
Chapter 9
Model Equations: Restoration of Equivalent
Characteristics

In the case called “grey box” in Sect. 5.2, a researcher has partial knowledge about
the structure of model equations xn+1 = f(xn, c) or dx

/
dt = f(x, c). More con-

cretely, some components of the function f are unknown. Then, the problem gets
more complicated, than just parameter estimation discussed in Chap. 8, and more
interesting from a practical viewpoint.

To illustrate its peculiarities, let us consider modelling of a harmonically driven
non-linear dissipative oscillator described by the equations

dx1
/

dt = x2,

dx2
/

dt = −γ0x2 + F(x1) + A0 cos(ω0t + φ0),
(9.1)

where γ0, A0, ω0, φ0 are parameters and F is a non-linear restoring force, whose
form is unknown. Let the variable x1 be an observable, i.e. η = x1. Note that the
function F is only a component of the entire dynamical system (9.1): the function
F together with the other terms in the right-hand side specifies the phase velocity
field. In practice, F is a characteristic of the object, which makes clear physical
sense and can be of significant interest by itself. Its values may be unavailable for
direct measurements due to experimental conditions, i.e. it may be impossible to get
experimental data points directly on the plane (x1, F). However, information about
the function F is contained in the time series, since F influences the dynamics. One
can “extract” the values of F indirectly, i.e. via construction of an empirical model
whose structure includes a model function corresponding to F . Namely, one should
construct a model in the form

dx1
/

dt = x2,

dx2
/

dt = −γ x2 + f (x1, c) + A cos(ωt + φ),
(9.2)

where f (x1, c) should approximate F . Approximation of a one-variable function is
a much more feasible task in practice, than a general problem of multivariable func-
tion approximation arising in “black box” reconstruction (Chap. 10). If one manages
to get a “good” model, the ideas behind the model structure (9.2) are validated and
the characteristic F is restored in the form f (x1, ĉ). We stress that it can be the only
way to get the characteristic F.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_9,
C© Springer-Verlag Berlin Heidelberg 2010

255



256 9 Model Equations: Restoration of Equivalent Characteristics

Due to the importance of information about characteristics of non-linear elements
inaccessible for direct measurements, we call the considered modelling problem
“restoration of equivalent characteristics”. Components of a model function f can
make different physical sense: a restoring force, non-linear friction, etc. Opportu-
nities to extract such information arise if physical sense is introduced into a model
structure in advance. More often, this is achieved with differential equations, since
many laws of nature are formulated in such a form.

As in Chap. 8, the models considered here determine either a dependency “a
future state xn+1 versus a current state xn” or “a phase velocity dx/dt versus a state
x”. The difference from Chap. 8 is that one must specify a functional form of the
characteristics to be restored before the stage of parameter estimation (Sect. 9.1).
Hence, it gets more important to optimise a model structure (Sect. 9.2) and even
to select it in a specific way for a certain object (Sect. 9.3) or a class of objects
(Sect. 9.4).

9.1 Restoration Procedure and Peculiarities of the Problem

9.1.1 Discrete Maps

Let an original be a one-dimensional map xn+1 = F(xn), where an observable is
ηn = xn . Let the dimension of the system be known and the form of the function F
unknown.

A model is constructed as a one-dimensional map xn+1 = f (xn, c). For this
simple example, data points on the plane (ηn, ηn+1) represent the plot of F . One
should just select the form of f (x, c) and find the values of c so as to approximate
the data points in the best way (Fig. 9.1). Only the entire function f (x, ĉ) makes
physical sense, rather than each single parameter, that is typical under the “grey
box” setting.

The problem is almost the same as in Chap. 7, see, e.g., Fig. 7.1b. The difference
is that the quantities (ηn, ηn+1) are shown along the coordinate axes rather than
the quantities (t, η). Therefore, one can use the techniques discussed in Sect. 7.2.1

Fig. 9.1 Construction of a
model map: finding a
dependence of the next value
of an observable on the
previous one from
experimental data (circles)
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by replacing the pair of quantities (t, η) by (ηn, ηn+1). Thus, it is convenient to
use a low-order algebraic polynomial or cubic splines (Sect. 7.2.4) to approximate
a one-variable function shown in Fig. 9.1. Parameters can be estimated with the
ordinary LS technique (8.3).

If a dynamical noise is present in the original map as xn+1 = F(xn) + ξn , noth-
ing changes in the model construction procedure. A measurement noise, i.e. ηn =
xn + ζn , makes the parameter estimation more complicated (Sect. 8.1.2). If its level
is low, the ordinary LS technique is still suitable. For higher levels of the measure-
ment noise, it would be desirable to use more sophisticated techniques (Sects. 8.1.2
and 8.2.1), but under the “grey box” setting, a model typically contains many param-
eters to be estimated, which makes the use of those techniques much more trouble-
some.

