
Chapter 13
Outdoor Examples

In this final chapter, we illustrate different steps of the procedure of modelling
from time series in more detail. For that, we use examples from the fields of elec-
tronics (Sect. 13.1), physiology (Sect. 13.2) and climatology (Sect. 13.3). They
are presented in the order of decreasing amount of a priori information about an
object: an appropriate model structure is completely known and only model param-
eters are estimated from data (Sect. 13.1); an appropriate model structure is partly
known (Sect. 13.2); no specific ideas about suitable model equations are available
(Sect. 13.3). For the sake of unity, we formulate the same purpose of empirical mod-
elling in all the three cases, namely identification of directional couplings between
the processes under study. This task has also been considered in the previous chapter,
where a compact and more technical description of several techniques and applica-
tions has been given.

13.1 Coupled Electronic Generators

13.1.1 Object Description

An experimental object is a system of two self-sustained generators (Fig. 13.1) sim-
ilar to that described in Dmitriev and Kislov (1989); Dmitriev et al. (1996). Both
generators are constructed according to the same scheme and contain an RC low-
pass filter (an element 1 in Fig. 13.1a), an RLC filter (an oscillatory circuit 2) and a
non-linear element (an element 3) connected in a ring (Ponomarenko et al., 2004).
The non-linear element with a quadratic transfer characteristic Uout = A − B · U 2

in
consists of an electronic multiplier, which performs the operation of taking a squared
value, and a summing amplifier, which adds the parameter A with a necessary sign
to an output signal of the multiplier (Fig. 13.1b). Here, Uout is a voltage at the output
of the non-linear element, B is a dimensional coefficient whose value is determined
by the parameters of the electronic multiplier. A is used as a governing parameter.
Under variations in A, one observes a transition to chaos via the cascade of period-
doubling bifurcations in each generator.
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Fig. 13.1 Experimental set-up: (a) a more vivid block scheme; (b) a more detailed version. The
parameters are R1 = 1000�, R2 = 60�, C1 = C2 = 0.022 μF, L = 6 mH, B = 0.2 V−1.
Parameters of the generator 2 are the same up to an error of about 10%. A and A′ control non-linear
transfer functions of the non-linear elements, α and α′ are coupling coefficients and� are summing
amplifiers

Further, we denote the quantities relating to the second generator by a prime,
while those for the first generator are not supplied with a prime. Interaction between
the generators is possible due to the summing amplifiers � and the amplifiers
with controlled gain factors α and α′. The latter ones serve to set the “interac-
tion strength”. By specifying different values of α and α′, one provides bidirec-
tional, unidirectional or zero coupling between the generators. Below, we describe
the cases of uncoupled generators (α = α′ = 0) and unidirectional coupling
2 → 1 (α �= 0, α′ = 0) for different values of A and A′. The settings consid-
ered are summarised in Table 13.1, where the corresponding dynamical regimes are
identified as described below.

In what follows, the values of the parameters (such as inductance, capacity, resis-
tance) in both generators are not regarded as a priori known. Only the equivalent
electric scheme of Fig. 13.1 is considered as a priori known. Coupling character is
revealed from data only with the use of the latter information.
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Table 13.1 Parameters values and corresponding dynamical regimes considered. T is a character-
istic timescale of the autonomous self-sustained oscillations (it is about 0.08 ms as described in
Sect. 13.1.2). Namely, T corresponds to the highest peak in the power spectrum

Parameters Dynamical regimes
Trial no. A, V A′, V α α′ (Ponomarenko et al., 2004)

1 4.8 3.8 0 0 Cycle of the period 1T
2 4.8 3.8 0.05 0 Torus in the generator 1, cycle of

the period 1T in the generator 2
3 4.8 3.8 0.9 0 Cycle of the period 2T in the

generator 1, cycle of the period
1T in the generator 2

4 4.8 5.8 0.1 0 Chaos in both generators
5 4.8 5.8 0 0 Cycle of the period 1T in the

generator 1, chaos in the
generator 2

6 8.8 7.4 0 0 Chaos in both generators
7 8.8 7.4 0.1 0 Chaos in both generators

13.1.2 Data Acquisition and Preliminary Processing

Observed quantities x and x ′ are linearly dependent on the voltages Uin and
U ′

in : x = a + Uin
/

b and x ′ = a′ + U ′
in
/

b′. The shift and scaling parameters
a, b, a′, b′ are some constants adjusted so as to provide a maximally efficient usage
of the dynamics range of a 12-bit analogue-to-digital converter exploited for the
measurements. The values of a, b, a′, b′ are not measured, since it would compli-
cate the experimental set-up. The sampling frequency is 1.2 MHz which corresponds
approximately to 100 data points per characteristic oscillation period.

Time series of x and x ′ is shown in Fig. 13.2a, b for the case of unidirectional
coupling 2 → 1 (Table 13.1, trial 4). The driving generator 2 exhibits a chaotic
regime (see below). The generator 1 without coupling would demonstrate a peri-
odic regime. The quantities x and x ′ are presented in arbitrary units. Namely, the
raw numerical values at the output of the ADC are integers and cover the range
approximately from −2000 to 2000. For the sake of convenience, we divide them
by 1000 and get the signals x and x ′ with the oscillation amplitudes of the order
of 1. A rationale behind such scaling is that making typical values of all the anal-
ysed quantities of the order of unity allows the reduction of the computational errors
(induced by the truncation) during the model fitting.

Estimates of the power spectra (Sect. 6.4.2) and the autocorrelation functions
(Sect. 4.1.2) are shown in Fig. 13.2c–h. The highest peak is observed at the fre-
quency of 12.36 kHz for the generator 2 (Fig. 13.2d). It corresponds to the timescale
of 0.08 ms (about 100 data points), which is the distance between successive max-
ima in Fig. 13.2b. The peak is quite well pronounced, but it is somewhat wider than
that for a quasi-periodic regime shown in Fig. 6.14b and, especially, for a periodic
regime in Fig. 6.14a. Additional peaks are seen at 6.2 kHz (the first subharmonic,
which is manifested as the alternation of higher and lower maxima in Fig. 13.2b),
18.6, 24.7, 30.9 and 37.1 kHz (overtones induced by the non-linearity of the
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Fig. 13.2 Time series and their basic characteristics (Table 13.1, trial 4): the left column is for the
generator 1; the right column is for the generator 2. Observed time series are shown in the panels
(a) and (b), their periodograms in (c) and (d); their autocorrelation functions in (e) and (f) and,
at different timescale, in (g) and (h). Both ACFs and periodograms are estimated from signals of
length of 105 data points, rather than from the short pieces consisting of 5000 data points shown in
the panels (a) and (b)

system and manifested as deviations of the temporal profile from a sinusoidal wave).
The corresponding ACF exhibits a strong periodic component with a characteris-
tic period of 0.08 ms and its subharmonic with a period twice as large. The ACF
decreases with the time lag (Fig. 13.2h), but the rate of its decay is low: a linear
envelope of the ACF reveals that the autocorrelations decrease from 1 to 0.5 over
40 ms (500 characteristic periods).

Projections of the orbits onto the plane of time-delayed coordinates are given
in Fig. 13.3a, b. From Fig. 13.3b one can suspect a complex structure similar to a
projection of a chaotic attractor e.g., like in Fig. 6.15. The regime observed in the
generator 2 is, indeed, identified as chaotic, since we have evidenced its birth by
tracing the evolution of the phase orbit of the generator under the parameter change
(Ponomarenko et al., 2004). The regime under consideration has been established
after a cascade of period-doubling bifurcations. We do not go into further details of
the dynamical regime identification, since detection of chaos, estimation of fractal
dimensions and similar questions are redundant for the formulated purpose of the
model construction and the coupling estimation. In this example, a model dimen-
sion and even a complete structure of model equations are specified from physical
considerations as presented below.
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Fig. 13.3 Additional characteristics of the dynamics illustrated in Fig. 13.2: projections of the data
onto different planes are shown in the panels (a), (b) and (c); cross-correlation function between
x(t) and x ′(t) is shown in panel (d)

The power spectrum and the ACF for the generator 1 are shown in
Fig. 13.2c, e, g. A clear peak is observed at the frequency of 12.72 kHz (a natu-
ral frequency of the periodic oscillations in the generator 1). The satellite peaks
observed at the close frequencies of 12.36 and 13.08 kHz are induced by the influ-
ence 2 → 1 and manifested as a periodic component of the ACF envelope with
a period corresponding to the frequency mismatch of 0.36 kHz. The peaks at 6.2,
18.6 and 24.7 kHz are also seen in Fig. 13.2c. The ACF would not decrease for
the non-driven generator 1; it decreases here due to the influence of the chaotic
generator 2.

Traditional characteristics of the interdependence between the signals x(t) and
x ′(t) are illustrated in Fig. 13.3c, d. Figure 13.3c shows that a projection of the data
onto the plane (x, x ′) fills almost a rectangular region. It means that even if the inter-
dependence is present, it is not strong. This is confirmed by the cross-correlation
function (Sect. 6.4.5) which takes absolute values less than 0.2, rather than close to
1, as illustrated in Fig. 13.3d.

13.1.3 Selection of the Model Equation Structure

Let us consider a single generator in the case of zero couplings. From Kirchhoff’s
laws, one can write down the following set of three ordinary first-order differential
equations to model variations in currents and voltages:

C1 dU1
/

dt = (Uout − U1)
/

R1,

C2 dUin
/

dt = I,
L dI

/
dt = U1 − Uin − R2 I.

