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Preface

Mathematical modelling is ubiquitous. Almost every book in exact science touches
on mathematical models of a certain class of phenomena, on more or less specific
approaches to construction and investigation of models, on their applications, etc.
As many textbooks with similar titles, Part I of our book is devoted to general ques-
tions of modelling. Part II reflects our professional interests as physicists who spent
much time to investigations in the field of non-linear dynamics and mathematical
modelling from discrete sequences of experimental measurements (time series). The
latter direction of research is known for a long time as “system identification” in
the framework of mathematical statistics and automatic control theory. It has its
roots in the problem of approximating experimental data points on a plane with a
smooth curve.

Currently, researchers aim at the description of complex behaviour (irregular,
chaotic, non-stationary and noise-corrupted signals which are typical of real-world
objects and phenomena) with relatively simple non-linear differential or difference
model equations rather than with cumbersome explicit functions of time. In the
second half of the twentieth century, it has become clear that such equations of a suf-
ficiently low order can exhibit non-trivial solutions that promise sufficiently simple
modelling of complex processes; according to the concepts of non-linear dynamics,
chaotic regimes can be demonstrated already by a third-order non-linear ordinary
differential equation, while complex behaviour in a linear model can be induced
either by random influence (noise) or by a very high order of equations. Possibility
to construct non-linear predictive models and availability of fast computers with
huge memory size provides new opportunities in processing of signals encountered
in nature and different fields of practice ranging from economy to medicine.

Our book is devoted to mathematical modelling of processes (i.e. motions, tem-
poral changes). It is addressed to a reader who aims at the usage of empirical mod-
elling machinery to solve practical tasks. We consider problems and techniques of
modelling from observational data and describe possible applications. Moreover,
we have located computer practical works and special educational software at our
website http://www.nonlinmod.sgu.ru. As well, we touch on world-outlook ques-
tions which inevitably arise in “making mathematical models”. The contents and
style of the book have been developed as a result of our research activity and many
years of teaching at different natural science departments of Saratov State University
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vi Preface

(Saratov, Russia): Department of Physics, Department of Nonlinear Processes and
Department of Nano- and Biomedical Technologies. Several chapters have been
used in teaching of future geologists, biologists and economists.

We hope that our book will be useful for a wide readership. Therefore, we present
material at different levels of complexity. The first chapters are suited for a reader
who has education at the level of a secondary school. However, general questions
of modelling and examples of contemporary dynamical models can be interesting
for specialists as well. Part II is more specific and formalised. It is addressed to
people who plan to construct models from time series and to use them for prediction,
validation of ideas about underlying dynamical laws, restoration of hidden variables
and so on. We do not give rigorous proofs. Discussion of mathematical results is
often presented at the level of vivid illustrations with references to special works.
Deeper understanding of the problems can be achieved via information located at
the websites of our and other research groups, e.g.

http://sgtnd.narod.ru/eng/index.htm
http://www.nonlinmod.sgu.ru/index_en.htm
http://www.cplire.ru/win/InformChaosLab/index.html
http://chaos.ssu.runnet.ru/
http://webber.physik.uni-freiburg.de/∼jeti
http://math.gmu.edu/∼tsauer/
http://www.maths.uwa.edu.au/∼kevin/
http://www.mpipks-dresden.mpg.de/∼kantz/
http://www.dpi.physik.uni-goettingen.de/∼ulli/
http://www.maths.ox.ac.uk/∼lenny
http://www.pik-potsdam.de/members/kurths
http://www.stat.physik.uni-potsdam.de/
http://www.agnld.uni-potsdam.de/
http://inls.ucsd.edu/∼hdia/
http://www.eie.polyu.edu.hk/∼ensmall/matlab/

Our bibliography concerning modelling problems is by no means complete. We
refer only to some of many research papers and monographs, which were the most
influential for our research and teaching activity.

The book contains the results of investigations of our group of “non-linear
dynamical modelling” which unites university lecturers, academic researchers,
Ph.D. students and undergraduate students from Saratov State University and Sara-
tov Branch of V.A. Kotel’nikov Institute of RadioEngineering and Electronics of
Russian Academy of Sciences (SB IRE RAS). Our colleagues Ye.P. Seleznev,
V.I. Ponomarenko, M.D. Prokhorov, T.V. Dikanev, M.B. Bodrov, I.V. Sysoev,
A.S. Karavaev, V.V. Astakhov, S.A. Astakhov, A.V. Kraskov, A.Yu. Jalnine, V.S.
Vlaskin and P.V. Nakonechny are to some extent co-authors of the book.

Moreover, we present the results of our joint research with other groups:
I.I. Mokhov (A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow,
Russia), P.A. Tass and U.B. Barnikol (Institute of Neuroscience and Biophysics – 3,
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Research Centre Juelich, Germany), R. Stoop and A. Kern (University of Zuerich,
Switzerland), G. van Luijtelaar (Nijmegen Institute for Cognition and Informa-
tion, Radboud University of Nijmegen, The Netherlands), G.D. Kuznetsova and
E.Yu. Sitnikova (Institute of Higher Nervous Activity and Neurophysiology RAS,
Moscow, Russia), J.-L. Perez Velazquez (Hospital for Sick Children and Uni-
versity of Toronto, Canada), R. Wennberg (Toronto Western Hospital, Canada),
J. Timmer, B. Schelter and M. Winterhalder (University of Freiburg, Germany) and
R.G. Andrzejak (von Neumann Institute for Computing, Research Centre Juelich,
Germany).

We are grateful to M. Cencini, J. Timmer, T. Sauer and E. Wan for allowing
us to use some results of their investigations along with several figures, which are
appropriate for the topics considered in Chaps. 2, 8 and 10. We acknowledge a great
help of D.V. Sokolov in the technical preparation of all the figures in the monograph.

Prof. N.G. Makarenko (Pulkovo Observatory RAS, St. Petersburg, Russia) and
Prof. S.P. Kuznetsov (SB IRE RAS) have read the first (Russian) edition of the
manuscript and made a lot of useful remarks. We are very grateful to Prof. J. Kurths
for the attention to our work and many useful advice and recommendations con-
cerning the preparation of the second (English) edition of the book, which would
not appear without his help.

Finally, we acknowledge many colleagues whose communications in non-linear
dynamics and time series analysis problems have been very useful to us: V.S.
Anishchenko, V.N. Belykh, O.Ya. Butkovsky, A.F. Golubentsev, Yu.A. Danilov,
A.S. Dmitriev, A.M. Feigin, G.T. Guria, N.B. Janson, M.V. Kapranov, V.B. Kazant-
sev, A.A. Kipchatov, Yu.A. Kravtsov, A.P. Kuznetsov, P.S. Landa, A.Yu. Loskutov,
Yu.L. Maistrenko, V.V. Matrosov, V.I. Nekorkin, G.V. Osipov, A.I. Panas, A.N.
Pavlov, A.S. Pikovsky, V.P. Ponomarenko, A.G. Rokakh, M.G. Rosenblum, A.G.
Rozhnev, V.D. Shalfeev, A.N. Silchenko, D.I. Trubetskov, and D.A. Usanov.

Our investigations partly reflected in this book were supported by grants of the
Russian Foundation for Basic Research, Russian Science Support Foundation, the
President of Russia, Ministry of Education and Science of Russia, American Civil-
ian Research and Development Foundation, and programs of Russian Academy of
Sciences.

Saratov, Russia Boris P. Bezruchko
Dmitry A. Smirnov



Introduction

Throughout the present book, we consider the problem of mathematical modelling
as applied scientists who use mathematics as a tool to obtain practically useful
results. Mathematical model is a symbolic construction whose properties must coin-
cide with some relevant properties of an object under investigation. As far as appli-
cations are concerned, the main point is to make a construction which allows to
achieve some practical purpose. Such a purpose may relate to forecast of future
behaviour, automatic control, clustering of data, validation of substantial ideas about
an object, diagnostics of causal relationships in a complex system and many other
problems discussed in the book.

A model or a way used to obtain it may appear “imperfect” in some strict sense,
e.g. formulation of a problem is not completely correct, its solution is not unique.
However, is it worth speaking of a unique “true” mathematical model of a real-
world object if the mathematics itself has arisen quite recently as compared with
the Universe and many objects of modelling? This polemic question and a lot of
similar questions, some of them being “eternal”, have determined the contents of
Chap. 1 where we discuss general problems of modelling, including definitions and
systematisations of models, the role of mathematics and causes of its efficiency,
and approaches to model construction. The concept of ill-posed problems briefly
considered in the second part of the book (Chap. 5) is also closely related to such
questions.

Chapter 2 is devoted to the two “world-outlook” approaches to modelling differ-
ing by the “degree of optimism” with respect to principal predictability of natural
phenomena. The first one is the deterministic (dynamical) approach. It is very opti-
mistic. At the beginning, it “claimed” even practical possibility to predict the future
precisely based on the precise knowledge of a present state. Currently, when the
concept of “dynamical chaos” has been formulated and non-linear dynamics has
become a widely known field of knowledge, the claims for the practically achiev-
able accuracy of forecasts are much more moderate.

The second approach is called probabilistic (stochastic). It is less optimistic. One
refuses precise forecast and tends to determine only probabilities of different scenar-
ios of the future. In Chap. 2 we discuss the assessment of prediction opportunities
and practical motivations to call a process under investigation “random”. With the
example of the well-known “coin flip”, we illustrate necessity of “co-operation”

ix



x Introduction

between “deterministic” and “stochastic” viewpoints and narrowness of any view-
point taken separately.

Throughout the book, we describe mainly deterministic models and popularise
approaches of non-linear dynamics. The latter is a sufficiently “young” and cur-
rently developing scientific field whose terminology is not yet fully established. A
person who starts to study its problems can come into troubles since even leading
specialists sometimes use the same term with almost contradictory meanings, e.g.
a collection of definitions of “dynamical system”, which is one of the main con-
cepts in non-linear dynamics, is presented in Sect. 2.1.1. Therefore, we discuss a
terminology and present a short review of the basic concepts and illustrative tools
of non-linear dynamics. As illustrations, we use numerical examples, data of labo-
ratory experiments and signals from real-world objects which can be of interest for
a wide readership.

Chapter 3 presents the main capabilities of the mathematical apparatus, imple-
menting the deterministic approach, and some exemplary models. We focus on the
ordinary differential equations and discrete maps since they are the most popular
tools for dynamical modelling and lie in the field of our direct professional inter-
ests. Chapter 4, the last in Part I, briefly exposes stochastic models and the role of
noise.

While the purpose of Part I (Chaps. 1, 2, 3 and 4) is to introduce a general view on
the topic of modelling, Part II (Chaps. 5, 6, 7, 8, 9, 10, 11, 12 and 13) is focused on
a single approach to model construction which can be called “empirical modelling”
or “modelling from data”. Previously, it was not considered as “respectable” analo-
gously to a “design” of clothes based on wrapping a client into a piece of material
linked from the edges. However, such a modelling is currently being actively used
and developed since fast computers have become widely available and the concept
of dynamical chaos has been formulated so that it has become clear that a compli-
cated behaviour can be described with sufficiently simple non-linear models. More-
over, this approach is often the only possible one in practice since one often cannot
follow the most established and reliable way, i.e. write down model equations from
the so-called “first principles” (general laws for a certain range of phenomena such
as conservation principles and Newton’s laws in mechanics and Maxwell’s equa-
tions in electrodynamics) taking into account specific features of an object under
investigation. In a typical practical situation, the main source of information about
an object is the data of measurements represented as a set of values of an observed
quantity measured at subsequent time instants – a time series.

Construction of models from experimental time series is called “system iden-
tification” in mathematical statistics and automatic control theory (Ljung, 1991)
and “reconstruction1 of dynamical systems” (Anishchenko et al., 2002; Gouesbet

1 The term “reconstruction” seems completely appropriate only for the case of restoration of equa-
tions from their solutions. In modelling of real-world systems, the term “model construction” is
more suitable. However, we use the term “reconstruction” as well since it is already widely used
in the literature.
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et al., 2003a; Malinetsky and Potapov, 2000) in non-linear dynamics. Predecessors
of the contemporary reconstruction problems were the problems of approximation
and statistical investigation of dependencies between observed quantities considered
already in the middle of the eighteenth century. Originally, an observed process was
modelled with an explicit function of time η = f (t), which approximated a set
of experimental data points on the plane (t, η). The purposes of modelling were
prediction of the future and smoothing of noise-corrupted data. At the beginning of
the twentieth century, a serious step forward in the development of techniques for
empirical modelling of complex processes was done in the framework of mathe-
matical statistics when Yule suggested to use linear stochastic models (Yule, 1927).
That approach was the main tool during half a century (1920s–1970s) and found
multiple applications, especially to prediction and automatic control problems (Box
and Jenkins, 1970; Ljung, 1991; Pugachev and Sinitsyn, 1985). Formulation of the
concept of dynamical chaos and the rise of computational powers led to a new sit-
uation: In the last two decades empirical modelling is performed on the basis of
non-linear difference and differential equations including multidimensional mod-
els. Among the pioneering works in this field, we would mention Abarbanel et al.
(1989), Baake et al. (1992), Bock (1981), Breeden and Hubler (1990), Broomhead
and Lowe (1988), Casdagli (1989), Crutchfield and McNamara (1987), Cremers
and Hubler (1987), Farmer and Sidorowich (1987); Giona et al. (1991), Gouesbet
(1991), Mees (1991) and Smith (1992). The problems considered are topical both
from fundamental and applied points of view. Empirical models are demanded in
different fields of science and practice including physics, meteorology, seismology,
economics, medicine and physiology (Kravtsov, 1997). The tasks which are solved
with the aid of reconstruction are very diverse. They include forecast, quantitative
validation of physical ideas about an object, restoring time courses of quantities
inaccessible to a measuring device and diagnostics of causal relationships between
processes.

We give an overview of the problems and methods of modelling from time series
in Chaps. 5, 6, 7, 8, 9, 10, 11, 12, and 13. Our consideration supplements previ-
ous reviews presented in monographs (Abarbanel, 1996; Anishchenko et al., 2002;
Casdagli and Eubank, 1992; Dahlhaus et al., 2008; Gerschenfeld and Weigend,
1993; Gouesbet et al., 2003a; Kantz and Schreiber, 1997; Malinetsky and Potapov,
2000; Mees, 2001; Ott et al., 1994; Small, 2005; Soofi and Cao, 2002; Winterhalder
et al., 2006) and papers (Abarbanel et al., 1993; Gouesbet et al., 2003b; Pavlov et al.,
1999; Rapp et al., 1999; Shalizi, 2003; Smirnov and Bezruchko, 2006; Voss et al.,
2004). As well, our original recent results on non-linear data analysis are presented,
especially in Chaps. 9, 12 and 13. Mainly, we speak of finite-dimensional determin-
istic models in the form of discrete maps or ordinary differential equations. Similar
to Part I, we select different examples to illustrate measurement resulting from both
laboratory experiments (where experimental conditions allow purposeful selection
of the regimes of object functioning, control of external influences and correction of
an initial state) and real-world data observed in the past or in the situations where
observation conditions cannot be changed (so that one must use the data as it is,
including inevitable distortions).
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Material is discussed on the basis of a typical scheme of the modelling procedure
presented in Chap. 5. Chapter 6 is devoted to acquisition of data and its preliminary
analysis, which can serve to extract additional information about an object useful for
specifying the structure of model equations. In Chap. 7 many important problems in
empirical modelling are discussed with the example of the simplest kind of models –
explicit functions of time. Further exposition follows the principle “from simple to
complex”, namely in the “direction” of decrease in the amount of prior knowledge
about an object. We proceed from the case when almost everything is known and
only the values of parameters in model equations remain to be calculated (Chap. 8)
via an intermediate variant (Chap. 9) to the situation when nothing is known a priori
about an appropriate form of model equations (Chap. 10). Then, we give examples
of useful applications of empirical models (Chap. 11) including our own results on
the detection of coupling between complex processes (Chap. 12). Finally, Chap. 13
presents “outdoor” examples from the fields of electronics, physiology and geo-
physics and provides a more detailed consideration of different steps of a modelling
procedure, which should be of interest for a wider audience.

Throughout the book, we often refer to Internet resources containing useful infor-
mation on mathematical modelling including research papers, tutorials, training and
illustrative computer programs. This information should supplement the contents of
the book.
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Chapter 1
The Concept of Model. What is Remarkable
in Mathematical Models

1.1 What is Called “Model” and “Modelling”

Dictionaries tell us that the word “model” originates from the Latin word “modulus”
which means “measure, template, norm”. This term was used in proceedings on civil
engineering several centuries BC. Currently, it relates to an enormously wide range
of material objects, symbolic structures and ideal images ranging from models of
clothes, small copies of ships and aeroplanes, different pictures and plots to math-
ematical equations and computational algorithms. Starting to define the concept of
“model”, we would like to remind about the difficulty to give strict definitions of
basic concepts. Thus, when university professors define “oscillations” and “waves”
in their lectures on this subject, it is common for many of them to repeat the joke
of Russian academician L.I. Mandel’shtam, who illustrated the problem with the
example of the term “heap”: How many objects, and of which kind, deserve such a
name? As well, he compared strict definitions at the beginning of studying any topic
to “swaddling oneself with barbed wire”. Among classical examples of impossibil-
ity to give exhaustive formulations, one can mention the terms “bald spot”, “forest”,
etc. Therefore, we will not consider variety of existing definitions of “model” and
“modelling” in detail. Any of them relates to the purposes and subjective preferences
of an author and is valid in a certain sense. However, it is restricted since it ignores
some objects or properties that deserve attention from other points of view.

We will call “model” something (ideal images, material things or symbolic con-
structions) whose set of properties intersects a set of properties of an original (an
object) in a domain essential for the purpose of modelling. We will call “modelling”
the process of creation and usage of a model. Here, the term “original” stands for an
object of modelling, e.g. a material thing, a phenomenon, a process. “Ideal” means
“being thought” by a human being, existing in his/her mind. “Symbolic construc-
tions” are some abstractions in the form of formulas, plots, chains of symbols, etc.
“Set of properties” is a collection of properties. Their “intersection” means a subset
belonging to both sets (coincidence of some properties from the two sets). In other
words, a model is something similar to an original in certain respects. A model is
created and/or used by a human being for his/her purposes.

The above considerations are illustrated in Fig. 1.1 with the example of modelling
of an aeroplane. Each point on the plot corresponds to some property: “white”,
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Fig. 1.1 An illustration of the definition of “model”. Domains of intersection between the sets of
properties are dashed. The set of the object properties is bounded by the thick curve, while the
model sets are bounded by thinner ones

“blue”, “big”, “metallic”, “capable of gliding”, etc. The lines bound the sets of
properties of the object and models. Models may be different and characterised with
greater or smaller sets of properties. They can be even more complicated than the
object. As well, the domains of intersection between the sets of model and object
properties may vary drastically ranging from “microscopic size” to complete inclu-
sion of one of them into the other one. The choice of a model is determined by
the purpose of modelling. Thus, a small copy on a pedestal (model 1) is sufficient to
model the shape of the aeroplane. In such a case, the domain of intersection includes
points corresponding, e.g., to geometrical proportions and colours of the aeroplane
elements.

The ability to glide is better modelled with a “paper jackdaw” (model 2), i.e. a
properly convoluted sheet of paper. In this case, the domain of intersection includes
properties related to flight, while colour and shape become irrelevant. Capability
of the aeroplane wings to vibrate can be modelled with the aid of mathematical
equations (model 3). Then, oscillatory character of the wings’ motion coincides
with the solutions to the model equations. Capability to move in the air is common
for the aeroplane and a bird (model 5), though the principles of flying are completely
different and a biological system is characterised by a higher level of organisation
complexity. As sufficiently complete models of the aeroplane, one can use any
other aeroplanes (model 4), but the former one is absolutely identical only to itself.
Figure 1.1 is also a model; it is a model of our representation.

Everything can be a model of everything under the condition that the properties
of a model and an object coincide in part that allows to achieve a purpose. A model
can exist in different forms, for example, as certain associations between neurons in
our brain, as symbols on a sheet of paper, as a magnetisation profile on a personal
computer (PC) hard disk, as a thing made from metal or wood, etc. Thus, a brick
is a good model of the geometrical shape of a PC case and vice versa. A computer
models many intellectual abilities of a human being and vice versa.



1.1 What is Called “Model” and “Modelling” 5

The above definition of a model differs from the definitions of a model as “a
selective abstract copying of the properties of an original”, “simplified representa-
tion of an original”, “caricature to an object” in the following respect. Our definition
does not imply passive copying of the reality similar to flat photographic images of
the “three-dimensional” world. Models play a role of “cameras”, “glasses”, “fil-
ters”, i.e. the tools with which we perceive the world. The “active role” of models
manifests itself in that the results of our observations (the way how we perceive the
facts) depend on the ideas present in our mind at the instant of a shoot. Fixation
of each frame is based on the previous frame and is influenced by the latter. Thus,
the reflection or perception of the reality depends on the models used by a person
observing the reality. Moreover, personality is characterised by a set of models used
in practice.

A good analogy to an active cognitive role of a model is a lamp lighting a certain
area in a surrounding darkness (in general, the darkness of ignorance). Another con-
venient image finely illustrating some features of the cognition process is the “dress-
ing” of an object under investigation with existing models of “clothes”. Knowledge
in the mind of a person is analogous to a wardrobe, a set of dresses and shoes.
The richer and more diverse this set, the wider our capabilities to understand and
describe various events.

During the cognitive process, a scientist achieves a success if he/she manages to
“generate” a fruitful model of something unknown. People perceive only the part
of the visible world which is known, i.e. whose model is available. Thousand years
of observations of ancient scientists confirmed validity of the geocentric theory.
Nowadays, the Sun “rotates” around the Earth and moves from the east to the west
in the same way as in the past. However, any schoolchild would explain it now as a
result of the revolution of the Earth on its axis and give evidences for that. “An eye
cannot see anything unclear to a mind. Anything getting clear to a mind is instan-
taneously seen by an eye” (M.A. Bedel). Validity of these retranslated words of the
Indian poet of seventeenth century is further confirmed by such a modern example
as the discovery of the “dynamical chaos” phenomenon. Up to the end of twentieth
century, complicated unpredictable behaviour was typically related to complexity,
presence of many elements in systems under investigation (a crowd, an ensemble of
molecules, etc). However, when contemporary ideas about chaos emerged in the
1960s and simple low-dimensional deterministic models with chaotic behaviour
were developed, many researchers quickly understood the situation from the new
point of view and started to observe irregular, unrepeatable motions even in pen-
dulums of the grandfather’s clocks. To make it possible, it was necessary to include
into the “wardrobe” of models new elements such as nonlinear maps and differential
equations with chaotic dynamics to be discussed in the next chapters.

To conclude the discussion of the terms “model” and “modelling”, we cite several
words of specialists in different fields. An opinion of a philosopher M. Wartofsky
was the following: contrary to other animals, people create their representations
of what we do or what we want, i.e. artefacts or models. A model is not only a
simple copy of an existing thing but also a representation of a future practice. We
acquire knowledge with the aid of models (Wartofsky, 1979). Russian academician
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N.N. Moiseev, who got known due to his investigations of the “nuclear winter”
model that affected the mighty of this world in the 1980s, also stressed a role of
models in the cognitive process: “We can think only with images approximately
reflecting the reality. Any absolute knowledge (absolute truth as philosophers say) is
cognised via an infinite asymptotic chain of relative truths approximately reflecting
some features of the objective reality. Those relative truths are called models or
model knowledge. Models can be formulated in any language: Russian, English,
French, etc. They can use a language of graphical constructions, language of chem-
istry, biology, mathematics, etc” (Moiseev, 1979). As an example of a more tech-
nical approach, we cite a tutorial in mathematical modelling recently published by
N.E. Bauman Moscow State Technical University (Zarubin, 2001): “From a suffi-
ciently general position, mathematical modelling can be considered as one of the
techniques for the cognition of the real world during the period when the so-called
information-oriented society is being formed. It is an intellectual nucleus of quickly
developing informational technologies. In engineering, mathematical modelling is
understood as an adequate replacement of a technical device or process under inves-
tigation by a corresponding mathematical model and further investigation of the lat-
ter with modern computers and methods of computational mathematics. Since such
investigation of a mathematical model can be considered as performing an experi-
ment on a computer with the use of computational algorithms, the term ‘numerical
experiment’ is often used in scientific and technical literature as a synonym of the
term ‘mathematical modelling’. The meaning of these terms is typically regarded
as intuitively clear and not discussed in detail”. We would agree with the author in
that almost any student of a technical university has intuitive concepts of “model”
and “modelling”. This is also the case for any specialist in exact science or just for
a well-educated person since the entire knowledge of a human being about the real
world is a model in its essence and in its form. For the sake of definiteness, when
speaking of models and modelling, we follow the definition given at the beginning of
this section. Let us finish it again with the words of M. Wartofsky: Any model fixes
a certain relationship to the world or to a modelled object and involves its creator or
user into this relationship. Therefore, it is always possible to reconstruct a subject of
modelling from a model. The subject of modelling is an individual bearing such a
relationship to the world which is expressed in the given model (Wartofsky, 1979).
In other words, we are what we operate with (what models we use).

1.2 Science, Scientific Knowledge, Systematisation
of Scientific Models

The entire human knowledge is a model, but we confine our consideration only
with models expressing scientific knowledge. Science is a sphere of human activ-
ity whose function is the development and systematisation of objective knowledge
about the reality. It uses specific methods and relies upon definite ethical norms.
According to materialistic point of view, the term “objective” means such contents
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of human representations that “do not depend on a subject, either on a single person
or mankind”. Whether it is possible in principle is the question for philosophical
discussions. Let us mention just two more concrete criteria of scientific knowledge
(of its objectivity and validity).

The first one is the principle of verification: confirmation of ideas by experiment.
This approach is regarded as insufficient by the school of the famous philosopher
Karl Popper (1959). Their reasoning is that it is always possible to find confirm-
ing examples. Therefore, it is necessary to use also the opposite approach, i.e. the
principle of falsification. From this point of view, a scientific system of knowledge
must allow experimental refutation. In other words, scientific theories must allow
“risky” experiments. According to this principle, astronomy is a science, because
it is possible to carry out experiments capable of giving negative (i.e. inconsistent
with theoretical predictions) results and refuse some theoretical statements, while
astrology is not a science. However, Popper’s ideas are also criticised by other
philosophers who state that “the principle of falsification itself does not stand the
test for falsifiability”. Even this polemics demonstrates complexity of the problem
since it relates to one of the eternal philosophical questions, to the problem of the
objectivity of the truth. In what follows, we consider only examples of modelling
of the objects studied by classical physics, biology and other fields of knowledge
traditionally accepted as scientific disciplines. We avoid situations whose modelling
requires preliminary philosophical discussions.

A characteristic of science is the intention to get maximally generalised, imper-
sonal knowledge and to use corresponding methods such as measurement, mathe-
matical discourse and calculations. In some sense, the most impersonal one is the
knowledge expressed with the language of mathematics which is based on the most
formalised notion, a “number”. The expression 1 + 1 = 2 in decimal system is
understood in the same way by both a scientist studying oscillations of a pendulum
and a fruit trader on a market. There are even extreme statements of some scientists
that there is as much science in some activity as much mathematics is involved in it
(Feynman, 1965).

Contrary to science, art is characterised by an individual, personal perception of
the reality. Hence, the same object, e.g. a picture, seems gloomy to one group of
people, light and refined to another group and just uninteresting to the third one.
However, there is no sharp boundary between science and art. Thus, in scientific
constructions (structure of a theory, mathematical formulas, a scheme, an idea of
an experiment) an essential role is often played by an aesthetical element that was
specially noted by many outstanding scientists. For example, Einstein’s criterion of
internal perfection (Sect. 1.7) is close to an aesthetical one. Science also goes to the
territories previously belonging exclusively to art. Thus, contemporary nonlinear
dynamics approaches to quantitative characterisation of complex objects with such
special measures as fractal dimensions are applied to musical notations and literary
texts to evaluate “beauty of music” and “interest in text”.

One often speaks of an art when it is impossible to give clear recommendations
(an algorithm) on how to solve a problem. It implies the necessity to call a mas-
ter whose intuition and natural capabilities allow to achieve a purpose. Such sense
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is implied in the words “art of modelling” that are often used in many books on
mathematical modelling. However, time goes on, knowledge increases and, typi-
cally, something previously considered as “an art” becomes a kind of technology, a
handicraft available for many people. For example, with the development of semi-
conductor technologies, the art of creating good transistors previously available only
to selected masters has become a routine work for industrial robots.

A very important feature of the scientific approach is the systematisation1 of
knowledge. Among many approaches to systematisation of scientific models, we
note four kinds based on their degree of generality, their law of functioning, reasons
for the transfer of the modelling results to an original and their “origin”. The latter
case is considered in the next chapter.

In respect of the degree of generality, models differ from each other by the width
of the covered range of real-world objects and phenomena. According to such a
classification, models can be ordered in the form of a pyramid (Neuymin, 1984).
Its vertex is occupied by the scientific picture of world. The level below includes
physical, biological and other partial pictures of world. Lower, one finds theories
of highest level of generality including the theory of relativity, the quantum theory,
the theory of solids and the theory of continuous media. One more level below is
for theories of medium level of generality including, e.g., thermodynamics, the-
ory of elasticity, theory of oscillations and theory of stability. The lowest levels of
the pyramid are occupied by partial theories such as theory of heat engines, the-
ory of resistance of materials, automatic control theory and scientific laws such as
Newton’s laws, Kirchhoff’s laws and Coulomb’s law. The base of the pyramid con-
sists of specific models of objects and phenomena (including technical processes),
continuous and discrete models of evolution processes, etc. The higher the place
occupied by a model in the pyramid, the wider the range of objects described by it.
However, each level is relevant for certain class of problems. Thus, knowledge of
the quantum theory does not guarantee making a good laser since the latter requires
specific models2 as well.

In respect of the law of functioning, models are divided into two classes: logical
(or ideal (Glinsky et al., 1965)) and material ones. The former models function
according to the laws of logic in human consciousness, while the latter ones “live”
according to the laws of nature.3 In their turn, logical models are divided into iconic,
symbolic and mixed ones. Iconic models express properties of an original with the

1 Along with the concept of systematisation, one uses the concept of classification. The latter is
stricter since it implies that there are strict boundaries distinguishing different classes. The base
for both concepts is some set of properties. For example, buttons can be classified based on their
colour, shape, number of holes, way of attaching to clothes, etc.
2 There is an opinion that less general meaning of the term “model” is more reasonable. Namely, it
is suggested to call “model” only such things that are not covered by the terms “theory”, “hypothe-
ses”, “formalism”.
3 Does logical model reflect the “rules” of nature? Based on that the species “Homo sapiens” has
successfully competed with other biological species depleted of mind and logic, extended over
all continents and reached oceanic depths and cosmos, one can believe that H. sapiens correctly
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aid of vivid elements having their prototypes in the material world. Based on the
definition of “clear” as “habitual and perceptible” (Mandel’shtam 1955), one can
say that iconic models are the “clearest” ones to people.4 Thus, particles are vividly
modelled with elastic balls in the kinetic theory of gases. To vividly model an
electro-capacity (an ability of a charged body to produce an electric field: C = q/ϕ,
where q is the charge, ϕ is the potential of a charged body), it is convenient to use
a bucket with water as a prototype since everyone has a practical experience with
it. Then, the level of water in a vessel h is used as an analogue of the potential ϕ
while the volume of water Vw serves as an analogue of the charge q. An analogue
of electro-capacity is the quantity Cw = Vw/h = S equal to the cross-sectional area
of the vessel, rather than its volume as common sense would interpret the word
“capacity” at the first glance. The value of Cw rises with the width of the bottom
of a cylindrical vessel (a bucket). Maximum amount of liquid that can be stored
in a vessel is limited only by a maximum pressure which can be withstood by the
walls of a vessel. Analogously, a maximum charge of a capacitor is determined
by the breakdown voltage for the surrounding dielectric. Cw = const for a con-
stant cross-sectional area of a vessel. If the cross-sectional area changes with height
S = S(h), then Cw is a function of the water level h. A similar property is exhibited
by electro-capacity of a varactor, which is a semiconductor capacitor serving us, for
example, to switch between TV channels. Electro-capacity of this popular element
is a function of the voltage applied to it. In such a way, a vivid iconic model in the
form of a vessel filled with a liquid can be used to form concepts of nonlinearity
(Bezruchko et al., 1999b).

Symbolic models express properties of an original with the use of conventional
signs and symbols. In particular, this class of models includes mathematical expres-
sions and equations, physical and chemical formulas. Mixed (iconic – symbolic)
models refer to schemes, diagrams, layouts, graphs, etc.

In their turn, material models can be physical, if they consist of the same material
substance as an original, or formal. Further, models are divided into the following
subgroups: functional models reflect functions of an original (paper “jackdaw” as a
model of an aeroplane); geometrical models reproduce geometrical properties of an
original (table copy of an aeroplane); functional–geometrical models combine both
abilities (e.g. a flying model reproducing simultaneously the shape of an aeroplane).
As well, one can encounter a subdivision into functional and structural models
(Glinsky et al., 1965) and other classifications (Horafas, 1967; Myshkis, 1994).

In respect of reasons for the transfer of the modelling results to an original,
models are divided into the following groups:

(1) Conventional models express properties of an original based on a conven-
tion, agreement about the meaning ascribed to the model elements. Thus, all

assesses the rules of evolution and interrelations among natural objects. Hence, logical models
make objective sense.
4 This statement can be attributed more readily to people whose “left” hemisphere of the brain is
developed better, i.e. perception dominates over logic.
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symbolic models, including mathematical ones, are conventional. For example,
R. May suggested a one-dimensional map xn+1 = xn exp(r(1− xn)) in 1976
as a model for a population rise controlled by an epidemic disease. Here, the
quantity xn stands for the number of individuals at the nth time instant and the
parameter r relates to the conditions of infection by convention underlying the
model.

(2) Analogous models exhibit similarity to an original sufficient to transfer the
modelling results based on the reasoning “by analogy”. Thus, if an object O1
possesses the properties c1, c2, . . . , cN−1, cN and an object O2 possesses the
properties c1, c2, . . . , cN−1, then one can assume that the second object also
possesses the property cN . Such a reasoning is hypothetical. It may lead to both
true and false results. To mention an example of a failure, the analogy between
the motion of a liquid (O1) and the process of heat conduction (O2) led in its
time to the incorrect conclusion about the existence of “caloric fluid”. A positive
example is a successful replacement of human organism with animal organisms
for studying the effect of drugs.

(3) (Strictly) similar models allow rigorous recalculation of model characteristics
into characteristics of an original (Barenblatt, 1982). Here, one speaks of full
mathematical analogy, proportionality between the corresponding variables in
the entire range of their values. Two objects are similar if the following two
conditions are fulfilled:

(a) The objects can be mathematically described in the same form. For exam-
ple among the expressions z = x cos y, u = 2v cos 3w and p = ϕ s cos
(2p − 1), the first two expressions take the same form, while the third one
differs from them. Of the same form are the equations of motion for small-
amplitude oscillations of a spring pendulum d2x/dt2 + (k/m)x = 0 and a
mathematical pendulum d2x/dt2 + (g/ l)x = 0.

(b) The corresponding variables entering the mathematical expressions are lin-
early related with a constant coefficient of proportionality (constant of simi-
larity). For example the formula x2 + y2 = R2 for different R defines circles
which are similar to each other (concentric).

1.3 Delusion and Intuition: Rescue via Mathematics

People perceive information about an observed object coming from the organs
of sense rather than an object directly, i.e. they get the picture of their relation-
ships to the reality rather than the picture of the reality itself. Iconic models are
formed on the basis of sensory perception. However, speaking of iconic models,
one should not identify them completely with images produced by the senses of a
person unburdened with scientific knowledge, e.g. images of archaic consciousness.
Images can be formed during an educational process (in a family, school, university,
company) or practical experience (scientific activity, production process). Corre-
spondence between images and the real world is to be checked taking into account
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sensory perception errors, possible teacher’s mistakes, false ideas entering scientific
knowledge at the current historical stage, etc.

To what extent one can rely on the organs of sense is demonstrated by the fol-
lowing examples borrowed from the book of M. Kline (1985):

(1) Two equal segments in Fig. 1.2a seem to be of different length; the lower seg-
ment seems shorter than the upper one.

(2) Equal segments in Fig. 1.2b visually “change” the length for different orienta-
tions of arrows at their vertices.

(3) The way of shading of the two parallel lines (Fig. 1.2c) affects their seeming
slope.

(4) When temperature of water is determined by a hand, the result depends on
where the hand has been before, namely in warm or cold conditions.

(5) Receptors on a tongue get tired and adapt in such a way that gustatory sense
depends on the prehistory as well, something sweet seems less sweet after
some time.

(6) Perception of the motion speed by a car driver becomes blunt after the car has
gathered the speed and maintained it for some time.

Above-mentioned and many other examples demonstrate unreliability of infor-
mation obtained from the organs of sense and “sensory intuition”, an intuition based
on previous experience, sensory perception and rough guesses. Intuition relying on
scientific knowledge and, first of all, on mathematics differs qualitatively. For exam-
ple, scientific analysis of motion on the basis of the concepts of dynamics allows to
answer more correctly such questions as (i) How should a gun be directed if a target
starts to fall down at the instant of a shot? (ii) Where does a key dropped out of
a hand during a walk fall down? Sensory intuition prompts to bend the gun barrel
down and to find a key somewhere behind. The scientific analysis says that (i) the
barrel should be directed to the starting position of the target and (ii) a key falls
down near a leg as if a person would stand. Experience in scientific analysis of dif-
ferent facts changes one’s intuition. Being based on scientific knowledge including
mathematical approaches, rather than on sensory perception, it becomes a tool help-
ing to move forward, to search for new knowledge.

Inconceivable efficiency of mathematics deserves a special discussion. Mathe-
matics is a science studying quantitative relationships and space forms of the real
world. It appeared as a set of useful rules and formulas for the solution of practical
tasks encountered by people in their everyday life. Already civilisations of Ancient

Fig. 1.2 Examples of optical illusion (Kline, 1985)
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Egypt and Babylon started to create it about the third millennium BC (Kline, 1985;
Poizner, 2000). However, only in the sixth century BC, ancient Greeks caught an
opportunity to use mathematics as a tool to get new knowledge. In particular, sci-
entific practice knows a lot of cases where a result was predicted “on the tip of a
pen” and after that specially organised experiments managed to find something new,
previously unknown to human beings. Thus, unknown planets and their satellites
were revealed from the calculations of celestial body trajectories, contortion of a
light beam when it passes near a big mass was predicted on the tip of a pen, etc.

No reliable documents remained which would be capable of telling what caused
the Greeks to come to a new understanding of mathematics and its role. There exist
only more or less plausible guesses of historians. According to one of them, the
Greeks detected contradictions in the results concerning the determination of the
area of a circle obtained in Babylon and started to investigate which of them is
true. According to another one, the new deductive mathematics originates from
Aristotelian logic arisen during hot discussions on the social and political topics.
Seemingly, mathematics as a logical deduction and a cognitive tool emerged in
connection with a new world view formed in the sixth century: the nature is made
rationally, its phenomena proceed according to an exact plan which is mathematical
in essence, human mind is omnipotent so that the plan can be cognised. Reasons
for such an optimism were based, e.g., on the realisation of similarity between the
geometric forms of the Moon, a ball, etc.; discovery of the dependence of the pitch
of tone produced by a string on the length of the latter and that harmonic accords are
produced by strings whose lengths relate to each other as some integers.5 As a result
of such observations, two fundamental statements were formulated: (i) the nature is
made according to mathematical principles and (ii) numerical relationships are the
basis, general essence, and a tool to cognise the order in nature.

Centuries passed, the Greeks’ civilisation died under the rush of conquerors, but
mathematics remained. Chiefs and peoples appeared at the historical scene and left
it, but mathematics developed together with the mankind and the views on its role
and importance for the human society changed. It progressed the most strongly
during the last centuries and took its especial place in science among the tools
for cognition of the world. Finally, a mathematical method has been formed which
possesses the following characteristic features:

(1) Definition of basic concepts, some of them being suggested directly by the real
world (a point, a line, an integer, etc.) while the others are produced by a human
mind (functions, equations, matrices, etc.). Interestingly, a part of concepts is
depleted of a direct intuitive basis (of an analogue in the nature), e.g. negative
numbers. Such concepts were accepted by the scientific community with diffi-
culty, only after convincing demonstration of their usefulness.

(2) Abstractness. Mathematical concepts capture essential features of various
objects by abstracting from the concrete nature of the latter. Thus, a right line

5 In particular, when two equally strong stretched strings, one of them being twice as long as the
other one, oscillate, the interval between their tones is equal to an octave.
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reflects a property of all stretched strings, ropes, edges of rulers and trajectories
of light beams in a room.

(3) Idealisation. Speaking of a line, a mathematician abstracts from the thickness
of a chalk line. He/she considers the Earth as an ideal sphere, etc.

(4) The way of reasoning. It is the most essential peculiarity which relies mainly
upon formulation of axioms (true statements which do not need to be proven)
and deductive way of proving (based on several rules of logic) allowing one to
get conclusions which are as reliable as original premises.

(5) The use of special symbols.

There are many mathematical systems. A system including the smallest number
of axioms is regarded as the most perfect of them. Such mathematical “games”
appear very useful and lead to findings which allow better understanding of the real
world. Mathematics is especially useful when basic laws are already established and
the details of complex phenomena are of interest. For example when compared to
chess, the laws are the rules of the game governing movements of the pieces, while
mathematics manifests itself in the analysis of variants. In chess, one can formulate
the laws in Russian, English, etc., while in physics one needs mathematics for such
a formulation.

R. Feynman notes that it is impossible to explain honestly all the laws of nature
in such a way that people could perceive them only with senses, without deep
understanding of mathematics. However regrettable it is, but this is seemingly a fact
(Feynman, 1965). He sees the reason in that mathematics is not simply a language
but a language plus discourse, a language plus logic. He claims that guessing the
equations is seemingly a very good way to discover new laws.

What is the cause of the exceptional efficiency of mathematics? Why is such an
excellent agreement between mathematics and real-world objects and phenomena
possible, if the former is, in essence, a product of human thought? Can a human
mind understand properties of the real-world things without any experiments, just
via discourse? Does the nature accord with the human logic? If a range of phe-
nomena are well understood and the corresponding axioms are formulated, why
do dozens of our corollaries appear as applicable to the real world as the axioms?
These questions are in the “list” of eternal questions of the philosophy of science.
All thinkers who tried to address them can be divided into two groups according to
their answers (Kline, 1985), though there were many of them since ancient times till
now. The first group believes that mathematicians select axioms so as to provide the
agreement between their corollaries and experiments, i.e. mathematics is adjusted
to the nature. In other words, general and necessary laws do not belong to the nature
itself but to the mind who inserts them into the nature, i.e. the scientific truth is
created rather than discovered. The second group thinks that the world is based
on mathematical principles, in a religious variant the Creator has made the world
based on mathematical principles. There are many great names in both groups since
the questions mentioned cannot be avoided in the investigations of the nature. As
well, it is natural that the discussion is not completed; the questions discussed are
non-random in the list of eternal problems of epistemology (Poincare, 1982).
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1.4 How Many Models for a Single Object Can Exist?

The above-mentioned questions about the role of mathematics, its exceptional effi-
ciency and the status of mathematical statements lead to a new question about the
number of possible models for a single object. If a real-world object possesses an
infinite set of properties, then one could speak of infinitely many models taking
into account that any model typically describes only a finite number of selected
characteristics of an object. Yet, if the world is made according to mathematical
laws, one could expect the existence of the best, “true” model. However, from the
viewpoint that the strength of mathematics is determined by the efforts of the human
mind, there are no reasons to count on the existence of a “true model”. It follows
from such considerations that a simple answer to the question formulated in the title
of this section is lacking.

In respect of the considered question, an important place in epistemology is occu-
pied by the statements of N. Bohr known as the “principle of complementarity”.
He wrote that difficulties encountered in adjustment of our notions borrowed from
sensations to gradually deepening knowledge of the laws of nature originate mainly
from the fact that an every word in a language relates to our common notions. He
hoped that the idea of complementarity can characterise the existing situation which
has a far-reaching analogy with general difficulties in creation of human concepts
coming from the division into a subject and an object (Bohr, 1971). He thought
that it is impossible in principle to create a theoretical model, which would be
useful in practice, without empirical elements. Thus, according to the principle of
uncertainty, it is impossible in micro-world to specify precisely the location of a
particle and its momentum: the variables in this pair complement each other.6 If one
wants to know coordinates of a particle precisely, then he/she loses precise value
of its velocity. According to Bohr’s ideas, similar relationships exist between the
accuracy of a model and its clarity,7 possibility of its practical usage. He stated
that our ability to analyse harmony of the surrounding world and the breadth of
our perception will always be in a mutually exclusive, complementary relationship
(Bohr, 1971).

Description of the main statements of the principle of complementarity adapted
to the problem of mathematical modelling is given in the introduction to the mono-
graph (Gribov et al., 1997) devoted to modelling of complex molecules. Briefly, it is
as follows. A molecule as a single stable and electroneutral system of atomic nuclei
and electrons can be adequately described with an equation of state in the form
(Te + Tn + V )� = E�, where Te and Tn are electron and nuclei kinetic operators,
respectively, V is an operator of all kinds of interactions between electrons and

6 The variables are complementary if each of them can be specified more precisely at the expense
of lower certainty in the value of the other one.
7 It is appropriate to recall here the words of L.I. Mandel’shtam about the concept of “clear” as
something habitual and perceptible.
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nuclei, � is a wave function. However, even if one manages to solve this equation,
the results cannot be compared to a spectral experiment due to the existence of a
large number of isomers and overlaps between their spectra. Selection of a single
isomer is envisaged neither in the original definition of the object nor in the form
of the equation of state. Specification of only the number of electrons and nuclei
with their masses provides the truth, but the clarity is completely lost. Clarity can
be provided if one uses representations of molecules such as hard and elastic spatial
figures, ideas about charges on atoms, potential surfaces, etc. Such “clear” models
are mapped to the class of measured quantities. But the price for their clarity is the
truth. A model allowing comparison to measurements can provide only reasonably
satisfactory coincidence with the experiment. A good agreement between relatively
simple models and an experiment can be achieved only via fitting parameters, i.e.
on a semi-empirical basis. The requirement of clarity leads to the necessity of using
different models. “Even though it is no longer possible to give a single definition to a
molecule as an object under investigation, one can however answer quite clearly the
question what ‘to investigate a molecule’ means. It means to construct a sufficient
number of molecular models agreeing with experimental observations and staying in
mutually complementary (and often mutually exclusive) relationships and to specify
numerical values of the corresponding parameters. The greater the number of dif-
ferent models obtained as a result, the greater the amount of knowledge and clearer
the notion about the object under investigation.”

The authors of Gribov et al. (1997) note that each of the obtained empirical
models (they usually rely on spectral measurements and diffraction pictures for
molecules) is “complementary” to the truth and the results obtained with differ-
ent models cannot be averaged as, for example in multiple weighting of a body.
The approach itself and the method of measurements do not meet the requirements
justifying the use of averaged characteristics. Averaging of the results coming from
experiments, which differ from each other in essence, may not be considered as
approaching the truth. Numerical values of the parameters obtained in such a way
may not be considered as more precise.

We are close to the views of N. Bohr and the authors of the cited monograph.
However, for the sake of objectivity and completeness, we should mention the
existence of alternatives to the concept of complementarity. The above ideas are
not supported by all scientists thinking of the epistemological problems. There
are many famous names among their opponents. The most famous one is, prob-
ably, A. Einstein, who believed that the main purpose of physics is a complete
and objective description of the real world, independent of the act of observation
and the existence of an observer (Einstein, 1976). Therefore, he could not admit a
theoretical description if it depended on the observation conditions as required by
the conception of complementarity.

Here we finish the discussion of the very important and interesting question
remaining in the sphere of professional interests for philosophers of science and
scientists working in different fields of research including natural and humanitarian
sciences. Let us now consider the ways of mathematical model construction and
corresponding historical experience.
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1.5 How the Models are Born

We have already noted in the previous sections that the process of modelling cannot
be fully reduced to an algorithm and has currently something in common with art.
Nevertheless, it is possible to distinguish basic (the most typical and fruitful) ways
of model creation and even try to use them as an additional sign for systematisa-
tion of the existing variety of models. Developing the systematisation presented in
a popular work of N.N. Moiseev (1979), we can single out four ways of model
creation:

(1) Intuitive way is based on a guess.
(2) Construction of a model as a result of direct observation of a phenomenon

and its study. Models obtained directly from experiments or with the use of
experimental data are often called phenomenological or empirical models. Phe-
nomenological models include those obtained via reconstruction from time
series described in Part II. The models of Newton’s mechanics are phenomeno-
logical in respect of their historical origin.

(3) Construction of a model as a result of deduction process when a new model
is obtained as a partial case of a more general model, in particular, from the
laws of nature (the first principles). Such models are called asymptotic models
in Moiseev (1979). For example, after creation of special theory of relativity,
Newton’s mechanics appeared to be its limit for c → ∞. Thus, accumulation of
knowledge leads to the conversion of phenomenological models into asymptotic
ones. The number of asymptotic models reflects to some extent the maturity of
a science (Moiseev, 1979, 1981).

(4) Construction of a model as a result of an induction process when a new model is
a generalisation of “elementary” models. An example is ensemble models (Moi-
seev, 1979) that allow to describe behaviour of a system of objects based on the
information about the behaviour of the elements (subsystems) and strengths
of their interaction. Naturally, a qualitatively new kind of behaviour can be
observed as a result of integration of elementary models into an ensemble. Pop-
ular ensemble models are sets of coupled oscillators and coupled maps lattices.
An example of a new quality is the arousal of oscillatory regimes in a population
described with the Lotka–Volterra model after joining “predators” and “preys”
up into an ensemble (Volterra, 1976).

Drawing an analogy between scientific models and models of clothes, one can
note the following parallels in the processes of their making. Obtaining intuitive
models can be compared to the work of a couturier who realises his ideal images in
a picture. Creation of an asymptotic model can be compared to making a business
suit via simplification of a template produced by an outstanding couturier. Construc-
tion of an ensemble model reminds gathering a suit from a white jacket and black
trousers. Empirical modelling corresponds to wrapping a client body into a piece of
material and lacing the latter along the edges. Common experience makes one doubt
in the elegance of such “phenomenological” clothes but its mathematical analogues
appear quite efficient due to the development of computers and special techniques
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(Part II). Moreover, the empirical way turns out to be the only available one in
many cases when processes in such complex systems as astrophysical, biological
and others are considered.

1.6 Structural Scheme of Mathematical Modelling Procedure

Variety of situations, objects and purposes lead to infinite multitude of specific mod-
elling problem settings and ways of their solution. Nevertheless, one can single
out something common and necessary, the stages which are realised to a certain
extent in the construction of almost any mathematical model. They are presented in
Fig. 1.3 as blocks which are restricted with more or less straight lines. The straighter
lines are used for a stage which can be more readily reduced to an algorithm. The
entire procedure of modelling is not typically a direct road to a purpose but rather
represents multiple returns to already passed stages, repetitions and corrections, i.e.
a step-by-step approach to a satisfactory result. In general, it starts with the assess-
ment of a real situation from the viewpoint of an existing prior model and a purpose
(stage 1). As a result, a conceptual model reflecting the problem setting is formed
(stage 2). The conceptual model is formulated in terms relevant for the problem con-
sidered: mechanical, physical, biological, sociological, etc. Then, one specifies the
structure of a model, i.e. the most appropriate mathematical tool, kind and number
of equations, kind of function entering the equations (stage 3). At the next stage
(number 4), one concretises the details of a model if necessary, i.e. introduces addi-
tional approximations and estimates parameters in the equations. Finally, at the stage
5, one validates the obtained model using criteria dictated by the purposes of mod-
elling. If the model is unsatisfactory, the procedure is repeated from the beginning
or from some intermediate stage and a new model is produced.

Opportunities of a modeller differ for laboratory systems (e.g. electronic circuits
and lasers), where active experiments can be performed, and real-world processes
(e.g. temporal variations in climate characteristics and physiological processes in
living organism), where only the data of passive observations and measurements are
available. In the former case, one can get much more information about an object,
e.g., due to purposeful variation of its parameters and study of different dynamical
regimes. Therefore, the return to the stage 1 in Fig. 1.3 is much more reasonable and
more often used in modelling of such systems. In the latter case, getting a model
adequately describing an object within a wide range of parameter values is much
more difficult so that one formulates model-based conclusions with less confidence

Fig. 1.3 Structural scheme for a typical procedure of mathematical modelling
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than for the laboratory systems. This difference is illustrated with several practical
examples in Chap. 13.

Let us illustrate the scheme of Fig. 1.3 with the example of modelling a spring
pendulum (a load on a spring). This object can be considered, e.g., as a model
of a suspension in a car with spring dampers, of an atom in a crystal lattice, of a
gene in DNA and of many other systems whose inertial elements are influenced by
a restoring force when they deviate from an equilibrium state. In some situations
and devices the spring pendulum is of interest by itself and becomes an object of
modelling, e.g. as an element of a car suspension. At the stage 1, one easily chooses
both the language of description (physics) and the way of model construction (an
asymptotic model from Newton’s laws with the account of specific properties of the
object) since the nature and mechanisms of the object behaviour are well known. If
the purpose of modelling is the quantitative description of the pendulum deviations
from an equilibrium state, then we can mention two popular problem settings (the
stage 2):

To describe free motion of the object, which can be regarded repetitious, a con-
ceptual model is typically a load of some mass m exhibiting friction-free
motion under the influence of an elastic force arising from the deformation
of the spring (Fig. 1.4a).

If damping is essential, then a viscous friction force is incorporated into a con-
ceptual model (it is shown symbolically with a damper in Fig. 1.4b).

The second problem setting is more realistic but even in that case one does not
take into account, e.g., peculiarities of the full stop of the load that would require
the use of the third, more complicated, conceptual model involving a dry friction
force, etc.

The stage 3 is quite simple for the above settings. It reduces to writing the second
law of Newton, i.e. second-order ordinary differential equations F = md2r/dt2,
where F is the resultant of forces, r is radius vector of the centre of mass, d2r/dt2 is
acceleration, t is time. For both conceptual models, the original equation (“the first
principle”) is the same. However, after one takes into account the above-mentioned
assumptions, different models arise (the stage 4). If an elastic force is proportional
to the value of the spring deformation (Fel = −kx where the coefficient of elasticity
k is constant), then one gets a conservative linear oscillator equation d2x/dt2 +
(k/m)x = 0 for the case of Fig. 1.4a. If the friction force is proportional to the

Fig. 1.4 Conceptual models of a load on a spring both with (a) and without (b) friction
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velocity Ffr = −2δ · dx/dt , then a dissipative linear oscillator equation d2x/dt2 +
2δ · dx/dt + (k/m)x = 0 is a model for the case of Fig. 1.4b. Different models
are obtained for other definitions of the functions entering the equation. Thus, if the
elasticity of the spring depends on its deformation (k = k1 + k2x) or the coefficient
of friction depends on the velocity (δ = δ1 − δ2dx/dt), the oscillator equation
becomes nonlinear and gets essentially richer in its properties.

Differential equations are not always the most appropriate tool to describe
motions. Thus, if the purpose of modelling would be a qualitative description of
decaying oscillations without nuances of their waveform, one could use a difference
equation xn+1 = f (xn), where n is the discrete time, rather than a differential one.
A model discrete map can be obtained if one assumes, e.g., exponential decay and
expresses the next local maximum value via the previous one as xn+1 = axn , where
a = e−δT , T is the “quasi-period” of the oscillations (Fig. 3.2c). If one constructs
a model as an explicit function of time x = f (t), the description reduces to the
consideration of the time course of x , deviation of the load from an equilibrium
state (cf. Fig. 3.2b). The corresponding model takes the form x = c e−αt cos(βt).

At the final stage 5, criteria of model quality are chosen according to the purpose
of modelling. It can be qualitative coincidence of oscillatory regimes of a model
and an object, accuracy of prediction of the future states based on the current one,
etc. If the result of checking is unsatisfactory, then the problem setting is corrected
and the entire procedure is repeated again or one just returns to an intermediate
stage. Usually, a model “evolves” from a simple version to a more complex one,
but movement in the opposite direction is also possible. Construction of a model is
finished when it describes a phenomenon accurately enough within the necessary
range of parameter values or fulfils other modelling purposes.

1.7 Conclusions from Historical Practice of Modelling: Indicative
Destiny of Mechanics Models

Analysis of the history of science allows to formulate (Krasnoshchekov and Petrov,
1983) some basic principles, “solid residual” of the historical practice in modelling
in the form of several theses.

Thesis 1. Usually, a stimulus to the creation of a new model is a few basic facts.
Amount of experimental data is seemingly not of principal importance. Moreover,
experimental material by itself is insufficient to create a fruitful theory (a model),
no matter how good the former is.

There is an opinion that theoretical constructions can appear only on the basis
of a reliable experimental material lighting an object under investigation in detail.
However, the history of natural science is full of counterexamples. For example the
general theory of relativity resulted from the generalisation of the fact that inertial
and gravitational masses are identical, while experimental confirmation came later
via specially organised experiments. Another edifying example is the story with
establishing the law of gravity which in fact relied on the only result – the third
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law of Kepler. The rest of the huge body of experimental material obtained by this
scientist and other astronomers (in particular, Tycho Brage) played its role mainly
for the practical validation of the law.

Thesis 2. A theory relies basically on experimental data. Similarly, an experiment
carries useful information if it is performed in the framework of some theoretical
conception. An experiment as a simple collection of observed facts with an incorrect
conception (or without conception at all) can mislead a researcher. There are many
confirmatory examples in the history of science:

(1) Direct observation of the heavenly bodies led to the geocentric theory.
(2) Copernicus proclaiming the heliocentric system was accused by his contem-

poraries in that the theory did not agree with an experiment. But he resisted
“believing his mind more than his senses”.

(3) Direct observations of motions led Aristotle to the formulation of mechanics
which reigned over the minds during 2000 years but finally appeared incorrect.

The entire history of natural sciences development relates to the settlement of
contradiction between a direct experiment as a collection of observed facts and
a multitude of formal logical schemes (models) appealed to explain them. Thus,
Einstein came to dualistic criterion for the “correctness” of a theory and formulated
it as in the following thesis.

Thesis 3. Agreement between a theory and an experiment (criterion of exter-
nal justification) is a necessary but insufficient condition for its “correctness”. The
second criterion (criterion of internal perfection) is “naturalness” and “logical sim-
plicity” of premises.

Thesis 4. When constructing a model, one should use the existing experience in
mathematical modelling from such sciences as physics, mechanics and astronomy.

Thesis 5. The choice of mathematical tools is a key point in modelling. In some
sense, mathematical modelling represents a search for mathematical constructions
whose abstract notions are the most suitable to be “filled in” with a concrete matter
of the investigated reality. If there are no such available mathematical tools, one
creates new ones. To mention a few examples, (i) mathematical analysis was born
from the requirements to describe mechanical motions; (ii) difference equations
have been adapted and used for a long time to describe population dynamics.

Thus, in modelling a researcher

• should not be confused with the absence of complete experimental material since
“intellectual” material is lacking more often;

• needs a prior conception which turns a collection of experimental facts into
“objective” information. Complete absence of such a conception prejudices even
the possibility of modelling;

• should possess appropriate mathematical tools and techniques, which can be
often borrowed from the previous scientific experience.

An indicative example showing validity of the above ideas is a history of the
development of the mechanics laws. Mechanics appeared the first system of models
adequately describing a wide range of real-world processes and phenomena. From
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a long list of the creators of mechanics, one commonly singles out the names of
Aristotle (384–322 BC), Galilei (1564–1642) and Einstein (1879–1955). Periods
of their activity are separated with centuries and even millennia, i.e. intervals of
time which can be considered as big but still finite life times for model conceptions
inevitably replacing and complementing each other.

Based on the knowledge and experiment existing in his time, Aristotle classi-
fied surrounding bodies and their motions as follows. He divided all bodies into
three types: (i) always motionless; (ii) always moving; (iii) able to be both moving
and motionless. Motion itself was regarded eternal. He distinguished two kinds of
motions: (i) “natural” motions when a body moves to its natural place; (ii) “forced”
motions whose cause is a force which permanently supports them. If the force dis-
appears, the motion stops too.

Do Aristotle’s ideas agree with an experiment? If one means purely contempla-
tive experience of that time, the answer is “Yes”! Indeed, the Earth and houses on it
are always steady; the Sun, the Moon, and river water always move; a thrown stone,
a cart, people moves to a steady state and finally stop if a driving effort disappears.
Load thrown from some height and water in a river move “naturally”. A man exerts
physical strength to move a cart. When he leaves it, the “forced” motion ends and
the cart stops. But why a stone still moves after being thrown if a force has stopped
acting? It finds an explanation as well: air flows the stone and pushes it from behind
after a hand has stopped acting. Ether can do it as well: Aristotle thought that there
is no emptiness.

Let us use historical experience in modelling formulated in the thesis 3 where we
mentioned the criteria of “external justification” and “internal perfection” intended
for assessing the quality of theories. Let us consider “internal perfection” of
Aristotelian mechanics following the monograph (Krasnoshchekov and Petrov,
1983), where the authors applied the language of contemporary mathematics to set
forth the ancient ideas. Let us express the main law of motion following from those
observations and prior conceptions in the form F = pv, where p is the coefficient
of proportionality (the notion of mass did not exist at that times), F is the force and
v is the velocity. Contradiction inherent in this law is demonstrated by the following
example. A man pulls a cart along a river bank by making certain efforts (Fig. 1.5).
The cart performs forced motion along the bank with a velocity v relative to an
observer standing on land (i.e. relative to a motionless reference system x–y). The
cart does not move relative to an observer going on a boat with a parallel course
and the same velocity, i.e. no force is applied to the cart. It definitely contradicts
an intuitive notion about a force as some objective (independent of an observer)
influence on the cart. Even the sweat on the man’s forehead confirms such a notion.
A way out of the paradoxical situation was found via claiming the reference system
connected to the Earth as an absolute one. Thus, the above law of motion is valid
only in that system. For all other systems moving relatively to the absolute system
with a constant velocity v′, one suggested a new rule F = pv′ + pv. Strikingly,
one found experimental confirmations of the Aristotelian approach for almost 2000
years. In part, such a longevity was provided by the support from the Church relying
on the geocentric system in its dogmas. However, science and social consciousness
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Fig. 1.5 Mental experiment with motions in different reference systems

once became ripe to perceive new ideas. Despite the risk to find himself in a fire
of inquisition, Galilei was one of the first persons who encroached on the abso-
lute. “Retire with some of your friend in a spacious room under the hatches of a
ship, stock up flies and butterflies. Let you have also a vessel with a small fish
swimming in it. Further, hang up somewhere above a bucket from which water
will drip drop-by-drop into another vessel with a narrow neck located below and
observe. Jump in the direction of the ship motion and vice versa. For v = 0 and
in a moving ship, you will not be able to detect whether the ship is moving or
standing from any of the mentioned phenomena.” We do not know whether Galilei
performed the above experiments or they were mental. Accuracy of the observation
tools and experimental base of those times were significantly worse than modern
fast movie cameras, laser interferometers, magnetic pendants and laboratory tables
on an air cushion. Tools that were used and described by him could hardly provide
convincing accuracy but there was confidence in the result of the experiment. The
confidence was supported by the dissatisfaction in the geocentric conception.

Without the absolute reference system, the entire harmony of the Aristotelian
world collapsed and an opportunity for a new conception to strengthen itself arose.
Laws of motion had to be expressed in a form invariant under the transition from “a
bank” to “a ship” and back. If a conception exists, then one can purposefully perform
experiments to check it and to reject inappropriate variants. Finally, a new model
was born: the law of motion F = pdv/dt according to which the force applied by
a man to a cart is the same in all reference systems moving evenly and rectilinearly
relatively to each other. Acceptance of this idea takes away all contradictions in
the considered common experiments and leads to a number of new discoveries: a
cart will stop if it is left since it interacts with a land (friction force), ether is not
needed to explain the motion of a thrown stone, etc. A concept of inertial reference
systems and the Galilei transform arose. Naturalness and logical simplicity of the
theory of motion based on the law F = pdv/dt do not make one introduce additional
hypotheses and, consequently, possess higher “internal perfection”.

Three centuries passed and classical mechanics of Galilei and Newton faced insu-
perable difficulties. A danger came at the turn of nineteenth and twentieth centuries
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from electrodynamics. Maxwell’s theory which generalised basic empirical notions
of electromagnetism and allowed to determine the velocity of light appeared non-
invariant under the Galilei transform. It caused theoreticians to suspect either the
achievements of electromagnetism or postulates of classical mechanics of incor-
rectness. Scientific sagacity of A. Einstein and his contemporaries allowed to solve
the dispute in favour of the theory of electromagnetism; the Galilei transform was
declared inappropriate for the world of high velocities. Special theory of relativity
became an even more perfect mechanical model, more adequately reflecting the
reality and involving classical mechanics as a particular case.
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Chapter 2
Two Approaches to Modelling and Forecast

Before creation of a model, one should specify one’s intentions in respect of its
predictive ability. Such a choice determines which mathematical tools are appropri-
ate. If one does not pretend to a precise and unique forecast of future states, then
a probabilistic approach is traditionally used. Then, some quantities describing an
object under investigation are declared random, i.e. fundamentally unpredictable,
stochastic.1 Such a “verdict” may be based on different reasoning (Sect. 2.2) but
if it is accepted, one uses a body of the theory of probability and mathematical
statistics. At that, to characterise dependence between a condition S and an event
A, one speaks only of a probability P of A if S has occurred, i.e. of a conditional
probability P(A|S).

A dynamical approach, which is an alternative to the probabilistic one, relies
on the conception of determinism. Determinism is a doctrine about regularity and
causation of all phenomena in nature and society. Therein, one assumes that each
occurrence of an event S (a cause) inevitably leads to an occurrence of an event
A (a consequence). Famous French astronomer, mathematician and physicist Pierre
Simon de Laplace (1749–1827) was reputed as the brightest proponent of determin-
ism. In respect of his scientific views, he showed solidity which seemed surprising
in view of his inconsistency in everyday attachments2 (Mathematical dictionary,
1988, p. 117). It was Laplace who told Napoleon that he did not need “a hypoth-
esis about the existence of God” in his theory of the Solar system origin. He saw
an etalon of a complete system of scientific knowledge in celestial mechanics and
tried to explain the entire world including physiological, psychological, and social
phenomena, from the viewpoint of mechanistic determinism.

1 “Stochastic” originates from a Greek word which means “capable of guessing, acute”. However,
it is currently used in a somewhat different sense to denote uncertainty, randomness.
2 Several words about the picturesque personality of Laplace. Consistency of his materialistic
world view stands in a sharp contrast to his political instability; he took a victor’s side at each
political upheaval. Initially, he was a republican. After Napoleon came to power, he became a
Minister of the Interior and, then, was appointed as a member and vice-president of Senate. In the
time of Napoleon, he got the title of count of the empire. He voted for dethronement of Napoleon
in 1814. After restoration of Bourbons, he got peerage and a title of marquis.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_2,
C© Springer-Verlag Berlin Heidelberg 2010
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Mathematical realisation of the dynamical (deterministic) approach was provided
by the apparatus of infinitesimals which appeared in the seventeenth century due to
the efforts of Newton and Leibniz. An arsenal of researchers got a powerful tool
for the description of temporal evolution: ordinary differential equations (ODEs).
A theorem about unique existence of their solution at fixed initial conditions made
differential equations an etalon for deterministic mathematical description of vari-
ous phenomena: “a unique future corresponds to a given present!”. Currently, apart
from ODEs one widely uses other mathematical tools for construction of determin-
istic models (Chap. 3) including difference equations, discrete maps and integro-
differential equations. All those models regardless of their concrete meaning, which
may be far from mechanics (dynamics), are often called dynamical models. In gen-
eral, the term “dynamical” is currently often used to denote “deterministic” rather
than “force” or “mobile”.

2.1 Basic Concepts and Peculiarities of Dynamical Modelling

2.1.1 Definition of Dynamical System

The basis of deterministic description is an idea that the entire future behaviour
of an object is uniquely determined by its state at an initial time instant. A rule
determining an evolution from an initial state is called evolution operator.3 State
or state vector is a collection of D quantities x = (x1, x2, . . . , xD), where D is
called dimension. The quantities xk are called dynamical variables. A state may be
both finite dimensional (D is a finite number) and infinite dimensional. The latter is
the case, e.g., when a state is a spatial distribution of some quantity, i.e. a smooth
function of a spatial coordinate.4

Evolution operator �t determines a state at any future time instant t0 + t based
on an initial state x(t0): x(t0 + t) = �t (x(t0)). Mathematically, it can be specified
with equations, maps, matrices, graphs and any other means (Chap. 3) under the
only condition of a unique forecast.

The concept of a dynamical system (DS) is a key one in the deterministic
approach. It was used already by Poincare at the beginning of the twentieth century
but its meaning is still not completely established. The term DS is often understood
in different ways. Therefore, it is useful to discuss it in more detail. The word

3 In general, operator is the same as mapping, i.e. a law which relates some element x of a certain
given set X to a uniquely determined element y of another given set Y . The term “operator” is
often used in functional analysis and linear algebra, especially for mappings in vector spaces. For
instance, operator of differentiation relates each differentiable function to its derivative (Mathe-
matical dictionary, 1988).
4 In this case the state is also called “state vector”. The term “vector” is understood in a general
sense as an element of some space (Lusternik and Sobolev, 1965).
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“system”5 is typically used in a traditional sense as “a collection of elements
being in some relations to each other and forming a certain integrity” (Philosophic
dictionary, 1983, p. 610). Alternative interpretations relate mainly to the under-
standing of the word “dynamical” and to what elements and systems are implied
(real-world objects, mathematical constructions or both). Some authors even take
the term “dynamical” out of the deterministic framework and combine it with ran-
domness. For the sake of illustration, we cite below several selected definitions
formulated by known specialists in the field (see also Alligood et al., 2000; Guck-
enheimer and Holmes, 1983; Katok and Hasselblat, 1995; Loskutov and Mikhailov,
2007):

The concept of a DS appeared as a generalisation of the concept of a mechanical system
whose motion is described with Newton’s differential equations. In its historical develop-
ment, the concept of a DS similarly to any other concept gradually changed getting new and
deeper contents. . . Nowadays, the concept of a DS is quite broad. It covers systems of any
nature (physical, chemical, biological, economical, etc) both deterministic and stochastic.6

Description of a DS is very diverse. It can be done with differential equations, functions
from algebra of logic, graphs, Markov chains, etc. (Butenin et al., 1987, p. 8).

When speaking of a DS, we imply a system of any nature which can take different mathe-
matical forms including ordinary differential equations (autonomous and non-autonomous),
partial differential equations, maps on a straight line or a plane (Berger et al., 1984).

In the section “What is a dynamical system?” of the monograph Malinetsky and
Potapov (2000), the authors note: “In general, in different books one can find differ-
ent interpretations of the term DS, e.g. like the following ones:

• a synonym of the term “a set of ODEs dx
/

dt = f(x, t)”;
• a synonym of the term “a set of autonomous ODEs dx/dt = g(x)”;
• a mathematical model of some mechanical system.

We7 will adhere to the viewpoint according to which the concept of a DS is a gen-
eralisation of the concept of a set of autonomous differential equations and includes
two main components: phase space P (metric space or manifold) and continuous
or discrete one-parametric group (semigroup) ϕt (x) or ϕ(x, t) of its transforms. A
parameter t of the group is time.”

Another formalised definition is as follows: “A DS is a quadruple (X, B, μ,�),
where X is a topological space or a manifold, i.e. an abstract image of a state space,
B are some interesting subsets in X , e.g. closed orbits or fixed points. They form
an algebra in the sense that they include not only separate elements but also their
unions and intersections. They are necessary to introduce a measure, since X itself
can be immeasurable. μ is a measure, e.g. a volume of some domain or a frequency
of an orbit visitations to it. μ is desired to be ergodic, unique, and invariant under
the group of transforms �t which defines an evolution. Sometimes, one adds also a

5 From the Greek word “συστημα”, i.e. “a whole consisting of parts” (Philosophic dictionary,
1983, p. 610).
6 Highlighting with italic is ours in all the cited definitions.
7 The authors G.G. Malinetsky and A.B. Potapov.
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typical (in the sense of the measure μ) initial point. For example, the point x0 = 0
is not typical for the operator �t , t ∈ Z : xt+1 = �1(xt ) ≡ xt (1+ xt ), since it does
not lead to an evolution” (Makarenko, 2002).

One settled to understand a DS as a system of any nature (physical, chemical, biological,
social, economical, etc.) whose state changes discretely or continuously in time (Danilov,
2001, p. 6).

By abstracting from a concrete physical nature of an object, one speaks of it as of DS if it
is possible to specify such a set of quantities called dynamical variables and characterising
a system state whose values at subsequent time instant are obtained from an initial set
according to some rule. This rule is said to determine an evolution operator for the system
(Kuznetsov, 2001, p. 7).

A DS can be thought of as an object of any nature whose state changes in time according
to some dynamical law, i.e. as a result of a deterministic evolution operator action. Thus,
the concept of DS is a consequence of a certain idealisation when one neglects influences of
random perturbations inevitably present in any real-world system. . . Each DS corresponds
to some mathematical model. . . (Anishchenko et al., 2002, pp. 1–2).

A DS is a system whose behaviour is specified by a certain set of rules (an algorithm).
A DS represents only a model of some real-world system. Any real-world system is prone
to fluctuations and, therefore, cannot be dynamical (Landa, 1996).

The last definition is the closest one to the considerations in our book. It does
not lead to difficulties in classification of possible situations. Thus, many real-
world phenomena and objects can be successfully considered both with the aid
of “probabilistic” (random) and “deterministic” mathematical tools. To illustrate
that dynamical ideas can be fruitful under certain conditions and meaningless under
different ones in modelling of the same object, we refer to the well-known “coin
flips” (Sect. 2.6). There are no contradictions if the name of DS is related only to
deterministic models and perceived as a kind of scientific jargon in application to
real-world systems.

Further, we call DS a mathematical evolution model for which one specifies (i) a
state x and (ii) an evolution operator �t allowing a unique prediction of future states
based on an initial one: x(t0 + t) = �t (x(t0)). In relation to real-world systems, we
understand the term DS as a brief version of a statement “a system whose description
with a dynamical model is possible and reasonable”.

2.1.2 Non-rigorous Example: Variables and Parameters

Let us consider different dynamical systems which could describe an object which
is familiar to many people – a usual cat (Fig. 2.1). The choice of quantities playing
a role of dynamical variables or parameters of a model is determined by the purpose
of modelling. If the purpose is to describe an evolution of the state of the cat’s health,
one can use its mass M = x3, height H = x2 and hair density N = x1 (number
of strands per a unit area) as dynamical variables. The collection x = (x1, x2, x3)

is a state vector of a dimension D = 3. Of course, one can imagine a number of
other variables, such as blood haemoglobin concentration (x4) and pulse rate (x5).
It would increase a model dimension D and make an investigation of the model
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Fig. 2.1 Description of evolution of the cat’s health: (a) variables and parameters; (b) the phase
space and a phase orbit at fixed values of parameters a′ = (

a′
1, a′

2

)
; (c) time realisations xi (t), i.e.

projections of the phase orbit onto the phase space axes; (d) a combined space of parameters and
states presenting an established value of x1 versus a2 at fixed a1 = a′

1; (e) a parameter space, the
area 2 corresponds to a normal life of a cat and areas where its prolonged existence is impossible
due to either hunger (the area 1) or gluttony (the area 3) are painted over. A point a′ in the parameter
space corresponds to a definite structure of the entire phase space

more complicated. For the sake of illustration, it is sufficient for us to use the three
dynamical variables and consider dynamics of the object in the three-dimensional
phase space (Fig. 2.1b). Each point of the phase space corresponds to a vector x =
(x1, x2, x3) reflecting an object state. Thus, the cat is too young and feeble at the
point t = 0 (Fig. 2.1b), it is young and strong at the point t = 1, and it is already
beaten by the life at t = 2.

Obviously, a current health state of the cat and its variations depend on the
quantities which we can keep constant or change as we want. Such quantities are
called parameters. For instance, these can be nutrition (the mass of food in a daily
ration a1, kg/day) and life conditions (the duration of walks in fresh air a2, h/day).
The number of model parameters as well as the number of dynamical variables is
determined by the problem at hand and by the properties of an original. Thus, the
health of a cat depends not only on the mass of food but also on the calorie content
of food (a3), amount of vitamins (a4), concentration of harmful substances in the
air (a5), etc. For simplicity, we confine ourselves to two parameters and consider
behaviour of the object in a two-dimensional parameter space, i.e. on a parameter
plane (a1, a2), see Fig. 2.1e. Each point of the parameter plane corresponds to a
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certain kind of the temporal evolution of the object, i.e. to a certain kind of a phase
orbit passing through an initial point in the phase space. Regions in the parameter
space which correspond to different qualitative behaviour are separated with bifur-
cational sets of points. Bifurcational sets on the parameter plane (Fig. 2.1e) are
boundary curves between white and black areas (bifurcational curves).

Just to illustrate the terms introduced above, without pretensions of strict descrip-
tion of such a complex biological object, one can consider the following set of first-
order ordinary differential equations as a dynamical system modelling the health
state of the cat:

dx1
/

dt = f1(x1, x2, x3, a1, a2),

dx2
/

dt = f2(x1, x2, x3, a1, a2),

dx3
/

dt = f3(x1, x2, x3, a1, a2).

Relying upon everyday-life experience and imagination, one could suggest dif-
ferent forms for the functions fk , e.g. algebraic polynomials whose coefficients are
expressed via a1 and a2. It is a very common situation when model parameters enter
evolution equations just as polynomial coefficients. According to the theorem of
existence and uniqueness of a solution, the set of ordinary differential equations
at fixed values of parameters and initial conditions has a unique solution under
some general conditions. It means that the set of ODEs specifies a single phase
orbit passing through a given initial point in the phase space.

Division of characterising quantities into dynamical variables and parameters is
dictated by a modelling task. If the purpose of the cat modelling were description of
its mechanical movements in space (rather than the state of its health as above), it
would be reasonable to choose different variables and parameters. Thus, neither the
animal mass M nor its “downiness” N and height H (previous dynamical variables)
change during a jump of the cat. However, these quantities essentially affect its
flight and must be taken into account as parameters a1 = M, a2 = N , a3 = H ,
along with other quantities which influence mechanical motion (e.g. the shape of
the cat’s body). As dynamical variables, one can consider coordinates of the centre
of the mass of the cat (x1 = x, x2 = y, x3 = z) and angular displacements of
its longitudinal axis in relation to coordinate axes (x4 = α, x5 = β, x6 = γ ).
Further, one can write down an evolution operator based on Newton’s equations
for progressive and rotational movements in contrast to the above semi-intuitive
invention of model equations for the state of the cat health. Thus, depending on the
purpose of modelling, the same physical quantities serve as dynamical variables in
one case and play a role of parameters in another one.

Dynamical variables and parameters can be recognised in the evolution equa-
tions for a dynamical system. For instance, in the system specified by the classical
equation of non-linear oscillator with cubic non-linearity (Duffing oscillator)

d2x
/

dt2 + 2δ dx
/

dt + ω2
0(bx3 − x) = 0, (2.1)
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one of the dynamical variables is the quantity x and the parameters are δ, ω0, b, i.e.
the parameter vector a = (δ, ω0, b) is three dimensional. The system itself is two
dimensional (D = 2) since one must specify initial values of x and dx/dt to find
a particular solution to equation (2.1). The latter becomes clearer if one rewrites
equation (2.1) equivalently as a set of two first-order equations for the variables
x1 = x and x2 = dx/dt :

dx1
/

dt = x2; dx2
/

dt = −2δ x2 − ω2
0

(
bx3

1 − x1

)
.

Thus, the derivative dx/dt serves as the second dynamical variable of the sys-
tem (2.1).

2.1.3 Phase Space. Conservative and Dissipative Systems.
Attractors, Multistability, Basins of Attraction

A significant merit of dynamical modelling is a possibility of a vivid representation,
especially in the case of low dimension D and small number of parameters. For such
a representation, one uses formal spaces8: state space (or phase space), parameter
space and their hybrid versions. Along the axes of a formal space, one indicates
the values of dynamical variables or parameters. In a hybrid version, parameters are
shown along certain axes and variables along others.

A state vector x(t) at some time instant t corresponds to a point in a phase space
with coordinates x1(t), x2(t), x3(t) called a representative point since it represents
an instantaneous state. In evolution process, a representative point moves along a
certain curve called a phase orbit. A set of characteristic phase orbits is called phase
portrait of a system. Having some experience, one can extract a lot of information
about possible motions of a system from its phase portrait. Thus, a phase space is
three dimensional in the above example with a cat. A single orbit corresponding
to a concrete choice of an initial state at t = 0 is shown in Fig. 2.1b. It evidences
that the animal developed well at the beginning and achieved excellent conditions
at t = 1. Then, it grew thin and cast the coat up to an instant t = 2. We note that a

8 “Space is a logically conceivable form (structure) serving as a medium where other forms or
constructions are realised. For instance, a plane or a space serve in elementary geometry as media
where various figures are constructed. . . . In contemporary mathematics, a space defines a set of
objects called points. . . . Relations between points define “geometry”. As examples of spaces,
one can mention: (1) metric spaces . . ., (2) “spaces of events” . . ., (3) phase spaces. Phase space
of a physical system is a set of all its states which are considered as points in that space. . . .”
(Mathematical dictionary, 1988). A space can be topological (if a certain non-quantitative concept
of “closeness” is defined), metric (closeness is determined by “metrics”), etc. The choice of a phase
space is determined by what one wants to use in modelling. For example, one needs “a smooth
manifold” (Sect. 10.1.1) to use differential equations as a model. To define a limit behaviour of DS
orbits, one needs a “complete” space, i.e. each limit point of a convergent sequence should belong
to the same space.
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phase orbit itself does not carry information about a time instant when a point visits
a certain area.

Usually, one shows the most characteristic orbits on a phase portrait. For illus-
tration, let us consider elements of the phase space of a system (2.1), which models
oscillations in a potential well with two minima in the presence of friction similarly
to a ball rolling in a double-pit profile shown in Fig. 2.2a. The curves on a phase
plane (x, dx/dt) in Fig. 2.2b are phase orbits starting from points 1 and 2. They
cannot intersect since it would violate a dynamical description: a unique present
must lead to a unique future! Situations resembling intersections can be found at
singular points, i.e. points of equilibrium where a state of a DS remains constant for
arbitrarily long time. There are three of them on the portrait: O, A1, A2. The first
one corresponds to the location of a resting ball on the top of the hill (Fig. 2.2a),
while the others show the left and right pits. Other points of the phase space corre-
spond to states which are left by a representative point at a future time instant. Each
of them corresponds to a certain phase orbit and time realisations of dynamical
variables xk(t), Fig. 2.2b. We note that in a typical phase orbit, one can distinguish
between a starting interval (a transient process) and a later stage with greater degree
of repeatability (an established motion). Established motions are less diverse than
transient processes and correspond to objects called attractors in a phase space of
a dissipative system. In our example these are states of stable equilibrium: points
A1, A2. Indeed, they seem to attract orbits from certain areas of the phase space.
Starting from different points (1 and 2 in Fig. 2.2b), phase orbits can get to different
attractors.

A set of points in a phase space from which a system gets to a certain attractor
is called basin of attraction.9 If an attractor in a phase space is unique, then its
basin of attraction is the entire phase space. If there are several attractors, one says
that multistability takes place. Then, their basins divide a phase space between each
other, e.g. as shown with shading in Fig. 2.2c, d. Attractor can exist only in a phase
space of a dissipative dynamical system. This is a system exhibiting phase volume
compression illustrated in Fig. 2.3. A set of initial points occupies a volume V (0).
Starting from V (0), a system gets to a volume V (t) after some time interval t . A
system is called dissipative if a phase volume decreases with time, V (t) < V (0). In
a one-dimensional case, a measure of a phase volume V is an interval length, it is
a surface area in a two-dimensional case and a hyper-volume in a multidimensional
case of D > 3. Finally, representative points get from an initial volume to attractors

9 Strict definition of attractor is a subject of multiple discussions. A universally accepted definition
is still lacking. One of the popular ones is given in several steps (Malinetsky and Potapov, 2000,
pp. 76–77). “. . . a set A is called . . . invariant . . . if �t A = A. Neighbourhood of a set A is an
open set U containing the closure of A, i.e. A together with all its limit points including boundary
points. . . . A closed invariant set A is called an attracting set if there exists its neighbourhood U
such that �t (x) → A for all x ∈ U and t → ∞. A maximal U satisfying this definition is called
basin of attraction of A. . . . An attracting set containing an everywhere dense orbit is called an
attractor A.” This definition can be roughly reformulated as follows: an attractor is the least set to
which almost all orbits of a DS from some area of non-zero volume tend.
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Fig. 2.2 A ball in a double pit: an illustration (a); a phase portrait and time realisations (b); basins
of attraction of the equilibrium points A1, A2, i.e. of the two attractors coexisting in the phase
space (c); basins of attraction in a non-autonomous case at the values of parameters for which two
chaotic attractors coexist in the phase space (d)

Fig. 2.3 Illustration of some phase volume deformations: (a) a dissipative system; (b) a
conservative system. The curves are phase orbits

whose volume is equal to zero. Such a definition of a dissipative system is broader
than that used in physics where a dissipative system is a system with friction in
which mechanical energy turns into energy of chaotic molecular motion. In conser-
vative systems (friction-free systems in physics) an initial phase volume is preserved
and only its form changes, hence attractors are absent.

Some possible kinds of attractors and the character of the corresponding estab-
lished motions are shown in Fig. 2.4. Apart from equilibrium states represented by
points, an attractor can be
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Fig. 2.4 Examples of characteristic sets in a phase space of a continuous-time system and
corresponding time realisations

• a limit cycle, i.e. a closed curve, an image of a motion repeating itself with some
period T (Fig. 2.4b);

• a torus, i.e. “an infinitely thin tread winding up on a bagel”, an image of a
quasi-periodic motion (with two characteristic periods T1 and T2 whose ratio
is an irrational number) (Fig. 2.4c). A torus can be three- and multidimensional,
i.e. represent complex behaviour with three, four, and more incommensurable
frequencies of periodic components;

• a fractal set concentrated in a bounded area of a phase space, an image of chaotic
oscillations called a strange attractor (Fig. 2.4d).10

Kinds of established motion realised in a DS and corresponding attractors are
limited by its dimension. Thus, a phase space of a continuous-time system (e.g.
with operators represented by differential equations) can contain only equilibrium
points for D = 1, equilibrium points and limit cycles for D = 2, all the limit sets
listed above for D ≥ 3. Such considerations can help in practice to choose a model
dimension. For instance, detection of a chaotic motion indicates that one needs at
least three first-order non-linear ordinary differential equations to model an object.
A somewhat different situation is found in a discrete-time system. An outlook of
an attractor in its phase space can be imagined if one dissects the left pictures in
Fig. 2.4 with a plane (a Poincare cross section). A single-turn cycle gives a single
point in such a section. More complex cycles give several points. An orbit on a torus
“draws” a closed curve in a section representing a quasi-periodic motion in a phase
space of a discrete-time system. A chaotic attractor is represented by a set of points
structured in a complicated (often self-similar) manner. A chaotic motion can be
observed even in a phase space of one-dimensional non-invertible maps.

10 “Strange” means here “different from previously known”. An overview of kinds of chaotic
attractors is given, e.g. in Anishchenko (1997), Katok and Hasselblat (1995) and Kuznetsov (2001).
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2.1.4 Characteristics of Attractors

2.1.4.1 Geometrical Characteristics

Apart from visually detected differences, phase portraits are characterised by a num-
ber of quantitative measures. The most popular among them are dimensions. An
integer-valued topological dimension DT can be defined via an inductive principle
(Poincare, 1982): DT = 0 for a point; DT + 1 is the dimension of a set which
can be divided into non-intersecting parts with a subset of dimension DT. Accord-
ing to those rules, a smooth curve has topological dimension DT = 1, a surface
DT = 2, a volume DT = 3. In particular, an equilibrium point, a cycle and a
torus have topological dimensions 0, 1 and 2, respectively (see, e.g., Malinetsky,
2000, pp. 208–209). Structure of strange attractors differs qualitatively from the
above sets. The former are fractal (self-similar) so that one needs more complicated
measures called fractal dimensions. The simplest among them is capacity which
characterises only geometry of an attractor. One also introduces generalised dimen-
sions to take into account a frequency of a representative point visitations to subsets
of an attractor. Below, we present only brief information about fractal measures.
An educational computer program providing additional illustrations is located at
our website (http://www.nonlinmod.sgu.ru). For more detailed study of fractal mea-
sures and techniques of their computation, we recommend the lectures 11–13 in the
monograph Kuznetsov (2001) and references therein.

To define capacity, one covers a limit set in a D-dimensional phase space with
D-dimensional cubes (i.e. line segments, squares, three-dimensional cubes, etc.)
with an edge ε. Let a minimal number of cubes sufficient to provide covering be
N (ε).11 Capacity of a set is

DF = − lim
ε→0

ln N (ε)

ln ε
, (2.2)

if the limit exists. One can use D-dimensional balls or sets of another shape instead
of cubes (Kuznetsov, 2001, pp. 170–171; Malinetsky and Potapov, 2000, p. 210).
Corresponding illustrations are given in Fig. 2.5, where we also present a classical
example of a fractal Cantor set obtained from a unit segment by subsequent removal
of middle thirds. In the latter case, one gets the capacity

DF = − lim
ε→0

ln 2N

ln
(
1
/

3
)N

= ln 2

ln 3
≈ 0.63

according to the definition (2.2). Majority of fractal sets are of non-integer dimen-
sion and can be embedded into spaces whose dimension equals the smallest integer
exceeding a fractal dimension. Thus, the Cantor set is not already a finite set of
points, but it is still not a line.

11 Covering of a set A is a family of its subsets {Ai } such that their union contains A.
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Fig. 2.5 Illustrations to (a) definition of capacity; (b) the Cantor set

A more subtle characteristic is Hausdorff dimension, which generalises capacity
to the case of covering with elements of an arbitrary shape and size. Both quantities
often coincide, but not always (Kuznetsov, 2001, p. 173; Malinetsky and Potapov,
2000, p. 209). As a rule, accurate numerical estimation of the Hausdorff dimension
is impossible (Makarenko, 2002).

Generalised dimensions of Renyi Dq take into account a frequency of a repre-
sentative point visitation to different attractor areas (Kuznetsov, 2001, pp. 176–190;
Malinetsky and Potapov, 2000, pp. 211–214). Let an attractor be partitioned12 into
N non-empty cubes (cells) of size ε. Let us denote a portion of time spent by a
representative point at a cell number i as pi . It is a normalised density of points in a
cell, i.e. an estimate of the probability of a visitation to a cell.13 Then, one defines14

Dq = 1

q − 1
lim
ε→0

ln
N (ε)∑

i=1
pq

i

ln ε
. (2.3)

One distinguishes special kinds of generalised dimension: capacity at q = 0;
information dimension at q = 1 (in the sense of limit for q → 1); correlation
dimension at q = 2. The latter characterises an asymptotic behaviour of pairs of
points on an attractor. Indeed, a quantity p2

i can be interpreted as a probability to
find two representative points within an i th cube of size ε. It is this quantity that
can be easily estimated. Direct usage of the formula (2.3) leads to computational

12 A partition is a covering with non-overlapping subsets {Ai }.
13 It is strictly applicable to attractors supplied with an ergodic measure (Makarenko, 2002).
14 A mathematical comment (Makarenko, 2002). Let us assume that pi in each non-empty element
of a partition follows an exponential law: pi ∝ εα . If we deal with points on a line segment, then
α = 1 corresponds to a uniform distribution of points. However, α < 1 may appear for rarely
populated areas. Then, the ratio pi/ε → ∞ for ε → 0. Therefore, such a distribution is called
singular. For a square, areas with an exponent α < 2 support singular distributions. One calculates
a partition function

∑
i pq

i , where a parameter q allows “to adjust” an estimator to locations with
different probability density. If a partition function depends on ε via a power law, one introduces
the definition (2.3) and speaks of multifractal distribution. If Dq differs for different q , an attractor
is called multifractal (Kuznetsov, 2001, p. 182).
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difficulties at D > 3. Therefore, a number of numerical techniques for the esti-
mation of dimensions from a fragment of a phase orbit sampled discretely in time
(x(t1), x(t2), . . . , x(tN )) have been developed. One of the most popular ones is the
algorithm of Grassberger and Procaccia for the correlation dimension estimation
(Grassberger and Procaccia, 1983). It relies on the calculation of the so-called cor-
relation integral

C(ε) = 2

N (N − 1)

N∑

i=1

N∑

j=i+1

�
(
ε − ‖x(ti ) − x(t j )‖

)
,

where � is the Heavyside function (�(s) = 0, s ≤ 0; �(s) = 1, s > 0) and ‖·‖ is
a norm of a vector (Euclidean or any other). One can easily see that it is an estimate
of the probability that two points, arbitrarily chosen on an attractor according to
its probability measure, are separated by a distance less than ε. As it follows from
equation (2.3), C(ε) ≈ AεD2 holds true for ε → 0. Correlation dimension can be
estimated as a slope on the plot ln C(ln ε) at small ε. In practice, the number of
orbit points N is limited. Therefore, the size ε of a cell cannot be selected arbitrar-
ily small. Furthermore, the greater the dimension, the greater the number of points
required for its reliable estimation. There are different recommendations in respect
of the necessary number of points obtained under different assumptions (Eckmann
and Ruelle, 1985, 1992; Kipchatov, 1995).

