 2.

B Estimating the Hyperparameters

The maximum likelihood estimates of the parameters of the prior distributions
cannot be found in closed form. We use numerical methods for estimating these
parameters [17,28]. This gives us the values of α and β which are needed to find
the values of the meta feature parameters υ and ω. Because fn is given we can
find the least square solution to υ and ω by solving the system of equations as
defined by αin = υT

i fn and βin = ωT
i fn. To gaurantee a non-negative value we

add a ‘bias’ meta-feature with a large enough positive value.

C Learning the Model Parameters Using the Prior

The MAP estimates of the HMM parameters can be found in closed form so-
lutions by taking the derivative of the expectation function with respect to the
parameter of interest. By using lagrange multipliers we can constrain the maxi-
mization to satisfy the rules of probability.

πi =
p(y1 = i | x1:T , θold) + (ηi − 1)∑

i∈y1
{p(y1 = i | x1:T , θold) + (ηi − 1)} (13)

aij =
∑T

t=2 p(yt = j, yt−1 = i | x1:T , θold) + (ρij − 1)∑T
t=2

∑
j∈yt

p(yt = j, yt−1 = i | x1:T , θold) + (ρij − 1)
(14)

μin =
(αin − 1) +

∑T
t=1 ξinvvt

(αin + βin − 2) +
∑T

t=1 ξinv

(15)

where αin = υT
i fn and βin = ωT

i fn.
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Abstract. As sensing technologies become increasingly distributed and democ-
ratized, citizens and novice users are becoming responsible for the kinds of data 
collection and analysis that have traditionally been the purview of professional 
scientists and analysts. Leveraging this citizen engagement effectively,  
however, requires not only tools for sensing and data collection but also mecha-
nisms for understanding and utilizing input from both novice and expert stake-
holders.  When successful, this process can result in actionable findings that 
leverage and engage community members and build on their experiences and 
observations.  We explored this process of knowledge production through sev-
eral dozen interviews with novice community members, scientists, and regula-
tors as part of the design of a mobile air quality monitoring system. From these 
interviews, we derived design principles and a framework for describing data 
collection and knowledge generation in citizen science settings, culminating in 
the user-centered design of a system for community analysis of air quality data. 
Unlike prior systems, ours breaks analysis tasks into discrete mini-applications 
designed to facilitate and scaffold novice contributions. An evaluation we con-
ducted with community members in an area with air quality concerns indicates 
that these mini-applications help participants identify relevant phenomena and 
generate local knowledge contributions.  

Keywords: Air quality monitoring, citizen science, environmental science,  
mobile sensing, participatory sensing, qualitative studies. 

1   Introduction 

Due to the increased availability of sensing technologies, citizens and novice users 
have new opportunities to pursue the kinds of data collection and analysis that were 
once handled almost exclusively by professional scientists and analysts [5]. Leverag-
ing this citizen engagement effectively, however, requires not only tools for data 
collection but also mechanisms for understanding and utilizing citizens’ “local 
knowledge” – the experiential and cultural context, insights, and expertise unearthed 
through collaboration between locals and experts [4]. For example, while sensing  
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Fig. 1. A personal air quality sensor (left). Community members with sensors (right). 

systems may be able to detect the presence of a pollution source, local insight may be 
required to actually identify the source or reveal sensitive populations affected by it. 

Currently, most tools for viewing and analyzing sensed data do not explicitly sup-
port collaboration and are not designed to elicit or compile these kinds of local ques-
tions and insights. Moreover, analysis tools are generally not accessible to novice 
users, since they tend to assume a high level of technical and scientific literacy. We 
seek to understand how interactive systems for supporting citizen science can facili-
tate input from novice users and provide scaffolding that allows them to make greater 
local knowledge contributions. 

This research is one component of the Common Sense project [1][8], a mobile 
sensing program that aims to deploy distributed air quality sensors in the service of 
practical action. Whereas traditional air quality monitoring organizations utilize 
coarse, representative measurements from a relatively small network of fixed sensors, 
we advocate a complementary mobile participatory sensing [3] approach in which 
large numbers of personal, mobile sensors are deployed within communities. This 
approach allows the community members impacted by poor air quality to engage in 
the process of locating pollution sources and exploring local variations in air quality. 
It leverages citizens’ desire to understand personal exposure and knowledge of their 
communities to help effect change. We have developed a research testbed to explore 
this approach, examining issues such as the relative accuracy and resolution of com-
munity-sensed data versus data collected in professional fixed installations.  The pro-
ject also focuses on developing models for facilitating engagement and cooperation 
between community members, citizen scientists, activists, and other stakeholders. 

In this paper, we survey related work in citizen sensing, collaborative visual analy-
sis, and air quality presentation. We then discuss our own research, focusing on four 
key contributions: First, we present principles for designing for novice users in a 
citizen science setting, based on the results of extensive interviews with community 
members and other stakeholders in the air quality ecosystem. Second, we propose a 
framework for describing the process of local knowledge creation in citizen science. 
Third, we demonstrate the Common Sense Community site, a set of collaborative 
web-based visual analysis tools designed to facilitate collaborative analysis of sensed 
data and the co-production of local knowledge. Unlike prior systems, ours breaks 
analysis tasks into discrete mini-applications designed to facilitate and scaffold novice 
contributions. Finally, we present an evaluation of an early prototype of the site that 
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indicates these mini-applications help participants identify relevant phenomena and 
harness local insights. 

2   Related Work 

Citizen science and community environmental monitoring efforts have a deep and 
varied history that has been well documented in the environmental justice literature, 
illustrated by numerous examples of “backpack studies” and volunteer monitoring 
programs [4]. These examples have demonstrated the effectiveness of community 
participation in the collection of environmental data. O’Rourke and Macey discuss the 
use of “bucket brigade” sampling in which a mix of participants in different roles 
coordinate to carry out observation, sampling, and analysis of refinery emissions [25]. 
Other work has documented the use of community air quality sensing to identify pol-
luters and enforce standards for diesel bus emissions [21][19]. This citizen-centric 
ethos has also begun to surface in government monitoring programs for water quality 
and waste [11]. 

Interactive tools for collaborative visual analysis may help community members 
and experts analyze community-sensed data, but the design of these tools presents 
numerous challenges [13]. Web-based tools like sense.us [14] and Many Eyes [30] 
have sought to facilitate collaboration using free-text comments attached to visualiza-
tions. However, this work has typically addressed short-term exploratory analysis of 
small datasets, rather than the long-term, iterative analysis associated with environ-
mental monitoring.  Meanwhile, commercial products for collaborative visual ana-
lytics [27][28] are targeted at expert analysts and are not accessible to novice users. 
Luther et al.’s Pathfinder [20] is perhaps the closest to our work. It seeks to utilize 
collaboration and visualization tools to support citizen science, but focuses on small 
datasets and wiki-based collaboration. 

A number of projects have mapped air quality data using mobile sensors, typically 
with an emphasis on improving environmental awareness [9][17][26]. Some have 
taken creative approaches to presenting and collecting this data through artful visual 
presentation [6], provocative platforms [7], and gameplay [2]. While we also provide 
web-based tools to visualize data from mobile sensors, our tools focus instead on 
facilitating more direct engagement in the process of data analysis.  

3   Motivating Fieldwork 

Before deploying our mobile sensing platform with community members, we wanted 
to understand how those members factor into discussions about air quality and what 
roles they could play in data collection, analysis, and outreach. To gauge this, we 
conducted a concentrated investigation of the communities we hoped to engage with. 

3.1   Method 

Over the course of several months, we interviewed novice community members as 
well as scientists, remediation consultants, government representatives and other 
stakeholders in order to understand their perspectives on air quality and assess the role 
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that technological interventions could play in their environmental decision-making 
processes [1].  This included 14 formal, in-person interviews and approximately 30 
informal interviews conducted either in person, by phone, or at community meetings.  
In these interviews, we discussed existing practice and used prototype sensors and 
interface mockups to explore people’s reactions to potential mobile sensing tools.  We 
recorded the formal interviews and took detailed field notes describing all of our in-
teractions.  Using these, we performed affinity clustering to identify a general set of 
emergent themes and design principles. We also performed more targeted clustering 
to identify common user needs, tasks, and motivations for community participation 
and engagement with environmental data. 

3.2   Personas 

Based on this fieldwork, we developed a set of personas to characterize the relevant 
stakeholders and identified a set of common tasks and questions associated with each. 
Because the system presented here is targeted primarily at community members and 
novice users, we will limit our discussion to the three most relevant personas: an ac-
tivist or community organizer responsible for orchestrating actions and publicizing 
environmental issues, a browser who has an interest in environmental quality but is 
not directly involved with sensing, and a novice community member who might act as 
a data collector (Table 1). While we focus here on tools for these community mem-
bers and novice users, it is also clearly valuable to provide tools for (and promote 
dialog with) other expert stakeholders with different needs, such as scientists and 
government regulators. 

Table 1. Some of the key personas derived from our inital fieldwork 

 Activist/Organizer Browser Data Collector 

Motivation 

Specific concerns about 
the community with an 
emphasis on political 
change. 

Likely to be interested 
in environmental and/or 
societal issues. Possibly 
concerned with political 
change. 

Likely to have  
personal health  
issues.  

  Goals 

Prove there is a problem. 
Determine neighborhood 
exposure.  Pursue  
political change. 

Understand broader 
environmental and 
societal impacts. See 
trends. 

See personal,  
immediate data.  
Modify personal 
behavior.  Pursue 
political change. 

Desired 
Tools 

Tool for community 
understanding and  
presentation. 

Summaries, Interactive 
tools for exploring data. 

Glanceable s 
ummaries, Alarms, 
Forecasting. 

3.3   Design Principles 

Based on our fieldwork, we also extracted a set of design principles for developing 
tools to support visual analysis of sensed data.  Some of the key issues are: 

 

Support specific, goal-directed tasks.  Participants were highly goal-oriented and 
motivated by specific issues such as “What is my personal exposure throughout the 
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day?” or “What are hotspots in this area?”.  “General” exploration did not tend to 
engage them.  As one interviewee put it, “You don't want to look at the interface and 
say, ‘What is this supposed to tell me?’” 

 
Show local and personally relevant data. Participants were most interested in data 
close to their homes and other locations they frequented, rather than the aggregate 
regional data typically provided by current air quality monitoring solutions.  The 
interviews further suggest that many users may not engage unless they are driven by 
health concerns or some other issue that personally connects them to the data. As one 
participant said, “Make the data as local as possible. People want to see their house, 
their block, not a general neighborhood, not a general area.” 

 
Elicit latent explanations and expectations. Community members have local knowl-
edge and expertise, such as beliefs about sources of pollution in their neighborhood.  
However, our interviews suggest that it is often difficult for them to translate this 
knowledge into specific queries.  While community members were good at generating 
high-level or vague questions (e.g. “How does the freeway impact air quality?”), they 
had fewer immediate instincts about how to break these questions down.  Therefore, it 
is important to provide tools that help community members draw on their personal 
knowledge, for example by making suggestions about possible formulations of que-
ries or by guiding them in their exploration of the data. 

 
Prompt realizations. As mentioned above, community members have significant local 
knowledge that could be helpful in interpreting local environmental data.  Accord-
ingly, it is valuable to present views of the data that are perceptually suggestive of 
various possible patterns, and therefore prompt spontaneous realizations that draw on 
the users’ local knowledge.  For example, a view that aligns readings from multiple 
days may prompt a user to realize that repeated spikes at a site are the result of a re-
curring event – for example, a delivery truck unloading. 

 
Beware of “language” barriers. Current tools to which community members have 
access, such as the EPA EnviroMapper [11], are technically complex and require a 
moderate level of scientific knowledge (for example an understanding of pollutant 
concentrations in parts per million).  Novice users may benefit from scaffolding to 
introduce scientific language, and tools that target novice users should not require an 
understanding of such language. 

 
“You don’t want to be inundated.” Understandably, participants did not want to be 
overwhelmed with unnecessary information and complexity (particularly if the infor-
mation was somewhat new to them or was beyond their level of expertise).  There-
fore, staged or gradual presentation of information is desirable. 

3.4   Framework 

Drawing on our personas and design principles, we derived a framework for describ-
ing data collection and local knowledge generation in a citizen science setting. This 
framework does not just describe the existing ecosystem or citizen science applica-
tions. Rather, it builds on the key findings and user needs we indentified in our  
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fieldwork and describes operations an ideal citizen science solution might address. As 
such, the framework serves as a potential blueprint for designing new citizen science 
tools and for assessing existing ones. 

In this framework, we divide the process of collecting, analyzing, and synthesizing 
environmental data and local insights into six phases: collect, annotate, ques-
tion/observe, predict/infer, validate, and synthesize. While these phases can build on 
one another, they are not necessarily linear and individual participants do not neces-
sarily participate in all of them. Rather, each involved stakeholder may engage in the 
process at a few phases and the various members of the community together carry out 
activities at all phases. The various phases each serve different functions and can 
build on one another but do not always do so. These phases may also be iterative - for 
example, answering questions and validating predictions may require additional data 
collection.  

The phases detailed here dovetail with formulations of the scientific method, and 
some steps (question, predict, and validate) echo the question-hypothesize-test formu-
lations seen in the science education literature. However, our framework describes a 
more general set of operations, many of which need not necessarily be formulated in 
the language of scientific discourse. Questions, predictions, and inferences generated 
by community members are often pre-scientific and can contribute valuable insights 
that inform a more formal and rigorous process of scientific analysis without neces-
sarily being framed as such.  

Finally, while we frame this process in terms of air quality monitoring for the sake 
of this discussion, the framework itself is applicable to a broad range of citizen sci-
ence projects including other environmental and health monitoring efforts.  

Collect 
In this phase, data collectors engage in various collection activities. These may in-
clude using sensors to record raw data or observing phenomena and making manual 
observations (as in traditional citizen science activities like the Christmas Bird Count 
[24]).  Most existing citizen science places a strong emphasis on this collect phase. 

Annotate 
After data has been recorded, data collectors provide additional insights that contex-
tualize and supplement it. This can include additional information that helps explain 
the data; for example, if a peak in the data corresponds to an event they observed 
during collection.  Collectors can also include information about the data gathering 
process (when, where, and under what conditions was the data collected) or  
comments about data quality. 

Question/Observe 
Using their own data and data collected by other participants, data collectors (as well 
as browsers and activists) can begin to ask basic questions and identify trends. These 
questions can be introspective (“What is my personal exposure to pollutants?”, “Is air 
quality bad at my home?”) or generally inquisitive (“Where is air quality good and 
bad?”, “Are there block-by-block trends in air quality?”).  Some of these questions, 
including those dealing with personal exposure, can often be answered directly using 
the collected data, while others are more abstract.    These questions can be implicit or 
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explicit and may be driven by the data or by existing assumptions and expectations.  
Users may also observe and note apparent trends (for example, higher levels of a 
pollutant at different times of day) or other phenomena of interest (high levels at an 
unexpected intersection). 

Infer/Predict 
Building on these questions and observations, data collectors, browsers, and activists 
can begin to make predictions and inferences about the observed phenomena (“I think 
values will get worse towards this intersection.”, “Higher readings here seem to indi-
cate a source.”). The observations and inferences made by community members may 
be less clearly articulated than in a formal analysis, but can contain local insights. 
While this phase often resembles the “hypothesize” stage seen in formulations of the 
scientific method, participants’ predictions and insights may not necessarily be 
framed as clearly testable hypotheses. They may only suggest the existence of a trend 
or its repeatability rather than proposing a mechanism for it. In these predictions, 
regardless of their precise formulation, lie some of the most important pieces of local 
knowledge that community members can contribute. 

Validate 
At this phase, contributions from data collectors are more likely to overlap with those 
of activists and organizers. Here, data collectors, browsers, and organizers may look 
for additional data to corroborate their own findings and organizers may also make 
requests for additional data. Additionally, organizers may enlist the help of outside 
entities including domain experts and professional analysts to help verify insights and 
predictions generated by collectors and browsers.  

Synthesize 
At the highest level, activists and organizers must integrate the data and knowledge 
generated in prior phases to produce documentation, reports and other deliverables. 
Again, organizers may involve domain experts and professional analysts, along with 
administrators and regulators, in order to generate summary documentation that can 
be used to support activism, inform policy decisions, and enforce regulations. 

 

This framework (and particularly the annotate, question/observe, and infer/predict 
phases) provides a blueprint for scaffolding novice users’ progression from initial 
elicitation through more involved and integrated questions and contributions. In this 
paper, we focus on applications that engage novice users and guide them through 
these initial phases. We defer discussion of validation and synthesis, which tend to 
utilize more specialized sets of tools for more expert users. 

4   The Common Sense Community Site 

Building on the framework and our design principles, we designed and built the 
Common Sense Community site, a suite of task-oriented mini-applications that allow 
community members to participate in the collaborative analysis of local air quality 
data. While the site is targeted primarily at novice data collectors in a low-income 
urban area, it is also designed to be accessible to more specialized participants  
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Fig. 2. Our framework for knowledge generation in citizen science (center). Personas (left) and 
tools (right) are shown in their intended phases.  

(browsers, organizers, scientists, administrators, and regulators) who may engage in 
the analytic process at different phases.  

The set of visualizations is designed specifically to facilitate the incremental pro-
gression of novice community members through multiple phases of analysis. A per-
son may begin by collecting data or asking questions about data collected by other 
community members and progress through structured phases, triggering new kinds of 
insights. Over time, this can allow novices to become more adept contributors.  

Providing a suite of simple task-oriented applications rather than a more general 
analysis tool has several benefits.  First, it lowers barriers to entry. Participants do not 
need to learn a complicated tool in order to contribute. This encourages legitimate 
peripheral participation [18] and allows novice users and participants with little com-
puting experience to engage in the process. Whereas more general analysis tools such 
as Excel, Tableau [27], or Matlab require greater familiarity with formal analysis 
processes, these individual applications allow users to answer specific questions and 
can guide them towards particular kinds of insights. Figure 2 shows approximate 
mapping between our mini-applications and the framework discussed previously. 

4.1   Collecting Data 

Users collect air quality data using mobile sensors designed as part of the broader 
Common Sense project [8]. These sensors (Figure 1) are designed to be self-contained 
and unobtrusive monitoring devices that can be clipped to a bag or carried as an  
accessory. The units feature a custom board design and embedded software that can 
be deployed with commercial carbon monoxide, nitrogen oxides, and ozone gas sen-
sors. As users carry these sensors with them throughout the day, the units transmit 
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live sensor reading and GPS data to a database server over a GSM data network  
connection. Users can also upload data from offline air quality sensors. 

4.2   Applications 

To display this data, we built mini-visual analysis applications that target common, 
representative tasks and questions that we identified through our fieldwork. These 
included: monitoring personal exposure, inspecting recorded tracks, identifying loca-
tions with poor air quality, and eliciting possible sources. These targeted applications 
exemplify our approach to designing for citizen science – modular, accessible appli-
cations that serve specific needs and which together scaffold the process of local 
knowledge production.  Users begin by selecting an application that serves a particu-
lar need (e.g. “see my personal exposure”) from a portal site. They then move  
between applications via a tabbed interface. We also provide gateways designed to 
allow participants to build familiarity with simpler, more targeted tools and then tran-
sition in a natural way to more complex tools designed to elicit different types of 
insights. This facilitates the transitions between annotation and questioning or ques-
tioning and inference we described in our framework.  

In each of these applications, users can record their questions and insights by  
leaving comments attached to individual views of data. Each application features a 
commenting panel (Figure 4c) that participants can use to annotate and discuss their 
findings. This panel also provides intelligent prompts designed to elicit questions and 
observations, along with educational prompts designed to help scaffold novice users’ 
understanding of the domain. 

We describe several applications in detail below.  

My Exposure 
The first application provides a widget that helps users answer one of the most com-
mon questions we observed in our fieldwork: “What is my exposure to a pollutant?” 
Many of the community members we interviewed 
suffered from allergies or respiratory disease exacerbated 
by the poor air quality in their neighborhood, and ex-
pressed a desire for tools that would help them gauge and 
mitigate their exposure. To meet this need, we developed 
the My Exposure widget (Figure 3, Figure 4a). My Expo-
sure shows a single aggregated measure of the pollutants 
measured by a participant’s sensor, normalized over time 
to the EPA’s Air Quality Index (AQI) [22]. (Because 
many people are not familiar with raw pollutant 
concentrations, all of the visualizations on the site also 
use the AQI color encodings and category descriptors – 
“Good”, “Moderate”, “Unhealthy for Sensitive Groups”, 
“Unhealthy”, “Very Unhealthy”, and Hazardous” – in 
addition to providing actual values). 

For community members carrying our air quality 
sensors, this application acts as an entry point to the site 
and serves an ongoing need that is likely to garner repeat  
 

 
Fig. 3. Two views of the My 
Exposure application 
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Fig. 4. The Common Sense Community Site showing data collected by a single user. The My 
Exposure widget (a) and Tracks visualization (b) are visible along with the commenting panel (c).  

visits. To encourage participants who are initially only curious about their exposure to 
further explore their data, we placed the My Exposure view adjacent to the Tracks 
application (discussed momentarily). 

Tracks 
The Tracks application (Figure 4b) provides a simple way for novice users to observe 
and ask questions about pollution data from their own sensor. In this visualization, 
pollution measurements are plotted on a map and also appear in a timeline below the 
map view. The application behaves like a media player and provides a play/pause 
button, a playback speed control, and a draggable thumb on the timeline that can be 
used to scrub back and forth in the dataset. 

As mentioned above, in each of our applications, participants use the commenting 
panel (Figure 4c) to annotate and discuss their findings. This panel is collapsed by 
default to avoid overwhelming the user, but expands to display intelligent prompts 
designed to elicit questions and observations.  For example, when a participant plays 
back data from their own sensor in the Tracks application, the interface pauses briefly 
whenever a dramatic spike occurs in the data and actively prompts the user to docu-
ment the change.  The user can choose to either enter a comment or continue play-
back. If no action is taken, playback resumes after a brief interval. Users can also 
pause playback at any point to enter comments or questions.  

Places  
Our fieldwork indicated that users’ initial inquiries about air quality are often  
location-centric (“What is air quality like in my neighborhood?”, “Are we protecting 
our ‘treasures’, our schools, hospitals, libraries, parks, etc.?”). To help facilitate ques-
tions and observations of this type, we provide a location-centric Places visualization 
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(not pictured). When a user starts the visualization, they are prompted to enter an 
address and a time range. The application then produces an interactive map showing 
all data collected by any sensor near the specified address during those times. 
Whereas the Tracks application is designed to mimic the functionality of a media 
player, Places is designed to feel similar to online mapping tools like Google Maps 
[12]. The map can be panned and zoomed and the data points plotted on it can be 
played back chronologically.  

We include gateways that allow users to enter the Places view from within other 
applications. When using another application, a user can click a “see more for this 
location” button to transition to the Places view, centered on the location visible in 
their current application.  

Hotspots 
The Hotspots visualization (not shown) helps users identify regions with the best and 
worst air quality over a period of time. The application is intended to help users an-
swer questions about where and when levels are high and low. It draws on the notion, 
frequently seen in our initial interviews, that “worse things are exciting” and uses this 
to provoke insights regarding new locations and unexpected sources. 

Using a range slider, users select whether to show regions with high or low pollu-
tion levels. Readings that match the specified thresholds are then plotted on a map 
similar to the one used in the Places view. Users can also transition to this visualiza-
tion by clicking the “see other places with readings this high/low” gateway from 
within the Tracks or Places applications. 

Comparisons 
The Comparisons visualization is designed to support inference and help users iden-
tify repeated sources and relationships between them. The Comparisons visualization 
presents users with a set of discrete ‘episodes’, short windows of time in which some 
notable event occurred in the recorded air quality data. These can be the largest spikes 
seen in an area over the course of a period of time, or the periods of time with the 
highest variance.  

The notion of focusing on spikes was driven by two observations from our field-
work. First, we noted that people often wanted to “examine an event, not a timeline,” 
seeing detailed data at the scale where the event was apparent, rather than at the level 
of the entire dataset. Second, we hoped that by grouping together sets of episodes that 
would otherwise appear separately, this view would prompt noticings and inferences 
that might not emerge otherwise. In the Comparisons view, these episodes are dis-
played as a set of small multiples [29] alongside a map that also plots that same data 
(Figure 5). The small multiples are linked to the map so that brushing a plot focuses 
that event in both views. This allows users to compare the events spatially as well as 
temporally. 

Discussions 
In addition to the collapsible commenting pane that accompanies each one of the 
visualizations, the site features a Discussions view – a separate application that serves 
as a central location for viewing all comments and provides a forum-like interface for  
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Fig. 5. The Comparisons view. Small multiples of the timeline (left) showing the five highest 
episodes recorded during the past day. The commenting panel is hidden at right. 

further discussion. All comments and annotations left by users in the other applica-
tions are visible here as separate threads and users can compare and build on observa-
tions and insights from multiple applications.  

Other Candidate Applications 
The visualizations described here cover a large subset of the kinds of questions and 
observations specified by our framework. However, other visualizations are clearly 
possible (e.g., tools for understanding variations in air quality over time), and we 
expect to build examples of them in the future to support other relevant questions.  

We also anticipate tools that will assist participants in the validate and synthesize 
phases of a citizen science task.  For example, applications might include automated 
pattern matching to help locate sets of similar sources or identify characteristic pollu-
tion signatures. Similarly, tools to support “crowdsourcing” could allow organizers to 
request new samples or ask community members to identify sensitive locations like 
schools and day care centers. 

4.3   Implementation Details 

The Common Sense Community site and all of the visualizations within it were con-
structed using Adobe Flash with the Modest Maps toolkit [23].  

5   Evaluation 

We deployed an early version of the site with community members in a low-income 
urban neighborhood with poor air quality. There, we carried out interviews and think-
aloud assessments to help characterize participants’ use of the tools. We wanted to 
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understand which visualizations were perceived to be useful and approachable and 
assess whether this set of tools facilitated activities at the various phases identified in 
our framework, such as emergent prediction and observation.  

5.1   Method 

During our assessment we carried out seven interviews with nine community mem-
bers. We recruited participants through a local non-profit organization that focuses on 
environmental monitoring and awareness. Five of the participants were affiliated with 
the non-profit and had participated in air quality monitoring activities through the 
organization. Most of the participants we surveyed were members of a small and 
relatively tightly knit community and the majority knew one another in some capac-
ity. Participant ranged in age from the mid-teens to late 40’s and had a variety of 
education levels, including some middle- and high-school students and some partici-
pants without high school degrees. 

We conducted all of the interviews at the office of the non-profit. We started each 
session with a brief interview designed to assess participants’ knowledge of air qual-
ity issues and the impact of air quality on their community. In our discussions, we 
emphasized the impacts of particulate matter and described its sources. We then gave 
the participants a particulate matter sensor and asked them to take samples in a sev-
eral block radius around the office.  We asked participants to choose a route that they 
thought would maximize the amount of particulate matter detected. During the sam-
pling process, the interviewer walked with the participants and asked them to describe 
their route choice and identify potential sources in the area. We used a commercial 
particulate matter sensor rather than our custom hardware since particle pollution is of 
particular interest in the target neighborhood. 

Once they returned to the non-profit, participants used an early version of the 
Common Sense Community site to examine their data as well as data gathered by 
other participants. We conducted a one-hour think-aloud evaluation with each partici-
pant in which they were instructed to interact with the site and verbally relate their 
thought processes and any questions or insights that occurred to them. Participants 
used a version of the site that included the Tracks, Places, and Comparisons visuali-
zations detailed above. In the Places and Comparisons views, each participant had 
access to his or her own measurements as well as measurements taken by all of the 
previous participants. Because users only had access to data collected by a small 
group of participants in short windows over the course of a few days, we were unable 
to test the Hotspots visualization, which was designed to leverage larger datasets. 

We recorded each of these interviews and coded participants’ interactions with the 
site to assess whether or not they fit within our framework. We also performed clus-
tering to extract key findings that emerged.  These are discussed in Section 6. 

5.2   Scaffolding and Navigation Strategies 

Most participants were able to explore the visualizations and inspect the data that they 
had collected without much confusion. The majority began by identifying their cur-
rent location on the map and followed the track they had recorded, looking for peaks 
either on the map or in the timeline. Most voiced questions and observations about the 
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data and a few made additional inferences or predictions. We report key observations 
that correspond to each of the phases in our framework. 

Collect. Almost all of the users identified a nearby freeway and trucking lots as the 
most likely sources of pollution and most chose routes that took them along a nearby 
frontage road. The students we interviewed all minded their sensors attentively as 
they walked, looking for spikes and actively seeking out areas with higher readings. 
All other participants used the sensor more passively and traversed areas that they 
predicted would be more polluted without actively noting the levels there.  

Annotate. Using the Tracks view, several participants observed distinct peaks and 
ascribed them to events that occurred or features that they passed while they were 
walking (“All the trucks [get on the highway there].”, “That’s the new construction 
there.”). Participants also tended to note readings taken adjacent to locations that 
interested them (“At least we don’t have any red marks near the park…”). In two 
cases, participants had observed increased particulate matter levels on the sensor as 
they walked and directly attributed a peak to a particular source. 

Question/Observe. Most participants asked questions and made remarks about loca-
tions (“Where was that again?”), data (“Was [that spike] at an intersection?”), and 
other participants (“Where did she go?”, “Which person did that come from?”).  Par-
ticipants also asked broader questions about day-to-day and month-to-month trends. 
For example, one wondered whether pollution levels would change during the rainy 
season and another asked “Would it be different if there was wind?” A few partici-
pants also noted locations on the map without data and contributed additional  
anecdotes and pieces of information about them.  

Infer/Predict. Based on the data and their initial questions and observations, several 
participants made inferences about the behavior of phenomena they observed.  For 
example, one participant compared her readings with those from a participant earlier 
in the day and noticed that her own were higher. She inferred that the level of particu-
late matter might be impacted by the change in temperature. 

Another participant investigated the data he had collected and extrapolated from it 
to predict air quality readings further along the frontage road saying, “I wouldn’t 
doubt that it gets worse around the bend.” Talking about a several-block radius, he 
also made a prediction about the health impacts of pollutants in the area. He noted, 
“Just in this radius I can honestly say [...] at least half the kids have asthma. At least 
half.” He supplemented this prediction with a quick calculation, “Fifteen residences 
per area so … that’s probably about a good 500 kids.” 

Validate and Synthesize. This set of interviews involved only novice community 
members and incorporated only data collected during their sessions. As such, we did 
not emphasize the validate and synthesize phases in this study. 

5.3   Usability 

Based on our fieldwork, we were mindful in our design process of the computer liter-
acy of the target population. As one participant in our initial interviews noted, 
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“There’s still that big digital divide in [our city] and all poor neighborhoods.” There-
fore, we were pleased that the system was generally usable by all participants. The 
study did reveal a few straightforward usability issues, which we are addressing, such 
as the need to make the playback controls more visible. These issues did not appear to 
impact the results discussed below. 

6   Discussion 

Here we discuss trends and activities we observed across all of our interviews. 

6.1   Health and Personal Safety 

As expected, displays tailored to personal use proved to be an effective tool for en-
gaging users in the process of citizen science.  The most interested and receptive par-
ticipants each had a personal or family health concern (asthma, allergies, or some 
other reaction) that they attributed to air quality. One asthmatic participant who bicy-
cles and does not own a car expressed a desire to use the data to vet safe cycling 
routes, stating, “This has brought to mind – you’re gonna get exercise, but what are 
you breathing in?” Participants with small children also expressed a strong desire to 
use the tool on a regular basis to help minimize exposure.  

6.2   Socializing 

Although we conducted interviews separately and the sequential nature of the inter-
views did not facilitate conversations or dialogues using the commenting tools, we did 
see social interactions between participants when they viewed one another’s data. 
Several participants asked questions like, “Which person did these come from?” and 
“Whose was whose?” and were eager to compare their tracks against those recorded 
by previous participants. In particular, those from the same social circle were inter-
ested in knowing which of their friends had collected data, where they’d walked, and 
how “well” they had done. For example, one participant located a friend’s track and 
followed it for the entire length, noting each location she’d visited and commenting, 
“She was pretty good, [she found a few orange ones].” Comparing tracks in a com-
petitive way was also common, particularly among the students we interviewed. One 
group of younger students, for example, was excited to discover that their readings 
were higher than those of other participants. This suggests a competitive impulse that 
we might also leverage to encourage participation.  

During the interviews, several participants attributed their continued awareness and 
investment in air quality to a particular community organizer. One participant ob-
served, “You could say she’s our resource when things are happening. If she feels we 
need to know, then it’s up to us to get involved.” This suggests that, at least within 
this community, maintaining long-term interest and investment depends, in part, on 
leveraging these kinds of key community members. 

While we observed users’ reactions to one another’s data, the linear nature of our 
interviews did not allow us to observe exchanges or evolving social use of the system. 
A longitudinal study with more users is needed to understand these social aspects of 
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the system and to gauge the impact of larger amounts of data and discussion on the 
analyses that participants undertake. 

6.3   Exposing Preconceived Notions 

A number of our participants approached the data not from an inquisitive standpoint, 
but rather expecting to find validation of their expectations about air quality. We 
noted comments from a number of participants that suggested implicit assumptions 
about areas (“On Fourth Street, that makes sense.”) and expectations about how bad 
pollution levels would be (“[If you sampled this area] you’d see lots of red”).  One 
participant, in particular, was surprised that the level of particulate matter she re-
corded was low, stating, “I feel like it should be a little stronger with picking up cer-
tain particulates and fumes. I know there should be a lot more out there because there 
are a lot of businesses and industrial stuff.” To test this, the participant requested to 
take the sensor out again and collected additional data. 

In some cases these kinds of assumptions may function as implied hypotheses and 
predictions that participants can immediately begin to validate and build on. However, 
as in the case of the latter participant, preconceptions can sometimes generate mistrust 
in sensors and tools that do not reinforce these existing notions. 

