
Chapter 12
Identification of Directional Couplings

An important piece of information, which can be extracted from parameters of
empirical models, is quantitative characteristics of couplings between processes
under study. The problem of coupling detection is encountered in multiple fields
including physics (Bezruchko et al., 2003), geophysics (Maraun and Kurths, 2005;
Mokhov and Smirnov, 2006, 2008; Mosedale et al., 2006; Palus and Novotna, 2006;
Verdes, 2005; Wang et al., 2004), cardiology (Rosenblum et al., 2002; Palus and
Stefanovska, 2003) and neurophysiology (Arnhold et al., 1999; Brea et al., 2006;
Faes et al., 2008; Friston et al., 2003; Kreuz et al., 2007; Kiemel et al., 2003;
Le Van Quyen et al., 1999; Mormann et al., 2000; Osterhage et al., 2007; Pereda
et al., 2005; Prusseit and Lehnertz, 2008; Smirnov et al., 2005; Romano et al., 2007;
Schelter et al., 2006; Schiff et al., 1996; Sitnikova et al., 2008; Smirnov et al., 2008,
Staniek and Lehnertz, 2008; Tass, 1999; Tass et al., 2003). Numerous investigations
are devoted to synchronisation, which is an effect of interaction between non-linear
oscillatory systems (see, e.g., Balanov et al., 2008; Boccaletti et al., 2002; Hramov
and Koronovskii, 2004; Kreuz et al., 2007; Maraun and Kurths, 2005; Mormann
et al., 2000; Mosekilde et al., 2002; Osipov et al., 2007; Palus and Novotna, 2006;
Pikovsky et al., 2001; Prokhorov et al., 2003; Tass et al., 2003). In the last decade,
more careful attention is paid to directional coupling analysis. Such characteristics
might help, e.g., to localise an epileptic focus (a pathologic area) in the brain from
electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings: hypo-
thetically, an increasing influence of an epileptic focus on adjacent areas leads to the
seizure onset for some kinds of epilepsy.

The most appropriate and direct approaches to the detection of causal influ-
ences are based on the construction of empirical models. These approaches include
Granger causality (Sect. 12.1) and phase dynamics modelling (Sect. 12.2). Below,
we present our results showing their fruitful applications to the problems of neuro-
physiology (Sects. 12.3 and 12.4) and climatology (Sects. 12.5 and 12.6).

12.1 Granger Causality

The problem is formally posed as follows. There are time series from M processes
{xk(t)}N

t=1, k = 1, . . . , M . One needs to detect and characterise couplings between
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320 12 Identification of Directional Couplings

them, i.e. to find out how the processes influence each other. In the case of two
linear processes (Granger, 1969; Pereda et al., 2005), one first constructs univariate
autoregression models (Sect. 4.4)

xk(t) = Ak,0 +
d∑

i=1

Ak,i xk(t − i) + ξk(t), (12.1)

where k = 1, 2, d is a model order, ξk are Gaussian white noises with variances
σ 2
ξk

. Let us denote the vector of coefficients
{

Ak,i , i = 0, . . . , d
}

as Ak , the sum of
squared residual errors as

�2
k =

N∑

t=d+1

(

xk(t)− Ak,0 −
d∑

i=1

Ak,i xk(t − i)

)2

,

and its minimal value as s2
k = min

Ak
�2

k . The model coefficients are estimated via the

ordinary least-squares technique (Sect. 7.1.1), i.e. one gets Âk = arg min
Ak

�2
k . An

unbiased estimator for σ 2
ξk

would represent the mean-squared prediction error of the
univariate model. Such an estimator is given by

σ̂ 2
k = s2

k

N − d − (d + 1)
,

where d + 1 is the number of estimated coefficients in Eq. (12.1). The model order
d is selected large enough to provide delta correlatedness of the residual errors. For
automatic choice of d, one often uses criteria of Akaike (1974) or Schwarz (1978).

Then, one similarly constructs a bivariate AR model:

x1(t) = a1,0 +
d∑

i=1
a1,i x1(t − i) +

d∑

i=1
b1,i x2(t − i) + η1(t),

x2(t) = a2,0 +
d∑

i=1
a2,i x2(t − i) +

d∑

i=1
b2,i x1(t − i) + η2(t).

(12.2)

where ηk are Gaussian white noises. Minimal values of the sums of squared residual
errors are denoted s2

1|2 and s2
2|1 for the first and second processes, respectively. Unbi-

ased estimators for the residual error variances are denoted σ̂ 2
1|2 and σ̂ 2

2|1. Prediction

improvement for xk , i.e. the quantity PI j→k = σ̂ 2
k − σ̂ 2

k| j , characterises the influence
of the process x j on xk (denoted further as j → k).

Note that PI j→k is an estimate obtained from a time series. To define a theoretical
(true) prediction improvement PItrue

j→k = σ 2
k − σ 2

k| j , one should minimise the expec-

tations of the squared prediction errors instead of the empirical sums �2
k and �2

k| j
to get model coefficients, i.e. one should use an ensemble averaging or an averaging
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over an infinitely long-time realisation instead of the averaging over a finite time
series. For uncoupled processes, one has PItrue

j→k = 0, but the estimator PI j→k can
take positive values due to random fluctuations. Therefore, one needs a criterion
to decide whether an obtained positive value of PI j→k implies the presence of the
influence j → k. It can be shown that the quantity

Fj→k =
(N − 3d − 1)

(
s2

k − s2
k| j

)

s2
k| j d

is distributed according to Fisher’s F-law with (d, N − 3d − 1) degrees of freedom.
Hence, one can conclude that PItrue

j→k > 0 and the influence j → k exists at the
significance level p (i.e. with the probability of random error not greater than p) if
the value of Fj→k exceeds (1 − p) quantile of the respective F-distribution. This
is called F-test or Granger – Sargent test (see, e.g., Hlavackova-Schindler et al.,
2007).

If a time series is short, it is problematic to use high values of d, since the number
of the estimated coefficients is then large, which often leads to insignificant conclu-
sions even in cases of really existing couplings. The difficulty can be overcome in
part if one constructs a bivariate model in the form

xk(t) = ak,0 +
dk∑

i=1

ak,i xk(t − i) +
d j→k∑

i=1

bk,i x j (t − i −  j→k), (12.3)

where j, k = 1, 2, j �= k, and selects a separate univariate model order dk for
each process instead of the common d in Eq. (12.2), a separate value of d j→k and
a separate trial delay time  j→k . If at least some of the values dk and d j→k can be
made small, then the number of the estimated coefficients is reduced.

If one needs non-linear models, the difficulty gets even harder due to the curse of
dimensionality. In a non-linear case, the procedure of coupling estimation remains
the same, but the AR models must involve non-linear functions. Thus, univariate
AR models take the form

xk(t) = fk(xk(t − 1), xk(t − 2), . . . , xk(t − dk),Ak) + ξk(t), (12.4)

where it is important to choose properly the kind of the non-linear functions
fk . Algebraic polynomials (Mokhov and Smirnov, 2006), radial basis functions
(Ancona et al., 2004) and locally constant predictors (Feldmann and Bhattacharya,
2004) have been used. For relatively short time series, it is reasonable to use polyno-
mials fk of low orders Pk . Bivariate models are then constructed in the form (12.2),
where the linear functions are replaced with polynomials of the order Pk . Yet, there
is no regular procedure assuring an appropriate choice of the non-linear functions.