(13.1)
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All the variables entering the model are indicated in Fig. 13.1. Since only the
values of Uin are observed experimentally, it is desirable to rewrite the equations in
terms of this quantity and its derivatives. Thereby, one avoids coping with hidden
variables, which is often a difficult task (Sect. 8.2). Via some algebraic manipula-
tions, equation (13.1) can be equivalently rewritten as

d3Uin

dt3
= −

(
1

R1C1
+ R2

L

)
d2Uin

dt2
− 1

LC2

(
1 + R2C2

R1C1

)
dUin

dt
+ A − Uin − BU 2

in

LC2 R1C1
.

(13.2)
For two generators, one gets the set of six first-order equations:

C1
dU1

dt
= (

Uout − U1 − αU ′
out

)/
R1,C ′

1

dU ′
1

dt
= (

U ′
out − U ′

1 − α′Uout
)/

R′
1,

C2
dUin

dt
= I, C ′

2

dU ′
in

dt
= I ′,

L
dI

dt
= U1 − Uin − R2 I, L ′ dI ′

dt
= U ′

1 − U ′
in − R′

2 I ′,
(13.3)

where the terms αU ′
out and α′Uout describe the couplings between the generators.

The equations can be rewritten in terms of the variables Uin, U ′
in as

d3Uin

dt3
= −

(
1

R1C1
+ R2

L

)
d2Uin

dt2
− 1

LC2

(
1 + R2C2

R1C1

)
dUin

dt

+ A − Uin − BU 2
in

LC2 R1C1
+ α

(
A′ − B ′U ′2

in

)

LC2 R1C1
,

d3U ′
in

dt3
= −

(
1

R′
1C ′

1
+ R′

2

L ′

)
d2U ′

in

dt2
− 1

L ′C ′
2

(
1 + R′

2C ′
2

R′
1C ′

1

)
dU ′

in

dt

+ A′ − U ′
in − B ′U ′2

in

L ′C ′
2 R′

1C ′
1

+ α′ (A − BU 2
in

)

L ′C ′
2 R′

1C ′
1

.

(13.4)

To estimate model parameters from a time series of x(t) and x ′(t), we specify
the model structure as

d3x

dt3
= c1

d2x

dt2
+ c2

dx

dt
+ c3 + c4x + c5x2 + c6x ′ + c7x ′2, (13.5)

d3x ′

dt3
= c′

1
d2x ′

dt2
+ c′

2
dx ′

dt
+ c′

3 + c′
4x ′ + c′

5x ′2 + c′
6x + c′

7x2, (13.6)

where the terms c6x ′, c′
6x absent from equation (13.4) are introduced to allow for

the scaling and shift parameters a, b, a′, b′ in the measurement procedure. The
unknown values of a, b, a′, b′ are not important, since they affect only the numerical
values of the model coefficients ck, c′

k , rather than model behaviour and relative
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approximation error considered below. One can infer the presence of the influence
2 → 1 and 1 → 2 by comparing the models (13.5) and (13.6) with the models
which do not allow for the coupling terms and read as

d3x

dt3
= c1

d2x

dt2
+ c2

dx

dt
+ c3 + c4x + c5x2 (13.7)

and

d3x ′

dt3
= c′

1
d2x ′

dt2
+ c′

2
dx ′

dt
+ c′

3 + c′
4x ′ + c′

5x ′2. (13.8)

More precisely, we use two model-based approaches to reveal couplings. Firstly,
we compare approximation errors for the individual models (13.7) or (13.8) to
the errors for the joint models (13.5) or (13.6), respectively. This is similar to the
characterisation of the Granger causality (Sect. 12.1). Secondly, we use a criterion
which unites the analysis of couplings with the model validation and can be called
a “free-run version” of the Granger causality. Namely, if an empirical model of the
form (13.7) cannot reproduce the observed dynamics of x , while a model of the
form (13.5) can do it, then one infers the presence of the influence 2 → 1 and
its considerable effect on the dynamics. If already the model (13.5) describes the
dynamics of x satisfactorily and the model (13.7) does not improve anything, then
the influence 2 → 1 is insignificant. A similar comparison of the models (13.8) and
(13.6) applies to the detection of the influence 1 → 2. If even the models (13.5)
and (13.6) cannot adequately describe the observed dynamics, then the physical
ideas behind the model equations are invalid and one must seek for other model
structures.

13.1.4 Model Fitting, Validation and Usage

13.1.4.1 Individual Models

Let us start with the modelling of the generator 2 with the aid of the “individual”
equation (13.8). We use the chaotic time series x ′(t) shown in Fig. 13.2b as a training
time series. It is of a moderate length: N = 5000 data points, i.e. about 50 basic peri-
ods. The model (13.8) should be appropriate, since the generator 2 is not influenced
by the generator 1. However, a complete validity of the model structure is not trivial,
since the basic equation (13.2) is derived under the assumptions of strictly quadratic
non-linearity (though the transfer characteristic follows a quadratic parabola with
errors of about 1%), a constant inductance L (though it is realised with a ferrite core
so that nonlinear properties might be observed at big oscillation amplitudes), etc.

According to the procedure described in the beginning of Chap. 8 and in Sect. 9.1,
one first performs numerical differentiation of the signal x ′(t) to get the estimates
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dx̂ ′

dt
,

d2 x̂ ′

dt2
,

d3 x̂ ′

dt3

of the derivatives

dx ′

dt
,

d2x ′

dt2
,

d3x ′

dt3

entering the model equation (13.8). We use a digital smoothing polynomial
(Sect. 7.4.2): the estimates

dx̂ ′(tn)
dt

,
d2 x̂ ′(tn)

dt2
,

d3 x̂ ′(tn)
dt3

and a smoothed signal x̂ ′(tn) at a time instant tn are obtained from an algebraic
polynomial of an order L fitted to the time window {tn −m
t; tn +m
t} consisting
of 2m + 1 data points. Let us note the following purely technical detail. For the sake
of convenience, we rescale the time units similar to the above scaling of the variables
x and x ′: the time units are selected so as to provide the values of the derivatives of
the order of 1. This is achieved if the angular frequency of the oscillations becomes
of the order of 1. Thus, we define the time units so that the sampling interval (which
equals 1

/
1.2 μs in the physical units) gets equal to 
t = 0.1.

Secondly, the model coefficients are estimated via minimisation of the error

ε2 = 1

N − 2m

N−m∑

i=m+1

[
d3 x̂ ′(ti )

dt3
− c′

1
d2 x̂ ′(ti )

dt2
− c′

2
dx̂ ′(ti )

dt
− c′

3 − c′
4 x̂ ′(ti ) − c′

5 x̂ ′2(ti )
]2

The minimal relative approximation error is

εrel =
√

min
{c′

k }
ε2

/
var[d3 x̂ ′

/
dt3],

where “var” stands for the sample variance (Sect. 2.2.1) of the argument. Next,
a free-run behaviour of an obtained model is simulated. A projection of a model
phase orbit onto the plane (x ′, dx ′/dt) is compared to the corresponding pro-
jection of an observed data. For quantitative comparison, we compute a pre-
diction time, i.e. a time interval τpred, over which the prediction error σ(τ) =√〈(

x ′(t0 + τ) − x ′
pred(t0 + τ)

)2
〉

t0
(Sect. 2.2.4) rises up to 0.05

√
var[x ′]. Here,

x ′
pred(t0 + τ) is a prediction at a time instant t0 + τ obtained by simulation of a

model orbit from the initial condition x̂ ′(t0), dx̂ ′(t0)/dt, d2 x̂ ′(t0)/dt2 at the initial
time instant t0. A test time series of the length of 10000 data points (which is a
continuation of the data segment shown in Fig. 13.2b) is used both for the qualitative
comparison and for the prediction time estimation.
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Table 13.2 Characteristics of the models (13.8) for different m and L

m L ĉ′
1 ĉ′

2 ĉ′
3 ĉ′

4 ĉ′
5 εrel τpred

2 3 −15.9 −1.71 −2.20 −6.09 1.09 0.45 0.05T
5 3 −0.40 −0.44 −0.19 −0.15 0.12 0.78 0.25T

12 3 −0.42 −0.42 −0.17 −0.15 0.10 0.07 0.25T
40 3 −0.30 −0.20 −0.04 −0.05 0.03 0.11 0.07T
40 7 −0.43 −0.42 −0.18 −0.17 0.11 0.03 0.71T

We try different values of the parameters L ≥ 3 and m ≥ L/2. Model quality
essentially depends on m and L , since these parameters determine the errors in
the derivative estimates and, hence, the errors in the estimates of the model coef-
ficients. The model coefficients and some characteristics are shown in Table 13.2.
Thus, small values of m are not sufficient to reduce the noise influence so that the
derivative estimates are very noisy as seen in Fig. 13.4 for m = 2 and L = 3. Both
the second and the third derivatives are strongly noise corrupted. The corresponding
model is completely invalid (Fig. 13.5); it exhibits a stable fixed point instead of
chaotic oscillations (Fig. 13.5b, c), a very large approximation error εrel = 0.45 and
a small prediction time τpred = 0.05T , where the characteristic period is T ≈ 100
t
(Fig. 13.5a, d). Greater values of m at fixed L = 3 allow some noise reduction. The
value of m = 5 gives a reasonable temporal profile of the second derivative but
still noisy fluctuations in the third derivative (Fig. 13.6). The resulting model is
better, but still invalid, since it exhibits a periodic behaviour rather than a chaotic
one (Fig. 13.7). The value of m = 12 gives the best results: reasonable profiles of
all the derivatives (Fig. 13.8), a much smaller approximation error εrel = 0.07 and a
chaotic dynamics which is qualitatively very similar to the observed one (Fig. 13.9).
A further increase in m worsens the results. Thus, at m = 40 the derivative estimates
look even “smoother” (Fig. 13.10b–d) and the signal itself becomes somewhat dis-
torted (Fig. 13.10a shows the difference between the original data and a smoothed
signal x̂ ′(t)). Hence, the random errors in the derivative estimates are smaller, but

Fig. 13.4 Numerical differentiation of the signal x ′(t) with a digital smoothing polynomial at
m = 2, L = 3: (a) an original signal x ′(t) and its smoothed estimate x̂ ′(t) fully coincide at this
scale; (b)–(d) the derivatives of increasing order
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Fig. 13.5 Behaviour of an empirical model (13.8) obtained at m = 2, L = 3: (a) the test time
series x ′(t) (the dashed line) and the model time realisation at the same initial conditions (the solid
line); (b) a projection of the original data onto the plane (x̂ ′, dx̂ ′/dt); (c) a projection of the model
phase orbit onto the same plane; (d) a model prediction error σ for the prediction t/
t sampling
intervals ahead

Fig. 13.6 Numerical differentiation of the signal x ′(t) at m = 5, L = 3. Notations are the same
as in Fig. 13.4

there appears a significant bias. The corresponding model exhibits an approximation
error greater than at m = 12 and a periodic behaviour (Fig. 13.11), which is not
similar to the observed dynamics.

