
Chapter 4
Stochastic Models of Evolution

To continue the discussion of randomness given in Sect. 2.2.1, we briefly touch on
stochastic models of temporal evolution (random processes). They can be specified
either via explicit definition of their statistical properties (probability density func-
tions, correlation functions, etc., Sects. 4.1, 4.2 and 4.3) or via stochastic difference
or differential equations. Some of the most widely known equations, their properties
and applications are discussed in Sects. 4.4 and 4.5.

4.1 Elements of the Theory of Random Processes

If, given initial conditions x(t0) and fixed parameter values, a process demonstrates
the same time realisation in each trial, then its natural description is deterministic
(Chap. 3). However, such a situation is often not met in practice: different trials
“under the same conditions” give different realisations of a process. One relates such
non-uniqueness to influences from multiple uncontrolled factors, which are often
present in the real world. Then, it is reasonable to refuse deterministic description
and exploit an apparatus of the theory of probability and theory of random pro-
cesses (see, e.g. Gihman and Skorohod, 1974; Kendall and Stuart, 1979; Malakhov,
1968; Rytov et al., 1978; Stratonovich, 1967; Volkov et al., 2000; Wentzel’,
1975).

4.1.1 Concept of Random Process

Random process (random function of time) is a generalisation of the concept of
random quantity to describe time-dependent variables. More precisely, its definition
is given as follows. Firstly, random function is a random quantity depending not only
on a random event ω but also on some parameter. If that parameter is time, then the
random function is called random process and denoted ξ(t, ω). A quantity ξ may
be both scalar (a scalar random process) and vector (a vector or a multidimensional
random process). It may run either a discrete range of values (a process with discrete
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128 4 Stochastic Models of Evolution

states) or a continuous one. For the sake of definiteness, we further speak of the
latter case. Studying and development of such models is the subject of the theory of
random processes (Gihman and Skorohod, 1974; Stratonovich, 1967; Volkov et al.,
2000; Wentzel’, 1975). In the case of discrete time t = 0, 1, 2, . . ., a random process
is called a random sequence.

For a random process, an outcome of a single trial is not a single number (like
for a random quantity) but a function ξ(t, ω1), where ω1 is a random event realised
in a given trial. The random event can be interpreted as a collection of uncontrolled
factors influencing a process during a trial. The function ξ(t, ω1) is called a real-
isation of a random process. It is a deterministic (non-random) function of time,
because a random event ω = ω1 is fixed. In general, one gets different realisations
as outcomes of different trials. A set of realisations obtained from various trials (i.e.
for different ω) is called an ensemble of realisations (Fig. 4.1).

Fig. 4.1 An ensemble of N
realisations (three of them are
shown) and two sections of a
random process
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4.1.2 Characteristics of Random Process

At any fixed time instant t , a random process ξ(t, ω) is a random quantity. The latter
is called a section of a random process at a time instant t and characterised by a
probability density function p(x, t). This distribution law is called one-dimensional
distribution of the random process. It depends on time and may differ for two dif-
ferent time instants. Knowledge of one-dimensional distribution law p(x, t) allows
one to calculate expectation and variance of the process at any time instant t . If the
distribution law varies in time, then the expectation

m(t) = E [ξ(t, ω)] =
∞∫

−∞
xp(x, t)dx (4.1)

and the variance

σ 2
ξ (t) = E[ξ(t, ω)− m(t)]2 =

∞∫

−∞
[x − m(t)]2 p(x, t)dx (4.2)

may vary in time as well. They are deterministic (non-random) functions of time,
since dependence on random events is eliminated due to integration.

In general, sections ξ(t, ω) at different time instants t1 and t2 exhibit differ-
ent probability density functions p(x, t1) and p(x, t2), Fig. 4.1. Joint behaviour
of the sections is described by two-dimensional probability density function
p2(x1, t1, x2, t2). One can define n-dimensional distribution laws pn for any sets
t1, t2, . . . , tn in the same way. These laws constitute a collection of finite-
dimensional distributions of a random process ξ(t, ω). Probabilistic properties of
a process are fully defined only if the entire collection is given. However, since the
latter represents an infinite number of distribution laws, one cannot in general fully
describe a random process.

To be realistic, one must confine him/herself with the use of some characteristics,
e.g. one- and two-dimensional distributions or low-order moments (expectation,
variance, auto-covariance function). Thus, auto-covariance function depends on two
arguments:

K (t1, t2) = E [(ξ(t1, ω) − m(t1)) (ξ(t2, ω) − m(t2))] =
= ∫∫

(x1 − m(t1)) (x2 − m(t2)) p2(x1, t1, x2, t2)dx1 dx2.
(4.3)

For fixed t1 and t2, the expression (4.3) defines covariance of the random quan-
tities ξ(t1, ω) and ξ(t2, ω). If it is normalised by root-mean-squared deviations, one
gets autocorrelation function ρ(t1, t2) = K (t1, t2)/(σξ (t1)σξ (t2)), i.e. correlation
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coefficient between random quantities ξ(t1, ω) and ξ(t2, ω).1 Autocorrelation func-
tion takes values ranging from −1 to 1. The value of |ρ(t1, t2)| = 1 corresponds to
a deterministic linear dependence ξ(t1, ω) = const · ξ(t2, ω).

To characterise a process, one often uses conditional one-dimensional distribu-
tion p1(x, t |x1, t1), i.e. distribution of a section ξ(t) under the condition that at a
time instant t1 the quantity ξ takes a value of ξ(t1) = x1. The function p1(x, t |x1, t1)
is called probability density of the transition from a state x1 at a time instant t1 to a
state x at a time instant t .

