
Chapter 3
Dynamical (Deterministic) Models
of Evolution

3.1 Terminology

3.1.1 Operator, Map, Equation, Evolution Operator

Dynamical modelling requires specification of a D-dimensional state vector x =
(x1, x2, . . . , xD), where xi are dynamical variables, and some rule �t allowing
unique determination of future states x(t) based on an initial state x(0):

x(t) = �t (x(0)). (3.1)

The rule �t is called an evolution operator. “Operator is the same as a map-
ping. . . Mapping is a law according to which an every element x of a given set X
is confronted with a uniquely determined element y of another given set Y . At that,
X may coincide with Y . The latter situation is called self-mapping” (Mathematical
dictionary, 1988) (Fig. 3.1a, b). In application to an evolution of a dynamical system
state (motion of a representative point in a phase space), one often uses the term
“point map”.

Fig. 3.1 Different kinds of maps: (a) from one set into another one; (b) self-mapping; (c) a func-
tion of time describing friction-free oscillations of a pendulum; (d) a function of two variables
describing a harmonic wave; (e) iterates of a quadratic map xn+1 = rxn(1 − xn) at r = 3.5
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72 3 Dynamical (Deterministic) Models of Evolution

Fig. 3.2 Phase space of the linear dissipative oscillator (3.2) and its discrete description: (a) a
velocity field specified by equation (3.4), arrows denote velocities of a state change; (b) a time
realisation x2(t), filled squares are the points corresponding to the Poincare section x1 = 0. They
are separated by a time interval τ = T . Their relationship is described with a map presented in the
panel c; (c) a one-dimensional return map for the Poincare section x1 = 0; an evolution can be
studied conveniently with Lamerey’s diagram (arrows)

An evolution operator can be specified directly as a map from a set of initial states
x(0) into a set of future states x(t). However, it is more often determined indirectly
with the aid of equations. “Equation is a way to write down a problem of looking
for such elements a in a set A which satisfy an equality F(a) = G(a), where F and
G are given maps from a set A into a set B”1 (Mathematical dictionary, 1988). If an
equation is given, an evolution operator can be obtained via its solution. Thus, for
an ordinary differential equation the theorem about unique existence of a solution
assures the existence and one-oneness of a map �t in equation (3.1) under some
general conditions. If an exact solution of an equation is impossible, one searches
for an approximate solution in the form of a numerical algorithm simulating a rep-
resentative point motion in a phase space (Fig. 3.2a).

3.1.2 Functions, Continuous and Discrete time

Functions of independent variables (of a single variable x = F(t) or of several
ones x = F(t, r)) map a set of the values of the independent variables into a set
of the values of the dependent (dynamical) variables. In Fig. 3.1c, d, time t and the
vector of spatial coordinates r are independent variables, while a deviation x from
an equilibrium state is a dynamical variable. If a function F depends explicitly on
the initial values of dynamical variables, it can represent an evolution operator, see,
e.g., equation (3.3).

A state of an object may be traced either continuously in time or discretely,
i.e. at certain instants tn separated from each other with a step t . In the latter

1 If A and B are number sets, one gets algebraic or transcendental equations. If they are function
sets, one gets differential, integral and other equations depending on the kind of the maps.
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case, the order number of a time instant n = 0, 1, 2, 3,. . . is called discrete time.
If observations are separated by an equal time interval t , then the relationship
between continuous time t and discrete time n is linear: tn = nt . For unequal
intervals, the dependency can be more complicated. Similarly, one can use discrete
versions of spatial coordinates, e.g. a number of steps along a chosen direction, a
number of elements in a chain or a lattice.

3.1.3 Discrete Map, Iterate

In “discrete modelling” the values of dynamical variables xn at different discrete-
time instants n are related to each other via a map from a phase space X into
itself (X → X): xn+1 = F(xn, c), where c is a parameter vector. Such a recur-
rent formula2 for an evolution operator is also called discrete map. To study a
map, one uses its iterates. Iterate (from a Latin word “iteratio”, i.e. repetition)
is a result of a repeated application of some mathematical operation. Thus, if
F(x) ≡ F(1)(x) is a certain function of x mapping its domain into itself, then
functions F(2)(x) ≡ F[F(x)], F(3)(x) ≡ F[F(2)(x)], . . . , and F(m)(x) ≡
F[F(m−1)(x)] are called the second, the third, . . ., and the mth iterates of F(x),
respectively. The index m is the order number of an iterate. For instance, Fig. 3.1e
shows three iterates of a quadratic map xn+1 = rxn(1 − xn), where r is a parameter.

3.1.4 Flows and Cascades, Poincare Section and Poincare Map

In a DS whose evolution operator is specified via differential equations, time is
continuous. In a phase space of such a DS, motions starting from close initial points
correspond to a beam of phase orbits resembling lines of flow in a fluid (Fig. 3.2a).
Such DSs are called flows in contrast to cascades, i.e. to DSs described with discrete
maps, xn+1 = F(xn, c).

The term “Poincare section” denotes a section of a phase space of a flow with a
set of dimension D −1, e.g. a section of a three-dimensional space with a surface or
a two-dimensional space with a curve. The term “Poincare map” is used for mapping
of a set of unidirectional “punctures” of a Poincare section with a phase orbit into
itself. It relates a current “puncture” to the next one.

3.1.5 Illustrative Example

Let us illustrate the above-mentioned terms with a model of the oscillations of a load
on a spring in a viscous medium. An etalon model of low-amplitude oscillations in a

2 A recurrent formula is the relationship of the form xn+p = f (xn, xn+1, . . . , xn+p−1) allowing
calculation of any element in a sequence if its p starting elements are specified.
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viscous fluid under the influence of a restoring force, proportional to the deviation x
from an equilibrium state, is an ordinary differential equation of “a linear oscillator”:

d2x/dt2 + 2δdx/dt + ω2
0x = 0. (3.2)

Similar to system (2.1), one must provide initial conditions x(0) = x0 and
dx(0)/dt=v0 to specify an orbit of the two-dimensional system uniquely. An ana-
lytic solution to equation (3.2) reads as

x(t) =
[
x0 · cosωt + v0+δ·x0

ω
sinωt

]
e−δ·t ,

v(t) =
[
v0 · cosωt − δ·v0+ω2

0 x0
ω

sinωt

]
e−δ·t ,

(3.3)

where ω =
√
ω2

0 − δ2 and v(t) = dx(t)/dt . The formula (3.3) determines the rela-
tionship between an initial state x0, v0 and a future state x(t), v(t). Thus, it gives
explicitly an evolution operator of the system (3.2).

Another way to write down evolution equations for the same system is a set of
two first-order ordinary differential equations:

dx1/dt = x2,

dx2/dt = −2δ · x2 − ω2
0x1,

(3.4)

where x1 = x, x2 = dx/dt . It is convenient for graphical representations, since it
specifies explicitly a velocity field on the phase plane (Fig. 3.2a). Roughly speaking,
one can move from an initial state to subsequent ones by doing small steps in the
directions of arrows. It is realised in different algorithms for numerical solution
of differential equations. To construct a discrete analogue of equation (3.4), one
must convert to the discrete time n = t/t . In the simplest case, one can approxi-
mately replace the derivatives with finite differences dx(t)/dt ≈(xn+1 −xn)/t and
dv(t)/dt ≈ (vn+1 − vn)/t and get difference equations which can be rewritten in
the form of a two-dimensional discrete map

xn+1 = xn + vnt,
vn+1 = vn(1 − 2δ · t)− ω2

0xnt.
(3.5)

At sufficiently small t , an orbit of the map approximates well a solution to
equation (3.4), i.e. the map (3.5) is a sufficiently accurate difference scheme.

In a Poincare section of the phase plane with a straight line x1 = 0 (an ordinate
axis), it is possible to establish the relationship between subsequent “punctures” of
the axis by a phase orbit (Fig. 3.2). The resulting Poincare map takes the form

vn+1 = vne−δ·T , (3.6)
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where T = 2π/ω. One can get more detailed information about a modelled object
motion from the map (3.5) than from the map (3.6), since the latter describes only
the decay of an amplitude. On the other hand, one can use vivid Lamerey’s diagram
in the one-dimensional case. To construct that diagram on the plane vn, vn+1, one
passes a vertical straight line to the plot of the map, then a horizontal line to the
diagonal vn = vn+1, etc., as shown in Fig. 3.2c.

3.2 Systematisation of Model Equations

Mathematicians have developed a rich arsenal of tools for dynamical description of
motions. Here, we present their systematisations according to different principles.
Firstly, we consider descriptive capabilities in application to objects with various
complexity of their spatial structure. Any real-world object is somewhat “spatially
extended”. Depending on the number and sizes of composing elements, intensity
and speed of their interaction, one can model an object as concentrated at a single
spatial point or at several ones. The latter is the simplest kind of “spatially extended”
configuration. A “completely smeared” (continuous) spatial distribution of an object
characteristic is also possible. Such an object is also called a “distributed system”.
Further, we use the term “spatially extended system” more often, since it is more
general.

If an object is characterised by a uniform spatial distribution of variables and
one can consider only their temporal variations, it is regarded as concentrated at
a single spatial point. Such a representation is appropriate if a perturbation at a
certain spatial point reaches other parts of a system in a time interval much less than
time scales of the processes under consideration. In the language of the theory of
oscillations and waves, a perturbation wavelength is much greater than the size of
an object. Concentrated systems are described with finite-dimensional models such
as difference or ordinary differential equations.

If one has to provide a continuous set of values to specify a system state uniquely,
then the system is distributed. Classical tools to model such a system are partial
differential equations (PDEs), integro-differential equations (IDEs) and delay differ-
ential equations (DDEs). For instance, in description of a fluid motion, one refuses
consideration of the molecular structure. The properties are regarded uniformly
“smeared” within “elementary volumes” which are sufficiently big as compared
with a molecule size, but small as compared with macro-scales of a system. This is
the so-called mesoscopic level.3 Such “volumes” play a role of elementary particles
whose properties vary in space and time according to the Navier–Stokes equations.
These famous partial differential equations represent an etalon infinite-dimensional
model in hydrodynamics.

3 It is intermediate between a microscopic level, when one studies elements of a system separately
(e.g. molecules of a fluid), and a macroscopic one, when an entire system is considered as a whole
(e.g. in terms of some averaged characteristics).
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Spatially extended systems can be thought of as separated into parts (elements).
Each of the parts is a system concentrated at a certain spatial point. Models of such
systems are typically multidimensional. One often uses PDEs or a set of coupled
maps or ODEs. Depending on the intensity of coupling between elements, a model
dimension required for the description of motion and relevant mathematical tools
can vary significantly. Thus, if a liquid freezes, one does no longer need PDEs to
describe motion of a resulting ice floe and is satisfied with a set of several ODEs
for rotational and progressive motions of a solid. If only progressive motions take
place, then even a model of a material point suffices.

When a signal with sufficiently broad power spectrum (Sect. 6.4.2), e.g. a short
pulse, propagates in a system, variations in its power spectrum and phase shifts at
some frequencies may induce a time delay and smearing of the signal. Smearing
occurs if a system bandwidth is insufficient to pass all components of a signal, e.g.
due to sluggishness. Thus, if one uses a δ-function input, sluggishness of a system
leads to a finite width of a response signal waveform. The stronger the sluggishness,
the wider the response waveform. A shift of the time instant when a response signal
appears relative to the time instant of an input pulse is an estimate of the delay time
(Fig. 6.4c). Both sluggishness and delay are often modelled with finite-dimensional
models, but the phenomenon of time delay is more naturally described with a DDE.
The latter is an infinite-dimensional system, since it requires an initial curve over a
time-delay interval as an initial state, i.e. a continuous set of values of a dynamical
variable.

In Fig. 3.3, mathematical tools for modelling of temporal evolution are systema-
tised according to their level of generality, their capability to describe more diverse
objects and kinds of motion. As a rule, model equations of greater generality require
greater computational efforts for their investigation.

The simplest kind of models is explicit functions of time x = F(t). In linear
problems or special cases, such models can be obtained as analytic solutions to
evolution equations. Despite an enormous number of functions used in practice
(Sect. 3.3), their capabilities for the description of complex (especially, chaotic)
time realisations are quite restricted. A somewhat more general case is represented
by algebraic or transcendental equations

F(x, t) = 0. (3.7)

If equation (3.7) has no analytic solution, then one says that it defines a depen-
dency x(t) implicitly.

A “left column” of the scheme consists of various differential equations (DEs).
These are equations involving derivatives of dynamical variables in respect of inde-
pendent variables (time t and spatial coordinates r). For instance, a general first-
order DE reads as

F(x(t, r), ∂x(t, r)/∂t, ∂x(t, r)/∂r, t, r,c) = 0, (3.8)

where x is a vector of dynamical variables. ODEs were the first differential equations
used in scientific practice
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Fig. 3.3 A conventional scheme of dynamical model kinds extending the scheme given in Horbelt
(2001). Descriptive capabilities and computational efforts required for investigation increase from
top to bottom

F(x(t), dx(t)/dt, . . . , dnx(t)/dtn, t, c) = 0. (3.9)

ODEs of the form dx/dt = F(x,c) allow a clear geometric interpretation. They
specify velocity field: a direction and an absolute value of a state change velocity
v = dx/dt at each point of a finite-dimensional phase space. A non-zero vector v
is tangent to a phase orbit at any point. Specification of the velocity field provides a
unique prediction of a phase orbit starting from any initial state, i.e. description of
all possible motions in the phase space (Fig. 3.2a).