To get integer-valued estimates of dimension of an observed motion, one uses
several ideas. One of the most popular is the false nearest neighbour technique
(Kennel et al., 1992). According to it, one checks the property that a phase orbit
restored in a space of a sufficient dimension should not exhibit self-intersections.
The technique is applied to reconstruct a phase orbit from a time realisation of a
single variable (Sect. 10.1.2).

Another widely known method is the principal component analysis (Broomhead
and King, 1986), where one distinguishes directions in a phase space along which
the motion of a representative point develops more intensively. It is done via the
analysis of correlations between state vector components (Sect. 10.1.2).

2.1.4.2 Dynamical Characteristics

The most widely used are Lyapunov exponents which characterise a speed of diver-
gence or convergence of initially nearby phase orbits. A weak deviation of a rep-
resentative point from an orbit on an attractor, i.e. a weak perturbation ε0, evolves
approximately according to an exponential law ε(t) = ε0eλt until it gets large
(Fig. 2.6a). As a result, a D-dimensional sphere of initial perturbations transforms
into an ellipsoid after some time interval. If one prevents a system from a signifi-
cant rise of perturbations (from an evolution along the grey arrow in Fig. 2.6a) by
limiting an observation time interval τ , it is possible to estimate the exponents via
the ratios of an ellipsoid semi-axis length to an initial radius: λi = (1/τ) ln(εi/ε0).
These values averaged over an entire attractor are called Lyapunov exponents. Let
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Fig. 2.6 Illustrations of Lyapunov exponents: (a) idea of calculation; evolution of a circle with a
centre x0 (b) for a linear system; (c) for a non-linear system

us denote them �1,�2, . . . , �D . They characterise stability of the motion on an
attractor in a linear approximation. The set of values �i in descending order is
called spectrum of Lyapunov exponents, while sequence of their signs (+,− or 0)
is called the spectrum signature. If all the exponents are negative, i.e. the signa-
ture is 〈−,−, . . . ,−〉, then an attractor is an equilibrium point. The signature of a
limit cycle is 〈0,−, . . . ,−〉 and that of a two-dimensional torus is 〈0, 0,−, . . . ,−〉.
Spectrum of Lyapunov exponents for a chaotic attractor contains at least one posi-
tive exponent, e.g. 〈+, 0,−, . . . ,−〉, which determines the speed of divergence of
initially close orbits.

Let us now describe some mathematical details. We start with a set of linear
ordinary differential equations with variable coefficients:

dε(t)
/

dt = A(t)ε(t), (2.4)

where ε ∈ RD and A is a matrix of an order D. Let us denote ε(t0) = ε0. Then, a
solution to equation (2.4) at a time instant t0 + t is

ε(t0 + t) = M(t0,t) · ε0, (2.5)

where M(t0,t) is a matrix of order D which depends on the initial time instant
and the interval t and takes the form

M(t0,t) = exp

⎛

⎝
t0+t∫

t0

A(t ′)dt ′
⎞

⎠ , (2.6)

where the matrix exponent is understood in the sense of formal expansion in a power
series. For example, if D = 1 and A(t) = a = const, then dε(t)/dt = aε(t) and
the solution to equation (2.5) takes a familiar form ε(t0 + t) = ε0eat . Thus, in
the case of constant coefficients, a perturbation evolves according to an exponential
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law. If coefficients are not constant, then a situation changes to some extent. For
instance, one gets ε(t0 + t) = ε0eat eb sint for A(t) = a + b cos t .

To characterise increase (or decrease) in ε in a multidimensional case, one should
consider an evolution of a sphere of initial conditions with a centre at the origin
and a radius ‖ε0‖. Since the system is linear, a sphere transforms into an ellipsoid.
Lengths and orientations of semi-axes of the ellipsoid depend on the matrix M and,
hence, on the value of t . An absolute value of ε changes in a different manner
depending on the orientation of the initial vector ε0. To describe it, one can use the
so-called singular value decomposition of the matrix M. This is a decomposition of
the form M = U · � · VT, where U and V are mutually orthogonal matrices which
can be conveniently written in the form of vectors sets U = [u1,u2, . . . ,uD] and
V = [v1, v2, .., vD]. If the matrix M is non-singular, then vectors u1,u2, . . . ,uD

(called left singular vectors of the matrix M) are mutually orthogonal and of unit
length, i.e. they form an orthonormal basis in the space RD . The same considerations
apply to vectors v1, v2, . . . , vD (right singular vectors). The matrix � is diagonal.
Its diagonal elements σ1, . . . , σD are listed in descending order. They are called
singular values of the matrix M. Action of the matrix M on the vector ε0 parallel
to one of the right singular vectors vi multiplies its length by σi and transforms it to
a vector parallel to an i th left singular vector: ε(t0 + t) = σi‖ε0‖ui (Fig. 2.6b).
Thus, if at least one singular value of M exceeds 1 in absolute value, then an ini-
tial perturbation rises for some directions (one singular value is greater than 1 and
another one is less than 1 in Fig. 2.6b). It rises in the fastest way for the direction
of v1. The quantities showing how a perturbation changes are called local Lyapunov
exponents:

λi (t0,t) = 1

t
ln σi . (2.7)

They describe an exponential growth in perturbations averaged over a finite
time interval. According to the definition (2.7), a strict equality ‖ε(t0 + t)‖ =
‖ε0‖ · eλi (t0,t)t holds true for respective directions of an initial perturbation. A.M.
Lyapunov proved that under certain conditions15 imposed on a matrix A, there exist
finite limits:

�i = lim
t→∞

1

t
ln

‖ε(t0 + t)‖
‖ε0‖ , i = 1, 2, . . . , D, (2.8)

where the quantities �i are exactly the Lyapunov exponents. They show an efficient
speed of increase (decrease) in perturbations. Which of D exponents is realised
for a given ε0 depends on the direction of the latter. A perturbation changes at a
speed determined by the largest Lyapunov exponent �1 for almost any direction

15 There exists a number L such that 1
t

t0+t∫

t0
|Aij(t ′)|dt ′ ≤ L for all i , j and t (Kuznetsov,

2001, p. 140).
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of ε0. If �1 is positive, then a typical perturbation rises. Hence, �1 can be related
to a predictability horizon of a system (2.4) in a situation where the equation itself
is known precisely but initial conditions are specified at a certain error. A similar
analysis can be done for linear difference equations.

Linearised dynamics and Lyapunov exponents. The analysis of stability for non-
linear systems is performed via investigation of the linearised equations. Let us
consider a non-linear system

dx
/

dt = f(x). (2.9)

Let x(t) be one of its orbits with an initial condition x(t0) = x0. Let us call the
orbit with x(t0) = x0 a reference orbit and consider an orbit starting at a very close
initial condition x(t0) = x0 + ε0. Evolution of very small perturbations remaining
small over an entire time interval considered is described with a set of equations
linearised in a vicinity of the reference orbit:

dε

dt
= ∂f(x(x0, t))

∂x
ε. (2.10)

This equation coincides with equation (2.4) if one assigns

A(t) = ∂f(x(x0, t))

∂x
.

One can write down its solution in the form of equation (2.5), where the matrix
M maps an infinitesimal sphere of initial conditions with a centre x0 to an ellip-
soid with a centre x(t0 + t) (Fig. 2.6b). Strictly speaking, if a perturbation is not
infinitesimal but finite, an image of a sphere will not be an ellipsoid, but another set.
Linearised dynamics only approximately describes an evolution of finite perturba-
tions (Fig. 2.6c). For any reference orbit, there exists a set of Lyapunov exponents
characterising linearised dynamics in its vicinity.

In 1968, Oseledets showed that a set of Lyapunov exponents is the same for
any generic point x0 on an attractor. This statement is an essence of multiplicative
ergodic theorem (see, e.g., Kornfel’d et al., 1982; Malinetsky and Potapov, 2000;
pp. 224–227; Sinai, 1995). Thus, Lyapunov exponents characterise evolution of
infinitesimal perturbations not only for a given reference orbit but also for an entire
attractor of a DS. The largest Lyapunov exponent assesses an efficient speed of
growth of infinitesimal perturbations (see also Sect. 2.4).

2.1.5 Parameter Space, Bifurcations, Combined Spaces,
Bifurcation Diagrams

Attractors in a phase space evolve (change their shape, size, etc.) under parameter
variations and loose stability at certain parameter values. As a result, one observes
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qualitative changes in a system motion, changes in its phase portrait, e.g. changes
in the number of attractors in a phase space. Such a situation has got a name of
bifurcation16 (Belykh, 1997; Guckenheimer and Holmes, 1983; Malinetsky, 2000).
We stress that a smooth deformation of an attractor and corresponding variations in
an oscillation waveform are not regarded as a qualitative change.

To represent vividly the entire picture of possible kinds of established motions
and transitions between them, one can use a geometrical representation in a param-
eter space where the values of parameters are shown along the axes. Some special
methods are applied for that. The main idea is to single out sets of points separating
areas with qualitatively different behaviour, i.e. bifurcation sets. In a pictorial exam-
ple with a cat, a parameter space is the plane a1, a2 (Fig. 2.1e), while the boundaries
between areas with different shading are bifurcation curves: the area 2 corresponds
to a healthy life, while in the areas 1 and 3 the existence tragically and quickly
stops due to hunger or gluttony. Parameter spaces shown below (e.g. Figs. 3.6, 3.7,
3.11 and 3.19a) are structured in a much more complicated manner. Bifurcation sets
(curves) divide an entire parameter plane into areas where different attractors in a
phase space exist. A way to represent vividly a situation of multistability (coexis-
tence of several kinds of motion, several attractors in a phase space) on a parameter
plane (e.g. in Figs. 3.6, 3.11 and 3.19a) is to show an area where a certain attractor
exists as a separate sheet. Then, overlapping of many sheets at some parameters
values is equivalent to multistability. For instance, bistability (coexistence of two
attractors) takes place in the domain of intersection of sheets A and B in Fig. 3.6.
The third sheet in that domain relates to an unstable cycle. Similarly, multistability in
Fig. 3.19a takes place in the domain of intersection of sheets representing different
modes of a system under investigation.

It is relevant to note some opportunities provided by the use of combined spaces.
For instance, one can show a parameter value as an abscissa and a dynamical vari-
able value in an established regime as an ordinate. A bifurcation diagram obtained
in such a way for a quadratic map (Fig. 3.8e) is widely used to demonstrate universal
laws of similarity (scaling) in transition to chaos via the period-doubling cascade.
For a map describing a dissipative non-linear oscillator, such a diagram illustrates
phenomena of resonance, hysteresis, bistability and bifurcation cascade (Fig. 3.10c–
e). Moreover, one can present information in the phase and parameter spaces with
colours. Basins of different attractors or areas of existence and evolution of different
oscillatory regimes are often shown in such a way (Figs. 2.2 and 3.11).

We have given a very brief introduction to realisation of the dynamical approach.
For readers who want to get deep knowledge in the field, we refer to classical works
on qualitative theory of differential equations, theory of oscillations and non-linear
dynamics (e.g. Andronov et al., 1959, 1967; Arnold, 1971, 1978; Bautin and Leon-
tovich, 1990; Butenin et al., 1987; Guckenheimer and Holmes, 1983; Katok and
Hasselblat, 1995; Shil’nikov et al., 2001).

16 Initially, the word “bifurcation” meant division of an evolution pathway into two branches.
However, currently any qualitative change is called call “bifurcation”.
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2.2 Foundations to Claim a Process “Random”

The use of the probabilistic approach is typically related to recognition of some
quantity as “random”. However, what is “random quantity” and what is its dif-
ference from a “non-random” one? Currently, there are several points of view on
randomness which allow introduction of quantitative measures. For the most part,
they agree with each other, but not always. Sometimes they can even lead to oppo-
site results in the assessment of randomness or non-randomness of some quantity
in practice. Here, we consider the problem according to a scheme suggested in
Kravtsov (1989, 1997).

2.2.1 Set-Theoretic Approach

Set-theoretic approach underlying contemporary theory of probability (Gnedenko,
1950; Hoel, 1971; Pugachev, 1979, 1984; von Mises, 1964) associates the concept
of randomness with possibility to specify a probability distribution law for a given
quantity. Absence or presence of regularity is assessed via possible scattering of
the values of a quantity: (i) probability distribution density in the form of Dirac δ

function corresponds to a deterministic quantity; (ii) a non-zero “width”, “smeared
character” of distribution corresponds to unpredictable, random quantity.

2.2.1.1 Random Events and Probability

In description of many phenomena, researchers face impossibility to predict a course
of events uniquely, even if all controllable conditions are held “the same”.17 To
investigate such phenomena, the concepts of random event and probability were
introduced in the theory of probability. These concepts are indefinable in theory,
only some of their properties are defined via axioms. Their vivid interpretation and
connection to practice are the tasks for the users. Below, we remind these basic
concepts on an intuitive level, rather than rigorously.

An event is an outcome of a trial. Let us consider a classical example of the
“coin flip” (see also Sect. 2.6). Let a coin be flipped only once. Then, the single flip
is a trial. As a result, two events are possible: “a head” (an event A) and “a tail”
(an event B). A and B are mutually exclusive events. An event in which either A
or B occurs is called a union of events A and B and designated as A ∪ B. In our
case, it inevitably occurs as a result of any trial. Such an event is called sure and
its probability is said to be equal to unity: P{A ∪ B} = 1. Since a union of A and
B is a sure event, one says that A and B constitute a complete group of events. It
follows from an idea of symmetry that the events A and B are equiprobable, i.e.

17 We mark the words “the same” with inverted commas to stress their conventional nature. To be
realistic, one can speak of sameness only to a degree permitted by the conditions of observations
or measurements.
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the chances to observe a head or a tail are equal for a usual coin with a uniform
density of metal. Equiprobable mutually exclusive events constituting a complete
group are called elementary events. Probability of a union of mutually exclusive
events is equal to the sum of their probabilities. In our case, A and B constitute a
complete group, therefore, one can write down: P{A ∪ B} = P{A} + P{B} = 1.
From here and the condition of equiprobability, one gets the individual probabilities
as P{A} = P{B} = 1/2.

Elementary events may not be always singled out so easily. Sometimes, geomet-
rical considerations can help (a geometrical definition of probability). Let a trial
consist of a random throwing of a point onto an area A of a plane. A point falls
into A for sure and all subsets of A are “equal in rights”. A point may either fall
into a region B ⊂ A or not. Probability of an event that a point falls into a subset
B is defined via the ratio of the areas μ(B)/μ(A), where μ stands for the Lebesgue
measure. The latter is a surface area in our example, but the same formula can be
used for a space of any dimension. Such a definition can be interpreted in terms
of elementary events if they are introduced as falls of a point into small squares
covering A (for a size of squares tending to zero).18

The most habitual to physicists is a statistical definition of probability. If an event
A is realised M times in a sequence of N independent trials, then the ratio M/N
is called a frequency of occurrence of the event A. If a frequency M/N tends to
some limit for a number of trials tending to infinity, then such a limit is called a
probability of the event A. This is the most vivid (physical) sense of the concept
of probability. The property of an event frequency stabilisation is called statistical
stability. The entire machinery of the theory of probability is appropriate for the
phenomena satisfying the condition of statistical stability.

2.2.1.2 Random Quantities and Their Characteristics

Random quantity is any numerical function ξ of a random event. In the case of coin
flips the values of a random quantity can be defined as ξ = 1 (a head) and ξ = 0 (a
tail). The probability of ξ = 1 is the probability of a head.

For a complete characterisation of a random quantity, one needs to specify
probabilities of its possible values. For instance, one uses a distribution function
Fξ (x) ≡ P{ξ ≤ x}. If ξ is continuous valued and its distribution function is

18 We note that it is important to define clearly what is a “random” point, line or plane for the
definition of geometrical probabilities. For instance, let us assess the probability of an event that a
“random” chord exceeds in length an edge of an equilateral triangle inscribed into a unit circumfer-
ence. A chord can be chosen “randomly” in different ways. The first way: let us superpose a vertex
of a chord with one of the triangle vertices leaving the other chord vertex free. Then, a portion of
favourable outcomes when the length of a chord exceeds the length of an edge is 1/3. The second
way: let us select randomly a point in a circle which is the middle of a “random” chord. A chord
is longer than a triangle edge if its middle belongs to a circle inscribed into the triangle. Radius
of that circle equals half the radius of the circumscribed circle and, hence, a portion of favourable
outcomes assessed as the ratio of the areas of the two circles equals 1/4. We get two different
answers for two different notions of a random chord.
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differentiable, then one defines a probability density function pξ (x) ≡ dFξ (x)/dx .
Then, a probability for ξ to take a value from an infinitesimal segment [x, x + dx]
equals pξ (x)dx . For the sake of definiteness, we speak of random quantities sup-
plied with probability density functions.

Several often used distributions are the following:

(i) The normal (Gaussian) law

pξ (x) =
(

1
/√

2πσ 2
)

· e− (x−a)2

2σ2 , (2.11)

where a and σ 2 are parameters. This is one of the most often used distributions
in the theory of probabilities. The reason is that it possesses many useful theo-
retical properties and allows obtaining a number of analytical results. Besides,
in practice the quantities resulting from influence of multiple factors are often
distributed approximately according to the Gaussian law. It finds theoretical
justifications: the central limit theorem states that a sum of independent iden-
tically distributed random quantities is asymptotically normal, i.e. its distribu-
tion law tends to the Gaussian one for an increasing number of items.19

(ii) The exponential law (Laplace distribution):

pξ (x) =
{(

1
/

a
)

exp(−x /a), x ≥ 0,
0, x < 0; (2.12)

(iii) The uniform distribution on a segment [a, b]

pξ (x) =
{

1
/
(b − a), a ≤ x ≤ b,

0, x < a, x > b.
(2.13)

A random quantity ξ is often characterised by statistical moments of its distribu-
tion. An ordinary moment of an order n is the quantity

E
[
ξn] ≡

∞∫

−∞
xn p(x)dx . (2.14)

Here and further, E stands for the mathematical expectation of the quantity in
square brackets. The first-order moment is just the expectation of ξ . Its physical
meaning is an average over infinitely many independent trials. Central moments are
defined as ordinary moments for deviations of ξ from its expectation:

19 Some authors mention ironically the frequent use of the normal law in data analysis and the
references to the central limit theorem: engineers think that practical applicability of the central
limit theorem is a strictly proven statement, while mathematicians believe that it is an experimental
fact (see, e.g., Press et al., 1988).
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E
[
(ξ − E [ξ ])n

] ≡
∞∫

−∞
(x − E [ξ ])n p(x)dx . (2.15)

The second-order central moment is called variance. This is the most often used
measure of scattering. Let us denote it as σ 2

ξ . Then, σξ is called a root-mean-squared
(standard) deviation of ξ . The third-order central moment is called skewness (a
measure of a distribution asymmetry). The fourth-order central moment is called
kurtosis. Skewness is equal to 0 and kurtosis is 3σ 4

ξ for the normal law (2.11). If all
ordinary moments of ξ (for n = 1, 2, . . .) exist, then one can uniquely restore the
distribution function from their values. Parameters of a distribution law are related
to its moments. For instance, E[ξ ] = a and σ 2

ξ = σ 2 for the normal law (2.11);

E[ξ ] = a and σ 2
ξ = a2 for the exponential law (2.12); E[ξ ] = (a + b)/2 and

σ 2
ξ = (b − a)2/12 for the uniform law (2.13).

For two random quantities ξ1 and ξ2, one considers joint characteristics. The two
quantities can be regarded components of a two-dimensional random vector ξ . A
joint probability density function pξ(x1, x2) is then defined: a probability that the
values of ξ1 and ξ2 fall simultaneously (in the same trial) into infinitesimal segments
[x1, x1 + dx1] and [x2, x2 + dx2] equals pξ(x1, x2)dx1dx2. One also introduces a
conditional probability density for one quantity under the condition that the other
one takes a certain value, e.g. pξ1 (x1 |x2 = x∗ ). The quantities ξ1 and ξ2 are called
statistically independent if pξ(x1, x2) = pξ1(x1)pξ2(x2). In the latter case, the
conditional distributions of ξ1 and ξ2 coincide with the respective unconditional
distributions.

A random quantity depending on time (e.g. one deals with a sequence of values
of a quantity ξ ) is called a random process, see Chap. 4.

2.2.1.3 The Concept of Statistical Estimator

As a rule, in practice one does not know a distribution law and must estimate the
expectation of an observed quantity or parameters of its distribution from results of
several trials. This is a problem of mathematical statistics (Hoel, 1971; Ibragimov
and Has’minskii, 1979; Kendall and Stuart, 1979; Pugachev, 1979, 1984; Vapnik,
1979, 1995; von Mises, 1964) which is inverse to problems of the theory of prob-
ability where one determines properties of a random quantity, given its distribution
law. Let us denote a set of values of a random quantity ξ in N trials as {x1, . . . , xN }.
It is called a sample.20

A quantity whose value is obtained via processing the data {x1, . . . , xN } is called
a sample function. An estimator of some distribution parameter is a sample function,
whose values are in some sense close to the true value of that parameter.21 We denote
estimators with a “hat” like â.

20 A sample is an N -dimensional random vector with its own distribution law.
21 Theoretically speaking, any measurable sample function is called estimator. If estimator values
are not close to a true parameter value, such an estimator is just a “bad” one.
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Let a sample {x1, . . . , xN } represent independent trials. Let the expectation of ξ
be equal to a. Let the value of a be unknown but known to belong to a set A. It is
necessary to get an estimator â, which is as close to a as possible for any true value
of a from A. Any estimator is a random quantity since it is a function of random
quantities: â = f (x1, . . . , xN ). One gets a certain value of â from a certain sample
and another value from another sample, i.e. â is characterised by its own probabil-
ity density function p f (â) (Fig. 2.7), which is determined by the distribution law
pξ (x) and the way how â is computed (i.e. by the function f ). Different functions
f correspond to estimators with different distributions and, hence, with different
probabilistic properties.

2.2.1.4 Estimator Bias and Variance

The most important property of an estimator â is closeness of its values to a true
value of an estimated quantity a. Closeness can be characterised in different ways.
The most convenient and widely used one is to define an estimator error as the

Fig. 2.7 Samples consisting of 100 values taken from a Gaussian law with zero mean and unit
variance. The values of an estimator of the expectation for different samples are shown and its
probability distribution density (theoretically, it is Gaussian with zero mean and the variance of
0.1) obtained from 100 samples
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mean-squared difference between â and a:

E
[(

â − a
)2
]

≡
∞∫

−∞

(
â − a

)2
p f (â)dâ. (2.16)

It can be readily shown that the error is equal to the sum of two items:

E
[(

â − a
)2
]

= (
E[â] − a

)2 + σ 2
â . (2.17)

An estimator whose bias is equal to zero, i.e. E[â] = a for any a ∈ A, is called
unbiased. If the values of such an estimator are averaged over different samples, one
gets a quantity closer to the true value of a since the random errors in â compensate
each other. One could derive many unbiased estimators of a quantity a, i.e. different
functions f . They would differ in their variance. One can show that an unbiased
least-variance estimator is unique, i.e. if the least possible value of the variance
is σ 2

min, then it is exactly achieved only for a single estimator. An unbiased least-
variance estimator is an attractive tool, though the least value of the squared error
(2.17) may be achieved for another estimator, which is somewhat biased but exhibits
significantly smaller variance.

An unbiased estimator of the expectation from a sample of independent values is
the sample mean. We denote it by angular brackets and a subscript N : 〈ξ 〉N . This is
just an arithmetic mean

〈ξ 〉N = f (x1, . . . , xN ) = 1

N

N∑

i=1

xi . (2.18)

This is a least-variance estimator of the expectation in the case of the normally
distributed quantity ξ . If the distribution of ξ is symmetric and exhibits large kurtosis
and/or other deviations form normality, a sample median22 has typically a smaller
variance as an estimator of its expectation. As well, the sample median is more stable
to variations in the distribution law of ξ . Stability with respect to some perturbations
of the distribution law is often called robustness. To compute the sample median, one
may write down the values in a sample in ascending order: xi1 < xi2 < . . . < xiN .
Then, a sample median is xi(N+1)/2 for an uneven N and

(
xiN/2 + xiN/2+1

)
/2 for an

even N . The sample mean (2.18) is an estimator which is unbiased for any distribu-
tion of ξ , while a sample median can be biased for asymmetric distribution laws.

The sample moment of an order n can serve as an estimator of the respective
ordinary moment E[ξn]:

22 A median of a distribution is such a number b which divides the x-axis into two equiprobable
areas: P{ξ < b} = P{ξ > b} = 1/2. A median coincides with the expectation for a symmetric
distribution.
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〈
ξn 〉

N = 1

N

N∑

i=1

xn
i . (2.19)

A situation with central moments is somewhat different since the value of E[ξ ]
entering their definition is unknown. Yet, an estimator of variance can be obtained
as the sample variance

σ̂ 2
ξ = 1

N

N∑

i=1

(
xi − 〈ξ 〉N

)2
. (2.20)

It is biased due to the replacement of E[ξ ] with a sample mean. Its bias is of the
order of 1/N . One can show that an unbiased estimator is

σ̂ 2
ξ = 1

N − 1

N∑

i=1

(
xi − 〈ξ 〉N

)2
. (2.21)

2.2.1.5 Estimator Consistency

How do estimator properties change under increase in the sample size N? In general,
an estimator distribution law varies with N . Hence, its bias and variance may also
change. As a rule, one gets estimator values closer to a true value a at bigger N . If
the bias E[â] − a tends to zero at N → ∞ for any a from A, then the estimator
â is called asymptotically unbiased. If the estimator â converges to a in probability
(i.e. the probability that the estimator value differs from a true one more than by
ε tends zero for arbitrarily small ε: ∀ε > 0 P{|â − a| > ε} →

N→∞ 0), it is called

consistent. Consistency is a very important property of an estimator assuring its high
goodness for large samples. The sample moments (2.19) are consistent estimators
of the ordinary moments (Korn and Korn, 1961; Pugachev, 1979).

2.2.1.6 Method of Statistical Moments

Let us consider the problem of parameter estimation when a functional form of
the distribution pξ (x, c) is known and c = (c1, . . . , cP ) is a parameter vector tak-
ing values from a set A ⊂ R P . One of the possible approaches is the method of
statistical moments which is following. The firstP theoretical ordinary moments
are expressed as functions of parameters. Examples for normal, exponential and
uniform distributions are given above, where the first two moments are expressed as
simple functions of parameters. Thereby, one obtains a system
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E [ξ ] = g1(c1, . . . , cP ),

E
[
ξ2
]

= g2(c1, . . . , cP ),

. . . ,

E
[
ξ P

]
= gP(c1, . . . , cP ).

(2.22)

By substituting the sample moments instead of the theoretical ones into equa-
tion (2.22), one gets a set of equations for the parameters

〈ξ 〉N = g1(c1, . . . , cP ),
〈
ξ2
〉

N
= g2(c1, . . . , cP ),

. . . ,
〈
ξ P

〉

N
= gP(c1, . . . , cP ),

(2.23)

whose solution gives estimators ĉ1, . . . , ĉP . Such moments-based estimators may
not possess the best properties for small samples. However, they are asymptotically
unbiased and consistent (Korn and Korn, 1961) so that they can be readily used for
large samples.

2.2.1.7 Maximum Likelihood Method

Typically, the maximum likelihood method provides estimators with the best proper-
ties. According to it, a sample is considered as a random vector x = (x1, . . . , xN ) of
dimension N which is characterised by some probability density function depend-
ing on a parameter vector c. Let us denote such a conditional probability density
as pN (x|c). One looks for the parameter values c = ĉ maximising pN (x|c) for an
observed sample, i.e. an occurrence of the sample x = (x1, . . . , xN ) is the most
probable event for the values c = ĉ. They are called maximum likelihood estimators
(ML estimators).

The function L(c) = pN (x|c) where x is a fixed vector (an observed sample), is
called likelihood function or just likelihood. It should not be interpreted as a prob-
ability density function for parameters c since the parameters are fixed numbers
(not random quantities) according to the problem setting. Therefore, a special term
“likelihood” is introduced. ML estimators give a maximal value to the likelihood:
L(ĉ) = max

c∈A
L(c). Necessary conditions of the maximum read as

∂L(c)/∂c j = 0, j = 1, . . . , P. (2.24)

It is often more convenient to deal with the likelihood logarithm. It gets maximal
at the same point as L(c), therefore, ML estimators are found from equation

∂ ln L(c)/∂c j = 0, j = 1, . . . , P, (2.25)

which is called likelihood equation.
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For a sample consisting of independent values, the likelihood function equals
the product of probability density functions at each value of xi and the logarithmic
likelihood equals the sum of logarithms:

ln L(c) =
N∑

i=1

ln p(xi |c). (2.26)

In such a case, ML estimators are consistent and asymptotically unbiased.
Asymptotically, they are the least-variance estimators.

For the normal distribution of ξ , the logarithmic likelihood reads as

ln L(a, σ 2) = − N

2
ln
(

2πσ 2
)

− 1

2σ 2

N∑

i=1

(xi − a)2. (2.27)

One can readily see that the ML estimators of the parameters a and σ 2 coin-
cide with the sample mean (2.18) and the sample variance (2.20). Thus, the ML
estimator of σ 2 is biased. However, it tends to the unbiased estimator (2.21) with
increasing N , i.e. it is asymptotically unbiased. One can show that the ML estima-
tor â is distributed here according to the normal law with the expectation a and
the variance σ 2/N (see Fig. 2.7 for a concrete illustration). It follows from these
observations that the value of the sample mean gets closer to the true value of a for
a large number of trials, since the estimator variance decreases with N . In particular,
|â − a| < 1.96σ/

√
N holds true with a probability of 0.95.

The interval [â − 1.96σ/
√

N , â + 1.96σ/
√

N ] is called 95% confidence interval
for the quantity a. The greater the N , the narrower this interval. To estimate it from
observations, one can replace the true value of σ with its estimator σ̂ . An estimator
â is called a point estimator since it gives only a single number (a single point). If an
interval of the most probable values of an estimated parameter is indicated, then one
speaks of an interval estimator. Interval estimators are quite desirable, since from a
single value of a point estimator one cannot judge to what extent it can differ from
the true value.

2.2.1.8 When the ML Technique is Inconsistent

Sometimes, the ML technique can give asymptotically biased estimators. This is
encountered, for instance, in the investigation of a dependence between two vari-
ables when the values of both variables are known with errors. It is studied by the
so-called confluent analysis (Aivazian, 1968; Korn and Korn, 1961). As an example,
let us consider the following problem. There is a random quantity Z and quantities
X and Y related to Z via the following equations (Pisarenko and Sornette, 2004):

X = Z + ξ,

Y = Z + η,
(2.28)
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where ξ and η are independent of each other and of Z , and are normally distributed
random quantities with zero expectation and the same variance σ 2. One can say that
X and Y represent measurements of Z in two independent ways. There is a sample
of X and Y values obtained from independent trials: {xi , yi }N

i=1. It is necessary to
estimate a measurement error variance σ 2.

The simplest way to derive an estimator is to note that a quantity X −Y = ξ−η is
normally distributed with zero expectation and the variance 2σ 2, since the variance
of the sum of two independent quantities is equal to the sum of their variances.
Then, one can easily get a consistent estimator of X − Y variance from a sample
{xi − yi }N

i=1 as follows:

σ̂ 2
X−Y = 1

N

N∑

i=1

(xi − yi )
2. (2.29)

Hence, the value of σ 2 is estimated via the following equation:

σ̂ 2 = 1

2N

N∑

i=1

(xi − yi )
2. (2.30)

At the same time, a direct application of the ML technique (without introduction
of the above auxiliary variable) gives the likelihood function

L(x1, y1, . . . , xN , yN |z1, . . . , zN , σ ) = 1
(
2πσ 2

)N
exp

⎛

⎝−
N∑

i=1

(xi − zi )
2 + (yi − zi )

2

2σ 2

⎞

⎠ ,

which contains unobserved values of Z . By solving the likelihood equations, one
then gets estimators:

ẑi = (xi + yi )
/

2, i = 1, . . . , N , (2.31)

σ̂ 2
ML = 1

4N

N∑

i=1

(xi − yi )
2. (2.32)

Thus, the ML estimator of the variance is twice as small as the unbiased estima-
tors (2.30) at any N , i.e. the former is biased and inconsistent. What is a principal
difference of this problem? It is as follows: The number of estimated quantities
(equal to N + 1 under the ML method) rises with the sample size! In the previous
cases, we have considered estimation of a fixed number of parameters.

In general, the less the number of quantities estimated, the better the properties
of their estimators.
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2.2.1.9 Bayesian Estimation

A very broad branch of the theory of statistical estimation is related to the case when
true values of parameters c are also random quantities, i.e. they can vary between
different samples according to a probability density function p(c) which is called
prior. If a prior density is known, then it is reasonable to take it into account in
estimation. The corresponding approaches are called Bayesian.23

In the most widespread version, one tries to find a distribution law for the param-
eters c under the condition that a sample x1, . . . , xN has been realised. This is a
so-called posterior probability density function p(c|x1, . . . , xN ). It can be derived
if a probability density function p(x1, . . . , xN |c) at a given c is known. Then, one
finds posterior density via the Bayesian rule:24

p(c |x1, . . . , xN ) = p(c)p(x1, . . . , xN |c )
∫

p(c)p(x1, . . . , xN |c )dc
. (2.33)

We note that the denominator does not depend on the estimated parameters, since
integration over them is performed.

If a posterior distribution law is found, then one can get a concrete point estimator
ĉ in different ways, e.g., as the expectation ĉ = ∫

cp(c|x1, . . . , xN )dc or as its point
of maximum (a mode). In the absence of knowledge about a prior density, it is
replaced with a constant p(c) that corresponds to a distribution which is uniform
over a very broad segment. Then, to a multiplier independent of c, a posterior dis-
tribution coincides with the likelihood function. Further, if a Bayesian estimator is
defined as a posterior distribution mode, one comes exactly to the ML technique.

As a rule, in practice one sets up a hypothesis: which distribution law an observed
quantity follows, whether trials are independent or not, etc. Accepting such assump-
tions, one applies corresponding techniques. Validity of the assumptions is checked
with statistical tools after getting an estimate (Sect. 7.3).

2.2.2 Signs of Randomness Traditional for Physicists

All the signs listed below rely to some extent on the understanding of randomness
as a lack of “repeatability” in a process.

(a) Irregular (non-periodic) outlook of a time realisation. This is the most primitive
sign of randomness. Here, it is directly opposed to periodicity: absence of strict
period means randomness, its presence means determinancy.

23 From the name of an English priest Thomas Bayes (1702–1761), who suggested the idea in a
work published after his death.
24 In fact, this is a joint probability of two events A and B written down in
two versions: P{A ∩ B} = P{A}P{B|A} = P{B}P{A|B}. Hence, one deduces P{B|A} =
P{B}P{A|B}/P{A}.
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(b) Decaying correlations. This is a decrease of an autocorrelation function ρ(τ)

(ACF, Sect. 4.1.2) to zero with increasing τ . For a zero-mean stationary process

(Sect. 4.1.3), the ACF reads as ρ(τ) = 〈x(t)x(t + τ)〉
/√〈x2(t)〉〈x2(t + τ)〉 .

Angular brackets denote averaging over an ensemble which coincides with tem-
poral averaging for an ergodic process (Sect. 4.1.3). This sign gives, in essence,
a quantitative measure of an observed process deviation from a periodic one.
One cannot reveal periodicity with this approach if a period T > To, where To
is an observation time.

(c) Continuous spectrum. According to this sign, a process with a continuous power
spectrum (Sect. 6.4.2) is called random, while a spectrum of a periodic pro-
cess is discrete. In practice, finiteness of an observation time To limits a spec-
tral resolution: ωmin = 2π/To. By increasing an observation time To, one
would finally establish finiteness of spectral lines for any real-world process
and, strictly speaking, would have to regard any real-world process random
according to any of the signs (a–c).

(d) Irregularity of sets of data points in a restored “phase space” (Sect. 10.1):
absence of any signs for a finite dimension and so forth. These are more delicate
characteristics which are not related just to the detection of non-periodicity.

There are also more qualitative criteria: irreproducibility of a process or its
uncontrollability, i.e. impossibility to make conditions under which a process would
occur in the same way or in the way prescribed in advance, respectively.

2.2.3 Algorithmic Approach

An algorithmic approach interprets “a lack of regularity” as an excessive complex-
ity of an algorithm required to reproduce a given process in a digital form. The
idea to relate randomness to complexity was put forward for the first time by A.N.
Kolmogorov and independently by Chaitin and Solomonoff.

Any process can be represented as a sequence of 0s and 1s, i.e. written down in a
binary system: {yi }, i = 1, 2, . . ., N . Kolmogorov suggested to regard a length l (in
bits) of the shortest program capable of reproducing the sequence {yi } as a measure
of its complexity. For instance, a program reproducing a sequence 1010. . .10 (a
hundred of pairs “10”) is very short: print “10” a hundred times. If 0s and 1s are
located randomly, a program consists of symbol-wise transmission of a sequence
which appears uncompressible. Thus, l ∼ N for random sequences and l << N for
non-random ones.

Unfortunately, there is no generally applicable way to find the minimal length
of a program in practice.25 New approaches to the concepts of complexity and ran-
domness based on the idea of algorithmic complexity have been developed. A view

25 For the same fundamental reasons that are mentioned in Gödel’s theorem stating incompleteness
of any system of axioms as discussed, e.g., in Shalizi (2003) and references therein.
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relating those concepts to predictability is getting more and more popular during the
last years (Badii and Politi, 1997; Kravtsov, 1989; Shalizi, 2003).

2.2.4 Randomness as Unpredictability

Randomness or determinancy of a process is related in Kravtsov (1989, 1997) to
possibility of its prediction with the aid of an existing model. The author considers
a registered process x(t) and a model process z(t). For the sake of simplicity, it is
assumed 〈x(t)〉 = 〈z(t)〉 = 0. At a current time instant t = t0 the quantities take
the values x = x0, z = z0. It is natural to specify a model process so that z0 = x0
and assess a forecast quality via its error x(t) − z(t) = (t), (t0) = 0. The entire
approach is based on the statistical description of the pair x , z.

The values of x and z typically diverge as time passes so that the absolute
value of (t) rises. By repeating experiments and comparison of x(t) to z(t),
one can form an ensemble of realisations and estimate probability distributions
p(x, z, t, x0, z0, t0) and p(, t, x0, z0, t0). In such a description, the model pro-
cess z(t) is included into statistical considerations along with the registered process.
Measures of predictability can be the following:

(i) The mean-squared error σ 2
(τ) ≡ 〈2(τ )〉 = 〈|x(t)− z(t)|2〉, where t = t0 +τ ,

σ 2
(0) = 0. If the quantities x(t) and z(t) become statistically independent at
τ → ∞, then 〈x(t)z(t)〉 = 0 and σ 2

(τ) = 〈x2(t)〉 + 〈z2(t)〉. One assumes
that x and z are bounded. Then, a relative error can be reasonably defined as
E(τ ) = σ 2

(τ)/
(〈

x2(t)
〉 + 〈

z2(t)
〉)

so that E → 1 for t → ∞.
(ii) The cross-correlation function between an original and a model processes

D(τ ) = 〈x(t0 + τ)z(t0 + τ)〉/√〈x2(t0 + τ)〉〈z2(t0 + τ)〉. One has D(0) = 1
and |D(τ )| ≤ 1 for any τ . From well-known statistical relationships, one can
derive

D(τ ) =
〈
x2(t0 + τ)

〉 + 〈
z2(t0 + τ)

〉

2
√〈

x2(t0 + τ)
〉 〈

z2(t0 + τ)
〉 (1 − E(t)) .

Thus, the degree of predictability can be expressed via different similar quan-
tities. Qualification of a process as random or deterministic is determined by the
possibility of its prediction with an available model. Here, random is something that
we cannot predict for some reasons: due to the properties of x(t), or due to the kind
of a model process z(t), or due to the absence of a model. Such an approach to
randomness was developed within a hypothesis distinction theory for the needs of
radio-location.
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2.3 Conception of Partial Determinancy

Conception of partial determinancy is based on the convention that one chooses
unpredictability (predictability) of an observed process x(t) with a certain predic-
tive model z(t) as a sign of randomness (determinancy) of x(t). Randomness and
determinancy are not opposed to each other but considered as poles of a single
property called partial determinancy.

It is convenient to use cross-correlation between an observed and a model process
D(τ ) as a quantity characterising the degree of determinancy (predictability). Its
typical plot is shown in Fig. 2.8, where D is an area of full determinancy; DC is an
area of partial determinancy; C is an area of random (unpredictable) behaviour. An
observed process x(t) appears deterministic (predictable) if D ≈ 1; unpredictable
if |D| << 1; partially predictable if 0 < |D| < 1.

A time interval τ = τdet over which the degree of predictability falls down to
a certain threshold value, e.g. D(τdet) = 1/2, is called an interval of deterministic
behaviour. What affects this quantity? For a real-world system, it is always finite for
the following reasons:

• An observed process always differs from an investigated process due to the influ-
ence of registering devices, a measurement noise ν(t).

• There are random and/or non-random unaccounted external influences μ(t), the
so-called “dynamical noise”.

• A model does not adequately reflect properties of an object. This is a “noise of
ignorance” M(t) depending on a model structure and parameters values.

Therefore, τdet = f (ν, μ,M). Even if one manages to reduce strongly an
effect of devices and an error in a deterministic component of a model, unavoidable
external fluctuations remain. They can be related to infinite dimension of real-world
object microstructure, to noises of different origin, to senescence processes, and so
forth and principally limit predictability interval. The limit τlim = lim

ν→0,M→0
τdet =

f (ν, μ,M) is called “a predictability horizon”.
As a rule, x and z become statistically independent for τ >> τlim so that

D(τ ) → 0. An interval of deterministic behaviour τdet can exceed an autocorrelation

Fig. 2.8 Typical relationship between the degree of determinancy D(τ ) and the autocorrelation
function
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time τc of x(t) characterising the speed of its autocorrelation function decay. The
latter can be estimated as τc ≈ 1/ω, where ω is the width of the spectrum line.
For instance, one gets ω → ∞, τc = 0 for a white noise, i.e. for process which
“forgets” its past at once (Sect. 4.2). An autocorrelation time τc can be considered
as the least interval of determinancy due to the following consideration. If one has
no dynamical equations for a model z(t), then a forecast can be based on previous
values of x(t). The simplest principle is “tomorrow is the same as today”, i.e. a
model z(t + τ) = x(t). In such a case, one gets D(τ ) = ρ(τ) and τdet = τc. In
general, it can be that τdet > τc (Fig. 2.8). The same phenomenon can be close to a
deterministic one from a viewpoint of one model and fully non-deterministic from
a viewpoint of another model.

2.4 Lyapunov Exponents and Limits of Predictability

2.4.1 Practical Prediction Time Estimator

Forecast is a widespread and most intriguing scientific problem. A predictability
time for many processes is seemingly limited in principle and even not large from
a practical viewpoint. If a process under investigation is chaotic, i.e. close orbits
diverge exponentially, it is natural to expect its predictability time to be related to
the speed of close orbit divergence. The latter is determined by the value of the
largest Lyapunov exponent �1 (Sect. 2.1.4). For a dynamical model, it is reason-
able to take an interval over which a small perturbation (determined both by model
errors and different noise sources in a system) rises up to a characteristic scale of
an observed oscillations as an estimator of predictability time. A predictability time
can be roughly estimated via the following formula (Kravtsov, 1989):

τpred = 1

2�1
ln

σ 2
x

σ 2
ν + σ 2

μ + σ 2
M

, (2.34)

where σ 2
μ is the dynamical noise variance, σ 2

ν is the measurement noise variance,

σ 2
M is the model error (an “ignorance noise” variance), σ 2

x is the observable quan-
tity variance, and the largest Lyapunov exponent �1 is positive. The formula can be
derived from the following qualitative considerations. Let equations of an original
system be known exactly and initial conditions only to an error ε (measurement
noise). Then, if those “incorrect values” are taken as initial conditions for a model,
one gets a prediction error rising in time as ε · e�1t on average. If a predictability
time is defined as a time interval over which a prediction error reaches the value of
σx , one gets

τpred = 1

�1
ln
σx

ε
.
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The quantity τ� = 1/�1 is called Lyapunov time. Now, let us consider external
random influences and model errors along with the measurement noise. If all those
factors are regarded as approximately independent, an overall perturbation variance
is equal to the sum of variances of the components. Replacing ε in the last formula
for τpred by a square root of an overall perturbation variance, one gets the expres-
sion (2.34).

If noises and model errors are small as compared with the signal level, a time
interval (2.34) can significantly exceed the autocorrelation time of a process which
can be roughly estimated as τc ∼ 1/�1 in many cases. Thus, if the signal level is
1000 times as big as the noise level in terms of root-mean-squared deviations, then
a predictability time (2.34) is approximately seven times as big as the autocorrela-
tion time.

The formula (2.34) is not always applicable to estimate a predictability time. The
point is that after a certain time interval, any finite perturbation in a chaotic regime
reaches a scale where the linearised system (2.10) is no longer appropriate. Further
evolution is, strictly speaking, not connected with Lyapunov exponents. Thus, if
one is interested in a forecast with a practically acceptable accuracy rather than with
a very high accuracy, the Lyapunov exponent is not relevant and cannot impose
restrictions on a predictability time. Yet, if the Lyapunov exponent characterises a
speed of the perturbation rise at large scales correctly (which is often the case), then
one can use it to assess a predictability time even for finite perturbations and errors.

However, under stricter considerations it appears that even in the limit of
infinitesimal perturbations the Lyapunov time is not always related to a predictabil-
ity time. Let us consider this interesting fact in more detail.

2.4.2 Predictability and Lyapunov Exponent: The Case
of Infinitesimal Perturbations

The quantity (2.34) can be called a predictability time by definition. However, other
approaches are also possible. One of the reasonable ideas consists of the following
(Smith, 1997). Let us consider how a perturbation of a given initial condition x0
evolves. According to the definition of the local Lyapunov exponents (2.7), one
gets ‖ε(t0 + t‖ = ‖ε0‖eλ1(x0,t)·t in the worst case, i.e. as largest increase in
a perturbation. Let us define a predictability time via time intervals over which an
initial small perturbation gets q times greater:

τq(x0) = ln q

λ1(x0,t)
.

Such a time interval depends on x0. To get an overall characteristic of predictabil-
ity, one can average τq(x0) over an invariant measure p(x0), i.e. over probability
distribution on an attractor:
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τq ≡
∫

p(x0)τq(x0)dx0. (2.35)

This definition of a predictability time differs essentially from equation (2.34).
Thus, if a time interval over which an error gets q times greater were defined via the
largest Lyapunov exponent, then one would get

τq,� ≡ ln q

�1
= ln q

∫
p(x0)λ1(x0)dx0

= 1
∫

p(x0)
1

τq (x0)
dx0

. (2.36)

Here, the Lyapunov exponent (the quantity in the denominator) is expressed as
an average over a natural measure26 which is equivalent to temporal averaging for
an ergodic system.

Hence, the situation is analogous to the following one. There are values of a
random quantity x1, x2, . . . , xN and one needs to estimate its expectation E[x]. The
simplest way is to calculate a sample mean which is a “good” estimator: 〈x〉 =
(x1+. . .+xN )/N . This is an analogue to the formula (2.35) for a mean predictability
time. However, one can imagine many other formulas for an estimator. For instance,
one may calculate inverse values 1/x1, 1/x2, . . . , 1/xN , estimate a quantity 1/E[x]
as their sample mean and take its inverse. The resulting estimator 〈x ′〉 = N/(1/x1 +
1/x2 + . . . + 1/xN ) is an analogue to equation (2.34). However, a mean value of
the inverse quantities is generally a biased estimator of 1/E[x]. Therefore, 〈x ′〉 is
also a “bad” estimator of E[x]. The quantities 〈x〉 and 〈x ′〉 coincide only when
x1 = x2 = . . . = xN . In our case it means that the Lyapunov time coincides with τq

(up to a multiplier ln q) only if the local Lyapunov exponent does not depend on x0,
i.e. orbits diverge at the same speed at any phase space area. This is a condition of
applicability of the formula (2.34) even in the linear case.

Thus, a predictability time can be defined without appealing to the Lyapunov
exponent which seems even more reasonable. As shown below, the Lyapunov expo-
nent may not relate to a predictability time τq , i.e. a system with a greater value
of the Lyapunov exponent (a more chaotic system) can have a greater value of τq

(to be more predictable) compared to a less chaotic system. Besides, systems with
the same values of the Lyapunov exponent can have very different predictability
times τq . Let us discuss an analytic example from Smith (1997). For the sake of
definiteness, we speak of the doubling time τ2.

An example where the Lyapunov time and τ2 coincide (up to a multiplier ln 2)
is a two-dimensional non-linear map which is one of basic models in non-linear
dynamics – a baker’s map

26 Roughly, this is a probability density p of the visitations of a representative point to different
areas of an attractor (see, e.g., Kuznetsov, 2001).
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xn+1 =
{

1
α

xn, 0 ≤ xn < α,

β(xn − α), α ≤ xn < 1,

yn+1 =
{
αyn, 0 ≤ xn < α,

α + 1
β

yn, α ≤ xn < 1,

(2.37)

with α = 1/β = 1/2. This map is area preserving (conservative). It maps the square
[0, 1) × [0, 1) on itself. An invariant measure satisfies a condition p(x, y) = 1 so
that fractal dimension of any kind described in Sect. 2.1.4 is equal to 2. It is called
a baker’s map since its action on a unit square reminds operations of a baker with
a piece of pastry. Firstly, pastry is compressed twice along the y-axis and stretched
twice along the x-axis. Secondly, it is cut in half and the right piece is located over
the left one via a parallel shift. A single iteration of the map involves all those
manipulations (Fig. 2.9). For almost any initial condition on the plane, two nearby
points differing only in their x-coordinate are mapped to two points separated by
a distance twice as big as the initial one. Similarly, a distance along the y-axis
becomes twice as small in a single iteration. Thus, for any point within the square,
the direction of the x-axis corresponds to the largest local Lyapunov exponent. The
latter does not depend on the interval t and equals just to the largest Lyapunov
exponent. This is a system with a uniform speed of nearby orbit divergence. Since
�1 = ln 2, the Lyapunov time is equal to τ� = 1/ ln 2. The time τ2(x0) equals 1 for
any initial condition, i.e. a perturbation is doubled in a single iteration. Accordingly,
an average doubling time is τ2 = 1.

Let us now consider a modification of the system (2.37) called a baker’s appren-
tice map:

xn+1 =
{

1
α

xn, 0 ≤ xn < α,

(β(xn − α))mod1, α ≤ xn < 1,

yn+1 =
{
αyn, 0 ≤ xn < α,

α + 1
β
([β(xn − α)] + yn) , α ≤ xn < 1,

(2.38)

where square brackets denote the greatest integer not exceeding the number in the
brackets, α = (2N − 1)/2N and β = 22N

. The action of this map is as follows. A
greater piece of pastry [0, α) × [0, 1) is compressed very weakly along the y-axis
and stretched along the x-axis turning into the piece [0, 1)×[0, α). The right narrow
band is compressed very strongly β times along the y-axis. Thereby, one gets a

Fig. 2.9 A single iteration of a baker’s map. The square is coloured with black and white to show
where the points from different areas are mapped to
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Fig. 2.10 A single iteration of the baker’s apprentice map for N = 1 (the most “skilful” apprentice)

narrow belt of an integer length which is divided into belts of unit length. The latter
ones are located over the big piece [0, 1)×[0, α) as a pile, the left belts being below
the right ones (Fig. 2.10).

This system also preserves an area and has an invariant measure p(x, y) = 1
(hence, fractal dimension of any kind equals 2 as for the baker’s map). Its directions
corresponding to a greater and a smaller local Lyapunov exponents also coincide
with the directions of the coordinate axes. It can be shown that its largest Lyapunov
exponent is equal to �1 = α ln 1/α+(1−α) lnβ and at the above particular values,
one gets �1 = ln 2−α lnα > ln 2. Thus, system (2.38) is more chaotic than system
(2.37) in the sense of the greater Lyapunov exponent. Its local Lyapunov exponents
depend strongly on initial conditions. They are very small for the area of smaller x (a
predictability time is big), while they are very big for the area of bigger x (this area
is very narrow). An example of operations of both maps with a set of points is shown
in Fig. 2.11. A result of four iterates of the baker’s map (2.37) is shown in the middle
panel. The picture is completely distorted, i.e. predictability is bad. A result of the
four iterates of the map (2.38) with N = 4 is shown in the right panel. A significant
part of the picture is well preserved being just weakly deformed: predictability in
this area is good.

The most interesting in this example is the following circumstance. Not only
local predictability times τ2(x0) in some areas are greater for the map (2.38) than
for the map (2.37), an average time τ2 for the map (2.38) is also greater though it
has a greater Lyapunov exponent! The value of τ2 can be found analytically as

τ2 = 1 − α j

1 − α
,

Fig. 2.11 Illustration of dynamics of the maps (2.37) and (2.38) analogous to that presented in
Smith (1997): (a) an initial set of points; (b) an image under the fourth iterate of the baker’s map
(2.37); (c) an image under the fourth iterate of the baker’s apprentice map (2.38) with N = 4
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Table 2.1 Characteristics of the map (2.38) for different N : a maximal local predictability time, a
mean predictability time, the largest Lyapunov exponent (Smith, 1997)

N τ2,max τ2 �1 N τ2,max τ2 �1

1 1 1.00 1.5 · ln 2 5 22 16.09 1.04 · ln 2
2 3 2.31 1.31 · ln 2 6 45 32.49 1.02 · ln 2
3 6 4.41 1.17 · ln 2 7 89 64.32 1.01 · ln 2
4 11 8.13 1.09 · ln 2

where j =
[
− ln 2

lnα

]∗
and [·]∗ denote the smallest integer greater than or equal to the

number in the brackets. It can be shown that a predictability time τ2 ≈ 2N−1 → ∞
and �1 → ln 2 for N → ∞. The results of analytic manipulations for some N
are brought together in Table 2.1: the predictability time can be arbitrarily high for
systems as chaotic as (2.37) and even with a bit greater Lyapunov exponent!

Thus, Lyapunov exponents do not exhaust a question about predictability. Still,
they carry certain information and become relevant characteristics of predictability
if the speed of the divergence of orbits is uniform over a phase space.

2.5 Scale of Consideration Influences Classification of a Process
(Complex Deterministic Dynamics Versus Randomness)

In practice, data are measured at finite accuracy, i.e. arbitrarily small scales of
consideration are unavailable. At that, it is often difficult to decide whether an
observed irregular behaviour is deterministically chaotic or stochastic (random).
Strictly speaking, one can answer such a question only if data are generated with
a computer and, therefore, it is known what law they obey. For a real-world process,
one should ask which of the two representations are more adequate. A constructive
approach is suggested in Cencini et al. (2000), where the answer depends on the
consideration scale.

To characterise quantitatively an evolution of a perturbation with a size ε in a DS
(2.9), it is suggested to use a finite-size Lyapunov exponent (FSLE) denoted as λ(ε).
It indicates how quickly orbits initially separated by a distance ε diverge. In general,
finite perturbations may no longer be described with the linearised equation (2.10).
To compute a FSLE, one needs first to introduce a norm (length) of state vectors. In
contrast to the case of infinitesimal perturbations, a numerical value of λ(ε) depends
on the norm used. For the sake of definiteness, let us speak of the Euclidean norm
and denote the norm of an initial perturbation as ‖ε(0)‖ = ε0. The value of a pertur-
bation reaches threshold values ε1, ε2, . . . , εp at certain time instants. For instance,
let us specify the thresholds as εn = 2εn−1, n = 1, . . . , P − 1 and speak of a
perturbation doubling time for different scales τ2(εn). Let us perform N experiments
by “launching” neighbouring orbits separated by a distance ε0 from different initial
conditions. We get an individual doubling time of τ ( j)

2 (εn), j = 1, . . . , N for each
pair of orbits. A mean doubling time is defined as
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τ2(εn) = (
1
/

N
) N∑

j=1

τ
( j)
2 (εn)

and an FSLE is defined as λ(εn) = ln 2/τ2(εn).
If a process is deterministically chaotic and a speed of phase orbit divergence

is constant over an entire phase space, then lim
ε→0

λ(ε) = �1 (Sect. 2.4.2).27 It is

important that for a deterministic process, λ(ε) does not depend on ε at small scales:
λ(ε) = const. For a stochastic process, λ(ε) → ∞ for ε → 0. The law of the
rise in λ(ε) with decreasing ε may be different, e.g. λ(ε) ∝ ε−2 for a Brownian
motion (Wiener’s process, Sect. 4.2). The authors of Cencini et al. (2000) suggest
the following approach to the distinction between deterministically chaotic signals
and noisy (random) ones. If one gets for a real-world process that λ(ε) = const
within a certain range of scales, then it is reasonable to describe the process as
deterministic in that range of scales. If λ(ε) rises with decreasing ε within a certain
range of scales, then the process should be regarded as noisy within that range.

A simple example is a deterministic map exhibiting a “random walk” (diffusion)
at large scales:

xn+1 = [xn] + F(xn − [xn]), (2.39)

where

F(y) =
{
(2 + δ)y, 0 ≤ y < 0.5,
(2 + δ)y − (1 + δ), 0.5 ≤ y < 1.0,

and square brackets denote an integer part. The function F is plotted in Fig. 2.12
for δ = 0.4. The Lyapunov exponent equals to �1 = ln |F ′| = ln |2 + δ|. The
process behaves like Wiener’s process (Sect. 4.2) at ε > 1. For instance, ε = 1
means that one traces only an integer part of x . A change of an integer part by
±1 results from the deterministically chaotic dynamics of a fractional part of x .
Since the latter is ignored in consideration at large scales, the former looks like
random walk. Figure 2.13 shows that λ(ε) ≈ 0.9 and the process is classified as
deterministic within the range of scales ε < 1. One gets λ(ε) ∝ ε−2 for ε > 1 and
considers the process as random.

Let us modify the map (2.39) by introducing noise ξn uniformly distributed on
a segment [−1, 1] and replacing F with its approximation G (10,000 linear pieces
with a slope 0.9 instead of the two pieces with a slope 2.4):

xn+1 = [xn] + G(xn − [xn]) + σξn, (2.40)

27 FSLE defined via doubling times is equal to zero for a process with �1 < 0.
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Fig. 2.12 Function F(x) from equation (2.39). Horizontal lines are its approximation G(x) from
equation (2.40) consisting of 40 segments with zero slope (Cencini et al., 2000)

Fig. 2.13 FSLE versus a scale. Circles are shown for the system (2.39), squares for the system
(2.40) with G(x) consisting of 10,000 segments with a slope of 0.9 (Cencini et al., 2000)

where the quantity σ = 10−4 determines the noise standard deviation. The pro-
cesses (2.39) and (2.40) do not differ for ε > 1 and look like a random walk
(Fig. 2.13). They look deterministic with the same Lyapunov exponent in the inter-
val 10−4 < ε < 1 despite different slopes of their linear pieces: 2.4 in equa-
tion (2.39) and 0.9 in equation (2.40). This is the result of averaging of the local
linear dynamics of equation (2.40) over the scales ε > 10−4. The processes differ
for ε < 10−4 where the process (2.40) behaves again as random from the view-
point of λ(ε) due to the presence of the noise ξ . Thus, dynamical properties may
differ at different scales. It is important to take it into account in describing complex
real-world processes.

Based on the described approach, the authors have suggested witty terms to char-
acterise some irregular processes: “noisy chaos” and “chaotic noise”. The first one
relates to a process which looks deterministic (chaos) at large scales and random
(noise) at small ones, i.e. a macroscopic chaos induced by a micro-level noise.
Analogously, the second term describes a process which is random at large scales
and deterministic at small ones.
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2.6 “Coin Flip” Example

Most likely, everybody used to put a coin on bent fingers (Fig. 2.14a), offer “head”
or “tail”, flip it and . . .relieve him/herself of responsibility for some decision. A
small disk falling with rotation is popular as a symbol of candour, an embodiment
of chance for different peoples at different times. We use it below to illustrate the
discussion of determinancy, randomness, and different approaches to modelling.

We start with a conceptual model. In a typical case, a hand imparts to a coin both
a progressive motion with an initial velocity ν0 and a rotation with an initial angular
velocity ω0. Further, the disk flies interacting with the earth and an air until it falls on
a surface. If the latter is solid, then it would jump up several times and finally settle
down on one of its sides. Without a special practice, one can hardly repeat a flip
several times so as to reproduce the same result, e.g. a head. It gets impossible for a
strong flip when a coin has enough time to perform many revolutions before landing.
The main cause of irreproducibility is a significant scattering of initial velocities
and coordinate. In part, one can reach reproducibility if a special device is used, e.g.
a steel ruler with a gadget to adjust a deformation28 (Fig. 2.14b). However, such
a device is not a panacea: one can confidently predict a result only for weak flips
when a coin performs half a revolution, a single revolution or at most two revolutions
(Fig. 2.14c). The longer is the way before landing, the more is an uncertainty in a

Fig. 2.14 Exercises with a coin: (a) a standard situation; (b) a physical model with a controllable
“strength of a kick” (h is a ruler bend); (c) qualitative outlook of an experimental dependency
“frequency of a head versus a kick strength” (N experiments were performed at a fixed h, N0 is
the number of resulting heads); (d) illustration to a conceptual model

28 A persistent student providing us with experimental data flipped a coin 100 times per experiment
with a ruler. He controlled a bend of the ruler by changing the number of pages in a book serving
as a ruler support.
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final state. Frequencies of a head and a tail equalise despite conditions of successive
experiments seem the same.

For a dynamical modelling, let us characterise a coin state with a coordinate y
and a velocity v of its centre of mass along with an angle of rotation α about the
z-axis perpendicular to x and y (Fig. 2.14d) and an angular velocity ω. Let us single
out three qualitatively different stages in the system evolution and introduce special
approximation at each of them.

Start. Initial conditions: a coin starts to move having a head as its upper side with
a linear velocity ν0 directed vertically; rotation occurs clockwise with an angular
velocity ω0 (Fig. 2.14d). If 2y < d sinα for the starting conditions (where d is the
diameter of the coin), then an edge of a coin touches a support after the start of
motion (rotation leaves take-off behind) and we regard an outcome as a head. For
2ν0/ω0 > d, the coin flies away without touching the plane of y = 0.

Flight. Let us neglect interaction of a coin with air. Let it interact only with the
earth. Then, an angular velocity remains constant and is equal to ω0, while the centre
of mass moves with a constant acceleration g.

Finish. Touching a table happens at a time instant tf, 2y(tf) = d sinα(tf), and
rotation stops immediately. A coin falls on one of its sides depending on the value
of a rotation angle. One gets a head for 0 < (α(tf)mod2π) < π/2 or 3π/2 <

(α(tf)mod2π) < 2π and a tail for π/2 < (α(tf)mod2π) < 3π/2.
It is too difficult to specify a single evolution operator for all stages of motion.

Therefore, we confine ourselves only with the stage of flight and qualitative consid-
erations for the first and the last stages. Thus, it is obvious that there are many
attractors in the phase space of the system: equilibrium points with coordinates
y = ν = ω = 0, α = nπ, n = 0, 1, 2, . . ., corresponding to final states of a coin
lying on one of its sides (Fig. 2.15a shows “tail” points by filled circles and “head”
points by open ones). Different attractors correspond to different numbers of coin
revolutions before landing. According to the conceptual model, strong dissipation
takes place in shaded phase space areas, corresponding to the final stage and to a
motion with a small initial velocity ν0, and a representative point reaches one of
the two attractors. Boundaries of their basins can be determined from a model of
flight. Let us derive them in analogy to Keller (1986) asymptotically from a set of
Newton’s differential equations F = m · a and M = I · β, where F and M are
resultants of forces and their moment of rotation, respectively, a and β are linear
and angular accelerations, m and I are the coin mass and moment of inertia. In our
case, a model takes the form

dy
/

dt = v, dv
/

dt = −g, dα
/

dt = ω0, dω
/

dt = 0. (2.41)

Given initial conditions, a solution to equation (2.41) is an orbit

y(t) = v0t − gt2
/

2, v(t) = v0 − gt, α(t) = ω0t. (2.42)
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Fig. 2.15 Illustrations to the dynamics of the coin flip model: (a) a three-dimensional section of
phase space of the dynamical system (2.41) at ω = ω0. Wave-shaped surface bounds an area of the
final stage where strong dissipation takes place. The considered model of “flight” does not describe
the start from the shaded area. Curves with arrows are examples of phase orbits; (b) a section of the
phase space with a plane (y = 0, α = 0). Basin of attractors corresponding to the final state “tail”
is shaded. White rectangles illustrate an accuracy of the initial condition setting (a noise level);
their area is ν × ω

From here, one gets a dependency α(tf) = f (ν0, ω0) and expressions for the
basin boundaries on the plane ω0, ν0 (a section of phase space by a plane α =
0, y = 0, Fig. 2.15b)

α(tf) = 2ω0v0
/

g = π
/

2 + π n. (2.43)

Given exact initial conditions, which are obligatory under the dynamical
approach, a coin reaches a definite final state. According to this approach, one can
predict a final state of a coin, which is illustrated in Fig. 2.16a, where the frequency
of “a head” outcome takes only the values of 0 and 1 depending on ν0. It corresponds
to reality only for small ν0 (Fig. 2.16b). However, if a flip is sufficiently strong
so that a coin performs several revolutions, then such an approach only misleads.
Experiments show that by even making efforts to improve accuracy of initial con-
dition setting, one can assure “a head” or “a tail” outcome only for small number
of a coin revolution. A significantly more plausible model is obtained if one refuses
dynamical description and introduces random quantities into consideration. Let us
assume that ν0 = V0 + ξ , where V0 is a deterministic component, ξ is a random
quantity, e.g. distributed uniformly in some interval of ν with a centre at V0. Such
a stochastic model demonstrates dependency on V0 qualitatively coinciding with an
experiment. Frequencies of both outcomes tend to be 0.5 and vertical and horizontal
pieces of the plot are smoothed out for a large number of revolutions.

Given a uniform distribution of ξ , it is convenient to explain observed regularities
by selecting a rectangular area ν×ω with a centre at V0 (Fig. 2.15b). If the entire
area is included into a basin of a certain attractor, then an event corresponding to that
attractor occurs for sure, i.e. a frequency of one of the outcomes equals unity. If the
area intersects both basins (for “a head” and “a tail”), then a frequency of a certain
outcome is determined by a portion of the area occupied by the corresponding basin.
In general, a frequency of “a head” is defined by an integral taken over the entire
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Fig. 2.16 Frequency of “a head” versus an initial velocity v0 at a fixed value of ω0: (a) exact setting
of initial conditions; (b) an error in initial conditions

region occupied by its basin of attraction P{H} = ∫∫

H
p(ν0, ω0)dν0 dω0, where p is

the probability density for observing a “head” in respect of the initial conditions.
Apart from the considered asymptotic and stochastic models, one can suggest a

purely empirical probabilistic model. For instance, one can approximate an exper-
imental dependency of the frequency of “a head” on the initial velocity (or on the
strength of a flip) shown in Figs. 2.14c and 2.16b with a formula

N0
/

N =
⎧
⎨

⎩

z, 0 < z(v) < 1,
1, z(v) > 1,
0, z(v) < 0,

z(v) = 0.5 + a e−bv cos (cv) .

(2.44)

Thus, we have illustrated possibility of the description of a single real-world
object with different models, both dynamical and stochastic ones. Each of the mod-
els can be useful for certain purposes. It proves again a conventional character of
the labels “dynamical system” and “random quantity” in application to real-world
situations. In general, even an “international” symbol of randomness, a coin flip,
should be considered from the viewpoint of a partial determinancy conception.

Finally, we note that apart from the alternative “deterministic models versus
stochastic models”, there are other, more complex, interactions between the deter-
ministic and stochastic approaches to modelling. In particular, complicated deter-
ministic small-scale behaviour may be appropriately described by stochastic equa-
tions and large-scale averages of a random process may exhibit a good deal of deter-
ministic regularity (Sect. 2.5). Traditional statistical approaches, such as methods of
statistical moments or Kalman filtering, are successfully used to estimate parameters
in deterministically chaotic systems (see Sects. 8.1.2 and 8.2.2 for concrete exam-
ples). Concepts of the theory of probability and the theory of random processes
are fruitfully used to describe statistical properties of dynamical chaos, (see, e.g.
Anishchenko et al., 2005a, b). Therefore, both approaches discussed throughout this
chapter are often used together for the description of complex phenomena in nature.
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Chapter 3
Dynamical (Deterministic) Models
of Evolution

3.1 Terminology

3.1.1 Operator, Map, Equation, Evolution Operator

Dynamical modelling requires specification of a D-dimensional state vector x =
(x1, x2, . . . , xD), where xi are dynamical variables, and some rule �t allowing
unique determination of future states x(t) based on an initial state x(0):

x(t) = �t (x(0)). (3.1)

The rule �t is called an evolution operator. “Operator is the same as a map-
ping. . . Mapping is a law according to which an every element x of a given set X
is confronted with a uniquely determined element y of another given set Y . At that,
X may coincide with Y . The latter situation is called self-mapping” (Mathematical
dictionary, 1988) (Fig. 3.1a, b). In application to an evolution of a dynamical system
state (motion of a representative point in a phase space), one often uses the term
“point map”.

Fig. 3.1 Different kinds of maps: (a) from one set into another one; (b) self-mapping; (c) a func-
tion of time describing friction-free oscillations of a pendulum; (d) a function of two variables
describing a harmonic wave; (e) iterates of a quadratic map xn+1 = rxn(1 − xn) at r = 3.5

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_3,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 3.2 Phase space of the linear dissipative oscillator (3.2) and its discrete description: (a) a
velocity field specified by equation (3.4), arrows denote velocities of a state change; (b) a time
realisation x2(t), filled squares are the points corresponding to the Poincare section x1 = 0. They
are separated by a time interval τ = T . Their relationship is described with a map presented in the
panel c; (c) a one-dimensional return map for the Poincare section x1 = 0; an evolution can be
studied conveniently with Lamerey’s diagram (arrows)

An evolution operator can be specified directly as a map from a set of initial states
x(0) into a set of future states x(t). However, it is more often determined indirectly
with the aid of equations. “Equation is a way to write down a problem of looking
for such elements a in a set A which satisfy an equality F(a) = G(a), where F and
G are given maps from a set A into a set B”1 (Mathematical dictionary, 1988). If an
equation is given, an evolution operator can be obtained via its solution. Thus, for
an ordinary differential equation the theorem about unique existence of a solution
assures the existence and one-oneness of a map �t in equation (3.1) under some
general conditions. If an exact solution of an equation is impossible, one searches
for an approximate solution in the form of a numerical algorithm simulating a rep-
resentative point motion in a phase space (Fig. 3.2a).

3.1.2 Functions, Continuous and Discrete time

Functions of independent variables (of a single variable x = F(t) or of several
ones x = F(t, r)) map a set of the values of the independent variables into a set
of the values of the dependent (dynamical) variables. In Fig. 3.1c, d, time t and the
vector of spatial coordinates r are independent variables, while a deviation x from
an equilibrium state is a dynamical variable. If a function F depends explicitly on
the initial values of dynamical variables, it can represent an evolution operator, see,
e.g., equation (3.3).

A state of an object may be traced either continuously in time or discretely,
i.e. at certain instants tn separated from each other with a step t . In the latter

1 If A and B are number sets, one gets algebraic or transcendental equations. If they are function
sets, one gets differential, integral and other equations depending on the kind of the maps.
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case, the order number of a time instant n = 0, 1, 2, 3,. . . is called discrete time.
If observations are separated by an equal time interval t , then the relationship
between continuous time t and discrete time n is linear: tn = nt . For unequal
intervals, the dependency can be more complicated. Similarly, one can use discrete
versions of spatial coordinates, e.g. a number of steps along a chosen direction, a
number of elements in a chain or a lattice.

3.1.3 Discrete Map, Iterate

In “discrete modelling” the values of dynamical variables xn at different discrete-
time instants n are related to each other via a map from a phase space X into
itself (X → X): xn+1 = F(xn, c), where c is a parameter vector. Such a recur-
rent formula2 for an evolution operator is also called discrete map. To study a
map, one uses its iterates. Iterate (from a Latin word “iteratio”, i.e. repetition)
is a result of a repeated application of some mathematical operation. Thus, if
F(x) ≡ F(1)(x) is a certain function of x mapping its domain into itself, then
functions F(2)(x) ≡ F[F(x)], F(3)(x) ≡ F[F(2)(x)], . . . , and F(m)(x) ≡
F[F(m−1)(x)] are called the second, the third, . . ., and the mth iterates of F(x),
respectively. The index m is the order number of an iterate. For instance, Fig. 3.1e
shows three iterates of a quadratic map xn+1 = rxn(1 − xn), where r is a parameter.

3.1.4 Flows and Cascades, Poincare Section and Poincare Map

In a DS whose evolution operator is specified via differential equations, time is
continuous. In a phase space of such a DS, motions starting from close initial points
correspond to a beam of phase orbits resembling lines of flow in a fluid (Fig. 3.2a).
Such DSs are called flows in contrast to cascades, i.e. to DSs described with discrete
maps, xn+1 = F(xn, c).

The term “Poincare section” denotes a section of a phase space of a flow with a
set of dimension D −1, e.g. a section of a three-dimensional space with a surface or
a two-dimensional space with a curve. The term “Poincare map” is used for mapping
of a set of unidirectional “punctures” of a Poincare section with a phase orbit into
itself. It relates a current “puncture” to the next one.

3.1.5 Illustrative Example

Let us illustrate the above-mentioned terms with a model of the oscillations of a load
on a spring in a viscous medium. An etalon model of low-amplitude oscillations in a

2 A recurrent formula is the relationship of the form xn+p = f (xn, xn+1, . . . , xn+p−1) allowing
calculation of any element in a sequence if its p starting elements are specified.
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viscous fluid under the influence of a restoring force, proportional to the deviation x
from an equilibrium state, is an ordinary differential equation of “a linear oscillator”:

d2x/dt2 + 2δdx/dt + ω2
0x = 0. (3.2)

Similar to system (2.1), one must provide initial conditions x(0) = x0 and
dx(0)/dt=v0 to specify an orbit of the two-dimensional system uniquely. An ana-
lytic solution to equation (3.2) reads as

x(t) =
[
x0 · cosωt + v0+δ·x0

ω
sinωt

]
e−δ·t ,

v(t) =
[
v0 · cosωt − δ·v0+ω2

0 x0
ω

sinωt

]
e−δ·t ,

(3.3)

where ω =
√
ω2

0 − δ2 and v(t) = dx(t)/dt . The formula (3.3) determines the rela-
tionship between an initial state x0, v0 and a future state x(t), v(t). Thus, it gives
explicitly an evolution operator of the system (3.2).

Another way to write down evolution equations for the same system is a set of
two first-order ordinary differential equations:

dx1/dt = x2,

dx2/dt = −2δ · x2 − ω2
0x1,

(3.4)

where x1 = x, x2 = dx/dt . It is convenient for graphical representations, since it
specifies explicitly a velocity field on the phase plane (Fig. 3.2a). Roughly speaking,
one can move from an initial state to subsequent ones by doing small steps in the
directions of arrows. It is realised in different algorithms for numerical solution
of differential equations. To construct a discrete analogue of equation (3.4), one
must convert to the discrete time n = t/t . In the simplest case, one can approxi-
mately replace the derivatives with finite differences dx(t)/dt ≈(xn+1 −xn)/t and
dv(t)/dt ≈ (vn+1 − vn)/t and get difference equations which can be rewritten in
the form of a two-dimensional discrete map

xn+1 = xn + vnt,
vn+1 = vn(1 − 2δ · t)− ω2

0xnt.
(3.5)

At sufficiently small t , an orbit of the map approximates well a solution to
equation (3.4), i.e. the map (3.5) is a sufficiently accurate difference scheme.

In a Poincare section of the phase plane with a straight line x1 = 0 (an ordinate
axis), it is possible to establish the relationship between subsequent “punctures” of
the axis by a phase orbit (Fig. 3.2). The resulting Poincare map takes the form

vn+1 = vne−δ·T , (3.6)
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where T = 2π/ω. One can get more detailed information about a modelled object
motion from the map (3.5) than from the map (3.6), since the latter describes only
the decay of an amplitude. On the other hand, one can use vivid Lamerey’s diagram
in the one-dimensional case. To construct that diagram on the plane vn, vn+1, one
passes a vertical straight line to the plot of the map, then a horizontal line to the
diagonal vn = vn+1, etc., as shown in Fig. 3.2c.

3.2 Systematisation of Model Equations

Mathematicians have developed a rich arsenal of tools for dynamical description of
motions. Here, we present their systematisations according to different principles.
Firstly, we consider descriptive capabilities in application to objects with various
complexity of their spatial structure. Any real-world object is somewhat “spatially
extended”. Depending on the number and sizes of composing elements, intensity
and speed of their interaction, one can model an object as concentrated at a single
spatial point or at several ones. The latter is the simplest kind of “spatially extended”
configuration. A “completely smeared” (continuous) spatial distribution of an object
characteristic is also possible. Such an object is also called a “distributed system”.
Further, we use the term “spatially extended system” more often, since it is more
general.

If an object is characterised by a uniform spatial distribution of variables and
one can consider only their temporal variations, it is regarded as concentrated at
a single spatial point. Such a representation is appropriate if a perturbation at a
certain spatial point reaches other parts of a system in a time interval much less than
time scales of the processes under consideration. In the language of the theory of
oscillations and waves, a perturbation wavelength is much greater than the size of
an object. Concentrated systems are described with finite-dimensional models such
as difference or ordinary differential equations.

If one has to provide a continuous set of values to specify a system state uniquely,
then the system is distributed. Classical tools to model such a system are partial
differential equations (PDEs), integro-differential equations (IDEs) and delay differ-
ential equations (DDEs). For instance, in description of a fluid motion, one refuses
consideration of the molecular structure. The properties are regarded uniformly
“smeared” within “elementary volumes” which are sufficiently big as compared
with a molecule size, but small as compared with macro-scales of a system. This is
the so-called mesoscopic level.3 Such “volumes” play a role of elementary particles
whose properties vary in space and time according to the Navier–Stokes equations.
These famous partial differential equations represent an etalon infinite-dimensional
model in hydrodynamics.

3 It is intermediate between a microscopic level, when one studies elements of a system separately
(e.g. molecules of a fluid), and a macroscopic one, when an entire system is considered as a whole
(e.g. in terms of some averaged characteristics).
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Spatially extended systems can be thought of as separated into parts (elements).
Each of the parts is a system concentrated at a certain spatial point. Models of such
systems are typically multidimensional. One often uses PDEs or a set of coupled
maps or ODEs. Depending on the intensity of coupling between elements, a model
dimension required for the description of motion and relevant mathematical tools
can vary significantly. Thus, if a liquid freezes, one does no longer need PDEs to
describe motion of a resulting ice floe and is satisfied with a set of several ODEs
for rotational and progressive motions of a solid. If only progressive motions take
place, then even a model of a material point suffices.

When a signal with sufficiently broad power spectrum (Sect. 6.4.2), e.g. a short
pulse, propagates in a system, variations in its power spectrum and phase shifts at
some frequencies may induce a time delay and smearing of the signal. Smearing
occurs if a system bandwidth is insufficient to pass all components of a signal, e.g.
due to sluggishness. Thus, if one uses a δ-function input, sluggishness of a system
leads to a finite width of a response signal waveform. The stronger the sluggishness,
the wider the response waveform. A shift of the time instant when a response signal
appears relative to the time instant of an input pulse is an estimate of the delay time
(Fig. 6.4c). Both sluggishness and delay are often modelled with finite-dimensional
models, but the phenomenon of time delay is more naturally described with a DDE.
The latter is an infinite-dimensional system, since it requires an initial curve over a
time-delay interval as an initial state, i.e. a continuous set of values of a dynamical
variable.

In Fig. 3.3, mathematical tools for modelling of temporal evolution are systema-
tised according to their level of generality, their capability to describe more diverse
objects and kinds of motion. As a rule, model equations of greater generality require
greater computational efforts for their investigation.

The simplest kind of models is explicit functions of time x = F(t). In linear
problems or special cases, such models can be obtained as analytic solutions to
evolution equations. Despite an enormous number of functions used in practice
(Sect. 3.3), their capabilities for the description of complex (especially, chaotic)
time realisations are quite restricted. A somewhat more general case is represented
by algebraic or transcendental equations

F(x, t) = 0. (3.7)

If equation (3.7) has no analytic solution, then one says that it defines a depen-
dency x(t) implicitly.

A “left column” of the scheme consists of various differential equations (DEs).
These are equations involving derivatives of dynamical variables in respect of inde-
pendent variables (time t and spatial coordinates r). For instance, a general first-
order DE reads as

F(x(t, r), ∂x(t, r)/∂t, ∂x(t, r)/∂r, t, r,c) = 0, (3.8)

where x is a vector of dynamical variables. ODEs were the first differential equations
used in scientific practice
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Fig. 3.3 A conventional scheme of dynamical model kinds extending the scheme given in Horbelt
(2001). Descriptive capabilities and computational efforts required for investigation increase from
top to bottom

F(x(t), dx(t)/dt, . . . , dnx(t)/dtn, t, c) = 0. (3.9)

ODEs of the form dx/dt = F(x,c) allow a clear geometric interpretation. They
specify velocity field: a direction and an absolute value of a state change velocity
v = dx/dt at each point of a finite-dimensional phase space. A non-zero vector v
is tangent to a phase orbit at any point. Specification of the velocity field provides a
unique prediction of a phase orbit starting from any initial state, i.e. description of
all possible motions in the phase space (Fig. 3.2a).

Derivatives of dynamical variables are used in equations of several kinds which
differ essentially in the properties of their solutions and the methods of getting the
solutions. They are united with a wide vertical line in Fig. 3.3 as branches with a
tree stem. ODEs located at the top of a “stem” describe dynamics of concentrated
(finite-dimensional) systems, where one does not need to take into account contin-
uous spatial distribution of object properties. PDEs also involve spatial coordinates
as independent variables and are located at the very bottom of the scheme. They
are the most general tool, since they also describe infinite-dimensional motions of
spatially distributed systems. However, solving PDEs requires much greater compu-
tational efforts compared to solving ODEs. Besides, PDEs loose a vivid geometric
interpretation peculiar to ODEs.

Differential algebraic equations (DAEs) are just a union of ODEs and algebraic
equations:

F(dx(t)/dt, x(t), y(t), t, c) = 0,
G(x(t), y(t), t, c) = 0,

(3.10)
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where x is a D-dimensional state vector, y is a K -dimensional vector which does
not add new degrees of freedom, F is a vector-valued function of dimension D,
G is a vector-valued function of dimension K . The second equation is algebraic
and determines (implicitly) a dependence of y(t) on x(t). Methods to solve such
equations are very similar to those for ODEs.

Delay differential equations can, for instance, read as

F(x(t), dx(t)/dt, x(t − τ), c) = 0. (3.11)

Distinction from ODEs consists in that the values of dynamical variables at a
separated past time instant enter the equations along with their current values. ODEs
can be regarded as a particular case of DDEs for a zero time delay τ .

Integro-differential equations (IDEs) do not, strictly speaking, belong to the
class of DEs. Along with derivatives, they involve integrals of dynamical variables,
e.g., as

F

⎛

⎝x(t), dx(t)/dt, . . . , dnx(t)/dtn,

∞∫

−∞
k(t, t ′)x(t ′)dt ′, t, c

⎞

⎠ = 0, (3.12)

where k(t, t ′) is a kernel of the linear integral transform. If no derivatives enter an
IDE, it is called just an integral equation.

DDEs and IDEs also provide an infinite-dimensional description. DDEs can
often be considered as a particular case of IDEs. For instance, an IDE dx(t)/dt =
F(x(t))+

∞∫
−∞

k(t, t ′)x(t ′)dt ′ in the case of k(t, t ′) = δ(t − t ′ − τ) turns into a DDE

dx(t)/dt = F(x(t))+ x(t − τ).
To construct a discrete analogue of equation (3.4), one turns to the discrete time

n = t/t and finite differences. At sufficiently small t , the difference equa-
tion (3.5) have a solution close to that of equation (3.4). With increase in t , a
difference equation (a discrete map) stops to reflect properties of the original ODEs
properly. However, one can construct discrete models exhibiting good correspon-
dence to the original system for large time steps as well. In the example of an
oscillator considered above (Fig. 3.2), subsequent values vn corresponding to the
marked points in Fig. 3.2a, b are related at t = T strictly via the one-dimensional
map (3.6) (Fig. 3.2c). The latter map has a dimension smaller than the dimension
of the original system and reflects only the monotonous decay of an oscillation
amplitude and the transition to an equilibrium state. Here, the loss of information
about a system behaviour between observation instants is a payment for a model
simplicity.

Both discrete and continuous systems are valuable by themselves so that one
could avoid speaking of any priorities. However, modelling practice and recogni-
tion of specialists are historically in favour of DEs. It is due to the fact that until
the middle of twentieth century, physics was a “scientific prime” and relied mainly
on DEs, in particular, on PDEs. To study them, physicists used various analytic
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techniques. Computers and digital methods, which can now efficiently cope with
difference equations, were not yet widely available. Therefore, an arsenal of maps
used in modelling was much poorer at that time, than a collection of exemplary
flows. However, contemporary tendencies of wider usage of non-linear equations
and development of numerical techniques for investigation of multidimensional sys-
tems with complex spatial and temporal behaviours seem favourable to the progress
of discrete approaches. Currently, popular tools are discrete ensemble models called
coupled maps lattices, which combine a large number of maps with non-trivial tem-
poral dynamics (Sect. 3.7). As models of spatially extended systems, they yield to
PDEs in generality but are much simpler for numerical investigation. A specific
kind of multidimensional maps or ODEs is represented by artificial neural networks
which have recently become a widespread tool, in particular, in the field of function
approximation (Sect. 3.8).

3.3 Explicit Functional Dependencies

Dynamical models of evolution in the form of explicit functions of time x = F(t)
can be specified analytically, graphically or as tables and can be obtained in any of
the ways described in Sect. 1.5, e.g. by solving a DE or approximating experimental
data (Sect. 7.2.1). It is impossible to list all explicit functions used by mathemati-
cians. Yet, it is possible to distinguish some classes of functions. A practically
important class of elementary functions includes algebraic polynomials, power,
rational, exponential, trigonometric and inverse trigonometric functions. As well,
it includes functions obtained via a finite number of arithmetical operations and
compositions4 of the listed ones. Let us consider several elementary functions and
DEs, whose solutions they represent.

(1) Linear function x(t) = x0 + v0t is a solution to an equation

dx/dt = v0, (3.13)

which describes a progressive motion with a constant velocity v0 and an initial
condition x(0) = x0. Its plot is a straight line (Fig. 3.4a).

(2) Algebraic polynomial of an order K reads as

x(t) = c0 + c1t + c2t2 + . . . + cK t K , (3.14)

4 “Superposition (composition) of functions is arranging a composite function (function of func-
tion) from two functions” (Mathematical dictionary, 1988). Here, the terms “superposition” and
“composition” are synonyms. However, physicists often call superposition of functions f1 and f2
their linear combination af 1 + bf 2, where a and b are constants. Then, the meanings of the terms
“superposition” and “composition” become different. To avoid misunderstanding, we use only the
term “composition” in application to composite functions.
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Fig. 3.4 Plots of some elementary functions: (a) linear function; (b) power function; (c) exponen-
tial function with α > 0; (d) sinusoid

where ci are constant coefficients. It is a solution to an equation dK x/dt K =
const. A linear function is a particular case of equation (3.14) for K = 1. In the
case of uniformly accelerated motion of a body thrown up from a height h with
an initial velocity v0, an equation of motion obtained from the Newton’s second
law and the law of gravity takes the form d2x/dt2 = −g/m, where an x-axis
is directed upward, m is the mass of a body, g is the gravitational acceleration.
The solution is x(t) = h + v0t − gt2/2 (Fig. 3.4b). It is valid in a friction-free
case and until a body falls down on a land.

(3) Fractional rational function is a ratio of two algebraic polynomials x(t) =
P(t)/Q(t). Its particular case for Q(t) = const is an algebraic polynomial.

(4) Power function x(t) = tα , where α is an arbitrary real number. If α is a non-
integer, only the domain t > 0 is considered. For an integer α, it is a particular
case of an algebraic polynomial or a fractional rational function.

(5) Exponential function x(t) = x0eαt (Fig. 3.4c) is famous due to the property that
the speed of its change at a given point t is proportional to its value at the same
point. It is the solution to the equation dx/dt = αx with an initial condition
x(0) = x0, which describes, for instance, dynamics of a biological population,
where α is a constant parameter meaning birth rate.5

(6) A harmonic function x(t) = x0 cos(ωt + φ0) is one of the trigonometric
functions (Fig. 3.4d). It is a solution to an equation of the harmonic oscillator
d2x/dt2 + ω2x = 0, which is an exemplary model of friction-free oscillations
of a material point under the influence of a restoring force, proportional to a
deviation x from an equilibrium. Its constant parameters are an amplitude of
oscillations x0, angular frequency ω and an initial phase φ0. A bivariate har-
monic function x(t, r) = x0 cos(ωt − kr + φ0) describes a monochromatic
wave of length λ = 2π/k travelling along the r -axis, which is a solution to the
simple wave equation ∂x/∂t + V ∂x/∂r = 0.

Wide usage of trigonometric functions is to a significant extent due to the fact
that according to Weierstrass’ theorem, any continuous periodic function x(t) can
be arbitrarily accurately approximated with a trigonometric polynomial

5 Exponential rise of a population observed at α > 0 is called the Malthusian rise, since a catholic
monk Malthus in the sixteenth century was the first who got this result. It is valid until population
gets too large so that there is no longer enough food for everybody.



3.4 Linearity and Non-linearity 81

x(t) =
K∑

i=0

ck cos(2πk/T + φk), (3.15)

where K is a polynomial order. A non-periodic function can be approximated with
such a polynomial over a finite interval.

An analogous theorem was proved by Weierstrass for the approximation of func-
tions with an algebraic polynomial (3.14). Algebraic and trigonometric polynomi-
als are often used for approximation of dependencies. This is the subject of the
theory of approximation (constructive theory of functions), see Sect. 7.2. In the
recent decades, artificial neural networks (Sects. 3.8 and 10.2.1), radial basis func-
tions (Sect. 10.2.1) and wavelets compete with polynomials in the approximation
practice. Wavelets have become quite popular and are considered in more detail in
Sect. 6.4.2. Here, we just note that they are well-localised functions with zero mean,
e.g. x(t) = e−t2/2 − (1/2)e−t2/8.

We will consider non-elementary functions and extensions to the class of ele-
mentary functions in Sect. 3.5.

3.4 Linearity and Non-linearity

“Nonlinearity is omnipresent, many-sided and inexhaustibly diverse. It is every-
where, in large and small, in phenomena fleeting and lasting for epochs. . . Non-
linearity is a capacious concept with many tinges and gradations. Nonlinearity of
an effect or a phenomenon means one thing, while nonlinearity of a theory means
something different” (Danilov, 1982).

3.4.1 Linearity and Non-linearity of Functions and Equations

The word “linear” at a sensory level is close to “rectilinear”. It is associated with a
straight line, proportional variations of a cause and an effect, a permanent course,
as in Fig. 3.4a. However, according to the terminology used in mathematics and
non-linear dynamics, all the dynamical systems mentioned in Sect. 3.3 are linear
though the plots of their solutions are by no means straight lines (Fig. 3.4b–d).
Evolution operators of those dynamical systems (i.e. differential or difference equa-
tions and discrete maps) are linear rather than their solutions (i.e. functions of time
representing time realisations).

What is common in all the evolution equations presented in Sect. 3.3? All of
them obey the superposition principle: If functions x1(t) and x2(t) of an inde-
pendent variable t are solutions to an equation, then their linear combination
ax1(t) + bx2(t) is also a solution, i.e. being substituted instead of x(t), it turns
an equation into identity. Only the first powers of a dynamical variable and its
derivatives (x, dx/dt, . . ., dn x/dtn) may enter a linear DE. No higher powers and
products of the derivatives may be present. Accordingly, linear difference equations
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may include only the first powers of finite differences or a dynamical variable val-
ues at discrete-time instants. Equations of any kind are linear if their right-hand
and left-hand sides are linear functions of a dynamical variable and its derivatives.
Violation of this property means non-linearity of an equation. For instance, equa-
tions (3.2), (3.4), (3.5), (3.6) and (3.13) are linear, while equation (2.1) is non-
linear. However, linear non-autonomous (involving an explicit time dependence)
equations may include non-linear functions of an independent variable (time), e.g. a
non-autonomous linear oscillator reads as d2x/dt2 + 2δdx/dt + ω2

0x = A cos ωt .
A linear function “behaves” quite simply: it monotonously decreases or increases

with an argument or remains constant. But linearity of a dynamical system does not
mean that its motion is inevitably primitive, which can be seen even from several
examples presented in Fig. 3.4. Taking into account the superposition principle,
one may find a solution for a multidimensional linear equation as a combination
of power, exponential and trigonometric functions (each of them being a solution)
which demonstrates quite a complicated temporal dependence, indistinguishable in
its outward appearance from an irregular, chaotic behaviour over a finite time inter-
val. However, linear systems “cannot afford many things”: changes in a waveform
determined by the arousal of higher harmonics, dynamical chaos (irregular solutions
with exponential sensitivity to small perturbations), multistability (coexistence of
several kinds of established motions), etc.

