
Chapter 2
Two Approaches to Modelling and Forecast

Before creation of a model, one should specify one’s intentions in respect of its
predictive ability. Such a choice determines which mathematical tools are appropri-
ate. If one does not pretend to a precise and unique forecast of future states, then
a probabilistic approach is traditionally used. Then, some quantities describing an
object under investigation are declared random, i.e. fundamentally unpredictable,
stochastic.1 Such a “verdict” may be based on different reasoning (Sect. 2.2) but
if it is accepted, one uses a body of the theory of probability and mathematical
statistics. At that, to characterise dependence between a condition S and an event
A, one speaks only of a probability P of A if S has occurred, i.e. of a conditional
probability P(A|S).

A dynamical approach, which is an alternative to the probabilistic one, relies
on the conception of determinism. Determinism is a doctrine about regularity and
causation of all phenomena in nature and society. Therein, one assumes that each
occurrence of an event S (a cause) inevitably leads to an occurrence of an event
A (a consequence). Famous French astronomer, mathematician and physicist Pierre
Simon de Laplace (1749–1827) was reputed as the brightest proponent of determin-
ism. In respect of his scientific views, he showed solidity which seemed surprising
in view of his inconsistency in everyday attachments2 (Mathematical dictionary,
1988, p. 117). It was Laplace who told Napoleon that he did not need “a hypoth-
esis about the existence of God” in his theory of the Solar system origin. He saw
an etalon of a complete system of scientific knowledge in celestial mechanics and
tried to explain the entire world including physiological, psychological, and social
phenomena, from the viewpoint of mechanistic determinism.

1 “Stochastic” originates from a Greek word which means “capable of guessing, acute”. However,
it is currently used in a somewhat different sense to denote uncertainty, randomness.
2 Several words about the picturesque personality of Laplace. Consistency of his materialistic
world view stands in a sharp contrast to his political instability; he took a victor’s side at each
political upheaval. Initially, he was a republican. After Napoleon came to power, he became a
Minister of the Interior and, then, was appointed as a member and vice-president of Senate. In the
time of Napoleon, he got the title of count of the empire. He voted for dethronement of Napoleon
in 1814. After restoration of Bourbons, he got peerage and a title of marquis.
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26 2 Two Approaches to Modelling and Forecast

Mathematical realisation of the dynamical (deterministic) approach was provided
by the apparatus of infinitesimals which appeared in the seventeenth century due to
the efforts of Newton and Leibniz. An arsenal of researchers got a powerful tool
for the description of temporal evolution: ordinary differential equations (ODEs).
A theorem about unique existence of their solution at fixed initial conditions made
differential equations an etalon for deterministic mathematical description of vari-
ous phenomena: “a unique future corresponds to a given present!”. Currently, apart
from ODEs one widely uses other mathematical tools for construction of determin-
istic models (Chap. 3) including difference equations, discrete maps and integro-
differential equations. All those models regardless of their concrete meaning, which
may be far from mechanics (dynamics), are often called dynamical models. In gen-
eral, the term “dynamical” is currently often used to denote “deterministic” rather
than “force” or “mobile”.

2.1 Basic Concepts and Peculiarities of Dynamical Modelling

2.1.1 Definition of Dynamical System

The basis of deterministic description is an idea that the entire future behaviour
of an object is uniquely determined by its state at an initial time instant. A rule
determining an evolution from an initial state is called evolution operator.3 State
or state vector is a collection of D quantities x = (x1, x2, . . . , xD), where D is
called dimension. The quantities xk are called dynamical variables. A state may be
both finite dimensional (D is a finite number) and infinite dimensional. The latter is
the case, e.g., when a state is a spatial distribution of some quantity, i.e. a smooth
function of a spatial coordinate.4

Evolution operator �t determines a state at any future time instant t0 + t based
on an initial state x(t0): x(t0 + t) = �t (x(t0)). Mathematically, it can be specified
with equations, maps, matrices, graphs and any other means (Chap. 3) under the
only condition of a unique forecast.

The concept of a dynamical system (DS) is a key one in the deterministic
approach. It was used already by Poincare at the beginning of the twentieth century
but its meaning is still not completely established. The term DS is often understood
in different ways. Therefore, it is useful to discuss it in more detail. The word

3 In general, operator is the same as mapping, i.e. a law which relates some element x of a certain
given set X to a uniquely determined element y of another given set Y . The term “operator” is
often used in functional analysis and linear algebra, especially for mappings in vector spaces. For
instance, operator of differentiation relates each differentiable function to its derivative (Mathe-
matical dictionary, 1988).
4 In this case the state is also called “state vector”. The term “vector” is understood in a general
sense as an element of some space (Lusternik and Sobolev, 1965).
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“system”5 is typically used in a traditional sense as “a collection of elements
being in some relations to each other and forming a certain integrity” (Philosophic
dictionary, 1983, p. 610). Alternative interpretations relate mainly to the under-
standing of the word “dynamical” and to what elements and systems are implied
(real-world objects, mathematical constructions or both). Some authors even take
the term “dynamical” out of the deterministic framework and combine it with ran-
domness. For the sake of illustration, we cite below several selected definitions
formulated by known specialists in the field (see also Alligood et al., 2000; Guck-
enheimer and Holmes, 1983; Katok and Hasselblat, 1995; Loskutov and Mikhailov,
2007):

The concept of a DS appeared as a generalisation of the concept of a mechanical system
whose motion is described with Newton’s differential equations. In its historical develop-
ment, the concept of a DS similarly to any other concept gradually changed getting new and
deeper contents. . . Nowadays, the concept of a DS is quite broad. It covers systems of any
nature (physical, chemical, biological, economical, etc) both deterministic and stochastic.6

Description of a DS is very diverse. It can be done with differential equations, functions
from algebra of logic, graphs, Markov chains, etc. (Butenin et al., 1987, p. 8).

When speaking of a DS, we imply a system of any nature which can take different mathe-
matical forms including ordinary differential equations (autonomous and non-autonomous),
partial differential equations, maps on a straight line or a plane (Berger et al., 1984).

In the section “What is a dynamical system?” of the monograph Malinetsky and
Potapov (2000), the authors note: “In general, in different books one can find differ-
ent interpretations of the term DS, e.g. like the following ones:

• a synonym of the term “a set of ODEs dx
/

dt = f(x, t)”;
• a synonym of the term “a set of autonomous ODEs dx/dt = g(x)”;
• a mathematical model of some mechanical system.

We7 will adhere to the viewpoint according to which the concept of a DS is a gen-
eralisation of the concept of a set of autonomous differential equations and includes
two main components: phase space P (metric space or manifold) and continuous
or discrete one-parametric group (semigroup) ϕt (x) or ϕ(x, t) of its transforms. A
parameter t of the group is time.”

Another formalised definition is as follows: “A DS is a quadruple (X, B, μ,�),
where X is a topological space or a manifold, i.e. an abstract image of a state space,
B are some interesting subsets in X , e.g. closed orbits or fixed points. They form
an algebra in the sense that they include not only separate elements but also their
unions and intersections. They are necessary to introduce a measure, since X itself
can be immeasurable. μ is a measure, e.g. a volume of some domain or a frequency
of an orbit visitations to it. μ is desired to be ergodic, unique, and invariant under
the group of transforms �t which defines an evolution. Sometimes, one adds also a

5 From the Greek word “συστημα”, i.e. “a whole consisting of parts” (Philosophic dictionary,
1983, p. 610).
6 Highlighting with italic is ours in all the cited definitions.
7 The authors G.G. Malinetsky and A.B. Potapov.
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typical (in the sense of the measure μ) initial point. For example, the point x0 = 0
is not typical for the operator �t , t ∈ Z : xt+1 = �1(xt ) ≡ xt (1+ xt ), since it does
not lead to an evolution” (Makarenko, 2002).

One settled to understand a DS as a system of any nature (physical, chemical, biological,
social, economical, etc.) whose state changes discretely or continuously in time (Danilov,
2001, p. 6).

By abstracting from a concrete physical nature of an object, one speaks of it as of DS if it
is possible to specify such a set of quantities called dynamical variables and characterising
a system state whose values at subsequent time instant are obtained from an initial set
according to some rule. This rule is said to determine an evolution operator for the system
(Kuznetsov, 2001, p. 7).

A DS can be thought of as an object of any nature whose state changes in time according
to some dynamical law, i.e. as a result of a deterministic evolution operator action. Thus,
the concept of DS is a consequence of a certain idealisation when one neglects influences of
random perturbations inevitably present in any real-world system. . . Each DS corresponds
to some mathematical model. . . (Anishchenko et al., 2002, pp. 1–2).

A DS is a system whose behaviour is specified by a certain set of rules (an algorithm).
A DS represents only a model of some real-world system. Any real-world system is prone
to fluctuations and, therefore, cannot be dynamical (Landa, 1996).

The last definition is the closest one to the considerations in our book. It does
not lead to difficulties in classification of possible situations. Thus, many real-
world phenomena and objects can be successfully considered both with the aid
of “probabilistic” (random) and “deterministic” mathematical tools. To illustrate
that dynamical ideas can be fruitful under certain conditions and meaningless under
different ones in modelling of the same object, we refer to the well-known “coin
flips” (Sect. 2.6). There are no contradictions if the name of DS is related only to
deterministic models and perceived as a kind of scientific jargon in application to
real-world systems.

Further, we call DS a mathematical evolution model for which one specifies (i) a
state x and (ii) an evolution operator �t allowing a unique prediction of future states
based on an initial one: x(t0 + t) = �t (x(t0)). In relation to real-world systems, we
understand the term DS as a brief version of a statement “a system whose description
with a dynamical model is possible and reasonable”.

2.1.2 Non-rigorous Example: Variables and Parameters

Let us consider different dynamical systems which could describe an object which
is familiar to many people – a usual cat (Fig. 2.1). The choice of quantities playing
a role of dynamical variables or parameters of a model is determined by the purpose
of modelling. If the purpose is to describe an evolution of the state of the cat’s health,
one can use its mass M = x3, height H = x2 and hair density N = x1 (number
of strands per a unit area) as dynamical variables. The collection x = (x1, x2, x3)

is a state vector of a dimension D = 3. Of course, one can imagine a number of
other variables, such as blood haemoglobin concentration (x4) and pulse rate (x5).
It would increase a model dimension D and make an investigation of the model
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Fig. 2.1 Description of evolution of the cat’s health: (a) variables and parameters; (b) the phase
space and a phase orbit at fixed values of parameters a′ = (

a′
1, a′

2

)
; (c) time realisations xi (t), i.e.

projections of the phase orbit onto the phase space axes; (d) a combined space of parameters and
states presenting an established value of x1 versus a2 at fixed a1 = a′

1; (e) a parameter space, the
area 2 corresponds to a normal life of a cat and areas where its prolonged existence is impossible
due to either hunger (the area 1) or gluttony (the area 3) are painted over. A point a′ in the parameter
space corresponds to a definite structure of the entire phase space

more complicated. For the sake of illustration, it is sufficient for us to use the three
dynamical variables and consider dynamics of the object in the three-dimensional
phase space (Fig. 2.1b). Each point of the phase space corresponds to a vector x =
(x1, x2, x3) reflecting an object state. Thus, the cat is too young and feeble at the
point t = 0 (Fig. 2.1b), it is young and strong at the point t = 1, and it is already
beaten by the life at t = 2.

Obviously, a current health state of the cat and its variations depend on the
quantities which we can keep constant or change as we want. Such quantities are
called parameters. For instance, these can be nutrition (the mass of food in a daily
ration a1, kg/day) and life conditions (the duration of walks in fresh air a2, h/day).
The number of model parameters as well as the number of dynamical variables is
determined by the problem at hand and by the properties of an original. Thus, the
health of a cat depends not only on the mass of food but also on the calorie content
of food (a3), amount of vitamins (a4), concentration of harmful substances in the
air (a5), etc. For simplicity, we confine ourselves to two parameters and consider
behaviour of the object in a two-dimensional parameter space, i.e. on a parameter
plane (a1, a2), see Fig. 2.1e. Each point of the parameter plane corresponds to a
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certain kind of the temporal evolution of the object, i.e. to a certain kind of a phase
orbit passing through an initial point in the phase space. Regions in the parameter
space which correspond to different qualitative behaviour are separated with bifur-
cational sets of points. Bifurcational sets on the parameter plane (Fig. 2.1e) are
boundary curves between white and black areas (bifurcational curves).

Just to illustrate the terms introduced above, without pretensions of strict descrip-
tion of such a complex biological object, one can consider the following set of first-
order ordinary differential equations as a dynamical system modelling the health
state of the cat:

dx1
/

dt = f1(x1, x2, x3, a1, a2),

dx2
/

dt = f2(x1, x2, x3, a1, a2),

dx3
/

dt = f3(x1, x2, x3, a1, a2).

Relying upon everyday-life experience and imagination, one could suggest dif-
ferent forms for the functions fk , e.g. algebraic polynomials whose coefficients are
expressed via a1 and a2. It is a very common situation when model parameters enter
evolution equations just as polynomial coefficients. According to the theorem of
existence and uniqueness of a solution, the set of ordinary differential equations
at fixed values of parameters and initial conditions has a unique solution under
some general conditions. It means that the set of ODEs specifies a single phase
orbit passing through a given initial point in the phase space.

