
Chapter 6
Data Series as a Source for Modelling

When a model is constructed from “first principles”, its variables inherit the sense
implied in those principles which can be general laws or derived equations, e.g.,
like Kirchhoff’s laws in the theory of electric circuits. When an empirical model
is constructed from a time realisation, it is a separate task to reveal relationships
between model parameters and object characteristics. It is not always possible to
measure all variables entering model equations either in principle or due to technical
reasons. So, one has to deal with available data and, probably, perform additional
data transformations before constructing a model.

In this chapter, we consider acquisition and processing of informative signals
from an original with the purpose to get ideas about opportunities and specificity
of its modelling, i.e. the stage “collection and analysis of time series data” and “a
priori information” at the top of the scheme in Fig. 5.1.

6.1 Observable and Model Quantities

6.1.1 Observations and Measurements

To get information necessary for modelling, one observes an object based on prior
ideas or models at hand (Sect. 1.1). As a result, one gets qualitative or quantitative
data. Qualitative statements may arise from pure contemplation, while quantitative
information is gathered via measurements and counting. Counting is used when
a set of discrete elements is dealt with, e.g., if one tries to register a number of
emitted particles, to determine a population size and so forth. Measurement is a
comparison of a measured quantity with a similar quantity accepted as a unit of
measurement. The latter is represented by standards of various levels. When speak-
ing of “observation”, “observable quantities” and “observation results”, one means
a measurement or counting process, measured or counted quantities and resulting
quantitative data, respectively (Mudrov and Kushko, 1976). It is widely accepted to
omit the word “quantities” and speak of “observables”. We denote observables by
the letter η resembling a question mark to stress a non-trivial question about their
possible relationships with model variables.
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160 6 Data Series as a Source for Modelling

Any real-world system possesses an infinite set of properties. However, to
achieve goals of modelling, it is often sufficient to consider a finite subset: model
variables x1, x2, . . . , xD and model parameters c1, c2, . . . , cP . The number of
observables and model variables, as well as their physical meaning, may differ.
Thus, the number k of observables η1, η2, . . . , ηk is usually less than a model
dimension D. Quite often, observables have a meaning different from variables
entering model equations. Anyway, observables are somehow related to the model
variables. Such a relationship is determined by experimental conditions, accessibil-
ity of an original, its shape and size, lack of necessary equipment, imperfection of
measurement tools and many other objective and subjective factors. For instance,
opportunities of electric measurements inside a biological cell are restricted due to
the small size of the latter (Fig. 6.1a). An oscillating guitar string is big and easily
accessible so that one can measure velocity and coordinate of each small segment of
this mechanical resonator (Fig. 6.1b). In contrast to that, an access to inner volume
of a closed resonator can be realised only via holes in its walls, i.e. after partial
destruction of an object (Fig. 6.1c).

Relationships between observables and model variables may be rather obvious.
Both sets of quantities may even coincide. However, a simple relationship is more
often lacking. In general, this question requires a special analysis as in the following
examples:

(i) Evolution of a biological population is often modelled with a map showing
dependence of the population size at the next year xn+1 on its size at the current
year xn . If experimental data η are gathered by observers via direct counting,
then a model variable and an observable coincide: x = η. However, if one
observes only results of vital activity (traces on a land, dung, etc.) and tries to
infer the population size from them indirectly, then one needs formulas for the
recalculation or other techniques to reveal a dependence between x and η.

(ii) Physicists are well familiar with measurements of electromotive force (e.m.f.)
E of a source with internal resistance ri with the aid of a voltmeter (Fig. 6.2a,
b). An object is a source of current, a model variable is e.m.f. (x = E) and
an observable is a voltage U on the source clamps. To measure U , a volt-
meter is connected to the source as shown in Fig. 6.2a. Resistance between the
input clamps of a real-world voltmeter Rv (input resistance) cannot be infinite,
therefore, after connection the loop gets closed and current I starts to flow.
Then, the voltage on the source clamps reduces as compared with the case

Fig. 6.1 Accessibility of different objects: (a) electric access to a cell via a glass capillary; (b) an
open resonator; (c) a closed resonator
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Fig. 6.2 Examples of characterising quantities and observables: (a) an experiment with a source
of e.m.f.; (b) an equivalent scheme for the e.m.f. measurement; (c) observables in the analysis of
brain and heart activity

without measurement device: U = E − Iri = E
(
1 − ri

/
(ri + Rv)

)
. Thus,

the observable differs from the model variable, but there is a unique functional
dependence between both quantities η = f (x).

(iii) When electric potentials on a human skin are recorded, an observable η is a
voltage between two points on a body surface. One of the points is taken as a
reference (Fig. 6.2c). For an electroencephalogram (EEG) measurements, η is
usually a voltage between points on a scalp and a ear; for electrocardiogram
(ECG), it is a voltage between points on a chest and a leg. Even without special
knowledge, one can see that the measured voltages are strongly transformed
results of the processes occurring in ensembles of the brain cells or in the
heart. Therefore, relationship between the observed potentials η and any model
variables x characterising a human organism is a subject of special study. As
mentioned in Sect. 1.6, a researcher is here in a position of passive observation
of a complicated real-world process (Fig. 6.2c) rather than in a position of
an active experimentation with a laboratory system (e.g. Fig. 6.2a). In par-
ticular, the greater difficulty of the passive case for modelling is manifested
in a greater number of unclear questions. However, if a researcher models a
potential recording itself, similar to kinematic description in mechanics, then a
model variable and an observable coincide.

In any measurement, the results are affected by peculiarities of an experimental
technique and device parameters, external regular influences and noises. A typical
procedure for acquisition of experimental data is illustrated in Fig. 6.3: an outer
curve bounds a modelling object, filled circles are sensors for measured quanti-
ties and triangles are devices (amplifiers, limiters, etc.) converting sensor data into
observables ηi . Even if one precisely knows how a measured signal is distorted by
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the devices and makes corresponding corrections,1 it is not possible in practice to
get rid of interference (external regular or random influences).2

It is often feasible to suppress regular influences, while irregular ones called
noises can only be reduced. Noises can be both of an external origin and inherent to
an object. The former one is called measurement noise and the latter one is called
internal or dynamical noise, since it affects the dynamics of an object. Noises are
shown by the curves with arrows in Fig. 6.3. Measurement noise can be additive
η = f (x) + ξ , multiplicative η = f (x) · ξ or enter the relationships between
observables and model variables in a more complicated way.

The form of the function f relating observables and model variables is deter-
mined by the properties of measurement devices and transmission circuits. To avoid
signal distortion, the devices must possess the following properties:

(i) A wide enough dynamic range Umax − Umin allowing to transmit both high-
and low-amplitude signals without violation of proportions. For instance, a
dynamic range of a device shown in Fig. 6.4 is insufficient to transmit a high-
amplitude signal.

(ii) A necessary bandwidth allowing to perceive and transmit all the spectral com-
ponents (Sect. 6.4.2) of an input signal in the same way and ignore “alien”
frequencies. Too large a bandwidth is undesirable since more interference and
noise can mix in a signal. However, its decrease is fraught with a signal distor-
tion due to the growth in the response time τu to a short pulse (a characteristic
of the inertial properties of a device, Fig. 6.4c). Narrow frequency band of
a converting device is often used for a purposeful filtering of a signal. Pre-
serving only “low-frequency” spectral components (low-pass filtering) leads to

Fig. 6.3 A scheme illustrating data acquisition from an object under consideration: xi are quan-
tities, which characterise an object under study, and ηi are observables. Filled circles are sensors
which send signals corrupted with noises ξi to measurement devices denoted by triangles

1 For example, when e.m.f. is measured with a voltmeter, one can either allow for finiteness of
Rv or use a classical no-current compensatory technique with a potentiometer (Kalashnikov, 1970,
pp. 162–163; Herman, 2008) which is free of the above shortcoming.
2 Thus, experiments show that in electric measurements (e.g., Fig. 6.2) a sensitive wideband device
(e.g., a radio receiver) connected in parallel with a voltmeter or a cardiograph detects also noise,
human speech and music, etc.
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Fig. 6.4 Measurement device properties: (a) a device transmitting a signal; (b) its transfer char-
acteristic Uout = f (Uin), a low-amplitude input signal (the grey curve) is transferred without
distortions, while a high-amplitude one (the black curve) is limited, i.e. its peaks are cut off; (c)
when a short pulse comes to an input of a device at a time instant t = 0, a response emerges at its
output with a delay time T and is blurred due to finiteness of a response time τu

smoothing of a signal. High-pass filtering removes a constant non-zero com-
ponent and slow trends (drifts).

(iii) A sufficiently high sensitivity. Internal noise level of a device should be small
enough to give an opportunity to distinguish an informative signal at the device
output confidently.

Questions of imperfection of measurement devices and non-trivial correspon-
dence between model variables and observables relate also to statistical data used in
modelling of social processes and humanitarian problems. Distortion of those data
by people and historical time may be quite significant and uncontrolled. In mod-
elling from such data, a researcher must be especially careful, having in mind that
even electric measurements with sufficiently “objective” devices and noise reduc-
tion techniques often raise doubts and require special attention.

6.1.2 How to Increase or Reduce a Number of Characterising
Quantities

If available observables are regarded as components of a state vector x(t), their
number is often insufficient for a dynamical description of an original, i.e. for a
unique forecast of future states based on a current one. There are several approaches
to increasing the number of model variables D. Some of them are justified theoret-
ically (Takens’ theorems, Sect. 10.1.1), others rely on intuition and ad hoc ideas.
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The simplest and most popular way is the time-delay embedding. According to
it, components of the vector x(t) are the subsequent values of a scalar observable
separated by a time delay τ : x1(t) = η(t), x2(t) = η(t + τ), . . ., xD(t) = η(t +
(D − 1)τ ).