9.1.2 Ordinary Differential Equations

To describe complex motions, including chaotic ones, one uses non-linear model
ODEs dx/dt = f(x,c) with at least three dynamical variables. Some components
of the velocity field f can be unknown as in the examples (9.1) and (9.2). Those
“equivalent characteristics” are built into the model structure and one can find them
via the construction of the entire model. Let us consider some details.

The first case is when all the dynamical variables xk are observed: ηk(ti ) =
xk(ti ) + ζk(ti ), k = 1, . . . , D. To construct a model, one approximates a depen-
dence of the derivative dxk(ti )/dt on x(ti ) with a function fk(x,ck) for each k. The
values of dxk(ti )/dt are usually obtained from the observed data ηk(ti ) via numerical
differentiation (Sect. 7.4.2). Let us denote their estimates dx̂k(ti )/dt . “Smoothed”
values of the dynamical variables x̂k(ti ) emerge as a by-product of the differentiation
procedure. From the values x̂k(ti ), dx̂k(ti )/dt , one estimates model parameters ck

with the ordinary LS technique:

S(ck) =
∑

i

(
dx̂k(ti )

/
dt − fk(x̂(ti ), ck)

)2 → min, k = 1, . . . , D. (9.3)

The functions fk(x,ck) contain, in particular, sought equivalent characteristics.
The second typical case is when one observes a single dynamical variable:

η(ti ) = x1(ti ) + ζ(ti ). The dimension D of the system is known. Successful
modelling gets more probable if the dynamical equations for the original take the
standard form (3.27), where the components of the state vector x are successive
derivatives of the variable x1. A model is constructed in the corresponding form

dDx(t)
/

dt D = f (x(t), dx(t)
/

dt, dD−1x(t)
/

dt D−1, c). (9.4)

Firstly, one gets the time series of x̂, x̂ (1), x̂ (2), . . . , x̂ (D−1), where superscript
denotes an order of the derivative, via numerical differentiation of the observable
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η(ti ). Parameters of the function f , which includes equivalent characteristics to be
restored, are estimated with the ordinary LS technique:

S(c) =
∑

i

(
x̂ (D)(ti ) − f (x̂(ti ), x̂ (1)(ti ), . . . , x̂ (D−1)(ti ), c)

)2 → min. (9.5)

The described techniques perform well under sufficiently low levels of the mea-
surement noise. Moreover, the results are more reliable if the functions fk in
Eq. (9.3) and f in Eq. (9.5) depend on the parameters in a linear way, i.e. repre-
sent pseudo-linear models (Sect. 7.2.4). For higher noise levels, the modelling gets
much more difficult, since numerical differentiation amplifies any noise, especially
when D > 1 derivatives are computed. Then, the ordinary LS technique becomes
unsuitable, while the use of more sophisticated techniques (Sect. 8.2.1) in the case
of multidimensional models with many unknown parameters is also unrealistic.

9.1.3 Stochastic Differential Equations

A more general idea, which is seemingly advantageous in the case of a multiplicative
dynamical noise, is suggested in Friedrich et al. (2000) and Siegert et al. (1998). It
is based on the estimation of parameters in the Fokker – Planck equation for a con-
sidered non-linear system, i.e. the estimation of the drift and diffusion coefficients
(Sects. 4.3 and 4.5). Thus, let an object of modelling be given by the Langevin
equations

dxk
/

dt = Fk(x) + Gk(x)ξk(t), k = 1, . . . , D,

where independent zero-mean white noises ξk(t) have auto-covariance functions
〈ξk(t)ξk(t ′)〉 = δ(t − t ′). One assumes that the dimension D and noise properties
are known, and all D state variables are observed. Only concrete functional forms
of Fk(x), Gk(x) are unknown so that these functions are to be determined from a
time series.

Let us consider the case of D = 1 for simplicity of notations, i.e. the system
dx/dt = F(x) + G(x)ξ(t). Recall that the Fokker – Planck equation (4.8) is
defined as

∂p(x, t)

∂t
= − ∂

∂x
(c1(x, t)p(x, t)) + 1

2

∂2

∂x2 (c2(x, t)p(x, t)) ,

where the drift coefficient is

c1(x, t) = lim
τ→0

1

τ

∞∫

−∞
(x ′ − x)p(x ′, t + τ |x, t)dx ′



9.1 Restoration Procedure and Peculiarities of the Problem 259

and the diffusion coefficient is

c2(x, t) = lim
τ→0

1

τ

∞∫

−∞
(x ′ − x)2 p(x ′, t + τ |x, t)dx ′

The functions F,G are related to these coefficients as

c1(x) = F(x) + 1

2

dG(x)

dx
G(x)

and c2(x) = G2(x) (Sect. 4.3). If c1(x), c2(x) are known, the functions F,G can
be restored from them (e.g., if one requires positivity of G(x)). Moreover, to answer
many questions, it is possible to use the Fokker – Planck equation directly, rather
than the original stochastic DE with the functions F,G.