Derivatives of dynamical variables are used in equations of several kinds which
differ essentially in the properties of their solutions and the methods of getting the
solutions. They are united with a wide vertical line in Fig. 3.3 as branches with a
tree stem. ODEs located at the top of a “stem” describe dynamics of concentrated
(finite-dimensional) systems, where one does not need to take into account contin-
uous spatial distribution of object properties. PDEs also involve spatial coordinates
as independent variables and are located at the very bottom of the scheme. They
are the most general tool, since they also describe infinite-dimensional motions of
spatially distributed systems. However, solving PDEs requires much greater compu-
tational efforts compared to solving ODEs. Besides, PDEs loose a vivid geometric
interpretation peculiar to ODEs.

Differential algebraic equations (DAEs) are just a union of ODEs and algebraic
equations:

F(dx(t)/dt, x(t), y(t), t, c) = 0,
G(x(t), y(t), t, c) = 0,

(3.10)
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where x is a D-dimensional state vector, y is a K -dimensional vector which does
not add new degrees of freedom, F is a vector-valued function of dimension D,
G is a vector-valued function of dimension K . The second equation is algebraic
and determines (implicitly) a dependence of y(t) on x(t). Methods to solve such
equations are very similar to those for ODEs.

Delay differential equations can, for instance, read as

F(x(t), dx(t)/dt, x(t − τ), c) = 0. (3.11)

Distinction from ODEs consists in that the values of dynamical variables at a
separated past time instant enter the equations along with their current values. ODEs
can be regarded as a particular case of DDEs for a zero time delay τ .

Integro-differential equations (IDEs) do not, strictly speaking, belong to the
class of DEs. Along with derivatives, they involve integrals of dynamical variables,
e.g., as

F

⎛

⎝x(t), dx(t)/dt, . . . , dnx(t)/dtn,

∞∫

−∞
k(t, t ′)x(t ′)dt ′, t, c

⎞

⎠ = 0, (3.12)

where k(t, t ′) is a kernel of the linear integral transform. If no derivatives enter an
IDE, it is called just an integral equation.

DDEs and IDEs also provide an infinite-dimensional description. DDEs can
often be considered as a particular case of IDEs. For instance, an IDE dx(t)/dt =
F(x(t))+

∞∫
−∞

k(t, t ′)x(t ′)dt ′ in the case of k(t, t ′) = δ(t − t ′ − τ) turns into a DDE

dx(t)/dt = F(x(t))+ x(t − τ).
To construct a discrete analogue of equation (3.4), one turns to the discrete time

n = t/t and finite differences. At sufficiently small t , the difference equa-
tion (3.5) have a solution close to that of equation (3.4). With increase in t , a
difference equation (a discrete map) stops to reflect properties of the original ODEs
properly. However, one can construct discrete models exhibiting good correspon-
dence to the original system for large time steps as well. In the example of an
oscillator considered above (Fig. 3.2), subsequent values vn corresponding to the
marked points in Fig. 3.2a, b are related at t = T strictly via the one-dimensional
map (3.6) (Fig. 3.2c). The latter map has a dimension smaller than the dimension
of the original system and reflects only the monotonous decay of an oscillation
amplitude and the transition to an equilibrium state. Here, the loss of information
about a system behaviour between observation instants is a payment for a model
simplicity.

Both discrete and continuous systems are valuable by themselves so that one
could avoid speaking of any priorities. However, modelling practice and recogni-
tion of specialists are historically in favour of DEs. It is due to the fact that until
the middle of twentieth century, physics was a “scientific prime” and relied mainly
on DEs, in particular, on PDEs. To study them, physicists used various analytic
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techniques. Computers and digital methods, which can now efficiently cope with
difference equations, were not yet widely available. Therefore, an arsenal of maps
used in modelling was much poorer at that time, than a collection of exemplary
flows. However, contemporary tendencies of wider usage of non-linear equations
and development of numerical techniques for investigation of multidimensional sys-
tems with complex spatial and temporal behaviours seem favourable to the progress
of discrete approaches. Currently, popular tools are discrete ensemble models called
coupled maps lattices, which combine a large number of maps with non-trivial tem-
poral dynamics (Sect. 3.7). As models of spatially extended systems, they yield to
PDEs in generality but are much simpler for numerical investigation. A specific
kind of multidimensional maps or ODEs is represented by artificial neural networks
which have recently become a widespread tool, in particular, in the field of function
approximation (Sect. 3.8).

3.3 Explicit Functional Dependencies

Dynamical models of evolution in the form of explicit functions of time x = F(t)
can be specified analytically, graphically or as tables and can be obtained in any of
the ways described in Sect. 1.5, e.g. by solving a DE or approximating experimental
data (Sect. 7.2.1). It is impossible to list all explicit functions used by mathemati-
cians. Yet, it is possible to distinguish some classes of functions. A practically
important class of elementary functions includes algebraic polynomials, power,
rational, exponential, trigonometric and inverse trigonometric functions. As well,
it includes functions obtained via a finite number of arithmetical operations and
compositions4 of the listed ones. Let us consider several elementary functions and
DEs, whose solutions they represent.

(1) Linear function x(t) = x0 + v0t is a solution to an equation

dx/dt = v0, (3.13)

which describes a progressive motion with a constant velocity v0 and an initial
condition x(0) = x0. Its plot is a straight line (Fig. 3.4a).

(2) Algebraic polynomial of an order K reads as

x(t) = c0 + c1t + c2t2 + . . . + cK t K , (3.14)

4 “Superposition (composition) of functions is arranging a composite function (function of func-
tion) from two functions” (Mathematical dictionary, 1988). Here, the terms “superposition” and
“composition” are synonyms. However, physicists often call superposition of functions f1 and f2
their linear combination af 1 + bf 2, where a and b are constants. Then, the meanings of the terms
“superposition” and “composition” become different. To avoid misunderstanding, we use only the
term “composition” in application to composite functions.
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Fig. 3.4 Plots of some elementary functions: (a) linear function; (b) power function; (c) exponen-
tial function with α > 0; (d) sinusoid

where ci are constant coefficients. It is a solution to an equation dK x/dt K =
const. A linear function is a particular case of equation (3.14) for K = 1. In the
case of uniformly accelerated motion of a body thrown up from a height h with
an initial velocity v0, an equation of motion obtained from the Newton’s second
law and the law of gravity takes the form d2x/dt2 = −g/m, where an x-axis
is directed upward, m is the mass of a body, g is the gravitational acceleration.
The solution is x(t) = h + v0t − gt2/2 (Fig. 3.4b). It is valid in a friction-free
case and until a body falls down on a land.

(3) Fractional rational function is a ratio of two algebraic polynomials x(t) =
P(t)/Q(t). Its particular case for Q(t) = const is an algebraic polynomial.

(4) Power function x(t) = tα , where α is an arbitrary real number. If α is a non-
integer, only the domain t > 0 is considered. For an integer α, it is a particular
case of an algebraic polynomial or a fractional rational function.

(5) Exponential function x(t) = x0eαt (Fig. 3.4c) is famous due to the property that
the speed of its change at a given point t is proportional to its value at the same
point. It is the solution to the equation dx/dt = αx with an initial condition
x(0) = x0, which describes, for instance, dynamics of a biological population,
where α is a constant parameter meaning birth rate.5

(6) A harmonic function x(t) = x0 cos(ωt + φ0) is one of the trigonometric
functions (Fig. 3.4d). It is a solution to an equation of the harmonic oscillator
d2x/dt2 + ω2x = 0, which is an exemplary model of friction-free oscillations
of a material point under the influence of a restoring force, proportional to a
deviation x from an equilibrium. Its constant parameters are an amplitude of
oscillations x0, angular frequency ω and an initial phase φ0. A bivariate har-
monic function x(t, r) = x0 cos(ωt − kr + φ0) describes a monochromatic
wave of length λ = 2π/k travelling along the r -axis, which is a solution to the
simple wave equation ∂x/∂t + V ∂x/∂r = 0.

Wide usage of trigonometric functions is to a significant extent due to the fact
that according to Weierstrass’ theorem, any continuous periodic function x(t) can
be arbitrarily accurately approximated with a trigonometric polynomial

5 Exponential rise of a population observed at α > 0 is called the Malthusian rise, since a catholic
monk Malthus in the sixteenth century was the first who got this result. It is valid until population
gets too large so that there is no longer enough food for everybody.



3.4 Linearity and Non-linearity 81

x(t) =
K∑

i=0

ck cos(2πk/T + φk), (3.15)

where K is a polynomial order. A non-periodic function can be approximated with
such a polynomial over a finite interval.

An analogous theorem was proved by Weierstrass for the approximation of func-
tions with an algebraic polynomial (3.14). Algebraic and trigonometric polynomi-
als are often used for approximation of dependencies. This is the subject of the
theory of approximation (constructive theory of functions), see Sect. 7.2. In the
recent decades, artificial neural networks (Sects. 3.8 and 10.2.1), radial basis func-
tions (Sect. 10.2.1) and wavelets compete with polynomials in the approximation
practice. Wavelets have become quite popular and are considered in more detail in
Sect. 6.4.2. Here, we just note that they are well-localised functions with zero mean,
e.g. x(t) = e−t2/2 − (1/2)e−t2/8.

We will consider non-elementary functions and extensions to the class of ele-
mentary functions in Sect. 3.5.

3.4 Linearity and Non-linearity

“Nonlinearity is omnipresent, many-sided and inexhaustibly diverse. It is every-
where, in large and small, in phenomena fleeting and lasting for epochs. . . Non-
linearity is a capacious concept with many tinges and gradations. Nonlinearity of
an effect or a phenomenon means one thing, while nonlinearity of a theory means
something different” (Danilov, 1982).

3.4.1 Linearity and Non-linearity of Functions and Equations

The word “linear” at a sensory level is close to “rectilinear”. It is associated with a
straight line, proportional variations of a cause and an effect, a permanent course,
as in Fig. 3.4a. However, according to the terminology used in mathematics and
non-linear dynamics, all the dynamical systems mentioned in Sect. 3.3 are linear
though the plots of their solutions are by no means straight lines (Fig. 3.4b–d).
Evolution operators of those dynamical systems (i.e. differential or difference equa-
tions and discrete maps) are linear rather than their solutions (i.e. functions of time
representing time realisations).

What is common in all the evolution equations presented in Sect. 3.3? All of
them obey the superposition principle: If functions x1(t) and x2(t) of an inde-
pendent variable t are solutions to an equation, then their linear combination
ax1(t) + bx2(t) is also a solution, i.e. being substituted instead of x(t), it turns
an equation into identity. Only the first powers of a dynamical variable and its
derivatives (x, dx/dt, . . ., dn x/dtn) may enter a linear DE. No higher powers and
products of the derivatives may be present. Accordingly, linear difference equations



82 3 Dynamical (Deterministic) Models of Evolution

may include only the first powers of finite differences or a dynamical variable val-
ues at discrete-time instants. Equations of any kind are linear if their right-hand
and left-hand sides are linear functions of a dynamical variable and its derivatives.
Violation of this property means non-linearity of an equation. For instance, equa-
tions (3.2), (3.4), (3.5), (3.6) and (3.13) are linear, while equation (2.1) is non-
linear. However, linear non-autonomous (involving an explicit time dependence)
equations may include non-linear functions of an independent variable (time), e.g. a
non-autonomous linear oscillator reads as d2x/dt2 + 2δdx/dt + ω2

0x = A cos ωt .
A linear function “behaves” quite simply: it monotonously decreases or increases

with an argument or remains constant. But linearity of a dynamical system does not
mean that its motion is inevitably primitive, which can be seen even from several
examples presented in Fig. 3.4. Taking into account the superposition principle,
one may find a solution for a multidimensional linear equation as a combination
of power, exponential and trigonometric functions (each of them being a solution)
which demonstrates quite a complicated temporal dependence, indistinguishable in
its outward appearance from an irregular, chaotic behaviour over a finite time inter-
val. However, linear systems “cannot afford many things”: changes in a waveform
determined by the arousal of higher harmonics, dynamical chaos (irregular solutions
with exponential sensitivity to small perturbations), multistability (coexistence of
several kinds of established motions), etc.

Systems, processes, effects, phenomena are classified as linear or non-linear
depending on whether they are adequately described with linear equations or non-
linear ones. The world of non-linear operators is far richer than that of linear ones.
Further, there are much more kinds of behaviour in non-linear dynamical systems.
The place of “linear things” in a predominantly non-linear environment, “particu-
larly” of linear representations, follows already from the fact that non-linear systems
can be linearised (i.e. reduced to linear ones) only for low oscillation amplitudes.
For that, one replaces dynamical variables xk in the equations by the sums of their
stationary and variable parts as xk = x0,k + x̃k(x0,k >> x̃k) and neglects small
terms (higher powers of x̃k , their products, etc.).

Historically, linear equations in a precomputer epoch had incontestable advan-
tage over non-linear ones in scientific practice, since the former could be investi-
gated rigorously and solved analytically. For a long time, one confidently thought
that linear phenomena are more important and widespread in nature and linear
approaches are all-sufficient (see discussion in Danilov, 1982). Development of
computers, numerical techniques for solving non-linear equations and tools for their
graphical representation along with the emergence of contemporary mathematical
conceptions, including dynamical chaos theory, shifted an attitude of scientists more
in favour of non-linear methods and ideas. At that, the linear viewpoint is regarded
an important but a special case.

3.4.2 The Nature of Non-linearity

Non-linearity is natural and organically inherent in the world where we live. Its
origin can be different and determined by specific properties of objects. One should
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speak of conditions for linearity to be observed, rather than for non-linearity.
However, according to existing traditions one often explains appearance of non-
linearity by a competition between eigenmodes of a linearised system or by a param-
eter dependence on a dynamical variable. The latter dependence is often vitally
necessary and can be realised via a feedback. If sensitivity of vision or hearing
organs were constant, independent of an influence level (luminosity or sound vol-
ume), one might not successfully orient oneself in gloom and avoid becoming blind
during a sunny day, hear a rustle of a creeping snake and avoid getting deaf from
thunder. “Biological systems which could not capture enormous range of vitally
important influences from environment have just died out loosing the struggle for
existence. One could write down on their graves: They were too linear for this
world” (Danilov, 1982).