Division of characterising quantities into dynamical variables and parameters is
dictated by a modelling task. If the purpose of the cat modelling were description of
its mechanical movements in space (rather than the state of its health as above), it
would be reasonable to choose different variables and parameters. Thus, neither the
animal mass M nor its “downiness” N and height H (previous dynamical variables)
change during a jump of the cat. However, these quantities essentially affect its
flight and must be taken into account as parameters a1 = M, a2 = N , a3 = H ,
along with other quantities which influence mechanical motion (e.g. the shape of
the cat’s body). As dynamical variables, one can consider coordinates of the centre
of the mass of the cat (x1 = x, x2 = y, x3 = z) and angular displacements of
its longitudinal axis in relation to coordinate axes (x4 = α, x5 = β, x6 = γ ).
Further, one can write down an evolution operator based on Newton’s equations
for progressive and rotational movements in contrast to the above semi-intuitive
invention of model equations for the state of the cat health. Thus, depending on the
purpose of modelling, the same physical quantities serve as dynamical variables in
one case and play a role of parameters in another one.

Dynamical variables and parameters can be recognised in the evolution equa-
tions for a dynamical system. For instance, in the system specified by the classical
equation of non-linear oscillator with cubic non-linearity (Duffing oscillator)

d2x
/

dt2 + 2δ dx
/

dt + ω2
0(bx3 − x) = 0, (2.1)
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one of the dynamical variables is the quantity x and the parameters are δ, ω0, b, i.e.
the parameter vector a = (δ, ω0, b) is three dimensional. The system itself is two
dimensional (D = 2) since one must specify initial values of x and dx/dt to find
a particular solution to equation (2.1). The latter becomes clearer if one rewrites
equation (2.1) equivalently as a set of two first-order equations for the variables
x1 = x and x2 = dx/dt :

dx1
/

dt = x2; dx2
/

dt = −2δ x2 − ω2
0

(
bx3

1 − x1

)
.

Thus, the derivative dx/dt serves as the second dynamical variable of the sys-
tem (2.1).

2.1.3 Phase Space. Conservative and Dissipative Systems.
Attractors, Multistability, Basins of Attraction

A significant merit of dynamical modelling is a possibility of a vivid representation,
especially in the case of low dimension D and small number of parameters. For such
a representation, one uses formal spaces8: state space (or phase space), parameter
space and their hybrid versions. Along the axes of a formal space, one indicates
the values of dynamical variables or parameters. In a hybrid version, parameters are
shown along certain axes and variables along others.

A state vector x(t) at some time instant t corresponds to a point in a phase space
with coordinates x1(t), x2(t), x3(t) called a representative point since it represents
an instantaneous state. In evolution process, a representative point moves along a
certain curve called a phase orbit. A set of characteristic phase orbits is called phase
portrait of a system. Having some experience, one can extract a lot of information
about possible motions of a system from its phase portrait. Thus, a phase space is
three dimensional in the above example with a cat. A single orbit corresponding
to a concrete choice of an initial state at t = 0 is shown in Fig. 2.1b. It evidences
that the animal developed well at the beginning and achieved excellent conditions
at t = 1. Then, it grew thin and cast the coat up to an instant t = 2. We note that a

8 “Space is a logically conceivable form (structure) serving as a medium where other forms or
constructions are realised. For instance, a plane or a space serve in elementary geometry as media
where various figures are constructed. . . . In contemporary mathematics, a space defines a set of
objects called points. . . . Relations between points define “geometry”. As examples of spaces,
one can mention: (1) metric spaces . . ., (2) “spaces of events” . . ., (3) phase spaces. Phase space
of a physical system is a set of all its states which are considered as points in that space. . . .”
(Mathematical dictionary, 1988). A space can be topological (if a certain non-quantitative concept
of “closeness” is defined), metric (closeness is determined by “metrics”), etc. The choice of a phase
space is determined by what one wants to use in modelling. For example, one needs “a smooth
manifold” (Sect. 10.1.1) to use differential equations as a model. To define a limit behaviour of DS
orbits, one needs a “complete” space, i.e. each limit point of a convergent sequence should belong
to the same space.
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phase orbit itself does not carry information about a time instant when a point visits
a certain area.

Usually, one shows the most characteristic orbits on a phase portrait. For illus-
tration, let us consider elements of the phase space of a system (2.1), which models
oscillations in a potential well with two minima in the presence of friction similarly
to a ball rolling in a double-pit profile shown in Fig. 2.2a. The curves on a phase
plane (x, dx/dt) in Fig. 2.2b are phase orbits starting from points 1 and 2. They
cannot intersect since it would violate a dynamical description: a unique present
must lead to a unique future! Situations resembling intersections can be found at
singular points, i.e. points of equilibrium where a state of a DS remains constant for
arbitrarily long time. There are three of them on the portrait: O, A1, A2. The first
one corresponds to the location of a resting ball on the top of the hill (Fig. 2.2a),
while the others show the left and right pits. Other points of the phase space corre-
spond to states which are left by a representative point at a future time instant. Each
of them corresponds to a certain phase orbit and time realisations of dynamical
variables xk(t), Fig. 2.2b. We note that in a typical phase orbit, one can distinguish
between a starting interval (a transient process) and a later stage with greater degree
of repeatability (an established motion). Established motions are less diverse than
transient processes and correspond to objects called attractors in a phase space of
a dissipative system. In our example these are states of stable equilibrium: points
A1, A2. Indeed, they seem to attract orbits from certain areas of the phase space.
Starting from different points (1 and 2 in Fig. 2.2b), phase orbits can get to different
attractors.

A set of points in a phase space from which a system gets to a certain attractor
is called basin of attraction.9 If an attractor in a phase space is unique, then its
basin of attraction is the entire phase space. If there are several attractors, one says
that multistability takes place. Then, their basins divide a phase space between each
other, e.g. as shown with shading in Fig. 2.2c, d. Attractor can exist only in a phase
space of a dissipative dynamical system. This is a system exhibiting phase volume
compression illustrated in Fig. 2.3. A set of initial points occupies a volume V (0).
Starting from V (0), a system gets to a volume V (t) after some time interval t . A
system is called dissipative if a phase volume decreases with time, V (t) < V (0). In
a one-dimensional case, a measure of a phase volume V is an interval length, it is
a surface area in a two-dimensional case and a hyper-volume in a multidimensional
case of D > 3. Finally, representative points get from an initial volume to attractors

9 Strict definition of attractor is a subject of multiple discussions. A universally accepted definition
is still lacking. One of the popular ones is given in several steps (Malinetsky and Potapov, 2000,
pp. 76–77). “. . . a set A is called . . . invariant . . . if �t A = A. Neighbourhood of a set A is an
open set U containing the closure of A, i.e. A together with all its limit points including boundary
points. . . . A closed invariant set A is called an attracting set if there exists its neighbourhood U
such that �t (x) → A for all x ∈ U and t → ∞. A maximal U satisfying this definition is called
basin of attraction of A. . . . An attracting set containing an everywhere dense orbit is called an
attractor A.” This definition can be roughly reformulated as follows: an attractor is the least set to
which almost all orbits of a DS from some area of non-zero volume tend.
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Fig. 2.2 A ball in a double pit: an illustration (a); a phase portrait and time realisations (b); basins
of attraction of the equilibrium points A1, A2, i.e. of the two attractors coexisting in the phase
space (c); basins of attraction in a non-autonomous case at the values of parameters for which two
chaotic attractors coexist in the phase space (d)

Fig. 2.3 Illustration of some phase volume deformations: (a) a dissipative system; (b) a
conservative system. The curves are phase orbits

whose volume is equal to zero. Such a definition of a dissipative system is broader
than that used in physics where a dissipative system is a system with friction in
which mechanical energy turns into energy of chaotic molecular motion. In conser-
vative systems (friction-free systems in physics) an initial phase volume is preserved
and only its form changes, hence attractors are absent.

Some possible kinds of attractors and the character of the corresponding estab-
lished motions are shown in Fig. 2.4. Apart from equilibrium states represented by
points, an attractor can be
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Fig. 2.4 Examples of characteristic sets in a phase space of a continuous-time system and
corresponding time realisations

• a limit cycle, i.e. a closed curve, an image of a motion repeating itself with some
period T (Fig. 2.4b);

• a torus, i.e. “an infinitely thin tread winding up on a bagel”, an image of a
quasi-periodic motion (with two characteristic periods T1 and T2 whose ratio
is an irrational number) (Fig. 2.4c). A torus can be three- and multidimensional,
i.e. represent complex behaviour with three, four, and more incommensurable
frequencies of periodic components;

• a fractal set concentrated in a bounded area of a phase space, an image of chaotic
oscillations called a strange attractor (Fig. 2.4d).10

Kinds of established motion realised in a DS and corresponding attractors are
limited by its dimension. Thus, a phase space of a continuous-time system (e.g.
with operators represented by differential equations) can contain only equilibrium
points for D = 1, equilibrium points and limit cycles for D = 2, all the limit sets
listed above for D ≥ 3. Such considerations can help in practice to choose a model
dimension. For instance, detection of a chaotic motion indicates that one needs at
least three first-order non-linear ordinary differential equations to model an object.
A somewhat different situation is found in a discrete-time system. An outlook of
an attractor in its phase space can be imagined if one dissects the left pictures in
Fig. 2.4 with a plane (a Poincare cross section). A single-turn cycle gives a single
point in such a section. More complex cycles give several points. An orbit on a torus
“draws” a closed curve in a section representing a quasi-periodic motion in a phase
space of a discrete-time system. A chaotic attractor is represented by a set of points
structured in a complicated (often self-similar) manner. A chaotic motion can be
observed even in a phase space of one-dimensional non-invertible maps.

10 “Strange” means here “different from previously known”. An overview of kinds of chaotic
attractors is given, e.g. in Anishchenko (1997), Katok and Hasselblat (1995) and Kuznetsov (2001).
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2.1.4 Characteristics of Attractors

2.1.4.1 Geometrical Characteristics

Apart from visually detected differences, phase portraits are characterised by a num-
ber of quantitative measures. The most popular among them are dimensions. An
integer-valued topological dimension DT can be defined via an inductive principle
(Poincare, 1982): DT = 0 for a point; DT + 1 is the dimension of a set which
can be divided into non-intersecting parts with a subset of dimension DT. Accord-
ing to those rules, a smooth curve has topological dimension DT = 1, a surface
DT = 2, a volume DT = 3. In particular, an equilibrium point, a cycle and a
torus have topological dimensions 0, 1 and 2, respectively (see, e.g., Malinetsky,
2000, pp. 208–209). Structure of strange attractors differs qualitatively from the
above sets. The former are fractal (self-similar) so that one needs more complicated
measures called fractal dimensions. The simplest among them is capacity which
characterises only geometry of an attractor. One also introduces generalised dimen-
sions to take into account a frequency of a representative point visitations to subsets
of an attractor. Below, we present only brief information about fractal measures.
An educational computer program providing additional illustrations is located at
our website (http://www.nonlinmod.sgu.ru). For more detailed study of fractal mea-
sures and techniques of their computation, we recommend the lectures 11–13 in the
monograph Kuznetsov (2001) and references therein.

To define capacity, one covers a limit set in a D-dimensional phase space with
D-dimensional cubes (i.e. line segments, squares, three-dimensional cubes, etc.)
with an edge ε. Let a minimal number of cubes sufficient to provide covering be
N (ε).11 Capacity of a set is

DF = − lim
ε→0

ln N (ε)

ln ε
, (2.2)

if the limit exists. One can use D-dimensional balls or sets of another shape instead
of cubes (Kuznetsov, 2001, pp. 170–171; Malinetsky and Potapov, 2000, p. 210).
Corresponding illustrations are given in Fig. 2.5, where we also present a classical
example of a fractal Cantor set obtained from a unit segment by subsequent removal
of middle thirds. In the latter case, one gets the capacity

DF = − lim
ε→0

ln 2N

ln
(
1
/

3
)N

= ln 2

ln 3
≈ 0.63

according to the definition (2.2). Majority of fractal sets are of non-integer dimen-
sion and can be embedded into spaces whose dimension equals the smallest integer
exceeding a fractal dimension. Thus, the Cantor set is not already a finite set of
points, but it is still not a line.

11 Covering of a set A is a family of its subsets {Ai } such that their union contains A.
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Fig. 2.5 Illustrations to (a) definition of capacity; (b) the Cantor set

A more subtle characteristic is Hausdorff dimension, which generalises capacity
to the case of covering with elements of an arbitrary shape and size. Both quantities
often coincide, but not always (Kuznetsov, 2001, p. 173; Malinetsky and Potapov,
2000, p. 209). As a rule, accurate numerical estimation of the Hausdorff dimension
is impossible (Makarenko, 2002).