If the number of processes M > 2, then estimation of the influence j → k can
be performed in two ways:
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(i) Bivariate analysis of x j and xk results in an estimator, which reflects both a
“direct” influence j → k and that mediated by other observed processes.

(ii) Multivariate analysis takes into account all the M processes and allows to dis-
tinguish between the influences j → k from different processes x j . Namely,
one computes a squared prediction error for xk when a multivariate AR model
containing all the processes except for x j is used. Then, one computes such an
error for a multivariate AR model containing all the M processes including x j .
If the predictions are more accurate in the latter case, one infers the presence of
the direct influence j → k.

To express prediction improvements in relative units, one normalises PI j→k by
the variance var[xk] of the process xk or by the variance σ̂ 2

k of the prediction error
of the univariate model (12.1). The quantity PI j→k/σ̂

2
k is used more often than

PI j→k/var[xk]. Both quantities are not greater than one and one may hope to give
them a vivid interpretation. Thus, PI j→k/σ̂

2
k is close to unity if the influence j → k

describes almost all “external factors” ξk unexplained by the univariate model of xk .
PI j→k/var[xk] is close to unity if in addition the univariate model (12.1) explains
a negligible part of the variance var[xk], i.e. σ̂ 2

k ≈ var[xk]. These interpretations
are often appropriate, even though they may appear insufficient to characterise an
importance of the influence j → k from the viewpoint of long-term changes in the
dynamics.

12.2 Phase Dynamics Modelling

A general idea of the approach is that such a characteristic as “intensity of coupling”
between two oscillatory processes shows how strongly a future evolution of an oscil-
lator phase depends on the current value of the other oscillator phase (Rosenblum
and Pikovsky, 2001). In fact, it is similar to the Granger causality, since bivariate
models for the phases are constructed to characterise couplings. It makes sense to
model such variables as phases, since they are often especially sensitive to weak
perturbations as known from the synchronisation theory (see, e.g., Pikovsky et al.,
2001).

Phase dynamics of weakly coupled (deterministic) limit-cycle oscillators with
close natural frequencies can be to a good approximation described with a set of
ordinary differential equations (Kuramoto, 1984):

dφ1
/

dt = ω1 + H1(φ2 − φ1),

dφ2
/

dt = ω2 + H2(φ1 − φ2),
(12.5)

where φk are phases of the oscillators, ωk are their natural frequencies and Hk are
coupling functions. Model (12.5) does not apply if the phase dynamics of the oscil-
lators is perturbed by noise (a typical situation in practice) or coupling functions
depend on phases in a more complicated manner rather than only via phase differ-
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ence due to strong non-linearities in the systems and their interactions. Yet, if noise
level is low, the model can be generalised in a straightforward manner. One comes
to stochastic differential equations (Kuramoto, 1984; Rosenblum et al., 2001)

dφ1
/

dt = ω1 + G1(φ1, φ2) + ξ1(t),

dφ2
/

dt = ω2 + G2(φ2, φ1) + ξ2(t),
(12.6)

where ωk are not necessarily close to each other, ξk are independent zero-mean
white noises with autocorrelation functions

〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ(t − t ′), δ is the

Dirac’s delta function and σ 2
ξk

characterise noise intensities. The functions Gk are
2π periodic with respect to both arguments and describe both couplings between
the oscillators and their individual phase non-linearity.

Let σ 2
ξk

and |Gk | be reasonably small so that the contribution of the respective
terms in Eq. (12.6) to the phase increment φk(t + τ)− φk(t) is small in comparison
with the “linear increment” ωkτ , where the finite time interval τ is of the order of
the basic oscillation period. Then, by integrating Eq. (12.6) over the interval τ , one
converts to difference equations and gets

φk(t + τ) − φk(t) = Fk(φk(t), φ j (t), ak) + εk(t), (12.7)

where k, j = 1, 2, j �= k, εk are zero-mean noises, Fk are trigonometric polyno-
mials

Fk(φk, φ j , ak) = wk+
∑

(m,n)∈�k

(
αk,m,n cos(mφk − nφ j ) + βk,m,n sin(mφk − nφ j )

)
,

(12.8)
ak = (wk, {αk,m,n, βk,m,n}(m,n)∈�k ) are vectors of their coefficients and �k are
summation ranges, i.e. sets of pairs (m, n) defining which monomials are contained
in Fk . The terms with m = n = 1 can be induced by a linear coupling of the
form kx j or k(x j − xk) in some “original equations” for the oscillators. The terms
with n = 2 can be due to a driving force, which is quadratic with respect to the
coordinate of the driving oscillator, e.g. kx2

j . Various combinations are also possible
so that the couplings in the phase dynamics equations (12.7) can be described with
a set of monomials of different orders with n �= 0. The strongest influence arises
from the so-called “resonant terms”, which correspond to the ratios m/n ≈ ω j/ωk

in the equation for the kth oscillator phase. However, non-resonant terms can also
be significant.

Intensity of the influence j → k can be reasonably defined via the mean-squared
value of the partial derivative ∂Fk(φk, φ j , ak)/∂φ j (Rosenblum and Pikovsky, 2001;
Smirnov and Bezruchko, 2003):

c2
j→k = 1

2π2

2π∫

0

2π∫

0

(
∂Fk(φk, φ j , ak)

/
∂φ j

)2dφ j dφk . (12.9)
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Indeed, the value of c2
j→k depends only on the terms with n �= 0 and reads as

(Smirnov and Bezruchko, 2003)

c2
j→k =

∑

(m,n)∈�k

n2
(
α2

k,m,n + β2
k,m,n

)
. (12.10)

This is a theoretical coupling characteristic which can be computed if the poly-
nomial coefficients in Eq. (12.8) are known.

In practice, one has only a time series of observed quantities x1 and x2 represent-
ing two oscillatory processes. So, one first extracts a time series of the phases φ1(t)
and φ2(t) from the observed data with any of the existing techniques (Sect. 6.4.3).
Then, one estimates the coupling characteristics by fitting the phase dynamics equa-
tions (12.7) with the functions (12.8) to the time series of the phases. For that, one
can use the ordinary least-squares technique (Sect. 7.1.1) to get the estimates âk of
the coefficients (Rosenblum and Pikovsky, 2001), i.e. one minimises the values of

σ̂ 2
k (ak) = 1

N − τ
/
t

N∑

n=τ /t+1

(
φk(nt + τ) − φk(nt) − Fk(φk(nt), φ j (nt), ak)

)2
,

where k, j = 1, 2, j �= k. The estimates can be written as âk = arg min
ak

σ̂ 2
k (ak).

The minimal value σ̂ 2
k = min

ak
σ̂ 2

k (ak) characterises the noise level. The most direct

way to estimate the coupling strengths c j→k is to use the expression (12.10) and
replace the true values ak with the estimates âk . Thereby, one gets the estimator

ĉ2
j→k = ∑

(m,n)∈�k

n2
(
α̂2

k,m,n + β̂2
k,m,n

)
.