Thus, if a coefficient of reproduction k for a population were constant, indepen-
dent of the number of individuals xn (n is discrete time), then at k > 1 one would
observe its unbounded rise with time according to a linear evolution law:

xn+1 = kxn . (3.16)

In such a case, overpopulation would be inevitable, while at k < 1 a total dis-
appearance of a population would come. A more realistic is a dependence of the
parameter k on the variable xn , e.g. k = r(1 − xn) leading to non-linearity of an
evolution operator xn+1 = rxn(1 − xn). Non-trivial properties of this exemplary
one-dimensional dynamical system called the logistic map, including its chaotic
behaviour, are well studied (see also Sect. 3.6.2).

3.4.3 Illustration with Pendulums

Widely accepted exemplary objects for illustrations of linear and non-linear oscil-
latory phenomena are pendulums, i.e. systems oscillating near a stable equilibrium
state. Their simplest mechanical representatives are a massive load suspended with
a thread or a rod (Fig. 3.5a), a load on a spring (Fig. 3.5c), a ball rolling in a pit, a
bottle swimming in water, liquid in a U-shaped vessel, and many others. An elec-
tric pendulum is the name for a circuit consisting of a capacitor and inductance,
an oscillatory circuit (Fig. 3.5b). One speaks of a chemical pendulum (mixture
of chemicals reacting in an oscillatory manner) and an ecological pendulum (two
interacting populations of predators and preys) (Trubetskov, 1997).

A free real-world pendulum reaches finally a stable equilibrium state (free
motions, Fig. 3.5). Depending on initial conditions (a deviation from a stable equi-
librium state x and a velocity dx/dt) and object properties, different motions may
precede it. In Fig. 3.5 we illustrate two areas of qualitatively different motions:
the left one corresponds to relatively large x , when non-linearity is essential,
while the right one corresponds to small, “linear” ones. Time realisations of low-
amplitude oscillations are identical for all the pendulums considered. The oscil-
lations are isochronous, i.e. their quasi-period T1 does not depend on a cur-
rent state. They represent a decaying sinusoid which is a solution to the linear
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Fig. 3.5 Qualitative outlook of time realisations of x and dx/dt for different pendulums: (a) a
load on a rod; (b) an oscillatory circuit with a diode; (c) a load on a spring; (d) a linear stage
of oscillations (the same for all the examples) is magnified and the corresponding phase portrait
on the plane (x, dx/dt) is shown. A representative point moves along an intertwining spiral to an
attractor, i.e. to a stable equilibrium point at the origin. Phase portraits of the pendulums are more
complicated and diverse in a region of large values of coordinates and velocities

equation (3.2) describing low-amplitude oscillations of all the systems consid-
ered up to the coefficients of proportionality. This circumstance is a legal reason
to call those oscillations linear. Monotonous decay of oscillations can be mod-
elled with the linear one-dimensional map xn+1 =axn , where a =exp(−δT1)< 1
(Fig. 3.2c).

As compared with a common “standard” for linear oscillations (3.2), types of
non-linear behaviour are quite diverse and determined by the properties of each
concrete pendulum. Thus, a character of non-linear behaviour differs essentially for
the three examples in Fig. 3.5, while their linear stages are identical (Fig. 3.5d).
This is related to the peculiarities of each pendulum and to the kinds of their non-
linearity (dependency of the parameters on the dynamical variables). For instance,
a load on a rod (Fig. 3.5a) exhibits non-linearity due to sinusoidal dependence of a
gravitational force moment about a rotation axis on a rotation angle. In an electric
pendulum with a semiconductor capacitor (a varactor diode, Fig. 3.5b), non-linearity
is related to the properties of a p – n junction, injection and finiteness of charge
carrier lifetime. Non-linearity of a spring pendulum (Fig. 3.5c) is determined by
the dependence of an elastic force on a spring deformation. For instance, spring
coils close up under compression so that an elastic force rises abruptly as compared
with the force expected from Hooke’s law, i.e. the spring “gets harder”. At that, a
period of oscillations decreases with their amplitude. In analogy, non-linearity of
any oscillator leading to decrease (increase) in a period with an amplitude is called
hard (soft) spring non-linearity.



3.5 Models in the form of Ordinary Differential Equations 85

3.5 Models in the form of Ordinary Differential Equations

3.5.1 Kinds of Solutions

Emergence of ordinary differential equations and their history is related to the names
of Newton and Leibniz (seventeenth to eighteenth centuries). Afterwards, general
procedures to obtain model equations and to find their solutions were developed
within analytic mechanics and the theory of differential equations. Here, we describe
possible kinds of solutions following the review of Rapp et al. (1999).

3.5.1.1 Elementary Solutions

A solution to a differential equation in the form of an elementary function is called
an elementary solution. We confine ourselves with examples from Sect. 3.3. In all
of them functions–solutions give exhaustive information about a model dynamics.
Interestingly, understanding the behaviour of a dynamical system at Newton’s time
was tantamount to writing down a formula for a solution x = F(t). That approach
even got the name of a Newtonian paradigm (Rapp et al., 1999). One spoke of
a finite (preferably short) expression consisting of radicals (nth roots), fractional
rational, exponential, logarithmic and trigonometric functions. All the solutions con-
sidered in Sect. 3.3 are of such a form.

The class of elementary functions (and elementary solutions) is often extended
with algebraic functions, i.e. solutions to the algebraic equations

an(t)x
n(t)+ an−1(t)x

n−1(t)+ . . . + a1(t)x(t)+ a0(t) = 0, (3.17)

where n is an integer, ai (t) are algebraic polynomials. All fractional rational func-
tions and radicals are algebraic functions. The reverse is not true: algebraic functions
can be defined by equation (3.17) implicitly.

3.5.1.2 Closed-Form Solutions

Not all differential equations have elementary solutions. There are elementary func-
tions whose integrals are not elementary functions. One of the simplest examples is
an elliptic integral

t∫

0

dτ√
1 + τ 4

.

The integral exists but is not an elementary function. However, even if an integral
of an elementary function is not elementary, one can efficiently cope with it by
evaluating it approximately with the aid of available numerical methods.
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Expression of a solution via formulas containing integrals of elementary func-
tions is also regarded a complete solution to an equation, so-called integration in
finite terms. Thus, a solution to the equation

dx/dt + et2
x = 0 (3.18)

given x(0) = x0, reads

x(t) = x0 exp

⎛

⎝−
t∫

0

eτ
2
dτ

⎞

⎠ .

Such a result is called a closed-form solution. An elementary solution is its par-
ticular case.

Liouville showed that some DEs have no closed-form solutions. For instance, an
equation

dx/dt + x2 = t (3.19)

which at the first glance seems very simple, cannot be solved in finite terms. A solu-
tion exists but cannot be expressed in a closed form. There is no general procedure
to get closed-form solutions, though there are many special techniques. In practice,
it is often very difficult or even impossible to obtain a closed-form solution.

3.5.1.3 Analytic Solutions

When a closed-form solution is lacking, one can further complicate a technique and
try to find a solution in the form of an infinite power series. For instance, let us
search for a solution to an equation

d2x/dt2 − 2t dx/dt − 2x = 0 (3.20)

in the form

x(t) = a0 + a1t + a2t2 + . . . =
∞∑

i=0

ai t
i . (3.21)

Let us substitute the latter formula into the original equation and combine the
terms with the same powers of t . Each such combination must be equal to zero.
Finally, one gets the following recurrent relationship for the coefficients: an+2 =
2an/(n + 2). The coefficients a0 and a1 are determined by initial conditions. Thus,
for a0 = 1 and a1 = 0, one gets

x(t) = 1 + t2 + t4/2! + t6/3! + . . . . (3.22)
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In this particular case, one gets a Taylor expansion for the function x(t) = et2
as

the answer. If an obtained power series converges, which is not always the case, and
one has derived a formula for its coefficients, then such a solution is called an ana-
lytic solution or a series solution. It is the second-best to the closed-form solution.
If an obtained series converges slowly, then its practical application is unfeasible. In
particular, such a situation takes place in a famous three-body problem which has a
practically useless analytic solution in the form of a very slowly converging series
(Wang, 1991).

3.5.1.4 Numerical solutions

Above considered equations with explicit time dependence and elementary non-
linearities are relatively simple. In a general case, when a problem cannot be reduced
to a linear one or to a certain specific class of equations, one searches for an approx-
imate solution with numerical techniques, given initial and/or boundary conditions.
The oldest and simplest one is the Euler technique. However, more accurate and
complicated modern methods rely to a significant extent on the same idea. In par-
ticular, Runge–Kutta techniques are very popular. Adams integrator and Bulirsch
and Stoer technique have their own advantages and shortcomings, they are often
superior to Runge–Kutta techniques in terms of both computation time and accuracy
(Kalitkin, 1978; Press et al., 1988; Samarsky, 1982).

According to the above-mentioned Newton’s paradigm, a numerical solution was
by no means satisfactory since it did not allow understanding qualitative features of
dynamics and could be useful only for the prediction of future behaviour. The view-
point changed since efficient computers and rich computer graphical tools arose,
which currently allows one both to get qualitative ideas about a model behaviour
and to compute a sufficiently accurate approximate solution. Since one can now
investigate numerically a very broad class of non-linear equations, researchers pay
more attention to the problem of how to get a model DE.

The use of any of the four ways mentioned in Sect. 1.5 is possible for that. Still,
the most popular method is a way from general to particular since majority of
known physical laws take the form of DEs. Besides, the entire apparatus of DEs
was created to describe basic mechanical phenomena. Most of the models consid-
ered by physicists are asymptotic ones; they are obtained via restrictions imposed
on universal formulas by a specific problem. Sometimes, one says that a model is
obtained from “the first principles” implying some general relationships for a con-
sidered range of phenomena, from which one deduces concrete models (yet, such
a use of the term “first principles” is criticised from a philosophical viewpoint).
These are conservation laws and Newton’s laws in mechanics, continuity equations
and Navier–Stokes equations in hydrodynamics, Maxwell’s equations in electrody-
namics, derived special rules like Kirchhoff’s laws in the theory of electric circuits,
etc. Many non-standard examples of an asymptotic modelling of important physical
and biological objects are given by a mathematician Yu.I. Neimark (1994–1997).

Modelling from simple to complex, e.g. creation of ensembles, is also typical
when DEs are used. It is widely exploited in the description of spatially extended
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systems. The greater the number of elements included into an ensemble, the wider
the class of phenomena covered by the model. Classical models are ensembles of
coupled oscillators which represent an approved way of sequential complication
of phenomena under consideration in tutorials on the theory of oscillations. An
empirical approach to obtaining model DEs (reconstruction from time series) is
considered in Part II.

3.5.2 Oscillators, a Popular Class of Model Equations

To illustrate possibilities of DE-based models, we select again the class of oscilla-
tors. Why is our choice from an “ocean” of models so monotonous? The point is that
any number of diverse examples cannot capture all specific descriptive capabilities
of DEs. Thus, any example would give just a fragment of a general picture while
really general things would be lacking. Therefore, it is reasonable to consider an
example whose prehistory and some basic properties are known to a wide audience.
Many people have met oscillators for the first time already at the lessons of school
physics.

One calls “oscillators” both objects capable of oscillating about an equilibrium
state and equations modelling such motions. Motion of an oscillator occurs within
some potential profile either with friction or without it. An etalon oscillator equation
is a second-order DE

d2x/dt2 + γ (x, dx/dt)dx/dt + f (x) = F(t), (3.23)

where the second term on the left-hand side corresponds to dissipation (fric-
tion forces), the third term is determined by a potential U (a restoring force is
−∂U/∂x = − f (x)) and the right-hand side represents an external force. A num-
ber of research papers, reviews and dissertations are devoted to different kinds of
oscillators (Scheffczyk et al., 1991; http://sgtnd.narod.ru/eng/index.htm).

Linear oscillators correspond to the case of γ = const and f (x) = ω2
0x . The

latter means the quadratic potential U (x) ∼ x2. An autonomous oscillator (F = 0)
is a two-dimensional (D = 2) dynamical system. It demonstrates either decaying
(γ > 0, a dissipative oscillator) or diverging (γ < 0) oscillations. The autonomous
dissipative oscillator has a stable fixed point as an attractor. Dimension of this attrac-
tor is zero and both Lyapunov exponents are negative. This is one of the simplest
dynamical systems in terms of possible kinds of behaviour.

Under a periodic external driving, the dissipative oscillator can be rewritten as a
three-dimensional (D = 3) autonomous dynamical system (Sect. 3.5.3). It exhibits
periodic oscillations with a period of the external force, i.e. has a limit cycle as an
attractor in a three-dimensional phase space, and demonstrates a phenomenon of
resonance. The dimension of the attractor is one and the largest Lyapunov expo-
nent is equal to zero. Thus, the driven linear dissipative oscillator represents a more
complex dynamical system compared to the autonomous one.
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If a dissipative term involves non-linearity, e.g. like in van der Pol equation

d2x/dt2 − α(1 − βx2)dx/dt + ω2
0x = 0, (3.24)

then the oscillator becomes non-linear and is capable of demonstrating its own
periodic oscillations (a regime of self-sustained oscillations). The system is two
dimensional and its attractor is a limit cycle in a two-dimensional phase space for
β > 0. The dimension of the attractor is then equal to one and its largest Lya-
punov exponent is zero. In terms of the complexity of the dynamics (Lyapunov
exponents and dimension of an attractor), the system (3.24) is more complex than
the autonomous linear dissipative oscillator. In terms of the above dynamical char-
acteristics, it exhibits at fixed values of α, β approximately the same complexity as
the harmonically driven linear oscillator. However, the shape of time realisations can
be more diverse for the system (3.24), depending on α, β. For instance, it exhibits
almost sinusoidal waveform like the driven linear oscillator for small values of α, β
and periodic “relaxation” oscillations, where the plot x(t) resembles a saw, for big
values of α, β.