As one can see from the above definitions, c1(x) and c2(x) are directly related
to the conditional mean and conditional variance of the next value of x , given the
current value of x . The conditional mean and variance can be estimated from data
just as the sample mean and sample variance (Sect. 2.2.1) over all observed states
close to a given state x . Having the estimates of the conditional mean and variance
for different intervals τ (the smallest possible value of τ being equal to the sampling
interval t), one can estimate the limits τ → 0 by extrapolation (Friedrich et al.,
2000). Thereby, the estimates ĉ1(x) and ĉ2(x) are obtained. They are reliable at
a given state x if an observed orbit passes near this state many times. Thus, the
estimates ĉ1(x) and ĉ2(x) are more accurate for the often visited regions in the state
space. They are poorly defined for “rarely populated” regions.

The estimates ĉ1(x) and ĉ2(x) are obtained in a non-parametric form (just as
tables of numerical values). However, one may approximate the obtained depen-
dencies ĉ1(x) and ĉ2(x) with any smooth functions if necessary, e.g. with a poly-
nomial (Friedrich et al., 2000). The obtained functions ĉ1(x) and ĉ2(x) can also be
considered as (non-linear) characteristics of the system under study. Deriving the
estimates of the functions F and G, entering the original stochastic equation, from
the estimates ĉ1(x) and ĉ2(x) is possible under some conditions on the function
G assuring uniqueness of the relationship. Getting the functions F and G is of a
specific practical interest if they have a clearer physical interpretation compared to
the coefficients ĉ1(x) and ĉ2(x).

Several examples of successful applications of the approach to numerically simu-
lated time series, electronic experiments and physiological data, as well as a detailed
discussion are given in Friedrich et al. (2000), Ragwitz and Kantz (2001); and
Siegert et al. (1998). The approach directly applies if there is no measurement noise.
Its generalisation to the case of measurement noise is presented in Siefert et al.
(2003).
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9.2 Model Structure Optimisation

Model structure selection is as important for the restoration of equivalent charac-
teristics as for the problem considered in Sect. 7.2.1. To choose a model size, e.g.
a polynomial order, one can use the criteria described in Sect. 7.2.3. However, the
question remains: How to choose small subset of function terms from a large set of
basis functions to provide the best model of a given size?

Let us consider an efficient approach (Bezruchko et al., 2001a) with the example
of the reconstruction of equations for the van der Pol – Toda oscillator

dx1
/

dt = x2,

dx2
/

dt = (1 − x2
1)x2 − 1 + e−x1 .

(9.6)

A time series of the observable is η = x1 is supposed to be available. The corre-
sponding phase orbit, containing a transient process, is shown in Fig. 9.2. A model
is constructed in the form

dx1
/

dt = x2,

dx2
/

dt = f (x1, x2, c),
(9.7)

where

f (x1, x2, c) =
K∑

i, j=0

ci, j x i
1x j

2 , i + j ≤ K .

Many terms in the polynomial are “superfluous” since they have no analogues in
Eq. (9.6), e.g. the terms c0,0, c1,1x1x2, c0,2x2

2 and others. Estimates of the coeffi-
cients corresponding to the superfluous terms can appear non-zero due to various
errors and fluctuations. This circumstance can strongly reduce model quality. Thus,
it is desirable to exclude the superfluous terms from the model equations.

Fig. 9.2 A phase orbit of the
van der Pol – Toda oscillator
(9.6) which contains a
transient process. The
attractor is a limit cycle. The
numbers are temporal indices
of some data points in the
time series, which is recorded
with a sampling interval of
0.01. There are about 600
data points per basic period
of oscillations
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Superfluous terms can be identified via the estimation of the model coefficients
from different segments of the time series, i.e. from the data points lying in dif-
ferent domains of the phase space. The estimates of the “necessary” coefficients
must not depend on a time series segment used. In contrast, the estimates of the
coefficients corresponding to superfluous terms are expected to exhibit considerable
variations. Such variations are stronger if a time series contains a transient pro-
cess (Anishchenko et al., 1998; Bezruchko et al., 2001a), since the phase orbit then
explores different domains in the phase space (Fig. 9.2).