6.4   Visualizations as a Catalyst for Discussion 

We also observed several participants who used the map extensively as a catalyst for 
discussion. These users would point and navigate to areas with strong personal rele-
vance including their homes, schools, and public areas, even when no air quality data 
for that particular region was present.  

One interviewee, in particular, used the map to discuss pollution sources outside 
the zone in which he had collected data and to make predictions about sources and 
impacts there.  He first predicted that there might be “really high values” in main 
intersections adjacent to a nearby port and shipping terminal, stating, “I can only 
imagine [it gets worse toward the intersections.]” He then contributed a number of 
anecdotes about locations in and around the port including spots where diesel trucks 
idle, areas where water quality has been impacted by dredging, and an isolated resi-
dential building in the industrial zone. These anecdotes were often very specific and 
drew on his experience as a port worker and volunteer air monitor – for example: 

 
"Here - definitely this intersection - we did some of the survey in this area last 
year. Here, right here - this is a fuel station. It’s a truck fuel station. This is where 
all the trucks get on the freeway. All the trucks are always right here - along 
[Street 1] and [Street 2] and um, [Street 3] and [Street 2]. I know for sure, these 
monitors are not going to catch moderate here. Lucky enough, nobody lives on 
these blocks. All business, all industry." 
 

These kinds of observations are key examples of the types of local insights commu-
nity members may bring to the table and which we hope to elicit. 
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7   Conclusions and Future Work 

In this paper, we have presented design principles for targeting novice users in a 
citizen science setting and supplied a framework that describes data collection and 
knowledge generation in these conditions. We have described the genesis of this 
model through interviews with community members and activists, as well as its appli-
cation in the user-centered design of a system for mobile air quality monitoring.  
Unlike prior systems, ours breaks analysis tasks into discrete mini-applications de-
signed to facilitate and scaffold novice contributions. Based on our initial evaluations, 
this strategy helps novice users identify relevant phenomena and generate local 
knowledge contributions. 

Although the applications discussed here focus on air quality, we believe that the 
approach we advocate can be applied to other domains with a citizen science compo-
nent.  Monitoring of other environmental indicators including water and soil quality 
as well as epidemiological monitoring should be equally applicable, particularly when 
the object of study is of strong significance to the participants.  As we move forward 
to deploy mobile sensors more broadly and develop mobile interfaces for accessing 
and interacting with the data, we expect to employ similar techniques and build on 
these frameworks and tools. 
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Abstract. The paper describes the concept, implementation, and eval-
uation of a new on-body capacitive sensing approach to derive activity
related information. Using conductive textile based electrodes that are
easy to integrate in garments, we measure changes in capacitance inside
the human body. Such changes are related to motions and shape changes
of muscle, skin, and other tissue, which can in turn be related to a broad
range of activities and physiological parameters. We describe the physi-
cal principle, the analog hardware needed to acquire and pre-process the
signal, and example signals from different body locations and actions. We
perform quantitative evaluations of the recognition accuracy, focused on
the specific example of collar-integrated electrodes and actions, such as
chewing, swallowing, speaking, sighing (taking a deep breath), as well as
different head motions and positions.

1 Introduction

On-body sensing and activity recognition are a key concept in Pervasive Comput-
ing [1,16]. It enables a broad range of applications, from new mobile user inter-
faces, sports assistant systems, to health and assisted living. Today, the majority
of on body activity recognition systems rely on motion sensors, such as accelerom-
eters, gyroscope, magnetic field sensors, and combinations thereof [9,18,28]. On
one hand it is due to the availability of cheap, miniaturised devices. On the other
hand, motions of body parts are the key factor in almost all human activities. De-
spite their success motion sensors have some limitations:

1. Not all activities can be sensed from motion. For example, dietary monitoring
has recently received significant interest in activity recognition. However,
neither chewing nor swallowing can be easily detected by motion sensors [7].

2. Attaching motion sensors is not practicable for every body location. This is
particularly true for hands and the head.

3. Signals from motion sensors can be ambivalent (as different actions are for
example associated with similar motions) and noise (e.g. as sensor positions
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shift). Thus, even if a particular activity can be captured using motion sen-
sors, the accuracy could benefit from additional sensors that provide com-
plimentary information and have different, independent sources of error.

As a consequence there has been significant interest in alternative sensing modal-
ities. Textile stretch [14] and fibre optical sensors [13] have been proposed to
detect posture. Another approach has been to add sensors for environmental
parameters such as ambient sound, temperature, or air pressure [20,23].

Finally there are some more experimental approaches involving signals from
“inside” the body. Body sound from the wrist has been used to detect hand
motions [2] and from the ear to detect chewing [3]. In [10] the use of Electroocu-
lographic eye tracking has been demonstrated for the recognition of reading
activity. It has also been shown how to use force sensitive resistors to detect
muscle [22,4] activity. Another interesting example is the use of radar directed
at the body can detect vital signs [25].

The work presented in this paper falls into the above category of novel sensing
approaches that attempt to utilise information from inside the body. It adapts
the physical principle of capacitive sensing used in industry (for example to
inspect closed boxes on a conveyor belt) to wearable activity sensing. In simple
words, we consider a capacitor build out of a conductive textile electrode and
the human body as dielectric. We then analyse capacitance changes caused by
muscle motion, tissue displacement, electrode deformation, etc. This approach
is attractive for activity sensing for the following reasons:

1. It provides information that is difficult to obtain with other unobtrusive sen-
sors. For example, in the quantitative study presented in this paper, we use
textile electrodes integrated in a collar to recognise among others, chewing
and swallowing.

2. A sensor at a single location provides signals from a broad range of actions
and physiological parameters. Thus, in addition to chewing and swallowing,
we demonstrate the recognition of speaking, head motions (shaking, nod-
ding), head positions, and deep breathing using the collar setup.

3. The sensing principle can be applied to different body locations. Besides
collar and wrist setups, we show signals from the upper leg that can be
used for modes of locomotion recognition and signals from the chest that are
relevant for vital signs monitoring.

4. The system is based on textile electrodes that can be easily and unobtrusively
integrated into clothing. It requires neither direct skin contact nor special
fixation beyond the pressure of normal close fitting garments.

Related Work. Specifically for capacitive sensing previous work proposed us-
ing basically the same method to measure pulse on the wrist [26]. We have done
a preliminary evaluation of this approach for pulse and breathing rate measure-
ments on the chest [12]. There also exists a large body of work on capacitive
coupling electrodes for hearth rate monitoring and ECG, e.g. [21,27]. However,
our work is based on a fundamentally different principle. Whereas our approach
generates an electric field and measures the influence of capacitance changes due
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to structural changes inside the body, the capacitive coupling electrodes cited
above, measure the electric field generated by the body.

Capacitive sensing is widely used in industry for proximity sensing but more-
over, to examine the content of closed boxes on a conveyor belt. Taking the idea
further, there has been a significant amount of research on electric capacitance
volume tomography [29] that attempts to reconstruct complex structures from
multiple capacitive measurements.

The use of on-body capacitive sensing for user interfaces has been proposed
by [31]. Later the same group has used on-body capacitive sensing for motion
tracking in a dance application [8]. In this work the capacitive measurement
had been used to measure distance between body parts, which is different from
our approach. Capacitive gesture recognition for pervasive computing (but not
wearable systems) has been discussed in [30] and in a string of other publication
by this group. In the wearable field capacitive sensing is the basis of widely
used textile pressure sensors as well [24]. Moreover, it was used for tracking
people using electrode arrays embedded in a carpet [19] and as insole system
measuring weight bearing [17]. To our knowledge, capacitive sensing had not
been investigated for monitoring activities in the breadth attempted in this work.

Paper Contributions. We propose and evaluate a new way to derive activity-
related information by “looking inside” the human body with a capacitance
sensor.
Specifically the paper makes the following contributions:

– While capacitive sensing in itself is an established principle we have put
forward a novel concept for using it in wearable activity recognition.

– Starting from extensive simulations, we designed and implemented the sens-
ing hardware needed to deal with the specific requirements of our approach,
in particular, the large dynamic range and very low electronics noise.

– We performed extensive experiments with different electrodes locations and
activities. We present selected signals from those experiments and use them
to explain the properties and potential of the proposed sensing approach.

– We performed quantitative evaluations of the recognition performance
achieved with our system in the specific example of collar electrodes. Our
recordings include the activities while working at a computer and while walk-
ing (to investigate the impact of motion artifacts).

– To further underscore the potential of this sensing approach, we present
initial quantitative results (from the same collar electrode positions) for
spotting swallowing in the continuous data stream, distinguishing between
different swallowing amounts, and estimating respiration rate for shallow,
normal, deep breathing.

We would like to point out that the aim of this work is not to prove the utility
of the new modality for a particular real life application. Instead, we aim to
establish a basic understanding of how to implement and use the modality and
what sort of information it can provide. For a new sensing modality, such basic
understanding is a necessary pre-condition for conceiving and demonstrating
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concrete applications. Thus, we aim to lay the groundwork for other researchers
to build on, when including this new sensing modality in their systems and
enriching their future applications.

2 Sensing Principle

A capacitor is, in essence, a device that can store energy in an electric field. The
best known example is the parallel plate capacitor, having two rectangular con-
ductive plates separated by a gap filled with a non-conductive dielectric material.
There are no specific requirements on the material from which the conductive
plates are made. Thus, enabling conductive textile to be used, which means that
they are very unobtrusive and easily integrated in clothing.

The electric field of a capacitor depends on the material placed between the
plates, which can “dampen” the field. The damping depends on the molecular
properties of the material as well as on its structure and shape. It can be as simple
linear dependence like in the parallel plate capacitor, but also arbitrarily complex
relationship reflecting elaborate shapes (including cavities) and inhomogeneities
in the molecular properties.

The factor determining the voltage V that a given charge Q produces (dis-
tance between the plates and the influence of the material between them) are
summarised as the capacitance C of the device. The key equation at the heart of
the active capacitive sensing is C = Q

V , where Q and V can be easily measured,
and C depends on the properties of an object including what is hidden inside it.
Thus, object of changing structure, cavities, or changing surface, e.g. making it
wet, will change C.

Hence, by measuring two electric parameters we can “look” inside an object in
a non-invasive way. Clearly the information that we get is very limited: a single
scalar value. Consequently, a capacitive measurement with a single electrode
pair can not reveal complex structural information. However, it can indicate
structural changes that take place within objects.
Capacitive Measurements on the Human Body. Figure 1 shows the simu-
lated electric field distribution in the human body during a capacitive measure-
ment. This data is part of extensive simulation that we have performed as part
of our system design. We used the SEMCAD package [11]. The simulation was
performed with the following configuration:

– Instead of using two electrode plates, we use just one. The second electrode
is then effectively “earth”. This is a common approach in many capacitive
systems (e.g. touchpads) and allows us to more easily integrate several close-
by electrodes.

– We use AC current instead of DC to charge the capacitor. Since the capaci-
tance of different materials varies with the oscillation frequency, this allows
us to better optimise sensitivity of the system to certain effects.

Electric field intensity just below the electrode is several orders of magnitude
higher then just a few cm further inside the body. Further inside the body the
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Fig. 1. Simulation of the electric field generate by an electrode on the chest. Left: the
simulation setup. Right: the resulting field. Note that the different tones correspond to
a dB (logarithmic) scale.

intensity is even lower. With regard to information that the capacitive signal
could provide, the following conclusions can be drawn:

1. Any action that produces changes in the position of the electrode (in partic-
ular its distance to the skin) will have a very strong effect on the signal. This
is on one hand a major source of noise, on the other, it can contain useful
information related to motion or posture (when a person moves or changes
posture the electrode will in general be displaced or deformed).

2. Any changes taking place directly below the electrode will produce a clear (al-
though much weaker) signal. Such changes can be muscles flexing or hyoid
movement during swallowing. The exact range of this regime varies depend-
ing on the setup between less then 1 cm to a few cm.

3. Changes deeper inside the body will only produce a distinguishable change
in capacitance if they involve a large volume. A good example is breathing,
where a large amount of air enters the lungs inside of the body.

3 Sensing Hardware

The overview of our sensing hardware is shown in the top part of Figure 2. We
used four front-end boards to provide four independent channels, converting the
capacitance into voltage. The voltage is AD-converted and sent out via ZigBee.
We used a Tmote mini node for the wireless transmission to a Tmote-sky, which
is connected to PC USB port.

The electrode itself is made of conductive textile, which is both thin and
flexible. It can be easy integrated by cutting a required shape and sewing into
the middle of 4 layers of soft paper (ink eraser tissues).

Front-end Boards. Our simulations have shown that existing commercial so-
lutions for capacitive measurement are not sufficient to meet our demands:
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Fig. 2. Top left: top level diagram of the sensing hardware. Top right: implemented
hardware including the electrode used for the neck experiments (left side). Bottom:
schematic of the analog part of the front-end board.

– Small capacitance and ultra-low noise: the capacitance to be measured varies
front several pf to several hundred pf, where information is the signal change,
which could be as small as 0.01pf.

– High measuring frequency: as confirmed by our simulation, the higher fre-
quencies can better penetrate the body , and can thus provide more infor-
mation inner-body changes.

Theses requirements have to be achieved in a small form factor, battery powered
device. We have chosen to design and implement our own measurement circuit
as shown on the bottom of Figure 2. The circuit is based on concept from [26].
The capacitor consisting of the conductive textile electrode, the human body,
and ground is part of a copitts oscillator that generates a sinusoidal voltage. The
oscillation frequency of the circuit is given by

f =
1

2π
√

L(Ccircuit + Csensor)
, (1)

where L and Ccircuit are the characteristic inductance and capacitance of the
circuit, and Csensor is the measured capacitance of the electrode. In our system
Ccircuit is 17MHz.

This sinusoidal signal from the copitts oscillator is differentiated by the ca-
pacitor and resistor after a 1st-stage amplification, converting the change of
frequency to the change of amplitude. After a 2nd-stage amplification, which
isolates and provides enough driving current, this change of amplitude (up to at
most 100Hz) is extracted by an envelope detector. The 3rd-stage amplification
then amplifies the change into a proper input range of the ADC.
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Fig. 3. Different sensor setups with which experiments were performed. Chest place-
ment, wrist placement, and neck placements. For the neck setup, sensor placement in
an elastic band and integration in a pullover collar are shown.

Because the distance between sensor and skin affects the results most, the
circuit must provide both broad measuring range and high precision. A 24-
bit ADC was used for this purpose. At the same time, signal noise must be
suppressed. Common noise removing methods as isolating the power supply with
appropriate capacitors or adding resistor for impedance matching, do not work
in our case, because they are meant to remove high frequency noise only. Thus,
we optimised our hardware design by separating digital and analog circuits,
amplifying and digitising close to the front-end, and using multi-stage low-pass
filters. Because we focused on human body activity, sample rate was set to 40Hz,
with low-pass filters’ 3dB frequency fixed to ∼15Hz. In addition, we used ultra-
low noise DC-DC voltage regulators to provide amplifier reference voltage.

For multi-channel measurements, oscillation frequencies of the individual chan-
nels must be distinctive. We chose L1 to 0.33uH, 0.47uH, 0.68uH, and R3 corre-
spondingly to 470Ω, 680Ω, and 680Ω. Further, the insulation material between
sensor and skin should be either of a high dielectric coefficient or thick enough to
avoid crosstalk on nearby channels.

4 Signals Analysis

Using the hardware described in the previous section we have performed exten-
sive experiments with different placement of electrodes and activities to under-
stand what type of signal the proposed method can provide. In this section we
give some interesting examples, that illustrate the points made above and relate
to the systematic evaluation that are described in Section 5.

Chest Electrodes. In Figure 4 we first look at the signal collected by elec-
trodes on the chest (see 3), showing breathing cycles. This is an example of the
third category described above: signals originating far from the electrode, but
involving large body volume. The signal from the left electrode has a superim-
posed component related to the heart beat, as the electrode is in close proximity
to the heart. Heart beat becomes more visible when the wearer holds his breath.

Wrist Electrodes. The properties of the proposed sensing approach are well
illustrated by the signal from a wrist electrode which is shown in Figure 4.
Although the electrode is by far not near to the lungs, there is a clear breathing
signal. Even though the electrode is placed far from the chest, the electric field
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Fig. 4. Left top: breathing and pulse signals from chest electrodes. Signals from left
and right electrodes (top and middle trace) and their difference (bottom trace). Left
bottom: signals from front and back chest electrode at higher amplification, when
wearer is holding breath. The pulse can be clearly seen then. Right: signal from a wrist
mounted electrode and spectrogram. Right top: signal showing a mixture of pulse and
breathing. Right middle: low pass filtered signal showing breathing. Right bottom: high
pass filtered signal showing pulse.

Fig. 5. Left: signals from upper leg electrodes (front middle front up, side and back)
during a modes of locomotion experiment. Right: signals from lower arm and wrist
electrodes during a movement sequence.

still passes through and around the chest when going towards “earth”. This
means that the large volume breathing effect is still visible.

The pulse signal is clearly seen even when breathing. In fact, it is even clearer
then from the electrode above the heart. This is because the wrist contains many
blood vessels directly below the skin surface and the distance to the electrode
matters much more than volume of change. This was illustrated in Figure 1.

As Figure 5 shows, arm and wrist signals also contain activity-related informa-
tion. Raising the arm, closing the hand, or shaking the arm, all produce distinct
patterns related to muscle and tissue motion. Note that the muscles and tendons
moving fingers are extending from the lower arm, which is why the hand closing
gesture (and potentially other palm and finger motions) can be distinguished at
the wrist.
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Fig. 6. Signals from the neck electrodes. Left: chewing a piece of bread and swallowing.
Middle: swallowing 15ml of water. Right: different head positions.

Upper Leg Electrodes. The recognition of modes of locomotion (differenti-
ation between sitting, standing, walking etc.) is a standard problem in activity
recognition. Figure 5 left shows how the sensor can be used for this purpose,
with the electrodes wrapped around the upper leg. Walking, sitting standing
and doing crunches all produce different signal patterns. They are mostly due to
muscle shape changes compressing top level tissue and skin (potentially also the
sensor material). An interesting questions for future research is whether care-
ful electrode placement and elaborated signal processing can provide cues on
activation and state of different muscles.

Neck Electrodes. We investigated electrode positions at the neck (see Fig-
ure 3). This position was chosen for three reasons.

1. It is a rich source of information as head motions, positions, speaking and
chewing, all cause skin and muscle motions directly below the skin. The
hyoid moves as people swallow. Veins are covered by thin tissue only.

2. Many of the activities to which those signals relate, are difficult to detect
using other non-obtrusive sensors. Head position and motion requires head
mounted sensors, which is not always practical. For chewing and swallowing
most existing solutions require electrodes to be glued to the skin (although
we have also used sound from the ear in previous work [3]).

3. People are used to wearing things like scarfs, ties, collars, etc. on the neck.
Our electrodes are just pieces of textile and can be unobtrusively integrated.

Figure 6 shows the signals from chewing and swallowing. Chewing is best seen
in front upper electrode as skin motion and deformation caused by jaw motions.
To a much lesser extend the signal is present in the other three electrodes.
The swallowing signal shape is very clear: in the front electrodes it has a “W”-
like shape caused by the hyoid moving up and down. Swallowing water and
swallowing bread causes different shapes.

Figure 6 illustrates our analysis of head postures (left, right up, down). Clear
differences can be seen in the amplitude levels on the different electrodes. These
are due to electrode deformations, tissue compression, and skin movement. The
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Fig. 7. Influence of motion artifacts on the neck electrodes. Left: signals for different
head positions. Right: swallowing water while walking.

Fig. 8. Swallowing signal when the collar presses the electrode against the neck with
100 Pa, 150 Pa, and 340 Pa

same factors are responsible for the very articulate rhythmic signals for nodding
and head shaking. Finally, speaking shows a strong but very variable signal.
Nevertheless, in Section 5, we will show that it is distinct enough for a reasonable
recognition results.

Motion Artifacts and Electrode Attachment. Previous paragraphs have
detailed that the proposed sensor is highly sensitive to a broad range of factors.
Thus, motion artifacts and sensor attachment are obvious concerns. To illus-
trate the effect of motion artifacts, signal for different head position and for
swallowing, recorded while a person was walking, are shown in Figure 7. While
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the noise due to walking can be clearly seen, key features of the specific activity
remain visible. Overall, motion artifacts influence signal quality, however they
do not completely obscure the signal information content. This is confirmed by
dedicated recognition experiments in Section 5.

Concerning sensor attachment, a primary question is how tight the electrode
must be pressed onto the body. During the recognition experiments participants
were assisted to attach the collar “tight but comfortable”. For a more quanti-
tative assessment, we have recorded sample signals while measuring the force,
which the collar extended. From this force the pressure on the neck was esti-
mated. The results for pressures of 100Pa (band extended by 1mm), 150Pa
and 340Pa (for comparison, the atmospheric pressure is around 100’000Pa) are
shown in Figure 8. Interestingly, the least pressure leads to the best signal. This
is because the main contribution to the signals comes from deformation of skin
and soft tissue directly below the electrode, which is suppressed when the collar
is to tight.

5 Quantitative Evaluation

In this quantitative evaluation we focus on the collar setup. As detailed in Sec-
tion 4 this setup provides information related to different activities, such as head
motions, chewing and swallowing, which are difficult to detect with other unob-
trusive sensors. For the same reason it is also challenging, as the system needs
to deal with a broad range of variable signals.

We proceeded in four stages. First we investigate how well the signals cor-
responding to 11 different activities can be differentiated in isolation. Thus, we
check how much relevant information is contained in the signal. Secondly, we in-
vestigate how well the swallowing can be spotted in the continuous data stream.
We choose swallowing because it is a short subtle signal (as opposed to activ-
ities, such as nodding which are longer and repetitive). Swallowing spotting is
also relevant for nutrition related applications. Here we demonstrate that rele-
vant activities are not “swamped” by noise from the NULL class. Thirdly, we
attempt to distinguish different swallow sizes, this tests the limits of information
we can extract. In further testing these limits, we attempt to distinguish differ-
ent breathing modes, which can be relevant for many sports and health-related
applications.

5.1 Recognition of Activities

Experimental procedure. Three subjects (one female, two male; aged be-
tween 25 and 45 years) have worn the electrode collar during computer work and
when walking in corridors of the office building. In both scenes we asked them
to perform a set of head movements for 20 s each: nodding, shaking head, look
down, up, left, right, and straight. Moreover, the individuals were asked to drink
and swallow water from a cup (10× ∼6ml), chew and swallow bread pieces (total
5×2 cm3), and speak (reading a text aloud from the computer screen or talking
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Fig. 9. Activity recognition confusion matrices using three capacitive sensors embedded
in the collar. Left: activities while sitting and walking, Acc = 0.69. Right: activities
while sitting, Acc = 0.77.

to the experiment observer for 20 s). All actions were repeated for 3 times, in
order to introduce natural variability in the recordings. “Nodding” and “looking
up” were recorded for the sitting scene only, as these were both exhausting for
the participants, and safety critical during the corridor walking. All recordings
for computer work and walking were made in one session for each participant.

To maintain electrode position the collar was fixed with an elastic band, the
subjects were told to fix it so that it is tight but comfortable. We analysed two
front, one side, and one back electrode position in the same way as presented
for our signal study in Section 4 above. Preliminary analysis showed however,
that the back position did not provide useful information. Thus we did not
consider it here. An experiment observer controlled the recording and advised
participants on the activities to perform. In addition all recordings were captured
on video. The recording lasted for about 70minutes for each individual, in total
∼4.3hours of data were acquires. The observer annotated all activities during
the recording. These annotations were refined in post processing step based on
signal waveforms.

A particular challenge is to accurately annotate natural swallowing [5]. Typ-
ically, the swallowing reflex is initiated unconsciously, which makes it difficult
to identify and annotate it during recordings. In this study, we asked the par-
ticipants to indicate swallowing with a hand sign. In addition, we reviewed the
sensor data and video material to decide unclear cases of potential swallows. For
this purpose we installed the video camera in the computer work scene such that
it captured the hyoid movement. This procedure is a standard technique used in
swallowing analysis [5,15]. For the walking scene, we had to rely on participant
hand signs and review of sensor waveforms.

Analysis method and results. The analysis employed a linear discriminant
classifier.Timedomain features, suchas signalmean, variance,maximum, etc.were
derived from all three sensors (45 in total) in sliding windows of 1.5 s length with-
out overlap. We employed 10-fold cross-validation to obtain training (9 parts) and
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testing (1 part) observations. The training was controlled to avoid class skew. The
classification output was compared to our annotation and the class-normalised ac-
curacy computed.Wefirstperformeda combinedanalysisover the sitting andwalk-
ing segments. For comparison, we analysed the sitting activities separately as well.
“Nodding”, “looking up”, and “chewing bread” were excluded from the walking
scene for practicability reasons.

Our combined results for sitting and walking activities showed an accuracy
of 69%. For the sitting activities 77% were achieved. Figure 9 shows the clas-
sifier confusion matrices for both analyses. While the different head postures
and movements incurred some confusions, we observed that particular activities
such as speaking and chewing could be very well discriminated. Moreover, the
discrimination of fluid and bread swallowing is remarkable. Although including
walking reduces performance, these results indicate that the sensor can provide
useful information in the presence of motion artifacts.

5.2 Spotting of Swallowing

We analysed the viability of spotting swallowing events in the continuous sensor
data, as it is an essential component of food and fluid intake [7]. In particular, we
were interested to analyse the spotting performance with regard to swallowing
pattern variability and the effect of artifacts, such as walking. For this analysis we
focused on fluid swallows and utilised the same experimental data as presented
in Section 5.1 above. As this dataset included a variety of other activities, we
could test the spotting performance under realistic conditions.

Analysis method and results. We used an online pattern spotting procedure,
Feature Similarity Search (FSS), developed in previous work [6] to evaluate swal-
lowing detection performance in this work. The procedure uses trained feature
patterns to continuously search the sensor data. In the search step, a variable
observation window is used to derive features from data section. Between these
features and the trained feature pattern we computed the Euclidean distance
to compare and select a section. For the selection, a threshold was applied on
the computed distances. At each time point only on such section can be correct,
hence potential sections are kept in a buffer, until no further section could over-
lap with such already ones. Both, selection threshold and the variable window
bounds were derived during the training step.

In this analysis we used time domain features from all three capacitive sensors,
including the same types as described in Section 5.1 above, and three additional
feature sets of the same type, describing three equally sized partitions of the
section under investigation. This approach allows to convert the temporal swal-
lowing signal pattern into a spatial one. The search was performed at constant
time intervals of 0.25 s. We used a 10-fold cross-validation by splitting the dataset
into 10 partitions and using nine for training and one for testing at each iteration.
The partitions were controlled to not intersect with the swallowing sections.

In our evaluation, we included sitting and walking scenes to study spotting
performance under noisy pattern condition. For comparison, we also analysed
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Fig. 10. Precision-recall tradeoff for spotting swallowing in three subjects. Left: swal-
lowing while sitting and walking. Right: swallowing while sitting.

the sitting scene separately. In total 212 swallows were recorded, amounting to
2.8% of the dataset size. Figure 10 shows the precision-recall tradeoff for both
spotting situations and the three participants. We observed that the performance
was more variable in the combined sitting and walking analysis. Performance
increased for the sitting scene, as to be expected from the reduced motion noise.
The results show that the spotting is feasible, in particular when not walking.
Under calm conditions a performance of 80% recall at 60% precision or more,
can be expected. Although our dataset is smaller than the ones investigated for
acoustic and electromyography swallowing spotting in earlier works [5], these
results are very promising.

5.3 Swallowing Amount Estimation

We investigated the classification of drinking sizes as this information could be
used to estimate fluid consumption. For this investigation we used the same
collar and setup as in the activity recognition analysis.

We asked three individuals (one female, two male; aged between 25 and 30)
that were not the same as in the activity recognition analysis to drink 5ml and
15ml water amounts. The amount was controlled using a calibrated glass. The
experiment observer filled the glass for each drink. The participants were asked
to swallow the fluid at once. A sequence of 10 swallows of each amount was taken
and the sequence was repeated for three times, resulting in ∼30 swallows per
amount. The recording was annotated and post-processed as the ones before.

Swallowing amount recognition was performed using the features variance,
minimum, and maximum from all three sensors (9 features total). The linear dis-
criminant classification was used. Figure 11 shows the Receiver Operator Char-
acteristic (ROC) performance analysis obtained from the classification result.
From the ROC, we computed the “Area under the curve” (AUC) for quanti-
tative performance estimation. The results show that a similar AUC can be
achieved for all participants. ROC and AUC are the most appropriate illustra-
tions for this two-class problem. As Figure 11 illustrates, is the performance
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Fig. 11. ROC analysis for classifying 5ml and 15 ml water swallowing. AUC values
indicate the area under the curve.

clearly above the level of random choice. This result indicates that the sensors
could be used to assess fluid amount. The result is in a comparable range to
previous investigations using audio and Electromyography [5].

5.4 Respiration Rate Detection

As our preliminary signal study showed that breathing could be observed in the
sensor data, we investigated the respiration rate detection from the capacitive
collar system. We studied breathing with the same individuals who participated
in the swallowing analysis (Section 5.3 above).

We asked the participants to breathe in and out in three qualitative modes:
deep, normal, and light. We recorded 10 breathing cycles during walking and
standing of each mode and repeated this protocol three times. In total ∼30
breathing cycles were recorded per mode, participant, and scene. As not all
participants achieved exactly 30 cycles, the numbers were noted and checked
in the waveforms. Our post-recording analysis showed that the breathing was
difficult to identify from the waveforms during walking, hence we could not verify
the number of breaths. Henceforth, we concentrated our analysis on the standing
scene.

For this study we chose the capacitive sensor at the neck side, as this showed
the largest amplitudes during breathing for all participants. The signal was band-
pass filtered using a fourth-order Butterworth filter with fLow = 0.3 Hz and
fHigh = 2 Hz. These frequency ranges reflect the natural variation of the res-
piratory rate in adults. On the resulting signal a hill-climbing peak detection
algorithm was applied with thresholds for positive and negative slope set to σ

2 of
the considered signal. To set the thresholds automatically, a longer observation
period could be used, which contains several breathing cycles at high probability.
The resulting peak detection count were compared to the annotated counts and
the accuracy was computed. Figure 12 shows the detection performance for all
participants and breathing modes.
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Fig. 12. Respiration rate detection results. Left: accuracy for all participants and
breathing modes. Right: deep breathing detection sample.

Although our algorithm performed well to identify breathing, it might fail, if
the breathing is held. In this case the peak detection algorithm may pick the
heart rate, which is in a similar frequency band and amplitude level as the light
breathing. However, under normal breathing using the electrode position at the
neck, heart beat is marginally disturbing the breathing detection.

6 Conclusion

While being at an early state, the proposed application of capacitive sensing
shows promising results, making it appealing for a wide range of applications.
Starting from electric field, we demonstrated that this new sensing concept is
well suited for retrieving activity and physiology-related information at mul-
tiple body locations. This is particularly interesting as our capacitive sensors
are based on textile patches and can be conveniently integrated into regular
clothing.

Since head-related activities are key to many activity recognition applications,
we selected a collar system for our quantitative analysis. We observed that our
approach is sensitive to motion, body shape, and tissue changes in a spectrum
of activities, while providing useful information even under noisy walking con-
ditions. From these results, we concluded that capacitive sensing is a viable and
highly interesting new sensing concept for wearable monitoring. Moreover, from
analysing swallowing and breathing we have seen that the sensor has partic-
ular features that promote its consideration for biomedical investigations and
healthcare.

In summary, we expect that capacitive sensing will have a vital prospect as
modality that is complementary to established concepts in activity monitoring.
This work has initially demonstrated its potential. Further work should address
the integration and optimisation for individual applications, which can even
increase the sensor’s reliability.
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Abstract. In this study, we evaluate the use of height for biometric iden-
tification of residents, by mounting ultrasonic distance sensors above the
doorways in a home. Height sensors are cheap, are convenient for the
residents, are simple to install in an existing home, and are perceived to
be less invasive than cameras or microphones. Height is typically only a
weak biometric, but we show that it is well suited for identifying among a
few residents in the home, and can potentially be improved by using the
history of height measurements at multiple doorways in a tracking ap-
proach. We evaluate this approach using 20 people in a controlled labora-
tory environment and by installing in 3 natural, home environments. We
combine these results with public anthropometric data sets that contain
the heights of residents in 2077 elderly multi-resident homes to conclude
that height sensors could potentially achieve at least 95% identification
accuracy in 95% of elderly homes in the US.

1 Introduction

The ability to identify residents in a home is crucial for many smart home ap-
plications: in order to respond to activities in the home, the system must be
able to identify who is in a particular location or performing a particular action
such as cooking or exercising. Existing innovative implementations that perform
resident identification and tracking have several advantages, but also have draw-
backs. Some approaches are incovenient because they require the user to wear a
tag [21, 13], or to manually trigger a biometric sensor such as a thumbprint or
retina scanner [18]. Some systems require cameras for gait, form, or face recog-
nition [16], but cameras are often perceived as invasive because they can be used
to collect much more information than just the user’s identity [11]. Other imple-
mentations require structural changes to the home, such as instrumenting the
floor [6,9] with force plates, which can incur high cost and effort. Many practical
smart home applications such as in-home medical care for the elderly [17,2] and
occupant-based energy monitoring [8] cannot use solutions that inconvenience
the user, are intrusive, or require an expensive building retrofit. Our recent
discussions with a commercial peace of mind elderly monitoring enterprise [4]
reveal several interesting user requirements for accurate, long term elderly res-
ident identification and tracking in homes: (1) residents will not wear tags or
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manually identify themselves at every room for long periods of time, (2) resi-
dents will not allow perceived invasive devices such as cameras or microphones
in the home, and (3) residents want the sensors to be fairly invisible, similar
to existing motion sensor installations, and do not want an expensive building
retrofit. Since existing implementations have some drawbacks with respect to
the above requirements, commercial deployments by the elderly monitoring en-
terprise [4] today are limited to single-resident homes or do not fully monitor
information about multiple residents.