According to the successive differentiation technique, temporal derivatives of an
observable are used as dynamical variables: x1(t) = η(t), x2(t) = dη(t)

/
dt, . . .,

xD(t) = dD−1η(t)
/

dt D−1. However, it is hardly applicable, if the measurement
noise is considerable (e.g. Fig. 7.8a, b): a negligible fringe on the plot of a slightly
noise-corrupted cosine function η(t) = cos t + ξ(t) strongly amplifies under the
differentiation so that an expected sinusoidal profile on the plot dx̂

/
dt versus t is

not seen at all.
Noise can be reduced to some extent if one uses integrals of an observable

as dynamical variables: x2(t) =
t∫

0
η(t ′)dt ′, etc. Similarly, one can get a vari-

able expressed via subsequent values of an observable via weighted summation as
x2(t) = a0η(t)+a1η(t −t)+a2η(t −2t)+. . ., where ak are weight coefficients.

One can also use a combination of all the above-mentioned approaches and other
techniques to get time series of additional model variables (Sect. 10.1.2).

There are situations where the structure of a dynamical system is known, but
computing the values of some dynamical variables directly from observables is
impossible. Then, one speaks of “hidden” variables. In such a case, special tech-
niques described in Sect. 8.2 may appear helpful.

In practice, it may also be necessary to reduce the number of observables if some
of them do not carry information useful for modelling. It can be accomplished via
the analysis of interrelations between observables and removal of the quantities,
which represent linear combinations of the others. Furthermore, dimensional and
similitude methods can be fruitful (Sena, 1977; Trubetskov, 1997): a spectacular
historical example of a problem about fluid flow in a pipe, where one converts from
directly measured dimensional quantities to a less number of their dimensionless
combinations (similitude parameters), is considered in Barenblatt (1982).

6.2 Analogue-to-Digital Converters

To measure quantities of different nature, either constant or time-varying, one often
tries to convert their values into electric voltages and currents. Electric signals can
be easily transmitted from remote sensors and processed with the arsenal of standard
devices and techniques. Previously, measured values were fixed by deviations of a
galvanometer needle, paint traces on a plotter tape, and luminescence of an oscillo-
scope monitor. However, contemporary measurement systems usually represent data
in a digital form with the aid of special transistor devices called analogue-to-digital
converters (ADCs). The problem of analogue-to-digital conversion consists in the
transformation of an input voltage at a measurement instant into a proportional num-
ber and, finally, in getting a discrete sequence of numbers. For a signal waveform to
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be undistorted, conditions of Kotel’nikov’s theorem must be fulfilled: A continuous
signal can be restored from a discrete sequence of its values only if a sampling
frequency is at least twice as large as a maximal frequency which is present in its
power spectrum (Sect. 6.4.2), i.e. corresponds to a non-zero component.

The principle of ADC functioning and the reasons limiting accuracy of the
resulting data are illustrated in Fig. 6.5. The scheme realises the so-called parallel
approach: An input voltage is compared simultaneously with n reference voltages.
The number of reference voltages and the interval between the neighbouring ones
are determined by the range of measured values and the required precision, i.e. the
number of binary digits in output values. For the three-digit representation illus-
trated in the example and allowing to record eight different numbers including zero,
one needs seven equidistant reference voltages. They are formed with the aid of a
resistive divider of a reference voltage Uref. The latter determines an upper limit of
the measured voltages and is denoted 7U on the scheme.

A measured voltage Uin is compared to the reference levels with the aid of seven
comparators ki , whose output voltages take the values which are regarded in binary
system equal to

• 1 if a voltage at the contact “+” exceeds a voltage at the contact “−”,
• 0, otherwise.

Thus, if a measured voltage belongs to the interval (5U
/

2, 7U
/

2), then the
comparators with numbers from 1 to 3 are set to the state “1” and the comparators
from 4 to 7 to the state “0”. A special logical scheme (a priority encoder) converts

Fig. 6.5 A scheme of a
three-digit ADC realising the
parallel approach
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those states into a binary number z1z2z3 (011 in the example) or a corresponding
decimal number (3 in the example). If a voltage varies in time, the priority encoder
cannot be connected directly to outputs of the comparators, since it may lead to
erroneous results. Therefore, one uses D triggers, shown by the squares “DQC” in
Fig. 6.5, to save an instantaneous value of the voltage at outputs of the comparators
and maintain it during a measurement interval. Measurement instants are dictated
by a special clocking signal. If the latter is periodic, then one gets an equidistant
sequence of binary numbers (a time series) at the encoder output.

The conversion of an analogue quantity into a several-digit number is charac-
terised by a “quantisation error” equal to half an input voltage increment nec-
essary to change the lowest order digit at the output. An eight-digit ADC has
28 = 256 gradations (x = xmax

/
256), a 12-digit ADC has 212 = 4096 grada-

tions (x = xmax
/

4096). If one performs an inverse transformation of the obtained
number into a voltage with the aid of a digital-to-analogue converter, a quantisa-
tion error manifests itself as superimposed “noise”. Besides, there are errors caused
by the drift and non-linearity of the scheme parameters so that an overall error in
the resulting observed values is determined by combinations of all the factors and
indicated in a device certificate.

The parallel method for the realisation of the analogue-to-digital conversion is
non-parsimonious, since one needs a separate comparator for each reference level.
Thus, one needs 100 comparators to measure values ranging from 0 to 100 at a unit
step. This number rises with the measurement resolution. Therefore, there have been
developed and widely used approaches, which are better in this respect, e.g. weigh-
ing and counting techniques. Under the weighing technique, a result is obtained in
several steps, since only a single digit of a binary number is produced at a single
step. Firstly, one checks whether an input voltage exceeds a reference voltage of
the highest order digit. If it does, the highest order digit is set equal to “1” and the
reference voltage is subtracted from the input voltage. The remainder is compared
with the next reference voltage and so on. Obviously, one needs as many compari-
son steps as many binary digits are contained in an output value. Under the counting
technique, one counts a number of summations of the lowest order reference voltage
with itself to reach an input voltage. If a maximal output value is equal to n, then
one needs at most n steps to get a result. In practice, combinations of different
approaches are often used.

6.3 Time Series

6.3.1 Terms

At an ADC output and in many other situations, data about a process under inves-
tigation are represented as a finite sequence of values of an observed quantity cor-
responding to different time instants, i.e. a time series η(t1), η(t2) . . . , η(tN ), where
t1, t2, . . . , tN are observation instants and their number N is called time series
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length. If a value of a single scalar quantity is measured at each time instant ti ,
one speaks of a scalar time series. It is denoted as {η(ti )}N

i=1 or {ηi }N
i=1, where

ηi = η(ti ). If k quantities η1, . . . , ηk (Fig. 6.3) are measured simultaneously at each
instant ti , one speaks of a vector time series, since those quantities can be consid-
ered as components of a k-dimensional vector η. A vector time series is denoted
similarly: {η(ti )}N

i=1 or
{
ηi
}N

i=1. Thus, the notation ηi is used below in two different
cases: (i) a scalar time series, where i is time index; (ii) a vector observable, where
i means a coordinate number. Its meaning in each concrete case is determined by
context unless otherwise stated.

Elements of a time series (scalars or vectors) are also called data points. A num-
ber of a point i is called discrete time. If time intervals between subsequent obser-
vation instants ti are the same, ti − ti−1 = t, i = 2, . . . , N , then a time series
is called equidistant, otherwise non-equidistant. One also says that the values are
sampled uniformly or non-uniformly in time, respectively. An interval t between
successive measurements is called sampling interval or discretisation interval. For a
non-equidistant series, a sampling interval ti = ti −ti−1 varies in time. In practice,
one deals more often with equidistant series.

To check quality of a model constructed from a time series (Sects. 7.3, 8.2.1
and 10.4), one needs another time series from the same process, i.e. a time series
which was not used for model fitting. Therefore, if the data amount allows, one
distinguishes two parts in a time series {ηi }N

i=1. One of them is used for model
fitting and called a training time series. Another one is used for diagnostic check of
a model and called a test time series.3

6.3.2 Examples

Time series from different fields of practice and several problems, which are solved
with the use of such data, are exemplified below. The first problem is forecast of the
future behaviour of a process.

6.3.2.1 Meteorology (a Science About Atmospheric Phenomena)

At weather stations, one measures hourly values of different quantities including
air temperature, humidity, atmospheric pressure, wind speed at different heights,
rainfall, etc. At some stations, measurements are performed for more than 100 years.
Variations in the mentioned quantities characterised by the timescales of the order
of several days are ascribed to weather processes (Monin and Piterbarg, 1997).
Weather forecast is a famous problem of synoptic meteorology.

3 In the field of artificial neural networks, somewhat different terminology is accepted. A test series
is a series used to compare different empirical models. It allows to select the best one among them.
For the “honest” comparison of the best model with an object, one uses one more time series
called a validation time series. A training time series is often called a learning sample. However,
we follow the terminology described in the text above.
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Fig. 6.6 Anomaly of sea surface temperature in eastern equatorial zone of Pacific Ocean (the
values averaged over 5 months are shown). Sampling interval is t = 1 month (Keller, 1999)

Slower processes whose typical timescales exceed 3–4 months are called cli-
matic. They are studied by climatology. Examples of their characteristics are sea
surface temperature (a mean temperature of upper mixed layer, whose depth is about
several dozens of meters, Fig. 6.6), sea level (at different coastal areas), thickness
of ice, surface of ice cover, plant cover of the Earth, total monthly rainfall at a cer-
tain area, closed lakes level, etc. Besides, variations in many weather characteristics
averaged over a significant time interval and/or a wide spatial area become climatic
processes, e.g. mean monthly air temperature at a certain location, instantaneous
value of temperature averaged over a 5◦ latitudinal zone, annual air temperature of
the Northern Hemisphere. As for the spatial averaging, it is currently possible due to
a global network of weather stations covering most of the surface of all continents.
Distances between neighbouring stations are about 10–100 km.

6.3.2.2 Solar Physics

For a long time, a popular object of investigation is a time series of annual sunspot
number (Fig. 6.7). This quantity is measured since telescope has been invented,
more precisely, since 1610 (i.e. for almost 400 years). The process reflects magnetic
activity of the Sun which affects, in particular, irradiation energy and solar wind
intensity (Frik and Sokolov, 1998; Judd and Mees, 1995; Kugiumtzis et al., 1998;
Yule, 1927) and, hence, leads to changes in the Earth’s climate.