In the non-autonomous case, the oscillator (3.24) exhibits much richer dynam-
ics. Even harmonic driving may induce such kinds of behaviour as quasi-periodic
oscillations, synchronisation of self-sustained oscillations by an external signal or
even chaotic sets in the phase space if the driving amplitude is large enough.
Thus, harmonically driven van der Pol oscillator is a considerably more com-
plex system than the above linear oscillators and the autonomous van der Pol
oscillator.

A non-quadratic potential profile U (x) also means non-linearity of equa-
tion (3.23). Accordingly, its possible solutions get essentially more diverse. Even
under a harmonic influence, a non-linear oscillator (which can be rewritten as a
three-dimensional autonomous dynamical system) may exhibit a hierarchy of oscil-
latory regimes and non-linear phenomena including transition to chaos, multistabil-
ity and hysteresis in a region of resonance. Thus, it can exhibit attractors with fractal
dimensions greater than one and a positive largest Lyapunov exponent. Therefore, it
is a more complex system than the linear oscillators or the autonomous van der Pol
oscillator.

It is not straightforward to decide whether the driven van der Pol oscillator or the
driven non-linear dissipative oscillator is more complex. The latter exhibits more
diverse dynamical regimes than does the former due to different possible forms of
U (x) as described below, but in the case of strong dissipation, it cannot exhibit
stable quasi-periodic regimes (where an attractor is a torus, the dimension is equal
to two and two largest Lyapunov exponents are equal to zero) which are typical of
the driven van der Pol oscillator.

The general non-autonomous oscillator (3.23) with arbitrary non-linear dissipa-
tion and arbitrary potential profile includes both the case of the driven non-linear
dissipative oscillator and the driven van der Pol oscillator and, hence, may exhibit
all the dynamical regimes mentioned above. Specific properties of different non-
linear oscillators are determined by the concrete functions entering equation (3.23).
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To select general features, one systematises oscillators in respect of (i) the depen-
dency of a period of oscillations on their amplitude (“hard spring” and “soft spring”)
(Neimark and Landa, 1987; Scheffczyk et al., 1991; Thompson and Stewart, 2002),
(ii) an order of the polynomial specifying the potential profile like in the theory of
catastrophes (Kuznetsov and Potapova, 2000; Kuznetsova et al., 2004), etc. Below,
we characterise complexity of the dynamics of several oscillators on the basis of
their parameter space configurations.

When dissipation is too strong so that self-sustained oscillations are impossible, a
parameter space of an oscillator is typically characterised by bifurcation sets called
“cross-road area” (Carcasses et al., 1991; Mira and Carcasses, 1991) and “spring
area” (Fig. 3.6). Cross-road area is a situation where domains of two cycles intersect,
their boundaries representing period-doubling lines are stretched along boundaries
of a “tongue” formed by saddle-node bifurcation lines and bistability takes place
inside the tongue. Spring area is the case where a period-doubling line stretched
along the above-mentioned tongue makes a characteristic turn around a “vertex”
of the tongue, a point of the “cusp” catastrophe. Those universal configurations
fill a parameter space in a self-similar manner (Parlitz, 1991; Schreiber, 1997). A
fragment of a typical picture is seen already in Fig. 3.6: the right structure of the
“spring area” (born on the basis of a double-period cycle) is built into an analogous
upper structure (born on the basis of a “mother” cycle whose period is doubled when
one moves to bottom along a parameter plane). A chart of regimes in Fig. 3.11 gives
additional illustrations.

Fig. 3.6 A typical configuration of bifurcation lines “cross-road area” and “spring area” on a
parameter plane. Domains of cycle stability are shown in greyscale. Lines of a saddle-node bifurca-
tion are denoted as sn, lines of a period-doubling bifurcation are pd, lines of a symmetry-breaking
bifurcation are sb. In parentheses, we show the number of an external force periods n and the
number of the own periods m contained in a single period of a cycle loosing stability on a given
line. A and B are conventional sheets used to illustrate bistability
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Fig. 3.7 Parameter plane A–N for the Toda oscillator (3.25): A is the driving amplitude, N is
the normalised driving frequency. Greyscales show domains of existence of different regimes.
Numbers indicate periods of oscillations in units of the driving period

Those self-similar typical configurations do not exhaust a diversity of possible
bifurcation structures in parameter spaces of oscillators. For instance, oscillators
with strong dissipation and a potential profile essentially different from the quadratic
one exhibit a specific configuration of a domain where an arbitrary oscillatory
regime exists and evolves to chaos. The domain has the form of a narrow bent
strip resembling an “ear” (Fig. 3.7). An equation of the Toda oscillator driven by
a sinusoidal external force demonstrating the described structure of the parameter
space reads as

d2x/dt2 + γ dx/dt + ex − 1 = A sinωt. (3.25)

Let us denote the normalised frequency of driving N = ω/ω0, where ω0 is the
frequency of low-amplitude free oscillations, ω0 = 1 for the system (3.25).

One more universal configuration of bifurcation sets for non-autonomous oscilla-
tors is presented in Sect. 3.6, where Fig. 3.9 illustrates a parameter plane of a circle
map. It corresponds to a periodic driving applied to a system capable of exhibit-
ing self-sustained oscillations. A universal configuration on the plane of driving
parameters represents a hierarchy of so-called Arnold’s tongues, i.e. domains where
synchronisation takes place. Bifurcation lines inside a tongue exhibit the “cross-road
area” structure.

As a solid residual from the current subsection, we stress (i) diversity of evolu-
tionary phenomena which can be modelled with equations of oscillators and with
DE-based models in general; (ii) complexity of observed pictures which can be
systematised and interpreted in different ways, in particular, on the basis of typical
“charts of dynamical regimes” and scaling properties (Kuznetsov and Kuznetsov,
1991, 1993b; Kuznetsov and Potapova, 2000; Neimark and Landa, 1987; Parlitz,
1991; Scheffczyk et al., 1991; http://sgtnd.narod.ru/eng/index.htm); (iii) an oppor-
tunity to observe different bifurcation sets and other specific features for different
kinds of non-linearity.
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3.5.3 “Standard form” of Ordinary Differential Equations

Despite multitude of ODE forms, the following one is the most popular among them
and allows a clear geometrical interpretation:

dx1/dt = F1(x1, x2, . . . , xn),

dx2/dt = F2(x1, x2, . . . , xn),

. . . ,

dxn/dt = Fn(x1, x2, . . . , xn).

(3.26)

Any set of autonomous ODEs can be reduced to such a form, solved in respect
of the highest derivatives. A system (3.26) via a change of variables (probably, at
the expense of the dimension increase, i.e. D > n) can be rewritten in the form

dy1/dt = y2,

dy2/dt = y3,

. . . ,

dyD/dt = F(y1, y2, . . . , yD),

(3.27)

where y1 is an arbitrary smooth function of the vector x: y1 = h(x1, x2, . . . , xn),
e.g. y1 = x1. Equation (3.27) is sometimes called standard (Gouesbet and Letellier,
1994; Gouesbet et al., 2003b). It is widely used in empirical modelling when a
model state vector is reconstructed from a scalar observable via sequential differ-
entiation (Sect. 10.2.2). However, it is not always possible to derive the function
F in equation (3.27) explicitly. Possibility of reduction of any set of ODEs to the
form (3.27) was proven by Dutch mathematician Floris Takens. Formulations of the
theorems and some comments are given in Sect. 10.2.1 below.

A simple example is an equation of a dissipative oscillator under an additive
harmonic driving:

d2x/dt2 + γ dx/dt + f (x) = A cos (ωt) (3.28)

with γ = const which can be rewritten as a non-autonomous set of two equations:

dx1/dt = x2,

dx2/dt = −γ x2 − f (x1) + A cos (ωt),
(3.29)

where x1 = x , or as a three-dimensional autonomous system

dx1/dt = x2,

dx2/dt = −γ x2 − f (x1) + A · cos x3,

dx3/dt = ω,

(3.30)
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where x1 = x and x3 = ωt , or as a four-dimensional “standard” system

dx1/dt = x2,

dx2/dt = x3,

dx3/dt = x4,

dx4/dt = −γ x4 −
(

d f (x1)

dx1
+ ω2

)
x3 − d2 f (x1)

dx2
1

x2
2 − ω2γ x2 − ω2 f (x1),

(3.31)

where x1 = x . To derive the formula (3.31), one differentiates twice equation (3.28)
in respect of time and substitutes the left-hand side of (3.28) instead of A cos (ωt)
into an obtained equation. Apart from increasing number of dynamical variables
(four ones instead of the two), the conversion leads to complication of the right-
hand side of the last equation in (3.31) as compared with the original form (3.28).
However, all the dynamical variables are related only to the variable x (they are its
derivatives) that gives an advantage in the construction of such a model from a time
realisation of x .

3.6 Models in the Form of Discrete Maps

3.6.1 Introduction

Similar to DE-based models, discrete maps represent a whole “stratum” of math-
ematical culture with its own history and specific features (Neimark, 1972). This
section is a specialised introduction oriented to applications of discrete maps to
empirical modelling.

Quite a widespread approach to obtain a model map is to approximate experi-
mental data. In asymptotic modelling, maps are most often derived through a con-
version from a DE to a finite-difference scheme or a Poincare section (Sect. 3.1).
Creation of an ensemble of maps is a popular way to model a spatially extended
system. Usually, such models take the form of coupled map chains and lattices
with different coupling architectures: local coupling (only between “neighbours”),
global coupling (all-to-all connections), random connections, networks with com-
plex topology (Sect. 3.7.3), etc.

Simplicity of numerical investigation, diversity of dynamical regimes ranging
from an equilibrium to chaos exhibited even by one-dimensional maps and the ease
of constructing ensembles from simple basic elements have made discrete maps a
dominating mathematical tool in non-linear dynamics. Currently, they are a full-
fledged “competitor” of flows. Let us discuss several examples.
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3.6.2 Exemplary Non-linear Maps

3.6.2.1 Piecewise Linear Maps

Seemingly, piecewise linear maps have the second simplest form after the linear
map (3.16) capable of demonstrating simple rise or decay of a variable. Different
kinds of such maps were studied, in particular:

(i) The “saw tooth” is the map xn+1 = {2xn}, where braces denote fractional
part of a number. Its plot is shown in Fig. 3.8a. The map is remarkable since
it allows strictly and clearly prove an existence of dynamical chaos in simple
non-linear systems. In a binary system, the map in a single iteration shifts a
binary point one position to the right (Bernoulli’s shift) and throws away an
integer part of the resulting number. To illustrate irregularity and high sen-
sitivity to small perturbations inherent in chaotic motions, let us specify an
irrational number as an initial condition and write it down as an infinite non-
periodic binary fraction x0 = 0.0100101010001010010001011010.... Then, a
sequence xn generated by the map is also non-periodic: whether xn belongs to
the interval (0,0.5) or (0.5,1) is determined by the first figure after the decimal
point which behaves according to the sequence of “0” and “1” in the binary
fraction x0. Moreover, a variation in any figure in the fraction x0, even arbitrar-
ily far from the decimal point (i.e. arbitrarily small), leads to a change in xn of
the order of 1 in a finite number of steps.
Thus, the saw tooth is an example of a one-dimensional system. Its chaotic
“attractor” contains all irrational numbers; therefore, this is a set of full mea-
sure. Thus, its fractal dimension is equal to one. Its only Lyapunov expo-
nent is positive: it equals ln 2 as can be readily shown. Hence, in terms of
Lyapunov exponents, complexity of the dynamics is greater than that for the
above-mentioned two- and three-dimensional continuous-time systems like the
autonomous and harmonically driven linear oscillators and the autonomous
van der Pol oscillator (Sect. 3.5) which cannot have attractors with positive
Lyapunov exponents. In this respect, the saw tooth is as complex as driven
non-linear oscillators in chaotic regimes. In terms of the attractor geome-
try, the saw tooth is simpler since its “attractor” does not exhibit any fractal
structure.

(ii) Models of neurons. Modelling a neuron dynamics is a problem topical both
in biophysics and non-linear dynamics (see, e.g., Izhikevich, 2000; Kazantsev,
2004; Kazantsev and Nekorkin, 2003; 2005; Kazantsev et al., 2005; Nekorkin
et al., 2005) where one considers mainly ODE-based models. However, dis-
crete map models are also developed in the last years, since investigation of
their dynamics requires less computational efforts and extends possibilities of
modelling large ensembles of coupled neurons. Simple model maps capable
of generating “spikes” and “bursts” (i.e. short pulses and “packets” of pulses)
have been suggested. A pioneering work considering a two-dimensional piece-
wise smooth map is Rulkov (2001). The piecewise linear map illustrated in
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Fig. 3.8b (Andreev and Krasichkov, 2003) can also exhibit those dynamical
features. Since it is two-dimensional, the plotted dependence xn+1 versus xn is
non-unique. The choice of a branch is governed by the second dynamical vari-
able y (we do not present the entire cumbersome equations). Complexity of this
model is greater than that of the saw tooth since it exhibits different periodic
and chaotic regimes depending on the parameter values. The two-dimensional
phase space of the neuron model map allows richer possibilities of dynamics
than does the one-dimensional phase space of the saw tooth.

