
Chapter 10
Model Equations: “Black Box” Reconstruction

Black box reconstruction is both the most difficult and the most tempting mod-
elling problem when any prior information about an appropriate model structure
is lacking. An intriguing thing is that a model capable of reproducing an observed
behaviour or predicting further evolution should be obtained only from an observed
time series, i.e. “from nothing” at first sight. Chances for a success are not large.
Even more so, a “good” model would become a valuable tool to characterise an
object and understand its dynamics. Lack of prior information causes one to utilise
universal model structures, e.g. artificial neural networks, radial basis functions
and algebraic polynomials are included in the right-hand sides of dynamical model
equations. Such models are often multi-dimensional and involve quite many free
parameters.

Since time series of all variables for such a model must be obtained from
observed data, “restoration” of lacking variables gets extremely important. One
often calls it “phase orbit reconstruction” or “state vector reconstruction”. A the-
oretical justification is given by celebrated Takens’ theorems (Sect. 10.1).

Not less important and difficult is the approximation stage, where one fits a
dependence of the next state on the current one xn+1 = f(xn, c) or of the phase
velocity on the state vector dx

/
dt = f(x, c). In practice, one usually manages to

get a valid model if it appears sufficient to use its moderate dimension, roughly, not
greater than 5–6. To construct higher dimensional models, one needs huge amounts
of data and deals with approximation of multivariable functions (Sect. 10.2) which
is much more difficult than that of one-variable functions (Sects. 7.2, 9.1 and 9.3).
Moreover, troubles quickly rise with the model dimension (Kantz and Schreiber,
1997). This is the so-called “curse of dimensionality”, the main obstacle in the
modelling of multitude of real-world processes.

Yet, successful results have sometimes been obtained for complex real-world
objects even under the black box setting. Also, there are several nice theoretical
results and many practical algorithms of reconstruction, which appear efficient for
prediction and other modelling purposes.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_10,
C© Springer-Verlag Berlin Heidelberg 2010

275



276 10 Model Equations: “Black Box” Reconstruction

10.1 Reconstruction of Phase Orbit

To get lacking model variables in modelling from a time series {η(t1), η(t2), . . . ,
η(tN )}, one can use subsequent values of η, i.e. a state vector x(ti ) = [η(ti ),
η(ti + τ), . . . , η(ti + (D − 1)τ )], where τ is the time delay, or successive
derivatives, i.e. a state vector x(ti ) = [η(ti ), dη(ti )

/
dt, . . . , dD−1η(ti )

/
dt D−1].

These approaches have been applied for a long time without special justification
(Sect. 6.1.2). Thus, the former one is, in fact, used since 1927 for the widely known
autoregression models (4.12), where a future value of an observable is predicted
based on several previous values (Yule, 1927). It seems just reasonable. If there is
no other information besides a time series, then one can use only the previous values
of an observable or their combinations to make a forecast.

At the beginning of the 1980s, relationships between both mentioned approaches
and the theory of dynamical systems were revealed. It was proven that in reconstruc-
tion from a scalar time realisation of a dynamical system (under some conditions
of smoothness), both time delays and successive derivatives assure an equivalent
description of the original dynamics if the dimension of the restored vectors D is
large enough. Namely, the condition D > 2d should be fulfilled, where d is the
dimension of a set M in the phase space of an original system, where a modelled
motion occurs.1 These statements constitute celebrated Takens’ theorems (Takens,
1981) as discussed in Sect. 10.1.1. We note that the theorems are related to the case
when an object is a deterministic dynamical system (Sect. 2.2.1).

In the modelling of real-world objects, one can use the above approaches without
referring to the theorems, since it is impossible to check whether the conditions of
the theorems are fulfilled and the dimension d is unknown (if one may speak about
all that in respect of a real-world object at all). Yet, the value of the theoretical
results obtained by Takens is high. Firstly, after their formulation it has become
clear that both above approaches are suitable for the modelling of a sufficiently wide
class of systems. Thus, the theorems “bless” practical application of the approaches,
especially if one has any ideas confirming that the conditions of the theorems are ful-
filled in a given situation. Secondly, based on the theory of dynamical systems, one
has developed new fruitful approaches to the choice of the reconstruction parame-
ters, such as the time delay τ , the model dimension D and others, as discussed in
Sect. 10.1.2.

1 The set M is a compact smooth manifold and the quantity d is its topological dimension
(Sect. 10.1.1). There are generalisations of the theorem to the case of non-smooth sets M and
fractal dimension d, which are beyond the scope of our discussion (Sauer et al., 1991). We note
that the set M mentioned in the theorems does not inevitably correspond to the motion on an
attractor. For instance, let an attractor be a limit cycle C “reeled” on a torus M . If one is interested
only in the description of an established periodic motion on the cycle C , then it is sufficient to use
D > 2 model variables for reconstruction according to Takens’ theorems. If one needs to describe
motions on the entire torus M , including transient processes, then it is necessary to use D > 4
variables. In practice, one often has a single realisation corresponding to established dynamics.
Therefore, one usually speaks of the reconstruction of an attractor.
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10.1.1 Takens’ Theorems

We start with illustrating the theorems with a simple example and then give their
mathematical formulations and discuss some details in a more strict way. Through-
out this subsection, we denote the state vector of an original system y as distinct
from the reconstructed vectors x. The notation d is related to the dimension of the
set M in the phase space of an original system. It is not necessarily the dimension of
the entire phase space, i.e. of the vector y. D is the dimension of the reconstructed
vectors x and, hence, of a resulting model.

10.1.1.1 An Illustrative Example

Let an object be a continuous-time three-dimensional dynamical system. Its state
vector is y = (y1, y2, y3). Let a motion to occur on a limit cycle (Fig. 10.1a), i.e. on
a set M of the dimension d = 1.

If all three variables y1, y2, y3 were observed, one could proceed directly to the
approximation of the dependence of y(t + τ) on y(t), which is unique since y is
a state vector. The latter means that whenever a certain value y = y∗ is observed,
a unique future value follows it in a fixed time interval. The same present leads to
the same future. If not all the components of the state vector are observed, then
the situation is more complicated. One may pose a question: How many variables
suffice for an equivalent description of an original dynamics? Which variables are
suitable for that and which ones are not?

Since the set M , where the considered motion takes place, is one dimensional
(d = 1), there should exist such a scalar dynamical variable which is sufficient to
describe this motion. For instance, a closed curve M (Fig. 10.1a) can be mapped on

Fig. 10.1 One-dimensional representations of a limit cycle: (a) an original limit cycle; (b) its
mapping on a circle; (c) its projection on a coordinate axis. The dimension of an original system is
equal to three; the dimension of the set M , which is a closed curve, is d = 1; the dimension of the
“reconstructed” vectors is D = 1 in both cases. Two different states [filled circles in the panel (a)]
correspond to the two different points on the circle [the panel (b)] and to a single point on the axis
[the panel (c)]. The mapping of a cycle on a circumference is one-to-one and its mapping on a line
segment is not one-to-one
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a circumference (Fig. 10.1b). It is important that the vectors y(t) on the cycle M can
be related to the angle of rotation φ(t) of a point around the circumference in a one-
to-one way. The variable φ(t) is the “wrapped” phase of oscillations (Sect. 6.4.3).
Due to one-to-oneness, the variable φ completely determines the state of the system:
The value of the phase φ∗ corresponds to a unique simultaneous value of the vec-
tor y∗. Having an observable φ, one can construct a one-dimensional deterministic
dynamical model (D = 1) with x1 = φ.

However, not any variable is appropriate for a one-dimensional representation.
Thus, if one observes just a single component of the vector y, e.g. a coordinate
y1, then a closed curve is mapped on a line segment (a simple projection onto the
y1-axis). This mapping is not one-to-one. Almost any point y∗

1 (t) of the segment
corresponds to two state vectors y(t) differing by the direction of the further motion
(to the left or to the right along the y1-axis, see Fig. 10.1a, c). Thus, y1 does not
uniquely determine the state of the system. If one observes some value y1 = y∗

1 ,
then one of the two possible future values can follow. Therefore, a deterministic
one-dimensional description of the observed motion with the variable x1 = y1 is
impossible.

In general, if one uses the model dimension D equal to the dimension of the
observed motion d, the construction of a dynamical model may appear successful
if one is “lucky”. However, empirical modelling may fail as well. Both results are
typical in the sense that the situation does not change under weak variations of an
original system, an observable and parameters of the reconstruction algorithm.