Fig. 6.7 Annual Wolf’s numbers of sunspots. Sampling interval is t = 1 year. Eleven-year cycle
of the Sun activity is noticeable
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6.3.2.3 Seismology

Earthquakes occur in the block, cut by multiple ruptures, strongly non-uniform,
solid shell of the Earth called lithosphere as a result of its deformation due to tectonic
forces. General equations governing the process are still unknown (Sadovsky and
Pisarenko, 1997). There are reasons to think that a seismic regime is affected by
various physical and chemical processes including thermal, electric and others. In
practice, one measures mechanical tension fields at different areas of the Earth’s
surface. Another form of data representation is time intervals between successive
strong earthquakes ti = ti − ti−1, where ti is an instant of an i th shock. It can be
interpreted as a non-equidistant time series. The values of ti vary strongly between
different observation areas and periods.

To study seismic activity, one uses equidistant time series as well. For instance,
one measures a quantity proportional to the acceleration of the Earth’s surface vibra-
tions with the aid of seismographs (Koronovskii and Abramov, 1998).

6.3.2.4 Finance

For participants of events occurring at equity markets, it is important to be able to
foresee changes in currency exchange rates, stock prices, etc. Those processes are
affected by multiple factors and fluctuate quickly in a very complicated manner.
Time series of currency exchange rates are often recorded at sampling interval of
1 h (and even down to 2 min). One often reports daily values of stock prices, see
Figs. 6.8 and 6.9 and Box and Jenkins (1970); Cecen and Erkal (1996); Lequarre
(1993); Makarenko (2003); Soofi and Cao (2002).

6.3.2.5 Physiology and Medicine

In this field, one often encounters the problem of diagnostics rather than forecast.
Physiological signals reflecting activity of the heart, brain and other organs are one
of the main sources of information for physicians in diagnosing. One uses electro-
cardiograms (difference of potentials between different points at the chest surface,
Fig. 6.10), electroencephalograms (potentials at the scalp), electrocorticograms
(intracranial brain potentials), electromyograms (potentials inside muscles or on the

Fig. 6.8 Stock prices for the IBM company. Sampling interval t = 1 day; the values for the end
of a day are shown (Box and Jenkins, 1970)
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Fig. 6.9 Currency exchange rate between USA dollar and German mark in 1991 (Lequarre, 1993).
Sampling interval t = 1 day

Fig. 6.10 Electrocardiogram (Rigney et al., 1993). A characteristic PQRST complex and the so-
called R – R interval are shown. Sampling interval t = 1 ms

skin), acceleration of finger oscillations for a stretched hand (physiological tremor),
concentration of oxygen in the blood, heart rate, chest volume representing a respi-
ration process, etc. A typical sampling interval is of the order of 1 ms.

It is important to be able to detect signs of a disease at early stages. For that, one
might need quite sophisticated methods for the analysis of signals.

6.3.2.6 Transport

In this field as in many technical applications, a problem of automatic control often
arises. For instance, one measures data representing simultaneously a course of a
boat and a rudder turn angle (Fig. 6.11). Having those data, one can construct an
automatic system allowing to make control of a boat more efficient, i.e. to reduce its
wagging and fuel consumption (Ljung, 1991).

Fig. 6.11 Simultaneous time
series of a rudder turn angle
(random turns) and a course
of a boat (Ljung, 1991).
Sampling interval t = 10 s
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6.3.2.7 Hydrodynamics

Investigation of turbulent motion in a fluid is one of the oldest and most complex
problems in non-linear dynamics. Chaotic regimes are realised in experiments with
fluid between two cylinders rotating in opposite directions or in a mixer with a
rotating turbine inside. The data are, for instance, time series of fluid velocity at a
certain spatial location measured at typical sampling interval of 1 ms (Letellier et al.,
1997).

6.3.2.8 Chemistry

Considerable attention of researchers is paid to chaotic behaviour in many chemical
reactions. The data from those systems are presented in the form of time realisations
of reagent concentrations, e.g. CeIV ions in the Belousov and Zhabotinsky reaction
(Brown et al., 1994; Letellier et al., 1998b).

6.3.2.9 Laser Physics

Observed complex behaviour of a laser under periodic pulse pumping (Fig. 6.12) can
be used to estimate some parameters of the laser and further to study a dependence
of those parameters on external conditions including a temperature regime. The data
are a time series of irradiation intensity measured with the aid of photodiodes.

6.3.2.10 Astrophysics

In fact, the only source of information about remote objects of the Universe (stars)
is time series of their irradiation intensity. Those time series are collected with the
aid of radio- and optical telescopes (Fig. 6.13).

Fig. 6.12 Data from a ring
laser in a chaotic regime
(Hubner et al., 1993):
irradiation intensity.
Sampling interval t = 40 ns

Fig. 6.13 Variations of luminance of a dwarf star PG-1159, t = 10 s (Clemens, 1993). The time
series was recorded continuously during 231 h
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The list of examples, problems and objects can be continued. Their number per-
manently rises. ADCs with t = 10−8 − 10−9 s and data storage devices with
memory sizes of hundreds of gigabytes are already easily accessible for a researcher.
One still does not observe a saturation in the development of the devices for acquisi-
tion, storage and processing of time series. Even the above examples suffice to show
that time realisations of motions in real-world systems are usually very complex and
irregular. Yet, one now knows that complicated chaotic motions can be demonstrated
even by simple non-linear dynamical systems so that the problem of modelling
from a time series does not seem hopeless even though it requires a development
of non-trivial techniques.

6.4 Elements of Time Series Analysis

6.4.1 Visual Express Analysis

Human capabilities to recognise visual images are so well developed that we can
compete even with specialised computers in such activity. It is thought that a person
gets about 70% of sensory information via the eyes. Visual analysis of data, if they
are presented in a graphical form, can be very fruitful in modelling. It can give an
idea about an appropriate form of model functions and kind and dimensionality of
model equations. The most natural step is visual assessment of time realisations of
a process η(t), see Fig. 6.14 (left panels).

One should consider time realisations of sufficient length in order that peculiari-
ties of motion allowing identification of a process could manifest themselves. Thus,
for periodic motions (Fig. 6.14a), such a peculiarity is complete repeatability of
a process with some period T . A motion is quasi-periodic (Fig. 6.14b) if there are

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 6.14 Time realisations of regular (a, b) and irregular (c–h) processes and their periodograms
(formulas are given in Sect. 6.4.2). (a) Periodic process: variations in voltage on a semiconductor
diode in a harmonically driven RL diode circuit (provided by Prof. E.P. Seleznev). (b) Quasi-
periodic process: variations in voltage on a non-linear element in coupled generators with quadratic
non-linearity which individually exhibit periodic self-sustained oscillations (provided by Prof. V.I.
Ponomarenko). (c) Narrowband stationary process. (d) Narrowband process with non-stationarity
in respect of expectation. (e) Narrowband process with non-stationarity in respect of variance.
The data on the panels c, d, e are signals from an accelerometer attached to a hand of a patient
with Parkinson’s disease during spontaneous tremor epochs (provided by the group of Prof. P.
Tass, Research Centre Juelich, Germany). (f) Wideband stationary process: anomaly of the sea
surface temperature in Pacific ocean (5 ◦N − 5 ◦S, 170 ◦W−120 ◦W), the data are available at
http://www.ncep.noaa.gov. (g) Wideband process with non-stationarity in respect of expectation:
variations in global surface temperature of the Earth. An anomaly of the GST (i.e. its difference
from the mean temperature over the base period 1961–1990) is shown (Lean et al., 2005). (h)
Wideband process with the signs of non-stationarity in respect of variance: variations in the global
volcanic activity quantified by the optical depth of volcanic aerosol (Sato et al., 1993)
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Fig. 6.14 (continued)
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two or more characteristic timescales (i.e. periods of harmonic components) whose
ratio Ti

/
Tj is an irrational number. Periodic and quasi-periodic motions are called

regular motions in contrast to the cases illustrated in Fig. 6.14c–h which are depleted
of obvious regularity, i.e. represent irregular motions.

Figure 6.14c, f shows stationary processes whose statistical characteristics do not
change in time, while Fig. 6.14d, e, g, h shows temporal profiles looking more like
non-stationary processes (see Sects. 4.1.3 and 6.4.4). In simple cases, non-stationary
motions are recognised by eye if qualitatively or quantitatively different stages can
be distinguished in their time realisations.

By considering the distance between successive maxima or minima in a time
realisation and the shape of the temporal profile, one can estimate basic frequency of
a signal and even a frequency range covered by its significant harmonic components
(see Sect. 6.4.2). For instance, the distance between most pronounced minima is
practically constant (about 200 μs) for the voltage variations shown in Fig. 6.14a;
the distance between successive maxima for the accelerometer signal fluctuates
stronger (Fig. 6.14c) and for the climatic process shown in Fig. 6.14f, it fluctu-
ates much stronger. Therefore, a relative width of the peak in the power spectrum
corresponding to a basic frequency is smallest for the electric signal (practically,
a discrete line at 5 kHz, Fig. 6.14a), somewhat greater for the accelerometer signal
(the peak at 5 Hz, Fig. 6.14c), and much greater for the climatic process (the smeared
peaks at 0.2 and 0.33 1/year, Fig. 6.14f), i.e. the process in Fig. 6.14f is most
wideband of these three examples. At the same time, the periodic electric signal
exhibits a complicated time profile involving both flat intervals and voltage jumps
(Fig. 6.14a). Therefore, its power spectrum exhibits many additional almost discrete
lines at higher harmonics of the basic frequency: 10, 15, 20 kHz (an especially high
peak) and so on up to 130 kHz. Non-stationarity often leads to an increase in the
low-frequency components that is most clearly seen in Fig. 6.14d, g.