4.1.3 Stationarity and Ergodicity of Random Processes

An important property of a process is its stationarity or non-stationarity. A process is
called strongly stationary (stationary in a narrow sense) if all its finite-dimensional
distributions do not change under a time shift, i.e. pn(x1, t1, . . . , xn, tn) =
pn(x1, t1+τ, . . . , xn, tn+τ), ∀n, t1, . . . , tn, τ . In other words, neither characteristic
of a process changes under a time shift. A process is called weakly stationary (sta-
tionary in a wide sense) if its expectation, variance and autocorrelation function (i.e.
moments up to the second order inclusively) do not change under a time shift. For a
stationary process (in any of the two senses), one has m(t) = const, σ 2

ξ (t) = const
and K (t1, t2) = k(τ ) with τ = t2 − t1. The strong stationarity implies the weak
one.2

In general, “stationarity” means invariance of some property under a time shift.
If a property of interest (e.g. nth-order moment of the one-dimensional distribu-
tion) does not change in time, then a process is called stationary with regard to that
property.

A process is called ergodic if all its characteristics can be determined from its sin-
gle (infinitely long) realisation. For instance, the expectation is then determined as

m = lim
T →∞

1

T

T∫

0

ξ(t, ω1)dt

for almost any ω1, i.e. temporal averaging and ensemble (state space) averaging
give the same result. If one can get all characteristics of a process in such a way, the
process is called strictly ergodic. If only certain characteristics can be restored from
a single realisation, the process is called ergodic with regard to those characteris-
tics. Thus, one introduces the concept of the first-order ergodicity, i.e. ergodicity
with regard to the first-order moments, and so forth. Ergodic processes constitute an

1 There is also another terminology where equation (4.3) is called an auto-correlation function, and
after the normalisation, a normalised auto-correlation function. To avoid misunderstanding, we do
not use it in this book.
2 There is also somewhat different interpretation related to an additional requirement of a finite
variance for a weakly stationary process. In such a case, the weak stationarity does not follow from
the strong one.
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important class, since in practice one often has a single realisation rather than a big
ensemble of realisations. Only for an ergodic process one can restore its properties
from such a data set. Therefore, one often assumes ergodicity of a process under
investigation when time series analysis (Chaps. 5, 6, 7, 8, 9, 10, 11, 12 and 13) is per-
formed. An ergodic process is stationary, while the reverse is not compulsorily true.

An example (a real-world analogue) of a random process is provided by almost
any physical measurement. It may be measurements of a current in a non-linear
circuit, exhibiting self-sustained oscillations. Measured time realisations differ for
different trials due to thermal noise, various interference, etc. Moreover, having a
realisation over a certain time interval, one cannot uniquely and precisely predict its
future behaviour, since the latter is determined by random factors which will affect
a process in the future.

A simpler example of a random process is a strongly simplified model represen-
tation of photon emission by an excited atom. An emission instant, initial phase,
direction and polarisation are unpredictable. However, as soon as a photon is emit-
ted and its starting behaviour gets known, the entire future is uniquely predictable.
According to the representation considered, the process is described as sinusoidal
function of time with a random initial phase (harmonic noise). Random processes of
such type are sometimes called quasi-deterministic, since random factors determine
only initial conditions, while further behaviour obeys a deterministic law.

4.1.4 Statistical Estimates of Random Process Characteristics

To get statistical estimates of a one-dimensional distribution law p(x, t) and
its moments, one can perform many trials and obtain a set of realisations
ξ(t, ω1), ξ(t, ω2), . . . , ξ(t, ωn). The values of the realisations at a given time
instant t = t∗ constitute a sample of size n from the distribution of a random
quantity ξ(t∗, ω), Fig. 4.1. One can estimate a distribution law p(x, t∗) and other
characteristics based on that sample. It can be done for each time instant.

Multidimensional distribution laws can be estimated from an ensemble of reali-
sations in an analogous way. However, the number of realisations for their reliable
estimation must be much greater than that for the estimation of statistical moments
or one-dimensional distributions.

A situation when one has only a single realisation is more complex. Only for an
ergodic process and a sufficiently long realisation, one can estimate characteristics
of interest by replacing ensemble averaging with temporal averaging (Sect. 4.1.3).

4.2 Basic Models of Random Processes

A random process can be specified via explicit description of its finite-dimensional
probability distributions. In such a way, one introduces basic models in the theory
of random processes. Below, we consider several of them (Gihman and Skorohod,
1974; Volkov et al., 2000; Wentzel’, 1975).
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(i) One of the most important models in the theory of random processes is
the normal (Gaussian) random process. This is a process whose finite-
dimensional distribution laws are all normal. Namely, an n-dimensional dis-
tribution law of this process reads as

pn(x1, t1, . . . , xn, tn) = 1
√
(2π)n |Vn |exp

(
−1

2
(xn − mn)

T · V−1
n · (xn − mn)

)

(4.4)

for any n, where

xn =

⎡

⎢⎢
⎣

x1
x2
. . .

xn

⎤

⎥⎥
⎦ ,mn =

⎡

⎢⎢
⎣

m(t1)
m(t2)
. . .

m(tn)

⎤

⎥⎥
⎦ ,Vn =

⎡

⎢⎢
⎣

K (t1, t1) K (t1, t2) . . . K (t1, tn)
K (t2, t1) K (t2, t2) . . . K (t2, tn)

. . . . . . . . . . . .

K (tn, t1) K (tn, t2) . . . K (tn, tn)

⎤

⎥⎥
⎦ ,

(4.5)

m(t) is the expectation, K (t1, t2) is the auto-covariance function (4.3), T
stands for transposition and |Vn| is a determinant of a matrix Vn . Here, all
the finite-dimensional distributions are known (a process is fully determined)
if the expectation and the auto-covariance function are specified. A normal
process remains normal under any linear transform.

(ii) A process with independent increments. This is a process for which the quan-
tities ξ(t1, ω), ξ(t2, ω) − ξ(t1, ω), . . . , ξ(tn, ω) − ξ(tn−1, ω) (increments)
are statistically independent for any n, t1, . . . , tn , such that n > 1 and
t1 < t2 < . . . < tn .