What changes if one uses a two-dimensional description for the above example?
The same two situations are typical as illustrated in Fig. 10.2. If the two compo-
nents of the original state vector y1 and y2 are observables, i.e. the model state
vector is x = (y1, y2), it corresponds to a projection of the closed curve onto
the plane (y1, y2). In such a projection, one may get a curve either without self-
intersections (Fig. 10.2a) or with them (Fig. 10.2b) depending on the shape of the
original curve and its spatial orientation. The former case provides a one-to-one
relationship between the original curve and its projection, i.e. the two-dimensional
vector x completely determines the state of the system. The latter case differs, since
the self-intersection point y∗

1 , y∗
2 on the plane (y1, y2) in Fig. 10.2b corresponds

to two different states of the original system, i.e. the relationship between x and y
is not one-to-one. Therefore, one cannot uniquely predict the future following the
current values y∗

1 , y∗
2 . Hence, the vector x is not suitable as the state vector of a

global deterministic model. It can be used only locally, far from the self-intersection
point.

A similar situation takes place if one uses any two variables instead of y1 and y2.
For instance, let η = h(y) be an observable, where h is an arbitrary smooth function
and let the components of x be the time-delayed values of η: x(t) = (η(t), η(t +τ)).
Depending on h and τ , one may observe a situation either without self-intersections
on the plane (x1, x2) as in Fig. 10.2a or with self-intersections as in Fig. 10.2b.
Thus, even the number of model variables exceeding the dimension of an observed
motion, D = 2 > d = 1, does not assure the possibility of a deterministic
description.
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Fig. 10.2 Projections of a one-dimensional manifold from a three-dimensional space onto planes:
(a) one-to-one mapping; (b) many-to-one mapping with a self-intersection point in the projection

Finally, let us consider a three-dimensional representation, e.g. when model state
vectors are constructed as x(t) = (η(t), η(t+τ), η(t+2τ)). An image of the original
closed curve in the three-dimensional space (x1, x2, x3) is also a closed curve, which
typically does not exhibit self-intersections, i.e. there is a one-to-one correspon-
dence between x and y. An original motion on the limit cycle can be equivalently
described with the vectors x. In general, a self-intersection of an image curve may
be observed in the space x1, x2, x3 as a non-generic situation, i.e. it is eliminated by
weak variations in an original system, an observable or reconstruction parameters.
Intuitively, one easily agrees that self-intersections of a curve in a three-dimensional
space are very unlikely.

Thus, in our example, an equivalent description of the dynamics is achieved
for sure only if the state vectors are reconstructed in the space of the dimension
D > 2d.2 This is the main contents of Takens’ theorems. We stress that this is
a sufficient condition. Sometimes, an equivalent description is possible even for
D = d as illustrated above. In practical modelling, Takens’ theorems serve just as a
psychological support, because they state that there is a finite model dimension D at
which deterministic modelling should be appropriate. Technically, one tries different
values of D, starting from small ones, and aims at obtaining a “good” model with
as low dimension as possible to avoid difficulties related to the above-mentioned
“curse of dimensionality”.

2 An equivalent description of a motion on a limit cycle is assured for D = 3 even if the cycle
“lives” in an infinite-dimensional phase space.
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10.1.1.2 Mathematical Details

To formulate the theorems in a more rigorous way, let us introduce some notations.
Let an object be a dynamical system

y(t0 + t) = �t (y(t0)),

η(t) = h(y(t)),
(10.1)

where y is a state vector, �t is an evolution operator and h is a measurement func-
tion.3 The vector of observables is finite-dimensional: η ∈ Rm . We discuss further
only the case of a scalar time series η(ti ), i.e. m = 1. It is the most widespread
situation, which is also the most difficult for modelling.

Manifold

Let the motion of the system occur at some manifold M of the finite dimension d
that can be observed even for infinite-dimensional systems. Manifold is a general-
isation of the concept of a smooth surface in the Euclidean space (Gliklikh, 1998;
Makarenko, 2002; Malinetsky and Potapov, 2000; Sauer et al., 1991). Roughly
speaking, a d-dimensional manifold M is a surface which can be locally param-
eterised with d Euclidean coordinates in the vicinity of any of its points. In other
words, any point p ∈ M together with its local neighbourhood U (p) can be mapped
on a d-dimensional fragment (e.g. a ball) of the space Rd in a one-to-one and
continuous way. A corresponding image � : U → �(U ) is called a chart of the
neighbourhood. The continuous map � is called a homeomorphism. Examples of
two-dimensional manifolds in a three-dimensional Euclidean space are a sphere, a
torus, a bottle with a handle, etc. (Fig. 10.3a), but not a (double) cone (Fig. 10.3b).

Fig. 10.3 Examples of the sets which (a) are manifolds and (b) is not a manifold

3 If an object is a map y(tn+1) = F(y(tn)), then an evolution operator �t (y(t0)) is just the
function F. If an object is a set of ODEs dy/dt = F(y(t)), then the function �t (y(t0)) is the result
of the integration of the ODEs over a time interval of length t . If an original system is given by
a partial differential equation ∂y/∂t = F(y, ∂y/∂r, ∂2y/∂r2, . . .), where r is a spatial coordinate,
then y is a vector belonging to an infinite-dimensional space of functions y(r) and �t is an operator
acting in that space.
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If � is an n times differentiable mapping with the n times differentiable inverse,
then one says that M belongs to the class Cn . If n ≥ 1, the mapping � is called a
diffeomorphism. If the manifold M is mapped on a manifold S ∈ RD , D ≥ d, via
a diffeomorphism, then M and S are called diffeomorphic to each other. One says
that S is an embedding of the manifold M into the Euclidean space RD . Below, we
speak of a bounded and closed M . Boundedness means that M can be included into
a ball of a finite radius. Closedness means that all limit points of M belong to M .
Such a manifold in a finite-dimensional space is called compact.

The Question and Notations

Each phase orbit of the system (10.1) y(t), 0 ≤ t < ∞, on a manifold M cor-
responds to a time realisation of an observable η: η(t) = h(y(t)), 0 ≤ t < ∞.
The vector y(t0) determines the entire future behaviour of the system (10.1), in
particular, the entire realisation η(t), t ≥ t0. Is it possible to determine a state on
the manifold M at a time instant t0 and, hence, the entire future evolution from a
segment of the realisation η(t) around t0? In other words, can one “restore” a state
of the system from the values of η(t) on a finite-time interval? This is a key question
and Takens’ theorems give a positive answer under some conditions.

Let us introduce some notations necessary to formulate rigorously the time-delay
embedding theorem. A vector y(t) corresponds to a D-dimensional vector x(t) =
[η(t), η(t + τ), . . . , η(t + (D − 1)τ )]. Dependence of x on a simultaneous value of
y is given by a unique mapping � : M → RD expressed via the evolution operator
�t : M → M and the measurement function h : M → R as

x(t) = �(y(t)) ≡

⎡

⎢⎢
⎣

�1(y(t))
�2(y(t))

. . .

�D(y(t))

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

h(y(t))
h(�τ (y(t)))

. . .

h(�(D−1)τ (y(t)))

⎤

⎥⎥
⎦ . (10.2)

Smoothness of � (continuity, differentiability, existence and continuity of the
higher order derivatives) is determined by the smoothness of �τ and h. An image
of the manifold M under the mapping � is a certain set S ⊂ RD .

The above question can now be formulated as follows: Is � a diffeomorphism?
If yes, then S is an embedding of M and each vector x on S corresponds to a single
vector y on M .4 Then, x(t) can be used as a state vector to describe the dynamics
on M and Eq. (10.1) can be rewritten as

x(t0 + t) = ϕt (x(t0)), (10.3)

4 It means that for the same segments [η(t), η(t +τ), . . . , η(t +(D−1)τ )] encountered at different
time instants t , one observes the same continuation (i.e. the same future). It gives a justification
to the predictive method of analogues applied already by E. Lorenz. The method is based on the
search of the time series segments, which “resemble” a current segment, in the past and subsequent
usage of a combination of their “futures” as a forecast. In a modern formulation, it is realised with
local models (Sect. 10.2.1).
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where a new evolution operator is ϕt (x) = �(�t (�
−1(x))). Due to the diffeomor-

phism, local properties of the dynamics such as stability and types of fixed points
and others are preserved. Each phase orbit y(t) on M corresponds to an orbit x(t)
on S in a one-to-one way. If a system (10.1) has an attractor in M , then a system
(10.3) has an attractor in S. Such characteristics as fractal dimension and Lyapunov
exponents coincide for both attractors. In other words, the system (10.3) on the
manifold S and the system (10.1) on the manifold M can be considered as two
representations of the same dynamical system.

