
Chapter 8
Model Equations: Parameter Estimation

Motions and processes observed in nature are extremely diverse and complex.
Therefore, opportunities to model them with explicit functions of time are rather
restricted. Much greater potential is expected from difference and differential equa-
tions (Sects. 3.3, 3.5 and 3.6). Even a simple one-dimensional map with a quadratic
maximum is capable of demonstrating chaotic behaviour (Sect. 3.6.2). Such model
equations in contrast to explicit functions of time describe how a future state of an
object depends on its current state or how velocity of the state change depends on
the state itself. However, a technology for the construction of these more sophisti-
cated models, including parameter estimation and selection of approximating func-
tions, is basically the same. A simple example: construction of a one-dimensional
map ηn+1 = f (ηn, c) differs from obtaining an explicit temporal dependence
η = f (t, c) only in that one needs to draw a curve through experimental data
points on the plane (ηn, ηn+1) (Fig. 8.1a–c) rather than on the plane (t, η) (Fig. 7.1).
To construct model ODEs dx

/
dt = f(x, c), one may first get time series of the

derivatives dxk
/

dt (k = 1, . . ., D, where D is a model dimension) via numerical
differentiation and then approximate a dependence of dxk

/
dt on x in a usual way.

Model equations can be multidimensional, which is another difference from the
construction of models as explicit functions of time.

For a long time, in empirical modelling of complex processes, one used linear
difference equations containing noise to allow for irregularity (Sect. 4.4). The idea
was first suggested in 1927 (Yule, 1927) and appeared very fruitful so that autore-
gression and moving average models became a main tool for the description of
complex behaviour for the next 50 years.

Only in 1960–1970s, researchers widely realised that simple low-dimensional
models in the form of non-linear maps or differential equations can exhibit complex
oscillations even without noise influence. It gave a new impulse to the development
of empirical modelling techniques, since arousal of powerful and widely accessible
computers provided practical implementation of the ideas.

In this chapter, we consider a situation when an observed time series ηi =
h(x(ti )), i = 1, . . . , N , is produced by iterations of a map xn+1 = f(xn, c) or
integration of an ordinary differential equation dx/dt = f(x, c), whose structure
is completely known. The problem is to estimate parameters c from the observed

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_8,
C© Springer-Verlag Berlin Heidelberg 2010

233



234 8 Model Equations: Parameter Estimation

Fig. 8.1 Parameter estimation for the quadratic map (8.1) at c0 = 1.85. Circles show the observed
values: (a) no noise; the dashed line is an original parabola; (b) only dynamical noise is present;
the dashed line is a model parabola obtained via minimisation of the mean-squared vertical dis-
tance (some of those distances are shown by solid lines); (c) only measurement noise is present;
the dashed line is a model parabola obtained via minimisation of the mean-squared orthogonal
distance; (d) rhombs show a model realisation which is the closest one to an original time series in
the sense (8.4)

data. This is called “transparent box” problem (Sect. 5.2). To make the consideration
more realistic, we add dynamical and/or measurement noise.

Such a problem setting is encountered in different applications and attracts
serious attention. One singles out two main aspects of interest considered
below:

(i) Parameter estimation with a required accuracy is important if the parameters
cannot be measured directly due to experimental conditions. Then, the mod-
elling procedure plays a role of “measurement device” (Butkovsky et al., 2002;
Horbelt and Timmer, 2003; Jaeger and Kanrz, 1996; Judd, 2003; McSharry
and Smith, 1999; Pisarenko and Sornette, 2004; Smirnov et al., 2005b) (see
Sect. 8.1).

(ii) Parameter estimation in the case of data deficit is even more problematic. Such
is a situation when one cannot get time series of all model dynamical variables
xk from the measured values of an observable η, i.e. some variables are “hid-
den” (Baake et al., 1992; Bezruchko et al., 2006; Breeden and Hubler, 1990;
Parlitz, 1996; Voss et al., 2004; (see Sect. 8.2).
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8.1 Parameter Estimators and Their Accuracy

Let us consider the estimation of a single parameter in a non-linear map from its
noise-corrupted time realisation. The object is the quadratic map in a chaotic regime
with unknown parameter c = c0:

xn+1 = f (xn, c0) + ξn = 1 − c0x2
n + ξn, ηn = xn + ζn, (8.1)

where ξn, ζn are independent random processes. The first of them is a dynamical
noise (since it influences the dynamics) and the second one is a measurement noise
(since it affects only the observations).

If both noises are absent, one has ηn = xn and experimental data points on the
plane xn, xn+1 lie exactly on the sought parabola (Fig. 8.1a). Finding the value of c
reduces to an algebraic equation whose solution is ĉ = (1 − xn+1)

/
x2

n . Hence, it
is sufficient to use any two observations xn, xn+1 with xn �= 0. As a result, a model
coincides with the object up to the computation error.

If noise is present either in dynamics or measurements, one looks for a parameter
estimate rather than for the precise value of the parameter. The most widely used
estimation techniques are described in Sect. 7.1.1. Peculiarities of their application
under the considered problem setting are as follows.

8.1.1 Dynamical Noise

Let the dynamical noise ξn in Eq. (8.1) be a sequence of statistically indepen-
dent random quantities and identically distributed with a probability density p(ξ).
To estimate the parameter c, one can use the ML technique (Sects. 2.2.1, 7.1.1
and 7.1.2), which is the most efficient one under sufficiently general conditions
(Ibragimov and Has’minskii, 1979; Pisarenko and Sornette, 2004). The likelihood
function [see also Eqs. (2.26) and (7.10)] reads in this case as

ln L(c) ≡ ln pN (η1, η2, . . . , ηN | c) ≈
N−1∑

n=1

ln p (ηn+1 − f (ηn, c)). (8.2)

To apply the technique, one must know the distribution law p(ξ), which is rarely
the case. Most often, one assumes Gaussian noise so that the maximisation of
Eq. (8.2) becomes equivalent to the so-called ordinary least-squares technique, i.e.
to the minimisation

S(c) =
N−1∑

i=1

(ηn+1 − f (ηn, c))2 → min . (8.3)
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It means that the plot of a model function on the plane (ηn, ηn+1) should go in
such a way so as to minimise the sum of the squared vertical distances from it to the
experimental data points (Fig. 8.1b).