(iii) Wiener’s process. This is an N -dimensional random process with independent
increments for which a random vector ξ(t2, ω) − ξ(t1, ω) for any t1 < t2 is
distributed according to the normal law with zero mean and the covariance
matrix (t2 − t1)s2 In , where In is the nth-order unit matrix and s = const. This
is a non-stationary process. In the one-dimensional case, its variance linearly
rises with time as σ 2(t) = σ 2(t0) + s2 · (t − t0).
Wiener’s process describes, for instance, a Brownian motion, i.e. movements
of a Brownian particle under random independent shocks from molecules of
a surrounding medium.
One can show that Wiener’s process is a particular case of the normal process.
Wiener’s process with s = 1 is called standard.

(iv) A (first-order) Markovian process is a random process whose condi-
tional probability density function for any n, t1, . . . , tn , such that t1 <

t2 < . . . < tn , satisfies the property p1(xn, tn|xn−1, tn−1, . . . , x1, t1) =
p1(xn, tn|xn−1, tn−1). This is also expressed as “the future depends on the
past only via the present”. Any finite-dimensional distribution law of this
process is expressed via its one-dimensional and two-dimensional laws. One
can show that Wiener’s process is a particular case of a Markovian process.
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One more important particular case is a Markovian process with a finite
number K of possible states S1, . . . , SK . Due to discreteness of the states, it
is described in terms of probabilities rather than probability densities. Condi-
tional probability P{ξ(t +t) = S j |ξ(t) = Si } is called transition probability,
since it describes the transition from the state i to the state j . A quantity
λi, j (t) = lim

t→+0
P{ξ(t + t) = S j |ξ(t) = Si }/t is called transition proba-

bility density.
Markovian processes play an especial role in the theory of random processes.
Multitude of investigations are devoted to them.

(v) Poisson process with a parameter λ > 0 is a scalar random process with
discrete states possessing the following properties: (a) ξ(0, ω) = 0; (b) incre-
ments of the process are independent; (c) for any 0 ≤ t1 < t2, a quantity
ξ(t2, ω)−ξ(t1, ω) is distributed according to the Poisson law with a parameter
λ(t2 − t1), i.e.

P {ξ(t2, ω) − ξ(t1, ω) = k} = λ(t2 − t1)k

k! exp(−λ(t2 − t1)),

where k is a non-negative integer. Poisson process is often used in applica-
tions, e.g. in the queueing theory.

(vi) White noise is a weakly stationary (according to one of the definitions of
stationarity, see Sect. 4.1.3) random process whose values at different time
instants are uncorrelated, i.e. its auto-covariance function is k(τ ) = const ·
δ(τ ). It is called “white”, since its power spectrum is a constant, i.e. all fre-
quencies are equally presented in it. Here, one draws an analogy to the white
light, which involves all frequencies (colours) of the visible part of spectrum.
White noise variance is infinitely large: σ 2

ξ = k(0) = ∞.
A widespread model is Gaussian white noise. This is a stationary process with
a Gaussian one-dimensional distribution law and auto-covariance function
k(τ ) = const · δ(τ ). Strictly speaking, such a combination is contradictory,
since white noise has infinite variance, while a normal random process has a
finite variance. Yet, somewhat contradictory concept of Gaussian white noise
is useful in practice and in investigations of stochastic differential equations
(Sect. 4.5). Gaussian white noise can be interpreted as a process with a very
large variance, while a time interval over which its auto-covariance function
decreases down to zero is very small as compared with the other characteristic
timescales of a problem under consideration.

(vii) A discrete-time analogue of white noise is a sequence of independent identi-
cally distributed random quantities. It is also often called white noise. Most
often, one considers normal one-dimensional distribution, even though any
other distribution is also possible. In case of discrete time, variance σ 2

ξ is
finite so that the process is weakly stationary, no matter what definition of the
weak stationarity is used.
White noise is the “most unpredictable” process, since any interdepen-
dence between its successive values is absent. A sequence of independent



134 4 Stochastic Models of Evolution

normally distributed quantities serves as a basic model in the construction of
discrete-time stochastic models in the form of stochastic difference equations
(Sect. 4.4).

(viii) Markov chain is a Markovian process with discrete states and discrete time.
This simple model is widely used in practice. Its main characteristics are prob-
abilities of transitions from one state to another one. Graph-theoretic tools are
used for the analysis and representation of such models.

4.3 Evolutionary Equations for Probability Distribution Laws

Exemplary random processes derived from intuitive conceptual considerations are
listed above. Thus, the normal random process can be obtained from the idea about
big number of independent factors, white noise from independence of subsequent
values and Poisson process from an assumption of rare events (Gihman and Sko-
rohod 1974; Volkov et al., 2000; Wentzel’, 1975). All “essential properties” of
these three processes are known: finite-dimensional distribution laws, statistical
moments, etc.

As for Markovian processes, they are based on the ideas about relationships
between the future states and the previous ones. In general, a Markovian process
may be non-stationary. Thus, one can ask how an initial probability distribution
changes in time, whether it converges to some stationary one and what such a limit
distribution looks like. Answers to those questions are not formulated explicitly in
the definition of a Markovian process. However, to get the answers, one can derive
evolutionary equations for a probability distribution law based directly on the def-
inition. For a process with a finite number of states, they take the form of a set of
ordinary differential equations (Kolmogorov equations):

⎡

⎢
⎢
⎣

dp1
/

dt
dp2

/
dt

. . .

dpK
/

dt

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−(λ1,2 + . . . + λ1,K ) λ2,1 . . . λK ,1

λ1,2 −(λ2,1 + λ2,3 + . . .+ λ2,K ) . . . λK ,2

. . . . . . . . . . . .