Another widespread approach to the visual assessment relies upon a procedure
of phase orbit reconstruction when one shows the values of dynamical variables
computed from an observable (Sects. 6.1.2 and 10.1.2) along the coordinate axes.
Data points in such a space represent states of an object at successive time instants
(Fig. 6.15). Possibilities of visual analysis of the phase portraits are quite limited.
Without special tools, one can just consider two-dimensional projections of the
phase portraits on a flat screen (Fig. 6.15b). Cycles are easily identified since they
are represented by thin lines (the lower graph in Fig. 6.15b). A torus projection to
a plane looks like a strip with sharp boundaries (the upper graph), which differs
from a more “smeared” image of a chaotic attractor (the right graph). The pictures,
which are more informative for the distinction between chaotic and quasi-periodic
motions, are obtained with the aid of phase portrait sections, e.g. a stroboscopic
section or a section based on the selection of extrema in the time realisations. Such
a section for a torus is a closed curve (Fig. 6.15b, white line), for a cycle it is a point
or several points and for a chaotic attractor it is a set of points with a complex struc-
ture. Analysis of phase portraits is more fruitful for the identification of complex
non-periodic motions compared to the spectral analysis of the observed signals.
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Fig. 6.15 Examples of different dynamical regimes. (a) Qualitative outlook of possible phase
orbits in a three-dimensional phase space: a limit cycle (the lower graph), a torus (the upper
graph) and a chaotic attractor (the right graph). (b) Projections to a plane representing typical
pictures on an oscilloscope screen. The white line on the black background denote a projection of
a two-dimensional section of the portrait

6.4.2 Spectral Analysis (Fourier and Wavelet Transform)

Most often, the term “spectral analysis” refers to Fourier transform, i.e. decom-
position of a signal into harmonic components. However, in a generalised sense,
spectral analysis is a name for any representation of a signal as a superposition of
some basis functions. The term “spectrum” refers then to a set of those functions
(components). Below, we briefly consider a traditional Fourier analysis and a more
novel and “fashion” tool called wavelet analysis which is very fruitful, in particular,
to study non-stationary signals.

6.4.2.1 Fourier Transform and Power Spectrum

This topic is a subject of multitude of books and research papers. It underlies such
fields of applied mathematics as spectral analysis (Jenkins and Watts, 1968) and
digital filters (Hamming, 1983; Rabiner and Gold, 1975). We only briefly touch on
several points.

Firstly, let us recall that according to Weierstrass’ theorem, any function η =
F(t) continuous on an interval [a,b] with F(a) = F(b) can be arbitrarily accurately
represented by a trigonometric polynomial. The idea is readily realised in time series
analysis. If a time series is equidistant and contains an even number of points N ,
sampling interval is t , a = t1, b = a + N ·t = tN +t , then one can show that
an original signal {η(ti )}N

i=1 for all observation instants can be uniquely represented
as the sum:
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η(ti ) = a0 +
N /2∑

k=1

ak cos(kωti ) +
N /2−1∑

k=1

bk sin(kωti ), i = 1, . . . , N , (6.1)

where

ω = 2π

b − a
= 2π

Nt
.

Coefficients of the trigonometric polynomial (6.1) are expressed via the formulas

a0 = 1

N

N∑

i=1

ηi , aN /2 = 1

N

N∑

i=1

(−1)iηi , (6.2)

ak = 2

N

N∑

i=1

ηi cos(kωti ), k = 1, . . . , N
/

2 − 1, (6.3)

bk = 2

N

N∑

i=1

ηi sin(kωti ), k = 1, ..., N
/

2 − 1. (6.4)

The formulas (6.2), (6.3) and (6.4) converting the values of ηi into the coefficients
ak and bk are called the direct discrete Fourier transform (DFT). The formula (6.1)
providing calculation of ηi from ak and bk is called the inverse DFT.

Based on these transforms, one can construct an approximate description of an
original signal, in particular, smooth it. For instance, higher frequencies correspond-
ing to big values of k often reflect noise influence so that it is desirable to get rid
of them. It can be accomplished in the simplest way if one zeros the corresponding
coefficients ak and bk and performs the inverse DFT (6.1). Thereby, one gets a more
gradually varying (“smoother”) signal. This is a kind of a low-pass filter. A high-
pass filter can be realised in a similar way by zeroing coefficients corresponding to
small values of k. To get a band-pass filter, one zeros all the coefficients outside of a
certain frequency band. These simple versions of digital filters are not the best ones
(Hamming, 1983; Rabiner and Gold, 1975).

One can often get a sufficiently good approximation to a continuous function
F(t) over a finite interval with the aid of a trigonometric polynomial. At that, even
trigonometric polynomials of quite a high order can be used, while the use of high-
order algebraic polynomials leads to significant troubles (Sect. 7.2.3). If a function
F(t) is periodic, it can be approximated well by a trigonometric polynomial over the
entire number axis. We stress that the trigonometric system of functions is especially
useful and has no “competitors” for approximation of periodic functions.

Physical Interpretation as Power Spectrum

The mean-squared value of an observable η is proportional to physical power if η
is an electric voltage or a current in a circuit. One can show that this mean-squared
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value is equal to the sum of the mean-squared values of the terms in the right-hand
side of Eq. (6.1). In other words, the power is distributed among frequencies:

1

N

N∑

i=1

η2
i =

N /2∑

k=0

Sk, (6.5)

where Sk is a power contained in a harmonic component with a frequency kω:
Sk = (

a2
k + b2

k

)/
2 for 1 ≤ k < N

/
2 and Sk = a2

k for k = 0, N
/

2. Phys-
ically, an observed signal may represent a superposition of signals from several
sources. If each of those sources demonstrates harmonic oscillations with its own
frequency, then its intensity in the observed signal is reflected by the values of Sk at
the corresponding frequency. The quantities Sk allow to detect different sources of
oscillations and estimate their relative intensity. If each frequency corresponding to
a considerable value of Sk is related to oscillations of a certain harmonic oscillator,
then the number of considerable components is equal to the number of degrees of
freedom involved in the process. Since the total power in a signal is represented as a
set (spectrum) of components according to Eq. (6.5), the set of Sk is called “power
spectrum” of the process η(t). Strictly speaking, this is only an estimate of the power
spectrum (see below).

The concept of the power spectrum is so easily defined only for a deterministic
periodic function η(t) with a period 2π

/
ω, since such a function is uniquely repre-

sented by a trigonometric Fourier series:

η(t) = a0 +
∞∑

k=1

[ak cos(kωt) + bk sin(kωt)], (6.6)

whose coefficients are, in general, non-zero and expressed via the integrals of the
original function η(t).

However, even in this case, one must take into account that a finite set of coef-
ficients in Eq. (6.1) obtained via the direct DFT from a time series is only an
approximation to the theoretical spectrum. If the most part of the power is con-
tained in relatively low frequencies (but higher than ω = 2π

/
(Nt)), then such an

approximation is sufficiently accurate. Widely known is a phenomenon of frequency
mimicry (masking) which is following. A model (6.1) includes maximal frequency
of ωN

/
2 = π

/
t , which is called Nyquist frequency. The period of the corre-

sponding harmonic component is equal to the doubled sampling interval. Any com-
ponents with the frequencies exceeding the Nyquist frequency would be linear com-
binations of the basis functions in Eq. (6.1) over the set of the observation instants
ti . If such components are introduced into a model, then the lower frequencies must
be excluded to provide linear independence of the basis functions. In other words,
higher frequency components cannot be distinguished from the combinations of the
lower frequency components, e.g. cos

((
N
/

2 + k
)

jωt
) = cos(π j + kω jt) =

(−1)jcos(jkωt), where k > 0 and t j = jt . It looks as if the former were masked
by the latter.
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The situation gets even more complex in the case of a non-periodic function
η(t). Such a function cannot be accurately represented by the series (6.6) over the
entire number axis. However, under certain conditions (integrability over the entire
number axis and smoothness), one can write down a similar representation in the
form of the Fourier integral, i.e. replace discrete frequencies kω in Eq. (6.6) by the
continuous range of values:

η(t) =
∞∫

0

A(ω)cos(ωt)dω +
∞∫

0

B(ω)sin(ωt)dω, (6.7)

A(ω) = 1

π

∞∫

−∞
η(t)cos(ωt)dt, B(ω) = 1

π

∞∫

−∞
η(t)sin(ωt)dt . (6.8)

The transforms (6.7) and (6.8) are called continuous Fourier transforms (the
inverse and direct transforms, respectively). The above discrete transforms are their
analogues. The energy4 in a signal η(t) is expanded into a continuous energy spec-

trum as
∞∫

−∞
η2(t)dt =

∞∫

0
E(ω)dω, where E(ω) = A2(ω) + B2(ω).

Finally, let us consider the case where η(t) is a realisation of a stationary random
process. Typically, it is almost always non-periodic. Moreover, integrals (6.8) almost
always do not exist, i.e. one cannot define A and B even as random quantities.
Spectral contents of a process are then described via the finitary Fourier transform,
i.e. for η(t) over an interval [−T

/
2, T

/
2] one gets

AT (ω) = 1

π

T /2∫

−T /2

η(t)cos(ωt)dt, BT (ω) = 1

π

T /2∫

−T /2

η(t)sin(ωt)dt . (6.9)

Further, one computes expectations of AT , BT and defines power spectrum as

S(ω) = lim
T →∞

〈
A2

T (ω) + B2
T (ω)

〉

T
, (6.10)

where angular brackets denote the expectation. The quantity on the left-hand side
of (6.10) is power, since it represents energy divided by the time interval T . In this
case, the values of Sk obtained with DFT are random quantities. The set of such
values is a rough estimate of the power spectrum. In particular, it is not a consistent
estimator since the probability density function for each Sk is proportional to that
for the χ2 distribution with two degrees of freedom so that the standard deviation of

4 Not a power. Mean power equals zero in this case, since a signal must decay to zero at infinity to
be integrable over the entire number axis.
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Sk equals its mean and does not decrease with increasing time series length (Brock-
well and Davis, 1987; Priestley, 1989). This set is called periodogram if all the
components are multiplied by N , i.e. if one converts from power to energy. Several
examples are presented in Fig. 6.14 (the right panels). To get an estimator with bet-
ter statistical properties, it is desirable to average Sk over several realisations of the
process or to “smooth” a single periodogram (Brockwell and Davis, 1987; Priestley,
1989).