We constructed the model (9.7) with a polynomial of a high-order K from sub-
sequent time series segments of length W : {η(k−1)W+1, . . . , η(k−1)W+W }, k =
1, 2, . . . , L . Thus, we obtained a set of estimates for each coefficient ĉ(k)i, j
(Fig. 9.3a). A degree of stability of each coefficient estimate ĉi, j is defined as∣∣〈ĉi, j

〉∣∣ /σi, j , where

〈
ĉi, j

〉
= (1/L)

L∑

k=1

ĉ(k)i, j

and

σi, j =
√√√√(

1
/

L
) L∑

k=1

(
ĉ(k)i, j − 〈

ci, j
〉)2

.

The term corresponding to the least stable coefficient was excluded. The entire
procedure was repeated for the simplified model structure. By repeating the exclu-
sion procedure many times, we sequentially removed the “unstable terms”.

The procedure was stopped when the model quality did no longer improve. The
criterion of quality was a minimum of the approximation error over a wide area V
in the phase space (shown in Fig. 9.3b)

Fig. 9.3 Construction of a model for the van der Pol – Toda oscillator (9.6) starting with a full
two-variable polynomial of order K = 7 in Eq. (9.7) from time series segments of length W =
2000 data points: (a) estimates of the coefficients, corresponding to the indicated terms, versus the
starting time instant of a time series segment (in units of sampling interval), the thick lines; (b) the
model error versus the number of excluded terms, it is minimal for 20 terms excluded
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σ 2 =
∫∫

V

{
f (x1, x2, ĉ) −

[
(1 − x2

1)x2 − 1 + e−x1
]}2

dx1 dx2.

After excluding 20 terms from an initial polynomial with K = 7, the error was
reduced by an order of magnitude in comparison with its starting value (Bezruchko
et al., 2001a). At that, the final model reproduced much more accurately the dynam-
ics of an object (including transient processes starting from different initial con-
ditions) in the entire square region of the phase space shown in Fig. 9.2. This is
because the described procedure of the model structure optimisation allows better
generalisation of some essential dynamical features by reducing the danger of over-
fitting.

9.3 Equivalent Characteristics for Two Real-World Oscillators

In this section, we describe our results on the restoration of equivalent characteris-
tics of oscillatory processes from the fields of physiology (Stoop et al., 2006) and
electronics (Bezruchko et al., 1999a).

9.3.1 Physiological Oscillator

The cochlear amplifier is a fundamental, generally accepted concept in cochlear
mechanics, having a large impact on our understanding of how hearing works.
The concept, first brought forward by Gold in 1948 (Gold, 1948), posits that an
active mechanical process improves the mechanical performance of the ear (Robles
and Ruggero, 2001). Until recently, the study of this amplifying process has been
restricted to the ears of vertebrates, where the high complexity and the limited acces-
sibility of the auditory system complicate the in situ investigation of the mechanisms
involved. This limitation has hampered the validation of cochlear models that have
been devised (Dallos et al., 1996; Kern and Stoop, 2003). The hearing organs of
certain insects have recently been shown to exhibit signal-processing characteris-
tics similar to the mammalian cochlea by using active amplification (Goepfert and
Robert, 2001; 2003; Goepfert et al., 2005); the ears of these insects are able to
actively amplify incoming stimuli, display a pronounced compressive non-linearity,
exhibit power gain and generate self-sustained oscillations in the absence of sound.
In both vertebrates and insects, the mechanism that promotes this amplification
resides in the motility of auditory mechanosensory cells, i.e. vertebrate hair cells
and insect chordotonal neurons. Both types of cells are developmentally derived by
homologous genes and share similar transduction machineries, pointing to a com-
mon evolutionary origin (Boekhoff-Falk, 2005). In line with such an evolutionary
scenario, it seems possible that the fundamental mechanism of active amplification
in the ears of insects and vertebrates is also evolutionarily conserved (Robert and
Goepfert, 2002).
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Since insect’s hearing organs are located on the body surface, they are accessible
to non-invasive examination. Moreover, because the external sound receiver is often
directly coupled to the auditory sense cells, insect auditory systems can be expected
to provide profound experimental and theoretical insights into the in situ mechan-
ics of motile sense cells and their impact on the mechanical performance of the
ear. Such information is technically relevant: providing natural examples of refined
active sensors, the minuscule ears of insects promise inspiration for the design
of nanoscale artificial analogues. Here, we present the results of modelling self-
sustained oscillations of the antennal ear of the fruit fly Drosophila melanogaster
with non-linear oscillator equation (9.7) and restoring its equivalent characteristics
(Stoop et al., 2006).