Systems, processes, effects, phenomena are classified as linear or non-linear
depending on whether they are adequately described with linear equations or non-
linear ones. The world of non-linear operators is far richer than that of linear ones.
Further, there are much more kinds of behaviour in non-linear dynamical systems.
The place of “linear things” in a predominantly non-linear environment, “particu-
larly” of linear representations, follows already from the fact that non-linear systems
can be linearised (i.e. reduced to linear ones) only for low oscillation amplitudes.
For that, one replaces dynamical variables xk in the equations by the sums of their
stationary and variable parts as xk = x0,k + x̃k(x0,k >> x̃k) and neglects small
terms (higher powers of x̃k , their products, etc.).

Historically, linear equations in a precomputer epoch had incontestable advan-
tage over non-linear ones in scientific practice, since the former could be investi-
gated rigorously and solved analytically. For a long time, one confidently thought
that linear phenomena are more important and widespread in nature and linear
approaches are all-sufficient (see discussion in Danilov, 1982). Development of
computers, numerical techniques for solving non-linear equations and tools for their
graphical representation along with the emergence of contemporary mathematical
conceptions, including dynamical chaos theory, shifted an attitude of scientists more
in favour of non-linear methods and ideas. At that, the linear viewpoint is regarded
an important but a special case.

3.4.2 The Nature of Non-linearity

Non-linearity is natural and organically inherent in the world where we live. Its
origin can be different and determined by specific properties of objects. One should
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speak of conditions for linearity to be observed, rather than for non-linearity.
However, according to existing traditions one often explains appearance of non-
linearity by a competition between eigenmodes of a linearised system or by a param-
eter dependence on a dynamical variable. The latter dependence is often vitally
necessary and can be realised via a feedback. If sensitivity of vision or hearing
organs were constant, independent of an influence level (luminosity or sound vol-
ume), one might not successfully orient oneself in gloom and avoid becoming blind
during a sunny day, hear a rustle of a creeping snake and avoid getting deaf from
thunder. “Biological systems which could not capture enormous range of vitally
important influences from environment have just died out loosing the struggle for
existence. One could write down on their graves: They were too linear for this
world” (Danilov, 1982).

Thus, if a coefficient of reproduction k for a population were constant, indepen-
dent of the number of individuals xn (n is discrete time), then at k > 1 one would
observe its unbounded rise with time according to a linear evolution law:

xn+1 = kxn . (3.16)

In such a case, overpopulation would be inevitable, while at k < 1 a total dis-
appearance of a population would come. A more realistic is a dependence of the
parameter k on the variable xn , e.g. k = r(1 − xn) leading to non-linearity of an
evolution operator xn+1 = rxn(1 − xn). Non-trivial properties of this exemplary
one-dimensional dynamical system called the logistic map, including its chaotic
behaviour, are well studied (see also Sect. 3.6.2).

3.4.3 Illustration with Pendulums

Widely accepted exemplary objects for illustrations of linear and non-linear oscil-
latory phenomena are pendulums, i.e. systems oscillating near a stable equilibrium
state. Their simplest mechanical representatives are a massive load suspended with
a thread or a rod (Fig. 3.5a), a load on a spring (Fig. 3.5c), a ball rolling in a pit, a
bottle swimming in water, liquid in a U-shaped vessel, and many others. An elec-
tric pendulum is the name for a circuit consisting of a capacitor and inductance,
an oscillatory circuit (Fig. 3.5b). One speaks of a chemical pendulum (mixture
of chemicals reacting in an oscillatory manner) and an ecological pendulum (two
interacting populations of predators and preys) (Trubetskov, 1997).

A free real-world pendulum reaches finally a stable equilibrium state (free
motions, Fig. 3.5). Depending on initial conditions (a deviation from a stable equi-
librium state x and a velocity dx/dt) and object properties, different motions may
precede it. In Fig. 3.5 we illustrate two areas of qualitatively different motions:
the left one corresponds to relatively large x , when non-linearity is essential,
while the right one corresponds to small, “linear” ones. Time realisations of low-
amplitude oscillations are identical for all the pendulums considered. The oscil-
lations are isochronous, i.e. their quasi-period T1 does not depend on a cur-
rent state. They represent a decaying sinusoid which is a solution to the linear
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Fig. 3.5 Qualitative outlook of time realisations of x and dx/dt for different pendulums: (a) a
load on a rod; (b) an oscillatory circuit with a diode; (c) a load on a spring; (d) a linear stage
of oscillations (the same for all the examples) is magnified and the corresponding phase portrait
on the plane (x, dx/dt) is shown. A representative point moves along an intertwining spiral to an
attractor, i.e. to a stable equilibrium point at the origin. Phase portraits of the pendulums are more
complicated and diverse in a region of large values of coordinates and velocities

equation (3.2) describing low-amplitude oscillations of all the systems consid-
ered up to the coefficients of proportionality. This circumstance is a legal reason
to call those oscillations linear. Monotonous decay of oscillations can be mod-
elled with the linear one-dimensional map xn+1 =axn , where a =exp(−δT1)< 1
(Fig. 3.2c).

As compared with a common “standard” for linear oscillations (3.2), types of
non-linear behaviour are quite diverse and determined by the properties of each
concrete pendulum. Thus, a character of non-linear behaviour differs essentially for
the three examples in Fig. 3.5, while their linear stages are identical (Fig. 3.5d).
This is related to the peculiarities of each pendulum and to the kinds of their non-
linearity (dependency of the parameters on the dynamical variables). For instance,
a load on a rod (Fig. 3.5a) exhibits non-linearity due to sinusoidal dependence of a
gravitational force moment about a rotation axis on a rotation angle. In an electric
pendulum with a semiconductor capacitor (a varactor diode, Fig. 3.5b), non-linearity
is related to the properties of a p – n junction, injection and finiteness of charge
carrier lifetime. Non-linearity of a spring pendulum (Fig. 3.5c) is determined by
the dependence of an elastic force on a spring deformation. For instance, spring
coils close up under compression so that an elastic force rises abruptly as compared
with the force expected from Hooke’s law, i.e. the spring “gets harder”. At that, a
period of oscillations decreases with their amplitude. In analogy, non-linearity of
any oscillator leading to decrease (increase) in a period with an amplitude is called
hard (soft) spring non-linearity.
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3.5 Models in the form of Ordinary Differential Equations

3.5.1 Kinds of Solutions

Emergence of ordinary differential equations and their history is related to the names
of Newton and Leibniz (seventeenth to eighteenth centuries). Afterwards, general
procedures to obtain model equations and to find their solutions were developed
within analytic mechanics and the theory of differential equations. Here, we describe
possible kinds of solutions following the review of Rapp et al. (1999).

3.5.1.1 Elementary Solutions

A solution to a differential equation in the form of an elementary function is called
an elementary solution. We confine ourselves with examples from Sect. 3.3. In all
of them functions–solutions give exhaustive information about a model dynamics.
Interestingly, understanding the behaviour of a dynamical system at Newton’s time
was tantamount to writing down a formula for a solution x = F(t). That approach
even got the name of a Newtonian paradigm (Rapp et al., 1999). One spoke of
a finite (preferably short) expression consisting of radicals (nth roots), fractional
rational, exponential, logarithmic and trigonometric functions. All the solutions con-
sidered in Sect. 3.3 are of such a form.

The class of elementary functions (and elementary solutions) is often extended
with algebraic functions, i.e. solutions to the algebraic equations

an(t)x
n(t)+ an−1(t)x

n−1(t)+ . . . + a1(t)x(t)+ a0(t) = 0, (3.17)

where n is an integer, ai (t) are algebraic polynomials. All fractional rational func-
tions and radicals are algebraic functions. The reverse is not true: algebraic functions
can be defined by equation (3.17) implicitly.

3.5.1.2 Closed-Form Solutions

Not all differential equations have elementary solutions. There are elementary func-
tions whose integrals are not elementary functions. One of the simplest examples is
an elliptic integral

t∫

0

dτ√
1 + τ 4

.

The integral exists but is not an elementary function. However, even if an integral
of an elementary function is not elementary, one can efficiently cope with it by
evaluating it approximately with the aid of available numerical methods.
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Expression of a solution via formulas containing integrals of elementary func-
tions is also regarded a complete solution to an equation, so-called integration in
finite terms. Thus, a solution to the equation

dx/dt + et2
x = 0 (3.18)

given x(0) = x0, reads

x(t) = x0 exp

⎛

⎝−
t∫

0

eτ
2
dτ

⎞

⎠ .

Such a result is called a closed-form solution. An elementary solution is its par-
ticular case.

Liouville showed that some DEs have no closed-form solutions. For instance, an
equation

dx/dt + x2 = t (3.19)

which at the first glance seems very simple, cannot be solved in finite terms. A solu-
tion exists but cannot be expressed in a closed form. There is no general procedure
to get closed-form solutions, though there are many special techniques. In practice,
it is often very difficult or even impossible to obtain a closed-form solution.

3.5.1.3 Analytic Solutions

When a closed-form solution is lacking, one can further complicate a technique and
try to find a solution in the form of an infinite power series. For instance, let us
search for a solution to an equation

d2x/dt2 − 2t dx/dt − 2x = 0 (3.20)

in the form

x(t) = a0 + a1t + a2t2 + . . . =
∞∑

i=0

ai t
i . (3.21)

Let us substitute the latter formula into the original equation and combine the
terms with the same powers of t . Each such combination must be equal to zero.
Finally, one gets the following recurrent relationship for the coefficients: an+2 =
2an/(n + 2). The coefficients a0 and a1 are determined by initial conditions. Thus,
for a0 = 1 and a1 = 0, one gets

x(t) = 1 + t2 + t4/2! + t6/3! + . . . . (3.22)
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In this particular case, one gets a Taylor expansion for the function x(t) = et2
as

the answer. If an obtained power series converges, which is not always the case, and
one has derived a formula for its coefficients, then such a solution is called an ana-
lytic solution or a series solution. It is the second-best to the closed-form solution.
If an obtained series converges slowly, then its practical application is unfeasible. In
particular, such a situation takes place in a famous three-body problem which has a
practically useless analytic solution in the form of a very slowly converging series
(Wang, 1991).

3.5.1.4 Numerical solutions

Above considered equations with explicit time dependence and elementary non-
linearities are relatively simple. In a general case, when a problem cannot be reduced
to a linear one or to a certain specific class of equations, one searches for an approx-
imate solution with numerical techniques, given initial and/or boundary conditions.
The oldest and simplest one is the Euler technique. However, more accurate and
complicated modern methods rely to a significant extent on the same idea. In par-
ticular, Runge–Kutta techniques are very popular. Adams integrator and Bulirsch
and Stoer technique have their own advantages and shortcomings, they are often
superior to Runge–Kutta techniques in terms of both computation time and accuracy
(Kalitkin, 1978; Press et al., 1988; Samarsky, 1982).

According to the above-mentioned Newton’s paradigm, a numerical solution was
by no means satisfactory since it did not allow understanding qualitative features of
dynamics and could be useful only for the prediction of future behaviour. The view-
point changed since efficient computers and rich computer graphical tools arose,
which currently allows one both to get qualitative ideas about a model behaviour
and to compute a sufficiently accurate approximate solution. Since one can now
investigate numerically a very broad class of non-linear equations, researchers pay
more attention to the problem of how to get a model DE.

The use of any of the four ways mentioned in Sect. 1.5 is possible for that. Still,
the most popular method is a way from general to particular since majority of
known physical laws take the form of DEs. Besides, the entire apparatus of DEs
was created to describe basic mechanical phenomena. Most of the models consid-
ered by physicists are asymptotic ones; they are obtained via restrictions imposed
on universal formulas by a specific problem. Sometimes, one says that a model is
obtained from “the first principles” implying some general relationships for a con-
sidered range of phenomena, from which one deduces concrete models (yet, such
a use of the term “first principles” is criticised from a philosophical viewpoint).
These are conservation laws and Newton’s laws in mechanics, continuity equations
and Navier–Stokes equations in hydrodynamics, Maxwell’s equations in electrody-
namics, derived special rules like Kirchhoff’s laws in the theory of electric circuits,
etc. Many non-standard examples of an asymptotic modelling of important physical
and biological objects are given by a mathematician Yu.I. Neimark (1994–1997).

Modelling from simple to complex, e.g. creation of ensembles, is also typical
when DEs are used. It is widely exploited in the description of spatially extended
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systems. The greater the number of elements included into an ensemble, the wider
the class of phenomena covered by the model. Classical models are ensembles of
coupled oscillators which represent an approved way of sequential complication
of phenomena under consideration in tutorials on the theory of oscillations. An
empirical approach to obtaining model DEs (reconstruction from time series) is
considered in Part II.

3.5.2 Oscillators, a Popular Class of Model Equations

To illustrate possibilities of DE-based models, we select again the class of oscilla-
tors. Why is our choice from an “ocean” of models so monotonous? The point is that
any number of diverse examples cannot capture all specific descriptive capabilities
of DEs. Thus, any example would give just a fragment of a general picture while
really general things would be lacking. Therefore, it is reasonable to consider an
example whose prehistory and some basic properties are known to a wide audience.
Many people have met oscillators for the first time already at the lessons of school
physics.

One calls “oscillators” both objects capable of oscillating about an equilibrium
state and equations modelling such motions. Motion of an oscillator occurs within
some potential profile either with friction or without it. An etalon oscillator equation
is a second-order DE

d2x/dt2 + γ (x, dx/dt)dx/dt + f (x) = F(t), (3.23)

where the second term on the left-hand side corresponds to dissipation (fric-
tion forces), the third term is determined by a potential U (a restoring force is
−∂U/∂x = − f (x)) and the right-hand side represents an external force. A num-
ber of research papers, reviews and dissertations are devoted to different kinds of
oscillators (Scheffczyk et al., 1991; http://sgtnd.narod.ru/eng/index.htm).

Linear oscillators correspond to the case of γ = const and f (x) = ω2
0x . The

latter means the quadratic potential U (x) ∼ x2. An autonomous oscillator (F = 0)
is a two-dimensional (D = 2) dynamical system. It demonstrates either decaying
(γ > 0, a dissipative oscillator) or diverging (γ < 0) oscillations. The autonomous
dissipative oscillator has a stable fixed point as an attractor. Dimension of this attrac-
tor is zero and both Lyapunov exponents are negative. This is one of the simplest
dynamical systems in terms of possible kinds of behaviour.

Under a periodic external driving, the dissipative oscillator can be rewritten as a
three-dimensional (D = 3) autonomous dynamical system (Sect. 3.5.3). It exhibits
periodic oscillations with a period of the external force, i.e. has a limit cycle as an
attractor in a three-dimensional phase space, and demonstrates a phenomenon of
resonance. The dimension of the attractor is one and the largest Lyapunov expo-
nent is equal to zero. Thus, the driven linear dissipative oscillator represents a more
complex dynamical system compared to the autonomous one.
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If a dissipative term involves non-linearity, e.g. like in van der Pol equation

d2x/dt2 − α(1 − βx2)dx/dt + ω2
0x = 0, (3.24)

then the oscillator becomes non-linear and is capable of demonstrating its own
periodic oscillations (a regime of self-sustained oscillations). The system is two
dimensional and its attractor is a limit cycle in a two-dimensional phase space for
β > 0. The dimension of the attractor is then equal to one and its largest Lya-
punov exponent is zero. In terms of the complexity of the dynamics (Lyapunov
exponents and dimension of an attractor), the system (3.24) is more complex than
the autonomous linear dissipative oscillator. In terms of the above dynamical char-
acteristics, it exhibits at fixed values of α, β approximately the same complexity as
the harmonically driven linear oscillator. However, the shape of time realisations can
be more diverse for the system (3.24), depending on α, β. For instance, it exhibits
almost sinusoidal waveform like the driven linear oscillator for small values of α, β
and periodic “relaxation” oscillations, where the plot x(t) resembles a saw, for big
values of α, β.

In the non-autonomous case, the oscillator (3.24) exhibits much richer dynam-
ics. Even harmonic driving may induce such kinds of behaviour as quasi-periodic
oscillations, synchronisation of self-sustained oscillations by an external signal or
even chaotic sets in the phase space if the driving amplitude is large enough.
Thus, harmonically driven van der Pol oscillator is a considerably more com-
plex system than the above linear oscillators and the autonomous van der Pol
oscillator.

A non-quadratic potential profile U (x) also means non-linearity of equa-
tion (3.23). Accordingly, its possible solutions get essentially more diverse. Even
under a harmonic influence, a non-linear oscillator (which can be rewritten as a
three-dimensional autonomous dynamical system) may exhibit a hierarchy of oscil-
latory regimes and non-linear phenomena including transition to chaos, multistabil-
ity and hysteresis in a region of resonance. Thus, it can exhibit attractors with fractal
dimensions greater than one and a positive largest Lyapunov exponent. Therefore, it
is a more complex system than the linear oscillators or the autonomous van der Pol
oscillator.

It is not straightforward to decide whether the driven van der Pol oscillator or the
driven non-linear dissipative oscillator is more complex. The latter exhibits more
diverse dynamical regimes than does the former due to different possible forms of
U (x) as described below, but in the case of strong dissipation, it cannot exhibit
stable quasi-periodic regimes (where an attractor is a torus, the dimension is equal
to two and two largest Lyapunov exponents are equal to zero) which are typical of
the driven van der Pol oscillator.

The general non-autonomous oscillator (3.23) with arbitrary non-linear dissipa-
tion and arbitrary potential profile includes both the case of the driven non-linear
dissipative oscillator and the driven van der Pol oscillator and, hence, may exhibit
all the dynamical regimes mentioned above. Specific properties of different non-
linear oscillators are determined by the concrete functions entering equation (3.23).



90 3 Dynamical (Deterministic) Models of Evolution

To select general features, one systematises oscillators in respect of (i) the depen-
dency of a period of oscillations on their amplitude (“hard spring” and “soft spring”)
(Neimark and Landa, 1987; Scheffczyk et al., 1991; Thompson and Stewart, 2002),
(ii) an order of the polynomial specifying the potential profile like in the theory of
catastrophes (Kuznetsov and Potapova, 2000; Kuznetsova et al., 2004), etc. Below,
we characterise complexity of the dynamics of several oscillators on the basis of
their parameter space configurations.

When dissipation is too strong so that self-sustained oscillations are impossible, a
parameter space of an oscillator is typically characterised by bifurcation sets called
“cross-road area” (Carcasses et al., 1991; Mira and Carcasses, 1991) and “spring
area” (Fig. 3.6). Cross-road area is a situation where domains of two cycles intersect,
their boundaries representing period-doubling lines are stretched along boundaries
of a “tongue” formed by saddle-node bifurcation lines and bistability takes place
inside the tongue. Spring area is the case where a period-doubling line stretched
along the above-mentioned tongue makes a characteristic turn around a “vertex”
of the tongue, a point of the “cusp” catastrophe. Those universal configurations
fill a parameter space in a self-similar manner (Parlitz, 1991; Schreiber, 1997). A
fragment of a typical picture is seen already in Fig. 3.6: the right structure of the
“spring area” (born on the basis of a double-period cycle) is built into an analogous
upper structure (born on the basis of a “mother” cycle whose period is doubled when
one moves to bottom along a parameter plane). A chart of regimes in Fig. 3.11 gives
additional illustrations.

Fig. 3.6 A typical configuration of bifurcation lines “cross-road area” and “spring area” on a
parameter plane. Domains of cycle stability are shown in greyscale. Lines of a saddle-node bifurca-
tion are denoted as sn, lines of a period-doubling bifurcation are pd, lines of a symmetry-breaking
bifurcation are sb. In parentheses, we show the number of an external force periods n and the
number of the own periods m contained in a single period of a cycle loosing stability on a given
line. A and B are conventional sheets used to illustrate bistability
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Fig. 3.7 Parameter plane A–N for the Toda oscillator (3.25): A is the driving amplitude, N is
the normalised driving frequency. Greyscales show domains of existence of different regimes.
Numbers indicate periods of oscillations in units of the driving period

Those self-similar typical configurations do not exhaust a diversity of possible
bifurcation structures in parameter spaces of oscillators. For instance, oscillators
with strong dissipation and a potential profile essentially different from the quadratic
one exhibit a specific configuration of a domain where an arbitrary oscillatory
regime exists and evolves to chaos. The domain has the form of a narrow bent
strip resembling an “ear” (Fig. 3.7). An equation of the Toda oscillator driven by
a sinusoidal external force demonstrating the described structure of the parameter
space reads as

d2x/dt2 + γ dx/dt + ex − 1 = A sinωt. (3.25)

Let us denote the normalised frequency of driving N = ω/ω0, where ω0 is the
frequency of low-amplitude free oscillations, ω0 = 1 for the system (3.25).

One more universal configuration of bifurcation sets for non-autonomous oscilla-
tors is presented in Sect. 3.6, where Fig. 3.9 illustrates a parameter plane of a circle
map. It corresponds to a periodic driving applied to a system capable of exhibit-
ing self-sustained oscillations. A universal configuration on the plane of driving
parameters represents a hierarchy of so-called Arnold’s tongues, i.e. domains where
synchronisation takes place. Bifurcation lines inside a tongue exhibit the “cross-road
area” structure.

As a solid residual from the current subsection, we stress (i) diversity of evolu-
tionary phenomena which can be modelled with equations of oscillators and with
DE-based models in general; (ii) complexity of observed pictures which can be
systematised and interpreted in different ways, in particular, on the basis of typical
“charts of dynamical regimes” and scaling properties (Kuznetsov and Kuznetsov,
1991, 1993b; Kuznetsov and Potapova, 2000; Neimark and Landa, 1987; Parlitz,
1991; Scheffczyk et al., 1991; http://sgtnd.narod.ru/eng/index.htm); (iii) an oppor-
tunity to observe different bifurcation sets and other specific features for different
kinds of non-linearity.
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3.5.3 “Standard form” of Ordinary Differential Equations

Despite multitude of ODE forms, the following one is the most popular among them
and allows a clear geometrical interpretation:

dx1/dt = F1(x1, x2, . . . , xn),

dx2/dt = F2(x1, x2, . . . , xn),

. . . ,

dxn/dt = Fn(x1, x2, . . . , xn).

(3.26)

Any set of autonomous ODEs can be reduced to such a form, solved in respect
of the highest derivatives. A system (3.26) via a change of variables (probably, at
the expense of the dimension increase, i.e. D > n) can be rewritten in the form

dy1/dt = y2,

dy2/dt = y3,

. . . ,

dyD/dt = F(y1, y2, . . . , yD),

(3.27)

where y1 is an arbitrary smooth function of the vector x: y1 = h(x1, x2, . . . , xn),
e.g. y1 = x1. Equation (3.27) is sometimes called standard (Gouesbet and Letellier,
1994; Gouesbet et al., 2003b). It is widely used in empirical modelling when a
model state vector is reconstructed from a scalar observable via sequential differ-
entiation (Sect. 10.2.2). However, it is not always possible to derive the function
F in equation (3.27) explicitly. Possibility of reduction of any set of ODEs to the
form (3.27) was proven by Dutch mathematician Floris Takens. Formulations of the
theorems and some comments are given in Sect. 10.2.1 below.

A simple example is an equation of a dissipative oscillator under an additive
harmonic driving:

d2x/dt2 + γ dx/dt + f (x) = A cos (ωt) (3.28)

with γ = const which can be rewritten as a non-autonomous set of two equations:

dx1/dt = x2,

dx2/dt = −γ x2 − f (x1) + A cos (ωt),
(3.29)

where x1 = x , or as a three-dimensional autonomous system

dx1/dt = x2,

dx2/dt = −γ x2 − f (x1) + A · cos x3,

dx3/dt = ω,

(3.30)
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where x1 = x and x3 = ωt , or as a four-dimensional “standard” system

dx1/dt = x2,

dx2/dt = x3,

dx3/dt = x4,

dx4/dt = −γ x4 −
(

d f (x1)

dx1
+ ω2

)
x3 − d2 f (x1)

dx2
1

x2
2 − ω2γ x2 − ω2 f (x1),

(3.31)

where x1 = x . To derive the formula (3.31), one differentiates twice equation (3.28)
in respect of time and substitutes the left-hand side of (3.28) instead of A cos (ωt)
into an obtained equation. Apart from increasing number of dynamical variables
(four ones instead of the two), the conversion leads to complication of the right-
hand side of the last equation in (3.31) as compared with the original form (3.28).
However, all the dynamical variables are related only to the variable x (they are its
derivatives) that gives an advantage in the construction of such a model from a time
realisation of x .

3.6 Models in the Form of Discrete Maps

3.6.1 Introduction

Similar to DE-based models, discrete maps represent a whole “stratum” of math-
ematical culture with its own history and specific features (Neimark, 1972). This
section is a specialised introduction oriented to applications of discrete maps to
empirical modelling.

Quite a widespread approach to obtain a model map is to approximate experi-
mental data. In asymptotic modelling, maps are most often derived through a con-
version from a DE to a finite-difference scheme or a Poincare section (Sect. 3.1).
Creation of an ensemble of maps is a popular way to model a spatially extended
system. Usually, such models take the form of coupled map chains and lattices
with different coupling architectures: local coupling (only between “neighbours”),
global coupling (all-to-all connections), random connections, networks with com-
plex topology (Sect. 3.7.3), etc.

Simplicity of numerical investigation, diversity of dynamical regimes ranging
from an equilibrium to chaos exhibited even by one-dimensional maps and the ease
of constructing ensembles from simple basic elements have made discrete maps a
dominating mathematical tool in non-linear dynamics. Currently, they are a full-
fledged “competitor” of flows. Let us discuss several examples.
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3.6.2 Exemplary Non-linear Maps

3.6.2.1 Piecewise Linear Maps

Seemingly, piecewise linear maps have the second simplest form after the linear
map (3.16) capable of demonstrating simple rise or decay of a variable. Different
kinds of such maps were studied, in particular:

(i) The “saw tooth” is the map xn+1 = {2xn}, where braces denote fractional
part of a number. Its plot is shown in Fig. 3.8a. The map is remarkable since
it allows strictly and clearly prove an existence of dynamical chaos in simple
non-linear systems. In a binary system, the map in a single iteration shifts a
binary point one position to the right (Bernoulli’s shift) and throws away an
integer part of the resulting number. To illustrate irregularity and high sen-
sitivity to small perturbations inherent in chaotic motions, let us specify an
irrational number as an initial condition and write it down as an infinite non-
periodic binary fraction x0 = 0.0100101010001010010001011010.... Then, a
sequence xn generated by the map is also non-periodic: whether xn belongs to
the interval (0,0.5) or (0.5,1) is determined by the first figure after the decimal
point which behaves according to the sequence of “0” and “1” in the binary
fraction x0. Moreover, a variation in any figure in the fraction x0, even arbitrar-
ily far from the decimal point (i.e. arbitrarily small), leads to a change in xn of
the order of 1 in a finite number of steps.
Thus, the saw tooth is an example of a one-dimensional system. Its chaotic
“attractor” contains all irrational numbers; therefore, this is a set of full mea-
sure. Thus, its fractal dimension is equal to one. Its only Lyapunov expo-
nent is positive: it equals ln 2 as can be readily shown. Hence, in terms of
Lyapunov exponents, complexity of the dynamics is greater than that for the
above-mentioned two- and three-dimensional continuous-time systems like the
autonomous and harmonically driven linear oscillators and the autonomous
van der Pol oscillator (Sect. 3.5) which cannot have attractors with positive
Lyapunov exponents. In this respect, the saw tooth is as complex as driven
non-linear oscillators in chaotic regimes. In terms of the attractor geome-
try, the saw tooth is simpler since its “attractor” does not exhibit any fractal
structure.

(ii) Models of neurons. Modelling a neuron dynamics is a problem topical both
in biophysics and non-linear dynamics (see, e.g., Izhikevich, 2000; Kazantsev,
2004; Kazantsev and Nekorkin, 2003; 2005; Kazantsev et al., 2005; Nekorkin
et al., 2005) where one considers mainly ODE-based models. However, dis-
crete map models are also developed in the last years, since investigation of
their dynamics requires less computational efforts and extends possibilities of
modelling large ensembles of coupled neurons. Simple model maps capable
of generating “spikes” and “bursts” (i.e. short pulses and “packets” of pulses)
have been suggested. A pioneering work considering a two-dimensional piece-
wise smooth map is Rulkov (2001). The piecewise linear map illustrated in
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Fig. 3.8b (Andreev and Krasichkov, 2003) can also exhibit those dynamical
features. Since it is two-dimensional, the plotted dependence xn+1 versus xn is
non-unique. The choice of a branch is governed by the second dynamical vari-
able y (we do not present the entire cumbersome equations). Complexity of this
model is greater than that of the saw tooth since it exhibits different periodic
and chaotic regimes depending on the parameter values. The two-dimensional
phase space of the neuron model map allows richer possibilities of dynamics
than does the one-dimensional phase space of the saw tooth.

(iii) Maps for information storage and processing (Fig. 3.8c) illustrate a practical
application to information recording with the use of the multitude of gener-
ated cycles (Andreev and Dmitriev, 1994; Dmitriev, 1991). Their authors have
created a special software allowing to store and selectively process amounts
of information compared to the contents of big libraries with such maps
(http://www.cplire.ru/win/InformChaosLab/index.html).

3.6.2.2 One-Dimensional Quadratic Map

Non-linearity which seems the most natural and widespread in real-world sys-
tems is the quadratic non-linearity. Its properties are reflected by the class of one-

Fig. 3.8 One-dimensional maps: (a) the “saw tooth”; (b) a neuron model; (c) a map for information
recording; (d) quadratic maps with different locations of the maximum; (e) Feigenbaum’s “tree”
for a quadratic map
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dimensional maps xn+1 = f (xn), where the function f exhibits a quadratic max-
imum. The most eminent representative of this class is the logistic map (Fig. 3.8d,
curve 1):

xn+1 = rxn(1 − xn). (3.32)

The parameter r plays a role of the birth rate in population dynamics. As
well, savings in bank account with “floating” bank interest would rise according
to the same rule if the interest were introduced so as to restrict infinite enrich-
ment of depositors (Schuster, 1984). Namely, if xn is a value in account at an nth
year and interest per annum is ε = const, then a simple interest gives a sum of
xn+1 = (1+ε)xn at the next year and the sum rises infinitely. At that, a small deposit
does not promise essential change in a depositor’s prosperity within nearest years as
compared with good prospects of a person having a big initial sum of money. If one
introduced a floating interest from the “considerations of justice”, then one would
get a map xn+1 = ε0(1 − xn/xmax)xn which is reduced to the logistic map with a
parameter r = xmax(1+ε0)

2/ε0 via the change of variable zn = xnε0/xmax(1+ε0).
It is possible to list more examples from diverse fields. Any map xn+1 = f (xn) with
the second-order polynomial f can be rewritten in the form (3.32) or in another
often used form xn+1 = λ − x2

n (Fig. 3.8d, curve 2). Among “services” of the
quadratic map, the following ones can be distinguished:

(1) M. Feigenbaum detected transition to chaos via a period-doubling sequence and
described its universal regularities at the chaos boundary using this map as an
example (Feigenbaum, 1980; Kuznetsov and Kuznetsov, 1993a). Figure 3.8e
shows famous Feigenbaum’s “tree”, “established” values of the dynamical vari-
able xn versus the parameter λ. Universal quantities are, for instance, the ratios
of the parameter bifurcation values near a point of transition to chaos λ∞:
(λ∞−λn)/(λ∞−λn+1) = const = δ or, in another form, λn = λ∞−const·δ−n ,
where δ = 4, 6692016091 . . . and n >> 1.

(2) It is a basic element for the construction of non-linear models in the form
of chains and lattices (Kuznetsov and Kuznetsov, 1991) and for illustration
of non-linear phenomena under periodic and quasi-periodic external driving
(Bezruchko et al., 1997b).

(3) It was used to demonstrate the phenomena of hysteresis and symmetry breaking
under fast change of a parameter value across a bifurcation point (Butkovsky
et al., 1998).

In terms of Lyapunov exponents and fractal dimensions, complexity of the logis-
tic map (3.32) is greater than that of the saw tooth. At r = 4, its attractor is a full
measure set similar to the saw tooth dynamics. However, the logistic map exhibits
dynamics with different fractal dimensions less than one at different parameter val-
ues. Thus, it has richer dynamical properties compared to the saw tooth.

Circle map. This is a one-dimensional map

θn+1 = θn +  + (k/2π) sin θn (mod 2π), (3.33)



3.6 Models in the Form of Discrete Maps 97

Fig. 3.9 The circle map (3.33): (a) its plot without taking modulo 2π ; (b) its parameter plane
(k, )where domains of periodic regimes are shown in greyscale, while domains of quasi-periodic
dynamics and chaos are shown in white

whose plot is shown in Fig. 3.9a. It can be interpreted from a physical viewpoint.
Under certain assumptions, one can reduce model DEs for a self-sustained oscillator
driven by a periodic sequence of pulses to such a map. An attractor of an original
system can be a torus, while the map (3.33) can be considered as a Poincare map in
a plane cross section of the torus (Kuznetsov, 2001).

In a cross section of a torus, a representative point under subsequent “punctures”
draws a closed curve whose points can be described with an angular coordinate θn ,
where n is the order number of a puncture. The parameter  is determined by the
ratio of periods of rotation along “big” and “small” circumferences, i.e. the ratio
of frequencies of autonomous self-sustained oscillations and driving. The parame-
ter k characterises the driving amplitude. Structure of the parameter plane for the
system (3.33) is shown in Fig. 3.9b. Different greyscale tones mark domains of
stable periodic regimes. Periodic regimes corresponding to the synchronisation of
self-sustained oscillations by an external signal exist in domains resembling beaks.
These domains are called Arnold’s tongues by the name of a soviet mathematician
V.I. Arnold. At that, an orbit on a torus becomes a closed curve in the cross sec-
tion. Different tongues correspond to different values of the rotation number, i.e. the
number of revolutions of a representative point along a small circumference during
a single revolution along a big circumference. The dynamics of the circle map has
been studied in detail, in particular, a characteristic dependence of the total width of
synchronisation intervals versus k is described, regularities of chaos domain location
are established, etc.

In terms of the Lyapunov exponents and fractal dimensions, the circle map com-
plexity is similar to that of the logistic map. Both systems can exhibit periodic
and chaotic regimes at different parameter values. However, the circle map can
also exhibit quasi-periodic regimes with zero Lyapunov exponents which are not
observed in the logistic map. Accordingly, it exhibits additional bifurcation mecha-
nisms and the corresponding structures on the parameter plane. Thus, the circle map
is, in some sense, a more complex object than the logistic map.
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3.6.2.3 A Model Map for a Non-isochronous Non-linear Oscillator Under
Dissipative Pulse Driving

A plot of a one-dimensional multi-parametric map

xn+1 = xne−d/N cos(2π/(N (1 + βxn))) + A. (3.34)

is shown in Fig. 3.10a (Bezruchko et al., 1995).
The idea behind this map and meaning of its four parameters are illustrated in

Fig. 3.14c with a time realisation of a dissipative oscillator, e.g. a mathematical pen-
dulum, driven periodically in a specific manner. Namely, a load is taken aside by the
same value A along the x-axis. After that, it starts to oscillate with the same initial
phase. For instance, one can take a load by hand and leave it with zero initial veloc-
ity. In the case of an electric pendulum, an RL diode circuit shown in Fig. 3.5b, such
driving is realised via pulses of current with direct polarity for the diode. At that,
big active conductance of a diode quickly cancels free oscillations so that an initial
phase of free oscillations does not vary between pulses (Fig. 3.14a). If a quasi-period
T during exponentially decaying free oscillations x(t) = xne−δ·t cos(2π t/T ) is re-
garded constant between two pulses and non-isochronism is taken into account in a
simplified manner as a dependence of T on an initial amplitude T = T0(1 + βxn),
where xn is a starting value in the nth train of free oscillations (i.e. after the nth
pulse), then a model map takes the form (3.34). Here, A is the amplitude of a driv-
ing pulse, N = T0/T is a normalised driving frequency, d = δ · T0 is a damping
coefficient, β is a coefficient of non-linearity, which is positive for a “soft spring”
and negative for a “hard” one.

Fig. 3.10 Investigations of the map (3.34): (a, b) its plots and Lamerey’s diagrams at A =
3.4, N = 0.1, d = 0.1 and β = 0.05 (a) or β = 0 (b); (c, d) bifurcation diagrams xn(N )

for β = 0.05 (c) or β = 0 (d) which can be interpreted as resonance curves. Intervals of single
valuedness correspond to period-1 oscillations, divarication of a curve means period doubling,
“smeared” intervals show chaos. Resonance curves at different values of A exhibit a transition
from a linear resonance to a non-linear one (e). Domains of bistability and chaos are shaded
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Despite being one-dimensional and relatively simple in its mathematical form,
the map exhibits practically all basic non-linear phenomena inherent in low-
dimensional non-linear dynamical systems: a multitude of oscillatory regimes on
the basis of different kinds of oscillations (modes), linear and non-linear resonance,
bi- and multistability, complexity and fractal character of basins of attraction, hys-
teresis and dynamical chaos (Prokhorov and Smirnov, 1996). Thus, its dynamical
complexity is similar to that of the circle map and logistic map and is even greater
in some respects (Fig. 3.11).

Higher dimensional maps are capable of demonstrating even more diverse
dynamics and, hence, greater complexity in terms of the number of positive Lya-
punov exponents and big value of fractal dimension. However, the phenomena
illustrated above with one-dimensional examples can already convince a reader that
discrete maps represent a very fruitful and efficient research tool.

3.6.3 Role of Discrete Models

We consider the role of discrete models with a concrete example. In 1981, Lind-
say reported an observation of dynamical chaos in quite an accessible (cheap) and
popular system, a circuit with an inductance coil and a varactor diode driven by
a harmonic electromotive force (Linsay, 1981). Since then a piece of wire convo-
luted in a coil and a piece of semiconductor supplied with contacts are actively
used for experimental demonstrations of non-linear phenomena. A paper in “Scien-
tific American” even recommended to have such systems “on a windowsill in each
house”.6 Below, we demonstrate capabilities of discrete models of this object.

3.6.3.1 “Ancestors” of the Object

A circuit consisting of an inductance coil and a capacitor (an oscillatory circuit) is an
electric analogue of a mechanical pendulum. Similar to how mechanical pendulum
properties are determined by its shape and parameters, processes in a circuit depend
on the construction of its elements. For the simplest case when plates of an air capac-
itor are connected with a wire coils (Fig. 3.12a), a conceptual model (an equivalent
scheme) takes the form shown in Fig. 3.12b. Given the parameters L , C , R of the
scheme,7 one can readily derive a model of the circuit in the form of the linear
dissipative oscillator (3.2) from Kirchhoff’s laws, where x is a dynamical variable

6 This is a diode with a p – n junction whose capacity depends on voltage, i.e. an electrically
controlled capacitor. Circuits with such diodes are used in radioengineering for more than half a
century. They were even suggested as memory elements for computers. Different kinds of such
circuits are widely presented in contemporary radio sets and TV sets.
7 When a charge is accumulated on the capacitor plates and a current flows in the wires, electric
and magnetic forces appear and tend to compress or stretch the wires. Therefore, if substances of
the coil and capacitor are not hard enough, their size (and, hence, C and L) can depend on the
current and voltage (dynamical variables) implying emergence of nonlinearity.
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Fig. 3.11 Chart of the dynamical regimes for the map (3.34) on the parameter planes A–N and
d–N . Greyscale tones show domains of oscillations whose periods are reported at the bottom.
The same tone may correspond to different motions with the same period or to chaotic regimes
developed on the basis of different cycles. Bifurcations occur at the boundaries of the domains.
The fragment in the middle shows domains of bi- and multistability. A domain of existence and
evolution of a certain cycle is shown with a separate sheet: sn are boundaries of the sheets, pd are
period-doubling curves. Overlap of two sheets corresponds to bistability and hysteresis

(charge) and δ = R/2L is a damping coefficient. Free oscillations of the dissipative
oscillator decay, while oscillations driven by a periodic signal are periodic with a
period of driving T . The only oscillatory effect demonstrated by the system is a
resonance, an increase in the driven oscillation amplitude when natural and driving
frequencies get closer.
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Fig. 3.12 Electric pendulums: (a) the simplest oscillatory circuit; (b) its equivalent scheme; (c) an
equivalent scheme where the role of a capacitor is played by a diode represented by a combination
of non-linear capacitor and resistors

3.6.3.2 Consequences of a Capacitor Replacement

Inclusion of a diode whose equivalent parameters R and C depend on the cur-
rent and voltage into the circuit (Fig. 3.12c) leads to a striking extension of the
range of observed oscillatory phenomena. Even under the simplest harmonic driv-
ing, the “electric pendulum” demonstrates a hierarchy of driven motions of various
complexity: harmonic, more complex periodic and chaotic ones. Similar picture
is observed under a pulse driving. Bifurcation sets (surfaces in three-dimensional
spaces, curves on two-dimensional cross sections) bound domains of existence of
different oscillatory regimes in a parameter space forming the structures presented
in Fig. 3.13. The driving amplitude V and the normalised frequency N = ω/ω0
are shown along the horizontal axes of the three-dimensional picture and the lin-
ear resistance R along the vertical axis. The structure can be understood better by
considering different plane cross sections of the parameter space. Oscillation type
within a domain can be illustrated with a respective time realisation.

Fig. 3.13 Parameter space of an RL-diode circuit under harmonic external driving obtained from
experimental investigations. Dashes show curves of hysteresis (hard) transitions. Chaos domains
are shaded. Numbers denote period of oscillations in the respective domains
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Fig. 3.14 Time realisation of a current in an RL-diode circuit under periodic pulse driving of direct
polarity F(t): (a) a cycle belonging to the class of subharmonic oscillations, a driving period T is
three times as big as a quasi-period of free oscillations (�1/3); (b) a cycle belonging to the class
of “period adding sequence”, a driving period T is three times as small as a quasi-period of free
oscillations (�3/1 = �3); (c) a time realisation-based model of subharmonic oscillations, where
a quasi-period of decaying oscillation within a train is constant and depends only on an initial
deviation

Figure 3.14 shows typical time realisations of a current in the case of pulse
driving emf whose polarity is “direct” for the diode. Pulses come with a period
T, ω = 2π/T . Despite small duration of pulses, free oscillations quickly decay
during a pulse since an equivalent capacity of a diode for a direct current (Fig. 3.12c)
is shunted by its low active resistance. When a pulse ends, oscillations start almost
with the same initial phase (Fig. 3.14a, b), while a time realisation between two
pulses represents decaying free oscillations. Depending on the driving amplitude
and period, the damping rate, the kind of non-linearity and initial conditions, dif-
ferent repeated motions (cycles) can be established in the system. Periods of the
cycles are equal to the driving period or divisible by it, i.e. kT, where k is an integer.
Possible variants of periodic motions are diverse but can be systematised as follows.
All cycles can be conventionally divided into two groups based on the similarity
property. Each of the groups preserves some peculiarities of the waveform of time
realisations and the shape of limit cycles in the phase space.

The first group is formed by cycles whose period is equal to the driving period
1T and exists in the low-frequency domain N < 1. Such cycles are usually called
subharmonic cycles. Since the driving period is big as compared with the time scale
of free motions, there are generally several maxima in a time realisation within
a train (Fig. 3.14a). The second group consists of cycles with periods kT, where
k = 2, 3, . . ., which are observed for bigger driving frequencies 0.5 < N < 2.
Examples of such cycles are shown in Fig. 3.14b. Since a change of such a regime
under the increase in amplitude is accompanied by subsequent increase in k by 1,
they are called cycles of “period adding sequence”. A conventional notation of the
cycles is �m/k . Here, k corresponds to the ratio of the driving period to the quasi-
period of free oscillations. It can be estimated as the number of maxima within an
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interval T in an oscillogram. The value of m is a period of cycle measured in units
of the driving period.

3.6.3.3 Mathematical Models

Processes in semiconductor diodes whose properties determine non-linearity of a
system are analysed most strictly with the use of partial differential equations. How-
ever, for sufficiently slow motions, a diode can be considered as a bipole with some
equivalent properties reflecting relationship between the voltage on its contacts and
the current in connecting wires so that one can use ODEs. Even simpler models can
be obtained in the form of maps, if one restricts the consideration only with a part
of possible motions. Further, we consider models capable of describing fragments
of the above-mentioned (Fig. 3.13) complex picture.

A Continuous-Time Model

Let us represent a semiconductor diode as a non-linear capacitor, whose capacity C
depends on the voltage as C = C0/(1−U/ϕ), where C0 is the initial diode capacity,
U is the voltage on the diode, ϕ is the contact potential. Then, a model equation for
the circuit derived from Kirchhoff’s laws takes the form of Toda oscillator (3.25):

d2x/dτ 2 + γ dx/dτ + ex − 1 = A sin Nτ,

where x is the dimensionless charge on the capacitor plates, γ is the damping coef-
ficient, A is the dimensionless driving amplitude, N = ω/ω0 is the normalised
driving frequency, τ = ω0t is dimensionless time. Results of numerical simulations
presented in Fig. 3.7 demonstrate good qualitative description of an object in the
entire parameter space.

Discrete-Time Models

(i) One can successfully use one-dimensional multimodal map (3.34) as a discrete-
time model for subharmonic oscillations, i.e. in the low-frequency domain
N = ω/ω0 ≤ 1. A model is adequate to the real-world system in the parameter
space domains where motions on the basis of the cycles �1/2, �1/3 and so on
take place (Fig. 3.11). Those domains have qualitatively the same structure.
They are similar to each other and self-similar. Self-similarity means a config-
uration like in “matreshka” (a set of nesting dolls): a basic constructive element
is reproduced at smaller and smaller scales. However, in contrast to matreshka,
the domains of existence of various oscillation kinds on the parameter plane at
sufficiently low levels of dissipation can overlap forming domains of multista-
bility (Fig. 3.11, bottom panel)

(ii) A two-dimensional map modelling driven dynamics of the circuit in a higher-
frequency domain 0.8 ≤ N ≤ 2 is suggested in Bezruchko et al. (1997a) based
on the characteristic waveform of time realisation of the cycles belonging to
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Fig. 3.15 Chart of the dynamical regimes of the map suggested in Bezruchko et al. (1997a), which
describes the cycles of “period adding sequence”

the “period adding sequence” (Fig. 3.14b). It is more complicated than map
(3.34) and reproduces well the structure of the parameter plane of an original
circuit (Kipchatov, 1990) for large driving frequencies and amplitudes, where
the cycles of the “period adding sequence” exist (cf. Figs. 3.13b and 3.15). At
that, it does not reflect diversity of the basis cycles and other peculiarities of
the circuit dynamics described above.

(iii) In the domains where any of the basis cycles demonstrate period-doubling
sequence under a parameter change, a good model of the circuit is the one-
dimensional quadratic map xn+1 = λ − x2

n .
(iv) In a domain of negative resistance where an object demonstrates self-sustained

oscillations, its dynamics is modelled well with the circle map (3.33) which
exhibits the phenomena of synchronisation by a weak periodic driving and of
suppression of the oscillations by a strong periodic driving.

Thus, the Toda oscillator equation (3.25) describes the circuit dynamics in the
most complete way among all the considered models. It reflects all families of
the characteristic cycles of the RL-diode circuit and peculiarities of its parameter
space structure. The discrete-time model (3.34) and the two-dimensional model map
describe only one of the two existing families of cycles, either “subharmonic” or
“period adding” one. In particular, map (3.34) reflects such phenomena as linear and
non-linear resonance, multistability and hysteresis. The quadratic map is universal
but does not capture specificity of the object. The same holds true for the circle
map. Is it possible to create a model map which could compete with the differential
equation of the Toda oscillator? Currently, we could not say how complex a formula
for such a map might be.
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3.7 Models of Spatially Extended Systems

To model spatially extended objects, one often uses ensembles of coupled ODEs or
coupled maps (e.g. Afraimovich et al., 1989; Nekorkin and Velarde, 2002; Shalfeev
and Matrosov, 2005). Spatial properties of such systems manifest themselves in
solutions with different spatial profiles of characterising variables. For instance,
oscillations of two coupled linear oscillators can be represented as a superposition
of two basic sinusoidal regimes with different frequencies. One of them corresponds
to in-phase oscillations, when the elements move in a completely identical manner,
while the other one reflects anti-phase oscillation, when there is a constant phase
shift between the oscillators by π . This peculiarity of a spatially extended system,
consisting of concentrated elements, can be considered as an analogue of spatial
modes in a bounded continuously distributed system (Fig. 3.16).

A property of multistability resembling multitude of spatial modes is ubiquitous
in ensembles of oscillatory systems. Such a principal multimodality and the corre-
sponding sensitivity to weak parameter variations (when possible kinds of motions
are numerous and their basins of attraction form complicated and even fractal struc-
tures) is a typical property of spatially extended non-linear systems. Capabilities of
relatively simple discrete models to describe this basic phenomenon are illustrated
in Sect. 3.7.1, while more complicated tools are briefly considered after that.

3.7.1 Coupled Map Lattices

In chains and lattices, identical basis maps xn+1 = f (xn) are usually coupled to
each other in a certain manner: locally (only nearest neighbours), globally (all to
all) or within groups. Complexity of these models rises with the number of coupled
maps, i.e. with the dimension of a model. In general, the greater is the model dimen-
sion, the greater can be the number of coexisting attractors, their fractal dimension
and the number of positive Lyapunov exponents.

3.7.1.1 Two Dissipatively Coupled Quadratic Maps

A symmetric coupling, when elements influence each other in the same way, is
shown by a rectangle in Fig. 3.17. A triangle marks a unidirectional coupling, when

Fig. 3.16 Oscillatory modes in an ensemble of two (a, b) and several (c) pendulums. Top panels
illustrate the systems, bottom ones illustrate their spatial modes
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Fig. 3.17 Coupled map lattices: (a, b) one-dimensional lattices; (c) a space-and-time diagram for
interacting populations to illustrate symmetric coupling kinds; (d) a two-dimensional lattice

only one element affects another one. An intermediate case of asymmetric coupling
is also possible. A systematisation of the coupling kinds is given in Kuznetsov
(1986), where symmetric couplings between maps are reduced to the following
types: dissipative coupling

xn+1 = f (xn) + k( f (yn) − f (xn)),

yn+1 = f (yn) + k( f (xn) − f (yn)),
(3.35)

inertial coupling

xn+1 = f (xn) + k(yn − xn),

yn+1 = f (yn) + k(xn − yn),
(3.36)

or their combination. Here, x and y are dynamical variables, k is the coupling coef-
ficient, f is the non-linear function of the basis map.

The systematisation allows an interesting interpretation in the language of the
population biology. One can assume that individuals first breed in their population
and then get an opportunity to migrate to another population. “First breed, then
creep away”. The cycle is repeated next year. Solid lines on a space – time diagram
(Fig. 3.17c) correspond to such a case. Such coupling tends to make simultaneous
states of subsystems equal to each other so that it can be naturally called dissipative
coupling. Dashed lines in Fig. 3.17c correspond to a situation when individuals
may migrate before the cycle of breeding and death within their population. Such
coupling can be reasonably called inertial coupling since it promotes memorising a
previous-step state. A combined coupling is also possible.

The choice of coupling type in practical modelling is non-trivial. In particular, it
is illustrated by experimental investigations of a set of coupled non-linear electric
circuits (Sect. 3.6.3) in the domain of parameter space, where each system transits
to chaos via period doublings. It appears that coupling via a resistor (a dissipative
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element) is adequately described as dissipative, while coupling via a capacitor (a
purely reactive element) as combined one, rather than purely inertial (Astakhov
et al., 1991b).

The choice of the basis map and of the kind of coupling introduce specific fea-
tures into a model behaviour, but the phenomenon of multistability in ensembles of
coupled maps is always determinative. It is illustrated by the simplest set of two
quadratic maps f (xn) = λ − x2

n with the dissipative coupling (3.36):

xn+1 = λ − x2
n + k

(
x2

n − y2
n

)
,

yn+1 = λ − y2
n + k

(
y2

n − x2
n

)
.

(3.37)

For the same value of λ in both subsystems, we introduce the following systema-
tisation of oscillatory modes. In the limit of zero coupling (k = 0), each regime of a
period N can be realised in N ways differing by the shifts between the subsystems
oscillations in time by m = 0, 1, 2, . . ., N −1 steps as shown in Fig. 3.18 for N = 2
and 4. We call those N ways the oscillation kinds and use them to describe a hier-
archy of the oscillatory regimes in the presence of coupling when interaction leads
to different variants of mutual synchronisation. We denote periodic regimes as Nm .
Despite the lack of repeatability, the same classification principle can be maintained
for chaotic regimes N m if one interprets N as the number of the attractor strips and
m as a time shift between maximal values of xn and yn . Regimes with m = 0 are
called in-phase.

By showing the domains of existence and evolution of each oscillation kind on a
separate sheet, one can get a vivid multi-sheet scheme of the domains of existence
(stability) of oscillatory regimes on the plane (k, λ). Figure 3.19a shows the domains
for all oscillatory regimes of the periods 1, 2, 4 and 8 at k < 0.5. Figure 3.19b
represents a cross section of the multi-sheet picture shown in Fig. 3.19a with a plane
k = 0.05 and qualitatively illustrates an evolution of motion in system (3.37) under
the variation of the parameter λ at a fixed weak coupling. Solid lines correspond
to stable regimes and dashed ones to unstable regimes. Points indicate bifurcation
transitions. The letters A, B, C and D mark branches combining certain groups of
regimes8: they start with periodic regimes whose number rises with λ and end with
chaotic ones.

Fig. 3.18 Coupled map dynamics: time realisations (a) for the period N = 2; (b) for the period
N = 4. Dynamical variables of the first and second subsystems are shown by filled and open
circles, respectively. Notations of the oscillation kinds Nm are shown to the right

8 The branch A corresponds to the evolution of in-phase regimes (m = 0), B − D to the others.
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Fig. 3.19 Dynamics of the systems (3.37): (a) a scheme of the evolution of oscillation kinds on a
parameter plane; (b) its section for k = 0.05; (c) phase space division into basins of attractors in
cases of multistability (they change each other when one moves along the parameter plane in the
panel b)

Domains of chaotic regimes are shaded. A critical value of the non-linearity
parameter at which a transition to chaos occurs (an accumulation point of a period-
doubling sequence) is denoted λc. Domains denoted by a letter Q or a word torus
correspond to quasi-periodic oscillations and transition to chaos via their breaking.
Different oscillation kinds can divide phase space into basins of attraction with
a fractal structure (Fig. 3.19c). Increase in the dissipative coupling strength k is
accompanied by reduction in the number of coexisting states so that only in-phase
motion is stable at large k, i.e. the system becomes in effect one-dimensional.9

3.7.1.2 Complex Dynamics of a Chain: Consequences of the Increase
in the Number of Elements

It is not surprising that the increase in the number of elements in an ensemble
leads to even more complicated oscillatory picture. Indeed, the longer the chain,

9 Complex dynamics of this non-linear system is illustrated by a computer program available at
http://www.nonlinmod.sgu.ru and in research papers Astakhov et al. (1989, 1991a).
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Fig. 3.20 A period-1 regime with a non-uniform spatial distribution in the chain (3.38) of 120
elements, A = 0.965, N = 0.64, d = 0.2, β = 0.2: (a) k = 0.1; (b) k = 0.35. The quantities x1
and x2 are equilibrium states of a bistable elementary cell

the more the kinds of motions with different temporal and spatial profiles possible.
Figure 3.20 illustrates it with numerical results for the chain of dissipatively coupled
pendulum maps

xm
n+1 = (1 − k) f

(
xm

n

) + (k/2)
(

f
(

xm+1
n

)
+ f

(
xm−1

n

))
, (3.38)

where n is the discrete time, m is the number of a chain element, k is the coupling
coefficient, f is the multimodal map (3.34). A number of an element is shown along
the horizontal axis and its instantaneous state along the vertical one. There are flat
intervals in the pattern (domains) and fast transitions between them (kinks).10

The structures evolve under the parameter changes: temporal and spatial periods
double; periodic, quasi-periodic and chaotic configurations arise. Domains widen
with the coupling coefficient rise, while kinks get flatter. Finally, a very large
k provides a spatially uniform regime for any initial conditions, an analogue to
the emergence of an ice floe in the above-mentioned example with cooled water
(Sect. 3.2). Details on the dynamical properties of the chain are given in Bezruchko
and Prokhorov (1999).

3.7.1.3 Two-Dimensional Map Lattice

Further complication of the model (3.38) in the sense of its spatial development can
be performed both via the increase in the number of elements and via changes in the
coupling architecture. In the next example, the same multimodal maps constitute a
lattice, where each element interacts with its four nearest neighbours. Coupling is
local and dissipative:

10 Map (3.34) is taken for simplicity. Thus, multistability in a set of quadratic maps is formed
on the basis of a period-doubled cycle, while in a set of maps (3.34) it is observed already for
the period-1 cycles. When an isolated map (3.34) has two period-1 states, there are four period-1
oscillation kinds in a set of two maps (Bezruchko and Prokhorov, 1999).
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Fig. 3.21 A dynamical regime with a non-uniform spatial distribution in the two-dimensional lat-
tice (3.39) consisting of 50 × 50 period-1 elements, A = 0.965, N = 0.64, d = 0.2, β = 0.2,
k = 0.2. Boundary conditions are periodic
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where i and j determine spatial location of a lattice element. An example of instan-
taneous snapshot of such a lattice having the same numbers of elements along each
direction is shown in Fig. 3.21. This is a stationary structure achieved from random
initial conditions. At weak couplings, one can get almost any required stationary
distribution by specifying different initial conditions. Under the increase in the cou-
pling coefficient, the number of possible structures reduces. Above some threshold
value of k, the only attractor is a spatially uniform distribution.

3.7.2 Cellular Automata

A cellular automaton is a discrete dynamical system representing a set of iden-
tical cells coupled with each other in the same way. All the cells form a cellular
automaton lattice. Lattices may be of various types differing both in dimension and
shape of the cells (Minsky, 1967). Cellular automata were suggested in the work
of von Neumann (1966) and became a universal model of parallel computations
like Turing’s machine for sequential computations. Any cell computes its new state
at each step from the states of its nearest neighbours. Thus, the laws in a system
are local and everywhere the same. “Local” means that it is sufficient to look at
the neighbourhood state to learn what will happen at a future instant; no long-range
interactions are allowed. “Sameness” means that one can distinguish one place from
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another one by a landscape,11 not by any difference in the laws (Margolus and Tof-
foli, 1990). Based on this description, one can single out the following characteristic
properties of cellular automata:

(i) A lattice is uniform and evolution law for the cells is everywhere the same.
(ii) Changes in the states of all cells occur simultaneously, after calculation of a

new state of each cell in a lattice.
(iii) Interactions are local, only neighbouring cells can affect a given cell.
(iv) A set of cell states is finite.

Usually, one illustrates a cellular automaton with an example of a model
called the game “Life” created by D. Conway, a mathematician from Cam-
bridge University, in 1970. It is widely presented in the Internet (see, e.g.,
http://www.famlife.narod.ru). Rules of functioning of that automaton somewhat
mimic real-world processes observed in birth, development and death of a colony
of living organisms. One considers an infinite flat lattice of square cells (Fig. 3.22).
Living cells are shown by dark colour. Time is discrete (n = 0, 1, 2, . . .) and a sit-
uation at the next time step n +1 is determined by the presence of living neighbours
for each living cell. Neighbouring cells are those having common edges. Evolution
is governed by the following laws:

(i) Survival. Each cell having two or three neighbouring living cells survives and
transits to the next generation.

(ii) Death. Each cell with more than three neighbours dies due to overpopulation.
Each cell with less than two neighbours dies due to solitude.

(iii) Birth. If the number of living cells neighbouring to a certain empty cell is equal
exactly to three, then a new organism is born in that empty cell.

Thus, if an initial distribution of living cells (a landscape) has the form shown in
Fig. 3.22a, then a configuration shown in Fig. 3.22b appears in a single time step.

Fig. 3.22 Examples of landscapes for the cellular automaton “Life”: (a) an initial profile, n = 0;
(b) a situation after the first step n = 1

11 A distribution of the values of a characterising quantity over an automaton workspace.
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Furthermore, some initial structures may die out, while the others survive and get
stationary, or are repeated periodically, or move in space, and so on. Basic properties
of this automaton are as follows: structures separated by two empty cells do not
affect each other at once; a configuration at a time instant n completely determines
the future (states at time steps n + 1, n + 2, etc.); one cannot restore the past of the
system from its present (the dynamics is non-invertible); stable forms are, as a rule,
symmetric, etc. The larger the area occupied by a population, the more complicated
its behaviour.

Currently, the game “Life” has got further development. Thus, in modern ver-
sions the automaton is three dimensional and capable of modelling several popu-
lations like interacting “herbivores” and “predators”. However, even more sophis-
ticated versions of this simple system do not represent a limit complexity level for
the problems which can be solved with cellular automata.

A cellular automaton can be equivalently described with a set of coupled maps
with discrete states. Its peculiarity is the simplicity of construction and convenience
of computer investigation. Cellular automata are used to model hydrodynamic and
gas-dynamic flows, electric circuits, heat propagation, movement of a crowd, etc.
(Loskutov and Mikhailov, 2007; Malinetsky and Stepantsev, 1997; Shalizi, 2003).
They are applied to create genetic algorithms, to find a shortest way on a graph and
so forth (see, e.g., Margolus and Toffoli, 1990; http://is.ifmo.ru).

3.7.3 Networks with Complex Topology

The above coupled map lattices and cellular automata describe spatially extended
systems with local interactions between the elements. More complicated coupling
architectures involve various non-local interactions. In such a case, one speaks of a
network of coupled maps rather than a coupled map lattice. Coupling architecture is
often called topology of a network. Topology is said to be regular if it is described
by a simple regular law, e.g. the above locally coupled maps (where only the nearest
neighbours interact) or globally coupled maps (where every element is connected to
every other element, all-to-all coupling).

It is easy to imagine other topologies which are not described as simply as the
above regular topologies. For example, one can artificially generate a completely
random coupling architecture. Typically, one speaks of a complex topology if it
looks rather complicated and irregular and, simultaneously, exhibits some non-
trivial statistical properties different from completely random networks. During the
last years networks with complex topology are actively studied in different fields
as reflected by the reviews (Albert and Barabasi, 2002; Arenas et al., 2008; Boc-
caletti et al., 2006; Dorogovtsev and Mendes, 2003; Kurths et al., 2009; Osipov
et al., 2007; Strogatz, 2001; Watts, 1999). A special attention is paid to the so-called
“small-world” and “scale-free” properties of a network. To define them, one must
introduce the concepts of node, link, degree and path. Each element of a network is
called a node. If two nodes are coupled (interact with each other), then one says that
there exists a link between them. These two nodes are called vertices of the link. If
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a node is a vertex of M links (0 ≤ M ≤ N − 1, where N is the size of the network),
then the number M is called a degree of that node. A path connecting two nodes A
and B is the sequence of vertices which one has to pass by (via the existing links)
to reach the node B from the node A. The shortest path between two nodes is a path
consisting of the smallest number of vertices.

The small-world property means that any two elements of a network are con-
nected by a sufficiently short path. To give a quantitative formulation, one can notice
that a mean (over all pairs of nodes) shortest path length in a regular hypercubic
lattice with d dimensions grows with the lattice size as N 1/d . Small-world property
is defined as follows: a mean shortest path length grows at most logarithmically
with N . This notion was first introduced in Watts and Strogatz (1998). The small-
world property has been observed in a variety of real-world networks, including
biological and technological ones (see Sects. 2.2.1 and 2.2.3 in Boccaletti et al.,
2006 and references therein).

The scale-free property concerns heterogeneity of couplings. Homogeneity in
coupling structure means that all nodes are topologically equivalent, e.g. regular lat-
tices or random networks. In regular lattices, each node has the same degree except
for the edges. In random networks, each of the N (N −1)/2 possible links is present
with equal probability. Therefore, a degree distribution is binomial or Poisson in the
limit of large network size. However, it was found that many real complex networks
exhibit a degree distribution p(M) ∼ M−γ , where 2 < γ < 3. Such networks were
introduced in Barabasi and Albert (1999) and called scale-free, since the power law
has the same functional form at all scales. There are many examples of technical,
biological and social networks characterised as scale free (see Sects. 2.2.2 and 2.2.3
in Boccaletti et al., 2006 and references therein).

As for the dynamical aspect, many studies have been devoted to studying syn-
chronisation in complex networks of coupled dynamical systems (see, e.g., Are-
nas et al., 2008; Osipov et al., 2007). It was found that the small-world property
often enhances synchronisation as compared with regular lattices. Under some con-
ditions, the scale-free property may lead to similar enhancement, see e.g. Motter
et al. (2005).

Finally, we note that a network with complex topology consisting of N coupled
one-dimensional maps is an N -dimensional dynamical system, similar to a coupled
map lattice consisting of N one-dimensional maps. Thus, both models are equivalent
in terms of their state vector dimension. However, a network with complex topology
is a much more complicated object in terms of coupling structure. Thus, a network
with complex topology can be considered as a more complex model of spatially
extended systems.

3.7.4 Delay Differential Equations

Delay differential equations are typically used to model systems whose behaviour at
present is determined not only by a present state but also by the values of dynamical
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variables at previous time instants. Such objects are widely presented in nature. They
are studied in physics, biology, physiology and chemistry. Causes of a time delay
can be different. Thus, in a population dynamics, a delay is connected with the fact
that individuals participate in a reproduction process only after becoming adult. In
spatially extended radio-physical systems, a delay is determined by a finite speed
of signal propagation. A delay time τ is related to the time necessary for a signal
to overpass a distance between elements. In a sufficiently general case, a time-delay
system is described with the equation

εn
dn x(t)

dtn
+ εn−1

dn−1x(t)

dtn−1
+ . . . + ε1

dx(t)

dt
= F(x(t), x(t − τ1), . . . , x(t − τk)),

(3.40)

where τ1, . . . , τk stands for several possible time delays caused by different factors.
Particular cases of equation (3.40) are as follows: Ikeda equation ẋ(t) = −x(t)+μ ·
sin(x(t − τ)− x0) describing the dynamics of a passive optical resonator; Mackey –
Glass equation ẋ(t) = −b ·x(t)+a ·x(t −τ)/(1+xc(t −τ)) describing the process
of red corpuscle generation in living organisms; the delayed feedback generator12

ε · ẋ(t) = −x(t) + f (x(t − τ)), which is a very popular model in radio-physics.
Despite the only scalar dynamical variable, all the listed dynamical systems

are infinite-dimensional, since one must specify a distribution of a dynami-
cal variable over the interval [0, τ ] as an initial condition. Even a first-order
non-linear DDE can exhibit complex motions corresponding to attractors of
very high dimensionality, chaos, multistability and other non-linear phenomena.
In general, infinite dimensionality of the phase space leads to the possibility
of observing attractors of arbitrary high dimension and with arbitrarily many
positive Lyapunov exponents. In this sense, DDEs are more complex systems
than previously described finite-dimensional model maps and ODEs. For more
detailed information about DDE-based models, we refer to the review on complex
dynamics of the feedback generator (Kuznetsov, 1982), the monograph Dmitriev
and Kislov (1989), the research paper Kislov et al. (1979) and the website
http://www.cplire.ru/win/InformChaosLab/index.html.

3.7.5 Partial Differential Equations

This is probably the most extensively studied mathematical tool developed spe-
cially for modelling of spatially extended systems. PDEs are used in very different
scientific disciplines ranging from physics, chemistry and biology to ecology and
economics. It is sufficient to recall famous Maxwell’s equations in electrodynam-
ics, Schrödinger’s equation in quantum mechanics, reaction – diffusion equations in

12 It is a ring consisting of a non-linear amplifier (characterised by a function f ), an inertial ele-
ment (a filter with a response time determined by ε) and a delay line (with a delay time τ ).
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chemistry and biology, and Ginzburg – Landau equation everywhere. Many classical
models of the wave theory take the form of PDEs:

Simple wave equation ∂x/∂t + v(x)∂x/∂z = 0, where x is the characterising
quantity, v is the velocity of a perturbation propagation (depending on the
perturbation value, in general); z is the spatial coordinate. The model can
describe steepening and turnover of a wave profile.

Corteveg – de Vries equation ∂x/∂t + v(x)∂x/∂z + β∂3x/∂z3 = 0 is the
simplest model exhibiting soliton-like solutions. Roughly, the latter ones are
localised perturbations propagating with a constant waveform and velocity
and preserving these characteristics after collision with each other.

Burgers’ equation ∂x/∂t + v(x)∂x/∂z − α∂2x/∂z2 = 0 is the simplest model
describing waves in a medium with dissipation, in particular, shock waves
(i.e. movements of a region of fast change in the value of x).

A dynamical system described with a PDE is infinite-dimensional even for a
single spatial coordinate. To specify its state, one must provide an initial function
x(0, z). If a system without spatial boundaries is considered (such an idealisation
is convenient if a system is very lengthy so that any phenomena at its boundaries
do not significantly affect the dynamics under study and are not of interest for a
researcher), then an initial function must be defined over an entire axis −∞ < z <
∞. If a system is bounded, then an initial function must be defined only over a
corresponding interval 0 < z < L , while boundary conditions are specified at its
edges (e.g. fixed values x(t, 0) = x(t, L) = 0). In the latter case, one speaks of a
boundary problem.

PDEs can exhibit both such attractors as fixed points, limit cycles, other kinds of
low-dimensional behaviour and a very high-dimensional dynamics. This mathemat-
ical tool is even richer with properties and more complex for investigation compared
to all the above-mentioned model equations. Of basic interest is the question about
conditions of existence and uniqueness of a solution to a PDE. In part due to it,
recently researchers have paid much attention to regimes with sharpening (when a
solution exists only over a finite time interval) which are quite typical (Malinetsky
and Potapov, 2000, pp. 148–170).

A huge body of literature is devoted to PDEs, (e.g. Loskutov and Mikhailov,
2007; Mikhailov and Loskutov, 1989; Sveshnikov et al., 1993; Tikhonov and
Samarsky, 1972; Vladimirov, 1976).

3.8 Artificial Neural Networks

Artificial neural network (ANN) is a kind of mathematical model whose construc-
tion mimics some principles of organisation and functioning of networks of brain
nerve cells (neurons). The idea is that each neuron can be modelled with a suffi-
ciently simple automaton (an artificial neuron), while the entire brain complexity,
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flexibility and other important properties are determined by the couplings between
neurons. The term “neural networks” was established in the middle of the 1940s
(McCulloc and Pitts, 1943). Very active investigations in this field were carried out
until the 1970s. After that, a significant decrease in the attention of researchers took
place. In the 1980s, the interest reappeared due to problems of associative memory
and neurocomputers so that the number of international conferences on ANNs and
neurocomputers has reached a hundred by the end of twentieth century.

If an artificial neuron represents a function relating input and output values and
a signal can propagate in a network only in one direction (no feedbacks), then an
ANN is also just a function transforming an input signal into an output value. Below,
we briefly consider mainly such a simple version. If feedbacks are present and/or a
neuron is a system with its own dynamics (namely, a discrete map), then an ANN
is a multidimensional map, i.e. a set of coupled maps with specific properties of the
elements and couplings (see, e.g., Ivanchenko et al., 2004). Analogously, if a neuron
is described with ordinary differential equations, then the respective ANN is a set of
coupled ODEs (see, e.g., Kazantsev, 2004; Kazantsev and Nekorkin, 2003; 2005).
Thus, complexity of an ANN dynamics depends on the kind of basic elements, the
number of basic elements and couplings between them.

3.8.1 Standard Formal Neuron

Such an artificial neuron consists of an adaptive integrator and a non-linear converter
(Fig. 3.23a). A vector of values {xi } is fed to its inputs. Each input xi is supplied
with a certain weight wi . The integrator performs weighted (adaptive) summation
of inputs

S =
n∑

i=1

wi xi . (3.41)

Fig. 3.23 Formal and biological neurons: (a) a scheme of an artificial neuron; (b) a plot of the
unit step function; (c) a biological neuron (filled circles mark input synapses, open ones mark an
output, triangles mark direction of excitation propagation)
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The non-linear converter forms an output signal of a neuron as

y = F(S). (3.42)

The choice of the neuron activation function F is determined by (i) specificity
of a problem; (ii) convenience of realisation with a computer, an electric scheme
or another tool; (iii) a “learning” algorithm (some learning algorithms impose con-
straints on the activation function properties, Sect. 3.8.4). Most often, the kind of
non-linearity does not principally affect a problem solution. However, a successful
choice can reduce duration of learning several times. Initially, one used the “unit
step” as a function F :

F(S) =
{

0, S < 0,

1, S ≥ 0,
(3.43)

whose plot is shown in Fig. 3.23b. Currently, a list of possible activation functions
would occupy a huge space (e.g. Gorban’ et al., 1998; http://www.neuropower.de).
In particular, a widespread version is a non-linear function with saturation, the so-
called logistic function or classical sigmoid:

F(S) = 1

1 + e−αS
. (3.44)

With decrease in α, sigmoid gets flatter tending to a horizontal straight line at the
level of 0.5 in the limit of α → 0. With increase in α, sigmoid tends to the unit step
function (3.43).

Input values of the variable x can be likened to excitations of a real-world (bio-
logical) neuron (Fig. 3.23c) coming from dendrites of surrounding neurons via
synapses (connection places). A real-world neuron can have the number of den-
drites ranging from units to dozens of thousands. They provide information about
the states of surrounding cells coupled to the neuron. Coupling strengths in a model
are reflected by the weight coefficients wi . Carrier of information in nerve cells
is a jump of a membrane potential (a neural pulse, a spike). It is formed in a cell
after a joint action of dendrites exceeds some critical value that is modelled in a
formal neuron by the summation and the non-linear function. A spike propagates
via an axon as a wave of membrane polarisation. Coming to a synapse, such a wave
induces secretion of substances (neurotransmitters) which diffuse into dendrites of
the neurons coupled to a given axon and are converted by receptors into an elec-
tric excitation pulse.13 After generation of a pulse, a cell turns out unreceptive to
external influences for a certain time interval. Such a state is called refractory. In
other words, one deals with an excitable system which can be in the resting phase
(before generation), excitation phase (during conduction of a pulse) and refractory

13 As well, there are purely electric mechanisms of neuron coupling.
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phase (during a certain interval after a pulse). The refractory period determines a
limit possible frequency of pulse generation (less than 200 Hz).

3.8.2 Architecture and Classification of Neural Networks

To construct an ANN, one usually selects one of several standard architectures and
removes superfluous elements or adds (more rarely) new ones. Two architectures
are regarded as basic ones: fully connected and (multi)layered networks. In fully
connected neural networks each neuron sends its output signal to all the neurons
including itself. All input signals are sent to all neurons. Output signals of a network
can be defined as all or some of neuron output signals after several steps of network
functioning.

In multi-layer neural networks, neurons are combined in layers (Fig. 3.24). A
layer contains neurons with the same input signals. The number of neurons in a
layer is arbitrary and does not depend on the number of neurons in other layers. In
general, a network consists of several layers which are enumerated from left to right
in Fig. 3.24. External input signals are fed to inputs of neurons of an input layer
(it is often enumerated as 0th), while the network outputs are output signals of the
last layer. Apart from an input and an output layer, a multi-layered network may
contain one or several hidden layers. Depending on whether the next layers send
their signals to previous ones, one distinguishes between feed-forward networks
(without feedbacks) and recurrent networks (with feedbacks). We note that after
introduction of feedbacks a network is no longer a simple mapping from a set of
input vectors to a set of output vectors. It becomes a dynamical system of high
dimensionality and the question about its stability arises. Besides, neural networks
can be divided into the following:

(i) Homogeneous and heterogeneous (i.e. with the same activation function for all
neurons or with different activation functions);

(ii) Binary (operate with binary signals consisting of 0s and 1s) and analogous
(operate with real-valued numbers);

(iii) Synchronous and asynchronous.

Fig. 3.24 A three-layer feed-forward network (a perceptron)
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As well, ANNs differ in the number of layers. Theoretically, the number of layers
and the number of neurons in each layer can be arbitrary. However, they are bounded
in fact by computational resources realising a neural network. The more complex a
network is, the more complicated tasks it can solve.

3.8.3 Basic Properties and Problems

Despite primitivism in comparison with biological systems, even multi-layer feed-
forward ANNs possess a number of useful properties and are capable of solving
quite important tasks. Those properties are as follows.

(i) Learning ability. After selection of an ANN architecture and neuron proper-
ties, one can “train” an ANN to solve some problem with the aid of a certain
learning algorithm. There are no guarantees that it is always possible but in
many cases learning appears successful.

(ii) Generalisation capability. After the learning stage, a network becomes insen-
sitive to small variations in an input signal (noise) and gives a correct result at
its output.

(iii) Abstraction capability. If several distorted variants of an input image are pre-
sented to a network, the latter can itself create at its output an ideal image,
which has never been met by it previously.

Among the tasks solved with ANNs, we note pattern (e.g. visual or auditory
images) recognition, associative memory14 realisation, clustering (division of an
investigated set of objects into groups of similar ones), approximation of func-
tions, time series prediction (Sect. 10.2.1), automatic control, decision making,
diagnostics.

Many of the listed tasks are reduced to the following mathematical formulation. It
is necessary to construct a map X → Y such that a correct output signal Y is formed
in response to each possible input X . The map is specified by a finite number of
pairs (an input, a correct output). The number of those pairs (learning examples) is
significantly less than the total number of possible input signals. A set of all learning
examples is called a learning sample. For instance, in image recognition, an input
X is some representation of an image (a figure, a vector), an output Y is the number
of a class to which an input image belongs. In automatic control, X is a set of values
of the control parameters of an object, Y is a code determining an action appropriate
for the current values of control parameters. In forecast, an input signal is a set of

14 In von Neumann’s model of computations (realised in a usual computer), memory access is
possible only via an address, which does not depend on the memory contents. Associative memory
is accessible based on the current contents. Memory contents can be called even by partial or
distorted contents.
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values of an observable quantity until a current time instant and an output is a set of
the next values of an observable.

All these and many other applied problems can be reduced to a problem of
construction of some multivariate function. What are capabilities of ANNs in this
respect? As it was illustrated, they compute univariate linear and non-linear func-
tions and their compositions obtained due to cascade connection of neurons. What
can one get with the use of such operations? What functions can be accurately
approximated with ANNs? As a result of long-lasted polemics between Kolmogorov
and Arnold, a possibility of exact representation of a continuous multivariate func-
tion via a composition of univariate continuous functions and summation was shown
(Arnold, 1959; Kolmogorov, 1957). The most complete answer to the question about
approximating properties of neural networks is given by Stone’s theorem (Stone,
1948) stating universal approximating capabilities of an arbitrary non-linearity: lin-
ear operations and cascade connection allow to get a device approximating any con-
tinuous multivariate function to any required accuracy on the basis of an arbitrary
non-linear element. A popular exposition of the theorems of Kolmogorov and Stone
in application to ANNs is given in Gorban’ (1998). Thus, neurons in a network may
have practically any non-linear activation function, only the fact of its non-linearity
is important. In principle, ANNs are capable of doing “very many things”. Yet, an
open question is: How to teach them to do it?

3.8.4 Learning

During its functioning, a neural network forms an output signal Y corresponding to
an input signal X , i.e. realises a certain function Y = g(X). If a network architecture
is specified, then the values of g are determined by synaptic weights. The choice of
their optimal values is called network learning. There are various approaches to
learning.

Learning by instruction. Here, one uses a learning sample, i.e. pairs of known
input and output values (X1,Y1), . . . , (X N ,YN ).

Let the values of vectors X and Y be related via Y = g(X), in particular,
Yi = g(Xi ), i = 1, . . . , N . A function g is unknown. We denote E as an error
function assessing deviation of an arbitrary function f from the function g. Solving
a problem with an ANN of a given architecture means to construct a function f
by selecting synaptic weights so as to minimise the error function. In the simplest
case, learning consists of searching for a function f which minimises E over a
learning sample. Given a learning sample and the form of function E , learning of a
network turns into a multidimensional non-linear optimisation problem (Dennis and
Schnabel, 1983), which is often very complicated in practice (see also Sect. 10.2.1).
It requires time-consuming computations and represents an iterative procedure; the
number of iterations ranges typically from 103 to 108.

Since creation of intellectual schemes is based to a significant extent on bio-
logical prototypes, researchers still discuss whether the algorithms of learning by
instruction can be considered as analogues to natural learning processes or they are
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completely artificial. It is known that, for instance, neurons of visual cortex learn to
react on light pulses only under the influence of the pulses themselves without an
external teacher. In particular, we are able to solve such a complicated task as image
recognition. However, higher stages of learning (e.g. for children) are impossible
without a teacher (their parents). Besides, some brain areas are quite able to play
a role of “teacher” for other areas by controlling their activity. Therefore, it is not
possible to claim uniquely which type of learning (with a teacher or without it) is
more biologically plausible.

Learning without a teacher. In a widespread version it is as follows. There is a
set of input vectors. A set of output vectors is absent. Learning a network means
selecting its parameter values so that it would classify input vectors in some “opti-
mal” way. An ANN must divide a set of input vectors into groups (classes) so that
each class contains vectors close to each other while differences between classes
are relatively big. This is done via optimisation of a cost function involving the
two mentioned factors. When a new input vector is presented, a learned network
attributes it to one of the classes which have been formed by it previously (without a
teacher). One of the most well-known examples of such a way to solve classification
problems is the learning of Cohonen network (see, e.g., Gorban’ et al., 1998).

Currently, there is a huge body of literature on neural networks highlighting
very different questions ranging from the choice of the ANN architecture to its
learning and practical applications. In particular, there are many works accessi-
ble to a wide readership (Gorban’, 1998; Gorban’ et al., 1998; Loskutov and
Mikhailov, 2007; Malinetsky and Potapov, 2000, pp. 171–203; Wasserman, 1989;
http://www.neuropower.de). Some additional details and examples of ANN applica-
tions to modelling from time series are given in Sect. 10.2.1.

Thus, several representative classes of deterministic models are discussed in
Sects. 3.5, 3.6, 3.7 and 3.8. Roughly speaking, we have described them in the order
of increasing complexity in terms of the phase space dimension, fractal dimension
of possible attractors, the number of positive Lyapunov exponents, the diversity of
possible dynamical regimes and configurations of the parameter space. Yet, linear
ordering most often appears impossible; therefore, we have presented more specific
discussion of the complexity for each example separately. To summarise, the pre-
sented deterministic models are capable of describing huge number of phenomena
observed in real-world systems ranging from quite simple ones (e.g. an equilibrium
state, a limit cycle and a linear resonance) to very complex (e.g. high-dimensional
chaotic motions, transition to chaos and diverse bifurcations in multi-parametric
non-linear systems).
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Chapter 4
Stochastic Models of Evolution

To continue the discussion of randomness given in Sect. 2.2.1, we briefly touch on
stochastic models of temporal evolution (random processes). They can be specified
either via explicit definition of their statistical properties (probability density func-
tions, correlation functions, etc., Sects. 4.1, 4.2 and 4.3) or via stochastic difference
or differential equations. Some of the most widely known equations, their properties
and applications are discussed in Sects. 4.4 and 4.5.

4.1 Elements of the Theory of Random Processes

If, given initial conditions x(t0) and fixed parameter values, a process demonstrates
the same time realisation in each trial, then its natural description is deterministic
(Chap. 3). However, such a situation is often not met in practice: different trials
“under the same conditions” give different realisations of a process. One relates such
non-uniqueness to influences from multiple uncontrolled factors, which are often
present in the real world. Then, it is reasonable to refuse deterministic description
and exploit an apparatus of the theory of probability and theory of random pro-
cesses (see, e.g. Gihman and Skorohod, 1974; Kendall and Stuart, 1979; Malakhov,
1968; Rytov et al., 1978; Stratonovich, 1967; Volkov et al., 2000; Wentzel’,
1975).

4.1.1 Concept of Random Process

Random process (random function of time) is a generalisation of the concept of
random quantity to describe time-dependent variables. More precisely, its definition
is given as follows. Firstly, random function is a random quantity depending not only
on a random event ω but also on some parameter. If that parameter is time, then the
random function is called random process and denoted ξ(t, ω). A quantity ξ may
be both scalar (a scalar random process) and vector (a vector or a multidimensional
random process). It may run either a discrete range of values (a process with discrete

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_4,
C© Springer-Verlag Berlin Heidelberg 2010
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states) or a continuous one. For the sake of definiteness, we further speak of the
latter case. Studying and development of such models is the subject of the theory of
random processes (Gihman and Skorohod, 1974; Stratonovich, 1967; Volkov et al.,
2000; Wentzel’, 1975). In the case of discrete time t = 0, 1, 2, . . ., a random process
is called a random sequence.

For a random process, an outcome of a single trial is not a single number (like
for a random quantity) but a function ξ(t, ω1), where ω1 is a random event realised
in a given trial. The random event can be interpreted as a collection of uncontrolled
factors influencing a process during a trial. The function ξ(t, ω1) is called a real-
isation of a random process. It is a deterministic (non-random) function of time,
because a random event ω = ω1 is fixed. In general, one gets different realisations
as outcomes of different trials. A set of realisations obtained from various trials (i.e.
for different ω) is called an ensemble of realisations (Fig. 4.1).

Fig. 4.1 An ensemble of N
realisations (three of them are
shown) and two sections of a
random process
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4.1.2 Characteristics of Random Process

At any fixed time instant t , a random process ξ(t, ω) is a random quantity. The latter
is called a section of a random process at a time instant t and characterised by a
probability density function p(x, t). This distribution law is called one-dimensional
distribution of the random process. It depends on time and may differ for two dif-
ferent time instants. Knowledge of one-dimensional distribution law p(x, t) allows
one to calculate expectation and variance of the process at any time instant t . If the
distribution law varies in time, then the expectation

m(t) = E [ξ(t, ω)] =
∞∫

−∞
xp(x, t)dx (4.1)

and the variance

σ 2
ξ (t) = E[ξ(t, ω)− m(t)]2 =

∞∫

−∞
[x − m(t)]2 p(x, t)dx (4.2)

may vary in time as well. They are deterministic (non-random) functions of time,
since dependence on random events is eliminated due to integration.

In general, sections ξ(t, ω) at different time instants t1 and t2 exhibit differ-
ent probability density functions p(x, t1) and p(x, t2), Fig. 4.1. Joint behaviour
of the sections is described by two-dimensional probability density function
p2(x1, t1, x2, t2). One can define n-dimensional distribution laws pn for any sets
t1, t2, . . . , tn in the same way. These laws constitute a collection of finite-
dimensional distributions of a random process ξ(t, ω). Probabilistic properties of
a process are fully defined only if the entire collection is given. However, since the
latter represents an infinite number of distribution laws, one cannot in general fully
describe a random process.

To be realistic, one must confine him/herself with the use of some characteristics,
e.g. one- and two-dimensional distributions or low-order moments (expectation,
variance, auto-covariance function). Thus, auto-covariance function depends on two
arguments:

K (t1, t2) = E [(ξ(t1, ω) − m(t1)) (ξ(t2, ω) − m(t2))] =
= ∫∫

(x1 − m(t1)) (x2 − m(t2)) p2(x1, t1, x2, t2)dx1 dx2.
(4.3)

For fixed t1 and t2, the expression (4.3) defines covariance of the random quan-
tities ξ(t1, ω) and ξ(t2, ω). If it is normalised by root-mean-squared deviations, one
gets autocorrelation function ρ(t1, t2) = K (t1, t2)/(σξ (t1)σξ (t2)), i.e. correlation
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coefficient between random quantities ξ(t1, ω) and ξ(t2, ω).1 Autocorrelation func-
tion takes values ranging from −1 to 1. The value of |ρ(t1, t2)| = 1 corresponds to
a deterministic linear dependence ξ(t1, ω) = const · ξ(t2, ω).

To characterise a process, one often uses conditional one-dimensional distribu-
tion p1(x, t |x1, t1), i.e. distribution of a section ξ(t) under the condition that at a
time instant t1 the quantity ξ takes a value of ξ(t1) = x1. The function p1(x, t |x1, t1)
is called probability density of the transition from a state x1 at a time instant t1 to a
state x at a time instant t .

4.1.3 Stationarity and Ergodicity of Random Processes

An important property of a process is its stationarity or non-stationarity. A process is
called strongly stationary (stationary in a narrow sense) if all its finite-dimensional
distributions do not change under a time shift, i.e. pn(x1, t1, . . . , xn, tn) =
pn(x1, t1+τ, . . . , xn, tn+τ), ∀n, t1, . . . , tn, τ . In other words, neither characteristic
of a process changes under a time shift. A process is called weakly stationary (sta-
tionary in a wide sense) if its expectation, variance and autocorrelation function (i.e.
moments up to the second order inclusively) do not change under a time shift. For a
stationary process (in any of the two senses), one has m(t) = const, σ 2

ξ (t) = const
and K (t1, t2) = k(τ ) with τ = t2 − t1. The strong stationarity implies the weak
one.2

In general, “stationarity” means invariance of some property under a time shift.
If a property of interest (e.g. nth-order moment of the one-dimensional distribu-
tion) does not change in time, then a process is called stationary with regard to that
property.

A process is called ergodic if all its characteristics can be determined from its sin-
gle (infinitely long) realisation. For instance, the expectation is then determined as

m = lim
T →∞

1

T

T∫

0

ξ(t, ω1)dt

for almost any ω1, i.e. temporal averaging and ensemble (state space) averaging
give the same result. If one can get all characteristics of a process in such a way, the
process is called strictly ergodic. If only certain characteristics can be restored from
a single realisation, the process is called ergodic with regard to those characteris-
tics. Thus, one introduces the concept of the first-order ergodicity, i.e. ergodicity
with regard to the first-order moments, and so forth. Ergodic processes constitute an

1 There is also another terminology where equation (4.3) is called an auto-correlation function, and
after the normalisation, a normalised auto-correlation function. To avoid misunderstanding, we do
not use it in this book.
2 There is also somewhat different interpretation related to an additional requirement of a finite
variance for a weakly stationary process. In such a case, the weak stationarity does not follow from
the strong one.
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important class, since in practice one often has a single realisation rather than a big
ensemble of realisations. Only for an ergodic process one can restore its properties
from such a data set. Therefore, one often assumes ergodicity of a process under
investigation when time series analysis (Chaps. 5, 6, 7, 8, 9, 10, 11, 12 and 13) is per-
formed. An ergodic process is stationary, while the reverse is not compulsorily true.

An example (a real-world analogue) of a random process is provided by almost
any physical measurement. It may be measurements of a current in a non-linear
circuit, exhibiting self-sustained oscillations. Measured time realisations differ for
different trials due to thermal noise, various interference, etc. Moreover, having a
realisation over a certain time interval, one cannot uniquely and precisely predict its
future behaviour, since the latter is determined by random factors which will affect
a process in the future.

A simpler example of a random process is a strongly simplified model represen-
tation of photon emission by an excited atom. An emission instant, initial phase,
direction and polarisation are unpredictable. However, as soon as a photon is emit-
ted and its starting behaviour gets known, the entire future is uniquely predictable.
According to the representation considered, the process is described as sinusoidal
function of time with a random initial phase (harmonic noise). Random processes of
such type are sometimes called quasi-deterministic, since random factors determine
only initial conditions, while further behaviour obeys a deterministic law.

4.1.4 Statistical Estimates of Random Process Characteristics

To get statistical estimates of a one-dimensional distribution law p(x, t) and
its moments, one can perform many trials and obtain a set of realisations
ξ(t, ω1), ξ(t, ω2), . . . , ξ(t, ωn). The values of the realisations at a given time
instant t = t∗ constitute a sample of size n from the distribution of a random
quantity ξ(t∗, ω), Fig. 4.1. One can estimate a distribution law p(x, t∗) and other
characteristics based on that sample. It can be done for each time instant.

Multidimensional distribution laws can be estimated from an ensemble of reali-
sations in an analogous way. However, the number of realisations for their reliable
estimation must be much greater than that for the estimation of statistical moments
or one-dimensional distributions.

A situation when one has only a single realisation is more complex. Only for an
ergodic process and a sufficiently long realisation, one can estimate characteristics
of interest by replacing ensemble averaging with temporal averaging (Sect. 4.1.3).

4.2 Basic Models of Random Processes

A random process can be specified via explicit description of its finite-dimensional
probability distributions. In such a way, one introduces basic models in the theory
of random processes. Below, we consider several of them (Gihman and Skorohod,
1974; Volkov et al., 2000; Wentzel’, 1975).
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(i) One of the most important models in the theory of random processes is
the normal (Gaussian) random process. This is a process whose finite-
dimensional distribution laws are all normal. Namely, an n-dimensional dis-
tribution law of this process reads as

pn(x1, t1, . . . , xn, tn) = 1
√
(2π)n |Vn |exp

(
−1

2
(xn − mn)

T · V−1
n · (xn − mn)

)

(4.4)

for any n, where

xn =

⎡

⎢⎢
⎣

x1
x2
. . .

xn

⎤

⎥⎥
⎦ ,mn =

⎡

⎢⎢
⎣

m(t1)
m(t2)
. . .

m(tn)

⎤

⎥⎥
⎦ ,Vn =

⎡

⎢⎢
⎣

K (t1, t1) K (t1, t2) . . . K (t1, tn)
K (t2, t1) K (t2, t2) . . . K (t2, tn)

. . . . . . . . . . . .