(iii) Maps for information storage and processing (Fig. 3.8c) illustrate a practical
application to information recording with the use of the multitude of gener-
ated cycles (Andreev and Dmitriev, 1994; Dmitriev, 1991). Their authors have
created a special software allowing to store and selectively process amounts
of information compared to the contents of big libraries with such maps
(http://www.cplire.ru/win/InformChaosLab/index.html).

3.6.2.2 One-Dimensional Quadratic Map

Non-linearity which seems the most natural and widespread in real-world sys-
tems is the quadratic non-linearity. Its properties are reflected by the class of one-

Fig. 3.8 One-dimensional maps: (a) the “saw tooth”; (b) a neuron model; (c) a map for information
recording; (d) quadratic maps with different locations of the maximum; (e) Feigenbaum’s “tree”
for a quadratic map
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dimensional maps xn+1 = f (xn), where the function f exhibits a quadratic max-
imum. The most eminent representative of this class is the logistic map (Fig. 3.8d,
curve 1):

xn+1 = rxn(1 − xn). (3.32)

The parameter r plays a role of the birth rate in population dynamics. As
well, savings in bank account with “floating” bank interest would rise according
to the same rule if the interest were introduced so as to restrict infinite enrich-
ment of depositors (Schuster, 1984). Namely, if xn is a value in account at an nth
year and interest per annum is ε = const, then a simple interest gives a sum of
xn+1 = (1+ε)xn at the next year and the sum rises infinitely. At that, a small deposit
does not promise essential change in a depositor’s prosperity within nearest years as
compared with good prospects of a person having a big initial sum of money. If one
introduced a floating interest from the “considerations of justice”, then one would
get a map xn+1 = ε0(1 − xn/xmax)xn which is reduced to the logistic map with a
parameter r = xmax(1+ε0)

2/ε0 via the change of variable zn = xnε0/xmax(1+ε0).
It is possible to list more examples from diverse fields. Any map xn+1 = f (xn) with
the second-order polynomial f can be rewritten in the form (3.32) or in another
often used form xn+1 = λ − x2

n (Fig. 3.8d, curve 2). Among “services” of the
quadratic map, the following ones can be distinguished:

(1) M. Feigenbaum detected transition to chaos via a period-doubling sequence and
described its universal regularities at the chaos boundary using this map as an
example (Feigenbaum, 1980; Kuznetsov and Kuznetsov, 1993a). Figure 3.8e
shows famous Feigenbaum’s “tree”, “established” values of the dynamical vari-
able xn versus the parameter λ. Universal quantities are, for instance, the ratios
of the parameter bifurcation values near a point of transition to chaos λ∞:
(λ∞−λn)/(λ∞−λn+1) = const = δ or, in another form, λn = λ∞−const·δ−n ,
where δ = 4, 6692016091 . . . and n >> 1.

(2) It is a basic element for the construction of non-linear models in the form
of chains and lattices (Kuznetsov and Kuznetsov, 1991) and for illustration
of non-linear phenomena under periodic and quasi-periodic external driving
(Bezruchko et al., 1997b).

(3) It was used to demonstrate the phenomena of hysteresis and symmetry breaking
under fast change of a parameter value across a bifurcation point (Butkovsky
et al., 1998).

In terms of Lyapunov exponents and fractal dimensions, complexity of the logis-
tic map (3.32) is greater than that of the saw tooth. At r = 4, its attractor is a full
measure set similar to the saw tooth dynamics. However, the logistic map exhibits
dynamics with different fractal dimensions less than one at different parameter val-
ues. Thus, it has richer dynamical properties compared to the saw tooth.

Circle map. This is a one-dimensional map

θn+1 = θn +  + (k/2π) sin θn (mod 2π), (3.33)
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Fig. 3.9 The circle map (3.33): (a) its plot without taking modulo 2π ; (b) its parameter plane
(k, )where domains of periodic regimes are shown in greyscale, while domains of quasi-periodic
dynamics and chaos are shown in white

whose plot is shown in Fig. 3.9a. It can be interpreted from a physical viewpoint.
Under certain assumptions, one can reduce model DEs for a self-sustained oscillator
driven by a periodic sequence of pulses to such a map. An attractor of an original
system can be a torus, while the map (3.33) can be considered as a Poincare map in
a plane cross section of the torus (Kuznetsov, 2001).

In a cross section of a torus, a representative point under subsequent “punctures”
draws a closed curve whose points can be described with an angular coordinate θn ,
where n is the order number of a puncture. The parameter  is determined by the
ratio of periods of rotation along “big” and “small” circumferences, i.e. the ratio
of frequencies of autonomous self-sustained oscillations and driving. The parame-
ter k characterises the driving amplitude. Structure of the parameter plane for the
system (3.33) is shown in Fig. 3.9b. Different greyscale tones mark domains of
stable periodic regimes. Periodic regimes corresponding to the synchronisation of
self-sustained oscillations by an external signal exist in domains resembling beaks.
These domains are called Arnold’s tongues by the name of a soviet mathematician
V.I. Arnold. At that, an orbit on a torus becomes a closed curve in the cross sec-
tion. Different tongues correspond to different values of the rotation number, i.e. the
number of revolutions of a representative point along a small circumference during
a single revolution along a big circumference. The dynamics of the circle map has
been studied in detail, in particular, a characteristic dependence of the total width of
synchronisation intervals versus k is described, regularities of chaos domain location
are established, etc.

In terms of the Lyapunov exponents and fractal dimensions, the circle map com-
plexity is similar to that of the logistic map. Both systems can exhibit periodic
and chaotic regimes at different parameter values. However, the circle map can
also exhibit quasi-periodic regimes with zero Lyapunov exponents which are not
observed in the logistic map. Accordingly, it exhibits additional bifurcation mecha-
nisms and the corresponding structures on the parameter plane. Thus, the circle map
is, in some sense, a more complex object than the logistic map.
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3.6.2.3 A Model Map for a Non-isochronous Non-linear Oscillator Under
Dissipative Pulse Driving

A plot of a one-dimensional multi-parametric map

xn+1 = xne−d/N cos(2π/(N (1 + βxn))) + A. (3.34)

is shown in Fig. 3.10a (Bezruchko et al., 1995).
The idea behind this map and meaning of its four parameters are illustrated in

Fig. 3.14c with a time realisation of a dissipative oscillator, e.g. a mathematical pen-
dulum, driven periodically in a specific manner. Namely, a load is taken aside by the
same value A along the x-axis. After that, it starts to oscillate with the same initial
phase. For instance, one can take a load by hand and leave it with zero initial veloc-
ity. In the case of an electric pendulum, an RL diode circuit shown in Fig. 3.5b, such
driving is realised via pulses of current with direct polarity for the diode. At that,
big active conductance of a diode quickly cancels free oscillations so that an initial
phase of free oscillations does not vary between pulses (Fig. 3.14a). If a quasi-period
T during exponentially decaying free oscillations x(t) = xne−δ·t cos(2π t/T ) is re-
garded constant between two pulses and non-isochronism is taken into account in a
simplified manner as a dependence of T on an initial amplitude T = T0(1 + βxn),
where xn is a starting value in the nth train of free oscillations (i.e. after the nth
pulse), then a model map takes the form (3.34). Here, A is the amplitude of a driv-
ing pulse, N = T0/T is a normalised driving frequency, d = δ · T0 is a damping
coefficient, β is a coefficient of non-linearity, which is positive for a “soft spring”
and negative for a “hard” one.

Fig. 3.10 Investigations of the map (3.34): (a, b) its plots and Lamerey’s diagrams at A =
3.4, N = 0.1, d = 0.1 and β = 0.05 (a) or β = 0 (b); (c, d) bifurcation diagrams xn(N )

for β = 0.05 (c) or β = 0 (d) which can be interpreted as resonance curves. Intervals of single
valuedness correspond to period-1 oscillations, divarication of a curve means period doubling,
“smeared” intervals show chaos. Resonance curves at different values of A exhibit a transition
from a linear resonance to a non-linear one (e). Domains of bistability and chaos are shaded
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Despite being one-dimensional and relatively simple in its mathematical form,
the map exhibits practically all basic non-linear phenomena inherent in low-
dimensional non-linear dynamical systems: a multitude of oscillatory regimes on
the basis of different kinds of oscillations (modes), linear and non-linear resonance,
bi- and multistability, complexity and fractal character of basins of attraction, hys-
teresis and dynamical chaos (Prokhorov and Smirnov, 1996). Thus, its dynamical
complexity is similar to that of the circle map and logistic map and is even greater
in some respects (Fig. 3.11).

Higher dimensional maps are capable of demonstrating even more diverse
dynamics and, hence, greater complexity in terms of the number of positive Lya-
punov exponents and big value of fractal dimension. However, the phenomena
illustrated above with one-dimensional examples can already convince a reader that
discrete maps represent a very fruitful and efficient research tool.

3.6.3 Role of Discrete Models

We consider the role of discrete models with a concrete example. In 1981, Lind-
say reported an observation of dynamical chaos in quite an accessible (cheap) and
popular system, a circuit with an inductance coil and a varactor diode driven by
a harmonic electromotive force (Linsay, 1981). Since then a piece of wire convo-
luted in a coil and a piece of semiconductor supplied with contacts are actively
used for experimental demonstrations of non-linear phenomena. A paper in “Scien-
tific American” even recommended to have such systems “on a windowsill in each
house”.6 Below, we demonstrate capabilities of discrete models of this object.

3.6.3.1 “Ancestors” of the Object

A circuit consisting of an inductance coil and a capacitor (an oscillatory circuit) is an
electric analogue of a mechanical pendulum. Similar to how mechanical pendulum
properties are determined by its shape and parameters, processes in a circuit depend
on the construction of its elements. For the simplest case when plates of an air capac-
itor are connected with a wire coils (Fig. 3.12a), a conceptual model (an equivalent
scheme) takes the form shown in Fig. 3.12b. Given the parameters L , C , R of the
scheme,7 one can readily derive a model of the circuit in the form of the linear
dissipative oscillator (3.2) from Kirchhoff’s laws, where x is a dynamical variable

6 This is a diode with a p – n junction whose capacity depends on voltage, i.e. an electrically
controlled capacitor. Circuits with such diodes are used in radioengineering for more than half a
century. They were even suggested as memory elements for computers. Different kinds of such
circuits are widely presented in contemporary radio sets and TV sets.
7 When a charge is accumulated on the capacitor plates and a current flows in the wires, electric
and magnetic forces appear and tend to compress or stretch the wires. Therefore, if substances of
the coil and capacitor are not hard enough, their size (and, hence, C and L) can depend on the
current and voltage (dynamical variables) implying emergence of nonlinearity.



100 3 Dynamical (Deterministic) Models of Evolution

Fig. 3.11 Chart of the dynamical regimes for the map (3.34) on the parameter planes A–N and
d–N . Greyscale tones show domains of oscillations whose periods are reported at the bottom.
The same tone may correspond to different motions with the same period or to chaotic regimes
developed on the basis of different cycles. Bifurcations occur at the boundaries of the domains.
The fragment in the middle shows domains of bi- and multistability. A domain of existence and
evolution of a certain cycle is shown with a separate sheet: sn are boundaries of the sheets, pd are
period-doubling curves. Overlap of two sheets corresponds to bistability and hysteresis

(charge) and δ = R/2L is a damping coefficient. Free oscillations of the dissipative
oscillator decay, while oscillations driven by a periodic signal are periodic with a
period of driving T . The only oscillatory effect demonstrated by the system is a
resonance, an increase in the driven oscillation amplitude when natural and driving
frequencies get closer.
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Fig. 3.12 Electric pendulums: (a) the simplest oscillatory circuit; (b) its equivalent scheme; (c) an
equivalent scheme where the role of a capacitor is played by a diode represented by a combination
of non-linear capacitor and resistors

3.6.3.2 Consequences of a Capacitor Replacement

Inclusion of a diode whose equivalent parameters R and C depend on the cur-
rent and voltage into the circuit (Fig. 3.12c) leads to a striking extension of the
range of observed oscillatory phenomena. Even under the simplest harmonic driv-
ing, the “electric pendulum” demonstrates a hierarchy of driven motions of various
complexity: harmonic, more complex periodic and chaotic ones. Similar picture
is observed under a pulse driving. Bifurcation sets (surfaces in three-dimensional
spaces, curves on two-dimensional cross sections) bound domains of existence of
different oscillatory regimes in a parameter space forming the structures presented
in Fig. 3.13. The driving amplitude V and the normalised frequency N = ω/ω0
are shown along the horizontal axes of the three-dimensional picture and the lin-
ear resistance R along the vertical axis. The structure can be understood better by
considering different plane cross sections of the parameter space. Oscillation type
within a domain can be illustrated with a respective time realisation.

Fig. 3.13 Parameter space of an RL-diode circuit under harmonic external driving obtained from
experimental investigations. Dashes show curves of hysteresis (hard) transitions. Chaos domains
are shaded. Numbers denote period of oscillations in the respective domains
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Fig. 3.14 Time realisation of a current in an RL-diode circuit under periodic pulse driving of direct
polarity F(t): (a) a cycle belonging to the class of subharmonic oscillations, a driving period T is
three times as big as a quasi-period of free oscillations (�1/3); (b) a cycle belonging to the class
of “period adding sequence”, a driving period T is three times as small as a quasi-period of free
oscillations (�3/1 = �3); (c) a time realisation-based model of subharmonic oscillations, where
a quasi-period of decaying oscillation within a train is constant and depends only on an initial
deviation

Figure 3.14 shows typical time realisations of a current in the case of pulse
driving emf whose polarity is “direct” for the diode. Pulses come with a period
T, ω = 2π/T . Despite small duration of pulses, free oscillations quickly decay
during a pulse since an equivalent capacity of a diode for a direct current (Fig. 3.12c)
is shunted by its low active resistance. When a pulse ends, oscillations start almost
with the same initial phase (Fig. 3.14a, b), while a time realisation between two
pulses represents decaying free oscillations. Depending on the driving amplitude
and period, the damping rate, the kind of non-linearity and initial conditions, dif-
ferent repeated motions (cycles) can be established in the system. Periods of the
cycles are equal to the driving period or divisible by it, i.e. kT, where k is an integer.
Possible variants of periodic motions are diverse but can be systematised as follows.
All cycles can be conventionally divided into two groups based on the similarity
property. Each of the groups preserves some peculiarities of the waveform of time
realisations and the shape of limit cycles in the phase space.