Big values of m can be used in combination with big values of L to allow
the smoothing polynomial to reproduce the signal waveform in a wider window
{tn − m
t; tn + m
t}. In particular, the pair m = 40 and L = 7 gives a model
with chaotic behaviour and the best prediction time of 0.7T (even this prediction
time is quite moderate, which is not surprising for a chaotic regime). However, a
chaotic attractor of this model is less similar to the observed dynamics (it does not
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Fig. 13.7 Behaviour of an empirical model (13.8) obtained at m = 5, L = 3. Notations are the
same as in Fig. 13.5

Fig. 13.8 Numerical differentiation of the signal x ′(t) at m = 12, L = 3. Notations are the same
as in Fig. 13.4

exhibit a gap between the two bands seen in Fig. 13.9b, c) than that for the model
obtained at m = 12, L = 3. However, the coefficients of both models are close to
each other (Table 13.2). Below, we describe modelling of the coupled generators at
m = 12, L = 3, since this choice has provided the best qualitative description of the
chaotic dynamics of the generator 2. Still, both m = 12, L = 3 and m = 40, L = 7
appear to give very similar results of the coupling analysis.

13.1.4.2 Modelling of the Coupled Generators

The derivatives of x(t) for the trial 4 are estimated also at m = 12, L = 3. Fitting
the model equations (13.6), which involve the data from the generator 1 to describe
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Fig. 13.9 Behaviour of an empirical model (13.8) obtained at m = 12, L = 3. Notations are the
same as in Fig. 13.5

Fig. 13.10 Numerical differentiation of the signal x ′(t) at m = 40, L = 3. Notations are the same
as in Fig. 13.4. An original signal x ′(t) in the panel a (the dashed line) somewhat differs from its
smoothed estimate x̂ ′(t) (the solid line)

the time series of the generator 2, gives an approximation error εrel = 0.07, i.e. the
same as for the individual model (13.8). The model coefficients responsible for the
influence 1 → 2 appear close to zero: ĉ′

6 = −0.001 and ĉ′
7 = 0.001. The other

coefficients are very close to the corresponding coefficients of the individual model.
Thus, no quantitative improvement is observed under the use of the model (13.6) as
compared to the model (13.8), i.e. one cannot see any signs of the influence 1 → 2.

As for the modelling of the generator 1, the results for the individual model (13.7)
and the joint model (13.5) are reported in Table 13.3. One can see the reduction in
the approximation error by 20% and the coupling coefficient estimate ĉ7, which is
not as small as that for the influence 1 → 2. Thus, some signs of coupling 2 → 1
are observed already from these characteristics. The presence of coupling and its
unidirectional character becomes completely obvious when a free-run behaviour of
different models is considered.
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Fig. 13.11 Behaviour of an empirical model (13.8) obtained at m = 40, L = 3. Notations are the
same as in Fig. 13.5

Table 13.3 Characteristics of models (13.5) and (13.7) for the generator 1

Model ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 ĉ7 εrel

(13.7) −0.28 −0.43 0.03 −0.23 0.13 – – 0.15
(13.5) −0.32 −0.43 0.03 −0.25 0.13 −0.002 0.006 0.12

Projections of the original and model phase orbits onto different planes are pre-
sented in Fig. 13.12. The observed dynamics of the generator 1 is illustrated in
Fig. 13.12a. The individual model (13.7) gives a periodic regime (Fig. 13.12b),
i.e. it is inadequate. The model allowing for unidirectional coupling 2 → 1, i.e.
Eqs. (13.5) and (13.8), exhibits a chaotic attractor very similar to the observed
behaviour (Fig. 13.12c). A model with bidirectional coupling, i.e. Eqs. (13.5)
and (13.6), does not give any further improvement (Fig. 13.12d). The results for
the generator 2 are presented similarly in the second row. Already the individual
model (13.8) adequately reproduces the dynamics (cf. Fig. 13.12e and f). A model
with a unidirectional coupling 1 → 2, i.e. Eqs. (13.7) and (13.6), and a model with
a bidirectional coupling demonstrate the same behaviour (Fig. 13.12g, h). Similar
conclusions are made from the projections onto the plane

(
x, x ′): the model with

unidirectional coupling 1 → 2 is insufficient to reproduce the dynamics qualita-
tively (cf. Fig. 13.12i and j), while the model with unidirectional coupling 2 → 1
(Fig. 13.12k) and the model with bidirectional coupling (Fig. 13.12l) exhibit the
same dynamics similar to the observed one.

Thus, via the analysis of a free-run behaviour of the empirical models and their
approximation errors, we infer from data that the unidirectional coupling scheme
2 → 1 is realised in the trial 4. This is a correct conclusion. In this manner, the
global modelling helps both to get an adequate model, when parameters of the cir-
cuits are unknown, and to reveal the coupling scheme. Similar results are observed
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Fig. 13.12 Comparison of the original data and a behaviour of different empirical models obtained
at m = 12, L = 3: (a), (e), (i) projections of the original data for the test time series; (b) a model
(13.7), no coupling; (c), (k) models (13.5) and (13.8), i.e. a unidirectional coupling 2 → 1 is
allowed for; (d), (h), (l) models (13.5) and (13.6), i.e. a bidirectional coupling is allowed for; (f) a
model (13.8), no coupling; (g), (j) models (13.7) and (13.6), i.e. a unidirectional coupling 1 → 2
is allowed

for all seven trials (Table 13.1). The results in terms of the approximation error are
summarised in Fig. 13.13, where we use m = 40, L = 7, since this choice always
gives a good description of the dynamics, while the choice of m = 12, L = 3 is
the best one for the trial 4 and a couple of other cases (anyway, the results are very

Fig. 13.13 Relative approximation errors for the models without coupling (circles) and allowing
for a unidirectional coupling (rhombs) at m = 40, L = 7: (a) the models (13.7) and (13.5) for the
generator 1; (b) the models (13.8) and (13.6) for the generator 2
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similar for these two choices of the pair m,L). A unidirectional coupling 2 → 1
is correctly detected in the trials 2, 3, 4 and 7: the reduction in the approximation
error is observed for the model (13.5), since the rhombs are located considerably
lower than the circles. No coupling is detected in the other three trials, which is also
correct. The same conclusions are obtained when we compare the prediction times
or consider the projections of the model phase orbits (not shown).

Finally, we note that the trial 3 corresponds to a phase synchronisation regime:
the phases of the generators are locked, but variations in their instantaneous ampli-
tudes are a bit different due to the non-identity of the circuits (a slight parameter
mismatch). Coupling character cannot be revealed from the locked phases with the
phase dynamics modelling technique (Sect. 12.2). The Granger causality estimation
may also face difficulties, since an inappropriate model structure in the case of a
strong unidirectional coupling may lead to a spurious detection of a bidirectional
coupling. Fitting the models (13.5) and (13.6) allows one to reveal the coupling
character correctly even in this case due to the adequate model structure (and due to
non-identity of the amplitude variations). This is an advantage of the situation when
detailed a priori information about an object is available: a further useful knowledge
can be extracted then from minimally informative experimental data.

Thus, with the electronic example we have illustrated the full procedure of con-
structing an empirical model under the “transparent box” setting and revealing a
coupling character with its help.

13.2 Parkinsonian Tremor

13.2.1 Object Description

As mentioned in Sect. 12.3, one of the manifestations of Parkinson’s disease is a
strong resting tremor, i.e. regular high-amplitude oscillations of limbs. The mecha-
nism of the parkinsonian tremor is still widely discussed. It is known that popula-
tions of neurons located in the thalamus and the basal ganglia fire in a synchronised
and periodical manner at a frequency similar to that of the tremor (Lenz et al., 1994;
Llinas and Jahnsen, 1982; Pare et al., 1990) as a result of local pathophysiology.
Also, there is an important peripheral mechanism involved in the generation of these
abnormal oscillations: the receptor properties in the muscle spindles. They con-
tribute to a servo control (closed-loop control of position and velocity) and amplify
synchronised input from central nervous structures by strongly synchronised feed-
back (Stilles and Pozos, 1976). The resulting servo loop oscillations are regarded
as a basic mechanism for tremor generation (Stilles and Pozos, 1976). Although
subcortical oscillations are not strictly correlated with the tremor (Rivlin-Etzion
et al., 2006), it was shown that limb oscillations influence subcortical activity by
the proprioceptive feedback from muscle spindles (Eichler, 2006). As yet, it was
difficult to reveal empirically whether the parkinsonian tremor is affected by sub-
cortical oscillations (Brown, 2003; Rivlin-Etzion et al., 2006).
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For deeper understanding of the mechanism of the parkinsonian tremor gener-
ation, it is important to reveal the character of interaction between different brain
areas and oscillating limbs. Due to the regularity of the parkinsonian tremor, appli-
cation of the phase dynamics modelling technique (Sect. 12.2) has appeared fruitful
(Bezruchko et al., 2008; Smirnov et al., 2008). Namely, a bidirectional coupling
between limb and subcortical oscillations has been detected and time delays in both
directions have been estimated. Below, we describe such an analysis of a single
tremor epoch in a patient with bilateral resting tremor. The patient had more pro-
nounced pathological oscillations of the left hand.