Generalised dimensions of Renyi Dq take into account a frequency of a repre-
sentative point visitation to different attractor areas (Kuznetsov, 2001, pp. 176–190;
Malinetsky and Potapov, 2000, pp. 211–214). Let an attractor be partitioned12 into
N non-empty cubes (cells) of size ε. Let us denote a portion of time spent by a
representative point at a cell number i as pi . It is a normalised density of points in a
cell, i.e. an estimate of the probability of a visitation to a cell.13 Then, one defines14

Dq = 1

q − 1
lim
ε→0

ln
N (ε)∑

i=1
pq

i

ln ε
. (2.3)

One distinguishes special kinds of generalised dimension: capacity at q = 0;
information dimension at q = 1 (in the sense of limit for q → 1); correlation
dimension at q = 2. The latter characterises an asymptotic behaviour of pairs of
points on an attractor. Indeed, a quantity p2

i can be interpreted as a probability to
find two representative points within an i th cube of size ε. It is this quantity that
can be easily estimated. Direct usage of the formula (2.3) leads to computational

12 A partition is a covering with non-overlapping subsets {Ai }.
13 It is strictly applicable to attractors supplied with an ergodic measure (Makarenko, 2002).
14 A mathematical comment (Makarenko, 2002). Let us assume that pi in each non-empty element
of a partition follows an exponential law: pi ∝ εα . If we deal with points on a line segment, then
α = 1 corresponds to a uniform distribution of points. However, α < 1 may appear for rarely
populated areas. Then, the ratio pi/ε → ∞ for ε → 0. Therefore, such a distribution is called
singular. For a square, areas with an exponent α < 2 support singular distributions. One calculates
a partition function

∑
i pq

i , where a parameter q allows “to adjust” an estimator to locations with
different probability density. If a partition function depends on ε via a power law, one introduces
the definition (2.3) and speaks of multifractal distribution. If Dq differs for different q , an attractor
is called multifractal (Kuznetsov, 2001, p. 182).
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difficulties at D > 3. Therefore, a number of numerical techniques for the esti-
mation of dimensions from a fragment of a phase orbit sampled discretely in time
(x(t1), x(t2), . . . , x(tN )) have been developed. One of the most popular ones is the
algorithm of Grassberger and Procaccia for the correlation dimension estimation
(Grassberger and Procaccia, 1983). It relies on the calculation of the so-called cor-
relation integral

C(ε) = 2

N (N − 1)

N∑

i=1

N∑

j=i+1

�
(
ε − ‖x(ti ) − x(t j )‖

)
,

where � is the Heavyside function (�(s) = 0, s ≤ 0; �(s) = 1, s > 0) and ‖·‖ is
a norm of a vector (Euclidean or any other). One can easily see that it is an estimate
of the probability that two points, arbitrarily chosen on an attractor according to
its probability measure, are separated by a distance less than ε. As it follows from
equation (2.3), C(ε) ≈ AεD2 holds true for ε → 0. Correlation dimension can be
estimated as a slope on the plot ln C(ln ε) at small ε. In practice, the number of
orbit points N is limited. Therefore, the size ε of a cell cannot be selected arbitrar-
ily small. Furthermore, the greater the dimension, the greater the number of points
required for its reliable estimation. There are different recommendations in respect
of the necessary number of points obtained under different assumptions (Eckmann
and Ruelle, 1985, 1992; Kipchatov, 1995).

To get integer-valued estimates of dimension of an observed motion, one uses
several ideas. One of the most popular is the false nearest neighbour technique
(Kennel et al., 1992). According to it, one checks the property that a phase orbit
restored in a space of a sufficient dimension should not exhibit self-intersections.
The technique is applied to reconstruct a phase orbit from a time realisation of a
single variable (Sect. 10.1.2).

Another widely known method is the principal component analysis (Broomhead
and King, 1986), where one distinguishes directions in a phase space along which
the motion of a representative point develops more intensively. It is done via the
analysis of correlations between state vector components (Sect. 10.1.2).

2.1.4.2 Dynamical Characteristics

The most widely used are Lyapunov exponents which characterise a speed of diver-
gence or convergence of initially nearby phase orbits. A weak deviation of a rep-
resentative point from an orbit on an attractor, i.e. a weak perturbation ε0, evolves
approximately according to an exponential law ε(
t) = ε0eλ
t until it gets large
(Fig. 2.6a). As a result, a D-dimensional sphere of initial perturbations transforms
into an ellipsoid after some time interval. If one prevents a system from a signifi-
cant rise of perturbations (from an evolution along the grey arrow in Fig. 2.6a) by
limiting an observation time interval τ , it is possible to estimate the exponents via
the ratios of an ellipsoid semi-axis length to an initial radius: λi = (1/τ) ln(εi/ε0).
These values averaged over an entire attractor are called Lyapunov exponents. Let



38 2 Two Approaches to Modelling and Forecast

Fig. 2.6 Illustrations of Lyapunov exponents: (a) idea of calculation; evolution of a circle with a
centre x0 (b) for a linear system; (c) for a non-linear system

us denote them �1,�2, . . . , �D . They characterise stability of the motion on an
attractor in a linear approximation. The set of values �i in descending order is
called spectrum of Lyapunov exponents, while sequence of their signs (+,− or 0)
is called the spectrum signature. If all the exponents are negative, i.e. the signa-
ture is 〈−,−, . . . ,−〉, then an attractor is an equilibrium point. The signature of a
limit cycle is 〈0,−, . . . ,−〉 and that of a two-dimensional torus is 〈0, 0,−, . . . ,−〉.
Spectrum of Lyapunov exponents for a chaotic attractor contains at least one posi-
tive exponent, e.g. 〈+, 0,−, . . . ,−〉, which determines the speed of divergence of
initially close orbits.

Let us now describe some mathematical details. We start with a set of linear
ordinary differential equations with variable coefficients:

dε(t)
/

dt = A(t)ε(t), (2.4)

where ε ∈ RD and A is a matrix of an order D. Let us denote ε(t0) = ε0. Then, a
solution to equation (2.4) at a time instant t0 + 
t is

ε(t0 + 
t) = M(t0,
t) · ε0, (2.5)

where M(t0,
t) is a matrix of order D which depends on the initial time instant
and the interval 
t and takes the form

M(t0,
t) = exp

⎛

⎝
t0+
t∫

t0

A(t ′)dt ′
⎞

⎠ , (2.6)

where the matrix exponent is understood in the sense of formal expansion in a power
series. For example, if D = 1 and A(t) = a = const, then dε(t)/dt = aε(t) and
the solution to equation (2.5) takes a familiar form ε(t0 + 
t) = ε0ea
t . Thus, in
the case of constant coefficients, a perturbation evolves according to an exponential
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law. If coefficients are not constant, then a situation changes to some extent. For
instance, one gets ε(t0 + 
t) = ε0ea
t eb sin
t for A(t) = a + b cos t .

To characterise increase (or decrease) in ε in a multidimensional case, one should
consider an evolution of a sphere of initial conditions with a centre at the origin
and a radius ‖ε0‖. Since the system is linear, a sphere transforms into an ellipsoid.
Lengths and orientations of semi-axes of the ellipsoid depend on the matrix M and,
hence, on the value of 
t . An absolute value of ε changes in a different manner
depending on the orientation of the initial vector ε0. To describe it, one can use the
so-called singular value decomposition of the matrix M. This is a decomposition of
the form M = U · � · VT, where U and V are mutually orthogonal matrices which
can be conveniently written in the form of vectors sets U = [u1,u2, . . . ,uD] and
V = [v1, v2, .., vD]. If the matrix M is non-singular, then vectors u1,u2, . . . ,uD

(called left singular vectors of the matrix M) are mutually orthogonal and of unit
length, i.e. they form an orthonormal basis in the space RD . The same considerations
apply to vectors v1, v2, . . . , vD (right singular vectors). The matrix � is diagonal.
Its diagonal elements σ1, . . . , σD are listed in descending order. They are called
singular values of the matrix M. Action of the matrix M on the vector ε0 parallel
to one of the right singular vectors vi multiplies its length by σi and transforms it to
a vector parallel to an i th left singular vector: ε(t0 + 
t) = σi‖ε0‖ui (Fig. 2.6b).
Thus, if at least one singular value of M exceeds 1 in absolute value, then an ini-
tial perturbation rises for some directions (one singular value is greater than 1 and
another one is less than 1 in Fig. 2.6b). It rises in the fastest way for the direction
of v1. The quantities showing how a perturbation changes are called local Lyapunov
exponents:

λi (t0,
t) = 1


t
ln σi . (2.7)

They describe an exponential growth in perturbations averaged over a finite
time interval. According to the definition (2.7), a strict equality ‖ε(t0 + 
t)‖ =
‖ε0‖ · eλi (t0,
t)
t holds true for respective directions of an initial perturbation. A.M.
Lyapunov proved that under certain conditions15 imposed on a matrix A, there exist
finite limits:

�i = lim

t→∞

1


t
ln

‖ε(t0 + 
t)‖
‖ε0‖ , i = 1, 2, . . . , D, (2.8)

where the quantities �i are exactly the Lyapunov exponents. They show an efficient
speed of increase (decrease) in perturbations. Which of D exponents is realised
for a given ε0 depends on the direction of the latter. A perturbation changes at a
speed determined by the largest Lyapunov exponent �1 for almost any direction

15 There exists a number L such that 1

t

t0+
t∫

t0
|Aij(t ′)|dt ′ ≤ L for all i , j and 
t (Kuznetsov,

2001, p. 140).
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of ε0. If �1 is positive, then a typical perturbation rises. Hence, �1 can be related
to a predictability horizon of a system (2.4) in a situation where the equation itself
is known precisely but initial conditions are specified at a certain error. A similar
analysis can be done for linear difference equations.

Linearised dynamics and Lyapunov exponents. The analysis of stability for non-
linear systems is performed via investigation of the linearised equations. Let us
consider a non-linear system

dx
/

dt = f(x). (2.9)

Let x(t) be one of its orbits with an initial condition x(t0) = x0. Let us call the
orbit with x(t0) = x0 a reference orbit and consider an orbit starting at a very close
initial condition x(t0) = x0 + ε0. Evolution of very small perturbations remaining
small over an entire time interval considered is described with a set of equations
linearised in a vicinity of the reference orbit:

dε

dt
= ∂f(x(x0, t))

∂x
ε. (2.10)

This equation coincides with equation (2.4) if one assigns

A(t) = ∂f(x(x0, t))

∂x
.

One can write down its solution in the form of equation (2.5), where the matrix
M maps an infinitesimal sphere of initial conditions with a centre x0 to an ellip-
soid with a centre x(t0 + 
t) (Fig. 2.6b). Strictly speaking, if a perturbation is not
infinitesimal but finite, an image of a sphere will not be an ellipsoid, but another set.
Linearised dynamics only approximately describes an evolution of finite perturba-
tions (Fig. 2.6c). For any reference orbit, there exists a set of Lyapunov exponents
characterising linearised dynamics in its vicinity.

In 1968, Oseledets showed that a set of Lyapunov exponents is the same for
any generic point x0 on an attractor. This statement is an essence of multiplicative
ergodic theorem (see, e.g., Kornfel’d et al., 1982; Malinetsky and Potapov, 2000;
pp. 224–227; Sinai, 1995). Thus, Lyapunov exponents characterise evolution of
infinitesimal perturbations not only for a given reference orbit but also for an entire
attractor of a DS. The largest Lyapunov exponent assesses an efficient speed of
growth of infinitesimal perturbations (see also Sect. 2.4).

2.1.5 Parameter Space, Bifurcations, Combined Spaces,
Bifurcation Diagrams

Attractors in a phase space evolve (change their shape, size, etc.) under parameter
variations and loose stability at certain parameter values. As a result, one observes
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qualitative changes in a system motion, changes in its phase portrait, e.g. changes
in the number of attractors in a phase space. Such a situation has got a name of
bifurcation16 (Belykh, 1997; Guckenheimer and Holmes, 1983; Malinetsky, 2000).
We stress that a smooth deformation of an attractor and corresponding variations in
an oscillation waveform are not regarded as a qualitative change.

To represent vividly the entire picture of possible kinds of established motions
and transitions between them, one can use a geometrical representation in a param-
eter space where the values of parameters are shown along the axes. Some special
methods are applied for that. The main idea is to single out sets of points separating
areas with qualitatively different behaviour, i.e. bifurcation sets. In a pictorial exam-
ple with a cat, a parameter space is the plane a1, a2 (Fig. 2.1e), while the boundaries
between areas with different shading are bifurcation curves: the area 2 corresponds
to a healthy life, while in the areas 1 and 3 the existence tragically and quickly
stops due to hunger or gluttony. Parameter spaces shown below (e.g. Figs. 3.6, 3.7,
3.11 and 3.19a) are structured in a much more complicated manner. Bifurcation sets
(curves) divide an entire parameter plane into areas where different attractors in a
phase space exist. A way to represent vividly a situation of multistability (coexis-
tence of several kinds of motion, several attractors in a phase space) on a parameter
plane (e.g. in Figs. 3.6, 3.11 and 3.19a) is to show an area where a certain attractor
exists as a separate sheet. Then, overlapping of many sheets at some parameters
values is equivalent to multistability. For instance, bistability (coexistence of two
attractors) takes place in the domain of intersection of sheets A and B in Fig. 3.6.
The third sheet in that domain relates to an unstable cycle. Similarly, multistability in
Fig. 3.19a takes place in the domain of intersection of sheets representing different
modes of a system under investigation.

It is relevant to note some opportunities provided by the use of combined spaces.
For instance, one can show a parameter value as an abscissa and a dynamical vari-
able value in an established regime as an ordinate. A bifurcation diagram obtained
in such a way for a quadratic map (Fig. 3.8e) is widely used to demonstrate universal
laws of similarity (scaling) in transition to chaos via the period-doubling cascade.
For a map describing a dissipative non-linear oscillator, such a diagram illustrates
phenomena of resonance, hysteresis, bistability and bifurcation cascade (Fig. 3.10c–
e). Moreover, one can present information in the phase and parameter spaces with
colours. Basins of different attractors or areas of existence and evolution of different
oscillatory regimes are often shown in such a way (Figs. 2.2 and 3.11).

We have given a very brief introduction to realisation of the dynamical approach.
For readers who want to get deep knowledge in the field, we refer to classical works
on qualitative theory of differential equations, theory of oscillations and non-linear
dynamics (e.g. Andronov et al., 1959, 1967; Arnold, 1971, 1978; Bautin and Leon-
tovich, 1990; Butenin et al., 1987; Guckenheimer and Holmes, 1983; Katok and
Hasselblat, 1995; Shil’nikov et al., 2001).