The first group is formed by cycles whose period is equal to the driving period
1T and exists in the low-frequency domain N < 1. Such cycles are usually called
subharmonic cycles. Since the driving period is big as compared with the time scale
of free motions, there are generally several maxima in a time realisation within
a train (Fig. 3.14a). The second group consists of cycles with periods kT, where
k = 2, 3, . . ., which are observed for bigger driving frequencies 0.5 < N < 2.
Examples of such cycles are shown in Fig. 3.14b. Since a change of such a regime
under the increase in amplitude is accompanied by subsequent increase in k by 1,
they are called cycles of “period adding sequence”. A conventional notation of the
cycles is �m/k . Here, k corresponds to the ratio of the driving period to the quasi-
period of free oscillations. It can be estimated as the number of maxima within an
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interval T in an oscillogram. The value of m is a period of cycle measured in units
of the driving period.

3.6.3.3 Mathematical Models

Processes in semiconductor diodes whose properties determine non-linearity of a
system are analysed most strictly with the use of partial differential equations. How-
ever, for sufficiently slow motions, a diode can be considered as a bipole with some
equivalent properties reflecting relationship between the voltage on its contacts and
the current in connecting wires so that one can use ODEs. Even simpler models can
be obtained in the form of maps, if one restricts the consideration only with a part
of possible motions. Further, we consider models capable of describing fragments
of the above-mentioned (Fig. 3.13) complex picture.

A Continuous-Time Model

Let us represent a semiconductor diode as a non-linear capacitor, whose capacity C
depends on the voltage as C = C0/(1−U/ϕ), where C0 is the initial diode capacity,
U is the voltage on the diode, ϕ is the contact potential. Then, a model equation for
the circuit derived from Kirchhoff’s laws takes the form of Toda oscillator (3.25):

d2x/dτ 2 + γ dx/dτ + ex − 1 = A sin Nτ,

where x is the dimensionless charge on the capacitor plates, γ is the damping coef-
ficient, A is the dimensionless driving amplitude, N = ω/ω0 is the normalised
driving frequency, τ = ω0t is dimensionless time. Results of numerical simulations
presented in Fig. 3.7 demonstrate good qualitative description of an object in the
entire parameter space.

Discrete-Time Models

(i) One can successfully use one-dimensional multimodal map (3.34) as a discrete-
time model for subharmonic oscillations, i.e. in the low-frequency domain
N = ω/ω0 ≤ 1. A model is adequate to the real-world system in the parameter
space domains where motions on the basis of the cycles �1/2, �1/3 and so on
take place (Fig. 3.11). Those domains have qualitatively the same structure.
They are similar to each other and self-similar. Self-similarity means a config-
uration like in “matreshka” (a set of nesting dolls): a basic constructive element
is reproduced at smaller and smaller scales. However, in contrast to matreshka,
the domains of existence of various oscillation kinds on the parameter plane at
sufficiently low levels of dissipation can overlap forming domains of multista-
bility (Fig. 3.11, bottom panel)

(ii) A two-dimensional map modelling driven dynamics of the circuit in a higher-
frequency domain 0.8 ≤ N ≤ 2 is suggested in Bezruchko et al. (1997a) based
on the characteristic waveform of time realisation of the cycles belonging to
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Fig. 3.15 Chart of the dynamical regimes of the map suggested in Bezruchko et al. (1997a), which
describes the cycles of “period adding sequence”

the “period adding sequence” (Fig. 3.14b). It is more complicated than map
(3.34) and reproduces well the structure of the parameter plane of an original
circuit (Kipchatov, 1990) for large driving frequencies and amplitudes, where
the cycles of the “period adding sequence” exist (cf. Figs. 3.13b and 3.15). At
that, it does not reflect diversity of the basis cycles and other peculiarities of
the circuit dynamics described above.

(iii) In the domains where any of the basis cycles demonstrate period-doubling
sequence under a parameter change, a good model of the circuit is the one-
dimensional quadratic map xn+1 = λ − x2

n .
(iv) In a domain of negative resistance where an object demonstrates self-sustained

oscillations, its dynamics is modelled well with the circle map (3.33) which
exhibits the phenomena of synchronisation by a weak periodic driving and of
suppression of the oscillations by a strong periodic driving.

Thus, the Toda oscillator equation (3.25) describes the circuit dynamics in the
most complete way among all the considered models. It reflects all families of
the characteristic cycles of the RL-diode circuit and peculiarities of its parameter
space structure. The discrete-time model (3.34) and the two-dimensional model map
describe only one of the two existing families of cycles, either “subharmonic” or
“period adding” one. In particular, map (3.34) reflects such phenomena as linear and
non-linear resonance, multistability and hysteresis. The quadratic map is universal
but does not capture specificity of the object. The same holds true for the circle
map. Is it possible to create a model map which could compete with the differential
equation of the Toda oscillator? Currently, we could not say how complex a formula
for such a map might be.
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3.7 Models of Spatially Extended Systems

To model spatially extended objects, one often uses ensembles of coupled ODEs or
coupled maps (e.g. Afraimovich et al., 1989; Nekorkin and Velarde, 2002; Shalfeev
and Matrosov, 2005). Spatial properties of such systems manifest themselves in
solutions with different spatial profiles of characterising variables. For instance,
oscillations of two coupled linear oscillators can be represented as a superposition
of two basic sinusoidal regimes with different frequencies. One of them corresponds
to in-phase oscillations, when the elements move in a completely identical manner,
while the other one reflects anti-phase oscillation, when there is a constant phase
shift between the oscillators by π . This peculiarity of a spatially extended system,
consisting of concentrated elements, can be considered as an analogue of spatial
modes in a bounded continuously distributed system (Fig. 3.16).

A property of multistability resembling multitude of spatial modes is ubiquitous
in ensembles of oscillatory systems. Such a principal multimodality and the corre-
sponding sensitivity to weak parameter variations (when possible kinds of motions
are numerous and their basins of attraction form complicated and even fractal struc-
tures) is a typical property of spatially extended non-linear systems. Capabilities of
relatively simple discrete models to describe this basic phenomenon are illustrated
in Sect. 3.7.1, while more complicated tools are briefly considered after that.

3.7.1 Coupled Map Lattices

In chains and lattices, identical basis maps xn+1 = f (xn) are usually coupled to
each other in a certain manner: locally (only nearest neighbours), globally (all to
all) or within groups. Complexity of these models rises with the number of coupled
maps, i.e. with the dimension of a model. In general, the greater is the model dimen-
sion, the greater can be the number of coexisting attractors, their fractal dimension
and the number of positive Lyapunov exponents.

3.7.1.1 Two Dissipatively Coupled Quadratic Maps

A symmetric coupling, when elements influence each other in the same way, is
shown by a rectangle in Fig. 3.17. A triangle marks a unidirectional coupling, when

Fig. 3.16 Oscillatory modes in an ensemble of two (a, b) and several (c) pendulums. Top panels
illustrate the systems, bottom ones illustrate their spatial modes
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Fig. 3.17 Coupled map lattices: (a, b) one-dimensional lattices; (c) a space-and-time diagram for
interacting populations to illustrate symmetric coupling kinds; (d) a two-dimensional lattice

only one element affects another one. An intermediate case of asymmetric coupling
is also possible. A systematisation of the coupling kinds is given in Kuznetsov
(1986), where symmetric couplings between maps are reduced to the following
types: dissipative coupling

xn+1 = f (xn) + k( f (yn) − f (xn)),

yn+1 = f (yn) + k( f (xn) − f (yn)),
(3.35)

inertial coupling

xn+1 = f (xn) + k(yn − xn),

yn+1 = f (yn) + k(xn − yn),
(3.36)

or their combination. Here, x and y are dynamical variables, k is the coupling coef-
ficient, f is the non-linear function of the basis map.

The systematisation allows an interesting interpretation in the language of the
population biology. One can assume that individuals first breed in their population
and then get an opportunity to migrate to another population. “First breed, then
creep away”. The cycle is repeated next year. Solid lines on a space – time diagram
(Fig. 3.17c) correspond to such a case. Such coupling tends to make simultaneous
states of subsystems equal to each other so that it can be naturally called dissipative
coupling. Dashed lines in Fig. 3.17c correspond to a situation when individuals
may migrate before the cycle of breeding and death within their population. Such
coupling can be reasonably called inertial coupling since it promotes memorising a
previous-step state. A combined coupling is also possible.

The choice of coupling type in practical modelling is non-trivial. In particular, it
is illustrated by experimental investigations of a set of coupled non-linear electric
circuits (Sect. 3.6.3) in the domain of parameter space, where each system transits
to chaos via period doublings. It appears that coupling via a resistor (a dissipative
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element) is adequately described as dissipative, while coupling via a capacitor (a
purely reactive element) as combined one, rather than purely inertial (Astakhov
et al., 1991b).

The choice of the basis map and of the kind of coupling introduce specific fea-
tures into a model behaviour, but the phenomenon of multistability in ensembles of
coupled maps is always determinative. It is illustrated by the simplest set of two
quadratic maps f (xn) = λ − x2

n with the dissipative coupling (3.36):

xn+1 = λ − x2
n + k

(
x2

n − y2
n

)
,

yn+1 = λ − y2
n + k

(
y2

n − x2
n

)
.

(3.37)

For the same value of λ in both subsystems, we introduce the following systema-
tisation of oscillatory modes. In the limit of zero coupling (k = 0), each regime of a
period N can be realised in N ways differing by the shifts between the subsystems
oscillations in time by m = 0, 1, 2, . . ., N −1 steps as shown in Fig. 3.18 for N = 2
and 4. We call those N ways the oscillation kinds and use them to describe a hier-
archy of the oscillatory regimes in the presence of coupling when interaction leads
to different variants of mutual synchronisation. We denote periodic regimes as Nm .
Despite the lack of repeatability, the same classification principle can be maintained
for chaotic regimes N m if one interprets N as the number of the attractor strips and
m as a time shift between maximal values of xn and yn . Regimes with m = 0 are
called in-phase.

By showing the domains of existence and evolution of each oscillation kind on a
separate sheet, one can get a vivid multi-sheet scheme of the domains of existence
(stability) of oscillatory regimes on the plane (k, λ). Figure 3.19a shows the domains
for all oscillatory regimes of the periods 1, 2, 4 and 8 at k < 0.5. Figure 3.19b
represents a cross section of the multi-sheet picture shown in Fig. 3.19a with a plane
k = 0.05 and qualitatively illustrates an evolution of motion in system (3.37) under
the variation of the parameter λ at a fixed weak coupling. Solid lines correspond
to stable regimes and dashed ones to unstable regimes. Points indicate bifurcation
transitions. The letters A, B, C and D mark branches combining certain groups of
regimes8: they start with periodic regimes whose number rises with λ and end with
chaotic ones.

Fig. 3.18 Coupled map dynamics: time realisations (a) for the period N = 2; (b) for the period
N = 4. Dynamical variables of the first and second subsystems are shown by filled and open
circles, respectively. Notations of the oscillation kinds Nm are shown to the right

8 The branch A corresponds to the evolution of in-phase regimes (m = 0), B − D to the others.
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Fig. 3.19 Dynamics of the systems (3.37): (a) a scheme of the evolution of oscillation kinds on a
parameter plane; (b) its section for k = 0.05; (c) phase space division into basins of attractors in
cases of multistability (they change each other when one moves along the parameter plane in the
panel b)

Domains of chaotic regimes are shaded. A critical value of the non-linearity
parameter at which a transition to chaos occurs (an accumulation point of a period-
doubling sequence) is denoted λc. Domains denoted by a letter Q or a word torus
correspond to quasi-periodic oscillations and transition to chaos via their breaking.
Different oscillation kinds can divide phase space into basins of attraction with
a fractal structure (Fig. 3.19c). Increase in the dissipative coupling strength k is
accompanied by reduction in the number of coexisting states so that only in-phase
motion is stable at large k, i.e. the system becomes in effect one-dimensional.9

3.7.1.2 Complex Dynamics of a Chain: Consequences of the Increase
in the Number of Elements

It is not surprising that the increase in the number of elements in an ensemble
leads to even more complicated oscillatory picture. Indeed, the longer the chain,

9 Complex dynamics of this non-linear system is illustrated by a computer program available at
http://www.nonlinmod.sgu.ru and in research papers Astakhov et al. (1989, 1991a).
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Fig. 3.20 A period-1 regime with a non-uniform spatial distribution in the chain (3.38) of 120
elements, A = 0.965, N = 0.64, d = 0.2, β = 0.2: (a) k = 0.1; (b) k = 0.35. The quantities x1
and x2 are equilibrium states of a bistable elementary cell

the more the kinds of motions with different temporal and spatial profiles possible.
Figure 3.20 illustrates it with numerical results for the chain of dissipatively coupled
pendulum maps

xm
n+1 = (1 − k) f

(
xm

n

) + (k/2)
(

f
(

xm+1
n

)
+ f

(
xm−1

n

))
, (3.38)

where n is the discrete time, m is the number of a chain element, k is the coupling
coefficient, f is the multimodal map (3.34). A number of an element is shown along
the horizontal axis and its instantaneous state along the vertical one. There are flat
intervals in the pattern (domains) and fast transitions between them (kinks).10

The structures evolve under the parameter changes: temporal and spatial periods
double; periodic, quasi-periodic and chaotic configurations arise. Domains widen
with the coupling coefficient rise, while kinks get flatter. Finally, a very large
k provides a spatially uniform regime for any initial conditions, an analogue to
the emergence of an ice floe in the above-mentioned example with cooled water
(Sect. 3.2). Details on the dynamical properties of the chain are given in Bezruchko
and Prokhorov (1999).