λ1,K λ2,K . . . −(λK ,1 + . . . + λK ,K−1)

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

p1

p2

. . .

pK

⎤

⎥
⎥
⎦ , (4.6)

where pi (t) is a probability of a state Si , λi, j (t) are transition probability densi-
ties. If the functions λi, j (t) are given, one can trace an evolution of the probabil-
ity distribution starting from any initial distribution by integrating the Kolmogorov
equations. In simple particular cases, e.g. for constant λi, j , a solution can be found
analytically.

A problem is somewhat simpler in the case of Markov chains (at least, for numer-
ical investigation), since an evolution of a probability vector is described with a Kth-
order difference equation. For a vivid representation of Markovian processes with
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discrete states, one often uses graphs where circles and arrows indicate different
states and possible transitions between them.

In the case of a continuous-valued Markovian process, a state is to be described
with a probability density function rather than a probability vector. Therefore, one
derives partial differential equations for an evolution of the probability distribu-
tion law rather than ordinary differential equations (4.6). This is a generalised
Markov equation (the other names are Kolmogorov – Chapman equation and direct
Kolmogorov equation) for a conditional probability density function:

∂p(x, t |x0, t0)

∂t
=

∞∑

k=1

(−1)k

k!
∂k

∂xk

[
ck(x, t)p(x, t |x0, t0)

]
, (4.7)

where ck(x, t) = lim
t→0

1
t

∞∫
−∞

(x ′ − x)k p(x ′, t +t |x, t)dx ′ are coefficients related

to “probabilities of change” of a state x and determining “smoothness” of the pro-
cess realisations.

In an important particular case of a diffusive Markovian process (where ck = 0
for any k > 2), the equation simplifies and reduces to

∂p(x, t)

∂t
= − ∂

∂x
(c1(x, t)p(x, t)) + 1

2

∂2

∂x2 (c2(x, t)p(x, t)) , (4.8)

where c1 is called the drift coefficient and c2 is the diffusion coefficient. Equa-
tion (4.8) is also called Fokker – Planck equation (Wentzel’, 1975; Risken, 1989). It
is an equation of a parabolic type. Of the same form are diffusion and heat conduc-
tion equations in mathematical physics. The names of the coefficients originate from
the same field. Relationships between parameters of stochastic differential equation
specifying an original process and the drift and diffusion coefficients in the Fokker–
Planck equation are considered in Sect. 4.5.

4.4 Autoregression and Moving Average Processes

A random process can be specified via a stochastic equation. Then, it is defined
as a solution to a stochastic equation, i.e. its substitution into an equation makes
the latter an identity. In particular, discrete-time stochastic equations which define
random processes of “autoregression and moving average” (Box and Jenkins, 1970)
are considered below. They are very often used in modelling from observed data.

Linear filter. As a basic model for the description of complex real-world pro-
cesses, one often uses Gaussian white noise ξ(t). Let it have zero mean and the
variance σ 2

ξ . Properties of a real-world signal may differ from those of Gaussian
white noise, e.g. an estimate of the autocorrelation function ρ(τ) may significantly
differ from zero at non-zero time lags τ . Then, a fruitful approach is to construct
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a model as Gaussian white noise transformed by a linear filter. In general, such a
transform in discrete time is defined as

xn = ξn +
∞∑

i=1

ψiξn−i . (4.9)

For the variance of xn to be finite (i.e. for xn to be stationary), the weightsψi must

satisfy
∞∑

i=1
ψ2

i ≤ const. Linear transform (4.9) preserves normality of a process and

introduces non-zero autocorrelations ρ(τ) at non-zero time lags.
Moving average processes. Using a model with an infinite number of weights

is impossible in practice. However, one may reasonably assume that the value of
ψi decreases quickly with i , i.e. the remote past weakly affects the present, and
consider the model (4.9) containing only a finite number of weights q. Thereby, one
gets a “moving average” process which is denoted as MA(q) and defined by the
difference equation

xn = an −
q∑

i=1

θiξn−i (4.10)

involving q + 1 free parameters: θ1, θ2, . . . , θq , and σ 2
ξ .

Autoregression processes. A general expression (4.9) can be equivalently rewrit-
ten in the form

xn = ξn +
∞∑

i=1

πi xn−i , (4.11)

where the weights πi are uniquely expressed via ψi . In more detail, conversion
from (4.9) to (4.11) can be realised through subsequent exclusion of the quantities
ξn−1, ξn−2, etc. from equation (4.9). For that, one expresses ξn−1 via xn−1 and

previous values of ξ as ξn−1 = xn−1 −
∞∑

i=1
ψiξn−1−i . Then, one substitutes this

expression into equation (4.9), thereby excluding ξn−1 from the latter. Next, one
excludes ξn−2 and so on in the same manner. The process (4.11) involves an infinite
number of parameters πi . However, a fast decrease πi → 0 at i → ∞ often takes
place, i.e. the remote past weakly affects the present (already in terms of the values
of x variable). Then, one may take into account only a finite number of terms in
equation (4.11). As a result, one gets an “autoregression” process of an order p
which is denoted as AR(p) and defined as

xn = ξn +
p∑

i=1

φi xn−i . (4.12)

This model contains p + 1 free parameters: φ1, φ2, . . . , φp and σ 2
ξ . The values

of weights must satisfy certain relationships (Box and Jenkins, 1970) for a process
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to be stationary. Thus, in the case of p = 1, the variance of a process (4.12) is
σ 2

x = σ 2
ξ /

(
1 − φ2

1

)
so that one needs |φ1| < 1 to provide the stationarity. The term

“autoregression” appears, since the sum in equation (4.12) determines regression of
the current value of x on the previous values of the same process. The latter circum-
stance inspires the prefix “auto”. The general concept of regression is described in
Sect. 7.2.1.