K (tn, t1) K (tn, t2) . . . K (tn, tn)

⎤

⎥⎥
⎦ ,

(4.5)

m(t) is the expectation, K (t1, t2) is the auto-covariance function (4.3), T
stands for transposition and |Vn| is a determinant of a matrix Vn . Here, all
the finite-dimensional distributions are known (a process is fully determined)
if the expectation and the auto-covariance function are specified. A normal
process remains normal under any linear transform.

(ii) A process with independent increments. This is a process for which the quan-
tities ξ(t1, ω), ξ(t2, ω) − ξ(t1, ω), . . . , ξ(tn, ω) − ξ(tn−1, ω) (increments)
are statistically independent for any n, t1, . . . , tn , such that n > 1 and
t1 < t2 < . . . < tn .

(iii) Wiener’s process. This is an N -dimensional random process with independent
increments for which a random vector ξ(t2, ω) − ξ(t1, ω) for any t1 < t2 is
distributed according to the normal law with zero mean and the covariance
matrix (t2 − t1)s2 In , where In is the nth-order unit matrix and s = const. This
is a non-stationary process. In the one-dimensional case, its variance linearly
rises with time as σ 2(t) = σ 2(t0) + s2 · (t − t0).
Wiener’s process describes, for instance, a Brownian motion, i.e. movements
of a Brownian particle under random independent shocks from molecules of
a surrounding medium.
One can show that Wiener’s process is a particular case of the normal process.
Wiener’s process with s = 1 is called standard.

(iv) A (first-order) Markovian process is a random process whose condi-
tional probability density function for any n, t1, . . . , tn , such that t1 <

t2 < . . . < tn , satisfies the property p1(xn, tn|xn−1, tn−1, . . . , x1, t1) =
p1(xn, tn|xn−1, tn−1). This is also expressed as “the future depends on the
past only via the present”. Any finite-dimensional distribution law of this
process is expressed via its one-dimensional and two-dimensional laws. One
can show that Wiener’s process is a particular case of a Markovian process.
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One more important particular case is a Markovian process with a finite
number K of possible states S1, . . . , SK . Due to discreteness of the states, it
is described in terms of probabilities rather than probability densities. Condi-
tional probability P{ξ(t +t) = S j |ξ(t) = Si } is called transition probability,
since it describes the transition from the state i to the state j . A quantity
λi, j (t) = lim

t→+0
P{ξ(t + t) = S j |ξ(t) = Si }/t is called transition proba-

bility density.
Markovian processes play an especial role in the theory of random processes.
Multitude of investigations are devoted to them.

(v) Poisson process with a parameter λ > 0 is a scalar random process with
discrete states possessing the following properties: (a) ξ(0, ω) = 0; (b) incre-
ments of the process are independent; (c) for any 0 ≤ t1 < t2, a quantity
ξ(t2, ω)−ξ(t1, ω) is distributed according to the Poisson law with a parameter
λ(t2 − t1), i.e.

P {ξ(t2, ω) − ξ(t1, ω) = k} = λ(t2 − t1)k

k! exp(−λ(t2 − t1)),

where k is a non-negative integer. Poisson process is often used in applica-
tions, e.g. in the queueing theory.

(vi) White noise is a weakly stationary (according to one of the definitions of
stationarity, see Sect. 4.1.3) random process whose values at different time
instants are uncorrelated, i.e. its auto-covariance function is k(τ ) = const ·
δ(τ ). It is called “white”, since its power spectrum is a constant, i.e. all fre-
quencies are equally presented in it. Here, one draws an analogy to the white
light, which involves all frequencies (colours) of the visible part of spectrum.
White noise variance is infinitely large: σ 2

ξ = k(0) = ∞.
A widespread model is Gaussian white noise. This is a stationary process with
a Gaussian one-dimensional distribution law and auto-covariance function
k(τ ) = const · δ(τ ). Strictly speaking, such a combination is contradictory,
since white noise has infinite variance, while a normal random process has a
finite variance. Yet, somewhat contradictory concept of Gaussian white noise
is useful in practice and in investigations of stochastic differential equations
(Sect. 4.5). Gaussian white noise can be interpreted as a process with a very
large variance, while a time interval over which its auto-covariance function
decreases down to zero is very small as compared with the other characteristic
timescales of a problem under consideration.

(vii) A discrete-time analogue of white noise is a sequence of independent identi-
cally distributed random quantities. It is also often called white noise. Most
often, one considers normal one-dimensional distribution, even though any
other distribution is also possible. In case of discrete time, variance σ 2

ξ is
finite so that the process is weakly stationary, no matter what definition of the
weak stationarity is used.
White noise is the “most unpredictable” process, since any interdepen-
dence between its successive values is absent. A sequence of independent
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normally distributed quantities serves as a basic model in the construction of
discrete-time stochastic models in the form of stochastic difference equations
(Sect. 4.4).

(viii) Markov chain is a Markovian process with discrete states and discrete time.
This simple model is widely used in practice. Its main characteristics are prob-
abilities of transitions from one state to another one. Graph-theoretic tools are
used for the analysis and representation of such models.

4.3 Evolutionary Equations for Probability Distribution Laws

Exemplary random processes derived from intuitive conceptual considerations are
listed above. Thus, the normal random process can be obtained from the idea about
big number of independent factors, white noise from independence of subsequent
values and Poisson process from an assumption of rare events (Gihman and Sko-
rohod 1974; Volkov et al., 2000; Wentzel’, 1975). All “essential properties” of
these three processes are known: finite-dimensional distribution laws, statistical
moments, etc.

As for Markovian processes, they are based on the ideas about relationships
between the future states and the previous ones. In general, a Markovian process
may be non-stationary. Thus, one can ask how an initial probability distribution
changes in time, whether it converges to some stationary one and what such a limit
distribution looks like. Answers to those questions are not formulated explicitly in
the definition of a Markovian process. However, to get the answers, one can derive
evolutionary equations for a probability distribution law based directly on the def-
inition. For a process with a finite number of states, they take the form of a set of
ordinary differential equations (Kolmogorov equations):

⎡

⎢
⎢
⎣

dp1
/

dt
dp2

/
dt

. . .

dpK
/

dt

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−(λ1,2 + . . . + λ1,K ) λ2,1 . . . λK ,1

λ1,2 −(λ2,1 + λ2,3 + . . .+ λ2,K ) . . . λK ,2

. . . . . . . . . . . .

λ1,K λ2,K . . . −(λK ,1 + . . . + λK ,K−1)

⎤

⎥
⎥
⎦

·

⎡

⎢
⎢
⎣

p1

p2

. . .

pK

⎤

⎥
⎥
⎦ , (4.6)

where pi (t) is a probability of a state Si , λi, j (t) are transition probability densi-
ties. If the functions λi, j (t) are given, one can trace an evolution of the probabil-
ity distribution starting from any initial distribution by integrating the Kolmogorov
equations. In simple particular cases, e.g. for constant λi, j , a solution can be found
analytically.

A problem is somewhat simpler in the case of Markov chains (at least, for numer-
ical investigation), since an evolution of a probability vector is described with a Kth-
order difference equation. For a vivid representation of Markovian processes with
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discrete states, one often uses graphs where circles and arrows indicate different
states and possible transitions between them.

In the case of a continuous-valued Markovian process, a state is to be described
with a probability density function rather than a probability vector. Therefore, one
derives partial differential equations for an evolution of the probability distribu-
tion law rather than ordinary differential equations (4.6). This is a generalised
Markov equation (the other names are Kolmogorov – Chapman equation and direct
Kolmogorov equation) for a conditional probability density function:

∂p(x, t |x0, t0)

∂t
=

∞∑

k=1

(−1)k

k!
∂k

∂xk

[
ck(x, t)p(x, t |x0, t0)

]
, (4.7)

where ck(x, t) = lim
t→0

1
t

∞∫
−∞

(x ′ − x)k p(x ′, t +t |x, t)dx ′ are coefficients related

to “probabilities of change” of a state x and determining “smoothness” of the pro-
cess realisations.

In an important particular case of a diffusive Markovian process (where ck = 0
for any k > 2), the equation simplifies and reduces to

∂p(x, t)

∂t
= − ∂

∂x
(c1(x, t)p(x, t)) + 1

2

∂2

∂x2 (c2(x, t)p(x, t)) , (4.8)

where c1 is called the drift coefficient and c2 is the diffusion coefficient. Equa-
tion (4.8) is also called Fokker – Planck equation (Wentzel’, 1975; Risken, 1989). It
is an equation of a parabolic type. Of the same form are diffusion and heat conduc-
tion equations in mathematical physics. The names of the coefficients originate from
the same field. Relationships between parameters of stochastic differential equation
specifying an original process and the drift and diffusion coefficients in the Fokker–
Planck equation are considered in Sect. 4.5.

4.4 Autoregression and Moving Average Processes

A random process can be specified via a stochastic equation. Then, it is defined
as a solution to a stochastic equation, i.e. its substitution into an equation makes
the latter an identity. In particular, discrete-time stochastic equations which define
random processes of “autoregression and moving average” (Box and Jenkins, 1970)
are considered below. They are very often used in modelling from observed data.

Linear filter. As a basic model for the description of complex real-world pro-
cesses, one often uses Gaussian white noise ξ(t). Let it have zero mean and the
variance σ 2

ξ . Properties of a real-world signal may differ from those of Gaussian
white noise, e.g. an estimate of the autocorrelation function ρ(τ) may significantly
differ from zero at non-zero time lags τ . Then, a fruitful approach is to construct
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a model as Gaussian white noise transformed by a linear filter. In general, such a
transform in discrete time is defined as

xn = ξn +
∞∑

i=1

ψiξn−i . (4.9)

For the variance of xn to be finite (i.e. for xn to be stationary), the weightsψi must

satisfy
∞∑

i=1
ψ2

i ≤ const. Linear transform (4.9) preserves normality of a process and

introduces non-zero autocorrelations ρ(τ) at non-zero time lags.
Moving average processes. Using a model with an infinite number of weights

is impossible in practice. However, one may reasonably assume that the value of
ψi decreases quickly with i , i.e. the remote past weakly affects the present, and
consider the model (4.9) containing only a finite number of weights q. Thereby, one
gets a “moving average” process which is denoted as MA(q) and defined by the
difference equation

xn = an −
q∑

i=1

θiξn−i (4.10)

involving q + 1 free parameters: θ1, θ2, . . . , θq , and σ 2
ξ .

Autoregression processes. A general expression (4.9) can be equivalently rewrit-
ten in the form

xn = ξn +
∞∑

i=1

πi xn−i , (4.11)

where the weights πi are uniquely expressed via ψi . In more detail, conversion
from (4.9) to (4.11) can be realised through subsequent exclusion of the quantities
ξn−1, ξn−2, etc. from equation (4.9). For that, one expresses ξn−1 via xn−1 and

previous values of ξ as ξn−1 = xn−1 −
∞∑

i=1
ψiξn−1−i . Then, one substitutes this

expression into equation (4.9), thereby excluding ξn−1 from the latter. Next, one
excludes ξn−2 and so on in the same manner. The process (4.11) involves an infinite
number of parameters πi . However, a fast decrease πi → 0 at i → ∞ often takes
place, i.e. the remote past weakly affects the present (already in terms of the values
of x variable). Then, one may take into account only a finite number of terms in
equation (4.11). As a result, one gets an “autoregression” process of an order p
which is denoted as AR(p) and defined as

xn = ξn +
p∑

i=1

φi xn−i . (4.12)

This model contains p + 1 free parameters: φ1, φ2, . . . , φp and σ 2
ξ . The values

of weights must satisfy certain relationships (Box and Jenkins, 1970) for a process
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to be stationary. Thus, in the case of p = 1, the variance of a process (4.12) is
σ 2

x = σ 2
ξ /

(
1 − φ2

1

)
so that one needs |φ1| < 1 to provide the stationarity. The term

“autoregression” appears, since the sum in equation (4.12) determines regression of
the current value of x on the previous values of the same process. The latter circum-
stance inspires the prefix “auto”. The general concept of regression is described in
Sect. 7.2.1.

AR processes represent an extremely popular class of models. One of the rea-
sons is the simplicity of their parameter estimation (see Chaps. 7 and 8). Moreover,
they are often readily interpretable from the physical viewpoint. In particular, the
AR(2) process given by xn = φ1xn−1 + φ2xn−2 + ξn with appropriate values
of the parameters φ1 and φ2 describes a stochastically perturbed linear damped
oscillator, i.e. a generalization of the deterministic oscillator (3.2). Its character-
istic period T and relaxation time τ are related to the parameters φ1 and φ2 as
φ1 = 2 cos(2π/T ) exp(−1/τ) and φ2 = − exp(−2/τ), see Timmer et al. (1998) for
a further discussion and applications of the AR(2) process to empirical modelling
of physiological tremor.

The same model equation was first used for the analysis of solar activity in the
celebrated work (Yule, 1927), where parameters of an AR(2) process were estimated
from the time series of annual sunspot numbers. It was shown that an obtained
AR(2) model could reproduce 11-year cycle of solar activity and gave better predic-
tions than a traditional description with explicit periodic functions of time, which
had been used before. Since then, linear stochastic models have become a widely
used tool in many fields of data analysis. As for the modelling of solar activity, it was
considered in many works after 1927. In particular, non-linear improvements of AR
models are discussed, e.g., in Judd and Mees (1995; 1998); Kugiumtzis et al. (1998).
Additional results on the analysis of solar activity data are presented in Sect. 12.6.

Autoregression and moving average processes. To get a more efficient con-
struction for the description of a wide range of processes, one can combine equa-
tions (4.10) and (4.12). Reasons for their combining are as follows. Let us assume
that an observed time series is generated by an AR(1) process. If one tries to describe
it as an MA process, then an infinite (or at least very large) order q is necessary.
Estimation of a large number of parameters is less reliable that leads to an essential
reduction of the model quality. Inversely, if a time series is generated with an MA(1)
process, then an AR process of a very high order p is necessary for its description.
Therefore, it is reasonable to combine equations (4.10) and (4.12) in a single model
to describe an observed process most parsimoniously. Thus, one gets an autoregres-
sion and moving average process of an order (p, q) which is denoted ARMA (p, q)
and defined as

xn = ξn +
p∑

i=1

φi xn−i −
q∑

i=1

θiξn−i . (4.13)

It involves p + q + 1 free parameters.
Autoregression and integrated moving average processes. A stationary pro-

cess (4.13) cannot be an adequate model for non-stationary processes with either
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deterministic trends or stochastic ones. The term “stochastic trend” means irregular
alternation of intervals, where a process follows almost deterministic law. However,
an adequate model in the case of polynomial trends is a process whose finite dif-
ference is a stationary ARMA process. A finite difference of an order d is defined
as yn = ∇d xn , where ∇xn = xn − xn−1 is the first difference (an analogue to dif-
ferentiation) and ∇d denotes d sequential applications of the operator ∇. Thus, one
gets an autoregression and integrated moving average process of an order (p, d, q)
denoted ARIMA(p, d, q) and defined via the set of difference equations

yn = ξn + μ +
p∑

i=1
φi yn−i −

q∑

i=1
θiξn−i ,

∇d xn = yn .

(4.14)

An intercept μ determines a deterministic trend. To express xn via the values of
the ARMA process yn , one should use summation operator (an analogue to integra-
tion), which is inverse to the operator ∇. It explains the word “integrated” in the title
of an ARIMA process.

ARMA and ARIMA processes were the main tools to model and predict complex
real-world processes for more than half a century (1920–1970s). They were widely
used to control technological processes (Box and Jenkins, 1970, vol. 2). Their var-
ious modifications were developed, in particular, seasonal ARIMA models defined
as ARIMA processes for a seasonal difference ∇s xn = xn − xn−s of the kind

yn = ξn +
P∑

i=1
�i yn−is −

Q∑

i=1
�iξn−is,

∇D
s xn = yn,

(4.15)

where ξn is an ARIMA (p, d, q) process. A process (4.15) is called a seasonal
ARIMA process of an order (P, D, Q) × (p, d, q). Such models are relevant to
describe processes with seasonal trends (i.e. a characteristic timescale s).

Only during the last two decades due to the development of computers and
concepts of non-linear dynamics, ARIMA models more and more “step back” in
a competition with non-linear models (Chaps. 8, 9, 10, 11, 12 and 13), though they
remain the main tool in many fields of knowledge and practice.

4.5 Stochastic Differential Equations and White Noise

4.5.1 The Concept of Stochastic Differential Equation

To describe continuous-time random processes, one uses stochastic differential
equations (SDEs). The most well known is the first-order equation (so-called
Langevin equation)

dx(t)
/

dt = F(x, t) + G(x, t) · ξ(t), (4.16)
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where F and G are smooth functions of their arguments, ξ(t) is zero-mean Gaussian
white nose with the auto-covariance function 〈ξ(t)ξ(t + τ)〉 = δ(τ ).

Introducing a concept of SDE is by no means trivial since it includes a con-
cept of the random process derivative dx(t)/dt . How should one understand such
a derivative? The simplest way would be to assume that all the realisations of a
process x are continuously differentiable and define the derivative at a point t as
a random quantity, whose value is an ordinary derivative of a single realisation of
x at t . However, this is possible only for processes ξ(t) with sufficiently smooth
realisations so that for each specific realisation of ξ(t), equation (4.16) can be con-
sidered and solved as a usual ODE. However, white noise does not belong to such
class of processes but reasonably describes multitude of practical situations (a series
of independent shocks) and allows simplification of mathematical manipulations. To
have an opportunity to analyse equation (4.16) with white noise ξ(t), one generalises
the concept of derivative dx(t)/dt of a random process x at a point t . The derivative
is defined as a random quantity

dx(t)

dt
= lim

t→0

x(t + t)− x(t)

t
,

where the limit is taken in the root-mean-squared sense (see, e.g., Gihman and Sko-
rohod, 1974; Volkov et al., 2000; Wentzel’, 1975). However, even such a concept
does not help much in practice. The point is that one should somehow integrate
equation (4.16) to get a solution. Formally, one can write

x(t) − x(t0) =
t∫

t0

F(x(t ′), t ′)dt ′ +
t∫

t0

G(x(t ′), t ′) · ξ(t ′)dt ′ (4.17)

and estimate a solution over an interval [t0, t] via the estimation of the integrals. A
stochastic integral is also defined via the limit in the root-mean-squared sense. How-
ever, its definition is not unique. There are two most popular forms of the stochastic
integral: (i) Ito’s integral is defined analogous to the usual Riemann’s integral via
the left rectangle formula and allows to get many analytic results (Oksendal, 1995);
(ii) Stratonovich’s integral is defined via the central rectangles formula (a sym-
metrised form of the stochastic integral) (Stratonovich, 1967); it is more readily
interpreted from the physical viewpoint since it is symmetric with respect to time
(Mannella, 1997). Moreover, one can define the generalised stochastic integral,
whose particular cases are Ito’s and Stratonovich’s integrals (Gihman and Skorohod,
1974; Mannella, 1997; Volkov et al., 2000; Wentzel’, 1975). Thus, the stochastic DE
(4.16) gets an exact meaning if one indicates in which sense the stochastic integrals
are to be understood.

If G(x, t) = G0 = const, all the above-mentioned forms of the stochastic inte-

gral
t∫

t0
G(x(t ′), t ′) · ξ(t ′)dt ′ coincide. Below, we consider this simple case in more

detail. One can show that a process x in equation (4.17) is Markovian. Thus, one
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can write down the corresponding Fokker – Planck equation where the drift coeffi-
cient is F(x, t) and the diffusion coefficient is G2

0. Let us consider a particular case
of F = 0:

dx(t)
/

dt = G0ξ(t). (4.18)

The solution to this equation can be written down formally as

x(t) − x(t0) = G0

t∫

t0

ξ(t ′)dt ′. (4.19)

One can show that the process (4.19) is Wiener’s process. Its variance linearly
depends on time as σ 2

x (t) = σ 2
x (t0) + G2

0 · (t − t0). The variance of its increments
over an interval t is equal to G2

0t . It agrees well with known observations of
Brownian particle motion, where mean square of the deviation from a starting point
is also proportional to time.

A geophysical example. Equation (4.18) allows to derive an empirically estab-
lished Gutenberg – Richter law for the repetition time of earthquakes depending
on their intensity (Golitzyn, 2003). Let x be a value of a mechanical tension (pro-
portional to deformations) at a given domain of the earth’s crust. Let us assume
that it is accumulated due to different random factors (various shocks and so forth)
described as white noise. On average, its square rises as G2

0(t − t0) (4.18) starting
from a certain zero time instant when the tension is weak. Earthquakes arise when
the system accumulates sufficient elastic energy during a certain time interval and
releases it in some way. If the release occurs when a fixed threshold E is reached,
then a time interval necessary to accumulate such energy reads as τ = E/G2

0.
From here, it follows that the frequency of occurrence of earthquakes with energy
exceeding E is ∼ 1/τ ∼ G2

0/E , i.e. the frequency of occurrence is inversely pro-
portional to energy. The Gutenberg – Richter law reduces to the same form under
certain assumptions. Analogous laws describe appearance of tsunami, landslides
and similar events (Golitzyn, 2003).

An example from molecular physics. Under an assumption that independent
shocks abruptly change a velocity of a particle rather than its coordinate, i.e. the
white noise represents random forces acting on a particle, one gets the second-
order SDE:

d2x(t)
/

dt
2 = G0ξ(t). (4.20)

It allows to derive analytically the Richardson – Obukhov law stating that mean
square of the displacement of a Brownian particle rises with time as (t − t0)3 under
certain conditions. This law holds true for the sea surface within some range of
scales (it is known as relative diffusion) (Golitzyn, 2003).
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4.5.2 Numerical Integration of Stochastic Differential Equations

The above examples allow an analytic solution but for non-linear F and/or G, one
has to use numerical techniques, which differ from those for ODEs. For simplicity,
we start again with equation (4.16) with G(x, t) = G0 = const:

dx
/

dt = F(x(t))+ G0ξ(t). (4.21)

At a given initial condition x(t), an SDE determines an ensemble of possi-
ble future realisations rather than a single realisation. The function F uniquely
determines only the conditional probability density functions p(x(t + t)|x(t)).
If F is non-linear, one cannot derive analytic formulas for the conditional distribu-
tions. However, one can get those distributions numerically via the generation of
an ensemble of the SDE realisations. For that, the noise term ξ(t ′) over an interval
[t, t +t] is simulated with the aid of pseudo-random number generator and the
SDE is numerically integrated step by step.

The simplest approach is to use the Euler technique with a small integration
step h (see, e.g., Mannella, 1997; Nikitin and Razevig, 1978). The respective differ-
ence scheme for equation (4.21) reads as

x(t + h) − x(t) = F(x(t)) · h + ε0(t) · G0
√

h, (4.22)

where ε0(t), ε0(t + h), ε0(t + 2h), . . . are independent identically distributed Gaus-
sian random quantities with zero mean and unit variance. The second term in the
right-hand side of equation (4.22) shows that the noise contribution to the difference
scheme scales with the integration step as

√
h. This effect is not observed in ODEs

where the contribution of the entire right-hand side is of the order of h or higher.
For SDEs, such an effect takes place due to the integration of the white noise ξ(t):
the difference scheme includes the random term whose variance is proportional to
the integration step. The random term dominates for very small integration steps h.
The scheme (4.22) is characterised by an integration error of the order h3/2, while
for ODEs the Euler technique gives an error of the order of h2.

Further, at a fixed step h, one can generate an ensemble of noise realisations
ε0(t), ε0(t + h), ε0(t + 2h), . . . and compute for each realisation the value of
x(t + t) at the end of the time interval of interest via the formula (4.22). From
an obtained set of values of x(t + t), one can construct a histogram, which is
an estimate of the conditional probability density p(x(t + t)|x(t)). This estimate
varies under the variation of h and tends to a true distribution only in the limit
h → 0 like an approximate solution of an ODE tends to a true one for h → 0.
In practice, one should specify so small integration step h that an approximate dis-
tribution would weakly change under further decrease in h. Typically, to get the
same order of accuracy, one must use smaller steps for the integration of SDEs as
compared with the corresponding ODEs to get similar convergence. This is due to
the above-mentioned lower order of accuracy for the SDEs.
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A process x in equation (4.16) or (4.21) may well be vector valued. Then, white
noise ξ(t) is also a multidimensional process. All the above considerations remain
the same for vector processes. As an example, let us consider integration of stochas-
tic equations of the van der Pol oscillator:

dx1
/

dt = x2,

dx2
/

dt = μ(1 − x2
1)x2 − x1 + ξ(t),

(4.23)

with μ = 3 (Timmer, 2000) and G0 = 1. Estimates of the conditional distri-
bution p(x1(t + t)|x(t)) are shown in Fig. 4.2. We take the initial conditions
x(t) = (0,−4) lying close to probable states of the system observed in a long
numerically obtained orbit, t = 0.5 corresponding approximately to 1/18 of a
basic period, and integration steps h = 0.1, 0.01, 0.001 and 0.0001. A distribution
estimate stabilises at h = 0.001. Thus, an integration step should be small enough
to give a good approximation to conditional distributions, often not more than about
0.0001 of a basic period. For a reasonable convergence of a numerical technique
for the corresponding ODE, i.e. equation (4.23) without noise, a step 0.01 always
suffices.

One more reason why dealing with SDEs is more complicated than numerical
integration of ODEs is the above-mentioned circumstance that the integral of a
random process ξ(t) is an intricate concept. Let us now consider equation (4.16)
with a non-constant function G. The corresponding Fokker – Planck equation takes
different forms depending on the definition of the stochastic integrals. Namely, the
drift coefficient reads as F(x, t) under Ito’s definition and as

F(x, t) + 1

2

∂G(x, t)

∂x
G(x, t)

under Stratonovich’s definition (Nikitin and Razevig, 1978; Mannella, 1997;
Risken, 1989) (the diffusion coefficient is G2(x, t) in both cases). Accordingly, the

Fig. 4.2 Probability density
estimates p(x1(t + t)|x(t))
for the system (4.23) at
integration step h = 0.1,
0.01, 0.001, 0.0001 and initial
conditions x(t) = (0,−4).
Each histogram is constructed
from an ensemble of 10,000
time realisations with a bin
size of 0.01. Good
convergence is observed at
h = 0.001
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Euler scheme, i.e. a scheme accurate up to the terms of the order h3/2, depends
on the meaning of the stochastic integrals. For Ito’s integrals, the Euler scheme is
similar to the above case (Nikitin and Razevig, 1978) and reads as

x(t + h)− x(t) = F(x(t)) · h + ε0(t)G(x(t))
√

h. (4.24)

For Stratonovich’s integrals often considered in physics (Risken, 1989;
Mannella, 1997; Siegert et al., 1998), the Euler scheme takes the form

x(t+h)−x(t) = F(x(t))·h+1

2

∂G(x, t)

∂x
G(x(t))ε2

0(t)h+G(x(t))ε0(t)
√

h, (4.25)

where an additional term of the order O(h) appears. The latter is necessary to pro-
vide the integration error not greater than O(h3/2) (Mannella, 1997; Nikitin and
Razevig, 1978).

If one needs a higher order of accuracy, then the formula gets even more
complicated, especially in the case of Stratonovich’s integrals. It leads to several
widespread pitfalls. In particular, a seemingly reasonable idea to integrate “deter-
ministic” (F(x, t)) and “stochastic” (G(x, t)ξ(t)) parts of equation (4.16) sepa-
rately, representing the “deterministic” term with the usual higher order Runge –
Kutta formulas and the “stochastic” term in the form ε0(t) · G(x(t))

√
h, is called an

“exact propagator”. However, it appears to give even worse accuracy than the simple
Euler technique (4.25) since the integration of the “deterministic” and “stochastic”
parts is unbalanced (Mannella, 1997). An interested reader can find correct formu-
las for integration of SDEs with higher orders of accuracy in Mannella (1997) and
Nikitin and Razevig (1978).

4.5.3 Constructive Role of Noise

Noise (random perturbations of dynamics) is often thought of as an interference,
an obstacle, something harmful for the functioning of a communication system,
detection of an auditory signal and other tasks. However, it appears that noise in
non-linear systems can often play a constructive role leading to enhancement of
their performance. The most striking and widely studied phenomena of this type are
called “stochastic resonance” and “coherence resonance”.

The term stochastic resonance was introduced in Benzi et al. (1981) where the
authors found an effect, which they tried to use for explanation of the ice age peri-
odicity (Benzi et al., 1982). The same idea was developed independently in Nicolis
(1981; 1982). The point is that the evolution of the global ice volume on the Earth
during the last million years exhibits a kind of periodicity with an average period of
about 105 years (a glaciation cycle). The only known similar timescale is observed
for the variations in the eccentricity of the Earth’s orbit around the Sun determined
by influences of other bodies of the solar system. The perturbation in the total
amount of solar energy received by the Earth due to this effect is about 0.1%. Then,
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the question arises whether such a small periodic perturbation can be amplified so
strongly to induce such a large-scale phenomenon as alternation of ice ages.

Benzi and co-authors considered an overdamped bistable oscillator driven by a
Gaussian white noise ξ and a weak periodic signal A cos(�t):

dx
/

dt = x(a − x2) + A cos(�t)+ ξ(t) (4.26)

with the parameter a > 0. The corresponding autonomous system dx/dt = x(a −
x2) has an unstable fixed point x = 0 and two stable fixed points x = ±√

a. In the
presence of noise, an orbit spends a long time near one of the two stable states but
sometimes jumps to another state due to the noise influence. Switching between the
two states is quite irregular: only on average it exhibits a characteristics timescale,
the so-called Kramers’ rate.

In the presence of the periodic driving A cos(�t), one can consider the system
(4.26) as a transformation of an input signal A cos(�t) into “output” signal x(t). In
other words, the system (4.26) performs signal detection. Performance of the system
is better if x(t) is closer to a harmonic one with the frequency �. Its closeness to
periodicity can be quantified in different ways. In particular, a signal-to-noise ratio
(SNR) can be introduced as the ratio of its power spectral density (Sect. 6.4.2) at the
frequency � to its “noise-floor” spectral density. It appears that the dependence of
SNR on the intensity of the noise ξ has a clear maximum at a non-zero noise level.
The curve “SNR versus noise intensity” resembles the resonance curve of “output
amplitude versus driving frequency”. In the particular example of the system (4.26),
the phenomenon can be explained by the dependence of Kramers’ rate on the noise
level so that the resonance takes place when Kramers’ rate becomes equal to the
driving frequency. Therefore, the phenomenon was called “stochastic resonance”.

Thus, a weak periodic input may have stronger periodic output for some inter-
mediate (non-zero) noise level. In other words, non-zero noise improves the system
performance as compared with the noise-free case. Whether this phenomenon is
appropriate to describe the glaciation cycles is still the matter of debate, but the
effect was then observed in many non-linear systems of different origin (see the
reviews Anishchenko et al., 1999; Bulsara et al., 1993; Ermentrout et al., 2008;
Gammaitoni et al., 1998; McDonnell and Abbott, 2009; Moss et al., 2004; Nicolis,
1993; Wiesenfeldt and Moss, 1995). In particular, many works report stochastic
resonance in neural systems such as mechanoreceptors of crayfish (Douglass et al.,
1993), sensory neurons of paddlefish (Greenwood et al., 2000 ; Russell et al., 1999),
other physiological systems (Cordo et al., 1996; Levin and Miller, 1996), different
neuron models (Longtin, 1993; Volkov et al., 2003b, c) and so on. There appeared
many extensions and reformulations of the concept such as aperiodic stochastic res-
onance (Collins et al., 1996), stochastic synchronisation (Silchenko and Hu, 2001;
Silchenko et al., 1999; Neiman et al., 1998) and stochastic multiresonance (Volkov
et al., 2005).

Currently, many researchers speak of a stochastic resonance in the following
situation: (i) one can define input and output signals for a non-linear system;
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(ii) performance of the system improves at some non-zero noise level as compared
to the noise-free setting. Thus, the formulation is no longer restricted to weak and/or
periodic input signals and bistable systems. The counterintuitive idea that noise
can improve functioning of a system finds the following fundamental explanation
(McDonnell and Abbott, 2009): The system is non-linear and its parameter values
in a noise-free setting are suboptimal for the performance of a required task. Hypo-
thetically, its performance could be improved by adjusting the parameters. The other
way is the noise influence which may improve functioning of the system. Thus,
stochastic resonance is a result of an interplay between noise and non-linearity. It
cannot be observed in a linear system.

A similar phenomenon introduced in Pikovsky and Kurths (1997) is called coher-
ence resonance. It is observed in excitable non-linear systems without input signals.
Its essence is that an output signal of a system is most coherent (exhibits the sharpest
peak in a power spectrum) at a non-zero noise level and becomes less regular both
for weaker and stronger noises. The phenomenon was first observed in FitzHugh –
Nagumo system which is sometimes used as a simple neuron model:

ε dx
/

dt = x − x3
/

3 − y,
dy
/

dt = x + a + ξ(t).
(4.27)

The parameter ε << 1 determines the existence of fast motions (where only
x changes) and slow motions (where y ≈ x − x3/3). The parameter |a| > 1 so
that a stable fixed point is the only attractor of the noise-free system. The noise
ξ is Gaussian and white. A stable limit cycle appears for |a| < 1. Thus, for |a|
slightly greater than 1, the system becomes excitable, i.e. a small but finite deviation
from the fixed point (induced by the noise) can produce a large pulse (spike) in
the realisation x(t). These spikes are generated quite irregularly. The quantitative
“degree of regularity” can be defined as the ratio of the mean interspike interval
to the standard deviation of the interspike intervals. This quantity depends on the
noise level: It is small for zero noise and strong noise and takes its maximum at
an intermediate noise intensity. Again, the curve “degree of regularity versus noise
intensity” looks like an oscillator resonance curve “output amplitude versus driving
frequency”. In the case of the system (4.27), the phenomenon can be explained
by the coincidence of the two characteristic times: an activation time (the mean
time needed to excite the system from the stable point, i.e. to get strong enough
noise shock) and an excursion time (the mean time needed to return from an excited
state to the stable state) (Pikovsky and Kurths, 1997). Therefore, the phenomenon
is called “coherence resonance”.

Thus, some non-zero noise may provide the most coherent output signal. It was
quite unexpected finding which appeared fruitful to explain many observations.
Similarly to stochastic resonance, the concept of coherence resonance was further
extended, e.g., as doubly stochastic coherence (Zaikin et al., 2003), spatial (Sun
et al., 2008b) and spatiotemporal (Sun et al., 2008a) coherence resonances. It is
widely exploited in neuroscience, in particular, coherence resonance was observed



146 4 Stochastic Models of Evolution

in neuron models (e.g. Lee et al., 1998; Volkov et al., 2003a) and central nervous
system (e.g. Manjarrez et al., 2002).

To summarise, a possible constructive role of noise for functioning of natural
non-linear systems and its exploitation in new technical devices is currently a widely
debated topic in very different fields of research and applications.
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Part II
Modelling from Time Series



Chapter 5
Problem Posing in Modelling from Data Series

Creation of models on the basis of observations and
investigation of their properties is, in essence, the main
contents of science.

“System Identification. Theory for the User” (Ljung, 1991)

5.1 Scheme of Model Construction Procedure

Despite infinitely many situations, objects and purposes of modelling from observed
data, one can single out common stages in a modelling procedure and represent them
with a scheme (Fig. 5.1). The procedure is started with consideration of available
information about an object (including previously obtained experimental data from
the object or similar ones, a theory developed for the class of objects under investiga-
tion and intuitive ideas) from the viewpoint of modelling purposes, with acquisition
and preliminary analysis of data series. It ends with the use of an obtained model for
solution to a concrete problem. The procedure is usually iterative, i.e. it is accom-
panied by multiple returns to a starting or an intermediate point of the scheme and
represents a step-by-step approach to a “good” model.

Model structure1 is formed at the key stage 2. This stage is often called structural
identification. Firstly, one selects a type of equations. Below, we speak mainly of
finite-dimensional deterministic models in the form of discrete maps

xn+1 = f(xn, c) (5.1)

or ordinary differential equations

dx/dt = f(x, c), (5.2)

where x is the D-dimensional state vector, f is the vector-valued function, c is the
P-dimensional parameter vector, n is the discrete time and t is the continuous
time. Secondly, a kind of functions (scalar components of f) is specified. Thirdly,
one establishes a relationship between dynamical variables (components of x) and

1 A model structure is a parameterised set of models (Ljung, 1991).
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Fig. 5.1 Typical scheme of
an empirical modelling
procedure

observed quantities η. Dynamical variables may coincide with the components of η.
In a more general case, the relationship is specified in the form η = h(x), where
h is called a measurement function. Moreover, one often introduces a random term
ζ (η = h(x) + ζ) to allow for a measurement noise. To make a model more realis-
tic, one often incorporates random terms called dynamical noise into the Eq. (5.1)
or (5.2).

Specification of a model structure is the most complicated and creative stage of
the modelling procedure. After that, it remains just to determine concrete values of
the parameters c (the stage 3). Here, one often speaks of parameter estimation or
model fitting. To estimate parameters, one usually searches for an extremum of a
cost function, e.g. minimum of the sum of squared deviations of a model realisation
from the observed data. If necessary, one performs preliminary processing of the
observed data series, such as filtering, numerical differentiation or integration. This
is mainly a technical stage of numerical calculations. However, it requires the choice
of an appropriate principle for parameter estimation and a relevant technique for its
realisation.

One must also make a decision at the stage of model testing (the stage 4). Typ-
ically, model “quality” is checked with the use of a test part of an observed series
specially reserved for this purpose. Depending on modelling purposes, one distin-
guishes between two types of problems: “cognitive identification” (the purpose is to
get an adequate2 model) and “practical identification” (there is a practical task to be
solved with a model, e.g. a forecast). Accordingly, one either performs validation
(verification) of a model in respect of the object properties of interest or checks
model efficiency for achievement of a practical goal. If a model is found satisfactory
(adequate or efficient), it is used further. Otherwise, it is returned to previous stages
of the scheme (Fig. 5.1) for revision.

2 Adequacy is understood as a correspondence between properties of a model and an object, i.e. a
correct reproduction of original properties by a model (Philosophic dictionary, 1983, p. 13).
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In particular, a researcher can return even to the stage of data collection (the
stage 1) and ask for new data. It is appropriate to note that the data may not only
be collected and analysed at this stage but also be pre-processed in different ways,
e.g., to reduce measurement errors and fill possible gaps. This is especially impor-
tant in geophysics, where the large field of data assimilation has appeared and
evolved into a mature discipline (Anderson and Willebrand, 1989; Brassieur and
Nihoul, 1994; Ghil and Malanotte-Rizzoli, 1991; Ide et al., 1997; Malanotte-Rizzoli,
1996). Data assimilation combines different estimation and modelling methods,
where the Kalman filters occupy one of the central places (Bouttieur and Courtier,
1999; Evensen, 2007; Houtekamer and Mitchell, 1998; Robinson and Lermusiaux,
2000a, b).

5.2 Systematisation in Respect of A Priori Information

Background under the scheme in Fig. 5.1 changes from black (darkness of igno-
rance) to white reflecting a degree of prior uncertainty in modelling. The least
favourable is a situation called “black box” when information about possibly ade-
quate model structure is lacking so that one must start a modelling procedure from
the very top of the above scheme. The more is known about how the model should
look like (i.e. the lower is a “starting position” at the scheme), the more probable is
a success. A “box” becomes “grey” and even “transparent”. The latter means that a
model structure is completely known a priori.

Methods for preliminary analysis of a time series, which can give useful infor-
mation about a model structure and simplify a modelling problem, are discussed in
Chap. 6. One can never avoid problems of the lower levels of the scheme, which
are inevitably faced by a researcher overcoming the structural identification stage.
Therefore, Chaps. 7 and 8 deal with the simplest situation, where everything is
known about a model except for the concrete values of its parameters. It corresponds
to the white background in Fig. 5.1.

Depending on the origin of a time series, two qualitatively different situations
emerge in respect of the formulation of the modelling problem. The first one is when
observations are a realisation of a certain mathematical model (a set of equations)
obtained with a numerical technique. It is this situation where the term “reconstruc-
tion of equations” is completely appropriate. In such a case, model validation is
much simpler since one can compare modelling results with the “true” original
equations and their solutions. Besides, one may formulate theoretical conditions for
the efficiency of modelling techniques for different classes of systems. The second
situation is when a time series results from measurements of a certain real-world
process so that a unique true model does not exist (Chap. 1) and one cannot assure
success of modelling. One can only wonder at “inconceivable efficiency of mathe-
matics” if a “good” model is achieved.3

3 In addition, one can consider laboratory experiments as an intermediate situation. Strictly speak-
ing, they represent real-world processes (not numerical simulations), but they can be manipulated
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Further, we consider various techniques for model construction. To explain and
illustrate them, we use mainly the former of the two situations, i.e. we reconstruct
equations from their numerical solutions with various noises introduced to make
a situation more realistic. We discuss different modelling problems in Chaps. 8, 9
and 10 according to the following “hierarchy”:

(i) Parameter estimation. Structure of model equations is specified completely
from physical or other conceptual considerations. Only parameter values are
unknown. This problem setting is the simplest one and can be called “transpar-
ent box”. However, essential difficulties can still arise due to a big number of
unknown parameters and unobserved (hidden) dynamical variables.

(ii) Reconstruction of equivalent characteristics. A model structure is known to a
significant degree from physical considerations. Therefore, one does not have
to search for a multivariate function f. One needs to find only some of its
components, which are univariate or bivariate functions (possibly, non-linear).
We call them “equivalent characteristics”. The term is borrowed from radio-
physics but often appropriate in physics, biology and other fields.

(iii) Black box reconstruction. Since a priori information is lacking, one looks for
a function f in a universal form. Solution to this problem is most often called
“reconstruction of equations of motion”. This is the most complicated situa-
tion.

Transition from the setting (i) to the setting (iii) is gradual. Many situations can
be ordered according to the degree of prior uncertainty (darkness of the grey tone
or non-transparency). However, it is not a linear ordering since not all situations
can be readily compared to each other and recognised as “lighter” or “darker”. For
instance, it is not easy to compare information about the presence of a sinusoidal
driving and a certain symmetry of orbits in a phase space.

5.3 Specific Features of Empirical Modelling Problems

5.3.1 Direct and Inverse Problems

It is often said that getting model equations from an observed time realisation
belongs to the class of inverse problems. The term “inverse problem” is used in many
mathematical disciplines. Inverse problems are those where input data and sought
quantities switch their places as compared with some habitual basic problems which
are traditionally called “direct”.

in different ways and even constructed so as to correspond well to some mathematical equations.
Thus, one may know a lot about appropriate mathematical description of such processes. It extends
one’s opportunities of successful modelling and acute model validation.
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As a rule, direct problems are those whose formulations arise first (logically) after
creation of a certain mathematical apparatus. Usually, one has regular techniques to
solve direct problems, i.e. they are often relatively simple. An example of a direct
problem is the Cauchy problem (a direct problem of dynamics): to find a particular
solution to an ordinary differential equation, given initial conditions. Then, getting
a set of ODEs whose particular solution is a given function is an inverse problem of
dynamics.

It is appropriate to speak of inverse problems in experimental data analysis when
one must determine parameters of a mathematical model of an investigated process
from measured values of some variables. For instance, in spectroscopy and molec-
ular modelling one considers the following problem: to determine a geometrical
configuration of molecules of a certain substance and compute the corresponding
parameters from an observed absorption spectrum. This is an inverse problem, while
a direct one is to compute an absorption spectrum, given a model of a molecule.

5.3.2 Well-posed and Ill-posed Problems

Inverse problems are often ill-posed in the strict sense described below.
Let us express a problem formulation as follows: to find an unknown quantity Y

(a solution) given some input data X . A problem is called stable with respect to
input data if its solution depends on input data continuously Y = �(X), i.e. a
solution changes weakly under a weak variation in X . A problem is called well-
posed according to Hadamard if the three conditions are fulfilled: (i) a solution
exists, (ii) a solution is unique, (iii) the problem is stable with respect to input data.

The first two conditions do not require comments. The third one is important
from a practical point of view, since data are always measured with some errors. If a
weak variation in the input data leads to a drastic change in a solution to a problem,
then one cannot assure reliability of the solution so that usefulness of such a solution
is doubtful. The third condition requires an answer which changes weakly under a
weak variation in input data.

If at least one of the three conditions is violated, a problem is called ill-posed
according to Hadamard. Of course, one should always tend to formulate well-posed
problems. Therefore, ill-posed problems were out of mathematicians’ interests for a
long time (Tikhonov and Arsenin, 1974). It was thought that they did not make
“physical sense”, had to be reformulated, etc. However, as time went by, such
problems more and more often emerged in different fields of practice. Therefore,
special approaches to their solutions began to be developed such as regularisation
techniques and construction of quasi-solutions.

Below, we often discuss well-posedness of modelling problems. Ill-posedness of
a problem is not a “final verdict”. It does not mean that “everything is bad”. Thus,
even the problem of differentiation is ill-posed4 but differentiation is widely used.

4 Significant difficulties in numerical estimation of derivatives from a time series (Sect. 7.4.2) are
related to ill-posedness of the differentiation problem (Tikhonov and Arsenin, 1974). A concrete
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Though it would be preferable to deal with well-posed problems, even a model
obtained under ill-posed formulation can appear quite appropriate for practical pur-
poses. It is possible, e.g., if ill-posedness are based on the non-uniqueness of a solu-
tion, but one manages to select a certain solution from a multitude of them, which
gives satisfactory results. Thus, in molecular modelling the authors of Gribov et al.
(1997) stress principal ill-posedness of the arising problems (namely, getting model
parameters from an absorption spectrum or a diffraction pattern) and the necessity
to consider models obtained under various experimental settings as mutually com-
plementary and only partially reflecting object properties.

There is another widespread approach to solve an ill-posed problem. Let a solu-
tion Y ∗ exist for input data X∗. Let the data X∗ be known with a certain error and
denote such a “noise-corrupted” input as X . Strictly speaking, the problem may not
have a solution for the input data X . Then, one seeks for a quantity Z = �(X),
which is close to a solution in some sense, while the mapping � is continuous and
�(X) → Y ∗ for ‖X − X∗‖ → 0. Such a quantity Z is called a quasi-solution.

In practice, ill-posedness of a problem of modelling from a time series is often
eliminated due to ad hoc additional assumptions or a priori information about a
model structure, which helps to choose appropriate basis functions (Chaps. 7, 8,
9 and 10). Also, there are more general procedures providing well-posedness of
a problem. They consist of construction of the so-called regularising functional
(Tikhonov and Arsenin, 1974; Vapnik, 1979, 1995).

A typical example of the latter situation is the problem of approximation of a
dependence Y (X) based on a finite “learning” sample (Sect. 7.2.1). It is quite easy to
construct a curve passing via each experimental point on the plane (X,Y ). However,
there is an infinite multitude of such curves differing from a constructed one by
arbitrary oscillations between the points. Each of the curves provides a minimal
(zero) value of an empirical mean-squared approximation error and represents in
this sense an equitable solution to the problem. The number of solutions is reduced
if one imposes constraints on the acceptable value of inter-point oscillations. It is
done with a regularising functional (Sect. 7.2.3). Thus, a check for ill-posedness of
a problem is important, since it helps to select the most efficient way for its solution
or even change the entire problem setting.

example is following. There is a continuously differentiable function x0(t), whose derivative is
denoted as dx0(t)/dt = y0(t). Let x0(t) be known with a certain error, i.e. the input data is a
function x(t) = x0(t) + ξ(t), where ξ(t) is a continuously differentiable function with |ξ(t)| ≤ δ.
The input data x(t) are very close to x0(t) in the sense of metrics L∞. A derivative of the “noise-
corrupted” function x(t) is dx(t)/dt = y0(t)+dξ(t)/dt . Its deviation ε from y0(t) can be arbitrarily
large in the same metrics. Thus, dx(t)/dt = y0(t) + ωδ cos(ωt) for ξ(t) = δ sin(ωt) so that the
error ε = ωδ can be arbitrarily large for arbitrarily small δ if ω is sufficiently large. In other words,
the differentiation error can be arbitrarily large for arbitrarily low amplitude of “quickly oscillating
noise ξ(t)”. However, it is important how closeness in the space of input data and in the space
of solutions is understood. If one regards close such input data that their difference ξ(t) satisfies
simultaneously two conditions – |ξ(t)| ≤ δ and |dξ(t)/dt | ≤ δ (i.e. ξ(t) is a slowly varying
function) – then the differentiation problem gets well-posed.
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5.3.3 Ill-conditioned Problems

For practical applications, it is important to mention a kind of problem which is well-
posed from a theoretical viewpoint but whose solution is “quite sensitive” to weak
variations in input data. “Quite sensitive” is not a rigorous concept. It is determined
by a specific problem, but in general it means that for a small relative error δ in input
data, a relative error ε in a solution is much greater: ε = K · δ, where K >> 1.
Though a problem is theoretically stable with respect to input data (i.e. an error in
a solution is infinitesimal for an infinitesimal error in input data), a solution error
may appear very large for a finite small error in input data. Such problems are called
weakly stable with respect to input data or ill-conditioned (Kalitkin, 1978; Press
et al., 1988).

From a practical viewpoint, they do not differ from the ill-posed problems,
given that all numerical calculations and representations of numbers are of finite
precision. An example of an ill-conditioned problem is a set of linear algebraic
equations, whose matrix is close to a degenerate one. Such a matrix is also often
called ill-conditioned (Golub and Van Loan, 1989; Kalitkin, 1978; Press et al., 1988;
Samarsky, 1982). Ill-conditioned problems often arise in construction of a “cumber-
some” mathematical model from a time series. To solve them, one needs the same
ideas and techniques as for the ill-posed problems.
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Chapter 6
Data Series as a Source for Modelling

When a model is constructed from “first principles”, its variables inherit the sense
implied in those principles which can be general laws or derived equations, e.g.,
like Kirchhoff’s laws in the theory of electric circuits. When an empirical model
is constructed from a time realisation, it is a separate task to reveal relationships
between model parameters and object characteristics. It is not always possible to
measure all variables entering model equations either in principle or due to technical
reasons. So, one has to deal with available data and, probably, perform additional
data transformations before constructing a model.

In this chapter, we consider acquisition and processing of informative signals
from an original with the purpose to get ideas about opportunities and specificity
of its modelling, i.e. the stage “collection and analysis of time series data” and “a
priori information” at the top of the scheme in Fig. 5.1.

6.1 Observable and Model Quantities

6.1.1 Observations and Measurements

To get information necessary for modelling, one observes an object based on prior
ideas or models at hand (Sect. 1.1). As a result, one gets qualitative or quantitative
data. Qualitative statements may arise from pure contemplation, while quantitative
information is gathered via measurements and counting. Counting is used when
a set of discrete elements is dealt with, e.g., if one tries to register a number of
emitted particles, to determine a population size and so forth. Measurement is a
comparison of a measured quantity with a similar quantity accepted as a unit of
measurement. The latter is represented by standards of various levels. When speak-
ing of “observation”, “observable quantities” and “observation results”, one means
a measurement or counting process, measured or counted quantities and resulting
quantitative data, respectively (Mudrov and Kushko, 1976). It is widely accepted to
omit the word “quantities” and speak of “observables”. We denote observables by
the letter η resembling a question mark to stress a non-trivial question about their
possible relationships with model variables.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_6,
C© Springer-Verlag Berlin Heidelberg 2010
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Any real-world system possesses an infinite set of properties. However, to
achieve goals of modelling, it is often sufficient to consider a finite subset: model
variables x1, x2, . . . , xD and model parameters c1, c2, . . . , cP . The number of
observables and model variables, as well as their physical meaning, may differ.
Thus, the number k of observables η1, η2, . . . , ηk is usually less than a model
dimension D. Quite often, observables have a meaning different from variables
entering model equations. Anyway, observables are somehow related to the model
variables. Such a relationship is determined by experimental conditions, accessibil-
ity of an original, its shape and size, lack of necessary equipment, imperfection of
measurement tools and many other objective and subjective factors. For instance,
opportunities of electric measurements inside a biological cell are restricted due to
the small size of the latter (Fig. 6.1a). An oscillating guitar string is big and easily
accessible so that one can measure velocity and coordinate of each small segment of
this mechanical resonator (Fig. 6.1b). In contrast to that, an access to inner volume
of a closed resonator can be realised only via holes in its walls, i.e. after partial
destruction of an object (Fig. 6.1c).

Relationships between observables and model variables may be rather obvious.
Both sets of quantities may even coincide. However, a simple relationship is more
often lacking. In general, this question requires a special analysis as in the following
examples:

(i) Evolution of a biological population is often modelled with a map showing
dependence of the population size at the next year xn+1 on its size at the current
year xn . If experimental data η are gathered by observers via direct counting,
then a model variable and an observable coincide: x = η. However, if one
observes only results of vital activity (traces on a land, dung, etc.) and tries to
infer the population size from them indirectly, then one needs formulas for the
recalculation or other techniques to reveal a dependence between x and η.

(ii) Physicists are well familiar with measurements of electromotive force (e.m.f.)
E of a source with internal resistance ri with the aid of a voltmeter (Fig. 6.2a,
b). An object is a source of current, a model variable is e.m.f. (x = E) and
an observable is a voltage U on the source clamps. To measure U , a volt-
meter is connected to the source as shown in Fig. 6.2a. Resistance between the
input clamps of a real-world voltmeter Rv (input resistance) cannot be infinite,
therefore, after connection the loop gets closed and current I starts to flow.
Then, the voltage on the source clamps reduces as compared with the case

Fig. 6.1 Accessibility of different objects: (a) electric access to a cell via a glass capillary; (b) an
open resonator; (c) a closed resonator
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Fig. 6.2 Examples of characterising quantities and observables: (a) an experiment with a source
of e.m.f.; (b) an equivalent scheme for the e.m.f. measurement; (c) observables in the analysis of
brain and heart activity

without measurement device: U = E − Iri = E
(
1 − ri

/
(ri + Rv)

)
. Thus,

the observable differs from the model variable, but there is a unique functional
dependence between both quantities η = f (x).

(iii) When electric potentials on a human skin are recorded, an observable η is a
voltage between two points on a body surface. One of the points is taken as a
reference (Fig. 6.2c). For an electroencephalogram (EEG) measurements, η is
usually a voltage between points on a scalp and a ear; for electrocardiogram
(ECG), it is a voltage between points on a chest and a leg. Even without special
knowledge, one can see that the measured voltages are strongly transformed
results of the processes occurring in ensembles of the brain cells or in the
heart. Therefore, relationship between the observed potentials η and any model
variables x characterising a human organism is a subject of special study. As
mentioned in Sect. 1.6, a researcher is here in a position of passive observation
of a complicated real-world process (Fig. 6.2c) rather than in a position of
an active experimentation with a laboratory system (e.g. Fig. 6.2a). In par-
ticular, the greater difficulty of the passive case for modelling is manifested
in a greater number of unclear questions. However, if a researcher models a
potential recording itself, similar to kinematic description in mechanics, then a
model variable and an observable coincide.

In any measurement, the results are affected by peculiarities of an experimental
technique and device parameters, external regular influences and noises. A typical
procedure for acquisition of experimental data is illustrated in Fig. 6.3: an outer
curve bounds a modelling object, filled circles are sensors for measured quanti-
ties and triangles are devices (amplifiers, limiters, etc.) converting sensor data into
observables ηi . Even if one precisely knows how a measured signal is distorted by
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the devices and makes corresponding corrections,1 it is not possible in practice to
get rid of interference (external regular or random influences).2

It is often feasible to suppress regular influences, while irregular ones called
noises can only be reduced. Noises can be both of an external origin and inherent to
an object. The former one is called measurement noise and the latter one is called
internal or dynamical noise, since it affects the dynamics of an object. Noises are
shown by the curves with arrows in Fig. 6.3. Measurement noise can be additive
η = f (x) + ξ , multiplicative η = f (x) · ξ or enter the relationships between
observables and model variables in a more complicated way.

The form of the function f relating observables and model variables is deter-
mined by the properties of measurement devices and transmission circuits. To avoid
signal distortion, the devices must possess the following properties:

(i) A wide enough dynamic range Umax − Umin allowing to transmit both high-
and low-amplitude signals without violation of proportions. For instance, a
dynamic range of a device shown in Fig. 6.4 is insufficient to transmit a high-
amplitude signal.

(ii) A necessary bandwidth allowing to perceive and transmit all the spectral com-
ponents (Sect. 6.4.2) of an input signal in the same way and ignore “alien”
frequencies. Too large a bandwidth is undesirable since more interference and
noise can mix in a signal. However, its decrease is fraught with a signal distor-
tion due to the growth in the response time τu to a short pulse (a characteristic
of the inertial properties of a device, Fig. 6.4c). Narrow frequency band of
a converting device is often used for a purposeful filtering of a signal. Pre-
serving only “low-frequency” spectral components (low-pass filtering) leads to

Fig. 6.3 A scheme illustrating data acquisition from an object under consideration: xi are quan-
tities, which characterise an object under study, and ηi are observables. Filled circles are sensors
which send signals corrupted with noises ξi to measurement devices denoted by triangles

1 For example, when e.m.f. is measured with a voltmeter, one can either allow for finiteness of
Rv or use a classical no-current compensatory technique with a potentiometer (Kalashnikov, 1970,
pp. 162–163; Herman, 2008) which is free of the above shortcoming.
2 Thus, experiments show that in electric measurements (e.g., Fig. 6.2) a sensitive wideband device
(e.g., a radio receiver) connected in parallel with a voltmeter or a cardiograph detects also noise,
human speech and music, etc.
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Fig. 6.4 Measurement device properties: (a) a device transmitting a signal; (b) its transfer char-
acteristic Uout = f (Uin), a low-amplitude input signal (the grey curve) is transferred without
distortions, while a high-amplitude one (the black curve) is limited, i.e. its peaks are cut off; (c)
when a short pulse comes to an input of a device at a time instant t = 0, a response emerges at its
output with a delay time T and is blurred due to finiteness of a response time τu

smoothing of a signal. High-pass filtering removes a constant non-zero com-
ponent and slow trends (drifts).

(iii) A sufficiently high sensitivity. Internal noise level of a device should be small
enough to give an opportunity to distinguish an informative signal at the device
output confidently.

Questions of imperfection of measurement devices and non-trivial correspon-
dence between model variables and observables relate also to statistical data used in
modelling of social processes and humanitarian problems. Distortion of those data
by people and historical time may be quite significant and uncontrolled. In mod-
elling from such data, a researcher must be especially careful, having in mind that
even electric measurements with sufficiently “objective” devices and noise reduc-
tion techniques often raise doubts and require special attention.

6.1.2 How to Increase or Reduce a Number of Characterising
Quantities

If available observables are regarded as components of a state vector x(t), their
number is often insufficient for a dynamical description of an original, i.e. for a
unique forecast of future states based on a current one. There are several approaches
to increasing the number of model variables D. Some of them are justified theoret-
ically (Takens’ theorems, Sect. 10.1.1), others rely on intuition and ad hoc ideas.
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The simplest and most popular way is the time-delay embedding. According to
it, components of the vector x(t) are the subsequent values of a scalar observable
separated by a time delay τ : x1(t) = η(t), x2(t) = η(t + τ), . . ., xD(t) = η(t +
(D − 1)τ ).

According to the successive differentiation technique, temporal derivatives of an
observable are used as dynamical variables: x1(t) = η(t), x2(t) = dη(t)

/
dt, . . .,

xD(t) = dD−1η(t)
/

dt D−1. However, it is hardly applicable, if the measurement
noise is considerable (e.g. Fig. 7.8a, b): a negligible fringe on the plot of a slightly
noise-corrupted cosine function η(t) = cos t + ξ(t) strongly amplifies under the
differentiation so that an expected sinusoidal profile on the plot dx̂

/
dt versus t is

not seen at all.
Noise can be reduced to some extent if one uses integrals of an observable

as dynamical variables: x2(t) =
t∫

0
η(t ′)dt ′, etc. Similarly, one can get a vari-

able expressed via subsequent values of an observable via weighted summation as
x2(t) = a0η(t)+a1η(t −t)+a2η(t −2t)+. . ., where ak are weight coefficients.

One can also use a combination of all the above-mentioned approaches and other
techniques to get time series of additional model variables (Sect. 10.1.2).

There are situations where the structure of a dynamical system is known, but
computing the values of some dynamical variables directly from observables is
impossible. Then, one speaks of “hidden” variables. In such a case, special tech-
niques described in Sect. 8.2 may appear helpful.

In practice, it may also be necessary to reduce the number of observables if some
of them do not carry information useful for modelling. It can be accomplished via
the analysis of interrelations between observables and removal of the quantities,
which represent linear combinations of the others. Furthermore, dimensional and
similitude methods can be fruitful (Sena, 1977; Trubetskov, 1997): a spectacular
historical example of a problem about fluid flow in a pipe, where one converts from
directly measured dimensional quantities to a less number of their dimensionless
combinations (similitude parameters), is considered in Barenblatt (1982).

6.2 Analogue-to-Digital Converters

To measure quantities of different nature, either constant or time-varying, one often
tries to convert their values into electric voltages and currents. Electric signals can
be easily transmitted from remote sensors and processed with the arsenal of standard
devices and techniques. Previously, measured values were fixed by deviations of a
galvanometer needle, paint traces on a plotter tape, and luminescence of an oscillo-
scope monitor. However, contemporary measurement systems usually represent data
in a digital form with the aid of special transistor devices called analogue-to-digital
converters (ADCs). The problem of analogue-to-digital conversion consists in the
transformation of an input voltage at a measurement instant into a proportional num-
ber and, finally, in getting a discrete sequence of numbers. For a signal waveform to
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be undistorted, conditions of Kotel’nikov’s theorem must be fulfilled: A continuous
signal can be restored from a discrete sequence of its values only if a sampling
frequency is at least twice as large as a maximal frequency which is present in its
power spectrum (Sect. 6.4.2), i.e. corresponds to a non-zero component.

The principle of ADC functioning and the reasons limiting accuracy of the
resulting data are illustrated in Fig. 6.5. The scheme realises the so-called parallel
approach: An input voltage is compared simultaneously with n reference voltages.
The number of reference voltages and the interval between the neighbouring ones
are determined by the range of measured values and the required precision, i.e. the
number of binary digits in output values. For the three-digit representation illus-
trated in the example and allowing to record eight different numbers including zero,
one needs seven equidistant reference voltages. They are formed with the aid of a
resistive divider of a reference voltage Uref. The latter determines an upper limit of
the measured voltages and is denoted 7U on the scheme.

A measured voltage Uin is compared to the reference levels with the aid of seven
comparators ki , whose output voltages take the values which are regarded in binary
system equal to

• 1 if a voltage at the contact “+” exceeds a voltage at the contact “−”,
• 0, otherwise.

Thus, if a measured voltage belongs to the interval (5U
/

2, 7U
/

2), then the
comparators with numbers from 1 to 3 are set to the state “1” and the comparators
from 4 to 7 to the state “0”. A special logical scheme (a priority encoder) converts

Fig. 6.5 A scheme of a
three-digit ADC realising the
parallel approach
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those states into a binary number z1z2z3 (011 in the example) or a corresponding
decimal number (3 in the example). If a voltage varies in time, the priority encoder
cannot be connected directly to outputs of the comparators, since it may lead to
erroneous results. Therefore, one uses D triggers, shown by the squares “DQC” in
Fig. 6.5, to save an instantaneous value of the voltage at outputs of the comparators
and maintain it during a measurement interval. Measurement instants are dictated
by a special clocking signal. If the latter is periodic, then one gets an equidistant
sequence of binary numbers (a time series) at the encoder output.

The conversion of an analogue quantity into a several-digit number is charac-
terised by a “quantisation error” equal to half an input voltage increment nec-
essary to change the lowest order digit at the output. An eight-digit ADC has
28 = 256 gradations (x = xmax

/
256), a 12-digit ADC has 212 = 4096 grada-

tions (x = xmax
/

4096). If one performs an inverse transformation of the obtained
number into a voltage with the aid of a digital-to-analogue converter, a quantisa-
tion error manifests itself as superimposed “noise”. Besides, there are errors caused
by the drift and non-linearity of the scheme parameters so that an overall error in
the resulting observed values is determined by combinations of all the factors and
indicated in a device certificate.

The parallel method for the realisation of the analogue-to-digital conversion is
non-parsimonious, since one needs a separate comparator for each reference level.
Thus, one needs 100 comparators to measure values ranging from 0 to 100 at a unit
step. This number rises with the measurement resolution. Therefore, there have been
developed and widely used approaches, which are better in this respect, e.g. weigh-
ing and counting techniques. Under the weighing technique, a result is obtained in
several steps, since only a single digit of a binary number is produced at a single
step. Firstly, one checks whether an input voltage exceeds a reference voltage of
the highest order digit. If it does, the highest order digit is set equal to “1” and the
reference voltage is subtracted from the input voltage. The remainder is compared
with the next reference voltage and so on. Obviously, one needs as many compari-
son steps as many binary digits are contained in an output value. Under the counting
technique, one counts a number of summations of the lowest order reference voltage
with itself to reach an input voltage. If a maximal output value is equal to n, then
one needs at most n steps to get a result. In practice, combinations of different
approaches are often used.

6.3 Time Series

6.3.1 Terms

At an ADC output and in many other situations, data about a process under inves-
tigation are represented as a finite sequence of values of an observed quantity cor-
responding to different time instants, i.e. a time series η(t1), η(t2) . . . , η(tN ), where
t1, t2, . . . , tN are observation instants and their number N is called time series



6.3 Time Series 167

length. If a value of a single scalar quantity is measured at each time instant ti ,
one speaks of a scalar time series. It is denoted as {η(ti )}N

i=1 or {ηi }N
i=1, where

ηi = η(ti ). If k quantities η1, . . . , ηk (Fig. 6.3) are measured simultaneously at each
instant ti , one speaks of a vector time series, since those quantities can be consid-
ered as components of a k-dimensional vector η. A vector time series is denoted
similarly: {η(ti )}N

i=1 or
{
ηi
}N

i=1. Thus, the notation ηi is used below in two different
cases: (i) a scalar time series, where i is time index; (ii) a vector observable, where
i means a coordinate number. Its meaning in each concrete case is determined by
context unless otherwise stated.

Elements of a time series (scalars or vectors) are also called data points. A num-
ber of a point i is called discrete time. If time intervals between subsequent obser-
vation instants ti are the same, ti − ti−1 = t, i = 2, . . . , N , then a time series
is called equidistant, otherwise non-equidistant. One also says that the values are
sampled uniformly or non-uniformly in time, respectively. An interval t between
successive measurements is called sampling interval or discretisation interval. For a
non-equidistant series, a sampling interval ti = ti −ti−1 varies in time. In practice,
one deals more often with equidistant series.

To check quality of a model constructed from a time series (Sects. 7.3, 8.2.1
and 10.4), one needs another time series from the same process, i.e. a time series
which was not used for model fitting. Therefore, if the data amount allows, one
distinguishes two parts in a time series {ηi }N

i=1. One of them is used for model
fitting and called a training time series. Another one is used for diagnostic check of
a model and called a test time series.3

6.3.2 Examples

Time series from different fields of practice and several problems, which are solved
with the use of such data, are exemplified below. The first problem is forecast of the
future behaviour of a process.

6.3.2.1 Meteorology (a Science About Atmospheric Phenomena)

At weather stations, one measures hourly values of different quantities including
air temperature, humidity, atmospheric pressure, wind speed at different heights,
rainfall, etc. At some stations, measurements are performed for more than 100 years.
Variations in the mentioned quantities characterised by the timescales of the order
of several days are ascribed to weather processes (Monin and Piterbarg, 1997).
Weather forecast is a famous problem of synoptic meteorology.

3 In the field of artificial neural networks, somewhat different terminology is accepted. A test series
is a series used to compare different empirical models. It allows to select the best one among them.
For the “honest” comparison of the best model with an object, one uses one more time series
called a validation time series. A training time series is often called a learning sample. However,
we follow the terminology described in the text above.
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Fig. 6.6 Anomaly of sea surface temperature in eastern equatorial zone of Pacific Ocean (the
values averaged over 5 months are shown). Sampling interval is t = 1 month (Keller, 1999)

Slower processes whose typical timescales exceed 3–4 months are called cli-
matic. They are studied by climatology. Examples of their characteristics are sea
surface temperature (a mean temperature of upper mixed layer, whose depth is about
several dozens of meters, Fig. 6.6), sea level (at different coastal areas), thickness
of ice, surface of ice cover, plant cover of the Earth, total monthly rainfall at a cer-
tain area, closed lakes level, etc. Besides, variations in many weather characteristics
averaged over a significant time interval and/or a wide spatial area become climatic
processes, e.g. mean monthly air temperature at a certain location, instantaneous
value of temperature averaged over a 5◦ latitudinal zone, annual air temperature of
the Northern Hemisphere. As for the spatial averaging, it is currently possible due to
a global network of weather stations covering most of the surface of all continents.
Distances between neighbouring stations are about 10–100 km.

6.3.2.2 Solar Physics

For a long time, a popular object of investigation is a time series of annual sunspot
number (Fig. 6.7). This quantity is measured since telescope has been invented,
more precisely, since 1610 (i.e. for almost 400 years). The process reflects magnetic
activity of the Sun which affects, in particular, irradiation energy and solar wind
intensity (Frik and Sokolov, 1998; Judd and Mees, 1995; Kugiumtzis et al., 1998;
Yule, 1927) and, hence, leads to changes in the Earth’s climate.

Fig. 6.7 Annual Wolf’s numbers of sunspots. Sampling interval is t = 1 year. Eleven-year cycle
of the Sun activity is noticeable
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6.3.2.3 Seismology

Earthquakes occur in the block, cut by multiple ruptures, strongly non-uniform,
solid shell of the Earth called lithosphere as a result of its deformation due to tectonic
forces. General equations governing the process are still unknown (Sadovsky and
Pisarenko, 1997). There are reasons to think that a seismic regime is affected by
various physical and chemical processes including thermal, electric and others. In
practice, one measures mechanical tension fields at different areas of the Earth’s
surface. Another form of data representation is time intervals between successive
strong earthquakes ti = ti − ti−1, where ti is an instant of an i th shock. It can be
interpreted as a non-equidistant time series. The values of ti vary strongly between
different observation areas and periods.

To study seismic activity, one uses equidistant time series as well. For instance,
one measures a quantity proportional to the acceleration of the Earth’s surface vibra-
tions with the aid of seismographs (Koronovskii and Abramov, 1998).

6.3.2.4 Finance

For participants of events occurring at equity markets, it is important to be able to
foresee changes in currency exchange rates, stock prices, etc. Those processes are
affected by multiple factors and fluctuate quickly in a very complicated manner.
Time series of currency exchange rates are often recorded at sampling interval of
1 h (and even down to 2 min). One often reports daily values of stock prices, see
Figs. 6.8 and 6.9 and Box and Jenkins (1970); Cecen and Erkal (1996); Lequarre
(1993); Makarenko (2003); Soofi and Cao (2002).

6.3.2.5 Physiology and Medicine

In this field, one often encounters the problem of diagnostics rather than forecast.
Physiological signals reflecting activity of the heart, brain and other organs are one
of the main sources of information for physicians in diagnosing. One uses electro-
cardiograms (difference of potentials between different points at the chest surface,
Fig. 6.10), electroencephalograms (potentials at the scalp), electrocorticograms
(intracranial brain potentials), electromyograms (potentials inside muscles or on the

Fig. 6.8 Stock prices for the IBM company. Sampling interval t = 1 day; the values for the end
of a day are shown (Box and Jenkins, 1970)
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Fig. 6.9 Currency exchange rate between USA dollar and German mark in 1991 (Lequarre, 1993).
Sampling interval t = 1 day

Fig. 6.10 Electrocardiogram (Rigney et al., 1993). A characteristic PQRST complex and the so-
called R – R interval are shown. Sampling interval t = 1 ms

skin), acceleration of finger oscillations for a stretched hand (physiological tremor),
concentration of oxygen in the blood, heart rate, chest volume representing a respi-
ration process, etc. A typical sampling interval is of the order of 1 ms.

It is important to be able to detect signs of a disease at early stages. For that, one
might need quite sophisticated methods for the analysis of signals.

6.3.2.6 Transport

In this field as in many technical applications, a problem of automatic control often
arises. For instance, one measures data representing simultaneously a course of a
boat and a rudder turn angle (Fig. 6.11). Having those data, one can construct an
automatic system allowing to make control of a boat more efficient, i.e. to reduce its
wagging and fuel consumption (Ljung, 1991).

Fig. 6.11 Simultaneous time
series of a rudder turn angle
(random turns) and a course
of a boat (Ljung, 1991).
Sampling interval t = 10 s



6.3 Time Series 171

6.3.2.7 Hydrodynamics

Investigation of turbulent motion in a fluid is one of the oldest and most complex
problems in non-linear dynamics. Chaotic regimes are realised in experiments with
fluid between two cylinders rotating in opposite directions or in a mixer with a
rotating turbine inside. The data are, for instance, time series of fluid velocity at a
certain spatial location measured at typical sampling interval of 1 ms (Letellier et al.,
1997).

6.3.2.8 Chemistry

Considerable attention of researchers is paid to chaotic behaviour in many chemical
reactions. The data from those systems are presented in the form of time realisations
of reagent concentrations, e.g. CeIV ions in the Belousov and Zhabotinsky reaction
(Brown et al., 1994; Letellier et al., 1998b).

6.3.2.9 Laser Physics

Observed complex behaviour of a laser under periodic pulse pumping (Fig. 6.12) can
be used to estimate some parameters of the laser and further to study a dependence
of those parameters on external conditions including a temperature regime. The data
are a time series of irradiation intensity measured with the aid of photodiodes.

6.3.2.10 Astrophysics

In fact, the only source of information about remote objects of the Universe (stars)
is time series of their irradiation intensity. Those time series are collected with the
aid of radio- and optical telescopes (Fig. 6.13).

Fig. 6.12 Data from a ring
laser in a chaotic regime
(Hubner et al., 1993):
irradiation intensity.
Sampling interval t = 40 ns

Fig. 6.13 Variations of luminance of a dwarf star PG-1159, t = 10 s (Clemens, 1993). The time
series was recorded continuously during 231 h
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The list of examples, problems and objects can be continued. Their number per-
manently rises. ADCs with t = 10−8 − 10−9 s and data storage devices with
memory sizes of hundreds of gigabytes are already easily accessible for a researcher.
One still does not observe a saturation in the development of the devices for acquisi-
tion, storage and processing of time series. Even the above examples suffice to show
that time realisations of motions in real-world systems are usually very complex and
irregular. Yet, one now knows that complicated chaotic motions can be demonstrated
even by simple non-linear dynamical systems so that the problem of modelling
from a time series does not seem hopeless even though it requires a development
of non-trivial techniques.

6.4 Elements of Time Series Analysis

6.4.1 Visual Express Analysis

Human capabilities to recognise visual images are so well developed that we can
compete even with specialised computers in such activity. It is thought that a person
gets about 70% of sensory information via the eyes. Visual analysis of data, if they
are presented in a graphical form, can be very fruitful in modelling. It can give an
idea about an appropriate form of model functions and kind and dimensionality of
model equations. The most natural step is visual assessment of time realisations of
a process η(t), see Fig. 6.14 (left panels).

One should consider time realisations of sufficient length in order that peculiari-
ties of motion allowing identification of a process could manifest themselves. Thus,
for periodic motions (Fig. 6.14a), such a peculiarity is complete repeatability of
a process with some period T . A motion is quasi-periodic (Fig. 6.14b) if there are

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 6.14 Time realisations of regular (a, b) and irregular (c–h) processes and their periodograms
(formulas are given in Sect. 6.4.2). (a) Periodic process: variations in voltage on a semiconductor
diode in a harmonically driven RL diode circuit (provided by Prof. E.P. Seleznev). (b) Quasi-
periodic process: variations in voltage on a non-linear element in coupled generators with quadratic
non-linearity which individually exhibit periodic self-sustained oscillations (provided by Prof. V.I.
Ponomarenko). (c) Narrowband stationary process. (d) Narrowband process with non-stationarity
in respect of expectation. (e) Narrowband process with non-stationarity in respect of variance.
The data on the panels c, d, e are signals from an accelerometer attached to a hand of a patient
with Parkinson’s disease during spontaneous tremor epochs (provided by the group of Prof. P.
Tass, Research Centre Juelich, Germany). (f) Wideband stationary process: anomaly of the sea
surface temperature in Pacific ocean (5 ◦N − 5 ◦S, 170 ◦W−120 ◦W), the data are available at
http://www.ncep.noaa.gov. (g) Wideband process with non-stationarity in respect of expectation:
variations in global surface temperature of the Earth. An anomaly of the GST (i.e. its difference
from the mean temperature over the base period 1961–1990) is shown (Lean et al., 2005). (h)
Wideband process with the signs of non-stationarity in respect of variance: variations in the global
volcanic activity quantified by the optical depth of volcanic aerosol (Sato et al., 1993)
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Fig. 6.14 (continued)
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two or more characteristic timescales (i.e. periods of harmonic components) whose
ratio Ti

/
Tj is an irrational number. Periodic and quasi-periodic motions are called

regular motions in contrast to the cases illustrated in Fig. 6.14c–h which are depleted
of obvious regularity, i.e. represent irregular motions.

Figure 6.14c, f shows stationary processes whose statistical characteristics do not
change in time, while Fig. 6.14d, e, g, h shows temporal profiles looking more like
non-stationary processes (see Sects. 4.1.3 and 6.4.4). In simple cases, non-stationary
motions are recognised by eye if qualitatively or quantitatively different stages can
be distinguished in their time realisations.

By considering the distance between successive maxima or minima in a time
realisation and the shape of the temporal profile, one can estimate basic frequency of
a signal and even a frequency range covered by its significant harmonic components
(see Sect. 6.4.2). For instance, the distance between most pronounced minima is
practically constant (about 200 μs) for the voltage variations shown in Fig. 6.14a;
the distance between successive maxima for the accelerometer signal fluctuates
stronger (Fig. 6.14c) and for the climatic process shown in Fig. 6.14f, it fluctu-
ates much stronger. Therefore, a relative width of the peak in the power spectrum
corresponding to a basic frequency is smallest for the electric signal (practically,
a discrete line at 5 kHz, Fig. 6.14a), somewhat greater for the accelerometer signal
(the peak at 5 Hz, Fig. 6.14c), and much greater for the climatic process (the smeared
peaks at 0.2 and 0.33 1/year, Fig. 6.14f), i.e. the process in Fig. 6.14f is most
wideband of these three examples. At the same time, the periodic electric signal
exhibits a complicated time profile involving both flat intervals and voltage jumps
(Fig. 6.14a). Therefore, its power spectrum exhibits many additional almost discrete
lines at higher harmonics of the basic frequency: 10, 15, 20 kHz (an especially high
peak) and so on up to 130 kHz. Non-stationarity often leads to an increase in the
low-frequency components that is most clearly seen in Fig. 6.14d, g.

Another widespread approach to the visual assessment relies upon a procedure
of phase orbit reconstruction when one shows the values of dynamical variables
computed from an observable (Sects. 6.1.2 and 10.1.2) along the coordinate axes.
Data points in such a space represent states of an object at successive time instants
(Fig. 6.15). Possibilities of visual analysis of the phase portraits are quite limited.
Without special tools, one can just consider two-dimensional projections of the
phase portraits on a flat screen (Fig. 6.15b). Cycles are easily identified since they
are represented by thin lines (the lower graph in Fig. 6.15b). A torus projection to
a plane looks like a strip with sharp boundaries (the upper graph), which differs
from a more “smeared” image of a chaotic attractor (the right graph). The pictures,
which are more informative for the distinction between chaotic and quasi-periodic
motions, are obtained with the aid of phase portrait sections, e.g. a stroboscopic
section or a section based on the selection of extrema in the time realisations. Such
a section for a torus is a closed curve (Fig. 6.15b, white line), for a cycle it is a point
or several points and for a chaotic attractor it is a set of points with a complex struc-
ture. Analysis of phase portraits is more fruitful for the identification of complex
non-periodic motions compared to the spectral analysis of the observed signals.
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Fig. 6.15 Examples of different dynamical regimes. (a) Qualitative outlook of possible phase
orbits in a three-dimensional phase space: a limit cycle (the lower graph), a torus (the upper
graph) and a chaotic attractor (the right graph). (b) Projections to a plane representing typical
pictures on an oscilloscope screen. The white line on the black background denote a projection of
a two-dimensional section of the portrait

6.4.2 Spectral Analysis (Fourier and Wavelet Transform)

Most often, the term “spectral analysis” refers to Fourier transform, i.e. decom-
position of a signal into harmonic components. However, in a generalised sense,
spectral analysis is a name for any representation of a signal as a superposition of
some basis functions. The term “spectrum” refers then to a set of those functions
(components). Below, we briefly consider a traditional Fourier analysis and a more
novel and “fashion” tool called wavelet analysis which is very fruitful, in particular,
to study non-stationary signals.

6.4.2.1 Fourier Transform and Power Spectrum

This topic is a subject of multitude of books and research papers. It underlies such
fields of applied mathematics as spectral analysis (Jenkins and Watts, 1968) and
digital filters (Hamming, 1983; Rabiner and Gold, 1975). We only briefly touch on
several points.

Firstly, let us recall that according to Weierstrass’ theorem, any function η =
F(t) continuous on an interval [a,b] with F(a) = F(b) can be arbitrarily accurately
represented by a trigonometric polynomial. The idea is readily realised in time series
analysis. If a time series is equidistant and contains an even number of points N ,
sampling interval is t , a = t1, b = a + N ·t = tN +t , then one can show that
an original signal {η(ti )}N

i=1 for all observation instants can be uniquely represented
as the sum:
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η(ti ) = a0 +
N /2∑

k=1

ak cos(kωti ) +
N /2−1∑

k=1

bk sin(kωti ), i = 1, . . . , N , (6.1)

where

ω = 2π

b − a
= 2π

Nt
.

Coefficients of the trigonometric polynomial (6.1) are expressed via the formulas

a0 = 1

N

N∑

i=1

ηi , aN /2 = 1

N

N∑

i=1

(−1)iηi , (6.2)

ak = 2

N

N∑

i=1

ηi cos(kωti ), k = 1, . . . , N
/

2 − 1, (6.3)

bk = 2

N

N∑

i=1

ηi sin(kωti ), k = 1, ..., N
/

2 − 1. (6.4)

The formulas (6.2), (6.3) and (6.4) converting the values of ηi into the coefficients
ak and bk are called the direct discrete Fourier transform (DFT). The formula (6.1)
providing calculation of ηi from ak and bk is called the inverse DFT.

Based on these transforms, one can construct an approximate description of an
original signal, in particular, smooth it. For instance, higher frequencies correspond-
ing to big values of k often reflect noise influence so that it is desirable to get rid
of them. It can be accomplished in the simplest way if one zeros the corresponding
coefficients ak and bk and performs the inverse DFT (6.1). Thereby, one gets a more
gradually varying (“smoother”) signal. This is a kind of a low-pass filter. A high-
pass filter can be realised in a similar way by zeroing coefficients corresponding to
small values of k. To get a band-pass filter, one zeros all the coefficients outside of a
certain frequency band. These simple versions of digital filters are not the best ones
(Hamming, 1983; Rabiner and Gold, 1975).

One can often get a sufficiently good approximation to a continuous function
F(t) over a finite interval with the aid of a trigonometric polynomial. At that, even
trigonometric polynomials of quite a high order can be used, while the use of high-
order algebraic polynomials leads to significant troubles (Sect. 7.2.3). If a function
F(t) is periodic, it can be approximated well by a trigonometric polynomial over the
entire number axis. We stress that the trigonometric system of functions is especially
useful and has no “competitors” for approximation of periodic functions.

Physical Interpretation as Power Spectrum

The mean-squared value of an observable η is proportional to physical power if η
is an electric voltage or a current in a circuit. One can show that this mean-squared
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value is equal to the sum of the mean-squared values of the terms in the right-hand
side of Eq. (6.1). In other words, the power is distributed among frequencies:

1

N

N∑

i=1

η2
i =

N /2∑

k=0

Sk, (6.5)

where Sk is a power contained in a harmonic component with a frequency kω:
Sk = (

a2
k + b2

k

)/
2 for 1 ≤ k < N

/
2 and Sk = a2

k for k = 0, N
/

2. Phys-
ically, an observed signal may represent a superposition of signals from several
sources. If each of those sources demonstrates harmonic oscillations with its own
frequency, then its intensity in the observed signal is reflected by the values of Sk at
the corresponding frequency. The quantities Sk allow to detect different sources of
oscillations and estimate their relative intensity. If each frequency corresponding to
a considerable value of Sk is related to oscillations of a certain harmonic oscillator,
then the number of considerable components is equal to the number of degrees of
freedom involved in the process. Since the total power in a signal is represented as a
set (spectrum) of components according to Eq. (6.5), the set of Sk is called “power
spectrum” of the process η(t). Strictly speaking, this is only an estimate of the power
spectrum (see below).

The concept of the power spectrum is so easily defined only for a deterministic
periodic function η(t) with a period 2π

/
ω, since such a function is uniquely repre-

sented by a trigonometric Fourier series:

η(t) = a0 +
∞∑

k=1

[ak cos(kωt) + bk sin(kωt)], (6.6)

whose coefficients are, in general, non-zero and expressed via the integrals of the
original function η(t).

However, even in this case, one must take into account that a finite set of coef-
ficients in Eq. (6.1) obtained via the direct DFT from a time series is only an
approximation to the theoretical spectrum. If the most part of the power is con-
tained in relatively low frequencies (but higher than ω = 2π

/
(Nt)), then such an

approximation is sufficiently accurate. Widely known is a phenomenon of frequency
mimicry (masking) which is following. A model (6.1) includes maximal frequency
of ωN

/
2 = π

/
t , which is called Nyquist frequency. The period of the corre-

sponding harmonic component is equal to the doubled sampling interval. Any com-
ponents with the frequencies exceeding the Nyquist frequency would be linear com-
binations of the basis functions in Eq. (6.1) over the set of the observation instants
ti . If such components are introduced into a model, then the lower frequencies must
be excluded to provide linear independence of the basis functions. In other words,
higher frequency components cannot be distinguished from the combinations of the
lower frequency components, e.g. cos

((
N
/

2 + k
)

jωt
) = cos(π j + kω jt) =

(−1)jcos(jkωt), where k > 0 and t j = jt . It looks as if the former were masked
by the latter.
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The situation gets even more complex in the case of a non-periodic function
η(t). Such a function cannot be accurately represented by the series (6.6) over the
entire number axis. However, under certain conditions (integrability over the entire
number axis and smoothness), one can write down a similar representation in the
form of the Fourier integral, i.e. replace discrete frequencies kω in Eq. (6.6) by the
continuous range of values:

η(t) =
∞∫

0

A(ω)cos(ωt)dω +
∞∫

0

B(ω)sin(ωt)dω, (6.7)

A(ω) = 1

π

∞∫

−∞
η(t)cos(ωt)dt, B(ω) = 1

π

∞∫

−∞
η(t)sin(ωt)dt . (6.8)

The transforms (6.7) and (6.8) are called continuous Fourier transforms (the
inverse and direct transforms, respectively). The above discrete transforms are their
analogues. The energy4 in a signal η(t) is expanded into a continuous energy spec-

trum as
∞∫

−∞
η2(t)dt =

∞∫

0
E(ω)dω, where E(ω) = A2(ω) + B2(ω).

Finally, let us consider the case where η(t) is a realisation of a stationary random
process. Typically, it is almost always non-periodic. Moreover, integrals (6.8) almost
always do not exist, i.e. one cannot define A and B even as random quantities.
Spectral contents of a process are then described via the finitary Fourier transform,
i.e. for η(t) over an interval [−T

/
2, T

/
2] one gets

AT (ω) = 1

π

T /2∫

−T /2

η(t)cos(ωt)dt, BT (ω) = 1

π

T /2∫

−T /2

η(t)sin(ωt)dt . (6.9)

Further, one computes expectations of AT , BT and defines power spectrum as

S(ω) = lim
T →∞

〈
A2

T (ω) + B2
T (ω)

〉

T
, (6.10)

where angular brackets denote the expectation. The quantity on the left-hand side
of (6.10) is power, since it represents energy divided by the time interval T . In this
case, the values of Sk obtained with DFT are random quantities. The set of such
values is a rough estimate of the power spectrum. In particular, it is not a consistent
estimator since the probability density function for each Sk is proportional to that
for the χ2 distribution with two degrees of freedom so that the standard deviation of

4 Not a power. Mean power equals zero in this case, since a signal must decay to zero at infinity to
be integrable over the entire number axis.
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Sk equals its mean and does not decrease with increasing time series length (Brock-
well and Davis, 1987; Priestley, 1989). This set is called periodogram if all the
components are multiplied by N , i.e. if one converts from power to energy. Several
examples are presented in Fig. 6.14 (the right panels). To get an estimator with bet-
ter statistical properties, it is desirable to average Sk over several realisations of the
process or to “smooth” a single periodogram (Brockwell and Davis, 1987; Priestley,
1989).

Importance of the power spectrum concept is related to the fact that behaviour
of many real-world systems in the low-amplitude oscillatory regimes is adequately
described with harmonic functions. Such dynamical regimes are well known and
understood in detail. They are observed everywhere in practice and widely used
in technology, e.g. in communication systems. Linear systems (filters, amplifiers,
etc.) are described in terms of the transfer functions, i.e. their basic characteristic is
the way how the power spectrum of an input signal is transformed into the power
spectrum of the output signal. The phase spectrum which is a set of initial phases of
the harmonic components in Eq. (6.1) is also often important. Multiple peculiarities
of the practical power spectrum estimation and filtering methods are discussed, e.g.,
in Hamming (1983), Jenkins and Watts (1968), Press et al. (1988), Rabiner and Gold
(1975) and references therein.

An Example: Slowly Changing Frequency Contents and Windowed DFT

It is a widespread situation when a signal under investigation has a time-varying
power spectrum. One of the simplest examples is a sequence of two sinusoidal
segments with different frequencies:

η(t) =
{

sin 2t, −π ≤ t < 0,

sin 4t, 0 ≤ t < π.
(6.11)

We performed the analysis over the interval [−π, π ] from a time series of the
length of 20 data points with the sampling interval t = π

/
10 and t1 = −π

(Fig. 6.16a).
The signal can be described well with a trigonometric polynomial (6.1) contain-

ing many considerable components (Fig. 6.16a). However, more useful information
can be obtained if the signal is divided into two segments (windows) and a separate
trigonometric polynomial is fitted to each of them (Fig. 6.16b). This is a so-called
windowed Fourier transform. In each window, one gets a spectrum consisting of a
single significant component that makes physical interpretation of the results much
easier. The windowed DFT reveals that frequency contents of the signal changes in
time that cannot be detected with a single polynomial (6.1). Non-stationary signals
are often encountered in practice and can be analysed with the windowed DFT.
However, there exists a much more convenient contemporary tool for their analysis
called “wavelet transform”.
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Fig. 6.16 An example of a non-stationary signal: (a) two segments of a sinusoid and a super-
imposed plot of an approximating trigonometric polynomial (6.1). Power spectrum contains five
significant components (the bottom panel). Arrows indicate frequencies of the two original sinu-
soidal segments; (b) analogous plots for the windowed DFT. There is a single non-zero component
in each spectrum. Their frequencies correspond to the values of k twice as small as in the left panel
since the number of points in each window is twice as small as in the original time series

6.4.2.2 Wavelet Transform and Wavelet Spectrum

A very efficient approach to the analysis of functions η = F(t) exhibiting pulses,
discontinuities, breaks and other singularities is to use basis functions φk(t) called
wavelets, which are well localised both in time and frequency domains. They have
become an extremely popular tool during the last 20 years (see, e.g., the reviews
Astaf’eva, 1996; Koronovskii and Hramov, 2003; Torrence and Compo, 1998 and
references therein).

The term “wavelet” has been introduced in 1984 and become widely used. Many
researchers call wavelet analysis “mathematical microscope” (Astaf’eva, 1996).
Here, we do not go into strict mathematical definitions and explain only some basic
points. Wavelet is a function φ(t), which

(i) is well localised both in time domain (it quickly decays when |t | rises) and
frequency domain (its Fourier image is also well localised);

(ii) has zero mean
∞∫

−∞
φ(t)dt = 0;

(iii) satisfies a scaling condition (a number of its oscillations does not change under
variations in the timescale).