This study examines the use of biometric height sensors to satisfy the above
requirements for both the elderly monitoring enterprise [4], and a wide variety
of other smart home applications. Height sensors have several advantages over
existing approaches: they are cheap, convenient and minimally invasive for the
residents, and not very time consuming to install in an existing home. We use
ultrasonic distance sensors mounted above the doorways in a home to measure
the height of individuals that walk through the doorway. The inherent accuracy
of height sensing is too low for reliable biometric identification from a large
population of individuals: it requires a 7cm difference in height to differentiate
people with 99% accuracy, and most people have heights within a small range
from 160-180 cm. However, we make two key insights that allow height to be an
effective biometric sensor in the home. First, most homes have very few residents:
height may be a weak biometric for differentiating between 20 or more people,
but is likely to be very effective in homes that have only 2-4 residents. Second,
people move through a home in predictable ways, as determined by the floor
layout: if height sensors are placed above every doorway, then the history of
height measurements can be used to potentially surpass the inherent accuracy
of the sensor.

The main contribution of this work is to demonstrate that height can be ef-
fective for biometric identification in the home. We evaluate the use of height as
a biometric in four ways: (1) We quantify the biometric error of our approach
using 20 subjects in a controlled laboratory environment, in which we vary the
direction, speed, and location of the person walking under the doorway. (2) We
measure the degree to which height sensors can identify room occupancy of
residents in 3 natural home environments for 5 days each. (3) We use public
anthropometric data containing the heights of elderly residents in 2077 multi-
resident homes from the 2006 health and retirement study to estimate that our
approach can potentially achieve at least 95% identification accuracy in 85%
of elderly US homes sampled in this study. (4) Through a simulation study, we
show that incorporating the history of height measurements at multiple door-
ways using a tracking approach can potentially increase the proportion of homes
where our solution is applicable with 95% accuracy from 85% to 95%, and also
reduce the height difference required for 99% identification accuracy from 7cm
to 3.25cm. We quantitatively compare our approach against two other state of
the art non-invasive resident identification implementations, namely anonymous
binary sensor and activity model based multi-resident tracking [20], and weight
sensing [9], and find that our approach achieves improvements in identification
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Fig. 1. Our study used the Go Motion ultrasonic range finder mounted above doorways
(a). As users walked beneath the sensor, the range measurements changed (b).

accuracy or installation effort and cost compared to existing implementations of
these approaches.

The rest of the paper is organized as follows. Section 2 discusses existing res-
ident identification solutions from the literature. Section 3 gives an overview of
our approach and describes our algorithm to sense height from ultrasonic dis-
tance measurements. Sections 4 and 5 describe the results of our controlled lab
experiments and natural, in-home experiments respectively. Section 6 analyzes
how our empirical results potentially extrapolate to a national level using pub-
lic anthropometric data. Section 7 evaluates the potential improvement in the
inherent identification accuracy of the height sensor by tracking the history of
height measurements at multiple locations in a home. Section 8 discusses the
application of height sensors for in-home room level tracking, and systemati-
cally lists the advantages and limitations of our current approach and study. We
conclude by summarizing our findings in section 9.

2 Existing Solutions for Resident Identification

Resident identification in smart homes is a long-standing problem with many
existing solutions. In this section, we discuss a representative sample of these
solutions, including their advantages and disadvantages, and their applicability
with respect to our user requirements.

Tag-and-track approaches operate by placing a uniquely identifiable de-
vice on each individual resident. This approach has been widely used since the
Active Badge system almost two decades ago [19], and in other systems since.
The pedestrian localization system proposed by Woodman et al [21] uses a foot
mounted inertial sensor to track pedestrians to within .7 meters 95% of the time
in a large office building with no additional infrastructure. More recently, inno-
vative tracking solutions that require a very low infrastructure cost [12, 15] are
emerging. Tag and track approaches have three important advantages: (a) High
location granularity with little or no infrastructure, (b) Selective preservation of
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location privacy by switching off device, and (c) Highly scalable with respect to
the number of residents in an indoor space: each user can be given a new device
with a uniquely identifying number. However, one drawback of this approach is
that it requires the user to actively carry the device at all times when location
information is desired. It can be an inconvenience to in-home residents for long-
term deployments. In our past experience with deployments, and while trying
to use MoteTrack [13] wireless tags to collect ground truth in this study, users
frequently forget to carry their tag, especially immediately after waking up or
showering. Automatically reminding residents to carry the device is an option,
but we believe such an approach is intrusive and inconveniences the user for
long-term applications such as elderly medical monitoring.

Several indoor resident identification systems use cameras for computer-
vision based face, shape, and gait recognition [16], or microphones and audio
signal processing. These approaches might require expensive on-board compu-
tation or high communication bandwidth to a central base station that executes
the vision algorithms, but are passive and highly accurate. However, user stud-
ies by researchers from Intel and companies like WellAware have found that a
large fraction of potential users have perceived privacy concerns about cameras
or microphone sensors [11]. Therefore, this class of approaches is most appropri-
ate for short-term situations in which rapid deployment, and/or high accuracy
are important, and where long-term privacy concerns of monitoring residents in
their own homes are not an issue.

Wilson et al, in 2005, propose using only resident usage models of anony-
mous motion sensors in rooms and switch sensors on daily-use objects,
and resident activity models to identify and track their activities and loca-
tions [20]. They propose using a particle filter that uses Markov state transition
and sensor use models learned from short term training data, obtained using a
tag and track approach or manual labeling. The main advantage of this approach
is that the simple single-pixel sensors are cheap and easy to install, and are not
perceived to be invasive or inconvenient. However, an important drawback of this
approach is low accuracy: this system was reported to have 70% accuracy when
tracking 3 residents over a week-long period, and in our own deployments in 3
multi-resident homes, we observed this approach to have accuracies of 65-75%.
These accuracy rates may be reasonable for some applications, but confusing
the identities of residents more than a third of the time could cause problems
for some smart home applications such as medical monitoring. To increase iden-
tification accuracy, additional biometric sensor data, as discussed in this paper,
can be included in the STAR particle filter.

Several systems including the Active Floor and the Smart Floor instrument
the floor to locate and identify individuals [9,6]. Jenkins et al, in 2007, studied
the effectiveness of using resident mass, derived using force plate signals, to iden-
tify multiple individuals in a large population [9]. Gait analysis can also be used
to differentiate individuals from instrumented floors. This type of single-pixel
mass-based identification approach has the advantage that it can be performed
without inconveniencing the user or violating resident privacy. Existing force
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plates and smart floors require careful installation to improve aesthetic appeal
and achieve user acceptance; accurate force plates are also very expensive. How-
ever, more compact, cheap designs of weight sensors that have the same form
factor as a floor mat can be explored for easier installation and better aesthetic
appeal in the home.

Height is a weak biometric that is often used on driver’s licenses or po-
lice reports, and it can not be used to definitively identify individuals from a
large population . Some existing systems use invasive video cameras to iden-
tify height [5]. Nishida et al [14] propose instrumenting the entire ceiling with
a dense set of ultrasonic devices to perform fine-grained location tracking with
an ultrasonic radar system. However, this system is not evaluated for its ability
to differentiate or identify individuals, and this approach would involve sub-
stantial deployment effort. In 2006, Jenkins et al [10] proposes placing infrared
or ultrasonic distance detectors on top of doorways for identification based on
height (in a poster), using an approach similar to that described in this paper.
However, height sensors are not experimentally evaluated for accuracy, multiple
readings are not combined as the user walks through the home to improve accu-
racy, and the poster does not analyze the wider ramifications of height sensing
on in-home resident identification. To the best of our knowledge, our work is the
first to analyze how height sensing can potentially be used to effectively address
the multi-resident room location and identification problem in homes with high
accuracy.

3 Overview: Sensing Height with Ultrasonic Sensors

To identify residents as they move throughout a home, we deploy an ultrasonic
distance sensor above every exit and entry into a room. We used an off-the-shelf
ultrasonic distance sensor [3] shown in figure 1a. This distance sensor sends out
ultrasonic pulses at 50KHz in a diverging cone 15 to 20◦ off the axis of the
beam. The device then measures the time taken for the echo to return, and
uses it to calculate the distance to any obstacle in front of it. Only the minimal
distance of any obstacle is reported. For example, when a resident stands under
the device, only the distance to the top of the head is reported, while distances
to the shoulder, ear etc are automatically filtered out.

Figure 1b shows the example data from the distance sensor as a subject walks
repeatedly under the ultrasonic sensor mounted on top of a typical doorway eight
times. The default distance reported is 2.1m, which is the distance when there
is no obstacle in front of the ultrasonic sensor. When a subject walks under the
sensor, we see minimal peaks that correspond to the ultrasonic beam making
contact with the subject’s head; the difference between this minimal distance
and the default distance of 2.1m returns the apparent height of the person as
she walks under the doorway. In our controlled experiments, described in the
next section, we observe that this apparent height measured while walking, is on
average less than the erect height measured while standing, by about 1-3cm.

Our algorithm to extract height events and height values is as follows. We first
compute timestamps when the reported distance is below the default



342 V. Srinivasan, J. Stankovic, and K. Whitehouse

distance with no obstacles. We then cluster these timestamps using the DB-
SCAN clustering algorithm [7] to compute discrete height events, that cor-
respond to residents passing by or standing under the sensor. This clustering
process eliminates most noise due to a single, spurious reading. Then, for each
cluster of low readings, we find the minimum distance reported (i.e. the maxi-
mum height value measured). We subtract that measurement from the default
height measurement with no obstacles and use the result to be the height mea-
surement for that height event.

To identify residents based on measured height values, we use a Maximum
Likelihood Estimate (MLE) classifier to assign each height event to one of mul-
tiple candidate residents in a home. For each height event, the MLE classifier
simply computes the probability that each resident triggered it, based on the
height of that resident and the error distribution of the sensor, and assigns the
height event to the resident that maximizes the likelihood of the observed mea-
surements. In the next section, we collect height data from 20 test subjects using
controlled experiments in a lab to characterize the error distribution of height
measurements, under diverse scenarios of passing through a doorway.

4 Experiments in a Controlled Lab Environment

4.1 Experimental Setup

We characterize the error distribution of height sensors in a controlled lab setting
by placing the ultrasonic sensor on top of a doorway about 90 cm wide and having
20 users with known heights pass beneath the sensor in a controlled manner.
We chose a doorway of this width because it matched the width of many of
the doorways seen in our real home deployments. We selected 20 subjects of
differing heights for our experiment. The distribution of heights among the 20
subjects can be inferred from any of the scatter plots in figure 2. The subjects
were randonly chosen from a pool of graduate students from 20-30 years of age;
16 of our subjects were male and 4 were female.

For each subject, we first manually measured the height while standing using
a tape measure. We then measured the height reported by the ultrasonic sensor
when the subject stands still exactly under the sensor. The subject then walked
under the sensor several times as we varied the configurations of our doorway
and requested changes in the direction and speed of walking. In particular, every
subject (1) Walked 20 times in a simulated narrow doorway measuring 75 cm
in width, (2) Walked 21 times under the full doorway 90 cm in width (7 times
perpendicular to the plane of the doorway, and 7 times on two perpendicular
planes at an angle of 45◦ to the plane of the doorway, for a total of 21 times).
We repeated the above experiments with and without shoes for each resident.

4.2 Evaluation Results

Figure 2a illustrates that, when residents are standing erect beneath the sen-
sor, the average error across all 20 subjects is only 0.2cm, and the maximum
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Fig. 2. Controlled laboratory experiments indicate low measured error while standing.
Mean error while walking is higher due to a natural reduction in height compared to
standing erect, and different walking styles. Standard error while walking is very low.
The error distribution approximates a log normal distribution.

height error is 1.15 cm. Figures 2b and c show scatter plot of mean height mea-
surement error and standard deviation in error while walking. Error here refers
to the difference between the manually measured height and the height output
by our height based identification algorithm for each height event. The results
shown in figure 2 use the aggregated height data from all our walking exper-
iments without shoes. We do not include results with shoes here, but observe
that the mean measured height simply increased by the height of the shoe on
average, and changes to the standard deviation of errors were negligble with
shoes on.

From figure 2b, walking height as measured by our sensors is lower than erect,
standing height by 3.31 cm on average across all subjects. This is possibly due to
the natural decrease in apparent height as a person walks. Also, different walk-
ing styles such as bending and keeping heads down contribute to this decrease
compared to erect standing height. More important is the deviation in residual
error, the standard error, for each subject across different height events, since
this will be crucial in determining identification accuracy among multiple res-
idents in a home. We note that the mean deviation in error is only 1.45 cm.
This low deviation implies that 99% identification accuracy can be obtained as
long as the heights of two residents are 7cm apart. We explore this tradeoff more
fully in section 7, when we describe our history based tracking algorithm using
height.
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Fig. 3. Height measurements become less effective for biometric identification as the
pool of individuals increases. The heights in our study were easier to differentiate than
those of the general population.

In figure 2d, we show an example distribution of residual error from one test
subject. The distribution shown here suggests a log normal distribution rather
than a normal distribution for residual error. Thus, we ran hypotheses tests at
.03 significance level for all subjects to test two different hypotheses (a) distri-
bution of height values is normal (b) distribution of height values is log-normal.
The proportion of subjects for which the normal and log-normal hypotheses could
not be rejected are 75% and 85% respectively. The log-normal distribution, which
skews naturally to the right, appears to be a better fit for modeling measured
height. This is because the apparent height of a person very rarely increases
(perhaps due to thick shoes) while walking, but more often decreases in exper-
iments due to the ultrasonic beam making contact with the person’s side (e.g.)
shoulder or ear) instead of the head.

Using the empirical height data collected in the lab, we compute how well
height can differentiate among a fixed set of N residents in an indoor space.
In particular, we empirically calculate the accuracy with which height events
are assigned to their ground truth test subjects. In figure 3, we show how this
empirical identification accuracy using height decreases as we increase the num-
ber of residents under consideration in the indoor space; we randomly choose
residents from our pool of 20 subjects, and evaluate how accurately individual
height events generated by our subjects are labeled using a log normal MLE
classifier trained from the controlled experiment data. For each N value, we re-
peat the random sampling 100 times. Also shown in figure 3 is how this analysis
extrapolates to a national level. We model the mean and standard deviation in
residual height error as a function of height using two types of curve fit models:
simple linear curve fitting, and nearest neighbor interpolation. Thus, given the
height of a resident, we can derive his/her mean and standard deviation, and use
this in turn to derive the mean and deviation of the corresponding log normal
distribution of measured height.



Using Height Sensors for Biometric Identification in Multi-resident Homes 345

Fig. 4. Height sensors de-
ployed above doorways in a
home

The 2006 health and retirement study [1] (HRS
2006) contains height measures of 4154 elderly
residents living in multi-resident households. We
randomly sample a fixed number N from this set
of residents to be identified in an indoor space. We
then analytically calculate the probability that
any height event is assigned to the correct res-
ident among the N residents, assuming a MLE
classifier that uses the log normal distributions
derived from our nearest neighbor and linear fit
models. In figure 3, we show how this probability
of correct event labeling degrades as we increase
the number of residents in the home, randomly
sampling 100 different sets of elderly residents for
each N value. We only show the results with the nearest neighbor curve fit
model, since only negligble differences were observed when the linear fit model
was used.

As we can see in figure 3, for indoor spaces strongly resembling 2 or 3-resident
elderly homes, height based identification has a mean accuracy of 87-92% using
both empirical data and extrapolation to the national level. In particular, we note
that 99% of the elderly multi-resident households with valid height measurements
in the national study were 2-resident households. We use this insight in the next
section to demonstrate the high accuracy of height based identification in 3 real
multi-resident home deployments. For households with 4 residents, the identifi-
cation accuracy drops to 77%; in section 7, we show that by using the history of
height events at multiple doorways in a home, we can improve the identification
accuracy in even 4-resident homes to 90%.

5 Experiments in a Natural Home Environment

5.1 Deployment Details

Our controlled experiments characterize the sensitivity of height measurements
to various conditions, including walking or standing residents, and the effect
of shoes. However, these experiments do not reveal the frequency with which
these conditions actually occur and affect the measurements in a natural home
environment. To evaluate the accuracy of height based identification in such
an environment, we deployed ultrasonic sensors in three homes for five days
each. The ultrasonic sensors were deployed on doorways of rooms similar to our
controlled experiments, and can be seen in figure 4. In addition to the ultrasonic
sensors, we deployed the motetrack indoor localization system [13] in all homes
to get ground truth locations of residents. Motetrack is a tag and track approach
to localization that requires each resident to carry a mote. It uses trained RSSI
signatures from beacon nodes, like the one shown in figure 5a, to localize the
mobile motes in the home.
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Fig. 5. Motetrack tags and beacons (left) were used to collect ground truth locations.
Motion and magnetic reed switch sensors (middle/right) were used to evaluate STAR.

The main goal of the natural home deployments is to evaluate the ability
of height sensors to label room visits of residents in the home, and compare
it to a state of the art non-invasive multi-resident tracking solution that only
relies on simple activity models derived from labeled binary sensor data [20].
In order to make this comparison, we also deployed anonymous X10 motion
sensors in every room, and X10 switch sensors on daily-use objects such as the
fridge, microwave, stove etc. Figures 5b and c show examples of the motion and
switch sensors used in the homes. In section 6, we also compare with another
well studied non-invasive resident identification solution [9] that uses resident
mass to differentiate between residents in a home.

Table 1 shows some of the deployment details for the 3 homes, including
number of rooms, and ground truth height values of the couple living in each
home. Given the large differences in height values in the three homes, we expect
our height based identification solution to perform with high accuracy.

5.2 Room Occupancy Identification in a Natural Home
Environment

We evaluate the accuracy with which biometric height sensors are able to identify
room visits of residents in a home. We compare the accuracy of our approach
with a state of the art passive identification technique based only on ’biometrics’
of simple activity models of residents, derived from labeled binary sensor data,
as evaluated by Wilson et al in their STAR approach [20].

First, we temporally cluster X10 motion sensor firings from the same room
using db-scan [7], to identify discrete room visits of residents in the home; we
assume here that these temporal clusters correspond reliably to ground truth
room visits of residents. Ground truth resident labels for the temporal clusters
are obtained from motetrack’s location trace. Our aim is to assign resident labels
to each of these clustered room visits, using either biometric height sensors, or
using the location trace for each resident computed in STAR using only activity
models of residents. To assign resident labels to room visits using only height
sensors, we run the log normal MLE classifier on each height event that occurred
during the temporal cluster. When the MLE classifier assigns a height event to
a resident, that resident is added to the list of labels for that temporal cluster.

The STAR resident tracking system proposed by Wilson et al [20], uses in-
dividual Markov state transition and sensor observation models of residents to
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track their activities and locations. The essence of their tracking approach is
that individual residents have different movement/activity patterns in the home,
and/or have unique sensor use patterns. Similiar to their original implementa-
tion [20], we simply restrict our state space to include current room location of
individual residents. The state transition and sensor observation probabibilities
are learned using counting from our ground truth training data obtained from
the motetrack location trace; we performed leave-one-out cross validation over
the 5 days of room occupancy data obtained from each home, i.e. for each day, we
tracked residents using Markov models trained from all the other days’ data. We
implemented a multi-hypotheses tracking solution to track room visits of multi-
ple residents in the home, similar to the particle filter solution implemented by
Wilson et al [20].

Table 1. Details of the 3 homes used in deployments

Home Number Height of Height of
of rooms resident A resident B

in m in m
1 7 1.88 1.77
2 4 1.68 1.55
3 5 1.75 1.63

Figure 6 compares the room labeling accuracy of our height sensor approach
and the existing approach based on activity and binary sensor use models. We
see that identification based on simple activity models and binary sensor use
models only achieves accuracy around 65-75% in 3 homes, while height based
identification achieves accuracies ranging from 98-100%. Clearly, the activity and
binary sensor use patterns of residents in these homes are not distinguishing
enough to assign room visits with high accuracy. We do not claim here that
our approach is better than STAR; instead, we simply compare with an existing
instantiation of the STAR framework using only ’biometric’ room transition
models and binary sensor use models. Certainly, as pointed out by Wilson et
al [20], by using more fine-grained sensing at a higher installation cost than our
approach, it is possible to better differentiate residents even using these simple
models; one could even incorporate height sensor data in the STAR particle
filter.

We also observe that our height sensor based approach does not require any
training phase, while any approach that depends mainly on activity or binary
sensor use models requires a long training phase where ground truth locations
of residents need to collected using wearable tags, to determine the probability
models used in tracking; such a training phase might also require the installation
of a separate infrastructure just for tracking, although recent advances in low
cost tag and track solutions [15, 21] may negate the need for such a tracking
infrastructure.
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Fig. 6. Height sensors achieve higher accuracy than achieved by existing implementa-
tions of the STAR approach that use only activity models and binary sensor use models
of residents for identification

6 Accuracy of Height Sensing in Homes Nationwide

We analyze the proportion of homes at a national level where our height solution
can potentially differentiate residents with high accuracy using the 2006 health
and retirement study (HRS 2006) [1], which contains height and weight measures
of elderly residents living together in the same household. Of the 2107 multi-
resident households with valid height and weight measures for every resident in
the home, we used the 2077 households that were two-person households. We do
not have currently have access to any anthropometric datasets that support our
claim for a wider population demographic. We also note here that wider, longer
term deployments in real homes are the best way to evaluate this technology, and
our results below are best effort extrapolations from our controlled experiments
in the lab.

For each home, using the height values of the residents in the home, we first
derive a log normal probability model for each resident in the home using his/her
height and the curve fit models described in section 4.2. We then analytically cal-
culate the probability that any height event will be assigned to the right resident,
assuming that each resident is equally likely to generate a height event. From
now on, we refer to this probability as the probability of correct resident
identification in a home. For each home, HRS 2006 also provides the weight
measures of every resident. Jenkins et al [9] in 2007 observe that weight based
identification using force plates has a Gaussian error with a mean of 0.67kg and
standard deviation of 0.96. Assuming this Gaussian model and mean parame-
ters, we calculate the probability that any gait event will be assigned to the right
resident, assuming again that each resident is equally likely to generate a gait
event.

Given the probability of correct resident identification for each home in the
sample, we compute the proportion of homes where the probability of correct
identification is above a fixed threshold; Figure 7 shows how this proportion
decreases as we increase the threshold for probability of correct resident iden-
tification. Our height based identification solution is potentially applicable to
85% elderly homes in the US with at least 95% identification accuracy. Using
force plates and weight based identification, up to 92% of the elderly homes can
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Fig. 7. Height sensors are potentially applicable with high accuracy to a large propor-
tion of US elderly households. Weight sensors have potentially higher applicability, but
require good sensor design to aesthetically install on the floor.

potentially achieve least 95% identification accuracy. Given the high cost and ef-
fort involved in retrofitting a home with force plates, height based identification
is preferable, even though it is slightly less accurate; however, alternative cheaper
sensing solutions for weight measurement or gait analysis can be explored for
preferential use over height sensors in some homes.

7 Improving Height Measurement Accuracy with History

We have shown in the previous sections that height based biometric identification
is potentially applicable to a significant proportion of elderly homes in the US
with high accuracy. However, from the analysis seen in figure 7, height sensors
achieve less than 95% identification accuracy in 15% of the homes. In this section,
we show how information such as the room topology of a home, and the past
history of height sensor events on multiple doorways in a home, can potentially
be used to improve the inherent accuracy of biometric identification using the
height sensor.

As an illustrative example, assume two residents A and B initially in the bed-
room. Assume that after some time, resident A leaves the bedroom, and goes
to the kitchen through the living room to get a snack. Even if a few individ-
ual height sensor events lead to incorrect results from the MLE classifier, the
sequence of height events generated by A will have a higher likelihood of being
classified as resident A; we use spatio-temporal continuity of motion through
the constrained floor layout of a home to improve identification accuracy. An
assumption in the in the example above, and in the analysis below, is that the
error at individual height sensors is independent; this assumption may be true
most of the time. However, there might occur cases where the error is more sys-
tematic, such as a person stooping over to carry a heavy object; in such cases,
the utility of using the sequence of height measurements could potentially be
reduced.
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Fig. 8. Our simulation study shows that the history of height measurements collected
over the track of a resident through the home potentially improves identification accu-
racy and applicability of height sensing in US elderly homes

We use a simulation based study that is driven by the public-use height data
from HRS 2006 and our height error models derived in section 4.2, to estimate the
improvement in identification accuracy that can be achieved using the history
of height events in a home. We assume a 6 room home across all the elderly
households for consistency. We define the same HMM for each resident’s room
transitions, to indicate equal transition likelihood from one room to another; we
do this to ensure that differing room transition patterns of residents or specific
room topologies of homes do not unfairly improve the identification accuracy
possible by using the past history of height events alone. We generate 1000
height events for each home in HRS 2006, using our HMM to generate room
transitions, and using the height error models from section 4.2 to generate noisy
height events for each resident. We assume a height sensor at every entry/exit
into a room.

Given the simulation trace, we evaluate two approaches to identify resident
labels for height events in the home (1) A naive MLE classifier that only considers
data from individual height events (2) A probabilistic multi-hypotheses tracker
that uses past history and room topology embedded in a HMM. Figure 8 shows
the applicability of height based identification across elderly homes in the US
with and without history information, based on the results of our simulation
experiment. When our probabilistic multi-hypotheses tracker is used, we observe
that height based identification can potentially achieve at least 95% identification
accuracy in 95% of elderly homes in US, as opposed to only 85% of elderly homes
covered by the naive identification algorithm.

Figure 9(a) provides more insight into the scenarios where history informa-
tion might be most useful. When the height difference of the residents living in
the home is small, using the past history of height events greatly improves the
accuracy over naive MLE classification. Using tracking history can potentially
reduce the height difference required for 99% identification accuracy from 6.9cm
to 3.25 cm. Figure 9(b) demonstrates another important benefit of using history,
the ability to achieve higher accuracy in indoor spaces with more residents; the
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Fig. 9. A history of readings could potentially decrease the height difference required
for accurate identification(a), and increase the number of residents that can be reliably
differentiated(b)

heights of residents in the hypothetical multi-resident homes (100 sample homes
at each point) are randomly generated using height data from the 4154 elderly
residents from HRS 2006. By using the history of height events in a home, we
can potentially improve the identification accuracy in 4 person homes from 77%
to 90%.

8 Discussion

Height measurements can be used for accurate resident room level tracking if
height sensors are placed above every entrance and exit to a room, as proposed
in this paper. Of course, any biometric sensors including thumbprint or retina
scanners [18], could be placed at the entrance of any room to locate residents,
but violates our requirement of not requiring manual identification effort from
residents. In table 2, we compare the use of height sensors for resident tracking
to select existing resident tracking systems in term of four requirements: conve-
nience, deployment time, accuracy, and cost. Deployment time is qualitatively
shown for existing solutions we did not implement and is approximated from our
empirical deployments in real home environments for solutions we implemented.
Table 2 illustrates that, of a representative sample of four existing tracking im-
plementations, none meet all four requirements. Tag and Track systems such as
Pedestrian localization [21] and Motetrack [13] can be inconvenient to the user,
STAR [20] using activity models has low accuracy and requires an inconvenient
training phase, and weight sensing using force plates or smart floors [9] to track
residents would require a costly installation. Of these existing implementations,
only our height sensors can meet all four requirements. Of course, exploring al-
ternative implementations of weight sensors using foor mats, or simply including
height sensor data in the STAR particle filter, are possible techniques to improve
existing implementations of these approaches.

In this study, we have only explored the use of height sensors above doorways
to provide coarse-grained room-level accuracy. Some existing approaches such
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Table 2. Evaluation of spectrum of location solutions along four variables - (Conve-
nience, deployment time, Accuracy, Cost) assuming a five room home to deploy in

Name Convenience Deployment time Accuracy Cost

Inconvenient Very low Very high Very cheap
Pedestrian (5 minutes) (99-100%)

Localization
Inconvenient Moderate High, Affordable

Motetrack (1 hour) (95-100%)

Inconvenient Moderate Low, Affordable
STAR training period (2 hours) (65-70%)

(activity models) (weeks/months)

Convenient Very high High Very high
Using Weight (> 95%)
(force plates)

Convenient Moderate High Affordable
Using Height (1.5 hours) (> 95%)

as tag and track approaches, or invasive camera based approaches, can provide
meter-level accuracy; applications that require fine-grained location accuracy
would need to install height sensors inside rooms, such as above the stove or
the sink, at a higher installation cost. An interesting research question relates to
the optimal placement of height sensors inside rooms to help activity inference.
A new challenge when using too many height sensors close to each other is
multi-path interference affecting the ranging accuracy. Multi-path effects are
also an issue in (1) rooms with wide doorways that require several adjacent
height sensors to achieve sufficient coverage, and (2) adjacent doorways very
close to each other; this needs to be addressed using a distributed synchronization
algorithm, or careful placement of the sensors.

In our study, we use a data set which is restricted to elderly residents because
it is one of the few public data sets that has both height and weight information
for a large number of multi-resident homes. An interesting extension would be to
explore how our solution generalizes to a larger population, including young cou-
ples, small and large families, and multi-resident student homes, by conducting
large scale surveys of anthropometric measures in these homes. Since our ap-
proach is based on a resident biometric, it cannot be applied in all homes with
high accuracy, unlike existing approaches such as tag and track. For applications
that require higher identification accuracy than offered by height sensing alone
in a given home, we propose to explore adding multiple non-invasive sensing
modalities including floor mat sensor implementations for weight measurement,
and color sensors above the doorway. There are also other breakdown scenarios
for height sensing that we have not fully explored in this paper. The presence
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of guests in the home with similar height as the existing residents will reduce
identification accuracy. Also, a person who starts to use crutches or a wheelchair,
might reduce identification accuracy if her new height corresponds to that of an
existing resident in the home.

9 Conclusions

In this work, we demonstrate that ultrasonic range sensors placed above door-
ways in a home can be used to identify residents with high accuracy as they
walk throughout a home, and at the same time satisfy the user requirements of
smart home residents. Height is typically a weak biometric, but we make two
key insights that make it effective for in-home monitoring. First, height is highly
effective among small populations where the height differences among residents
are likely to be large enough for reliable differentiation. Second, residents walk
through the home in predictable, constrained patterns dictated by the floor lay-
out, and the multiple height measurements of the resident as they walk through
multiple doorways in the home can be potentially be used to improve the in-
herent accuracy of the height sensor. In this paper, we quantify the error with
which ultrasonic height sensors measure the heights of residents as they walk
under the doorway, using both controlled experiments in a lab with 20 subjects,
and in 3 real homes. Using publicly available height measures of residents from
multi-resident elderly homes and the height error distributions derived from our
controlled and in-situ experiments, we extrapolate that a resident identification
accuracy of at least 95% can potentially be achieved in 85% of elderly homes
using a naive classification algorithm and in 95% of elderly homes using our
probabilistic multi-hypotheses tracker.
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Abstract. Continuous sensing applications (e.g., mobile social networking ap-
plications) are appearing on new sensor-enabled mobile phones such as the Ap-
ple iPhone, Nokia and Android phones. These applications present significant
challenges to the phone’s operations given the phone’s limited computational
and energy resources and the need for applications to share real-time continu-
ous sensed data with back-end servers. System designers have to deal with a
trade-off between data accuracy (i.e., application fidelity) and energy constraints
in the design of uploading strategies between phones and back-end servers. In
this paper, we present the design, implementation and evaluation of several tech-
niques to optimize the information uploading process for continuous sensing on
mobile phones. We analyze the cases of continuous and intermittent connectivity
imposed by low-duty cycle design considerations or poor wireless network cov-
erage in order to drive down energy consumption and extend the lifetime of the
phone. We also show how location prediction can be integrated into this forecast-
ing framework. We present the implementation and the experimental evaluation
of these uploading techniques based on measurements from the deployment of a
continuous sensing application on 20 Nokia N95 phones used by 20 people for a
period of 2 weeks. Our results show that we can make significant energy savings
while limiting the impact on the application fidelity, making continuous sensing a
viable application for mobile phones. For example, we show that it is possible to
achieve an accuracy of 80% with respect to ground-truth data while saving 60%
of the traffic sent over-the-air.

1 Introduction

Over the last few years, we have witnessed the growth of personal sensing applications
based on inference of human behavior and their surroundings using commercial mobile
devices with on-board sensors (e.g., accelerometer, digital compass, microphone, cam-
era). Mobile sensing applications [15,12] are being developed for new sensor-enabled
mobile phones (e.g., Apple iPhone and Nokia N95) and new sensing approaches are
emerging based on participatory [17] and people-centric sensing [4] paradigms, where
people carrying sensor-enabled mobile phones are central to the sensing process (i.e.,
they are active producers and consumers of sensed data). A wide set of sensing systems
are envisioned where phones are used not only to retrieve presence information about
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individuals, but also to sense external environmental conditions in real-time, such as
traffic, road conditions and air quality [16,7]. This new sensing area is likely to see a
significant increase over the next decade with applications in both personal as well as
public sensing emerging [4].

However, the development of these platforms presents a number of important de-
sign challenges particularly in terms of the availability of limited resources, such as
computational capabilities and battery power. This is particularly problematic for a new
class of continuous sensing applications found on mobile phones [4], which contin-
uously make inferences about people and their environment and communicate sensed
data in real-time with back-end server over cellular or WiFi networks. This work is
based on measurements performed using phones exploiting GPRS connectivity, but the
techniques described in this paper can also be applied to the case of WiFi connectiv-
ity. These resource-demanding sensing applications include social networking systems
reporting user presence information such as CenceMe [15], which supports the infer-
ence of the current activity of the user carrying the device (such as sitting, standing,
walking, driving, etc.) (Figure 1.a). The user’s sensing presence is sent from the mobile
phone to social networking applications such as Facebook, MySpace and Twitter. An-
other example of continuous sensing application is the on-line mapping and rendering
of human activities in virtual worlds such as Second Life [18] (Figure 1.b) where activ-
ity performed by an individual in the physical world is mapped in real-time into actions
displayed by an avatar in the virtual world.