AR processes represent an extremely popular class of models. One of the rea-
sons is the simplicity of their parameter estimation (see Chaps. 7 and 8). Moreover,
they are often readily interpretable from the physical viewpoint. In particular, the
AR(2) process given by xn = φ1xn−1 + φ2xn−2 + ξn with appropriate values
of the parameters φ1 and φ2 describes a stochastically perturbed linear damped
oscillator, i.e. a generalization of the deterministic oscillator (3.2). Its character-
istic period T and relaxation time τ are related to the parameters φ1 and φ2 as
φ1 = 2 cos(2π/T ) exp(−1/τ) and φ2 = − exp(−2/τ), see Timmer et al. (1998) for
a further discussion and applications of the AR(2) process to empirical modelling
of physiological tremor.

The same model equation was first used for the analysis of solar activity in the
celebrated work (Yule, 1927), where parameters of an AR(2) process were estimated
from the time series of annual sunspot numbers. It was shown that an obtained
AR(2) model could reproduce 11-year cycle of solar activity and gave better predic-
tions than a traditional description with explicit periodic functions of time, which
had been used before. Since then, linear stochastic models have become a widely
used tool in many fields of data analysis. As for the modelling of solar activity, it was
considered in many works after 1927. In particular, non-linear improvements of AR
models are discussed, e.g., in Judd and Mees (1995; 1998); Kugiumtzis et al. (1998).
Additional results on the analysis of solar activity data are presented in Sect. 12.6.

Autoregression and moving average processes. To get a more efficient con-
struction for the description of a wide range of processes, one can combine equa-
tions (4.10) and (4.12). Reasons for their combining are as follows. Let us assume
that an observed time series is generated by an AR(1) process. If one tries to describe
it as an MA process, then an infinite (or at least very large) order q is necessary.
Estimation of a large number of parameters is less reliable that leads to an essential
reduction of the model quality. Inversely, if a time series is generated with an MA(1)
process, then an AR process of a very high order p is necessary for its description.
Therefore, it is reasonable to combine equations (4.10) and (4.12) in a single model
to describe an observed process most parsimoniously. Thus, one gets an autoregres-
sion and moving average process of an order (p, q) which is denoted ARMA (p, q)
and defined as

xn = ξn +
p∑

i=1

φi xn−i −
q∑

i=1

θiξn−i . (4.13)

It involves p + q + 1 free parameters.
Autoregression and integrated moving average processes. A stationary pro-

cess (4.13) cannot be an adequate model for non-stationary processes with either
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deterministic trends or stochastic ones. The term “stochastic trend” means irregular
alternation of intervals, where a process follows almost deterministic law. However,
an adequate model in the case of polynomial trends is a process whose finite dif-
ference is a stationary ARMA process. A finite difference of an order d is defined
as yn = ∇d xn , where ∇xn = xn − xn−1 is the first difference (an analogue to dif-
ferentiation) and ∇d denotes d sequential applications of the operator ∇. Thus, one
gets an autoregression and integrated moving average process of an order (p, d, q)
denoted ARIMA(p, d, q) and defined via the set of difference equations

yn = ξn + μ +
p∑

i=1
φi yn−i −

q∑

i=1
θiξn−i ,

∇d xn = yn .

(4.14)

An intercept μ determines a deterministic trend. To express xn via the values of
the ARMA process yn , one should use summation operator (an analogue to integra-
tion), which is inverse to the operator ∇. It explains the word “integrated” in the title
of an ARIMA process.

ARMA and ARIMA processes were the main tools to model and predict complex
real-world processes for more than half a century (1920–1970s). They were widely
used to control technological processes (Box and Jenkins, 1970, vol. 2). Their var-
ious modifications were developed, in particular, seasonal ARIMA models defined
as ARIMA processes for a seasonal difference ∇s xn = xn − xn−s of the kind

yn = ξn +
P∑

i=1
�i yn−is −

Q∑

i=1
�iξn−is,

∇D
s xn = yn,

(4.15)

where ξn is an ARIMA (p, d, q) process. A process (4.15) is called a seasonal
ARIMA process of an order (P, D, Q) × (p, d, q). Such models are relevant to
describe processes with seasonal trends (i.e. a characteristic timescale s).

Only during the last two decades due to the development of computers and
concepts of non-linear dynamics, ARIMA models more and more “step back” in
a competition with non-linear models (Chaps. 8, 9, 10, 11, 12 and 13), though they
remain the main tool in many fields of knowledge and practice.

4.5 Stochastic Differential Equations and White Noise

4.5.1 The Concept of Stochastic Differential Equation

To describe continuous-time random processes, one uses stochastic differential
equations (SDEs). The most well known is the first-order equation (so-called
Langevin equation)

dx(t)
/

dt = F(x, t) + G(x, t) · ξ(t), (4.16)
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where F and G are smooth functions of their arguments, ξ(t) is zero-mean Gaussian
white nose with the auto-covariance function 〈ξ(t)ξ(t + τ)〉 = δ(τ ).

Introducing a concept of SDE is by no means trivial since it includes a con-
cept of the random process derivative dx(t)/dt . How should one understand such
a derivative? The simplest way would be to assume that all the realisations of a
process x are continuously differentiable and define the derivative at a point t as
a random quantity, whose value is an ordinary derivative of a single realisation of
x at t . However, this is possible only for processes ξ(t) with sufficiently smooth
realisations so that for each specific realisation of ξ(t), equation (4.16) can be con-
sidered and solved as a usual ODE. However, white noise does not belong to such
class of processes but reasonably describes multitude of practical situations (a series
of independent shocks) and allows simplification of mathematical manipulations. To
have an opportunity to analyse equation (4.16) with white noise ξ(t), one generalises
the concept of derivative dx(t)/dt of a random process x at a point t . The derivative
is defined as a random quantity

dx(t)

dt
= lim

t→0

x(t + t)− x(t)

t
,

where the limit is taken in the root-mean-squared sense (see, e.g., Gihman and Sko-
rohod, 1974; Volkov et al., 2000; Wentzel’, 1975). However, even such a concept
does not help much in practice. The point is that one should somehow integrate
equation (4.16) to get a solution. Formally, one can write