Sensitivity of the technique to weak couplings was demonstrated numerically
(Rosenblum and Pikovsky, 2001). The estimator ĉ j→k appears “good” for long and
stationary signals, whose length should be about several hundreds of basic periods
under moderate noise level. The technique has already given interesting results for
a complex real-world process, where such data are available, namely for the inter-
action between human respiratory and cardio-vascular systems (Rosenblum et al.,
2002). It appears that the character of the interaction in infants changes with their
age from an almost symmetric coupling to a predominant influence of the respiratory
system on the cardio-vascular one.

Application of the technique in practice encounters essential difficulties when
time series are non-stationary. For instance, it is important to characterise an inter-
action between different brain areas from EEG recordings. However, their quasi-
stationary intervals last for about a dozen of seconds, i.e. comprise not more than
100 basic periods for pathological (epileptic or Parkinsonian) oscillatory behaviour.
Then, one could divide a long time series into quasi-stationary segments and com-
pute coupling characteristics from each segment separately. However, for a time
series of such a moderate length, the estimators ĉ j→k turn out to be typically biased.
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The reasons are described in Smirnov and Bezruchko (2003), where corrected esti-
mators γ j→k for the quantities c2

j→k are suggested:

γ j→k =
∑

(m,n)∈�k

n2
(
α̂2

k,m,n + β̂2
k,m,n − 2σ̂ 2

α̂k,m,n

)
,

the estimates of the variances σ̂ 2
α̂k,m,n

of the coefficient estimates α̂k,m,n are derived
in the form

σ̂ 2
α̂k,m,n

= 2σ̂ 2
k

N − τ
/
t

⎧
⎨

⎩
1 + 2

τ /t∑

l=1

(

1 − l

τ
/
t

)

cos

[
l
(
mŵk + nŵ j

)

τ
/
t

]

exp

⎡

⎣−
l
(

m2σ̂ 2
k + n2σ̂ 2

j

)

2τ
/
t

⎤

⎦

⎫
⎬

⎭
.

95% confidence bands for the coupling strengths c2
j→k are derived in Smirnov and

Bezruchko (2003) for the case of trigonometric polynomials Fk of the third order
(namely, for the set �k , which includes the pairs of indices m = n = 1, m =
1, n = −1, m = 1, n = 0, m = 2, n = 0 and m = 3, n = 0) in the form
[γ j→k −1.6σ̂γ j→k , γ j→k +1.8σ̂γ j→k ], where the estimates of the standard deviations
σ̂γ j→k are computed from the same short time series as

σ̂ 2
γ j→k

=

⎧
⎪⎨

⎪⎩

2
∑

m,n
n4σ̂ 2

α̂2
k,m,n

, γ j→k � 5
√∑

m,n
2n4σ̂ 2

â2
1,m,n

,

∑

m,n
n4σ̂ 2

â2
k,m,n

, otherwise,

and the estimate of the variance of the squared coefficient estimate is given as

σ̂ 2
α̂2

k,m,n
=
⎧
⎨

⎩
2σ̂ 4

α̂k,m,n
+ 4

(
α̂2

k,m,n − σ̂ 2
α̂k,m,n

)
σ̂ 2
α̂k,m,n

, α̂2
k,m,n − σ̂ 2

α̂k,m,n
� 0,

2σ̂ 4
α̂k,m,n

, otherwise.
.

The value of γ j→k,c = 1.6σ̂γ j→k represents a 0.975 quantile for the distribution
of the estimator γ j→k in the case of uncoupled processes. Hence, the presence of
the influence can be inferred at the significance level 0.025 (i.e. with a probability of
random error not more than 0.025) if it appears that γ j→k > γ j→k,c. The technique
has been compared to other non-linear coupling analysis techniques in Smirnov
and Andrzejak (2005) and Smirnov et al. (2007), where its superiority is shown for
sufficiently regular oscillatory processes.

If directional couplings between processes are expected to be time-delayed, the
technique can be readily generalised (Cimponeriu et al., 2004). Namely, one con-
structs the phase dynamics model in the form

φk(t + τ) − φk(t) = Fk(φk(t), φ j (t −  j→k), ak) + εk(t), (12.11)
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where k, j = 1, 2, j �= k, and  j→k is a trial delay time in the influence j → k.
One gets coupling estimates and their standard deviations depending on the trial
delay: γ j→k( j→k) and σ̂γ j→k ( j→k). Then, one selects the trial delay correspond-
ing to the largest value of γ j→k , which significantly exceeds zero (if such a value of
γ j→k exists), i.e. exceeds γ j→k,c( j→k). Thereby, one also gets an estimate of the
delay time.

The phase dynamics modelling technique is applicable if couplings are not
very strong so that the degree of synchrony between the oscillators is low. This
condition can be checked, e.g., via the estimation of the phase synchronisation
index (Sect. 6.4.5) also called mean phase coherence (Mormann et al. (2000):
ρ() = ∣∣〈exp (i(ϕ1(t)− ϕ2(t + )))〉t

∣∣. This quantity ranges from zero to one.
The estimators γ2→1(2→1) and γ1→2(1→2) with their confidence bands can be
considered reliable if the values of ρ(−2→1) and ρ(1→2) are less than 0.45
(Mokhov and Smirnov, 2006). The second condition of applicability is a sufficient
length of the time series: not less than 40 basic periods (Mokhov and Smirnov,
2006; Smirnov and Bezruchko, 2003). Finally, the autocorrelation function of the
residual errors for the models (12.7) or (12.11) should decrease down to zero over
the interval of time lags (0, τ ) to confirm appropriateness of the basic model (12.6)
with white noises.

The corrected estimators γ j→k are used for the analysis of two-channel EEG in a
patient with temporal lobe epilepsy in Smirnov et al. (2005). Their further real-world
applications are described in Sects. 12.3, 12.5 and 13.2.

12.3 Brain – Limb Couplings in Parkinsonian Resting Tremor

Many neurological diseases including epilepsy and Parkinson’s disease are related
to pathological synchronisation of large groups of neurons in the brain. Synchronisa-
tion of neurons in nuclei of thalamus and basal ganglia is a hallmark of Parkinson’s
disease (Nini et al., 1995). However, as yet its functional role in the generation
of Parkinsonian tremor (involuntary regular oscillations of limbs at a frequency
ranging from 3 to 6 Hz) is a matter of debate (Rivlin-Etzion et al., 2006). In par-
ticular, the hypothesis that the neural synchronisation drives the tremor has not yet
got a convincing empirical confirmation (Rivlin-Etzion et al., 2006). The standard
therapy for medically refractory Parkinson’s disease is permanent electrical deep
brain stimulation (DBS) at high frequencies (greater than 100 Hz) (Benabid et al.,
1991). Standard DBS has been developed empirically, its mechanism of action is
unclear (Benabid et al., 2005) and it has relevant limitations, e.g. side effects (Tass
et al., 2003; Tass and Majtanik, 2006). It has been suggested to specifically counter-
act the pathological cerebral synchrony by desynchronising DBS (Tass, 1999), e.g.
with coordinated reset stimulation (Tass, 2003). The verification of the tremor being
generated by synchronised neural activity in the thalamus and the basal ganglia will
further justify and strengthen the desynchronisation approach (Tass, 1999; 2003)
and help to develop therapies, which may presumably be milder and lead to less
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side effects. Therefore, to detect couplings between limb oscillations and activity of
different brain areas in Parkinsonian patients is a topical problem.