The communication cost of continuous sensing applications is significant and can
quickly lead to battery depletion. In fact, it has been shown in [15] that these contin-
uous sensing applications using the GPRS wireless network only last a few hours. In
addition, the financial cost of continuously using the wireless network may also limit
the widespread deployment of these applications. Therefore, we argue that there is a
need to reduce the cost related to data transmission of using these sensing applications
on mobile phones: we propose a number of strategies for intelligent data uploading
from mobile phones by reducing the number of transmissions. One important challenge
when attempting to reduce the uploading duty cycle is that applications that require near
real-time updates of the sensed data should be able to operate with missing information
in a seamless way, without significantly disrupting the application fidelity. This presents
a trade-off between information availability and accuracy, but in this case, the sensing
system should be designed to guarantee a satisfactory user experience. In the case of the
continuous sensing applications discussed above, if the information about the current
state of the user is not available, a consistent state should be displayed. Since most of
these applications are recreational (such as social applications), perfect accuracy is not
strictly necessary.

Given these challenges, we propose to analyze the streams of sensed or inferred in-
formation on mobile phones in order to upload new data only if necessary (e.g., if the
state of the user has been different from that of the back-end server for a certain pe-
riod of time). Prediction mechanisms based on the past history of the user’s state can
be implemented on the back-end server in order to show a meaningful state if no up-
dates have been received because of the mobile phone’s low-duty cycle update strategy
(i.e., updates are sent periodically and only when necessary to drive down energy costs
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(a) (b)

Fig. 1. a) CenceMe screenshots showing user activities inferred by the system. b) Avatar in Sec-
ond Life: the action performed by the avatar has to be refreshed in a consistent way also in
presence of disconnections.

associated with communicating with the back-end). In essence, mobile clients and the
central server can be coordinated by designing predictors that receive information from
the phones only if necessary.

In this paper, we present the design of the low-duty cycle uploading algorithms
that consider different aspects of the accuracy/power consumption trade-offs in support
of continuous sensing applications. We discuss the implementation and experimental
evaluation of these mechanisms by means of measurements from the deployment of
CenceMe, a sensing system based on mobile phones. We consider the case of infer-
ence of human activities, but the proposed algorithms can be directly applied to other
high-level information, i.e., it is possible to exploit uploading strategies represented by
means of a set of discrete states. Previous work focused on smart techniques for upload-
ing location information [10,21]. To the best of our knowledge, this is the first work that
targets the problem of devising intelligent uploading techniques of generic sequences
of discrete data for sensing systems based on mobile phones. We design techniques that
can operate in the following scenarios: i) connectivity is always available; ii) connec-
tivity is intermittently available (because of duty cycle design choices in order to save
energy or radio coverage); and iii) GPS information is available on the devices (assum-
ing at least intermittent connectivity). The contributions of this paper are as follows:

– We discuss several techniques for intelligent uploading of discrete sensed infor-
mation when connection is available: the key idea is to analyze and optimize the
stream of states (activities) to be uploaded in order to reach an acceptable trade-off
in terms of accuracy and energy consumption given the requirements of the sensing
systems.

– We present an uploading strategy based on prediction mechanisms to deal with vol-
untary (i.e., duty cycling performed in order to save battery) and involuntary (i.e.,
poor cellular coverage) disconnections. More specifically, we discuss a server-side
prediction algorithm to reconstruct the current user activity based on a simple, but,
at the same time, effective Markov model [3] representing the probability of transi-
tions between different states. A predictor is used in the back-end server to forecast
the current state when fresh information is not present. Periodically, updates are
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sent to the back-end server if necessary. The fresh information is sent if and only
if the server information diverges from that currently calculated in real-time on the
mobile phones. We show that it is possible to achieve an accuracy equal to about
80% with respect to the ground-truth data extracted by means of the classifiers
while saving 60% of traffic sent.

– Finally, we show how location information can be used to optimize the uploading
process. We observe that different user behaviors in terms of activity transitions are
coupled to different geographical areas. Therefore, it is possible to associate a state
transition matrix to different locations in the geographical space.

We consider the three scenarios listed above separately, but it is possible to design sys-
tems combining the proposed techniques, since they are orthogonal in many aspects.
For example, a system might use the techniques based on location information when
available and exploit the others, when, for example, the GPS signal is not present, be-
cause users are indoor. The proposed techniques are independent from the underlying
activity recognition algorithm. It is worth noting that the aim of this work is to provide
a generic framework to evaluate the trade-offs between uploading frequency of sensed
data and information accuracy without considering external knowledge such as the fact
that an activity is more probable in a certain area (e.g., dancing in a disco club) or that
a sequence of activities is more likely than others (i.e., we do not consider semantic
strategies). Our focus is on the energy consumption related to data transmission over
the cellular network and not on the sensing process that can also be optimized, but this
is an aspect that is also orthogonal to the techniques we present in this paper.

All these techniques have been implemented and evaluated experimentally using
traces collected by distributing 20 Nokia N95 phones running the CenceMe system
to university students and staff during 2 weeks over the summer. The dataset includes
GPS coordinates, raw accelerometer data and inferred user activities. This represents
a unique dataset containing information not only about user locations but also user
activities.

2 Dataset Description

We now describe the dataset used for the proof-of-concept experiments in details. The
dataset was collected during the deployment of a modified version of the CenceMe ap-
plication [15] that logged all the sensed information and high-level inferred activities
on the phone’s on-board flash memory. The data were collected by means of 20 Nokia
N95 phones carried by students and staff members from the departments of Computer
Science and Biology at Dartmouth College. The dataset includes the following informa-
tion for each user: accelerometer raw data, high-level activities inferred by the classifier
running on the CenceMe clients, and GPS location coordinates. The dataset is available
for download from the CRAWDAD website [1]. The duration of the experiment was 2
weeks. These data are used as ground-truth for our experiments, in particular, for the
evaluation of prediction techniques.

The accelerometer daemon that accesses the sensor hardware (and the related classi-
fier) has a duty cycle of 8 s (4 s sampling period and 4 s waiting time). The 4 s waiting
time was introduced in the design of the system to allow for the transmission of the data
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to the remote back-end server. The GPS duty cycle chosen for the experiment was 3
minutes. By doing so, it was possible to reach an acceptable compromise with respect
to the accuracy/battery consumption trade-off. In fact, users had on average enough
battery to run the application during the day and recharge the phone at night.

We are aware that the results presented in this work are related to the specific sce-
nario of students and staff living in a geographical area composed of small cities, but, to
the best of our knowledge, there are no other publicly available datasets with the same
characteristics. However, we conjecture that this dataset can be considered as represen-
tative of activity and movement patterns of individuals in similar deployment scenarios
such as campuses and communities that live in geographical areas of similar size.

3 Optimizing User State Uploading

In this section, we firstly describe the problem of state uploading and then we discuss
and evaluate some algorithms for scenarios characterized by continuous and intermit-
tent connectivity.

We model the sensing problem as follows. The inference algorithms running on the
phones generate a set S = {s1, s2, ..., sn} of high-level states si from processing the
raw sensor data. Each user/device produces a stream of data with values in the set S that
have to be uploaded to the back-end. In the experiments discussed in this work we con-
sider the following set of activities S = {Sitting, Standing, Walking, Running}.

We consider two cases:

– Network connectivity is always available (i.e., intermittent disconnections and trans-
mission errors are negligible and do not affect the uploading of the information to
the back-end servers), therefore on-line strategies can be used;

– Network connectivity is intermittently available (because of poor radio coverage,
etc.), therefore off-line strategies must be used.

We note that the techniques used for the case of intermittent connectivity can be applied
to scenarios characterized by always-on connectivity since these can be considered as
limit cases of the former.

The evaluation of the techniques presented in this work are carried out considering
the overhead associated to the update of the information and not the energy consumption
for a specific mobile device. At the same time, we are aware that one possibility is to
exploit the fact that the GPRS network interface is not powered down immediately after
data transmission, so it might be convenient to send bursts of data. However, for this
specific case of continuous sensing of discrete data, the generation rate of new high-
level information from the on-board classifiers may not be sufficiently fast. Figure 2
shows the energy consumption profile related to the transmission of 100 bytes using
a Nokia N95 (corresponding to the upload of the information related to a single user
activity using XML-RPC). The figure is obtained by means of the Nokia Energy Profiler
tool [20] . We observe that after the transmission of the data the interface is still powered
up for less than 5 s; this interval varies for different devices and is not standardized. A
5 s interval is not enough for collecting a sufficient amount of data for the CenceMe
activity classifier. In general, the transmission of information with such a degree of
granularity is not required for many applications, especially recreational ones.
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Fig. 2. Energy consumption profile related to the transmission of 100 bytes using a Nokia N95
over GPRS

3.1 Online Stream Analysis Strategies

Overview. We now present the techniques that can be used when network connectivity
is always available based on the analysis of the data streams. We identify four different
on-line strategies for uploading, starting from basic to more complex and optimized
ones:

Always upload. The simplest solution is to upload the state of the user periodically,
regardless if a change has taken place or not. This solution does not require to store any
state on the mobile clients and back-end servers. It is the case without optimization. It
provides 100% accuracy in the unrealistic case of no disconnections and transmission
errors.

Upload in presence of changes. This strategy can be considered as an obvious opti-
mization of the previous simple solution. The new information is uploaded every time a
change takes place. This technique is the best in terms of overhead when 100% accuracy
has to be guaranteed.

Upload in presence of persistent changes. According to this strategy, the new informa-
tion is uploaded only when a change is not isolated, i.e., we observe a change from state
A to state B with n consecutive occurrences of state B in the stream. For example, we
upload the new state only after observing a sequence like {A, B, B, B} in the case with
n = 3. The new information is uploaded only after the nth occurrence of state B. This
technique involves a certain degree of information loss, since only a percentage of the
actual state changes are uploaded. At the same time, this technique can be considered
as a way of filtering out outliers from the data stream.

Voting based uploading strategy. This method is based on the evaluation of the fre-
quency of activities in the data stream considering non overlapping time windows. The
state with the highest frequency in the window is selected for uploading. The update
is sent only if the most frequent state in the current window is different from the most
frequent state in the previous window. Let us consider the following example. Let us as-
sume that we have the sequence {A, A, B, A, B, A, A, B, B} with window size equal
to 3 and a threshold equal to 2. The first state to be uploaded is A. Then, no upload
takes place in the following window, since the state with the highest frequency is still
A. Finally, since the state B has the highest frequency inside the window, the update is
sent to the back-end.
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Fig. 3. Complementary cumulative distribution function indicating the probability of having a
sequence of the same activity longer than Sample Length

Compression algorithms [14] can improve system performance but we do not con-
sider them in this work, since these techniques can be easily added on top of the up-
loading mechanisms discussed in this paper.

Evaluation. We compare the accuracy and transmission overhead of all the techniques
with respect to the upload in presence of changes strategy. We define accuracy as the
ratio of correctly predicted values on the server against the ground-truth state inferred
on the phone. The analysis performed in this section can be considered as a general
methodology to be used in order to set the parameters of the algorithms in different
practical cases. The results obtained in this analysis are specific to the dataset collected
through the deployment of CenceMe, but the evaluation process itself can be applied to
other deployment scenarios.

We first present a statistical description of the types of activities in the stream of data.
In Figure 3 we show the probability of having n consecutive activities of the same type.
As the plot shows, the presence of very long sequences of consecutive activities of the
same kind is unlikely. These graphs give other interesting information about the length
of the sequences of consecutive values of the same activity: for all types of activities in
our stream, we observe the length of the sequence of the same activity is one for more
than 50% of the samples. The choice of the window length parameter is a key aspect
of the uploading strategy. Figure 3 shows that there is a very low probability of having
long sequences of the same activity within the data stream. The probability of having
sequences of the same activity shorter than or equal to 30 samples is 99% (for all the
activities except sitting for which the probability is 90%). Thus, it is useless to apply
filters with a window length longer than 30 samples because, in that case, the majority
of the changes in the stream would be missed.

Figures 4.a and 4.b show the accuracy of the two methods and the ratio of the traffic
sent with respect to the overhead associated with the upload in presence of changes
strategy. In this case the number of the required consecutive changes for an uploading
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Fig. 4. a) Accuracy of the voting based and persistent change uploading strategies with respect
to the overhead associated to the upload in presence of changes strategy. b) Traffic ratio of the
voting based and persistent change uploading strategies with respect to the overhead associated
to the upload in presence of changes strategy.

is equal to the window size. As expected, the voting based uploading strategy has a
better accuracy than the persistent change strategy but it is characterized by a higher
overhead. Both of them can achieve a 90% accuracy saving 80% of data traffic. We
observe that the gap between the accuracy values related to the two strategies increases
as the length of the window increases. The persistence change strategy has a smaller
number of updates with respect to the voting based strategy, since the latter at each
step always uploads the state calculated using the voting mechanism. The persistence
change strategy uploads a new state only if a new state has been observed for a certain
number of previous steps.

3.2 Off-line Strategies: Markov Chain Based Prediction

Overview. The strategies outlined above are based on the assumption of continu-
ous availability of network connectivity. When the uploading strategies described in
the previous section are used, the application on the phone side is responsible for
choosing which state update has to be sent and when. The back-end server is not in-
volved in the process. When the mobile device is disconnected from the Internet, the
back-end can just make the last known state available or publish an unknown state
message.

An alternative strategy is to try to forecast the next state during a disconnection.
A possible cause of intermittent connectivity is insufficient radio coverage. In some
cases frequent updates have to be avoided given energy constraints of the devices. This
strategy can be combined with one of the mechanisms described in the previous section
in presence of intermittent connectivity. In other words, online strategies can be used
when connectivity is present and offline strategies when the device cannot (should not)
connect to the network.

By definition, the predicted state is characterized by a certain degree of uncertainty,
but this can be acceptable for some classes of systems such as recreational sensing
applications like CenceMe. We are aware that the applicability of these techniques are
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Mphone

Run-time matrix

0.7 0.2 0.2 0.1
0.2 0.7 0.1 0.0
0.1 0.2 0.5 0.2
0.1 0.1 0.2 0.6

Mserver

Server-side matrix

0.6 0.1 0.2 0.1
0.2 0.7 0.1 0.0
0.0 0.3 0.5 0.2
0.1 0.1 0.3 0.5

Mserver

Server-side matrix

0.6 0.1 0.2 0.1
0.2 0.7 0.1 0.0
0.0 0.3 0.5 0.2
0.1 0.1 0.3 0.5

Fig. 5. Markov chain based prediction: in the mobile phones, two matrices are stored, one that is
updated as new states are generated by the classifiers and a copy of the matrix that is periodically
sent to the back-end server when the two diverge

not universal: examples of non viability include monitoring technologies for healthcare
and assisted living [6], for which it may be necessary to guarantee perfect accuracy.

The key idea is to use a transition matrix to model the sequence of the state changes
(such as sequences of actions of user avatars) on the server also during a disconnection
from the mobile client. In order to do so, we exploit a simple Markov chain model to
describe the phenomenon under observation, i.e., the transitions between the states that
can be sensed by the system. The matrix stores the probability of transition between the
different states. These probabilities are estimated by measuring the frequency of transi-
tions. The calculation of this matrix takes place on the phones. Instead of uploading a
single state as before, the phone uploads the state transition matrix that is used by the
back-end to predict and publish the next state during a disconnection. Two matrices are
stored on the mobile phones, one that is updated as new states are generated by the clas-
sifiers and a copy of the matrix that was sent to the back-end server. When the system is
bootstrapped, the first matrix is uploaded directly to the server since no comparison is
possible. A new matrix is sent to the back-end if and only if the matrix currently calcu-
lated on the phones diverges from what is currently used by the server. The comparison
is based on a difference threshold. The mechanism is shown in Figure 5. We note that
for applications such as visualization of human activities in virtual worlds (e.g., Second
Life), this information can be used to drive the sequences of actions of the avatars also
during periods of disconnection in order to provide a better user experience.

More formally, we model the system as a stochastic process X(t) (with t = 0, 1, 2, ...
instants of time) that takes a finite number of possible values defined by the set of states
S. For a Markov chain, the conditional distribution of any future state X(t + 1) given
the past states X(0), X(1), X(2), ..., X(t−1) and the current state X(t) is independent
from the values of the past states and depends only on the present state [3]. We define
a matrix of transitions M where each element of the matrix mi,j represents the prob-
ability of transitions between a state i and a state j. Each matrix is built locally on the
phone considering the entire set of samples collected in a certain interval Tcalculation.
We argue that this matrix M is in general a function of the geographical location and
the time of the day, more formally M = M(x, y, t) where (x, y) indicates the geo-
graphical position and t is the instant of time or a time interval (such as mornings, or a
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Fig. 6. Accuracy of the Markov chain model with different metrics, thresholds and sample times

particular day of the week, such as Mondays). In the next section we will discuss how
different matrices can be associated to various locations in the geographical area where
users move, if GPS receivers are available.

Periodically, with an interval equal to Tcalculation s, a decision step takes place: a
new matrix is uploaded if the matrix on the server diverges from that currently stored
on the phones. Therefore, the key problem is to measure the difference between the
matrix Mserver currently available on the back-end server and that currently estimated
on the phone that we indicate with Mphone. In order to evaluate this error we calculate
the distance between the two matrices Mserver and Mphone. More specifically, a new
matrix is uploaded to the back-end if and only if

Lx(Mphone, Mserver) ≥ th (1)

where th is a pre-defined threshold and Lx is a chosen distance function. In fact, by
considering a matrix as a vector, we can calculate the distance between two subsequent
vectors using standard vector distances [9]. A basic choice is to use the Euclidean dis-
tance between two matrices defined as follows:

L2(Mphone, Mserver) =

√√√√ |S|∑
i,j∈S

(mphonei,j
− mserveri,j

)2 (2)

We also consider other two distances, the so-called Manhattan distance L1 and the
weighted distance L2w. In our case, the L1 distance is defined as follows:

L1(Mphone, Mserver) =
|S|∑

i,j∈S

∣∣∣mphonei,j
− mserveri,j

∣∣∣ (3)
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Fig. 7. a) Traffic sent versus sample interval for different thresholds in the Markov model. b)
Accuracy of the Markov upload model in case of disconnection of the mobile device from the
back-end.

The L1 metric provides an approximation of the Euclidean distance but it is less expen-
sive to compute. We use the following formula for the calculation of L2w distance:

L2w(Mphone, Mserver) = (
|S|∑

i,j∈S,i=j

(wd(mphonei,j
− mserveri,j )

2) +

|S|∑
i,j∈S,i�=j

(wnd(mphonei,j
− mserveri,j )2))

1
2 (4)

Using this distance, we can assign higher importance to one of the two classes of
transitions described by the matrix M : self-transitions from one state to itself (self-
transitions) and those from a state to a different one. The probability of self-transitions
are represented by the elements of the diagonal.

Evaluation. In this section, we present the results of the evaluation of the Markov chain
strategy varying both the values of the distance thresholds and sample intervals. As for
all strategies, we are interested in studying its accuracy and overhead.

Figure 6 shows the accuracy of the Markov model depending on the values of the
sample interval and threshold. The plots refer to the L1, L2 and L2w distances. All
the metrics show a decrease in accuracy depending on the value of the sample interval
Tcalculation. As expected, the accuracy strongly depends on the value of the threshold
used for the uploading decision. More specifically, we observe that when the value of
the threshold is lower than 1 the accuracy of the prediction does not change. Instead,
with a threshold higher than 1, the accuracy decreases because less transition matrices
are sent to the back-end. At the same time, we observe that by uploading the matrix
more frequently (i.e., by using a lower threshold), it is possible to achieve a better
accuracy. Small sample intervals do not provide a statistically valid number of samples
and, therefore, the quality of the prediction is rather poor in these cases. We plot results
with thresholds up to 3, since we note that the measured accuracy does not change with
a threshold greater than 2.5, a value that represents the maximum distance measured
between two consecutive matrices for all users in the experiment.
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Fig. 8. a) Correlation between prediction accuracy and entropy value for each user using dif-
ferent thresholds using the Markov model. b) Cross-evaluation of off-line and on-line models:
correlation between accuracy and sent traffic.

In general, we observe that the L1 distance method provides the best solution in this
case since it is less influenced by the choice of the parameters. As for the other strate-
gies, we measure the difference of overhead (in percentage) with respect to the upload
in presence of changes strategy. Figure 7.a shows the percentage of traffic sent by this
method with respect to the basic one. We would like to underline that for this method,
every time the application transmits some data, instead of sending a single state, it
sends card(S) × card(S) probability values. For low values of the sample interval
the amount of traffic is up to seven times higher than the basic method. This value
decreases rapidly for higher sample intervals. Another parameter affecting the traffic
overhead is the distance threshold. As expected, for higher values of the threshold, less
matrices are sent and the amount of transmitted data decreases. As the plot in Figure 7.a
shows, the Markov model presents the same traffic load of the baseline model when a
matrix is sent every 800, 400 and 50 s respectively for thresholds equal to 0.0, 1.0
and 1.5.

For this strategy, it is fundamental to measure the accuracy of the method in case of
disconnection of mobile devices from the back-end. Figure 7.b shows the decreasing
accuracy of the Markov predictor as time goes on. We analyze two cases in which a
matrix is uploaded respectively every 5 or 10 minutes (the two lines in Figure 7.b).
We build a transition matrix considering 5 and 10 minute calculation intervals, then we
assume that a disconnection takes place: no more matrices can be uploaded and we keep
predicting the next activity samples with the same matrix. In this case we observe about
a 10% accuracy reduction.

The results presented above are derived by considering aggregated data for all users.
We now present a possible method to tie the accuracy of the prediction of the activities
of a single user to a quantitative measure. We observe that also intuitively user pre-
dictability is strongly dependent on the degree of user behavior variability: the higher
the variability of activity transitions, the less predictable the user is.
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Fig. 9. Transition probability matrix used in the local model and example of a user path

A standard measure of state variability in user data streams is the entropy of the
sequence; we use the standard definition provided by Shannon [22]. In Figure 8.a we
show the relation between entropy and the prediction accuracy described in the previous
sections. Each point in the plot corresponds to a user involved in the experiment; we
report the values related to the cases with thresholds equal to 0 and 1. For the first set
of points, it is possible to observe a sort of linear distribution, while the other set forms
a cloud-like distribution. This means that the correlation between accuracy and entropy
is strictly dependent on the choice of the parameters used to tune the offline strategy.
The accuracy decreases as the threshold increases and this is directly reflected on the
negative correlation between entropy and accuracy.

The state entropy can provide a measurement of the predictability of a certain user
and this information might be displayed together with the forecasted state when the
Markov based model is used. These results also provide a statistical characterization of
the dataset and can be exploited to interpret and compare performance results in this
paper with user patterns in deployments related to different social scenarios.

3.3 Comparison between On-line and Off-line Strategies

Finally, we compare the results of the on-line and off-line strategies described above.
This comparison is performed only for completeness, since the two strategies are target-
ing two different scenarios, characterized by different types of connectivity (continuous
and intermittent) and/or energy requirements (i.e., battery power constraints are deemed
less or more important than accuracy).

Figure 8.b shows the correlation between accuracy and overhead using the two dif-
ferent classes of strategies, by increasing window sizes for the online strategies and dif-
ferent sample intervals for the Markov model based ones. The on-line strategies show
the best performance: in terms of accuracy, the voting based strategy provides the best
results (93% accuracy); the persistent change uploading strategy instead has the best
performances in terms of overhead, i.e., it saves up to 99.9% of traffic.

As expected, the Markov model based approach cannot provide better accuracy than
online strategies. However, we would like to point out that the Markov based strategy
can offer an interesting trade-off between accuracy and overhead also when connectivity
is available. For example, using a L2 metric with a threshold equal to 1, it is possible to
achieve an accuracy equal to almost 80% by saving 60% of traffic sent.
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4 Location-Based State Uploading

We now show how location information can also be used to optimize the uploading pro-
cess in case of devices equipped with GPS receivers. The key idea is to associate a state
transition matrix to each location. This can be considered as a sort of augmentation of the
Markov chain based mechanism presented in the previous section. It can be used when
connectivity is potentially intermittent or continuous uploads are not possible given bat-
tery constraints. More specifically, we exploit a two-level Markov model: we firstly use
a transition matrix associated to each location of the space to predict future movements.
Then we use the matrix associated to the forecasted next location for the prediction of
the future activity. The matrices are built by collecting data for a certain interval of time
(that can be considered as a sort of training period of the model). Then these matrices
are used for forecasting on the server if no data are transmitted by the mobile clients.

Markov models have already been successfully used as a basis of user location pre-
diction techniques [2,23,11]. A key problem is the definition of the locations in the
geographical space. In order to apply a Markov model for location prediction we need
to transform the continuous domain of a geographical region into a discrete set of areas.
Then, a way of estimating the probability of transitions between these areas has to be
devised. We use a grid based model for subdividing the geographical areas in discrete
locations, obtaining a grid of squared tiles (or cells). More formally, we divide the space
in m×n squared tiles Tp,q with side size gridsize. We then consider the probability of
transitions between tiles by assuming two movement models with different constraints
in terms of possible transitions, i.e. a local one and a global one.

Local Movement Model. We start considering a simple movement model that takes
into consideration only transitions to locations that are close to the current one. Ac-
cording to this model, a user in a tile Tp,q can only jump to a tile which is adjacent to
that she is currently located (considering an analogy to the game of chess, the user can
move as a king on a chessboard). For every tile of the matrix we consider a vector J =
{JN , JNE , JNW , JS , JSE , JSW , JE , JS , JCT } containing the probabilities of jump-
ing from the current tile to one of the tiles in the neighborhood (the north-east tile, the
north tile, and so on) as illustrated in Figure 9. The matrix also includes the probability
of staying in the current tile (JCT ). We do not simply take into account jumps to tiles
that are further on the grid.

The local movement model is a simple way of representing the movements of the
users, however, it is not sufficiently accurate because it does not take into account pos-
sible jumps between two non adjacent tiles. This type of jumps can be caused by various
physical factors, such as the speed of users with respect to a low sampling rate (e.g., a
movement in a car), the absence of GPS signal and/or the unavailability of the GPRS
coverage. In these cases, some transitions might not be recorded.

The two key parameters affecting this model are GPS sensor duty cycle and size
of tiles. As the duty cycle of the GPS sensor increases, the probability of a transition
between two adjacent tiles decreases. A value of gridsize smaller or equal to the max-
imum distance that a user can cover increases the probability of jumps between two
non adjacent tiles. One of the advantages of the local model is related to the memory
that is needed to implement it. In fact, for each tile of the area, we need to store only a
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Fig. 10. The global model and a possible path described by a user. For each cell of the area N×M
(on the right), a N × M matrix of transition probabilities is recorded.

3 × 3 matrix (or a 9-cell vector containing the probabilities of jumping to the adjacent
tiles) for a total space complexity equal to M × N × 3 × 3 where M and N are the
dimensions of the geographical area of interest. If we consider the nine cells containing
the transition probabilities as constant values, the space complexity of the model is
approximately O(MN).

Global Movement Model. We also consider a movement model that allows jumps
between non adjacent tiles (global movements). In other words, the global movement
model is able to register all user movements over the grid: both jumps toward adjacent
tiles and tiles that are far away are allowed and recorded, as illustrated in Figure 10.
However, this model requires an array of size M × N representing a matrix containing
all the transitions toward all the other possible geographical locations for each tile. The
drawback of using this model is the increased space complexity. In fact, for each tile of
the geographical area it is necessary to store a M × N probability matrix where every
cell Ti,j contains the probability of jumping from the current tile to any other tile of the
geographical area. The space complexity of the model becomes O((NM)2).

Evaluation. We use the first week as training period (i.e., the matrix is sent once after
the first week) and we measure the accuracy of the prediction considering the dataset
corresponding to the second week. We train the model on the entire week in order to
have sufficient statistics. In a real system, an uploading mechanism based on distances
as that presented in the previous section can be used for deciding if a new matrix has to
be sent or not to the back-end server. The evaluation of these mechanisms is not possible
for us since we have only a two-week dataset.

The main challenge in using the grid model is the definition and the placement of
the grid structure. A key parameter of the model is the size of the tiles composing the
superimposed grid. In fact, by using a grid, a logical place (e.g., the library, the gym,
etc.) might be split into two or more tiles and two unrelated places might be unified in
the same tile. Even if we keep the same grid size, by changing the offset of the grid we
have very different subdivisions of the area. Accuracy variations are around 5 to 10%
with different grid positioning. In Figure 11 we show the accuracy of the prediction as
a function of the grid size. We plot the results for the local and the global models with
different strategies for the choice of the first activity that is used as first state of the
prediction model when the transition between two tiles of the grid takes place (i.e., the
starting state of the activity transition matrix associated to each tile). More specifically,
we use the most popular activity in that tile and a randomly selected activity using a
frequency distribution of the activities in that location. These results are obtained by
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Fig. 11. Activity accuracy prediction as a function of different grid sizes

averaging 10 runs with different offsets from the origin of the grid. The offsets are
equal to k

10gridsize with k = 1...10. We note that this choice does not affect the
performance of the algorithm as expected, given the properties of Markov chains about
independence from the initial state as time passes [3]. We note that the accuracy of the
prediction decreases for all the methods as the grid size increases. In fact, with a larger
granularity of the tile, locations characterized by different activities are joined together
(for example the library and the street leading to it). The local prediction model is not
able to capture the movements of the users. These results are also affected by higher
errors with small grid size for the location prediction due to a higher number of tiles
with insufficient statistics. The local model is particularly affected by this problem,
since many transitions to neighboring cells are not recorded.

5 Related Work

This paper proposes a set of intelligent uploading techniques for (near) real-time con-
tinuous sensing systems based on mobile phones. The existing related work focuses
mainly on movement prediction and the use of information about the current location
to infer human activities (such as cooking is very probable in a kitchen). The prob-
lem of optimizing the uploading process has not been explored yet also because mobile
sensing systems based on smart phones, like MyExperience [8], CenceMe [15], Neri-
cell [16] and BeTelGeuse [12], are very recent. Recently, Wang et al. have proposed a
framework called EEMSS [25] for optimizing the duty cycles of the sensors for mobile
sensing applications. The aim is orthogonal to ours and the solutions can coexist, since
EEMSS is focused on the sensing aspect whereas the goal of this work is to optimize
the uploading process.

With respect to the problem of forecasting user movements, in [2], the authors present
a model of user location prediction from GPS data. A simple first-order Markov model
to predict the transitions between significant places is used. Also in this work temporal
aspects are not taken into consideration. Moreover, the model is not able to forecast
transitions to geographical areas that are not considered significant. In [13] the sig-
nificant places are extracted by means of a discriminative relational Markov network;
then, a generative dynamic Bayesian network is used to learn transportation routines.
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Another system for the prediction of future network connectivity based on a second-
order Markov model is BreadCrumbs [19]. This system is able to predict only the next
user location and not the time of the transitions and the interval of time during which
users reside in that specific location. An extension of [24] about the study of handoff
mechanisms in a campus environment using Markov models is presented in [23].

GPS information has also been used in vehicular systems such as in Predestina-
tion [11]. The authors of this work use aggregated location data together with additional
information about the geography of certain areas in order to make accurate prediction of
movements of vehicles; we have presented instead a technique that relies only on local
predictions of single users also in presence of intermittent connectivity. Techniques for
approximating the positions of moving objects also considering energy requirements
have also been studied in [10] and [5]. Other related work has been done in the area of
databases in particular about the so-called approximation replication techniques [21].
The key difference with respect to this body of work is related to the fact that our goal
is also to provide an estimation of the current state using the past history.

6 Concluding Remarks

In this paper we have presented a series of techniques for optimizing the uploading
process of discrete data for continuous sensing applications on mobile phones. We have
considered two cases, namely a scenario where connectivity is always available and one
where it is intermittently present or the number of transmissions has to be limited given
the system design requirements in order to extend the battery lifetime of the devices.
Finally, we have shown how location information can be exploited to optimize the up-
loading process. We have demonstrated that our techniques can be used to improve
the performance of continuous mobile sensing applications by analyzing the trade-off
between transmission overhead and accuracy.
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Abstract. As the size and complexity of Pervasive Computing environ-
ments increases, configuration and adaptation of distributed applications
gains importance. These tasks require automated system support, since
users must not be distracted by the (re-)composition of applications.
In homogeneous ad hoc scenarios, relying on decentralized configuration
schemes is obviously mandatory, while centralized approaches may help
to reduce latencies in weakly heterogeneous infrastructure-based envi-
ronments. However, in case of strongly heterogeneous pervasive environ-
ments including several resource-rich and resource-weak devices, both
approaches may lead to suboptimal results concerning configuration la-
tencies: While the resource-weak devices represent bottlenecks for decen-
tralized configuration, the centralized approach faces the problem of not
utilizing parallelism. Instead, a hybrid approach that involves only the
subset of resource-rich devices is capable of rendering configuration and
adaptation processes more efficiently. In this paper, we present such a
resource-aware hybrid scheme that effectively reduces the time required
for configuration processes. This is accomplished by a balanced-load clus-
tering scheme that exploits the computational power of resource-rich
devices, while avoiding bottlenecks in (re-)configurations. We present
real-world evaluations which confirm that our approach reduces configu-
ration latencies in heterogeneous environments by more than 30% com-
pared to totally centralized and totally decentralized approaches. This is
an important step towards seamless application configuration.