As a rule, the error in the estimator ĉ decreases with a time series length N .
Under the considered problem setting, both the ML approach and the LS technique
give asymptotically unbiased and consistent estimators. It can be shown that the
estimator variance decreases as N−1 analogous to the examples in Sect. 7.1.2. The
reason can be described in the same way: the terms in Eq. (8.3) are stationary with
respect to i , i.e. a partial Fisher information is bounded.

The ordinary LS technique often gives an acceptable estimator accuracy even if
the noise is not Gaussian (Sects. 7.1.1 and 7.1.2). Although one may apply other
methods, e.g., the least absolute values technique, the LS technique is much easily
implemented. An essential technical difficulty arises when the “relief” of the cost
function (8.3) exhibits many local minima, which is often the case if f is non-
linear with respect to c. Then, the optimisation problem is solved in an iterative
way with some starting guesses for the sought parameters (Dennis and Schnabel,
1983). Whether a global extremum is found depends on how “lucky” are the starting
guesses i.e. how close they are to the true parameter values. In the example (8.1),
f is linear with respect to c; therefore, the cost function S is quadratic with respect
to c and exhibits the only minimum, which is easily found as a solution to a linear
algebraic equation.

We note that if f is linear with respect to x , the model (8.1) is a linear first-order
autoregression model. More general ARMA models involve a dependence of xn+1
on several previous values of x and ξ , see Eq. (4.13) in Sect. 4.4.

8.1.2 Measurement Noise

If only a measurement noise is present (ηn = xn + ζn), the estimation problem gets
more complicated. This is because one aims at finding a dependence of xn+1 on xn ,
where xn is an “independent” variable whose observed values are noise corrupted
[a confluent analysis problem, see Eq. (2.28) in Sect. 2.2.1.8).

8.1.2.1 Bias in the Estimator Obtained Via the Ordinary LS Technique

The bias is non-zero for an arbitrarily long time series, since the technique (8.3)
is developed under the assumption of only a dynamical noise presence. It can be
illustrated with the example (8.1), where one has

S(c) =
N−1∑

i=1

(ηi+1 − f (ηi , c))2 =
N−1∑

i=1

(
xi+1 + ζi+1 − 1 + c(xi + ζi )

2
)2 =

=
N−1∑

i=1

(
cx2

i − c0x2
i + ζi+1 + 2cxiζi + cζ 2

i

)2
.
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Minimum of S over c can be found from the condition ∂S/∂c = 0, which reduces
to the form

N−1∑

i=1

(
cx2

i − c0x2
i + ζi+1 + 2cxiζi+1 + cζ 2

i

)
·
(

x2
i + 2xiζi+1 + ζ 2

i

)
= 0.

By solving this equation, one gets an estimator (McSharry and Smith, 1999)

ĉ =
c0

(
N−1∑

i=1
x4

i + 2
N−1∑

i=1
x3

i ζi +
N−1∑

i=1
x2

i ζ
2
i

)

−
N−1∑

i=1
x2

i ζi+1 − 2
N−1∑

i=1
xi ζiζi+1 −

N−1∑

i=1
ζ 2

i ζi+1

N−1∑

i=1
x4

i + 6
N−1∑

i=1
x2

i ζ
2
i +

N−1∑

i=1
x4

i + 4
N−1∑

i=1
x3

i ζi + 4
N−1∑

i=1
xiζ

3
i

.

Under the condition N → ∞, one can take into account statistical independence

ζi of ζi+1 and xi and replace the sums like
N−1∑

i=1
x4

i (temporal averaging) by the

integrals like
∞∫

−∞
μ(x, c0)x4dx ≡ 〈x4〉 (ensemble averaging). Here, μ(x, c0) is an

invariant measure for the map (8.1), i.e. a probability density function. At c0 = 2
it can be found analytically: μ(x, 2) = 1/π

(
1 − x2

)
,−1 < x < 1. Hence, one

gets 〈x2〉 = 1/2, 〈x4〉 = 3/8 and 〈xn〉 = 0 for uneven n. Finally, at c0 = 2, one

comes to the asymptotic expression ĉ = c0

(
4σ 2

ζ + 3
)/(

8〈ζ 4〉 + 24σ 2
ζ + 3

)
. This

is a biased estimator. It underestimates the true value c0, since the denominator is
greater than the numerator in the above expression. Figure 8.2 shows the asymptotic
value of ĉ versus noise-to-signal ratio for Gaussian noise. It is close to the true value
only under the low noise levels; its bias is less than 1% if the noise level is less

Fig. 8.2 Ordinary LS estimates of the parameter c in Eq. (8.1) versus the noise level at N = ∞
and c0 = 2. Noise-to-signal ratio quantified as the ratio of standard deviations is shown versus the
abscissa axis (McSharry and Smith, 1999)
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than 0.05. The bias rises with the noise level. Analogous properties are observed for
other noise distributions (Butkovsky et al., 2002; McSharry and Smith, 1999).

However, since the LS technique is simple for the implementation and can be
easily used in the case of many estimated parameters in contrast to other methods,
it is often applied in practice with an additional assumption of low measurement
noise level.