Obviously, the mapping � (10.2) is not always a diffeomorphism. Thus,
Fig. 10.2b gives an example where a smooth mapping � has a non-unique inverse
�−1. Another undesirable situation is encountered if �−1 is unique but non-
differentiable (Fig. 10.4). The latter property takes place at the return point on the
set S. In its neighbourhood, the two-dimensional vector (y1, y2) cannot be used to
describe the dynamics with a set of ODEs, since the return point would be a fixed
point so that S could not be a limit cycle. Here, the differentiability properties of M
and S differ due to non-differentiability of �−1.

Formulation of the Time-Delay Embedding Theorem

Coming back to the system (10.1) and the mapping (10.2), one can say that any
one of the above mentioned situations can be encountered for some �, M, h, d, D
and τ . Sets of self-intersections and return points on S = �(M) can be vast, which
is very undesirable. However, one can also meet a “good” situation of embedding
(Fig. 10.2a). The result formulated below was first obtained rigorously by Dutch
mathematician Floris Takens (1981) and then generalised in Sauer et al. (1991). It
shows under what conditions an embedding of an original compact d-dimensional
manifold M in the space RD is assured with the mapping (10.2). Takens’ theorem

Fig. 10.4 The situation when a projection of a one-dimensional manifold M exhibits a return point
on a plane
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is related to the Whitney’s embedding theorem (from the courses of differential
geometry), which concerns arbitrary mappings. Takens’ statement differs in that it
concerns the special case of the mappings (10.2) determined by an evolution opera-
tor of a dynamical system.

Theorem 1 Let M be a compact d-dimensional C2 manifold. For almost any pair of
functions �t and h, which are twice continuously differentiable on M, the mapping
Ψ : M → RD given by the formula (10.2) is a diffeomorphism for almost any
τ > 0 and D > 2d.

Comments

Diffeomorphism implies that an image of M under the mapping (10.2) is its embed-
ding. The space RD containing the image S = �(M) is called embedding space.
The term “almost any pair” is understood by Takens in the sense of genericity.
For instance, if for some �t the mapping (10.2) does not provide an embedding,
then there exists such an arbitrarily weak variation �t + δ�t that an embedding is
achieved. More rigorously, generic properties are fulfilled on an intersection of open
and everywhere dense sets. A metric analogue to genericity is prevalence (Sauer
et al., 1991). “Almost any τ” should be understood in a similar way. In particular, if
a limit cycle exists within M , the value of τ should not be equal to the period of that
cycle, see Sauer et al. (1991) for more detail.

Discussion

Thus, if the dimension of the time-delay vector x (10.2) is high enough, one typ-
ically gets an embedding of the manifold M and can use x as a state vector of a
deterministic model. It is possible to interpret the condition D > 2d vividly as fol-
lows (Malinetsky and Potapov, 2000). To establish possible non-uniqueness of the
mapping �−1, one must find such vectors y1 and y2 on M so that �(y1) = �(y2).
The latter equality is a set of D equations with 2d variables (d components for the
two vectors y1 and y2 specifying their location on M). Roughly speaking, this set
of equations has typically no solutions if the number of equations is greater than the
number of variables, i.e. if D > 2d. This is the contents of Takens’ theorem.

We stress again that the condition D > 2d is sufficient, but not necessary. If it
is fulfilled, a diffeomorphism is assured. However, if one is “lucky”, a good recon-
struction can be obtained for lower D as in Fig. 10.1a, b, where an embedding of a
one-dimensional manifold M is achieved at D = 1 and is not a degenerate case.

What are those non-generic cases when the theorem is invalid? Let us indicate
two examples (Malinetsky and Potapov, 2000):

(1) A measurement function is constant: h(y) = a. This is a smooth function, but
it maps the entire dynamics to a single point. This situation is almost surely
eliminated via a weak variation in the measurement function, i.e. via adding an
almost arbitrary “small” function of y to a.

(2) A system consisting of two unidirectionally coupled subsystems dy1
/

dt =
F(y1, y2), dy2

/
dt = G(y2) when only the driving subsystem is observed,
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i.e. η = h(y2). In a non-synchronous regime, such an observable does not carry
complete information about the driven subsystem y1. Therefore, an embedding
of the original dynamics is not achieved. This situation is eliminated almost
surely if an arbitrarily weak dependence on y1 is introduced into η.

Similar Theorems

A more general version of the theorem 1 is proven in Sauer et al. (1991). It concerns
the filtered embedding, where coordinates of x are not just subsequent values of an
observable but their linear combinations, which can be considered as outputs of a
linear non-recursive filter.

Moreover, Takens proved a similar theorem for successive derivatives used as
components of a state vector:

x(t) =

⎡

⎢⎢
⎣

η(t)
dη(t)

/
dt

. . .

dD−1η(t)
/

dt D−1

⎤

⎥⎥
⎦ , (10.4)

where D > 2d. The theorem is formulated in the same way as theorem 1, but
with stricter requirements to the smoothness of �t and h. Namely, one demands
continuous derivatives of the Dth order for each of these functions to assure the
existence of the derivatives entering Eq. (10.4). If the latter derivatives are approxi-
mated with finite differences, then the relationship (10.4) becomes a particular case
of the filtered embedding (Gibson et al., 1992).

In practice, one must always cope with noises. Takens’ theorems are not directly
related to such a case, although there are some generalisations (Casdagli et al., 1991;
Stark et al., 1997). Nevertheless, the theorems are of significant value for practical
modelling as discussed at the beginning of Sect. 10.1.

10.1.2 Practical Reconstruction Algorithms

10.1.2.1 Time-Delay Technique

This is the most popular reconstruction technique. One gets the vectors
{xi = (ηi , ηi+l , . . . , ηi+(D−1)l)}N−(D−1)l

i=1 from an observed scalar time series
{ηi = η(ti )}N

i=1 , ti = it . Theoretically, the value of the time delay τ = lt
can be almost arbitrary, but in practice one avoids both too small l, giving strongly
correlated components5 of the state vector, and too large l, introducing consid-
erable complications into the geometrical structure of the reconstructed attractor.

5 For l = 1 and a small sampling interval t , a reconstructed phase orbit stretches along the main
diagonal, since it appears that x1 ≈ x2 ≈ . . . ≈ xD .
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Therefore, it was suggested to choose the value of τ equal to the first zero of the
autocorrelation function (Gibson et al., 1992), first minimum of the mutual informa-
tion function (Fraser and Swinney, 1986) and so on (Liebert and Schuster, 1989).
One also uses a non-uniform embedding, where time intervals between subsequent
components of x are not the same, which is relevant for the dynamics with several
characteristic timescales (Eckmann and Ruelle, 1985; Judd and Mees, 1998). For the
dynamics representing alternating intervals of almost periodic and very complicated
behaviour, one has developed the variable embedding, where a set of time delays
depends on the location of x in the state space (Judd and Mees, 1998). Each of the
ideas is appropriate for a specific kind of systems and does not assure successful
results in general (Malinetsky and Potapov, 2000).

How to choose the model dimension D based on the analysis of an observed
time series? There are different approaches including the false nearest neighbour
technique (Kennel et al., 1992), the principal component analysis (Broomhead and
King, 1986), the Grassberger and Procaccia method (Grassberger and Procaccia,
1983) and the “well-suited basis” approach (Landa and Rosenblum, 1989). More-
over, one should often try different values of D and construct model equations for
each trial value until a “good” model is obtained. Then, the selection of D and even
of the time delays can be a part of a united modelling procedure, rather than an
isolated first stage.

10.1.2.2 False Nearest Neighbour Technique

It gives an integer-valued estimate of the attractor dimension. It is based on checking
the property that a phase orbit reconstructed in the space of the sufficient dimen-
sion must not exhibit self-intersections. Let us illustrate the technique with a sim-
ple example of reconstruction from a time realisation of a sinusoid η(t) = sin t ,
Fig. 10.5a.

At D = 1, i.e. x(t) = η(t), the reconstructed set lies on a line segment,
Fig. 10.5b. Then, a data point at the instant tk has the data points at the instants
ts and tl as its close neighbours. However, the latter two states of an original sys-
tem differ by the sign of the derivative of η(t). In a two-dimensional space with
x(t) = [η(t), η(t + τ)], all the points go away from each other. However, the points
at the instants tk and tl get weakly more distant, while the points at the instants
tk and ts become very far from each other, Fig. 10.5c. Accordingly, one calls the
neighbours at tk and tl “true” and the neighbours at tk and ts “false”.