16 Initially, the word “bifurcation” meant division of an evolution pathway into two branches.
However, currently any qualitative change is called call “bifurcation”.
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2.2 Foundations to Claim a Process “Random”

The use of the probabilistic approach is typically related to recognition of some
quantity as “random”. However, what is “random quantity” and what is its dif-
ference from a “non-random” one? Currently, there are several points of view on
randomness which allow introduction of quantitative measures. For the most part,
they agree with each other, but not always. Sometimes they can even lead to oppo-
site results in the assessment of randomness or non-randomness of some quantity
in practice. Here, we consider the problem according to a scheme suggested in
Kravtsov (1989, 1997).

2.2.1 Set-Theoretic Approach

Set-theoretic approach underlying contemporary theory of probability (Gnedenko,
1950; Hoel, 1971; Pugachev, 1979, 1984; von Mises, 1964) associates the concept
of randomness with possibility to specify a probability distribution law for a given
quantity. Absence or presence of regularity is assessed via possible scattering of
the values of a quantity: (i) probability distribution density in the form of Dirac δ

function corresponds to a deterministic quantity; (ii) a non-zero “width”, “smeared
character” of distribution corresponds to unpredictable, random quantity.

2.2.1.1 Random Events and Probability

In description of many phenomena, researchers face impossibility to predict a course
of events uniquely, even if all controllable conditions are held “the same”.17 To
investigate such phenomena, the concepts of random event and probability were
introduced in the theory of probability. These concepts are indefinable in theory,
only some of their properties are defined via axioms. Their vivid interpretation and
connection to practice are the tasks for the users. Below, we remind these basic
concepts on an intuitive level, rather than rigorously.

An event is an outcome of a trial. Let us consider a classical example of the
“coin flip” (see also Sect. 2.6). Let a coin be flipped only once. Then, the single flip
is a trial. As a result, two events are possible: “a head” (an event A) and “a tail”
(an event B). A and B are mutually exclusive events. An event in which either A
or B occurs is called a union of events A and B and designated as A ∪ B. In our
case, it inevitably occurs as a result of any trial. Such an event is called sure and
its probability is said to be equal to unity: P{A ∪ B} = 1. Since a union of A and
B is a sure event, one says that A and B constitute a complete group of events. It
follows from an idea of symmetry that the events A and B are equiprobable, i.e.

17 We mark the words “the same” with inverted commas to stress their conventional nature. To be
realistic, one can speak of sameness only to a degree permitted by the conditions of observations
or measurements.
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the chances to observe a head or a tail are equal for a usual coin with a uniform
density of metal. Equiprobable mutually exclusive events constituting a complete
group are called elementary events. Probability of a union of mutually exclusive
events is equal to the sum of their probabilities. In our case, A and B constitute a
complete group, therefore, one can write down: P{A ∪ B} = P{A} + P{B} = 1.
From here and the condition of equiprobability, one gets the individual probabilities
as P{A} = P{B} = 1/2.

Elementary events may not be always singled out so easily. Sometimes, geomet-
rical considerations can help (a geometrical definition of probability). Let a trial
consist of a random throwing of a point onto an area A of a plane. A point falls
into A for sure and all subsets of A are “equal in rights”. A point may either fall
into a region B ⊂ A or not. Probability of an event that a point falls into a subset
B is defined via the ratio of the areas μ(B)/μ(A), where μ stands for the Lebesgue
measure. The latter is a surface area in our example, but the same formula can be
used for a space of any dimension. Such a definition can be interpreted in terms
of elementary events if they are introduced as falls of a point into small squares
covering A (for a size of squares tending to zero).18

The most habitual to physicists is a statistical definition of probability. If an event
A is realised M times in a sequence of N independent trials, then the ratio M/N
is called a frequency of occurrence of the event A. If a frequency M/N tends to
some limit for a number of trials tending to infinity, then such a limit is called a
probability of the event A. This is the most vivid (physical) sense of the concept
of probability. The property of an event frequency stabilisation is called statistical
stability. The entire machinery of the theory of probability is appropriate for the
phenomena satisfying the condition of statistical stability.

2.2.1.2 Random Quantities and Their Characteristics

Random quantity is any numerical function ξ of a random event. In the case of coin
flips the values of a random quantity can be defined as ξ = 1 (a head) and ξ = 0 (a
tail). The probability of ξ = 1 is the probability of a head.

For a complete characterisation of a random quantity, one needs to specify
probabilities of its possible values. For instance, one uses a distribution function
Fξ (x) ≡ P{ξ ≤ x}. If ξ is continuous valued and its distribution function is

18 We note that it is important to define clearly what is a “random” point, line or plane for the
definition of geometrical probabilities. For instance, let us assess the probability of an event that a
“random” chord exceeds in length an edge of an equilateral triangle inscribed into a unit circumfer-
ence. A chord can be chosen “randomly” in different ways. The first way: let us superpose a vertex
of a chord with one of the triangle vertices leaving the other chord vertex free. Then, a portion of
favourable outcomes when the length of a chord exceeds the length of an edge is 1/3. The second
way: let us select randomly a point in a circle which is the middle of a “random” chord. A chord
is longer than a triangle edge if its middle belongs to a circle inscribed into the triangle. Radius
of that circle equals half the radius of the circumscribed circle and, hence, a portion of favourable
outcomes assessed as the ratio of the areas of the two circles equals 1/4. We get two different
answers for two different notions of a random chord.
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differentiable, then one defines a probability density function pξ (x) ≡ dFξ (x)/dx .
Then, a probability for ξ to take a value from an infinitesimal segment [x, x + dx]
equals pξ (x)dx . For the sake of definiteness, we speak of random quantities sup-
plied with probability density functions.

Several often used distributions are the following:

(i) The normal (Gaussian) law

pξ (x) =
(

1
/√

2πσ 2
)

· e− (x−a)2

2σ2 , (2.11)

where a and σ 2 are parameters. This is one of the most often used distributions
in the theory of probabilities. The reason is that it possesses many useful theo-
retical properties and allows obtaining a number of analytical results. Besides,
in practice the quantities resulting from influence of multiple factors are often
distributed approximately according to the Gaussian law. It finds theoretical
justifications: the central limit theorem states that a sum of independent iden-
tically distributed random quantities is asymptotically normal, i.e. its distribu-
tion law tends to the Gaussian one for an increasing number of items.19

(ii) The exponential law (Laplace distribution):

pξ (x) =
{(

1
/

a
)

exp(−x /a), x ≥ 0,
0, x < 0; (2.12)

(iii) The uniform distribution on a segment [a, b]

pξ (x) =
{

1
/
(b − a), a ≤ x ≤ b,

0, x < a, x > b.
(2.13)

A random quantity ξ is often characterised by statistical moments of its distribu-
tion. An ordinary moment of an order n is the quantity

E
[
ξn] ≡

∞∫

−∞
xn p(x)dx . (2.14)

Here and further, E stands for the mathematical expectation of the quantity in
square brackets. The first-order moment is just the expectation of ξ . Its physical
meaning is an average over infinitely many independent trials. Central moments are
defined as ordinary moments for deviations of ξ from its expectation:

19 Some authors mention ironically the frequent use of the normal law in data analysis and the
references to the central limit theorem: engineers think that practical applicability of the central
limit theorem is a strictly proven statement, while mathematicians believe that it is an experimental
fact (see, e.g., Press et al., 1988).
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E
[
(ξ − E [ξ ])n

] ≡
∞∫

−∞
(x − E [ξ ])n p(x)dx . (2.15)

The second-order central moment is called variance. This is the most often used
measure of scattering. Let us denote it as σ 2

ξ . Then, σξ is called a root-mean-squared
(standard) deviation of ξ . The third-order central moment is called skewness (a
measure of a distribution asymmetry). The fourth-order central moment is called
kurtosis. Skewness is equal to 0 and kurtosis is 3σ 4

ξ for the normal law (2.11). If all
ordinary moments of ξ (for n = 1, 2, . . .) exist, then one can uniquely restore the
distribution function from their values. Parameters of a distribution law are related
to its moments. For instance, E[ξ ] = a and σ 2

ξ = σ 2 for the normal law (2.11);

E[ξ ] = a and σ 2
ξ = a2 for the exponential law (2.12); E[ξ ] = (a + b)/2 and

σ 2
ξ = (b − a)2/12 for the uniform law (2.13).

For two random quantities ξ1 and ξ2, one considers joint characteristics. The two
quantities can be regarded components of a two-dimensional random vector ξ . A
joint probability density function pξ(x1, x2) is then defined: a probability that the
values of ξ1 and ξ2 fall simultaneously (in the same trial) into infinitesimal segments
[x1, x1 + dx1] and [x2, x2 + dx2] equals pξ(x1, x2)dx1dx2. One also introduces a
conditional probability density for one quantity under the condition that the other
one takes a certain value, e.g. pξ1 (x1 |x2 = x∗ ). The quantities ξ1 and ξ2 are called
statistically independent if pξ(x1, x2) = pξ1(x1)pξ2(x2). In the latter case, the
conditional distributions of ξ1 and ξ2 coincide with the respective unconditional
distributions.

A random quantity depending on time (e.g. one deals with a sequence of values
of a quantity ξ ) is called a random process, see Chap. 4.

2.2.1.3 The Concept of Statistical Estimator

As a rule, in practice one does not know a distribution law and must estimate the
expectation of an observed quantity or parameters of its distribution from results of
several trials. This is a problem of mathematical statistics (Hoel, 1971; Ibragimov
and Has’minskii, 1979; Kendall and Stuart, 1979; Pugachev, 1979, 1984; Vapnik,
1979, 1995; von Mises, 1964) which is inverse to problems of the theory of prob-
ability where one determines properties of a random quantity, given its distribution
law. Let us denote a set of values of a random quantity ξ in N trials as {x1, . . . , xN }.
It is called a sample.20

A quantity whose value is obtained via processing the data {x1, . . . , xN } is called
a sample function. An estimator of some distribution parameter is a sample function,
whose values are in some sense close to the true value of that parameter.21 We denote
estimators with a “hat” like â.

20 A sample is an N -dimensional random vector with its own distribution law.
21 Theoretically speaking, any measurable sample function is called estimator. If estimator values
are not close to a true parameter value, such an estimator is just a “bad” one.
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Let a sample {x1, . . . , xN } represent independent trials. Let the expectation of ξ
be equal to a. Let the value of a be unknown but known to belong to a set A. It is
necessary to get an estimator â, which is as close to a as possible for any true value
of a from A. Any estimator is a random quantity since it is a function of random
quantities: â = f (x1, . . . , xN ). One gets a certain value of â from a certain sample
and another value from another sample, i.e. â is characterised by its own probabil-
ity density function p f (â) (Fig. 2.7), which is determined by the distribution law
pξ (x) and the way how â is computed (i.e. by the function f ). Different functions
f correspond to estimators with different distributions and, hence, with different
probabilistic properties.

2.2.1.4 Estimator Bias and Variance

The most important property of an estimator â is closeness of its values to a true
value of an estimated quantity a. Closeness can be characterised in different ways.
The most convenient and widely used one is to define an estimator error as the

Fig. 2.7 Samples consisting of 100 values taken from a Gaussian law with zero mean and unit
variance. The values of an estimator of the expectation for different samples are shown and its
probability distribution density (theoretically, it is Gaussian with zero mean and the variance of
0.1) obtained from 100 samples
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mean-squared difference between â and a:

E
[(

â − a
)2
]

≡
∞∫

−∞

(
â − a

)2
p f (â)dâ. (2.16)

It can be readily shown that the error is equal to the sum of two items:

E
[(

â − a
)2
]

= (
E[â] − a

)2 + σ 2
â . (2.17)

An estimator whose bias is equal to zero, i.e. E[â] = a for any a ∈ A, is called
unbiased. If the values of such an estimator are averaged over different samples, one
gets a quantity closer to the true value of a since the random errors in â compensate
each other. One could derive many unbiased estimators of a quantity a, i.e. different
functions f . They would differ in their variance. One can show that an unbiased
least-variance estimator is unique, i.e. if the least possible value of the variance
is σ 2

min, then it is exactly achieved only for a single estimator. An unbiased least-
variance estimator is an attractive tool, though the least value of the squared error
(2.17) may be achieved for another estimator, which is somewhat biased but exhibits
significantly smaller variance.

An unbiased estimator of the expectation from a sample of independent values is
the sample mean. We denote it by angular brackets and a subscript N : 〈ξ 〉N . This is
just an arithmetic mean

〈ξ 〉N = f (x1, . . . , xN ) = 1

N

N∑

i=1

xi . (2.18)

This is a least-variance estimator of the expectation in the case of the normally
distributed quantity ξ . If the distribution of ξ is symmetric and exhibits large kurtosis
and/or other deviations form normality, a sample median22 has typically a smaller
variance as an estimator of its expectation. As well, the sample median is more stable
to variations in the distribution law of ξ . Stability with respect to some perturbations
of the distribution law is often called robustness. To compute the sample median, one
may write down the values in a sample in ascending order: xi1 < xi2 < . . . < xiN .
Then, a sample median is xi(N+1)/2 for an uneven N and

(
xiN/2 + xiN/2+1

)
/2 for an

even N . The sample mean (2.18) is an estimator which is unbiased for any distribu-
tion of ξ , while a sample median can be biased for asymmetric distribution laws.