x(t) − x(t0) =
t∫

t0

F(x(t ′), t ′)dt ′ +
t∫

t0

G(x(t ′), t ′) · ξ(t ′)dt ′ (4.17)

and estimate a solution over an interval [t0, t] via the estimation of the integrals. A
stochastic integral is also defined via the limit in the root-mean-squared sense. How-
ever, its definition is not unique. There are two most popular forms of the stochastic
integral: (i) Ito’s integral is defined analogous to the usual Riemann’s integral via
the left rectangle formula and allows to get many analytic results (Oksendal, 1995);
(ii) Stratonovich’s integral is defined via the central rectangles formula (a sym-
metrised form of the stochastic integral) (Stratonovich, 1967); it is more readily
interpreted from the physical viewpoint since it is symmetric with respect to time
(Mannella, 1997). Moreover, one can define the generalised stochastic integral,
whose particular cases are Ito’s and Stratonovich’s integrals (Gihman and Skorohod,
1974; Mannella, 1997; Volkov et al., 2000; Wentzel’, 1975). Thus, the stochastic DE
(4.16) gets an exact meaning if one indicates in which sense the stochastic integrals
are to be understood.

If G(x, t) = G0 = const, all the above-mentioned forms of the stochastic inte-

gral
t∫

t0
G(x(t ′), t ′) · ξ(t ′)dt ′ coincide. Below, we consider this simple case in more

detail. One can show that a process x in equation (4.17) is Markovian. Thus, one
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can write down the corresponding Fokker – Planck equation where the drift coeffi-
cient is F(x, t) and the diffusion coefficient is G2

0. Let us consider a particular case
of F = 0:

dx(t)
/

dt = G0ξ(t). (4.18)

The solution to this equation can be written down formally as

x(t) − x(t0) = G0

t∫

t0

ξ(t ′)dt ′. (4.19)

One can show that the process (4.19) is Wiener’s process. Its variance linearly
depends on time as σ 2

x (t) = σ 2
x (t0) + G2

0 · (t − t0). The variance of its increments
over an interval t is equal to G2

0t . It agrees well with known observations of
Brownian particle motion, where mean square of the deviation from a starting point
is also proportional to time.

A geophysical example. Equation (4.18) allows to derive an empirically estab-
lished Gutenberg – Richter law for the repetition time of earthquakes depending
on their intensity (Golitzyn, 2003). Let x be a value of a mechanical tension (pro-
portional to deformations) at a given domain of the earth’s crust. Let us assume
that it is accumulated due to different random factors (various shocks and so forth)
described as white noise. On average, its square rises as G2

0(t − t0) (4.18) starting
from a certain zero time instant when the tension is weak. Earthquakes arise when
the system accumulates sufficient elastic energy during a certain time interval and
releases it in some way. If the release occurs when a fixed threshold E is reached,
then a time interval necessary to accumulate such energy reads as τ = E/G2

0.
From here, it follows that the frequency of occurrence of earthquakes with energy
exceeding E is ∼ 1/τ ∼ G2

0/E , i.e. the frequency of occurrence is inversely pro-
portional to energy. The Gutenberg – Richter law reduces to the same form under
certain assumptions. Analogous laws describe appearance of tsunami, landslides
and similar events (Golitzyn, 2003).

An example from molecular physics. Under an assumption that independent
shocks abruptly change a velocity of a particle rather than its coordinate, i.e. the
white noise represents random forces acting on a particle, one gets the second-
order SDE:

d2x(t)
/

dt
2 = G0ξ(t). (4.20)

It allows to derive analytically the Richardson – Obukhov law stating that mean
square of the displacement of a Brownian particle rises with time as (t − t0)3 under
certain conditions. This law holds true for the sea surface within some range of
scales (it is known as relative diffusion) (Golitzyn, 2003).
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4.5.2 Numerical Integration of Stochastic Differential Equations

The above examples allow an analytic solution but for non-linear F and/or G, one
has to use numerical techniques, which differ from those for ODEs. For simplicity,
we start again with equation (4.16) with G(x, t) = G0 = const:

dx
/

dt = F(x(t))+ G0ξ(t). (4.21)

At a given initial condition x(t), an SDE determines an ensemble of possi-
ble future realisations rather than a single realisation. The function F uniquely
determines only the conditional probability density functions p(x(t + t)|x(t)).
If F is non-linear, one cannot derive analytic formulas for the conditional distribu-
tions. However, one can get those distributions numerically via the generation of
an ensemble of the SDE realisations. For that, the noise term ξ(t ′) over an interval
[t, t +t] is simulated with the aid of pseudo-random number generator and the
SDE is numerically integrated step by step.

The simplest approach is to use the Euler technique with a small integration
step h (see, e.g., Mannella, 1997; Nikitin and Razevig, 1978). The respective differ-
ence scheme for equation (4.21) reads as

x(t + h) − x(t) = F(x(t)) · h + ε0(t) · G0
√

h, (4.22)

where ε0(t), ε0(t + h), ε0(t + 2h), . . . are independent identically distributed Gaus-
sian random quantities with zero mean and unit variance. The second term in the
right-hand side of equation (4.22) shows that the noise contribution to the difference
scheme scales with the integration step as

√
h. This effect is not observed in ODEs

where the contribution of the entire right-hand side is of the order of h or higher.
For SDEs, such an effect takes place due to the integration of the white noise ξ(t):
the difference scheme includes the random term whose variance is proportional to
the integration step. The random term dominates for very small integration steps h.
The scheme (4.22) is characterised by an integration error of the order h3/2, while
for ODEs the Euler technique gives an error of the order of h2.