8.1.2.2 Increasing Estimator Accuracy at High Measurement Noise Level

It is possible in part through the use of the total least-squares technique (Jaeger and
Kanrz, 1996) when one minimises the sum of the squared orthogonal distances from
the data points (ηn, ηn+1) to the plot of the function f (xn, c) (Fig. 8.1c). Thereby,
one takes into account that deviations of the observed data points with coordinates
(ηn, ηn+1) from the plot of the sought function f (xn, c0) are induced by the noise
influence on both coordinates. Therefore, the deviations may occur in any direction,
not only vertically. The use of the orthogonal distances is justified in Jaeger and
Kanrz (1996) as an approximate version of the ML approach.

However, a non-zero estimator bias is not fully eliminated under the use of the
total LS technique (especially in the case of a very strong noise), since the latter
is just an approximation to the ML technique. It may seem that a way out is to
write down the likelihood function for the new situation “honestly”, i.e. taking into
account how the noise enters the observations. For a Gaussian noise, the problem
reduces to the minimisation of the sum of squared deviations of a model realisation
from an observed time series (Fig. 8.1d):

S(c, x1) =
N−1∑

n=0

(
ηn+1 − f (n)(x1, c)

)2 → min, (8.4)

where f (n) is an nth iterate of the map xn+1 = f (xn, c), f (0)(x, c) = x , and the
initial model state x1 is considered as an estimated quantity as well.

An orbit of a chaotic system is very sensitive to initial conditions and parame-
ters. Therefore, the variance of the estimator obtained from Eq. (8.4) for a chaotic
orbit rapidly decreases with N, sometimes even exponentially (Horbelt and Timmer,
2003; Pisarenko and Sornette, 2004). This is a desirable property, but it is achieved
only if one manages to find the global minimum of Eq. (8.4). In practice, even
for moderate values of N, the “relief” of S for a chaotic system becomes strongly
“jagged” (Fig. 8.3a) so that it gets almost impossible to find the global minimum
numerically (Dennis and Schnabel, 1983). To do it, one would need very “lucky”
starting guesses for c and x1. It is also difficult to speak of asymptotic properties of
the estimators since the cost function gets non-smooth in the limit N → ∞. There-
fore, one develops modifications of the ML technique in application to the parameter
estimation from a chaotic time series (Pisarenko and Sornette, 2004; Smirnov et al.,
2005b).
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Fig. 8.3 Cost functions for
the quadratic map (8.1) at
c0 = 1.85 and N = 20. The
left panel shows the cost
function for the direct iterates
(8.4), where x1 = 0.3; the
right one for the reverse
iterates (8.5), where
xN = f (N−1)(0.3, c0)

Thus, according to a piecewise technique, one divides an original time series into
segments of a moderate length so that it is possible to find the global minimum
of Eq. (8.4) for each of them and averages the obtained estimates. This is a rea-
sonable approach, but a resulting estimator may remain asymptotically biased. Its
variance decreases again as N−1. Some ways to improve the estimator properties
are described in Sect. 8.2.

Here, we note only an approach specific to one-dimensional maps (Smirnov
et al., 2005b). It is based on the property that the only Lyapunov exponent of a
one-dimensional chaotic map becomes negative under the time reversal so that an
orbit gets much less sensitive to parameters and a “final condition”. Therefore, one
minimises a quantity

S(c, xN ) =
N−1∑

n=0

(
ηN−n − f (−n)(xN , c)

)2 → min, (8.5)

where f (−n) is an nth iterate of the map xn+1 = f (xn, c) in reverse time, in particu-
lar f (−1) is an inverse function for f with respect to x . The plot of the cost function
(8.5) looks sufficiently smooth for an arbitrarily long time series (Fig. 8.3b) so that
it is not difficult to find its global minimum. At low and moderate noise levels
(σζ /σx up to 0.05–0.15), the error in the estimator (8.5) appears less than for the
piecewise technique. Moreover, the expression (8.5) gives asymptotically unbiased
estimates, whose variance typically scales as N−2 at weak noise. The high rate of
error decrease is determined by the returns of a chaotic orbit to a small vicinity of
the extremum of the function f (Smirnov et al., 2005b).

8.2 Hidden Variables

If the measurement noise level is considerable, the state variable x is often regarded
“hidden” since its true values are, in fact, unknown. Variables are “even more hid-
den” if even their noise-corrupted values cannot be measured directly or computed
from the observed data. This is often the case in practice. In such a situation, the
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parameter estimation is much more problematic than in the cases considered in
Sect. 8.1. However, if one manages to solve the problem, then an additional oppor-
tunity to restore time series of hidden variables appears as a by-product. Then, a
modelling procedure serves as a measurement device with respect to dynamical
variables as well.

8.2.1 Measurement Noise

We illustrate the techniques with the example of the parameter estimation in ordi-
nary differential equations without a dynamical noise. An object is the classical
chaotic system – Lorenz system:

dx1/dt = c1(x2 − x1),

dx2/dt = −x2 + x1(c3 − x3), (8.6)

dx3/dt = c2x3 + x1x2,

for a “canonical” set of parameter values c1 = 10, c2 = 8/3, c3 = 46. A noise-
corrupted realisation of x1 is considered as observed data, i.e. ηn = x1(tn) + ζn ,
while the variables x2 and x3 are hidden. A model is constructed in the form (8.6)
where all the three parameters ck are regarded unknown.

8.2.1.1 Initial Value Approach

All the estimation techniques are based to a certain extent on the ideas like Eq. (8.4),
i.e. one chooses such initial conditions and parameter values to provide maximal
closeness of a model realisation to an observed time series in the least-squares sense.
The direct solution to the problem like (8.4) is called an initial value approach (Hor-
belt, 2001; Voss et al., 2004). As indicated in Sect. 8.1.2, it is not applicable to a long
chaotic time series. Improving the approach is not straightforward. Thus, a simple
division of a time series into segments with subsequent averaging of the respective
estimates gives a low accuracy of the resulting estimator. The reverse-time iterations
are not suitable in the case of a multidimensional dissipative system.