The sample moment of an order n can serve as an estimator of the respective
ordinary moment E[ξn]:

22 A median of a distribution is such a number b which divides the x-axis into two equiprobable
areas: P{ξ < b} = P{ξ > b} = 1/2. A median coincides with the expectation for a symmetric
distribution.
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〈
ξn 〉

N = 1

N

N∑

i=1

xn
i . (2.19)

A situation with central moments is somewhat different since the value of E[ξ ]
entering their definition is unknown. Yet, an estimator of variance can be obtained
as the sample variance

σ̂ 2
ξ = 1

N

N∑

i=1

(
xi − 〈ξ 〉N

)2
. (2.20)

It is biased due to the replacement of E[ξ ] with a sample mean. Its bias is of the
order of 1/N . One can show that an unbiased estimator is

σ̂ 2
ξ = 1

N − 1

N∑

i=1

(
xi − 〈ξ 〉N

)2
. (2.21)

2.2.1.5 Estimator Consistency

How do estimator properties change under increase in the sample size N? In general,
an estimator distribution law varies with N . Hence, its bias and variance may also
change. As a rule, one gets estimator values closer to a true value a at bigger N . If
the bias E[â] − a tends to zero at N → ∞ for any a from A, then the estimator
â is called asymptotically unbiased. If the estimator â converges to a in probability
(i.e. the probability that the estimator value differs from a true one more than by
ε tends zero for arbitrarily small ε: ∀ε > 0 P{|â − a| > ε} →

N→∞ 0), it is called

consistent. Consistency is a very important property of an estimator assuring its high
goodness for large samples. The sample moments (2.19) are consistent estimators
of the ordinary moments (Korn and Korn, 1961; Pugachev, 1979).

2.2.1.6 Method of Statistical Moments

Let us consider the problem of parameter estimation when a functional form of
the distribution pξ (x, c) is known and c = (c1, . . . , cP ) is a parameter vector tak-
ing values from a set A ⊂ R P . One of the possible approaches is the method of
statistical moments which is following. The firstP theoretical ordinary moments
are expressed as functions of parameters. Examples for normal, exponential and
uniform distributions are given above, where the first two moments are expressed as
simple functions of parameters. Thereby, one obtains a system
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E [ξ ] = g1(c1, . . . , cP ),

E
[
ξ2
]

= g2(c1, . . . , cP ),

. . . ,

E
[
ξ P

]
= gP(c1, . . . , cP ).

(2.22)

By substituting the sample moments instead of the theoretical ones into equa-
tion (2.22), one gets a set of equations for the parameters

〈ξ 〉N = g1(c1, . . . , cP ),
〈
ξ2
〉

N
= g2(c1, . . . , cP ),

. . . ,
〈
ξ P

〉

N
= gP(c1, . . . , cP ),

(2.23)

whose solution gives estimators ĉ1, . . . , ĉP . Such moments-based estimators may
not possess the best properties for small samples. However, they are asymptotically
unbiased and consistent (Korn and Korn, 1961) so that they can be readily used for
large samples.

2.2.1.7 Maximum Likelihood Method

Typically, the maximum likelihood method provides estimators with the best proper-
ties. According to it, a sample is considered as a random vector x = (x1, . . . , xN ) of
dimension N which is characterised by some probability density function depend-
ing on a parameter vector c. Let us denote such a conditional probability density
as pN (x|c). One looks for the parameter values c = ĉ maximising pN (x|c) for an
observed sample, i.e. an occurrence of the sample x = (x1, . . . , xN ) is the most
probable event for the values c = ĉ. They are called maximum likelihood estimators
(ML estimators).

The function L(c) = pN (x|c) where x is a fixed vector (an observed sample), is
called likelihood function or just likelihood. It should not be interpreted as a prob-
ability density function for parameters c since the parameters are fixed numbers
(not random quantities) according to the problem setting. Therefore, a special term
“likelihood” is introduced. ML estimators give a maximal value to the likelihood:
L(ĉ) = max

c∈A
L(c). Necessary conditions of the maximum read as

∂L(c)/∂c j = 0, j = 1, . . . , P. (2.24)

It is often more convenient to deal with the likelihood logarithm. It gets maximal
at the same point as L(c), therefore, ML estimators are found from equation

∂ ln L(c)/∂c j = 0, j = 1, . . . , P, (2.25)

which is called likelihood equation.
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For a sample consisting of independent values, the likelihood function equals
the product of probability density functions at each value of xi and the logarithmic
likelihood equals the sum of logarithms:

ln L(c) =
N∑

i=1

ln p(xi |c). (2.26)

In such a case, ML estimators are consistent and asymptotically unbiased.
Asymptotically, they are the least-variance estimators.

For the normal distribution of ξ , the logarithmic likelihood reads as

ln L(a, σ 2) = − N

2
ln
(

2πσ 2
)

− 1

2σ 2

N∑

i=1

(xi − a)2. (2.27)

One can readily see that the ML estimators of the parameters a and σ 2 coin-
cide with the sample mean (2.18) and the sample variance (2.20). Thus, the ML
estimator of σ 2 is biased. However, it tends to the unbiased estimator (2.21) with
increasing N , i.e. it is asymptotically unbiased. One can show that the ML estima-
tor â is distributed here according to the normal law with the expectation a and
the variance σ 2/N (see Fig. 2.7 for a concrete illustration). It follows from these
observations that the value of the sample mean gets closer to the true value of a for
a large number of trials, since the estimator variance decreases with N . In particular,
|â − a| < 1.96σ/

√
N holds true with a probability of 0.95.

The interval [â − 1.96σ/
√

N , â + 1.96σ/
√

N ] is called 95% confidence interval
for the quantity a. The greater the N , the narrower this interval. To estimate it from
observations, one can replace the true value of σ with its estimator σ̂ . An estimator
â is called a point estimator since it gives only a single number (a single point). If an
interval of the most probable values of an estimated parameter is indicated, then one
speaks of an interval estimator. Interval estimators are quite desirable, since from a
single value of a point estimator one cannot judge to what extent it can differ from
the true value.

2.2.1.8 When the ML Technique is Inconsistent

Sometimes, the ML technique can give asymptotically biased estimators. This is
encountered, for instance, in the investigation of a dependence between two vari-
ables when the values of both variables are known with errors. It is studied by the
so-called confluent analysis (Aivazian, 1968; Korn and Korn, 1961). As an example,
let us consider the following problem. There is a random quantity Z and quantities
X and Y related to Z via the following equations (Pisarenko and Sornette, 2004):

X = Z + ξ,

Y = Z + η,
(2.28)
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where ξ and η are independent of each other and of Z , and are normally distributed
random quantities with zero expectation and the same variance σ 2. One can say that
X and Y represent measurements of Z in two independent ways. There is a sample
of X and Y values obtained from independent trials: {xi , yi }N

i=1. It is necessary to
estimate a measurement error variance σ 2.

The simplest way to derive an estimator is to note that a quantity X −Y = ξ−η is
normally distributed with zero expectation and the variance 2σ 2, since the variance
of the sum of two independent quantities is equal to the sum of their variances.
Then, one can easily get a consistent estimator of X − Y variance from a sample
{xi − yi }N

i=1 as follows:

σ̂ 2
X−Y = 1

N

N∑

i=1

(xi − yi )
2. (2.29)

Hence, the value of σ 2 is estimated via the following equation:

σ̂ 2 = 1

2N

N∑

i=1

(xi − yi )
2. (2.30)

At the same time, a direct application of the ML technique (without introduction
of the above auxiliary variable) gives the likelihood function

L(x1, y1, . . . , xN , yN |z1, . . . , zN , σ ) = 1
(
2πσ 2

)N
exp

⎛

⎝−
N∑

i=1

(xi − zi )
2 + (yi − zi )

2

2σ 2

⎞

⎠ ,

which contains unobserved values of Z . By solving the likelihood equations, one
then gets estimators:

ẑi = (xi + yi )
/

2, i = 1, . . . , N , (2.31)

σ̂ 2
ML = 1

4N

N∑

i=1

(xi − yi )
2. (2.32)

Thus, the ML estimator of the variance is twice as small as the unbiased estima-
tors (2.30) at any N , i.e. the former is biased and inconsistent. What is a principal
difference of this problem? It is as follows: The number of estimated quantities
(equal to N + 1 under the ML method) rises with the sample size! In the previous
cases, we have considered estimation of a fixed number of parameters.

In general, the less the number of quantities estimated, the better the properties
of their estimators.
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2.2.1.9 Bayesian Estimation

A very broad branch of the theory of statistical estimation is related to the case when
true values of parameters c are also random quantities, i.e. they can vary between
different samples according to a probability density function p(c) which is called
prior. If a prior density is known, then it is reasonable to take it into account in
estimation. The corresponding approaches are called Bayesian.23

In the most widespread version, one tries to find a distribution law for the param-
eters c under the condition that a sample x1, . . . , xN has been realised. This is a
so-called posterior probability density function p(c|x1, . . . , xN ). It can be derived
if a probability density function p(x1, . . . , xN |c) at a given c is known. Then, one
finds posterior density via the Bayesian rule:24

p(c |x1, . . . , xN ) = p(c)p(x1, . . . , xN |c )
∫

p(c)p(x1, . . . , xN |c )dc
. (2.33)

We note that the denominator does not depend on the estimated parameters, since
integration over them is performed.

If a posterior distribution law is found, then one can get a concrete point estimator
ĉ in different ways, e.g., as the expectation ĉ = ∫

cp(c|x1, . . . , xN )dc or as its point
of maximum (a mode). In the absence of knowledge about a prior density, it is
replaced with a constant p(c) that corresponds to a distribution which is uniform
over a very broad segment. Then, to a multiplier independent of c, a posterior dis-
tribution coincides with the likelihood function. Further, if a Bayesian estimator is
defined as a posterior distribution mode, one comes exactly to the ML technique.

As a rule, in practice one sets up a hypothesis: which distribution law an observed
quantity follows, whether trials are independent or not, etc. Accepting such assump-
tions, one applies corresponding techniques. Validity of the assumptions is checked
with statistical tools after getting an estimate (Sect. 7.3).

2.2.2 Signs of Randomness Traditional for Physicists

All the signs listed below rely to some extent on the understanding of randomness
as a lack of “repeatability” in a process.

(a) Irregular (non-periodic) outlook of a time realisation. This is the most primitive
sign of randomness. Here, it is directly opposed to periodicity: absence of strict
period means randomness, its presence means determinancy.

23 From the name of an English priest Thomas Bayes (1702–1761), who suggested the idea in a
work published after his death.
24 In fact, this is a joint probability of two events A and B written down in
two versions: P{A ∩ B} = P{A}P{B|A} = P{B}P{A|B}. Hence, one deduces P{B|A} =
P{B}P{A|B}/P{A}.
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(b) Decaying correlations. This is a decrease of an autocorrelation function ρ(τ)

(ACF, Sect. 4.1.2) to zero with increasing τ . For a zero-mean stationary process

(Sect. 4.1.3), the ACF reads as ρ(τ) = 〈x(t)x(t + τ)〉
/√〈x2(t)〉〈x2(t + τ)〉 .

Angular brackets denote averaging over an ensemble which coincides with tem-
poral averaging for an ergodic process (Sect. 4.1.3). This sign gives, in essence,
a quantitative measure of an observed process deviation from a periodic one.
One cannot reveal periodicity with this approach if a period T > To, where To
is an observation time.

(c) Continuous spectrum. According to this sign, a process with a continuous power
spectrum (Sect. 6.4.2) is called random, while a spectrum of a periodic pro-
cess is discrete. In practice, finiteness of an observation time To limits a spec-
tral resolution: 
ωmin = 2π/To. By increasing an observation time To, one
would finally establish finiteness of spectral lines for any real-world process
and, strictly speaking, would have to regard any real-world process random
according to any of the signs (a–c).

(d) Irregularity of sets of data points in a restored “phase space” (Sect. 10.1):
absence of any signs for a finite dimension and so forth. These are more delicate
characteristics which are not related just to the detection of non-periodicity.

There are also more qualitative criteria: irreproducibility of a process or its
uncontrollability, i.e. impossibility to make conditions under which a process would
occur in the same way or in the way prescribed in advance, respectively.

2.2.3 Algorithmic Approach

An algorithmic approach interprets “a lack of regularity” as an excessive complex-
ity of an algorithm required to reproduce a given process in a digital form. The
idea to relate randomness to complexity was put forward for the first time by A.N.
Kolmogorov and independently by Chaitin and Solomonoff.

Any process can be represented as a sequence of 0s and 1s, i.e. written down in a
binary system: {yi }, i = 1, 2, . . ., N . Kolmogorov suggested to regard a length l (in
bits) of the shortest program capable of reproducing the sequence {yi } as a measure
of its complexity. For instance, a program reproducing a sequence 1010. . .10 (a
hundred of pairs “10”) is very short: print “10” a hundred times. If 0s and 1s are
located randomly, a program consists of symbol-wise transmission of a sequence
which appears uncompressible. Thus, l ∼ N for random sequences and l << N for
non-random ones.

Unfortunately, there is no generally applicable way to find the minimal length
of a program in practice.25 New approaches to the concepts of complexity and ran-
domness based on the idea of algorithmic complexity have been developed. A view

25 For the same fundamental reasons that are mentioned in Gödel’s theorem stating incompleteness
of any system of axioms as discussed, e.g., in Shalizi (2003) and references therein.
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relating those concepts to predictability is getting more and more popular during the
last years (Badii and Politi, 1997; Kravtsov, 1989; Shalizi, 2003).