An example is the so-called DOG-wavelet5 shown in Fig. 6.17:

φ(t) = e−t2
/

2 − 0.5e−t2
/

8. (6.12)

5 Difference of Gaussians, i.e. Gauss functions.
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Fig. 6.17 An example of wavelet and construction of the set of basis functions via shifts (from left
to right) and compressions (from top to bottom). Normalisation is not taken into account

Based on a certain wavelet function, one can construct a set of functions via its
shifts and scaling transformations (compression and stretching along the t-axis).
The functions obtained are conveniently denoted by two subscripts:

φ j,k(t) = 2 j/2φ
(

2 j t − k
)
,−∞ < j, k < ∞, (6.13)

where j and k are integers. Increasing j by 1 changes the scale along the time axis
twice (compression of the function plot), while increasing k by 1 shifts the plot of the
function φ j,k by k

/
2 j along the t-axis (Fig. 6.17). The normalising multiplier 2 j/2

is introduced for convenience to preserve constant norm of φ j,k , i.e. the integrals of

squared functions are all equal:
∥∥φ j,k

∥∥2 = ‖φ‖2.
The constructed set of the localised functions φ j,k covers the entire t-axis due to

shifts, compression and stretching. Under a proper choice of φ(t), the set is a basis
in the space of functions, which are square summable over the entire axis. Strictly
speaking, φ(t) is called wavelet only in this case (Astaf’eva, 1996). The condition
is fulfilled for a wide class of functions including that presented in Fig. 6.17. Basis
functions φ j,k are often called wavelet functions. Since all of them are obtained via
the transformations of φ(t), the latter is often called “mother wavelet”.

Examples of mother wavelet are very diverse (Fig. 6.18). Numerical libraries
include hundreds of them (http://www.wavelet.org). A widely used one is the com-
plex Morlet wavelet

φ(t) = π−1/4e−t2
/

2(e−iω0t − e−ω2
0

/
2), (6.14)

where ω0 determines the number of its oscillations over the decay interval and the
second term in parentheses is introduced to provide zero mean. Real part of the
Morlet wavelet is shown in Fig. 6.18 for ω0 = 6.
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Fig. 6.18 Examples of wavelets: (a) WAVE wavelet; (b) “Mexican hat”; (c) Morlet wavelet (a real
part); (d) HAAR wavelet

To construct an approximating function for a time series, one should select a
finite number of terms from the infinite set of functions φ j,k . Wavelet-based approx-
imation can be vividly illustrated with an example of HAAR wavelet (Fig. 6.18d)
(Misiti et al., 2000). Let us consider an equidistant time series of length N = 2m ,
where m is a positive integer, t = 1

/
N , t1 = 0. As a set of basis functions, it

is convenient to use the following functions from the entire set φ j,k supplemented
with a constant:

1,
φ0,0(t) ≡ φ(t),

φ1,0(t) ≡ φ(2t), φ1,1(t) ≡ φ(2t − 1)
φ2,0(t) ≡ φ(4t), φ2,1(t) ≡ φ(4t − 1), φ2,2(t) ≡ φ(4t − 2), φ2,3(t) ≡ φ(4t − 3),

. . . ,

φm−1,0(t) ≡ φ(2m−1t), . . . , φm−1,2m−1−1(t) ≡ φ(2m−1t − 2m−1 + 1).
(6.15)

An original time series is precisely represented as the sum

ηi = c0 +
m−1∑

j=0

2 j −1∑

k=0

c j,kφ j,k, (6.16)

Coefficients corresponding to the terms with j = m − 1 depend only on the dif-
ference of the observed values at neighbouring time instants, i.e. on the oscillations
with the period 2t corresponding to the Nyquist frequency. Since those functions
describe only the smallest scale variations, the sum of them

D1(ti ) =
2m−1−1∑

k=0

cm−1,kφm−1,k(ti ), (6.17)

is said to describe the first-level details. The remaining component
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A1(ti ) = ηi − D1(ti ) = c0 +
m−2∑

j=0

2 j −1∑

k=0

c j,kφ j,k, (6.18)

is called the first-level approximation. The first-level approximation no longer con-
tains variations with a period 2t (Fig. 6.19). Similarly, one can determine details
in the first-level approximation and so on, which is realised via the basis functions
with smaller j (Fig. 6.19). A general definition of the nth-level details and nth-level
approximation is introduced analogously to Eqs. (6.17) and (6.18): details Dn(ti )
are small-scale components of a signal and approximations An(ti ) are larger scale
components. Approximation of the last mth level is just a mean value of an original
signal. Finally, an original signal is equal to the sum of its mean value and all details:
ηi = Am(ti ) + Dm(ti ) + Dm−1(ti ) + · · · + D1(ti ).

The value of j determines the scale of the consideration: the greater the j , the
smaller the scale. The value of k specifies a temporal point of consideration. To
continue an analogy between a wavelet and a microscope, one can say that k is a
focusing point, j determines its magnification and the kind of the mother wavelet is
responsible for its “optical properties”.

If only a small number of the wavelet coefficients c j,k appear significant, then the
rest can be neglected (zeroed). Then, the preserved terms give a parsimonious and
sufficiently accurate approximation to an original signal. In such a case, one says
that the wavelet provides a compression of information since several wavelet coeffi-
cients can be stored instead of many values in the time series. If necessary, one can
restore an original signal from those coefficients only with a small error. Wavelets
are efficient to “compress” signals of different character, especially pulse-like ones.
To compress signals, one can also use algebraic or trigonometric polynomials, but
the field of wavelet applications appears much wider in practice (see, e.g., Frik and
Sokolov, 1998; Misiti et al., 2000; http://www.wavelet.org).

Wavelet Analysis

Non-trivial conclusions about a process can be extracted from the study of its
wavelet coefficients. This is a subject of the wavelet analysis in contrast to approx-
imation and restoration of signal, which are the problems of synthesis. Above, we
spoke of the discrete wavelet analysis since the subscripts j and k in the set of
wavelet functions took discrete values. More and more careful interest is now paid to
the continuous wavelet analysis when one uses continuous-valued “indices” of shift
and scale (Astaf’eva, 1996; Koronovskii and Hramov, 2003; Torrence and Compo,
1998). The integral (continuous) wavelet transform of a signal η(t) is defined by the
expression

W (s, k) = 1√
s

∞∫

−∞
η(t) · φ

(
t − k

s

)
dt ≡

∞∫

−∞
η(t) · φs,k (t) dt, (6.19)
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Fig. 6.19 Wavelet transform: approximations and details at various levels

where s and k are real numbers (continuous-valued parameters of scale and shift),
wavelet functions are denoted as φs,k (t) = (

1
/√

s
)
φ
(
(t − k)

/
s
)

and the param-
eter s is analogous to 2− j in the discrete transform (6.13). The bivariate function
W (s, k) is called the wavelet spectrum of the signal η(t). It makes vivid physical
sense. A big value of |W (s1, k1)| indicates that signal variations with the timescale
s1 around the time instant k1 are intensive. Roughly speaking, the value of |W (s, k1)|
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at fixed k1 shows frequency contents of the signal around the time instant k1. If
the values corresponding to small s are large, then small-scale (high-frequency)
components are present. The values of |W (s1, k)| at fixed s1 show how the intensity
of the signal component corresponding to the timescale s1 changes in time. Thus,
the wavelet spectrum carries information both about frequency contents of the sig-
nal and its temporal localisation in contrast to the Fourier-based power spectrum,
which provides information only about the frequency contents without any tempo-
ral localisation. Therefore, the wavelet spectrum is also called a time – frequency
spectrum.

The wavelet spectrum satisfies “energy condition”, which allows one to relate it
to a decomposition of the signal energy in time and frequency domains:

∞∫

−∞
η2(t)dt = 1

Cφ

∞∫

−∞

∞∫

−∞
W 2(s, k)

ds dk

s2
, (6.20)

where Cφ is a normalising coefficient depending on the kind of the mother wavelet.
If the value of W 2 is integrated over time k, one gets a function of the timescale,
which is called global energy spectrum or scalogram:

EW (s) =
∞∫

−∞
W 2(s, k)dk. (6.21)

It can be used for the global characterisation of the signal frequency contents along
with the periodogram. Scalogram is typically a more accurate estimator of the power
spectrum. It resembles a smoothed periodogram (Astaf’eva, 1996; Torrence and
Compo, 1998).

A wavelet spectrum can be visualised as a surface in a three-dimensional space.
More often, one uses a contour map of |W (s, k)| or a two-dimensional map of its
values on the plane (k, s) in greyscale, e.g., where the black colour denotes large
values and the white colour indicates zero values. Of course, only an approximate
computation of the integral (6.19) is possible in practice. To do it, one must specify
a signal behaviour outside an observation interval [a,b] (often, a signal is simply
zeroed) that introduces artificial peculiarities called edge effects. How long inter-
vals at the edges should be ignored depends on the mother wavelet used and on the
timescale under consideration (Torrence and Compo, 1998). Let us illustrate per-
formance of the wavelet analysis for the temporal profile shown in Fig. 6.20a: two
sinusoidal segments with different frequencies (similar examples are considered,
e.g., in Koronovskii and Hramov, 2003). DOG wavelet is used for a time series
of the length of 1000 points over an interval [−π, π ] and zero padding outside
the interval. The global Fourier-based spectrum does not reveal the “structure of
non-stationarity”. The wavelet spectrum clearly shows the characteristic timescales
(Fig. 6.20b). In particular, it allows to distinguish low-frequency oscillations at the
beginning of the time series; black spots correspond to the locations of the sinusoid
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Fig. 6.20 Wavelet analysis: (a) two sinusoidal segments with different frequencies; (b) wavelet
spectrum obtained with the aid of DOG wavelet

extrema and “instantaneous” period. Edge effects (which are, indeed, strong for a
signal containing so small number of oscillations with a characteristic period) are
not taken into account here for the sake of illustration simplicity.

Additional examples are given in Fig. 6.21 which presents wavelet spectra of
the time series given in Fig. 6.14. For the computations, we have used the Morlet
wavelet (6.14) with ω0 = 6. Edge effects for this wavelet function at the timescale
s cover intervals of the width s

√
2 (Torrence and Compo, 1998). One can clearly

see the basic periods as dark horizontal lines in Fig. 6.21a–e. Moreover, Fig. 6.21a
exhibits additional structure related to the complicated temporal profile, which is
seen in Fig. 6.14a. Decrease in the oscillation amplitude during the change in
the mean value in Fig. 6.14d (the interval from the 9th to the 12th s) is reflected
as a white “gap” in the horizontal black line in Fig. 6.21d. Figure 6.21e clearly
shows the increase in the oscillation amplitude in the beginning and its decrease
in the end. Figure 6.21h shows higher volcanic activity during the periods 1890–
1910 and 1970–1990. One can see complicated irregular structures in Fig. 6.21f, g.
Still, a characteristic timescale of about 60 months (5 years) can be recognised in
Fig. 6.21f.

The wavelet analysis is extremely useful for the investigation of non-stationary
signals containing segments with qualitatively different behaviour. It is efficient for
essentially non-uniform signal (pulse-like, etc.) and signals with singularities (dis-
continuities, breaks, discontinuities in higher order derivatives), since it allows to
localise singularities and find out their character. The wavelet spectrum exhibits a
characteristic regular shape for fractal signals (roughly speaking, strongly jagged
and self-similar signals): such signs appear inherent to many real-world processes.
Moreover, one can analyse spatial profiles in the same way, e.g., the Moon relief
(Misiti et al., 2000) exhibits a very complex shape with different scales related
to the bombardment of the Moon with meteorites of various sizes. Wavelets are
applied to data analysis in geophysics, biology, medicine, astrophysics and informa-
tion processing systems, to speech recognition and synthesis, image compression,
etc. Huge bibliography concerning wavelets can be found, e.g., in Astaf’eva (1996),
Koronovskii and Hramov (2003), Torrence and Compo (1998) and at the website
(http://www.wavelet.org).
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Fig. 6.21 Wavelet spectra for the signals shown in Fig. 6.14: (a) periodic electric signal (volt-
age on a diode); (b) quasi-periodic electric signal (voltage on a non-linear element); (c) station-
ary accelerometer signal; (d) non-stationary accelerometer signal in respect of the expectation;
(e) non-stationary accelerometer signal in respect of the variance; (f) stationary climatic process
(Niño-3.4 index); (g) non-stationary climatic process in respect of the expectation (variations in the
global surface temperature); (h) non-stationary climatic process in respect of the variance (volcanic
activity)

6.4.3 Phase of Signal and Empirical Mode Decomposition

It is very fruitful in multiple situations to consider a phase of a signal. Here, we
discuss contemporary concepts of the phase. Roughly speaking, this is a variable
characterising repeatability in a signal. It rises by 2π between any two successive
maxima. Especial role of this variable is determined by its high sensitivity to weak
perturbations of a system. Changes in the amplitude may require significant energy,
while a phase can be easily changed by a weak “push”.6

The term “phase” is often used as a synonym of the words “state” or “stage”.
In Sect. 2.1.3, we have discussed a state vector and a state space of a dynami-
cal system and spoken of a phase orbit drawn by a state vector. The meaning of

6 Thus, a phase of a pendulum oscillations (Fig. 3.5a) can be changed by holding it back at a point
of maximal deflection from an equilibrium state without energy consumption.
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the term “phase” is different in the field of signal processing. Thus, the phase of
a harmonic signal x(t) = A cos(ωt + φ0) is an argument of the cosine function
φ = ωt + φ0. The phase φ determines the value of the cosine function. However,
to specify a state completely, one needs to know the amplitude A as well, i.e. the
phase is not a complete characteristic of a state. Apart from φ = ωt + φ0 called
“unwrapped phase” (Fig. 6.22b, the upper panel), one uses a “wrapped” phase
φ(t) = (ωt + φ0)mod 2π defined only over the interval [0, 2π) (Fig. 6.22b, the
lower panel). The latter approach makes sense, since the values of the unwrapped
phase differing by 2π correspond to the same states, the same values of the cosine
function.

A vivid geometrical interpretation of the introduced concept of phase is pos-
sible if one represents a signal x(t) = A cos(ωt + φ0) as a real part Re z(t)
of a complex-valued signal z(t) = A ei(ωt+φ0). Then, a vector z(t) on the plane
(x ,y), where x(t) = Re z(t) and y(t) = Im z(t), rotates uniformly with a fre-
quency ω along a circle of radius A centred at the origin (Fig. 6.22a). Its phase
φ = ωt + φ0 is a rotation angle of z(t) relative to the positive direction of the
x-axis. To compute an unwrapped phase, one takes into account a number of full
revolutions. Thus, such a phase is increased by 2π after each revolution. For a har-
monic signal, it rises linearly in time at a speed equal to the angular frequency of
oscillations. A plot of the wrapped phase is a piecewise linear function (a saw),
Fig. 6.22b.

The concept of the phase originally introduced only for a harmonic signal
was later generalised to more complicated situations. The most well-known and
widespread generalisation to the case of non-harmonic signals is achieved via con-
struction of an analytic signal (Gabor, 1946). The latter is a complex-valued signal,
whose Fourier image has non-zero components only at positive frequencies. From
an original signal x(t), one constructs an analytic signal z(t) = x(t)+ iy(t), where
y(t) is the Hilbert transform of x(t):

Fig. 6.22 Phase definition: (a) an orbit on the plane (x , y) for a harmonic signal x(t), y is the
Hilbert transform of x , A and φ are its amplitude and phase, respectively; (b) unwrapped and
wrapped phases of a harmonic signal versus time; (c) an orbit on the complex plane for a non-
harmonic narrowband signal, its amplitude and phase introduced through the Hilbert transform are
shown; (d) the same illustration for a wideband signal, whose phase is ill-defined
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y(t) = P.V.

∞∫

−∞

x(t ′)dt ′

π(t − t ′)
, (6.22)

P.V. denotes the Cauchy principal value of the improper integral. The phase is
defined as an argument of the complex number z, i.e. as a rotation angle of the
radius vector on the plane (x , y). This approach is widely used in radio-physics
and electrical engineering (Blekhman, 1971, 1981; Pikovsky et al., 2001). For a
harmonic signal x(t) = A cos(ωt+φ0), the conjugated signal is y(t) = sin(ωt+φ0)

and the phase coincides with the above definition. For an “almost sinusoidal” signal,
one observes rotation of the vector z not strictly along a circle but “almost” along a
circle (Fig. 6.22c). The phase increases on average at the speed equal to the mean
angular frequency of the oscillations.

The phase makes clear physical sense for oscillatory signals with a pronounced
main rhythm (Anishchenko and Vadivasova, 2004; Pikovsky et al., 2001). For com-
plicated irregular signals, an analytic signal constructed via the Hilbert transform
may not reveal a rotation about a well-defined centre (Fig. 6.22d). Then, the above
formal definition of the phase is, as a rule, useless. However, if the observed signal is
a combination of a relatively simple signal from a system under investigation and a
superimposed interference, then one can try to extract a simpler signal and determine
its phase as described above. Let us consider two basic approaches to the extraction
of a simple signal: band-pass filtering and empirical mode decomposition.

6.4.3.1 Band-pass Filtering

The simplest approach is to use a band-pass filter (Sect. 6.4.2), which let pass only
components from a small neighbourhood of a certain selected frequency. If the fre-
quency band is not wide, then one gets a signal with a pronounced main rhythm,
whose phase is easily defined via the Hilbert transform (Fig. 6.22c). However, what
frequency band should be used? Does a filtered signal relate to the process under
investigation or is it just an artificial construction? One can answer such questions
only taking into account additional information about the system under investiga-
tion. On the one hand, the frequency band should not be too narrow: In the limit
case, one gets a single sinusoid whose phase is well defined but does not carry any
interesting information. On the other hand, the frequency band should not be too
wide, since then there would not be a rotation of the vector z about a single centre,
i.e. repeatability to be described by the phase would not exist.

Another widespread opportunity to get an analytic signal is a complex wavelet
transform (Lachaux et al., 2000):

z(t) = 1√
s

∞∫

−∞
x(t ′)�∗

(
t ′ − t

s

)
dt ′ (6.23)
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at a fixed timescale s realised with the Morlet wavelet (6.14): �(t) =
π−1/4

[
exp(−iω0t) − exp

(−ω2
0

/
2
)]

exp(−t2
/

2). This is equivalent to the band-
pass filtering of an original signal with the subsequent application of the Hilbert
transform. Namely, the frequency band is of the width  f

/
f = 1

/
4 and centred at

the frequency f ≈ 1
/

s at ω0 = 6. Edge effects are less prominent under the use of
the wavelet transform (6.23) than for many other ways of filtering.

6.4.3.2 Empirical Mode Decomposition

Apart from linear filtering, one can use other options. A technique for the decompo-
sition of a signal into the so-called “empirical modes” recently introduced in Huang
et al. (1998) has become more and more popular during the last years. This is a
kind of adaptive non-linear filtering. The phase of each empirical mode is readily
defined, e.g., as a variable linearly rising by 2π between subsequent maxima or via
the Hilbert transform. For that, each “mode” should be a zero-mean signal whose
maxima are positive and minima are negative, i.e. its plot x(t) inevitably intersects
the abscissa axis (x = 0) between each maximum and minimum of a signal. The
technique is easily implemented and does not require considerable computational
efforts. A general algorithm is as follows:

(i) To find all extrema in a signal x(t).
(ii) To interpolate between the minima and get a lower envelope emin(t). For

instance, the neighbouring minima can be interconnected by straight line
segments (linear interpolation). Analogously, an upper envelope emax(t) is
obtained from the maxima of a signal.

(iii) To compute the mean m(t) = (emax(t)+ emin(t))
/

2.
(iv) To compute the so-called details d(t) = x(t)− m(t). The meaning of the term

is analogous to that used in the wavelet analysis (Sect. 6.4.2). The quantity
m(t) is called a remainder.

(v) To perform the steps (i)–(iv) for the obtained details d(t) and get new details
d(t) and a new remainder m(t) (sifting procedure) until they satisfy two con-
ditions: (1) the current remainder m(t) is close to zero as compared with d(t),
(2) the number of extrema in d(t) equals the number of its zeroes or differs
from it by 1. One calls the resulting details d(t) an “empirical mode” f (t) or
an “intrinsic mode function”.

(vi) To compute a remainder, i.e. the difference between a signal and an empirical
mode m(t) = x(t) − f (t). To perform the steps (i)–(v) for the remainder
m(t) instead of the original signal x(t). The entire procedure is stopped if m(t)
contains too few extrema.

The process is illustrated in Fig. 6.23 with a signal representing a sum of a sinu-
soid and two periodic signals with triangular profiles and different periods. The
period of the first triangle wave is greater than that of the sinusoid and the period of
the second triangle wave is less than that of the sinusoid. As a result of the above
procedure, the original signal is decomposed into the sum of three components
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Fig. 6.23 Empirical mode decomposition (Huang et al., 1998). The upper panel shows an original
signal. The next three panels show empirical modes. The first of them is a periodic triangular wave
with a small period, the second one is a sinusoid and the third one is a triangular wave with larger
period. The lowest panel shows a remainder, which exhibits a single extremum

(empirical modes) and a remainder, which is close to zero. An advantage of this
technique over band-pass filtering is its adaptive character: it distinguishes modes
based on the properties of a signal without the use of a pre-selected frequency band.
In particular, it is more efficient in coping with non-stationary signals.

6.4.4 Stationarity Analysis

In general, stationarity of a process with respect to some property means constancy
of that property in time. Definitions of wide-sense and narrow-sense stationarity are
given in Sect. 4.1.3. Besides such a statistical stationarity related to the constancy
of the distribution laws or their moments, one singles out dynamical stationarity,
meaning constancy of an evolution operator (see also Sect. 11.1).

Majority of time series analysis techniques are based on the assumption of
stationarity of an investigated process. However, multitude of real-world signals,
including physiological, financial and others, look non-stationary. The latter results
from processes, whose characteristic timescales exceed an observation time, or
external events, which lead to changes in dynamics, e.g. adaptation in biological
systems. Many characteristics calculated from a non-stationary time series appear
meaningless or unreliable.
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A lot of efforts were devoted to the problem of testing for stationarity. Previ-
ously, if non-stationarity was detected, a time series was rejected as useless for
any further analysis or divided into segments sufficiently short to be considered as
quasi-stationary. Later, many authors started to use information about the character
of non-stationarity to study a process. There are situations when temporal variations
in the properties of a process represent the most interesting contents of a time series.
For instance, a purpose of electroencephalogram analysis is often to detect changes
in the brain state. Such changes occur between different stages of sleep, between
epileptic seizures and normal brain activity, and so on.

To check a process for stationarity based on a time series more or less reliably,
the length of the time series must significantly exceed all timescales of interest. If
components with characteristic timescales of the order of a time series length are
present, then a process is typically recognised as non-stationary. However, a process
may often be regarded stationary even if a time series length is considerably less
than characteristic timescales of slow processes in a system. For instance, heart rate
of a human being under relaxed conditions is as a rule homogeneous over time
intervals of the order of several minutes. However, longer segments of data reveal
new peculiarities arising due to slow biological rhythms. Since a usual 24-h electro-
cardiogram recording covers just a single cycle of a circadian (daily) rhythm, it is
more difficult to consider it as stationary than longer or shorter recordings.

To detect non-stationarity, one uses the following basic approaches:

(i) Computation of a certain characteristic in moving window, i.e. in subsequent
segments of a fixed length (it looks like a window for the consideration moves
along the time axis). If the characteristic changes weakly and does not exhibit
pronounced trends, then a time series is regarded stationary with respect to that
characteristic, otherwise it is non-stationary. Examples of non-stationarity with
respect to mean and variance are shown in Fig. 6.14d, e, g, h. In statistics there
have been developed special techniques to test for stationarity with respect to
the mean (Student’s t-test, a non-parametric shift criterion, inversion criterion),
the variance (Fisher’s criterion, scattering criterion) and univariate distribution
functions (Wilcoxon test) (Kendall and Stuart, 1979; Pugachev, 1979, 1984;
von Mises, 1964). Based on the theory of statistical hypotheses testing, one may
deny stationarity with respect to those characteristics at a given significance
level (i.e. with a given probability of random error).

(ii) Comparison of characteristics in different time windows. One uses such char-
acteristics as different statistical measures (criteria of χ2, Cramer and Mises,
Kolmogorov and Smirnov) (Kendall and Stuart, 1979; von Mises, 1964) and
non-linear dynamics measures [cross-correlation integral (Cenis et al., 1991),
cross-prediction error (Schreiber, 1997, 1999), distance between vectors of a
dynamical model coefficients (Gribkov and Gribkova, 2000)]. Some approaches
of such type are illustrated in Sect. 11.1.

One more recent approach, which often appears useful for the treatment of
non-stationary signals (e.g. to detect drifts of parameters), is based on the analysis
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of recurrences in a reconstructed phase space (Facchini et al., 2005; Kennel,
1997; Rieke et al., 2002). Recurrence plot widely used in the recurrence analysis
(Eckmann et al., 1987) is a diagram which shows time instants of close returns of
an orbit to different states of a system. It is a very convenient tool to visualise a
dynamical structure of a signal. Furthermore, recurrences in the space of model
coefficients may be used to directly characterise non-stationarity and select quasi-
stationary intervals of an observed signal (Sect. 11.1). Recurrence plots were intro-
duced in Eckmann et al. (1987) and extended in many works, see the dissertation
(Marwan, 2003) and the review (Marwan et al., 2007) for a detailed consideration.
It is also worthwhile to note that the recurrence analysis extends possibilities of
estimating dimensions, Lyapunov exponents and other dynamical invariants of a
system (Marwan et al., 2007), which can be used in empirical modelling to select a
model structure and validate a model.

6.4.5 Interdependence Analysis

Above, we have considered techniques for a scalar time series analysis. If one
observes a vector time series, e.g., simultaneous measurements of two quantities
x(t) and y(t), then opportunities to address new questions emerge. It is often impor-
tant to reveal interdependence between x(t) and y(t) to get ideas about the presence
and character of coupling between sources of the signals. Such information can be
used in modelling as well. Thus, if there is a unique relationship between x(t) and
y(t), then it is sufficient to measure only one of the quantities, since the other one
does not carry new information. If there is certain interdependence, which is not
unique, then it is reasonable to construct a model taking into account interaction
between two sources of signals.

There are different approaches to the analysis of interdependencies. Histori-
cally, the first tools were cross-correlation and cross-spectral analysis. They are
developed within the framework of mathematical statistics and attributed to the so-
called linear time series analysis. Cross-covariance function is defined as covariance
(Sect. 4.1.2) of x and y at time instants t1 and t2:

Kx,y(t1, t2) = E
[
(x(t1) − E[x(t1)]) (y(t2) − E[y(t2)])

]
. (6.24)

For a stationary case, it depends only on the interval between the time instants:

Kx,y(τ ) = E
[
(x(t) − E[x]) (y(t + τ) − E[y])] . (6.25)

According to the terminology accepted mainly by mathematicians, normalised
cross-covariance function is called cross-correlation function (CCF). The latter is a
correlation coefficient between x and y. For a stationary case, the CCF reads

kx,y(τ ) = E
[
(x(t) − E[x]) (y(t + τ) − E[y])]√

var[x]var[y] , (6.26)
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where var[x] and var[y] are the variances of the processes x(t) and y(t). It always
holds true that −1 ≤ kx,y(τ ) ≤ 1. An absolute value of kx,y(τ ) reaches 1 in case of
deterministically linear dependence y(t+τ) = α x(t)+β, while kx,y(τ ) = 0 for sta-
tistically independent processes x(t) and y(t). However, if the processes are related
uniquely, but non-linearly, then the CCF can be equal to zero (e.g., for y(t) = x2(t)
and symmetric distribution of x about zero) and “overlooks” the presence of inter-
dependence. Therefore, one says that the CCF characterises a linear dependence
between signals. To estimate the CCF, one uses a usual formula for an empirical
moment (Sect. 2.2.1).

There are multiple modifications and generalisations of the CCF. Thus, to char-
acterise an interdependence between components of signals at a given frequency,
rather than a total interdependence, one uses cross-spectral density and coherence
(a normalised cross-spectral density). However, the estimation of the cross-spectrum
and coherence is connected to greater difficulties compared to the estimation of an
individual power spectrum (Bloomfield, 1976; Brockwell and Davis, 1987; Priest-
ley, 1989). DFT-based estimators analogous to the periodogram estimator of the
power spectrum have even worse estimation properties compared to the latter due
to an estimation bias (Hannan and Thomson, 1971), observational noise effects
(Brockwell and Davis, 1987), large estimation errors for the phase spectrum at
small coherence (Prietley, 1989), etc. (Timmer et al., 1998). Cross-wavelet analysis
further generalises characterisation of an interdependence by decomposing it in the
time – frequency domain (Torrence and Compo, 1998). Analogous to the cross-
spectrum and Fourier coherence, the cross-wavelet spectrum and wavelet coherence
are estimated with greater difficulties, compared to the individual wavelet power
spectrum (Maraun and Kurths, 2004).

To reveal non-linear dependencies, one uses generalisations of the correlation
coefficient including Spearman’s index of cograduation (Kendall and Stuart, 1979),
correlation ratio (Aivazian, 1968; von Mises, 1964), mutual information function
(Fraser and Swinney, 1986) and others.

The corresponding approaches are developed in non-linear dynamics along two
directions. The first idea is to analyse mutual (possibly, non-linear) dependencies
between state vectors x(t) and y(t) reconstructed from a time series via time-delay
embedding or in other way (Sects. 6.1.2 and 10.1.2). The techniques rely upon the
search for nearest neighbours in state spaces (Arnhold et al., 1999; Pecora et al.,
1995) or construction of mutual predictive models (Schiff et al., 1996; Schreiber,
1999). If there is a unique dependence between simultaneous values of the state
vectors x(t) = F(y(t)), one speaks of generalised synchronisation (Rulkov et al.,
1995; Pecora et al., 1995; Boccaletti et al., 2002). Fruitful approaches to quantifi-
cation and visualisation of non-linear interrelations from observed data are based
on the recurrence analysis (Sect. 6.4.4) and include cross-recurrence plots (Groth,
2005; Marwan and Kurths, 2002, 2004; Zbilut et al., 1998) and joint recurrence plots
(Marwan et al., 2007).

The second idea is to analyse only the phases of observed signals. Since the phase
is a very sensitive variable, an interaction between oscillatory systems often man-
ifests itself as an interdependence between their phases, while the amplitudes may
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remain uncorrelated. If for two coupled self-sustained oscillators their unwrapped
phase difference is constant φx (t) − φy(t) = const, then one says that phase
synchronisation takes place. This is a thresholdless phenomenon, i.e. it can be
observed for arbitrarily weak coupling between systems if their own oscilla-
tion frequencies are arbitrarily close to each other (Afraimovich et al., 1989;
Pikovsky et al., 2001) and noise is absent. If even weak noise is present, then
the phase difference cannot be strictly constant and one considers a softened
condition

∣∣φx (t)− φy(t)− const
∣∣ < 2π . This is definition of 1:1 synchronisation.

There also exists a higher order m:n synchronisation defined by the condition∣∣mφx (t)− nφy(t)− const
∣∣ < 2π . For a considerable noise level, even the softened

condition of the phase difference boundedness can be fulfilled only over a finite
time interval. Then, one speaks of an effective synchronisation if that time interval
significantly exceeds oscillation periods of both systems.

One introduces different numerical characteristics of phase interdependence
often called coefficients of phase synchronisation. The most widespread among
them is the so-called mean phase coherence (it has several names):

Rm,n =
√〈

cos
(
mφx (t)− nφy(t)

)〉2 + 〈
sin

(
mφx (t) − nφy(t)

)〉2
, (6.27)

where angle brackets denote temporal averaging. It is equal to unity when the phase
difference is constant (phase synchronisation) and to zero when each system exhibits
oscillations with its own frequency independently of the other one. In the case of
non-strict (e.g. due to noise) phase locking, the quantity Rm,n can take an interme-
diate value and characterise a “degree of interdependence” between the phases. An
example of efficient application of such a phase analysis to a medical diagnostic
problem is given in Pikovsky et al. (2000).

In Chap. 12 and 13, we describe several techniques allowing to reveal and char-
acterise “directional couplings” and their applications.

6.5 Experimental Example

This chapter is devoted to techniques and problems emerging at the starting stage
of the modelling procedure and to acquisition and preliminary analysis of a time
series (see Fig. 5.1). Instead of a summary, where we could say that probability of
successful modelling rises with the amount and accuracy of prior knowledge about
an object, let us discuss a real-world example of data acquisition and modelling. An
object is a familiar circuit discussed above: a source of e.m.f. and resistors connected
to it (Fig. 6.2a, b). However, a semiconductor sample (InSb, antimonide of indium)
is included into it instead of the resistor Rv .7 Under the room temperature, InSb is
a conductor; therefore, experiments are carried out in liquid nitrogen at its boiling

7 This narrow-band-gap semiconductor characterised by a large mobility of charge carriers is
promising in respect of the increase in the operating speed of semiconductor devices.
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Fig. 6.24 Experimental
set-up: (a) the scheme; (b) the
current I via a sample versus
the voltage U on a sample

temperature of −77 ◦C (Fig. 6.24). Despite seeming simplicity of the object (at least,
in comparison with living systems), we have selected it for an illustration due to
diversity of its possible motions, mathematical tools needed for their description
and difficulties in data acquisition depending on the modelling purposes.

What complexity can one expect from an oblong piece of a substance with two
contacts connected to a source of constant e.m.f.? Depending on experimental con-
ditions and exploited devices, one can observe diversity of processes ranging from
a trivial direct current to oscillations at ultrahigh frequencies and even irradiation
in the millimetre range of wavelengths. Registering of processes with characteris-
tic frequencies ranging from 1 to 1012 Hz requires usage of different devices and
analogue-to-digital converters. Moreover, starting from frequencies of about several
gigahertz, digitising and, hence, modelling from time series are still technically
impossible. Further, mathematical modelling of different phenomena mentioned
above requires application of various tools ranging from algebraic equations to par-
tial differential equations.

Under low voltages U at the contacts of the sample, it behaves like a usual resis-
tor, i.e. one observes a direct current I and processes are appropriately modelled
by an algebraic relationship, i.e. Ohm’s law I = U

/
R, where R is a parameter

meaning the resistance of the sample. The characterising quantities U and I are
easily measured and can serve as observables. Linearity of their interdependence is
violated with the rise in U due to the heating of the sample, whose conductance then
rises as seen from the branch 1 of the characteristic (Fig. 6.24b).

With further increase in I and the heating intensity, boiling of the liquid transits
from the bubble-boiling to the film8-boiling regime. This is reflected by the branch
2 on the dependency of the mean current on the mean voltage. Moreover, this is
accompanied by the transition of the system “sample – source of e.m.f. – cooling
liquid” to an oscillatory regime. Its characteristic frequencies range from less than
1 Hz to radio frequencies (dozens of kilohertz to several megahertz). Thus, one can
use an ADC to record a time series. Oscillations at lower frequencies are determined
by the arousal of multitude of bubbles at the surface, while higher frequencies are
determined by the reactivity of the wires connected to the negative resistance of

8 Liquid nitrogen in a thermos is under boiling temperature. At a low heat flow from the sample,
small bubbles arise at its surface. They cover the entire surface at a more intensive heating. Thus,
a vapour film is created, which isolates the sample from the cooling liquid.
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the sample. Those phenomena can be modelled with stochastic differential equa-
tions. Yet, such a model contains quantities which are not directly related to the
observables: heat flow from the sample, temperature dependence of its conductance,
reactivity of the feed circuit.

A situation which is even more complex for observations and modelling arises
if one tries to decrease heating influence and turns from a continuous power supply
to a pulse regime when the voltage on the sample is supplied only during a short
interval so that it has enough time to be cooled considerably until the next pulse.
At that, without heat destruction of the sample and change in the boiling regime,
one can achieve the voltages (the branch 3 in Fig. 6.24b) sufficient for a shock
breakdown to start at local areas of the sample and created “pieces” of plasma to
become a source of microwave radiation. To observe such processes, one needs a
special equipment and microwave receivers, while the use of the current I (t) and
the voltage U (t) as observables gets inefficient. The reason is that it is not clear
how characterising quantities entering a DE-based model of the above oscillatory
mechanism are related to such observables. More appropriate model variables would
be the field strength in the sample and the concentration of the charge carriers. It
is important to take into account a dependence of the drift velocity on the field
strength and so on. An example of differential equations modelling such a dynamical
regime is given in Bezruhcko and Erastova (1989). A more detailed modelling of the
considered seemingly simple system requires to use non-linear partial differential
equations.

This example cannot be regarded as an exclusive one in practice.
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Chapter 7
Restoration of Explicit Temporal Dependencies

In the simplest formulation, modelling from a time series is considered as restoration
of an explicit temporal dependence η = f (t, c), where f is a certain function and
c is the P-dimensional vector of model parameters. Such a problem setting is con-
sidered in the theory of function approximation (Akhieser, 1965) and mathematical
statistics (Aivazian, 1968; Hardle, 1992; Seber, 1977). It can be interpreted as draw-
ing a curve through experimental data points on the plane (t, η) or near those points
(Fig. 7.1). A capability of solving this problem determines to a significant extent the
success of modelling in more complex situations discussed in Chaps. 8, 9 and 10.

Below, two different formulations of the problem are discussed. Under the first
formulation (Sects. 7.1 and 7.4.2), connection between the quantities t and η, i.e.
a function f (t, c), is a priori known up to the value of the parameter vector c. The
values of the parameters are of interest if they make physical sense and cannot be
measured directly. The problem is to estimate the parameters as accurately as pos-
sible. Under the second formulation (Sects. 7.2 and 7.4.1), the purpose of modelling
is to predict the value of η at a given time instant t , i.e. one needs to find a function
f , which provides the forecast with as small error as possible. The form of f is a
priori unknown, i.e. this problem setting can be considered as a kind of “black box”
modelling.

In this chapter, we introduce a number of ideas and terms important for the entire
further consideration. The most popular techniques for parameter estimation are
described and compared in Sect. 7.1. The concepts of approximation, regression,
interpolation and extrapolation are introduced in Sect. 7.2. Selection of a model
class and “model overfitting” problem are considered in Sect. 7.2 as well. Diagnostic
check of a model is discussed in Sect. 7.3. Applications of the models η = f (t, c)
to prediction and numerical differentiation are described in Sect. 7.4.

7.1 Parameter Estimation

We start with the deterministic setting of the “transparent box” problem, where
a model structure is a priori known and only concrete values of parameters are
unknown. An original process reads as

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_7,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 7.1 Illustrations to the problem of drawing a curve of a given kind via experimental data points
on a plane (circles): (a) no noise, it is simple to select a functional form for a curve; (b) data points
do not lie precisely on a simple curve due to either random interference or complex character of
the dependence so that the problem is to describe the observed dependence approximately with a
simple function

η = f (t, c0), (7.1)

where the form of the function f is known and the value c0 of the parameter vector
is unknown. To construct a model in the form η = f (t, c), one should find such
values of P components of the parameter vector c that the plot of f would go exactly
through the experimental data points (ti , ηi ) , i = 1, . . . , N . The solution is found
by solving the set of equations

ηi = f (ti , c1, . . . , cP ), i = 1, . . . , n, (7.2)

where n observation instants are chosen from the total set of N available instants. If
f is linear with respect to the parameters, then the system (7.2) at n = P has gener-
ically a unique solution, which can be found with any well-developed techniques
(Golub and Van Loan, 1989; Press et al., 1988; Samarsky, 1982). Difficulties arise if
matrix of the system is degenerate or ill-conditioned, i.e. the problem is ill-posed or
ill-conditioned (Sect. 5.3). Then, one says that the parameters are non-identifiable
from the given data set. Sometimes, such a difficulty can be eliminated if some
observation instants ti in Eq. (7.2) are replaced by other instants. If the number of
data points N in a time series is greater than P , the remaining N − n data points
can be used for model validation. If N is less than P , the problem has no unique
solution, i.e. it is ill-posed.

In the case of non-linear dependence of the function f on the parameters c, the
set of equations (7.2) is solved with iterative numerical techniques (Dennis and
Schnabel, 1983; Kalitkin, 1978; Press et al., 1988; Samarsky, 1982). For instance,
according to the widely used Newton technique, one first makes a starting guess
c(0) for a sought parameter vector. Then, one gets a correction c(0) by solving a
linearised problem and, thereby, generates a new approximation c(1) = c(0)+c(0).
Such operations are iterated until the process converges to a solution ĉ with a given
precision. One finds a single solution to Eq. (7.2) for a single starting guess. If the
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set of equations (7.2) has many solutions, one needs to find all of them to select
the “true” value of c. Finding all solutions is a principal difficulty, since there is
no general technique assuring it, even though many practically efficient algorithms
are developed (Dennis and Schnabel, 1983). The problem is not very complicated
if the number of unknown quantities is small. Similar to the linear case, it is often
sufficient to take n = P or n slightly greater than P (depending on the character of
non-linearity).

In a stochastic case, an original process reads as

η = f (t, c0) + ξ(t), (7.3)

where ξ is a zero-mean random process (noise). Here, one speaks of getting a statis-
tical estimate ĉ as close to the true value c0 as possible, rather than of the accurate
determination of the parameter values. Usually, ξ(ti ) are assumed to be independent
identically distributed random quantities. A probability distribution law for ξ may
be unknown. Then, one either assumes that the probability density function p(ξ)
coincides with a certain well-known law (e.g. Gaussian, Laplacian, uniform on a
finite interval) or uses a universal estimation technique applicable to a wide range
of distribution laws.

7.1.1 Estimation Techniques

A set of possible estimation techniques is infinite. This is a set of all functions
(estimators), which get “input” data (ti , ηi ), i = 1, . . . , N and give a value of
ĉ as “output” (Ibragimov and Has’minskii, 1979; Pugachev, 1979, 1984). Within
this multitude, there are several widely used techniques, which are characterised by
high effectiveness for a wide range of processes, with simplicity of implementation,
etc. Below, we consider some of them. Methodologically, it is useful to distinguish
between the two situations:

(i) The quantity t is non-random and observation instants are fixed. This situation
is encountered most often. It has got even a special name “Gauss and Markov
scheme” (Vapnik, 1979).

(ii) The quantity t is random and observation instants are selected independently
according to some distribution law p0(t).

7.1.1.1 “Simple Averaging” Technique

Let the time series length N be such that the time series could be divided into M
parts, each of which contains P data points. Let us proceed as if the noise were
absent, i.e. solve Eq. (7.2) requiring exact equalities ηi = f (ti , c) for each kth part
of the time series. Let us assume that the set (7.2) has a unique solution ĉk for each
part of the time series. The final estimate is found via simple averaging:
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ĉ = 1

M

M∑

k=1

ĉk .

7.1.1.2 Statistical Moments Technique

Strictly speaking, it concerns the situation where t is a random quantity and f (t, c)
is an algebraic polynomial. Let us describe the technique with an example of an
original process:

η = c1 + c2t + c3t2 + ξ(t). (7.4)

First, one finds the expectations of both sides of Eq. (7.4). Recalling that
E[ξ ] = 0, one gets

E[η] = c1 + c2 E[t] + c3 E[t2]. (7.5)

Such manipulations are justified only if the quantity t has a necessary number
of finite moments (in particular, up to the second-order moments in the example
considered). If the distribution p0(t) exhibits “heavy tails”, i.e. decreases according
to a power law for t → ∞, then already the second moment of the quantity t may
not exist.

Then, one multiplies both sides of Eq. (7.4) by η and again finds the expectations:

E[η2] = c1 E[η] + c2 E[ηt] + c3 E[ηt2]. (7.6)

Similarly, one multiplies both sides of Eq. (7.4) by t and finds the expectations:

E[ηt] = c1 E[t] + c2 E[t2] + c3 E[t3]. (7.7)

If the values of the statistical moments E[η], E[ηt] and others entering
Eqs. (7.5), (7.6) and (7.7) were known, then one could precisely find exact values
of the parameters c1, c2, c3 by solving Eqs. (7.5), (7.6) and (7.7) with respect to
c1, c2, c3. In data analysis, the theoretical moments are unknown, but by replacing
them with their estimators (the sample moments, see Sect. 2.2.1), i.e. substituting

〈η〉 = 1
N

N∑

i=1
ηi instead of E[η] and so on, one gets a set of equations

c1 + c2〈t〉 + c3〈t2〉 = 〈η〉,
c1〈η〉 + c2〈ηt〉 + c3〈ηt2〉 = 〈η2〉, (7.8)

c1〈t〉 + c2〈t2〉 + c3〈t3〉 = 〈ηt〉,

and finds an estimate ĉ as its solution.
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The technique can be generalised to the case when f is not an algebraic polyno-
mial. The values of parameters should then be found by solving non-linear equations
containing quantities of the type 〈 f (t, c)〉 rather than the sample moments. It is more
problematic in practice. If t is non-random, interpretation of the values 〈t〉, 〈t2〉 and
others as estimators of statistical moments is impossible. Still, the technique can be
applied, but one should remember that the name “statistical moments” is no longer
completely appropriate.

7.1.1.3 Maximum Likelihood Technique

In contrast to the two previous techniques, to apply the ML technique one must
know the distribution law p(ξ), probably up to the values of some parameters. The
ML-principle is described in Sect. 2.2.1 in application to the estimation of parame-
ters of a univariate distribution. Everything is analogous to the problem considered
here. An observed time series {η1, . . . , ηN } is a random vector. For non-random
instants ti and random quantities ξi independent of each other, the likelihood func-
tion takes the form

L(c) =
N∏

i=1

p(ηi − f (ti , c)). (7.9)

It depends on the parameters c. The ML principle is realised via maximisation

ln L(c) =
N∑

i=1

ln p(ηi − f (ti , c)) → max . (7.10)

In other words, the value of the N -dimensional probability density function at
the observed “point” {η1, . . . , ηN } is maximised.

If t is random and characterised by a distribution law p0(t), then almost noth-
ing changes: each multiplier in Eq. (7.9) is multiplied by p0(ti ) and under the
condition that p0(t) is independent of c, the ML estimators are found again from
condition (7.10).

A concrete form of the likelihood function depends on the distribution law p(ξ).
In general, finding ML estimates is a problem of multidimensional non-linear opti-
misation, which is solved with iterative techniques (Dennis and Schnabel, 1983).
For three widespread distribution laws p(ξ), the ML technique reduces to other
well-known techniques: the least squares technique, the least absolute values tech-
nique and the least maximal deviation technique.

7.1.1.4 Least Squares Technique

If ξ is distributed according to the Gaussian law p(ξ)=
(

1
/√

2πσ 2
ξ

)
exp

(
−ξ2

/
2σ 2

ξ

)
,

which is appropriate to describe measurement errors under stable conditions
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(Vapnik, 1979), then the likelihood function reads as

ln L(c) = −
N ln

(
2πσ 2

ξ

)

2
− 1

2σ 2
ξ

N∑

i=1

(ηi − f (ti , c))2. (7.11)

Its maximisation over c is tantamount to the minimisation

S(c) =
N∑

i=1

(ηi − f (ti , c))2 → min. (7.12)

This is the least squares (LS) technique. Geometrically, it means that the param-
eter estimates are chosen so to minimise the sum of the squared vertical distances
from the experimental data points on the plane (t, η) to the plot of f (t, c), see
Fig. 7.2.

7.1.1.5 Least Absolute Values Technique

If ξ is distributed according to the Laplacian law p(ξ) = (1/2) exp(−|ξ |/),
which is appropriate to describe measurement errors under unstable conditions
(Vapnik, 1979), then the likelihood function reads as

ln L(c) = −N ln(2) − 1



N∑

i=1

|ηi − f (ti , c)|. (7.13)

Fig. 7.2 Parameter estimation via minimisation of vertical distances from the experimental data
points to the plot of a model function (some of these discrepancies are shown by vertical lines).
One minimises either the sum of their squared values, the sum of their absolute values or their
maximal value
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Maximisation over c is equivalent to the minimisation of the sum of the absolute
values of the vertical distances

S′(c) =
N∑

i=1

|ηi − f (ti , c)| → min. (7.14)

7.1.1.6 Least Maximal Deviation Technique

If ξ is distributed uniformly on an interval of width :

p(ξ) = 1

2
,− � ξ � ,

which is appropriate to describe round-off errors of numerical computations
(Vapnik, 1979), then the likelihood function reads as

L(c) = 1

(2)N

N∏

i=1

�( − |ηi − f (ti , c)|), (7.15)

where �(x) = 1, x > 0 and �(x) = 0, x < 0. Maximisation of Eq. (7.15) over c
for unknown  is equivalent to the minimisation of the maximal vertical distance

S′′(c) = max
1�i�N

|ηi − f (ti , c)| → min. (7.16)

Each of the techniques (7.12), (7.14) and (7.16) coincides with the ML technique
only for the corresponding distribution law p(ξ). Each of them may appear superior
to the others even if the properties of p(ξ) are varied in a certain way. Therefore,
each of the three estimators has its own practical value, rather than being only a
particular case of the ML approach.

7.1.2 Comparison of Techniques

Performance of the techniques can be assessed from different properties of the esti-
mators. Let us compare the above techniques in the most popular way when the best
estimator is that with the least value of the mean-squared error E[ĉ−c0]2. The latter
is the sum of the estimator variance and squared bias as given by Eqs. (2.16) and
(2.17) in Sect. 2.2.1:

E[ĉ − c0]2 = σ 2
ĉ + (

E[ĉ] − c0
)2
. (7.17)
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7.1.2.1 The Case of Linear Estimators

Let us start with a simple example where several compared estimators appear linear
with respect to ηi (such estimators are called linear) and unbiased. To get such
estimators, it is necessary for a function f to be linear with respect to c and for the
properties of the noise ξ to be independent of time t . For instance, the conditions
are satisfied for a process

η = c0t + ξ, (7.18)

where ξ is distributed according to the Gaussian law with some variance σ 2
ξ . We

apply the simple averaging, the statistical moments and the least squares techniques
and compare the results.

Geometrical sense of the simple averaging technique is as follows. One draws a
straight line through a point ti , ηi and the origin and determines its angular coeffi-
cient ĉi = ηi/ti . Then, one finds an averaged value over all ĉi (Table 7.1). If some
observation instants are close to zero, then the deviations of ĉi from c0 (equal to
ξi/ti ) can be very large, which can lead to huge scattering of the estimator values.
The estimator may not have even finite expectation and variance (Table 7.1). It is
easy to show that the estimator is unbiased if it has a finite expectation.

Geometrical sense of the statistical moments technique is as follows. One finds
the sample mean values of the coordinates 〈t〉N and 〈η〉N . Then, one draws a straight
line through the origin and the obtained “mean point” (“centre of mass”) of the
cloud of experimental points and takes its angular coefficient as an estimator ĉ. If
its expectation is finite, it is unbiased. The variance of this estimator is less than that
for the simple averaging estimator (Table 7.1, Fig. 7.3). The difference is especially
large if some values of t are very close to zero.

As for the LS estimator, it has surely finite expectation and variance. It is unbi-
ased and its variance is less than that for the two estimators above (Fig. 7.3).

For all the three techniques, the variance of the noise ξ can be estimated as the
sample variance of the model residual errors σ̂ 2

ξ = S(ĉ)
/

N . Residual errors (also
called just residuals) are the values εi = ηi − f (ti , ĉ), where ĉ is the parameter
estimate obtained. In the case of Gaussian ξ , this estimator of σ 2

ξ obtained from

Table 7.1 Results of the parameter estimation with different techniques for example (7.18). Vari-
ances of the estimators are shown for the case of random t . For non-random t , it is sufficient to
replace its “expectation” with a sample mean

Techniques Expression for ĉ Variance of ĉ

Simple averaging
(
1
/

N
) N∑

i=1
ηi
/

ti
(
σ 2
ξ

/
N
)

E[1/t2]

Statistical moments
N∑

i=1
ηi

/
N∑

i=1
ti

(
σ 2
ξ

/
N
)

E
[
1
/〈t〉2

N

]

Least squares
N∑

i=1
ηi ti

/
N∑

i=1
t2
i

(
σ 2
ξ

/
N
)

E
[
1
/〈

t2
〉
N

]
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Fig. 7.3 Variances of different estimators versus the time series length in a double logarithmic
scale for example (7.18) with c0 = 0.5, random t distributed uniformly in the interval [0.1,1.1]
and ξ distributed according to the Gaussian law with unit variance. The LS estimator has the
least variance. The statistical moments-based estimator is the second best. The largest variance is
observed for the simple averaging technique. The scaling law σ 2

ĉ ∝ 1/N is the same for all the
three estimators

the LS technique coincides with the ML estimator of σ 2
ξ . In all the three cases,

the variance of ĉ decreases with N . Recalling unbiasedness of the estimators, it
means that the estimators become more accurate for greater N . The scaling law
for the variance in the case of observation instants ti randomly drawn from some
distribution is σ 2

ĉ ∝ 1/N (Fig. 7.3). However, it may differ for other selection of the
observation instants ti .

7.1.2.2 Asymptotic Properties

Let us consider properties of the estimators under the increase in sample size,
N → ∞, and start with the case where t is a random quantity with finite expec-
tation and variance. Then, the ML estimator is an asymptotically unbiased, asymp-
totically efficient and consistent estimator. In other words, this is practically the
best estimator for a sufficiently large N . The LS technique and statistical moments
technique also provide consistent estimators under certain conditions (Ibragimov
and Has’minskii, 1979; Vapnik, 1979).

If observation instants ti are not random, the situation changes. In quite a typical
case, the consecutive ti are separated with a fixed time step ti = t0 + it so that
an increase in the time series length N corresponds to an increase in the duration of
the observation interval. Then, each new observation can make a contribution to the
likelihood function (7.9) different from the previous observations. The likelihood
function may well depend stronger and stronger on ηi with increasing i , i.e. the
value of L in Eq. (7.9) becomes non-stationary with respect to i . This is reflected by
the so-called partial Fisher information: In the case of a single scalar parameter, this
is a value Ii = (∂ f (ti , c))

/
∂c
∣∣
c=c0

)2. The greater the Ii , the stronger the influence
of an observation ηi on the value of the ML estimator. Such a strong influence takes
place for the examples

η = sin(c0t)+ ξ (7.19)
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and

η = sin(exp(c0t))+ ξ, (7.20)

where the single parameter is estimated from an equidistant time series with fixed
t . In the case of Eq. (7.19), the ML estimator remains asymptotically unbiased,
while its variance decreases faster than in the case of random ti : σ 2

ĉ ∝ 1/N 3, i.e.
the estimator is even more accurate for sufficiently large N . In the case of Eq. (7.20),
the likelihood function loses smoothness and becomes too “jagged” at N → ∞ (see,
e.g., Fig. 8.3a in Sect. 8.1.2). Therefore, one can prove nothing about its asymptotic
properties. At finite N, the variance of the estimator decreases very quickly with
N , approximately via an exponential law (Pisarenko and Sornette, 2004). However,
finding the global maximum of Eq. (7.9) is practically impossible for large N , since
the cost function has too many local maxima. The same problems are encountered
when one uses the techniques of the least squares, the least absolute values and the
least maximal deviation.

7.1.2.3 Finite Sample Size

Taking into account the above consideration, one must often use only moderate time
series lengths. However, in such a case the ML approach does not assure the best
estimator properties. Therefore, a special attention is paid to the performance of the
techniques for finite-size samples. For non-random t , Gaussian distribution of ξ and
linear dependence of f on c, the LS estimator (coinciding then with the ML esti-
mator) is unbiased and efficient, i.e. the best one in the class of unbiased estimators.
Under arbitrary distribution law for ξ , the LS technique (no longer equivalent to the
ML technique) gives the best estimators in the narrower class of linear and unbiased
estimators. However, there are non-linear biased estimators, which exhibit smaller
error (7.17) than the LS estimators (Vapnik, 1979).

7.1.2.4 Optimal Estimation

In the simple example considered above, properties of the estimators do not depend
on the true values of the parameters c0. In general, such a dependence may take
place: an estimator can exhibit small error for some value of c0 and large errors for
others. It is desirable to have a technique which gives the best estimates for any
value of c0 from a set of possible values of C. However, such uniformly the best
technique in general does not exist. There are estimators optimal in some sense and,
hence, useful in a corresponding practical situation. Two popular ideas are minimax
and Bayesian approaches.

Minimax Principle

It is often unknown which values of c0 from a set C one can encounter in practice
more often. If a large estimation error is extremely undesirable even for a single
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rarely encountered value of c0, then one needs a technique providing the least worst-
case error:

sup
c0∈C

∫ (
ĉ − c0

)2
p(ĉ |c0 )d ĉ → min, (7.21)

where p(ĉ |c0 ) is the probability distribution density for an estimator ĉ at a given
c0. One minimises an estimator error corresponding to the least favourable case.
However, if such a value of c0 is never encountered in practice, then the technique
based on Eq. (7.21) appears “too careful” and gives an estimator, which is not the
most accurate among others possible.

Bayesian Principle

As discussed in Sect. 2.2.1, true value of parameters c0 can be considered as random
quantities. Since some true values c0 can be encountered more often than others, one
may need a technique which gives minimal average estimator error, i.e.

∫ (
ĉ − c0

)2
p(ĉ |c0 )p(c0) dĉ dc0 → min. (7.22)

Such an approach rarely gives large errors (only for almost improbable c0) and
often gives small errors (for the most probable and, hence, most frequently encoun-
tered values of c0).

7.1.2.5 Robust Estimation

The LS technique and the least absolute value technique are superior to the ML
approach in the following sense. To apply the former two techniques, one does not
have to know a priori the distribution law of the noise ξ . As mentioned above, these
two techniques give optimal results if the noise is distributed according to Gaussian
or Laplacian law, respectively. One may pose a question: Whether “good” properties
of an estimator (e.g. small estimator error) are maintained under some variations in
the noise distribution. If yes, which variations are allowable? If not, how can one
construct an estimator stable (robust) with respect to some variations? This is a
subject of the robust estimation theory, see, e.g. Vapnik (1979, 1995) and references
therein.

Without going into rigorous formulations, we just indicate that both techniques
are robust for sufficiently wide classes of distributions. Namely, the LS estimator is
robust in the class of distributions, whose variance does not exceed a given finite
value. The least absolute value estimator is robust in the class of distribution laws
with p(0) ≥  > 0, where  is a given finite number. One can construct other
estimators which are robust in wider classes (Vapnik, 1995).
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7.1.2.6 Concluding Remarks

For a sufficiently long time series, noise-free values of ti , a priori known distribu-
tion law of the noise ξ and a sufficiently “good” likelihood function (so that one
could find its global maximum), the best parameter estimators are given by the ML
approach.

If the distribution law of the noise is unknown and the function f is linear with
respect to the estimated parameters, the LS estimator and the least absolute value
estimator are the best in the corresponding classes of distributions. However, imple-
mentation of the LS technique is the simplest one, since an optimisation problem
appears linear in contrast to other approaches. The LS technique is also often applied
in the case of non-linear dependency of f on the parameters, even though one should
then solve a more complicated problem of non-linear optimisation.

In total, the statistical moments technique is inferior to the LS technique with
respect to the estimator accuracy. As a rule, the simple averaging technique is even
worse. However, there are situations where the latter techniques have their own
advantages (Pisarenko and Sornette, 2004).

We have only briefly touched on the questions of robust and optimal estimation,
since the corresponding problems are more complicated and are still rarely formu-
lated in modelling from time series.

7.2 Approximation

7.2.1 Problem Formulation and Terms

Similar to Sect. 7.1, we consider two situations: deterministic and stochastic. In the
“deterministic” case, an original process is

η = F(t). (7.23)

The form of the “true” function F is unknown so that one must find a model
function f approximating F(t) as accurately as possible over a given range of t .
Approximation of F(t)with another function f (t) on an interval [a, b] is the central
problem in the theory of approximation (Akhieser, 1965). In a wide sense, approx-
imation is a replacement of an object with another one, which is in some sense
close to the original.1 If a model function f obtained with the use of the observed

1 An example. In the Ptolemaic astronomy, motions of celestial bodies relative to the Earth are
approximated with combinations of motions along circumferences (epicycles), whose centres move
along other circumferences around the Earth. To provide high accuracy in predictions of the future
locations of planets on the coelosphere, which was important for sea navigation, a very sophisti-
cated system of epicycles was developed. That work stimulated the development of the spherical
geometry in the Middle Ages. When the geocentric system got an alternative, the heliocentric
system of Copernicus, the latter one was inferior to its predecessor with respect to the prediction
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data is applied to compute the values of η (i.e. to replace F) at intermediate time
instants t1 < t < tN , then one speaks of interpolation of the dependency η(t). If an
approximating function is used outside the observed domain (t < t1, t > tN ), then
one speaks of extrapolation of the dependency η(t).2 In particular, extrapolation to
the future (t > tN ) is the forecast in a narrow sense.

In the “stochastic” case, an original process is given as

η = F(t)+ ξ(t), (7.24)

where the form of the function F is a priori unknown and ξ is the zero-mean random
quantity statistically independent of t , i.e. its properties do not depend on t . To char-
acterise such a situation, one uses some additional concepts as compared with the
deterministic case. Complete information about the original process is contained in
the conditional probability density function p0(η|t) at a given t , but a “true” function
p0(η|t) is a priori unknown. To get a model, one can aim at finding some law p(η|t),
which approximates p0(η|t) as accurately as possible. However, restoration of the
entire distribution law from a finite sample is typically too problematic. Moreover,
such a complete information is not always necessary. It is often enough to know the
conditional mean E[η|t] of the quantity η at a given t and the scattering of the values
of η around E[η|t] characterised by the conditional variance. The dependence of the
conditional mean E[η|t] on t is a deterministic function which is called regression.3

For the case of Eq. (7.24), one gets E[η|t] = F(t), since E[ξ ] = 0, i.e. F(t) is the
regression. The regression predicts η at a given t most accurately, i.e. with the least
mean-squared error:

ε2(F) =
∫

(η − F(t))2 p(η |t )dη = min
f
ε2( f ).

In empirical modelling, one usually aims at finding a function f (t) approximat-
ing the “true” regression F(t) as accurately as possible. This is called “restoration
of regression” or “estimation of regression”.

accuracy. With the further development of ideas and models of the heliocentric system, motions of
planets got better described with it and it replaced the geocentric theory.
2 Mathematical encyclopaedic dictionary gives a wider definition of interpolation as an approxi-
mate or accurate finding of some quantity from its known separate values (Mathematical dictionary,
1988). Under such a definition, interpolation covers even the notion of approximation. In the case
of extrapolation, classical mathematics uses, vice versa, somewhat narrower meaning as a contin-
uation of a function outside its domain such that the continued function (as a rule, an analytic one)
belongs to a given class. We employ the definitions given in the main text, which are widely used
by specialists in numerical analysis.
3 The term was first used by English statistician F. Galton (1866). He studied how height of children
Y depends on the height of their parents X and found the following. If the height of parents exceeds
an average height of people by b, then the height of their children exceeds the average height by less
than b. This phenomenon was called regression, i.e. “backward motion”. Therefore, dependence
of the conditional mean of Y on X was also called regression.
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Thus, according to both formulations, one faces the problem of approximation
of a function F(t) based on the observed data. As a rule, a model is sought in a
certain class f (t, c) so that one must find the value of a P-dimensional parameter
vector c = ĉ, which provides maximal closeness of the model function f to a true
function F (Sect. 7.2.2).4 At that, it is very important to select an optimal model
size (Sect. 7.2.3) and an appropriate class of approximating functions (Sect. 7.2.4).
Sometimes, one manages to do so based on the visual inspection of an observed
signal and the selection of elementary model functions with similar plots. However,
in general one performs approximation in a certain universal functional basis.

7.2.2 Parameter Estimation

The values of the model parameters c should be selected so to satisfy the condition
f (t, ĉ) ≈ F(t) in the best way. Closeness of functions is desirable not only at
the observation instants t1, . . . , tN but also at intermediate instants and, sometimes,
even at the past or future instants (providing the latter is very difficult). To charac-
terise the closeness quantitatively, one introduces a measure of distance, i.e. some
metrics ρ in the space of functions. The most popular choice of ρ is the mean-
squared deviation with some weight function w(t):

ρ( f, F) =
∫

( f (t, c) − F(t))2w(t)dt . (7.25)

If t is a random quantity with the probability distribution w(t), physical sense of
such a metrics is a squared deviation of a model function f (t, c) from F(t) aver-
aged over t . For the case of Eq. (7.24), the distance ρ is equal to the mean-squared
deviation of f (t, c) from η(t) up to the variance of noise:

∫∫
( f (t, c) − η(t))2 w(t)p(η |t )dt dη =

∫∫
( f (t, c) − F(t)− ξ)2w(t)p(ξ)dt dξ =

= ρ( f (t, c), F(t))+ 2

(∫
( f (t, c) − F(t)) w(t)dt

)(∫
ξp(ξ)dξ

)
+
∫

ξ2 p(ξ)dξ =

= ρ( f (t, c), F(t))+ σ 2
ξ . (7.26)

Other definitions of ρ and non-randomness of t are possible. However, all the
considerations would remain similar for those different situations. Therefore, we
confine ourselves with the measure (7.25).

4 Even if the true regression F(t) belongs to the selected model class f (t, c), i.e. F(t) = f (t, c0),
restoration of F(t) is not equivalent to the most accurate estimation of the parameters c0. The point
is that the best estimate of the parameters in the “true” class f (t, c) does not necessarily give the
best approximation to F from a finite data sample, since the best approximation may be achieved
in another class (Vapnik, 1979).
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Thus, one needs to find the values of parameters minimising the functional (7.25).
Since a “true” probability density w(t) in Eq. (7.25) may be unknown, one must
replace minimisation of Eq. (7.25) by minimisation of some functional, which can
be evaluated from observed data and whose point of minimum is close to the point
of minimum of Eq. (7.25). Similar to Eq. (7.12), such an empirical functional is the
sample mean-squared value of the prediction error:

ε2(c) = S(c)
/

N = 1

N

N∑

i=1

(ηi − f (ti , c))2. (7.27)

Model parameters ĉ are found via minimisation of Eq. (7.27). This is a kind of
the so-called empirical risk minimisation (Vapnik, 1979, 1995). In our case, ε2(c)
estimates the sum of the noise variance and an approximation error according to
Eq. (7.26). If the class of functions f (t, c) is selected appropriately so that it con-
tains functions very close to F in the sense of ρ, then the quantity ε̂2 = ε2(ĉ) is
almost unbiased estimator of the variance of the noise ξ .

As it is seen from expression (7.27), the technique to compute the parameter
values is the ordinary LS technique, i.e. there are no technical differences in this
respect between the problems considered in Sects. 7.1 and 7.2.

7.2.3 Model Size Selection, Overfitting and Ockham’s Razor

Before discussing the choice of the class of functions f (Sect. 7.2.4), let us describe
the selection of a model size for a given class. For that, let us consider the classical
example of the algebraic polynomial approximation:

f (t, c) = c1 + c2t . . . + cK+1t K . (7.28)

The model size is usually understood as the number of free parameters of a
model. Free parameters are those estimated from a time series without any imposed
restrictions in the form of equalities. If all P = K + 1 coefficients in the model
function (7.28) are free parameters, one comes to a well-known statistical problem
in the field of polynomial regression: to select an optimal polynomial order K .

A theoretical justification for the use of an algebraic polynomial is given by the
famous Weierstrass theorem, which states that any function continuous on a segment
can be arbitrarily accurately uniformly approximated with an algebraic polynomial.
Hence, theoretically one can achieve an arbitrarily small value of ρ( f, F) with a
polynomial of a sufficiently high order K .

7.2.3.1 Concepts of Underfitted and Overfitted Models

Which particular value of K should be selected in practice? A very small polyno-
mial order is often unsuitable, since it does not allow to approximate a complicated
dependence with high accuracy. In such a case, one says that a model is underfitted.
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However, too large an order is also bad as shown below. It is important to construct
a sufficiently parsimonious model.

A use-proven approach is to increase the polynomial order starting from zero
and stop at the value of K , above which no significant improvement of a model is
observed. There are several quantitative criteria: minimum of a test error ε̂2

test; satu-
ration of an empirical error ε̂2; cross-validation and minimum of a cost function rep-
resenting the sum of an empirical error ε̂2 and a certain penalty term (see below). All
the criteria fight against ill-posedness of the problem. Ill-posedness manifests itself
in that there are infinitely many model functions capable of accurate description of a
finite set of data points on the plane (t, η). It is for this reason that one may not sim-
ply minimise ε̂2 to select K . The point is that ε̂2 is always a non-increasing function
of K . This quantity equals zero when the number of polynomial coefficients equals
the time series length N , i.e. the plot of such a polynomial goes exactly through
the data points (ti , ηi ). However, such a model is typically very bad. It “learns”
just to reproduce a concrete observed signal together with a superimposed random
realisation of the noise ξ (Fig. 7.4a). Hence, on average it predicts new observations
very inaccurately, since concrete values of ξ differ for new observations. Thus, such
a model function f (t, ĉ) possesses huge variance as an estimator of F(t). Even if
such f (t, ĉ) is an unbiased estimator, its random error can be arbitrarily large. One
says that such a model is not capable of generalisation of information. The model
is overfitted, which is the main practical manifestation of the problem ill-posedness.
Avoiding model overfitting is a key point in empirical modelling.

7.2.3.2 Minimum of the Test Error

Let a researcher have an additional time series from the same process: t ′i , η′
i , i =

1, . . . , N ′ (a test series). Then, a good criterion to select a polynomial order is to
minimise the test approximation error

Fig. 7.4 Approximation of the quadratic function F(t) from a time series of length N = 16
data points with polynomials of different orders: (a) plots of model functions for different orders
K = P − 1. The thin line shows an underfitted model, the thick line shows an overfitted one and
the dashed line shows an optimal model; (b) selection of an optimal order based on the prediction
errors, a qualitative illustration; (c) Selection of an optimal order with the criteria of Schwarz and
Akaike according to computations for the example shown in the panel (a)
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ε̂2
test = 1

N ′
N ′∑

i=1

(
η′

i − f (t ′i , ĉ)
)2
, (7.29)

where model coefficients ĉ are obtained from a training time series. Moreover, one
can use the following additional consideration: for a non-overfitted model the values
of ε̂2 and ε̂2

test should be approximately the same. Minimisation of Eq. (7.29) seems
to be the most reliable way to choose K (Fig. 7.4b, open circles), since it is based on
the sample which is not used for the parameter estimation. Such criteria are called
out-of-sample criteria.

7.2.3.3 Saturation of the “Training” Error

However, a test time series is not always at hand so that one must extract necessary
information from a single training time series. The corresponding criteria are called
in-sample criteria. As a rule, ε̂2 decreases with K . If for the values of K greater
than some “threshold” value, the value of ε̂2 changes slowly with increasing K , i.e.
a saturation takes place, such a threshold value can be selected as an optimal one
(Fig. 7.4b, triangles). This approach often overestimates the value of K .

7.2.3.4 Cross-Validation Technique

It occupies an intermediate position between the two approaches described above.
Its idea is as follows (Vapnik, 1979). One excludes from an available time series a
single observation ti , ηi and constructs a model from the resulting time series of the
length N − 1. Let us denote it as f (t, ĉi ). With this model, one computes prediction
error ε̂i for the excluded observation: ε̂i = ηi − f (ti , ĉi ). The same procedure
is repeated for each observation in turn. Finally, one computes the mean-squared

error ε̂2
cross = 1

N

N∑

i=1
ε̂2

i of such “cross-predictions”. An optimal order K is obtained

via the minimisation of ε̂2
cross (Fig. 7.4b, filled circles). This approach may also

overestimate a necessary value of K but it is more reliable than the criterion of ε̂2

saturation.

7.2.3.5 Minimum of the Cost Function with a Penalty Term

This approach involves a broad range of versions corresponding to different assump-
tions about the properties of investigated processes and different notions of an “opti-
mal” model. We will briefly outline some of them, which are widely known. In a
simple setting, such approaches to the automatic selection of the polynomial order
rely on the minimisation of the cost function, which reads as

�(P) = g1(ε̂
2) + g2(P), (7.30)
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where g1, g2 are increasing functions of their arguments. The first term determines
the contribution of the empirical error; the second one is the contribution of the
model size. The corresponding techniques are developed within the theory of infor-
mation and the theory of statistical estimation from different considerations often
involving the ML principle. One may expect a minimum of Eq. (7.30) at an inter-
mediate model size, since the empirical error is too large at small model sizes and
the second term is too large at big model sizes.

The cost function �(P) = (N/2) ln ε̂2 + P is called Akaike criterion (Akaike,
1974). It is obtained directly from the maximum likelihood principle. The first term
is proportional to the negative likelihood of an optimal model with P parameters
under the assumption that the model errors are independent Gaussian random quan-
tities. The second term is heuristic: it is a simple penalty for a big model size but
there is no rigorous proof of good statistical properties of the corresponding esti-
mator. Thus, the Akaike criterion often overestimates the model size and cannot be
asymptotically (i.e. in the case of a very large data set) optimal as shown in Schwarz
(1978).

The cost function �(P) = (N/2) ln ε̂2 + (P/2) ln N is called Schwarz criterion
(Schwarz, 1978). It is based on the additional assumption about general proper-
ties of prior distributions of the unknown parameters and on the Bayes’ formalism
(Sect. 2.2.1). It is justified better than the Akaike approach and exhibits much better
statistical properties of the model size estimator. In particular, it does not systemat-
ically overestimate the model size (Schwarz, 1978). Due to this circumstance and
the formal simplicity, the Schwarz criterion is quite often used in practice. Both
approaches are illustrated in Fig. 7.4c, where any of them appears able to detect the
correct model size P = 3. A real-world application of the Schwarz criterion is given
in Sect. 13.3.

An information-theoretic-based approach was introduced by Jorma Rissa-
nen (1989). The cost function, called a description length, reads as �(c) =
(N/2) ln ε̂2(c)+ (P/2) ln(2πeN/P)+ P ln

√
cTMc, where c is the P-dimensional

vector of the model parameters and elements of the matrix M are given by (Rissa-
nen, 1993)

Mi, j (c) = 1

2

∂2(ln ε̂2(c))
∂ci∂c j

.

The idea behind this cost function is to minimise the “information” necessary
to reproduce the observed data with a given model of the size P with parame-
ters c. Such “information” consists of two parts: model residual errors and model
parameters. The length of the code needed to store the residual errors is given by
the first term in the above expression for �(c), which is the negative likelihood
(N/2) ln ε̂2(c). Specification of the model parameters to a given precision represents
a “penalty” and is described by the other two terms. As distinct from the formula-
tion (7.30), the minimisation of the description length does not require to minimise
ln ε̂2(c) at each value of P , because the point of minimum of ln ε̂2(c) at a given P
may correspond to a big value of the term P ln

√
cT · M(c) · c and, hence, yield a
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suboptimal value of the cost function � at a given P . In other respects, the use of
the minimal description length principle is similar to the use of the cost functions
(7.30). This approach has appeared very fruitful in practical problems, including
construction of non-linear dynamical models (Judd and Mees, 1995, 1998), and
currently has become more and more popular. Conceptually, it is directly related to
the notion of algorithmic complexity of a process (Sect. 2.2.3).

A penalty term may depend not only on the model size P but also on some
properties of a model. First, we should mention in this respect a very fruitful idea of
structural risk minimisation (Vapnik, 1979, 1995), where the penalty term depends
on the “capacity” (i.e. flexibility or generality) of the class of approximating func-
tions corresponding to a given value of P . One of the advantages of this approach
is that it is distribution free, i.e. no assumptions about the properties of the mea-
surement and dynamical noises and prior distributions of the model parameters are
needed. Secondly, a penalty term may be taken proportional to the mean-squared
value of the second derivative d2 f/dt2 (see, e.g., Green and Silverman, 1994; Hastie
and Tibshirani, 1990) to penalise fast fluctuations of the dependency f (t). This idea
is widely used in the construction of smoothing splines (Reinsch, 1967) and in other
problems of non-parametric regression (Green and Silverman, 1994).

It is also worth noting that different cost functions of the form (7.30) and similar
to them may give somewhat different optimal values of K in each concrete case.
Therefore, one should take such results with caution (as rough guesses) in empirical
modelling and perform a careful diagnostic check of models for several close values
of K .

7.2.3.6 Ockham’s Razor

All the approaches to the selection of the best model size (i.e. a minimal size suf-
ficient for a satisfactory description of data) realise the principle of parsimony in
modelling (Box and Jenkins, 1970; Judd and Mees, 1995). This is a concrete quan-
titative version of the general scientific and philosophical principle: “One should
not multiply a number of entities needlessly”. The principle is called Ockham’s
razor5 even though similar statements were formulated already by Aristotle (see,
e.g., Shalizi, 2003).

7.2.3.7 Model Structure Optimisation

Under any of the above approaches, a resulting model with a polynomial of an order
K inevitably contains all monomials up to the order K inclusively. However, it is
easy to imagine a situation when some of the intermediate monomials are superflu-
ous. Thus, it would be desirable to exclude them from a model. This shortcoming
arises due to the procedure used for the model selection: the terms are added in a
pre-defined sequence.

5 Pluralitas non est ponenda sine necessitate. William Ockham (1285–1349) is a famous English
philosopher and logician.
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In general, one needs a technique to search for an optimal model of a given size
P , where all subsets of P functions – terms from a wider set of Pmax functions are
considered. This is very simple if the set of the basis functions is orthogonal over
the observed sample. However, it can be very difficult in the opposite case, since
a direct check of all combinations is practically impossible due to the combinato-
rial explosion, i.e. an astronomically big number of possible combinations even for
moderately big values of Pmax and P . There is a multitude of practically feasible
simpler methods (Nakamura et al., 2004), some of which are just mentioned and
others are described in some detail in Chap. 9:

(i) to add basis functions into a model one by one providing the fastest decrease of
the empirical error ε̂2 (Judd and Mees, 1995);

(ii) to exclude the so-called “superfluous” terms from an originally large model
one by one either providing the slowest increase of ε̂2 (Aguirre et al., 2001),
or according to Student’s criterion (Kendall and Stuart, 1979), or based on
variability of coefficient values for different training series (Bezruchko et al.,
2001).

The search for an optimal combination of the functions – terms is often called
model structure optimisation.

7.2.4 Selecting the Class of Approximating Functions

7.2.4.1 Functional Basis

Any kind of functions can be used in modelling, but computations are simpler if the
parameters enter the model function linearly:

f (t, c) = c1φ1(t) + . . . + cPφP (t), (7.31)

where φk are called basis functions. Typically, φk are elements of an infinite set of
functions φk, k = 1, 2, . . ., allowing arbitrarily accurate approximation of any “suf-
ficiently good” (e.g. continuous) function F . In other words, the set is a functional
basis in the space of functions with certain properties. The function (7.31) is called
a generalised polynomial with respect to the set of functions φ1(t), . . . , φP (t). Its
another name is a pseudo-linear model, where the prefix “pseudo” stresses that the
dependence on the parameters is linear, rather than the dependence on the argument.
In the case of Eq. (7.28), the standard polynomial basis is used for approximation,
where basis functions are the monomials tk−1.

The trigonometric set of basis functions 1, cosωt, sinωt, cos 2ωt, sin 2ωt, . . . is
also widely used. Then, in the case of a uniform sample, the least-squares problem is
solved via the direct Fourier transform (Sect. 6.4.2). The values of the coefficients ck

even get physical meaning, since power spectrum components are expressed via ck .
The usage of a trigonometric polynomial for approximation allows to avoid big pips
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Fig. 7.5 Examples of signals which should be preferably approximated with (a) an algebraic poly-
nomial; (b) a trigonometric polynomial; (c) wavelets

peculiar to a high-order algebraic polynomial. The former is the most efficient when
repeatability is clearly seen in an observed signal (a signal is periodic or almost
periodic), Fig. 7.5b. Algebraic polynomials are advantageous for gradually changing
signals (even with an intricate profile) without periodicity, pulses and sharp changes,
Fig. 7.5a.

One more popular kind of pseudo-linear models is a wavelet-based model, where
basis functions are “pulses” of different width and with different locations on the
time axis (Sect. 6.4.2). This class of functions is a flexible tool to describe the signals
whose frequency contents change in time, signals of a pulse character (Fig. 7.5c),
etc. Also, one can use combinations of different functional bases, e.g., Danilov and
Safonov (1987).

7.2.4.2 Non-linear Parameter Dependence

Approximating functions may depend on their parameters in a non-linear way, e.g.
radial, cylindrical and elliptic basis functions (Small and Judd, 1998) (Sect. 10.2.1),
artificial neural networks (Makarenko, 2003) (Sects. 3.8 and 10.2.1) and ad hoc
functions. In the case of non-linear parameter dependence, the minimisation prob-
lem (7.27) does not reduce to a linear set of equations. One should solve it with
numerical iterative minimisation techniques. Smooth optimisation is widely applied
(Dennis and Schnabel, 1983) including gradient descent, Newtonian techniques,
Gauss and Newton technique, quasi-Newtonian techniques. However, a cost func-
tion may have many minima, while only one of them (the global one) gives the
best parameter estimates. Depending on a starting guess, one can fall into the global
minimum or one of the local ones. There are no universal ways to avoid this trou-
ble. The local minima problem gets more difficult for greater number of estimated
parameters. It is solved (without guarantees of success) via trials from different
starting guesses or with sophisticated approaches of stochastic optimisation, e.g.
genetic methods and simulated annealing (Crutchfield and McNamara, 1987).

7.2.4.3 Global and Local Models

If an approximating function is specified with a single formula in the entire range
of argument values like a polynomial, then the approximation and the model are
called global (Casdagli, 1989). All the above models are global. An alternative and
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often more effective way is to use a local (piecewise) approximating function, which
is specified by different sets of the parameter values in different small domains
of the argument values (Casdagli, 1989; Farmer and Sidorowich, 1987). The most
popular examples are piecewise constant and piecewise linear approximations and
cubic splines (Kalitkin, 1978; Press et al., 1988; Samarsky, 1982). Local models
are advantageous for the description of less smooth dependencies with humps and
discontinuities. However, they are more strongly affected by noise than the global
models with small number of free parameters. Therefore, local models are superior
in the case of large amount of data and low noise level for arbitrarily complicated
non-linearity. Global models are better for smaller amount of data, higher noise level
and not so “sharp” non-linearity.

7.2.4.4 Why a Certain Class of Model Functions Can Be Better

Theoretically, one can use any functional basis for the approximation of any suffi-
ciently good function F(t). In practice, different bases have their own advantages
and shortcomings. The point is that to approximate a concrete dependence F(t), one
needs different model sizes in different bases. The best basis for the approximation
of F(t) gives the smallest size of the optimal model, i.e. a small number of the
corresponding basis functions suffice. Thereby, one reduces random errors in the
parameter estimates and the danger of model overfitting. Under an unlucky choice
of the basis, an available amount of data may appear insufficient for the reliable
estimation of the parameters of a model containing a big number of basis functions.

If a researcher, relying on the previous experience and prior knowledge about an
object, chooses a special ad hoc model structure, there may appear an additional
advantage that model parameters make physical sense. However, some physical
meaning can be rarely extracted even from universal constructions. We note the
“power interpretation” of the harmonic component amplitudes in a trigonometric
polynomial and typically absent physical sense of an algebraic polynomial coeffi-
cients.

7.3 Model Validation

Basically, validation of models in the form of explicit time dependencies relies on
studying model residual errors, i.e. the quantities εi = ηi − f (ti , ĉ). They are also
called discrepancies. It is desirable to check properties of the residuals from a test
time series, but one often has to deal only with a training one.

For the problem (7.1), where a model structure is known and there is no noise,
all the residuals must be equal to zero up to the machine precision. In the presence
of noise (7.3) or (7.24), one checks statistical properties of the residuals. Since one
usually makes assumptions about the noise ξ when selecting a technique for the
parameter estimation, model residuals must satisfy those assumptions to confirm
relevance of the technique and reliability of the results. Most often, one assumes
statistical independence of ξ(ti ) and normality of ξ .



7.3 Model Validation 223

7.3.1 Independence of Residuals

There are different tests for independence such as criteria of ascending and descend-
ing series, criterion of series based on the sample median and criterion of squared
sequential ratios (Aivazian, 1968; Hoel, 1971; von Mises, 1964). They are suitable
for any distribution law of ξ . Here, we briefly consider only estimation of the auto-
correlation function (ACF, Sect. 4.1.2) to check uncorrelatedness of residuals. This
approach is directly applicable only for a uniform sampling. Uncorrelatedness is
a weaker property than statistical independence, but both properties coincide for
Gaussian distribution.

The ACF of the residuals can be estimated as

ρ̂(n) =
N−n∑

i=1

ε̂i ε̂i+n

/
N∑

i=1

ε̂2
i ,

where n = 0, 1, . . . , NACF < N . Typically, one uses NACF ≤ N/4. For a sequence
of independent quantities, the theoretical values of the ACF are ρξ (0) = 1 and
ρξ (n) = 0, n > 0. Let us consider the plot ρ̂(n) (Fig. 7.6a, d) and estimate its devi-
ation from the theoretical values. Under the assumption of independent residuals
and sufficiently big N , the quantities ρ̂ξ (n), n > 0, are distributed approximately
according to the Gaussian law and lie within an interval ±2σ̂ξ /N with the proba-
bility of 0.95 (Box and Jenkins, 1970). The interval is shown by the dashed lines in
Fig. 7.6a, d. Independence of the residuals for both examples is not denied, since
not less than 95% of the estimated ρ̂-values fall into the expected 95%-intervals.

7.3.2 Normality of Residuals

To test normality of the residual distribution, one can use such quantitative
approaches as Kolmogorov and Smirnov test and criterion of χ2 (Aivazian, 1968;
Press et al., 1988; von Mises, 1964). We describe here only two graphical ways of
visual inspection (Fig. 7.6).

The simplest way is to construct a histogram of residuals, i.e. an estimate of
the probability density function. For that, one divides an entire range of ε̂i into
M subintervals (bins), which are typically of equal width. Then, a percentage of the
observed residual values in each interval is counted. One draws a rectangle over each
bin whose height is equal to the ratio of percentage of values within the bin to the
bin width. Finally, one visually compares the histogram with a Gaussian probability
density function, see two examples in Fig. 7.6b, e.

However, checking such “similarity” visually is not easy, especially taking into
account that a histogram as an estimator of a probability density function exhibits
large variance at small bin width: the reconstruction of a probability density from a
sample is an ill-posed problem (Vapnik, 1979). More convenient is the visualisation
of the plot on the so-called normal probability paper (Box and Jenkins, 1970). For
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Fig. 7.6 Analysis of the residuals obtained after the LS fitting of a first-order model polynomial to
a time series of length N = 1000 data points generated by the process η(t) = 1+ t +ξ with normal
(a–c) or uniform (d–f) distribution of the white noise ξ, σ 2

ξ = 0.01. The left column shows the
estimates of the ACF: uncorrelatedness is not denied, since the values of ρ̂ fall outside of the 95%
interval not more often than in 5% of cases. The middle column shows the histograms: only on the
upper panel the histogram looks similar to a normal probability density function (in accordance
with the original noise properties). The right column shows the plots on the normal probability
paper: normality of the residuals is denied in the second case

that, one shows the observed values of ε̂i along the abscissa axis and the corre-
sponding6 values of xi calculated from the residual distribution function along the
ordinate axis. If the residuals ε̂i are distributed according to the Gaussian law with
zero mean, then the points on such a plot lie on a straight line going through the
origin. Its angular coefficient is determined by the variance of ε̂i . It is easier to
assess visually whether the points lie on a straight line (Fig. 7.6c, f) rather than to
assess the similarity between a histogram and a normal probability density function
(Fig. 7.6b, e).

If a test time series is at hand, an additional sign of the model inadequacy is the
difference between the sample residual variances for the training and test time series.
Model inadequacy can be determined by its overfitting or underfitting, inappropriate

6 Each value of ε̂k corresponds to some value of the empirical distribution function for the residuals
�̂(ε̂k). The reconstruction of a distribution function is a well-posed problem (Vapnik, 1979). Thus,
if all ε̂i are pairwise different, then �̂(ε̂k) can be estimated as the ratio of the number of values
ε̂i , less than or equal to ε̂k , to their total number N . Let us denote the distribution function of the
standard Gaussian law (zero mean and unit variance) as �0(x). Let us denote xk such a number that
�0(xk) = �̂(ε̂k). xk is unique since �0(x) is a continuous and strictly monotonous function. xk is
related to ε̂k as xk = �−1

0 (�̂(ε̂k)). The plot xk versus ε̂k is called a plot on the normal probability
paper.
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choice of the class of approximating functions, falling into local rather than into
global extremum of the cost function, incorrect assumptions about the noise prop-
erties, and not the best technique for the parameter estimation. Finally, the model
structure may appear irrelevant, e.g. sequential values of ξ for the original process
(7.24) may depend on each other. Thus, one should find out which of the mentioned
reasons take place and return to the corresponding stage of the modelling procedure
(Fig. 5.1).

7.4 Examples of Model Applications

Despite simplicity of the models considered in this chapter, the skill in constructing
them is important in modelling practice. More often, they play a role as elements
of more complex problems but may have their own value as well. Let us consider
their applications to the problems of the forecast (one of the central topics of the
book) and numerical differentiation (which is important in construction of differen-
tial equations, Chaps. 8, 9 and 10).

7.4.1 Forecast

The problem is to predict the value of η at a given time instant t . It is necessary
not only to give a “point” prediction η̂(t) but also to assess its possible error, i.e.
indicate an interval within which a true value η(t) lies with high probability. The
latter is called an interval prediction. One often searches for such an interval in the
form η̂(t) ± η̂(t). For simplicity, we consider the problem in the case of a single
estimated parameter.

For the models considered in this chapter, one typically uses the quantity η̂(t) =
f (t, ĉ) as a point predictor. Its error is

e(t) ≡ η̂(t)− η(t) = [ f (t, ĉ) − f (t, c0)] − ξ(t). (7.32)

For a pseudo-linear model or a small error in a parameter estimate, one can
rewrite the expression as

e(t) = k(t) · (ĉ − c0) − ξ(t), (7.33)

where k(t) = ∂ f (t, c)/∂c|c=c0 . The prediction error is characterised by the respec-
tive mean-squared value:

E[e2(t)] = k2(t) · E[ĉ − c0]2 + σ 2
ξ . (7.34)

For an unbiased parameter estimator, it follows from Eq. (7.33) that η̂(t) is an
unbiased estimator of η(t): E[e(t)] = 0. In other words, the predictor does not
exhibit a systematic error. There is only a random error with the variance
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σ 2
e (t) = E[e2(t)] = k2(t)σ 2

ĉ + σ 2
ξ . (7.35)

If the noise ξ in the original process is normal, then a 95% confidence interval
for η(t) is η̂(t)±1.96σ 2

e . This formula is often used as an approximation even if the
distribution law of ξ is unknown.7

If the noise variance and the parameter estimator error are not large, then the
prediction error (7.35) remains small while k(t) is small. The latter holds true for
any t if f (t, c) is insensitive to variations in c. Otherwise, k(t) and the prediction
error may rise with time. For instance, in the case of f (t, c) = sin(ct), one gets
k(t) = t cos(c0t). This is an unbounded function, therefore, an originally very
small prediction error rises at larger t up to the scale of the observed oscillations.8

We note that estimating the prediction error is possible here due to the informa-
tion about the properties of the noise ξ . In general, an “origin” of the model errors
is unknown so that it is impossible to assess their probable values based on the same
model which gives point predictions (Judd and Small, 2000, see also Sect. 10.3).

7.4.1.1 Interpolation and Extrapolation

Already in the previous example, one can see that forecast at distant time instants
(extrapolation) can be much less accurate. It holds true even in the case of a priori
known model structure. If a model structure is unknown, then to provide success-
ful extrapolation one needs to estimate the parameter values accurately and to be
assured that the selected form of the function f is suitable to describe a process for
a wide range of t . The latter is typically not the case. Thus, a high-order algebraic
polynomial usually extrapolates very badly.

Nevertheless, extrapolation is used for some practical applications. For instance,
one uses models with a first- or second-order algebraic polynomial f to predict
slow processes in econometrics. There, annual observations (e.g. profit of a factory)
may be performed during several years and a 1-year-ahead (i.e. one-step-ahead)

7 Instead of the variance σ 2
ξ one may substitute its estimate σ̂ 2

ξ into equation (7.35). The variance

of the parameter estimator σ 2
ĉ is usually proportional to σ 2

ξ and inversely proportional to time
series length N or higher degrees of N (Sect. 7.1.2). Formulas for a more general case of several
estimated parameters c are as follows. For a pseudo-linear model (7.31), the covariance matrix

for the parameter estimators is given by Cov(ĉ) = σ̂ 2
ξ (A

TA)−1, where A j,k =
N∑

i=1
φ j (ti )φk(ti )

(Gnedenko, 1950). Diagonal elements of Cov(ĉ) are the variances of the parameter estimators
σ̂ 2

ĉi
= [Cov(ĉ)]ii. For a model non-linear with respect to the parameters, the covariance matrix

estimator is obtained as an inverse Hessian of the likelihood function: Cov(ĉ) = H−1(ĉ), where
Hij(ĉ) = −∂2 ln L(ĉ)/∂ci∂c j .
8 It is for the same reason that the parameter estimator variance for a process (7.19) decreases faster
(as 1/N 3) with N (Sect. 7.1.2). Since the function f is sensitive to variations in the parameter
value, the cost function S in equation (7.12) is also sensitive to them, since the squared value of
∂ f (t, c)/∂c|c=c0 is the partial Fisher information determining the contribution of each new obser-
vation to the likelihood function.
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Fig. 7.7 Forecast and differentiation: (a) prediction of a linear dependence based on the two
observed data points. Forecast between the points is sufficiently accurate (interpolation). Prediction
error at distant time instants is large (extrapolation); (b) an illustration to the differentiation scheme
(7.36). The dashed line is a plot of F(t), the thin solid line is a true tangent, the thick solid line is a
secant (7.36); (c) differentiation with the aid of an approximating polynomial (the thick line). The
thin line is a tangent to a model polynomial which is close to the tangent to the original function

prediction is quite important. Due to slowness of the processes, the assumption
of linear or quadratic character of temporal dependence over one more year looks
plausible. In other words, extrapolation to the “nearest future” with a simple model
appears reasonable.