8.2.1.2 Multiple Shooting Approach

The difficulties can be overcome in part with Bock’s algorithm (Baake et al., 1992;
Bock, 1981). It is also called a multiple shooting approach since one replaces the
Cauchy initial value problem for an entire observation interval with a set of bound-
ary value problems. Namely, one divides an original time series {η1, η2, . . . , ηN }
into L non-overlapping segments of length M and considers model initial states x(i)

for each of them (i.e. at time instants t(i−1)M+1, i = 1, . . . , L) as estimated quanti-
ties, but not as free parameters. One solves the problem of conditional minimisation,
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which reads in the case of a scalar observable η = h(x) + ζ (η = x1 + ζ in our
example) as

S
(

c, x(1), x(2), . . . , x(L)
)

=

=
L∑

i=1

M∑

n=1

[
η
(
t(i−1)M+n

) − h
(

x
(

t(i−1)M+n − t(i−1)M+1, x(i), c
))] 2 → min,

x
(

ti M+1 − t(i−1)M+1, x(i), c
)

= x(i+1), i = 1, 2, . . . , L − 1. (8.7)

The quantity x(t, x(i), c) denotes a model realisation (a solution to model equa-
tions), i.e. a model state x at a time instant t for an initial state x(i) and a parameter
value c. The first equation in Eq. (8.7) means minimisation of the deviations of a
model realisation from the observed series over the entire observation interval. The
second line provides “matching” of the segments to get finally a continuous model
orbit over the entire observation interval. This matching imposes the conditions of
the equality type on the L sought vectors x(i), i.e. only one of the vectors can be
regarded as a free parameter of the problem.

Next, one solves the problem with ordinary numerical iterative techniques using
some starting guesses for the sought quantities c, x(1), x(2), . . . , x(L). The starting
guesses correspond, as a rule, to L non-matching pieces of a model orbit (Fig. 8.4b,

Fig. 8.4 Parameter estimation from a chaotic realisation of the coordinate x = x1 of the Lorenz
system (8.6), N = 100 data points, the sampling interval is 0.04, measurement noise is Gaussian
and white with standard deviation of 0.2 of the standard deviation of the noise-free signal (Horbelt,
2001). (a) An initial value approach. Realisations of an observable (circles) and a corresponding
model variable. The fitting process converges to a local minimum, where a model orbit and param-
eter estimates strongly differ from the true ones. (b) A multiple shooting approach. The fitting
process converges to the global minimum, where a model orbit and parameter estimates are close
to the true ones
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upper panel). The situation is similar for intermediate values of the sought quan-
tities during the iterative minimisation procedure, but the “discrepancies” should
get smaller and smaller if the procedure converges at given starting guesses. Such
a temporary admission of the model orbit discontinuity distinguishes Bock’s algo-
rithm (Fig. 8.4b) from the initial value approach (Fig. 8.4a) and provides greater
flexibility of the former.

An example of the application of the two techniques to the parameter estimation
for the system (8.6) is shown in Fig. 8.4. The multiple shooting technique “finds” the
global minimum, while the initial value approach stops at a local one. This is quite
a typical situation. However, the multiple shooting technique does not assure find-
ing the global minimum. It only softens requirements to the “goodness” of starting
guesses for the sought quantities (Bezruchko et al., 2006). For even longer chaotic
time series, it also gets inefficient since the basic principle of closeness of a chaotic
model orbit to the observed time series over a long time interval again leads to very
strict requirements to starting guesses.

8.2.1.3 Modification of the Multiple Shooting Technique

As shown in Bezruchko et al. (2006), one can avoid some difficulties via allowing
discontinuity of the resulting model orbit at several time instants within the observa-
tion interval, i.e. via ignoring several equalities in the last line of Eq. (8.7). In such
a way it is easier to find the global minimum of the cost function S in Eq. (8.7).

Such a modification allows to use arbitrarily long chaotic time series, but the
requital is that sometimes a model with an inadequate structure may be accepted
as a “good” one due to its ability to reproduce short segments of the time series.
Therefore, one should carefully select the number and the size of the continuity
segments for the model orbit.

There is also an additional difficulty in the situation with hidden variables. Apart
from lucky starting guesses for the parameters c, it appears important to generate
lucky starting guesses for the hidden variables (components of vectors x(i)) in con-
trast to very optimistic early statements (Baake et al., 1992). Quite often, one has to
proceed intuitively or via blind trials and errors. However, useful information may
be obtained sometimes through a preliminary study of the properties of model time
realisations at several trial parameter values (Bezruchko et al., 2006).

8.2.1.4 Synchronisation-Based Parameter Estimation

A further improvement of the technique is based on the idea of synchronising a
model by the observed time series. It was suggested in Parlitz (1996) and further
elaborated in many works. Here, we briefly describe its main points, advantages and
difficulties following the works Parlitz (1996) and Parlitz et al. (1996).

Let us consider a system of ODEs dy/dt = f(y, c0) with a state vector y ∈ RD

and a parameter vector c0 ∈ R P as an object of modelling. Parameter values c0 are
unknown. An observable vector is η = h(y). It may have a lower dimension than
the state vector y (the case of hidden variables). A model is given by the equation
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dx/dt = f(x, c). Let us assume that there is a unidirectional coupling scheme using
the available signal η(t), which enables asymptotically stable synchronisation of
the model (x) by the object (y), i.e. x → y as t → ∞ if c = c0. Thus, one can
vary model parameters c and integrate model equations with somehow introduced
input signal η(t) at each value of c. If at some value c = ĉ identical synchronisa-
tion between η(t) and the corresponding model realisation h(x(t)) (i.e. the regime
η(t) = h(x(t))) is achieved after some transient process, then the value ĉ should be
equal to c0. If only an approximate relationship η(t) ≈ h(x(t)) holds true, then ĉ
can be taken as an estimate of c0.