1 Introduction

The Pervasive Computing research area focuses on the development of abstrac-
tions and concepts for seamless integration of information processing into
everyday activities and objects. In such environments, resources are normally
scattered among the devices and any single device is not capable of executing
an entire application. Thus, distributed applications need to be configured prior
to their execution to ensure all required functionality is available. Configuring
an application means finding a set of components which can be instantiated at
the same time. Thus, application configuration is also known as composition of
the required resources and services. Furthermore, this composition has to ful-
fill the structural constraints given by the required application functionalities,
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Fig. 1. Distributed presentation application

while considering the limited resources in the pervasive environment. Moreover,
automation is needed to make this complex process transparent for the user.
As an example, consider a conference environment depicted in Figure 1 where
a speaker wants to give a presentation. For this purpose, the available input
resources (e.g., keyboards, microphones, touch screens) and output resources
(e.g., video projectors, loudspeakers) have to be leveraged by the distributed
presentation application, as demonstrated in [14]. Further typical applications
provide the easy sharing of files and resources like printers or webcams with
other users (Casca, [9]) or the flexible and generic control of devices and ser-
vices in home media networks (OSCAR, [20]). The actual composition of the
application (called configuration) has to be calculated by configuration algo-
rithms on the available devices. Furthermore, automatic runtime adaptation (or
re-configuration) is necessary due to the dynamism in pervasive environments.
Adaptation denotes the task of finding alternative components for those parts
of the application that have become invalid, e.g. due to device failures. As dis-
tractions are highly undesirable during application execution, our main goal is
to perform (re-)configuration processes as fast as possible.

Two fundamentally diverse approaches for configuration and adaptation of
distributed applications exist, namely decentralized and centralized configura-
tion. Decentralized approaches focus on mobile ad hoc networks [7],[10],[13] and
calculate configurations in a cooperative fashion on all devices, as relying on
central instances is not feasible there. While this approach increases the robust-
ness of the configuration process, it implies extensive communication between
the devices. Moreover, it disseminates the configuration tasks equally among all
devices, not exploiting resource-rich devices in heterogeneous environments.

In such scenarios, centralized configuration on the fastest device can speed up
the configuration process, as it exploits the additional computation power and
avoids network communication. As a typical example, [29] presents an efficient
centralized approach for weakly heterogeneous Smart Environments, featuring
exactly one resource-rich device and several resource-weak devices. To distin-
guish between the different devices and classify them, [29] uses a combined-
metrics clustering strategy to establish a cluster structure consisting of one
cluster head – the single resource-rich device – which is responsible for cen-
tralized configuration calculations, while all other devices are the cluster mem-
bers that remain inactive during configurations. As the cluster head needs to
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acquire knowledge of the currently available resources on its cluster members,
the Virtual Container concept is introduced: A Virtual Container (VC) is a
local representation of a remote device on the cluster head and contains the
resource information that is relevant for configuration. This enables local access
to the remote configuration logic for the cluster head, allowing a strict decou-
pling of the (re-)configuration processes from the real devices. As the available
resources of devices may change over time, each device automatically notifies
the cluster head about changes in its resource condition, which then updates
the corresponding VC to keep the resource information consistent. After suc-
cessful configuration, the component bindings that are based on the application
structure are established between parent and child components. For runtime
adaptation of a configuration, it is sufficient to recalculate only those parts of
the configuration that require changes, and re-establish the respective bindings.
This scheme represents an efficient solution for weakly heterogeneous Smart En-
vironments. However, such a centralized approach introduces a single point of
failure and prevents the parallel calculation of configurations. Furthermore, the
other devices’ resource information has to be transferred to the configuration
device in advance to enable efficient configuration on the resource-rich device.
Centralized and decentralized approaches are compared in more detail in [19].

Many typical real-world pervasive scenarios are highly heterogeneous: They
feature several resource-rich infrastructure devices like servers or desktop PCs
as well as small mobile devices such as smart phones or PDAs, like in the audito-
rium scenario presented in Figure 1. For such environments, we propose a hybrid
configuration approach in this paper. This approach represents a generalization
of the existing centralized and decentralized approaches. It relies on a clustering
scheme and enables the application configuration to be computed by multiple
resource-rich devices simultaneously, which eliminates the single point of failure
that is common in centralized approaches. The resource-weak devices stay pas-
sive during the hybrid configuration process. Thus, computational bottlenecks
within the calculations are avoided, giving our approach an advantage over fully
decentralized approaches. Moreover, our extended clustering mechanism allows
the clusters to compute compositions independently from other clusters in the
environment. Hence, this hybrid approach reduces the configuration latencies by
more than 30% in heterogeneous environments, as our evaluations show.

This paper is structured as follows: After discussing related projects in the
next section, we present our system model in Section 3. Afterwards, we introduce
our efficient hybrid configuration approach, which is the main contribution of
this paper. Then, we present our evaluation results in Section 5 to show the via-
bility of our approach. Section 6 concludes and gives an outlook on future work.

2 Related Work

2.1 Application Configuration and Service Composition

Many current projects deal with component systems for Pervasive Computing.
Speakeasy [9] and OSCAR [20] represent examplary systems allowing users to
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create compositions of devices, media and services based on their current con-
text. Pering et al. [24] present a composition framework to enable user-centric
collections that combine mobile components together for carrying out a user task.
However, these projects rely on user interaction during configuration processes
and do not provide algorithms for the automatic composition of application con-
figurations, which is the main focus here.

Projects like Gaia [26], Aura [31], iRoom [17], or Matilda’s Smart House [18]
provide a middleware for automatic configuration in Smart Environments. They
support developers by providing services for the development of context-aware
mobile distributed applications. These systems represent highly integrated en-
vironments and support various stationary and mobile devices. However, they
are not suited for the use in pure ad hoc environments, as they rely on an exist-
ing infrastructure. For environments with a higher degree of dynamics, a more
recent version of Gaia called Olympus [25] was presented that uses semantic
descriptions to automate the mapping process.

In contrast, projects such as Mobile Gaia [7], RUNES [8] or P2PComp [10]
target at pure ad hoc networks. While these projects provide automatic config-
uration, other peer-to-peer based approaches assign this task to the application
programmer (e.g., one.world [12]). For highly dynamic environments, Paluska
et al. [23] present an indirect specification via goals to refrain from specifying
a single configuration. They provide an extensible mechanism to manage users’
system runtime decisions and scan the vicinity for techniques that satisfy the
user’s goals. All of these projects do not rely on a supporting infrastructure,
but they also do not exploit the increased computation power of resource-rich
devices, yielding suboptimal efficiency in Smart Environments.

MobiGo [30] and PCOM [4] represent systems that support efficient automatic
configuration in various environments. While PCOM provides decentralized [13]
and centralized [29] configuration algorithms for complex component-based ap-
plications, MobiGo focuses on service level virtualization and migration.

Standard component systems like CORBA [21] or Enterprise Java Beans [32]
offer persistency and transactional behavior. However, they rather focus on en-
terprise software than on resource-constrained dynamic pervasive environments.
Infrastructures such as Jini [2] or UPnP [16] deal with service discovery in spon-
taneous networks. Though, they do not provide system support for automatic
application configuration and adaptation, which is required here.

Hybrid configuration approaches have already shown to be efficient in other
research areas like the distribution of scientific dataflows [3], Web Service com-
position [5] or large-scale Grid computing systems [11]. With the hybrid scheme
presented in this paper, the complete spectrum of possible pervasive environ-
ments is covered, giving this system a distinct advance over the related projects
that focus on application configuration in specific pervasive environments only.

2.2 Load-Balancing Clustering Schemes

Many related approaches aim at balancing the load among nodes. MANET-based
schemes [34] like DEEC [27] or DLBC [1] balance the load in infrastructure-less
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scenarios to extend the overall network lifetime. Thus, these schemes equally
distribute the load among all nodes. In addition, schemes like AMC [22] focus
on highly dynamic mobile devices and multi-hop connections. Thus, the merging
and split-up of clusters are common actions, yielding low cluster stability. In
contrast, we only want to balance the load between the subset of resource-rich
infrastructure devices to minimize the (re-)configuration latencies, with as few
re-clustering processes as possible. As this infrastructure is typically continuously
available, the respective subset of resource-rich devices is rather static. In the
area of web clusters, scheduling algorithms try to balance the load distribution
on the servers to increase the loading capacity of the cluster [6]. However, these
schemes do not consider aspects like mobility or node failures. Hence, they do not
provide the re-clustering strategies needed here and are not suited to solve our
problem of balancing the configuration load between the resource-rich devices.

3 System Model

3.1 Application Model

For this work, we presume a component-based software model, i.e. an application
consists of several components which are resident on specific devices and require
a certain amount of resources. An application is represented by a tree of interde-
pendent components that is constructed by recursively starting the components
required by the root instance. Interdependencies between components as well
as resource requirements are described by directed contracts which specify the
functionality required by the parent component and provided by the child com-
ponent. A parent component may have an arbitrary number of dependencies.
Further details can be found in [4].

3.2 Underlying System

We especially focus on heterogeneous pervasive environments in this paper, con-
sisting of resource-rich devices like PCs or laptops as well as resource-poor mo-
bile devices like smart phones or PDAs. The number of components per device
is not restricted. Devices have a unique system identifier (SID) and may be-
come unavailable at any time, e.g., due to mobility or device failures, causing
the unavailability of their components. All devices use standard wireless com-
munication technology, e.g., Bluetooth or WiFi, and have a direct, bidirectional
communication link to each other, which is usually the case in typical pervasive
scenarios like offices or home entertainment. Furthermore, the underlying mid-
dleware is supposed to maintain a registry containing all devices in the vicinity
with information about their services and properties.

3.3 Problem Statement

We focus on automatic configuration and adaptation of distributed applications
in heterogeneous pervasive scenarios. In a configuration process, a specific con-
figuration algorithm tries to resolve all application dependencies by finding a
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suitable composition of components. Such a composition is subject to two classes
of constraints: Structural constraints describe what constitutes a valid composi-
tion in terms of functionalities. Resource constraints are a result of the limited
resources. For example, in the presentation application introduced in Figure 1, a
structural constraint is that the video projector can only be used if the computer
to which the projector is connected to is also available. A resource constraint
could be that there needs to be at least one loudspeaker as acoustic output de-
vice. An application is successfully configured if all dependencies were resolved
and the bindings between the components were established. The configuration
latency comprises the time between the start and the availability of the applica-
tion to the user. This latency includes the delays caused by calculating a valid
configuration and instantiating all application components. Our goal is to mini-
mize the configuration latency in order to provide a seamless user experience.

Re-configuration processes, or adaptations, become necessary if devices whose
components are part of the current application configuration become unavail-
able. Then, alternative components have to be found that can provide the same
functionality. Generally, an adaptation represents a special case of a configura-
tion where only those parts of the application need to be recalculated that are no
longer valid. So, the same algorithms are used for configuration and adaptation.

4 Hybrid Configuration Management

4.1 Approach and Challenges

Both the totally decentralized and totally centralized approaches have advan-
tages, but also drawbacks that prevent an efficient configuration in all possible
pervasive environments. Our hybrid approach combines the best properties of
these two approaches to minimize the configuration latency. For this purpose,
only the resource-rich devices actively calculate application configurations. We
call these devices Active Devices (ADs) in the following. Contrary to this, the
resource-weak devices only provide information about their available resources
and services, prior to configuration processes. They stay passive during the con-
figuration, so we call them Passive Devices (PDs).

In a hybrid configuration process, initially, the AD and the PD roles need to
be assigned to the devices in the environment since the configuration of each
PD has to be calculated by one AD. We call this assignment of a PD to an
AD a mapping. Subsequently, the ADs need to obtain the configuration-specific
information from their mapped PDs. Finally, a hybrid configuration algorithm is
necessary which calculates valid configurations on the ADs and distributes the
configuration results to the PDs. Details are presented below.

4.2 Cluster Formation and Maintenance

Initially, a suitable subset of devices for calculating configurations has to be
discovered to exploit the device heterogeneity efficiently. To reduce the risk
of possible bottlenecks, the component algorithms’ configuration load should
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be balanced between the ADs and maintained even in case of changing device
availabilities. Furthermore, each AD should not be required to know about the
mappings at the other ADs.

Resource-Aware Cluster Formation. The following scheme establishes mul-
tiple stable clusters in heterogeneous environments with several resource-rich
devices. These devices automatically become the cluster heads (and, hence, the
ADs) if a resource-aware clustering strategy like in [29] is used. Our new scheme
balances the configuration algorithm’s load among these ADs such that a) they
are not overloaded and b) the configuration is parallelized to reduce the latencies.

We assume there are m ADs Ai with cluster indices (CIDs) i ∈ {0, . . . , m−1}
and n PDs Pj with indices j ∈ {0, . . . , n − 1}. Initially, each AD assigns itself
a CID i according to its SID, i.e. the AD with lowest SID (of all ADs) assigns
itself CID i = 0, and the AD with highest SID gets CID i = m − 1. The same
holds for the PDs that assign themselves CIDs j according to their SID.

There is an overhead for each AD consisting of the efforts needed to retrieve
its mapped PDs’ resource information, calculate its mapped PDs’ components’
configuration and send the configuration results back to them. This overhead
highly depends on the number of PDs within its cluster. Thus, if the mapping
of PDs to ADs is balanced, each AD takes the responsibility for about the same
amount of configuration work. This establishes the load balance among the ADs
that is important to reduce the configuration latency. To achieve this, each AD
has to map at least

⌊
n
m

⌋
PDs to itself. If n modulo m = z > 0, the ADs 0, . . . , z−1

need to map one additional PD to ensure all PDs are mapped to an AD. This
leads to the so-called Balancing Condition that has to be fulfilled at each AD:

mapped(Ai) =

⎧⎨
⎩

⌊
n
m

⌋
+ 1, i < n modulo m

⌊
n
m

⌋
, i ≥ n modulo m

, (1)

where mapped(Ai) is the number of PDs that need to be mapped to AD Ai.
The fulfillment of this condition is verified on each AD, initially on startup of
the device and whenever the number of ADs or PDs changes. For the actual
mapping, a simple round robin scheme is used where each AD maps every m-th
PD, starting with A0 that maps P0, Pm, P2m, and so on.

A mapping procedure is initiated by an AD by sending a mapping request
to the PD it wants to map. The PD reacts by transmitting its current resource
information to the respective AD so that the AD can create a local representation
of the remote PD. This scheme is performed in parallel on all ADs, as they map
disjoint sets of PDs. They just need to know their own CID i and the number
of ADs and PDs, which can be looked up in the device registry.

For clarification, let us consider an exemplary scenario consisting of three
ADs A0 to A2 and eight unmapped PDs P0 to P7. Using the described cluster
formation scheme, A0 maps P0, P3, and P6. Furthermore, A1 maps P1, P4, and
P7, and A2 maps P2 and P5. The arising cluster structure is shown in Figure 2a.
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Fig. 2. a) Initial mapping, b) Remapping: A3 appeared, c) Remapping: A1 disappeared

Cluster Maintenance. Re-clustering is needed to maintain a balanced load
in dynamic environments. Our scheme avoids unnecessary merging and splitting
of clusters by simply re-mapping single PDs. Re-clustering comprises four cases:
The appearance of a new PD or a new AD, and the disappearance of a PD or
an AD. If a new device appears, it assigns itself the lowest free CID within its
class, e.g., if it is an AD and there are m other ADs with indices 0, . . . , m − 1
present, it assigns itself index i = m. Each device decrements its CID if another
device from the same class (i.e., AD or PD) with a lower CID disappears.

If a new PD appears, the AD with cluster index i = (n modulo m) maps this
device. Thus, the round robin distribution of the PDs to the ADs is continued.
After this mapping, each device increments the number n of PDs.

If a new AD D appears, D needs to map
⌊

n
m

⌋
devices to itself1 so that all ADs

still have a similar fraction of PDs. The re-mappings are executed in the following
way: Initially, D needs to remap a PD from the AD that has the maximum
number of mapped PDs (and the highest index i, in case of multiple options),
which yields the AD with index i = [(n-1) modulo (m-1 )] due to the round
robin scheme. D sends a remapping request to the corresponding AD which
then notifies its mapped PD with highest CID that this PD has to be remapped
to D. This remapping process is repeated

⌊
n
m

⌋
times, whereas the ADs whose

PDs are re-mapped by D are chosen by a round robin scheme, as shown in line 5
of Listing 1.1. Hence, the Balancing Condition is still fulfilled on all ADs after
these re-mappings. Nodes that appear during an ongoing configuration process
– ADs as well as PDs – are not considered within this configuration yet, but
starting with the next one. Consider the example from Figure 2b where AD A3
appeared. At first, A3 calculates it needs to remap

⌊8
4

⌋
= 2 PDs. According

to line 5 from Listing 1.1, A3 finds out it needs to remap one PD from device
(8-1-0) modulo 3 = 1, and one PD from device (8-1-1) modulo 3 = 0. Then, A3
sends remapping requests to these ADs. Thus, A1 notifies P7 (its mapped PD
with highest index) to remap to A3, and A0 notifies P6 to remap to A3. Now,
the Balancing Condition is fulfilled again. If multiple devices appear at almost
the same time, the problem of race conditions during the mapping process may

1 Here, D is already included in the number m of ADs.
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arise and potentially lead to inconsistent mappings. To analyze the seriousness
of this problem, we did multiple real-world tests where we started two devices
timely close to each other and regarded the arising mappings. We found out
that inconsistent mappings started to emerge when the time span between two
subsequent appearances of new devices fell below 30 ms. Thus, every new device
waits for 50 ms for potential other new devices before it starts its mapping
process. Proceeding like this, inconsistencies did not appear anymore.

1 request remappings(){
2 mapped := 0;
3 remappings := floor(n/m);
4 while (mapped < remappings) {
5 remapId = (n−1−mapped) modulo (m−1);
6 send remap request to AD(remapId);
7 await resource info();
8 mapped++;
9 }

10 }

Listing 1.1. Reclustering process executed by a newly appearing AD

If a PD Pj disappears, all ADs need to decrement the number n of PDs,
and Pj ’s mapping needs to be removed at the AD Aj to which it was mapped.
Additionally, Aj verifies if the Balancing Condition is still fulfilled. If this is not
the case, Aj sends a remapping request to the AD with index k = n modulo m.
Then, Ak notifies its mapped PD with highest CID that this PD needs to be
remapped to Aj . The chosen PD finishes this remapping by sending its resource
information to Aj . Additionally, if Pj disappears during an ongoing configuration
process, Aj recognizes those parts of the application which were provided by Pj ’s
components and selects alternative components for them, if available.

Finally, the case of a disappearing AD Ax remains. If Ax was the last avail-
able AD, then each PD notices that the cluster structure is dissolved, and the
decentralized configuration approach is chosen in future configuration processes.
Otherwise, remapping processes are necessary: Each PD that recognizes that
its cluster head Ax is gone broadcasts a so-called Unmapped Message to notify
the other nodes that it is currently unmapped and needs to be remapped to
another AD. If an AD Ay notices the disappearance of Ax, it at first checks if
Ax had a lower CID than itself. In this case, it decrements its CID. Then, Ay

needs to calculate the number of required remappings (remap(Ax)) for itself:
In order to fullfil the Balancing Condition, Ay needs to remap at least

⌊
n
m

⌋
devices, minus the number of its currently mapped devices (mapped(Ay)). As
before, if Ay recognizes that there are some remaining unmapped devices, i.e.,
n modulo m = z > 0, the ADs with indices 0, . . . , z − 1 need to remap one
additional device. Subsequently, each AD broadcasts how many remappings it
will perform. Then, each AD waits for a certain time T1 to gather all remap-
ping and unmapped messages. The value of T1 has to be large enough to cover
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the whole gathering process. Otherwise, T1 expires without all messages having
been received, causing inconsistencies and potentially thrashing effects in the
remapping processes. However, as too large values of T1 unnecessarily increase
the time for (re-)clusterings, T1 must also not be chosen too high. A reason-
able compromise is to determine the average time a gathering process takes in
typical scenarios, and add some additional time to be on the safe side. Further
information about the value we chose for T1 is given in Section 5.1. After this
waiting time, each AD knows which PDs are unmapped, and how many PDs
the other ADs will remap. Finally, the remappings are performed according to
the indices of the involved ADs and PDs: AD A0 with lowest CID 0 maps the
remap(A0) unmapped PDs with lowest CIDs, i.e. the unmapped PDs with CIDs
0, . . . , remap(A0)− 1. AD A1 with the second lowest CID maps the remap(A1)
PDs with next higher indices, i.e. remap(A0), . . . , remap(A0) + remap(A1)− 1,
and so on up to the AD with highest CID which maps the unmapped PDs with
highest CIDs. In the special case of a disappearing AD Ax during an ongoing
configuration process, those parts of the application which were calculated by Ax

are no longer available, making a remapping of the PDs that were mapped to Ax

and a subsequent restart of the configuration process inevitable. This increases
the arising latencies. However, a disappearing infrastructure-device exactly at a
configuration process is quite unlikely and should happen rather seldom.

As an example, consider Figure 2c where AD A1 disappeared, leaving P1 and
P4 unmapped. Now, A2 and A3 decrement their CIDs and become A1 and A2,
as an AD with lower CID disappeared. According to the previously described
scheme, A0 and A1 need to remap one additional device because of their low
indices, i.e.

⌊8
3

⌋
- 2 + 1 = 1 PD, while A2 needs to remap

⌊8
3

⌋
- 2 = 0 PDs.

As A0 has a lower CID than A1, A0 remaps the unmapped PD with lower CID
(i.e., P1), and A1 remaps P4 as the unmapped PD with higher CID. Again, the
Balancing Condition is fulfilled after these remapping processes.

4.3 Hybrid Application Configuration and Result Distribution

The hybrid configuration is calculated in a parallel and cooperative fashion on
the subset of ADs. The configuration of each PD’s components is performed
locally on the AD it was mapped to. Therefore, the created VCs are used (cf.
Section 1). This reduces the communication overhead during the configuration
compared to decentralized configuration. Moreover, the PDs are not involved in
these calculations. This avoids that the resource-constrained PDs become com-
putational bottlenecks, and it conserves their (usually limited) energy resources.

An adapted version [13] of Asynchronous Backtracking [33] is used for the co-
operative configuration on the ADs. This decentralized configuration algorithm
enables the concurrent configuration of components and utilizes the available
parallelism. It performs a depth-first search in the tree of dependencies. In case
a dependency cannot be fulfilled, dependency-directed backtracking is used. Fur-
thermore, for the local configuration of the PDs’ components on the ADs, we
use an efficient centralized algorithm called Direct Backtracking [28]. This algo-
rithm features a proactive mechanism to avoid backtracking in many situations,
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Fig. 3. Hybrid application configuration example

and an intelligent backtracking mechanism to handle conflict situations more
efficiently. After a successful configuration, the ADs distribute the configura-
tion results among their PDs to notify them about which of their components
were chosen. The respective messages are rather small, as they only contain the
relevant information about the chosen components on the recipient PDs. The
average message overhead per application component is only 9 kB. Finally,
the component bindings are established, yielding the application execution.

4.4 Exemplary Configuration Process

Resuming the scenario from the introduction, Figure 3 shows an examplary en-
vironment where a distributed presentation application needs to be executed.
When a speaker wants to give a presentation, the configuration algorithm needs
to automatically find suitable components for the distributed application on
these devices. For instance, if a speaker wants to switch between the slides using
the touchscreen of his mobile phone (PD 2), a touch-based graphical user inter-
face needs to be provided on this device. Moreover, all presentation files may
potentially be resident on a remote device, like the conference organizer’s smart
phone (PD 0). The speaker also needs supporting input and output devices such
as the auditorium’s multimedia system covering video projector, loudspeakers
and a microphone, which are connected to the stationary PC (AD 0). As some
auditors may potentially be sitting far from the presentation screen, it might
be more convenient for them to have the slides displayed on their own mobile
devices, e.g. their laptop (AD 1) or even their mobile phone (PD 1).

Initially, the cluster structure is established using the presented round robin
scheme. This yields the desktop PC as cluster head for the PDs 0 and 2, and
the laptop as cluster head for PD 1 (step 1). In step 2, the PDs transfer their
current resource information to their respective ADs. On the basis of this in-
formation, the ADs build the local representations of the mapped PDs within
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Virtual Containers in step 3. This leads to two VCs at AD 0, and one VC at
AD 1. Then, a user wants to start an application on his/her mobile device, PD 2.
Thus, the information about the application start is transmitted to AD 0 as the
responsible cluster head for PD 2 (step 4). Subsequently, AD 0 initiates the con-
figuration of the application, which is shown in step 5. At first, it verifies which
of the dependencies can be resolved by components of its local container and the
Virtual Containers, representing its mapped PDs. For the remaining unresolved
functionalities, AD 0 requests AD 1 to resolve these dependencies. AD 1 pro-
vides AD 0 with the corresponding information about the fitting components.
Subsequently, the complete configuration is constructed by AD 0. After success-
ful configuration, the PDs whose components are used in the configuration are
informed by their cluster head about their component configurations. Finally,
the required components are initialized, the bindings between the components –
as negotiated within step 5 – are established, and the application is executed.

5 Evaluation

5.1 Experimental Setup

For our real-world evaluations, we used six laptops2 and six smart phones3. The
laptops became cluster heads (ADs) because of their high computation power,
while the smart phones became cluster members (PDs) and were equally dis-
tributed among the cluster heads. In all scenarios, we used the 802.11b Ad Hoc
mode in combination with broadcast messages between the devices. The config-
uration process was initiated by invoking the application anchor on one of the
smart phones. Apart from the real-world experiments, we also performed exten-
sive evaluations on the Network Emulation Testbed (NET, [15]) to evaluate the
scalability of our approach in larger scenarios with up to 85 devices. In these
evaluations, we emulated the same wireless network as in the real-world evalua-
tions. To find a suitable value for the parameter T1 for gathering the unmapped
and remapping messages (cf. Section 4.2), we performed 50 measurements to
identify the time it takes to gather this information from the other devices.
The average time to receive all of these messages was 0.57 s. Furthermore, the
gathering process never took longer than 0.83 s, even in large scenarios. As a
precaution, we initialized T1 with a slightly increased value of 1 s for the eval-
uations. Consequently, we did not face any thrashing effects or race conditions
in the remapping processes during any of the taken evaluations. In the shown
graphs, each measurement represents the average of 50 evaluation runs. Standard
deviations were below 15 % in all cases and below 10% in 90% of all cases.

We used the PCOM [4] system for our evaluations. The evaluated application
represents a binary tree of depth 6, i.e., it consists of k = 127 components.
Additionally, we measured the configuration latencies in a smaller scenario with
a binary tree of depth 4, i.e. k = 31, to verify our results in a smaller scale. In the
2 ThinkPad T41p, Intel Centrino CPU, 1.6 GHz, 1 GB RAM.
3 T-Mobile MDA, PXA 270 CPU, 520 MHz, 128 MB RAM.
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evaluations, the laptops got an increased number of resources compared to the
smart phones (factor 2 to 5, randomly chosen for each laptop) to consider that
they are usually much more resource-rich. We evaluated the hybrid scheme in
comparison to the totally decentralized and centralized approaches to show the
advantage over these standard approaches. We measured the message overhead
and the latencies that arose at the various stages of the configuration: initial
cluster formation and re-clustering processes, the preconfiguration process, the
actual configuration as well as an adaptation process where only 50 % of the
components needed to be adapted, the distribution of the configuration results,
and the binding of the components.

5.2 Communication Overhead Measurements

Figure 4 shows the message overhead at the various stages of the configuration. In
these graphs, “Hybrid-x” represents the hybrid approach with x ADs (laptops),
where 2 ≤ x ≤ 6. The remaining devices (PDs) were the smart phones.

In the preconfiguration process (Figure 4a), an average overhead of 53 kB per
device and configuration process arises for the centralized and hybrid schemes,
since these schemes need to build the cluster structure and to transmit the
configuration-specific information for the VCs. For hybrid configuration, this
overhead arises only at every PD, as they need to transmit their resource infor-
mation to their cluster head. This leads to a reduced overhead compared to the
centralized scheme. The decentralized scheme does not use preconfiguration.

Figure 4b shows the message overhead for the actual configuration. In central-
ized configuration, the device where the application was started initially trans-
mits the application information to the cluster head. The resulting overhead
only depends on the application size, i.e. the involved components. As we used a
fixed application with 127 components, the overhead was static with 183 kB in
total per configuration process. The hybrid approach’s message overhead mainly
depends on the number of involved ADs, as only they calculate configurations.
Thus, a rising number of available PDs does not have an impact on the message
overhead. The message overhead for decentralized configuration increases with a
rising number of involved devices, as all devices have to communicate with each
other. However, this overhead converges for a larger number of involved devices,
since the per-device-overhead decreases due to a lower number of components
per device. The centralized approach’s distribution overhead (Figure 4c) and the
component binding overhead (Figure 4d) converge for the same reason.

As the devices piggyback the configuration results during the decentralized
configuration process, no further messages are needed for result distribution, as
it can be seen in Figure 4c. Compared to the centralized approach, the piggy-
backing increased the overhead during the actual configuration by 403 kB, but
reduced the result distribution overhead by 1418 kB on average. In centralized
configuration, the cluster head broadcasts the complete composition, yielding
high communication overhead. In hybrid configuration, the cluster heads only
need to notify their PDs about which of their components were chosen. Thus,
the hybrid approach’s overhead rises linearly with the number of PDs.
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Fig. 4. Message overhead at the different stages of one configuration process (k = 127)

The overhead for establishing the component bindings (Figure 4d) is the same
for all configuration schemes, as it is independent from the actual configuration.
This overhead rises with a rising number of involved devices, since bindings
between components on different devices are likely to emerge more often then.

Figure 4e shows the total message overhead for one configuration process as
the sum of all overheads. The decentralized approach scales best due to the result
piggybacking at the configuration process. Its total message overhead converges
with a rising number of involved devices due to the almost constant overhead for
actual configuration and no further distribution overhead (cf. Figures 4b and 4c).
The centralized approach performs worst because of a high overhead for precon-
figuration and result distribution. The hybrid approach produces an average
overhead at all stages of configuration, yielding a moderate total overhead and
showing its applicability concerning message overhead.

Regarding adaptation, the total message overhead is shown in Figure 4f.
Compared to configuration, the overheads for the centralized and decentralized
schemes were reduced by 30 %, as only parts of the application needed to be
recalculated and distributed. The message overhead of the hybrid scheme de-
creased by 25 % only, as the remapping messages needed to be sent, too. Thus,
the hybrid and centralized schemes produce about the same adaptation message
overhead, while the decentralized schemes’ overhead is around 22 % lower.

5.3 Configuration Latency Measurements

We compared the overall latencies of all three approaches in two heterogeneous
scenarios (k = 31, k = 127) with differing device numbers and 50 % resource-
rich devices in each scenario. Figure 5 shows the total latencies. The real-world
evaluations were performed with 4 to 12 devices, and the emulations in the large-
scale scenario with k = 127 with up to 85 devices, where each laptop holds two
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Fig. 5. Total configuration latencies: a) k = 31, b) k = 127

resources and each smart phone holds one resource. Increasing the number of
devices above 85 would not lead to changing results, since some of the devices
would not hold any resources then. Figure 5b shows that the latencies for the hy-
brid and the decentralized approach at first drop with a rising number of devices.
This happens because of an increasing absolute number of resource-rich devices
that are involved in configuration calculations, while in centralized configura-
tion, only one resource-rich device is always used to calculate configurations.
When the total number of devices exceeds 12 (distributed) or 16 (hybrid) de-
vices, the overall latencies start to slightly increase again, as the latencies for
establishing the component bindings grow stronger than the latencies for the
configuration calculation drop. The latencies of centralized configuration show
continuous growth, as the latencies for distribution and establishment of the
bindings increase with a rising number of devices, while the configuration la-
tency remains constant. It can be seen that the hybrid approach outperforms
the decentralized approach by 35.7 % (k = 31) and by 34.5 % (k = 127) on aver-
age, and the centralized approach by 26.3 % (k = 31) and by 44.1 % (k = 127),
respectively. The emulation results point up the hybrid approach’s scalability, as
latency reduction still holds with large applications and many involved devices.

For clarification, Figure 6 shows the latencies at the different configuration
stages in a specific scenario with k = 127, four ADs and up to six PDs. The clus-
tering of devices produces a negligible latency of below 30 ms per PD, as you can
see in Figure 6a. Re-clustering processes due to dynamics take a constant time of
1.1 s more than the initial clustering, mainly because of the chosen value of 1 s
for T1 (cf. Section 5.1). The loading of the resource information increases linear
with an overhead of 400 ms per device. The clustering and resource information
loading latencies are not included in the overall latencies in Figures 6e and 6f, as
they are performed once prior to the configuration. However, the re-clustering
latency is included in the overall adaptation latency shown in Figure 6f.

Regarding the latency for the configuration process itself (Figure 6b), the cen-
tralized approach performs best, as the resource-richest device locally calculates
the configuration. The decentralized approach is significantly slowed down due
to the fact that the resource-limited devices are involved in the calculations.
Another factor is the immense communication overhead of the decentralized
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Fig. 6. Latencies at the different stages of the configuration process (k = 127)

approach (cf. Figure 4b). In the hybrid approach, only the resource-rich devices
perform the calculation, but message exchanges between them still take time.
Thus, its latencies are slightly above the centralized scheme’s latencies.

Figure 6c shows the latency to distribute the configuration results. The cen-
tralized scheme has the highest latency, as the single configuration device needs
to distribute the complete configuration (cf. Figure 4c). In contrast, the other ap-
proaches have already piggybacked information about configured components in
the configuration messages, in case of decentralized configuration even between
all devices. Thus, these approaches have much lower distribution latencies.

The initialization of the component bindings (Figure 6d) comprises the sum
of the import of the received configuration results and the establishment of the
respective component links. Since message overhead and delay for the result dis-
tribution are much higher for the centralized approach, as seen in Figures 4c and
6c, the configuration import is responsible for a big fraction of the latency, espe-
cially on the resource-weak devices. The establishment of the links is performed
in the same way by all approaches and, hence, takes the same amount of time.