Importance of the power spectrum concept is related to the fact that behaviour
of many real-world systems in the low-amplitude oscillatory regimes is adequately
described with harmonic functions. Such dynamical regimes are well known and
understood in detail. They are observed everywhere in practice and widely used
in technology, e.g. in communication systems. Linear systems (filters, amplifiers,
etc.) are described in terms of the transfer functions, i.e. their basic characteristic is
the way how the power spectrum of an input signal is transformed into the power
spectrum of the output signal. The phase spectrum which is a set of initial phases of
the harmonic components in Eq. (6.1) is also often important. Multiple peculiarities
of the practical power spectrum estimation and filtering methods are discussed, e.g.,
in Hamming (1983), Jenkins and Watts (1968), Press et al. (1988), Rabiner and Gold
(1975) and references therein.

An Example: Slowly Changing Frequency Contents and Windowed DFT

It is a widespread situation when a signal under investigation has a time-varying
power spectrum. One of the simplest examples is a sequence of two sinusoidal
segments with different frequencies:

η(t) =
{

sin 2t, −π ≤ t < 0,

sin 4t, 0 ≤ t < π.
(6.11)

We performed the analysis over the interval [−π, π ] from a time series of the
length of 20 data points with the sampling interval t = π

/
10 and t1 = −π

(Fig. 6.16a).
The signal can be described well with a trigonometric polynomial (6.1) contain-

ing many considerable components (Fig. 6.16a). However, more useful information
can be obtained if the signal is divided into two segments (windows) and a separate
trigonometric polynomial is fitted to each of them (Fig. 6.16b). This is a so-called
windowed Fourier transform. In each window, one gets a spectrum consisting of a
single significant component that makes physical interpretation of the results much
easier. The windowed DFT reveals that frequency contents of the signal changes in
time that cannot be detected with a single polynomial (6.1). Non-stationary signals
are often encountered in practice and can be analysed with the windowed DFT.
However, there exists a much more convenient contemporary tool for their analysis
called “wavelet transform”.
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Fig. 6.16 An example of a non-stationary signal: (a) two segments of a sinusoid and a super-
imposed plot of an approximating trigonometric polynomial (6.1). Power spectrum contains five
significant components (the bottom panel). Arrows indicate frequencies of the two original sinu-
soidal segments; (b) analogous plots for the windowed DFT. There is a single non-zero component
in each spectrum. Their frequencies correspond to the values of k twice as small as in the left panel
since the number of points in each window is twice as small as in the original time series

6.4.2.2 Wavelet Transform and Wavelet Spectrum

A very efficient approach to the analysis of functions η = F(t) exhibiting pulses,
discontinuities, breaks and other singularities is to use basis functions φk(t) called
wavelets, which are well localised both in time and frequency domains. They have
become an extremely popular tool during the last 20 years (see, e.g., the reviews
Astaf’eva, 1996; Koronovskii and Hramov, 2003; Torrence and Compo, 1998 and
references therein).

The term “wavelet” has been introduced in 1984 and become widely used. Many
researchers call wavelet analysis “mathematical microscope” (Astaf’eva, 1996).
Here, we do not go into strict mathematical definitions and explain only some basic
points. Wavelet is a function φ(t), which

(i) is well localised both in time domain (it quickly decays when |t | rises) and
frequency domain (its Fourier image is also well localised);

(ii) has zero mean
∞∫

−∞
φ(t)dt = 0;

(iii) satisfies a scaling condition (a number of its oscillations does not change under
variations in the timescale).

An example is the so-called DOG-wavelet5 shown in Fig. 6.17:

φ(t) = e−t2
/

2 − 0.5e−t2
/

8. (6.12)

5 Difference of Gaussians, i.e. Gauss functions.
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Fig. 6.17 An example of wavelet and construction of the set of basis functions via shifts (from left
to right) and compressions (from top to bottom). Normalisation is not taken into account

Based on a certain wavelet function, one can construct a set of functions via its
shifts and scaling transformations (compression and stretching along the t-axis).
The functions obtained are conveniently denoted by two subscripts:

φ j,k(t) = 2 j/2φ
(

2 j t − k
)
,−∞ < j, k < ∞, (6.13)

where j and k are integers. Increasing j by 1 changes the scale along the time axis
twice (compression of the function plot), while increasing k by 1 shifts the plot of the
function φ j,k by k

/
2 j along the t-axis (Fig. 6.17). The normalising multiplier 2 j/2

is introduced for convenience to preserve constant norm of φ j,k , i.e. the integrals of

squared functions are all equal:
∥∥φ j,k

∥∥2 = ‖φ‖2.
The constructed set of the localised functions φ j,k covers the entire t-axis due to

shifts, compression and stretching. Under a proper choice of φ(t), the set is a basis
in the space of functions, which are square summable over the entire axis. Strictly
speaking, φ(t) is called wavelet only in this case (Astaf’eva, 1996). The condition
is fulfilled for a wide class of functions including that presented in Fig. 6.17. Basis
functions φ j,k are often called wavelet functions. Since all of them are obtained via
the transformations of φ(t), the latter is often called “mother wavelet”.

Examples of mother wavelet are very diverse (Fig. 6.18). Numerical libraries
include hundreds of them (http://www.wavelet.org). A widely used one is the com-
plex Morlet wavelet

φ(t) = π−1/4e−t2
/

2(e−iω0t − e−ω2
0

/
2), (6.14)

where ω0 determines the number of its oscillations over the decay interval and the
second term in parentheses is introduced to provide zero mean. Real part of the
Morlet wavelet is shown in Fig. 6.18 for ω0 = 6.
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Fig. 6.18 Examples of wavelets: (a) WAVE wavelet; (b) “Mexican hat”; (c) Morlet wavelet (a real
part); (d) HAAR wavelet

To construct an approximating function for a time series, one should select a
finite number of terms from the infinite set of functions φ j,k . Wavelet-based approx-
imation can be vividly illustrated with an example of HAAR wavelet (Fig. 6.18d)
(Misiti et al., 2000). Let us consider an equidistant time series of length N = 2m ,
where m is a positive integer, t = 1

/
N , t1 = 0. As a set of basis functions, it

is convenient to use the following functions from the entire set φ j,k supplemented
with a constant:

1,
φ0,0(t) ≡ φ(t),

φ1,0(t) ≡ φ(2t), φ1,1(t) ≡ φ(2t − 1)
φ2,0(t) ≡ φ(4t), φ2,1(t) ≡ φ(4t − 1), φ2,2(t) ≡ φ(4t − 2), φ2,3(t) ≡ φ(4t − 3),

. . . ,

φm−1,0(t) ≡ φ(2m−1t), . . . , φm−1,2m−1−1(t) ≡ φ(2m−1t − 2m−1 + 1).
(6.15)

An original time series is precisely represented as the sum

ηi = c0 +
m−1∑

j=0

2 j −1∑

k=0

c j,kφ j,k, (6.16)

Coefficients corresponding to the terms with j = m − 1 depend only on the dif-
ference of the observed values at neighbouring time instants, i.e. on the oscillations
with the period 2t corresponding to the Nyquist frequency. Since those functions
describe only the smallest scale variations, the sum of them

D1(ti ) =
2m−1−1∑

k=0

cm−1,kφm−1,k(ti ), (6.17)

is said to describe the first-level details. The remaining component
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A1(ti ) = ηi − D1(ti ) = c0 +
m−2∑

j=0

2 j −1∑

k=0

c j,kφ j,k, (6.18)

is called the first-level approximation. The first-level approximation no longer con-
tains variations with a period 2t (Fig. 6.19). Similarly, one can determine details
in the first-level approximation and so on, which is realised via the basis functions
with smaller j (Fig. 6.19). A general definition of the nth-level details and nth-level
approximation is introduced analogously to Eqs. (6.17) and (6.18): details Dn(ti )
are small-scale components of a signal and approximations An(ti ) are larger scale
components. Approximation of the last mth level is just a mean value of an original
signal. Finally, an original signal is equal to the sum of its mean value and all details:
ηi = Am(ti ) + Dm(ti ) + Dm−1(ti ) + · · · + D1(ti ).

The value of j determines the scale of the consideration: the greater the j , the
smaller the scale. The value of k specifies a temporal point of consideration. To
continue an analogy between a wavelet and a microscope, one can say that k is a
focusing point, j determines its magnification and the kind of the mother wavelet is
responsible for its “optical properties”.

If only a small number of the wavelet coefficients c j,k appear significant, then the
rest can be neglected (zeroed). Then, the preserved terms give a parsimonious and
sufficiently accurate approximation to an original signal. In such a case, one says
that the wavelet provides a compression of information since several wavelet coeffi-
cients can be stored instead of many values in the time series. If necessary, one can
restore an original signal from those coefficients only with a small error. Wavelets
are efficient to “compress” signals of different character, especially pulse-like ones.
To compress signals, one can also use algebraic or trigonometric polynomials, but
the field of wavelet applications appears much wider in practice (see, e.g., Frik and
Sokolov, 1998; Misiti et al., 2000; http://www.wavelet.org).

Wavelet Analysis

Non-trivial conclusions about a process can be extracted from the study of its
wavelet coefficients. This is a subject of the wavelet analysis in contrast to approx-
imation and restoration of signal, which are the problems of synthesis. Above, we
spoke of the discrete wavelet analysis since the subscripts j and k in the set of
wavelet functions took discrete values. More and more careful interest is now paid to
the continuous wavelet analysis when one uses continuous-valued “indices” of shift
and scale (Astaf’eva, 1996; Koronovskii and Hramov, 2003; Torrence and Compo,
1998). The integral (continuous) wavelet transform of a signal η(t) is defined by the
expression

W (s, k) = 1√
s

∞∫

−∞
η(t) · φ

(
t − k

s

)
dt ≡

∞∫

−∞
η(t) · φs,k (t) dt, (6.19)
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Fig. 6.19 Wavelet transform: approximations and details at various levels

where s and k are real numbers (continuous-valued parameters of scale and shift),
wavelet functions are denoted as φs,k (t) = (

1
/√

s
)
φ
(
(t − k)

/
s
)

and the param-
eter s is analogous to 2− j in the discrete transform (6.13). The bivariate function
W (s, k) is called the wavelet spectrum of the signal η(t). It makes vivid physical
sense. A big value of |W (s1, k1)| indicates that signal variations with the timescale
s1 around the time instant k1 are intensive. Roughly speaking, the value of |W (s, k1)|
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at fixed k1 shows frequency contents of the signal around the time instant k1. If
the values corresponding to small s are large, then small-scale (high-frequency)
components are present. The values of |W (s1, k)| at fixed s1 show how the intensity
of the signal component corresponding to the timescale s1 changes in time. Thus,
the wavelet spectrum carries information both about frequency contents of the sig-
nal and its temporal localisation in contrast to the Fourier-based power spectrum,
which provides information only about the frequency contents without any tempo-
ral localisation. Therefore, the wavelet spectrum is also called a time – frequency
spectrum.