There are different implementations of the idea. One can introduce a measure of
the discrepancy between η(t) and h(x(t)), e.g. their mean-squared difference after
some transient, and minimise it as a function of c (Parlitz et al., 1996). This is a
complicated problem of non-linear optimisation similar to those encountered under
the multiple shooting approach. An advantage of the synchronisation-based estima-
tion is that the minimised function often changes quite gradually with c and has a
pronounced minimum at c = c0 with a broad “basin of attraction”, i.e. a starting
guess for c does not have to be so “lucky” as under the multiple shooting approach.
This is explained by the following property of many non-linear systems: If c is not
equal to c0 but reasonably close to it, the identical synchronisation is impossible
but there often occurs the generalised synchronisation (Sect. 6.4.5), where x is a
function of y not very much different from x = y. Then, the discrepancy between
η(t) and h(x(t)) changes smoothly in the vicinity of c = c0.

It can be even more convenient to avoid minimisation of a complicated cost
function by considering the parameters c as additional variables in model ODEs and
update their values depending on the current mismatch between η(t) and h(x(t)) in
the course of integration of the model ODEs (Parlitz, 1996). An example is again
the chaotic Lorenz system

dy1
/

dt = σ(y2 − y1),

dy2
/

dt = c1,0 y1 − c2,0 y2 − y1 y3 + c3,0, (8.8)

dy3
/

dt = y1 y2 − by3,

with the parameters c1,0 = 28, c2,0 = 1, c3,0 = 0, σ = 10, b = 8/3 and an
observable η = h(y) = y2. The following unidirectional coupling scheme and
equations for the parameter updates were considered:

dx1
/

dt = σ(η − x1),

dx2
/

dt = c1x1 − c2x2 − x1x3 + c3,

dx3
/

dt = x1x2 − bx3, (8.9)

dc1
/

dt = (η − x2)x1,

dc2
/

dt = −(η − x2)x2,

dc3
/

dt = η − x2.
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Using a global Lyapunov function, the author has shown that at correct parameter
values c = c0, the model is synchronised by the signal η(t) at all initial conditions.
The system (8.9) tends to the regime x(t) = y(t) and c(t) = c0 at any values
of x1(0), x2(0), x3(0), c1(0), c3(0) and any positive c2(0). Parameter estimates in
this example appeared not very sensitive to the mismatch in the parameter σ . More
general recommendations on the choice of the coupling scheme were also suggested
from geometrical considerations in Parlitz (1996). Rather different equations for the
parameter updates were suggested by several authors, e.g., Konnur (2003).

The synchronisation-based approach is theoretically justified for the noise-free
case. Still, numerical experiments have shown its good performance when a mod-
erate measurement noise is present. As it has been already mentioned, the tech-
nique can be readily used in the case of hidden variables. However, despite several
important advantages of the approach, it may encounter its own significant difficul-
ties. Firstly, an asymptotically stable synchronisation may not be achieved for any
observable η = h(y). This possibility depends on the system under study and the
coupling scheme. Secondly, it is not always clear what coupling scheme should be
used to assure synchronisation at c = c0. Finally, it may be very important to select
appropriate initial conditions in Eqs. (8.8) and (8.9), in other words, to select starting
guesses for the model parameters and hidden variables. Further details can be found
in Chen and Kurths (2007); Freitas et al. (2005); Hu et al. (2007); Huang (2004);
Konnur (2003); Marino and Miguez (2005); Maybhate and Amritkar (1999); Parlitz
(1996); Parlitz et al. (1996); Tao et al. (2004).

8.2.2 Dynamical and Measurement Noise

Estimating model parameters in the case of simultaneous presence of the dynam-
ical and measurement noise is a more complicated task. However, there have
been recently developed corresponding sophisticated techniques such as Kalman
filtering-based methods (Sitz et al., 2002, 2004; Voss et al., 2004) and Bayesian
approaches (Bremer and Kaplan, 2001; Davies, 1994; Meyer and Christensen,
2000). Below, we describe in some detail a recently suggested technique (Sitz et al.,
2002) called unscented Kalman filtering.

Kalman filtering is a general idea which was originally developed for the state
estimation in linear systems from observed noise-corrupted data (Kalman and Bucy,
1961). It is widely used, e.g., in data assimilation (Sect. 5.1) as well as in many other
applications (Bar-Shalom and Fortmann, 1988). The idea has been generalised for
the estimation of model parameters together with model states. It has been recently
further generalised for the estimation of parameters and state vectors in non-linear
systems (Sitz et al., 2002).