One of the version of the algorithm is as follows. At a trial dimension D, one
finds a single nearest neighbour for each vector xk . After increasing D by 1, one
determines which neighbours appear false and which ones are true. Then, one com-
putes the ratio of the number of the false neighbours to the total number of the
reconstructed vectors. This ratio is plotted versus D as in Fig. 10.5d. If this relative
number of self-intersections reduces to zero at some value D = D∗, the latter is the
dimension of the space, where an embedding of the original phase orbit is achieved.
In practice, the number of the false neighbours becomes sufficiently small, starting
from some “correct” value D∗, but does not decrease to zero due to noises and other
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Fig. 10.5 An illustration to the false nearest neighbour technique: (a) a time realisation η(t), where
symbols indicate the data points η(tk), η(ts), η(tl ), and the close values of η together with the
points shifted by τ = 3t ; (b) an orbit reconstructed in a one-dimensional space; (c) an orbit
reconstructed in a two-dimensional space; (d) the number of the false nearest neighbours divided
by the total number of the reconstructed vectors in a time series versus the trial dimension of the
reconstructed vectors D

factors. Then, D∗ can be taken as a trial model dimension. It equals 2 for the exam-
ple illustrated in Fig. 10.5d (see, e.g., Malinetsky and Potapov, 2000 for details).

10.1.2.3 Principal Component Analysis

It can be used both for the dimension estimation and for the reconstruction of state
vectors. The technique is used in different fields and has many names. Its application
to the reconstruction was suggested in Broomhead and King (1986). The idea is to
rotate coordinate axes in a multidimensional space and choose a small subset of
directions, along which the motion mainly develops.

For simplicity of notations, let the mean value of η be zero. The vectors w(ti ) =
(ηi , ηi+1, . . . , ηi+k−1) of a sufficiently high dimension k are constructed. Com-
ponents of these vectors are strongly correlated if the sampling interval is small.
Figure 10.6 illustrates the case of a sinusoidal signal and the reconstruction of the
phase orbit in a three-dimensional space (k = 3).

One performs a rotation in this space so that the directions of new axes
(e.g. {s1, s2, s3} in Fig. 10.6b, c) correspond to the directions of the most intensive
motions in the descending order. Quantitatively, the characteristic directions and the
extensions of an orbit along them are determined from the covariance matrix � of
the vector w, which is a square matrix of the order k:
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Fig. 10.6 Noise-free harmonic oscillations: (a) reconstruction of the time-delay vectors w of the
dimension k = 3 from a scalar time series; (b) a reconstructed orbit is an ellipse stretched along
the main diagonal of the space Rk ; (c) a reconstructed orbit in a new coordinate system (after the
rotation), where the component of the reconstructed vectors along the direction s3 is zero

�i, j =
N−k∑

n=0

ηi+nη j+n, i, j = 1, . . . , k

It is symmetric, real valued and positive definite. Hence, its eigenvectors con-
stitute a complete orthonormal basis of the space Rk . Its eigenvalues are non-
negative. Let us denote them as σ 2

1 , σ
2
2 , . . . , σ

2
k in the non-ascending order and

the corresponding eigenvectors as s1, s2, . . . , sk . The transformation to the basis
s1, s2, . . . , sk can be performed via the coordinate change x′(ti ) = ST · w(ti ), where
S is a matrix with the columns s1, s2, . . . , sk and T means transposition. This is
known in the theory of information as the Karhunen and Loeve transform. One can
easily show that the covariance matrix of the components of the vector x′ is diagonal:

�′ = ST�S =

⎡

⎢⎢
⎣

σ 2
1 0 ... 0
0 σ 2

2 ... 0
... ... ... ...

0 0 ... σ 2
k

⎤

⎥⎥
⎦

i.e. the components of x′ are uncorrelated, which is a sign of a “good” reconstruc-
tion. Each diagonal element σ 2

i is the mean-squared value of the projection of w(ti )
onto the coordinate axis si . The values σ 2

i determine the extensions of the orbit
along the respective directions. Rank of the matrix � equals the number of non-zero
eigenvalues (these are σ 2

1 and σ 2
2 for the situation shown in Fig. 10.6b, c) and the

dimension of the subspace, where the motion occurs.
If a measurement noise is present, then all σ 2

i are non-zero, since noise con-
tributes to the directions, which are not explored by the deterministic component
of an orbit. In such a case, the dimension can be estimated as the number D of
considerable eigenvalues as illustrated in Fig. 10.7. Projections of w(ti ) onto the
corresponding directions (i.e. the first D components of the vector x′) are called
its principal components. The remaining eigenvalues constitute the so-called noise
floor and the respective components can be ignored. Thus, one gets D-dimensional
vectors x(ti ) with coordinates xk(ti ) = sk · w(ti ), k = 1, . . . , D.



288 10 Model Equations: “Black Box” Reconstruction

Fig. 10.7 Eigenvalues of the covariance matrix versus their order number: a qualitative illustra-
tion for k = 9. The “break point” D at the plot is an estimate of the dimension of an observed
motion

If there is no characteristic break at the plot, then one increases a trial dimension
k until the break emerges. The dimension estimate D is more reliable if the break is
observed at the same value of D under the increase in k.

The principal component analysis is a particular case of the filtered embedding.
It is very useful in the case of a considerable measurement noise, since it allows to
filter the noise out to a significant extent: a realisation of x1(t) is “smoother” than
that of the observable η(t).

10.1.2.4 Successive Derivatives and Other Techniques

The usage of the reconstructed vectors (10.4) is attractive due to the clear phys-
ical meaning of their components. Many processes are described with a higher
order model ODE (9.4), which involves successive derivatives of a single vari-
able (Sect. 9.1). Some ODEs can be rewritten in such a form analytically, e.g. the
Roessler system (see Sect. 10.2.2). However, an essential shortcoming in exploiting
the vectors (10.4) is high sensitivity of the approach to the measurement noise, since
the derivatives must be computed numerically (Sect. 7.4.2).

To summarise, there are many techniques to reconstruct a phase orbit. Having
only a scalar time series, one can use successive derivatives or time delays. At that,
several parameters can be selected in different ways, e.g. a time delay and a numeri-
cal differentiation scheme. Besides, one can use weighted summation (Brown et al.,
1994; Sauer et al., 1991); and integration (Janson et al., 1998), which is advanta-
geous for strongly non-uniform signals. One often exploits principal components,
empirical modes, conjugated signal and phase (Sect. 6.4.3). It is possible to use
combinations of all the techniques, e.g. to get some components via time delays,
additional ones via integration and the rest via differentiation (Brown et al., 1994).
In the case of a vector observable, one can restore variables from each of its compo-
nents with any combination of the above techniques. Hence, the number of possible
variants strongly increases (Cao et al., 1998; Celucci et al., 2003).
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10.1.2.5 Choice of Dynamical Variables

Which of the state vector versions should be preferred? This question is impor-
tant and attracts considerable attention (Letellier and Aguirre, 2002; Letellier et al.,
1998b; Small and Tse, 2004). Trying all possible variants in turn and approximating
a dependence dx/dt = f(x,c) or xn+1 = f(xn, c) for each of them is unfeasible, since
solving the approximation problem often requires significant computational efforts
and special approaches. Therefore, one should select a small number of reasonable
sets of dynamical variables in advance. It can be done based on the preliminary
analysis of experimental dependencies to be approximated (Rulkov et al., 1995;
Smirnov et al., 2002). The respective procedures exploit an obvious circumstance
that one needs such set of variables which would provide uniqueness and continu-
ity of the dependencies dx/dt (x) or xn+1(xn), where components of x are either
observed or computed from the observed data.

Fig. 10.8 Checking uniqueness and continuity of a dependence z(x) : (a) an illustration for D = 2;
(b) typical plots εmax(δ) for different choices of variables; the straight line is the best case, the
dashed line corresponds to non-uniqueness or discontinuity of z(x), the broken line corresponds to
a complicated dependence z(x) with the domains of fast and slow variations; (c) the plots of the
first, the second and the third iterates of a quadratic map; (d) the plots εmax(δ) for the dependence
of x(tn+1) on x(tn) in the three cases shown in panel (c)



290 10 Model Equations: “Black Box” Reconstruction

Let us denote the left-hand side of model equations as z: z(t) = dx(t)/dt for a set
of ODEs dx(t)/dt = f(x(t)) and z(tn) = x(tn+1) for a map x(tn+1) = f(x(tn), c).
After the reconstruction of the vectors x from an observable η, one should get a time
series {z(ti )}. It is achieved via the numerical differentiation of the series {x(ti )} for
a set of ODEs and via the time shift of {x(ti )} for a map. Further, it is necessary
to check whether close vectors x(t1) and x(t2) correspond to close simultaneous
vectors z(t1) and z(t2). A possible procedure is as follows (Smirnov et al., 2002).