13.2.2 Data Acquisition and Preliminary Processing

Local field potentials (LFPs) from the subthalamic nucleus (STN) and accelerometer
signals, assessing the hand tremor, were recorded simultaneously. It was done by
the group of Prof. P. Tass (Institute of Neuroscience and Biophysics – 3, Research
Centre Juelich, Germany) and their colleagues at the Department of Stereotaxic and
Functional Neurosurgery, University of Cologne. Recordings were performed dur-
ing or after deep brain stimulation electrode implantation. Intraoperative recordings
from the right STN were performed with the ISIS MER system (Inomed, Tenin-
gen, Germany). The latter is a “Ben’s gun” multi-electrode for acute basal ganglia
recordings during stereotaxic operations (Benabid et al., 1987), i.e. an array consist-
ing of four outer electrodes separated by 2 mm from a central one. Proper electrode
placement was confirmed by effective high-frequency macro-stimulations, intraop-
erative X-ray controls (Treuer et al., 2005), postoperative CT scans and intraopera-
tive micro-recordings. The LFP recordings represented voltages on the depth elec-
trodes against a remote reference. The recordings were performed after overnight
withdrawal of antiparkinsonian medication. The study was approved by the local
ethical committee. The patient gave a written consent.

Accelerometer and LFP signals are denoted further as x1(t) and x2(t), respec-
tively, where t = n
t, n = 1, 2, . . ., the sampling interval is 
t = 5 ms. An
accelerometer signal from the left hand during an epoch of strong resting tremor (of
the length of 83.5 s or 16700 data points) is shown in Fig. 13.14a. The simultaneous
LFP recording performed via the central depth electrode is shown in Fig. 13.14b.
We describe only the central electrode, since all the results are very similar for
all depth electrodes. The accelerometer signal displays a sharp peak in the power
spectrum (Fig. 13.14c) at the frequency of 5 Hz. The corresponding spectral peak
in the power spectrum of LFP is also observed (Fig. 13.14d). A spectral peak at the
tremor frequency is often manifested in the power spectrum of the LFP recorded
from the depth electrode contralateral to (i.e. at the opposite side of) the tremor
(Brown, 2003; Deuschl et al., 1996; Rivlin-Etzion et al., 2006; Zimmermann et al.,
1994).

The parkinsonian resting tremor is highly regular: the peak at the tremor fre-
quency is rather narrow for the accelerometer signal. The peak in the LFP power
spectrum is wider. This regularity is further illustrated by the autocorrelation
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Fig. 13.14 A spontaneous epoch of parkinsonian tremor of length 83.5 s. The left column relates
to an accelerometer signal and the right one to a simultaneous LFP signal: (a), (b) the time series
at the beginning of the epoch; (c), (d) their power spectra estimates (periodograms); (e), (f) their
autocorrelation functions; (g), (h) magnified segments of the original signals (grey lines) and their
versions band-pass filtered (black lines) in the frequency band 2–9 Hz; (i), (j) the orbits on the
plane “a band-pass filtered signal (2–9 Hz) versus its Hilbert transform”

functions in Fig. 13.14e, f: the ACF of x1 (Fig. 13.14e) decays much slower than that
of x2 (Fig. 13.14f). A signal with a strong periodic component is often called “phase
coherent”, since the phases of two orbits with initially the same phase diverge very
slowly in time (see, e.g., Pikovsky et al., 2001). In such a case, one speaks also of
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weak phase diffusion, which is manifested as weak variations in the instantaneous
period (a time interval between successive local maxima in a time series). The phase
diffusion can be characterised by the coefficient of variation of the instantaneous

period k =
√〈
(Ti − 〈Ti 〉)2

〉/〈Ti 〉, where Ti are the intervals between successive

maxima (i = 1, 2, . . .) and angle brackets denote averaging over the time index
i . For the accelerometer signal shown in Fig. 13.14a, the value of k is equal to
0.05 (local maxima and the distances Ti are determined from a band-pass filtered
signal, shown by the black line Fig. 13.14g, to avoid fast fluctuations inappro-
priate for the determination of the tremor period). Since the instantaneous period
varies only by 5% as compared to its mean value of 〈Ti 〉 ≈ 200 ms, the process
can be regarded as rather phase coherent. Our analysis of 41 tremor epochs from
three different patients (Smirnov et al., 2008) shows that the coefficient k for the
accelerometer signals typically takes the values of 0.05–0.1. For such regular sig-
nals, it is most reasonable to introduce phases and estimate couplings via the phase
dynamics modelling as justified in Smirnov and Andrzejak (2005) and Smirnov et al.
(2007).

Before the phase dynamics modelling, it is necessary to select a frequency band
to define the phases. The results may differ for different bands. Inclusion of the
frequencies below 2–3 Hz may shift the focus to slow processes like the heart beat or
technical trends, which are not related to the parkinsonian tremor generation. Inclu-
sion of the frequencies higher than 9–10 Hz implies a description of fast fluctuations,
in particular, higher harmonics of the basic frequency. Such fluctuations may play a
role of noise in the modelling of the tremor and make confident conclusions about
the coupling presence more difficult. However, all that is not known in advance.
Hence, one must try different frequency bands. We present the results only for a
rather wide frequency band around the tremor frequency and then briefly comment
what differs if other bands are used.

Both signals x1(t) and x2(t) are filtered in the relatively wide frequency band
of 2–9 Hz (Fig. 13.14g, h). Their Hilbert transforms (Sect. 6.4.3) are illustrated in
Fig. 13.14i, j, where rotation about a clearly defined centre is seen for both signals.
Thus, the phases φ1(t) and φ2(t) are defined reasonably well. Ten characteristic
periods at both edges of the phase time series are removed from the further analysis,
since the corresponding phase values may be strongly distorted due to the edge
effects as discussed in Pikovsky et al. (2000). The resulting phase time series of
length 15900 data points (approximately 400 oscillation periods) is used for model
fitting.

The cross-correlation function between the LFP and the contralateral hand accel-
eration is shown in Fig. 13.15a. Within a range of time lags, the CCF significantly
differs from zero. Thus, the presence of coupling can be inferred reliably already
from the CCF. The CCF exhibits some asymmetry: local maximum of its absolute
value, closest to zero time lag, is observed at −25 ms. It could be a sign that the
signal x2(t) “leads”. However, somewhat higher peaks are observed at positive time
lags, more distant from zero. Thus, directional coupling characteristics cannot be
extracted from the CCF unambiguously, which is a typical case.
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Fig. 13.15 Simple characteristics of interdependence between the accelerometer and LFP signals,
shown in Fig. 13.14: (a) the cross-correlation function, error bars show the 95% confidence bands
estimated via Bartlett’s formula (Bartlett, 1978); (b) phase synchronisation index for the phases
defined in the frequency band 2–9 Hz; (c) the data points on the plane of wrapped phases

13.2.3 Selection of the Model Equation Structure

At variance with the electronic example (Sect. 13.1), model equations for the
parkinsonian tremor and subcortical activity cannot be written down from physi-
cal or physiological considerations. Thus, the structure of model equations cannot
be regarded as completely known. On the other hand, it has appeared possible to
introduce the phases of the oscillations related to the tremor frequency band. As
discussed in Sect. 12.2, an adequate description of the phase dynamics for a wide
range of oscillatory processes is achieved with the phase oscillator model, i.e. a first-
order stochastic differential equation (Kuramoto, 1984; Rosenblum et al., 2001). For
two processes, the model reads as

dφ1(t)
/

dt = ω1 + G1(φ1(t), φ2(t − 
2→1)) + ξ1(t),

dφ2(t)
/

dt = ω2 + G2(φ2(t), φ1(t − 
1→2)) + ξ2(t),
(13.9)

where ωk is the angular frequency, the function Gk is 2π periodic with respect to
both arguments, 
2→1,
1→2 are time delays in couplings, ξk are zero-mean white
noises with ACFs

〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ(t − t ′), σ 2
ξk

characterises noise intensity.
Empirical model is convenient to be sought for in the form of the corresponding
difference equations:

φ1(t + τ) − φ1(t) = F1(φ1(t), φ2(t − 
2→1), a1) + ε1(t),

φ2(t + τ) − φ2(t) = F2(φ2(t), φ1(t − 
1→2), a2) + ε2(t),
(13.10)
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where τ is the fixed time interval equal to the basic oscillation period (200 ms in
our case), εk is the zero-mean noise, Fk is the third-order trigonometric polynomial
(12.8), ak is the vector of its coefficients, 
2→1,
1→2 are trial time delays.