In the linear case, the model is assumed to be of the form

xi = A · xi−1 + ξi , (8.10)

ηi = B · xi + ζi ,
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where x is a state vector of the dimension D, i is the discrete time, η is the vector of
observables whose dimension may be different from that of x, A and B are constant
matrices, and ξn and ζn are independent zero-mean Gaussian white noises with diag-
onal covariance matrices. The problem is to estimate the state x at a time instant n
having observations ηi up to time n inclusively, i.e. a set Hn = {η1,η2, . . . ,ηn}. Let
us denote such an estimator as x̂(n|n). Kalman filter provides an optimal linear esti-
mate, i.e. unbiased and with the smallest variance. Formally, the estimation proce-
dure consists of the predictor and corrector steps. At the predictor step, one estimates
the value x̂(n|n − 1), i.e. takes into account only the observations Hn−1 up to time
instant n − 1. The optimal solution to such a problem is x̂(n|n − 1) = E[xn|Hn−1].
It can be written as

x̂(n |n − 1 ) = E[A · xn−1|H n−1] = A · E[xn−1|H n−1] = A · x̂(n − 1 |n − 1 ),

η̂(n |n − 1 ) = E[B · xn|H n−1] = B · A · x̂(n − 1 |n − 1 ). (8.11)

The second equation in Eq. (8.11) will be used at the correction step below. The
point estimators must be equipped with the confidence bands (see Sect. 2.2.1). It is
known that due to the linearity of the system, the estimators are Gaussian distributed.
Thus, their confidence bands are simply expressed via their covariance matrices
whose optimal estimates read as

P(n |n − 1 ) = E[(xn − x̂(n |n − 1 )) · (xn − x̂(n |n − 1 ))T|H n−1],
Pηη(n |n − 1 ) = E[(ηn − η̂(n |n − 1 )) · (ηn − η̂(n |n − 1 ))T|H n−1], (8.12)

Pxη(n |n − 1 ) = E[(xn − x(n |n − 1 )) · (ηn − η̂(n |n − 1 ))T|H n−1].

These matrices can be expressed via their previous estimates P(n −
1|n − 1),Pηη(n − 1|n − 1),Pxη(n − 1|n − 1) analytically for the linear system.

Now, the corrector step updates the predictor-step estimators taking into account
the last observation ηn as follows:

x̂(n |n ) = x̂(n |n − 1 ) + Kn · (ηn − η̂(n |n − 1 )),

P(n |n ) = P(n |n − 1 ) − Kn · Pηη(n |n − 1 ) · KT
n ,

Kn = Pxη(n |n − 1 ) · P−1
ηη (n |n − 1 ). (8.13)

Thus, the corrections represent discrepancy between the predictor-step estimates
and actual observations multiplied by the so-called Kalman gain matrix Kn . Having
Eqs. (8.11), (8.12) and (8.13), one can start from initial guesses x̂(1|1) and P(1|1)
and recursively get optimal state estimates for all subsequent time instants taking
into account subsequent observations. Due to Gaussianity of the distributions, a
95% confidence band for the j th component of the vector xn is given by x̂ j (n|n) ±
1.96

√
Pjj(n|n).

To apply the idea to a non-linear system xi+1 = f(xi ) + ξi and ηi = h(xi ) + ζi ,
one can either approximate non-linear functions with Taylor expansion or simulate
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the distribution of states and compute many model orbits to get an estimator x̂(n|n)
and its covariance matrix P(n|n). The latter idea appeared more fruitful in practice
(Sitz et al., 2002). Its fast and convenient implementation includes the selection of
the so-called sigma points x(1), . . . , x(2D) specifying the distribution of states at a
time instant n − 1:

x( j)(n − 1 |n − 1 ) = x̂(n − 1 |n − 1 )+
[√

D · P(n − 1 |n − 1 )
]

j
,

x( j+D)(n − 1 |n − 1 ) = x̂(n − 1 |n − 1 ) −
[√

D · P(n − 1 |n − 1 )
]

j
, (8.14)

where j = 1, 2, . . . , D and
[√·] j means j th column of the matrix square root. The

sigma points are propagated through the non-linear systems giving

x( j)(n |n − 1 ) = f(x( j)(n − 1 |n − 1 )),

y( j)(n |n − 1 ) = h(x( j)(n |n − 1 )), (8.15)

where j = 1, . . . , 2D. Now, their sample means and covariances define the predic-
tor estimates as follows:

x̂(n |n − 1 ) = 1

2D

2D∑

j=1

x( j)(n |n − 1 ),

η̂(n |n − 1 ) = 1

2D

2D∑

j=1

y( j)(n |n − 1 ),

Pηη(n |n − 1 ) = 1

2D

2D∑

j=1

(y( j)(n |n − 1 ) − η̂(n |n − 1 )) · (y( j)(n |n − 1 )− η̂(n |n − 1 ))
T
,

Pxη(n |n − 1 ) = 1

2D

2D∑

j=1

(x( j)(n |n − 1 ) − x̂(n |n − 1 )) · (y( j)(n |n − 1 ) − η̂(n |n − 1 ))
T
,

P(n |n − 1 ) = 1

2D

2D∑

j=1

(x( j)(n |n − 1 ) − x̂(n |n − 1 )) · (x( j)(n |n − 1 ) − x̂(n |n − 1 ))
T
.

(8.16)

The estimates (8.16) are updated via the usual Kalman formulas (8.13). This
procedure is called unscented Kalman filtering (Sitz et al., 2002).

If parameter a of a system xi+1 = f(xi , a)+ξi is unknown, then it can be formally
considered as an additional state component. Moreover, it is convenient to consider
noises ξi and ζi as components of a joint state vector. Thus, joint equations of motion
read as
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xi+1 = f(xi , ai ) + ξi ,

ai+1 = ai , (8.17)

ξi+1 = ξi ,

ζi+1 = ζi ,

where the last three equations do not alter starting values of the additional state
components. However, the estimates of these components change in time due to the
correction step (8.13), which takes into account a new observation.

The technique can be easily generalised to the case of ordinary and stochas-
tic differential equations, where numerical integration scheme would enter the first
equation of Eq. (8.17) instead of a simple function f.