A domain V containing the set of vectors {x(ti )} is divided into equal hypercubic
cells with the side δ (Fig. 10.8a). One selects all cells s1, . . . , sM such that each sk

contains more than one vector x(ti ). Thus, the cell sk corresponds also to more than
one vector z(ti ). The difference between the maximal and the minimal value of z
(one of the components of the vector z) over the cell sk is called local scattering
εk . Suitability of the quantities x and z for the global modelling is assessed from
the maximal local scattering εmax = max

1≤k≤M
εk and the plot εmax(δ). To construct a

global model, one should choose variables such that the plot εmax(δ) gradually tend
to the origin (Fig. 10.8b, straight line) for each of the approximated dependencies
zk(x), k = 1, . . . , D.

Moreover, it is desirable to provide the least slope of the plot εmax(δ), since one
needs then a simpler approximating function, e.g. a low-order polynomial. This is
illustrated in Fig. 10.8c, d, where the next value of an observable is shown versus
the previous one and an observable is generated by the first, the second or the third
iterate of the quadratic map x(tn+1) = λ − x2(tn). The plot for the first iterate is
the “least oscillating” and, therefore, the slope of εmax(δ) is the smallest. In this
case, one can get a “good” model most easily, since it requires the usage of only
the second-order polynomial. At that, the eighth-order polynomial is necessary to
describe the third iterate of the map. These three cases are even more different in
respect of the reconstruction difficulties in the presence of noise. Additional details
are given in Smirnov et al. (2002).

10.2 Multivariable Function Approximation

10.2.1 Model Maps

The time-delay embedding is typically used to construct multidimensional
model maps

xn = f (xn−D, xn−D+1, . . . , xn−1, c), (10.5)

where the variable x corresponds to an observable and the time delay is set equal
to l = 1 for the simplicity of notations. Various choices of the function f in Eq.
(10.5) are possible. One says that the function f , which is specified in a closed form
(Sect. 3.5.1) in the entire phase space, provides a global approximation. Then, one
also speaks of a global model and a global reconstruction. Alternatively, one can
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use a local approximation, i.e. the function f with its own set of parameter values
for each small domain of the phase space. Then, one speaks of a local model.

In practice, a global approximation with algebraic polynomials often performs
badly already for two-variable functions (Bezruchko and Smirnov, 2001; Casdagli,
1989; Judd and Mees, 1995; Pavlov et al., 1997. A pronounced feature is that the
number of model parameters and the model prediction errors rise quickly with the
model dimension D. The techniques with such a property are characterised as weak
approximation. They also include trigonometric polynomials and wavelets. In prac-
tical black box modelling, one often has to use D at least as large as 5–6. Therefore,
algebraic polynomials are not widely used.

Much efforts of researchers have been spent to strong approximation approaches,
i.e. the approaches which are relatively insensitive to the rise in D. They include
local techniques with low-order polynomials (Casdagli, 1989; Abarbanel et al.,
1989; Farmer and Sidorowich, 1987; Kugiumtzis et al., 1998; Sauer, 1993; Schroer
et al., 1998), radial, cylindrical, and elliptical basis functions (Giona et al., 1991;
Judd and Mees, 1995, 1998; Judd and Small, 2000; Small and Judd, 1998; Small
et al., 2002; Smith, 1992) and artificial neural networks (Broomhead and Lowe,
1988; Makarenko, 2003; Wan, 1993). All these functions usually contain many
parameters so that a careful selection of the model structure and the model size
is especially important to avoid overfitting (see Sects. 7.2.3 and 9.2).

10.2.1.1 A Generalised Polynomial

To construct a global model (10.5), one selects the form of f and estimates its
parameters via the ordinary LS technique:

S(c) =
N∑

i=D+1

(ηi − f (ηi−D, ηi−D+1, . . . , ηi−1, c))2 → min. (10.6)

To simplify computations, it is desirable to select the function f , which is linear
in its parameters c. This is the case for a function

f (x) =
P∑

k=1

ck fk(x) (10.7)

which is called a generalised polynomial with respect to a set of basis functions
f1, f2, . . . , fP . Then, the problem (10.6) is linear so that the local minima problem
is avoided. A particular case of such an approach is represented by an algebraic poly-
nomial. A trial polynomial order is increased until an appropriate model is obtained
or another condition is fulfilled as discussed in Sect. 7.2.3.

10.2.1.2 Radial Basis Functions

These are functions φk(x) = φ (‖x − ak‖ /rk), where ‖ · ‖ denotes a vector
norm, a “mother” function φ is usually represented by a well-localised function,
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Fig. 10.9 The plots of two-variable radial basis functions (qualitative outlook): three “Gaussian
hills”

e.g., φ(y) = exp(−y2/2), the quantities ak are called “centres” and rk are “radii”.
The model function f is taken to be a generalised polynomial with respect to the set
of functions φk : f (x,c) = ∑

k
ckφk(x). Each term essentially differs from zero only

within the distance about rk from the centre ak (Fig. 10.9). Intuitively, one can see
that such a superposition can approximate a very complicated smooth relief. Radial
basis functions possess many attractive properties and are often used in the approxi-
mation practice. However, we stop their discussion here and describe in more detail
two approaches, which are even more widespread.

10.2.1.3 Artificial Neural Networks

Models with ANNs (Sect. 3.8) are successfully used to solve many tasks. Their
right-hand side is represented by a composition of basis functions, rather than by
their sum. In contrast to the generalised polynomial (10.7), ANNs are almost always
non-linear with respect to the estimated parameters. This is the “most universal”
way of the multivariable function approximation in the sense that along with a firm
theoretical justification, it successfully performs in practice.

Let us introduce an ANN formally (in addition to the discussion of Sect. 3.8)
with an example of a multilayer perceptron. Let x = (x1, . . . , xD) be an argument
of a multivariable function f . Let us consider the set of functions f (1)j (x):

f (1)j (x) = φ

(
D∑

i=1

w
(0)
j,i · xi − υ

(0)
j

)

, (10.8)

where j = 1, . . . , K1, the constants w(0)
j,i are called weights, υ(0)j are thresholds, φ

is an activation function. The function φ is usually non-linear and has a step-like
plot. One often uses the classical sigmoid: φ(x) = 1/(1 − e−x ). Let us say that
each function f (1)j represents an output of a standard formal neuron with an order
number j , whose input is the vector x. Indeed, a living neuron sums up external
stimuli and reacts to them in a threshold way that determines the properties of the
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Fig. 10.10 Illustrations to artificial neural networks: (a) a standard formal neuron; (b) a scheme
for a one-layer ANN with a single output; a single rectangle denotes a single neuron; (c) a scheme
for a multi-layer ANN with a single output

function φ (Fig. 10.10a). The set of functions f (1)1 , . . . , f (1)K1
is called the set of

first-layer neurons (Fig. 10.10b). The values of f (1)j are the outputs of the first-layer

neurons. Let us denote them as vector y(1) with components y(1)j = f (1)j (x).

By defining the function f as a linear combination of f (1)j , one gets a one-layer
ANN model

f (x) =
K1∑

j=1

w(1)
j y(1)j − υ(1) ≡

K1∑

j=1

w(1)
j φ

(
D∑

i=1

w(0)
j,i xi − υ

(0)
i

)

− υ(1), (10.9)

where w(1)
j , υ(1) are additional weights and a threshold, respectively. The number of

free parameters is P = K1(D+1)+1. This representation resembles the generalised
polynomial (10.7), but the ANN depends on w(0)

j,i and υ(0)j in a non-linear way.

By induction, let us consider a set of K1-variable functions f (2)k , k = 1, . . . , K2,
of the form (10.9). These are second-layer neurons, whose input is the output y(1)

of the first-layer neurons (Fig. 10.10c). Let us denote their output values as a vector
y(2) of the dimension K2 and define the function f as a linear combination of the
output values of the second-layer neurons:

f (x) =
K2∑

j2=1

w(2)
j2
φ

⎛

⎝
K1∑

j1=1

w(1)
j2, j1

φ

(
D∑

i=1

w(0)
j1,i

xi − υ
(0)
j1

)

− υ
(1)
j2

⎞

⎠ − υ(2). (10.10)

This is a two-layer ANN which involves compositions of functions. The latter
circumstance makes it essentially different from the pseudo-linear model (10.7).
Increasing the number of layers is straightforward.