2.2.4 Randomness as Unpredictability

Randomness or determinancy of a process is related in Kravtsov (1989, 1997) to
possibility of its prediction with the aid of an existing model. The author considers
a registered process x(t) and a model process z(t). For the sake of simplicity, it is
assumed 〈x(t)〉 = 〈z(t)〉 = 0. At a current time instant t = t0 the quantities take
the values x = x0, z = z0. It is natural to specify a model process so that z0 = x0
and assess a forecast quality via its error x(t) − z(t) = 
(t), 
(t0) = 0. The entire
approach is based on the statistical description of the pair x , z.

The values of x and z typically diverge as time passes so that the absolute
value of 
(t) rises. By repeating experiments and comparison of x(t) to z(t),
one can form an ensemble of realisations and estimate probability distributions
p(x, z, t, x0, z0, t0) and p(
, t, x0, z0, t0). In such a description, the model pro-
cess z(t) is included into statistical considerations along with the registered process.
Measures of predictability can be the following:

(i) The mean-squared error σ 2

(τ) ≡ 〈
2(τ )〉 = 〈|x(t)− z(t)|2〉, where t = t0 +τ ,

σ 2

(0) = 0. If the quantities x(t) and z(t) become statistically independent at
τ → ∞, then 〈x(t)z(t)〉 = 0 and σ 2


(τ) = 〈x2(t)〉 + 〈z2(t)〉. One assumes
that x and z are bounded. Then, a relative error can be reasonably defined as
E(τ ) = σ 2


(τ)/
(〈

x2(t)
〉 + 〈

z2(t)
〉)

so that E → 1 for t → ∞.
(ii) The cross-correlation function between an original and a model processes

D(τ ) = 〈x(t0 + τ)z(t0 + τ)〉/√〈x2(t0 + τ)〉〈z2(t0 + τ)〉. One has D(0) = 1
and |D(τ )| ≤ 1 for any τ . From well-known statistical relationships, one can
derive

D(τ ) =
〈
x2(t0 + τ)

〉 + 〈
z2(t0 + τ)

〉

2
√〈

x2(t0 + τ)
〉 〈

z2(t0 + τ)
〉 (1 − E(t)) .

Thus, the degree of predictability can be expressed via different similar quan-
tities. Qualification of a process as random or deterministic is determined by the
possibility of its prediction with an available model. Here, random is something that
we cannot predict for some reasons: due to the properties of x(t), or due to the kind
of a model process z(t), or due to the absence of a model. Such an approach to
randomness was developed within a hypothesis distinction theory for the needs of
radio-location.
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2.3 Conception of Partial Determinancy

Conception of partial determinancy is based on the convention that one chooses
unpredictability (predictability) of an observed process x(t) with a certain predic-
tive model z(t) as a sign of randomness (determinancy) of x(t). Randomness and
determinancy are not opposed to each other but considered as poles of a single
property called partial determinancy.

It is convenient to use cross-correlation between an observed and a model process
D(τ ) as a quantity characterising the degree of determinancy (predictability). Its
typical plot is shown in Fig. 2.8, where D is an area of full determinancy; DC is an
area of partial determinancy; C is an area of random (unpredictable) behaviour. An
observed process x(t) appears deterministic (predictable) if D ≈ 1; unpredictable
if |D| << 1; partially predictable if 0 < |D| < 1.

A time interval τ = τdet over which the degree of predictability falls down to
a certain threshold value, e.g. D(τdet) = 1/2, is called an interval of deterministic
behaviour. What affects this quantity? For a real-world system, it is always finite for
the following reasons:

• An observed process always differs from an investigated process due to the influ-
ence of registering devices, a measurement noise ν(t).

• There are random and/or non-random unaccounted external influences μ(t), the
so-called “dynamical noise”.

• A model does not adequately reflect properties of an object. This is a “noise of
ignorance” 
M(t) depending on a model structure and parameters values.

Therefore, τdet = f (ν, μ,
M). Even if one manages to reduce strongly an
effect of devices and an error in a deterministic component of a model, unavoidable
external fluctuations remain. They can be related to infinite dimension of real-world
object microstructure, to noises of different origin, to senescence processes, and so
forth and principally limit predictability interval. The limit τlim = lim

ν→0,
M→0
τdet =

f (ν, μ,
M) is called “a predictability horizon”.
As a rule, x and z become statistically independent for τ >> τlim so that

D(τ ) → 0. An interval of deterministic behaviour τdet can exceed an autocorrelation

Fig. 2.8 Typical relationship between the degree of determinancy D(τ ) and the autocorrelation
function
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time τc of x(t) characterising the speed of its autocorrelation function decay. The
latter can be estimated as τc ≈ 1/
ω, where 
ω is the width of the spectrum line.
For instance, one gets 
ω → ∞, τc = 0 for a white noise, i.e. for process which
“forgets” its past at once (Sect. 4.2). An autocorrelation time τc can be considered
as the least interval of determinancy due to the following consideration. If one has
no dynamical equations for a model z(t), then a forecast can be based on previous
values of x(t). The simplest principle is “tomorrow is the same as today”, i.e. a
model z(t + τ) = x(t). In such a case, one gets D(τ ) = ρ(τ) and τdet = τc. In
general, it can be that τdet > τc (Fig. 2.8). The same phenomenon can be close to a
deterministic one from a viewpoint of one model and fully non-deterministic from
a viewpoint of another model.

2.4 Lyapunov Exponents and Limits of Predictability

2.4.1 Practical Prediction Time Estimator

Forecast is a widespread and most intriguing scientific problem. A predictability
time for many processes is seemingly limited in principle and even not large from
a practical viewpoint. If a process under investigation is chaotic, i.e. close orbits
diverge exponentially, it is natural to expect its predictability time to be related to
the speed of close orbit divergence. The latter is determined by the value of the
largest Lyapunov exponent �1 (Sect. 2.1.4). For a dynamical model, it is reason-
able to take an interval over which a small perturbation (determined both by model
errors and different noise sources in a system) rises up to a characteristic scale of
an observed oscillations as an estimator of predictability time. A predictability time
can be roughly estimated via the following formula (Kravtsov, 1989):

τpred = 1

2�1
ln

σ 2
x

σ 2
ν + σ 2

μ + σ 2

M

, (2.34)

where σ 2
μ is the dynamical noise variance, σ 2

ν is the measurement noise variance,

σ 2

M is the model error (an “ignorance noise” variance), σ 2

x is the observable quan-
tity variance, and the largest Lyapunov exponent �1 is positive. The formula can be
derived from the following qualitative considerations. Let equations of an original
system be known exactly and initial conditions only to an error ε (measurement
noise). Then, if those “incorrect values” are taken as initial conditions for a model,
one gets a prediction error rising in time as ε · e�1t on average. If a predictability
time is defined as a time interval over which a prediction error reaches the value of
σx , one gets

τpred = 1

�1
ln
σx

ε
.
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The quantity τ� = 1/�1 is called Lyapunov time. Now, let us consider external
random influences and model errors along with the measurement noise. If all those
factors are regarded as approximately independent, an overall perturbation variance
is equal to the sum of variances of the components. Replacing ε in the last formula
for τpred by a square root of an overall perturbation variance, one gets the expres-
sion (2.34).

If noises and model errors are small as compared with the signal level, a time
interval (2.34) can significantly exceed the autocorrelation time of a process which
can be roughly estimated as τc ∼ 1/�1 in many cases. Thus, if the signal level is
1000 times as big as the noise level in terms of root-mean-squared deviations, then
a predictability time (2.34) is approximately seven times as big as the autocorrela-
tion time.

The formula (2.34) is not always applicable to estimate a predictability time. The
point is that after a certain time interval, any finite perturbation in a chaotic regime
reaches a scale where the linearised system (2.10) is no longer appropriate. Further
evolution is, strictly speaking, not connected with Lyapunov exponents. Thus, if
one is interested in a forecast with a practically acceptable accuracy rather than with
a very high accuracy, the Lyapunov exponent is not relevant and cannot impose
restrictions on a predictability time. Yet, if the Lyapunov exponent characterises a
speed of the perturbation rise at large scales correctly (which is often the case), then
one can use it to assess a predictability time even for finite perturbations and errors.

However, under stricter considerations it appears that even in the limit of
infinitesimal perturbations the Lyapunov time is not always related to a predictabil-
ity time. Let us consider this interesting fact in more detail.

2.4.2 Predictability and Lyapunov Exponent: The Case
of Infinitesimal Perturbations

The quantity (2.34) can be called a predictability time by definition. However, other
approaches are also possible. One of the reasonable ideas consists of the following
(Smith, 1997). Let us consider how a perturbation of a given initial condition x0
evolves. According to the definition of the local Lyapunov exponents (2.7), one
gets ‖ε(t0 + 
t‖ = ‖ε0‖eλ1(x0,
t)·
t in the worst case, i.e. as largest increase in
a perturbation. Let us define a predictability time via time intervals over which an
initial small perturbation gets q times greater:

τq(x0) = ln q

λ1(x0,
t)
.

Such a time interval depends on x0. To get an overall characteristic of predictabil-
ity, one can average τq(x0) over an invariant measure p(x0), i.e. over probability
distribution on an attractor:
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τq ≡
∫

p(x0)τq(x0)dx0. (2.35)

This definition of a predictability time differs essentially from equation (2.34).
Thus, if a time interval over which an error gets q times greater were defined via the
largest Lyapunov exponent, then one would get

τq,� ≡ ln q

�1
= ln q

∫
p(x0)λ1(x0)dx0

= 1
∫

p(x0)
1

τq (x0)
dx0

. (2.36)

Here, the Lyapunov exponent (the quantity in the denominator) is expressed as
an average over a natural measure26 which is equivalent to temporal averaging for
an ergodic system.

Hence, the situation is analogous to the following one. There are values of a
random quantity x1, x2, . . . , xN and one needs to estimate its expectation E[x]. The
simplest way is to calculate a sample mean which is a “good” estimator: 〈x〉 =
(x1+. . .+xN )/N . This is an analogue to the formula (2.35) for a mean predictability
time. However, one can imagine many other formulas for an estimator. For instance,
one may calculate inverse values 1/x1, 1/x2, . . . , 1/xN , estimate a quantity 1/E[x]
as their sample mean and take its inverse. The resulting estimator 〈x ′〉 = N/(1/x1 +
1/x2 + . . . + 1/xN ) is an analogue to equation (2.34). However, a mean value of
the inverse quantities is generally a biased estimator of 1/E[x]. Therefore, 〈x ′〉 is
also a “bad” estimator of E[x]. The quantities 〈x〉 and 〈x ′〉 coincide only when
x1 = x2 = . . . = xN . In our case it means that the Lyapunov time coincides with τq

(up to a multiplier ln q) only if the local Lyapunov exponent does not depend on x0,
i.e. orbits diverge at the same speed at any phase space area. This is a condition of
applicability of the formula (2.34) even in the linear case.

Thus, a predictability time can be defined without appealing to the Lyapunov
exponent which seems even more reasonable. As shown below, the Lyapunov expo-
nent may not relate to a predictability time τq , i.e. a system with a greater value
of the Lyapunov exponent (a more chaotic system) can have a greater value of τq

(to be more predictable) compared to a less chaotic system. Besides, systems with
the same values of the Lyapunov exponent can have very different predictability
times τq . Let us discuss an analytic example from Smith (1997). For the sake of
definiteness, we speak of the doubling time τ2.

An example where the Lyapunov time and τ2 coincide (up to a multiplier ln 2)
is a two-dimensional non-linear map which is one of basic models in non-linear
dynamics – a baker’s map

26 Roughly, this is a probability density p of the visitations of a representative point to different
areas of an attractor (see, e.g., Kuznetsov, 2001).
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xn+1 =
{

1
α

xn, 0 ≤ xn < α,

β(xn − α), α ≤ xn < 1,

yn+1 =
{
αyn, 0 ≤ xn < α,

α + 1
β

yn, α ≤ xn < 1,

(2.37)

with α = 1/β = 1/2. This map is area preserving (conservative). It maps the square
[0, 1) × [0, 1) on itself. An invariant measure satisfies a condition p(x, y) = 1 so
that fractal dimension of any kind described in Sect. 2.1.4 is equal to 2. It is called
a baker’s map since its action on a unit square reminds operations of a baker with
a piece of pastry. Firstly, pastry is compressed twice along the y-axis and stretched
twice along the x-axis. Secondly, it is cut in half and the right piece is located over
the left one via a parallel shift. A single iteration of the map involves all those
manipulations (Fig. 2.9). For almost any initial condition on the plane, two nearby
points differing only in their x-coordinate are mapped to two points separated by
a distance twice as big as the initial one. Similarly, a distance along the y-axis
becomes twice as small in a single iteration. Thus, for any point within the square,
the direction of the x-axis corresponds to the largest local Lyapunov exponent. The
latter does not depend on the interval 
t and equals just to the largest Lyapunov
exponent. This is a system with a uniform speed of nearby orbit divergence. Since
�1 = ln 2, the Lyapunov time is equal to τ� = 1/ ln 2. The time τ2(x0) equals 1 for
any initial condition, i.e. a perturbation is doubled in a single iteration. Accordingly,
an average doubling time is τ2 = 1.