In Drosophila, hearing is mediated by mechanosensory neurons that directly con-
nect to an external sound receiver formed by the distal part of the antennas (Goepfert
and Robert, 2000). These neurons actively modulate the receiver mechanics and,
occasionally, give rise to self-sustained receiver oscillations (SOs). SOs occur spon-
taneously and are reliably induced by thoracic injection of dimethyl sulphoxide
(DMSO), a local analgesic known to affect insect’s auditory transduction. The pre-
cise action of DMSO on the auditory neurons remains unclear. However, as spon-
taneous and DMSO-induced SOs are both physiologically vulnerable and display
similar temporal patterns, the latter can be used to probe the nature of the amplifica-
tion mechanism in the fly’s antennal ear (Goepfert and Robert, 2001). As revealed
by measurements of the receiver vibrations (Fig. 9.4), about 20 min after the admin-
istration of DMSO, fully developed SOs are observed (Fig. 9.4b). They exhibit the
temporal profile of relaxation oscillations with a characteristic frequency of about
100 Hz (Goepfert and Robert, 2003). About 10 min later, the SOs start to decrease
in amplitude (Fig. 9.4c) and finally converge to a sinusoidal profile (Fig. 9.4d). The
evoked SOs may last for up to 1–1.5 h.

Fig. 9.4 Self-sustained oscillations of the Drosophila hearing sensor (velocity measurements):
(a) 10 min, (b) 20 min, (c) 30 min, (d) 34 min after DMSO injection
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The temporal profile of these oscillations is reminiscent of limit cycle oscillations
generated by the van der Pol oscillator

dx1
/

dt = x2,

dx2
/

dt = (μ − x2
1)x2 − x1,

(9.8)

where x1 is identified with the receiver’s vibrational position and the control param-
eter μ > 0 is slowly decreased in order to account for the changes in the SO shape
during time. It is well known that at μ = 0, the van der Pol oscillator undergoes the
Andronov – Hopf bifurcation; for μ > 0, a stable limit cycle emerges that can be
interpreted as undamping (i.e. amplification). A more detailed examination of the
experimental data reveals a pronounced asymmetry (see Fig. 9.4b) by comparing
the onsets and extents of the upward and downward excursions within one period,
which requires a more general model for the SO generation than the standard van
der Pol system.

In order to capture this asymmetry, we construct a model in the form of the
generalised van der Pol oscillator (9.7) with f (x1, x2) = f1(x1)x2 − f2(x1), where
f1(x1) and f2(x1) describe polynomials of the orders n and m, respectively. From
the viewpoint of physics, − f1(x1) describes a non-linear and possibly negative
friction, whereas − f2(x1) describes a non-linear restoring force. It is necessary to
determine the orders n and m and polynomial coefficients that yield the optimal
reproduction of the experimental data. One can expect that for a proper model, the
polynomial orders n and m are unambiguously determined and only variations in the
coefficients account for the observed changes in the SO temporal profile over time.

From the measurements with the sampling interval t = 0.08 ms, we are pro-
vided with a time series of the receiver’s vibration velocities v which is described
by the variable x2 in the model. The values of the displacement and the accelera-
tion are determined via numerical integration and differentiation, respectively. The
latter is performed by applying the first-order Savitzky – Golay filter (Sect. 7.4.2).
Quasi-stationary segments of the original data of lengths N = 4000 data points (i.e.
the duration of 0.32 s) are used for the model construction. In order to determine
the optimal polynomial orders n and m, we use the criterion of the training error
saturation (Sect. 7.2.3):

ε̂2 = min
c1,c2

1

N

N∑

i=1

(
dx̂2(ti )

/
dt − f1(x̂1(ti ), c1)x̂2(ti ) + f2(x̂1(ti ), c2)

)2
. (9.9)

The error ε̂ saturates for n = 2 and m = 5 (Fig. 9.5). A further increase in n and
m does not reduce ε̂. The emergence of such a conspicuous saturation point is a rare
case in practice and indicates that the model structure (9.7) faithfully reproduces the
auditory data of Drosophila.

A comparison between realisations of the model and the measurements cor-
roborates the validity of our modelling. For the fully developed SOs (after
20 min, Fig. 9.6), the comparison reveals that the measured velocities are faithfully
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Fig. 9.5 Mean-squared error
ε̂ of the model fitting (9.9)
showing a precipitous decay
and saturation around the
orders n = 2 and m = 5

Fig. 9.6 Diagnostic check: (a) experimentally measured receiver’s vibration velocity observed
20 min after DMSO injection, i.e. fully developed SOs; (b) a corresponding time series generated
by the model (9.7) with n = 2 and m = 5

reproduced. This is further illustrated in Fig. 9.7, where the modelled and the mea-
sured data are compared on the phase plane (x1, x2). Similar observations take place
for the time series recorded 10, 30 and 34 min after DMSO injection, respectively.