We have analysed more than 40 epochs of spontaneous Parkinsonian tremor
recorded in three patients with Parkinson’s disease (Bezruchko et al., 2008; Smirnov
et al., 2008). Limb oscillations are represented by accelerometer signals recorded
at sampling frequencies 200 Hz or 1 kHz. Information about the brain activity is
represented by the recordings of local field potentials (LFPs) from a depth elec-
trode implanted into the thalamus or the basal ganglia. The data are obtained at the
Department of Stereotaxic and Functional Neurosurgery, University of Cologne,
and at the Institute of Neuroscience and Biophysics – 3, Research Centre Juelich,
Germany.

Accelerometer and LFP signals during an interval of strong Parkinsonian tremor
are presented in Fig. 12.1 along with their power spectra. One can see oscillations
in the accelerometer signal, which correspond to a peak in the power spectrum at
the frequency of 5 Hz. The peak at the tremor frequency is seen in the LFP spectrum
as well, even though it is wider. The phases of both signals can be unambiguously
defined in the frequency band around the tremor frequency (e.g. 3–7 Hz). As a result
of the phase dynamics modelling (Sect. 12.2), we have found statistically significant
influence of the limb oscillations on the brain activity with a delay time not more
than several dozens of milliseconds. The influence of the brain activity on the limb
oscillations is present as well and is characterised by a delay time of 200–400 ms,
i.e. one to two basic tremor periods (Fig. 12.2). The results are well reproduced,
both qualitatively and quantitatively, for all three patients (Fig. 12.3). Some details
are given in Sect. 13.2.

Fig. 12.1 An interval of spontaneous Parkinsonian tremor (total duration of 36 s, only the starting
5 s are shown): (a, c) an accelerometer signal in arbitrary units and its power spectrum estimate;
(b, d) an LFP recording from one of the electrodes and its power spectrum estimate
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Fig. 12.2 Coupling estimates for the tremor epoch shown in Fig. 12.1 (dimensionless) versus a trial
delay time: (a) brain → hand; (b) hand → brain. The phases are defined in the frequency band
3–7 Hz. Thin lines show the threshold values γ ∗

j→k = 1.6σ̂γ j→k . The values of γ j→k exceeding
γ ∗

j→k differ from zero statistically significantly (at an overall significance level of p < 0.05).
Thus, one observes an approximately zero delay time for the hand → brain influence and a delay
time of about 335 ms for the brain → hand driving

Fig. 12.3 Estimates of coupling strengths in both directions: brain → hand (the left column) and
vice versa (the right column) for the three patients (three rows) versus a trial delay time. Coupling
estimates, averaged over ensembles of 10–15 intervals of strong tremor, are shown along with their
averaged 95% confidence bands (Smirnov et al., 2008)
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Surrogate data tests (Dolan and Neiman, 2002; Schreiber and Schmitz, 1996)
confirm statistical significance of our conclusions as well. Moreover, they show
that linear techniques cannot reveal the influence of the thalamus and basal ganglia
activity on the limbs.

Influence of the limb on the brain has been detected earlier with the linear
Granger causality (Eichler, 2006; Wang et al., 2007). However, the phase dynamics
modelling provides a new result: the brain → hand influence is detected and its delay
time is estimated. This delay is quite big as compared to the conduction time of the
neural pulses from the brain to the muscles. Therefore, it is interpreted (Smirnov
et al., 2008) as a sign of indirect (after processing of the signals in the cortex) influ-
ence of the thalamus or the basal ganglia activity on the limb oscillations. Besides,
it means that nuclei of the thalamus and the basal ganglia are elements of “feedback
loops”, which determine limb oscillations, rather than being just passive receivers
of cerebral or muscle signals.

We have also estimated non-linear Granger causality for broadband accelerome-
ter and LFP signals, rather than for the band-pass-filtered versions. It detects bidi-
rectional couplings as well but does not give reliable estimates of the delay times.
One reason can be that different time delays may correspond to different frequency
bands leading to unclear results of the combined analysis.

An important area of further possible applications of the presented directionality
analysis might be functional target point localisation diagnosis for an improvement
of the depth electrode placement.

12.4 Couplings Between Brain Areas in Epileptic Rats

Over the years, electroencephalography is widely used in clinical practice for the
investigation, classification and diagnosis of epileptic disorders. The EEG pro-
vides valuable information in patients with typical and atypical epileptic syndromes
and offers important prognostic information. Absence epilepsy, previously known
as petit mal, is classically considered as non-convulsive generalised epilepsy of
unknown aetiology. Clinically, absence seizures occur abruptly, last from several
seconds up to a minute and are accompanied by a brief decrease of conscious-
ness that interrupts normal behaviour. Absences may either have or not have facial
automatisms, e.g. minimal jerks and twitches of facial muscles, and eye blinks.
In humans, EEGs during typical absence seizures are characterised by the occur-
rence of generalised 3–5-Hz spike – and - wave complexes which have an abrupt
onset and offset (Panayiotopoulos, 1997). Similar EEG paroxysms, spike-and-wave
discharges (SWDs) appear in rat strains with a genetic predisposition to absence
epilepsy, such as WAG/Rij (Wistar Albino Glaxo from Rijswijk) (Coenen and van
Luijtelaar, 2003). The EEG waveform and duration (1–30 s, mean 5 s) of SWD in
rats and in humans are comparable, but the frequency of SWD in rats is higher,
8–11 Hz (Midzianovskaia et al., 2001; van Luijtelaar and Coenen, 1986).

EEG coherence was used previously to measure neuronal synchrony between
populations of thalamic and cortical neurons (Sitnikova and van Luijtelaar, 2006).
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The onset of SWD was characterised by area-specific increase of coherence that
supported the idea that the cortico-thalamo-cortical circuitry is primarily involved in
the initiation and propagation of SWD (Meeren et al., 2005; Steriade, 2005). How-
ever, the exact mechanism is unknown. A useful information to uncover it would
be characteristics of directional couplings between different brain areas. Below,
we describe our results on the estimation of interdependencies between local field
potentials recorded simultaneously from the specific thalamus and the frontal cortex
before, during and after SWD (Sitnikova et al., 2008).

Experiments were performed in five male 11–12-month-old WAG/Rij rats. The
recordings are done at the Department of Biological Psychology, Radboud Univer-
sity of Nijmegen. EEGs were recorded from brain areas in which seizure activity is
known to be the most robust: in the frontal cortex and in the ventroposteromedial
(VPM) thalamic nucleus (Vergnes et al., 1987). EEG recordings were made in freely
moving rats in a Faraday cage. Each recording session lasted from 5 to 7 h during the
dark period of the day – night cycle. SWDs appeared in EEG as trains of stereotypic
repetitive 7–10-Hz spikes and waves with high amplitude exceeding the background
more than three times. SWDs lasted longer than 1 s (Midzianovskaia et al., 2001; van
Luijtelaar and Coenen, 1986). In total, 53, 111, 34, 33 and 63 epileptic discharges
in five rats were detected and analysed.