Let us now consider a modification of the system (2.37) called a baker’s appren-
tice map:

xn+1 =
{

1
α

xn, 0 ≤ xn < α,

(β(xn − α))mod1, α ≤ xn < 1,

yn+1 =
{
αyn, 0 ≤ xn < α,

α + 1
β
([β(xn − α)] + yn) , α ≤ xn < 1,

(2.38)

where square brackets denote the greatest integer not exceeding the number in the
brackets, α = (2N − 1)/2N and β = 22N

. The action of this map is as follows. A
greater piece of pastry [0, α) × [0, 1) is compressed very weakly along the y-axis
and stretched along the x-axis turning into the piece [0, 1)×[0, α). The right narrow
band is compressed very strongly β times along the y-axis. Thereby, one gets a

Fig. 2.9 A single iteration of a baker’s map. The square is coloured with black and white to show
where the points from different areas are mapped to
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Fig. 2.10 A single iteration of the baker’s apprentice map for N = 1 (the most “skilful” apprentice)

narrow belt of an integer length which is divided into belts of unit length. The latter
ones are located over the big piece [0, 1)×[0, α) as a pile, the left belts being below
the right ones (Fig. 2.10).

This system also preserves an area and has an invariant measure p(x, y) = 1
(hence, fractal dimension of any kind equals 2 as for the baker’s map). Its directions
corresponding to a greater and a smaller local Lyapunov exponents also coincide
with the directions of the coordinate axes. It can be shown that its largest Lyapunov
exponent is equal to �1 = α ln 1/α+(1−α) lnβ and at the above particular values,
one gets �1 = ln 2−α lnα > ln 2. Thus, system (2.38) is more chaotic than system
(2.37) in the sense of the greater Lyapunov exponent. Its local Lyapunov exponents
depend strongly on initial conditions. They are very small for the area of smaller x (a
predictability time is big), while they are very big for the area of bigger x (this area
is very narrow). An example of operations of both maps with a set of points is shown
in Fig. 2.11. A result of four iterates of the baker’s map (2.37) is shown in the middle
panel. The picture is completely distorted, i.e. predictability is bad. A result of the
four iterates of the map (2.38) with N = 4 is shown in the right panel. A significant
part of the picture is well preserved being just weakly deformed: predictability in
this area is good.

The most interesting in this example is the following circumstance. Not only
local predictability times τ2(x0) in some areas are greater for the map (2.38) than
for the map (2.37), an average time τ2 for the map (2.38) is also greater though it
has a greater Lyapunov exponent! The value of τ2 can be found analytically as

τ2 = 1 − α j

1 − α
,

Fig. 2.11 Illustration of dynamics of the maps (2.37) and (2.38) analogous to that presented in
Smith (1997): (a) an initial set of points; (b) an image under the fourth iterate of the baker’s map
(2.37); (c) an image under the fourth iterate of the baker’s apprentice map (2.38) with N = 4
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Table 2.1 Characteristics of the map (2.38) for different N : a maximal local predictability time, a
mean predictability time, the largest Lyapunov exponent (Smith, 1997)

N τ2,max τ2 �1 N τ2,max τ2 �1

1 1 1.00 1.5 · ln 2 5 22 16.09 1.04 · ln 2
2 3 2.31 1.31 · ln 2 6 45 32.49 1.02 · ln 2
3 6 4.41 1.17 · ln 2 7 89 64.32 1.01 · ln 2
4 11 8.13 1.09 · ln 2

where j =
[
− ln 2

lnα

]∗
and [·]∗ denote the smallest integer greater than or equal to the

number in the brackets. It can be shown that a predictability time τ2 ≈ 2N−1 → ∞
and �1 → ln 2 for N → ∞. The results of analytic manipulations for some N
are brought together in Table 2.1: the predictability time can be arbitrarily high for
systems as chaotic as (2.37) and even with a bit greater Lyapunov exponent!

Thus, Lyapunov exponents do not exhaust a question about predictability. Still,
they carry certain information and become relevant characteristics of predictability
if the speed of the divergence of orbits is uniform over a phase space.

2.5 Scale of Consideration Influences Classification of a Process
(Complex Deterministic Dynamics Versus Randomness)

In practice, data are measured at finite accuracy, i.e. arbitrarily small scales of
consideration are unavailable. At that, it is often difficult to decide whether an
observed irregular behaviour is deterministically chaotic or stochastic (random).
Strictly speaking, one can answer such a question only if data are generated with
a computer and, therefore, it is known what law they obey. For a real-world process,
one should ask which of the two representations are more adequate. A constructive
approach is suggested in Cencini et al. (2000), where the answer depends on the
consideration scale.

To characterise quantitatively an evolution of a perturbation with a size ε in a DS
(2.9), it is suggested to use a finite-size Lyapunov exponent (FSLE) denoted as λ(ε).
It indicates how quickly orbits initially separated by a distance ε diverge. In general,
finite perturbations may no longer be described with the linearised equation (2.10).
To compute a FSLE, one needs first to introduce a norm (length) of state vectors. In
contrast to the case of infinitesimal perturbations, a numerical value of λ(ε) depends
on the norm used. For the sake of definiteness, let us speak of the Euclidean norm
and denote the norm of an initial perturbation as ‖ε(0)‖ = ε0. The value of a pertur-
bation reaches threshold values ε1, ε2, . . . , εp at certain time instants. For instance,
let us specify the thresholds as εn = 2εn−1, n = 1, . . . , P − 1 and speak of a
perturbation doubling time for different scales τ2(εn). Let us perform N experiments
by “launching” neighbouring orbits separated by a distance ε0 from different initial
conditions. We get an individual doubling time of τ ( j)

2 (εn), j = 1, . . . , N for each
pair of orbits. A mean doubling time is defined as
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τ2(εn) = (
1
/

N
) N∑

j=1

τ
( j)
2 (εn)

and an FSLE is defined as λ(εn) = ln 2/τ2(εn).
If a process is deterministically chaotic and a speed of phase orbit divergence

is constant over an entire phase space, then lim
ε→0

λ(ε) = �1 (Sect. 2.4.2).27 It is

important that for a deterministic process, λ(ε) does not depend on ε at small scales:
λ(ε) = const. For a stochastic process, λ(ε) → ∞ for ε → 0. The law of the
rise in λ(ε) with decreasing ε may be different, e.g. λ(ε) ∝ ε−2 for a Brownian
motion (Wiener’s process, Sect. 4.2). The authors of Cencini et al. (2000) suggest
the following approach to the distinction between deterministically chaotic signals
and noisy (random) ones. If one gets for a real-world process that λ(ε) = const
within a certain range of scales, then it is reasonable to describe the process as
deterministic in that range of scales. If λ(ε) rises with decreasing ε within a certain
range of scales, then the process should be regarded as noisy within that range.

A simple example is a deterministic map exhibiting a “random walk” (diffusion)
at large scales:

xn+1 = [xn] + F(xn − [xn]), (2.39)

where

F(y) =
{
(2 + δ)y, 0 ≤ y < 0.5,
(2 + δ)y − (1 + δ), 0.5 ≤ y < 1.0,

and square brackets denote an integer part. The function F is plotted in Fig. 2.12
for δ = 0.4. The Lyapunov exponent equals to �1 = ln |F ′| = ln |2 + δ|. The
process behaves like Wiener’s process (Sect. 4.2) at ε > 1. For instance, ε = 1
means that one traces only an integer part of x . A change of an integer part by
±1 results from the deterministically chaotic dynamics of a fractional part of x .
Since the latter is ignored in consideration at large scales, the former looks like
random walk. Figure 2.13 shows that λ(ε) ≈ 0.9 and the process is classified as
deterministic within the range of scales ε < 1. One gets λ(ε) ∝ ε−2 for ε > 1 and
considers the process as random.

Let us modify the map (2.39) by introducing noise ξn uniformly distributed on
a segment [−1, 1] and replacing F with its approximation G (10,000 linear pieces
with a slope 0.9 instead of the two pieces with a slope 2.4):

xn+1 = [xn] + G(xn − [xn]) + σξn, (2.40)

27 FSLE defined via doubling times is equal to zero for a process with �1 < 0.
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Fig. 2.12 Function F(x) from equation (2.39). Horizontal lines are its approximation G(x) from
equation (2.40) consisting of 40 segments with zero slope (Cencini et al., 2000)

Fig. 2.13 FSLE versus a scale. Circles are shown for the system (2.39), squares for the system
(2.40) with G(x) consisting of 10,000 segments with a slope of 0.9 (Cencini et al., 2000)

where the quantity σ = 10−4 determines the noise standard deviation. The pro-
cesses (2.39) and (2.40) do not differ for ε > 1 and look like a random walk
(Fig. 2.13). They look deterministic with the same Lyapunov exponent in the inter-
val 10−4 < ε < 1 despite different slopes of their linear pieces: 2.4 in equa-
tion (2.39) and 0.9 in equation (2.40). This is the result of averaging of the local
linear dynamics of equation (2.40) over the scales ε > 10−4. The processes differ
for ε < 10−4 where the process (2.40) behaves again as random from the view-
point of λ(ε) due to the presence of the noise ξ . Thus, dynamical properties may
differ at different scales. It is important to take it into account in describing complex
real-world processes.

Based on the described approach, the authors have suggested witty terms to char-
acterise some irregular processes: “noisy chaos” and “chaotic noise”. The first one
relates to a process which looks deterministic (chaos) at large scales and random
(noise) at small ones, i.e. a macroscopic chaos induced by a micro-level noise.
Analogously, the second term describes a process which is random at large scales
and deterministic at small ones.
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2.6 “Coin Flip” Example

Most likely, everybody used to put a coin on bent fingers (Fig. 2.14a), offer “head”
or “tail”, flip it and . . .relieve him/herself of responsibility for some decision. A
small disk falling with rotation is popular as a symbol of candour, an embodiment
of chance for different peoples at different times. We use it below to illustrate the
discussion of determinancy, randomness, and different approaches to modelling.

We start with a conceptual model. In a typical case, a hand imparts to a coin both
a progressive motion with an initial velocity ν0 and a rotation with an initial angular
velocity ω0. Further, the disk flies interacting with the earth and an air until it falls on
a surface. If the latter is solid, then it would jump up several times and finally settle
down on one of its sides. Without a special practice, one can hardly repeat a flip
several times so as to reproduce the same result, e.g. a head. It gets impossible for a
strong flip when a coin has enough time to perform many revolutions before landing.
The main cause of irreproducibility is a significant scattering of initial velocities
and coordinate. In part, one can reach reproducibility if a special device is used, e.g.
a steel ruler with a gadget to adjust a deformation28 (Fig. 2.14b). However, such
a device is not a panacea: one can confidently predict a result only for weak flips
when a coin performs half a revolution, a single revolution or at most two revolutions
(Fig. 2.14c). The longer is the way before landing, the more is an uncertainty in a

Fig. 2.14 Exercises with a coin: (a) a standard situation; (b) a physical model with a controllable
“strength of a kick” (h is a ruler bend); (c) qualitative outlook of an experimental dependency
“frequency of a head versus a kick strength” (N experiments were performed at a fixed h, N0 is
the number of resulting heads); (d) illustration to a conceptual model

28 A persistent student providing us with experimental data flipped a coin 100 times per experiment
with a ruler. He controlled a bend of the ruler by changing the number of pages in a book serving
as a ruler support.
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final state. Frequencies of a head and a tail equalise despite conditions of successive
experiments seem the same.

For a dynamical modelling, let us characterise a coin state with a coordinate y
and a velocity v of its centre of mass along with an angle of rotation α about the
z-axis perpendicular to x and y (Fig. 2.14d) and an angular velocity ω. Let us single
out three qualitatively different stages in the system evolution and introduce special
approximation at each of them.

Start. Initial conditions: a coin starts to move having a head as its upper side with
a linear velocity ν0 directed vertically; rotation occurs clockwise with an angular
velocity ω0 (Fig. 2.14d). If 2y < d sinα for the starting conditions (where d is the
diameter of the coin), then an edge of a coin touches a support after the start of
motion (rotation leaves take-off behind) and we regard an outcome as a head. For
2ν0/ω0 > d, the coin flies away without touching the plane of y = 0.

Flight. Let us neglect interaction of a coin with air. Let it interact only with the
earth. Then, an angular velocity remains constant and is equal to ω0, while the centre
of mass moves with a constant acceleration g.

Finish. Touching a table happens at a time instant tf, 2y(tf) = d sinα(tf), and
rotation stops immediately. A coin falls on one of its sides depending on the value
of a rotation angle. One gets a head for 0 < (α(tf)mod2π) < π/2 or 3π/2 <

(α(tf)mod2π) < 2π and a tail for π/2 < (α(tf)mod2π) < 3π/2.
It is too difficult to specify a single evolution operator for all stages of motion.