Figure 6e shows the total latencies as sum of the latencies from Figures 6b-d.
The centralized approach is slowest due to its increased result distribution and
component binding overhead. The decentralized scheme performs 14 % better on
average, although the resource-weak devices are involved. The hybrid approach
avoids the drawbacks of the other schemes and performs fine in all configuration
stages. Thus, it outperforms the decentralized scheme by 34.2 % and the cen-
tralized scheme even by 40.7 % on average. Regarding the total latencies for an
adaptation process (Figure 6f), the advantage of the hybrid approach decreases
to 20.4 % compared to decentralized and to 30.2 % compared to the centralized
scheme, due to the additional re-clustering overhead (cf. Figure 6a).
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6 Conclusions and Outlook

We presented a hybrid approach for configuring distributed pervasive applica-
tions. This approach efficiently exploits the available computation resources in
heterogeneous environments. Since this hybrid scheme is a generalization of the
pure centralized and decentralized approaches, it covers the complete spectrum
of pervasive scenarios, which has not been achieved by related projects yet.

Our approach is based on the formation of clusters with balanced configura-
tion load for the resource-rich devices. These devices represent the active devices
during configuration calculation processes, while the resource-weak devices re-
main passive to avoid bottlenecks in the configuration process. Single points of
failure are avoided due to the parallel execution of the configuration calculations
on the active devices. The hybrid approach automatically adjusts its degree of
decentralization to the available resources in the network. In our evaluations, we
proved that our approach reduces the configuration latencies by more than 30 %
on average compared to decentralized and centralized approaches. Moreover, the
evaluations on a network emulation cluster showed that these results also hold in
larger scenarios. The reduced configuration time strongly helps to increase users’
acceptance for pervasive systems and represents a large step towards seamless
automatic application configuration.

Our next step is to reduce the hybrid approach’s communication latencies
by exploiting the application structure and local component dependencies at the
clustering processes. Moreover, we want to use idle periods at the ADs to precal-
culate partial configurations and store them for future configuration processes.
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Abstract. In this paper we present the design and development of 12Pixels, a 
novel interface, application, and social web service that allows people to create 
and share drawings directly from a regular mobile phone. We detail the release 
of 12Pixels as a service in Japan and analyze trends that emerged from user data 
collected. Our analysis and insights provide useful ground-level experiences 
with social drawing and mobile content creation. 
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1   Introduction 

In recent years there has been an explosion of tools and services facilitating everyday 
creativity. The shrinking size of digital devices such as digital cameras and mobile 
computers has allowed people to create content at any time and any place. At the 
same time the proliferation of the internet has supported the distribution of people’s 
creations and lead to a creative boom of ‘user generated content’ and ‘social web’ 
services. The user generated content model brings a ground-up approach to content 
creation and marks a profound change for computer users and society as a whole. 

Despite the growing interest in online content creation, studies have shown that 
overall time spent with media in the home has not changed significantly for young 
people since 1999 [1], and has shown overall declines in the three years till 2009 [2]. 
Any desktop based tool for content creation therefore competes with a large variety of 
traditional media for an increasingly smaller slice of our free time. However, the 
ubiquitous availability of modern mobile phones makes them an ideal device to be 
used for creative means. Current mobile phones are powerful, rich in functionality, 
and network connected – they have become an important ingredient of everyday  
culture. Designing interfaces and applications that allow people to create and share 
content on the mobile phone is an important and crucial direction for pervasive com-
puting technology.  

                                                           
∗ This project was conducted when both authors were working at Sony Computer Science 

Laboratories in Tokyo, Japan. 
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In this paper we present the design and development of 12Pixels, a novel interface, 
application and social web service that allows people to create and share drawings 
directly from their mobile phone. The project began at Sony Computer Science Labo-
ratories in 2007 with the question: ‘How can we enable people to better express them-
selves with mobile phones?’. We observed that while most standard mobile phones 
offer rich text and camera capabilities, they lack the fundamental ability to draw and 
communicate pictorially. The goal of our research was to develop a native drawing 
interface for the mobile phone (Figure 1).  

 

Fig. 1. Drawing on a mobile phone with 12Pixels 

We chose to design a drawing interface for traditional keypad-based mobile 
phones. The emerging popularity of touch-screen based mobile phone interfaces, such 
as those found on iPhone, has re-introduced many desktop computer drawing tech-
niques onto mobile devices. However, in spite of growing popularity, such high-end 
‘smart phones’ still account for a surprisingly small segment of global mobile phone 
users. According to recent reports the iPhone is still used by less then 1% of users 
world-wide [4] and has had particular difficulties in Japan where the 12Pixels project 
is based. Therefore, developing tools that allow truly everyone to be creative means 
developing tools for the traditional mobile phone – a challenging interface problem. 
The design of a unique interface for drawing on the standard mobile phone is the first 
important contribution that we report in this paper. 

12Pixels was released in Japan to the general public as a social web service that al-
lows drawings to be created, shared, and remixed by a wide range of people using a 
standard mobile phone. 12Pixels was the first mobile web service for ‘social drawing’ 
and we introduce this system as the second contribution of this paper. 

By releasing 12Pixels as a public service we saw it as an opportunity to evaluate 
our design approach, learn more about our users, and iteratively evolve the system as 
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a whole. Would people be interested in drawing on a mobile phone? Would they be 
prepared to contribute and share their drawings? What type of drawings would they 
create? When they would create them? What kind of functionality would be desired? 
Although our designs were informed by a range of user observations, the questions 
above could only be answered by releasing the application and analyzing usage pat-
terns and content from real users. We present analysis and evaluation of the real-
world deployment of 12Pixels as the third unique contribution of our paper. 

The remainder of the paper is organized as follows. In the next section we discuss 
related work and present a summary of content creation and drawing applications for 
the mobile phone. We then take a detailed look at the 12Pixels drawing interface and 
social drawing service, and explore some of the design decisions behind its develop-
ment. We next analyze important trends that emerged from user data collected during 
the release of 12Pixels in Japan, and reflect upon the success of the project. We be-
lieve that our analysis and insights have implications beyond the context of drawing 
and can inform designers and developers in creating richer and more engaging tools 
for mobile content creation. Finally we discuss future work and identify the most 
promising research directions in this area. 

2   Related Work 

Tools that facilitated content creation on mobile phones were initially very few and 
very limited in their capabilities. Text based input, available on almost any mobile 
phone, has been used creatively for some time with everyday communication deco-
rated with text-based icons called ‘emoticons’. In Japan, text-based emoticons are 
referred to as kaomoji (face characters) and progressed from simple character combina-
tions to increasingly complex designs expressing a wide range of emotions (Figure 2). 

 

Fig. 2. A large variety of kaomoji (text based emoticons) has been invented in Japan by mobile 
phone users and are actively used in text-based communication 

Emoticons have not been the only venue for text-based creative expression on mo-
bile phones. ‘Keitai shosetsu’ (mobile phone novels) were born in Japan as a new 
literary genre; each chapter is written on the mobile phone and then distributed via 
text message. Mobile phone novels have acquired such popularity that in 2007 four 
out of five top novels sold in Japan originated on the mobile phone [5]. The exact 
reasons for the popularity of these novels is debated, however it is worth noting they 
possess qualities unique to the mobile phone and are not easily replicated on the 
printed page. 
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Similar to text, mobile photography has become another popular venue for self-
expression. Typical services include photo messaging, photo-based mobile blogging, 
online photo sharing, and mobile photography competitions. Mobile phone music 
creation has been the subject of isolated research and design projects and impacted 
users most in the form of ringtone creation applications. The Digital Minimo D319 
handset, released in Japan in 1996, was the first handset that allowed users to com-
pose their own ring-tone melodies. What followed was a brief period of popularity 
with the release of numerous books listing the ringtone notes of popular songs [6]. 

Perhaps the earliest attempt at implementing drawing functionality on the standard 
mobile phone, is the Draw Picture application provided on the Sony Ericsson T68 
from 2001 onwards. The mobile phone keypad is used to move the pen and draw in a 
‘turtle graphics’ style with imagery saved as monotone bitmap files. The CONTE 
(Canvas ON mobile TElephone) drawing tool developed at Shizuoka University [7] in 
2002 was the earliest academic exploration into drawing on a standard mobile phone. 
As well as offering ‘turtle graphics’ style pen controls, CONTE also provided more 
advanced functionality such as stamps, text input, online album upload, and drawing 
playback. Further work on the CONTE system introduced a technique for drawing 
curved lines using the standard keys of the mobile phone [8]. While both Draw Picture 
and CONTE explore interfaces for drawing on the mobile phone platform, they borrow 
heavily from existing pointer-based interfaces where the user typically creates marks 
using a pen or mouse. Standard mobile phones do not typically support this form of 
interaction, making control of the pointer with buttons cumbersome at best. These 
projects also pre-date the emergence of user generated content and the social web, and 
therefore do not fully explore the possibilities of community driven content creation. 

There have since been numerous approaches to drawing on mobile phones using 
pen-stylus and touch-screen interaction, however, due to our focus on conventional 
mobile phone handsets we will not elaborate further on these systems in this paper. 
An altogether different approach is presented in the TinyMotion [9] system by utilis-
ing a mobile phone camera and computer vision algorithms to allow users to write 
letters in the air for text input. While not intended as a drawing system, TinyMotion 
does offer a natural form of gestural interaction that lends itself to drawing. However 
this form of interaction is not always feasible for mobile phone users in crowded or 
cramped locations. TinyMotion also has very specific hardware and software require-
ments, meaning it can only be used on a limited subset of mobile phone devices. 

Recent years have seen the release of a range of more powerful mobile platforms, 
which have greatly widened the range of tools available for mobile creativity and 
content creation. Although much excitement has been generated, it remains to be seen 
how these new platforms can contribute to mobile phone culture and creativity at 
large. The 12Pixels project has been firmly grounded in and inspired by our direct 
experience with Japanese mobile phone culture. We also drew inspiration from the 
ever-growing popularity of social tools that encourage people to create, upload, share, 
remix, reuse, rate, and comment on one another’s creations. Through our research we 
attempted to instigate a culture of drawing on the mobile phone in a similar vein to 
the social web, we label this ‘social drawing’. We embarked on the task of transform-
ing the ordinary mobile phone into a social drawing tool, much like a new type of 
‘digital brush’, allowing people to draw with very simple input devices, but express 
themselves and communicate in numerous ways. In the rest of this paper we present 
what we were able to achieve. 
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3   Drawing with 12Pixels 

The 12Pixels drawing interface has gone through numerous iterations since it was 
first developed in early 2007 [3]. In this section we present the most recent applica-
tion currently deployed by the 12Pixels service in Japan, and highlight some of the 
design decisions made during the iterative design process. 

Jenkins observes that low barriers to artistic expression are one of the key re-
quirements of what he labels ‘participatory culture’ [10]. Tools for content creation 
are therefore one of the fundamental ingredients of a user generated content ecosys-
tem. Such tools must not only be easy to use, but should be usable straight away 
without learning, and able to produce immediate results. In the case of drawing, the 
user should be able to start drawing on the mobile phone just as easily as they do 
when using pen and paper.   

The importance of immediacy is also stressed in a number of disciplines related to 
creativity. In developing programming languages for children, Papert uses the meta-
phor of low floors and high ceilings [11]. Meaning the language should be easy to get 
started in but still allow for increasingly complex projects over time. Through their 
work designing construction kits for children, Resnick and Silverman extend this 
metaphor by introducing the idea of wide walls where a wide range of different pro-
jects can be created [12]. These were key considerations in designing the 12Pixels 
interface to accommodate a wide audience and a range of different usages. 

3.1   12Pixels Basics 

The 12Pixels drawing technique is based on the fundamental idea that each of the 
twelve keypad keys on the mobile phone can be mapped to one of twelve pixel cells 
onscreen. Each pixel cell is not a single pixel but rather a section of the drawing area 
that mirrors the three by four grid of the keypad. As each cell corresponds to a button 
on the mobile phone keypad, when the user presses the top-left ‘1’ key, its corre-
sponding cell in the top-left of the drawing area is marked out. This spatial relation-
ship between the keypad buttons and the onscreen interface is immediately apparent 
and understandable for first time users. Figure 3 shows the spatial relationship be-
tween keypad keys and pixel cells onscreen. 

 

Fig. 3. Drawing with 12Pixels, the buttons of the standard mobile phone are mapped to pixel 
cells on screen to create imagery 
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Similar to other projects within the field of embodied interaction [13] this tech-
nique takes advantage of strong tactile cues that the physical mobile phone keypad 
provides. At any moment the user can find and press relevant keys to mark out corre-
sponding pixels onscreen, relying only on tactile feedback i.e. by sliding their fingers 
over the phone keypad. This is especially important for mobile phone users, as they 
need to repeatedly shift their attention from the mobile phone to the surrounding  
environment.  

In designing the 12Pixels interface we also attempted to minimize the number of 
key presses required when drawing. At any moment the user can select from twelve 
neighboring pixel cells without having to repeatedly reposition a pointer or cursor. 
This makes drawing a shape such as a plus sign (+) simply a matter of pressing five 
different keys on the keypad. Using a pointer-based drawing approach would require 
an additional six key presses in order to move the pointer then mark each pixel out 
one by one. The pointer approach also requires significant finger movement back and 
forward between the keypad and the directional keys.  

Our approach also allows users to operate the interface with only a single thumb. 
This is a crucial requirement for any mobile phone interaction as it frees up the other 
hand for carrying other objects such as a bag or an umbrella, or holding on to a safety 
railing in the train or on an escalator. 

3.2   Drawing Levels 

Spatially linking physical buttons to onscreen interface elements has been used to 
some degree in existing mobile phone menus and also explored as an interaction  
technique for previewing information [14], zooming [15], and selecting on-screen 
elements [16]. 12Pixels expands upon these techniques to implement a drawing inter-
face with ‘levels’ that allow incrementally smaller cells to be marked out on-screen 
for the creation of more detailed and sophisticated images.  

The directional keys of the mobile phone ‘joystick’ and the center selection key are 
used to control and navigate through levels. As the user presses the selection key, the  
 

 

Fig. 4. The directional keys can be used to toggle between levels and move the drawing area 
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drawing area shrinks down a level and can then be repositioned onscreen with the 
directional keys. Using the keypad the user can then mark out smaller sized cells 
onscreen to create imagery at a finer scale. Currently three levels have been  
implemented, with each level becoming incrementally smaller in a fractal like way, as 
shown in Figure 4. At the top level the drawing area controls the maximum 27 x 36 
cell area, with the middle and lower level controlling 9 x 12 and 3 x 4 cells  
respectively. 

3.3   Additive and Subtractive Drawing 

Large areas of the screen can be quickly filled to allow drawing using both additive 
and subtractive methods. It is just as easy to add pixels to a blank area as it is to sub-
tract pixels from a drawn area. Aside from filling each cell individually, the drawing 
area itself can also be filled with a single press of the clear key. As illustrated in  
Figure 5, to draw a simple character the user can quickly fill in large areas for the 
head and body, then mark out finer details such as the eyes, ears, and mouth by  
subtracting from the drawn area.  

 

Fig. 5. Additive and subtractive drawing with the 12Pixels interface 

As opposed to traditional drawing, where the artist repeatedly adds color to the 
canvas, this approach is more akin to sculpting with clay or play-doh. Users can 
quickly block out key elements before adding further detail. The drawings themselves 
reflect this process, showing strong composition and contrast. 

3.4   Color and Lines 

The initial design iteration of the 12Pixels interface allowed only grayscale drawings 
to be created. Our motivation was to make the drawing process as simple as possible, 
akin to sketching pencil lines on paper. However, during the first round of 12Pixels 
workshops, color was the single most requested feature. To address this issue we 
experimented with a number of different designs ideas for adding color in a way that 
would not impede upon the simplicity of the interface. We explored the use of mono-
tone colors schemes, color blending, and the mobile phone camera to select colors 
from the physical environment. We decided on using a function key to activate a 
simple color menu with a preset primary color palette. Shades of color can then be 
selected by toggling through a sequence of color gradations from dark to light. The 
color is then stored so that when marking out subsequent pixel cells the current color 
is maintained.  
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In addition to marking out pixel cells using single key presses, lines can be created 
by holding down a keypad key then moving the joystick in the direction desired. The 
drawing area shrinks down to the size of the single pixel cell according to the level, 
allowing for lines of different thickness to be created.  

3.5   Preliminary Observations 

In designing 12Pixels we strived to develop an interface that could be used almost 
immediately with minimal time spent learning. We wanted users to begin drawing at 
once, and learn the more advanced features of the interface, such as drawing with 
shades of color or lines, along the way.  

It is often the case that the developers of tools and interfaces become very profi-
cient in their use, however, what would an average person be able to draw with 
12Pixels? To answer this question we conducted a two month long experiment where 
the application was provided to members of the general public visiting the Sony Ex-
ploraScience centre in Tokyo. The range of drawings produced by visitors to the ex-
hibition was surprisingly extensive and showed a wide range of skill for first time 
users. Looking at the quality of drawings fuelled our enthusiasm for the project and 
gave us some valuable insights into the type of drawings people want to create. 

We next conducted two workshops at the Science Gallery in Dublin. The aim was 
to gather direct feedback on the drawing experience, establish ways in which the 
interface could be improved, and test out the initial implementation of our social 
drawing service. The first group consisted of 13 high school students aged between 
15-16 and the second group were 10 adults aged between 20-40. We began with a 
simple demonstration followed by a period of drawing time where we observed how 
quickly they came to grips with the interface. A communal screen was setup so that 
participants could optionally upload their drawings to be displayed to everyone else. 
This feature was used heavily in both workshops as participants were eager to share 
their drawings with one another. Much to our surprise it was common for written 
messages to be created and uploaded; this proved to be a popular way to use 12Pixels 
in both the initial workshops and the subsequent public release.  

These early user observations were an invaluable experience and proved to us sev-
eral important points. Firstly, the Sony ExploraScience exhibition showed us that 
drawings of high quality and wide creative range could be created by first time users.  
Secondly, the Science Gallery workshops proved to us first hand that sharing one’s 
creations is a key component of the creative process. These points encouraged us to 
continue improving 12Pixels and further develop our concept of ‘social drawing’. 

4   Social Drawing 

Jenkins notes that another fundamental element of ‘participatory culture’ is the infra-
structure for sharing content and building a community of like-minded creators [10]. 
In this section we outline details of the 12Pixels infrastructure that share many of the 
aims outlined by Jenkins to support and encourage content creation.  
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4.1   Release and Implementation Details 

12Pixels was released publically as a free service via Sony Style Japan in March 
2009. The Japanese market we believed would be an ideal real-world situation to test 
both the 12Pixels service and our ideas about mobile content creation and social 
drawing. 

To date there have been two official releases of 12Pixels in Japan. The first release 
consisted of monotone drawing with five differently colored applications available in  
black, red, blue, green, and pink. Users could select their favorite color to download 
and draw using its five shades. This approach allowed us to test the core interface 
design in the field, and evolve the use of color in later releases based on user feed-
back. The second version of 12Pixels was released in late July 2009 and implemented 
full color drawing, along with a range of updated web service functionality such as 
commenting, ranking, and advanced gallery features.  

12Pixels is implemented as a Java-based frontend mobile phone application, with a 
web server backend used to exchange drawings and information from a central data-
base. Three separate applications are compiled and distributed for the main Japanese 
mobile networks, NTT docomo, Softbank Mobile, and au by KDDI. Despite recent 
trends towards install-free web applications for desktop computers, this approach has 
yet to become a reality for mobile phones. By dividing the functionality between a 
frontend mobile application and a backend server we gain the superior functionality 
and reliability of an installed application with online connectivity when needed. In the 
discussion that follows we present the core features of 12Pixels that facilitate social 
interaction between users.  

4.2   Social Interaction 

The 12Pixels service offers much of the functionality that has become common in 
desktop based user generated content web applications. It supports the distribution 
and sharing of drawings both through formal online services and via user-to-user 
messaging. 

  

Fig. 6. Drawings can be shared by uploading (left) and downloading (right) directly within the 
12Pixels application 

Sharing, browsing, and searching drawings. Drawings created in 12Pixels can be 
uploaded with descriptive keywords directly from the mobile phone application. 
Drawings are then added to the communal gallery on the 12Pixels server and can be 
accessed immediately from either the 12Pixels application or a web browser. From 
within the 12Pixels application the drawing gallery can be browsed by date created, 
keyword, and popularity rating. When a user finds a drawing they like, it can then be 
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downloaded directly to the 12Pixels drawing canvas for further editing and remixing 
(Figure 6). All content submitted to the communal gallery is accessible to all users, 
and can be freely downloaded and edited at any time. 

Commenting and rating. Comments can be added to drawings by browsing to the 
drawing inside the application and then launching the drawing’s comment page in the 
mobile web browser. This page displays the user comments so far and also allows 
individual users to rate how much they like the drawing. 

Templates and premium content. To showcase the creative possibilities of 12Pixels 
we provide a special gallery of ‘premium content’ created by well known artists and 
designers. This serves as useful example imagery and a source of inspiration for users. 
Drawing templates such as speech bubbles, heart shapes, and face outlines are pro-
vided as an easy starting point for quick drawings. An additional ‘Campaign’ gallery 
is also provided for seasonal drawing challenges and official tie-ins.  

Local save. To give drawings a life outside of the 12Pixels application, drawings 
can be saved as standard GIF image files. This allows drawings to be utilized for any 
number purposes including mobile phone wallpaper, address book images, or sending 
them to friends via e-mail. 

Creating emoji. One specific drawing usage for Japanese mobile phones is the crea-
tion of custom emoticons called emoji. Most Japanese phones have a pre-installed set 
of several hundred graphical emoji icons, but also allow for other custom icons to be 
embedded in rich-text email messages. We implemented a special emoji mode for 
12Pixels where users can create their own original emoji straight from their phone. 
Emoji are saved locally to the phones memory and can then be easily added to email 
for truly personalized communication. Figure 7 shows a selection of emoji created 
with 12Pixels and an example of rich-text email usage. 

 

Fig. 7. A selection of custom emoji (emoticons) created with 12Pixels (left) and an example of 
their usage in rich-text email (right) 

Personal manufacturing. As another way for 12Pixels drawings to be shared between 
users a special service was created to manifest drawings into physical form. The 
‘crystal accessory’ service turned user created drawings into custom fashion accesso-
ries as shown in Figure 8. By drawing on one of the templates provided, users would 
submit their design online to Ginza-based jeweler Lights Style and order original 
crystal jewelry such as dog tags, mobile phone stickers, and key holders.  
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Fig. 8. Drawing with 12Pixels to create an original accessory 

5   Usage Analysis 

User studies can be used to evaluate the efficiency of specific tasks or identify spe-
cific application weaknesses, but they do not necessarily indicate if a new idea will 
become successful or popular with the general public. Releasing a project to the wider 
population and observing its reception is the only true way to find such results. This is 
particularly true for Japan, which has developed a very unique mobile phone culture. 
Will people be interested in 12Pixels? Will they be able to draw interesting images? 
What kind of images will they draw? How will they use the drawings? Without re-
leasing 12Pixels we believed it was all but impossible to convincingly answer these 
questions. 

In this section we present analysis of the data collected following the public release 
of 12Pixels in Japan. As 12Pixels was released as an official service, we were  
fortunate to benefit from advertising and promotion of the application and quickly 
gathered a relatively large number of users. However this approach had certain disad-
vantages such as having to adhere to the Sony corporate privacy policy that did not 
allow us to access personal data or to directly contact end users for research inter-
views. Although we did collect a significant amount of data, we were only able to 
analyze it indirectly. This analysis is interesting and important for several reasons. 
Firstly, we discovered certain usage patterns for 12Pixels that are applicable to a wide 
range of content creation applications. Secondly, our analysis suggests that creativity 
based applications and services are a promising direction for mobile phone develop-
ment. Finally, we hope our analysis can inspire the development of new services, 
applications, and ideas for mobile creativity in general.  

5.1   Data Analyzed 

We made a comprehensive analysis of data from the first month of service after the 
initial release, from March 21 - April 21, 2009. The results of this analysis allowed us 
to re-think aspects of the 12Pixels design and evolve new features for the subsequent 
release. Here we introduce this analysis and also make comparisons with data from 
the first month of the second release, June 30 - August 30, 2009. 
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5.2   Can People Draw with 12Pixels? 

Figure 9 shows a small sample of drawings created by 12Pixels users since the initial 
release. It can clearly be seen that the variety of drawings is surprisingly extensive 
and complex; the quality and creativity of these drawings is nothing short of amazing.  

 

Fig. 9. A small sample of drawings created by 12Pixels users in Japan 

It is also apparent that technical drawing skills are not necessarily required to ex-
press oneself in interesting and unique ways. Indeed many of the simplest images are 
among the most expressive and enjoyable. Our experience with 12Pixels demonstrates 
that like many user generated content services, social drawing can be a truly democ-
ratic medium that allows anyone to be creative. 
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5.3   Is 12Pixels Creatively Limiting? 

In the process of designing and implementing 12Pixels an often-expressed concern 
was the possibility of encountering a significant degree of repetition in user drawings. 
In other words, does the low resolution limit creativity?  

The 27 x 36 pixel canvas offered by 12Pixels may at first seem limiting, however 
the actual amount of unique imagery that can be created is very much vast. The vast-
ness of the design space can be understood with a simple thought experiment. Ac-
cording to McCormack [17] if you were to spend every second of your entire life 
looking at a different variations of a black and white 6 x 6 pixel image, by the time of 
your death you would have seen less than 1% of all possible images. This suggests 
that the possibility space 12Pixels provides is theoretically more than adequate for its 
intended purpose.  

By analyzing the drawings we found the overwhelming majority were unique and 
special. There were however, some interesting exceptions. The first theme we noted 
was repetition when users drew pervasive cultural symbols, such as the heart mark or 
well-known characters. The second theme involved repetition when remixing and 
repurposing drawings from other users, this is discussed in more detail below.  

These cases do not contradict our basic conclusion that low resolution and ‘en-
forced’ simplicity did not limit user creativity. From observing the thousands and 
thousands of drawings created since the initial release, there has been no indication 
that the canvas size became a limiting factor on user creativity. On the contrary, and 
as has been suggested by Boden [18], we found that the introduction of constraints on 
the creative process is what makes creativity possible by mapping out a territory of 
structural possibilities to be explored. This also creates a low entry barrier where 
users are less intimidated by the complexity of drawing and worry less about making 
mistakes.  

5.4   Remixing and Repurposing 

When we analyzed drawings uploaded to 12Pixels over the first month, we observed 
that about 59% were original drawings, and the remaining 41% were repurposed 
original content.  

 

Fig. 10. Examples of remixed (left), recolored (middle), and progressive drawings (right) 

Within the 41% of repurposed content we found three distinct drawing sub-
categories, example drawings are shown in Figure 10. 

Remixed drawings (22%) are original drawings that were modified to produce a 
different variation by adding or removing various graphical elements.  

Recolored drawings (4%) are drawings where only the color of the original draw-
ing was changed without changes to the drawing itself.  
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Progressive drawings (12%) are uploads of a single drawing at various stages of 
development.  

Other drawings (62%) are identical drawings uploaded multiple times by the same 
user or tests of the upload functionality such as blank images. 

Analysis of drawing repetition demonstrated that 38% of drawings were re-used 
for purposeful reasons, as users actively modify drawings and contribute them back 
again. For the second release we were able to track how many times each drawing 
was downloaded to the 12Pixels canvas specifically for repurposing (rather than just 
browsing). Of the 2276 drawings created in total, they were downloaded for repurpos-
ing 3790 times. This suggests that remixing and repurposing other drawings plays a 
major part in the creative cycle of 12Pixels. 

These observations lead us to rethink the distribution of the ‘premium content’ 
drawings we provided as examples. While this content was viewed frequently, it was 
not designed with remixing in mind and therefore was seldom appropriated. For the 
second release we shifted our focus to providing templates, rather than completed 
drawings, to accommodate easy remixing and repurposing. 

5.5   What People Drew 

What would people draw with 12Pixels? We felt this question was important because 
it directly impacts upon the type of tools users require. To answer this question we 
surveyed drawings from the first month of the 12Pixels release and identified the 
following most common image categories: People (11%), Animals (22%), Pop Cul-
ture (7%) i.e. artifacts commonly found in everyday culture, such as game characters, 
Original Drawings (7%), i.e. original characters; Messages (23%), i.e. drawings 
where text is the key element, Objects (7%), i.e. various objects such as such as cars, 
planes, etc, Symbols (20%), i.e. abstract or highly stylized imagery such as heart 
marks and Others (7%), i.e. drawings that do not fall into any of the above categories. 
Examples drawings from each category are shown in Figure 11. 

While the above categorization is certainly an approximation, it provides an inter-
esting insight into what and why people would draw on the mobile phone. It was quite 
unexpected that Messages represented the largest category with 23% of drawings. In  
 

 

 

Fig. 11. Drawing categories: A: People, B: Animals, C: Pop Culture, D: Original Drawings, E: 
Messages, F: Objects, G: Symbols/Abstract 
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retrospect, it is a quite understandable – drawing messages creates highly personal-
ized content that is both expressive and quick to create. This is particularly true for 
the Japanese language as it is very graphical by nature and lends itself to pictorial 
representation. Animal (22%) and Symbols/Abstract (20%) drawings follow closely, 
with the Symbols category prominent as it includes the heart symbol, which by itself 
constituted nearly 30% of drawings within the category. 

Our analysis of the drawings suggests that one of the most important reasons for 
people to draw on the mobile phone was to support communication, rather than sim-
ply express oneself creatively. This trend is even more evident when we estimated 
how drawings were used once created. 

5.6   How Drawings Are Used 

While we cannot track how people use drawings locally on their phone, e.g. as custom 
wallpaper, we can track the use of 12Pixels services to create emoji and physical ac-
cessories. From the first release 45% of the images uploaded to the communal gallery 
were emoji icons and roughly 4% of images were drawn to create physical accesso-
ries. For the second release, emoji icons accounted for 39% of drawings uploaded 
during the same one month period.  

This observation indicates that a large percentage of 12Pixels drawings were used 
as a means to support self-expression when communicating via email. Hence, 
12Pixels had significant use as a tool for supporting communication, rather than crea-
tive expression alone. We were somewhat surprised that creating physical accessories 
did not prove very popular with users. The expense of ordering the accessories is one 
possible reason, and it is also possible that 12Pixels is viewed as a casual drawing tool 
rather than for ‘serious’ accessory design.  

5.7   Usage Patterns 

In highly urban areas such as Tokyo, long periods are spent with mobile phones while 
commuting to and from work, a 2005 survey calculated the average one-way com-
mute time to be an astonishing 67 minutes for workers and 72 minutes for students 
[19]. We envisioned 12Pixels as a tool to be used during these ‘downtimes’ on the 
train to and from work, while waiting for friends, or in any other in-between 
times. From the data collected from the first release we analyzed drawing upload 
times to gain a better picture of usage patterns. Figure 12 shows the distribution of 
uploads by hour over the course of the day. We can see that the peak upload time 
occurs when people are commuting home after leaving work around 6pm. The second 
peak comes after dinner at around 9pm and another lesser peak around lunchtime. 
While not a definitive answer to the question of when and where people are using 
12Pixels, this data provides a useful insight. It in part substantiates our assumption 
that 12Pixels would be used during small pockets of downtime, however we were 
surprised to find that there was sparse activity during the morning commute and con-
tinued activity after returning from work.  
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Fig. 12. The distribution of drawing uploads over the course of the day 

5.8   Evolution of 12Pixels 

The second release of 12Pixels has included a number of improvements driven by the 
analysis that we presented above. A refined color menu interface was added, the proc-
ess of creating emoji was significantly improved, content available online was  
rethought to cater for remixing, and we also significantly strengthened the social ca-
pabilities by adding a commenting and rating system. 

The result of these improvements was a significant increase of drawings uploaded 
to the server. In the first month of use, the number of drawings uploaded increased by 
approximately 300% from 780 to 2276 in the second release. The number of repeat 
users, i.e. those who uploaded 2 or more drawings, increased from 42.8% to 61%. 
This data supports the validity of our observations and shows a growing real-world 
interest in 12Pixels. 

6   Discussion 

With the current proliferation of social web applications there appears to be genuine 
and growing interest in all forms of computer based creativity and content creation. 
Through the 12Pixels project we have explored the approach of ‘social drawing’ on 
the mobile phone and uncovered new ways for people to express themselves. This 
section presents some of the conclusions drawn from our experiences. 

6.1   Mobile Phones for Creativity? 

One of the main questions our research sought to answer was: Are people interested 
in using their mobile phone creatively and in particular for drawing? We believe that 
our observations point to a positive answer to this question. Indeed, the drawings and 
creative output that we observed from thousands of people surprised and amazed us. 
At the time of this writing nearly 25,000 drawings have been contributed to the 
12Pixels gallery in under a year. This suggests that using 12Pixels is an engaging and 
appealing process. We believe that tools for creative expression on the mobile phone 
provide a unique and special experience that is not found on traditional desktop com-
puting platforms.  
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6.2   Simplicity vs. Expression 

User discussions and observations suggest that the simplicity of the drawing interface 
was one of the key reasons behind 12Pixels appeal. Throughout the process of devel-
oping 12Pixels we were constantly forced to consider the trade off between ease of use 
and expressive ability. It was critical to find the appropriate balance; users frustrated by 
the difficulty of interaction will soon give up, as will users bored by the limited possi-
bilities of expression. In the words of Levin we strived to create an instrument that like 
the pen and the piano is ‘instantly knowable, indefinitely masterable’ [20].  

Have we been able to achieve this balance with the 12Pixels interface? Based on 
the amazing quality of drawings created, we believe we have come close. One memo-
rable comment received from an interaction designer working in the mobile phone 
industry described 12Pixels as being: ‘Simple to use, difficult to draw’. This may 
seem contradictory but it very much echoes Levin’s maxim above. As deceivingly 
simple as the pen and the piano are, without mastery there can be no masterpiece.  

We believe that striking the balance between expressiveness and ease of use is a 
crucial challenge for developing any interface for creative expression. Achieving this 
balance requires careful consideration of the creative process, and its immediate con-
text. We found that the technical constraints of the mobile phone, while challenging, 
can be utilized to define a very specific area of creative activity. In our case using the 
specific style of pixel art may at first seem like a major limitation, however it in effect 
acted as a mechanism to free up the creative process by posing well considered con-
straints and encouraged participation.  