The wavelet spectrum satisfies “energy condition”, which allows one to relate it
to a decomposition of the signal energy in time and frequency domains:

∞∫

−∞
η2(t)dt = 1

Cφ

∞∫

−∞

∞∫

−∞
W 2(s, k)

ds dk

s2
, (6.20)

where Cφ is a normalising coefficient depending on the kind of the mother wavelet.
If the value of W 2 is integrated over time k, one gets a function of the timescale,
which is called global energy spectrum or scalogram:

EW (s) =
∞∫

−∞
W 2(s, k)dk. (6.21)

It can be used for the global characterisation of the signal frequency contents along
with the periodogram. Scalogram is typically a more accurate estimator of the power
spectrum. It resembles a smoothed periodogram (Astaf’eva, 1996; Torrence and
Compo, 1998).

A wavelet spectrum can be visualised as a surface in a three-dimensional space.
More often, one uses a contour map of |W (s, k)| or a two-dimensional map of its
values on the plane (k, s) in greyscale, e.g., where the black colour denotes large
values and the white colour indicates zero values. Of course, only an approximate
computation of the integral (6.19) is possible in practice. To do it, one must specify
a signal behaviour outside an observation interval [a,b] (often, a signal is simply
zeroed) that introduces artificial peculiarities called edge effects. How long inter-
vals at the edges should be ignored depends on the mother wavelet used and on the
timescale under consideration (Torrence and Compo, 1998). Let us illustrate per-
formance of the wavelet analysis for the temporal profile shown in Fig. 6.20a: two
sinusoidal segments with different frequencies (similar examples are considered,
e.g., in Koronovskii and Hramov, 2003). DOG wavelet is used for a time series
of the length of 1000 points over an interval [−π, π ] and zero padding outside
the interval. The global Fourier-based spectrum does not reveal the “structure of
non-stationarity”. The wavelet spectrum clearly shows the characteristic timescales
(Fig. 6.20b). In particular, it allows to distinguish low-frequency oscillations at the
beginning of the time series; black spots correspond to the locations of the sinusoid
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Fig. 6.20 Wavelet analysis: (a) two sinusoidal segments with different frequencies; (b) wavelet
spectrum obtained with the aid of DOG wavelet

extrema and “instantaneous” period. Edge effects (which are, indeed, strong for a
signal containing so small number of oscillations with a characteristic period) are
not taken into account here for the sake of illustration simplicity.

Additional examples are given in Fig. 6.21 which presents wavelet spectra of
the time series given in Fig. 6.14. For the computations, we have used the Morlet
wavelet (6.14) with ω0 = 6. Edge effects for this wavelet function at the timescale
s cover intervals of the width s

√
2 (Torrence and Compo, 1998). One can clearly

see the basic periods as dark horizontal lines in Fig. 6.21a–e. Moreover, Fig. 6.21a
exhibits additional structure related to the complicated temporal profile, which is
seen in Fig. 6.14a. Decrease in the oscillation amplitude during the change in
the mean value in Fig. 6.14d (the interval from the 9th to the 12th s) is reflected
as a white “gap” in the horizontal black line in Fig. 6.21d. Figure 6.21e clearly
shows the increase in the oscillation amplitude in the beginning and its decrease
in the end. Figure 6.21h shows higher volcanic activity during the periods 1890–
1910 and 1970–1990. One can see complicated irregular structures in Fig. 6.21f, g.
Still, a characteristic timescale of about 60 months (5 years) can be recognised in
Fig. 6.21f.

The wavelet analysis is extremely useful for the investigation of non-stationary
signals containing segments with qualitatively different behaviour. It is efficient for
essentially non-uniform signal (pulse-like, etc.) and signals with singularities (dis-
continuities, breaks, discontinuities in higher order derivatives), since it allows to
localise singularities and find out their character. The wavelet spectrum exhibits a
characteristic regular shape for fractal signals (roughly speaking, strongly jagged
and self-similar signals): such signs appear inherent to many real-world processes.
Moreover, one can analyse spatial profiles in the same way, e.g., the Moon relief
(Misiti et al., 2000) exhibits a very complex shape with different scales related
to the bombardment of the Moon with meteorites of various sizes. Wavelets are
applied to data analysis in geophysics, biology, medicine, astrophysics and informa-
tion processing systems, to speech recognition and synthesis, image compression,
etc. Huge bibliography concerning wavelets can be found, e.g., in Astaf’eva (1996),
Koronovskii and Hramov (2003), Torrence and Compo (1998) and at the website
(http://www.wavelet.org).
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Fig. 6.21 Wavelet spectra for the signals shown in Fig. 6.14: (a) periodic electric signal (volt-
age on a diode); (b) quasi-periodic electric signal (voltage on a non-linear element); (c) station-
ary accelerometer signal; (d) non-stationary accelerometer signal in respect of the expectation;
(e) non-stationary accelerometer signal in respect of the variance; (f) stationary climatic process
(Niño-3.4 index); (g) non-stationary climatic process in respect of the expectation (variations in the
global surface temperature); (h) non-stationary climatic process in respect of the variance (volcanic
activity)

6.4.3 Phase of Signal and Empirical Mode Decomposition

It is very fruitful in multiple situations to consider a phase of a signal. Here, we
discuss contemporary concepts of the phase. Roughly speaking, this is a variable
characterising repeatability in a signal. It rises by 2π between any two successive
maxima. Especial role of this variable is determined by its high sensitivity to weak
perturbations of a system. Changes in the amplitude may require significant energy,
while a phase can be easily changed by a weak “push”.6

The term “phase” is often used as a synonym of the words “state” or “stage”.
In Sect. 2.1.3, we have discussed a state vector and a state space of a dynami-
cal system and spoken of a phase orbit drawn by a state vector. The meaning of

6 Thus, a phase of a pendulum oscillations (Fig. 3.5a) can be changed by holding it back at a point
of maximal deflection from an equilibrium state without energy consumption.
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the term “phase” is different in the field of signal processing. Thus, the phase of
a harmonic signal x(t) = A cos(ωt + φ0) is an argument of the cosine function
φ = ωt + φ0. The phase φ determines the value of the cosine function. However,
to specify a state completely, one needs to know the amplitude A as well, i.e. the
phase is not a complete characteristic of a state. Apart from φ = ωt + φ0 called
“unwrapped phase” (Fig. 6.22b, the upper panel), one uses a “wrapped” phase
φ(t) = (ωt + φ0)mod 2π defined only over the interval [0, 2π) (Fig. 6.22b, the
lower panel). The latter approach makes sense, since the values of the unwrapped
phase differing by 2π correspond to the same states, the same values of the cosine
function.

A vivid geometrical interpretation of the introduced concept of phase is pos-
sible if one represents a signal x(t) = A cos(ωt + φ0) as a real part Re z(t)
of a complex-valued signal z(t) = A ei(ωt+φ0). Then, a vector z(t) on the plane
(x ,y), where x(t) = Re z(t) and y(t) = Im z(t), rotates uniformly with a fre-
quency ω along a circle of radius A centred at the origin (Fig. 6.22a). Its phase
φ = ωt + φ0 is a rotation angle of z(t) relative to the positive direction of the
x-axis. To compute an unwrapped phase, one takes into account a number of full
revolutions. Thus, such a phase is increased by 2π after each revolution. For a har-
monic signal, it rises linearly in time at a speed equal to the angular frequency of
oscillations. A plot of the wrapped phase is a piecewise linear function (a saw),
Fig. 6.22b.

The concept of the phase originally introduced only for a harmonic signal
was later generalised to more complicated situations. The most well-known and
widespread generalisation to the case of non-harmonic signals is achieved via con-
struction of an analytic signal (Gabor, 1946). The latter is a complex-valued signal,
whose Fourier image has non-zero components only at positive frequencies. From
an original signal x(t), one constructs an analytic signal z(t) = x(t)+ iy(t), where
y(t) is the Hilbert transform of x(t):

Fig. 6.22 Phase definition: (a) an orbit on the plane (x , y) for a harmonic signal x(t), y is the
Hilbert transform of x , A and φ are its amplitude and phase, respectively; (b) unwrapped and
wrapped phases of a harmonic signal versus time; (c) an orbit on the complex plane for a non-
harmonic narrowband signal, its amplitude and phase introduced through the Hilbert transform are
shown; (d) the same illustration for a wideband signal, whose phase is ill-defined
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y(t) = P.V.

∞∫

−∞

x(t ′)dt ′

π(t − t ′)
, (6.22)

P.V. denotes the Cauchy principal value of the improper integral. The phase is
defined as an argument of the complex number z, i.e. as a rotation angle of the
radius vector on the plane (x , y). This approach is widely used in radio-physics
and electrical engineering (Blekhman, 1971, 1981; Pikovsky et al., 2001). For a
harmonic signal x(t) = A cos(ωt+φ0), the conjugated signal is y(t) = sin(ωt+φ0)

and the phase coincides with the above definition. For an “almost sinusoidal” signal,
one observes rotation of the vector z not strictly along a circle but “almost” along a
circle (Fig. 6.22c). The phase increases on average at the speed equal to the mean
angular frequency of the oscillations.

The phase makes clear physical sense for oscillatory signals with a pronounced
main rhythm (Anishchenko and Vadivasova, 2004; Pikovsky et al., 2001). For com-
plicated irregular signals, an analytic signal constructed via the Hilbert transform
may not reveal a rotation about a well-defined centre (Fig. 6.22d). Then, the above
formal definition of the phase is, as a rule, useless. However, if the observed signal is
a combination of a relatively simple signal from a system under investigation and a
superimposed interference, then one can try to extract a simpler signal and determine
its phase as described above. Let us consider two basic approaches to the extraction
of a simple signal: band-pass filtering and empirical mode decomposition.