To solve the approximation problems, one most often uses two-layer ANNs
(10.10) and sometimes three-layer ones (Malinetsky and Potapov, 2000). The
increase in the number of layers does not lead to a significant improvement.
Improvements can be more often achieved via the increase in the number of neu-
rons in each layer K1, K2. A theoretical base underlying the usage of the ANNs is



294 10 Model Equations: “Black Box” Reconstruction

the generalised approximation theorem (Weierstrass’ theorems are its partial cases),
which states that any continuous function can be arbitrarily accurately uniformly
approximated with an ANN. A rigorous exposition is given, e.g., in Gorban’ (1998).

The procedure for the estimation of parameters in an ANN via the minimisa-
tion (10.6) is called learning of an ANN. This is a problem of multidimensional
non-linear optimisation. There are special “technologies” for its solution includ-
ing backward error propagation algorithm, scheduled learning, learning with noise,
stochastic learning (genetic algorithms and simulated annealing), etc. An ANN may
contain many superfluous elements so that it is very desirable to make the struc-
ture of such a model (i.e. a network architecture) “more compact”. For that, one
excludes from a network those neurons whose weights and thresholds remain almost
unchanged during the learning process.

If several alternative ANNs with different architectures are obtained from a train-
ing time series, then the best of them is usually selected according to the least test
error (Sect. 7.2.3). To get an “honest” indicator of its predictive ability, one uses one
more data set (not the training one and not the test one, since both of them are used
to get the model), which is called a validation time series.

An advantage of an ANN over other constructions in empirical modelling is not
easy to understand (Malinetsky and Potapov, 2000). If one gets an ANN, which
performs well, it is usually unclear why this model is so good. It is the problem of
the “network transparency”; a model of a black box is also a black box in a certain
sense. Yet, even such a model can be investigated numerically and used to generate
predictions.

10.2.1.4 Local Models

Local models are constructed so as to minimise the sum of squares like Eq. (10.6)
over a local domain of the phase space. Thus, to predict the value ηi+D , which fol-
lows a current state xi = [ηi , ηi+1, . . . , ηi+D−1], one uses the following procedure.
One finds k nearest neighbours of the vector xi among all the vectors in the training
time series (in the past). These are vectors with time indices n j , whose distance to
xi are smallest:

∥∥xn j − xi
∥∥ ≤ ‖xl − xi‖ , j = 1, . . . , k, l �= i, l �= n j . (10.11)

They are also called the analogues of xi , see Figs. 10.11 and 10.12.
The values of an observable, which followed the neighbours xn j in the past, are

known. Hence, one can construct the model (10.5) from those data. For that, one
typically uses a simple function f (x,c), whose parameters are found with the ordi-
nary LS technique (Sect. 8.1.1), although more sophisticated estimation techniques
are available (Kugiumtzis et al., 1998). An obtained function f (x, ĉi ) is used to gen-
erate a prediction of the value ηi+D according to the formula η̂i+D = f (xi , ĉi ), see
Fig. 10.12. The vector ĉi has a subscript i , since it corresponds only to the vicinity of
the vector xi . According to the so-called iterative forecast (Sect. 10.3), one predicts
the next value ηi+D+1 by repeating the same procedure of the neighbour search and
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Fig. 10.11 Illustration for a three-dimensional local model: nearest neighbours (filled circle) of a
vector xi (filled squares) found in a training time series

Fig. 10.12 Nearest neighbours (open circles) of a vector xi (filled circles) and the vectors following
them in time (open triangles). The latter are used to predict the vector xi+1 (filled triangle)

parameter estimation for the model state vector x̂i+1 = (ηi+1, . . . , ηi+D−1, η̂i+D).
Thereby, one gets a new forecast η̂i+D+1 = f (x̂i+1, ĉi+1) and so on.

Relying on the Taylor polynomial expansion theorem, one uses such approx-
imating functions as the constant f (x, c) = c1, the linear function f (x, c) =
c1 +

D∑

j=1
c j+1x j and the polynomials of a higher order K . On the one hand, an

approximation error is smaller if the neighbours are closer to the current vector.
Therefore, it should decrease with an increasing time series length, since closer
returns to the vicinity of each vectors would occur. On the other hand, one should
use a greater number of neighbours k to reduce the noise influence. Thus, a trade-off
is necessary: one cannot use too distant “neighbours” to keep an error of approxi-
mation with a low-order polynomial small, but one cannot take too a small number
of the nearest neighbours as well.
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Local constant models are less requiring to the amount of data and more robust to
noise since they contain a single free parameter for each small domain. Local linear
models are superior for weak noise and sufficiently long time series: The concrete
values depend on the necessary value of D. To construct a local linear model, one
must use at least k = D+1 neighbours, since a model contains D+1 free parameters
for each “cell”. Its approximation error scales as λ2 for a very long time series and
“clean” data, where λ is a characteristic distance between the nearest neighbours in
the time series. Local models with higher order polynomials are rarely used.

For the above local models, the function f is usually discontinuous, since differ-
ent “pieces” of local approximation are not matched with each other. Sometimes,
it leads to undesirable peculiarities of the model dynamics, which are not observed
for the original system. One can avoid the discontinuity via triangulation (Small and
Judd, 1998). At that, a model acquires some properties of the global approximation
( f becomes continuous) and is described as a global-local model. However, the
triangulation step makes the modelling procedure much more complicated.

Local models are often exploited for practical predictions. There are various
algorithms taking into account delicate details. In essence, this is a contemporary
version of the predictive “method of analogues” (Fig. 10.11).

10.2.1.5 Nearest Neighbour Search

It can take much time if a training time series is long. Thus, if one naively computes
distances from a current vector to each vector in the time series and selects the least
ones, the number of operations scales as N 2. Below, an efficient search algorithm
based on the preliminary partition of the training set into cells (Kantz and Schreiber,
1997) is described.

The above local models are characterised by fixed number of neighbours. Let
us consider another (but similar) version: local models with fixed neighbourhood
size. The difference is that one looks for the neighbours of a vector xi , which are
separated from xi by a distance not greater than δ (Fig. 10.12):

∥∥xn j − xi
∥∥ ≤ δ. (10.12)

The number of neighbours may differ for different xi , but it should not be less
than D+1. If there are too a few neighbours, one should increase the neighbourhood
size δ. Under a fixed time series length, an optimal neighbourhood size rises with the
noise level and the model dimension. An optimal δ is selected via trials and errors.
One can use any norm of a vector in Eq. (10.11) or (10.12). The most convenient
one is ‖x‖ = max{|x1|, |x2|, . . . , |xD|}, since it is quickly computed. In such a case,
the neighbourhood (10.12) is a cube with the side of length 2δ.

Computation of the distances from a reference vector xi to all the vectors in the
training time series would require a lot of time. It is desirable to skip the vectors,
which deliberately cannot be close neighbours of xi . For that, one preliminarily
sorts all the vectors based on the first and the last of their D coordinates. Let ηmin
and ηmax be the minimal and maximal values, respectively, of an observable over
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Fig. 10.13 Vectors of a training time series are sorted based on their first and last coordinates:
one creates a square array whose elements contain information about the number of vectors in the
respective cell and their time indices

the training series. Then, the corresponding orbit on the plane (x1, xD) lies within
the square with the sides belonging to the straight lines defined by the equations
x1 = ηmin, x1 = ηmax, xD = ηmin, xD = ηmax (Fig. 10.13). The square is divided
into square cells of size δ. One determines to which cell each vector falls and creates
an array, whose elements correspond to the cells. Each element contains time indices
of the vectors falling into the respective cell. To find the nearest neighbours of a
vector x, one checks into which cell it falls and computes distances from x to the
vectors belonging to the same cell or the cells having a common vertex with it. In
total, one must check at most nine cells. This algorithm speeds up the process of
neighbour search and requires the order of N operations if there are no too densely
and too rarely “populated” domains in the reconstructed phase space.

10.2.1.6 A Real-World Example

Chaotic dynamics of a laser (Fig. 10.14) was suggested as a test data set for the
competition in time series prediction at the conference in Santa-Fe in 1993 (Ger-
schenfeld and Weigend, 1993). Competitors had to provide a continuation of the
time series, namely to predict the next 100 data points based on 1000 given data
points. A winner was Eric Wan, who used a feed-forward ANN-based model of the
form (10.5) (Wan, 1993).

Fig. 10.14 Data from a ring laser in a chaotic regime (Hubner et al., 1993), t = 40 ns
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Figure 10.15a shows the observed time series (thin lines) and predictions (thick
lines) with the ANN-based model for different starting instants (Wan, 1993). Sim-
ilar prediction accuracy is provided by a local linear model (Sauer, 1993), see
Fig. 10.15b. Accuracy of predictions for different intervals depends on how accu-
rately the models predict an instant of switching from the high-amplitude oscilla-
tions to the low-amplitude ones. Thus, the local linear model performs worse than
the ANN for the starting instants 1000 and 2180 and better for the three others.
Local linear models appear to reproduce better some dynamical characteristics of
the process and its long-term behaviour (Gerschenfeld and Weigend, 1993); the top
panel in Fig. 10.15b shows an iterative forecast over 400 steps, which agrees well
with the experimental data. The long-term behaviour is described a bit worse with
the ANN (Sauer, 1993; Wan, 1993).