6.3   Creative Communication 

We found that one of the most important reasons why people would use 12Pixels was 
to enhance communication. This was evident in the number of drawings created with 
message based content and in the surprisingly high percentage of emoji icons created 
for personalized email communication. We believe the role of communication should 
be carefully considered for any usage of the mobile phone as a creative platform – 
adding communication capabilities is extremely important. Exploring the link be-
tween creativity, communication, and mobility can be a fruitful and exciting area of 
research for the pervasive computing community. 

7   Future Directions 

We believe that developing applications to support everyday creativity is an exciting 
and promising area of future research for pervasive computing applications.  
The 12Pixels project explored only a limited range of the possibilities for mobile 
creativity. Areas we have yet to explore include developing an enhanced drawing 
interface for animation, with functionality to create and share quick animated se-
quences. Drawing interfaces can also explore the use of the mobile phone camera to 
capture color, provide images for annotation, and develop simple digital image proc-
essing techniques.  

As the functionality of the mobile phone extends to include more and more web 
based services, there are numerous opportunities for enhancing them with 12Pixels-
style drawing functionality. For example drawings can be used as custom ‘visual tags’ 
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to mark out distinct locations on an online map or even be used as input in a visual 
search engine. Drawing is a form of expression that has to-date been largely ignored 
by mobile phone research and there remain a surprisingly wide range of innovative 
applications yet to be developed. We hope this work will encourage researchers and 
practitioners to explore this exciting area. 
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Abstract. Mobile devices with multi-touch capabilities are becoming
increasingly common, largely due to the success of the Apple iPhone
and iPod Touch. While there have been some advances in touchscreen
accessibility for blind people, touchscreens remain inaccessible in many
ways. Recent research has demonstrated that there is great potential in
leveraging multi-touch capabilities to increase the accessibility of touch-
screen applications for blind people. We have created No-Look Notes, an
eyes-free text entry system that uses multi-touch input and audio out-
put. No-Look Notes was implemented on Apple’s iPhone platform. We
have performed a within-subjects (n = 10) user study of both No-Look
Notes and the text entry component of Apple’s VoiceOver, the recently
released official accessibility component on the iPhone. No-Look Notes
significantly outperformed VoiceOver in terms of speed, accuracy and
user preference.

Keywords: accessibility; mobile device; multi-touch; touchscreen; text
entry; eyes-free.

1 Introduction

The development of touchscreens sensitive to multi-finger input has sparked
a renaissance of interest in the technology’s popularity. Devices like the Apple
iPhone are part of a rush to take advantage of this wave of interest. Touchscreens
also bring undeniable utility, reducing the need for peripherals like keyboards and
lending themselves to collaborative use. Effective and flashy, touchable interfaces
have appeared at the cash register of the supermarket, at the check-in line of
the airport, and in the pockets of the masses.

Unfortunately, as discussed by McGookin et al. [1], the creation of accessi-
ble modifications and enhancements for touch-based devices is lagging behind
the breakneck pace of mainstream development. Touchscreens pose an especially
daunting challenge for blind or visually impaired users. In place of familiar de-
vices like the keyboard, screen computing generally offers a uniform, featureless
surface. The trend of emulating existing GUI’s while using the finger as a mouse
can translate existing problems into an even more difficult context. On top of
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this, mobile systems often feature unique or restructured interface layouts. The
end result is a confounding environment for accessibility programs.

Eyes-free use by sighted users is also difficult. Touchscreens demand the user’s
visual attention, making it extremely difficult to carry out other tasks simultane-
ously. In some cases, social norms require discreet or covert use of a touchscreen.
For example, a meeting participant could respond to an urgent text message
or jot down a note without appearing inattentive. There are even situations
where focusing on a touch screen is physically hazardous, such as sending a text
message while driving.

On a system like the iPhone, users enter text for a myriad of tasks includ-
ing text messaging, internet browsing and the use of third-party applications.
Text entry proceeds with a virtual keyboard, creating a plethora of miniature,
adjacent targets that are completely indistinguishable from one another without
visual examination. Competitors like the Blackberry Storm by Research In Mo-
tion have followed suit with their own virtual keyboards. Text entry is thus a
primary means of interacting with devices like the iPhone and Blackberry Storm,
but it is extremely difficult to do without visual input.

Following this conviction, we developed No-Look Notes, an eyes-free gesture-
based text entry system for multi-touch devices. No-Look Notes offers two-step
access to the 26 characters with a small number of simple gestures that remove
the precise targeting required by soft keyboards. Some basic text editing actions,
such as backspace, are included as well. The combination of gestures and multi-
touch capabilities results in a system that is both explorable and expeditious.

We begin this paper with a discussion of related work and a formative pilot
study. We then present the design principles that follow from this synthesis, and
describe the design of No-Look Notes. Next we report the results of a user study
with visually impaired subjects, testing both No-Look Notes and the text entry
component of Apple’s new eyes-free accessibility tool, VoiceOver. We conclude
with an analysis of our results and discuss future work.

2 Related Work

Text entry on mobile devices is a well-studied research area. Mackenzie and
Soukoreff give a thorough overview of text entry systems on mobile devices using
pen-based and keyboard-based input [2]. Our system, No-Look Notes, focuses
on a third paradigm of input: multi-touch text input. Eyes-free multi-touch text
entry is an exceptionally young research topic, so our related work draws on
both single and multi-touch text entry work, as well as the haptic augmentation
of touchscreens.

2.1 Eyes-Free Single-Touch Text Entry on Touchscreens

Sánchez and Aguayo developed “Mobile Messenger for the Blind” [3], a mes-
saging system for mobile devices that divided the screen into a 9-button virtual
keyboard with multiple characters on each virtual key, much like a mobile phone
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keypad. To specify a character, a key must be tapped multiple times. The system
used text-to-speech (TTS) for output.

While it is clearly difficult for blind people to perform positional input, such as
using a computer mouse or finding targets on a touchscreen, Mobile Messenger for
the Blind made this task easier by keeping the number of targets low, placing them
at easy-to-reference locations based on the physical characteristics of the device
(e.g., the edges and the corners of the screen), and keeping the targets static.

Increasing the number of targets will not only make a target-based system
more difficult to explore, but also more difficult to enter text on. Our system, No-
Look Notes, completely avoids the accuracy issues of requiring users to precisely
tap several times on a target by using a multi-touch input system. By using a
circular layout, No-Look Notes may also more easily add new input ‘targets’
while maintaining a simple exploration strategy.

Numerous systems rely on gestures for text entry, sometimes in combina-
tion with targets. Tinwala and MacKenzie developed a system based on Graffiti
strokes for eyes-free text entry [4]. While the system is targeted at non-visual
use, Graffiti strokes require the user to trace complicated forms (e.g., english
letters) onto the screen. Ken Perlin’s Quikwrite [5], though not targeted at visu-
ally impaired users, attempts to speed Graffiti entry by replacing letter shapes
with regions. Users enter text by dragging to a group of letters present on a
particular screen region, then to a secondary subregion to enter a specific letter.
As described by Plimmer et al. [6], writing and learning to write is an extremely
challenging task for visually impaired users. It is unlikely that a Graffiti-based
system, or a system involving multiple precise and sequential gestures, will be
usable for many visually impaired users.

Yfantidis and Evreinov created a system that used extremely simple uni-
directional single-finger directional gestures that mapped onto pie-menus of char-
acters [7]. A gesture in any of the 8 compass directions (North, Northeast, East...)
corresponded to a unique character. 24 characters were mapped onto 3 separate
“layers,” or pie-menus, which are traversed based on the delay of the finger be-
tween touching the screen and commencing a gesture. This system also strictly
used TTS for output.

The gesture-based approach of this system does not require the user to hit any
targets. The time-delay to switch between screens could be improved upon by in-
troducing multi-touch interaction techniques, but this was a hardware limitation
and not a system implementation issue.

At Google, T. V. Raman has created a system that incorporates elements of
both gestures and soft buttons [8]. As in Yfantidis and Evreinov’s system, charac-
ters are arranged into ‘rings’ which are selected by a gesture towards the desired
character. Two representative letters from each ring are arranged on an additional
default ring. Users enter letters by first selecting one of these representative char-
acters, which transitions the screen to a secondary ring. On this secondary ring,
users select a character, and begin the process anew. This design speeds text input
by removing the need to wait to move between menu screens.
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Fig. 1. Entering a character using VoiceOver: 1 Basic ‘soft’ QWERTY keyboard. 2
Rest finger on desired character. 3-a Tap screen anywhere with second finger (‘split-
tap’) or alternatively. 3-b Lift up first finger and then double-tap the screen anywhere.

Both Yfantidis and Raman attempt to avoid the issue of accurately tapping by
using gestures and have explicitly chosen simple, straight-line gestures. Despite
this, accurately gesturing without visual feedback is challenging. Users must also
first ensure their gesturing finger is oriented properly on the phone. No-Look
Notes addresses the accuracy issues of targets by adding multi-touch instead of
switching to gestures, thereby avoiding these potential pitfalls.

The largest problem with these two systems however is their lack of an effective
exploration method. Users must continually swipe in different directions until
the desired letter is found, deleting the character every time it is incorrect.
After entering a letter, users must distinguish that series of swipes and delays
from all the previous erroneous but highly similar input gestures. Introducing a
completely novel and non-trivial organization of letters, as in Raman’s system,
could further the confusion. Because it uses a multi-touch technique for text
entry, No-Look Notes is able to reserve single-fingered interaction for exploration.
Users may drag their finger around the screen seeking a letter without entering
characters along the way.

2.2 Multi-touch Interaction

During No-Look Note’s development, Apple announced “VoiceOver,” a system
for eyes-free use of the iPhone that relies on touch-input and TTS output [9].
VoiceOver’s general scheme uses a ‘focus’ box which is moved between UI ele-
ments either by touching an element or flicking a finger in the direction the user
wants focus to move. Double-tapping the screen activates the item currently
inside the focus box. “Split-tapping,” in which the user first rests a finger on
the desired item and then touches the screen with a second finger, may also be
used to select an item. An early example of this general strategy of providing an
‘audio overlay’ for an unaltered GUI by moving focus between UI elements was
demonstrated by Mynatt and Edwards [10].

Text entry in VoiceOver is subsumed by this basic focus-box system. Users
interact with a soft keyboard (and any other application) by using this



No-Look Notes: Accessible Eyes-Free Multi-touch Text Entry 413

system: touching near the key they wish to use, ‘swiping’ to move the focus
box until it is correctly targeted if necessary, and split-tapping or double tap-
ping to enter the key (see Figure 1). VoiceOver has additional functionality for
examining the entered text. Users may swipe a finger up or down on the screen
to move a cursor/insertion point through a line of text, reading each character
the cursor moves over. In the rest of this paper, when referring to “VoiceOver,”
we refer only to this text entry component.

Because it relies on a QWERTY keyboard layout, VoiceOver presents the
user with a large number of targets. This can make it difficult to locate a letter,
even though the double-tapping/split-tapping system helps avoid target-tapping
accuracy issues. Additionally, the screen will be a non-sensical jumble of letters
to users unfamiliar with computer keyboards.

No-Look Notes also uses split-tapping to allow the use of targets while avoid-
ing their potential for accuracy issues. We further ease exploration by minimiz-
ing the number of targets on the screen at one time, using a simple alphabetical
character-grouping scheme based on phone keypads.

As Apple’s official accessibility system included by default on the latest iPhone
versions, VoiceOver will be distributed as the de facto accessible text entry sys-
tem for a very large number of users. This makes VoiceOver both the first pub-
licly released and first widely distributed multi-finger text entry system for touch
screens. No-Look Notes was extensively and directly compared against VoiceOver
in our evaluation, in which we evaluate both systems.

VoiceOver’s “split tap” is identical to the “second-finger tap” developed in
Slide Rule by Kane et al. [11]. Slide Rule is a set of multi-finger interaction
techniques for list-based applications, such as a phonebook and a music player.
A complementary pair of techniques developed were the one-finger scan and
second-finger tap, where sliding one finger on the screen is used to browse lists
and a second finger tap, while still touching the screen with the first finger,
selected an item in the list.

This approach both promotes risk-free exploration of items and allows blind
users to select items without hitting a target on the screen. It is clear from
this system that relatively simple multi-finger interaction techniques can greatly
improve the accessibility of touchscreens. Our system also employs the split-tap
from Slide Rule and applies it to text entry.

2.3 Haptics and Touchscreens

Haptic feedback for touchscreens tends to appear as an augmentation of button-
based interfaces, as in work by Brewster [12], Leung [13] and Kaaresoja [14].
Brewster in particular showed simple haptic augmentation was beneficial for
entering text on a small virtual keyboard. Recent work by Yatani and Truong
explores other uses for haptics, using vibration to assist a gesture-based
system [15].

Our system eschews haptic feedback because we wanted to develop a system
that could be used on any touchscreen without modification. Touchscreens not
integrated in mobile devices (e.g., mobile phones) are unlikely to have vibration
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motors included. Systems like Yatani’s require extensive modifications even to a
phone that offers vibration.

3 Design

3.1 Pilot Study

The design of No-Look Notes was informed by both the aforementioned work
and by a pilot study of a prototype system. This pilot system was our first
attempt at using multi-touch interaction to improve a gesture-based system. In
our prototype, letters and letter groups (grouped by frequency of predicted use)
were arranged in pie menus around the screen and as in the systems by Yfantidis
[7] and Raman [8].

Rather than cycling through the pie-menus by selecting a representative char-
acter or adding a time delay, we tested a multi-touch interaction technique. By
resting a finger on the screen, the user switched to a second pie menu. Users
thus entered a letter or letter group by swiping in a letter’s direction, or resting
a finger on the screen and then swiping.

We tested our prototype with five visually impaired participants, each of
whom entered text for about 1.5 hours. This testing exposed three interrelated
qualities that are absolutely key for a successful eyes-free text entry system: (1)
Robust Entry Technique, (2) Familiar Layout, (3) Painless Exploration.

Robust Entry Technique. Eyes-free systems must provide text entry tech-
niques that are both exceptionally simple and exceptionally error-tolerant. With-
out visual confirmation, it is difficult for users to make precise gestures or hit
precise targets. Mundane interaction techniques rapidly increase in complexity
when used in an eyes-free context. Small distinctions, such as the difference be-
tween gesturing ‘Left’ and ‘Up-and-Left’ or the difference between a full circle
and a three-quarters circle, are especially difficult.

Familiar Layout. A layout that is easy to conceptualize and related to familiar
interfaces or groupings is critical for an eyes-free system. Because touch-screens
and multi-touch gestures are already foreign to most visually impaired users, an
interface needs to include a recognizable layout it can to reduce the cognitive
load on its users. Alphabetization, for example, will be far more successful than
a layout based on theoretical character frequencies.

Painless Exploration. Users of an eyes-free system must be able to painlessly
explore the system’s layout, not just correct their mistakes. Exploring by re-
peatedly entering and undoing actions is not acceptable, there must be some
first-class exploration technique. “Entering and undoing” adds to the user’s cog-
nitive load by requiring them to remember which entry was correct among many
similar entries. Painless exploration is aided by a familiar layout and robust entry
technique, but does not necessarily follow from these.
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3.2 No-Look Notes

No-Look Notes arranges characters around the screen in an 8-segment pie menu
reminiscent of the systems proposed by Yfantidis and Raman. However, each
section of the menu contains multiple characters, such that all 26 letters of the
English alphabet appear (see Figure 2). The 8 character groups (e.g., ‘ABC’,
‘PQRS’) correspond to the international standard mapping a phone keypad to
letters (Familiar Layout) [16].

The segments are soft-buttons which must be touched. When the user touches
a segment, either by dragging their finger to a new segment or touching the
screen, the characters in that segment are announced audibly. The user may
drag and tap their finger around the screen (for example, tracing the screen’s
edges) without accidentally entering characters (Painless Exploration).

Resting one finger on a segment and tapping a second finger (i.e., split-tapping
or second-finger tapping) selects that segment, bringing the user to a secondary
screen with that segment’s characters from that selection arrayed alphabetically
from the top to the bottom of the screen. Users select the desired character the
same way they selected a character group. The user drags a finger until they
hear the desired character announced, then drop a second finger to the screen
to select (Robust Entry Technique, see Figure 3).

This simple arrangement makes it fast, easy, and risk-free to search for a
character: simply drag a finger around the screen. Users may trace the edges of
the screen and eventually reach any character, since every ‘pie slice’ reaches the
edge of the screen. This also allows No-Look Notes to leverage some of the “pure”
benefits of edges, as defined by Wobbrock et al. [17], such as higher accuracy.

In addition to character entry, No-Look Notes offers gestures for “space” and
“backspace/undo.” Backspace is a quick swipe with one finger to the left, space
is a quick swipe to the right. The backspace gesture is also used to cancel a se-
lected character group without entering a character. Reading (TTS) and spelling
currently entered text is triggered by a swipe down. These swipes require a min-
imum distance and speed in order to register, preventing a user exploring the
screen by tapping or dragging their finger from accidentally activating them.

4 Evaluation

We performed a within-subjects evaluation of No-Look Notes and VoiceOver.
Users spent 15 minutes learning a system in an interactive tutorial with an
experimenter, then spent 1 hour using the system to enter words, and finally
answered a brief questionnaire. The second system was then tested in the same
way. Users were split into one group evaluating No-Look Notes first and another
evaluating VoiceOver first to counterbalance order effects.

MacKenzie and Soukoreff deal extensively with evaluation in their treatise on
mobile text entry [2]. The value of quantitative and qualitative results from users
is emphasized. Measurement using words-per-minute, as well as examining the
relationship between speed, accuracy and errors are also covered.
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Fig. 2. No-Look Notes. The screen on the left is the main screen. The screen on the
right is after the ‘ABC’ target is selected from the main screen. Visual representation
was added to this figure for illustration.

4.1 Participants

We recruited 10 participants, 7 men and 3 women. Participants were recruited
from the Atlanta Center for the Visually Impaired. The average age of par-
ticipants was 40.8 (sd=10.85). All users were visually impaired, where visually
impaired is defined as “requires assistive technology (screen readers, magnifica-
tion) for computer use.” No participant was able to visually distinguish specific
keys or letters on the phone screen for either system. Additionally, no participant
could view the text they had entered.

4.2 Device

Participants entered text on an Apple iPhone, which has a 3.5 inch capacitive
touchscreen. Non-touch sensitive points on the top and bottom of the phone
(near the ear and mouthpiece) were taped over to give the screen tactile bound-
aries.

No-Look Notes was implemented as an iPhone OS 3.0 application. TTS for
characters and actions (like backspace) was pre-synthesized using Mac OS X’s
built-in TTS engine and loaded onto the phone as audio files. VoiceOver’s release
introduced dynamic TTS on the iPhone, but developers do not have access to
this functionality. No-Look Notes thus provided dynamic TTS using Flite [18].

VoiceOver’s iPhone OS 3.0 version was tested using a custom application
to isolate the text entry portion of the system. No modifications to the actual
text entry or TTS were made. However, target words were synthesized by Flite.
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Fig. 3. Entering a character using No-Look Notes: 1 Rest finger on desired group 2
Tap screen anywhere with second finger (‘split-tap’) 3 Rest finger on desired character
4 Split-tap. Visual representation was added to this figure for illustration.

Participants tested VoiceOver in ‘portrait’ mode, with the keyboard taking up
the bottom half of the screen.

4.3 Procedure

After their introduction to the iPhone’s physical characteristics, participants ran
the following procedure for each system. To avoid order effects, we counterbal-
anced participants such that half started with No-Look Notes and half started
with VoiceOver.

First, participants spent 15 minutes learning the system. Experimenters taught
the participants how to explore, enter and delete characters, as well as how to
read characters on the screen. Participants were required to demonstrate their
grasp of each new action, and encouraged to ask questions. Prior to beginning
testing, participants demonstrated their competency by entering a test word.

Following this practice session, participants spent 1 hour entering single words
from a published phrase set for text entry, also by MacKenzie [19]. This was
selected over requiring participants to memorize phrases to reduce the cognitive
load on the user, as also discussed by MacKenzie [2]. Phrases were randomly
chosen from the phrase bank to create a phrase set; this same phrase set was
used by all participants for each system.

Timing begins after the user enters a character. Each input (including errors)
is duly noted by the system. An incorrect character entry caused an error sound
to play, and the user was required to backspace/delete the offending characters.
Timing continues until the moment the user’s entered text completely matches
the target word. At this point, the timer pauses and the next target is queued,
waiting for the user to touch the screen.

Participants were able to rest whenever they wished, but were encouraged
to rest between words rather than mid-word. Participants were also reminded
several times that this was a test of the system, not their speed or spelling skills.



418 M.N. Bonner et al.

After completing 60 minutes of text entry, participants responded to a brief
questionnaire about their opinions of the system used in that condition. Par-
ticipants then repeated the 15-minute practice/learning + 60 minutes of use +
questionnaire cycle with the other system.

5 Results

Overall, we collected 20 total hours of usage data (1 hour per system * 2 sys-
tems per participant * 10 participants) counting rest time between words, which
yielded a total of 3921 correct characters and 1135 correct words entered.

5.1 Physical Comfort

Some participants mentioned that their hands or fingers were tired. One partic-
ipant noted that his hands were “tingly.” Although some users required minor
breaks, all users were able to complete the entire study.

5.2 Text Entry Speed

Due to technical limitations of the iPhone SDK, we were unable to access gesture
information for the VoiceOver condition. Therefore, we started timing of target
words at the first input we could measure in the condition: after a character was
entered. The same timing was used for the No-Look Notes condition. Since we
do not time until after the first character is entered, we considered target length
to be n − 1 when calculating the text entry speed measure. We used the WPM
(words-per-minute) measure for text entry speed, calculated as (characters per
second) * (60 seconds per min) / (5 characters per word). This timing technique
and text entry speed measure are identical to those used by Wigdor and Bal-
akrishnan [20]. While we chose to consider a “word” to be 5 characters in this
analysis, in actuality, the average length of the 1135 target words entered was
3.45 characters.

Although we counterbalanced the order conditions across participants, it is
still possible to encounter asymmetric transfer effects. To test this, we performed
one t-test on each system’s text entry speed for each of the two groups formed
by counterbalancing condition order (No-Look Notes first, VoiceOver first) for
two t-tests total. The results of these tests were non-significant (No-Look Notes
speed: p = 0.50, VoiceOver speed: p = 0.88) which suggests that there was no
order effect.

The overall text entry speeds were 0.66 WPM for VoiceOver and 1.32 WPM
for No-Look Notes, a 100% increase in favor of No-Look Notes. This difference
was determined to be significant using a paired t-test (p < 0.001). Figure 4
shows text entry speed performance for each user for each system; all but one
participant achieved a higher speed with No-Look Notes.

To examine how participants’ speed varied over the course of the session,
we split up each hour into 6 10-minute blocks and calculated speed within each
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Fig. 4. Text entry speeds (WPM) for each participant for each system

block. The averages across participants for block-level speed are shown in Figure
5. Text entry speeds for the first block for VoiceOver and No-Look Notes were
0.85 WPM and 0.61 WPM, respectively. The maximum text entry speed for each
system occurred in the fourth block: 0.76 WPM for VoiceOver, 1.67 WPM for
No-Look Notes. While these text entry speed curves may fit a general learning
curve with many sessions over time, the participants’ speed declined towards the
end of our sessions, possibly due to fatigue.

5.3 Text Entry Errors

We calculate the error rate as (incorrect characters entered) / (correct characters
in target word), as is also done by Widgor and Balakrishnan [20].

As with text entry speed, we tested for the occurrence of order effects for error
rate. Neither order was significant for either condition (No-Look Notes error rate:
p = 0.71, VoiceOver error rate: p = 0.62), so the performed counterbalancing
was also acceptable here.
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The overall mean error rates across participants were 0.60 for VoiceOver and
0.11 for No-Look Notes, a 445% increase in errors for VoiceOver over No-Look
Notes. Using a paired t-test, this difference was found to be significant (p < .05).
Error rates for each participant for each system are shown in Figure 6.

5.4 Questionnaire Results

After each condition, participants responded to a brief questionnaire about their
opinions of the system used in that condition. The questionnaire comprised 14
statements in which the participant would state their agreement on a 5-point
Likert scale (1 = disagree strongly, 5 = agree strongly). All of the mean responses
were higher for No-Look Notes than for VoiceOver. Using a paired Wilcoxon test,
we determined that 8 of 14 differences were significant (p < .05), all in favor of
No-Look Notes, while 6 of the 14 were not significant. The list of statements,
mean responses, and significant differences are shown in Table 1.
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No-Look Notes was rated significantly higher than VoiceOver for the majority
of statements, including key statements such as “easy to learn,” “fast to use”
and “felt in control.” Our questionnaire results suggest that most users felt No-
Look Notes was both easier to learn and faster overall. This supports our speed
and error monitoring results, which shows that this was actually the case.

5.5 Qualitative Feedback

Seven participants responded negatively to the size and number of targets in
VoiceOver, finding it difficult to locate keys. Participant 3 said “If I wasn’t
familiar with the QWERTY [keyboard layout], it would have been hell”. Indeed,
participant 8, our only participant with no QWERTY experience, achieved a rate
of only 0.07 wpm with VoiceOver, saying mid-use: “I want to cry right now.”

Participants responded positively to the familiar aspects of both systems.
Participants with knowledge of QWERTY keyboards (nine out of ten) said that
thinking of the keyboard layout aided them in locating keys in VoiceOver. The
fact that groups of characters in No-Look Notes are the same groups used on a
phone keypad was also mentioned favorably by several participants. It was also
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Table 1. Questionnaire results (mean, sd) for responses given on a Likert scale (1
= disagree strongly, 5 = agree strongly). The mean value for each question favored
No-Look Notes; asterisks indicate where this difference was significant.

Statement VoiceOver No-Look Notes

Easy to use* 2.6 (1.43) 4.2 (0.63)
Fun to use 3.4 (1.71) 4.7 (0.67)
Fast to use* 3.0 (1.83) 4.4 (0.70)
Felt in control* 3.0 (1.63) 4.2 (0.79)
Easy to learn* 3.2 (1.48) 4.6 (0.70)
Intuitive 3.4 (1.43) 4.4 (0.97)
Familiar 2.7 (1.57) 3.4 (1.26)
Features clear to me* 3.7 (0.95) 4.5 (0.71)
Improve with practice* 3.7 (1.25) 4.8 (0.42)
Would use this system 3.9 (1.37) 4.7 (0.67)
Made entering text accessible* 3.7 (1.25) 4.8 (0.42)
Aware of text I was entering* 2.8 (1.40) 4.5 (0.85)
Audio feedback clear 3.2 (1.55) 3.3 (1.70)
Easy to undo mistakes 3.1 (1.45) 4.4 (0.84)

useful for some participants to envision No-Look Notes’ layout as a clock (e.g.,
‘ABC’ at 12 o’clock). Participant 1 mentioned this, saying “a lot of the learning
I’ve done is clock learning anyway.”

Feedback was mixed on whether the system should repeat a character when it
was entered (VoiceOver) or merely give an audible “click” (No-Look Notes). The
suggestion of reading the character back but in a different voice (e.g., female)
met with a favorable response.

Despite voicing their frustrations with both systems, at the end of the exper-
iment participants were uniformly enthused about learning them. Participants
maintained that the experiment had been fun, despite the frustration that was
sometimes apparent during testing.

6 Discussion

Our participants’ perseverance, despite clear frustration, was impressive. This
high tolerance could be evidence that visually impaired users are inured to strug-
gling through poorly designed systems. Tolerance could also be due to the nov-
elty of using a touchscreen or desire that touchscreen phones gain accessibility
(participant 1: “If they were accessible I would buy one”). Regardless of this tol-
erance’s source, visually impaired users are eager for a touchscreen accessibility
solution and willing to put in the time to learn a new system.

While using the systems, users experimented with different ways of holding
the device. Some used a single hand, others used thumbs, others set the device
on the table and used either one or two hands. Users generally stuck with the
same style of input for both No-Look Notes and VoiceOver. The majority of
users preferred to leave the device on the table.
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Related to device positioning was our decision to test only in a portrait orien-
tation. VoiceOver also allows for a landscape orientation, which would give users
more options and, more tangibly, allow VoiceOver to increase the size of its tar-
gets by about 25%. While this would likely improve VoiceOver’s performance,
we feel it is unlikely to have a drastic effect. A slight change in target size would
not provide the advantages of full screen use (such as tracing the screen’s edges)
or the low number of targets present in No-Look Notes, nor would it address the
audio feedback issue discussed below.

Some users also displayed a hesitance to enter a character if they weren’t sure
of the results, hovering their finger above the screen as they meditated on which
direction to gesture. There may be a significant psychological difference between
a truly risk free ‘exploration gesture’ and actually entering a character, then
deleting it.

6.1 Simple Entry Gestures

Both systems put emphasis on simple input gestures in an attempt to make
accidental entry of characters difficult. The split-tapping technique, developed
by Slide Rule as a tool for making selections off of lists [11], proved effective
at selecting arbitrarily located targets, provided the targets were large enough.
VoiceOver’s targets were small enough that the participants occasionally moved
off of the target while preparing to tap the screen with a second finger.

VoiceOver’s double-tapping entry technique was generally more difficult for
users, with only one participant preferring it to split-tapping. The key issue was
tapping with sufficient speed. If a user was too slow, the system would interpret
the tap as a touch and re-locate the system’s focus, losing the user’s place.

6.2 Text-Awareness

Participants expressed a desire for the ability to easily determine the text they
had entered. While some were able to use VoiceOver’s cursor system (one even
used the cursor to insert missing characters), others found the system difficult
to grasp. No-Look Note’s simple read-and-spell gesture was usable for all partic-
ipants, although waiting for the system to spell the word was galling to some.

It is key that users be able to quickly check both their recently entered text
and a larger amount of their text. When users get lost or forget their place, they
can be forced to erase their text and start anew. A combination of VoiceOver’s
ability to precisely examine each character combined with a more rapid version
of No-Look Note’s direct access to spelling may be best.

6.3 Audio Feedback

Audio was a key component of both systems, used for both locating characters
and reading text. Users found both systems difficult to understand. The dynamic
text to speech engine used in both systems, Flite [18], was particularly disliked.

Though Apple has created a dynamic TTS system for the iPhone, it is in-
accessible to developers at the time of this writing. VoiceOver also effectively
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cuts developers off from interpreting gestures themselves, making it impossible
to use many applications. These design decisions severely restrict developers,
preventing them from harnessing the power of gestures and restricting them to
button-based systems. This could lead to developers creating unnatural or unus-
able ports of gesture-based applications, or simply failing to make an accessible
version at all.

Nearly all participants had difficulty distinguishing between like-sounding let-
ters (e.g., ‘M’ and ‘N’, ‘C’ and ‘Z’). This led to extreme frustration in VoiceOver’s
QWERTY based layout, where like-sounding letters were often adjacent. Even
the experimenters found it almost impossible to aurally distinguish certain let-
ter groups. Using this TTS in a noisy environment or using the phone’s built-
in speaker will exacerbate the problem, though headphones could help avoid
this. A serious portion of VoiceOver’s high error-rate can be attributed to this
issue.

No-Look Notes was able to escape this problem with its alphabetical groups,
largely keeping like-sounding characters apart. Groups like ‘MNO’ were still
usable, as users proved more easily able to locate the correct letter when faced
with only a few large targets in alphabetical order.

6.4 Deployment

Our results show that No-Look Notes has a number of advantages over VoiceOver.
VoiceOver’s focus-box input technique simply did not translate well to the large
number of targets in a soft keyboard. We believe best way to use No-Look
Note’s strengths is not to replace VoiceOver, however, but to integrate with it.
VoiceOver is used not only for text-entry, but for navigating the entire iPhone
interface. Rather than invoking a virtual keyboard when a text field is selected,
No-Look Notes could be activated. A simple gesture to return to VoiceOver
navigation would complete integration.

7 Future Work

Text-Messaging Evaluation. Many users expressed a desire to send text
messages using either system. An extended evaluation of both systems in which
users actually send text messages would show how effective each system is at
enabling this apparent ‘killer app.’

Visual Feedback. No-Look Notes has no visual feedback to help with text
entry or the system’s layout. Users with partial vision would benefit from clear
graphics on the touchscreen. Graphics need not even be text — colored or pattern
areas could be used to designate pie segments, for example, or the screen could
flash when a character was entered. This graphically augmented system could
then be tested with both visually impaired and sighted users.
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Refine Character-Entry Feedback. Experimenters suggested using different
voices for different types of feedback, such as using a different tone of voice to
repeat characters as they were entered. Participants were enthusiastic about the
idea. This could be an effective way of adding additional contextual information
to eyes-free text entry systems. This would also help avoid confusion over whether
hearing a character read meant that character had actually been entered or
merely been touched.

Extend Character Set. No-Look Notes could be extended to allow entry of
numbers or symbols. This could involve adding more targets to the pie menu, or
perhaps creating a modal input method of swapping between a ‘letters menu’ and
a ‘numbers menu.’ VoiceOver features a numbers/symbols keyboard accessed by
entering a ‘more’ button on the soft keyboard.

8 Conclusion

We introduced No-Look Notes, a system for eyes-free mobile text entry using
multi-touch input. No-Look Notes was designed to take advantage of other work
on accessibility and text entry. We also developed three design principles that
are key for eyes-free text entry: Robust Entry Technique, Familiar Layout and
Painless Exploration.

We have implemented No-Look Notes on an Apple iPhone. We conducted
user trials with visually impaired participants to evaluate both No-Look Notes
and Apple’s own VoiceOver system, offering a comparison of the two systems.
Our study of VoiceOver is also a first look of what will become the first widely
distributed system for eyes-free text entry on the iPhone platform.
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Abstract. Activity and context recognition in pervasive and wearable
computing ought to continuously adapt to changes typical of open-ended
scenarios, such as changing users, sensor characteristics, user expecta-
tions, or user motor patterns due to learning or aging. System perfor-
mance inherently relates to the user’s perception of the system behavior.
Thus, the user should be guiding the adaptation process. This should be
automatic, transparent, and unconscious.