3.7.1.3 Two-Dimensional Map Lattice

Further complication of the model (3.38) in the sense of its spatial development can
be performed both via the increase in the number of elements and via changes in the
coupling architecture. In the next example, the same multimodal maps constitute a
lattice, where each element interacts with its four nearest neighbours. Coupling is
local and dissipative:

10 Map (3.34) is taken for simplicity. Thus, multistability in a set of quadratic maps is formed
on the basis of a period-doubled cycle, while in a set of maps (3.34) it is observed already for
the period-1 cycles. When an isolated map (3.34) has two period-1 states, there are four period-1
oscillation kinds in a set of two maps (Bezruchko and Prokhorov, 1999).
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Fig. 3.21 A dynamical regime with a non-uniform spatial distribution in the two-dimensional lat-
tice (3.39) consisting of 50 × 50 period-1 elements, A = 0.965, N = 0.64, d = 0.2, β = 0.2,
k = 0.2. Boundary conditions are periodic
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where i and j determine spatial location of a lattice element. An example of instan-
taneous snapshot of such a lattice having the same numbers of elements along each
direction is shown in Fig. 3.21. This is a stationary structure achieved from random
initial conditions. At weak couplings, one can get almost any required stationary
distribution by specifying different initial conditions. Under the increase in the cou-
pling coefficient, the number of possible structures reduces. Above some threshold
value of k, the only attractor is a spatially uniform distribution.

3.7.2 Cellular Automata

A cellular automaton is a discrete dynamical system representing a set of iden-
tical cells coupled with each other in the same way. All the cells form a cellular
automaton lattice. Lattices may be of various types differing both in dimension and
shape of the cells (Minsky, 1967). Cellular automata were suggested in the work
of von Neumann (1966) and became a universal model of parallel computations
like Turing’s machine for sequential computations. Any cell computes its new state
at each step from the states of its nearest neighbours. Thus, the laws in a system
are local and everywhere the same. “Local” means that it is sufficient to look at
the neighbourhood state to learn what will happen at a future instant; no long-range
interactions are allowed. “Sameness” means that one can distinguish one place from
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another one by a landscape,11 not by any difference in the laws (Margolus and Tof-
foli, 1990). Based on this description, one can single out the following characteristic
properties of cellular automata:

(i) A lattice is uniform and evolution law for the cells is everywhere the same.
(ii) Changes in the states of all cells occur simultaneously, after calculation of a

new state of each cell in a lattice.
(iii) Interactions are local, only neighbouring cells can affect a given cell.
(iv) A set of cell states is finite.

Usually, one illustrates a cellular automaton with an example of a model
called the game “Life” created by D. Conway, a mathematician from Cam-
bridge University, in 1970. It is widely presented in the Internet (see, e.g.,
http://www.famlife.narod.ru). Rules of functioning of that automaton somewhat
mimic real-world processes observed in birth, development and death of a colony
of living organisms. One considers an infinite flat lattice of square cells (Fig. 3.22).
Living cells are shown by dark colour. Time is discrete (n = 0, 1, 2, . . .) and a sit-
uation at the next time step n +1 is determined by the presence of living neighbours
for each living cell. Neighbouring cells are those having common edges. Evolution
is governed by the following laws:

(i) Survival. Each cell having two or three neighbouring living cells survives and
transits to the next generation.

(ii) Death. Each cell with more than three neighbours dies due to overpopulation.
Each cell with less than two neighbours dies due to solitude.

(iii) Birth. If the number of living cells neighbouring to a certain empty cell is equal
exactly to three, then a new organism is born in that empty cell.

Thus, if an initial distribution of living cells (a landscape) has the form shown in
Fig. 3.22a, then a configuration shown in Fig. 3.22b appears in a single time step.

Fig. 3.22 Examples of landscapes for the cellular automaton “Life”: (a) an initial profile, n = 0;
(b) a situation after the first step n = 1

11 A distribution of the values of a characterising quantity over an automaton workspace.
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Furthermore, some initial structures may die out, while the others survive and get
stationary, or are repeated periodically, or move in space, and so on. Basic properties
of this automaton are as follows: structures separated by two empty cells do not
affect each other at once; a configuration at a time instant n completely determines
the future (states at time steps n + 1, n + 2, etc.); one cannot restore the past of the
system from its present (the dynamics is non-invertible); stable forms are, as a rule,
symmetric, etc. The larger the area occupied by a population, the more complicated
its behaviour.

Currently, the game “Life” has got further development. Thus, in modern ver-
sions the automaton is three dimensional and capable of modelling several popu-
lations like interacting “herbivores” and “predators”. However, even more sophis-
ticated versions of this simple system do not represent a limit complexity level for
the problems which can be solved with cellular automata.

A cellular automaton can be equivalently described with a set of coupled maps
with discrete states. Its peculiarity is the simplicity of construction and convenience
of computer investigation. Cellular automata are used to model hydrodynamic and
gas-dynamic flows, electric circuits, heat propagation, movement of a crowd, etc.
(Loskutov and Mikhailov, 2007; Malinetsky and Stepantsev, 1997; Shalizi, 2003).
They are applied to create genetic algorithms, to find a shortest way on a graph and
so forth (see, e.g., Margolus and Toffoli, 1990; http://is.ifmo.ru).

3.7.3 Networks with Complex Topology

The above coupled map lattices and cellular automata describe spatially extended
systems with local interactions between the elements. More complicated coupling
architectures involve various non-local interactions. In such a case, one speaks of a
network of coupled maps rather than a coupled map lattice. Coupling architecture is
often called topology of a network. Topology is said to be regular if it is described
by a simple regular law, e.g. the above locally coupled maps (where only the nearest
neighbours interact) or globally coupled maps (where every element is connected to
every other element, all-to-all coupling).

It is easy to imagine other topologies which are not described as simply as the
above regular topologies. For example, one can artificially generate a completely
random coupling architecture. Typically, one speaks of a complex topology if it
looks rather complicated and irregular and, simultaneously, exhibits some non-
trivial statistical properties different from completely random networks. During the
last years networks with complex topology are actively studied in different fields
as reflected by the reviews (Albert and Barabasi, 2002; Arenas et al., 2008; Boc-
caletti et al., 2006; Dorogovtsev and Mendes, 2003; Kurths et al., 2009; Osipov
et al., 2007; Strogatz, 2001; Watts, 1999). A special attention is paid to the so-called
“small-world” and “scale-free” properties of a network. To define them, one must
introduce the concepts of node, link, degree and path. Each element of a network is
called a node. If two nodes are coupled (interact with each other), then one says that
there exists a link between them. These two nodes are called vertices of the link. If
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a node is a vertex of M links (0 ≤ M ≤ N − 1, where N is the size of the network),
then the number M is called a degree of that node. A path connecting two nodes A
and B is the sequence of vertices which one has to pass by (via the existing links)
to reach the node B from the node A. The shortest path between two nodes is a path
consisting of the smallest number of vertices.

The small-world property means that any two elements of a network are con-
nected by a sufficiently short path. To give a quantitative formulation, one can notice
that a mean (over all pairs of nodes) shortest path length in a regular hypercubic
lattice with d dimensions grows with the lattice size as N 1/d . Small-world property
is defined as follows: a mean shortest path length grows at most logarithmically
with N . This notion was first introduced in Watts and Strogatz (1998). The small-
world property has been observed in a variety of real-world networks, including
biological and technological ones (see Sects. 2.2.1 and 2.2.3 in Boccaletti et al.,
2006 and references therein).

The scale-free property concerns heterogeneity of couplings. Homogeneity in
coupling structure means that all nodes are topologically equivalent, e.g. regular lat-
tices or random networks. In regular lattices, each node has the same degree except
for the edges. In random networks, each of the N (N −1)/2 possible links is present
with equal probability. Therefore, a degree distribution is binomial or Poisson in the
limit of large network size. However, it was found that many real complex networks
exhibit a degree distribution p(M) ∼ M−γ , where 2 < γ < 3. Such networks were
introduced in Barabasi and Albert (1999) and called scale-free, since the power law
has the same functional form at all scales. There are many examples of technical,
biological and social networks characterised as scale free (see Sects. 2.2.2 and 2.2.3
in Boccaletti et al., 2006 and references therein).

As for the dynamical aspect, many studies have been devoted to studying syn-
chronisation in complex networks of coupled dynamical systems (see, e.g., Are-
nas et al., 2008; Osipov et al., 2007). It was found that the small-world property
often enhances synchronisation as compared with regular lattices. Under some con-
ditions, the scale-free property may lead to similar enhancement, see e.g. Motter
et al. (2005).

Finally, we note that a network with complex topology consisting of N coupled
one-dimensional maps is an N -dimensional dynamical system, similar to a coupled
map lattice consisting of N one-dimensional maps. Thus, both models are equivalent
in terms of their state vector dimension. However, a network with complex topology
is a much more complicated object in terms of coupling structure. Thus, a network
with complex topology can be considered as a more complex model of spatially
extended systems.

3.7.4 Delay Differential Equations

Delay differential equations are typically used to model systems whose behaviour at
present is determined not only by a present state but also by the values of dynamical
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variables at previous time instants. Such objects are widely presented in nature. They
are studied in physics, biology, physiology and chemistry. Causes of a time delay
can be different. Thus, in a population dynamics, a delay is connected with the fact
that individuals participate in a reproduction process only after becoming adult. In
spatially extended radio-physical systems, a delay is determined by a finite speed
of signal propagation. A delay time τ is related to the time necessary for a signal
to overpass a distance between elements. In a sufficiently general case, a time-delay
system is described with the equation

εn
dn x(t)

dtn
+ εn−1

dn−1x(t)

dtn−1
+ . . . + ε1

dx(t)

dt
= F(x(t), x(t − τ1), . . . , x(t − τk)),

(3.40)

where τ1, . . . , τk stands for several possible time delays caused by different factors.
Particular cases of equation (3.40) are as follows: Ikeda equation ẋ(t) = −x(t)+μ ·
sin(x(t − τ)− x0) describing the dynamics of a passive optical resonator; Mackey –
Glass equation ẋ(t) = −b ·x(t)+a ·x(t −τ)/(1+xc(t −τ)) describing the process
of red corpuscle generation in living organisms; the delayed feedback generator12

ε · ẋ(t) = −x(t) + f (x(t − τ)), which is a very popular model in radio-physics.
Despite the only scalar dynamical variable, all the listed dynamical systems

are infinite-dimensional, since one must specify a distribution of a dynami-
cal variable over the interval [0, τ ] as an initial condition. Even a first-order
non-linear DDE can exhibit complex motions corresponding to attractors of
very high dimensionality, chaos, multistability and other non-linear phenomena.
In general, infinite dimensionality of the phase space leads to the possibility
of observing attractors of arbitrary high dimension and with arbitrarily many
positive Lyapunov exponents. In this sense, DDEs are more complex systems
than previously described finite-dimensional model maps and ODEs. For more
detailed information about DDE-based models, we refer to the review on complex
dynamics of the feedback generator (Kuznetsov, 1982), the monograph Dmitriev
and Kislov (1989), the research paper Kislov et al. (1979) and the website
http://www.cplire.ru/win/InformChaosLab/index.html.

3.7.5 Partial Differential Equations

This is probably the most extensively studied mathematical tool developed spe-
cially for modelling of spatially extended systems. PDEs are used in very different
scientific disciplines ranging from physics, chemistry and biology to ecology and
economics. It is sufficient to recall famous Maxwell’s equations in electrodynam-
ics, Schrödinger’s equation in quantum mechanics, reaction – diffusion equations in

12 It is a ring consisting of a non-linear amplifier (characterised by a function f ), an inertial ele-
ment (a filter with a response time determined by ε) and a delay line (with a delay time τ ).



3.8 Artificial Neural Networks 115

chemistry and biology, and Ginzburg – Landau equation everywhere. Many classical
models of the wave theory take the form of PDEs:

Simple wave equation ∂x/∂t + v(x)∂x/∂z = 0, where x is the characterising
quantity, v is the velocity of a perturbation propagation (depending on the
perturbation value, in general); z is the spatial coordinate. The model can
describe steepening and turnover of a wave profile.

Corteveg – de Vries equation ∂x/∂t + v(x)∂x/∂z + β∂3x/∂z3 = 0 is the
simplest model exhibiting soliton-like solutions. Roughly, the latter ones are
localised perturbations propagating with a constant waveform and velocity
and preserving these characteristics after collision with each other.

Burgers’ equation ∂x/∂t + v(x)∂x/∂z − α∂2x/∂z2 = 0 is the simplest model
describing waves in a medium with dissipation, in particular, shock waves
(i.e. movements of a region of fast change in the value of x).

A dynamical system described with a PDE is infinite-dimensional even for a
single spatial coordinate. To specify its state, one must provide an initial function
x(0, z). If a system without spatial boundaries is considered (such an idealisation
is convenient if a system is very lengthy so that any phenomena at its boundaries
do not significantly affect the dynamics under study and are not of interest for a
researcher), then an initial function must be defined over an entire axis −∞ < z <
∞. If a system is bounded, then an initial function must be defined only over a
corresponding interval 0 < z < L , while boundary conditions are specified at its
edges (e.g. fixed values x(t, 0) = x(t, L) = 0). In the latter case, one speaks of a
boundary problem.