As for the prediction at intermediate time instants (interpolation), it is often suf-
ficiently reliable (Fig. 7.7a). The only important assumption is that an approximated
dependence does not exhibit strong fluctuations between observation instants. It
is often well justified. There is a huge literature about interpolation (Johnson and
Riess, 1982; Kalitkin, 1978; Press et al., 1988; Samarsky, 1982; Stoer and Bulirsch,
1980), in particular, the following techniques are used:

(i) An interpolating algebraic polynomial (its plot goes exactly through all the
experimental data points, i.e. a high polynomial order is used) is suitable for
gradual dependencies and moderate time series length (roughly speaking, not
more than about 30 data points),

(ii) Piecewise linear interpolation (data points at subsequent time instants are con-
nected by straight lines, so that one obtains a polygonal line) is better for not
very smooth dependencies and high sampling rates.

(iii) Cubic splines (through each pair of neighbouring data points one draws a cubic
parabola so that the entire resulting curve is continuous together with its first
and second derivatives) are rather efficient and quite a universal tool to approxi-
mate smooth dependencies at high sampling frequency (Samarsky, 1982; Stoer
and Bulirsch, 1980; Press et al., 1988).

7.4.2 Numerical Differentiation

The values of model parameters can be of interest themselves, e.g. in the widely
encountered problem of numerical differentiation. Let an original process be
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η(ti ) = x(ti ) + ξ(ti ), where ti = t0 + it and x(t) is the smooth deterministic
function. One needs to find the values of the derivative dx(ti )/dt from η(ti ).

The most widespread approach consists of the approximation of the function
x(t) with a low-order algebraic polynomial in the vicinity of each time instant ti
of interest and estimation of the polynomial coefficients via the LS technique. The
derivative of the model polynomial is taken as an estimator of the value of dx(ti )/dt .
This approach is also called Savitzky – Golay filter and digital smoothing polynomial
(Press et al., 1988). If the sampling frequency is sufficiently high and the function
x(t) is sufficiently smooth, then approximation with an algebraic polynomial is jus-
tified by the Taylor theorem about expansion of a smooth function in a power series
with respect to the deviations t − ti in the vicinity of ti .

7.4.2.1 Differentiation in a Noise-Free Case

If ξ = 0, then one typically uses interpolating polynomials. Accuracy of the differ-
entiation is determined by how well the dependence x(t) can be approximated by a
polynomial in the vicinity of the selected point ti . The simplest scheme is to draw
a straight line through the points ti and ti+1 (the first-order polynomial, Fig. 7.7b).
Then, a derivative estimator is

dx̂(ti )

dt
= ηi+1 − ηi

ti+1 − ti
= ηi+1 − ηi

t
. (7.36)

Its error can be estimated with the use of the Taylor formula ηi+1 ≈
ηi + (dx(ti )/dt)t + (

d2x(ti )/dt2
)
t2/2. One gets a differentiation error(

d2x(ti )/dt2
)
t/2, which is proportional to t . In such a case, one says that a tech-

nique has the first order of accuracy. Decrease in t leads to more accurate deriva-
tive estimates in the absence of noise and computation errors. However, making t
arbitrarily close to zero is not possible, since then ill-posedness of the numerical
differentiation problem manifests itself (see below).

One can increase the order of accuracy by using higher order polynomials. For
instance, via construction of the second-order polynomial from the observation
instants ti−1, ti and ti+1 for a uniform sampling, one comes to the formula

dx̂(ti )
/

dt = ηi+1 − ηi−1

2t
. (7.37)

It is tantamount to draw a straight line through the points at the instants ti−1 and
ti+1. Its order of accuracy is two since its error equals

(
d3x(ti )/dt3

)
t2/6. There

are also schemes with higher orders of accuracy (Johnson and Riess, 1982; Press
et al., 1988; Samarsky, 1982; Stoer and Bulirsch, 1980).

7.4.2.2 Ill-Posedness of the Problem

It is not allowable to take a very small value of t , e.g. in the scheme (7.36), for
the following reason. Let the values ηi , ηi+1 be known with small errors ξi , ξi+1
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of the order of δ. Then, the derivative estimation error is dominated by the term
(ξi+1 − ξi )

/
t ∼ δ

/
t . For arbitrarily small error δ, one gets an arbitrarily

large derivative estimation error in the case of sufficiently small t . It means ill-
posedness of the problem: instability of a solution with respect to the input data
(Sect. 5.3.2).

Ill-posedness is avoided if t is taken to be of the order of δ1/2 or greater. Under
such a restriction, the derivative estimation error is bounded and tends to zero for
δ → 0. This is an example of regularisation of an ill-posed problem.

7.4.2.3 Differentiation of a Noise-Corrupted Signal

A direct usage of the interpolating formulas (7.36) or (7.37) leads to the “noise
amplification” and huge errors in the derivative estimator (Fig. 7.8a, b). To reduce
the noise effect, a model algebraic polynomial is constructed in a sufficiently wide
window [ti−k1t , ti+k2t ] with the aid of the LS technique (Fig. 7.7c). Efficiency
of such an approach is shown in Fig. 7.8c. Since a derivative at a given time instant
is equal to one of the polynomial coefficients, its root-mean-squared error can be
estimated as the estimation error for the respective coefficient (Sect. 7.4.1).

The number of polynomial coefficients should be small as compared with the
number of data points k1 + k2 + 1 in the time window [ti−k1t , ti+k2t ]. The more
data points are contained in the window, the less is the estimator variance, i.e. the
higher is the accuracy of the differentiation. However, the interval max{k1, k2}t
should not be too wide for an approximation with a low-order polynomial to be
satisfactory. Thus, for a fixed polynomial order, there is an optimal window width,
for which an error due to noise and an error due to model inconsistency are approx-
imately similar. Increase in the polynomial order may increase the estimation accu-
racy, but only if one can use a wider time window. The latter circumstance depends
on the character of the function x(t) and the value of t . Under fixed t , there is
some optimal value of the polynomial order providing the most accurate derivative
estimator. In practice, it typically ranges from 1 to 3.

Fig. 7.8 Numerical differentiation of a signal η(t) = cos t + ξ(t) with Gaussian noise ξ, σ 2
ξ =

0.01, t = 0.01: (a) an original time series, the solid line represents noise-free values x(t); (b)
differentiation according to scheme (7.37), the solid line represents true values of the derivative of
x(t); (c) differentiation with the second-order smoothing polynomial fitted to the windows covering
51 data points. The solid line shows true values of the estimated derivative. The estimation error is
highly reduced
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One can calculate the higher order derivatives as well by using the respective
derivatives of the model polynomial. However, to estimate a high-order derivative,
one must construct a high-order polynomial that often leads to large errors. Differen-
tiation errors rise rapidly with the derivative order. Our experience shows that under
typical practical settings, one manages to estimate reasonably well the derivatives
up to the third order as the best case.
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Chapter 8
Model Equations: Parameter Estimation

Motions and processes observed in nature are extremely diverse and complex.
Therefore, opportunities to model them with explicit functions of time are rather
restricted. Much greater potential is expected from difference and differential equa-
tions (Sects. 3.3, 3.5 and 3.6). Even a simple one-dimensional map with a quadratic
maximum is capable of demonstrating chaotic behaviour (Sect. 3.6.2). Such model
equations in contrast to explicit functions of time describe how a future state of an
object depends on its current state or how velocity of the state change depends on
the state itself. However, a technology for the construction of these more sophisti-
cated models, including parameter estimation and selection of approximating func-
tions, is basically the same. A simple example: construction of a one-dimensional
map ηn+1 = f (ηn, c) differs from obtaining an explicit temporal dependence
η = f (t, c) only in that one needs to draw a curve through experimental data
points on the plane (ηn, ηn+1) (Fig. 8.1a–c) rather than on the plane (t, η) (Fig. 7.1).
To construct model ODEs dx

/
dt = f(x, c), one may first get time series of the

derivatives dxk
/

dt (k = 1, . . ., D, where D is a model dimension) via numerical
differentiation and then approximate a dependence of dxk

/
dt on x in a usual way.

Model equations can be multidimensional, which is another difference from the
construction of models as explicit functions of time.

For a long time, in empirical modelling of complex processes, one used linear
difference equations containing noise to allow for irregularity (Sect. 4.4). The idea
was first suggested in 1927 (Yule, 1927) and appeared very fruitful so that autore-
gression and moving average models became a main tool for the description of
complex behaviour for the next 50 years.

Only in 1960–1970s, researchers widely realised that simple low-dimensional
models in the form of non-linear maps or differential equations can exhibit complex
oscillations even without noise influence. It gave a new impulse to the development
of empirical modelling techniques, since arousal of powerful and widely accessible
computers provided practical implementation of the ideas.

In this chapter, we consider a situation when an observed time series ηi =
h(x(ti )), i = 1, . . . , N , is produced by iterations of a map xn+1 = f(xn, c) or
integration of an ordinary differential equation dx/dt = f(x, c), whose structure
is completely known. The problem is to estimate parameters c from the observed

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_8,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 8.1 Parameter estimation for the quadratic map (8.1) at c0 = 1.85. Circles show the observed
values: (a) no noise; the dashed line is an original parabola; (b) only dynamical noise is present;
the dashed line is a model parabola obtained via minimisation of the mean-squared vertical dis-
tance (some of those distances are shown by solid lines); (c) only measurement noise is present;
the dashed line is a model parabola obtained via minimisation of the mean-squared orthogonal
distance; (d) rhombs show a model realisation which is the closest one to an original time series in
the sense (8.4)

data. This is called “transparent box” problem (Sect. 5.2). To make the consideration
more realistic, we add dynamical and/or measurement noise.

Such a problem setting is encountered in different applications and attracts
serious attention. One singles out two main aspects of interest considered
below:

(i) Parameter estimation with a required accuracy is important if the parameters
cannot be measured directly due to experimental conditions. Then, the mod-
elling procedure plays a role of “measurement device” (Butkovsky et al., 2002;
Horbelt and Timmer, 2003; Jaeger and Kanrz, 1996; Judd, 2003; McSharry
and Smith, 1999; Pisarenko and Sornette, 2004; Smirnov et al., 2005b) (see
Sect. 8.1).

(ii) Parameter estimation in the case of data deficit is even more problematic. Such
is a situation when one cannot get time series of all model dynamical variables
xk from the measured values of an observable η, i.e. some variables are “hid-
den” (Baake et al., 1992; Bezruchko et al., 2006; Breeden and Hubler, 1990;
Parlitz, 1996; Voss et al., 2004; (see Sect. 8.2).
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8.1 Parameter Estimators and Their Accuracy

Let us consider the estimation of a single parameter in a non-linear map from its
noise-corrupted time realisation. The object is the quadratic map in a chaotic regime
with unknown parameter c = c0:

xn+1 = f (xn, c0) + ξn = 1 − c0x2
n + ξn, ηn = xn + ζn, (8.1)

where ξn, ζn are independent random processes. The first of them is a dynamical
noise (since it influences the dynamics) and the second one is a measurement noise
(since it affects only the observations).

If both noises are absent, one has ηn = xn and experimental data points on the
plane xn, xn+1 lie exactly on the sought parabola (Fig. 8.1a). Finding the value of c
reduces to an algebraic equation whose solution is ĉ = (1 − xn+1)

/
x2

n . Hence, it
is sufficient to use any two observations xn, xn+1 with xn �= 0. As a result, a model
coincides with the object up to the computation error.

If noise is present either in dynamics or measurements, one looks for a parameter
estimate rather than for the precise value of the parameter. The most widely used
estimation techniques are described in Sect. 7.1.1. Peculiarities of their application
under the considered problem setting are as follows.

8.1.1 Dynamical Noise

Let the dynamical noise ξn in Eq. (8.1) be a sequence of statistically indepen-
dent random quantities and identically distributed with a probability density p(ξ).
To estimate the parameter c, one can use the ML technique (Sects. 2.2.1, 7.1.1
and 7.1.2), which is the most efficient one under sufficiently general conditions
(Ibragimov and Has’minskii, 1979; Pisarenko and Sornette, 2004). The likelihood
function [see also Eqs. (2.26) and (7.10)] reads in this case as

ln L(c) ≡ ln pN (η1, η2, . . . , ηN | c) ≈
N−1∑

n=1

ln p (ηn+1 − f (ηn, c)). (8.2)

To apply the technique, one must know the distribution law p(ξ), which is rarely
the case. Most often, one assumes Gaussian noise so that the maximisation of
Eq. (8.2) becomes equivalent to the so-called ordinary least-squares technique, i.e.
to the minimisation

S(c) =
N−1∑

i=1

(ηn+1 − f (ηn, c))2 → min . (8.3)
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It means that the plot of a model function on the plane (ηn, ηn+1) should go in
such a way so as to minimise the sum of the squared vertical distances from it to the
experimental data points (Fig. 8.1b).

As a rule, the error in the estimator ĉ decreases with a time series length N .
Under the considered problem setting, both the ML approach and the LS technique
give asymptotically unbiased and consistent estimators. It can be shown that the
estimator variance decreases as N−1 analogous to the examples in Sect. 7.1.2. The
reason can be described in the same way: the terms in Eq. (8.3) are stationary with
respect to i , i.e. a partial Fisher information is bounded.

The ordinary LS technique often gives an acceptable estimator accuracy even if
the noise is not Gaussian (Sects. 7.1.1 and 7.1.2). Although one may apply other
methods, e.g., the least absolute values technique, the LS technique is much easily
implemented. An essential technical difficulty arises when the “relief” of the cost
function (8.3) exhibits many local minima, which is often the case if f is non-
linear with respect to c. Then, the optimisation problem is solved in an iterative
way with some starting guesses for the sought parameters (Dennis and Schnabel,
1983). Whether a global extremum is found depends on how “lucky” are the starting
guesses i.e. how close they are to the true parameter values. In the example (8.1),
f is linear with respect to c; therefore, the cost function S is quadratic with respect
to c and exhibits the only minimum, which is easily found as a solution to a linear
algebraic equation.

We note that if f is linear with respect to x , the model (8.1) is a linear first-order
autoregression model. More general ARMA models involve a dependence of xn+1
on several previous values of x and ξ , see Eq. (4.13) in Sect. 4.4.

8.1.2 Measurement Noise

If only a measurement noise is present (ηn = xn + ζn), the estimation problem gets
more complicated. This is because one aims at finding a dependence of xn+1 on xn ,
where xn is an “independent” variable whose observed values are noise corrupted
[a confluent analysis problem, see Eq. (2.28) in Sect. 2.2.1.8).

8.1.2.1 Bias in the Estimator Obtained Via the Ordinary LS Technique

The bias is non-zero for an arbitrarily long time series, since the technique (8.3)
is developed under the assumption of only a dynamical noise presence. It can be
illustrated with the example (8.1), where one has

S(c) =
N−1∑

i=1

(ηi+1 − f (ηi , c))2 =
N−1∑

i=1

(
xi+1 + ζi+1 − 1 + c(xi + ζi )

2
)2 =

=
N−1∑

i=1

(
cx2

i − c0x2
i + ζi+1 + 2cxiζi + cζ 2

i

)2
.
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Minimum of S over c can be found from the condition ∂S/∂c = 0, which reduces
to the form

N−1∑

i=1

(
cx2

i − c0x2
i + ζi+1 + 2cxiζi+1 + cζ 2

i

)
·
(

x2
i + 2xiζi+1 + ζ 2

i

)
= 0.

By solving this equation, one gets an estimator (McSharry and Smith, 1999)

ĉ =
c0

(
N−1∑

i=1
x4

i + 2
N−1∑

i=1
x3

i ζi +
N−1∑

i=1
x2

i ζ
2
i

)

−
N−1∑

i=1
x2

i ζi+1 − 2
N−1∑

i=1
xi ζiζi+1 −

N−1∑

i=1
ζ 2

i ζi+1

N−1∑

i=1
x4

i + 6
N−1∑

i=1
x2

i ζ
2
i +

N−1∑

i=1
x4

i + 4
N−1∑

i=1
x3

i ζi + 4
N−1∑

i=1
xiζ

3
i

.

Under the condition N → ∞, one can take into account statistical independence

ζi of ζi+1 and xi and replace the sums like
N−1∑

i=1
x4

i (temporal averaging) by the

integrals like
∞∫

−∞
μ(x, c0)x4dx ≡ 〈x4〉 (ensemble averaging). Here, μ(x, c0) is an

invariant measure for the map (8.1), i.e. a probability density function. At c0 = 2
it can be found analytically: μ(x, 2) = 1/π

(
1 − x2

)
,−1 < x < 1. Hence, one

gets 〈x2〉 = 1/2, 〈x4〉 = 3/8 and 〈xn〉 = 0 for uneven n. Finally, at c0 = 2, one

comes to the asymptotic expression ĉ = c0

(
4σ 2

ζ + 3
)/(

8〈ζ 4〉 + 24σ 2
ζ + 3

)
. This

is a biased estimator. It underestimates the true value c0, since the denominator is
greater than the numerator in the above expression. Figure 8.2 shows the asymptotic
value of ĉ versus noise-to-signal ratio for Gaussian noise. It is close to the true value
only under the low noise levels; its bias is less than 1% if the noise level is less

Fig. 8.2 Ordinary LS estimates of the parameter c in Eq. (8.1) versus the noise level at N = ∞
and c0 = 2. Noise-to-signal ratio quantified as the ratio of standard deviations is shown versus the
abscissa axis (McSharry and Smith, 1999)
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than 0.05. The bias rises with the noise level. Analogous properties are observed for
other noise distributions (Butkovsky et al., 2002; McSharry and Smith, 1999).

However, since the LS technique is simple for the implementation and can be
easily used in the case of many estimated parameters in contrast to other methods,
it is often applied in practice with an additional assumption of low measurement
noise level.

8.1.2.2 Increasing Estimator Accuracy at High Measurement Noise Level

It is possible in part through the use of the total least-squares technique (Jaeger and
Kanrz, 1996) when one minimises the sum of the squared orthogonal distances from
the data points (ηn, ηn+1) to the plot of the function f (xn, c) (Fig. 8.1c). Thereby,
one takes into account that deviations of the observed data points with coordinates
(ηn, ηn+1) from the plot of the sought function f (xn, c0) are induced by the noise
influence on both coordinates. Therefore, the deviations may occur in any direction,
not only vertically. The use of the orthogonal distances is justified in Jaeger and
Kanrz (1996) as an approximate version of the ML approach.

However, a non-zero estimator bias is not fully eliminated under the use of the
total LS technique (especially in the case of a very strong noise), since the latter
is just an approximation to the ML technique. It may seem that a way out is to
write down the likelihood function for the new situation “honestly”, i.e. taking into
account how the noise enters the observations. For a Gaussian noise, the problem
reduces to the minimisation of the sum of squared deviations of a model realisation
from an observed time series (Fig. 8.1d):

S(c, x1) =
N−1∑

n=0

(
ηn+1 − f (n)(x1, c)

)2 → min, (8.4)

where f (n) is an nth iterate of the map xn+1 = f (xn, c), f (0)(x, c) = x , and the
initial model state x1 is considered as an estimated quantity as well.

An orbit of a chaotic system is very sensitive to initial conditions and parame-
ters. Therefore, the variance of the estimator obtained from Eq. (8.4) for a chaotic
orbit rapidly decreases with N, sometimes even exponentially (Horbelt and Timmer,
2003; Pisarenko and Sornette, 2004). This is a desirable property, but it is achieved
only if one manages to find the global minimum of Eq. (8.4). In practice, even
for moderate values of N, the “relief” of S for a chaotic system becomes strongly
“jagged” (Fig. 8.3a) so that it gets almost impossible to find the global minimum
numerically (Dennis and Schnabel, 1983). To do it, one would need very “lucky”
starting guesses for c and x1. It is also difficult to speak of asymptotic properties of
the estimators since the cost function gets non-smooth in the limit N → ∞. There-
fore, one develops modifications of the ML technique in application to the parameter
estimation from a chaotic time series (Pisarenko and Sornette, 2004; Smirnov et al.,
2005b).



8.2 Hidden Variables 239

Fig. 8.3 Cost functions for
the quadratic map (8.1) at
c0 = 1.85 and N = 20. The
left panel shows the cost
function for the direct iterates
(8.4), where x1 = 0.3; the
right one for the reverse
iterates (8.5), where
xN = f (N−1)(0.3, c0)

Thus, according to a piecewise technique, one divides an original time series into
segments of a moderate length so that it is possible to find the global minimum
of Eq. (8.4) for each of them and averages the obtained estimates. This is a rea-
sonable approach, but a resulting estimator may remain asymptotically biased. Its
variance decreases again as N−1. Some ways to improve the estimator properties
are described in Sect. 8.2.

Here, we note only an approach specific to one-dimensional maps (Smirnov
et al., 2005b). It is based on the property that the only Lyapunov exponent of a
one-dimensional chaotic map becomes negative under the time reversal so that an
orbit gets much less sensitive to parameters and a “final condition”. Therefore, one
minimises a quantity

S(c, xN ) =
N−1∑

n=0

(
ηN−n − f (−n)(xN , c)

)2 → min, (8.5)

where f (−n) is an nth iterate of the map xn+1 = f (xn, c) in reverse time, in particu-
lar f (−1) is an inverse function for f with respect to x . The plot of the cost function
(8.5) looks sufficiently smooth for an arbitrarily long time series (Fig. 8.3b) so that
it is not difficult to find its global minimum. At low and moderate noise levels
(σζ /σx up to 0.05–0.15), the error in the estimator (8.5) appears less than for the
piecewise technique. Moreover, the expression (8.5) gives asymptotically unbiased
estimates, whose variance typically scales as N−2 at weak noise. The high rate of
error decrease is determined by the returns of a chaotic orbit to a small vicinity of
the extremum of the function f (Smirnov et al., 2005b).

8.2 Hidden Variables

If the measurement noise level is considerable, the state variable x is often regarded
“hidden” since its true values are, in fact, unknown. Variables are “even more hid-
den” if even their noise-corrupted values cannot be measured directly or computed
from the observed data. This is often the case in practice. In such a situation, the
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parameter estimation is much more problematic than in the cases considered in
Sect. 8.1. However, if one manages to solve the problem, then an additional oppor-
tunity to restore time series of hidden variables appears as a by-product. Then, a
modelling procedure serves as a measurement device with respect to dynamical
variables as well.

8.2.1 Measurement Noise

We illustrate the techniques with the example of the parameter estimation in ordi-
nary differential equations without a dynamical noise. An object is the classical
chaotic system – Lorenz system:

dx1/dt = c1(x2 − x1),

dx2/dt = −x2 + x1(c3 − x3), (8.6)

dx3/dt = c2x3 + x1x2,

for a “canonical” set of parameter values c1 = 10, c2 = 8/3, c3 = 46. A noise-
corrupted realisation of x1 is considered as observed data, i.e. ηn = x1(tn) + ζn ,
while the variables x2 and x3 are hidden. A model is constructed in the form (8.6)
where all the three parameters ck are regarded unknown.

8.2.1.1 Initial Value Approach

All the estimation techniques are based to a certain extent on the ideas like Eq. (8.4),
i.e. one chooses such initial conditions and parameter values to provide maximal
closeness of a model realisation to an observed time series in the least-squares sense.
The direct solution to the problem like (8.4) is called an initial value approach (Hor-
belt, 2001; Voss et al., 2004). As indicated in Sect. 8.1.2, it is not applicable to a long
chaotic time series. Improving the approach is not straightforward. Thus, a simple
division of a time series into segments with subsequent averaging of the respective
estimates gives a low accuracy of the resulting estimator. The reverse-time iterations
are not suitable in the case of a multidimensional dissipative system.

8.2.1.2 Multiple Shooting Approach

The difficulties can be overcome in part with Bock’s algorithm (Baake et al., 1992;
Bock, 1981). It is also called a multiple shooting approach since one replaces the
Cauchy initial value problem for an entire observation interval with a set of bound-
ary value problems. Namely, one divides an original time series {η1, η2, . . . , ηN }
into L non-overlapping segments of length M and considers model initial states x(i)

for each of them (i.e. at time instants t(i−1)M+1, i = 1, . . . , L) as estimated quanti-
ties, but not as free parameters. One solves the problem of conditional minimisation,
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which reads in the case of a scalar observable η = h(x) + ζ (η = x1 + ζ in our
example) as

S
(

c, x(1), x(2), . . . , x(L)
)

=

=
L∑

i=1

M∑

n=1

[
η
(
t(i−1)M+n

) − h
(

x
(

t(i−1)M+n − t(i−1)M+1, x(i), c
))] 2 → min,

x
(

ti M+1 − t(i−1)M+1, x(i), c
)

= x(i+1), i = 1, 2, . . . , L − 1. (8.7)

The quantity x(t, x(i), c) denotes a model realisation (a solution to model equa-
tions), i.e. a model state x at a time instant t for an initial state x(i) and a parameter
value c. The first equation in Eq. (8.7) means minimisation of the deviations of a
model realisation from the observed series over the entire observation interval. The
second line provides “matching” of the segments to get finally a continuous model
orbit over the entire observation interval. This matching imposes the conditions of
the equality type on the L sought vectors x(i), i.e. only one of the vectors can be
regarded as a free parameter of the problem.

Next, one solves the problem with ordinary numerical iterative techniques using
some starting guesses for the sought quantities c, x(1), x(2), . . . , x(L). The starting
guesses correspond, as a rule, to L non-matching pieces of a model orbit (Fig. 8.4b,

Fig. 8.4 Parameter estimation from a chaotic realisation of the coordinate x = x1 of the Lorenz
system (8.6), N = 100 data points, the sampling interval is 0.04, measurement noise is Gaussian
and white with standard deviation of 0.2 of the standard deviation of the noise-free signal (Horbelt,
2001). (a) An initial value approach. Realisations of an observable (circles) and a corresponding
model variable. The fitting process converges to a local minimum, where a model orbit and param-
eter estimates strongly differ from the true ones. (b) A multiple shooting approach. The fitting
process converges to the global minimum, where a model orbit and parameter estimates are close
to the true ones



242 8 Model Equations: Parameter Estimation

upper panel). The situation is similar for intermediate values of the sought quan-
tities during the iterative minimisation procedure, but the “discrepancies” should
get smaller and smaller if the procedure converges at given starting guesses. Such
a temporary admission of the model orbit discontinuity distinguishes Bock’s algo-
rithm (Fig. 8.4b) from the initial value approach (Fig. 8.4a) and provides greater
flexibility of the former.

An example of the application of the two techniques to the parameter estimation
for the system (8.6) is shown in Fig. 8.4. The multiple shooting technique “finds” the
global minimum, while the initial value approach stops at a local one. This is quite
a typical situation. However, the multiple shooting technique does not assure find-
ing the global minimum. It only softens requirements to the “goodness” of starting
guesses for the sought quantities (Bezruchko et al., 2006). For even longer chaotic
time series, it also gets inefficient since the basic principle of closeness of a chaotic
model orbit to the observed time series over a long time interval again leads to very
strict requirements to starting guesses.

8.2.1.3 Modification of the Multiple Shooting Technique

As shown in Bezruchko et al. (2006), one can avoid some difficulties via allowing
discontinuity of the resulting model orbit at several time instants within the observa-
tion interval, i.e. via ignoring several equalities in the last line of Eq. (8.7). In such
a way it is easier to find the global minimum of the cost function S in Eq. (8.7).

Such a modification allows to use arbitrarily long chaotic time series, but the
requital is that sometimes a model with an inadequate structure may be accepted
as a “good” one due to its ability to reproduce short segments of the time series.
Therefore, one should carefully select the number and the size of the continuity
segments for the model orbit.

There is also an additional difficulty in the situation with hidden variables. Apart
from lucky starting guesses for the parameters c, it appears important to generate
lucky starting guesses for the hidden variables (components of vectors x(i)) in con-
trast to very optimistic early statements (Baake et al., 1992). Quite often, one has to
proceed intuitively or via blind trials and errors. However, useful information may
be obtained sometimes through a preliminary study of the properties of model time
realisations at several trial parameter values (Bezruchko et al., 2006).

8.2.1.4 Synchronisation-Based Parameter Estimation

A further improvement of the technique is based on the idea of synchronising a
model by the observed time series. It was suggested in Parlitz (1996) and further
elaborated in many works. Here, we briefly describe its main points, advantages and
difficulties following the works Parlitz (1996) and Parlitz et al. (1996).

Let us consider a system of ODEs dy/dt = f(y, c0) with a state vector y ∈ RD

and a parameter vector c0 ∈ R P as an object of modelling. Parameter values c0 are
unknown. An observable vector is η = h(y). It may have a lower dimension than
the state vector y (the case of hidden variables). A model is given by the equation
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dx/dt = f(x, c). Let us assume that there is a unidirectional coupling scheme using
the available signal η(t), which enables asymptotically stable synchronisation of
the model (x) by the object (y), i.e. x → y as t → ∞ if c = c0. Thus, one can
vary model parameters c and integrate model equations with somehow introduced
input signal η(t) at each value of c. If at some value c = ĉ identical synchronisa-
tion between η(t) and the corresponding model realisation h(x(t)) (i.e. the regime
η(t) = h(x(t))) is achieved after some transient process, then the value ĉ should be
equal to c0. If only an approximate relationship η(t) ≈ h(x(t)) holds true, then ĉ
can be taken as an estimate of c0.

There are different implementations of the idea. One can introduce a measure of
the discrepancy between η(t) and h(x(t)), e.g. their mean-squared difference after
some transient, and minimise it as a function of c (Parlitz et al., 1996). This is a
complicated problem of non-linear optimisation similar to those encountered under
the multiple shooting approach. An advantage of the synchronisation-based estima-
tion is that the minimised function often changes quite gradually with c and has a
pronounced minimum at c = c0 with a broad “basin of attraction”, i.e. a starting
guess for c does not have to be so “lucky” as under the multiple shooting approach.
This is explained by the following property of many non-linear systems: If c is not
equal to c0 but reasonably close to it, the identical synchronisation is impossible
but there often occurs the generalised synchronisation (Sect. 6.4.5), where x is a
function of y not very much different from x = y. Then, the discrepancy between
η(t) and h(x(t)) changes smoothly in the vicinity of c = c0.

It can be even more convenient to avoid minimisation of a complicated cost
function by considering the parameters c as additional variables in model ODEs and
update their values depending on the current mismatch between η(t) and h(x(t)) in
the course of integration of the model ODEs (Parlitz, 1996). An example is again
the chaotic Lorenz system

dy1
/

dt = σ(y2 − y1),

dy2
/

dt = c1,0 y1 − c2,0 y2 − y1 y3 + c3,0, (8.8)

dy3
/

dt = y1 y2 − by3,

with the parameters c1,0 = 28, c2,0 = 1, c3,0 = 0, σ = 10, b = 8/3 and an
observable η = h(y) = y2. The following unidirectional coupling scheme and
equations for the parameter updates were considered:

dx1
/

dt = σ(η − x1),

dx2
/

dt = c1x1 − c2x2 − x1x3 + c3,

dx3
/

dt = x1x2 − bx3, (8.9)

dc1
/

dt = (η − x2)x1,

dc2
/

dt = −(η − x2)x2,

dc3
/

dt = η − x2.
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Using a global Lyapunov function, the author has shown that at correct parameter
values c = c0, the model is synchronised by the signal η(t) at all initial conditions.
The system (8.9) tends to the regime x(t) = y(t) and c(t) = c0 at any values
of x1(0), x2(0), x3(0), c1(0), c3(0) and any positive c2(0). Parameter estimates in
this example appeared not very sensitive to the mismatch in the parameter σ . More
general recommendations on the choice of the coupling scheme were also suggested
from geometrical considerations in Parlitz (1996). Rather different equations for the
parameter updates were suggested by several authors, e.g., Konnur (2003).

The synchronisation-based approach is theoretically justified for the noise-free
case. Still, numerical experiments have shown its good performance when a mod-
erate measurement noise is present. As it has been already mentioned, the tech-
nique can be readily used in the case of hidden variables. However, despite several
important advantages of the approach, it may encounter its own significant difficul-
ties. Firstly, an asymptotically stable synchronisation may not be achieved for any
observable η = h(y). This possibility depends on the system under study and the
coupling scheme. Secondly, it is not always clear what coupling scheme should be
used to assure synchronisation at c = c0. Finally, it may be very important to select
appropriate initial conditions in Eqs. (8.8) and (8.9), in other words, to select starting
guesses for the model parameters and hidden variables. Further details can be found
in Chen and Kurths (2007); Freitas et al. (2005); Hu et al. (2007); Huang (2004);
Konnur (2003); Marino and Miguez (2005); Maybhate and Amritkar (1999); Parlitz
(1996); Parlitz et al. (1996); Tao et al. (2004).

8.2.2 Dynamical and Measurement Noise

Estimating model parameters in the case of simultaneous presence of the dynam-
ical and measurement noise is a more complicated task. However, there have
been recently developed corresponding sophisticated techniques such as Kalman
filtering-based methods (Sitz et al., 2002, 2004; Voss et al., 2004) and Bayesian
approaches (Bremer and Kaplan, 2001; Davies, 1994; Meyer and Christensen,
2000). Below, we describe in some detail a recently suggested technique (Sitz et al.,
2002) called unscented Kalman filtering.

Kalman filtering is a general idea which was originally developed for the state
estimation in linear systems from observed noise-corrupted data (Kalman and Bucy,
1961). It is widely used, e.g., in data assimilation (Sect. 5.1) as well as in many other
applications (Bar-Shalom and Fortmann, 1988). The idea has been generalised for
the estimation of model parameters together with model states. It has been recently
further generalised for the estimation of parameters and state vectors in non-linear
systems (Sitz et al., 2002).

In the linear case, the model is assumed to be of the form

xi = A · xi−1 + ξi , (8.10)

ηi = B · xi + ζi ,
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where x is a state vector of the dimension D, i is the discrete time, η is the vector of
observables whose dimension may be different from that of x, A and B are constant
matrices, and ξn and ζn are independent zero-mean Gaussian white noises with diag-
onal covariance matrices. The problem is to estimate the state x at a time instant n
having observations ηi up to time n inclusively, i.e. a set Hn = {η1,η2, . . . ,ηn}. Let
us denote such an estimator as x̂(n|n). Kalman filter provides an optimal linear esti-
mate, i.e. unbiased and with the smallest variance. Formally, the estimation proce-
dure consists of the predictor and corrector steps. At the predictor step, one estimates
the value x̂(n|n − 1), i.e. takes into account only the observations Hn−1 up to time
instant n − 1. The optimal solution to such a problem is x̂(n|n − 1) = E[xn|Hn−1].
It can be written as

x̂(n |n − 1 ) = E[A · xn−1|H n−1] = A · E[xn−1|H n−1] = A · x̂(n − 1 |n − 1 ),

η̂(n |n − 1 ) = E[B · xn|H n−1] = B · A · x̂(n − 1 |n − 1 ). (8.11)

The second equation in Eq. (8.11) will be used at the correction step below. The
point estimators must be equipped with the confidence bands (see Sect. 2.2.1). It is
known that due to the linearity of the system, the estimators are Gaussian distributed.
Thus, their confidence bands are simply expressed via their covariance matrices
whose optimal estimates read as

P(n |n − 1 ) = E[(xn − x̂(n |n − 1 )) · (xn − x̂(n |n − 1 ))T|H n−1],
Pηη(n |n − 1 ) = E[(ηn − η̂(n |n − 1 )) · (ηn − η̂(n |n − 1 ))T|H n−1], (8.12)

Pxη(n |n − 1 ) = E[(xn − x(n |n − 1 )) · (ηn − η̂(n |n − 1 ))T|H n−1].

These matrices can be expressed via their previous estimates P(n −
1|n − 1),Pηη(n − 1|n − 1),Pxη(n − 1|n − 1) analytically for the linear system.

Now, the corrector step updates the predictor-step estimators taking into account
the last observation ηn as follows:

x̂(n |n ) = x̂(n |n − 1 ) + Kn · (ηn − η̂(n |n − 1 )),

P(n |n ) = P(n |n − 1 ) − Kn · Pηη(n |n − 1 ) · KT
n ,

Kn = Pxη(n |n − 1 ) · P−1
ηη (n |n − 1 ). (8.13)

Thus, the corrections represent discrepancy between the predictor-step estimates
and actual observations multiplied by the so-called Kalman gain matrix Kn . Having
Eqs. (8.11), (8.12) and (8.13), one can start from initial guesses x̂(1|1) and P(1|1)
and recursively get optimal state estimates for all subsequent time instants taking
into account subsequent observations. Due to Gaussianity of the distributions, a
95% confidence band for the j th component of the vector xn is given by x̂ j (n|n) ±
1.96

√
Pjj(n|n).

To apply the idea to a non-linear system xi+1 = f(xi ) + ξi and ηi = h(xi ) + ζi ,
one can either approximate non-linear functions with Taylor expansion or simulate
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the distribution of states and compute many model orbits to get an estimator x̂(n|n)
and its covariance matrix P(n|n). The latter idea appeared more fruitful in practice
(Sitz et al., 2002). Its fast and convenient implementation includes the selection of
the so-called sigma points x(1), . . . , x(2D) specifying the distribution of states at a
time instant n − 1:

x( j)(n − 1 |n − 1 ) = x̂(n − 1 |n − 1 )+
[√

D · P(n − 1 |n − 1 )
]

j
,

x( j+D)(n − 1 |n − 1 ) = x̂(n − 1 |n − 1 ) −
[√

D · P(n − 1 |n − 1 )
]

j
, (8.14)

where j = 1, 2, . . . , D and
[√·] j means j th column of the matrix square root. The

sigma points are propagated through the non-linear systems giving

x( j)(n |n − 1 ) = f(x( j)(n − 1 |n − 1 )),

y( j)(n |n − 1 ) = h(x( j)(n |n − 1 )), (8.15)

where j = 1, . . . , 2D. Now, their sample means and covariances define the predic-
tor estimates as follows:

x̂(n |n − 1 ) = 1

2D

2D∑

j=1

x( j)(n |n − 1 ),

η̂(n |n − 1 ) = 1

2D

2D∑

j=1

y( j)(n |n − 1 ),

Pηη(n |n − 1 ) = 1

2D

2D∑

j=1

(y( j)(n |n − 1 ) − η̂(n |n − 1 )) · (y( j)(n |n − 1 )− η̂(n |n − 1 ))
T
,

Pxη(n |n − 1 ) = 1

2D

2D∑

j=1

(x( j)(n |n − 1 ) − x̂(n |n − 1 )) · (y( j)(n |n − 1 ) − η̂(n |n − 1 ))
T
,

P(n |n − 1 ) = 1

2D

2D∑

j=1

(x( j)(n |n − 1 ) − x̂(n |n − 1 )) · (x( j)(n |n − 1 ) − x̂(n |n − 1 ))
T
.

(8.16)

The estimates (8.16) are updated via the usual Kalman formulas (8.13). This
procedure is called unscented Kalman filtering (Sitz et al., 2002).

If parameter a of a system xi+1 = f(xi , a)+ξi is unknown, then it can be formally
considered as an additional state component. Moreover, it is convenient to consider
noises ξi and ζi as components of a joint state vector. Thus, joint equations of motion
read as
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xi+1 = f(xi , ai ) + ξi ,

ai+1 = ai , (8.17)

ξi+1 = ξi ,

ζi+1 = ζi ,

where the last three equations do not alter starting values of the additional state
components. However, the estimates of these components change in time due to the
correction step (8.13), which takes into account a new observation.

The technique can be easily generalised to the case of ordinary and stochas-
tic differential equations, where numerical integration scheme would enter the first
equation of Eq. (8.17) instead of a simple function f.

We note that the procedure can be used in the case of hidden variables, which
correspond to the situation where the dimension of the observable vector η is less
than D. Examples with a scalar observable from two- and three-dimensional dynam-
ical systems are considered in Sitz et al. (2002), where efficiency of the approach
is illustrated. Thus, even in the case of the deterministically chaotic Lorenz system,
the unscented Kalman filtering allowed accurate estimation of the three parame-
ters from a scalar time realisation. Concerning this example, we note two things.
Firstly, the successful application of a statistical method (Kalman filtering has its
roots in mathematical statistics and the theory of random processes) to estimate
parameters in a deterministic system illustrates again a close interaction between
deterministic and stochastic approaches to modelling discussed in Chap. 2 (see,
e.g., Sect. 2.6). Secondly, the unscented Kalman filtering seems to be more efficient
than the multiple shooting approach (Sect. 8.2.1) in many cases since the former
technique does not require a continuous model orbit over the entire observation
interval. In this respect, the unscented Kalman filtering is similar to the modified
multiple shooting approach which allows several discontinuity points. However, the
unscented Kalman filtering is easier in implementation, since it does not require to
solve optimisation problem for the parameter estimation. On the other hand, the
multiple shooting technique would certainly give more accurate parameter esti-
mates for a deterministically chaotic system if one manages to find good start-
ing guesses for the parameters and find the global minimum of the cost function
(8.7).

The Kalman filtering-based approach also resembles the synchronisation-based
approach: It also involves parameter updates depending on the current model state.
However, the difference is that the Kalman filtering does not require any synchroni-
sation between a model and the observed data and is appropriate when a dynamical
noise is present in contrast to the synchronisation-based technique developed for
deterministic systems.

A proper selection of starting guesses for the model parameters and the hidden
variables is of importance for the unscented Kalman filtering as well, since an arbi-
trary starting guess does not assure convergence of the non-linear recursive proce-
dure [Eqs. (8.16) and (8.13)] to the true parameter values. More detailed discussion
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of the unscented Kalman filtering can be found in Sitz et al. (2002, 2004); Voss et al.
(2004).

Even more general techniques are based on the Bayesian approach (Bremer and
Kaplan, 2001; Davies, 1994; Meyer and Christensen, 2000), where the state and
parameter estimators are calculated based on the entire available set of observations
rather than only on the previous ones. However, full Bayesian estimation is more
difficult to use and implement, since it requires to solve a complicated numerical
problem of sampling from multidimensional probability distributions.

8.2.2.1 Concluding Remark

Model validation for the considered “transparent box” problems is performed along
two main lines. The first one is the analysis of the model residuals (Box and Jenkins,
1970), i.e. the check for their correspondence to the assumed noise properties (see
Sect. 7.3). The second one is the computation of dynamical, geometrical and topo-
logical characteristics of a model attractor and their comparison with the respective
properties of an original (Gouesbet et al., 2003b) (see Sect. 10.4).

8.3 What One Can Learn from Modelling Successes and Failures

Successful realisation of the above techniques (Sect. 8.2) promises an opportunity
to obtain parameter estimates and time courses of hidden variables. It would allow
several useful applications such as validation of model ideas, “measurement” of
quantities inaccessible to measurement devices and restoration of lost or distorted
segments of data. Let us comment it in more detail.

In studying of real-world objects, a researcher never meets a purely “transparent
box” setting. He/she can only believe subjectively that a trial model structure is
adequate to an original. Therefore, even with a perfect realisation of the procedures
corresponding to the final modelling stages (Fig. 5.1), the result may appear nega-
tive, i.e. one may not get a valid model with a given structure. Then, a researcher
should declare incorrectness of his/her ideas about the process under investigation
and return to the stage of the model structure selection. If there are several alternative
mathematical constructions, then modelling from time series may reveal the most
adequate among them. Thus, the modelling procedure gives an opportunity to reject
or confirm (possibly, to make more accurate) some substantial ideas about the object
under investigation.

There are a number of practical examples of successful application of the
approaches described above. Thus, in Horbelt et al. (2001) the authors confirm
validity of their ideas about gas laser functioning and get directly immeasurable
parameters of the transition rates between energetic levels depending on the pump-
ing current. In Swameye et al. (2003) the authors are able to make substantial con-
clusions about the mechanism underlying a biochemical signalling process in cells
which is described below.
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8.3.1 An Example from Cell Biology

In many applications it is necessary to find out which cell properties determine an
undesirable process in the cells most strongly and how one can purposefully affect
those properties.1 To answer such questions, it may be sufficient to get an adequate
mathematical model as demonstrated in Swameye et al. (2003).

The authors investigate one of many intracellular signalling pathways, which
provide a cell with an opportunity to produce necessary substances in response
to variations in surroundings. In particular, such pathways provide reproduction,
differentiation and survival of cells. The authors consider the so-called signalling
pathway JAK-STAT, which transforms an external chemical signal into activation
of a respective gene transcription in a cell nucleus (Fig. 8.5). One of the simplest
mathematical models of the process can be written down based on the law of active
mass (a usual approach in chemical kinetics) and reads as

dx1
/

dt = −k1x1 E(t),

dx2
/

dt = −k2x2
2 + k1x1 E(t), (8.18)

dx3
/

dt = −k3x3 + k2x2
2

/
2,

dx4
/

dt = k3x3.

Fig. 8.5 A scheme of a
biochemical signalling
process in a cell (Swameye
et al., 2003)

1 Thus, growth of cancer cells is determined by the fact that they produce substances “inade-
quately” to the surrounding situation. A method of struggle against the disease, which is currently
only hypothetical, could rely on the empirical modelling similar to that described in Swameye et al.
(2003).
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Here, ki are reaction rates, E(t) is the concentration of erythropoietin in the
extracellular space (denoted Epo in Fig. 8.5), whose variations lead to the activa-
tion of respective receptors on a cell membrane. The receptors are bound to tyro-
sine kinase of the type JAK-2 existing in a cell cytoplasm. Tyrosine kinase reacts
with molecules of the substance STAT5, whose concentration is denoted x1. As a
result of the reaction, the latter are phosphorylated. There arise monomeric tyrosine
phosphorylated molecules STAT5, whose concentration is denoted x2. This reaction
leads to a decrease in x1 [the first line in Eq. (8.18)] and an increase in x2 [a positive
term in the second line of Eq. (8.18)]. The monomeric molecules dimerise when
they meet each other. Concentration of the dimeric molecules is denoted x3. This
reaction leads to a decrease in x2 [a negative term in the second line of Eq. (8.18)]
and an increase in x3 [a positive term in the third line of Eq. (8.18)]. The dimeric
molecules penetrate into the nucleus, where their concentration is denoted x4. This
process leads do a decrease in x3 [a negative term in the third line of Eq. (8.18)] and
an increase in x4 [the fourth line in Eq. (8.18)]. The dimeric molecules activate the
transcription of a target gene. As a result, a specific protein is produced. At that, the
dimeric molecules dissociate into the monomeric ones, which degrade inside the
nucleus according to the hypothesis underlying the model (8.18).

However, there is another hypothesis according to which the monomeric
molecules STAT5 are relocated from the cell nucleus to the cytoplasm after a certain
delay time. Under such an assumption, the mathematical model slightly changes and
takes the form

dx1(t)
/

dt = −k1x1(t)E(t)+ 2k4x3(t − τ),

dx2(t)
/

dt = −k2x2
2(t) + k1x1(t)E(t), (8.19)

dx3(t)
/

dt = −k3x3(t)+ k2x2
2(t)

/
2,

dx4(t)
/

dt = −k4x3(t − τ) + k3x3(t),

where additional time-delayed terms appear in the first and the fourth lines and τ

is the delay time. Which of the two models (i.e. which of the two hypotheses) is
valid is unknown. Opportunities of the observations are quite limited, an equipment
is quite expensive and a measurement process is quite complicated (Swameye et al.,
2003). In an experiment, the authors could measure only the total mass of the phos-
phorylated STAT5 in the cytoplasm η1 and the total mass of STAT5 in the cytoplasm
η2 up to constant multipliers:

η1 = k5(x2 + 2x3),

η2 = k6(x1 + x2 + 2x3), (8.20)

where k5, k6 are unknown proportionality coefficients. Along with those two
observables, the concentration E(t) is measured up to a proportionality coefficient
(Fig. 8.6a). We stress that all model dynamical variables xk are hidden. There are
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Fig. 8.6 Modelling of a biochemical cell signalling process (Swameye et al., 2003): (a) a time
series of an external driving, variations in erythropoietin concentration; (b), (c) the results of an
empirical model construction in the form (8.18) and (8.19), respectively

only two observables, which are related to the four dynamical variables in the known
way (8.20).

The parameters in both models (8.18) and (8.19) are estimated in Swameye et al.
(2003) from the described experimental data. The authors have shown invalidity of
the former model and a good correspondence between the experiments and the latter
model. Namely, the time series were measured in three independent experiments
and one of them is shown in Fig. 8.6. Model parameters were estimated from all the
available data via the initial value approach (Sect. 8.2.1). This approach was appro-
priate since the time series were rather short. They contained only 16 data points per
experiment session and represented responses to “pulse” changes in the erythropoi-
etin concentration (Fig. 8.6a). Thus, one should not expect problems with finding
the global minimum of the cost function. The model (8.18) appeared incapable
of reproducing the observed time series (Fig. 8.6b), while the model (8.19) was
adequate in this respect (Fig. 8.6c). The estimate of the delay time was τ ≈ 6 min,
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which agreed by the order of magnitude with the results of other authors obtained
with different techniques for similar objects.

Thus, only the modelling from time series allowed the authors to make a non-
trivial conclusion that relocation of STAT5 molecules to the cytoplasm plays a sig-
nificant role in the process under study. They found out some details of the process,
which cannot be observed directly, for instance, the stay of the STAT5 molecules in
the nucleus approximately for 6 min.

Moreover, by studying the model (8.19), one can predict what happens if some
parameters of the process are varied. For example, the authors studied how the total
mass of the protein produced by a cell (which is proportional to a total number
of STAT5 molecules participating in the process) changes under variations in dif-
ferent model parameters. This quantity appeared to depend very weakly on k1, k2
and quite strongly on k3, k4, τ . In other words, the processes in the nucleus play a
major role. According to the model (8.19), decreasing k4 down to zero (inhibition
of a nuclear export) leads to the decrease in the produced protein mass by 55%. In
experiments with leptomycin B, the authors inhibited a nuclear export (an analogue
to the parameter k4) only by 60%. According to the model, it should lead to the
reduction in the amount of activated STAT5 by 40%. In experiment, the reduction
by 37% was observed. Thus, a model prediction was finely confirmed, which further
increases one’s confidence to the model and allows to use it for a more detailed
study of the process and its control. Having such achievements, one could think
about opportunities to use empirical modelling for medical purposes.

8.3.2 Concluding Remarks

Despite the successes mentioned above, the problem of modelling may often appear
technically unsolvable even under the relatively simple “transparent box” setting
and for an adequate model structure. To date, examples of successful modelling
are observed when the difference between the model dimension and the number of
observables is not greater than two or three and the number of estimated parameters
is not greater than 3–5. These are only rough figures to give an impression about
typical practical opportunities. In each concrete case, modelling results depend on
specific non-linearities involved in the model equations. In any case, the greater the
number of hidden variables and unknown model parameters, the weaker the chances
for a successful modelling and the lower the accuracy of parameter estimators.
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Chapter 9
Model Equations: Restoration of Equivalent
Characteristics

In the case called “grey box” in Sect. 5.2, a researcher has partial knowledge about
the structure of model equations xn+1 = f(xn, c) or dx

/
dt = f(x, c). More con-

cretely, some components of the function f are unknown. Then, the problem gets
more complicated, than just parameter estimation discussed in Chap. 8, and more
interesting from a practical viewpoint.

To illustrate its peculiarities, let us consider modelling of a harmonically driven
non-linear dissipative oscillator described by the equations

dx1
/

dt = x2,

dx2
/

dt = −γ0x2 + F(x1) + A0 cos(ω0t + φ0),
(9.1)

where γ0, A0, ω0, φ0 are parameters and F is a non-linear restoring force, whose
form is unknown. Let the variable x1 be an observable, i.e. η = x1. Note that the
function F is only a component of the entire dynamical system (9.1): the function
F together with the other terms in the right-hand side specifies the phase velocity
field. In practice, F is a characteristic of the object, which makes clear physical
sense and can be of significant interest by itself. Its values may be unavailable for
direct measurements due to experimental conditions, i.e. it may be impossible to get
experimental data points directly on the plane (x1, F). However, information about
the function F is contained in the time series, since F influences the dynamics. One
can “extract” the values of F indirectly, i.e. via construction of an empirical model
whose structure includes a model function corresponding to F . Namely, one should
construct a model in the form

dx1
/

dt = x2,

dx2
/

dt = −γ x2 + f (x1, c) + A cos(ωt + φ),
(9.2)

where f (x1, c) should approximate F . Approximation of a one-variable function is
a much more feasible task in practice, than a general problem of multivariable func-
tion approximation arising in “black box” reconstruction (Chap. 10). If one manages
to get a “good” model, the ideas behind the model structure (9.2) are validated and
the characteristic F is restored in the form f (x1, ĉ). We stress that it can be the only
way to get the characteristic F.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_9,
C© Springer-Verlag Berlin Heidelberg 2010
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Due to the importance of information about characteristics of non-linear elements
inaccessible for direct measurements, we call the considered modelling problem
“restoration of equivalent characteristics”. Components of a model function f can
make different physical sense: a restoring force, non-linear friction, etc. Opportu-
nities to extract such information arise if physical sense is introduced into a model
structure in advance. More often, this is achieved with differential equations, since
many laws of nature are formulated in such a form.

As in Chap. 8, the models considered here determine either a dependency “a
future state xn+1 versus a current state xn” or “a phase velocity dx/dt versus a state
x”. The difference from Chap. 8 is that one must specify a functional form of the
characteristics to be restored before the stage of parameter estimation (Sect. 9.1).
Hence, it gets more important to optimise a model structure (Sect. 9.2) and even
to select it in a specific way for a certain object (Sect. 9.3) or a class of objects
(Sect. 9.4).

9.1 Restoration Procedure and Peculiarities of the Problem

9.1.1 Discrete Maps

Let an original be a one-dimensional map xn+1 = F(xn), where an observable is
ηn = xn . Let the dimension of the system be known and the form of the function F
unknown.

A model is constructed as a one-dimensional map xn+1 = f (xn, c). For this
simple example, data points on the plane (ηn, ηn+1) represent the plot of F . One
should just select the form of f (x, c) and find the values of c so as to approximate
the data points in the best way (Fig. 9.1). Only the entire function f (x, ĉ) makes
physical sense, rather than each single parameter, that is typical under the “grey
box” setting.

The problem is almost the same as in Chap. 7, see, e.g., Fig. 7.1b. The difference
is that the quantities (ηn, ηn+1) are shown along the coordinate axes rather than
the quantities (t, η). Therefore, one can use the techniques discussed in Sect. 7.2.1

Fig. 9.1 Construction of a
model map: finding a
dependence of the next value
of an observable on the
previous one from
experimental data (circles)



9.1 Restoration Procedure and Peculiarities of the Problem 257

by replacing the pair of quantities (t, η) by (ηn, ηn+1). Thus, it is convenient to
use a low-order algebraic polynomial or cubic splines (Sect. 7.2.4) to approximate
a one-variable function shown in Fig. 9.1. Parameters can be estimated with the
ordinary LS technique (8.3).

If a dynamical noise is present in the original map as xn+1 = F(xn) + ξn , noth-
ing changes in the model construction procedure. A measurement noise, i.e. ηn =
xn + ζn , makes the parameter estimation more complicated (Sect. 8.1.2). If its level
is low, the ordinary LS technique is still suitable. For higher levels of the measure-
ment noise, it would be desirable to use more sophisticated techniques (Sects. 8.1.2
and 8.2.1), but under the “grey box” setting, a model typically contains many param-
eters to be estimated, which makes the use of those techniques much more trouble-
some.

9.1.2 Ordinary Differential Equations

To describe complex motions, including chaotic ones, one uses non-linear model
ODEs dx/dt = f(x,c) with at least three dynamical variables. Some components
of the velocity field f can be unknown as in the examples (9.1) and (9.2). Those
“equivalent characteristics” are built into the model structure and one can find them
via the construction of the entire model. Let us consider some details.

The first case is when all the dynamical variables xk are observed: ηk(ti ) =
xk(ti ) + ζk(ti ), k = 1, . . . , D. To construct a model, one approximates a depen-
dence of the derivative dxk(ti )/dt on x(ti ) with a function fk(x,ck) for each k. The
values of dxk(ti )/dt are usually obtained from the observed data ηk(ti ) via numerical
differentiation (Sect. 7.4.2). Let us denote their estimates dx̂k(ti )/dt . “Smoothed”
values of the dynamical variables x̂k(ti ) emerge as a by-product of the differentiation
procedure. From the values x̂k(ti ), dx̂k(ti )/dt , one estimates model parameters ck

with the ordinary LS technique:

S(ck) =
∑

i

(
dx̂k(ti )

/
dt − fk(x̂(ti ), ck)

)2 → min, k = 1, . . . , D. (9.3)

The functions fk(x,ck) contain, in particular, sought equivalent characteristics.
The second typical case is when one observes a single dynamical variable:

η(ti ) = x1(ti ) + ζ(ti ). The dimension D of the system is known. Successful
modelling gets more probable if the dynamical equations for the original take the
standard form (3.27), where the components of the state vector x are successive
derivatives of the variable x1. A model is constructed in the corresponding form

dDx(t)
/

dt D = f (x(t), dx(t)
/

dt, dD−1x(t)
/

dt D−1, c). (9.4)

Firstly, one gets the time series of x̂, x̂ (1), x̂ (2), . . . , x̂ (D−1), where superscript
denotes an order of the derivative, via numerical differentiation of the observable
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η(ti ). Parameters of the function f , which includes equivalent characteristics to be
restored, are estimated with the ordinary LS technique:

S(c) =
∑

i

(
x̂ (D)(ti ) − f (x̂(ti ), x̂ (1)(ti ), . . . , x̂ (D−1)(ti ), c)

)2 → min. (9.5)

The described techniques perform well under sufficiently low levels of the mea-
surement noise. Moreover, the results are more reliable if the functions fk in
Eq. (9.3) and f in Eq. (9.5) depend on the parameters in a linear way, i.e. repre-
sent pseudo-linear models (Sect. 7.2.4). For higher noise levels, the modelling gets
much more difficult, since numerical differentiation amplifies any noise, especially
when D > 1 derivatives are computed. Then, the ordinary LS technique becomes
unsuitable, while the use of more sophisticated techniques (Sect. 8.2.1) in the case
of multidimensional models with many unknown parameters is also unrealistic.

9.1.3 Stochastic Differential Equations

A more general idea, which is seemingly advantageous in the case of a multiplicative
dynamical noise, is suggested in Friedrich et al. (2000) and Siegert et al. (1998). It
is based on the estimation of parameters in the Fokker – Planck equation for a con-
sidered non-linear system, i.e. the estimation of the drift and diffusion coefficients
(Sects. 4.3 and 4.5). Thus, let an object of modelling be given by the Langevin
equations

dxk
/

dt = Fk(x) + Gk(x)ξk(t), k = 1, . . . , D,

where independent zero-mean white noises ξk(t) have auto-covariance functions
〈ξk(t)ξk(t ′)〉 = δ(t − t ′). One assumes that the dimension D and noise properties
are known, and all D state variables are observed. Only concrete functional forms
of Fk(x), Gk(x) are unknown so that these functions are to be determined from a
time series.

Let us consider the case of D = 1 for simplicity of notations, i.e. the system
dx/dt = F(x) + G(x)ξ(t). Recall that the Fokker – Planck equation (4.8) is
defined as

∂p(x, t)

∂t
= − ∂

∂x
(c1(x, t)p(x, t)) + 1

2

∂2

∂x2 (c2(x, t)p(x, t)) ,

where the drift coefficient is

c1(x, t) = lim
τ→0

1

τ

∞∫

−∞
(x ′ − x)p(x ′, t + τ |x, t)dx ′
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and the diffusion coefficient is

c2(x, t) = lim
τ→0

1

τ

∞∫

−∞
(x ′ − x)2 p(x ′, t + τ |x, t)dx ′

The functions F,G are related to these coefficients as

c1(x) = F(x) + 1

2

dG(x)

dx
G(x)

and c2(x) = G2(x) (Sect. 4.3). If c1(x), c2(x) are known, the functions F,G can
be restored from them (e.g., if one requires positivity of G(x)). Moreover, to answer
many questions, it is possible to use the Fokker – Planck equation directly, rather
than the original stochastic DE with the functions F,G.

As one can see from the above definitions, c1(x) and c2(x) are directly related
to the conditional mean and conditional variance of the next value of x , given the
current value of x . The conditional mean and variance can be estimated from data
just as the sample mean and sample variance (Sect. 2.2.1) over all observed states
close to a given state x . Having the estimates of the conditional mean and variance
for different intervals τ (the smallest possible value of τ being equal to the sampling
interval t), one can estimate the limits τ → 0 by extrapolation (Friedrich et al.,
2000). Thereby, the estimates ĉ1(x) and ĉ2(x) are obtained. They are reliable at
a given state x if an observed orbit passes near this state many times. Thus, the
estimates ĉ1(x) and ĉ2(x) are more accurate for the often visited regions in the state
space. They are poorly defined for “rarely populated” regions.

The estimates ĉ1(x) and ĉ2(x) are obtained in a non-parametric form (just as
tables of numerical values). However, one may approximate the obtained depen-
dencies ĉ1(x) and ĉ2(x) with any smooth functions if necessary, e.g. with a poly-
nomial (Friedrich et al., 2000). The obtained functions ĉ1(x) and ĉ2(x) can also be
considered as (non-linear) characteristics of the system under study. Deriving the
estimates of the functions F and G, entering the original stochastic equation, from
the estimates ĉ1(x) and ĉ2(x) is possible under some conditions on the function
G assuring uniqueness of the relationship. Getting the functions F and G is of a
specific practical interest if they have a clearer physical interpretation compared to
the coefficients ĉ1(x) and ĉ2(x).

Several examples of successful applications of the approach to numerically simu-
lated time series, electronic experiments and physiological data, as well as a detailed
discussion are given in Friedrich et al. (2000), Ragwitz and Kantz (2001); and
Siegert et al. (1998). The approach directly applies if there is no measurement noise.
Its generalisation to the case of measurement noise is presented in Siefert et al.
(2003).
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9.2 Model Structure Optimisation

Model structure selection is as important for the restoration of equivalent charac-
teristics as for the problem considered in Sect. 7.2.1. To choose a model size, e.g.
a polynomial order, one can use the criteria described in Sect. 7.2.3. However, the
question remains: How to choose small subset of function terms from a large set of
basis functions to provide the best model of a given size?

Let us consider an efficient approach (Bezruchko et al., 2001a) with the example
of the reconstruction of equations for the van der Pol – Toda oscillator

dx1
/

dt = x2,

dx2
/

dt = (1 − x2
1)x2 − 1 + e−x1 .

(9.6)

A time series of the observable is η = x1 is supposed to be available. The corre-
sponding phase orbit, containing a transient process, is shown in Fig. 9.2. A model
is constructed in the form

dx1
/

dt = x2,

dx2
/

dt = f (x1, x2, c),
(9.7)

where

f (x1, x2, c) =
K∑

i, j=0

ci, j x i
1x j

2 , i + j ≤ K .

Many terms in the polynomial are “superfluous” since they have no analogues in
Eq. (9.6), e.g. the terms c0,0, c1,1x1x2, c0,2x2

2 and others. Estimates of the coeffi-
cients corresponding to the superfluous terms can appear non-zero due to various
errors and fluctuations. This circumstance can strongly reduce model quality. Thus,
it is desirable to exclude the superfluous terms from the model equations.

Fig. 9.2 A phase orbit of the
van der Pol – Toda oscillator
(9.6) which contains a
transient process. The
attractor is a limit cycle. The
numbers are temporal indices
of some data points in the
time series, which is recorded
with a sampling interval of
0.01. There are about 600
data points per basic period
of oscillations
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Superfluous terms can be identified via the estimation of the model coefficients
from different segments of the time series, i.e. from the data points lying in dif-
ferent domains of the phase space. The estimates of the “necessary” coefficients
must not depend on a time series segment used. In contrast, the estimates of the
coefficients corresponding to superfluous terms are expected to exhibit considerable
variations. Such variations are stronger if a time series contains a transient pro-
cess (Anishchenko et al., 1998; Bezruchko et al., 2001a), since the phase orbit then
explores different domains in the phase space (Fig. 9.2).

We constructed the model (9.7) with a polynomial of a high-order K from sub-
sequent time series segments of length W : {η(k−1)W+1, . . . , η(k−1)W+W }, k =
1, 2, . . . , L . Thus, we obtained a set of estimates for each coefficient ĉ(k)i, j
(Fig. 9.3a). A degree of stability of each coefficient estimate ĉi, j is defined as∣∣〈ĉi, j

〉∣∣ /σi, j , where

〈
ĉi, j

〉
= (1/L)

L∑

k=1

ĉ(k)i, j

and

σi, j =
√√√√(

1
/

L
) L∑

k=1

(
ĉ(k)i, j − 〈

ci, j
〉)2

.

The term corresponding to the least stable coefficient was excluded. The entire
procedure was repeated for the simplified model structure. By repeating the exclu-
sion procedure many times, we sequentially removed the “unstable terms”.

The procedure was stopped when the model quality did no longer improve. The
criterion of quality was a minimum of the approximation error over a wide area V
in the phase space (shown in Fig. 9.3b)

Fig. 9.3 Construction of a model for the van der Pol – Toda oscillator (9.6) starting with a full
two-variable polynomial of order K = 7 in Eq. (9.7) from time series segments of length W =
2000 data points: (a) estimates of the coefficients, corresponding to the indicated terms, versus the
starting time instant of a time series segment (in units of sampling interval), the thick lines; (b) the
model error versus the number of excluded terms, it is minimal for 20 terms excluded
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σ 2 =
∫∫

V

{
f (x1, x2, ĉ) −

[
(1 − x2

1)x2 − 1 + e−x1
]}2

dx1 dx2.

After excluding 20 terms from an initial polynomial with K = 7, the error was
reduced by an order of magnitude in comparison with its starting value (Bezruchko
et al., 2001a). At that, the final model reproduced much more accurately the dynam-
ics of an object (including transient processes starting from different initial con-
ditions) in the entire square region of the phase space shown in Fig. 9.2. This is
because the described procedure of the model structure optimisation allows better
generalisation of some essential dynamical features by reducing the danger of over-
fitting.

9.3 Equivalent Characteristics for Two Real-World Oscillators

In this section, we describe our results on the restoration of equivalent characteris-
tics of oscillatory processes from the fields of physiology (Stoop et al., 2006) and
electronics (Bezruchko et al., 1999a).

9.3.1 Physiological Oscillator

The cochlear amplifier is a fundamental, generally accepted concept in cochlear
mechanics, having a large impact on our understanding of how hearing works.
The concept, first brought forward by Gold in 1948 (Gold, 1948), posits that an
active mechanical process improves the mechanical performance of the ear (Robles
and Ruggero, 2001). Until recently, the study of this amplifying process has been
restricted to the ears of vertebrates, where the high complexity and the limited acces-
sibility of the auditory system complicate the in situ investigation of the mechanisms
involved. This limitation has hampered the validation of cochlear models that have
been devised (Dallos et al., 1996; Kern and Stoop, 2003). The hearing organs of
certain insects have recently been shown to exhibit signal-processing characteris-
tics similar to the mammalian cochlea by using active amplification (Goepfert and
Robert, 2001; 2003; Goepfert et al., 2005); the ears of these insects are able to
actively amplify incoming stimuli, display a pronounced compressive non-linearity,
exhibit power gain and generate self-sustained oscillations in the absence of sound.
In both vertebrates and insects, the mechanism that promotes this amplification
resides in the motility of auditory mechanosensory cells, i.e. vertebrate hair cells
and insect chordotonal neurons. Both types of cells are developmentally derived by
homologous genes and share similar transduction machineries, pointing to a com-
mon evolutionary origin (Boekhoff-Falk, 2005). In line with such an evolutionary
scenario, it seems possible that the fundamental mechanism of active amplification
in the ears of insects and vertebrates is also evolutionarily conserved (Robert and
Goepfert, 2002).
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Since insect’s hearing organs are located on the body surface, they are accessible
to non-invasive examination. Moreover, because the external sound receiver is often
directly coupled to the auditory sense cells, insect auditory systems can be expected
to provide profound experimental and theoretical insights into the in situ mechan-
ics of motile sense cells and their impact on the mechanical performance of the
ear. Such information is technically relevant: providing natural examples of refined
active sensors, the minuscule ears of insects promise inspiration for the design
of nanoscale artificial analogues. Here, we present the results of modelling self-
sustained oscillations of the antennal ear of the fruit fly Drosophila melanogaster
with non-linear oscillator equation (9.7) and restoring its equivalent characteristics
(Stoop et al., 2006).

In Drosophila, hearing is mediated by mechanosensory neurons that directly con-
nect to an external sound receiver formed by the distal part of the antennas (Goepfert
and Robert, 2000). These neurons actively modulate the receiver mechanics and,
occasionally, give rise to self-sustained receiver oscillations (SOs). SOs occur spon-
taneously and are reliably induced by thoracic injection of dimethyl sulphoxide
(DMSO), a local analgesic known to affect insect’s auditory transduction. The pre-
cise action of DMSO on the auditory neurons remains unclear. However, as spon-
taneous and DMSO-induced SOs are both physiologically vulnerable and display
similar temporal patterns, the latter can be used to probe the nature of the amplifica-
tion mechanism in the fly’s antennal ear (Goepfert and Robert, 2001). As revealed
by measurements of the receiver vibrations (Fig. 9.4), about 20 min after the admin-
istration of DMSO, fully developed SOs are observed (Fig. 9.4b). They exhibit the
temporal profile of relaxation oscillations with a characteristic frequency of about
100 Hz (Goepfert and Robert, 2003). About 10 min later, the SOs start to decrease
in amplitude (Fig. 9.4c) and finally converge to a sinusoidal profile (Fig. 9.4d). The
evoked SOs may last for up to 1–1.5 h.

Fig. 9.4 Self-sustained oscillations of the Drosophila hearing sensor (velocity measurements):
(a) 10 min, (b) 20 min, (c) 30 min, (d) 34 min after DMSO injection
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The temporal profile of these oscillations is reminiscent of limit cycle oscillations
generated by the van der Pol oscillator

dx1
/

dt = x2,

dx2
/

dt = (μ − x2
1)x2 − x1,

(9.8)

where x1 is identified with the receiver’s vibrational position and the control param-
eter μ > 0 is slowly decreased in order to account for the changes in the SO shape
during time. It is well known that at μ = 0, the van der Pol oscillator undergoes the
Andronov – Hopf bifurcation; for μ > 0, a stable limit cycle emerges that can be
interpreted as undamping (i.e. amplification). A more detailed examination of the
experimental data reveals a pronounced asymmetry (see Fig. 9.4b) by comparing
the onsets and extents of the upward and downward excursions within one period,
which requires a more general model for the SO generation than the standard van
der Pol system.

In order to capture this asymmetry, we construct a model in the form of the
generalised van der Pol oscillator (9.7) with f (x1, x2) = f1(x1)x2 − f2(x1), where
f1(x1) and f2(x1) describe polynomials of the orders n and m, respectively. From
the viewpoint of physics, − f1(x1) describes a non-linear and possibly negative
friction, whereas − f2(x1) describes a non-linear restoring force. It is necessary to
determine the orders n and m and polynomial coefficients that yield the optimal
reproduction of the experimental data. One can expect that for a proper model, the
polynomial orders n and m are unambiguously determined and only variations in the
coefficients account for the observed changes in the SO temporal profile over time.

From the measurements with the sampling interval t = 0.08 ms, we are pro-
vided with a time series of the receiver’s vibration velocities v which is described
by the variable x2 in the model. The values of the displacement and the accelera-
tion are determined via numerical integration and differentiation, respectively. The
latter is performed by applying the first-order Savitzky – Golay filter (Sect. 7.4.2).
Quasi-stationary segments of the original data of lengths N = 4000 data points (i.e.
the duration of 0.32 s) are used for the model construction. In order to determine
the optimal polynomial orders n and m, we use the criterion of the training error
saturation (Sect. 7.2.3):

ε̂2 = min
c1,c2

1

N

N∑

i=1

(
dx̂2(ti )

/
dt − f1(x̂1(ti ), c1)x̂2(ti ) + f2(x̂1(ti ), c2)

)2
. (9.9)

The error ε̂ saturates for n = 2 and m = 5 (Fig. 9.5). A further increase in n and
m does not reduce ε̂. The emergence of such a conspicuous saturation point is a rare
case in practice and indicates that the model structure (9.7) faithfully reproduces the
auditory data of Drosophila.

A comparison between realisations of the model and the measurements cor-
roborates the validity of our modelling. For the fully developed SOs (after
20 min, Fig. 9.6), the comparison reveals that the measured velocities are faithfully
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Fig. 9.5 Mean-squared error
ε̂ of the model fitting (9.9)
showing a precipitous decay
and saturation around the
orders n = 2 and m = 5

Fig. 9.6 Diagnostic check: (a) experimentally measured receiver’s vibration velocity observed
20 min after DMSO injection, i.e. fully developed SOs; (b) a corresponding time series generated
by the model (9.7) with n = 2 and m = 5

reproduced. This is further illustrated in Fig. 9.7, where the modelled and the mea-
sured data are compared on the phase plane (x1, x2). Similar observations take place
for the time series recorded 10, 30 and 34 min after DMSO injection, respectively.

The shapes of the polynomials f1(x1) and f2(x1) reflect the asymmetry of
the observed receiver oscillations, specifically when the SOs are fully devel-
oped (Fig. 9.4b). The asymmetry of f1(x1) (Fig. 9.8a) and, in particular, f2(x1)

(Fig. 9.8b) becomes effective at large displacements and may have its origin in
structural-mechanical properties of the antenna. An enlightening interpretation of

Fig. 9.7 Phase-space
representation of the
measured (dots) and model
(the solid line) receiver
vibrations in the case of fully
developed SOs
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Fig. 9.8 Restored non-linear characteristics of the receiver for the fully developed SOs 20 min after
DMSO injection: (a) the second-order polynomial f1(x1), which means a non-linear friction with
the opposite sign and shows the undamping f1(x1) > 0 (see the dashed line); (b) the fifth-order
polynomial f2(x1), which means a non-linear restoring force with the opposite sign and displays a
noticeable asymmetry

the amplification dynamics can be given for the behaviour around zero displacement
position x1 ≈ 0, where f1(x1) attains positive values for small displacements x1
(Fig. 9.8a). Since − f1(x1) represents friction, the inequality f1(x1) > 0 implies
that energy is injected into the system. This is a characteristic feature of an active
amplification process. Around x1 = 0, the non-linear restoring force − f2(x1) and its
first and second derivatives are relatively small. This implies that for small receiver
displacements, virtually no restoring force is present. By means of the negative fric-
tion term, the system is thus easily driven out to relatively large amplitudes.

In the course of time, i.e. with decreasing DMSO concentration, the non-linear
contributions to friction and restoring force decay. In particular, the range, where the
friction is negative, gradually decreases and finally vanishes in agreement with the
observed reduction in SO amplitude (see Fig. 9.4). When the SO starts to disappear,
the restoring force function f2(x1) gets approximately linear with a very small slope.
At the same time, the friction term remains to be very small. As a consequence,
weak stimuli will be sufficient to elicit considerable antennal vibrations. Although
the amplifier has now returned into a stable state, where limit cycles do not occur,
it remains very sensitive. Only small parameter variations are necessary in order
to render the friction term negative and to lead to an amplification of incoming
vibrations.

Thus, the model obtained captures several characteristics of the antennal ear
oscillations, indicating that the empirical modelling may be useful for analysing
the physics of the cochlear amplifier as well (Stoop et al., 2006).

9.3.2 Electronic Oscillator

An illustrative example from the field of electronics refers to the case when a chaotic
motion of a non-linear system is successfully modelled under the “grey box” setting.
An object is an RLC circuit with switched capacitors under an external sinusoidal
driving with the amplitude U0 and the angular frequency ω0. Its scheme is presented
in Fig. 9.9a, where K is an electronic key, a micro-scheme containing dozens of
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Fig. 9.9 Modelling of an electronic oscillator: (a) the scheme of an experimental set-up; (b) an
experimental chaotic orbit on the plane “charge versus current” in dimensionless units (Bezruchko
et al., 1999a); the values of I are measured with a 12-bit ADC at t = 4 μs, C1 = 0.1 μF, C2 =
4.4 μF, L = 20 mH, R = 10 �, Uthr = −0.2 V, the driving period T ≈ 84.02 t , and U0 =
2.344 V; (c) an orbit of the reconstructed model (9.2) with the polynomial f of the ninth order; (d)
a plot for the function – f (thick line) and an expected piecewise linear dependence (thin line)

transistors and other passive elements, which is fed from a special source of direct
voltage. Under small values of the voltage U on the capacity C1, linear oscillations
in the circuit RLC1 take place, since the resistance of the key is very high. When U
reaches a threshold value Uthr, resistance of the key reduces abruptly so that it closes
the circuit and connects the capacity C2. Reverse switching occurs at the value of U
somewhat lower than Uthr, i.e. the key exhibits a hysteresis. It is the presence of
non-linearity that leads to the possibility of chaotic oscillations in the circuit.

A model of this system derived from Kirchhoff’s laws takes the form of the
non-autonomous non-linear oscillator (9.2). The dimensionless variables read t =
t ′/

√
LC1 and x1 = q/C2|Uthr|, where t ′ is the physical time and q is the total

charge on the capacities C1 and C2. It is expected that the original function F
is piecewise linear due to such voltage – capacity characteristic of the non-linear
element represented by the switched capacitors.

Experimental measurements provide us with a chaotic time series of the current
I through the resistor R, which corresponds to the quantity x2 in Eq. (9.2). The time
series of the variable x1 is obtained via numerical integration of the observed signal
and the time series of the variable dx2/dt is obtained via numerical differentiation.
We do not use information about the piecewise linear form of F , especially recalling
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that it is a theoretical approximation which ignores hysteresis of the key and other
realistic features. Models are constructed in the form (9.2) with polynomials f of
different orders K . Figure 9.9c shows the results for the best model with K = 9,
which reproduces well the observed chaotic motion illustrated in Fig. 9.9b. The
theoretical piecewise linear “restoring force” and the model polynomial f coincide
with a good accuracy in the observed range of the x1 values bounded by the dashed
line in Fig. 9.9d. We note that without prior information about the model structure
(9.2), it is impossible to get an adequate empirical model making physical sense
(Bezruchko et al., 1999a).

This example illustrates restoring equivalent characteristics of a non-linear ele-
ment via empirical modelling even in regimes of large amplitudes and chaos, where
such characteristics may be inaccessible to direct measurements with ordinary tools.
The empirical modelling has been successfully used to study dynamical characteris-
tics of a ferroelectric capacitor (Hegger et al., 1998), semiconductor diodes (Sysoev
et al., 2004) and optical fibre systems (Voss and Kurths, 1999).

9.4 Specific Choice of Model Structure

Uncertainty with respect to a model structure may not be so small as in the above
examples. The “box” can be “dark grey” rather than “light grey” (Fig. 5.1) which
makes empirical modelling much more difficult. However, in some cases, even small
amount of a priori information along with a preliminary analysis of an observed time
series can lead to a success if it is properly taken into account in a model structure.
This is illustrated below with two wide classes of objects: systems under regular
external driving and time-delay systems.

9.4.1 Systems Under Regular External Driving

If the presence of regular (periodic or quasi-periodic) driving is known a priori or
assumed from a preliminary data analysis (e.g., strong discrete components in a
power spectrum), then it is fruitful to include functions explicitly depending on time
into model equations to describe such driving.

Thus, to describe an additive harmonic driving, one can reasonably use the model
structure

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) + a cosωt + b sinωt, (9.10)

where x is an observable and f is an algebraic polynomial (Bezruchko and Smirnov,
2001; Bezruchko et al., 1999a). One may use smaller number of variables D in
Eq. (9.10) than it would be necessary for the autonomous standard model (9.4).
This circumstance determines advantages of the special model structure (9.10). The
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oscillator equation (9.2) is a particular case of Eq. (9.10) for D = 2 and an incom-
plete two-variable polynomial.

Along with the choice of the model structure, one should overcome a specific
technical problem. It consists of the estimation of the driving frequency ω, which
enters the model equations (9.10) in a non-linear way. As usual, one makes a starting
guess and solves a minimisation problem for a cost function like Eq. (9.5) with an
iterative technique. However, the right-hand side of Eq. (9.10) is very sensitive with
respect to ω at large t analogous to example (7.19) in Sect. 7.1.2. Therefore, the cost
function S of the type (9.5) is sensitive with respect toω for a large time series length
N . It implies that the variance of the resulting estimator of the frequency ω rapidly
decreases with the time series length if one manages to find the global minimum
of S. Namely, the variance scales as N−3 analogous to example (7.19). On the one
hand, it gives an opportunity to determine ω to a very high accuracy. On the other
hand, it is more difficult to find the global minimum since one needs a very lucky
starting guess for ω. Taking it into account, one should carefully try multiple starting
guesses for ω.

If ω is known a priori to a certain error, it is important to remember that for a
very long time series, a small error in ω can lead to a bad description of the “true”
driving with the corresponding terms in Eq. (9.10) due to the increase in “phase
difference” between them over time (Bezruchko et al., 1999a). Then, the model
structure (9.10) would get useless. Therefore, it is reasonable to consider the a priori
known value as a starting guess for ω and determine the value of ω more accurately
from the observation data. This discussion applies to other non-autonomous systems
considered below.

For an arbitrary additive regular driving (complex periodic or quasi-periodic), a
more appropriate model structure is

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) + g(t, c), (9.11)

where the function g(t) describes the driving and can be represented as a trigono-
metric polynomial (Smirnov et al., 2003):

g(t) =
k∑

i=1

Ki∑

j=1

ci, j cos(jωi t + φi, j ). (9.12)

One can get good models with trigonometric polynomials of very high orders
Ki , while approximation with a high-order algebraic polynomial typically leads to
globally unstable model orbits.

To allow for multiplicative or even more complicated forms of driving, an explicit
temporal dependence can be introduced into the coefficients of the polynomial f in
Eq. (9.10) (Bezruchko and Smirnov, 2001). Thus, Fig. 9.10 shows an example of
modelling of the non-autonomous Toda oscillator under combined harmonic driving
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Fig. 9.10 Reconstruction of the equations for the non-autonomous Toda oscillator (9.13) from
a time series of the variable x : (a) an original attractor; (b) an attractor of the non-autonomous
polynomial model whose coefficients depend on time (D = 2, K = 9); (c) an orbit of the standard
model (9.4) with D = 4, K = 6

d2x
/

dt2 = −0.45dx
/

dt + (5 + 4 cos t)(e−x − 1) + 7 sin t. (9.13)

A model is constructed in the form (9.4) with an explicit temporal dependence
introduced into all the coefficients of the polynomial f , i.e. one replaces all ck in the
model structure with ck+ak cosωt+bk cosωt . The best model is obtained for D = 2
and K = 9. Its phase orbit looks very similar to the original one (Fig. 9.10a,b). At
that, the dimension of the standard model (9.4) without explicit temporal depen-
dence should be not less than 3 to describe a chaotic regime. However, the standard
model typically exhibits divergent orbits for D > 2 (Fig. 9.10c).

Efficiency of the special choice of a model structure is demonstrated in a similar
way for the periodic pulse driving, periodic driving with suharmonics and quasi-
periodic driving in Smirnov et al. (2003).

9.4.2 Time-Delay Systems

Modelling of time-delay systems has been actively considered in the last years
(Bunner et al., 1996, 2000; Bezruchko et al, 2001b; Horbelt et al, 2002; Pono-
marenko and Prokhorov, 2004; Ponomarenko et al., 2005; Prokhorov et al., 2005;
Voss and Kurths, 1997, 1999). Despite such systems being infinite-dimensional,
many of the above techniques are suitable to model them with some technical
complications, e.g., the multiple shooting approach (Horbelt et al., 2002). Some
principal differences (Bunner et al., 2000) are beyond the scope of our discussion.

Let us consider an example where modelling of a time-delay system corresponds
to the “grey box” setting and can be performed with the techniques similar to those
described above. We deal with the systems of the form

ε0 dx(t)
/

dt = −x(t) + F(x(t − τ)), (9.14)

where an observable is η = x . Let us illustrate a modelling procedure with the
reconstruction from a chaotic time realisation of the Ikeda equation (Fig. 9.11a):
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Fig. 9.11 Reconstruction of a time-delay system: (a) a time realisation of the Ikeda equation (9.15)
with x0 = π/3, ε0 = 1.0, μ0 = 20.0, τ0 = 2.0; (b) the number of pairs of extrema M(τ ) divided
by the total number of extrema in the time series, Mmin(τ ) = M(2.0); (c) a restored non-linear
function. Numerical experiments with measurement noise show that modelling is successful for
the ratio of the standard deviations of noise and signal up to 20%

ε0 dx(t)
/

dt = −x(t) + μ0 sin(x(t − τ0) − x0), (9.15)

which describes the dynamics of a passive optical resonator.
Models are constructed in the form

ε dx(t)
/

dt = −x(t) + f (x(t − τ), c). (9.16)

Similar to the above examples, one may solve the minimisation problem∑

n
(εdx(tn)/dt + x(tn) − f (x(tn − τ), c))2 → min, where the response constant

ε and the delay time τ are considered as additional unknown parameters (Bun-
ner et al., 2000). However, there is a special efficient approach (Bezruchko et al.,
2001b), which is based on the statistical analysis of the time intervals separating
extrema in a time series of the time-delay system (9.14). It appears that the number
of pairs of extrema M separated by a given interval τ exhibits a clear minimum as
a function of τ at τ equal to the true delay time of the system (9.14), Fig. 9.11b.
This observation gives an opportunity to estimate the delay time and diagnose that
a system under study belongs to the class of time-delay systems (9.14). Having
an estimate τ̂ ≈ τ0, one can assess a response characteristic ε by checking different
trial values of ε and selecting such value ε̂ for which experimental data points on the
plane (x(t−τ̂ ), ε̂dx(t)/dt+x(t)) lie on a smooth one-dimensional curve. This curve
is a plot of the sought function f , which is an approximation to F . Figure 9.11c
illustrates such a restoration of the “true” function F for the system (9.15). Having
such a plot, one can find an approximating function f using an expansion in a certain
functional basis or a special formula.

The described approach to the determination of the delay time and reconstruc-
tion of the entire equation can be extended to the delay differential equations of
higher orders and to the systems with several delay times. It is parsimonious with
respect to the computation time and not highly sensitive to the measurement noise
(Ponomarenko et al., 2005; Prokhorov et al., 2005).

Thus, as illustrated by several examples in this chapter, special selection of model
structure based on the preliminary analysis of data and some (even rather general)
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a priori information about an object under study can essentially improve an empir-
ical model quality and make possible meaningful interpretations of the modelling
results.
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Chapter 10
Model Equations: “Black Box” Reconstruction

Black box reconstruction is both the most difficult and the most tempting mod-
elling problem when any prior information about an appropriate model structure
is lacking. An intriguing thing is that a model capable of reproducing an observed
behaviour or predicting further evolution should be obtained only from an observed
time series, i.e. “from nothing” at first sight. Chances for a success are not large.
Even more so, a “good” model would become a valuable tool to characterise an
object and understand its dynamics. Lack of prior information causes one to utilise
universal model structures, e.g. artificial neural networks, radial basis functions
and algebraic polynomials are included in the right-hand sides of dynamical model
equations. Such models are often multi-dimensional and involve quite many free
parameters.

Since time series of all variables for such a model must be obtained from
observed data, “restoration” of lacking variables gets extremely important. One
often calls it “phase orbit reconstruction” or “state vector reconstruction”. A the-
oretical justification is given by celebrated Takens’ theorems (Sect. 10.1).

Not less important and difficult is the approximation stage, where one fits a
dependence of the next state on the current one xn+1 = f(xn, c) or of the phase
velocity on the state vector dx

/
dt = f(x, c). In practice, one usually manages to

get a valid model if it appears sufficient to use its moderate dimension, roughly, not
greater than 5–6. To construct higher dimensional models, one needs huge amounts
of data and deals with approximation of multivariable functions (Sect. 10.2) which
is much more difficult than that of one-variable functions (Sects. 7.2, 9.1 and 9.3).
Moreover, troubles quickly rise with the model dimension (Kantz and Schreiber,
1997). This is the so-called “curse of dimensionality”, the main obstacle in the
modelling of multitude of real-world processes.

Yet, successful results have sometimes been obtained for complex real-world
objects even under the black box setting. Also, there are several nice theoretical
results and many practical algorithms of reconstruction, which appear efficient for
prediction and other modelling purposes.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_10,
C© Springer-Verlag Berlin Heidelberg 2010
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10.1 Reconstruction of Phase Orbit

To get lacking model variables in modelling from a time series {η(t1), η(t2), . . . ,
η(tN )}, one can use subsequent values of η, i.e. a state vector x(ti ) = [η(ti ),
η(ti + τ), . . . , η(ti + (D − 1)τ )], where τ is the time delay, or successive
derivatives, i.e. a state vector x(ti ) = [η(ti ), dη(ti )

/
dt, . . . , dD−1η(ti )

/
dt D−1].

These approaches have been applied for a long time without special justification
(Sect. 6.1.2). Thus, the former one is, in fact, used since 1927 for the widely known
autoregression models (4.12), where a future value of an observable is predicted
based on several previous values (Yule, 1927). It seems just reasonable. If there is
no other information besides a time series, then one can use only the previous values
of an observable or their combinations to make a forecast.

At the beginning of the 1980s, relationships between both mentioned approaches
and the theory of dynamical systems were revealed. It was proven that in reconstruc-
tion from a scalar time realisation of a dynamical system (under some conditions
of smoothness), both time delays and successive derivatives assure an equivalent
description of the original dynamics if the dimension of the restored vectors D is
large enough. Namely, the condition D > 2d should be fulfilled, where d is the
dimension of a set M in the phase space of an original system, where a modelled
motion occurs.1 These statements constitute celebrated Takens’ theorems (Takens,
1981) as discussed in Sect. 10.1.1. We note that the theorems are related to the case
when an object is a deterministic dynamical system (Sect. 2.2.1).

In the modelling of real-world objects, one can use the above approaches without
referring to the theorems, since it is impossible to check whether the conditions of
the theorems are fulfilled and the dimension d is unknown (if one may speak about
all that in respect of a real-world object at all). Yet, the value of the theoretical
results obtained by Takens is high. Firstly, after their formulation it has become
clear that both above approaches are suitable for the modelling of a sufficiently wide
class of systems. Thus, the theorems “bless” practical application of the approaches,
especially if one has any ideas confirming that the conditions of the theorems are ful-
filled in a given situation. Secondly, based on the theory of dynamical systems, one
has developed new fruitful approaches to the choice of the reconstruction parame-
ters, such as the time delay τ , the model dimension D and others, as discussed in
Sect. 10.1.2.

1 The set M is a compact smooth manifold and the quantity d is its topological dimension
(Sect. 10.1.1). There are generalisations of the theorem to the case of non-smooth sets M and
fractal dimension d, which are beyond the scope of our discussion (Sauer et al., 1991). We note
that the set M mentioned in the theorems does not inevitably correspond to the motion on an
attractor. For instance, let an attractor be a limit cycle C “reeled” on a torus M . If one is interested
only in the description of an established periodic motion on the cycle C , then it is sufficient to use
D > 2 model variables for reconstruction according to Takens’ theorems. If one needs to describe
motions on the entire torus M , including transient processes, then it is necessary to use D > 4
variables. In practice, one often has a single realisation corresponding to established dynamics.
Therefore, one usually speaks of the reconstruction of an attractor.
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10.1.1 Takens’ Theorems

We start with illustrating the theorems with a simple example and then give their
mathematical formulations and discuss some details in a more strict way. Through-
out this subsection, we denote the state vector of an original system y as distinct
from the reconstructed vectors x. The notation d is related to the dimension of the
set M in the phase space of an original system. It is not necessarily the dimension of
the entire phase space, i.e. of the vector y. D is the dimension of the reconstructed
vectors x and, hence, of a resulting model.

10.1.1.1 An Illustrative Example

Let an object be a continuous-time three-dimensional dynamical system. Its state
vector is y = (y1, y2, y3). Let a motion to occur on a limit cycle (Fig. 10.1a), i.e. on
a set M of the dimension d = 1.

If all three variables y1, y2, y3 were observed, one could proceed directly to the
approximation of the dependence of y(t + τ) on y(t), which is unique since y is
a state vector. The latter means that whenever a certain value y = y∗ is observed,
a unique future value follows it in a fixed time interval. The same present leads to
the same future. If not all the components of the state vector are observed, then
the situation is more complicated. One may pose a question: How many variables
suffice for an equivalent description of an original dynamics? Which variables are
suitable for that and which ones are not?