We capitalize on advances in electroencephalography (EEG) signal
processing that allow for error related potentials (ErrP) recognition.
ErrP are emitted when a human observes an unexpected behavior in
a system. We propose and evaluate a hand gesture recognition system
from wearable motion sensors that adapts online by taking advantage of
ErrP. Thus the gesture recognition system becomes self-aware of its per-
formance, and can self-improve through re-occurring detection of ErrP
signals.

Results show that our adaptation technique can improve the accu-
racy of a user independent gesture recognition system by 13.9% when
ErrP recognition is perfect. When ErrP recognition errors are factored
in, recognition accuracy increases by 4.9%. We characterize the boundary
conditions of ErrP recognition guaranteeing beneficial adaptation. The
adaptive algorithms are applicable to other forms of activity recognition,
and can also use explicit user feedback rather than ErrP.

1 Introduction

Human activity and gesture recognition from body worn motion sensors using
machine learning techniques [1] enables activity based computing [2].

Motivation. Activity recognition systems are trained in a user-independent
manner for ‘out of the box’ operation. Training data is collected from multiple
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subjects to build generic statistical activity models. Exhaustive data collection
is time consuming and may not be practical. The recognition of simple activities
may already be difficult in a user independent manner [3]. As activities get
more complex, this becomes a major challenge. Some highly complex gesture
recognition systems weren’t even trained for user independence [4].

User specific models usually perform better than user independent models but
are less able to generalize to new subjects [5,6,3]. They are trained on the target
user to reflect individual characteristics. This individual training phase may not
be practical when deploying a system.

User independent and user specific systems are trained once at design time,
respectively during first use, and remain static throughout operation. Thus they
are not able to adapt to so far unseen situations typical of open-ended scenarios.
These systems also have no knowledge about their instantaneous performance,
as it was characterized at training time on a specific dataset. Therefore no action
can be taken if runtime performance drops. This can be important for example
in critical applications, where stopping the context-aware system may be better
than letting it operate with reduced performance.

Contribution. Activity and context recognition in pervasive and wearable com-
puting ought to continuously adapt to changes typical of real-world applications,
such as a new user of the system, changing sensor characteristics, changing user
expectations, or changing user motor patterns due to learning or aging. System
performance inherently relates to the user’s perception of the system behav-
ior. Thus, the user should be guiding the adaptation process. This should be
automatic, transparent, and unconscious.

In order to guide adaptation according to the user’s run-time expectation,
a feedback signal is required. We capitalize on advances in electroencephalog-
raphy (EEG) signal processing that allow for error related potentials (ErrP)
recognition. ErrP occur when a human observes an unexpected behavior in a
system [7,8,9]. We propose and evaluate a hand gesture recognition system from
wearable motion sensors that adapts online by taking advantage of ErrP. Es-
sentially the activity recognition system turns into an autonomous system with
performance self-awareness and self-improvement capabilities.

In this work, we focus on user specific adaptation from a user-independent
model through ErrP signal occurrences. Specific contributions include:

– An experimental setup (gesture based HCI scenario) that allows the joint
investigation of activity recognition, ErrP detection, and the combination of
both into an autonomously adaptive activity recognition system.

– A dataset of EEG signals, electro-oculography (EOG), hand acceleration and
electro-myography (EMG), with 18’000+ gesture instances on 7 subjects.

– The baseline ErrP detection and non-adaptive gesture recognition accuracy.
– A method to estimate instantaneous recognition performance from ErrP.
– A comparative analysis of three strategies to adapt the gesture recognition

system to a specific user from a user independent model based on ErrP.
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Paper content. In section 2 we review adaptive approaches applied to activity
recognition and explain the nature of ErrP. In section 3 we describe the experi-
mental setup we use to investigate adaptive activity recognition driven by ErrP.
In section 4 we present the ErrP detection results. In section 5 we show how
instantaneous system performance can be derived from ErrP signals. We com-
paratively evaluate user adaptation strategies driven by ErrP signals in section
6. We discuss results in section 7 and conclude in section 8.

2 State of the Art

Adaptation strategies and limitations. Adaptive techniques can improve
the performance for individual users without affecting generalization capability.
A user-independent model can adapt to a specific user during a short calibration
phase. This has been investigated in handwriting [10] and speech [11] recognition,
where it remains a major research topic [12]. Similar approaches were proposed
in gesture recognition [13]. Calibration-based approaches are time consuming
with large number of activites and activity models remain static after calibra-
tion. In dynamic model selection a pre-existing model that best corresponds to
the current user or his environment is selected at run-time. This has been applied
in speech processing [14]. In activity recognition it has been used to adapt to the
user’s on-body sensor placement preferences, by selecting models corresponding
to the automatically detected sensor location [15]. Such approaches require ex-
tensive training data to build multiple models. Other adaptation techniques rely
on the unsupervised tracking of clusters of activities in the feature space [16].
While devised for sensor placement adapatation, similar principles may apply to
user adaptation. Such approaches can adapt at run-time because they rely on
underlying data structure properties. However they do not guarantee to adapt
in a way that reflects the user’s perception of system performance.

Current adaptation strategies do not take into account the user’s perception
of the system’s behavior. Guiding adaptation according to the user’s run-time
expectation requires a feeback signal. Explicit interaction may provide this feed-
back, such as a button that is pressed when the behavior of the context-aware
system is not satisfactory. In the vision of wearable and pervasive computing,
however, feedback should be transparent: automatic and unconscious.

Brain signals related to unexpected action perception. Several studies
have suggested the existence of a neural system responsible for error processing
[17]. Specifically, stereotypical electrophysiological signals have been consistently
reported to appear as a response to erroneous actions [18] or unexpected ac-
tion outcomes [9]. These signals, —termed Error-related negativity (ERN) and
Feedback-related negativity (FRN)— are characterized by a negative deflection of
the EEG signals in fronto-central areas of the scalp, followed by a centro-parietal
positive peak. Typical signal latencies are 50 to 100ms in the case ERNs and
around 250ms for FRNs. Neurophysiological studies have provided evidence of
error-based learning. Specifically, it has been suggested that these signals reflect
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conscious error processing; post-error adjustment of response strategies [18], and
reward-based adaptive behavior [9].

Moreover, research on Brain-Computer Interfaces (BCI) has shown that it
is possible to recognize EEG error-related signals (ErrP) on single trials above
random levels [19,20,21]. Based on this fact, these signals have been proposed to
be used to correct erroneous motor action in speed-response human-computer
interaction [21], as well as to increase the information transfer rate of EEG-
based BCI sytems [19]. Experimental measures taken over different time periods
(up to two years) show that these potentials are stable over time, despite the
delay between recordings. Current protocols for EEG signal analysis require
motionless subjects to avoid that EMG signals (1-30mV) from muscle activity
contaminate the subtler EEG signals (10-100μV ) [22]. In order to use EEG
system in naturalistic settings, however, researchers now start to investigate
limited subject mobility.

3 ErrP-Based Adaptive Gesture Recognition Scenario

We investigate the use of ErrP to guide the adaptation of a gesture recognition
system in an HCI scenario. This scenario is based on a game to maintain the
user’s involvement during experimental sessions [23,19]. It is designed so that
a large number of gesture instances can be acquired in a comparatively short
amount of time. It allows movements of the user’s arm with limited amplitude,
to investigate EEG signal analysis in more realistic situations than state of the
art EEG protocols. EEG signal and hand acceleration from a wearable sensor is
recorded during the scenario to assess adaptation strategies in offline simulations.

Gesture-controlled computer game. The subjects played a computerized
version of a “memory game” consisting of 8 image pairs (fig 1). The 16 images are
randomly distributed in a four by four matrix and hidden behind question marks.
The subjects have to find identical pairs of images, which are then removed from
the screen. If two images are flipped they are hidden again before a new image
can be selected. The game is finished when all image pairs were correctly found.

The game input interface is based on five hand gestures. Left, right, up and
down hand movements shift the image selection cursor in the corresponding
direction. Each directional gestures starts and ends at a central home position.
Flipping an image is controlled by closing and opening the hand.

Measurement setup. The online recognition of the gestures is based on light
barriers and a reed switch. This ensures accurate gesture recognition for the col-
lection of a reference dataset. Three horizontal and three vertical infrared light
barriers detect the hand position (see fig. 1). The closing gesture is detected from
a reed switch on the subjects hand activated by a magnet on the subjects fingers.

A tri-axial acceleration sensor at the subjects fingertips records the motion
of the hand for offline acceleration-based gesture recognition. The acceleration
sensor is sampled at 64 Hz and connected via USB to the experiment computer.
This computer also ran the memory game. Another computer recorded EEG, as
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Fig. 1. The computer game is presented on the screen; the light-barrier frame, mag-
net and reed switches capture game control gestures; the acceleration sensor, EMG
electrodes (right wrist, biceps and shoulder), EOG electrodes, and EEG electrode cap
stream data to a PC for recording and offline analysis

well as arm EMG and eye movements using EOG with the Biosemi ActiveTwo
system with active electrodes. EMG and EOG allow for motion artifacts can-
cellation by adaptive filtering. Both computers were interconnected to ensure a
synchronized data recording using a shared data line.

Experimental protocol. Seven healthy male subjects aged 25 to 47 partici-
pated. For each subject we recorded 14 sessions with a duration of three to five
minutes. One session corresponds to one memory game. Between recording ses-
sions the subjects could rest for one to two minutes. We recorded more than 2700
hand gestures per subject. The experiment lasted about two hours per subject
including setup.

In each session we randomly artificially induced between 5% and 33% of ges-
ture recognition errors to provoke ErrP events. In an error case the game selects
a random command instead of the user command. For example if the subject
closes his hand to turn a card, the card is not turned but instead the cursor is
moved in a random direction.

4 EEG-ErrP Single-Trial Recognition

Following previous studies [23,19], we perform classification using the time signal
of electrodes FCz and Cz as input features for a Bayesian filter [24], since EEG
ErrP are characterized by a fronto-central distribution along the midline. EEG
potentials were spatially filtered by subtracting from each electrode the average
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potential (i.e. the common average reference) at each time step to suppress av-
erage brain activity and keep the information from the local sources below each
electrode. A 1–10-Hz bandpass filter was applied as ErrPs are relatively slow
cortical potentials [25]. EEG signals were subsampled to 64Hz before classifi-
cation, which is based on temporal features. The input vector for the classifier
(described below) is composed by the time samples on electrodes FCz and Cz
within a fixed time window after the feedback onset.

At each sampling time step, the Bayesian filter estimates the state probabil-
ities according to the observations and the previous state estimations. In this
case, we have discrete observations of a continuous EEG signal and we want to
find the state for the action shown on the screen, i.e. an erroneous or correct
movement.

To build the Bayesian filter, we define two possible states at each time t: St = 1
for erroneous recognition, and St = 0 for correct recognition. At each sampling
time step t observations Ot are given by a vector with components FCz and Cz
corresponding to the electrodes of the same name: Ot = [FCzt, Czt]. Observations
and states from time zero to T are respectively noted O0:T and S0:T .

A transition model is defined by a first order Markov hypothesis for states over
time: P (St|S0:t−1) = P (St|St−1) for t = 0 . . .T . Since the state during a single
trial doesn’t change, the transition model corresponds to the identity matrix:
P (St|St−1) = 1 if St = St−1 and zero otherwise.

The sensor model is given by the probability distribution P (Ot|St) which
predicts observations given the state. Then the decomposition of the joint prob-
ability is given by:

P (S0:T O0:T ) = P (S0)P (O0|S0)
T∏

t=1

(P (St|St−1)P (Ot|St)) (1)

The classification consists in estimating P (St|O0:t), i.e. the probability of the
state (error or correct) knowing the observations (EEG activity). It can be ob-
tained in a recurrent manner; first, a prediction (2) of the state is done based
on the transition model and then, second, the state estimation (3) is computed
based on the sensor model.

P (St|O0:t−1) =
∑
St−1

(P (St|St−1)P (St−1|O0:t−1)) (2)

P (St|O0:t) ∝ P (Ot|St)P (St|O0:t−1) (3)

Given the identity transition matrix, the prediction–estimation recurrent calcu-
lus is simplified:

P (St = 1 |O1:t) ∝ P (Ot|St)P (St−1 = 1 |O1:t−1) (4)

And correspondingly for P (St = 0 |O1:t). Being Qt be the quotient of the prob-
abilities for both states, an erroneous trial is detected when ln(Qt) is positive,
where ln(Qt) = ln(Qt−1) + ln(P (Ot|St = 1)) − ln(P (Ot|St = 0)).
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(a) (b)

Fig. 2. (a) Grand average error-related potential on the FCz electrode, Error minus
Correct condition, (thick line); individual subject averages are shown with thin dashed
lines. Time (t=0) is measured from the feedback onset. Electrodes positions are shown
in the scalp plot. (b) Average value of the state detection for correct and erroneous
trials of session 1 on subject V.

Estimations from both channels are combined using a naive fusion,

P (Ot|St) = P (FCzt|St)P (Czt|St) (5)

The sensor model P (Ot|St) is defined by a Gaussian distribution with a mean μt

and a variance σ2
t , these parameter were estimated using the training dataset.

Having two input channels and two possible states, we have four Gaussian distri-
butions at each time t, and eight parameters to identify. This approach updates
the estimated state probability as new samples are available, an example of the
average estimated probability at different time points. Fig. 2 shows the aver-
age EEG activity in channel FCz (error-minus correct condition), as well as the
average state estimation for both classes at different time points.

We divided the recorded dataset into seven folds of EEG activity for each
subject; every single fold corresponds to two consecutive memory games. The
classifier was trained using a Leave-One-Fold-Out Cross Validation, i.e. train-
ing with 6 folds, and testing on the 7th, then averaging results for all folds.
We consider the activity of electrodes in the [150, 1000] ms time windows af-
ter the feedback presentation, estimating the state probabilities according to
the observations and taking a choice at the time instant that maximizes State
Recognition. Table 1 shows classification results for the described technique; we
should stress the fact that the ErrP recognition can be affected by EMG arti-
fact contamination due to subject movements. This indeed a major challenge
in the integration of EEG activity in pervasive applications. Different filtering
techniques can be applied for reducing such contamination [26], and its use will
be object of further study.
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Table 1. Sensitivity and specificity for the seven subjects using Leave-One-Fold-Out
Cross Validation

Subjects Average
I II III IV V VI VII

Sensitivity 0.74 0.56 0.60 0.63 0.57 0.65 0.58 0.62
Specificity 0.48 0.71 0.73 0.59 0.75 0.65 0.63 0.65
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Fig. 3. The estimated accuracy vs. the measured accuracy for a specific specificity and
sensitivity level

5 Performance Self-awareness through ErrP Detection

A run-time system performance measure can be obtained from the detection of
ErrP events. We define Nerr the number of ErrP events and Ngest the number
of executed gestures during a period of operation. The ErrP detection specificity
and sensitivity is specErrP and sensErrP , characterized during system training.
We assume that sensitivity and specificity is stationary throughout operation
(i.e. no fluctuations of specErrP and sensErrP ). In this case we can estimate the
true accuracy of the gesture recognition as follows:

accest =
accmeas − 1 + sensErrP

specErrP + sensErrP − 1
=

1 − Nerr

Ngest
− 1 + sensErrP

specErrP + sensErrP − 1
(6)

The specificity and sensitivity of the ErrP detection control slope and the offset
of the dependency between accmeas, the measured accuracy based on the ErrP
signals, and accest, the estimated true accuracy of the system, as depicted in
figure 3. As specErrP and sensErrP get lower, slight errors in the measurement
of accmeas will have more effect on the estimated true accuracy (due to the
steeper line slope in the figure).

6 ErrP-Based Gesture Recognition Adaptation

ErrP signals indicate when the action taken by a system is erroneous (see table
1), and thus whether a gesture was wrongly recognized in our game scenario.
The open questions are what are the adaptive strategies suitable to incorporate
the information provided by ErrP into a gesture recognition system.
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User-specific adaptation scenario. We consider an adaptation scenario
where a user independent gesture recognition system is adapted to a specific
user through ErrP occurrences. The gesture recognition system is trained in a
user independent manner in the HCI scenario (i.e. it uses a user independent
classifier Cinit). The system is then given to a so far unseen user. Each ges-
ture performed by this user is classified by the gesture recognition system. EEG
analysis indicates whether the action taken by the computer game, and thus
the classification of the gesture, was correct or wrong. We adapt the gesture
classification system through online learning (see below).

Gesture classification. We distinguish the five game control gestures based on
the hand acceleration. We segment the signal using the gesture-start and gesture-
end signal provided by the light-barrier frame. During training of classifiers, the
ground truth label of gesture instances was provided by the light-barrier frame.
We did no dataset cleaning or outlier removal as this would not be possible in a
real application of this kind.

For each gesture, we calculate the following acceleration features on three
windows (full gesture, first half and second half of the gesture): mean, standard
deviation, minimum, maximum and energy. We do this on the three axes of the
acceleration signal as well as on its magnitude. In addition the correlation for
each axes pair xy, xz and yz is calculated. This yields 63 features. We perform a
probabilistic feature selection [27] combined with a scatter search [28] to select a
feature subset. This yields 6 features: the mean on y axis, the mean and minimum
on magnitude, the mean on first half of z axis, the standard deviation on first
half of x axis and the mean on second half of y axis.

We classify the gestures with the following classifiers: Naive Bayes [29], Bayes
Networks [30] and k Nearest Neighbor (kNN) [31] implemented in the Weka
Machine Learning Project [32]. For the kNN classifier we chose k = 13 as it gave
sufficiently good results for all subjects. A higher value for k would also increase
the minimum number of training instances. We use a batch approach [33] for
on-line learning.

Strategies to exploit EEG. The absence of ErrP indicates that the classifi-
cation result of the system is correct. We assume this result is the ground truth
class label of the gesture. The presence of ErrP indicates a wrong classification,
but does not provide indication of the class label. Therefore during operation we
can collect labeled user specific samples (those where ErrP was not detected).
We investigate three strategies to create user adapted classifiers. Essentially all
strategies start from a user independent classifier Cinit and operate by collecting
a user specific training set Sx. They then train a user adapted classifier Cx on
this set. The strategies differ in the way the training set is collected:

1. AD 1 “Incremental knowledge integration”: Starting from a user in-
dependent training set S1 = Sinit, the user adapted training set S1 grows by
including a new (user specific) gesture instance whenever the gesture per-
formed by the user is recognized and no ErrP is detected (see algorithm 1).
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Algorithm 1. Adaptation strategy 1
1. Initialize dataset S1 with ninit subject independent instances
2. Train classifier C1 on the subject independent initial training set S1

3. for each user specific instance i do
4. classify instance i using C1 to class c
5. if no error detected then
6. add instance together with label c to S1

7. retrain C1 on the new S1

8. end if
9. end for

After a new gesture is collected a classifier C1 is trained on S1 and replaces
Cinit.

2. User specific batch training: a batch of user specific training samples
S2x is collected whenever a gesture performed by the user is recognized and
no ErrP is detected. There are two training sample collection variants:
(a) AD 2a: the user independent classifier Cinit classifies the gestures (see

algorithm 2)
(b) AD 2b: the classifier created with adaptation strategy 1 (AD1) classifies

the gestures (see algorithm 3)

Algorithm 2. Adaptation strategy 2a
1. Initialize dataset Sinit with ninit subject independent instances
2. Initialize dataset S2a to the empty set
3. Train classifier Cinit on the subject independent initial training set Sinit

4. for each user specific instance i do
5. classify instance i using Cinit to class c
6. if no error detected then
7. add instance i together with label c to S2a

8. if S2a contains sufficient instances then
9. train classifier C2a on S2a

10. end if
11. end if
12. end for

To train the user independent classifier Cinit we combine the data of all subjects,
leaving out the subject we want to adapt to. From this combined dataset we
select randomly ninit instances which are used for the training. The data of the
left out subject is split into an adaptation set and a test set. The adaptation set
contains 2250 instances while the test set contains 500 instances. We purposely
preserve the timely order of the data instances in the adaptation set to simulate
the adaptation as close to reality as possible. During operation, the instances in
the adaptation set are iteratively presented to the system for classification and
adaptation.
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Algorithm 3. Adaptation strategy 2b
1. Initialize dataset S1 with ninit subject independent instances
2. Initialize dataset S2b to the empty set
3. Train classifier C1 on the subject independent initial training set S1

4. for each user specific instance i do
5. classify instance i using C1 to class c
6. if no error detected then
7. add instance i together with label c to S1

8. add instance i together with label c to S2b

9. retrain C1 on the new S1

10. if S2b contains sufficient instances then
11. train classifier C2b on S2b

12. end if
13. end if
14. end for

6.1 Adaptation Assuming Perfect ErrP Detection

For the following simulation we assume a perfect ErrP detection with a sensitivity
and a specificity of 1. In figure 4 we show the evolution of the classification accu-
racies for the different adaptation strategies over time. Due to space constraints
we limit ourselves to the Bayes Network classifier, the other classification meth-
ods show the same trends. Each plot shows adaptation from a different number of
initial subject independent training instances ninit. Every 45 iterations the accu-
racy of each classifier with respect to the subject dependent test set is given. Two
baselines represent the performance of a non-adaptive subject independent and
subject dependent classifier. The subject independent classifier is trained on the
initial training set with ninit instances. The subject dependent classifier is trained
on the adaptation set. It indicates the upper bound an adapted user specific clas-
sifier can achieve if all the user specific information would be available.

The classifiers built based on adaptation strategy 1 show a benefit over the
subject independent baseline. The larger ninit the smaller the gain in accuracy.

The classifiers built based on adaptation strategies 2a and 2b outperform the
subject independent baseline and also adaptation strategy 1 for higher ninit. As
the number ninit of initial subject independent training instances increases, the
2a and 2b adapted classifiers reach a higher accuracy.

To further the benefit of the additional ErrP information we also show a
baseline for adaptation strategy 1 in a setting where every classification result
is assumed to be correct - simulating the absence of ErrP. Without ErrP the
adaptation leads to a classifier performing worse or only slightly better than the
user independent classifier in this setting.

The marker in the plots show the points where the 1, 2a and 2b adapted
classifiers reach 99.9% of the accuracy they achieve after all iterations. This
indicates how many iterations are sufficient to build a good adapted classifier.

The results averaged over all subjects and over five simulation runs from
different random seeds are listed in table 2. In all cases at least one of the user
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Fig. 4. Accuracies of the Bayes Network built based on adaptation strategies 1, 2a and
2b over time for four different numbers of instances ninit in the initial training set. At
each iteration the adapted classifiers are tested on the subject dependent test set. The
dashed lines mark the point where 99.9% of the accuracy after all iterations is reached.

adaptation strategies leads to a classifier outperforming the subject independent
classifier. The best adaptation is achieved with strategy 2b in most cases. The
average improvement achieved by the best adaptation strategy over the subject
independent case is 12.1% for the Naive Bayes, 13.9% for the Bayes Network
and 12.2% for the kNN.

The Symbols (+, ∗) next to the recognition accuracy indicate for how many of
the subjects the increase in performance provided by the adaptation strategy is
statistically significant compared to the subject independent accuracy (T-Test,
p<0.05, null hypothesis is that the performance after adaptation is identical to
the subject independent accuracy).

6.2 Adaptation Using Experimental ErrP Detection Performance

We present the results obtained from the experimentally measured ErrP de-
tection accuracy. ErrP detection is challenging in this setup and the average
sensitivity is 0.65, the average specificity 0.62, over all subjects and sessions,
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Table 2. Perfect ErrP detection: Accuracies achieved with the subject dependent (SD),
subject independent (SID), 1 adapted (AD 1), 2a adapted (AD 2a) and 2b adapted
(AD 2b) classifiers in %. The values in brackets give the number of iterations until
99.9% of the final accuracy is reached. (+: significant increase in accuracy for at least
3 out of 7 subjects, ∗: significant increase in accuracy for at least 5 out of 7 subjects).

ninit SID AD 1 AD 2a AD 2b
120 56.6 69.3∗ (1845) 69.6∗ (2205) 70.8∗ (1710)

Naive Bayes 480 59.1 67.8+ (2205) 70.4∗ (1485) 72.2∗ (1755)
SD = 75.7 3840 60.7 62.8+ (2205) 71.1∗ (360) 70.8∗ (450)

15360 60.7 60.8+ (180) 71.3∗ (360) 71.1∗ (450)
120 58.3 77.4∗ (2250) 68.5∗ (855) 75.6∗ (2205)

Bayes Network 480 64.4 76.4∗ (2070) 74.9∗ (1935) 78.2∗ (2250)
SD = 89.7 3840 67.7 74.4∗ (2205) 77.6∗ (675) 79.3∗ (1170)

15360 69.5 72.3∗ (2070) 80.0∗ (1035) 80.6∗ (1170)
120 57.7 74.2∗ (2160) 70.7∗ (2160) 76.9∗ (2025)

kNN k = 13 480 67.6 73.9∗ (315) 75.9∗ (810) 79.9∗ (2205)
SD = 92.2 3840 73.7 82.2∗ (2205) 71.6∗ (270) 75.7∗ (405)

15360 76.4 81.6∗ (2250) 84.1∗ (2250) 85.2∗ (2250)

which is only slightly above chance. We repeated the simulations from section
6.1 taking into account the inaccuracies in the error detection. The simulation
results are listed in table 3.

For all values of ninit at least one adapted classifier performs better than
the subject independent classifier. The gain is however marginal in several cases
and certain adapted classifier perform worse than the subject independent one.
Adaptation strategy 2a performs best for the Naive Bayes classifier while strategy
2b is more appropriate for the Bayes Network and the kNN.

The average improvement achieved by the best adapted classifier over the
subject independent classifier is 2.9% for the Naive Bayes, 3.7% for the Bayes
Network and 4.9% for the kNN.

6.3 Influence of the ErrP Detection Accuracy on the Adaptation

The ErrP recognition performance is a key parameter for a successful adapta-
tion. A perfect ErrP recognition leads to a performance of the user adapted
classifiers higher than the user independent classifier. With the ErrP perfor-
mance experimentally achieved in our setup the improvement is comparatively
lower. Typical EEG ErrP recognition algorithms can be adjusted towards in-
creased specificity or sensitivity following a ROC curve. By understanding the
range of ErrP recognition sensitivity and specificity values where the adaptation
of the gesture recognition shows benefit it becomes possible to adjust the ErrP
recognition parameters along the ROC curve to ensure a benefit.

We consider the adaptation to be beneficial when the user adapted classifier
performs significantly better for at least 3 out of 7 subjects. We consider the
2a and 2b adaptation strategies only with ninit = 480 instances to reduce the
computation effort.
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Table 3. Experimental ErrP detection: Accuracies achieved with the subject dependent
(SD), subject independent (SID), 1 adapted (AD 1), 2a adapted (AD 2a) and 2b adapted
(AD 2b) classifiers in %. The values in brackets give the number of iterations until 99.9%
of the final accuracy is reached. (+: significant increase in accuracy for at least 3 out of 7
subjects, ∗: significant increase in accuracy for at least 5 out of 7 subjects).

ninit SID AD 1 AD 2a AD 2b
120 56.6 58.3 (990) 59.6 (900) 59.1 (1080)

Naive Bayes 480 59.1 59.0 (1440) 62.3+ (360) 60.5+ (1080)
SD = 75.7 3840 60.7 58.7 (45) 63.4+ (270) 62.6+ (315)

15360 60.7 59.3 (45) 63.6∗ (360) 63.4∗ (315)
120 58.3 62.9 (2160) 59.3 (315) 61.3 (2205)

Bayes Network 480 64.4 67.3+ (1890) 66.5 (720) 67.8+ (1485)
SD = 89.7 3840 67.7 69.5 (2205) 70.3+ (675) 70.6+ (2250)

15360 69.5 70.1 (1755) 73.1+ (2070) 72.5+ (855)
120 57.7 62.5+ (1890) 60.5 (1080) 63.6+ (1800)

kNN k = 13 480 67.6 71.1+ (315) 71.4+ (1890) 71.0+ (765)
SD = 92.2 3840 73.7 78.5∗ (2070) 77.0∗ (2160) 79.1∗ (2250)

15360 76.4 79.6∗ (2205) 79.6∗ (1890) 81.1∗ (2250)
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Fig. 5. The curves for each classification method give the ErrP detection performance for
which the adapted classifier improves significantly for at least three subjects over the sub-
ject independent classifier. For every point to the right or above these curves a benefit can
be expected when adapting based on a ErrP detection system offering this performance.

Figure 5 shows the decision line between sensitivity and specificity pairs be-
yond which the 2a or 2b adaptation strategy is beneficial. Any point right or
above the line describes an ErrP detection sensitivity or specificity that allows
for beneficial adaptation. For strategy 2a the Naive Bayes and the kNN are quite
robust while the Bayes Network shows the least robustness with respect to ErrP
recognition performance. With strategy 2b the trends are similar, the Bayes
Network is more comparable to the other classification algorithms, though. All
algorithms are more sensitive to a low sensitivity than to a low specificity.

7 Discussion

In this work we assess, for the first time, single-trial recognition of EEG error-
related potentials in a complex, realistic task. This contrasts with previously re-
ported experiments where these signals were studied using very simple stimuli,
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and subjects movements were restricted to minimize motion-related artifacts in
the EEG signal [23,19,24]. The difference in the experimental protocol - i.e. sub-
ject moving during the recording, complex visual feedback, different cognitive de-
mand of the experimental task -, together with the intrinsic variability, noise, and
non-stationarities of brain signals, may explain the low classification accuracies
obtained in the current study. Nevertheless, it should be considered that it is not
possible to achieve perfect decoding of brain generated signals due to several rea-
sons (i.e. low signal-to-noise ratio, EEG non-stationarity, muscular contamina-
tion). Indeed, classification performance for ErrP recognition in much simpler,
controlled experiments is approximately 80% for both classes[23,19]. Therefore
our results are encouraging.

Despite the low ErrP recognition performance it was still possible to use this
additional source of information to successfully adapt the gesture recognition
system towards a specific user. The gain in accuracy achieved by the adaptation
is depending on the ErrP recognition. The better the ErrP recognition performs
the more improvement in the gesture classification can be expected. This is true
for all classification methods we investigated.

As we rely on a subject independent gesture recognition system as a basis
for our adaptation it is indispensable that this initial system reaches a certain
recognition performance. If for example the initial system could not at all recog-
nize one specific class it would not be possible to build a new subject dependent
classifier, as this class would be missing in the collected subject dependent data.

In our experimental setup for data collection we assume that the subject
intention is correctly captured by the gesture recognition. There might still be
cases where the subject performs a wrong gesture by mistake. This mistake might
also be reflected in the brain signal as an error. As we do not capture the users
intention directly we can not assess the influence of user mistakes.

The gesture recognition errors are added artificially and randomly so that
the user can not adapt to it to improve the gesture recognition. Therefore the
simulated improvements of the gesture recognition are independent of potential
user adaptation.

One can arg that the simulations based on offline data are not meaningful
for a live system as other effects, like user adaptation, may come into play. In a
life system it is very difficult to investigate all parameters essential for such an
adaptation scenario, though.

Even though the ErrP adapted classifier reaches a promising accuracy gain,
the performance of a classifier trained in a pure subject dependent manner is
still not reached. This can be explained by the fact that the adaptation only uses
the instances which are correctly classified by the subject independent classifier.
The instances which are too different and therefore not covered by the subject
independent model are excluded. These excluded instances potentially contain
information important for building a good user dependent model.

In the adaptation schemes we propose we do not make use of confidence values
which could be provided by the ErrP detection. These confidence values may be
used to weight the instances for the adaptation process.
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The online learning we made use of was based on batch learning. Batch learn-
ing in general puts higher memory requirements on a system, compared to in-
cremental learning, as all training instances in the batch have to be stored. Es-
pecially for wearable systems with limited memory and processing capabilities
incremental learning should be considered for online learning and adaptation.

8 Conclusion

We have investigated strategies for user adaptation within a gesture based HCI
scenario making use of additional information provided by EEG ErrP analysis.
To our knowledge, this is the first attempt to use brain signals related to the
perception of errors for the improvement of activity recognition systems. Simula-
tions of a perfect decoding of such signals show that theoretically the recognition
accuracy can be increased by up to 13.9% over the user independent classifier.
Using single-trial recognition of actual EEG data recorded during the gesture
based HCI experiment, the accuracy increase for the adapted gesture recognition
reached 4.9% in the best case. This shows that brain signals (i.e. EEG) gener-
ated during real human-computer interaction provide information that can be
integrated into the activity recognition chain so as to improve its performance.

EEG-based user adaptation remains unlikely in real-world scenarios in the
near future given the current state of the sensing technology, its sensitivity to
motion artifacts, and the desire for invisible wearables. Miniaturized sensing
platforms may become available [34], however there are also many professional
occupations that require to wear a helmet or head protection gear (e.g. firefight-
ers, soldiers, surgeons, pilots). In this case the integration of EEG within the
head apparel can be envisioned. Since these are usually high stakes professions, a
continuous self-monitoring of wearable system performance and its improvement
over time may be strong factors supporting the inclusion of such technology. In
general there are many potential applications, ranging from disabled people to
entertainment [35], which could benefit from “human in the loop” strategies.

An immediate outcome of this work, however, is the comparative evaluation of
user adaptation strategies, that are applicable to other forms of user feedback.
For instance, a button integrated in a smart shirt or a user interface element
could be used to signal a non-desired behavior triggering system adaptation.

Besides using the strategies presented here to adapt a generic classifier to a
specific user, they may also be used to deal with changing user preferences or non
stationarities, either using implicit EEG-based feedback, or explicit feedback.

In future work we plan to use the recorded EMG and EOG to filter out
muscular artifacts that may contaminate the signals used for classification. This
may lead to an increase in recognition performance and a higher robustness to
contaminations.

To improve the user adaption we further plan to investigate how online learn-
ing methods can make additional use of user specific instances which were
wrongly classified. Those instances may add valuable information to the adap-
tation process.
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