Further, at a fixed step h, one can generate an ensemble of noise realisations
ε0(t), ε0(t + h), ε0(t + 2h), . . . and compute for each realisation the value of
x(t + t) at the end of the time interval of interest via the formula (4.22). From
an obtained set of values of x(t + t), one can construct a histogram, which is
an estimate of the conditional probability density p(x(t + t)|x(t)). This estimate
varies under the variation of h and tends to a true distribution only in the limit
h → 0 like an approximate solution of an ODE tends to a true one for h → 0.
In practice, one should specify so small integration step h that an approximate dis-
tribution would weakly change under further decrease in h. Typically, to get the
same order of accuracy, one must use smaller steps for the integration of SDEs as
compared with the corresponding ODEs to get similar convergence. This is due to
the above-mentioned lower order of accuracy for the SDEs.
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A process x in equation (4.16) or (4.21) may well be vector valued. Then, white
noise ξ(t) is also a multidimensional process. All the above considerations remain
the same for vector processes. As an example, let us consider integration of stochas-
tic equations of the van der Pol oscillator:

dx1
/

dt = x2,

dx2
/

dt = μ(1 − x2
1)x2 − x1 + ξ(t),

(4.23)

with μ = 3 (Timmer, 2000) and G0 = 1. Estimates of the conditional distri-
bution p(x1(t + t)|x(t)) are shown in Fig. 4.2. We take the initial conditions
x(t) = (0,−4) lying close to probable states of the system observed in a long
numerically obtained orbit, t = 0.5 corresponding approximately to 1/18 of a
basic period, and integration steps h = 0.1, 0.01, 0.001 and 0.0001. A distribution
estimate stabilises at h = 0.001. Thus, an integration step should be small enough
to give a good approximation to conditional distributions, often not more than about
0.0001 of a basic period. For a reasonable convergence of a numerical technique
for the corresponding ODE, i.e. equation (4.23) without noise, a step 0.01 always
suffices.

One more reason why dealing with SDEs is more complicated than numerical
integration of ODEs is the above-mentioned circumstance that the integral of a
random process ξ(t) is an intricate concept. Let us now consider equation (4.16)
with a non-constant function G. The corresponding Fokker – Planck equation takes
different forms depending on the definition of the stochastic integrals. Namely, the
drift coefficient reads as F(x, t) under Ito’s definition and as

F(x, t) + 1

2

∂G(x, t)

∂x
G(x, t)

under Stratonovich’s definition (Nikitin and Razevig, 1978; Mannella, 1997;
Risken, 1989) (the diffusion coefficient is G2(x, t) in both cases). Accordingly, the

Fig. 4.2 Probability density
estimates p(x1(t + t)|x(t))
for the system (4.23) at
integration step h = 0.1,
0.01, 0.001, 0.0001 and initial
conditions x(t) = (0,−4).
Each histogram is constructed
from an ensemble of 10,000
time realisations with a bin
size of 0.01. Good
convergence is observed at
h = 0.001
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Euler scheme, i.e. a scheme accurate up to the terms of the order h3/2, depends
on the meaning of the stochastic integrals. For Ito’s integrals, the Euler scheme is
similar to the above case (Nikitin and Razevig, 1978) and reads as

x(t + h)− x(t) = F(x(t)) · h + ε0(t)G(x(t))
√

h. (4.24)

For Stratonovich’s integrals often considered in physics (Risken, 1989;
Mannella, 1997; Siegert et al., 1998), the Euler scheme takes the form

x(t+h)−x(t) = F(x(t))·h+1

2

∂G(x, t)

∂x
G(x(t))ε2

0(t)h+G(x(t))ε0(t)
√

h, (4.25)

where an additional term of the order O(h) appears. The latter is necessary to pro-
vide the integration error not greater than O(h3/2) (Mannella, 1997; Nikitin and
Razevig, 1978).

If one needs a higher order of accuracy, then the formula gets even more
complicated, especially in the case of Stratonovich’s integrals. It leads to several
widespread pitfalls. In particular, a seemingly reasonable idea to integrate “deter-
ministic” (F(x, t)) and “stochastic” (G(x, t)ξ(t)) parts of equation (4.16) sepa-
rately, representing the “deterministic” term with the usual higher order Runge –
Kutta formulas and the “stochastic” term in the form ε0(t) · G(x(t))

√
h, is called an

“exact propagator”. However, it appears to give even worse accuracy than the simple
Euler technique (4.25) since the integration of the “deterministic” and “stochastic”
parts is unbalanced (Mannella, 1997). An interested reader can find correct formu-
las for integration of SDEs with higher orders of accuracy in Mannella (1997) and
Nikitin and Razevig (1978).

4.5.3 Constructive Role of Noise

Noise (random perturbations of dynamics) is often thought of as an interference,
an obstacle, something harmful for the functioning of a communication system,
detection of an auditory signal and other tasks. However, it appears that noise in
non-linear systems can often play a constructive role leading to enhancement of
their performance. The most striking and widely studied phenomena of this type are
called “stochastic resonance” and “coherence resonance”.

The term stochastic resonance was introduced in Benzi et al. (1981) where the
authors found an effect, which they tried to use for explanation of the ice age peri-
odicity (Benzi et al., 1982). The same idea was developed independently in Nicolis
(1981; 1982). The point is that the evolution of the global ice volume on the Earth
during the last million years exhibits a kind of periodicity with an average period of
about 105 years (a glaciation cycle). The only known similar timescale is observed
for the variations in the eccentricity of the Earth’s orbit around the Sun determined
by influences of other bodies of the solar system. The perturbation in the total
amount of solar energy received by the Earth due to this effect is about 0.1%. Then,
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the question arises whether such a small periodic perturbation can be amplified so
strongly to induce such a large-scale phenomenon as alternation of ice ages.