We note that the procedure can be used in the case of hidden variables, which
correspond to the situation where the dimension of the observable vector η is less
than D. Examples with a scalar observable from two- and three-dimensional dynam-
ical systems are considered in Sitz et al. (2002), where efficiency of the approach
is illustrated. Thus, even in the case of the deterministically chaotic Lorenz system,
the unscented Kalman filtering allowed accurate estimation of the three parame-
ters from a scalar time realisation. Concerning this example, we note two things.
Firstly, the successful application of a statistical method (Kalman filtering has its
roots in mathematical statistics and the theory of random processes) to estimate
parameters in a deterministic system illustrates again a close interaction between
deterministic and stochastic approaches to modelling discussed in Chap. 2 (see,
e.g., Sect. 2.6). Secondly, the unscented Kalman filtering seems to be more efficient
than the multiple shooting approach (Sect. 8.2.1) in many cases since the former
technique does not require a continuous model orbit over the entire observation
interval. In this respect, the unscented Kalman filtering is similar to the modified
multiple shooting approach which allows several discontinuity points. However, the
unscented Kalman filtering is easier in implementation, since it does not require to
solve optimisation problem for the parameter estimation. On the other hand, the
multiple shooting technique would certainly give more accurate parameter esti-
mates for a deterministically chaotic system if one manages to find good start-
ing guesses for the parameters and find the global minimum of the cost function
(8.7).

The Kalman filtering-based approach also resembles the synchronisation-based
approach: It also involves parameter updates depending on the current model state.
However, the difference is that the Kalman filtering does not require any synchroni-
sation between a model and the observed data and is appropriate when a dynamical
noise is present in contrast to the synchronisation-based technique developed for
deterministic systems.

A proper selection of starting guesses for the model parameters and the hidden
variables is of importance for the unscented Kalman filtering as well, since an arbi-
trary starting guess does not assure convergence of the non-linear recursive proce-
dure [Eqs. (8.16) and (8.13)] to the true parameter values. More detailed discussion
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of the unscented Kalman filtering can be found in Sitz et al. (2002, 2004); Voss et al.
(2004).

Even more general techniques are based on the Bayesian approach (Bremer and
Kaplan, 2001; Davies, 1994; Meyer and Christensen, 2000), where the state and
parameter estimators are calculated based on the entire available set of observations
rather than only on the previous ones. However, full Bayesian estimation is more
difficult to use and implement, since it requires to solve a complicated numerical
problem of sampling from multidimensional probability distributions.

8.2.2.1 Concluding Remark

Model validation for the considered “transparent box” problems is performed along
two main lines. The first one is the analysis of the model residuals (Box and Jenkins,
1970), i.e. the check for their correspondence to the assumed noise properties (see
Sect. 7.3). The second one is the computation of dynamical, geometrical and topo-
logical characteristics of a model attractor and their comparison with the respective
properties of an original (Gouesbet et al., 2003b) (see Sect. 10.4).

8.3 What One Can Learn from Modelling Successes and Failures

Successful realisation of the above techniques (Sect. 8.2) promises an opportunity
to obtain parameter estimates and time courses of hidden variables. It would allow
several useful applications such as validation of model ideas, “measurement” of
quantities inaccessible to measurement devices and restoration of lost or distorted
segments of data. Let us comment it in more detail.

In studying of real-world objects, a researcher never meets a purely “transparent
box” setting. He/she can only believe subjectively that a trial model structure is
adequate to an original. Therefore, even with a perfect realisation of the procedures
corresponding to the final modelling stages (Fig. 5.1), the result may appear nega-
tive, i.e. one may not get a valid model with a given structure. Then, a researcher
should declare incorrectness of his/her ideas about the process under investigation
and return to the stage of the model structure selection. If there are several alternative
mathematical constructions, then modelling from time series may reveal the most
adequate among them. Thus, the modelling procedure gives an opportunity to reject
or confirm (possibly, to make more accurate) some substantial ideas about the object
under investigation.

There are a number of practical examples of successful application of the
approaches described above. Thus, in Horbelt et al. (2001) the authors confirm
validity of their ideas about gas laser functioning and get directly immeasurable
parameters of the transition rates between energetic levels depending on the pump-
ing current. In Swameye et al. (2003) the authors are able to make substantial con-
clusions about the mechanism underlying a biochemical signalling process in cells
which is described below.
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8.3.1 An Example from Cell Biology

In many applications it is necessary to find out which cell properties determine an
undesirable process in the cells most strongly and how one can purposefully affect
those properties.1 To answer such questions, it may be sufficient to get an adequate
mathematical model as demonstrated in Swameye et al. (2003).

The authors investigate one of many intracellular signalling pathways, which
provide a cell with an opportunity to produce necessary substances in response
to variations in surroundings. In particular, such pathways provide reproduction,
differentiation and survival of cells. The authors consider the so-called signalling
pathway JAK-STAT, which transforms an external chemical signal into activation
of a respective gene transcription in a cell nucleus (Fig. 8.5). One of the simplest
mathematical models of the process can be written down based on the law of active
mass (a usual approach in chemical kinetics) and reads as

dx1
/

dt = −k1x1 E(t),

dx2
/

dt = −k2x2
2 + k1x1 E(t), (8.18)

dx3
/

dt = −k3x3 + k2x2
2

/
2,

dx4
/

dt = k3x3.

Fig. 8.5 A scheme of a
biochemical signalling
process in a cell (Swameye
et al., 2003)

1 Thus, growth of cancer cells is determined by the fact that they produce substances “inade-
quately” to the surrounding situation. A method of struggle against the disease, which is currently
only hypothetical, could rely on the empirical modelling similar to that described in Swameye et al.
(2003).