Thus, a suitable model structure (or, at least, a good guess for it) for the phases
of the processes x1(t) and x2(t) can be considered as partly known due to relatively
high regularity of the processes. Indeed, the first-order difference equation (13.10)
with low-order trigonometric polynomials is a sufficiently universal choice, but not
as arbitrary as in the black box case (Chap. 10): one does not need to try different
model dimensions and different types of approximating functions.

13.2.4 Model Fitting, Validation and Usage

The three conditions of applicability of the phase dynamics modelling technique
(Smirnov and Bezruchko, 2003; 2009) are imposed on the time series length (not
less than 40 characteristic periods), the synchronisation index (not greater than 0.45)
and the autocorrelation function of the model residual errors (the ACF decreases
down to 0 or, at least, gets less than 0.2, over the interval of time lags up to τ ).
In our example, the length of the considered time series is about 400 characteristic
oscillation periods, which is sufficiently big. Phase synchronisation index

ρ(
) =
∣∣∣
∣∣

1

N

N∑

n=1

ei(φ1(n
t)−φ2(n
t+
))

∣∣∣
∣∣

is less than 0.4 for any time lag 
 (Fig. 13.15b) as required. Sufficiently weak
interdependence between simultaneous values of φ1 and φ2 is also illustrated in
Fig. 13.5c: the distribution of the observed values on the plane of the wrapped
phases fills the entire square and exhibits only weak non-uniformity. The ACF of
the residual errors must be checked after fitting the model (13.10) to the phase time
series.

We have fitted the equations to the data as described in Sect. 12.2. Namely, we
have fixed τ = 200 ms and minimised mean-squared approximation errors

σ̂ 2
k,a(
 j→k, ak) = 1

N − τ
/

t

N∑

n=τ /
t+1

(φk(n
t + τ) − φk(n
t)

−Fk(φk(n
t), φ j (n
t − 
 j→k), ak)
)2
,

where k, j = 1, 2 ( j �= k). For a fixed value of the trial delay 
 j→k , this is a linear
problem so that the coefficient estimates âk(
 j→k) = arg min

ak
σ̂ 2

k,a(
 j→k, ak) are

found by solving a linear set of algebraic equations. The minimisation is performed
for different trial delays. Then, the quantity σ̂ 2

k (
 j→k) = min
ak

σ̂ 2
k,a(
 j→k, ak) is

plotted versus 
 j→k (Fig. 13.16a, b). Its minimal value characterises the phase
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Fig. 13.16 Fitting the phase dynamics model (13.10) to the data of Fig. 13.14: (a), (b) approxi-
mation errors σ̂ 2

1 and σ̂ 2
2 (dimensionless) versus a trial time delay; (c), (d) coupling characteristics

γ2→1 and γ1→2 (dimensionless) versus a trial time delay (solid lines) along with the pointwise
0.975 quantiles γ2→1,c and γ1→2,c (dashed lines)

diffusion intensity: σ̂ 2
k,min = min


 j→k
σ̂ 2

k (
 j→k). From the coefficient estimates âk ,

the coupling strength γ j→k(
 j→k) is computed as their weighted sum. The for-
mula for γ j→k is given in Sect. 12.2. For the low-order trigonometric polynomials
used, it appears that the maximum of γ j→k(
 j→k) corresponds to the minimum of
σ̂ 2

k (
 j→k) (Fig. 13.16c, d).
The formula for the critical value γ j→k,c(
 j→k), which is a pointwise 0.975

quantile for the estimator γ j→k(
 j→k) in the case of uncoupled processes, is also
available (Sect. 12.2). If one observes that γ j→k(
 j→k) > γ j→k,c(
 j→k) for a
range of time delays wider than half a basic oscillation period (for an entire tried
range of time delays covering five basic periods), then the presence of coupling
can be inferred at the resulting significance level of 0.05 (i.e. with a probability
of random error less than 0.05). This is the case in our example (Fig. 13.16c, d).
Thus, a bidirectional coupling between the brain activity and the limb oscillations is
detected.

Then, the location of the maximum of γ j→k(
 j→k) or the minimum of
σ̂ 2

k (
 j→k) gives an estimate of the time delay: 
̂ j→k = arg min

 j→k

σ̂ 2
k (
 j→k). In

our case, the estimated time delay is 
̂2→1 = 350 ms for the influence 2 → 1
(brain to hand, γ2→1(
̂2→1) = 0.045) and 
̂1→2 = 0 ms for the influence 1 → 2
(hand to brain, γ1→2(
̂1→2) = 0.16).

Finally, the obtained model (13.10) with coefficients âk(
̂ j→k) should be val-
idated including the properties of its residual errors. Our optimal model is spec-
ified by the phase diffusion intensities σ̂ 2

1,min = 0.52 and σ̂ 2
2,min = 3.88, and

the following significantly non-zero coefficients (see their notations in Sect. 12.2):
w1 = 6.03 ± 0.07, β1,2,0 = 0.019 ± 0.017, α1,1,1 = 0.213 ± 0.076;
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Fig. 13.17 Residual errors of the optimal phase dynamics model (13.10) for the epoch of
Fig. 13.14. The left column shows residuals for the accelerometer signal phase, the right one is for
the LFP signal phase: (a), (b) residual errors versus time; (c), (d) their autocorrelation functions;
(e), (f) their histograms

w2 = 6.28 ± 0.20, β2,1,1 = 0.44 ± 0.21. Time realisations of this model represent
almost linear increase of the phases with some fluctuations. Qualitatively, they are
very similar to the observed almost linearly increasing phases (not shown, since
the plots are not informative). The model residuals are shown in Fig. 13.17a, b and
their ACFs in Fig. 13.17c, d. The ACFs get less than 0.2 for time lags greater than
τ = 200 ms as required. Thus, applicability of the technique is confirmed.

The required properties of the residuals and proper behaviour of the time real-
isations validate the obtained model (13.10). The main usage of the model in our
case is to make conclusions about the couplings between the processes. As already
mentioned, it reveals a bidirectional coupling. Further, for the time series consid-
ered, the brain-to-hand influence appears delayed by more than a basic oscillation
period, while the opposite influence is non-delayed. These results appear repro-
ducible (another tremor epoch is illustrated in Figs. 12.1 and 12.2): the analysis of
41 tremor epochs from three different patients (Smirnov et al., 2008) in 30 cases has
revealed the “coupling pattern” similar to that in Fig. 13.16, i.e. a bidirectional cou-
pling which is significantly time delayed in the brain-to-hand direction and almost
non-delayed in the opposite direction. In the other 11 epochs, no coupling has been
detected. The cause seems to be that epochs of strong tremor occur intermittently in
all the patients and the estimated curves γ j→k(
 j→k) fluctuate stronger for shorter
epochs. It can be interpreted as an effect of noise. Averaging over all tremor epochs
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available for a given patient exhibits the plots γ j→k(
 j→k) shown in Fig. 12.3,
which clearly confirm the coupling pattern observed in Fig. 13.16.

The results do not change under sufficiently strong variations in the frequency
band used to define the phases. Namely, the results are practically the same if the
lower cut-off frequency is not less than 2 Hz and not greater than ftremor − fc and the
upper cut-off frequency is not less than ftremor+ fc and not greater than 2 ftremor− fc,
where ftremor is the basic tremor frequency and fc is equal to 1 Hz. In our example,
ftremor = 5 Hz so that the acceptable values of the lower cut-off frequency range
from 2 to 4 Hz and those of the upper cut-off frequency are from 6 to 9 Hz. Above,
we have presented the results for a maximally wide acceptable frequency band. Its
further enlargement or movement to higher frequencies gives less regular signals
(a stronger phase diffusion) and insignificant conclusions about the coupling
presence.

13.2.5 Validation of Time Delay Estimation

An analytic formula for the error in the time delay estimates is unavailable. To
check correctness of the time delay estimation and assess its typical errors, we
apply the same modelling procedure to a toy model consisting of the noisy van
der Pol oscillator (an “analogue” of the hand oscillations) and a strongly dissipative
linear oscillator (an “analogue” of the brain signal). Parameters of these oscillatory
systems are selected so that they give stronger phase diffusion for the “LFP” signals
and weaker one for the “tremor” signals as it is observed for the measurement data.
Thus, the accelerometer (a1(t) = d2 y1(t)

/
dt2) and LFP (y2(t)) model oscillators

read as

d2 y1(t)

dt2
−
(
λ − y2

1(t)
) dy1(t)

dt
+ y1(t) = k2→1(y2(t − τ2→1) − y1(t))+ ξ1(t),

d2 y2(t)

dt2
+ 0.15

dy2(t)

dt
+ y2(t) = k1→2(y1(t − τ1→2) − y2(t))+ ξ2(t), (13.11)

where ξ1, ξ2 are independent white noises with ACFs
〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ

(t − t ′), σξ1 = σξ2 = 0.1, λ = 0.05 and τ2→1, τ1→2 are time delays. Angular
frequencies of both oscillators are approximately equal to 1 so that their periods are
about six time units. To generate a time series, the equations are integrated with the
Euler technique (Sect. 4.5.2) at the step size of 0.01. The sampling interval is equal
to 0.15, i.e. gives approximately 40 data points per basic period of oscillations.

The reasoning behind the simple model equation (13.11) is as follows. Firstly,
the non-linear oscillator is chosen as a model of the accelerometer signal, since in
a large number of tremor epochs our attempts to reconstruct a model equation from
an accelerometer time series resulted in similar models (not shown). In fact, the
spinal cord is able to produce self-sustained rhythmic neural and muscular activity
due to its central pattern generators (Dietz, 2003). Moreover, similar models were
previously obtained both for parkinsonian and essential tremor dynamics (Timmer
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et al., 2000). We consider the oscillator which is close to the point of the Andronov –
Hopf bifurcation and demonstrates self-sustained oscillations (positive value of λ)
perturbed by noise. However, the coupling estimation results are very similar for
small negative λ, since the noise induces similar oscillations for small negative and
small positive values of λ. Secondly, the linear oscillator is chosen as a model of the
LFP signal, since construction of polynomial autoregressive models with different
polynomial orders did not detect pronounced non-linearity (not shown).