Benzi and co-authors considered an overdamped bistable oscillator driven by a
Gaussian white noise ξ and a weak periodic signal A cos(�t):

dx
/

dt = x(a − x2) + A cos(�t)+ ξ(t) (4.26)

with the parameter a > 0. The corresponding autonomous system dx/dt = x(a −
x2) has an unstable fixed point x = 0 and two stable fixed points x = ±√

a. In the
presence of noise, an orbit spends a long time near one of the two stable states but
sometimes jumps to another state due to the noise influence. Switching between the
two states is quite irregular: only on average it exhibits a characteristics timescale,
the so-called Kramers’ rate.

In the presence of the periodic driving A cos(�t), one can consider the system
(4.26) as a transformation of an input signal A cos(�t) into “output” signal x(t). In
other words, the system (4.26) performs signal detection. Performance of the system
is better if x(t) is closer to a harmonic one with the frequency �. Its closeness to
periodicity can be quantified in different ways. In particular, a signal-to-noise ratio
(SNR) can be introduced as the ratio of its power spectral density (Sect. 6.4.2) at the
frequency � to its “noise-floor” spectral density. It appears that the dependence of
SNR on the intensity of the noise ξ has a clear maximum at a non-zero noise level.
The curve “SNR versus noise intensity” resembles the resonance curve of “output
amplitude versus driving frequency”. In the particular example of the system (4.26),
the phenomenon can be explained by the dependence of Kramers’ rate on the noise
level so that the resonance takes place when Kramers’ rate becomes equal to the
driving frequency. Therefore, the phenomenon was called “stochastic resonance”.

Thus, a weak periodic input may have stronger periodic output for some inter-
mediate (non-zero) noise level. In other words, non-zero noise improves the system
performance as compared with the noise-free case. Whether this phenomenon is
appropriate to describe the glaciation cycles is still the matter of debate, but the
effect was then observed in many non-linear systems of different origin (see the
reviews Anishchenko et al., 1999; Bulsara et al., 1993; Ermentrout et al., 2008;
Gammaitoni et al., 1998; McDonnell and Abbott, 2009; Moss et al., 2004; Nicolis,
1993; Wiesenfeldt and Moss, 1995). In particular, many works report stochastic
resonance in neural systems such as mechanoreceptors of crayfish (Douglass et al.,
1993), sensory neurons of paddlefish (Greenwood et al., 2000 ; Russell et al., 1999),
other physiological systems (Cordo et al., 1996; Levin and Miller, 1996), different
neuron models (Longtin, 1993; Volkov et al., 2003b, c) and so on. There appeared
many extensions and reformulations of the concept such as aperiodic stochastic res-
onance (Collins et al., 1996), stochastic synchronisation (Silchenko and Hu, 2001;
Silchenko et al., 1999; Neiman et al., 1998) and stochastic multiresonance (Volkov
et al., 2005).

Currently, many researchers speak of a stochastic resonance in the following
situation: (i) one can define input and output signals for a non-linear system;
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(ii) performance of the system improves at some non-zero noise level as compared
to the noise-free setting. Thus, the formulation is no longer restricted to weak and/or
periodic input signals and bistable systems. The counterintuitive idea that noise
can improve functioning of a system finds the following fundamental explanation
(McDonnell and Abbott, 2009): The system is non-linear and its parameter values
in a noise-free setting are suboptimal for the performance of a required task. Hypo-
thetically, its performance could be improved by adjusting the parameters. The other
way is the noise influence which may improve functioning of the system. Thus,
stochastic resonance is a result of an interplay between noise and non-linearity. It
cannot be observed in a linear system.

A similar phenomenon introduced in Pikovsky and Kurths (1997) is called coher-
ence resonance. It is observed in excitable non-linear systems without input signals.
Its essence is that an output signal of a system is most coherent (exhibits the sharpest
peak in a power spectrum) at a non-zero noise level and becomes less regular both
for weaker and stronger noises. The phenomenon was first observed in FitzHugh –
Nagumo system which is sometimes used as a simple neuron model:

ε dx
/

dt = x − x3
/

3 − y,
dy
/

dt = x + a + ξ(t).
(4.27)

The parameter ε << 1 determines the existence of fast motions (where only
x changes) and slow motions (where y ≈ x − x3/3). The parameter |a| > 1 so
that a stable fixed point is the only attractor of the noise-free system. The noise
ξ is Gaussian and white. A stable limit cycle appears for |a| < 1. Thus, for |a|
slightly greater than 1, the system becomes excitable, i.e. a small but finite deviation
from the fixed point (induced by the noise) can produce a large pulse (spike) in
the realisation x(t). These spikes are generated quite irregularly. The quantitative
“degree of regularity” can be defined as the ratio of the mean interspike interval
to the standard deviation of the interspike intervals. This quantity depends on the
noise level: It is small for zero noise and strong noise and takes its maximum at
an intermediate noise intensity. Again, the curve “degree of regularity versus noise
intensity” looks like an oscillator resonance curve “output amplitude versus driving
frequency”. In the case of the system (4.27), the phenomenon can be explained
by the coincidence of the two characteristic times: an activation time (the mean
time needed to excite the system from the stable point, i.e. to get strong enough
noise shock) and an excursion time (the mean time needed to return from an excited
state to the stable state) (Pikovsky and Kurths, 1997). Therefore, the phenomenon
is called “coherence resonance”.

Thus, some non-zero noise may provide the most coherent output signal. It was
quite unexpected finding which appeared fruitful to explain many observations.
Similarly to stochastic resonance, the concept of coherence resonance was further
extended, e.g., as doubly stochastic coherence (Zaikin et al., 2003), spatial (Sun
et al., 2008b) and spatiotemporal (Sun et al., 2008a) coherence resonances. It is
widely exploited in neuroscience, in particular, coherence resonance was observed
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in neuron models (e.g. Lee et al., 1998; Volkov et al., 2003a) and central nervous
system (e.g. Manjarrez et al., 2002).

To summarise, a possible constructive role of noise for functioning of natural
non-linear systems and its exploitation in new technical devices is currently a widely
debated topic in very different fields of research and applications.
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