6.4.3.1 Band-pass Filtering

The simplest approach is to use a band-pass filter (Sect. 6.4.2), which let pass only
components from a small neighbourhood of a certain selected frequency. If the fre-
quency band is not wide, then one gets a signal with a pronounced main rhythm,
whose phase is easily defined via the Hilbert transform (Fig. 6.22c). However, what
frequency band should be used? Does a filtered signal relate to the process under
investigation or is it just an artificial construction? One can answer such questions
only taking into account additional information about the system under investiga-
tion. On the one hand, the frequency band should not be too narrow: In the limit
case, one gets a single sinusoid whose phase is well defined but does not carry any
interesting information. On the other hand, the frequency band should not be too
wide, since then there would not be a rotation of the vector z about a single centre,
i.e. repeatability to be described by the phase would not exist.

Another widespread opportunity to get an analytic signal is a complex wavelet
transform (Lachaux et al., 2000):

z(t) = 1√
s

∞∫

−∞
x(t ′)�∗

(
t ′ − t

s

)
dt ′ (6.23)
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at a fixed timescale s realised with the Morlet wavelet (6.14): �(t) =
π−1/4

[
exp(−iω0t) − exp

(−ω2
0

/
2
)]

exp(−t2
/

2). This is equivalent to the band-
pass filtering of an original signal with the subsequent application of the Hilbert
transform. Namely, the frequency band is of the width  f

/
f = 1

/
4 and centred at

the frequency f ≈ 1
/

s at ω0 = 6. Edge effects are less prominent under the use of
the wavelet transform (6.23) than for many other ways of filtering.

6.4.3.2 Empirical Mode Decomposition

Apart from linear filtering, one can use other options. A technique for the decompo-
sition of a signal into the so-called “empirical modes” recently introduced in Huang
et al. (1998) has become more and more popular during the last years. This is a
kind of adaptive non-linear filtering. The phase of each empirical mode is readily
defined, e.g., as a variable linearly rising by 2π between subsequent maxima or via
the Hilbert transform. For that, each “mode” should be a zero-mean signal whose
maxima are positive and minima are negative, i.e. its plot x(t) inevitably intersects
the abscissa axis (x = 0) between each maximum and minimum of a signal. The
technique is easily implemented and does not require considerable computational
efforts. A general algorithm is as follows:

(i) To find all extrema in a signal x(t).
(ii) To interpolate between the minima and get a lower envelope emin(t). For

instance, the neighbouring minima can be interconnected by straight line
segments (linear interpolation). Analogously, an upper envelope emax(t) is
obtained from the maxima of a signal.

(iii) To compute the mean m(t) = (emax(t)+ emin(t))
/

2.
(iv) To compute the so-called details d(t) = x(t)− m(t). The meaning of the term

is analogous to that used in the wavelet analysis (Sect. 6.4.2). The quantity
m(t) is called a remainder.

(v) To perform the steps (i)–(iv) for the obtained details d(t) and get new details
d(t) and a new remainder m(t) (sifting procedure) until they satisfy two con-
ditions: (1) the current remainder m(t) is close to zero as compared with d(t),
(2) the number of extrema in d(t) equals the number of its zeroes or differs
from it by 1. One calls the resulting details d(t) an “empirical mode” f (t) or
an “intrinsic mode function”.

(vi) To compute a remainder, i.e. the difference between a signal and an empirical
mode m(t) = x(t) − f (t). To perform the steps (i)–(v) for the remainder
m(t) instead of the original signal x(t). The entire procedure is stopped if m(t)
contains too few extrema.

The process is illustrated in Fig. 6.23 with a signal representing a sum of a sinu-
soid and two periodic signals with triangular profiles and different periods. The
period of the first triangle wave is greater than that of the sinusoid and the period of
the second triangle wave is less than that of the sinusoid. As a result of the above
procedure, the original signal is decomposed into the sum of three components
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Fig. 6.23 Empirical mode decomposition (Huang et al., 1998). The upper panel shows an original
signal. The next three panels show empirical modes. The first of them is a periodic triangular wave
with a small period, the second one is a sinusoid and the third one is a triangular wave with larger
period. The lowest panel shows a remainder, which exhibits a single extremum

(empirical modes) and a remainder, which is close to zero. An advantage of this
technique over band-pass filtering is its adaptive character: it distinguishes modes
based on the properties of a signal without the use of a pre-selected frequency band.
In particular, it is more efficient in coping with non-stationary signals.

6.4.4 Stationarity Analysis

In general, stationarity of a process with respect to some property means constancy
of that property in time. Definitions of wide-sense and narrow-sense stationarity are
given in Sect. 4.1.3. Besides such a statistical stationarity related to the constancy
of the distribution laws or their moments, one singles out dynamical stationarity,
meaning constancy of an evolution operator (see also Sect. 11.1).

Majority of time series analysis techniques are based on the assumption of
stationarity of an investigated process. However, multitude of real-world signals,
including physiological, financial and others, look non-stationary. The latter results
from processes, whose characteristic timescales exceed an observation time, or
external events, which lead to changes in dynamics, e.g. adaptation in biological
systems. Many characteristics calculated from a non-stationary time series appear
meaningless or unreliable.
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A lot of efforts were devoted to the problem of testing for stationarity. Previ-
ously, if non-stationarity was detected, a time series was rejected as useless for
any further analysis or divided into segments sufficiently short to be considered as
quasi-stationary. Later, many authors started to use information about the character
of non-stationarity to study a process. There are situations when temporal variations
in the properties of a process represent the most interesting contents of a time series.
For instance, a purpose of electroencephalogram analysis is often to detect changes
in the brain state. Such changes occur between different stages of sleep, between
epileptic seizures and normal brain activity, and so on.

To check a process for stationarity based on a time series more or less reliably,
the length of the time series must significantly exceed all timescales of interest. If
components with characteristic timescales of the order of a time series length are
present, then a process is typically recognised as non-stationary. However, a process
may often be regarded stationary even if a time series length is considerably less
than characteristic timescales of slow processes in a system. For instance, heart rate
of a human being under relaxed conditions is as a rule homogeneous over time
intervals of the order of several minutes. However, longer segments of data reveal
new peculiarities arising due to slow biological rhythms. Since a usual 24-h electro-
cardiogram recording covers just a single cycle of a circadian (daily) rhythm, it is
more difficult to consider it as stationary than longer or shorter recordings.

To detect non-stationarity, one uses the following basic approaches:

(i) Computation of a certain characteristic in moving window, i.e. in subsequent
segments of a fixed length (it looks like a window for the consideration moves
along the time axis). If the characteristic changes weakly and does not exhibit
pronounced trends, then a time series is regarded stationary with respect to that
characteristic, otherwise it is non-stationary. Examples of non-stationarity with
respect to mean and variance are shown in Fig. 6.14d, e, g, h. In statistics there
have been developed special techniques to test for stationarity with respect to
the mean (Student’s t-test, a non-parametric shift criterion, inversion criterion),
the variance (Fisher’s criterion, scattering criterion) and univariate distribution
functions (Wilcoxon test) (Kendall and Stuart, 1979; Pugachev, 1979, 1984;
von Mises, 1964). Based on the theory of statistical hypotheses testing, one may
deny stationarity with respect to those characteristics at a given significance
level (i.e. with a given probability of random error).

(ii) Comparison of characteristics in different time windows. One uses such char-
acteristics as different statistical measures (criteria of χ2, Cramer and Mises,
Kolmogorov and Smirnov) (Kendall and Stuart, 1979; von Mises, 1964) and
non-linear dynamics measures [cross-correlation integral (Cenis et al., 1991),
cross-prediction error (Schreiber, 1997, 1999), distance between vectors of a
dynamical model coefficients (Gribkov and Gribkova, 2000)]. Some approaches
of such type are illustrated in Sect. 11.1.

One more recent approach, which often appears useful for the treatment of
non-stationary signals (e.g. to detect drifts of parameters), is based on the analysis
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of recurrences in a reconstructed phase space (Facchini et al., 2005; Kennel,
1997; Rieke et al., 2002). Recurrence plot widely used in the recurrence analysis
(Eckmann et al., 1987) is a diagram which shows time instants of close returns of
an orbit to different states of a system. It is a very convenient tool to visualise a
dynamical structure of a signal. Furthermore, recurrences in the space of model
coefficients may be used to directly characterise non-stationarity and select quasi-
stationary intervals of an observed signal (Sect. 11.1). Recurrence plots were intro-
duced in Eckmann et al. (1987) and extended in many works, see the dissertation
(Marwan, 2003) and the review (Marwan et al., 2007) for a detailed consideration.
It is also worthwhile to note that the recurrence analysis extends possibilities of
estimating dimensions, Lyapunov exponents and other dynamical invariants of a
system (Marwan et al., 2007), which can be used in empirical modelling to select a
model structure and validate a model.

6.4.5 Interdependence Analysis

Above, we have considered techniques for a scalar time series analysis. If one
observes a vector time series, e.g., simultaneous measurements of two quantities
x(t) and y(t), then opportunities to address new questions emerge. It is often impor-
tant to reveal interdependence between x(t) and y(t) to get ideas about the presence
and character of coupling between sources of the signals. Such information can be
used in modelling as well. Thus, if there is a unique relationship between x(t) and
y(t), then it is sufficient to measure only one of the quantities, since the other one
does not carry new information. If there is certain interdependence, which is not
unique, then it is reasonable to construct a model taking into account interaction
between two sources of signals.