Therefore, we confine ourselves only with the stage of flight and qualitative consid-
erations for the first and the last stages. Thus, it is obvious that there are many
attractors in the phase space of the system: equilibrium points with coordinates
y = ν = ω = 0, α = nπ, n = 0, 1, 2, . . ., corresponding to final states of a coin
lying on one of its sides (Fig. 2.15a shows “tail” points by filled circles and “head”
points by open ones). Different attractors correspond to different numbers of coin
revolutions before landing. According to the conceptual model, strong dissipation
takes place in shaded phase space areas, corresponding to the final stage and to a
motion with a small initial velocity ν0, and a representative point reaches one of
the two attractors. Boundaries of their basins can be determined from a model of
flight. Let us derive them in analogy to Keller (1986) asymptotically from a set of
Newton’s differential equations F = m · a and M = I · β, where F and M are
resultants of forces and their moment of rotation, respectively, a and β are linear
and angular accelerations, m and I are the coin mass and moment of inertia. In our
case, a model takes the form

dy
/

dt = v, dv
/

dt = −g, dα
/

dt = ω0, dω
/

dt = 0. (2.41)

Given initial conditions, a solution to equation (2.41) is an orbit

y(t) = v0t − gt2
/

2, v(t) = v0 − gt, α(t) = ω0t. (2.42)
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Fig. 2.15 Illustrations to the dynamics of the coin flip model: (a) a three-dimensional section of
phase space of the dynamical system (2.41) at ω = ω0. Wave-shaped surface bounds an area of the
final stage where strong dissipation takes place. The considered model of “flight” does not describe
the start from the shaded area. Curves with arrows are examples of phase orbits; (b) a section of the
phase space with a plane (y = 0, α = 0). Basin of attractors corresponding to the final state “tail”
is shaded. White rectangles illustrate an accuracy of the initial condition setting (a noise level);
their area is 
ν × 
ω

From here, one gets a dependency α(tf) = f (ν0, ω0) and expressions for the
basin boundaries on the plane ω0, ν0 (a section of phase space by a plane α =
0, y = 0, Fig. 2.15b)

α(tf) = 2ω0v0
/

g = π
/

2 + π n. (2.43)

Given exact initial conditions, which are obligatory under the dynamical
approach, a coin reaches a definite final state. According to this approach, one can
predict a final state of a coin, which is illustrated in Fig. 2.16a, where the frequency
of “a head” outcome takes only the values of 0 and 1 depending on ν0. It corresponds
to reality only for small ν0 (Fig. 2.16b). However, if a flip is sufficiently strong
so that a coin performs several revolutions, then such an approach only misleads.
Experiments show that by even making efforts to improve accuracy of initial con-
dition setting, one can assure “a head” or “a tail” outcome only for small number
of a coin revolution. A significantly more plausible model is obtained if one refuses
dynamical description and introduces random quantities into consideration. Let us
assume that ν0 = V0 + ξ , where V0 is a deterministic component, ξ is a random
quantity, e.g. distributed uniformly in some interval of 
ν with a centre at V0. Such
a stochastic model demonstrates dependency on V0 qualitatively coinciding with an
experiment. Frequencies of both outcomes tend to be 0.5 and vertical and horizontal
pieces of the plot are smoothed out for a large number of revolutions.

Given a uniform distribution of ξ , it is convenient to explain observed regularities
by selecting a rectangular area 
ν×
ω with a centre at V0 (Fig. 2.15b). If the entire
area is included into a basin of a certain attractor, then an event corresponding to that
attractor occurs for sure, i.e. a frequency of one of the outcomes equals unity. If the
area intersects both basins (for “a head” and “a tail”), then a frequency of a certain
outcome is determined by a portion of the area occupied by the corresponding basin.
In general, a frequency of “a head” is defined by an integral taken over the entire
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Fig. 2.16 Frequency of “a head” versus an initial velocity v0 at a fixed value of ω0: (a) exact setting
of initial conditions; (b) an error in initial conditions

region occupied by its basin of attraction P{H} = ∫∫

H
p(ν0, ω0)dν0 dω0, where p is

the probability density for observing a “head” in respect of the initial conditions.
Apart from the considered asymptotic and stochastic models, one can suggest a

purely empirical probabilistic model. For instance, one can approximate an exper-
imental dependency of the frequency of “a head” on the initial velocity (or on the
strength of a flip) shown in Figs. 2.14c and 2.16b with a formula

N0
/

N =
⎧
⎨

⎩

z, 0 < z(v) < 1,
1, z(v) > 1,
0, z(v) < 0,

z(v) = 0.5 + a e−bv cos (cv) .

(2.44)

Thus, we have illustrated possibility of the description of a single real-world
object with different models, both dynamical and stochastic ones. Each of the mod-
els can be useful for certain purposes. It proves again a conventional character of
the labels “dynamical system” and “random quantity” in application to real-world
situations. In general, even an “international” symbol of randomness, a coin flip,
should be considered from the viewpoint of a partial determinancy conception.

Finally, we note that apart from the alternative “deterministic models versus
stochastic models”, there are other, more complex, interactions between the deter-
ministic and stochastic approaches to modelling. In particular, complicated deter-
ministic small-scale behaviour may be appropriately described by stochastic equa-
tions and large-scale averages of a random process may exhibit a good deal of deter-
ministic regularity (Sect. 2.5). Traditional statistical approaches, such as methods of
statistical moments or Kalman filtering, are successfully used to estimate parameters
in deterministically chaotic systems (see Sects. 8.1.2 and 8.2.2 for concrete exam-
ples). Concepts of the theory of probability and the theory of random processes
are fruitfully used to describe statistical properties of dynamical chaos, (see, e.g.
Anishchenko et al., 2005a, b). Therefore, both approaches discussed throughout this
chapter are often used together for the description of complex phenomena in nature.



68 2 Two Approaches to Modelling and Forecast

References

Aivazian, S.A.: Statistical Investigation of Dependencies. Moscow, Metallurgiya (in Rus-
sian) (1968)

Alligood, K., Sauer, T., and Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. New York:
Springer Verlag, New York (2000)

Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Nauka, Moscow (1959). Trans-
lated into English: Pergamon Press, Oxford (1966)

Andronov, A.A., Leontovich, E.A., Gordon, I.I., Mayer, A.G.: Theory of Bifurcations of Dynamic
Systems on a Plane. Nauka, Moscow (1967). Translated into English: Wiley, New York (1973)

Anishchenko, V.S.: Attractors of dynamical systems. Izvestiya VUZ. Applied Nonlinear Dynamics
(ISSN 0869-6632). 5(1), 109–127, (in Russian) (1997)

Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.Ye., Schimansky-Geier, L.: Non-
linear Effects in Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer,
Berlin (2002)

Anishchenko, V.S., Okrokvertskhov, G.A., Vadivasova, T.E., Strelkova, G.I.: Mixing and spectral
correlation properties of chaotic and stochastic systems: numerical and physical experiments.
New J. Phys. 7, 76–106 (2005a)

Anishchenko, V.S., Vadivasova, T.Ye., Okrokvertskhov, G.A., Strelkova, G.I.: Statistical properties
of dynamical chaos. Phys. Uspekhi. 48, 163–179 (2005b)

Arnold, V.I.: Additional Chapters of the Theory of Ordinary Differential Equations. Nauka,
Moscow (in Russian) (1978)

Arnold, V.I.: Ordinary Differential Equations. Nauka, Moscow (1971). Translated into English:
MIT Press, Cambridge, MA (1978)

Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics. Cambridge Uni-
versity Press, Cambridge (1997)

Bautin, N.N., Leontovich, E.A.: Methods and Techniques for Qualitative Investigation of Dynam-
ical Systems on a Plane. Nauka, Moscow (in Russian) (1990)

Belykh, V.N.: Elementary introduction into qualitative theory and bifurcation theory in dynamical
systems. Soros Educ. J. (1), 115–121 (in Russian) (1997)

Berger, P., Pomeau, Y., Vidal, C.: Order Within Chaos. Hermann, Paris (1984)
Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D.

20, 217–236 (1986)
Butenin, N.V., Neimark, Yu.I., Fufaev, N.A.: Introduction into the Theory of Nonlinear Oscilla-

tions. Nauka, Moscow (in Russian) (1987)
Cencini, M., Falcioni, M., Olbrich, E., et al. Chaos or noise: Difficulties of a distinction. Phys. Rev.

E. 62, 427–437 (2000)
Danilov Yu.A.: Lectures in Nonlinear Dynamics. An Elementary Introduction. Postmarket,

Moscow (in Russian) (2001)
Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57,

617–656 (1985)
Gnedenko, B.V.: A Course in Probability Theory. Gostekhizdat, Moscow (1950). Translated into

English: Morikita, Tokyo (1972)
Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D. 9, 189–

208 (1983)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of

Vector-Fields. Springer, Berlin (1983)
Hoel, P.G.: Introduction to Mathematical Statistics, 4th ed. Wiley, New York (1971)
Ibragimov, I.A., Has’minskii, R.Z.: Asymptotic Theory of Estimation. Nauka, Moscow (1979).

Translated into English Under the Title Statistical Estimation. Springer, New York (1981)
Katok, A., Hasselblat, B.: Introduction to the modern theory of dynamical systems. Encyclopaedia

of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)
Keller, J.B.: The probability of heads. Am. Math. Monthly. 93(3), 191–197 (1986)



References 69

Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics,. vols. 2 and 3. Charles Griffin,
London (1979)

Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space
reconstruction using a geometrical construction. Phys. Rev. A. 45, 3403–3411 (1992)

Kipchatov, A.A.: Estimate of the correlation dimension of attractors, reconstructed from data of
finite accuracy and length. Tech. Phys. Lett. 21(8), 627–629 (1995)

Korn, G., Korn, T.: Handbook of Mathematics for Engineers and Scientists. McGraw-Hill, New
York (1961)

Kornfel’d I.P., Sinai Ya.G., Fomin, S.V.: Ergodic Theory. Springer, Berlin (1982)
Kravtsov, Yu.A.: Fundamental and practical limits of predictability. In: Kravtsov, Yu.A. (ed.) Lim-

its of Predictability, pp. 170–200. TsentrCom, Moscow (in Russian) (1997)
Kravtsov, Yu.A.: Randomness, determinancy, predictability. Phys. Uspekhi. 158(1), 93–115 (in

Russian) (1989)
Kuznetsov, S.P.: Complex dynamics of oscillators with delayed feedback (review). Radiophys.

Quantum Electr. 25(12), 1410–1428 (in Russian) (1982)
Kuznetsov, S.P.: Dynamical Chaos. Fizmatlit, Moscow (in Russian) (2001)
Landa, P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Kluwer Academic Publish-

ers, Dordrecht (1996)
Loskutov, A.Yu., Mikhailov, A.S.: Basics of Complex Systems Theory. Regular and Chaotic

Dynamics, Moscow (2007)
Lusternik, L.A., Sobolev, V.I.: Elements of Functional Analysis. Nauka, Moscow (1965). Trans-

lated into English: Hindustan Publishing Corpn., Delhi (1974)
Makarenko, N.G.: Fractals, attractors, neural networks and so forth. Procs. IV All-Russian Conf.

“Neuroinformatics-2002”, Moscow, 2002. M., 2002. Part 2. pp. 121–169 (in Russian)
Malinetsky, G.G.: Chaos. Structures. Numerical Experiment. An Introduction to Nonlinear

Dynamics. Editorial URSS, Moscow (in Russian) (2000)
Malinetsky, G.G., Potapov, A.B.: Contemporary Problems of Nonlinear Dynamics. Editorial

URSS, Moscow (in Russian) (2000)
Mathematical Encyclopedic Dictionary. 846p. Sov. Encyclopedia, Moscow (in Russian) (1988)
Philosophic Encyclopedic Dictionary. Sov. Encyclopedia, Moscow, 840p. (in Russian) (1983)
Pisarenko, V.F., Sornette, D.: Statistical methods of parameter estimation for deterministically

chaotic time series. Phys. Rev. E. 69, 036122 (2004)
Poincare, H.: Science and Method. Dover, New York (1982)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge

University Press, Cambridge (1988)
Pugachev, V.S.: Theory of Probabilities and Mathematical Statistics. Nauka, Moscow (in Rus-

sian) (1979)
Pugachev, V.S.: Probability Theory and Mathematical Statistics for Engineers. Pergamon Press,

Oxford (1984)
Shalizi, C.R.: Methods and techniques of complex systems science: an overview, vol. 3,

arXiv:nlin.AO/0307015 (2003). Available at http://www.arxiv.org/abs/nlin.AO/0307015
Shil’nikov L.P., Shil’nikov A.L., Turayev, D.V., Chua, L.: Methods of Qualitative Theory in Non-

linear Dynamics. Parts I and II. World Scientific, Singapore (2001)
Sinai Ya.G.: Contemporary problems of ergodic theory. Fizmatlit, Moscow (in Russian) (1995)
Smith, L.A.: Maintenance of uncertainty. Proc. Int. School of Physics “Enrico Fermi”,

Course CXXXIII, pp. 177–246. Italian Physical Society, Bologna (1997). Available at
http://www.maths.ox.ac.uk/∼lenny

Vapnik, V.N.: Estimation of Dependencies Based on Empirical Data. Nauka, Moscow (1979).
Translated into English: Springer, New York (1982)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
von Mises, R.: Mathematical Theory of Probability and Statistics. Academic Press, New

York (1964)


	Chapter
2  Two Approaches to Modelling and Forecast 
	2.1  Basic Concepts and Peculiarities of Dynamical Modelling
	2.1.1  Definition of Dynamical System
	2.1.2  Non-rigorous Example: Variables and Parameters
	2.1.3  Phase Space. Conservative and Dissipative Systems. Attractors, Multistability, Basins of Attraction
	2.1.4  Characteristics of Attractors
	2.1.5  Parameter Space, Bifurcations, Combined Spaces, Bifurcation Diagrams

	2.2  Foundations to Claim a Process ``Random''
	2.2.1  Set-Theoretic Approach
	2.2.2  Signs of Randomness Traditional for Physicists
	2.2.3  Algorithmic Approach
	2.2.4  Randomness as Unpredictability

	2.3  Conception of Partial Determinancy
	2.4  Lyapunov Exponents and Limits of Predictability
	2.4.1  Practical Prediction Time Estimator
	2.4.2  Predictability and Lyapunov Exponent: The Case of Infinitesimal Perturbations

	2.5  Scale of Consideration Influences Classification of a Process (Complex Deterministic Dynamics Versus Randomness)
	2.6  ``Coin Flip'' Example
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