250 8 Model Equations: Parameter Estimation

Here, ki are reaction rates, E(t) is the concentration of erythropoietin in the
extracellular space (denoted Epo in Fig. 8.5), whose variations lead to the activa-
tion of respective receptors on a cell membrane. The receptors are bound to tyro-
sine kinase of the type JAK-2 existing in a cell cytoplasm. Tyrosine kinase reacts
with molecules of the substance STAT5, whose concentration is denoted x1. As a
result of the reaction, the latter are phosphorylated. There arise monomeric tyrosine
phosphorylated molecules STAT5, whose concentration is denoted x2. This reaction
leads to a decrease in x1 [the first line in Eq. (8.18)] and an increase in x2 [a positive
term in the second line of Eq. (8.18)]. The monomeric molecules dimerise when
they meet each other. Concentration of the dimeric molecules is denoted x3. This
reaction leads to a decrease in x2 [a negative term in the second line of Eq. (8.18)]
and an increase in x3 [a positive term in the third line of Eq. (8.18)]. The dimeric
molecules penetrate into the nucleus, where their concentration is denoted x4. This
process leads do a decrease in x3 [a negative term in the third line of Eq. (8.18)] and
an increase in x4 [the fourth line in Eq. (8.18)]. The dimeric molecules activate the
transcription of a target gene. As a result, a specific protein is produced. At that, the
dimeric molecules dissociate into the monomeric ones, which degrade inside the
nucleus according to the hypothesis underlying the model (8.18).

However, there is another hypothesis according to which the monomeric
molecules STAT5 are relocated from the cell nucleus to the cytoplasm after a certain
delay time. Under such an assumption, the mathematical model slightly changes and
takes the form

dx1(t)
/

dt = −k1x1(t)E(t)+ 2k4x3(t − τ),

dx2(t)
/

dt = −k2x2
2(t) + k1x1(t)E(t), (8.19)

dx3(t)
/

dt = −k3x3(t)+ k2x2
2(t)

/
2,

dx4(t)
/

dt = −k4x3(t − τ) + k3x3(t),

where additional time-delayed terms appear in the first and the fourth lines and τ

is the delay time. Which of the two models (i.e. which of the two hypotheses) is
valid is unknown. Opportunities of the observations are quite limited, an equipment
is quite expensive and a measurement process is quite complicated (Swameye et al.,
2003). In an experiment, the authors could measure only the total mass of the phos-
phorylated STAT5 in the cytoplasm η1 and the total mass of STAT5 in the cytoplasm
η2 up to constant multipliers:

η1 = k5(x2 + 2x3),

η2 = k6(x1 + x2 + 2x3), (8.20)

where k5, k6 are unknown proportionality coefficients. Along with those two
observables, the concentration E(t) is measured up to a proportionality coefficient
(Fig. 8.6a). We stress that all model dynamical variables xk are hidden. There are
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Fig. 8.6 Modelling of a biochemical cell signalling process (Swameye et al., 2003): (a) a time
series of an external driving, variations in erythropoietin concentration; (b), (c) the results of an
empirical model construction in the form (8.18) and (8.19), respectively

only two observables, which are related to the four dynamical variables in the known
way (8.20).

The parameters in both models (8.18) and (8.19) are estimated in Swameye et al.
(2003) from the described experimental data. The authors have shown invalidity of
the former model and a good correspondence between the experiments and the latter
model. Namely, the time series were measured in three independent experiments
and one of them is shown in Fig. 8.6. Model parameters were estimated from all the
available data via the initial value approach (Sect. 8.2.1). This approach was appro-
priate since the time series were rather short. They contained only 16 data points per
experiment session and represented responses to “pulse” changes in the erythropoi-
etin concentration (Fig. 8.6a). Thus, one should not expect problems with finding
the global minimum of the cost function. The model (8.18) appeared incapable
of reproducing the observed time series (Fig. 8.6b), while the model (8.19) was
adequate in this respect (Fig. 8.6c). The estimate of the delay time was τ ≈ 6 min,
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which agreed by the order of magnitude with the results of other authors obtained
with different techniques for similar objects.

Thus, only the modelling from time series allowed the authors to make a non-
trivial conclusion that relocation of STAT5 molecules to the cytoplasm plays a sig-
nificant role in the process under study. They found out some details of the process,
which cannot be observed directly, for instance, the stay of the STAT5 molecules in
the nucleus approximately for 6 min.

Moreover, by studying the model (8.19), one can predict what happens if some
parameters of the process are varied. For example, the authors studied how the total
mass of the protein produced by a cell (which is proportional to a total number
of STAT5 molecules participating in the process) changes under variations in dif-
ferent model parameters. This quantity appeared to depend very weakly on k1, k2
and quite strongly on k3, k4, τ . In other words, the processes in the nucleus play a
major role. According to the model (8.19), decreasing k4 down to zero (inhibition
of a nuclear export) leads to the decrease in the produced protein mass by 55%. In
experiments with leptomycin B, the authors inhibited a nuclear export (an analogue
to the parameter k4) only by 60%. According to the model, it should lead to the
reduction in the amount of activated STAT5 by 40%. In experiment, the reduction
by 37% was observed. Thus, a model prediction was finely confirmed, which further
increases one’s confidence to the model and allows to use it for a more detailed
study of the process and its control. Having such achievements, one could think
about opportunities to use empirical modelling for medical purposes.

8.3.2 Concluding Remarks

Despite the successes mentioned above, the problem of modelling may often appear
technically unsolvable even under the relatively simple “transparent box” setting
and for an adequate model structure. To date, examples of successful modelling
are observed when the difference between the model dimension and the number of
observables is not greater than two or three and the number of estimated parameters
is not greater than 3–5. These are only rough figures to give an impression about
typical practical opportunities. In each concrete case, modelling results depend on
specific non-linearities involved in the model equations. In any case, the greater the
number of hidden variables and unknown model parameters, the weaker the chances
for a successful modelling and the lower the accuracy of parameter estimators.
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