The time series and power spectra estimates for the coupled oscillators (13.11)
are shown in Fig. 13.18 (cf. Fig. 13.14).

We have analysed ensembles of time series generated by equation (13.11) with
exactly the same procedure as applied to the experimental data above. In the numer-
ical simulations, we used ensembles consisting of 100 time series of length of 100
basic periods. The results for a single epoch of Fig. 13.18 are shown in Figs. 13.19
and 13.20: they are qualitatively similar to the corresponding experimental results in
Figs. 13.16 and 13.17. The averaged plots of coupling estimates for the observables
a1(t) and y2(t) are shown in Fig. 13.21 in the same form as for the experimental
results in Fig. 12.3. Without coupling (i.e. for k2→1 = k1→2 = 0), Fig. 13.21a, b

Fig. 13.18 A simulated time realisation of equation (13.11) of the duration 600 units of time t
(4000 data points, about 100 basic periods) for the parameters k2→1 = 0.2, τ2→1 = 13.0, k1→2 =
0.05, τ1→2 = 0: (a) a signal a1(t) = d2 y1(t)

/
dt2 at the beginning of the epoch considered, an

analogue of the band-pass-filtered accelerometer signal x1(t) (Fig. 13.14g); (b) a simultaneous
signal y2(t), an analogue of the band-pass-filtered LFP x2(t) (Fig. 13.14h); (c), (d) periodograms
of a1(t) and y2(t), respectively; (e), (f) their autocorrelation functions
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Fig. 13.19 Fitting the phase dynamics equation (13.10) to the time realisations of the model
(13.11) illustrated in Fig. 13.18: (a), (b) the approximation errors σ̂ 2

1 and σ̂ 2
2 versus a trial time

delay; (c), (d) the coupling characteristics γ2→1 and γ1→2 versus a trial time delay (solid lines)
along with the pointwise 0.975 quantiles γ2→1,c and γ1→2,c (dashed lines)

Fig. 13.20 Residual errors of the optimal phase dynamics model (13.10) for the time series of
Fig. 13.18. The left column shows the residuals for the phase φ1 and the right one is for the phase
φ2: (a), (b) the residual errors versus time; (c), (d) their autocorrelation functions; (e), (f) their
histograms
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Fig. 13.21 The coupling characteristics averaged over ensembles of the time series from the system
(13.11). The error bars indicate the averaged values of the analytic 95% confidence bands. The
vertical dashed lines show true delay times: (a), (b) uncoupled oscillators; (c), (d) a unidirectional
coupling with k2→1 = 0, k1→2 = 0.07, τ1→2 = 0; (e), (f) a bidirectional time-delayed coupling
with k2→1 = 0.2, τ2→1 = 13.0, k1→2 = 0.05, τ1→2 = 0 (an example of a single time series for
these parameters is given in Figs. 13.18, 13.19 and 13.20)

evidences that there is no false coupling detection on average. For a unidirectional
“hand-to-brain” coupling (k2→1 = 0, k1→2 = 0.07, τ1→2 = 0), the unidirectional
coupling pattern is observed in Fig. 13.21c, d. The experimental coupling pattern
of Fig. 12.3 is qualitatively reproduced in our model (13.11) with a bidirectional
time-delayed coupling, e.g., for k2→1 = 0.2, τ2→1 = 13.0 (i.e. twice as large as
the basic period of the oscillations), k1→2 = 0.05, τ1→2 = 0, see Fig. 13.21e, f.
At that, γ2→1 gets maximal for 
̂2→1 = 9.0, which is smaller than τ2→1 = 13.0
approximately by 0.6 of the basic period. For a range of true coupling coefficients
and time delays, we have observed that the time delay estimate is less than the true
time delay by half of the basic period on average.

Thus, with the numerical example we have qualitatively illustrated that reason-
able estimates of the time delays are obtained with the phase dynamics modelling
technique. Quantitatively, the time delay estimates may have an error about half a
basic period and, hence, are not very accurate. Yet, we can conclude that the time
delay in the brain-to-hand influence estimated from the parkinsonian tremor data is
greater than the delay in the hand-to-brain direction.

To summarise, the results of the work (Smirnov et al., 2008), described above, fit
to the assumption that the subcortical oscillations drive and synchronise premotor
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and motor cortex which activates the contralateral muscles via the spinal cord
(Brown, 2003; Rivlin-Etzion et al., 2006; Tass et al., 1998; Timmermann et al.,
2003). However, the long brain-to-tremor delay indicates a more complex mecha-
nism compared to a simple forward transmission. In contrast, the short tremor-to-
brain delay fits to a direct neural transmission time of a proprioceptive feedback loop
(Eichler, 2006). These results provide a new picture of the old servo loop oscillation
concept, where feedback and feed-forward are acting via straight transmission lines
(Stilles and Pozos, 1976). Rather, one can suggest that the synchronised subcorti-
cal oscillatory activity feeds into a multistage re-entrant processing network, most
likely involving cortico-subcortical and spinal reflex loops (see also Brown, 2003;
Rivlin-Etzion et al., 2006, Stilles and Pozos, 1976).

13.3 El-Niño/Southern Oscillation and Indian Monsoon

13.3.1 Object Description

Major climatic processes in Asian – Pacific region, which are of global importance,
are related with the phenomena of El-Niño/Southern Oscillation (ENSO) and Indian
monsoon (Solomon et al., 2007). The strongest interannual variations in the global
surface temperature depend on the intensity of the ENSO phenomenon. Two-thirds
of the Earth population live in the monsoon-related regions with a key role of Indian
monsoon (Zhou et al., 2008). Thus, investigation of the interaction between ENSO
and Indian monsoon activity is of both regional and global interest.

The presence of interdependence between these processes has been reliably
detected with different techniques in many works (Kripalani and Kulkarni, 1997;
2001, Krishnamurthy and Goswami, 2000; Kumar et al., 1999; Maraun and Kurths,
2005; Sarkar et al., 2004; Solomon et al., 2007; Walker and Bliss, 1932; Yim et al.,
2008; Zubair and Ropelewski, 2006). Indeed, an increase in the sea surface tempera-
ture (SST) in equatorial Pacific during El-Nino along with the corresponding change
in convective processes, the Walker zonal circulation, the Hadley meridional circula-
tion and the displacement of the intertropical convergence zone, is accompanied by
considerable seasonal anomalies of temperature and precipitation in many regions.
At that, there are significant variations in the correlation between characteristics of
ENSO and Indian monsoon, in particular, its noticeable decrease starting from the
last quarter of the XX century (Solomon et al., 2007). Along with the characterisa-
tion of an overall coupling strength provided by the coherence and synchronisation
analysis, climatologists are strongly interested in a quantitative estimation of direc-
tional couplings between ENSO and Indian monsoon along with tendencies of their
temporal changes.

Below, we describe estimation of the directional couplings by using the empirical
AR models, i.e. the Granger causality (Sect. 12.1), which gets more and more often
used in the Earth sciences (Mokhov and Smirnov, 2006, 2008; Mosedale et al., 2006;
Wang et al., 2004).
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13.3.2 Data Acquisition and Preliminary Processing

We have analysed monthly values of the ENSO and Indian monsoon indices for
the period 1871–2006 illustrated in Fig. 13.22. Indian monsoon is characterised by
variations in all-India monthly precipitation (Mooley and Parthasarathy, 1984). The
corresponding data of the Indian Institute of Tropical Meteorology are available at
http://climexp.knmi.nl/data/pALLIN.dat. As the ENSO index, we use SST in the
area Niño-3 (5S–5N, 150W–90W) in the Pacific Ocean. We take the UK Meteoro-
logical Office GISST2.3 data for the period 1871–1996 (Rayner et al., 2003), which
are available at http://paos.colorado.edu/research/wavelets/nino3data.asc, and sup-
plement them with the data of the Climate Prediction Center obtained via Reynolds’
optimal interpolation (Reynolds and Smith, 1994) for the period 1997–2006, which
are available at http://www.cpc.noaa.gov/data/indices/sstoi.indices. The concatena-
tion of the data is done in analogy with the work of Torrence and Compo presented
at http://atoc.colorado.edu/research/wavelets/wavelet1.html.

Seasonal variations in both processes are clearly seen in Fig. 13.22. They are
related to the common external driving, i.e. to the insolation cycle. Common exter-

Fig. 13.22 Climatic data available and their characteristics: (a) an index of Indian monsoon, (b)
its ACF estimate; the error bars show 95% confidence intervals according to Bartlett’s formula
(Bartlett, 1978); (c) its periodogram; (d) an ENSO index, (e) its ACF estimate, (f) its periodogram
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nal driving can lead to prediction improvements (Sect. 12.1) and to erroneous con-
clusions about the presence of mutual influences. Therefore, we have removed the
component with 12-month period and its higher harmonics from both signals. It
is realised as follows. An averaged value of an observed quantity η is computed
separately for each calendar month, e.g. for January. The averaging is performed
over the entire interval 1871–2006. This averaged value is subtracted from all the
January values of η. The values of η corresponding to each of the 12 months are
processed analogously. Below, we deal only with such deseasonalised signals and
denote the resulting monsoon index as x1(t) and the ENSO index as x2(t). The
resulting time series are shown in Fig. 13.23a, d and their length is N = 1632 data
points. Their power spectra and ACFs do not reveal any signs of a 12-month cycle
(Fig. 13.23b, c, e, f) as desired.