As it is mentioned in Sect. 11.1, non-stationarity is an intrinsic feature of the
EEG signal. Since the above coupling estimation techniques require stationary data,
we divided the EEG recordings into relatively short epochs in which the EEG signal
revealed quasi-stationary behaviour. Time window lasting for 0.5 s seems to be a
good choice. This duration corresponds to four spike-wave cycles. We report only
results of the Granger causality estimation, since phase dynamics modelling gave
no significant conclusions due to the shortness of quasi-stationary segments. Intro-
duction of non-linearity (such as polynomials of the second and the third order) has
no significant influence on the prediction quality of AR models before and after
SWD. It suggests a predominance of the linear causal relations in non-seizure EEG.
In contrast, the seizure activity (SWD) exhibits a non-linear character. However, the
construction of non-linear models for seizure-related processes is quite non-trivial.
Thus, we present only the results of the linear analysis.

Prediction improvements are computed using EEG data from the frontal cortex
(x1) and from the VPM (x2). The linear AR models (12.1) and (12.3) are used to
calculate the coupling characteristics PI1→2 (FC → VPM) and PI2→1 (VPM →
FC). EEG recordings during a typical SWD are shown in Fig. 12.4. Figure 12.5
shows a typical dependence of the prediction error σ 2

1|2 on the dimensions d1 and
d2→1 at 2→1 = 0 for a 0.5-s interval of SWD. The error decreases when d1 and
d2→1 rise from 1 to 5. It reaches its saturation point for the values of d1 = d2→1 = 5,
which are taken as optimal. The same dependence is observed for the error σ 2

2|1.
Introduction of non-zero delays j→k makes predictions worse, therefore, only zero
delay times are used in the further analysis.

The first and the last spike in spike-and-wave sequences are used to mark the
onset and the offset of seizure activity. Estimation of the thalamus-to-cortex and
cortex-to-thalamus influences is performed for the EEG epochs covering a seizure
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Fig. 12.4 EEG recordings of a spike-and-wave discharge in the frontal cortex (a, b) and in the spe-
cific ventroposteromedial thalamic nucleus (c, d). The panels (b) and (d) are magnified segments
of the panels (a) and (c), respectively

Fig. 12.5 The prediction error of model (12.3) for the frontal cortex EEG recording (fitted to the
middle half a second in Fig. 12.4b) versus d1 and d2→1

(SWD), 5 s before a seizure (pre-SWD) and 5 s after a seizure (post-SWD). The
averaged results are illustrated in Fig. 12.6.

Before the onset of SWD, couplings are weak and remain constant until SWD
begins. The first SWD-related disturbances of PI j→k are observed about half a sec-
ond before SWD onset. This effect is provoked by the seizure itself because the
0.5-s time window starts to capture the seizure activity. Still, the obtained values
of PI1→2 and PI2→1 are statistically significantly greater than zero for majority of
analysed epochs both before and during SWD at least at the level of p = 0.05
according both to F-test and surrogate data test (Schreiber and Schmitz, 1996). No
changes in PI j→k are found earlier than 0.5 s before the SWD onset, suggesting that
the quantities PI j→k are not capable of seizure prediction. The immediate onset of
SWD is associated with a rapid growth in PI 1→2 and PI 2→1. The Granger causality
characteristics reach their maximum within half a second after a seizure onset and
remain high during the first 5 s of a seizure. The increase in couplings in both direc-
tions during an SWD as compared to pre-SWD epochs is significant. The ascending
influence thalamus → cortex tends to be always stronger in terms of the PI values
compared to the descending influence cortex → thalamus. Moreover, the occurrence
of an SWD is associated with a tendency for a larger increase in the thalamus →
cortex as compared to the cortex → thalamus influence. The results are similar for



332 12 Identification of Directional Couplings

Fig. 12.6 Normalised prediction improvements averaged over all accessible SWDs for each ani-
mal versus the starting time instant of the moving window (0.5 s length). The onset and the offset
of SWD are shown by vertical lines. The presence of SWD is associated with significant (and
reversible) changes in the Granger causality in both directions. Surrogate data tests (dotted lines)
are performed for each animal and confirm statistical significance of the Granger causality estima-
tion results

all five rats analysed. Thus, bidirectional couplings between FC and VPM are always
present, but the cortico-thalamo-cortical associations are reinforced during SWD.

Our results suggest that a reinforcement of predominant thalamus → cortex cou-
pling accompanies the occurrence of an SWD, which can be interpreted as follows.
In the described study, the EEG records were made in the areas where seizure activ-
ity is known to be the most robust (the frontal cortex and the VPM). It is important
that direct anatomic connections between these structures are virtually absent, but
both structures densely interconnect with the somatosensory cortex (Jones, 1985).
As discussed in Meeren et al. (2002), the somatosensory cortex (the peri-oral region)
contains an “epileptic focus” that triggers an SWD in WAG/Rij rats. The frontal
EEGs are recorded rather far away from the “epileptic focus”. Several groups report
similar results of their investigations with other methods: the cortex, indeed, does
not lead the thalamus when the cortical electrode is relatively far from the peri-oral
area of the somatosensory cortex (Inoue et al., 1993; Polack et al., 2007; Seiden-
becher et al., 1998).
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12.5 El Niño – Southern Oscillation and North Atlantic
Oscillation

El Niño – Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) rep-
resent the leading modes of interannual climate variability for the globe and the
Northern Hemisphere (NH), respectively (CLIVAR, 1998; Houghton et al., 2001).
Different tools have been used for the analysis of their interaction, in particular,
cross-correlation function (CCF) and Fourier and wavelet coherence for the sea
surface temperature (SST) and sea-level pressure (SLP) indices (Jevrejeva et al.,
2003; Pozo-Vazquez et al., 2001; Rogers, 1984; Wallace and Gutzler, 1981).

One often considers a NAO index defined as the normalised SLP difference
between Azores and Iceland (Rogers, 1984; http://www.cru.uea.ac.uk). It is fur-
ther denoted as NAOIcru. Alternatively, in http://www.ncep.noaa.gov, NAO is char-
acterised as the leading decomposition mode of the field of 500 hPa geopoten-
tial height in the NH based on the “rotated principal component analysis” (Barn-
ston and Livezey, 1987). It is denoted further as NAOIncep. Hence, NAOIncep is a
more global characteristic than NAOIcru. ENSO indices T(Niño-3), T(Niño-3,4),
T(Niño-4) and T(Niño-1+2) characterise SST in the corresponding equatorial
regions of the Pacific Ocean (see, e.g., Mokhov et al., 2004). Southern oscillation
index (SOI) is defined as the normalised SLP difference between Tahiti and Darwin.
All the signals are rather short, which makes confident inference about the character
of interaction difficult. We have investigated interaction between ENSO and NAO in
Mokhov and Smirnov (2006) with non-linear Granger causality and phase dynamics
modelling. The results are described below.

Mainly, the period 1950–2004 (660 monthly values) is analysed. The indices
NAOIcru and NAOIncep for NAO and T(Niño-3), T(Niño-3,4), T(Niño-4), T(Niño-
1+2) and SOI for ENSO are used. Longer time series for NAOIcru (1821–2004),
T(Niño-3) (1871–1997) and SOI (1866–2004) are also considered.