Since the set M , where the considered motion takes place, is one dimensional
(d = 1), there should exist such a scalar dynamical variable which is sufficient to
describe this motion. For instance, a closed curve M (Fig. 10.1a) can be mapped on

Fig. 10.1 One-dimensional representations of a limit cycle: (a) an original limit cycle; (b) its
mapping on a circle; (c) its projection on a coordinate axis. The dimension of an original system is
equal to three; the dimension of the set M , which is a closed curve, is d = 1; the dimension of the
“reconstructed” vectors is D = 1 in both cases. Two different states [filled circles in the panel (a)]
correspond to the two different points on the circle [the panel (b)] and to a single point on the axis
[the panel (c)]. The mapping of a cycle on a circumference is one-to-one and its mapping on a line
segment is not one-to-one
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a circumference (Fig. 10.1b). It is important that the vectors y(t) on the cycle M can
be related to the angle of rotation φ(t) of a point around the circumference in a one-
to-one way. The variable φ(t) is the “wrapped” phase of oscillations (Sect. 6.4.3).
Due to one-to-oneness, the variable φ completely determines the state of the system:
The value of the phase φ∗ corresponds to a unique simultaneous value of the vec-
tor y∗. Having an observable φ, one can construct a one-dimensional deterministic
dynamical model (D = 1) with x1 = φ.

However, not any variable is appropriate for a one-dimensional representation.
Thus, if one observes just a single component of the vector y, e.g. a coordinate
y1, then a closed curve is mapped on a line segment (a simple projection onto the
y1-axis). This mapping is not one-to-one. Almost any point y∗

1 (t) of the segment
corresponds to two state vectors y(t) differing by the direction of the further motion
(to the left or to the right along the y1-axis, see Fig. 10.1a, c). Thus, y1 does not
uniquely determine the state of the system. If one observes some value y1 = y∗

1 ,
then one of the two possible future values can follow. Therefore, a deterministic
one-dimensional description of the observed motion with the variable x1 = y1 is
impossible.

In general, if one uses the model dimension D equal to the dimension of the
observed motion d, the construction of a dynamical model may appear successful
if one is “lucky”. However, empirical modelling may fail as well. Both results are
typical in the sense that the situation does not change under weak variations of an
original system, an observable and parameters of the reconstruction algorithm.

What changes if one uses a two-dimensional description for the above example?
The same two situations are typical as illustrated in Fig. 10.2. If the two compo-
nents of the original state vector y1 and y2 are observables, i.e. the model state
vector is x = (y1, y2), it corresponds to a projection of the closed curve onto
the plane (y1, y2). In such a projection, one may get a curve either without self-
intersections (Fig. 10.2a) or with them (Fig. 10.2b) depending on the shape of the
original curve and its spatial orientation. The former case provides a one-to-one
relationship between the original curve and its projection, i.e. the two-dimensional
vector x completely determines the state of the system. The latter case differs, since
the self-intersection point y∗

1 , y∗
2 on the plane (y1, y2) in Fig. 10.2b corresponds

to two different states of the original system, i.e. the relationship between x and y
is not one-to-one. Therefore, one cannot uniquely predict the future following the
current values y∗

1 , y∗
2 . Hence, the vector x is not suitable as the state vector of a

global deterministic model. It can be used only locally, far from the self-intersection
point.

A similar situation takes place if one uses any two variables instead of y1 and y2.
For instance, let η = h(y) be an observable, where h is an arbitrary smooth function
and let the components of x be the time-delayed values of η: x(t) = (η(t), η(t +τ)).
Depending on h and τ , one may observe a situation either without self-intersections
on the plane (x1, x2) as in Fig. 10.2a or with self-intersections as in Fig. 10.2b.
Thus, even the number of model variables exceeding the dimension of an observed
motion, D = 2 > d = 1, does not assure the possibility of a deterministic
description.
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Fig. 10.2 Projections of a one-dimensional manifold from a three-dimensional space onto planes:
(a) one-to-one mapping; (b) many-to-one mapping with a self-intersection point in the projection

Finally, let us consider a three-dimensional representation, e.g. when model state
vectors are constructed as x(t) = (η(t), η(t+τ), η(t+2τ)). An image of the original
closed curve in the three-dimensional space (x1, x2, x3) is also a closed curve, which
typically does not exhibit self-intersections, i.e. there is a one-to-one correspon-
dence between x and y. An original motion on the limit cycle can be equivalently
described with the vectors x. In general, a self-intersection of an image curve may
be observed in the space x1, x2, x3 as a non-generic situation, i.e. it is eliminated by
weak variations in an original system, an observable or reconstruction parameters.
Intuitively, one easily agrees that self-intersections of a curve in a three-dimensional
space are very unlikely.

Thus, in our example, an equivalent description of the dynamics is achieved
for sure only if the state vectors are reconstructed in the space of the dimension
D > 2d.2 This is the main contents of Takens’ theorems. We stress that this is
a sufficient condition. Sometimes, an equivalent description is possible even for
D = d as illustrated above. In practical modelling, Takens’ theorems serve just as a
psychological support, because they state that there is a finite model dimension D at
which deterministic modelling should be appropriate. Technically, one tries different
values of D, starting from small ones, and aims at obtaining a “good” model with
as low dimension as possible to avoid difficulties related to the above-mentioned
“curse of dimensionality”.

2 An equivalent description of a motion on a limit cycle is assured for D = 3 even if the cycle
“lives” in an infinite-dimensional phase space.
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10.1.1.2 Mathematical Details

To formulate the theorems in a more rigorous way, let us introduce some notations.
Let an object be a dynamical system

y(t0 + t) = �t (y(t0)),

η(t) = h(y(t)),
(10.1)

where y is a state vector, �t is an evolution operator and h is a measurement func-
tion.3 The vector of observables is finite-dimensional: η ∈ Rm . We discuss further
only the case of a scalar time series η(ti ), i.e. m = 1. It is the most widespread
situation, which is also the most difficult for modelling.

Manifold

Let the motion of the system occur at some manifold M of the finite dimension d
that can be observed even for infinite-dimensional systems. Manifold is a general-
isation of the concept of a smooth surface in the Euclidean space (Gliklikh, 1998;
Makarenko, 2002; Malinetsky and Potapov, 2000; Sauer et al., 1991). Roughly
speaking, a d-dimensional manifold M is a surface which can be locally param-
eterised with d Euclidean coordinates in the vicinity of any of its points. In other
words, any point p ∈ M together with its local neighbourhood U (p) can be mapped
on a d-dimensional fragment (e.g. a ball) of the space Rd in a one-to-one and
continuous way. A corresponding image � : U → �(U ) is called a chart of the
neighbourhood. The continuous map � is called a homeomorphism. Examples of
two-dimensional manifolds in a three-dimensional Euclidean space are a sphere, a
torus, a bottle with a handle, etc. (Fig. 10.3a), but not a (double) cone (Fig. 10.3b).

Fig. 10.3 Examples of the sets which (a) are manifolds and (b) is not a manifold

3 If an object is a map y(tn+1) = F(y(tn)), then an evolution operator �t (y(t0)) is just the
function F. If an object is a set of ODEs dy/dt = F(y(t)), then the function �t (y(t0)) is the result
of the integration of the ODEs over a time interval of length t . If an original system is given by
a partial differential equation ∂y/∂t = F(y, ∂y/∂r, ∂2y/∂r2, . . .), where r is a spatial coordinate,
then y is a vector belonging to an infinite-dimensional space of functions y(r) and �t is an operator
acting in that space.
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If � is an n times differentiable mapping with the n times differentiable inverse,
then one says that M belongs to the class Cn . If n ≥ 1, the mapping � is called a
diffeomorphism. If the manifold M is mapped on a manifold S ∈ RD , D ≥ d, via
a diffeomorphism, then M and S are called diffeomorphic to each other. One says
that S is an embedding of the manifold M into the Euclidean space RD . Below, we
speak of a bounded and closed M . Boundedness means that M can be included into
a ball of a finite radius. Closedness means that all limit points of M belong to M .
Such a manifold in a finite-dimensional space is called compact.

The Question and Notations

Each phase orbit of the system (10.1) y(t), 0 ≤ t < ∞, on a manifold M cor-
responds to a time realisation of an observable η: η(t) = h(y(t)), 0 ≤ t < ∞.
The vector y(t0) determines the entire future behaviour of the system (10.1), in
particular, the entire realisation η(t), t ≥ t0. Is it possible to determine a state on
the manifold M at a time instant t0 and, hence, the entire future evolution from a
segment of the realisation η(t) around t0? In other words, can one “restore” a state
of the system from the values of η(t) on a finite-time interval? This is a key question
and Takens’ theorems give a positive answer under some conditions.

Let us introduce some notations necessary to formulate rigorously the time-delay
embedding theorem. A vector y(t) corresponds to a D-dimensional vector x(t) =
[η(t), η(t + τ), . . . , η(t + (D − 1)τ )]. Dependence of x on a simultaneous value of
y is given by a unique mapping � : M → RD expressed via the evolution operator
�t : M → M and the measurement function h : M → R as

x(t) = �(y(t)) ≡

⎡

⎢⎢
⎣

�1(y(t))
�2(y(t))

. . .

�D(y(t))

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

h(y(t))
h(�τ (y(t)))

. . .

h(�(D−1)τ (y(t)))

⎤

⎥⎥
⎦ . (10.2)

Smoothness of � (continuity, differentiability, existence and continuity of the
higher order derivatives) is determined by the smoothness of �τ and h. An image
of the manifold M under the mapping � is a certain set S ⊂ RD .

The above question can now be formulated as follows: Is � a diffeomorphism?
If yes, then S is an embedding of M and each vector x on S corresponds to a single
vector y on M .4 Then, x(t) can be used as a state vector to describe the dynamics
on M and Eq. (10.1) can be rewritten as

x(t0 + t) = ϕt (x(t0)), (10.3)

4 It means that for the same segments [η(t), η(t +τ), . . . , η(t +(D−1)τ )] encountered at different
time instants t , one observes the same continuation (i.e. the same future). It gives a justification
to the predictive method of analogues applied already by E. Lorenz. The method is based on the
search of the time series segments, which “resemble” a current segment, in the past and subsequent
usage of a combination of their “futures” as a forecast. In a modern formulation, it is realised with
local models (Sect. 10.2.1).
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where a new evolution operator is ϕt (x) = �(�t (�
−1(x))). Due to the diffeomor-

phism, local properties of the dynamics such as stability and types of fixed points
and others are preserved. Each phase orbit y(t) on M corresponds to an orbit x(t)
on S in a one-to-one way. If a system (10.1) has an attractor in M , then a system
(10.3) has an attractor in S. Such characteristics as fractal dimension and Lyapunov
exponents coincide for both attractors. In other words, the system (10.3) on the
manifold S and the system (10.1) on the manifold M can be considered as two
representations of the same dynamical system.

Obviously, the mapping � (10.2) is not always a diffeomorphism. Thus,
Fig. 10.2b gives an example where a smooth mapping � has a non-unique inverse
�−1. Another undesirable situation is encountered if �−1 is unique but non-
differentiable (Fig. 10.4). The latter property takes place at the return point on the
set S. In its neighbourhood, the two-dimensional vector (y1, y2) cannot be used to
describe the dynamics with a set of ODEs, since the return point would be a fixed
point so that S could not be a limit cycle. Here, the differentiability properties of M
and S differ due to non-differentiability of �−1.

Formulation of the Time-Delay Embedding Theorem

Coming back to the system (10.1) and the mapping (10.2), one can say that any
one of the above mentioned situations can be encountered for some �, M, h, d, D
and τ . Sets of self-intersections and return points on S = �(M) can be vast, which
is very undesirable. However, one can also meet a “good” situation of embedding
(Fig. 10.2a). The result formulated below was first obtained rigorously by Dutch
mathematician Floris Takens (1981) and then generalised in Sauer et al. (1991). It
shows under what conditions an embedding of an original compact d-dimensional
manifold M in the space RD is assured with the mapping (10.2). Takens’ theorem

Fig. 10.4 The situation when a projection of a one-dimensional manifold M exhibits a return point
on a plane
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is related to the Whitney’s embedding theorem (from the courses of differential
geometry), which concerns arbitrary mappings. Takens’ statement differs in that it
concerns the special case of the mappings (10.2) determined by an evolution opera-
tor of a dynamical system.

Theorem 1 Let M be a compact d-dimensional C2 manifold. For almost any pair of
functions �t and h, which are twice continuously differentiable on M, the mapping
Ψ : M → RD given by the formula (10.2) is a diffeomorphism for almost any
τ > 0 and D > 2d.

Comments

Diffeomorphism implies that an image of M under the mapping (10.2) is its embed-
ding. The space RD containing the image S = �(M) is called embedding space.
The term “almost any pair” is understood by Takens in the sense of genericity.
For instance, if for some �t the mapping (10.2) does not provide an embedding,
then there exists such an arbitrarily weak variation �t + δ�t that an embedding is
achieved. More rigorously, generic properties are fulfilled on an intersection of open
and everywhere dense sets. A metric analogue to genericity is prevalence (Sauer
et al., 1991). “Almost any τ” should be understood in a similar way. In particular, if
a limit cycle exists within M , the value of τ should not be equal to the period of that
cycle, see Sauer et al. (1991) for more detail.

Discussion

Thus, if the dimension of the time-delay vector x (10.2) is high enough, one typ-
ically gets an embedding of the manifold M and can use x as a state vector of a
deterministic model. It is possible to interpret the condition D > 2d vividly as fol-
lows (Malinetsky and Potapov, 2000). To establish possible non-uniqueness of the
mapping �−1, one must find such vectors y1 and y2 on M so that �(y1) = �(y2).
The latter equality is a set of D equations with 2d variables (d components for the
two vectors y1 and y2 specifying their location on M). Roughly speaking, this set
of equations has typically no solutions if the number of equations is greater than the
number of variables, i.e. if D > 2d. This is the contents of Takens’ theorem.

We stress again that the condition D > 2d is sufficient, but not necessary. If it
is fulfilled, a diffeomorphism is assured. However, if one is “lucky”, a good recon-
struction can be obtained for lower D as in Fig. 10.1a, b, where an embedding of a
one-dimensional manifold M is achieved at D = 1 and is not a degenerate case.

What are those non-generic cases when the theorem is invalid? Let us indicate
two examples (Malinetsky and Potapov, 2000):

(1) A measurement function is constant: h(y) = a. This is a smooth function, but
it maps the entire dynamics to a single point. This situation is almost surely
eliminated via a weak variation in the measurement function, i.e. via adding an
almost arbitrary “small” function of y to a.

(2) A system consisting of two unidirectionally coupled subsystems dy1
/

dt =
F(y1, y2), dy2

/
dt = G(y2) when only the driving subsystem is observed,
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i.e. η = h(y2). In a non-synchronous regime, such an observable does not carry
complete information about the driven subsystem y1. Therefore, an embedding
of the original dynamics is not achieved. This situation is eliminated almost
surely if an arbitrarily weak dependence on y1 is introduced into η.

Similar Theorems

A more general version of the theorem 1 is proven in Sauer et al. (1991). It concerns
the filtered embedding, where coordinates of x are not just subsequent values of an
observable but their linear combinations, which can be considered as outputs of a
linear non-recursive filter.

Moreover, Takens proved a similar theorem for successive derivatives used as
components of a state vector:

x(t) =

⎡

⎢⎢
⎣

η(t)
dη(t)

/
dt

. . .

dD−1η(t)
/

dt D−1

⎤

⎥⎥
⎦ , (10.4)

where D > 2d. The theorem is formulated in the same way as theorem 1, but
with stricter requirements to the smoothness of �t and h. Namely, one demands
continuous derivatives of the Dth order for each of these functions to assure the
existence of the derivatives entering Eq. (10.4). If the latter derivatives are approxi-
mated with finite differences, then the relationship (10.4) becomes a particular case
of the filtered embedding (Gibson et al., 1992).

In practice, one must always cope with noises. Takens’ theorems are not directly
related to such a case, although there are some generalisations (Casdagli et al., 1991;
Stark et al., 1997). Nevertheless, the theorems are of significant value for practical
modelling as discussed at the beginning of Sect. 10.1.

10.1.2 Practical Reconstruction Algorithms

10.1.2.1 Time-Delay Technique

This is the most popular reconstruction technique. One gets the vectors
{xi = (ηi , ηi+l , . . . , ηi+(D−1)l)}N−(D−1)l

i=1 from an observed scalar time series
{ηi = η(ti )}N

i=1 , ti = it . Theoretically, the value of the time delay τ = lt
can be almost arbitrary, but in practice one avoids both too small l, giving strongly
correlated components5 of the state vector, and too large l, introducing consid-
erable complications into the geometrical structure of the reconstructed attractor.

5 For l = 1 and a small sampling interval t , a reconstructed phase orbit stretches along the main
diagonal, since it appears that x1 ≈ x2 ≈ . . . ≈ xD .
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Therefore, it was suggested to choose the value of τ equal to the first zero of the
autocorrelation function (Gibson et al., 1992), first minimum of the mutual informa-
tion function (Fraser and Swinney, 1986) and so on (Liebert and Schuster, 1989).
One also uses a non-uniform embedding, where time intervals between subsequent
components of x are not the same, which is relevant for the dynamics with several
characteristic timescales (Eckmann and Ruelle, 1985; Judd and Mees, 1998). For the
dynamics representing alternating intervals of almost periodic and very complicated
behaviour, one has developed the variable embedding, where a set of time delays
depends on the location of x in the state space (Judd and Mees, 1998). Each of the
ideas is appropriate for a specific kind of systems and does not assure successful
results in general (Malinetsky and Potapov, 2000).

How to choose the model dimension D based on the analysis of an observed
time series? There are different approaches including the false nearest neighbour
technique (Kennel et al., 1992), the principal component analysis (Broomhead and
King, 1986), the Grassberger and Procaccia method (Grassberger and Procaccia,
1983) and the “well-suited basis” approach (Landa and Rosenblum, 1989). More-
over, one should often try different values of D and construct model equations for
each trial value until a “good” model is obtained. Then, the selection of D and even
of the time delays can be a part of a united modelling procedure, rather than an
isolated first stage.

10.1.2.2 False Nearest Neighbour Technique

It gives an integer-valued estimate of the attractor dimension. It is based on checking
the property that a phase orbit reconstructed in the space of the sufficient dimen-
sion must not exhibit self-intersections. Let us illustrate the technique with a sim-
ple example of reconstruction from a time realisation of a sinusoid η(t) = sin t ,
Fig. 10.5a.

At D = 1, i.e. x(t) = η(t), the reconstructed set lies on a line segment,
Fig. 10.5b. Then, a data point at the instant tk has the data points at the instants
ts and tl as its close neighbours. However, the latter two states of an original sys-
tem differ by the sign of the derivative of η(t). In a two-dimensional space with
x(t) = [η(t), η(t + τ)], all the points go away from each other. However, the points
at the instants tk and tl get weakly more distant, while the points at the instants
tk and ts become very far from each other, Fig. 10.5c. Accordingly, one calls the
neighbours at tk and tl “true” and the neighbours at tk and ts “false”.

One of the version of the algorithm is as follows. At a trial dimension D, one
finds a single nearest neighbour for each vector xk . After increasing D by 1, one
determines which neighbours appear false and which ones are true. Then, one com-
putes the ratio of the number of the false neighbours to the total number of the
reconstructed vectors. This ratio is plotted versus D as in Fig. 10.5d. If this relative
number of self-intersections reduces to zero at some value D = D∗, the latter is the
dimension of the space, where an embedding of the original phase orbit is achieved.
In practice, the number of the false neighbours becomes sufficiently small, starting
from some “correct” value D∗, but does not decrease to zero due to noises and other
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Fig. 10.5 An illustration to the false nearest neighbour technique: (a) a time realisation η(t), where
symbols indicate the data points η(tk), η(ts), η(tl ), and the close values of η together with the
points shifted by τ = 3t ; (b) an orbit reconstructed in a one-dimensional space; (c) an orbit
reconstructed in a two-dimensional space; (d) the number of the false nearest neighbours divided
by the total number of the reconstructed vectors in a time series versus the trial dimension of the
reconstructed vectors D

factors. Then, D∗ can be taken as a trial model dimension. It equals 2 for the exam-
ple illustrated in Fig. 10.5d (see, e.g., Malinetsky and Potapov, 2000 for details).

10.1.2.3 Principal Component Analysis

It can be used both for the dimension estimation and for the reconstruction of state
vectors. The technique is used in different fields and has many names. Its application
to the reconstruction was suggested in Broomhead and King (1986). The idea is to
rotate coordinate axes in a multidimensional space and choose a small subset of
directions, along which the motion mainly develops.

For simplicity of notations, let the mean value of η be zero. The vectors w(ti ) =
(ηi , ηi+1, . . . , ηi+k−1) of a sufficiently high dimension k are constructed. Com-
ponents of these vectors are strongly correlated if the sampling interval is small.
Figure 10.6 illustrates the case of a sinusoidal signal and the reconstruction of the
phase orbit in a three-dimensional space (k = 3).

One performs a rotation in this space so that the directions of new axes
(e.g. {s1, s2, s3} in Fig. 10.6b, c) correspond to the directions of the most intensive
motions in the descending order. Quantitatively, the characteristic directions and the
extensions of an orbit along them are determined from the covariance matrix � of
the vector w, which is a square matrix of the order k:
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Fig. 10.6 Noise-free harmonic oscillations: (a) reconstruction of the time-delay vectors w of the
dimension k = 3 from a scalar time series; (b) a reconstructed orbit is an ellipse stretched along
the main diagonal of the space Rk ; (c) a reconstructed orbit in a new coordinate system (after the
rotation), where the component of the reconstructed vectors along the direction s3 is zero

�i, j =
N−k∑

n=0

ηi+nη j+n, i, j = 1, . . . , k

It is symmetric, real valued and positive definite. Hence, its eigenvectors con-
stitute a complete orthonormal basis of the space Rk . Its eigenvalues are non-
negative. Let us denote them as σ 2

1 , σ
2
2 , . . . , σ

2
k in the non-ascending order and

the corresponding eigenvectors as s1, s2, . . . , sk . The transformation to the basis
s1, s2, . . . , sk can be performed via the coordinate change x′(ti ) = ST · w(ti ), where
S is a matrix with the columns s1, s2, . . . , sk and T means transposition. This is
known in the theory of information as the Karhunen and Loeve transform. One can
easily show that the covariance matrix of the components of the vector x′ is diagonal:

�′ = ST�S =

⎡

⎢⎢
⎣

σ 2
1 0 ... 0
0 σ 2

2 ... 0
... ... ... ...

0 0 ... σ 2
k

⎤

⎥⎥
⎦

i.e. the components of x′ are uncorrelated, which is a sign of a “good” reconstruc-
tion. Each diagonal element σ 2

i is the mean-squared value of the projection of w(ti )
onto the coordinate axis si . The values σ 2

i determine the extensions of the orbit
along the respective directions. Rank of the matrix � equals the number of non-zero
eigenvalues (these are σ 2

1 and σ 2
2 for the situation shown in Fig. 10.6b, c) and the

dimension of the subspace, where the motion occurs.
If a measurement noise is present, then all σ 2

i are non-zero, since noise con-
tributes to the directions, which are not explored by the deterministic component
of an orbit. In such a case, the dimension can be estimated as the number D of
considerable eigenvalues as illustrated in Fig. 10.7. Projections of w(ti ) onto the
corresponding directions (i.e. the first D components of the vector x′) are called
its principal components. The remaining eigenvalues constitute the so-called noise
floor and the respective components can be ignored. Thus, one gets D-dimensional
vectors x(ti ) with coordinates xk(ti ) = sk · w(ti ), k = 1, . . . , D.
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Fig. 10.7 Eigenvalues of the covariance matrix versus their order number: a qualitative illustra-
tion for k = 9. The “break point” D at the plot is an estimate of the dimension of an observed
motion

If there is no characteristic break at the plot, then one increases a trial dimension
k until the break emerges. The dimension estimate D is more reliable if the break is
observed at the same value of D under the increase in k.

The principal component analysis is a particular case of the filtered embedding.
It is very useful in the case of a considerable measurement noise, since it allows to
filter the noise out to a significant extent: a realisation of x1(t) is “smoother” than
that of the observable η(t).

10.1.2.4 Successive Derivatives and Other Techniques

The usage of the reconstructed vectors (10.4) is attractive due to the clear phys-
ical meaning of their components. Many processes are described with a higher
order model ODE (9.4), which involves successive derivatives of a single vari-
able (Sect. 9.1). Some ODEs can be rewritten in such a form analytically, e.g. the
Roessler system (see Sect. 10.2.2). However, an essential shortcoming in exploiting
the vectors (10.4) is high sensitivity of the approach to the measurement noise, since
the derivatives must be computed numerically (Sect. 7.4.2).

To summarise, there are many techniques to reconstruct a phase orbit. Having
only a scalar time series, one can use successive derivatives or time delays. At that,
several parameters can be selected in different ways, e.g. a time delay and a numeri-
cal differentiation scheme. Besides, one can use weighted summation (Brown et al.,
1994; Sauer et al., 1991); and integration (Janson et al., 1998), which is advanta-
geous for strongly non-uniform signals. One often exploits principal components,
empirical modes, conjugated signal and phase (Sect. 6.4.3). It is possible to use
combinations of all the techniques, e.g. to get some components via time delays,
additional ones via integration and the rest via differentiation (Brown et al., 1994).
In the case of a vector observable, one can restore variables from each of its compo-
nents with any combination of the above techniques. Hence, the number of possible
variants strongly increases (Cao et al., 1998; Celucci et al., 2003).
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10.1.2.5 Choice of Dynamical Variables

Which of the state vector versions should be preferred? This question is impor-
tant and attracts considerable attention (Letellier and Aguirre, 2002; Letellier et al.,
1998b; Small and Tse, 2004). Trying all possible variants in turn and approximating
a dependence dx/dt = f(x,c) or xn+1 = f(xn, c) for each of them is unfeasible, since
solving the approximation problem often requires significant computational efforts
and special approaches. Therefore, one should select a small number of reasonable
sets of dynamical variables in advance. It can be done based on the preliminary
analysis of experimental dependencies to be approximated (Rulkov et al., 1995;
Smirnov et al., 2002). The respective procedures exploit an obvious circumstance
that one needs such set of variables which would provide uniqueness and continu-
ity of the dependencies dx/dt (x) or xn+1(xn), where components of x are either
observed or computed from the observed data.

Fig. 10.8 Checking uniqueness and continuity of a dependence z(x) : (a) an illustration for D = 2;
(b) typical plots εmax(δ) for different choices of variables; the straight line is the best case, the
dashed line corresponds to non-uniqueness or discontinuity of z(x), the broken line corresponds to
a complicated dependence z(x) with the domains of fast and slow variations; (c) the plots of the
first, the second and the third iterates of a quadratic map; (d) the plots εmax(δ) for the dependence
of x(tn+1) on x(tn) in the three cases shown in panel (c)
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Let us denote the left-hand side of model equations as z: z(t) = dx(t)/dt for a set
of ODEs dx(t)/dt = f(x(t)) and z(tn) = x(tn+1) for a map x(tn+1) = f(x(tn), c).
After the reconstruction of the vectors x from an observable η, one should get a time
series {z(ti )}. It is achieved via the numerical differentiation of the series {x(ti )} for
a set of ODEs and via the time shift of {x(ti )} for a map. Further, it is necessary
to check whether close vectors x(t1) and x(t2) correspond to close simultaneous
vectors z(t1) and z(t2). A possible procedure is as follows (Smirnov et al., 2002).

A domain V containing the set of vectors {x(ti )} is divided into equal hypercubic
cells with the side δ (Fig. 10.8a). One selects all cells s1, . . . , sM such that each sk

contains more than one vector x(ti ). Thus, the cell sk corresponds also to more than
one vector z(ti ). The difference between the maximal and the minimal value of z
(one of the components of the vector z) over the cell sk is called local scattering
εk . Suitability of the quantities x and z for the global modelling is assessed from
the maximal local scattering εmax = max

1≤k≤M
εk and the plot εmax(δ). To construct a

global model, one should choose variables such that the plot εmax(δ) gradually tend
to the origin (Fig. 10.8b, straight line) for each of the approximated dependencies
zk(x), k = 1, . . . , D.

Moreover, it is desirable to provide the least slope of the plot εmax(δ), since one
needs then a simpler approximating function, e.g. a low-order polynomial. This is
illustrated in Fig. 10.8c, d, where the next value of an observable is shown versus
the previous one and an observable is generated by the first, the second or the third
iterate of the quadratic map x(tn+1) = λ − x2(tn). The plot for the first iterate is
the “least oscillating” and, therefore, the slope of εmax(δ) is the smallest. In this
case, one can get a “good” model most easily, since it requires the usage of only
the second-order polynomial. At that, the eighth-order polynomial is necessary to
describe the third iterate of the map. These three cases are even more different in
respect of the reconstruction difficulties in the presence of noise. Additional details
are given in Smirnov et al. (2002).

10.2 Multivariable Function Approximation

10.2.1 Model Maps

The time-delay embedding is typically used to construct multidimensional
model maps

xn = f (xn−D, xn−D+1, . . . , xn−1, c), (10.5)

where the variable x corresponds to an observable and the time delay is set equal
to l = 1 for the simplicity of notations. Various choices of the function f in Eq.
(10.5) are possible. One says that the function f , which is specified in a closed form
(Sect. 3.5.1) in the entire phase space, provides a global approximation. Then, one
also speaks of a global model and a global reconstruction. Alternatively, one can
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use a local approximation, i.e. the function f with its own set of parameter values
for each small domain of the phase space. Then, one speaks of a local model.

In practice, a global approximation with algebraic polynomials often performs
badly already for two-variable functions (Bezruchko and Smirnov, 2001; Casdagli,
1989; Judd and Mees, 1995; Pavlov et al., 1997. A pronounced feature is that the
number of model parameters and the model prediction errors rise quickly with the
model dimension D. The techniques with such a property are characterised as weak
approximation. They also include trigonometric polynomials and wavelets. In prac-
tical black box modelling, one often has to use D at least as large as 5–6. Therefore,
algebraic polynomials are not widely used.

Much efforts of researchers have been spent to strong approximation approaches,
i.e. the approaches which are relatively insensitive to the rise in D. They include
local techniques with low-order polynomials (Casdagli, 1989; Abarbanel et al.,
1989; Farmer and Sidorowich, 1987; Kugiumtzis et al., 1998; Sauer, 1993; Schroer
et al., 1998), radial, cylindrical, and elliptical basis functions (Giona et al., 1991;
Judd and Mees, 1995, 1998; Judd and Small, 2000; Small and Judd, 1998; Small
et al., 2002; Smith, 1992) and artificial neural networks (Broomhead and Lowe,
1988; Makarenko, 2003; Wan, 1993). All these functions usually contain many
parameters so that a careful selection of the model structure and the model size
is especially important to avoid overfitting (see Sects. 7.2.3 and 9.2).

10.2.1.1 A Generalised Polynomial

To construct a global model (10.5), one selects the form of f and estimates its
parameters via the ordinary LS technique:

S(c) =
N∑

i=D+1

(ηi − f (ηi−D, ηi−D+1, . . . , ηi−1, c))2 → min. (10.6)

To simplify computations, it is desirable to select the function f , which is linear
in its parameters c. This is the case for a function

f (x) =
P∑

k=1

ck fk(x) (10.7)

which is called a generalised polynomial with respect to a set of basis functions
f1, f2, . . . , fP . Then, the problem (10.6) is linear so that the local minima problem
is avoided. A particular case of such an approach is represented by an algebraic poly-
nomial. A trial polynomial order is increased until an appropriate model is obtained
or another condition is fulfilled as discussed in Sect. 7.2.3.

10.2.1.2 Radial Basis Functions

These are functions φk(x) = φ (‖x − ak‖ /rk), where ‖ · ‖ denotes a vector
norm, a “mother” function φ is usually represented by a well-localised function,
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Fig. 10.9 The plots of two-variable radial basis functions (qualitative outlook): three “Gaussian
hills”

e.g., φ(y) = exp(−y2/2), the quantities ak are called “centres” and rk are “radii”.
The model function f is taken to be a generalised polynomial with respect to the set
of functions φk : f (x,c) = ∑

k
ckφk(x). Each term essentially differs from zero only

within the distance about rk from the centre ak (Fig. 10.9). Intuitively, one can see
that such a superposition can approximate a very complicated smooth relief. Radial
basis functions possess many attractive properties and are often used in the approxi-
mation practice. However, we stop their discussion here and describe in more detail
two approaches, which are even more widespread.

10.2.1.3 Artificial Neural Networks

Models with ANNs (Sect. 3.8) are successfully used to solve many tasks. Their
right-hand side is represented by a composition of basis functions, rather than by
their sum. In contrast to the generalised polynomial (10.7), ANNs are almost always
non-linear with respect to the estimated parameters. This is the “most universal”
way of the multivariable function approximation in the sense that along with a firm
theoretical justification, it successfully performs in practice.

Let us introduce an ANN formally (in addition to the discussion of Sect. 3.8)
with an example of a multilayer perceptron. Let x = (x1, . . . , xD) be an argument
of a multivariable function f . Let us consider the set of functions f (1)j (x):

f (1)j (x) = φ

(
D∑

i=1

w
(0)
j,i · xi − υ

(0)
j

)

, (10.8)

where j = 1, . . . , K1, the constants w(0)
j,i are called weights, υ(0)j are thresholds, φ

is an activation function. The function φ is usually non-linear and has a step-like
plot. One often uses the classical sigmoid: φ(x) = 1/(1 − e−x ). Let us say that
each function f (1)j represents an output of a standard formal neuron with an order
number j , whose input is the vector x. Indeed, a living neuron sums up external
stimuli and reacts to them in a threshold way that determines the properties of the
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Fig. 10.10 Illustrations to artificial neural networks: (a) a standard formal neuron; (b) a scheme
for a one-layer ANN with a single output; a single rectangle denotes a single neuron; (c) a scheme
for a multi-layer ANN with a single output

function φ (Fig. 10.10a). The set of functions f (1)1 , . . . , f (1)K1
is called the set of

first-layer neurons (Fig. 10.10b). The values of f (1)j are the outputs of the first-layer

neurons. Let us denote them as vector y(1) with components y(1)j = f (1)j (x).

By defining the function f as a linear combination of f (1)j , one gets a one-layer
ANN model

f (x) =
K1∑

j=1

w(1)
j y(1)j − υ(1) ≡

K1∑

j=1

w(1)
j φ

(
D∑

i=1

w(0)
j,i xi − υ

(0)
i

)

− υ(1), (10.9)

where w(1)
j , υ(1) are additional weights and a threshold, respectively. The number of

free parameters is P = K1(D+1)+1. This representation resembles the generalised
polynomial (10.7), but the ANN depends on w(0)

j,i and υ(0)j in a non-linear way.

By induction, let us consider a set of K1-variable functions f (2)k , k = 1, . . . , K2,
of the form (10.9). These are second-layer neurons, whose input is the output y(1)

of the first-layer neurons (Fig. 10.10c). Let us denote their output values as a vector
y(2) of the dimension K2 and define the function f as a linear combination of the
output values of the second-layer neurons:

f (x) =
K2∑

j2=1

w(2)
j2
φ

⎛

⎝
K1∑

j1=1

w(1)
j2, j1

φ

(
D∑

i=1

w(0)
j1,i

xi − υ
(0)
j1

)

− υ
(1)
j2

⎞

⎠ − υ(2). (10.10)

This is a two-layer ANN which involves compositions of functions. The latter
circumstance makes it essentially different from the pseudo-linear model (10.7).
Increasing the number of layers is straightforward.

To solve the approximation problems, one most often uses two-layer ANNs
(10.10) and sometimes three-layer ones (Malinetsky and Potapov, 2000). The
increase in the number of layers does not lead to a significant improvement.
Improvements can be more often achieved via the increase in the number of neu-
rons in each layer K1, K2. A theoretical base underlying the usage of the ANNs is
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the generalised approximation theorem (Weierstrass’ theorems are its partial cases),
which states that any continuous function can be arbitrarily accurately uniformly
approximated with an ANN. A rigorous exposition is given, e.g., in Gorban’ (1998).

The procedure for the estimation of parameters in an ANN via the minimisa-
tion (10.6) is called learning of an ANN. This is a problem of multidimensional
non-linear optimisation. There are special “technologies” for its solution includ-
ing backward error propagation algorithm, scheduled learning, learning with noise,
stochastic learning (genetic algorithms and simulated annealing), etc. An ANN may
contain many superfluous elements so that it is very desirable to make the struc-
ture of such a model (i.e. a network architecture) “more compact”. For that, one
excludes from a network those neurons whose weights and thresholds remain almost
unchanged during the learning process.

If several alternative ANNs with different architectures are obtained from a train-
ing time series, then the best of them is usually selected according to the least test
error (Sect. 7.2.3). To get an “honest” indicator of its predictive ability, one uses one
more data set (not the training one and not the test one, since both of them are used
to get the model), which is called a validation time series.

An advantage of an ANN over other constructions in empirical modelling is not
easy to understand (Malinetsky and Potapov, 2000). If one gets an ANN, which
performs well, it is usually unclear why this model is so good. It is the problem of
the “network transparency”; a model of a black box is also a black box in a certain
sense. Yet, even such a model can be investigated numerically and used to generate
predictions.

10.2.1.4 Local Models

Local models are constructed so as to minimise the sum of squares like Eq. (10.6)
over a local domain of the phase space. Thus, to predict the value ηi+D , which fol-
lows a current state xi = [ηi , ηi+1, . . . , ηi+D−1], one uses the following procedure.
One finds k nearest neighbours of the vector xi among all the vectors in the training
time series (in the past). These are vectors with time indices n j , whose distance to
xi are smallest:

∥∥xn j − xi
∥∥ ≤ ‖xl − xi‖ , j = 1, . . . , k, l �= i, l �= n j . (10.11)

They are also called the analogues of xi , see Figs. 10.11 and 10.12.
The values of an observable, which followed the neighbours xn j in the past, are

known. Hence, one can construct the model (10.5) from those data. For that, one
typically uses a simple function f (x,c), whose parameters are found with the ordi-
nary LS technique (Sect. 8.1.1), although more sophisticated estimation techniques
are available (Kugiumtzis et al., 1998). An obtained function f (x, ĉi ) is used to gen-
erate a prediction of the value ηi+D according to the formula η̂i+D = f (xi , ĉi ), see
Fig. 10.12. The vector ĉi has a subscript i , since it corresponds only to the vicinity of
the vector xi . According to the so-called iterative forecast (Sect. 10.3), one predicts
the next value ηi+D+1 by repeating the same procedure of the neighbour search and
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Fig. 10.11 Illustration for a three-dimensional local model: nearest neighbours (filled circle) of a
vector xi (filled squares) found in a training time series

Fig. 10.12 Nearest neighbours (open circles) of a vector xi (filled circles) and the vectors following
them in time (open triangles). The latter are used to predict the vector xi+1 (filled triangle)

parameter estimation for the model state vector x̂i+1 = (ηi+1, . . . , ηi+D−1, η̂i+D).
Thereby, one gets a new forecast η̂i+D+1 = f (x̂i+1, ĉi+1) and so on.

Relying on the Taylor polynomial expansion theorem, one uses such approx-
imating functions as the constant f (x, c) = c1, the linear function f (x, c) =
c1 +

D∑

j=1
c j+1x j and the polynomials of a higher order K . On the one hand, an

approximation error is smaller if the neighbours are closer to the current vector.
Therefore, it should decrease with an increasing time series length, since closer
returns to the vicinity of each vectors would occur. On the other hand, one should
use a greater number of neighbours k to reduce the noise influence. Thus, a trade-off
is necessary: one cannot use too distant “neighbours” to keep an error of approxi-
mation with a low-order polynomial small, but one cannot take too a small number
of the nearest neighbours as well.
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Local constant models are less requiring to the amount of data and more robust to
noise since they contain a single free parameter for each small domain. Local linear
models are superior for weak noise and sufficiently long time series: The concrete
values depend on the necessary value of D. To construct a local linear model, one
must use at least k = D+1 neighbours, since a model contains D+1 free parameters
for each “cell”. Its approximation error scales as λ2 for a very long time series and
“clean” data, where λ is a characteristic distance between the nearest neighbours in
the time series. Local models with higher order polynomials are rarely used.

For the above local models, the function f is usually discontinuous, since differ-
ent “pieces” of local approximation are not matched with each other. Sometimes,
it leads to undesirable peculiarities of the model dynamics, which are not observed
for the original system. One can avoid the discontinuity via triangulation (Small and
Judd, 1998). At that, a model acquires some properties of the global approximation
( f becomes continuous) and is described as a global-local model. However, the
triangulation step makes the modelling procedure much more complicated.

Local models are often exploited for practical predictions. There are various
algorithms taking into account delicate details. In essence, this is a contemporary
version of the predictive “method of analogues” (Fig. 10.11).

10.2.1.5 Nearest Neighbour Search

It can take much time if a training time series is long. Thus, if one naively computes
distances from a current vector to each vector in the time series and selects the least
ones, the number of operations scales as N 2. Below, an efficient search algorithm
based on the preliminary partition of the training set into cells (Kantz and Schreiber,
1997) is described.

The above local models are characterised by fixed number of neighbours. Let
us consider another (but similar) version: local models with fixed neighbourhood
size. The difference is that one looks for the neighbours of a vector xi , which are
separated from xi by a distance not greater than δ (Fig. 10.12):

∥∥xn j − xi
∥∥ ≤ δ. (10.12)

The number of neighbours may differ for different xi , but it should not be less
than D+1. If there are too a few neighbours, one should increase the neighbourhood
size δ. Under a fixed time series length, an optimal neighbourhood size rises with the
noise level and the model dimension. An optimal δ is selected via trials and errors.
One can use any norm of a vector in Eq. (10.11) or (10.12). The most convenient
one is ‖x‖ = max{|x1|, |x2|, . . . , |xD|}, since it is quickly computed. In such a case,
the neighbourhood (10.12) is a cube with the side of length 2δ.

Computation of the distances from a reference vector xi to all the vectors in the
training time series would require a lot of time. It is desirable to skip the vectors,
which deliberately cannot be close neighbours of xi . For that, one preliminarily
sorts all the vectors based on the first and the last of their D coordinates. Let ηmin
and ηmax be the minimal and maximal values, respectively, of an observable over
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Fig. 10.13 Vectors of a training time series are sorted based on their first and last coordinates:
one creates a square array whose elements contain information about the number of vectors in the
respective cell and their time indices

the training series. Then, the corresponding orbit on the plane (x1, xD) lies within
the square with the sides belonging to the straight lines defined by the equations
x1 = ηmin, x1 = ηmax, xD = ηmin, xD = ηmax (Fig. 10.13). The square is divided
into square cells of size δ. One determines to which cell each vector falls and creates
an array, whose elements correspond to the cells. Each element contains time indices
of the vectors falling into the respective cell. To find the nearest neighbours of a
vector x, one checks into which cell it falls and computes distances from x to the
vectors belonging to the same cell or the cells having a common vertex with it. In
total, one must check at most nine cells. This algorithm speeds up the process of
neighbour search and requires the order of N operations if there are no too densely
and too rarely “populated” domains in the reconstructed phase space.

10.2.1.6 A Real-World Example

Chaotic dynamics of a laser (Fig. 10.14) was suggested as a test data set for the
competition in time series prediction at the conference in Santa-Fe in 1993 (Ger-
schenfeld and Weigend, 1993). Competitors had to provide a continuation of the
time series, namely to predict the next 100 data points based on 1000 given data
points. A winner was Eric Wan, who used a feed-forward ANN-based model of the
form (10.5) (Wan, 1993).

Fig. 10.14 Data from a ring laser in a chaotic regime (Hubner et al., 1993), t = 40 ns
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Figure 10.15a shows the observed time series (thin lines) and predictions (thick
lines) with the ANN-based model for different starting instants (Wan, 1993). Sim-
ilar prediction accuracy is provided by a local linear model (Sauer, 1993), see
Fig. 10.15b. Accuracy of predictions for different intervals depends on how accu-
rately the models predict an instant of switching from the high-amplitude oscilla-
tions to the low-amplitude ones. Thus, the local linear model performs worse than
the ANN for the starting instants 1000 and 2180 and better for the three others.
Local linear models appear to reproduce better some dynamical characteristics of
the process and its long-term behaviour (Gerschenfeld and Weigend, 1993); the top
panel in Fig. 10.15b shows an iterative forecast over 400 steps, which agrees well
with the experimental data. The long-term behaviour is described a bit worse with
the ANN (Sauer, 1993; Wan, 1993).

It is interesting to note that Eric Wan used ANN with 1105 free parameters
trained on only 1000 data points. The number of parameters was even greater than
the number of data points that usually leads to an ill-posed problem in statistics.

Fig. 10.15 Forecast of the laser intensity: (a) an ANN-based model (Wan, 1993); (b) a local linear
model (Sauer, 1993). Laser intensity is shown along the vertical axis in arbitrary units. Time is
shown along the horizontal axis in the units of sampling interval. The thin lines are the observed
values and the thick lines are the predictions. Different panels correspond to predictions starting
from different time instants: 1000, 2,180, 3,870, 4,000, and 5,180. The number at the top left
corner of each panel is the normalised mean-squared prediction error over the first 100 data points
of the respective data segment. The top panels show the segment proposed for the competition in
Santa-Fe: the data points 1001–1100 were to be predicted
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However, an ANN is a highly non-linear model function so that the number of
“effective degrees of freedom” (“effectively free” parameters) is not equal to the
full number of estimated parameters. There are constraints imposed on the possi-
ble model behaviour by the topology of the ANN. The author performed cross-
validation (Sect. 7.2.3) by using only 900 data points as the training time series and
100 data points as the test one. He stated that there were no signs of overfitting when
the size of the network was changed. Still, he noted an indirect sign of overfitting:
after a good short-term forecast over several dozens of time steps, the ANN-based
model exhibited “noisier” long-term behaviour than it is observed in the original
data (Fig. 10.14). This can also be the reason why the local linear model of Tim
Sauer appeared superior for the description of the long-term behaviour. An overall
judgement seems to be that an ANN and a local linear model are approximately
equally good in the example considered.

A number of applications of local models to predictions can be found, e.g.,
in Farmer and Sidorowich (1987); Kantz and Schreiber (1997); Kugiumtzis et al.
(1998). ANN-based models are used probably more often, since they are less
demanding with respect to the time series length and noise level. There are exam-
ples of their successful applications even to geophysical and financial predictions
(Makarenko, 2003). Forecasts with other models of the form (10.5) are described,
e.g., in Judd and Small (2000); Small and Judd (1998).

10.2.2 Model Differential Equations

In construction of model ODEs from a scalar time series, one often gets state vectors
with successive derivatives [η, dη

/
dt, . . . , dD−1η

/
dt D−1] and uses the standard

form of model equations (Sect. 3.5.3):

dDx
/

dt D = f (x, dx
/

dt, . . . , dD−1x
/

dt D−1, c) (10.13)

where η = x . The approximating function f is selected in the same way as described
above for the models (10.5). Here, one more often observes “smoother” dependen-
cies to be approximated and uses algebraic polynomials

f (x1, x2, ..., xD, c) =
K∑

l1,l2,...,lD=0

cl1,l2,...,lD

D∏

j=1

x
l j
j ,

D∑

j=1

l j ≤ K . (10.14)

Model ODEs (10.13) with ANNs and other functions are rarely used (Small et al.,
2002).

Some systems can be rewritten in the standard form (10.13) analytically. Thus,
the Roessler system, which is a paradigmatic chaotic system, reads as
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dx
/

dt = −y − z,
dy
/

dt = x + C1 y,
dz
/

dt = C2 − C3z + xz.
(10.15)

One can show that it can be reduced to a three-dimensional system with succes-
sive derivatives of y and the second-order polynomial in the right-hand side:

dx1
/

dt = x2,

dx2
/

dt = x3,

dx3
/

dt = −C2 − C3x1 + (C1C3 − 1)x2 + (C1 − C3)x3 − C1x2
1+

+(C2
1 + 1)x1x2 − C1x1x3 − C1x2

2 + x2x3,

(10.16)

where x1 = y. With successive derivatives of x and z, one gets the equations simi-
lar to Eq. (10.16), but with rational functions in the right-hand side (Gouesbet and
Letellier, 1994).

The standard models are used in practice (see, e.g., Gouesbet, 1991; Gouesbet
and Letellier, 1994; Gouesbet et al., 2003b Gribkov et al., 1994a, 1994b; Letellier
et al., 1995, 1997, 1998a; Pavlov et al., 1999), but successful results are quite rare.
The usage of the model structure (10.13) with an algebraic polynomial (10.14) often
leads to quite cumbersome equations.

In construction of ODEs from a vector time series, everything is similar, but one
looks for D scalar-valued functions rather than for a single one (analogous to the
“grey box” case described in Sect. 9.1).

10.3 Forecast with Various Models

The novel techniques developed within the non-linear dynamics framework and
discussed above are often the most efficient ones to predict complex real-world
processes. Especially, this is the case when it appears sufficient to use a low-
dimensional model. Multiple non-linear dynamics techniques can be distinguished
according to different aspects: iterative forecast versus direct forecast; model maps
of different kinds, e.g., global models versus local models; model maps versus
model ODEs. Below, advantages and disadvantages of different approaches are
briefly discussed and compared. To run ahead, the most efficient tool is usually a
model map (global or local one depending on the amount of available data and
the necessary model dimension) with an iterative, direct or combined prediction
technique (depending on the required advance time). However, let us start the com-
parison with “older” approaches.

10.3.1 Techniques Which Are not Based on Non-linear
Dynamics Ideas

For very simple signals, good predictions can be achieved even with explicit
functions of time (Chap. 7). For stationary irregular signals without signs of
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non-linearity, the most appropriate tool is linear ARMA models (Sects. 4.4 and 8.1)
despite their possibilities being quite limited. Thus, one can show that prediction
with a linear ARMA model can be reasonably accurate only over an interval of the
order of the process correlation time τcor (Anosov et al., 1995), i.e. a characteristic
time of the autocorrelation function decay (see Sect. 2.3, Fig. 2.8).

For a chaotic time series, τcor can be quite small making possible only quite
short-term predictions with an ARMA model. Although a chaotic process cannot be
accurately predicted far in the future in principle, the prediction time can be much
greater than τcor for non-linear models. It can be roughly estimated with the formula
(2.34): τpred = (

1
/

2�1
)

ln
(
σ 2

x

/(
σ 2
ν + σ 2

μ + σ 2
M

))
. If noises and model errors are

not large, then τpred can strongly exceed the correlation time roughly estimated as
τcor ∼ 1

/
�1 (see Sect. 2.4 and Kravtsov, 1989; Smith, 1997).

10.3.2 Iterative, Direct and Combined Predictors

One can predict the values of an observable following the last value in a time series
ηN with a model (10.5) via the above-mentioned (Sect. 10.2.1) iterative way:

(i) One-step-ahead prediction is generated as

η̂N+1 = f (xN−D+1, ĉ) = f (ηN−D+1, ηN−D+2, . . . , ηN , ĉ). (10.17)

(ii) The predicted value x̂N+1 is considered as the last coordinate of the new state
vector x̂N−D+2 = (ηN−D+2, ηN−D+3, . . . , ηN , η̂N+1);

(iii) The vector x̂N−D+2 is used as an argument of the function f to generate a new
forecast η̂N+2 = f (x̂N−D+2, ĉ) and so on.

Thus, one gets a forecast η̂N+l over any number of steps l ahead.
Alternatively, one can get an l-step-ahead forecast by constructing a model which

directly approximates dependence of ηi+l on (ηi−D+1, ηi−D+2, . . . , ηi ) instead of
making l iterations of the map (10.5). The form of such a dependence can be rather
complicated for the chaotic dynamics and large l due to high sensitivity of the future
behaviour ηi+l to the initial conditions xi−D+1. As a result, for a very large l, one
gets an approximately constant model function f ≈ 〈η〉 and, hence, a low prediction
accuracy. However, the direct approach can be advantageous for moderate values
of l.

How does the prediction time for both approaches depend on the time series
length N and other factors? This question can be answered theoretically for a local
model with a polynomial of an order K . According to the estimates of Casdagli
(1989) and Farmer and Sidorowich (1987), the prediction error grows with l as σM ·
e�1lt for the iterative technique and as σM · e(K+1)Hlt for the direct technique,
where H is the sum of the positive Lyapunov exponents. Thus, the error grows faster
for the direct approach. The reason is mentioned above: it is difficult to approximate
the dependence of the far future on the present state. However, this superiority of
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the iterative technique takes place only if the model (10.5) gives very accurate one-
step-ahead predictions, which are achieved only for a very long training time series
and a very low noise level. Otherwise, the direct technique can give more accurate
l-step-ahead predictions for l greater than 1 but less than a characteristic time of the
divergence of initially nearby orbits (Judd and Small, 2000). This is because a one-
step-ahead predictor (10.5) can exhibit systematic errors (due to an inappropriate
approximating function or an insufficient model dimension), whose accumulation
over iterations can be more substantial than the approximation error of the direct
approach.

To improve predictions for a moderate advance time l, a combined “predictor –
corrector” approach is developed in Judd and Small (2000), which is as follows.
One generates a forecast via a direct or an iterative way with an existing model. Let
us call it a “base predictor”. Then, one “corrects” the predictions with an additional
model map (the so-called “corrector”) which is also constructed from a training time
series and describes the dependence of an l-step-ahead prediction error of the base
predictor on the prediction itself. A functional form of the corrector is taken much
simpler than that for the base predictor. The combination “predictor – corrector”
can give essentially more accurate forecasts in comparison with the “pure” direct
and iterative approaches.

Finally, we note an important conceptual distinction between the dynamical
models (10.5) and explicit functions of time (Sect. 7.4.1). In contrast to explicit
extrapolation of a temporal dependence, the model (10.5) relies on interpolation
in the phase space and, therefore, appears much more efficient. Indeed, a current
value of the state vector xi used to generate a prediction typically lies “between”
many vectors of the training time series, which are used to construct the model
(Fig. 10.12). If the model state vector x under iterations of the model map goes
out of the domain populated by the vectors of the training time series, the usage of
the model to generate further predictions is tantamount to extrapolation in the phase
space. Then, the forecasts get much less reliable and a model orbit may behave quite
differently from the observed process, e.g. diverge to infinity. The latter often occurs
if a model involves an algebraic polynomial, which usually quite badly extrapolates.

10.3.3 Different Kinds of Model Maps

Let us compare predictive abilities of the models (10.5) for different forms of the
function f .

Algebraic polynomials of a moderate order K are quite efficient to approximate
gradually varying one-variable functions without discontinuities and breaks. Only
cubic or higher order splines are even better in this case (Johnson and Riess, 1982;
Kalitkin, 1978; Press et al., 1988; Samarsky, 1982; Stoer and Bulirsch, 1980). The
greater the necessary model dimension D and the polynomial order K , the less the
probability of successful modelling results with algebraic polynomials.

Rational functions are efficient under the same conditions but can better describe
dependencies with the domains of fast variations. Trigonometric polynomials and
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wavelets (Sect. 6.4.2) are also kinds of weak approximation. They perform well for
dependencies with specific properties described in Sect. 7.2.4.

Radial basis functions (Judd and Mees, 1995) are much superior to the mentioned
approaches in the case of a large model dimension (roughly speaking, the dimension
greater than 3). Artificial neural networks exhibit similar performance. According to
some indications (Casdagli, 1989; Wan, 1993), the ANNs approximate complicated
dependencies even better. Requirements to the amount of data and noise level are
not very strict for all the listed models, since all of them are global.

Local linear models are very efficient for moderate model dimensions (less than
a moderate number depending on the length of a training time series), long time
series (giving a considerable number of the close neighbours for each state vector)
and low levels of the measurement noise. Requirements to the amount of data and
noise level are quite strict. Local constant models are better than local linear ones
for higher noise levels and shorter time series.

In any case, all the approaches suffer from the curse of dimensionality. In prac-
tice, very high-dimensional motions (roughly, with the dimensions about 10 or
greater) typically are not successfully described with the above empirical models.

10.3.4 Model Maps Versus Model ODEs

In general, model maps give better short-term forecasts than do ODEs (Small et al.,
2002). It can be understood in analogy with the situation, where the iterative pre-
dictions are less accurate than the direct ones due to significant errors of the one-
step-ahead predictor (10.5). Model ODEs are constructed so as to approximate a
dependence of the phase velocity dx

/
dt on x (9.3), i.e. to provide better forecasts

over short time intervals: x(ti+1) ≈ x(ti )+ (
dx(ti )

/
dt
)
t . Then, the integration of

ODEs to predict distant future values resembles an iterative forecast. It can be less
precise if a systematic error is present in the model ODEs.

Empirical model maps are often superior even for long-term description of the
observed dynamics (Small et al., 2002). Besides, their construction and exploitation
are simpler: One does not need numerical differentiation of the signals and numeri-
cal integration of the equations.

Model ODEs are a good choice if they are “relatives” to an object, i.e. if an
original dynamics yields almost exactly to a set of ODEs with some known structure.
Such a case is more typical for the “transparent box” or the “grey box” settings and
almost improbable without detailed prior information.

Yet, many authors deal with the construction of model ODEs even under the
“black box” setting. It is related in part to the problem of the model “transparency”.
If one gets a “good” model, it is desirable to understand how it “works” and to
interpret its variables and parameters from the physical viewpoint. One may hope
for such physical interpretations when model ODEs with algebraic polynomials are
used, since asymptotic models of many real-world processes take such a form, e.g.,
in chemical kinetics and laser physics. For the same reason, one can use model
ODEs with the successive derivatives (10.4) rather than with the time-delay vectors:
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derivatives can be easily interpreted as velocity, acceleration, etc. However, the hope
for physical interpretations does not usually prove to be correct: If one does not
include physical ideas into the structure of model ODEs in advance (Bezruchko
and Smirnov, 2001; Smirnov and Bezruchko, 2006), it gets almost impossible to
extract physical sense from an algebraic polynomial (10.14) or a similar universal
construction a posteriori.

10.4 Model Validation

Though it is relevant to perform the residual error analysis (see Sect. 7.3), if a
dynamical noise is assumed to influence an original dynamics, one typically com-
putes model characteristics popular in the theory of dynamical systems and com-
pares them to experimental estimates to validate a dynamical model.

(i) For a deterministic model, predictability time can be theoretically estimated
as τpred = (

1
/

2�1
)

ln
(
σ 2

x

/(
σ 2
ν + σ 2

μ + σ 2
M

))
. For an adequate model, this

estimate must coincide with the corresponding empirical estimate.
(ii) Qualitative similarity of the phase orbits projected onto different planes. This

subjective criterion seems important. It is directed to the assessment of the
similarity between essential features of an object and model dynamics. Its
quantitative formulations lead to several ways of model validation, which are
mentioned below following the review (Gouesbet et al., 2003).

(iii) Comparison of invariant measures (probability distribution densities for a state
vector) or their projections (marginal probability distributions). The approach
applies to stochastic models as well.

(iv) Comparison of the largest Lyapunov exponent of a model attractor with its
estimate obtained from an observed time series.

(v) Comparison of fractal dimensions and entropies of a model attractor with their
estimates obtained from an observed time series.

(vi) Comparison of topological properties. This delicate approach is based on the
search and analysis of unstable periodic orbits embedded into an attractor and
the determination of their mutual location in the phase space. Strictly speaking,
it applies only to deterministic systems, whose dimensionality is not greater
than three, and represents a very strict test for a model. If a model reproduces a
major part of unstable orbits found from an observed time series, it is a strong
evidence in favour of its validity.

(vii) Comparison of the Poincare maps. It is easily achieved for one-dimensional
Poincare maps. As a rule, one analyses a dependence of the next local max-
imum value of an observable on its previous local maximum. The approach
relates to the analysis of the topological properties of attractors and is often
used in combination with the latter.

(viii) Synchronisation of model dynamics by an original signal. A model is regarded
valid if its dynamics synchronise up to a given accuracy by an observed time
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series, used as a driving, under a moderate driving intensity (Brown et al.,
1994). This approach applies if model parameters were not estimated via
synchronisation-based technique (Sect. 8.2.1) from the same time series.

(ix) It has been suggested to check whether a model has the same number of attrac-
tors of the same type as an object; whether the attractors of a model and an
object are located in the same domains of the phase space and whether their
basins of attraction coincide. These are very strict tests and in practice no
empirical model can usually pass them.

Finally, we note that modelling of spatially extended systems with partial differ-
ential equations and other tools is actively studied for the last years (Bar et al., 1999;
Parlitz and Mayer-Kress, 1995; Parlitz and Merkwirth, 2000; Sitz et al., 2003; Voss
et al., 1998) which is not discussed here. Also, we have only briefly touched upon
stochastic model equations (Sitz et al., 2002; Timmer, 2000; Tong, 1990). Diverse
useful information on those and adjacent subjects can be found, in particular, at the
websites mentioned in the Preface.
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Chapter 11
Practical Applications of Empirical Modelling

It is difficult even to list all fields of knowledge and practice where modelling
from data series is applied. One can say that they range from astrophysics
to medicine. Purposes of modelling are diverse as well. Therefore, we confine
ourselves with several examples demonstrating practical usefulness of empirical
modelling.

The most well-known application is, of course, a forecast (see Sects. 7.4.1,
10.2.1 and 10.3). Indeed, it seems the most intriguing problem of the data analy-
sis (Casdagli and Eubank, 1992; Gerschenfeld and Weigend, 1993; Kravtsov, 1997;
Soofi and Cao, 2002): one often hears about weather and climate forecasts, pre-
diction of earthquakes and financial indices, etc. Still, empirical models obtained
as described above accurately predict such complicated processes only rarely. The
main obstacles are the curse of dimensionality, deficit of experimental data, consid-
erable noise levels and non-stationarity. However, the chances for accurate predic-
tions rise in simpler and more definite situations.

Another useful possibility is validation of physical ideas about an object under
study. Modelling from time series allows to improve one’s understanding of the
“mechanisms” of an object functioning. High quality of a model evidences validity
of the underlying substantial ideas (see Sects. 8.3 and 9.3). Such a good model can
be further used to reach practical purposes.

Less known are applications of empirical modelling to non-stationary data anal-
ysis. Non-stationarity is ubiquitous in nature and technology. In empirical mod-
elling, it is important to cope with non-stationary signals properly. Quite often,
non-stationarity is just a harmful obstacle in modelling. However, there are many
situations where this is not the case. One the one hand, a natural non-stationarity of
a real-world signal can be of interest by itself (Sect. 11.1). One the other hand, arti-
ficially introduced non-stationarity of a technical signal can be a way of information
transmission (Sect. 11.2).

A very promising and widely required application is characterisation of direc-
tional (causal) couplings between observed processes. It is discussed in more
detail, than the other mentioned problems, in Chap. 12. Several other opportunities
such as prediction of bifurcations and signal classification are briefly described in
Sect. 11.3.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_11,
C© Springer-Verlag Berlin Heidelberg 2010
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11.1 Segmentation of Non-stationary Time Series

In the theory of random processes, non-stationarity of a process implies temporal
changes in its multidimensional distribution functions. Majority of real-world pro-
cesses, especially in biology, geophysics or economics, look non-stationary since
their characteristics are not constant over an observation interval. Non-stationarity
leads to significant difficulties in modelling which are comparable with the curse
of dimensionality. However, character of non-stationarity may carry an important
information about properties of an object under study.

The term “dynamical non-stationarity” refers to a situation where an original
process can be described with differential or difference equations whose parame-
ters vary in time (Schreiber, 1997, 1999). Proper characteristics of dynamical non-
stationarity are useful, e.g., to detect a time instant of a parameter change more accu-
rately, than it can be done with characteristics of probability distribution functions.
Indeed, if a dynamical regime looses its stability after a parameter change, a phase
orbit may remain in the same area of the phase space for a certain time interval.
Hence, statistical properties of an observed time series do not change rapidly. Yet,
another regime will be established in the future and it may be important to anticipate
upcoming changes as early as possible.

According to a basic procedure for the investigation of a possibly non-stationary
process, one divides an original time series into M segments of length L ≤ Nst,
over which the process is regarded stationary. Then, one performs reconstruction
of model equations or computes some other statistics (sample moments, power
spectrum, etc.) for each segment N j separately. After that, the segments are com-
pared to each other according to the closeness of their model characteristics or other
statistics. Namely, one introduces the distance d between segments and gets matrix
of distances di, j = d(Ni , N j ). The values of the distances allow to judge about
stationarity of the process. The following concrete techniques are used.

(i) Comparison of the sample probability distributions according to the χ2 criterion
(Hively et al., 1999). One divides the range of the observable values into H bins
and counts the number of data points from each segment falling into each bin.
A distance between two segments is computed as

d2
i, j =

H∑

k=1

(nk,i − nk, j )
2

nk,i + nk, j
,

where nk,i and nk, j are the numbers of data points in the kth bin from the i th
and j th segment, respectively. This quantity can reveal non-stationarity in the
sense of a transient process for a system with a constant evolution operator.

(ii) Comparison of empirical models. One constructs global models and gets esti-
mates of their parameter vectors ĉi , ĉ j for the i th and j th segments, respec-
tively. A distance between the segments can be defined, e.g., as a Euclidean
distance between those estimates: d2

i, j = ∑P
k=1(ĉk,i − ĉk, j )

2 (Gribkov and
Gribkova, 2000).
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Fig. 11.1 Non-stationary data analysis: (a) a time realisation of the system (11.1); (b) a recurrence
diagram where the distances between time series segments are computed based on the χ2 criterion
for the sample probability densities; (c), (d) the distances are the Euclidean distances between
parameter vectors of the models xn+1 = f (xn, c) with a polynomial f of the order K = 2 (c) and
K = 6 (d)

The results of such an analysis of an exemplary time series (Fig. 11.1a) are conve-
niently presented in a kind of “recurrence diagram” (Fig. 11.1b), where starting time
instants of the i th and j th segment are shown along the axes. The distances between
the segments are indicated in greyscale: white colour corresponds to strongly differ-
ent segments (large distances) and black one to “almost the same” segments (zero
distances). To illustrate possibilities of the approach, let us consider an exemplary
one-dimensional map

xn+1 = c0(n)cos xn (11.1)

with an observable η = x and a time series of the length of 2000 data points.
The parameter c changes its value at a time instant n = 1000 from c0 = 2.1

corresponding to a chaotic regime to c0 = 2.11735 corresponding to a period-7
cycle. However, the latter regime is clearly established after a sufficiently long tran-
sient process (about 400 iterations) so that majority of statistical properties such
as the sample mean and the sample variance in a relatively short moving win-
dow get clearly different only at a time instant of about n = 1400 (Fig. 11.1a).
Figure 11.1b–d show the recurrence diagrams for the time series segments of the
length of 200 data points. A big dark square on a diagonal corresponds to a
quasi-stationary segment, while a boundary between dark areas is a time instant
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when the process properties reflected by the distance between the segments change.
Figure 11.1b shows a diagram based on the χ2 criterion. Figure 11.1c, d is obtained
via the construction of the models xn+1 = f (xn, c) with algebraic polynomials of
the orders K = 2 (a less adequate model, Fig. 11.1c) and K = 6 (a more ade-
quate model, Fig. 11.1d). One can see that the statistic χ2 detects the changes in
the system much later (Fig. 11.1b) than does a good dynamical model (Fig. 11.1d).
Figure 11.1c, d also demonstrates that dynamical non-stationarity is detected cor-
rectly if empirical models are of high quality. Examples of an analogous segmen-
tation of intracranial electroencephalogram recordings from patients with temporal
lobe epilepsy are described in Dikanev et al. (2005).

The selection of quasi-stationary segments can be of importance for obtaining a
valid empirical model as well. Generally, in empirical modelling it is desirable to
use an entire time series to get more accurate parameter estimates. However, a model
with constant parameters is inappropriate in the case of dynamical non-stationarity.
One should fit such a model to a quasi-stationary segment, which should be as long
as possible. To learn a maximal length of a continuous quasi-stationary segment,
one should find the widest black square on the diagonal of the above recurrence dia-
gram. Then, one should add similar shorter segments to the first segment and repeat
model fitting for the obtained maximally long quasi-stationary piece of data. This
approach is realised and applied to the electroencephalogram analysis in Gribkov
and Gribkova (2000). A similar problem concerning localisation of time instants of
abrupt changes is considered in Anosov et al. (1997).

11.2 Confidential Information Transmission

Development of communication systems which use a chaotic carrier is a topical
problem in communication technology (Dmitriev and Panas, 2002). In relation to
this field, we note an interesting possibility to use non-stationary time series mod-
elling for multichannel confidential information transmission (Anishchenko and
Pavlov, 1998). Let us consider a non-linear dynamical system dx/dt = f(x, c0),
whose parameter c0 slowly changes in time as c0 = c0(t). Let a chaotic time real-
isation of this system, e.g., η(t) = x1(t), be a transmitted signal and parameter
variations c0(t) be information signals which are not directly transmitted. The con-
ditions necessary to extract information signals from the chaotic observed signal are
as follows:

(i) One completely knows the structure of the dynamical system used as a trans-
mitter, i.e. as a generator of a chaotic time series with changing parameters;

(ii) A characteristic time of variation in its parameters c0 is much greater than its
characteristic oscillation time.

Then, one can restore the time realisations c0(t) from a single observable η(t) by
estimating the respective parameters in the model dx/dt = f(x, c) from subsequent
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quasi-stationary segments of the observed time series η(t) with some of the tech-
niques described in Chaps. 8, 9 and 10.

A numerical toy example of transmitting a greyscale graphical image is consid-
ered in Anishchenko and Pavlov (1998), where a system producing a chaotic signal
is a modified generator with inertial non-linearity (also called the Anishchenko–
Astakhov oscillator) given by the equations

dx
/

dt = mx + y − xz,

dy
/

dt = −x,

dz
/

dt = −gz + 0.5g (x + |x |) x . (11.2)

An information signal represents intensity of the greyscale (256 possible val-
ues) for the subsequent pixels on the portrait of Einstein (Fig. 11.2a). This sig-
nal modulates the values of the parameter g in the interval [0.15, 0.25] at m =
1.5. A transmitted signal is η(t) = y(t) with a superimposed weak obser-
vational noise. A signal in the communication channel looks as “pure” noise
(Fig. 11.2b).

If the structure of the generating dynamical system is unknown, one cannot
restore a transmitted information (at least, it is very difficult). The result of extract-
ing the information signal in a “receiver” via the estimation of the parameter g in
Eq. (11.2) is shown in Fig. 11.2c. A single scalar information signal g(t) is trans-
mitted in this example, though one can change several parameters of the generator
simultaneously. In practice, the number of transmitted signals c0,k(t) which can be
successfully restored from an observed realisation η(t) is limited by the intensity
of noise in a communication channel (Anishchenko and Pavlov, 1998). Further
developments in this research direction are given in Ponomarenko and Prokhorov
(2004, 2002).

Fig. 11.2 Information transmission with the use of the reconstruction from a time series
(Anishchenko and Pavlov, 1998): (a) an original image (500 × 464 pixels); (b) a signal y in a
communication channel; (c) a restored image
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11.3 Other Applications

Several more specific applications of empirical modelling are listed below and com-
mented very briefly:

(1) Prediction of bifurcations in weakly non-autonomous systems (Casdagli, 1989;
Feigin et al., 1998, 2001; Mol’kov and Feigin, 2003). When an object param-
eter changes slowly, one fits an autonomous model with the same structure to
subsequent time series segments. Estimates of its parameters vary between the
segments. Thus, one obtains a time dependence of the parameter estimates:
ĉ j , j = 1, . . . , M , where j is the number of a time series segment. From such a
new time series, one can construct a model predicting future parameter changes,
e.g. a model in the form of an explicit function of time (Sect. 7.4.1). Thereby,
one gets predicted parameter values for each future time instant j and checks
to what dynamical regime of the autonomous model they correspond. Thus,
one can predict a change in the observed dynamical regime, i.e. a bifurcation
in the autonomous system, which occurs when the value of c crosses a bound-
ary of the domain where the current regime is stable. Such bifurcation forecast
is possible under the strict conditions that the autonomous model adequately
describes an object dynamics in a wide area of the parameter space including a
“post-bifurcation” dynamical regime.

(2) Restoration of external driving from a chaotic time realisation of a single
dynamical variable of a non-autonomous system. This is useful if the driving
signal carrying important information cannot be measured directly and one
observes only a result of its influence on some non-linear system. Principal
possibility of such restoration is illustrated in Gribkov et al. (1995) even in cases
where an external driving is not slowly varying. The conditions necessary for
the restoration are as follows: (i) the structure of the driven system and the way
how the driving enters the equations are known a priori; (ii) a time series from
an autonomous system is also available. Then, one first estimates parameters
of an autonomous system. Secondly, the external driving is restored from the
non-autonomous system realisation taking into account the obtained parameter
estimates.

(3) Signal classification is another important task where one divides a set of objects
into groups (classes) of similar objects based on the experimental data analysis.
A general approach involves definition of the distance between two signals,
computation of the distances for each pair of signals and division of the signals
into groups (clusters) with any of the existing clustering approaches. The dis-
tance between signals can be defined, in particular, by estimating a difference
between empirical models constructed from the signals (Kadtke and Krem-
liovsky, 1997). Different clustering algorithms are studied by the cluster anal-
ysis (Kendall and Stuart, 1979). We note that the problem of quasi-stationary
segment selection (Sect. 11.1) can be formulated in the same terms: different
segments of a signal can be considered as different signals, which are united
into clusters (quasi-stationary intervals) based on the kind of recurrence dia-
gram (Fig. 11.1c, d).
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(4) Automatic control of a technical object is realised via regulation of the available
parameters. The search for optimal parameter values can be realised in practice
as follows: (i) one performs measurements at different values of object param-
eters; (ii) one constructs an empirical model with a given structure from each
set of data; (iii) one reveals the model parameters, whose variations correspond
to variations in the governing parameters of an object; (iv) via investigation
of the model, one reveals the model parameters which strongly influence the
character of the model dynamics; (v) via investigation of the model, one finds
such values of its most influential parameters, which correspond to “the best
regime of an object functioning”; (vi) finally, one specifies the values of object
parameters corresponding to the model parameters found at the previous step.
Such an approach is suggested in Gribkov et al. (1994b) and partly realised in
relation to a system of resonance frequency and temperature stabilisation in a
section of a linear electron accelerator.

(5) Estimation of an attractor characteristics from a short time series (Pavlov et al.,
1997). One of the important problems in non-linear time series analysis is the
computation of such characteristics of an attractor as Lyapunov exponents and
fractal dimensions (see, e.g., Eckmann and Ruelle, 1985, 1992; Ershov and
Potapov, 1998; Kantz, 1995; Theiler, 1990; Wolf et al., 1985). However, reliable
estimates of them can be obtained directly only from a time series, which is
very long (so that an orbit could return to the vicinity of any of its points many
times) and sufficiently “clean” (noise free). Such data are typically unavailable
in practice. A global dynamical model can often be constructed from a much
shorter time series if it involves a small number of free parameters. After get-
ting a model, one can compute Lyapunov exponents and fractal dimensions
of its attractor from a numerically simulated arbitrarily long time realisation
(Sect. 2.1.4) and take them as the sought estimates.

(6) Testing for non-linearity and determinism (Gerschenfeld and Weigend, 1993;
Small et al., 2001). In investigation of a complex object dynamics, one often
does not manage to get a valid model, to reliably estimate dimension, etc.
Then, one poses “more modest” questions, which can also be quite substan-
tial. One of them is whether the dynamics of an object is non-linear? One can
get an answer with the use of empirical models. A possible technique is as
follows.
One constructs local linear models with different numbers of neighbours k
[Eq. (10.11) in Sect. 10.2.1). Root-mean-squared one-step-ahead prediction
error ε computed from a test time series or via the cross-validation technique
(Sect. 7.2.3) is plotted versus k. The value of k close to the length of a training
time series corresponds to a global linear model. At small values of k, one gets
different sets of model parameter values for different small domains of the phase
space. If the original process is linear, then the prediction error ε monotonously
decreases with k, since the parameter estimates become more accurate (due to
the use of greater amount of data) without violation of the model validity. If the
process is non-linear, then the error ε reaches its minimum at some intermediate
value of k, which is sufficiently big to reduce the noise influence and sufficiently
small to provide a good accuracy of the local linear approximation. Thereby, one
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can infer the presence of non-linearity and estimate the scale, where it manifests
itself, from the plot ε(k) (Gerschenfeld and Weigend, 1993).

(7) Adaptive noise reduction (Davies, 1994; Farmer and Sidorowich, 1991;
Kostelich and Schreiber, 1993). An observed signal η(t) often represents a sum
of a “useful” signal X (t) and a “harmful” signal ξ(t), which is called “noise”:

η(t) = X (t) + ξ(t). (11.3)

Then, the problem is to extract the signal X (t) from η(t), i.e. to get a sig-
nal X̂(t), which differs from X (t) less strongly than the observed signal η(t)
(Farmer and Sidorowich, 1991). The expression (11.3) describes a measure-
ment noise, which is especially harmful in numerical differentiation where it is
usually reduced with a Savitzky–Golay filter (Sect. 7.4.2). The latter is a kind of
linear filtering (Hamming, 1983; Rabiner and Gold, 1975). However, all linear
filters are based on the assumption that an “interesting” dynamics X (t) and the
noise ξ(t) have different characteristic timescales, i.e. their powers are concen-
trated in different frequency bands (Sect. 6.4.2). As a rule, the noise is assumed
to be a very high-frequency signal (this is implied when the Savitzky–Golay
filter is used in differentiation) or a very low-frequency signal (slow drifts of
the mean and so forth).
However, it may appear that the noise has the same timescale as the useful
signal. Then, linear filtering cannot help, but non-linear noise reduction based
on the construction of non-linear empirical models may appear efficient. The
principal idea is to fit a non-linear model to an observed time series taking into
account measurement noise (see, e.g., Sects. 8.1.2 and 8.2). Residual errors ε(t)
of the model fitting are considered as the estimates of the noise realisation ξ(t).
Then, one estimates the useful signal via subtraction of ε(t) from the observed
signal η(t):

X̂(t) = η(t)− ε(t). (11.4)

There are many implementations of the approach. One of the first works
(Farmer and Sidorowich, 1991) exploited local linear models. In any case, the
model size selection and the choice of an approximating function form are
important, since an inadequate model would give biased estimates X̂(t) which
may strongly differ from the true signal X (t), i.e. a further distortion of the
signal would occur rather than a noise reduction.

(8) Finally, let us mention again such a promising possibility as restoration of
equivalent characteristics of non-linear elements in electric circuits and other
systems (Sect. 9.3). Such characteristics can be reconstructed via the empirical
modelling even in the regimes of large oscillation amplitudes and chaos, where
ordinary tools may be inapplicable. This approach has been successfully used to
investigate dynamical characteristics of a ferroelectric capacitor (Hegger et al.,
1998), semiconductor elements (Sysoev et al., 2004; Timmer et al., 2000) and
fibre optical systems (Voss et al., 1999).
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Chapter 12
Identification of Directional Couplings

An important piece of information, which can be extracted from parameters of
empirical models, is quantitative characteristics of couplings between processes
under study. The problem of coupling detection is encountered in multiple fields
including physics (Bezruchko et al., 2003), geophysics (Maraun and Kurths, 2005;
Mokhov and Smirnov, 2006, 2008; Mosedale et al., 2006; Palus and Novotna, 2006;
Verdes, 2005; Wang et al., 2004), cardiology (Rosenblum et al., 2002; Palus and
Stefanovska, 2003) and neurophysiology (Arnhold et al., 1999; Brea et al., 2006;
Faes et al., 2008; Friston et al., 2003; Kreuz et al., 2007; Kiemel et al., 2003;
Le Van Quyen et al., 1999; Mormann et al., 2000; Osterhage et al., 2007; Pereda
et al., 2005; Prusseit and Lehnertz, 2008; Smirnov et al., 2005; Romano et al., 2007;
Schelter et al., 2006; Schiff et al., 1996; Sitnikova et al., 2008; Smirnov et al., 2008,
Staniek and Lehnertz, 2008; Tass, 1999; Tass et al., 2003). Numerous investigations
are devoted to synchronisation, which is an effect of interaction between non-linear
oscillatory systems (see, e.g., Balanov et al., 2008; Boccaletti et al., 2002; Hramov
and Koronovskii, 2004; Kreuz et al., 2007; Maraun and Kurths, 2005; Mormann
et al., 2000; Mosekilde et al., 2002; Osipov et al., 2007; Palus and Novotna, 2006;
Pikovsky et al., 2001; Prokhorov et al., 2003; Tass et al., 2003). In the last decade,
more careful attention is paid to directional coupling analysis. Such characteristics
might help, e.g., to localise an epileptic focus (a pathologic area) in the brain from
electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings: hypo-
thetically, an increasing influence of an epileptic focus on adjacent areas leads to the
seizure onset for some kinds of epilepsy.

The most appropriate and direct approaches to the detection of causal influ-
ences are based on the construction of empirical models. These approaches include
Granger causality (Sect. 12.1) and phase dynamics modelling (Sect. 12.2). Below,
we present our results showing their fruitful applications to the problems of neuro-
physiology (Sects. 12.3 and 12.4) and climatology (Sects. 12.5 and 12.6).

12.1 Granger Causality

The problem is formally posed as follows. There are time series from M processes
{xk(t)}N

t=1, k = 1, . . . , M . One needs to detect and characterise couplings between

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_12,
C© Springer-Verlag Berlin Heidelberg 2010
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them, i.e. to find out how the processes influence each other. In the case of two
linear processes (Granger, 1969; Pereda et al., 2005), one first constructs univariate
autoregression models (Sect. 4.4)

xk(t) = Ak,0 +
d∑

i=1

Ak,i xk(t − i) + ξk(t), (12.1)

where k = 1, 2, d is a model order, ξk are Gaussian white noises with variances
σ 2
ξk

. Let us denote the vector of coefficients
{

Ak,i , i = 0, . . . , d
}

as Ak , the sum of
squared residual errors as

�2
k =

N∑

t=d+1

(

xk(t)− Ak,0 −
d∑

i=1

Ak,i xk(t − i)

)2

,

and its minimal value as s2
k = min

Ak
�2

k . The model coefficients are estimated via the

ordinary least-squares technique (Sect. 7.1.1), i.e. one gets Âk = arg min
Ak

�2
k . An

unbiased estimator for σ 2
ξk

would represent the mean-squared prediction error of the
univariate model. Such an estimator is given by

σ̂ 2
k = s2

k

N − d − (d + 1)
,

where d + 1 is the number of estimated coefficients in Eq. (12.1). The model order
d is selected large enough to provide delta correlatedness of the residual errors. For
automatic choice of d, one often uses criteria of Akaike (1974) or Schwarz (1978).

Then, one similarly constructs a bivariate AR model:

x1(t) = a1,0 +
d∑

i=1
a1,i x1(t − i) +

d∑

i=1
b1,i x2(t − i) + η1(t),

x2(t) = a2,0 +
d∑

i=1
a2,i x2(t − i) +

d∑

i=1
b2,i x1(t − i) + η2(t).

(12.2)

where ηk are Gaussian white noises. Minimal values of the sums of squared residual
errors are denoted s2

1|2 and s2
2|1 for the first and second processes, respectively. Unbi-

ased estimators for the residual error variances are denoted σ̂ 2
1|2 and σ̂ 2

2|1. Prediction

improvement for xk , i.e. the quantity PI j→k = σ̂ 2
k − σ̂ 2

k| j , characterises the influence
of the process x j on xk (denoted further as j → k).

Note that PI j→k is an estimate obtained from a time series. To define a theoretical
(true) prediction improvement PItrue

j→k = σ 2
k − σ 2

k| j , one should minimise the expec-

tations of the squared prediction errors instead of the empirical sums �2
k and �2

k| j
to get model coefficients, i.e. one should use an ensemble averaging or an averaging
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over an infinitely long-time realisation instead of the averaging over a finite time
series. For uncoupled processes, one has PItrue

j→k = 0, but the estimator PI j→k can
take positive values due to random fluctuations. Therefore, one needs a criterion
to decide whether an obtained positive value of PI j→k implies the presence of the
influence j → k. It can be shown that the quantity

Fj→k =
(N − 3d − 1)

(
s2

k − s2
k| j

)

s2
k| j d

is distributed according to Fisher’s F-law with (d, N − 3d − 1) degrees of freedom.
Hence, one can conclude that PItrue

j→k > 0 and the influence j → k exists at the
significance level p (i.e. with the probability of random error not greater than p) if
the value of Fj→k exceeds (1 − p) quantile of the respective F-distribution. This
is called F-test or Granger – Sargent test (see, e.g., Hlavackova-Schindler et al.,
2007).

If a time series is short, it is problematic to use high values of d, since the number
of the estimated coefficients is then large, which often leads to insignificant conclu-
sions even in cases of really existing couplings. The difficulty can be overcome in
part if one constructs a bivariate model in the form

xk(t) = ak,0 +
dk∑

i=1

ak,i xk(t − i) +
d j→k∑

i=1

bk,i x j (t − i −  j→k), (12.3)

where j, k = 1, 2, j �= k, and selects a separate univariate model order dk for
each process instead of the common d in Eq. (12.2), a separate value of d j→k and
a separate trial delay time  j→k . If at least some of the values dk and d j→k can be
made small, then the number of the estimated coefficients is reduced.

If one needs non-linear models, the difficulty gets even harder due to the curse of
dimensionality. In a non-linear case, the procedure of coupling estimation remains
the same, but the AR models must involve non-linear functions. Thus, univariate
AR models take the form

xk(t) = fk(xk(t − 1), xk(t − 2), . . . , xk(t − dk),Ak) + ξk(t), (12.4)

where it is important to choose properly the kind of the non-linear functions
fk . Algebraic polynomials (Mokhov and Smirnov, 2006), radial basis functions
(Ancona et al., 2004) and locally constant predictors (Feldmann and Bhattacharya,
2004) have been used. For relatively short time series, it is reasonable to use polyno-
mials fk of low orders Pk . Bivariate models are then constructed in the form (12.2),
where the linear functions are replaced with polynomials of the order Pk . Yet, there
is no regular procedure assuring an appropriate choice of the non-linear functions.

If the number of processes M > 2, then estimation of the influence j → k can
be performed in two ways:



322 12 Identification of Directional Couplings

(i) Bivariate analysis of x j and xk results in an estimator, which reflects both a
“direct” influence j → k and that mediated by other observed processes.

(ii) Multivariate analysis takes into account all the M processes and allows to dis-
tinguish between the influences j → k from different processes x j . Namely,
one computes a squared prediction error for xk when a multivariate AR model
containing all the processes except for x j is used. Then, one computes such an
error for a multivariate AR model containing all the M processes including x j .
If the predictions are more accurate in the latter case, one infers the presence of
the direct influence j → k.

To express prediction improvements in relative units, one normalises PI j→k by
the variance var[xk] of the process xk or by the variance σ̂ 2

k of the prediction error
of the univariate model (12.1). The quantity PI j→k/σ̂

2
k is used more often than

PI j→k/var[xk]. Both quantities are not greater than one and one may hope to give
them a vivid interpretation. Thus, PI j→k/σ̂

2
k is close to unity if the influence j → k

describes almost all “external factors” ξk unexplained by the univariate model of xk .
PI j→k/var[xk] is close to unity if in addition the univariate model (12.1) explains
a negligible part of the variance var[xk], i.e. σ̂ 2

k ≈ var[xk]. These interpretations
are often appropriate, even though they may appear insufficient to characterise an
importance of the influence j → k from the viewpoint of long-term changes in the
dynamics.

12.2 Phase Dynamics Modelling

A general idea of the approach is that such a characteristic as “intensity of coupling”
between two oscillatory processes shows how strongly a future evolution of an oscil-
lator phase depends on the current value of the other oscillator phase (Rosenblum
and Pikovsky, 2001). In fact, it is similar to the Granger causality, since bivariate
models for the phases are constructed to characterise couplings. It makes sense to
model such variables as phases, since they are often especially sensitive to weak
perturbations as known from the synchronisation theory (see, e.g., Pikovsky et al.,
2001).

Phase dynamics of weakly coupled (deterministic) limit-cycle oscillators with
close natural frequencies can be to a good approximation described with a set of
ordinary differential equations (Kuramoto, 1984):

dφ1
/

dt = ω1 + H1(φ2 − φ1),

dφ2
/

dt = ω2 + H2(φ1 − φ2),
(12.5)

where φk are phases of the oscillators, ωk are their natural frequencies and Hk are
coupling functions. Model (12.5) does not apply if the phase dynamics of the oscil-
lators is perturbed by noise (a typical situation in practice) or coupling functions
depend on phases in a more complicated manner rather than only via phase differ-
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ence due to strong non-linearities in the systems and their interactions. Yet, if noise
level is low, the model can be generalised in a straightforward manner. One comes
to stochastic differential equations (Kuramoto, 1984; Rosenblum et al., 2001)

dφ1
/

dt = ω1 + G1(φ1, φ2) + ξ1(t),

dφ2
/

dt = ω2 + G2(φ2, φ1) + ξ2(t),
(12.6)

where ωk are not necessarily close to each other, ξk are independent zero-mean
white noises with autocorrelation functions

〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ(t − t ′), δ is the

Dirac’s delta function and σ 2
ξk

characterise noise intensities. The functions Gk are
2π periodic with respect to both arguments and describe both couplings between
the oscillators and their individual phase non-linearity.

Let σ 2
ξk

and |Gk | be reasonably small so that the contribution of the respective
terms in Eq. (12.6) to the phase increment φk(t + τ)− φk(t) is small in comparison
with the “linear increment” ωkτ , where the finite time interval τ is of the order of
the basic oscillation period. Then, by integrating Eq. (12.6) over the interval τ , one
converts to difference equations and gets

φk(t + τ) − φk(t) = Fk(φk(t), φ j (t), ak) + εk(t), (12.7)

where k, j = 1, 2, j �= k, εk are zero-mean noises, Fk are trigonometric polyno-
mials

Fk(φk, φ j , ak) = wk+
∑

(m,n)∈�k

(
αk,m,n cos(mφk − nφ j ) + βk,m,n sin(mφk − nφ j )

)
,

(12.8)
ak = (wk, {αk,m,n, βk,m,n}(m,n)∈�k ) are vectors of their coefficients and �k are
summation ranges, i.e. sets of pairs (m, n) defining which monomials are contained
in Fk . The terms with m = n = 1 can be induced by a linear coupling of the
form kx j or k(x j − xk) in some “original equations” for the oscillators. The terms
with n = 2 can be due to a driving force, which is quadratic with respect to the
coordinate of the driving oscillator, e.g. kx2

j . Various combinations are also possible
so that the couplings in the phase dynamics equations (12.7) can be described with
a set of monomials of different orders with n �= 0. The strongest influence arises
from the so-called “resonant terms”, which correspond to the ratios m/n ≈ ω j/ωk

in the equation for the kth oscillator phase. However, non-resonant terms can also
be significant.

Intensity of the influence j → k can be reasonably defined via the mean-squared
value of the partial derivative ∂Fk(φk, φ j , ak)/∂φ j (Rosenblum and Pikovsky, 2001;
Smirnov and Bezruchko, 2003):

c2
j→k = 1

2π2

2π∫

0

2π∫

0

(
∂Fk(φk, φ j , ak)

/
∂φ j

)2dφ j dφk . (12.9)
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Indeed, the value of c2
j→k depends only on the terms with n �= 0 and reads as

(Smirnov and Bezruchko, 2003)

c2
j→k =

∑

(m,n)∈�k

n2
(
α2

k,m,n + β2
k,m,n

)
. (12.10)

This is a theoretical coupling characteristic which can be computed if the poly-
nomial coefficients in Eq. (12.8) are known.

In practice, one has only a time series of observed quantities x1 and x2 represent-
ing two oscillatory processes. So, one first extracts a time series of the phases φ1(t)
and φ2(t) from the observed data with any of the existing techniques (Sect. 6.4.3).
Then, one estimates the coupling characteristics by fitting the phase dynamics equa-
tions (12.7) with the functions (12.8) to the time series of the phases. For that, one
can use the ordinary least-squares technique (Sect. 7.1.1) to get the estimates âk of
the coefficients (Rosenblum and Pikovsky, 2001), i.e. one minimises the values of

σ̂ 2
k (ak) = 1

N − τ
/
t

N∑

n=τ /t+1

(
φk(nt + τ) − φk(nt) − Fk(φk(nt), φ j (nt), ak)

)2
,

where k, j = 1, 2, j �= k. The estimates can be written as âk = arg min
ak

σ̂ 2
k (ak).

The minimal value σ̂ 2
k = min

ak
σ̂ 2

k (ak) characterises the noise level. The most direct

way to estimate the coupling strengths c j→k is to use the expression (12.10) and
replace the true values ak with the estimates âk . Thereby, one gets the estimator

ĉ2
j→k = ∑

(m,n)∈�k

n2
(
α̂2

k,m,n + β̂2
k,m,n

)
.

Sensitivity of the technique to weak couplings was demonstrated numerically
(Rosenblum and Pikovsky, 2001). The estimator ĉ j→k appears “good” for long and
stationary signals, whose length should be about several hundreds of basic periods
under moderate noise level. The technique has already given interesting results for
a complex real-world process, where such data are available, namely for the inter-
action between human respiratory and cardio-vascular systems (Rosenblum et al.,
2002). It appears that the character of the interaction in infants changes with their
age from an almost symmetric coupling to a predominant influence of the respiratory
system on the cardio-vascular one.