The shapes of the polynomials f1(x1) and f2(x1) reflect the asymmetry of
the observed receiver oscillations, specifically when the SOs are fully devel-
oped (Fig. 9.4b). The asymmetry of f1(x1) (Fig. 9.8a) and, in particular, f2(x1)

(Fig. 9.8b) becomes effective at large displacements and may have its origin in
structural-mechanical properties of the antenna. An enlightening interpretation of

Fig. 9.7 Phase-space
representation of the
measured (dots) and model
(the solid line) receiver
vibrations in the case of fully
developed SOs
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Fig. 9.8 Restored non-linear characteristics of the receiver for the fully developed SOs 20 min after
DMSO injection: (a) the second-order polynomial f1(x1), which means a non-linear friction with
the opposite sign and shows the undamping f1(x1) > 0 (see the dashed line); (b) the fifth-order
polynomial f2(x1), which means a non-linear restoring force with the opposite sign and displays a
noticeable asymmetry

the amplification dynamics can be given for the behaviour around zero displacement
position x1 ≈ 0, where f1(x1) attains positive values for small displacements x1
(Fig. 9.8a). Since − f1(x1) represents friction, the inequality f1(x1) > 0 implies
that energy is injected into the system. This is a characteristic feature of an active
amplification process. Around x1 = 0, the non-linear restoring force − f2(x1) and its
first and second derivatives are relatively small. This implies that for small receiver
displacements, virtually no restoring force is present. By means of the negative fric-
tion term, the system is thus easily driven out to relatively large amplitudes.

In the course of time, i.e. with decreasing DMSO concentration, the non-linear
contributions to friction and restoring force decay. In particular, the range, where the
friction is negative, gradually decreases and finally vanishes in agreement with the
observed reduction in SO amplitude (see Fig. 9.4). When the SO starts to disappear,
the restoring force function f2(x1) gets approximately linear with a very small slope.
At the same time, the friction term remains to be very small. As a consequence,
weak stimuli will be sufficient to elicit considerable antennal vibrations. Although
the amplifier has now returned into a stable state, where limit cycles do not occur,
it remains very sensitive. Only small parameter variations are necessary in order
to render the friction term negative and to lead to an amplification of incoming
vibrations.

Thus, the model obtained captures several characteristics of the antennal ear
oscillations, indicating that the empirical modelling may be useful for analysing
the physics of the cochlear amplifier as well (Stoop et al., 2006).

9.3.2 Electronic Oscillator

An illustrative example from the field of electronics refers to the case when a chaotic
motion of a non-linear system is successfully modelled under the “grey box” setting.
An object is an RLC circuit with switched capacitors under an external sinusoidal
driving with the amplitude U0 and the angular frequency ω0. Its scheme is presented
in Fig. 9.9a, where K is an electronic key, a micro-scheme containing dozens of
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Fig. 9.9 Modelling of an electronic oscillator: (a) the scheme of an experimental set-up; (b) an
experimental chaotic orbit on the plane “charge versus current” in dimensionless units (Bezruchko
et al., 1999a); the values of I are measured with a 12-bit ADC at t = 4 μs, C1 = 0.1 μF, C2 =
4.4 μF, L = 20 mH, R = 10 �, Uthr = −0.2 V, the driving period T ≈ 84.02 t , and U0 =
2.344 V; (c) an orbit of the reconstructed model (9.2) with the polynomial f of the ninth order; (d)
a plot for the function – f (thick line) and an expected piecewise linear dependence (thin line)

transistors and other passive elements, which is fed from a special source of direct
voltage. Under small values of the voltage U on the capacity C1, linear oscillations
in the circuit RLC1 take place, since the resistance of the key is very high. When U
reaches a threshold value Uthr, resistance of the key reduces abruptly so that it closes
the circuit and connects the capacity C2. Reverse switching occurs at the value of U
somewhat lower than Uthr, i.e. the key exhibits a hysteresis. It is the presence of
non-linearity that leads to the possibility of chaotic oscillations in the circuit.

A model of this system derived from Kirchhoff’s laws takes the form of the
non-autonomous non-linear oscillator (9.2). The dimensionless variables read t =
t ′/

√
LC1 and x1 = q/C2|Uthr|, where t ′ is the physical time and q is the total

charge on the capacities C1 and C2. It is expected that the original function F
is piecewise linear due to such voltage – capacity characteristic of the non-linear
element represented by the switched capacitors.