12.5.1 Phase Dynamics Modelling

Figure 12.7 demonstrates individual characteristics of the indices NAOIncep
(Fig. 12.7a) and T(Niño-3,4) (Fig. 12.7d). Wavelet analysis of each signal x(t) is
based on the wavelet transform

W (s, t) = 1√
s

∞∫

−∞
x(t ′)�∗ ((t − t ′

)/
s
)

dt ′, (12.12)

where �(η) = π−1/4
[
exp(−iω0η) − exp

(−ω2
0/2

)]
exp(−η2/2) is the Morlet

wavelet (see also Eq. (6.23) in Sect. 6.4.3), an asterisk means complex conjugate
and s is the timescale. Global wavelet spectra S of the climatic signals, obtained
by integration of Eq. (12.12) over time t at each fixed s, exhibit several peaks
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Fig. 12.7 Characteristics of NAOIncep and T(Nino-3,4). (a) NAOIncep (thin line) and ReW for
s = 32 months (dashed line); (b) global wavelet spectrum of NAOIncep ( f = 1/s); (c) an orbit
W (t) for NAOIncep, s = 32 months; (d–f) the same as (a–c) for the index T(Niño-3,4)

(Fig. 12.7b, e). One can assume that the peaks correspond to oscillatory processes
for which the phases can be adequately introduced. To get the phases of “different
rhythms” in NAO and ENSO, we try several values of s in Eq. (12.12) corresponding
to different spectral peaks. The phase is defined as an argument of the respective
complex signal W (s, t) at fixed s. For ω0 = 6 used below, this is tantamount to
band-pass filtering of a signal x around the frequency f = 1/s with a relative
bandwidth 1/4 and subsequent use of the Hilbert transform (see Sect. 6.4.3). Then,
we estimate couplings between all the “rhythms” pairwise. The only case when
substantial conclusions about the presence of coupling are inferred is the “rhythm”
with s = 32 months for both signals (Fig. 12.7a, d, dashed lines). The phases are
sufficiently well defined for both signals, since clear rotation around the origin takes
place on the complex plane (Fig. 12.7c, f).

The results of the phase dynamics modelling are shown in Fig. 12.8 for s = 32
months and model (12.11) with τ = 32 months, where φ1 stands for the phase
of NAO and φ2 for ENSO. Figure 12.8a shows that the technique is applicable
only for 2→1 < 30, where ρ(−2→1) < 0.4. The influence ENSO → NAO
is pointwise significant for 0 < 2→1 < 30 and maximal for 2→1 = 24 months
(Fig. 12.8b). From here, we infer the presence of the influence ENSO → NAO at
an overall significance level p = 0.05 as discussed in Mokhov and Smirnov (2006).
Most probably, the influence ENSO → NAO is delayed by 24 months; however, this
conclusion is not as reliable. No signs of the influence NAO → ENSO are detected
(Fig. 12.8c).

Large ρ for 2→1 > 30 does not imply strong coupling. For such a short time
series and close basic frequencies of the oscillators, the probability to get ρ() >
0.4 for uncoupled processes is greater than 0.5 as observed in numerical experiments
with exemplary oscillators.

All the reported results remain the same for any s in the range 29–34 months
and relative bandwidths 0.2–0.4. Phase calculation based directly on a band-pass
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Fig. 12.8 Coupling between NAOIncep and T(Niño-3,4) (over the period 1950–2004) in terms of
the phase dynamics modelling: (a) mean phase coherence; (b, c) strengths of the influences ENSO
→ NAO and NAO → ENSO, respectively, with their 95% pointwise confidence bands

filtering and Hilbert transform leads to similar results, e.g., for the second-order
Butterworth filter (Hamming, 1983) with the same bandwidths. The use of the other
ENSO indices instead of T(Niño-3,4) gives almost the same results as in Fig. 12.8.
Coupling is not pronounced only for T(Niño-1+2). Analysis of the other rhythms in
NAOIncep and T(Niño-3,4) does not lead to significant conclusions about the pres-
ence of interaction. For NAOIcru the width of the peak corresponding to s = 32
months is greater than that for NAOIncep. It leads to stronger phase diffusion of the
32-month rhythm as quantified by the mean-squared residual errors of the model
(12.11) (Smirnov and Andrzejak, 2005). As a result, we have not observed sig-
nificant coupling between NAOIcru and any of the ENSO indices for the period
1950–2004 as well as for the longer recordings (1871–1997 and 1866–2004).

12.5.2 Granger Causality Analysis

Cross-correlations between NAOIncep (x1) and T(Niño-3,4) (x2) are not significant
at p < 0.05. More interesting results are obtained from the non-linear Granger
causality analysis based on the polynomial AR models like Eq. (12.4). Figure 12.9a
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Fig. 12.9 Coupling between NAOIncep and T(Niño-3,4) (1950–2004) in terms of the non-linear
Granger causality. Prediction improvements are normalised by variances of the signals: (a)
PI2→1/var[x1], (b) PI1→2/var[x2]. Pointwise significance level p estimated via F-test is shown
below each panel

shows the normalised quantity PI2→1/var[x1] for the parameters d1 = 0, d2→1 = 1
and P1 = 2. It is about 0.015 for the time delays 19 ≤ 2→1 ≤ 21 or 80 ≤
2→1 ≤ 83 months. Each of these PI values is pointwise significant at p = 0.01.
Taking into account strong correlations of PI2→1 separated by 2→1 less than 4
months, one can infer that the influence ENSO → NAO is present at the overall
level p < 0.05 (Mokhov and Smirnov, 2006). Analogously, Fig. 12.9b shows the
quantity PI1→2/var[x2] for d2 = 0, d1→2 = 1 and P2 = 2. Its pointwise significant
values at 48 ≤ 1→2 ≤ 49 months do not allow confident detection of the influence
NAO → ENSO.

If d1 and d2→1 are increased up to 2, no changes in PI values presented in
Fig. 12.9a are observed. So, the reported PI is not achieved via complication of
the individual model. Simultaneous increase in d1 up to 3, P1 up to 3 and d2→1 up
to 2 leads to the absence of any confident conclusions due to large variance of the
estimators.

Similar results are observed if T(Nino-3,4) is replaced with T(Niño-3), T(Niño-
4) or SOI. However, the conclusion about the presence of the influence ENSO →
NAO becomes less confident: p ≈ 0.1. The use of T(Niño-1+2) leads to even
less significant results. Analogous to the phase dynamics modelling, replacement of
NAOIncep with NAOIcru does not lead to reliable coupling detection neither for the
period 1950–2004 nor for longer periods.

Finally, to reveal trends in coupling during the last decade, couplings between
NAOIncep and T(Niño-3,4) are estimated in a moving window of the length of 47
years. Namely, we start with the interval 1950–1996 and finish with the interval
1958–2004. PI values reveal an increase in the strength of the influence ENSO →
NAO. The value of PI2→1 for 19 � 2→1 � 20 months rises almost monotonously
by 150% (Fig. 12.10). Although it is difficult to assess statistical significance of the
conclusion, the monotone character of the increase indicates that it can hardly be an
effect of random fluctuations. To a certain extent, it can be attributed to the strong
1997–1998 ENSO event.
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Fig. 12.10 Influence ENSO → NAO for NAOIncep and T(Niño-3,4) in a 47-year moving window;
the value max{PI2→1(2→1 = 19),PI2→1(2→1 = 20)}/var[x1] is shown versus the last year of
the moving window

Thus, the presence of coupling between ENSO and NAO is revealed by the use
of two non-linear techniques and different climatic indices. Consistent results are
observed in all cases. The influence ENSO → NAO is detected with confidence
probability of 0.95 from the data for NAOIncep (1950–2004). Estimate of its delay
time ranges from several months up to 3 years with the most probable value of 20–24
months. Besides, an increase in the strength of the influence during the last decade is
observed. Possible physical mechanisms underlying oscillations and interactions as
slow and even slower than those reported here are considered, e.g., in Jevrejeva et al.
(2003); Latif (2001); Pozo-Vazquez et al. (2001). The influence ENSO → NAO is
not detected with the index NAOIcru, which is a “more local” characteristic than the
index NAOIncep. The influence NAO → ENSO is not detected with confidence for
any indices.