It is interesting to note that Eric Wan used ANN with 1105 free parameters
trained on only 1000 data points. The number of parameters was even greater than
the number of data points that usually leads to an ill-posed problem in statistics.

Fig. 10.15 Forecast of the laser intensity: (a) an ANN-based model (Wan, 1993); (b) a local linear
model (Sauer, 1993). Laser intensity is shown along the vertical axis in arbitrary units. Time is
shown along the horizontal axis in the units of sampling interval. The thin lines are the observed
values and the thick lines are the predictions. Different panels correspond to predictions starting
from different time instants: 1000, 2,180, 3,870, 4,000, and 5,180. The number at the top left
corner of each panel is the normalised mean-squared prediction error over the first 100 data points
of the respective data segment. The top panels show the segment proposed for the competition in
Santa-Fe: the data points 1001–1100 were to be predicted
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However, an ANN is a highly non-linear model function so that the number of
“effective degrees of freedom” (“effectively free” parameters) is not equal to the
full number of estimated parameters. There are constraints imposed on the possi-
ble model behaviour by the topology of the ANN. The author performed cross-
validation (Sect. 7.2.3) by using only 900 data points as the training time series and
100 data points as the test one. He stated that there were no signs of overfitting when
the size of the network was changed. Still, he noted an indirect sign of overfitting:
after a good short-term forecast over several dozens of time steps, the ANN-based
model exhibited “noisier” long-term behaviour than it is observed in the original
data (Fig. 10.14). This can also be the reason why the local linear model of Tim
Sauer appeared superior for the description of the long-term behaviour. An overall
judgement seems to be that an ANN and a local linear model are approximately
equally good in the example considered.

A number of applications of local models to predictions can be found, e.g.,
in Farmer and Sidorowich (1987); Kantz and Schreiber (1997); Kugiumtzis et al.
(1998). ANN-based models are used probably more often, since they are less
demanding with respect to the time series length and noise level. There are exam-
ples of their successful applications even to geophysical and financial predictions
(Makarenko, 2003). Forecasts with other models of the form (10.5) are described,
e.g., in Judd and Small (2000); Small and Judd (1998).

10.2.2 Model Differential Equations

In construction of model ODEs from a scalar time series, one often gets state vectors
with successive derivatives [η, dη

/
dt, . . . , dD−1η

/
dt D−1] and uses the standard

form of model equations (Sect. 3.5.3):

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) (10.13)

where η = x . The approximating function f is selected in the same way as described
above for the models (10.5). Here, one more often observes “smoother” dependen-
cies to be approximated and uses algebraic polynomials

f (x1, x2, ..., xD, c) =
K∑

l1,l2,...,lD=0

cl1,l2,...,lD

D∏

j=1

x
l j
j ,

D∑

j=1

l j ≤ K . (10.14)

Model ODEs (10.13) with ANNs and other functions are rarely used (Small et al.,
2002).

Some systems can be rewritten in the standard form (10.13) analytically. Thus,
the Roessler system, which is a paradigmatic chaotic system, reads as
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dx
/

dt = −y − z,
dy
/

dt = x + C1 y,
dz
/

dt = C2 − C3z + xz.
(10.15)

One can show that it can be reduced to a three-dimensional system with succes-
sive derivatives of y and the second-order polynomial in the right-hand side:

dx1
/

dt = x2,

dx2
/

dt = x3,

dx3
/

dt = −C2 − C3x1 + (C1C3 − 1)x2 + (C1 − C3)x3 − C1x2
1+

+(C2
1 + 1)x1x2 − C1x1x3 − C1x2

2 + x2x3,

(10.16)

where x1 = y. With successive derivatives of x and z, one gets the equations simi-
lar to Eq. (10.16), but with rational functions in the right-hand side (Gouesbet and
Letellier, 1994).

The standard models are used in practice (see, e.g., Gouesbet, 1991; Gouesbet
and Letellier, 1994; Gouesbet et al., 2003b Gribkov et al., 1994a, 1994b; Letellier
et al., 1995, 1997, 1998a; Pavlov et al., 1999), but successful results are quite rare.
The usage of the model structure (10.13) with an algebraic polynomial (10.14) often
leads to quite cumbersome equations.

In construction of ODEs from a vector time series, everything is similar, but one
looks for D scalar-valued functions rather than for a single one (analogous to the
“grey box” case described in Sect. 9.1).

10.3 Forecast with Various Models

The novel techniques developed within the non-linear dynamics framework and
discussed above are often the most efficient ones to predict complex real-world
processes. Especially, this is the case when it appears sufficient to use a low-
dimensional model. Multiple non-linear dynamics techniques can be distinguished
according to different aspects: iterative forecast versus direct forecast; model maps
of different kinds, e.g., global models versus local models; model maps versus
model ODEs. Below, advantages and disadvantages of different approaches are
briefly discussed and compared. To run ahead, the most efficient tool is usually a
model map (global or local one depending on the amount of available data and
the necessary model dimension) with an iterative, direct or combined prediction
technique (depending on the required advance time). However, let us start the com-
parison with “older” approaches.

10.3.1 Techniques Which Are not Based on Non-linear
Dynamics Ideas

For very simple signals, good predictions can be achieved even with explicit
functions of time (Chap. 7). For stationary irregular signals without signs of
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non-linearity, the most appropriate tool is linear ARMA models (Sects. 4.4 and 8.1)
despite their possibilities being quite limited. Thus, one can show that prediction
with a linear ARMA model can be reasonably accurate only over an interval of the
order of the process correlation time τcor (Anosov et al., 1995), i.e. a characteristic
time of the autocorrelation function decay (see Sect. 2.3, Fig. 2.8).

For a chaotic time series, τcor can be quite small making possible only quite
short-term predictions with an ARMA model. Although a chaotic process cannot be
accurately predicted far in the future in principle, the prediction time can be much
greater than τcor for non-linear models. It can be roughly estimated with the formula
(2.34): τpred = (

1
/

2�1
)

ln
(
σ 2

x

/(
σ 2
ν + σ 2

μ + σ 2
M

))
. If noises and model errors are

not large, then τpred can strongly exceed the correlation time roughly estimated as
τcor ∼ 1

/
�1 (see Sect. 2.4 and Kravtsov, 1989; Smith, 1997).

10.3.2 Iterative, Direct and Combined Predictors

One can predict the values of an observable following the last value in a time series
ηN with a model (10.5) via the above-mentioned (Sect. 10.2.1) iterative way:

(i) One-step-ahead prediction is generated as

η̂N+1 = f (xN−D+1, ĉ) = f (ηN−D+1, ηN−D+2, . . . , ηN , ĉ). (10.17)

(ii) The predicted value x̂N+1 is considered as the last coordinate of the new state
vector x̂N−D+2 = (ηN−D+2, ηN−D+3, . . . , ηN , η̂N+1);

(iii) The vector x̂N−D+2 is used as an argument of the function f to generate a new
forecast η̂N+2 = f (x̂N−D+2, ĉ) and so on.

Thus, one gets a forecast η̂N+l over any number of steps l ahead.
Alternatively, one can get an l-step-ahead forecast by constructing a model which

directly approximates dependence of ηi+l on (ηi−D+1, ηi−D+2, . . . , ηi ) instead of
making l iterations of the map (10.5). The form of such a dependence can be rather
complicated for the chaotic dynamics and large l due to high sensitivity of the future
behaviour ηi+l to the initial conditions xi−D+1. As a result, for a very large l, one
gets an approximately constant model function f ≈ 〈η〉 and, hence, a low prediction
accuracy. However, the direct approach can be advantageous for moderate values
of l.

How does the prediction time for both approaches depend on the time series
length N and other factors? This question can be answered theoretically for a local
model with a polynomial of an order K . According to the estimates of Casdagli
(1989) and Farmer and Sidorowich (1987), the prediction error grows with l as σM ·
e�1lt for the iterative technique and as σM · e(K+1)Hlt for the direct technique,
where H is the sum of the positive Lyapunov exponents. Thus, the error grows faster
for the direct approach. The reason is mentioned above: it is difficult to approximate
the dependence of the far future on the present state. However, this superiority of
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the iterative technique takes place only if the model (10.5) gives very accurate one-
step-ahead predictions, which are achieved only for a very long training time series
and a very low noise level. Otherwise, the direct technique can give more accurate
l-step-ahead predictions for l greater than 1 but less than a characteristic time of the
divergence of initially nearby orbits (Judd and Small, 2000). This is because a one-
step-ahead predictor (10.5) can exhibit systematic errors (due to an inappropriate
approximating function or an insufficient model dimension), whose accumulation
over iterations can be more substantial than the approximation error of the direct
approach.