Experimental measurements provide us with a chaotic time series of the current
I through the resistor R, which corresponds to the quantity x2 in Eq. (9.2). The time
series of the variable x1 is obtained via numerical integration of the observed signal
and the time series of the variable dx2/dt is obtained via numerical differentiation.
We do not use information about the piecewise linear form of F , especially recalling
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that it is a theoretical approximation which ignores hysteresis of the key and other
realistic features. Models are constructed in the form (9.2) with polynomials f of
different orders K . Figure 9.9c shows the results for the best model with K = 9,
which reproduces well the observed chaotic motion illustrated in Fig. 9.9b. The
theoretical piecewise linear “restoring force” and the model polynomial f coincide
with a good accuracy in the observed range of the x1 values bounded by the dashed
line in Fig. 9.9d. We note that without prior information about the model structure
(9.2), it is impossible to get an adequate empirical model making physical sense
(Bezruchko et al., 1999a).

This example illustrates restoring equivalent characteristics of a non-linear ele-
ment via empirical modelling even in regimes of large amplitudes and chaos, where
such characteristics may be inaccessible to direct measurements with ordinary tools.
The empirical modelling has been successfully used to study dynamical characteris-
tics of a ferroelectric capacitor (Hegger et al., 1998), semiconductor diodes (Sysoev
et al., 2004) and optical fibre systems (Voss and Kurths, 1999).

9.4 Specific Choice of Model Structure

Uncertainty with respect to a model structure may not be so small as in the above
examples. The “box” can be “dark grey” rather than “light grey” (Fig. 5.1) which
makes empirical modelling much more difficult. However, in some cases, even small
amount of a priori information along with a preliminary analysis of an observed time
series can lead to a success if it is properly taken into account in a model structure.
This is illustrated below with two wide classes of objects: systems under regular
external driving and time-delay systems.

9.4.1 Systems Under Regular External Driving

If the presence of regular (periodic or quasi-periodic) driving is known a priori or
assumed from a preliminary data analysis (e.g., strong discrete components in a
power spectrum), then it is fruitful to include functions explicitly depending on time
into model equations to describe such driving.

Thus, to describe an additive harmonic driving, one can reasonably use the model
structure

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) + a cosωt + b sinωt, (9.10)

where x is an observable and f is an algebraic polynomial (Bezruchko and Smirnov,
2001; Bezruchko et al., 1999a). One may use smaller number of variables D in
Eq. (9.10) than it would be necessary for the autonomous standard model (9.4).
This circumstance determines advantages of the special model structure (9.10). The
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oscillator equation (9.2) is a particular case of Eq. (9.10) for D = 2 and an incom-
plete two-variable polynomial.

Along with the choice of the model structure, one should overcome a specific
technical problem. It consists of the estimation of the driving frequency ω, which
enters the model equations (9.10) in a non-linear way. As usual, one makes a starting
guess and solves a minimisation problem for a cost function like Eq. (9.5) with an
iterative technique. However, the right-hand side of Eq. (9.10) is very sensitive with
respect to ω at large t analogous to example (7.19) in Sect. 7.1.2. Therefore, the cost
function S of the type (9.5) is sensitive with respect toω for a large time series length
N . It implies that the variance of the resulting estimator of the frequency ω rapidly
decreases with the time series length if one manages to find the global minimum
of S. Namely, the variance scales as N−3 analogous to example (7.19). On the one
hand, it gives an opportunity to determine ω to a very high accuracy. On the other
hand, it is more difficult to find the global minimum since one needs a very lucky
starting guess for ω. Taking it into account, one should carefully try multiple starting
guesses for ω.

If ω is known a priori to a certain error, it is important to remember that for a
very long time series, a small error in ω can lead to a bad description of the “true”
driving with the corresponding terms in Eq. (9.10) due to the increase in “phase
difference” between them over time (Bezruchko et al., 1999a). Then, the model
structure (9.10) would get useless. Therefore, it is reasonable to consider the a priori
known value as a starting guess for ω and determine the value of ω more accurately
from the observation data. This discussion applies to other non-autonomous systems
considered below.

For an arbitrary additive regular driving (complex periodic or quasi-periodic), a
more appropriate model structure is

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) + g(t, c), (9.11)

where the function g(t) describes the driving and can be represented as a trigono-
metric polynomial (Smirnov et al., 2003):

g(t) =
k∑

i=1

Ki∑

j=1

ci, j cos(jωi t + φi, j ). (9.12)

One can get good models with trigonometric polynomials of very high orders
Ki , while approximation with a high-order algebraic polynomial typically leads to
globally unstable model orbits.