12.6 Causes of Global Warming

A key global problem is related to the determination of the relative role of natu-
ral and anthropogenic factors in climate variations. Forecasts of the future climate
change due to anthropogenic forcing depend on the present estimates of the impact
of different factors on the climate. Thus, an impact of solar activity variations is
quantified in Mokhov and Smirnov (2008); Mokhov et al. (2006); Moore et al.
(2006) via the analysis of different reconstructions and measurement data for solar
irradiance and global surface temperature (GST) of the Earth. A variable character
of the solar activity impact in connection with its overall increase in the second half
of the twentieth century is noted. Moreover, the use of a global climate model in
three dimensions has led to the conclusion that solar activity influence can determine
only a relatively small portion of the global warming observed in the last decades.
A significant influence of the anthropogenic factor on the GST is noted in Verdes
(2005). However, the question about the relative role of different factors is still not
answered convincingly on the basis of the observation data analysis.
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Fig. 12.11 The data: (a) mean GST (anomaly from the base period 1961–1990); (b) solar constant
(irradiance in the range from infrared to ultraviolet wavelengths inclusively); (c) volcanic activity
(optical depth of volcanic aerosol, dimensionless); (d) carbon dioxide atmospheric content in ppm
(parts per million)

Here, we report our estimates of the influences of different factors on the GST
(Mokhov and Smirnov, 2009) based on the analysis of the following data: annual
values T of the mean GST anomaly in 1856–2005 (http://www.cru.uea.ac.uk),
reconstructions and measurements of the annual solar irradiance variations I in
1856–2005 (http://www.cru.uea.ac.uk), volcanic activity V in 1856–1999 (Sato
et al., 1993) and carbon dioxide atmospheric content n in 1856–2004 (Conway
et al., 1994) (Fig. 12.11).

Firstly, we construct univariate AR models for the GST and then analyse the
influences of different factors with bivariate and multivariate AR models. Since the
main question is about the causes of the GST rise, we compute two characteristics
for the different models: (i) the expectation of the value of T in 2005 denoted as
T2005 and (ii) the expectation of the angular coefficient α1985–2005 of a straight line
approximating the time profile T (t) over the interval 1985–2005 in the least-squares
sense (i.e. a characteristic of the recent trend). These two quantities for the original
GST data take the values T2005 = 0.502K and α̂1985–2005 = 0.02K/year.

The AR models are fitted to the intervals [1856 – L] for different L , rather than
only for the largest possible L = 2005. Checking different L allows one to select a
time interval, where each influence is most pronounced, and to determine a minimal
value of L for which an influence can be revealed.

12.6.1 Univariate Models of the GST Variations

The mean-squared prediction error of a linear model (12.1) obtained from the inter-
val [1856–2005] saturates at dT = 4 (Fig. 12.12). Incorporation of any non-linear
terms does not lead to statistically significant improvements (not shown). Thus, an
optimal model reads
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Fig. 12.12 Univariate AR models of the GST: the normalised prediction error variance versus the
model order

Fig. 12.13 Residual errors for the univariate AR model (12.13) at dT = 4: (a) the time realisation;
(b) the histogram; (c) the autocorrelation function with the 95% confidence interval estimates

T (t) = a0 +
dT∑

i=1

ai T (t − i) + ξ(t), (12.13)

where dT = 4, a0 = −0.01 ± 0.10 K , a1 = 0.58 ± 0.08, a2 = 0.03 ± 0.09, a3 =
0.11 ± 0.09, a4 = 0.29 ± 0.08. The intervals present standard deviation estimates
coming from the least-squares routine (Sect. 7.4.1). The model prediction error is
σ 2

T = 0.01 K 2, while the sample variance of the GST over the interval [1856–
2005] is equal to var[T ] = 0.06K 2. In relative units σ 2

T /var[T ] = 0.17, i.e. 17%
of the GST variance is not explained by the univariate AR model. Residual errors
for the AR model with dT = 4 look stationary (Fig. 12.13a) and their histogram
exhibits maximum around zero (Fig. 12.13b). Their delta correlatedness holds true
(Fig. 12.13c). The latter is the main condition for the F-test applicability to the
further Granger causality estimation.

Time realisations of the obtained model (12.13) over 150 years at fixed initial
conditions (equal to the original GST values in 1856–1859) look very similar to
the original time series (Fig. 12.14a). For a quantitative comparison, Fig. 12.14b
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Fig. 12.14 Behaviour of the model (12.13) fitted to the interval [1856–2005]: (a) three time reali-
sations taken randomly from an ensemble of 100 realisations; (b) mean values over the ensemble
(thin line) and the 95% intervals of the distributions (error bars) with the superimposed original
data for GST (thick line)

shows mean values and 95% intervals for the distributions of model values T (t)
computed from an ensemble of 100 simulated model time realisations. The original
time series does not come out of the intervals most of the time, i.e. the model quality
is sufficiently high. However, this is violated for the GST values in 2001–2005.
Thus, one may suspect that model (12.13) with constant parameters and constant
σ 2

T = 0.01 K 2 is not completely adequate, e.g. it may not take into account some
factors determining the essential GST rise over the last years.

The hypothesis finds a further confirmation under a more strict test. We check
whether the univariate model (12.13) fitted to the interval [1856–1985] can predict
the GST rise over the interval [1985–2005]. The results of model fitting are similar
to those for the interval [1856–2005]. Coefficient estimates differ to some extent:
a0 = −0.01±0.16K , a1 = 0.56±0.09, a2 = 0.05±0.10, a3 = 0.02±0.10, a4 =
0.29 ± 0.09. Prediction error is again σ 2

T = 0.01 K 2. However, the original GST
values over the last 16 years do not fall within the 95% intervals (Fig. 12.15). Thus,
one may assume that something has changed in the GST dynamics over the last
decades, e.g., as a result of external influences.

Fig. 12.15 The original GST (thick line) and the 95% “corridor” for the model (12.13) fitted to the
interval [1856–1985]



12.6 Causes of Global Warming 341

This is further analysed with bi- and multivariate AR models for the GST. We
take dT = 4 and select dI→T , dn→T , dV →T and I→T ,n→T ,V →T so as to
provide the greatest GST prediction improvement and qualitative similarity between
the model behaviour and the original GST time profile.