PDEs can exhibit both such attractors as fixed points, limit cycles, other kinds of
low-dimensional behaviour and a very high-dimensional dynamics. This mathemat-
ical tool is even richer with properties and more complex for investigation compared
to all the above-mentioned model equations. Of basic interest is the question about
conditions of existence and uniqueness of a solution to a PDE. In part due to it,
recently researchers have paid much attention to regimes with sharpening (when a
solution exists only over a finite time interval) which are quite typical (Malinetsky
and Potapov, 2000, pp. 148–170).

A huge body of literature is devoted to PDEs, (e.g. Loskutov and Mikhailov,
2007; Mikhailov and Loskutov, 1989; Sveshnikov et al., 1993; Tikhonov and
Samarsky, 1972; Vladimirov, 1976).

3.8 Artificial Neural Networks

Artificial neural network (ANN) is a kind of mathematical model whose construc-
tion mimics some principles of organisation and functioning of networks of brain
nerve cells (neurons). The idea is that each neuron can be modelled with a suffi-
ciently simple automaton (an artificial neuron), while the entire brain complexity,
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flexibility and other important properties are determined by the couplings between
neurons. The term “neural networks” was established in the middle of the 1940s
(McCulloc and Pitts, 1943). Very active investigations in this field were carried out
until the 1970s. After that, a significant decrease in the attention of researchers took
place. In the 1980s, the interest reappeared due to problems of associative memory
and neurocomputers so that the number of international conferences on ANNs and
neurocomputers has reached a hundred by the end of twentieth century.

If an artificial neuron represents a function relating input and output values and
a signal can propagate in a network only in one direction (no feedbacks), then an
ANN is also just a function transforming an input signal into an output value. Below,
we briefly consider mainly such a simple version. If feedbacks are present and/or a
neuron is a system with its own dynamics (namely, a discrete map), then an ANN
is a multidimensional map, i.e. a set of coupled maps with specific properties of the
elements and couplings (see, e.g., Ivanchenko et al., 2004). Analogously, if a neuron
is described with ordinary differential equations, then the respective ANN is a set of
coupled ODEs (see, e.g., Kazantsev, 2004; Kazantsev and Nekorkin, 2003; 2005).
Thus, complexity of an ANN dynamics depends on the kind of basic elements, the
number of basic elements and couplings between them.

3.8.1 Standard Formal Neuron

Such an artificial neuron consists of an adaptive integrator and a non-linear converter
(Fig. 3.23a). A vector of values {xi } is fed to its inputs. Each input xi is supplied
with a certain weight wi . The integrator performs weighted (adaptive) summation
of inputs

S =
n∑

i=1

wi xi . (3.41)

Fig. 3.23 Formal and biological neurons: (a) a scheme of an artificial neuron; (b) a plot of the
unit step function; (c) a biological neuron (filled circles mark input synapses, open ones mark an
output, triangles mark direction of excitation propagation)
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The non-linear converter forms an output signal of a neuron as

y = F(S). (3.42)

The choice of the neuron activation function F is determined by (i) specificity
of a problem; (ii) convenience of realisation with a computer, an electric scheme
or another tool; (iii) a “learning” algorithm (some learning algorithms impose con-
straints on the activation function properties, Sect. 3.8.4). Most often, the kind of
non-linearity does not principally affect a problem solution. However, a successful
choice can reduce duration of learning several times. Initially, one used the “unit
step” as a function F :

F(S) =
{

0, S < 0,

1, S ≥ 0,
(3.43)

whose plot is shown in Fig. 3.23b. Currently, a list of possible activation functions
would occupy a huge space (e.g. Gorban’ et al., 1998; http://www.neuropower.de).
In particular, a widespread version is a non-linear function with saturation, the so-
called logistic function or classical sigmoid:

F(S) = 1

1 + e−αS
. (3.44)

With decrease in α, sigmoid gets flatter tending to a horizontal straight line at the
level of 0.5 in the limit of α → 0. With increase in α, sigmoid tends to the unit step
function (3.43).

Input values of the variable x can be likened to excitations of a real-world (bio-
logical) neuron (Fig. 3.23c) coming from dendrites of surrounding neurons via
synapses (connection places). A real-world neuron can have the number of den-
drites ranging from units to dozens of thousands. They provide information about
the states of surrounding cells coupled to the neuron. Coupling strengths in a model
are reflected by the weight coefficients wi . Carrier of information in nerve cells
is a jump of a membrane potential (a neural pulse, a spike). It is formed in a cell
after a joint action of dendrites exceeds some critical value that is modelled in a
formal neuron by the summation and the non-linear function. A spike propagates
via an axon as a wave of membrane polarisation. Coming to a synapse, such a wave
induces secretion of substances (neurotransmitters) which diffuse into dendrites of
the neurons coupled to a given axon and are converted by receptors into an elec-
tric excitation pulse.13 After generation of a pulse, a cell turns out unreceptive to
external influences for a certain time interval. Such a state is called refractory. In
other words, one deals with an excitable system which can be in the resting phase
(before generation), excitation phase (during conduction of a pulse) and refractory

13 As well, there are purely electric mechanisms of neuron coupling.
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phase (during a certain interval after a pulse). The refractory period determines a
limit possible frequency of pulse generation (less than 200 Hz).

3.8.2 Architecture and Classification of Neural Networks

To construct an ANN, one usually selects one of several standard architectures and
removes superfluous elements or adds (more rarely) new ones. Two architectures
are regarded as basic ones: fully connected and (multi)layered networks. In fully
connected neural networks each neuron sends its output signal to all the neurons
including itself. All input signals are sent to all neurons. Output signals of a network
can be defined as all or some of neuron output signals after several steps of network
functioning.

In multi-layer neural networks, neurons are combined in layers (Fig. 3.24). A
layer contains neurons with the same input signals. The number of neurons in a
layer is arbitrary and does not depend on the number of neurons in other layers. In
general, a network consists of several layers which are enumerated from left to right
in Fig. 3.24. External input signals are fed to inputs of neurons of an input layer
(it is often enumerated as 0th), while the network outputs are output signals of the
last layer. Apart from an input and an output layer, a multi-layered network may
contain one or several hidden layers. Depending on whether the next layers send
their signals to previous ones, one distinguishes between feed-forward networks
(without feedbacks) and recurrent networks (with feedbacks). We note that after
introduction of feedbacks a network is no longer a simple mapping from a set of
input vectors to a set of output vectors. It becomes a dynamical system of high
dimensionality and the question about its stability arises. Besides, neural networks
can be divided into the following:

(i) Homogeneous and heterogeneous (i.e. with the same activation function for all
neurons or with different activation functions);

(ii) Binary (operate with binary signals consisting of 0s and 1s) and analogous
(operate with real-valued numbers);

(iii) Synchronous and asynchronous.

Fig. 3.24 A three-layer feed-forward network (a perceptron)
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As well, ANNs differ in the number of layers. Theoretically, the number of layers
and the number of neurons in each layer can be arbitrary. However, they are bounded
in fact by computational resources realising a neural network. The more complex a
network is, the more complicated tasks it can solve.

3.8.3 Basic Properties and Problems

Despite primitivism in comparison with biological systems, even multi-layer feed-
forward ANNs possess a number of useful properties and are capable of solving
quite important tasks. Those properties are as follows.

(i) Learning ability. After selection of an ANN architecture and neuron proper-
ties, one can “train” an ANN to solve some problem with the aid of a certain
learning algorithm. There are no guarantees that it is always possible but in
many cases learning appears successful.

(ii) Generalisation capability. After the learning stage, a network becomes insen-
sitive to small variations in an input signal (noise) and gives a correct result at
its output.

(iii) Abstraction capability. If several distorted variants of an input image are pre-
sented to a network, the latter can itself create at its output an ideal image,
which has never been met by it previously.

Among the tasks solved with ANNs, we note pattern (e.g. visual or auditory
images) recognition, associative memory14 realisation, clustering (division of an
investigated set of objects into groups of similar ones), approximation of func-
tions, time series prediction (Sect. 10.2.1), automatic control, decision making,
diagnostics.

Many of the listed tasks are reduced to the following mathematical formulation. It
is necessary to construct a map X → Y such that a correct output signal Y is formed
in response to each possible input X . The map is specified by a finite number of
pairs (an input, a correct output). The number of those pairs (learning examples) is
significantly less than the total number of possible input signals. A set of all learning
examples is called a learning sample. For instance, in image recognition, an input
X is some representation of an image (a figure, a vector), an output Y is the number
of a class to which an input image belongs. In automatic control, X is a set of values
of the control parameters of an object, Y is a code determining an action appropriate
for the current values of control parameters. In forecast, an input signal is a set of

14 In von Neumann’s model of computations (realised in a usual computer), memory access is
possible only via an address, which does not depend on the memory contents. Associative memory
is accessible based on the current contents. Memory contents can be called even by partial or
distorted contents.
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values of an observable quantity until a current time instant and an output is a set of
the next values of an observable.

All these and many other applied problems can be reduced to a problem of
construction of some multivariate function. What are capabilities of ANNs in this
respect? As it was illustrated, they compute univariate linear and non-linear func-
tions and their compositions obtained due to cascade connection of neurons. What
can one get with the use of such operations? What functions can be accurately
approximated with ANNs? As a result of long-lasted polemics between Kolmogorov
and Arnold, a possibility of exact representation of a continuous multivariate func-
tion via a composition of univariate continuous functions and summation was shown
(Arnold, 1959; Kolmogorov, 1957). The most complete answer to the question about
approximating properties of neural networks is given by Stone’s theorem (Stone,
1948) stating universal approximating capabilities of an arbitrary non-linearity: lin-
ear operations and cascade connection allow to get a device approximating any con-
tinuous multivariate function to any required accuracy on the basis of an arbitrary
non-linear element. A popular exposition of the theorems of Kolmogorov and Stone
in application to ANNs is given in Gorban’ (1998). Thus, neurons in a network may
have practically any non-linear activation function, only the fact of its non-linearity
is important. In principle, ANNs are capable of doing “very many things”. Yet, an
open question is: How to teach them to do it?

3.8.4 Learning

During its functioning, a neural network forms an output signal Y corresponding to
an input signal X , i.e. realises a certain function Y = g(X). If a network architecture
is specified, then the values of g are determined by synaptic weights. The choice of
their optimal values is called network learning. There are various approaches to
learning.

Learning by instruction. Here, one uses a learning sample, i.e. pairs of known
input and output values (X1,Y1), . . . , (X N ,YN ).

Let the values of vectors X and Y be related via Y = g(X), in particular,
Yi = g(Xi ), i = 1, . . . , N . A function g is unknown. We denote E as an error
function assessing deviation of an arbitrary function f from the function g. Solving
a problem with an ANN of a given architecture means to construct a function f
by selecting synaptic weights so as to minimise the error function. In the simplest
case, learning consists of searching for a function f which minimises E over a
learning sample. Given a learning sample and the form of function E , learning of a
network turns into a multidimensional non-linear optimisation problem (Dennis and
Schnabel, 1983), which is often very complicated in practice (see also Sect. 10.2.1).
It requires time-consuming computations and represents an iterative procedure; the
number of iterations ranges typically from 103 to 108.

Since creation of intellectual schemes is based to a significant extent on bio-
logical prototypes, researchers still discuss whether the algorithms of learning by
instruction can be considered as analogues to natural learning processes or they are
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completely artificial. It is known that, for instance, neurons of visual cortex learn to
react on light pulses only under the influence of the pulses themselves without an
external teacher. In particular, we are able to solve such a complicated task as image
recognition. However, higher stages of learning (e.g. for children) are impossible
without a teacher (their parents). Besides, some brain areas are quite able to play
a role of “teacher” for other areas by controlling their activity. Therefore, it is not
possible to claim uniquely which type of learning (with a teacher or without it) is
more biologically plausible.

Learning without a teacher. In a widespread version it is as follows. There is a
set of input vectors. A set of output vectors is absent. Learning a network means
selecting its parameter values so that it would classify input vectors in some “opti-
mal” way. An ANN must divide a set of input vectors into groups (classes) so that
each class contains vectors close to each other while differences between classes
are relatively big. This is done via optimisation of a cost function involving the
two mentioned factors. When a new input vector is presented, a learned network
attributes it to one of the classes which have been formed by it previously (without a
teacher). One of the most well-known examples of such a way to solve classification
problems is the learning of Cohonen network (see, e.g., Gorban’ et al., 1998).

Currently, there is a huge body of literature on neural networks highlighting
very different questions ranging from the choice of the ANN architecture to its
learning and practical applications. In particular, there are many works accessi-
ble to a wide readership (Gorban’, 1998; Gorban’ et al., 1998; Loskutov and
Mikhailov, 2007; Malinetsky and Potapov, 2000, pp. 171–203; Wasserman, 1989;
http://www.neuropower.de). Some additional details and examples of ANN applica-
tions to modelling from time series are given in Sect. 10.2.1.

Thus, several representative classes of deterministic models are discussed in
Sects. 3.5, 3.6, 3.7 and 3.8. Roughly speaking, we have described them in the order
of increasing complexity in terms of the phase space dimension, fractal dimension
of possible attractors, the number of positive Lyapunov exponents, the diversity of
possible dynamical regimes and configurations of the parameter space. Yet, linear
ordering most often appears impossible; therefore, we have presented more specific
discussion of the complexity for each example separately. To summarise, the pre-
sented deterministic models are capable of describing huge number of phenomena
observed in real-world systems ranging from quite simple ones (e.g. an equilibrium
state, a limit cycle and a linear resonance) to very complex (e.g. high-dimensional
chaotic motions, transition to chaos and diverse bifurcations in multi-parametric
non-linear systems).
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