To allow for multiplicative or even more complicated forms of driving, an explicit
temporal dependence can be introduced into the coefficients of the polynomial f in
Eq. (9.10) (Bezruchko and Smirnov, 2001). Thus, Fig. 9.10 shows an example of
modelling of the non-autonomous Toda oscillator under combined harmonic driving
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Fig. 9.10 Reconstruction of the equations for the non-autonomous Toda oscillator (9.13) from
a time series of the variable x : (a) an original attractor; (b) an attractor of the non-autonomous
polynomial model whose coefficients depend on time (D = 2, K = 9); (c) an orbit of the standard
model (9.4) with D = 4, K = 6

d2x
/

dt2 = −0.45dx
/

dt + (5 + 4 cos t)(e−x − 1) + 7 sin t. (9.13)

A model is constructed in the form (9.4) with an explicit temporal dependence
introduced into all the coefficients of the polynomial f , i.e. one replaces all ck in the
model structure with ck+ak cosωt+bk cosωt . The best model is obtained for D = 2
and K = 9. Its phase orbit looks very similar to the original one (Fig. 9.10a,b). At
that, the dimension of the standard model (9.4) without explicit temporal depen-
dence should be not less than 3 to describe a chaotic regime. However, the standard
model typically exhibits divergent orbits for D > 2 (Fig. 9.10c).

Efficiency of the special choice of a model structure is demonstrated in a similar
way for the periodic pulse driving, periodic driving with suharmonics and quasi-
periodic driving in Smirnov et al. (2003).

9.4.2 Time-Delay Systems

Modelling of time-delay systems has been actively considered in the last years
(Bunner et al., 1996, 2000; Bezruchko et al, 2001b; Horbelt et al, 2002; Pono-
marenko and Prokhorov, 2004; Ponomarenko et al., 2005; Prokhorov et al., 2005;
Voss and Kurths, 1997, 1999). Despite such systems being infinite-dimensional,
many of the above techniques are suitable to model them with some technical
complications, e.g., the multiple shooting approach (Horbelt et al., 2002). Some
principal differences (Bunner et al., 2000) are beyond the scope of our discussion.

Let us consider an example where modelling of a time-delay system corresponds
to the “grey box” setting and can be performed with the techniques similar to those
described above. We deal with the systems of the form

ε0 dx(t)
/

dt = −x(t) + F(x(t − τ)), (9.14)

where an observable is η = x . Let us illustrate a modelling procedure with the
reconstruction from a chaotic time realisation of the Ikeda equation (Fig. 9.11a):
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Fig. 9.11 Reconstruction of a time-delay system: (a) a time realisation of the Ikeda equation (9.15)
with x0 = π/3, ε0 = 1.0, μ0 = 20.0, τ0 = 2.0; (b) the number of pairs of extrema M(τ ) divided
by the total number of extrema in the time series, Mmin(τ ) = M(2.0); (c) a restored non-linear
function. Numerical experiments with measurement noise show that modelling is successful for
the ratio of the standard deviations of noise and signal up to 20%

ε0 dx(t)
/

dt = −x(t) + μ0 sin(x(t − τ0) − x0), (9.15)

which describes the dynamics of a passive optical resonator.
Models are constructed in the form

ε dx(t)
/

dt = −x(t) + f (x(t − τ), c). (9.16)

Similar to the above examples, one may solve the minimisation problem∑

n
(εdx(tn)/dt + x(tn) − f (x(tn − τ), c))2 → min, where the response constant

ε and the delay time τ are considered as additional unknown parameters (Bun-
ner et al., 2000). However, there is a special efficient approach (Bezruchko et al.,
2001b), which is based on the statistical analysis of the time intervals separating
extrema in a time series of the time-delay system (9.14). It appears that the number
of pairs of extrema M separated by a given interval τ exhibits a clear minimum as
a function of τ at τ equal to the true delay time of the system (9.14), Fig. 9.11b.
This observation gives an opportunity to estimate the delay time and diagnose that
a system under study belongs to the class of time-delay systems (9.14). Having
an estimate τ̂ ≈ τ0, one can assess a response characteristic ε by checking different
trial values of ε and selecting such value ε̂ for which experimental data points on the
plane (x(t−τ̂ ), ε̂dx(t)/dt+x(t)) lie on a smooth one-dimensional curve. This curve
is a plot of the sought function f , which is an approximation to F . Figure 9.11c
illustrates such a restoration of the “true” function F for the system (9.15). Having
such a plot, one can find an approximating function f using an expansion in a certain
functional basis or a special formula.

The described approach to the determination of the delay time and reconstruc-
tion of the entire equation can be extended to the delay differential equations of
higher orders and to the systems with several delay times. It is parsimonious with
respect to the computation time and not highly sensitive to the measurement noise
(Ponomarenko et al., 2005; Prokhorov et al., 2005).

Thus, as illustrated by several examples in this chapter, special selection of model
structure based on the preliminary analysis of data and some (even rather general)
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a priori information about an object under study can essentially improve an empir-
ical model quality and make possible meaningful interpretations of the modelling
results.
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