12.6.2 GST Models Including Solar Activity

An optimal choice of parameters is dI→T = 1 and I→T = 0. The influence
I → T is most clearly seen when the interval [1856–1985] is used for model fitting
(Fig. 12.16a). The model reads

Tt = a0 + a1Tt−1 + a4Tt−4 + bI It−1 + ηt , (12.14)

where a1 = −93.7 ± 44.4K , a1 = 0.52 ± 0.09, a4 = 0.27 ± 0.09 and bI =
0.07 ± 0.03K/(W/m2). The prediction improvement is PII→T /σ

2
T = 0.028 and its

positivity is statistically significant at p < 0.035. The model fitted to the interval
[1856–2005] detects no influence I → T significant at p < 0.05. It may evidence
that the impact of other factors, not related to solar activity, has increased during
the interval [1985–2005]. Simulations with model (12.14) indirectly confirm this

Fig. 12.16 Bivariate modelling of the GST from different time windows [1856 – L]. PI-values
and significance levels for (a) the models taking into account solar activity; (b) the models taking
into account volcanic activity; (c) the models taking into account CO2 atmospheric content. The
numerical values of PI (thick lines) are indicated on the left y-axes and significance levels (thin
lines) on the right y-axes. The dashed lines show the level of p = 0.05
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assumption. Figure 12.17a shows an ensemble of simulated realisations when an
original time series I (t) is used as input. The 95% intervals are narrower than those
for the univariate model (cf. Fig. 12.14b), i.e. the incorporation of solar activity into
the model allows better description of the GST in 1856–1985. However, the GST
rise in 1985–2005 is not predicted by the bivariate model as well.

To assess the long-term effect of the solar activity trend on the GST rise, we
simulate an ensemble of time realisations of model (12.14) when a detrended signal
I (t) (Lean et al., 2005) is used as input. The result is visually indistinguishable from
the plot in Fig. 12.17a (not shown). Thus, the removal of the solar activity trend does
not affect the model GST values. Quantitatively, we get 〈T2005〉 = 0.0 ± 0.02K
and angular coefficients 〈α1985–2005〉 ≤ 0.002K/year in both cases. The original
trend α̂1985–2005 = 0.02K/year is not explained by any of the bivariate models
(12.14). Thus, despite it is detected that the solar activity variations affect the GST,
the long-term analysis suggests that they are not the cause of the GST rise in the
last years.

Introduction of non-linearity into the models does not improve their predictions
so that the linear models seem optimal. This is the case for all models below as well.
Therefore, all the results are presented only for the linear models.

Fig. 12.17 The original GST values (thick line) and 95% “corridors” for the bivariate models of
the GST: (a) model (12.14) with solar activity fitted to the interval [1856–1985]; model (12.15)
with volcanic activity fitted to the interval [1856–1999]; (c) model (12.16) with CO2 atmospheric
content fitted to the interval [1856–2005]
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12.6.3 GST Models Including Volcanic Activity

The influence of the volcanic activity appears of the same order of magnitude as that
of the solar activity. An optimal choice is dV →T = 1 and V →T = −1, i.e. a model

Tt = a0 + a1Tt−1 + a4Tt−4 + bV Vt + ηt . (12.15)

The influence is detected most clearly from the entire interval [1856–1999] of
the available data for V (t) (Fig. 12.16b). For that interval PIV →T /σ

2
T = 0.029 and

positivity of PIV →T is statistically significant at p < 0.03. Model coefficients are
a0 = 0.25 ± 0.14K , a1 = 0.55 ± 0.08, a4 = 0.29 ± 0.08, bV = −0.92 ± 0.41K .

However, even if the original data for V (t) are used as input, the model predicts
only strong fluctuations of the GST around the mean value, e.g., in 1999 – around the
value of 〈T1999〉 = 0.7±0.14K (Fig. 12.17b), rather than the rise in the GST during
the last years. According to model (12.15), there is no trend in the GST on average:
〈α1985–2005〉 ≤ 0.001K/year. If the signal V (t) = 0 is used as input, then the
model predicts even greater values of the GST: 〈T1999〉 = 1.5 ± 0.16 K . Indeed, the
long-term effect of volcanic eruptions is to limit the GST values. Volcanic activity is
relatively high in 1965–1995 (Fig. 12.17c), which should contribute to a decrease in
the GST. Therefore, explaining the GST rise during the last decades by the volcanic
activity influence is also impossible.

12.6.4 GST Models Including CO2 Concentration

An optimal choice is dn→T = 1 and n→T = 0. Apart from highly significant
prediction improvement, it provides a model which behaves qualitatively similar to
the original data (in contrast to the models with dn→T > 1). The model reads as

Tt = a0 + a1Tt−1 + a4Tt−4 + bnnt−1 + ηt . (12.16)

The influence of CO2 appears much more considerable than that of the other fac-
tors. It is detected most clearly from the entire available interval [1856–2005]
(Fig. 12.16c), where PIn→T /σ

2
T = 0.087 and its positivity is significant at p <

0.0002. The coefficients of this model are a0 = −1.10 ± 0.29 K , a1 = 0.46 ±
0.08, a4 = 0.20 ± 0.08, bn = 0.003 ± 0.001 K/ppm.

An ensemble of time realisations (Fig. 12.17c) shows that the model (12.16)
with the original data n(t) used as input describes the original data T (t) much more
accurately than do the models taking into account the solar or the volcanic activity.
Moreover, the model (12.16) fitted to a narrower interval, e.g. [1856–1960], exhibits
practically the same time realisations as in Fig. 12.17c, i.e. it correctly predicts the
GST rise despite the data over an interval [1960–2004] are not used for the model
fitting. The model (12.16) fitted to any interval [1856 – L] with L > 1935 gives
almost the same results.
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Fig. 12.18 The original GST values (thick line) and the 95% “corridor” for the bivariate model
(12.16) if the signal n(t) = const = n(1856) is used as input

If the artificial signal n(t) = const = n(1856) is used as input for the model
(12.16) fitted to the interval [1856–1985], then one observes just fluctuations of
T about the level of T1856 (Fig. 12.18) and no trend, i.e. 〈α1985–2005〉 = 0. If the
original data for n(t) are used as input, one gets the model characteristics 〈T2005〉 ≈
0.5K and 〈α1985–2005〉 = 0.17K/year, which are close to the observed ones. Thus,
according to the model (12.16), the rise in the atmospheric CO2 content explains a
major part of the recent rise in the GST.

The results of the multivariate AR modelling confirm the above results of the
bivariate analysis (the corresponding plots are not shown).

Thus, the Granger causality estimation and the investigation of the AR models’
long-term behaviour allow to assess an effect of the solar activity, volcanic activ-
ity and carbon dioxide atmospheric content on the global surface temperature. The
Granger causality shows that the three factors determine about 10% of the quantity
σ 2

T , which is the variance of the short-term GST fluctuations unexplained by the
univariate AR model. The impact of CO2 is the strongest one, while an effect of the
other two factors is several times weaker. The long-term behaviour of the models
reveals that the CO2 content is a determinative factor of the GST rise. According to
the empirical AR models, the rise in the CO2 concentration determines at least 75%
of the GST trend over 1985–2005, while the other two factors are not the causes of
the global warming. In particular, if the CO2 concentration remained at the level of
1856 year, the GST would not rise at all during the last century. In contrast, model
variations in the solar and volcanic activity do not lead to significant changes in the
GST trend.
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