The cross-correlation function for the signals x1(t) and x2(t) reaches the value of
−0.22 for the 3-month time delay of the ENSO index relative to the monsoon index
(Fig. 13.24). According to Bartlett’s formula (Bartlett, 1978), the width of a point-
wise 95% confidence band for the CCF estimate is ±0.05. Therefore, although the
absolute value of the CCF is not very large, its difference from zero at the time lags
close to zero is highly statistically significant. The CCF indicates the presence of an

Fig. 13.23 Climatic data after the removal of the 12-month component: (a)–(c) an index of Indian
monsoon with its ACF and periodogram; (d)–(f) an ENSO index with its ACF and periodogram
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Fig. 13.24 The cross-
correlation function between
deseasonalised monsoon and
ENSO indices

interdependence between the processes, but it does not allow to reveal whether the
coupling is unidirectional (and, then, to find out its directionality) or bidirectional.

13.3.3 Selection of the Model Equation Structure

Since any a priori information about an appropriate model structure is absent, we
use universal autoregressive models (Sect. 12.1) to describe the observed dynamics
and reveal the character of coupling. Namely, individual (univariate) models are
constructed in the form

x1(t) = f1(x1(t − 1), . . . ,x1(t − d1)) + ξ1(t),
x2(t) = f2(x2(t − 1), . . . ,x2(t − d2)) + ξ2(t),

(13.12)

where f1 and f2 are polynomials of the orders P1 and P2, respectively, d1 and d2 are
the model dimensions (orders), ξ1 and ξ2 are Gaussian white noises. Analogously,
the joint (bivariate) model structure is

x1(t) = f1|2 (x1(t − 1), . . . ,x1(t − d1), x2(t − 1), . . . , x2(t − d2→1)) + η1(t),
x2(t) = f2|1 (x2(t − 1), . . . ,x2(t − d2), x1(t − 1), . . . , x1(t − d1→2)) + η2(t),

(13.13)
where f 2|1 and f 1|2 are polynomials of the same orders P1 and P2 as for the indi-
vidual models (13.12), d2→1 and d1→2 are the numbers of the values of the other
process taken into account (they characterise inertial properties of couplings), η1
and η2 are Gaussian white noises.

Polynomial coefficients in the models (13.12) and (13.13) are estimated via the
ordinary least-squares technique, i.e. via minimisation of the sums of the squared
residual errors (Sect. 12.1). Since any a priori information about an appropriate
model structure is absent, we try different values of dk, d j→k and Pk to find opti-
mal ones. It is important to select the form of the non-linear functions properly.
Due to relatively short time series at hand, we use low-order algebraic polynomials
(Ishiguro et al., 2008; Mokhov and Smirnov, 2006) as a reasonable universal choice
under the “black box” problem setting (Chap. 10).

Concretely, to select dk, d j→k and Pk , we proceed as follows. At a fixed Pk ,
the value of dk is selected according to Schwarz’s information criterion (see the
discussion of the cost functions in Sect. 7.2.3), i.e. so as to minimise the value of
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Sk = N

2
ln σ̂ 2

k + ln N

2
Pk,

where σ̂ 2
k is the minimal mean-squared prediction error of the individual AR model

(13.12) at the given dk and Pk (see the notations in Sect. 12.1). Then, we validate
the univariate AR model obtained. Firstly, we check whether its residual errors are
delta correlated to assure further applicability of the F-test for the coupling estima-
tion (Sect. 12.1). Secondly, we check whether its time realisations are close to the
observed time series xk(t) in a statistical sense: temporal profiles look similar; the
ranges of probable values of the model and observed variables are almost the same.
If all that is fulfilled, then the univariate model is regarded satisfactory, otherwise
the value of dk is increased.

Given dk , we use Schwarz’s criterion to select d j→k , i.e. we minimise

S j→k = N

2
ln σ̂ 2

k| j + ln N

2
Pk| j ,

where σ̂ 2
k| j is the minimal mean-squared prediction error of the bivariate AR model

(13.13). However, for the purposes of coupling detection, another approach may
be even more appropriate: one can select such value of d j→k , which maximises
PI j→k = σ̂ 2

k − σ̂ 2
k| j or corresponds to the value of PI j→k , which exceeds zero at the

smallest significance level p. We use the latter approach as well and compare the
results of both approaches. An obtained bivariate AR model is validated in the same
way as the univariate models.

Different values of Pk are tried. The above analysis, including the selection of dk

and d j→k , is performed for each Pk . The most appropriate value of Pk is selected
both according to Schwarz’s criterion and to the most significant PI j→k and the
results are compared. The trial values of dk, d j→k and Pk are varied within such a
range that the number of coefficients in any fitted AR model remains much less than
the time series length N , namely the number of model coefficients does not exceed√

N , i.e. approximately 40 in our case.

13.3.4 Model Fitting, Validation and Usage

Firstly, we fit models and estimate couplings for the entire period 1871–2006. Sec-
ondly, the analysis is done in moving windows of length ranging from 10 to 100
years to get time-resolved coupling characteristics.

13.3.4.1 Univariate models

The number of coefficients in the linear models is equal to Pk = dk + 1 so that dk

can be increased up to 39 when a model is fitted to the entire period 1871–2006. For
the quadratic models, we get
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Fig. 13.25 Mean-squared prediction errors (first row) and Schwarz’s criterion (second row) for
the individual AR models of the Indian monsoon index (left column) and the ENSO index (right
column)

Pk = (dk + 1)(dk + 2)

2

so that dk may not exceed 7. It should be dk ≤ 4 for Pk = 3, dk ≤ 3 for Pk = 4, etc.
For the monsoon index, an optimal model is achieved at d1 = 1 for any P1

(Fig. 13.25a, c). Schwarz’s criterion takes the smallest values for the linear models.
Thus, an optimal model is linear with d1 = 1. It gives a prediction error with the
variance σ̂ 2

1 /var[x1] = 0.98, where var[x1] is the sample variance of x1. The model
explains only 2% of var[x1].

For the ENSO index, an optimal model dimension is d2 = 1 at P2 = 2, 4 and
d2 = 2 at P2 = 3, but the best model is linear with d2 = 5 (Fig. 13.25b, d). The
normalised variance of its prediction error is σ̂ 2

2 /var[x2] = 0.18.
The obtained individual models appear valid: the residual errors of the optimal

models (Fig. 13.26a, d) for both processes are delta correlated (Fig. 13.26b, e) and
exhibit distributions with quickly decreasing tails (Fig. 13.26c, f); model time real-
isations are statistically close to the observed data (the plots are not shown, since
they are similar to those for a bivariate model presented below).

13.3.4.2 ENSO-to-Monsoon Driving

To construct bivariate models for the monsoon index, we use d1 = 1 at different
values of P1 based on the results shown in Fig. 13.25c. The value of d2→1 = 1
appears optimal at P1 = 1 and 3 (Fig. 13.27a). The linear model gives the smallest
value of Schwarz’ criterion. However, the model with P1 = 3 gives greater and
the most statistically significant prediction improvement (Fig. 13.27c, e). This is a
sign of non-linearity in the ENSO-to-monsoon influence, which would be ignored
if the linear model were used to estimate the coupling. To avoid such a negli-
gence, we regard the model with P1 = 3 as optimal. Its prediction improvement
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Fig. 13.26 Residual errors of the optimal individual models (13.12) with ACFs and histograms:
(a)–(c) for the Indian monsoon index; (d)–(f) for the ENSO index

is PI2→1/σ̂
2
1 = 0.028, i.e. it equals only 2.8% of the variance of all factors, which

remain unexplained by the univariate model. Yet, the ENSO-to-monsoon influence
is detected with high confidence (p < 10−8).

The optimality of the value of d2→1 = 1 means “inertialless” ENSO-to-monsoon
influence. The model reads as

x1(t) = a1,1x1(t − 1) + b1,1x2(t − 1) + c1,1x2
1(t − 1)x2(t − 1) + c1,2x3

2(t − 1)
+η1(t),

(13.14)
where σ 2

η1
= 5.84 × 102 mm2 and estimates of the coefficients and their standard

deviations (see Sect. 7.4.1 and Seber, 1977) are the following: a1,1 = 0.071 ±
0.035, b1,1 = −4.65 ± 1.11 mm K−1, c1,1 = (−3.53 ± 0.76) · 10−3 mm−1 K−1

and c1,2 = 1.53 ± 0.38 mm K−3. We have shown only the terms whose coefficients
differ from zero at least at the pointwise significance level of 0.05, i.e. the absolute
value of a coefficient is at least twice as big as its standard deviation. The linear
coupling coefficient b1,1 is negative, which corresponds to the above-mentioned
negative correlation between the signals x1 and x2.