To improve predictions for a moderate advance time l, a combined “predictor –
corrector” approach is developed in Judd and Small (2000), which is as follows.
One generates a forecast via a direct or an iterative way with an existing model. Let
us call it a “base predictor”. Then, one “corrects” the predictions with an additional
model map (the so-called “corrector”) which is also constructed from a training time
series and describes the dependence of an l-step-ahead prediction error of the base
predictor on the prediction itself. A functional form of the corrector is taken much
simpler than that for the base predictor. The combination “predictor – corrector”
can give essentially more accurate forecasts in comparison with the “pure” direct
and iterative approaches.

Finally, we note an important conceptual distinction between the dynamical
models (10.5) and explicit functions of time (Sect. 7.4.1). In contrast to explicit
extrapolation of a temporal dependence, the model (10.5) relies on interpolation
in the phase space and, therefore, appears much more efficient. Indeed, a current
value of the state vector xi used to generate a prediction typically lies “between”
many vectors of the training time series, which are used to construct the model
(Fig. 10.12). If the model state vector x under iterations of the model map goes
out of the domain populated by the vectors of the training time series, the usage of
the model to generate further predictions is tantamount to extrapolation in the phase
space. Then, the forecasts get much less reliable and a model orbit may behave quite
differently from the observed process, e.g. diverge to infinity. The latter often occurs
if a model involves an algebraic polynomial, which usually quite badly extrapolates.

10.3.3 Different Kinds of Model Maps

Let us compare predictive abilities of the models (10.5) for different forms of the
function f .

Algebraic polynomials of a moderate order K are quite efficient to approximate
gradually varying one-variable functions without discontinuities and breaks. Only
cubic or higher order splines are even better in this case (Johnson and Riess, 1982;
Kalitkin, 1978; Press et al., 1988; Samarsky, 1982; Stoer and Bulirsch, 1980). The
greater the necessary model dimension D and the polynomial order K , the less the
probability of successful modelling results with algebraic polynomials.

Rational functions are efficient under the same conditions but can better describe
dependencies with the domains of fast variations. Trigonometric polynomials and
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wavelets (Sect. 6.4.2) are also kinds of weak approximation. They perform well for
dependencies with specific properties described in Sect. 7.2.4.

Radial basis functions (Judd and Mees, 1995) are much superior to the mentioned
approaches in the case of a large model dimension (roughly speaking, the dimension
greater than 3). Artificial neural networks exhibit similar performance. According to
some indications (Casdagli, 1989; Wan, 1993), the ANNs approximate complicated
dependencies even better. Requirements to the amount of data and noise level are
not very strict for all the listed models, since all of them are global.

Local linear models are very efficient for moderate model dimensions (less than
a moderate number depending on the length of a training time series), long time
series (giving a considerable number of the close neighbours for each state vector)
and low levels of the measurement noise. Requirements to the amount of data and
noise level are quite strict. Local constant models are better than local linear ones
for higher noise levels and shorter time series.

In any case, all the approaches suffer from the curse of dimensionality. In prac-
tice, very high-dimensional motions (roughly, with the dimensions about 10 or
greater) typically are not successfully described with the above empirical models.

10.3.4 Model Maps Versus Model ODEs

In general, model maps give better short-term forecasts than do ODEs (Small et al.,
2002). It can be understood in analogy with the situation, where the iterative pre-
dictions are less accurate than the direct ones due to significant errors of the one-
step-ahead predictor (10.5). Model ODEs are constructed so as to approximate a
dependence of the phase velocity dx

/
dt on x (9.3), i.e. to provide better forecasts

over short time intervals: x(ti+1) ≈ x(ti )+ (
dx(ti )

/
dt
)
t . Then, the integration of

ODEs to predict distant future values resembles an iterative forecast. It can be less
precise if a systematic error is present in the model ODEs.

Empirical model maps are often superior even for long-term description of the
observed dynamics (Small et al., 2002). Besides, their construction and exploitation
are simpler: One does not need numerical differentiation of the signals and numeri-
cal integration of the equations.

Model ODEs are a good choice if they are “relatives” to an object, i.e. if an
original dynamics yields almost exactly to a set of ODEs with some known structure.
Such a case is more typical for the “transparent box” or the “grey box” settings and
almost improbable without detailed prior information.

Yet, many authors deal with the construction of model ODEs even under the
“black box” setting. It is related in part to the problem of the model “transparency”.
If one gets a “good” model, it is desirable to understand how it “works” and to
interpret its variables and parameters from the physical viewpoint. One may hope
for such physical interpretations when model ODEs with algebraic polynomials are
used, since asymptotic models of many real-world processes take such a form, e.g.,
in chemical kinetics and laser physics. For the same reason, one can use model
ODEs with the successive derivatives (10.4) rather than with the time-delay vectors:
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derivatives can be easily interpreted as velocity, acceleration, etc. However, the hope
for physical interpretations does not usually prove to be correct: If one does not
include physical ideas into the structure of model ODEs in advance (Bezruchko
and Smirnov, 2001; Smirnov and Bezruchko, 2006), it gets almost impossible to
extract physical sense from an algebraic polynomial (10.14) or a similar universal
construction a posteriori.

10.4 Model Validation

Though it is relevant to perform the residual error analysis (see Sect. 7.3), if a
dynamical noise is assumed to influence an original dynamics, one typically com-
putes model characteristics popular in the theory of dynamical systems and com-
pares them to experimental estimates to validate a dynamical model.

(i) For a deterministic model, predictability time can be theoretically estimated
as τpred = (

1
/

2�1
)

ln
(
σ 2

x

/(
σ 2
ν + σ 2

μ + σ 2
M

))
. For an adequate model, this

estimate must coincide with the corresponding empirical estimate.
(ii) Qualitative similarity of the phase orbits projected onto different planes. This

subjective criterion seems important. It is directed to the assessment of the
similarity between essential features of an object and model dynamics. Its
quantitative formulations lead to several ways of model validation, which are
mentioned below following the review (Gouesbet et al., 2003).

(iii) Comparison of invariant measures (probability distribution densities for a state
vector) or their projections (marginal probability distributions). The approach
applies to stochastic models as well.

(iv) Comparison of the largest Lyapunov exponent of a model attractor with its
estimate obtained from an observed time series.

(v) Comparison of fractal dimensions and entropies of a model attractor with their
estimates obtained from an observed time series.

(vi) Comparison of topological properties. This delicate approach is based on the
search and analysis of unstable periodic orbits embedded into an attractor and
the determination of their mutual location in the phase space. Strictly speaking,
it applies only to deterministic systems, whose dimensionality is not greater
than three, and represents a very strict test for a model. If a model reproduces a
major part of unstable orbits found from an observed time series, it is a strong
evidence in favour of its validity.

(vii) Comparison of the Poincare maps. It is easily achieved for one-dimensional
Poincare maps. As a rule, one analyses a dependence of the next local max-
imum value of an observable on its previous local maximum. The approach
relates to the analysis of the topological properties of attractors and is often
used in combination with the latter.

(viii) Synchronisation of model dynamics by an original signal. A model is regarded
valid if its dynamics synchronise up to a given accuracy by an observed time
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series, used as a driving, under a moderate driving intensity (Brown et al.,
1994). This approach applies if model parameters were not estimated via
synchronisation-based technique (Sect. 8.2.1) from the same time series.

(ix) It has been suggested to check whether a model has the same number of attrac-
tors of the same type as an object; whether the attractors of a model and an
object are located in the same domains of the phase space and whether their
basins of attraction coincide. These are very strict tests and in practice no
empirical model can usually pass them.

Finally, we note that modelling of spatially extended systems with partial differ-
ential equations and other tools is actively studied for the last years (Bar et al., 1999;
Parlitz and Mayer-Kress, 1995; Parlitz and Merkwirth, 2000; Sitz et al., 2003; Voss
et al., 1998) which is not discussed here. Also, we have only briefly touched upon
stochastic model equations (Sitz et al., 2002; Timmer, 2000; Tong, 1990). Diverse
useful information on those and adjacent subjects can be found, in particular, at the
websites mentioned in the Preface.
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