There are different approaches to the analysis of interdependencies. Histori-
cally, the first tools were cross-correlation and cross-spectral analysis. They are
developed within the framework of mathematical statistics and attributed to the so-
called linear time series analysis. Cross-covariance function is defined as covariance
(Sect. 4.1.2) of x and y at time instants t1 and t2:

Kx,y(t1, t2) = E
[
(x(t1) − E[x(t1)]) (y(t2) − E[y(t2)])

]
. (6.24)

For a stationary case, it depends only on the interval between the time instants:

Kx,y(τ ) = E
[
(x(t) − E[x]) (y(t + τ) − E[y])] . (6.25)

According to the terminology accepted mainly by mathematicians, normalised
cross-covariance function is called cross-correlation function (CCF). The latter is a
correlation coefficient between x and y. For a stationary case, the CCF reads

kx,y(τ ) = E
[
(x(t) − E[x]) (y(t + τ) − E[y])]√

var[x]var[y] , (6.26)
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where var[x] and var[y] are the variances of the processes x(t) and y(t). It always
holds true that −1 ≤ kx,y(τ ) ≤ 1. An absolute value of kx,y(τ ) reaches 1 in case of
deterministically linear dependence y(t+τ) = α x(t)+β, while kx,y(τ ) = 0 for sta-
tistically independent processes x(t) and y(t). However, if the processes are related
uniquely, but non-linearly, then the CCF can be equal to zero (e.g., for y(t) = x2(t)
and symmetric distribution of x about zero) and “overlooks” the presence of inter-
dependence. Therefore, one says that the CCF characterises a linear dependence
between signals. To estimate the CCF, one uses a usual formula for an empirical
moment (Sect. 2.2.1).

There are multiple modifications and generalisations of the CCF. Thus, to char-
acterise an interdependence between components of signals at a given frequency,
rather than a total interdependence, one uses cross-spectral density and coherence
(a normalised cross-spectral density). However, the estimation of the cross-spectrum
and coherence is connected to greater difficulties compared to the estimation of an
individual power spectrum (Bloomfield, 1976; Brockwell and Davis, 1987; Priest-
ley, 1989). DFT-based estimators analogous to the periodogram estimator of the
power spectrum have even worse estimation properties compared to the latter due
to an estimation bias (Hannan and Thomson, 1971), observational noise effects
(Brockwell and Davis, 1987), large estimation errors for the phase spectrum at
small coherence (Prietley, 1989), etc. (Timmer et al., 1998). Cross-wavelet analysis
further generalises characterisation of an interdependence by decomposing it in the
time – frequency domain (Torrence and Compo, 1998). Analogous to the cross-
spectrum and Fourier coherence, the cross-wavelet spectrum and wavelet coherence
are estimated with greater difficulties, compared to the individual wavelet power
spectrum (Maraun and Kurths, 2004).

To reveal non-linear dependencies, one uses generalisations of the correlation
coefficient including Spearman’s index of cograduation (Kendall and Stuart, 1979),
correlation ratio (Aivazian, 1968; von Mises, 1964), mutual information function
(Fraser and Swinney, 1986) and others.

The corresponding approaches are developed in non-linear dynamics along two
directions. The first idea is to analyse mutual (possibly, non-linear) dependencies
between state vectors x(t) and y(t) reconstructed from a time series via time-delay
embedding or in other way (Sects. 6.1.2 and 10.1.2). The techniques rely upon the
search for nearest neighbours in state spaces (Arnhold et al., 1999; Pecora et al.,
1995) or construction of mutual predictive models (Schiff et al., 1996; Schreiber,
1999). If there is a unique dependence between simultaneous values of the state
vectors x(t) = F(y(t)), one speaks of generalised synchronisation (Rulkov et al.,
1995; Pecora et al., 1995; Boccaletti et al., 2002). Fruitful approaches to quantifi-
cation and visualisation of non-linear interrelations from observed data are based
on the recurrence analysis (Sect. 6.4.4) and include cross-recurrence plots (Groth,
2005; Marwan and Kurths, 2002, 2004; Zbilut et al., 1998) and joint recurrence plots
(Marwan et al., 2007).

The second idea is to analyse only the phases of observed signals. Since the phase
is a very sensitive variable, an interaction between oscillatory systems often man-
ifests itself as an interdependence between their phases, while the amplitudes may
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remain uncorrelated. If for two coupled self-sustained oscillators their unwrapped
phase difference is constant φx (t) − φy(t) = const, then one says that phase
synchronisation takes place. This is a thresholdless phenomenon, i.e. it can be
observed for arbitrarily weak coupling between systems if their own oscilla-
tion frequencies are arbitrarily close to each other (Afraimovich et al., 1989;
Pikovsky et al., 2001) and noise is absent. If even weak noise is present, then
the phase difference cannot be strictly constant and one considers a softened
condition

∣∣φx (t)− φy(t)− const
∣∣ < 2π . This is definition of 1:1 synchronisation.

There also exists a higher order m:n synchronisation defined by the condition∣∣mφx (t)− nφy(t)− const
∣∣ < 2π . For a considerable noise level, even the softened

condition of the phase difference boundedness can be fulfilled only over a finite
time interval. Then, one speaks of an effective synchronisation if that time interval
significantly exceeds oscillation periods of both systems.

One introduces different numerical characteristics of phase interdependence
often called coefficients of phase synchronisation. The most widespread among
them is the so-called mean phase coherence (it has several names):

Rm,n =
√〈

cos
(
mφx (t)− nφy(t)

)〉2 + 〈
sin

(
mφx (t) − nφy(t)

)〉2
, (6.27)

where angle brackets denote temporal averaging. It is equal to unity when the phase
difference is constant (phase synchronisation) and to zero when each system exhibits
oscillations with its own frequency independently of the other one. In the case of
non-strict (e.g. due to noise) phase locking, the quantity Rm,n can take an interme-
diate value and characterise a “degree of interdependence” between the phases. An
example of efficient application of such a phase analysis to a medical diagnostic
problem is given in Pikovsky et al. (2000).

In Chap. 12 and 13, we describe several techniques allowing to reveal and char-
acterise “directional couplings” and their applications.

6.5 Experimental Example

This chapter is devoted to techniques and problems emerging at the starting stage
of the modelling procedure and to acquisition and preliminary analysis of a time
series (see Fig. 5.1). Instead of a summary, where we could say that probability of
successful modelling rises with the amount and accuracy of prior knowledge about
an object, let us discuss a real-world example of data acquisition and modelling. An
object is a familiar circuit discussed above: a source of e.m.f. and resistors connected
to it (Fig. 6.2a, b). However, a semiconductor sample (InSb, antimonide of indium)
is included into it instead of the resistor Rv .7 Under the room temperature, InSb is
a conductor; therefore, experiments are carried out in liquid nitrogen at its boiling

7 This narrow-band-gap semiconductor characterised by a large mobility of charge carriers is
promising in respect of the increase in the operating speed of semiconductor devices.
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Fig. 6.24 Experimental
set-up: (a) the scheme; (b) the
current I via a sample versus
the voltage U on a sample

temperature of −77 ◦C (Fig. 6.24). Despite seeming simplicity of the object (at least,
in comparison with living systems), we have selected it for an illustration due to
diversity of its possible motions, mathematical tools needed for their description
and difficulties in data acquisition depending on the modelling purposes.

What complexity can one expect from an oblong piece of a substance with two
contacts connected to a source of constant e.m.f.? Depending on experimental con-
ditions and exploited devices, one can observe diversity of processes ranging from
a trivial direct current to oscillations at ultrahigh frequencies and even irradiation
in the millimetre range of wavelengths. Registering of processes with characteris-
tic frequencies ranging from 1 to 1012 Hz requires usage of different devices and
analogue-to-digital converters. Moreover, starting from frequencies of about several
gigahertz, digitising and, hence, modelling from time series are still technically
impossible. Further, mathematical modelling of different phenomena mentioned
above requires application of various tools ranging from algebraic equations to par-
tial differential equations.

Under low voltages U at the contacts of the sample, it behaves like a usual resis-
tor, i.e. one observes a direct current I and processes are appropriately modelled
by an algebraic relationship, i.e. Ohm’s law I = U

/
R, where R is a parameter

meaning the resistance of the sample. The characterising quantities U and I are
easily measured and can serve as observables. Linearity of their interdependence is
violated with the rise in U due to the heating of the sample, whose conductance then
rises as seen from the branch 1 of the characteristic (Fig. 6.24b).

With further increase in I and the heating intensity, boiling of the liquid transits
from the bubble-boiling to the film8-boiling regime. This is reflected by the branch
2 on the dependency of the mean current on the mean voltage. Moreover, this is
accompanied by the transition of the system “sample – source of e.m.f. – cooling
liquid” to an oscillatory regime. Its characteristic frequencies range from less than
1 Hz to radio frequencies (dozens of kilohertz to several megahertz). Thus, one can
use an ADC to record a time series. Oscillations at lower frequencies are determined
by the arousal of multitude of bubbles at the surface, while higher frequencies are
determined by the reactivity of the wires connected to the negative resistance of

8 Liquid nitrogen in a thermos is under boiling temperature. At a low heat flow from the sample,
small bubbles arise at its surface. They cover the entire surface at a more intensive heating. Thus,
a vapour film is created, which isolates the sample from the cooling liquid.
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the sample. Those phenomena can be modelled with stochastic differential equa-
tions. Yet, such a model contains quantities which are not directly related to the
observables: heat flow from the sample, temperature dependence of its conductance,
reactivity of the feed circuit.

A situation which is even more complex for observations and modelling arises
if one tries to decrease heating influence and turns from a continuous power supply
to a pulse regime when the voltage on the sample is supplied only during a short
interval so that it has enough time to be cooled considerably until the next pulse.
At that, without heat destruction of the sample and change in the boiling regime,
one can achieve the voltages (the branch 3 in Fig. 6.24b) sufficient for a shock
breakdown to start at local areas of the sample and created “pieces” of plasma to
become a source of microwave radiation. To observe such processes, one needs a
special equipment and microwave receivers, while the use of the current I (t) and
the voltage U (t) as observables gets inefficient. The reason is that it is not clear
how characterising quantities entering a DE-based model of the above oscillatory
mechanism are related to such observables. More appropriate model variables would
be the field strength in the sample and the concentration of the charge carriers. It
is important to take into account a dependence of the drift velocity on the field
strength and so on. An example of differential equations modelling such a dynamical
regime is given in Bezruhcko and Erastova (1989). A more detailed modelling of the
considered seemingly simple system requires to use non-linear partial differential
equations.

This example cannot be regarded as an exclusive one in practice.
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