13.3.4.3 Monsoon-to-ENSO Driving

A bivariate model for the ENSO index is optimal at P2 = 1 and d1→2 = 3
(Fig. 13.27b). It corresponds to the most significant prediction improvement
PI1→2/σ̂

2
2 = 0.024 exceeding zero at the significance level of p < 10−8

(Fig. 13.27d, f). The model reads as

x2(t) = a2,1x2(t − 1) + a2,5x2(t − 5) + b2,1x1(t − 1) + b2,2x1(t − 2)
+b2,3x1(t − 3) + η2(t),

(13.15)
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Fig. 13.27 Fitting the bivariate models to the monsoon (the left column) and ENSO (the right
column) data: Schwarz’s criterion (first row), the prediction improvement (second row) and the
significance level (third row)

where σ 2
η2

= 0.11 K2, a2,1 = 0.92 ± 0.025, a2,5 = −0.083 ± 0.025, b2,1 =
(−1.44 ± 0.34) × 10−3 mm−1 K, b2,2 = (−1.04 ± 0.35) × 10−3 mm−1 K and
b2,3 = (−1.01 ± 0.35) × 10−3 mm−1 K. The monsoon-to-ENSO influence is iner-
tial, since the optimal value of d1→2 > 1. Namely, the behaviour of the ENSO
index depends on the values of the monsoon index for three previous months.
The coupling coefficients b2,1, b2,2, b2,3 are negative and also correspond to the
observed anti-correlation between x1 and x2. All the three coupling coefficients are
almost identical, i.e. the total contribution of the monsoon index to equation (13.15)
(b2,1x1(t − 1)+ b2,2x1(t − 2)+ b2,3x1(t − 3)) is approximately proportional to its
average value over 3 months. No signs of non-linearity of the monsoon-to-ENSO
influence are detected.

13.3.4.4 Validation of the Bivariate Model

ACFs and histograms of the residual errors for the bivariate models (13.14) and
(13.15) are very similar to those for the individual models in Fig. 13.26; they
exhibit delta correlatedness and quickly decreasing tails (not shown). The corre-
lation coefficient between the residual errors for the monsoon and ENSO indices
is 0.02 ± 0.05, i.e. equals zero within the estimation error. Thus, the noises η1
and η2 are considered independent when realisations of the bivariate model (13.14)
and (13.15) are simulated. Time realisations of this optimal model with P1 = 3,
d1 = 1, d2→1 = 1, P2 = 1, d2 = 5, d1→2 = 3 look similar to the observed time
series (Fig. 13.28a,c). For a quantitative comparison, an ensemble of model realisa-
tions at the same initial conditions is generated and 95% intervals of the distributions
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Fig. 13.28 Behaviour of the optimal AR model (13.14) and (13.15): (a), (c) model time realisations
corresponding to the monsoon index and the ENSO index, respectively; (b), (d) 95% intervals of
the model variables (dotted lines) and the observed data (solid lines), respectively

of the model variables are determined. It appears that 95% of the observed values
of the ENSO and monsoon indices fall within those intervals (Fig. 13.28b,d), which
confirms validity of the model.

13.3.4.5 Coupling Analysis in Moving Window

Finally, let us consider temporal variations in the coupling characteristics by using
the moving window analysis, i.e. the intervals [T − W, T ], where W is the window
length and T is a coordinate of the window endpoint (in years). At a fixed value of
W (which is systematically changed from 10 years to 100 years with a step of 10
years), the Granger causality estimates are calculated for T ranging from 1871 + W
till 2006.

To assess significance levels of the conclusions about the coupling present under
the moving-window scenario, a multiple test correction (Lehmann, 1986) must be
applied. Namely, according to the above procedure, one gets the estimates of the
prediction improvement PI j→k and the corresponding significance level p for each
time window. This is the so-called pointwise significance level, i.e. a probability of
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Fig. 13.29 Estimates of the ENSO-to-monsoon influence in a moving window [T –W , T ] versus
the coordinate of the window endpoint T : (a), (b) prediction improvements; (c), (d) pointwise
significance levels. Different panels show the results for the two different window lengths of 30
and 100 years. The dashed lines show the critical values pc of the pointwise significance level
corresponding to the resulting significance level of p = 0.05 (see the text)

a random erroneous conclusion for a single time window considered separately. The
probability of a false positive conclusion at the pointwise level p for at least one of
M non-overlapping time windows may reach the value of p · M , because probability
of a union of independent events is approximately equal to the sum of their individ-
ual probabilities (if the resulting value p · M is still much less than unity). Thus,
one can establish the presence of coupling for a particular time window among M
non-overlapping windows at a “true” significance level p if the pointwise signifi-
cance level for this window equals p/M , where the multiplier 1

/
M is called the

Bonferroni correction. The dashed lines in Figs. 13.29 and 13.30 show such a

Fig. 13.30 Estimates of the monsoon-to-ENSO influence in a moving window [T –W , T ] versus
the coordinate of the window endpoint T : (a), (b) prediction improvements; (c), (d) pointwise
significance levels. Different panels show the results for the two different window lengths of 30
and 100 years. The dashed lines show the critical values pc of the pointwise significance level
corresponding to the resulting significance level of p = 0.05 (see the text)
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threshold value of pc = 0.05/(N/W ), where N/W estimates the number of
non-overlapping windows; if the pointwise significance level p for any time win-
dow gets less than pc, we infer coupling presence for this window at the resulting
significance level less than 0.05.

Estimates of the ENSO-to-monsoon driving for the optimal non-linear model
with the parameters d1 = d2→1 = 1, P1 = 3 are presented in Fig. 13.29 for the
window lengths of 30 years (Fig. 13.29a, c) and 100 years (Fig. 13.29b, d). The
100-year windows give highly significant results for any T . A long-term tendency
consists of a weak rise of the ENSO-to-monsoon coupling strength at the begin-
ning of the investigated period, reaching a maximum, and a subsequent decrease.
The duration of the decrease period is longer than that of the rise period. When
the time window length is decreased, the temporal resolution enhances at the
expense of the significance of the results. Thus, the 30-year windows reveal cou-
pling for 1910 ≤ T ≤ 1930 and 1975 ≤ T ≤ 1985, i.e. over the intervals
1880–1930 and 1945–1985. For shorter moving windows, the non-linear model
gets relatively too “big” and gives less significant results. In total, the ENSO-to-
monsoon driving is relatively weak before 1880, during the period 1930–1945 and
after 1985.

One can see statistically significant influence of the monsoon on ENSO in a 100-
year moving window for any T (Fig. 13.30). A long-term tendency is the same
as for the ENSO-to-monsoon driving, but the monsoon-to-ENSO coupling strength
starts to decrease later; a maximum of its temporal profile is closer to the year of
2006. A significant monsoon-to-ENSO influence in a 30-year window is observed
for 1917 ≤ T ≤ 1927 and, especially, for 1935 ≤ T ≤ 2000. With a 20-year
moving window, a significant influence is detected only over the interval 1930–
1960; with a 10-year moving window, it is not detected at all (the plots are not
shown). In total, the monsoon-to-ENSO influence is not seen only before 1890 and
it is the most essential during the period 1930–1950.

Thus, the intervals of the strongest ENSO-to-monsoon and monsoon-to-ENSO
influences do not coincide in time but follow each other. The coupling between
both processes is approximately symmetric “in strength”: the normalised prediction
improvement is about 2–3% for the entire interval 1871–2006 and reaches about 7%
in a 30-year moving window for both directions.

We note that in Maraun and Kurths (2005) the authors found intervals of 1:1
synchronisation between both signals, i.e. the intervals when the phase difference
φ1 − φ2 is approximately constant. These are the intervals 1886–1908 and 1964–
1980, which correspond to the strong ENSO-to-monsoon influence detected by the
Granger causality. Next, the intervals of 1:2 synchronisation (when the difference
φ1 − 2φ2 is approximately constant) appear during 1908–1921 (corresponds to
a predominant monsoon-to-ENSO driving detected with the Granger causality),
1935–1943 (the strongest monsoon-to-ENSO driving and no significant ENSO-
to-monsoon driving) and 1981–1991 (a predominant monsoon-to-ENSO driving).
Thus, the 1:1 synchronisation coincides with the intervals of a stronger ENSO-to-
monsoon influence, while the 1:2 synchronisation to a predominant monsoon-to-
ENSO influence.
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13.4 Conclusions

The investigation of coupling between the climatic processes considered here rep-
resents a black-box problem. With the universal model structure (polynomial AR
models), we have obtained valid models and used them to characterise direc-
tional couplings between ENSO and Indian monsoon. The results complement pre-
vious knowledge of anti-correlation between these processes (Walker and Bliss,
1932) and their phase synchrony intervals (Maraun and Kurths, 2005). Namely,
the empirical modelling has revealed bidirectional coupling between ENSO and
Indian monsoon with high confidence. The ENSO-to-monsoon influence appears
inertialless and non-linear. The monsoon-to-ENSO influence is linear and inertial;
the values of the monsoon index for three months affect the future behaviour of
the ENSO index. However, in some sense the coupling is symmetric; prediction
improvement is about 2–3% in both directions. The moving window analysis has
revealed an alternating character of the coupling. The monsoon-to-ENSO coupling
strength rises since the end of the nineteenth century till approximately the period
of 1930–1950, when it is maximal. This influence weakens in the last decade of
the twentieth century. The opposite influence is strongest during the period of
1890–1920. It is also noticeable in 1950–1980 and not detected in 1920–1950 and
after 1980.

To summarise, the three examples considered in Chap. 13 illustrate an empirical
modelling procedure under three different settings: complete a priori information
about a model structure, partial information and no information. The first setting
takes place for the laboratory electronic systems, which is typical since laboratory
experiments can be devised so as to control many properties of the objects under
study. The second setting corresponds to a physiological problem, where partial
information about an appropriate model structure is available due to specific prop-
erties (considerable regularity) of the observed signals. The third example of no
specific knowledge about a model structure is taken from climatology. Estimates of
couplings between the investigated processes provided by the empirical modelling
can be regarded as most “valuable” in the latter case, where the results seem to be
obtained practically “from nothing”. However, under all the three settings, empirical
modelling allows to get useful information such as validation of the physical ideas
behind model equations and quantitative characterisation of individual dynamics
and interactions.
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