Application of the technique in practice encounters essential difficulties when
time series are non-stationary. For instance, it is important to characterise an inter-
action between different brain areas from EEG recordings. However, their quasi-
stationary intervals last for about a dozen of seconds, i.e. comprise not more than
100 basic periods for pathological (epileptic or Parkinsonian) oscillatory behaviour.
Then, one could divide a long time series into quasi-stationary segments and com-
pute coupling characteristics from each segment separately. However, for a time
series of such a moderate length, the estimators ĉ j→k turn out to be typically biased.
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The reasons are described in Smirnov and Bezruchko (2003), where corrected esti-
mators γ j→k for the quantities c2

j→k are suggested:

γ j→k =
∑

(m,n)∈�k

n2
(
α̂2

k,m,n + β̂2
k,m,n − 2σ̂ 2

α̂k,m,n

)
,

the estimates of the variances σ̂ 2
α̂k,m,n

of the coefficient estimates α̂k,m,n are derived
in the form

σ̂ 2
α̂k,m,n

= 2σ̂ 2
k

N − τ
/
t

⎧
⎨

⎩
1 + 2

τ /t∑

l=1

(

1 − l

τ
/
t

)

cos

[
l
(
mŵk + nŵ j

)

τ
/
t

]

exp

⎡

⎣−
l
(

m2σ̂ 2
k + n2σ̂ 2

j

)

2τ
/
t

⎤

⎦

⎫
⎬

⎭
.

95% confidence bands for the coupling strengths c2
j→k are derived in Smirnov and

Bezruchko (2003) for the case of trigonometric polynomials Fk of the third order
(namely, for the set �k , which includes the pairs of indices m = n = 1, m =
1, n = −1, m = 1, n = 0, m = 2, n = 0 and m = 3, n = 0) in the form
[γ j→k −1.6σ̂γ j→k , γ j→k +1.8σ̂γ j→k ], where the estimates of the standard deviations
σ̂γ j→k are computed from the same short time series as

σ̂ 2
γ j→k

=

⎧
⎪⎨

⎪⎩

2
∑

m,n
n4σ̂ 2

α̂2
k,m,n

, γ j→k � 5
√∑

m,n
2n4σ̂ 2

â2
1,m,n

,

∑

m,n
n4σ̂ 2

â2
k,m,n

, otherwise,

and the estimate of the variance of the squared coefficient estimate is given as

σ̂ 2
α̂2

k,m,n
=
⎧
⎨

⎩
2σ̂ 4

α̂k,m,n
+ 4

(
α̂2

k,m,n − σ̂ 2
α̂k,m,n

)
σ̂ 2
α̂k,m,n

, α̂2
k,m,n − σ̂ 2

α̂k,m,n
� 0,

2σ̂ 4
α̂k,m,n

, otherwise.
.

The value of γ j→k,c = 1.6σ̂γ j→k represents a 0.975 quantile for the distribution
of the estimator γ j→k in the case of uncoupled processes. Hence, the presence of
the influence can be inferred at the significance level 0.025 (i.e. with a probability of
random error not more than 0.025) if it appears that γ j→k > γ j→k,c. The technique
has been compared to other non-linear coupling analysis techniques in Smirnov
and Andrzejak (2005) and Smirnov et al. (2007), where its superiority is shown for
sufficiently regular oscillatory processes.

If directional couplings between processes are expected to be time-delayed, the
technique can be readily generalised (Cimponeriu et al., 2004). Namely, one con-
structs the phase dynamics model in the form

φk(t + τ) − φk(t) = Fk(φk(t), φ j (t −  j→k), ak) + εk(t), (12.11)
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where k, j = 1, 2, j �= k, and  j→k is a trial delay time in the influence j → k.
One gets coupling estimates and their standard deviations depending on the trial
delay: γ j→k( j→k) and σ̂γ j→k ( j→k). Then, one selects the trial delay correspond-
ing to the largest value of γ j→k , which significantly exceeds zero (if such a value of
γ j→k exists), i.e. exceeds γ j→k,c( j→k). Thereby, one also gets an estimate of the
delay time.

The phase dynamics modelling technique is applicable if couplings are not
very strong so that the degree of synchrony between the oscillators is low. This
condition can be checked, e.g., via the estimation of the phase synchronisation
index (Sect. 6.4.5) also called mean phase coherence (Mormann et al. (2000):
ρ() = ∣∣〈exp (i(ϕ1(t)− ϕ2(t + )))〉t

∣∣. This quantity ranges from zero to one.
The estimators γ2→1(2→1) and γ1→2(1→2) with their confidence bands can be
considered reliable if the values of ρ(−2→1) and ρ(1→2) are less than 0.45
(Mokhov and Smirnov, 2006). The second condition of applicability is a sufficient
length of the time series: not less than 40 basic periods (Mokhov and Smirnov,
2006; Smirnov and Bezruchko, 2003). Finally, the autocorrelation function of the
residual errors for the models (12.7) or (12.11) should decrease down to zero over
the interval of time lags (0, τ ) to confirm appropriateness of the basic model (12.6)
with white noises.

The corrected estimators γ j→k are used for the analysis of two-channel EEG in a
patient with temporal lobe epilepsy in Smirnov et al. (2005). Their further real-world
applications are described in Sects. 12.3, 12.5 and 13.2.

12.3 Brain – Limb Couplings in Parkinsonian Resting Tremor

Many neurological diseases including epilepsy and Parkinson’s disease are related
to pathological synchronisation of large groups of neurons in the brain. Synchronisa-
tion of neurons in nuclei of thalamus and basal ganglia is a hallmark of Parkinson’s
disease (Nini et al., 1995). However, as yet its functional role in the generation
of Parkinsonian tremor (involuntary regular oscillations of limbs at a frequency
ranging from 3 to 6 Hz) is a matter of debate (Rivlin-Etzion et al., 2006). In par-
ticular, the hypothesis that the neural synchronisation drives the tremor has not yet
got a convincing empirical confirmation (Rivlin-Etzion et al., 2006). The standard
therapy for medically refractory Parkinson’s disease is permanent electrical deep
brain stimulation (DBS) at high frequencies (greater than 100 Hz) (Benabid et al.,
1991). Standard DBS has been developed empirically, its mechanism of action is
unclear (Benabid et al., 2005) and it has relevant limitations, e.g. side effects (Tass
et al., 2003; Tass and Majtanik, 2006). It has been suggested to specifically counter-
act the pathological cerebral synchrony by desynchronising DBS (Tass, 1999), e.g.
with coordinated reset stimulation (Tass, 2003). The verification of the tremor being
generated by synchronised neural activity in the thalamus and the basal ganglia will
further justify and strengthen the desynchronisation approach (Tass, 1999; 2003)
and help to develop therapies, which may presumably be milder and lead to less
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side effects. Therefore, to detect couplings between limb oscillations and activity of
different brain areas in Parkinsonian patients is a topical problem.

We have analysed more than 40 epochs of spontaneous Parkinsonian tremor
recorded in three patients with Parkinson’s disease (Bezruchko et al., 2008; Smirnov
et al., 2008). Limb oscillations are represented by accelerometer signals recorded
at sampling frequencies 200 Hz or 1 kHz. Information about the brain activity is
represented by the recordings of local field potentials (LFPs) from a depth elec-
trode implanted into the thalamus or the basal ganglia. The data are obtained at the
Department of Stereotaxic and Functional Neurosurgery, University of Cologne,
and at the Institute of Neuroscience and Biophysics – 3, Research Centre Juelich,
Germany.

Accelerometer and LFP signals during an interval of strong Parkinsonian tremor
are presented in Fig. 12.1 along with their power spectra. One can see oscillations
in the accelerometer signal, which correspond to a peak in the power spectrum at
the frequency of 5 Hz. The peak at the tremor frequency is seen in the LFP spectrum
as well, even though it is wider. The phases of both signals can be unambiguously
defined in the frequency band around the tremor frequency (e.g. 3–7 Hz). As a result
of the phase dynamics modelling (Sect. 12.2), we have found statistically significant
influence of the limb oscillations on the brain activity with a delay time not more
than several dozens of milliseconds. The influence of the brain activity on the limb
oscillations is present as well and is characterised by a delay time of 200–400 ms,
i.e. one to two basic tremor periods (Fig. 12.2). The results are well reproduced,
both qualitatively and quantitatively, for all three patients (Fig. 12.3). Some details
are given in Sect. 13.2.

Fig. 12.1 An interval of spontaneous Parkinsonian tremor (total duration of 36 s, only the starting
5 s are shown): (a, c) an accelerometer signal in arbitrary units and its power spectrum estimate;
(b, d) an LFP recording from one of the electrodes and its power spectrum estimate
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Fig. 12.2 Coupling estimates for the tremor epoch shown in Fig. 12.1 (dimensionless) versus a trial
delay time: (a) brain → hand; (b) hand → brain. The phases are defined in the frequency band
3–7 Hz. Thin lines show the threshold values γ ∗

j→k = 1.6σ̂γ j→k . The values of γ j→k exceeding
γ ∗

j→k differ from zero statistically significantly (at an overall significance level of p < 0.05).
Thus, one observes an approximately zero delay time for the hand → brain influence and a delay
time of about 335 ms for the brain → hand driving

Fig. 12.3 Estimates of coupling strengths in both directions: brain → hand (the left column) and
vice versa (the right column) for the three patients (three rows) versus a trial delay time. Coupling
estimates, averaged over ensembles of 10–15 intervals of strong tremor, are shown along with their
averaged 95% confidence bands (Smirnov et al., 2008)
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Surrogate data tests (Dolan and Neiman, 2002; Schreiber and Schmitz, 1996)
confirm statistical significance of our conclusions as well. Moreover, they show
that linear techniques cannot reveal the influence of the thalamus and basal ganglia
activity on the limbs.

Influence of the limb on the brain has been detected earlier with the linear
Granger causality (Eichler, 2006; Wang et al., 2007). However, the phase dynamics
modelling provides a new result: the brain → hand influence is detected and its delay
time is estimated. This delay is quite big as compared to the conduction time of the
neural pulses from the brain to the muscles. Therefore, it is interpreted (Smirnov
et al., 2008) as a sign of indirect (after processing of the signals in the cortex) influ-
ence of the thalamus or the basal ganglia activity on the limb oscillations. Besides,
it means that nuclei of the thalamus and the basal ganglia are elements of “feedback
loops”, which determine limb oscillations, rather than being just passive receivers
of cerebral or muscle signals.

We have also estimated non-linear Granger causality for broadband accelerome-
ter and LFP signals, rather than for the band-pass-filtered versions. It detects bidi-
rectional couplings as well but does not give reliable estimates of the delay times.
One reason can be that different time delays may correspond to different frequency
bands leading to unclear results of the combined analysis.

An important area of further possible applications of the presented directionality
analysis might be functional target point localisation diagnosis for an improvement
of the depth electrode placement.

12.4 Couplings Between Brain Areas in Epileptic Rats

Over the years, electroencephalography is widely used in clinical practice for the
investigation, classification and diagnosis of epileptic disorders. The EEG pro-
vides valuable information in patients with typical and atypical epileptic syndromes
and offers important prognostic information. Absence epilepsy, previously known
as petit mal, is classically considered as non-convulsive generalised epilepsy of
unknown aetiology. Clinically, absence seizures occur abruptly, last from several
seconds up to a minute and are accompanied by a brief decrease of conscious-
ness that interrupts normal behaviour. Absences may either have or not have facial
automatisms, e.g. minimal jerks and twitches of facial muscles, and eye blinks.
In humans, EEGs during typical absence seizures are characterised by the occur-
rence of generalised 3–5-Hz spike – and - wave complexes which have an abrupt
onset and offset (Panayiotopoulos, 1997). Similar EEG paroxysms, spike-and-wave
discharges (SWDs) appear in rat strains with a genetic predisposition to absence
epilepsy, such as WAG/Rij (Wistar Albino Glaxo from Rijswijk) (Coenen and van
Luijtelaar, 2003). The EEG waveform and duration (1–30 s, mean 5 s) of SWD in
rats and in humans are comparable, but the frequency of SWD in rats is higher,
8–11 Hz (Midzianovskaia et al., 2001; van Luijtelaar and Coenen, 1986).

EEG coherence was used previously to measure neuronal synchrony between
populations of thalamic and cortical neurons (Sitnikova and van Luijtelaar, 2006).
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The onset of SWD was characterised by area-specific increase of coherence that
supported the idea that the cortico-thalamo-cortical circuitry is primarily involved in
the initiation and propagation of SWD (Meeren et al., 2005; Steriade, 2005). How-
ever, the exact mechanism is unknown. A useful information to uncover it would
be characteristics of directional couplings between different brain areas. Below,
we describe our results on the estimation of interdependencies between local field
potentials recorded simultaneously from the specific thalamus and the frontal cortex
before, during and after SWD (Sitnikova et al., 2008).

Experiments were performed in five male 11–12-month-old WAG/Rij rats. The
recordings are done at the Department of Biological Psychology, Radboud Univer-
sity of Nijmegen. EEGs were recorded from brain areas in which seizure activity is
known to be the most robust: in the frontal cortex and in the ventroposteromedial
(VPM) thalamic nucleus (Vergnes et al., 1987). EEG recordings were made in freely
moving rats in a Faraday cage. Each recording session lasted from 5 to 7 h during the
dark period of the day – night cycle. SWDs appeared in EEG as trains of stereotypic
repetitive 7–10-Hz spikes and waves with high amplitude exceeding the background
more than three times. SWDs lasted longer than 1 s (Midzianovskaia et al., 2001; van
Luijtelaar and Coenen, 1986). In total, 53, 111, 34, 33 and 63 epileptic discharges
in five rats were detected and analysed.

As it is mentioned in Sect. 11.1, non-stationarity is an intrinsic feature of the
EEG signal. Since the above coupling estimation techniques require stationary data,
we divided the EEG recordings into relatively short epochs in which the EEG signal
revealed quasi-stationary behaviour. Time window lasting for 0.5 s seems to be a
good choice. This duration corresponds to four spike-wave cycles. We report only
results of the Granger causality estimation, since phase dynamics modelling gave
no significant conclusions due to the shortness of quasi-stationary segments. Intro-
duction of non-linearity (such as polynomials of the second and the third order) has
no significant influence on the prediction quality of AR models before and after
SWD. It suggests a predominance of the linear causal relations in non-seizure EEG.
In contrast, the seizure activity (SWD) exhibits a non-linear character. However, the
construction of non-linear models for seizure-related processes is quite non-trivial.
Thus, we present only the results of the linear analysis.

Prediction improvements are computed using EEG data from the frontal cortex
(x1) and from the VPM (x2). The linear AR models (12.1) and (12.3) are used to
calculate the coupling characteristics PI1→2 (FC → VPM) and PI2→1 (VPM →
FC). EEG recordings during a typical SWD are shown in Fig. 12.4. Figure 12.5
shows a typical dependence of the prediction error σ 2

1|2 on the dimensions d1 and
d2→1 at 2→1 = 0 for a 0.5-s interval of SWD. The error decreases when d1 and
d2→1 rise from 1 to 5. It reaches its saturation point for the values of d1 = d2→1 = 5,
which are taken as optimal. The same dependence is observed for the error σ 2

2|1.
Introduction of non-zero delays j→k makes predictions worse, therefore, only zero
delay times are used in the further analysis.

The first and the last spike in spike-and-wave sequences are used to mark the
onset and the offset of seizure activity. Estimation of the thalamus-to-cortex and
cortex-to-thalamus influences is performed for the EEG epochs covering a seizure
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Fig. 12.4 EEG recordings of a spike-and-wave discharge in the frontal cortex (a, b) and in the spe-
cific ventroposteromedial thalamic nucleus (c, d). The panels (b) and (d) are magnified segments
of the panels (a) and (c), respectively

Fig. 12.5 The prediction error of model (12.3) for the frontal cortex EEG recording (fitted to the
middle half a second in Fig. 12.4b) versus d1 and d2→1

(SWD), 5 s before a seizure (pre-SWD) and 5 s after a seizure (post-SWD). The
averaged results are illustrated in Fig. 12.6.

Before the onset of SWD, couplings are weak and remain constant until SWD
begins. The first SWD-related disturbances of PI j→k are observed about half a sec-
ond before SWD onset. This effect is provoked by the seizure itself because the
0.5-s time window starts to capture the seizure activity. Still, the obtained values
of PI1→2 and PI2→1 are statistically significantly greater than zero for majority of
analysed epochs both before and during SWD at least at the level of p = 0.05
according both to F-test and surrogate data test (Schreiber and Schmitz, 1996). No
changes in PI j→k are found earlier than 0.5 s before the SWD onset, suggesting that
the quantities PI j→k are not capable of seizure prediction. The immediate onset of
SWD is associated with a rapid growth in PI 1→2 and PI 2→1. The Granger causality
characteristics reach their maximum within half a second after a seizure onset and
remain high during the first 5 s of a seizure. The increase in couplings in both direc-
tions during an SWD as compared to pre-SWD epochs is significant. The ascending
influence thalamus → cortex tends to be always stronger in terms of the PI values
compared to the descending influence cortex → thalamus. Moreover, the occurrence
of an SWD is associated with a tendency for a larger increase in the thalamus →
cortex as compared to the cortex → thalamus influence. The results are similar for
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Fig. 12.6 Normalised prediction improvements averaged over all accessible SWDs for each ani-
mal versus the starting time instant of the moving window (0.5 s length). The onset and the offset
of SWD are shown by vertical lines. The presence of SWD is associated with significant (and
reversible) changes in the Granger causality in both directions. Surrogate data tests (dotted lines)
are performed for each animal and confirm statistical significance of the Granger causality estima-
tion results

all five rats analysed. Thus, bidirectional couplings between FC and VPM are always
present, but the cortico-thalamo-cortical associations are reinforced during SWD.

Our results suggest that a reinforcement of predominant thalamus → cortex cou-
pling accompanies the occurrence of an SWD, which can be interpreted as follows.
In the described study, the EEG records were made in the areas where seizure activ-
ity is known to be the most robust (the frontal cortex and the VPM). It is important
that direct anatomic connections between these structures are virtually absent, but
both structures densely interconnect with the somatosensory cortex (Jones, 1985).
As discussed in Meeren et al. (2002), the somatosensory cortex (the peri-oral region)
contains an “epileptic focus” that triggers an SWD in WAG/Rij rats. The frontal
EEGs are recorded rather far away from the “epileptic focus”. Several groups report
similar results of their investigations with other methods: the cortex, indeed, does
not lead the thalamus when the cortical electrode is relatively far from the peri-oral
area of the somatosensory cortex (Inoue et al., 1993; Polack et al., 2007; Seiden-
becher et al., 1998).
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12.5 El Niño – Southern Oscillation and North Atlantic
Oscillation

El Niño – Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) rep-
resent the leading modes of interannual climate variability for the globe and the
Northern Hemisphere (NH), respectively (CLIVAR, 1998; Houghton et al., 2001).
Different tools have been used for the analysis of their interaction, in particular,
cross-correlation function (CCF) and Fourier and wavelet coherence for the sea
surface temperature (SST) and sea-level pressure (SLP) indices (Jevrejeva et al.,
2003; Pozo-Vazquez et al., 2001; Rogers, 1984; Wallace and Gutzler, 1981).

One often considers a NAO index defined as the normalised SLP difference
between Azores and Iceland (Rogers, 1984; http://www.cru.uea.ac.uk). It is fur-
ther denoted as NAOIcru. Alternatively, in http://www.ncep.noaa.gov, NAO is char-
acterised as the leading decomposition mode of the field of 500 hPa geopoten-
tial height in the NH based on the “rotated principal component analysis” (Barn-
ston and Livezey, 1987). It is denoted further as NAOIncep. Hence, NAOIncep is a
more global characteristic than NAOIcru. ENSO indices T(Niño-3), T(Niño-3,4),
T(Niño-4) and T(Niño-1+2) characterise SST in the corresponding equatorial
regions of the Pacific Ocean (see, e.g., Mokhov et al., 2004). Southern oscillation
index (SOI) is defined as the normalised SLP difference between Tahiti and Darwin.
All the signals are rather short, which makes confident inference about the character
of interaction difficult. We have investigated interaction between ENSO and NAO in
Mokhov and Smirnov (2006) with non-linear Granger causality and phase dynamics
modelling. The results are described below.

Mainly, the period 1950–2004 (660 monthly values) is analysed. The indices
NAOIcru and NAOIncep for NAO and T(Niño-3), T(Niño-3,4), T(Niño-4), T(Niño-
1+2) and SOI for ENSO are used. Longer time series for NAOIcru (1821–2004),
T(Niño-3) (1871–1997) and SOI (1866–2004) are also considered.

12.5.1 Phase Dynamics Modelling

Figure 12.7 demonstrates individual characteristics of the indices NAOIncep
(Fig. 12.7a) and T(Niño-3,4) (Fig. 12.7d). Wavelet analysis of each signal x(t) is
based on the wavelet transform

W (s, t) = 1√
s

∞∫

−∞
x(t ′)�∗ ((t − t ′

)/
s
)

dt ′, (12.12)

where �(η) = π−1/4
[
exp(−iω0η) − exp

(−ω2
0/2

)]
exp(−η2/2) is the Morlet

wavelet (see also Eq. (6.23) in Sect. 6.4.3), an asterisk means complex conjugate
and s is the timescale. Global wavelet spectra S of the climatic signals, obtained
by integration of Eq. (12.12) over time t at each fixed s, exhibit several peaks
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Fig. 12.7 Characteristics of NAOIncep and T(Nino-3,4). (a) NAOIncep (thin line) and ReW for
s = 32 months (dashed line); (b) global wavelet spectrum of NAOIncep ( f = 1/s); (c) an orbit
W (t) for NAOIncep, s = 32 months; (d–f) the same as (a–c) for the index T(Niño-3,4)

(Fig. 12.7b, e). One can assume that the peaks correspond to oscillatory processes
for which the phases can be adequately introduced. To get the phases of “different
rhythms” in NAO and ENSO, we try several values of s in Eq. (12.12) corresponding
to different spectral peaks. The phase is defined as an argument of the respective
complex signal W (s, t) at fixed s. For ω0 = 6 used below, this is tantamount to
band-pass filtering of a signal x around the frequency f = 1/s with a relative
bandwidth 1/4 and subsequent use of the Hilbert transform (see Sect. 6.4.3). Then,
we estimate couplings between all the “rhythms” pairwise. The only case when
substantial conclusions about the presence of coupling are inferred is the “rhythm”
with s = 32 months for both signals (Fig. 12.7a, d, dashed lines). The phases are
sufficiently well defined for both signals, since clear rotation around the origin takes
place on the complex plane (Fig. 12.7c, f).

The results of the phase dynamics modelling are shown in Fig. 12.8 for s = 32
months and model (12.11) with τ = 32 months, where φ1 stands for the phase
of NAO and φ2 for ENSO. Figure 12.8a shows that the technique is applicable
only for 2→1 < 30, where ρ(−2→1) < 0.4. The influence ENSO → NAO
is pointwise significant for 0 < 2→1 < 30 and maximal for 2→1 = 24 months
(Fig. 12.8b). From here, we infer the presence of the influence ENSO → NAO at
an overall significance level p = 0.05 as discussed in Mokhov and Smirnov (2006).
Most probably, the influence ENSO → NAO is delayed by 24 months; however, this
conclusion is not as reliable. No signs of the influence NAO → ENSO are detected
(Fig. 12.8c).

Large ρ for 2→1 > 30 does not imply strong coupling. For such a short time
series and close basic frequencies of the oscillators, the probability to get ρ() >
0.4 for uncoupled processes is greater than 0.5 as observed in numerical experiments
with exemplary oscillators.

All the reported results remain the same for any s in the range 29–34 months
and relative bandwidths 0.2–0.4. Phase calculation based directly on a band-pass
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Fig. 12.8 Coupling between NAOIncep and T(Niño-3,4) (over the period 1950–2004) in terms of
the phase dynamics modelling: (a) mean phase coherence; (b, c) strengths of the influences ENSO
→ NAO and NAO → ENSO, respectively, with their 95% pointwise confidence bands

filtering and Hilbert transform leads to similar results, e.g., for the second-order
Butterworth filter (Hamming, 1983) with the same bandwidths. The use of the other
ENSO indices instead of T(Niño-3,4) gives almost the same results as in Fig. 12.8.
Coupling is not pronounced only for T(Niño-1+2). Analysis of the other rhythms in
NAOIncep and T(Niño-3,4) does not lead to significant conclusions about the pres-
ence of interaction. For NAOIcru the width of the peak corresponding to s = 32
months is greater than that for NAOIncep. It leads to stronger phase diffusion of the
32-month rhythm as quantified by the mean-squared residual errors of the model
(12.11) (Smirnov and Andrzejak, 2005). As a result, we have not observed sig-
nificant coupling between NAOIcru and any of the ENSO indices for the period
1950–2004 as well as for the longer recordings (1871–1997 and 1866–2004).

12.5.2 Granger Causality Analysis

Cross-correlations between NAOIncep (x1) and T(Niño-3,4) (x2) are not significant
at p < 0.05. More interesting results are obtained from the non-linear Granger
causality analysis based on the polynomial AR models like Eq. (12.4). Figure 12.9a
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Fig. 12.9 Coupling between NAOIncep and T(Niño-3,4) (1950–2004) in terms of the non-linear
Granger causality. Prediction improvements are normalised by variances of the signals: (a)
PI2→1/var[x1], (b) PI1→2/var[x2]. Pointwise significance level p estimated via F-test is shown
below each panel

shows the normalised quantity PI2→1/var[x1] for the parameters d1 = 0, d2→1 = 1
and P1 = 2. It is about 0.015 for the time delays 19 ≤ 2→1 ≤ 21 or 80 ≤
2→1 ≤ 83 months. Each of these PI values is pointwise significant at p = 0.01.
Taking into account strong correlations of PI2→1 separated by 2→1 less than 4
months, one can infer that the influence ENSO → NAO is present at the overall
level p < 0.05 (Mokhov and Smirnov, 2006). Analogously, Fig. 12.9b shows the
quantity PI1→2/var[x2] for d2 = 0, d1→2 = 1 and P2 = 2. Its pointwise significant
values at 48 ≤ 1→2 ≤ 49 months do not allow confident detection of the influence
NAO → ENSO.

If d1 and d2→1 are increased up to 2, no changes in PI values presented in
Fig. 12.9a are observed. So, the reported PI is not achieved via complication of
the individual model. Simultaneous increase in d1 up to 3, P1 up to 3 and d2→1 up
to 2 leads to the absence of any confident conclusions due to large variance of the
estimators.

Similar results are observed if T(Nino-3,4) is replaced with T(Niño-3), T(Niño-
4) or SOI. However, the conclusion about the presence of the influence ENSO →
NAO becomes less confident: p ≈ 0.1. The use of T(Niño-1+2) leads to even
less significant results. Analogous to the phase dynamics modelling, replacement of
NAOIncep with NAOIcru does not lead to reliable coupling detection neither for the
period 1950–2004 nor for longer periods.

Finally, to reveal trends in coupling during the last decade, couplings between
NAOIncep and T(Niño-3,4) are estimated in a moving window of the length of 47
years. Namely, we start with the interval 1950–1996 and finish with the interval
1958–2004. PI values reveal an increase in the strength of the influence ENSO →
NAO. The value of PI2→1 for 19 � 2→1 � 20 months rises almost monotonously
by 150% (Fig. 12.10). Although it is difficult to assess statistical significance of the
conclusion, the monotone character of the increase indicates that it can hardly be an
effect of random fluctuations. To a certain extent, it can be attributed to the strong
1997–1998 ENSO event.
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Fig. 12.10 Influence ENSO → NAO for NAOIncep and T(Niño-3,4) in a 47-year moving window;
the value max{PI2→1(2→1 = 19),PI2→1(2→1 = 20)}/var[x1] is shown versus the last year of
the moving window

Thus, the presence of coupling between ENSO and NAO is revealed by the use
of two non-linear techniques and different climatic indices. Consistent results are
observed in all cases. The influence ENSO → NAO is detected with confidence
probability of 0.95 from the data for NAOIncep (1950–2004). Estimate of its delay
time ranges from several months up to 3 years with the most probable value of 20–24
months. Besides, an increase in the strength of the influence during the last decade is
observed. Possible physical mechanisms underlying oscillations and interactions as
slow and even slower than those reported here are considered, e.g., in Jevrejeva et al.
(2003); Latif (2001); Pozo-Vazquez et al. (2001). The influence ENSO → NAO is
not detected with the index NAOIcru, which is a “more local” characteristic than the
index NAOIncep. The influence NAO → ENSO is not detected with confidence for
any indices.

12.6 Causes of Global Warming

A key global problem is related to the determination of the relative role of natu-
ral and anthropogenic factors in climate variations. Forecasts of the future climate
change due to anthropogenic forcing depend on the present estimates of the impact
of different factors on the climate. Thus, an impact of solar activity variations is
quantified in Mokhov and Smirnov (2008); Mokhov et al. (2006); Moore et al.
(2006) via the analysis of different reconstructions and measurement data for solar
irradiance and global surface temperature (GST) of the Earth. A variable character
of the solar activity impact in connection with its overall increase in the second half
of the twentieth century is noted. Moreover, the use of a global climate model in
three dimensions has led to the conclusion that solar activity influence can determine
only a relatively small portion of the global warming observed in the last decades.
A significant influence of the anthropogenic factor on the GST is noted in Verdes
(2005). However, the question about the relative role of different factors is still not
answered convincingly on the basis of the observation data analysis.
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Fig. 12.11 The data: (a) mean GST (anomaly from the base period 1961–1990); (b) solar constant
(irradiance in the range from infrared to ultraviolet wavelengths inclusively); (c) volcanic activity
(optical depth of volcanic aerosol, dimensionless); (d) carbon dioxide atmospheric content in ppm
(parts per million)

Here, we report our estimates of the influences of different factors on the GST
(Mokhov and Smirnov, 2009) based on the analysis of the following data: annual
values T of the mean GST anomaly in 1856–2005 (http://www.cru.uea.ac.uk),
reconstructions and measurements of the annual solar irradiance variations I in
1856–2005 (http://www.cru.uea.ac.uk), volcanic activity V in 1856–1999 (Sato
et al., 1993) and carbon dioxide atmospheric content n in 1856–2004 (Conway
et al., 1994) (Fig. 12.11).

Firstly, we construct univariate AR models for the GST and then analyse the
influences of different factors with bivariate and multivariate AR models. Since the
main question is about the causes of the GST rise, we compute two characteristics
for the different models: (i) the expectation of the value of T in 2005 denoted as
T2005 and (ii) the expectation of the angular coefficient α1985–2005 of a straight line
approximating the time profile T (t) over the interval 1985–2005 in the least-squares
sense (i.e. a characteristic of the recent trend). These two quantities for the original
GST data take the values T2005 = 0.502K and α̂1985–2005 = 0.02K/year.

The AR models are fitted to the intervals [1856 – L] for different L , rather than
only for the largest possible L = 2005. Checking different L allows one to select a
time interval, where each influence is most pronounced, and to determine a minimal
value of L for which an influence can be revealed.

12.6.1 Univariate Models of the GST Variations

The mean-squared prediction error of a linear model (12.1) obtained from the inter-
val [1856–2005] saturates at dT = 4 (Fig. 12.12). Incorporation of any non-linear
terms does not lead to statistically significant improvements (not shown). Thus, an
optimal model reads
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Fig. 12.12 Univariate AR models of the GST: the normalised prediction error variance versus the
model order

Fig. 12.13 Residual errors for the univariate AR model (12.13) at dT = 4: (a) the time realisation;
(b) the histogram; (c) the autocorrelation function with the 95% confidence interval estimates

T (t) = a0 +
dT∑

i=1

ai T (t − i) + ξ(t), (12.13)

where dT = 4, a0 = −0.01 ± 0.10 K , a1 = 0.58 ± 0.08, a2 = 0.03 ± 0.09, a3 =
0.11 ± 0.09, a4 = 0.29 ± 0.08. The intervals present standard deviation estimates
coming from the least-squares routine (Sect. 7.4.1). The model prediction error is
σ 2

T = 0.01 K 2, while the sample variance of the GST over the interval [1856–
2005] is equal to var[T ] = 0.06K 2. In relative units σ 2

T /var[T ] = 0.17, i.e. 17%
of the GST variance is not explained by the univariate AR model. Residual errors
for the AR model with dT = 4 look stationary (Fig. 12.13a) and their histogram
exhibits maximum around zero (Fig. 12.13b). Their delta correlatedness holds true
(Fig. 12.13c). The latter is the main condition for the F-test applicability to the
further Granger causality estimation.

Time realisations of the obtained model (12.13) over 150 years at fixed initial
conditions (equal to the original GST values in 1856–1859) look very similar to
the original time series (Fig. 12.14a). For a quantitative comparison, Fig. 12.14b
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Fig. 12.14 Behaviour of the model (12.13) fitted to the interval [1856–2005]: (a) three time reali-
sations taken randomly from an ensemble of 100 realisations; (b) mean values over the ensemble
(thin line) and the 95% intervals of the distributions (error bars) with the superimposed original
data for GST (thick line)

shows mean values and 95% intervals for the distributions of model values T (t)
computed from an ensemble of 100 simulated model time realisations. The original
time series does not come out of the intervals most of the time, i.e. the model quality
is sufficiently high. However, this is violated for the GST values in 2001–2005.
Thus, one may suspect that model (12.13) with constant parameters and constant
σ 2

T = 0.01 K 2 is not completely adequate, e.g. it may not take into account some
factors determining the essential GST rise over the last years.

The hypothesis finds a further confirmation under a more strict test. We check
whether the univariate model (12.13) fitted to the interval [1856–1985] can predict
the GST rise over the interval [1985–2005]. The results of model fitting are similar
to those for the interval [1856–2005]. Coefficient estimates differ to some extent:
a0 = −0.01±0.16K , a1 = 0.56±0.09, a2 = 0.05±0.10, a3 = 0.02±0.10, a4 =
0.29 ± 0.09. Prediction error is again σ 2

T = 0.01 K 2. However, the original GST
values over the last 16 years do not fall within the 95% intervals (Fig. 12.15). Thus,
one may assume that something has changed in the GST dynamics over the last
decades, e.g., as a result of external influences.

Fig. 12.15 The original GST (thick line) and the 95% “corridor” for the model (12.13) fitted to the
interval [1856–1985]
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This is further analysed with bi- and multivariate AR models for the GST. We
take dT = 4 and select dI→T , dn→T , dV →T and I→T ,n→T ,V →T so as to
provide the greatest GST prediction improvement and qualitative similarity between
the model behaviour and the original GST time profile.

12.6.2 GST Models Including Solar Activity

An optimal choice of parameters is dI→T = 1 and I→T = 0. The influence
I → T is most clearly seen when the interval [1856–1985] is used for model fitting
(Fig. 12.16a). The model reads

Tt = a0 + a1Tt−1 + a4Tt−4 + bI It−1 + ηt , (12.14)

where a1 = −93.7 ± 44.4K , a1 = 0.52 ± 0.09, a4 = 0.27 ± 0.09 and bI =
0.07 ± 0.03K/(W/m2). The prediction improvement is PII→T /σ

2
T = 0.028 and its

positivity is statistically significant at p < 0.035. The model fitted to the interval
[1856–2005] detects no influence I → T significant at p < 0.05. It may evidence
that the impact of other factors, not related to solar activity, has increased during
the interval [1985–2005]. Simulations with model (12.14) indirectly confirm this

Fig. 12.16 Bivariate modelling of the GST from different time windows [1856 – L]. PI-values
and significance levels for (a) the models taking into account solar activity; (b) the models taking
into account volcanic activity; (c) the models taking into account CO2 atmospheric content. The
numerical values of PI (thick lines) are indicated on the left y-axes and significance levels (thin
lines) on the right y-axes. The dashed lines show the level of p = 0.05
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assumption. Figure 12.17a shows an ensemble of simulated realisations when an
original time series I (t) is used as input. The 95% intervals are narrower than those
for the univariate model (cf. Fig. 12.14b), i.e. the incorporation of solar activity into
the model allows better description of the GST in 1856–1985. However, the GST
rise in 1985–2005 is not predicted by the bivariate model as well.

To assess the long-term effect of the solar activity trend on the GST rise, we
simulate an ensemble of time realisations of model (12.14) when a detrended signal
I (t) (Lean et al., 2005) is used as input. The result is visually indistinguishable from
the plot in Fig. 12.17a (not shown). Thus, the removal of the solar activity trend does
not affect the model GST values. Quantitatively, we get 〈T2005〉 = 0.0 ± 0.02K
and angular coefficients 〈α1985–2005〉 ≤ 0.002K/year in both cases. The original
trend α̂1985–2005 = 0.02K/year is not explained by any of the bivariate models
(12.14). Thus, despite it is detected that the solar activity variations affect the GST,
the long-term analysis suggests that they are not the cause of the GST rise in the
last years.

Introduction of non-linearity into the models does not improve their predictions
so that the linear models seem optimal. This is the case for all models below as well.
Therefore, all the results are presented only for the linear models.

Fig. 12.17 The original GST values (thick line) and 95% “corridors” for the bivariate models of
the GST: (a) model (12.14) with solar activity fitted to the interval [1856–1985]; model (12.15)
with volcanic activity fitted to the interval [1856–1999]; (c) model (12.16) with CO2 atmospheric
content fitted to the interval [1856–2005]
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12.6.3 GST Models Including Volcanic Activity

The influence of the volcanic activity appears of the same order of magnitude as that
of the solar activity. An optimal choice is dV →T = 1 and V →T = −1, i.e. a model

Tt = a0 + a1Tt−1 + a4Tt−4 + bV Vt + ηt . (12.15)

The influence is detected most clearly from the entire interval [1856–1999] of
the available data for V (t) (Fig. 12.16b). For that interval PIV →T /σ

2
T = 0.029 and

positivity of PIV →T is statistically significant at p < 0.03. Model coefficients are
a0 = 0.25 ± 0.14K , a1 = 0.55 ± 0.08, a4 = 0.29 ± 0.08, bV = −0.92 ± 0.41K .

However, even if the original data for V (t) are used as input, the model predicts
only strong fluctuations of the GST around the mean value, e.g., in 1999 – around the
value of 〈T1999〉 = 0.7±0.14K (Fig. 12.17b), rather than the rise in the GST during
the last years. According to model (12.15), there is no trend in the GST on average:
〈α1985–2005〉 ≤ 0.001K/year. If the signal V (t) = 0 is used as input, then the
model predicts even greater values of the GST: 〈T1999〉 = 1.5 ± 0.16 K . Indeed, the
long-term effect of volcanic eruptions is to limit the GST values. Volcanic activity is
relatively high in 1965–1995 (Fig. 12.17c), which should contribute to a decrease in
the GST. Therefore, explaining the GST rise during the last decades by the volcanic
activity influence is also impossible.

12.6.4 GST Models Including CO2 Concentration

An optimal choice is dn→T = 1 and n→T = 0. Apart from highly significant
prediction improvement, it provides a model which behaves qualitatively similar to
the original data (in contrast to the models with dn→T > 1). The model reads as

Tt = a0 + a1Tt−1 + a4Tt−4 + bnnt−1 + ηt . (12.16)

The influence of CO2 appears much more considerable than that of the other fac-
tors. It is detected most clearly from the entire available interval [1856–2005]
(Fig. 12.16c), where PIn→T /σ

2
T = 0.087 and its positivity is significant at p <

0.0002. The coefficients of this model are a0 = −1.10 ± 0.29 K , a1 = 0.46 ±
0.08, a4 = 0.20 ± 0.08, bn = 0.003 ± 0.001 K/ppm.

An ensemble of time realisations (Fig. 12.17c) shows that the model (12.16)
with the original data n(t) used as input describes the original data T (t) much more
accurately than do the models taking into account the solar or the volcanic activity.
Moreover, the model (12.16) fitted to a narrower interval, e.g. [1856–1960], exhibits
practically the same time realisations as in Fig. 12.17c, i.e. it correctly predicts the
GST rise despite the data over an interval [1960–2004] are not used for the model
fitting. The model (12.16) fitted to any interval [1856 – L] with L > 1935 gives
almost the same results.
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Fig. 12.18 The original GST values (thick line) and the 95% “corridor” for the bivariate model
(12.16) if the signal n(t) = const = n(1856) is used as input

If the artificial signal n(t) = const = n(1856) is used as input for the model
(12.16) fitted to the interval [1856–1985], then one observes just fluctuations of
T about the level of T1856 (Fig. 12.18) and no trend, i.e. 〈α1985–2005〉 = 0. If the
original data for n(t) are used as input, one gets the model characteristics 〈T2005〉 ≈
0.5K and 〈α1985–2005〉 = 0.17K/year, which are close to the observed ones. Thus,
according to the model (12.16), the rise in the atmospheric CO2 content explains a
major part of the recent rise in the GST.

The results of the multivariate AR modelling confirm the above results of the
bivariate analysis (the corresponding plots are not shown).

Thus, the Granger causality estimation and the investigation of the AR models’
long-term behaviour allow to assess an effect of the solar activity, volcanic activ-
ity and carbon dioxide atmospheric content on the global surface temperature. The
Granger causality shows that the three factors determine about 10% of the quantity
σ 2

T , which is the variance of the short-term GST fluctuations unexplained by the
univariate AR model. The impact of CO2 is the strongest one, while an effect of the
other two factors is several times weaker. The long-term behaviour of the models
reveals that the CO2 content is a determinative factor of the GST rise. According to
the empirical AR models, the rise in the CO2 concentration determines at least 75%
of the GST trend over 1985–2005, while the other two factors are not the causes of
the global warming. In particular, if the CO2 concentration remained at the level of
1856 year, the GST would not rise at all during the last century. In contrast, model
variations in the solar and volcanic activity do not lead to significant changes in the
GST trend.
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Chapter 13
Outdoor Examples

In this final chapter, we illustrate different steps of the procedure of modelling
from time series in more detail. For that, we use examples from the fields of elec-
tronics (Sect. 13.1), physiology (Sect. 13.2) and climatology (Sect. 13.3). They
are presented in the order of decreasing amount of a priori information about an
object: an appropriate model structure is completely known and only model param-
eters are estimated from data (Sect. 13.1); an appropriate model structure is partly
known (Sect. 13.2); no specific ideas about suitable model equations are available
(Sect. 13.3). For the sake of unity, we formulate the same purpose of empirical mod-
elling in all the three cases, namely identification of directional couplings between
the processes under study. This task has also been considered in the previous chapter,
where a compact and more technical description of several techniques and applica-
tions has been given.

13.1 Coupled Electronic Generators

13.1.1 Object Description

An experimental object is a system of two self-sustained generators (Fig. 13.1) sim-
ilar to that described in Dmitriev and Kislov (1989); Dmitriev et al. (1996). Both
generators are constructed according to the same scheme and contain an RC low-
pass filter (an element 1 in Fig. 13.1a), an RLC filter (an oscillatory circuit 2) and a
non-linear element (an element 3) connected in a ring (Ponomarenko et al., 2004).
The non-linear element with a quadratic transfer characteristic Uout = A − B · U 2

in
consists of an electronic multiplier, which performs the operation of taking a squared
value, and a summing amplifier, which adds the parameter A with a necessary sign
to an output signal of the multiplier (Fig. 13.1b). Here, Uout is a voltage at the output
of the non-linear element, B is a dimensional coefficient whose value is determined
by the parameters of the electronic multiplier. A is used as a governing parameter.
Under variations in A, one observes a transition to chaos via the cascade of period-
doubling bifurcations in each generator.

B.P. Bezruchko, D.A. Smirnov, Extracting Knowledge From Time Series, Springer
Series in Synergetics, DOI 10.1007/978-3-642-12601-7_13,
C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 13.1 Experimental set-up: (a) a more vivid block scheme; (b) a more detailed version. The
parameters are R1 = 1000�, R2 = 60�, C1 = C2 = 0.022 μF, L = 6 mH, B = 0.2 V−1.
Parameters of the generator 2 are the same up to an error of about 10%. A and A′ control non-linear
transfer functions of the non-linear elements, α and α′ are coupling coefficients and� are summing
amplifiers

Further, we denote the quantities relating to the second generator by a prime,
while those for the first generator are not supplied with a prime. Interaction between
the generators is possible due to the summing amplifiers � and the amplifiers
with controlled gain factors α and α′. The latter ones serve to set the “interac-
tion strength”. By specifying different values of α and α′, one provides bidirec-
tional, unidirectional or zero coupling between the generators. Below, we describe
the cases of uncoupled generators (α = α′ = 0) and unidirectional coupling
2 → 1 (α �= 0, α′ = 0) for different values of A and A′. The settings consid-
ered are summarised in Table 13.1, where the corresponding dynamical regimes are
identified as described below.

In what follows, the values of the parameters (such as inductance, capacity, resis-
tance) in both generators are not regarded as a priori known. Only the equivalent
electric scheme of Fig. 13.1 is considered as a priori known. Coupling character is
revealed from data only with the use of the latter information.
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Table 13.1 Parameters values and corresponding dynamical regimes considered. T is a character-
istic timescale of the autonomous self-sustained oscillations (it is about 0.08 ms as described in
Sect. 13.1.2). Namely, T corresponds to the highest peak in the power spectrum

Parameters Dynamical regimes
Trial no. A, V A′, V α α′ (Ponomarenko et al., 2004)

1 4.8 3.8 0 0 Cycle of the period 1T
2 4.8 3.8 0.05 0 Torus in the generator 1, cycle of

the period 1T in the generator 2
3 4.8 3.8 0.9 0 Cycle of the period 2T in the

generator 1, cycle of the period
1T in the generator 2

4 4.8 5.8 0.1 0 Chaos in both generators
5 4.8 5.8 0 0 Cycle of the period 1T in the

generator 1, chaos in the
generator 2

6 8.8 7.4 0 0 Chaos in both generators
7 8.8 7.4 0.1 0 Chaos in both generators

13.1.2 Data Acquisition and Preliminary Processing

Observed quantities x and x ′ are linearly dependent on the voltages Uin and
U ′

in : x = a + Uin
/

b and x ′ = a′ + U ′
in
/

b′. The shift and scaling parameters
a, b, a′, b′ are some constants adjusted so as to provide a maximally efficient usage
of the dynamics range of a 12-bit analogue-to-digital converter exploited for the
measurements. The values of a, b, a′, b′ are not measured, since it would compli-
cate the experimental set-up. The sampling frequency is 1.2 MHz which corresponds
approximately to 100 data points per characteristic oscillation period.

Time series of x and x ′ is shown in Fig. 13.2a, b for the case of unidirectional
coupling 2 → 1 (Table 13.1, trial 4). The driving generator 2 exhibits a chaotic
regime (see below). The generator 1 without coupling would demonstrate a peri-
odic regime. The quantities x and x ′ are presented in arbitrary units. Namely, the
raw numerical values at the output of the ADC are integers and cover the range
approximately from −2000 to 2000. For the sake of convenience, we divide them
by 1000 and get the signals x and x ′ with the oscillation amplitudes of the order
of 1. A rationale behind such scaling is that making typical values of all the anal-
ysed quantities of the order of unity allows the reduction of the computational errors
(induced by the truncation) during the model fitting.

Estimates of the power spectra (Sect. 6.4.2) and the autocorrelation functions
(Sect. 4.1.2) are shown in Fig. 13.2c–h. The highest peak is observed at the fre-
quency of 12.36 kHz for the generator 2 (Fig. 13.2d). It corresponds to the timescale
of 0.08 ms (about 100 data points), which is the distance between successive max-
ima in Fig. 13.2b. The peak is quite well pronounced, but it is somewhat wider than
that for a quasi-periodic regime shown in Fig. 6.14b and, especially, for a periodic
regime in Fig. 6.14a. Additional peaks are seen at 6.2 kHz (the first subharmonic,
which is manifested as the alternation of higher and lower maxima in Fig. 13.2b),
18.6, 24.7, 30.9 and 37.1 kHz (overtones induced by the non-linearity of the
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Fig. 13.2 Time series and their basic characteristics (Table 13.1, trial 4): the left column is for the
generator 1; the right column is for the generator 2. Observed time series are shown in the panels
(a) and (b), their periodograms in (c) and (d); their autocorrelation functions in (e) and (f) and,
at different timescale, in (g) and (h). Both ACFs and periodograms are estimated from signals of
length of 105 data points, rather than from the short pieces consisting of 5000 data points shown in
the panels (a) and (b)

system and manifested as deviations of the temporal profile from a sinusoidal wave).
The corresponding ACF exhibits a strong periodic component with a characteris-
tic period of 0.08 ms and its subharmonic with a period twice as large. The ACF
decreases with the time lag (Fig. 13.2h), but the rate of its decay is low: a linear
envelope of the ACF reveals that the autocorrelations decrease from 1 to 0.5 over
40 ms (500 characteristic periods).

Projections of the orbits onto the plane of time-delayed coordinates are given
in Fig. 13.3a, b. From Fig. 13.3b one can suspect a complex structure similar to a
projection of a chaotic attractor e.g., like in Fig. 6.15. The regime observed in the
generator 2 is, indeed, identified as chaotic, since we have evidenced its birth by
tracing the evolution of the phase orbit of the generator under the parameter change
(Ponomarenko et al., 2004). The regime under consideration has been established
after a cascade of period-doubling bifurcations. We do not go into further details of
the dynamical regime identification, since detection of chaos, estimation of fractal
dimensions and similar questions are redundant for the formulated purpose of the
model construction and the coupling estimation. In this example, a model dimen-
sion and even a complete structure of model equations are specified from physical
considerations as presented below.
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Fig. 13.3 Additional characteristics of the dynamics illustrated in Fig. 13.2: projections of the data
onto different planes are shown in the panels (a), (b) and (c); cross-correlation function between
x(t) and x ′(t) is shown in panel (d)

The power spectrum and the ACF for the generator 1 are shown in
Fig. 13.2c, e, g. A clear peak is observed at the frequency of 12.72 kHz (a natu-
ral frequency of the periodic oscillations in the generator 1). The satellite peaks
observed at the close frequencies of 12.36 and 13.08 kHz are induced by the influ-
ence 2 → 1 and manifested as a periodic component of the ACF envelope with
a period corresponding to the frequency mismatch of 0.36 kHz. The peaks at 6.2,
18.6 and 24.7 kHz are also seen in Fig. 13.2c. The ACF would not decrease for
the non-driven generator 1; it decreases here due to the influence of the chaotic
generator 2.

Traditional characteristics of the interdependence between the signals x(t) and
x ′(t) are illustrated in Fig. 13.3c, d. Figure 13.3c shows that a projection of the data
onto the plane (x, x ′) fills almost a rectangular region. It means that even if the inter-
dependence is present, it is not strong. This is confirmed by the cross-correlation
function (Sect. 6.4.5) which takes absolute values less than 0.2, rather than close to
1, as illustrated in Fig. 13.3d.

13.1.3 Selection of the Model Equation Structure

Let us consider a single generator in the case of zero couplings. From Kirchhoff’s
laws, one can write down the following set of three ordinary first-order differential
equations to model variations in currents and voltages:

C1 dU1
/

dt = (Uout − U1)
/

R1,

C2 dUin
/

dt = I,
L dI

/
dt = U1 − Uin − R2 I.

(13.1)
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All the variables entering the model are indicated in Fig. 13.1. Since only the
values of Uin are observed experimentally, it is desirable to rewrite the equations in
terms of this quantity and its derivatives. Thereby, one avoids coping with hidden
variables, which is often a difficult task (Sect. 8.2). Via some algebraic manipula-
tions, equation (13.1) can be equivalently rewritten as

d3Uin

dt3
= −

(
1

R1C1
+ R2

L

)
d2Uin

dt2
− 1

LC2

(
1 + R2C2

R1C1

)
dUin

dt
+ A − Uin − BU 2

in

LC2 R1C1
.

(13.2)
For two generators, one gets the set of six first-order equations:

C1
dU1

dt
= (

Uout − U1 − αU ′
out

)/
R1,C ′

1

dU ′
1

dt
= (

U ′
out − U ′

1 − α′Uout
)/

R′
1,

C2
dUin

dt
= I, C ′

2

dU ′
in

dt
= I ′,

L
dI

dt
= U1 − Uin − R2 I, L ′ dI ′

dt
= U ′

1 − U ′
in − R′

2 I ′,
(13.3)

where the terms αU ′
out and α′Uout describe the couplings between the generators.

The equations can be rewritten in terms of the variables Uin, U ′
in as

d3Uin

dt3
= −

(
1

R1C1
+ R2

L

)
d2Uin

dt2
− 1

LC2

(
1 + R2C2

R1C1

)
dUin

dt

+ A − Uin − BU 2
in

LC2 R1C1
+ α

(
A′ − B ′U ′2

in

)

LC2 R1C1
,

d3U ′
in

dt3
= −

(
1

R′
1C ′

1
+ R′

2

L ′

)
d2U ′

in

dt2
− 1

L ′C ′
2

(
1 + R′

2C ′
2

R′
1C ′

1

)
dU ′

in

dt

+ A′ − U ′
in − B ′U ′2

in

L ′C ′
2 R′

1C ′
1

+ α′ (A − BU 2
in

)

L ′C ′
2 R′

1C ′
1

.

(13.4)

To estimate model parameters from a time series of x(t) and x ′(t), we specify
the model structure as

d3x

dt3
= c1

d2x

dt2
+ c2

dx

dt
+ c3 + c4x + c5x2 + c6x ′ + c7x ′2, (13.5)

d3x ′

dt3
= c′

1
d2x ′

dt2
+ c′

2
dx ′

dt
+ c′

3 + c′
4x ′ + c′

5x ′2 + c′
6x + c′

7x2, (13.6)

where the terms c6x ′, c′
6x absent from equation (13.4) are introduced to allow for

the scaling and shift parameters a, b, a′, b′ in the measurement procedure. The
unknown values of a, b, a′, b′ are not important, since they affect only the numerical
values of the model coefficients ck, c′

k , rather than model behaviour and relative
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approximation error considered below. One can infer the presence of the influence
2 → 1 and 1 → 2 by comparing the models (13.5) and (13.6) with the models
which do not allow for the coupling terms and read as

d3x

dt3
= c1

d2x

dt2
+ c2

dx

dt
+ c3 + c4x + c5x2 (13.7)

and

d3x ′

dt3
= c′

1
d2x ′

dt2
+ c′

2
dx ′

dt
+ c′

3 + c′
4x ′ + c′

5x ′2. (13.8)

More precisely, we use two model-based approaches to reveal couplings. Firstly,
we compare approximation errors for the individual models (13.7) or (13.8) to
the errors for the joint models (13.5) or (13.6), respectively. This is similar to the
characterisation of the Granger causality (Sect. 12.1). Secondly, we use a criterion
which unites the analysis of couplings with the model validation and can be called
a “free-run version” of the Granger causality. Namely, if an empirical model of the
form (13.7) cannot reproduce the observed dynamics of x , while a model of the
form (13.5) can do it, then one infers the presence of the influence 2 → 1 and
its considerable effect on the dynamics. If already the model (13.5) describes the
dynamics of x satisfactorily and the model (13.7) does not improve anything, then
the influence 2 → 1 is insignificant. A similar comparison of the models (13.8) and
(13.6) applies to the detection of the influence 1 → 2. If even the models (13.5)
and (13.6) cannot adequately describe the observed dynamics, then the physical
ideas behind the model equations are invalid and one must seek for other model
structures.

13.1.4 Model Fitting, Validation and Usage

13.1.4.1 Individual Models

Let us start with the modelling of the generator 2 with the aid of the “individual”
equation (13.8). We use the chaotic time series x ′(t) shown in Fig. 13.2b as a training
time series. It is of a moderate length: N = 5000 data points, i.e. about 50 basic peri-
ods. The model (13.8) should be appropriate, since the generator 2 is not influenced
by the generator 1. However, a complete validity of the model structure is not trivial,
since the basic equation (13.2) is derived under the assumptions of strictly quadratic
non-linearity (though the transfer characteristic follows a quadratic parabola with
errors of about 1%), a constant inductance L (though it is realised with a ferrite core
so that nonlinear properties might be observed at big oscillation amplitudes), etc.

According to the procedure described in the beginning of Chap. 8 and in Sect. 9.1,
one first performs numerical differentiation of the signal x ′(t) to get the estimates
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dx̂ ′

dt
,

d2 x̂ ′

dt2
,

d3 x̂ ′

dt3

of the derivatives

dx ′

dt
,

d2x ′

dt2
,

d3x ′

dt3

entering the model equation (13.8). We use a digital smoothing polynomial
(Sect. 7.4.2): the estimates

dx̂ ′(tn)
dt

,
d2 x̂ ′(tn)

dt2
,

d3 x̂ ′(tn)
dt3

and a smoothed signal x̂ ′(tn) at a time instant tn are obtained from an algebraic
polynomial of an order L fitted to the time window {tn −mt; tn +mt} consisting
of 2m + 1 data points. Let us note the following purely technical detail. For the sake
of convenience, we rescale the time units similar to the above scaling of the variables
x and x ′: the time units are selected so as to provide the values of the derivatives of
the order of 1. This is achieved if the angular frequency of the oscillations becomes
of the order of 1. Thus, we define the time units so that the sampling interval (which
equals 1

/
1.2 μs in the physical units) gets equal to t = 0.1.

Secondly, the model coefficients are estimated via minimisation of the error

ε2 = 1

N − 2m

N−m∑

i=m+1

[
d3 x̂ ′(ti )

dt3
− c′

1
d2 x̂ ′(ti )

dt2
− c′

2
dx̂ ′(ti )

dt
− c′

3 − c′
4 x̂ ′(ti ) − c′

5 x̂ ′2(ti )
]2

The minimal relative approximation error is

εrel =
√

min
{c′

k }
ε2

/
var[d3 x̂ ′

/
dt3],

where “var” stands for the sample variance (Sect. 2.2.1) of the argument. Next,
a free-run behaviour of an obtained model is simulated. A projection of a model
phase orbit onto the plane (x ′, dx ′/dt) is compared to the corresponding pro-
jection of an observed data. For quantitative comparison, we compute a pre-
diction time, i.e. a time interval τpred, over which the prediction error σ(τ) =√〈(

x ′(t0 + τ) − x ′
pred(t0 + τ)

)2
〉

t0
(Sect. 2.2.4) rises up to 0.05

√
var[x ′]. Here,

x ′
pred(t0 + τ) is a prediction at a time instant t0 + τ obtained by simulation of a

model orbit from the initial condition x̂ ′(t0), dx̂ ′(t0)/dt, d2 x̂ ′(t0)/dt2 at the initial
time instant t0. A test time series of the length of 10000 data points (which is a
continuation of the data segment shown in Fig. 13.2b) is used both for the qualitative
comparison and for the prediction time estimation.



13.1 Coupled Electronic Generators 357

Table 13.2 Characteristics of the models (13.8) for different m and L

m L ĉ′
1 ĉ′

2 ĉ′
3 ĉ′

4 ĉ′
5 εrel τpred

2 3 −15.9 −1.71 −2.20 −6.09 1.09 0.45 0.05T
5 3 −0.40 −0.44 −0.19 −0.15 0.12 0.78 0.25T

12 3 −0.42 −0.42 −0.17 −0.15 0.10 0.07 0.25T
40 3 −0.30 −0.20 −0.04 −0.05 0.03 0.11 0.07T
40 7 −0.43 −0.42 −0.18 −0.17 0.11 0.03 0.71T

We try different values of the parameters L ≥ 3 and m ≥ L/2. Model quality
essentially depends on m and L , since these parameters determine the errors in
the derivative estimates and, hence, the errors in the estimates of the model coef-
ficients. The model coefficients and some characteristics are shown in Table 13.2.
Thus, small values of m are not sufficient to reduce the noise influence so that the
derivative estimates are very noisy as seen in Fig. 13.4 for m = 2 and L = 3. Both
the second and the third derivatives are strongly noise corrupted. The corresponding
model is completely invalid (Fig. 13.5); it exhibits a stable fixed point instead of
chaotic oscillations (Fig. 13.5b, c), a very large approximation error εrel = 0.45 and
a small prediction time τpred = 0.05T , where the characteristic period is T ≈ 100t
(Fig. 13.5a, d). Greater values of m at fixed L = 3 allow some noise reduction. The
value of m = 5 gives a reasonable temporal profile of the second derivative but
still noisy fluctuations in the third derivative (Fig. 13.6). The resulting model is
better, but still invalid, since it exhibits a periodic behaviour rather than a chaotic
one (Fig. 13.7). The value of m = 12 gives the best results: reasonable profiles of
all the derivatives (Fig. 13.8), a much smaller approximation error εrel = 0.07 and a
chaotic dynamics which is qualitatively very similar to the observed one (Fig. 13.9).
A further increase in m worsens the results. Thus, at m = 40 the derivative estimates
look even “smoother” (Fig. 13.10b–d) and the signal itself becomes somewhat dis-
torted (Fig. 13.10a shows the difference between the original data and a smoothed
signal x̂ ′(t)). Hence, the random errors in the derivative estimates are smaller, but

Fig. 13.4 Numerical differentiation of the signal x ′(t) with a digital smoothing polynomial at
m = 2, L = 3: (a) an original signal x ′(t) and its smoothed estimate x̂ ′(t) fully coincide at this
scale; (b)–(d) the derivatives of increasing order
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Fig. 13.5 Behaviour of an empirical model (13.8) obtained at m = 2, L = 3: (a) the test time
series x ′(t) (the dashed line) and the model time realisation at the same initial conditions (the solid
line); (b) a projection of the original data onto the plane (x̂ ′, dx̂ ′/dt); (c) a projection of the model
phase orbit onto the same plane; (d) a model prediction error σ for the prediction t/t sampling
intervals ahead

Fig. 13.6 Numerical differentiation of the signal x ′(t) at m = 5, L = 3. Notations are the same
as in Fig. 13.4

there appears a significant bias. The corresponding model exhibits an approximation
error greater than at m = 12 and a periodic behaviour (Fig. 13.11), which is not
similar to the observed dynamics.

Big values of m can be used in combination with big values of L to allow
the smoothing polynomial to reproduce the signal waveform in a wider window
{tn − mt; tn + mt}. In particular, the pair m = 40 and L = 7 gives a model
with chaotic behaviour and the best prediction time of 0.7T (even this prediction
time is quite moderate, which is not surprising for a chaotic regime). However, a
chaotic attractor of this model is less similar to the observed dynamics (it does not
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Fig. 13.7 Behaviour of an empirical model (13.8) obtained at m = 5, L = 3. Notations are the
same as in Fig. 13.5

Fig. 13.8 Numerical differentiation of the signal x ′(t) at m = 12, L = 3. Notations are the same
as in Fig. 13.4

exhibit a gap between the two bands seen in Fig. 13.9b, c) than that for the model
obtained at m = 12, L = 3. However, the coefficients of both models are close to
each other (Table 13.2). Below, we describe modelling of the coupled generators at
m = 12, L = 3, since this choice has provided the best qualitative description of the
chaotic dynamics of the generator 2. Still, both m = 12, L = 3 and m = 40, L = 7
appear to give very similar results of the coupling analysis.

13.1.4.2 Modelling of the Coupled Generators

The derivatives of x(t) for the trial 4 are estimated also at m = 12, L = 3. Fitting
the model equations (13.6), which involve the data from the generator 1 to describe
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Fig. 13.9 Behaviour of an empirical model (13.8) obtained at m = 12, L = 3. Notations are the
same as in Fig. 13.5

Fig. 13.10 Numerical differentiation of the signal x ′(t) at m = 40, L = 3. Notations are the same
as in Fig. 13.4. An original signal x ′(t) in the panel a (the dashed line) somewhat differs from its
smoothed estimate x̂ ′(t) (the solid line)

the time series of the generator 2, gives an approximation error εrel = 0.07, i.e. the
same as for the individual model (13.8). The model coefficients responsible for the
influence 1 → 2 appear close to zero: ĉ′

6 = −0.001 and ĉ′
7 = 0.001. The other

coefficients are very close to the corresponding coefficients of the individual model.
Thus, no quantitative improvement is observed under the use of the model (13.6) as
compared to the model (13.8), i.e. one cannot see any signs of the influence 1 → 2.

As for the modelling of the generator 1, the results for the individual model (13.7)
and the joint model (13.5) are reported in Table 13.3. One can see the reduction in
the approximation error by 20% and the coupling coefficient estimate ĉ7, which is
not as small as that for the influence 1 → 2. Thus, some signs of coupling 2 → 1
are observed already from these characteristics. The presence of coupling and its
unidirectional character becomes completely obvious when a free-run behaviour of
different models is considered.



13.1 Coupled Electronic Generators 361

Fig. 13.11 Behaviour of an empirical model (13.8) obtained at m = 40, L = 3. Notations are the
same as in Fig. 13.5

Table 13.3 Characteristics of models (13.5) and (13.7) for the generator 1

Model ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 ĉ7 εrel

(13.7) −0.28 −0.43 0.03 −0.23 0.13 – – 0.15
(13.5) −0.32 −0.43 0.03 −0.25 0.13 −0.002 0.006 0.12

Projections of the original and model phase orbits onto different planes are pre-
sented in Fig. 13.12. The observed dynamics of the generator 1 is illustrated in
Fig. 13.12a. The individual model (13.7) gives a periodic regime (Fig. 13.12b),
i.e. it is inadequate. The model allowing for unidirectional coupling 2 → 1, i.e.
Eqs. (13.5) and (13.8), exhibits a chaotic attractor very similar to the observed
behaviour (Fig. 13.12c). A model with bidirectional coupling, i.e. Eqs. (13.5)
and (13.6), does not give any further improvement (Fig. 13.12d). The results for
the generator 2 are presented similarly in the second row. Already the individual
model (13.8) adequately reproduces the dynamics (cf. Fig. 13.12e and f). A model
with a unidirectional coupling 1 → 2, i.e. Eqs. (13.7) and (13.6), and a model with
a bidirectional coupling demonstrate the same behaviour (Fig. 13.12g, h). Similar
conclusions are made from the projections onto the plane

(
x, x ′): the model with

unidirectional coupling 1 → 2 is insufficient to reproduce the dynamics qualita-
tively (cf. Fig. 13.12i and j), while the model with unidirectional coupling 2 → 1
(Fig. 13.12k) and the model with bidirectional coupling (Fig. 13.12l) exhibit the
same dynamics similar to the observed one.

Thus, via the analysis of a free-run behaviour of the empirical models and their
approximation errors, we infer from data that the unidirectional coupling scheme
2 → 1 is realised in the trial 4. This is a correct conclusion. In this manner, the
global modelling helps both to get an adequate model, when parameters of the cir-
cuits are unknown, and to reveal the coupling scheme. Similar results are observed



362 13 Outdoor Examples

Fig. 13.12 Comparison of the original data and a behaviour of different empirical models obtained
at m = 12, L = 3: (a), (e), (i) projections of the original data for the test time series; (b) a model
(13.7), no coupling; (c), (k) models (13.5) and (13.8), i.e. a unidirectional coupling 2 → 1 is
allowed for; (d), (h), (l) models (13.5) and (13.6), i.e. a bidirectional coupling is allowed for; (f) a
model (13.8), no coupling; (g), (j) models (13.7) and (13.6), i.e. a unidirectional coupling 1 → 2
is allowed

for all seven trials (Table 13.1). The results in terms of the approximation error are
summarised in Fig. 13.13, where we use m = 40, L = 7, since this choice always
gives a good description of the dynamics, while the choice of m = 12, L = 3 is
the best one for the trial 4 and a couple of other cases (anyway, the results are very

Fig. 13.13 Relative approximation errors for the models without coupling (circles) and allowing
for a unidirectional coupling (rhombs) at m = 40, L = 7: (a) the models (13.7) and (13.5) for the
generator 1; (b) the models (13.8) and (13.6) for the generator 2
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similar for these two choices of the pair m,L). A unidirectional coupling 2 → 1
is correctly detected in the trials 2, 3, 4 and 7: the reduction in the approximation
error is observed for the model (13.5), since the rhombs are located considerably
lower than the circles. No coupling is detected in the other three trials, which is also
correct. The same conclusions are obtained when we compare the prediction times
or consider the projections of the model phase orbits (not shown).

Finally, we note that the trial 3 corresponds to a phase synchronisation regime:
the phases of the generators are locked, but variations in their instantaneous ampli-
tudes are a bit different due to the non-identity of the circuits (a slight parameter
mismatch). Coupling character cannot be revealed from the locked phases with the
phase dynamics modelling technique (Sect. 12.2). The Granger causality estimation
may also face difficulties, since an inappropriate model structure in the case of a
strong unidirectional coupling may lead to a spurious detection of a bidirectional
coupling. Fitting the models (13.5) and (13.6) allows one to reveal the coupling
character correctly even in this case due to the adequate model structure (and due to
non-identity of the amplitude variations). This is an advantage of the situation when
detailed a priori information about an object is available: a further useful knowledge
can be extracted then from minimally informative experimental data.

Thus, with the electronic example we have illustrated the full procedure of con-
structing an empirical model under the “transparent box” setting and revealing a
coupling character with its help.

13.2 Parkinsonian Tremor

13.2.1 Object Description

As mentioned in Sect. 12.3, one of the manifestations of Parkinson’s disease is a
strong resting tremor, i.e. regular high-amplitude oscillations of limbs. The mecha-
nism of the parkinsonian tremor is still widely discussed. It is known that popula-
tions of neurons located in the thalamus and the basal ganglia fire in a synchronised
and periodical manner at a frequency similar to that of the tremor (Lenz et al., 1994;
Llinas and Jahnsen, 1982; Pare et al., 1990) as a result of local pathophysiology.
Also, there is an important peripheral mechanism involved in the generation of these
abnormal oscillations: the receptor properties in the muscle spindles. They con-
tribute to a servo control (closed-loop control of position and velocity) and amplify
synchronised input from central nervous structures by strongly synchronised feed-
back (Stilles and Pozos, 1976). The resulting servo loop oscillations are regarded
as a basic mechanism for tremor generation (Stilles and Pozos, 1976). Although
subcortical oscillations are not strictly correlated with the tremor (Rivlin-Etzion
et al., 2006), it was shown that limb oscillations influence subcortical activity by
the proprioceptive feedback from muscle spindles (Eichler, 2006). As yet, it was
difficult to reveal empirically whether the parkinsonian tremor is affected by sub-
cortical oscillations (Brown, 2003; Rivlin-Etzion et al., 2006).
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For deeper understanding of the mechanism of the parkinsonian tremor gener-
ation, it is important to reveal the character of interaction between different brain
areas and oscillating limbs. Due to the regularity of the parkinsonian tremor, appli-
cation of the phase dynamics modelling technique (Sect. 12.2) has appeared fruitful
(Bezruchko et al., 2008; Smirnov et al., 2008). Namely, a bidirectional coupling
between limb and subcortical oscillations has been detected and time delays in both
directions have been estimated. Below, we describe such an analysis of a single
tremor epoch in a patient with bilateral resting tremor. The patient had more pro-
nounced pathological oscillations of the left hand.

13.2.2 Data Acquisition and Preliminary Processing

Local field potentials (LFPs) from the subthalamic nucleus (STN) and accelerometer
signals, assessing the hand tremor, were recorded simultaneously. It was done by
the group of Prof. P. Tass (Institute of Neuroscience and Biophysics – 3, Research
Centre Juelich, Germany) and their colleagues at the Department of Stereotaxic and
Functional Neurosurgery, University of Cologne. Recordings were performed dur-
ing or after deep brain stimulation electrode implantation. Intraoperative recordings
from the right STN were performed with the ISIS MER system (Inomed, Tenin-
gen, Germany). The latter is a “Ben’s gun” multi-electrode for acute basal ganglia
recordings during stereotaxic operations (Benabid et al., 1987), i.e. an array consist-
ing of four outer electrodes separated by 2 mm from a central one. Proper electrode
placement was confirmed by effective high-frequency macro-stimulations, intraop-
erative X-ray controls (Treuer et al., 2005), postoperative CT scans and intraopera-
tive micro-recordings. The LFP recordings represented voltages on the depth elec-
trodes against a remote reference. The recordings were performed after overnight
withdrawal of antiparkinsonian medication. The study was approved by the local
ethical committee. The patient gave a written consent.

Accelerometer and LFP signals are denoted further as x1(t) and x2(t), respec-
tively, where t = nt, n = 1, 2, . . ., the sampling interval is t = 5 ms. An
accelerometer signal from the left hand during an epoch of strong resting tremor (of
the length of 83.5 s or 16700 data points) is shown in Fig. 13.14a. The simultaneous
LFP recording performed via the central depth electrode is shown in Fig. 13.14b.
We describe only the central electrode, since all the results are very similar for
all depth electrodes. The accelerometer signal displays a sharp peak in the power
spectrum (Fig. 13.14c) at the frequency of 5 Hz. The corresponding spectral peak
in the power spectrum of LFP is also observed (Fig. 13.14d). A spectral peak at the
tremor frequency is often manifested in the power spectrum of the LFP recorded
from the depth electrode contralateral to (i.e. at the opposite side of) the tremor
(Brown, 2003; Deuschl et al., 1996; Rivlin-Etzion et al., 2006; Zimmermann et al.,
1994).

The parkinsonian resting tremor is highly regular: the peak at the tremor fre-
quency is rather narrow for the accelerometer signal. The peak in the LFP power
spectrum is wider. This regularity is further illustrated by the autocorrelation
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Fig. 13.14 A spontaneous epoch of parkinsonian tremor of length 83.5 s. The left column relates
to an accelerometer signal and the right one to a simultaneous LFP signal: (a), (b) the time series
at the beginning of the epoch; (c), (d) their power spectra estimates (periodograms); (e), (f) their
autocorrelation functions; (g), (h) magnified segments of the original signals (grey lines) and their
versions band-pass filtered (black lines) in the frequency band 2–9 Hz; (i), (j) the orbits on the
plane “a band-pass filtered signal (2–9 Hz) versus its Hilbert transform”

functions in Fig. 13.14e, f: the ACF of x1 (Fig. 13.14e) decays much slower than that
of x2 (Fig. 13.14f). A signal with a strong periodic component is often called “phase
coherent”, since the phases of two orbits with initially the same phase diverge very
slowly in time (see, e.g., Pikovsky et al., 2001). In such a case, one speaks also of
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weak phase diffusion, which is manifested as weak variations in the instantaneous
period (a time interval between successive local maxima in a time series). The phase
diffusion can be characterised by the coefficient of variation of the instantaneous

period k =
√〈
(Ti − 〈Ti 〉)2

〉/〈Ti 〉, where Ti are the intervals between successive

maxima (i = 1, 2, . . .) and angle brackets denote averaging over the time index
i . For the accelerometer signal shown in Fig. 13.14a, the value of k is equal to
0.05 (local maxima and the distances Ti are determined from a band-pass filtered
signal, shown by the black line Fig. 13.14g, to avoid fast fluctuations inappro-
priate for the determination of the tremor period). Since the instantaneous period
varies only by 5% as compared to its mean value of 〈Ti 〉 ≈ 200 ms, the process
can be regarded as rather phase coherent. Our analysis of 41 tremor epochs from
three different patients (Smirnov et al., 2008) shows that the coefficient k for the
accelerometer signals typically takes the values of 0.05–0.1. For such regular sig-
nals, it is most reasonable to introduce phases and estimate couplings via the phase
dynamics modelling as justified in Smirnov and Andrzejak (2005) and Smirnov et al.
(2007).

Before the phase dynamics modelling, it is necessary to select a frequency band
to define the phases. The results may differ for different bands. Inclusion of the
frequencies below 2–3 Hz may shift the focus to slow processes like the heart beat or
technical trends, which are not related to the parkinsonian tremor generation. Inclu-
sion of the frequencies higher than 9–10 Hz implies a description of fast fluctuations,
in particular, higher harmonics of the basic frequency. Such fluctuations may play a
role of noise in the modelling of the tremor and make confident conclusions about
the coupling presence more difficult. However, all that is not known in advance.
Hence, one must try different frequency bands. We present the results only for a
rather wide frequency band around the tremor frequency and then briefly comment
what differs if other bands are used.

Both signals x1(t) and x2(t) are filtered in the relatively wide frequency band
of 2–9 Hz (Fig. 13.14g, h). Their Hilbert transforms (Sect. 6.4.3) are illustrated in
Fig. 13.14i, j, where rotation about a clearly defined centre is seen for both signals.
Thus, the phases φ1(t) and φ2(t) are defined reasonably well. Ten characteristic
periods at both edges of the phase time series are removed from the further analysis,
since the corresponding phase values may be strongly distorted due to the edge
effects as discussed in Pikovsky et al. (2000). The resulting phase time series of
length 15900 data points (approximately 400 oscillation periods) is used for model
fitting.

The cross-correlation function between the LFP and the contralateral hand accel-
eration is shown in Fig. 13.15a. Within a range of time lags, the CCF significantly
differs from zero. Thus, the presence of coupling can be inferred reliably already
from the CCF. The CCF exhibits some asymmetry: local maximum of its absolute
value, closest to zero time lag, is observed at −25 ms. It could be a sign that the
signal x2(t) “leads”. However, somewhat higher peaks are observed at positive time
lags, more distant from zero. Thus, directional coupling characteristics cannot be
extracted from the CCF unambiguously, which is a typical case.
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Fig. 13.15 Simple characteristics of interdependence between the accelerometer and LFP signals,
shown in Fig. 13.14: (a) the cross-correlation function, error bars show the 95% confidence bands
estimated via Bartlett’s formula (Bartlett, 1978); (b) phase synchronisation index for the phases
defined in the frequency band 2–9 Hz; (c) the data points on the plane of wrapped phases

13.2.3 Selection of the Model Equation Structure

At variance with the electronic example (Sect. 13.1), model equations for the
parkinsonian tremor and subcortical activity cannot be written down from physi-
cal or physiological considerations. Thus, the structure of model equations cannot
be regarded as completely known. On the other hand, it has appeared possible to
introduce the phases of the oscillations related to the tremor frequency band. As
discussed in Sect. 12.2, an adequate description of the phase dynamics for a wide
range of oscillatory processes is achieved with the phase oscillator model, i.e. a first-
order stochastic differential equation (Kuramoto, 1984; Rosenblum et al., 2001). For
two processes, the model reads as

dφ1(t)
/

dt = ω1 + G1(φ1(t), φ2(t − 2→1)) + ξ1(t),

dφ2(t)
/

dt = ω2 + G2(φ2(t), φ1(t − 1→2)) + ξ2(t),
(13.9)

where ωk is the angular frequency, the function Gk is 2π periodic with respect to
both arguments, 2→1,1→2 are time delays in couplings, ξk are zero-mean white
noises with ACFs

〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ(t − t ′), σ 2
ξk

characterises noise intensity.
Empirical model is convenient to be sought for in the form of the corresponding
difference equations:

φ1(t + τ) − φ1(t) = F1(φ1(t), φ2(t − 2→1), a1) + ε1(t),

φ2(t + τ) − φ2(t) = F2(φ2(t), φ1(t − 1→2), a2) + ε2(t),
(13.10)
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where τ is the fixed time interval equal to the basic oscillation period (200 ms in
our case), εk is the zero-mean noise, Fk is the third-order trigonometric polynomial
(12.8), ak is the vector of its coefficients, 2→1,1→2 are trial time delays.

Thus, a suitable model structure (or, at least, a good guess for it) for the phases
of the processes x1(t) and x2(t) can be considered as partly known due to relatively
high regularity of the processes. Indeed, the first-order difference equation (13.10)
with low-order trigonometric polynomials is a sufficiently universal choice, but not
as arbitrary as in the black box case (Chap. 10): one does not need to try different
model dimensions and different types of approximating functions.

13.2.4 Model Fitting, Validation and Usage

The three conditions of applicability of the phase dynamics modelling technique
(Smirnov and Bezruchko, 2003; 2009) are imposed on the time series length (not
less than 40 characteristic periods), the synchronisation index (not greater than 0.45)
and the autocorrelation function of the model residual errors (the ACF decreases
down to 0 or, at least, gets less than 0.2, over the interval of time lags up to τ ).
In our example, the length of the considered time series is about 400 characteristic
oscillation periods, which is sufficiently big. Phase synchronisation index

ρ() =
∣∣∣
∣∣

1

N

N∑

n=1

ei(φ1(nt)−φ2(nt+))

∣∣∣
∣∣

is less than 0.4 for any time lag  (Fig. 13.15b) as required. Sufficiently weak
interdependence between simultaneous values of φ1 and φ2 is also illustrated in
Fig. 13.5c: the distribution of the observed values on the plane of the wrapped
phases fills the entire square and exhibits only weak non-uniformity. The ACF of
the residual errors must be checked after fitting the model (13.10) to the phase time
series.

We have fitted the equations to the data as described in Sect. 12.2. Namely, we
have fixed τ = 200 ms and minimised mean-squared approximation errors

σ̂ 2
k,a( j→k, ak) = 1

N − τ
/
t

N∑

n=τ /t+1

(φk(nt + τ) − φk(nt)

−Fk(φk(nt), φ j (nt −  j→k), ak)
)2
,

where k, j = 1, 2 ( j �= k). For a fixed value of the trial delay  j→k , this is a linear
problem so that the coefficient estimates âk( j→k) = arg min

ak
σ̂ 2

k,a( j→k, ak) are

found by solving a linear set of algebraic equations. The minimisation is performed
for different trial delays. Then, the quantity σ̂ 2

k ( j→k) = min
ak

σ̂ 2
k,a( j→k, ak) is

plotted versus  j→k (Fig. 13.16a, b). Its minimal value characterises the phase
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Fig. 13.16 Fitting the phase dynamics model (13.10) to the data of Fig. 13.14: (a), (b) approxi-
mation errors σ̂ 2

1 and σ̂ 2
2 (dimensionless) versus a trial time delay; (c), (d) coupling characteristics

γ2→1 and γ1→2 (dimensionless) versus a trial time delay (solid lines) along with the pointwise
0.975 quantiles γ2→1,c and γ1→2,c (dashed lines)

diffusion intensity: σ̂ 2
k,min = min

 j→k
σ̂ 2

k ( j→k). From the coefficient estimates âk ,

the coupling strength γ j→k( j→k) is computed as their weighted sum. The for-
mula for γ j→k is given in Sect. 12.2. For the low-order trigonometric polynomials
used, it appears that the maximum of γ j→k( j→k) corresponds to the minimum of
σ̂ 2

k ( j→k) (Fig. 13.16c, d).
The formula for the critical value γ j→k,c( j→k), which is a pointwise 0.975

quantile for the estimator γ j→k( j→k) in the case of uncoupled processes, is also
available (Sect. 12.2). If one observes that γ j→k( j→k) > γ j→k,c( j→k) for a
range of time delays wider than half a basic oscillation period (for an entire tried
range of time delays covering five basic periods), then the presence of coupling
can be inferred at the resulting significance level of 0.05 (i.e. with a probability
of random error less than 0.05). This is the case in our example (Fig. 13.16c, d).
Thus, a bidirectional coupling between the brain activity and the limb oscillations is
detected.

Then, the location of the maximum of γ j→k( j→k) or the minimum of
σ̂ 2

k ( j→k) gives an estimate of the time delay: ̂ j→k = arg min
 j→k

σ̂ 2
k ( j→k). In

our case, the estimated time delay is ̂2→1 = 350 ms for the influence 2 → 1
(brain to hand, γ2→1(̂2→1) = 0.045) and ̂1→2 = 0 ms for the influence 1 → 2
(hand to brain, γ1→2(̂1→2) = 0.16).

Finally, the obtained model (13.10) with coefficients âk(̂ j→k) should be val-
idated including the properties of its residual errors. Our optimal model is spec-
ified by the phase diffusion intensities σ̂ 2

1,min = 0.52 and σ̂ 2
2,min = 3.88, and

the following significantly non-zero coefficients (see their notations in Sect. 12.2):
w1 = 6.03 ± 0.07, β1,2,0 = 0.019 ± 0.017, α1,1,1 = 0.213 ± 0.076;



370 13 Outdoor Examples

Fig. 13.17 Residual errors of the optimal phase dynamics model (13.10) for the epoch of
Fig. 13.14. The left column shows residuals for the accelerometer signal phase, the right one is for
the LFP signal phase: (a), (b) residual errors versus time; (c), (d) their autocorrelation functions;
(e), (f) their histograms

w2 = 6.28 ± 0.20, β2,1,1 = 0.44 ± 0.21. Time realisations of this model represent
almost linear increase of the phases with some fluctuations. Qualitatively, they are
very similar to the observed almost linearly increasing phases (not shown, since
the plots are not informative). The model residuals are shown in Fig. 13.17a, b and
their ACFs in Fig. 13.17c, d. The ACFs get less than 0.2 for time lags greater than
τ = 200 ms as required. Thus, applicability of the technique is confirmed.

The required properties of the residuals and proper behaviour of the time real-
isations validate the obtained model (13.10). The main usage of the model in our
case is to make conclusions about the couplings between the processes. As already
mentioned, it reveals a bidirectional coupling. Further, for the time series consid-
ered, the brain-to-hand influence appears delayed by more than a basic oscillation
period, while the opposite influence is non-delayed. These results appear repro-
ducible (another tremor epoch is illustrated in Figs. 12.1 and 12.2): the analysis of
41 tremor epochs from three different patients (Smirnov et al., 2008) in 30 cases has
revealed the “coupling pattern” similar to that in Fig. 13.16, i.e. a bidirectional cou-
pling which is significantly time delayed in the brain-to-hand direction and almost
non-delayed in the opposite direction. In the other 11 epochs, no coupling has been
detected. The cause seems to be that epochs of strong tremor occur intermittently in
all the patients and the estimated curves γ j→k( j→k) fluctuate stronger for shorter
epochs. It can be interpreted as an effect of noise. Averaging over all tremor epochs
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available for a given patient exhibits the plots γ j→k( j→k) shown in Fig. 12.3,
which clearly confirm the coupling pattern observed in Fig. 13.16.

The results do not change under sufficiently strong variations in the frequency
band used to define the phases. Namely, the results are practically the same if the
lower cut-off frequency is not less than 2 Hz and not greater than ftremor − fc and the
upper cut-off frequency is not less than ftremor+ fc and not greater than 2 ftremor− fc,
where ftremor is the basic tremor frequency and fc is equal to 1 Hz. In our example,
ftremor = 5 Hz so that the acceptable values of the lower cut-off frequency range
from 2 to 4 Hz and those of the upper cut-off frequency are from 6 to 9 Hz. Above,
we have presented the results for a maximally wide acceptable frequency band. Its
further enlargement or movement to higher frequencies gives less regular signals
(a stronger phase diffusion) and insignificant conclusions about the coupling
presence.

13.2.5 Validation of Time Delay Estimation

An analytic formula for the error in the time delay estimates is unavailable. To
check correctness of the time delay estimation and assess its typical errors, we
apply the same modelling procedure to a toy model consisting of the noisy van
der Pol oscillator (an “analogue” of the hand oscillations) and a strongly dissipative
linear oscillator (an “analogue” of the brain signal). Parameters of these oscillatory
systems are selected so that they give stronger phase diffusion for the “LFP” signals
and weaker one for the “tremor” signals as it is observed for the measurement data.
Thus, the accelerometer (a1(t) = d2 y1(t)

/
dt2) and LFP (y2(t)) model oscillators

read as

d2 y1(t)

dt2
−
(
λ − y2

1(t)
) dy1(t)

dt
+ y1(t) = k2→1(y2(t − τ2→1) − y1(t))+ ξ1(t),

d2 y2(t)

dt2
+ 0.15

dy2(t)

dt
+ y2(t) = k1→2(y1(t − τ1→2) − y2(t))+ ξ2(t), (13.11)

where ξ1, ξ2 are independent white noises with ACFs
〈
ξk(t)ξk(t ′)

〉 = σ 2
ξk

δ

(t − t ′), σξ1 = σξ2 = 0.1, λ = 0.05 and τ2→1, τ1→2 are time delays. Angular
frequencies of both oscillators are approximately equal to 1 so that their periods are
about six time units. To generate a time series, the equations are integrated with the
Euler technique (Sect. 4.5.2) at the step size of 0.01. The sampling interval is equal
to 0.15, i.e. gives approximately 40 data points per basic period of oscillations.

The reasoning behind the simple model equation (13.11) is as follows. Firstly,
the non-linear oscillator is chosen as a model of the accelerometer signal, since in
a large number of tremor epochs our attempts to reconstruct a model equation from
an accelerometer time series resulted in similar models (not shown). In fact, the
spinal cord is able to produce self-sustained rhythmic neural and muscular activity
due to its central pattern generators (Dietz, 2003). Moreover, similar models were
previously obtained both for parkinsonian and essential tremor dynamics (Timmer
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et al., 2000). We consider the oscillator which is close to the point of the Andronov –
Hopf bifurcation and demonstrates self-sustained oscillations (positive value of λ)
perturbed by noise. However, the coupling estimation results are very similar for
small negative λ, since the noise induces similar oscillations for small negative and
small positive values of λ. Secondly, the linear oscillator is chosen as a model of the
LFP signal, since construction of polynomial autoregressive models with different
polynomial orders did not detect pronounced non-linearity (not shown).

The time series and power spectra estimates for the coupled oscillators (13.11)
are shown in Fig. 13.18 (cf. Fig. 13.14).

We have analysed ensembles of time series generated by equation (13.11) with
exactly the same procedure as applied to the experimental data above. In the numer-
ical simulations, we used ensembles consisting of 100 time series of length of 100
basic periods. The results for a single epoch of Fig. 13.18 are shown in Figs. 13.19
and 13.20: they are qualitatively similar to the corresponding experimental results in
Figs. 13.16 and 13.17. The averaged plots of coupling estimates for the observables
a1(t) and y2(t) are shown in Fig. 13.21 in the same form as for the experimental
results in Fig. 12.3. Without coupling (i.e. for k2→1 = k1→2 = 0), Fig. 13.21a, b

Fig. 13.18 A simulated time realisation of equation (13.11) of the duration 600 units of time t
(4000 data points, about 100 basic periods) for the parameters k2→1 = 0.2, τ2→1 = 13.0, k1→2 =
0.05, τ1→2 = 0: (a) a signal a1(t) = d2 y1(t)

/
dt2 at the beginning of the epoch considered, an

analogue of the band-pass-filtered accelerometer signal x1(t) (Fig. 13.14g); (b) a simultaneous
signal y2(t), an analogue of the band-pass-filtered LFP x2(t) (Fig. 13.14h); (c), (d) periodograms
of a1(t) and y2(t), respectively; (e), (f) their autocorrelation functions
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Fig. 13.19 Fitting the phase dynamics equation (13.10) to the time realisations of the model
(13.11) illustrated in Fig. 13.18: (a), (b) the approximation errors σ̂ 2

1 and σ̂ 2
2 versus a trial time

delay; (c), (d) the coupling characteristics γ2→1 and γ1→2 versus a trial time delay (solid lines)
along with the pointwise 0.975 quantiles γ2→1,c and γ1→2,c (dashed lines)

Fig. 13.20 Residual errors of the optimal phase dynamics model (13.10) for the time series of
Fig. 13.18. The left column shows the residuals for the phase φ1 and the right one is for the phase
φ2: (a), (b) the residual errors versus time; (c), (d) their autocorrelation functions; (e), (f) their
histograms
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Fig. 13.21 The coupling characteristics averaged over ensembles of the time series from the system
(13.11). The error bars indicate the averaged values of the analytic 95% confidence bands. The
vertical dashed lines show true delay times: (a), (b) uncoupled oscillators; (c), (d) a unidirectional
coupling with k2→1 = 0, k1→2 = 0.07, τ1→2 = 0; (e), (f) a bidirectional time-delayed coupling
with k2→1 = 0.2, τ2→1 = 13.0, k1→2 = 0.05, τ1→2 = 0 (an example of a single time series for
these parameters is given in Figs. 13.18, 13.19 and 13.20)

evidences that there is no false coupling detection on average. For a unidirectional
“hand-to-brain” coupling (k2→1 = 0, k1→2 = 0.07, τ1→2 = 0), the unidirectional
coupling pattern is observed in Fig. 13.21c, d. The experimental coupling pattern
of Fig. 12.3 is qualitatively reproduced in our model (13.11) with a bidirectional
time-delayed coupling, e.g., for k2→1 = 0.2, τ2→1 = 13.0 (i.e. twice as large as
the basic period of the oscillations), k1→2 = 0.05, τ1→2 = 0, see Fig. 13.21e, f.
At that, γ2→1 gets maximal for ̂2→1 = 9.0, which is smaller than τ2→1 = 13.0
approximately by 0.6 of the basic period. For a range of true coupling coefficients
and time delays, we have observed that the time delay estimate is less than the true
time delay by half of the basic period on average.

Thus, with the numerical example we have qualitatively illustrated that reason-
able estimates of the time delays are obtained with the phase dynamics modelling
technique. Quantitatively, the time delay estimates may have an error about half a
basic period and, hence, are not very accurate. Yet, we can conclude that the time
delay in the brain-to-hand influence estimated from the parkinsonian tremor data is
greater than the delay in the hand-to-brain direction.

To summarise, the results of the work (Smirnov et al., 2008), described above, fit
to the assumption that the subcortical oscillations drive and synchronise premotor
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and motor cortex which activates the contralateral muscles via the spinal cord
(Brown, 2003; Rivlin-Etzion et al., 2006; Tass et al., 1998; Timmermann et al.,
2003). However, the long brain-to-tremor delay indicates a more complex mecha-
nism compared to a simple forward transmission. In contrast, the short tremor-to-
brain delay fits to a direct neural transmission time of a proprioceptive feedback loop
(Eichler, 2006). These results provide a new picture of the old servo loop oscillation
concept, where feedback and feed-forward are acting via straight transmission lines
(Stilles and Pozos, 1976). Rather, one can suggest that the synchronised subcorti-
cal oscillatory activity feeds into a multistage re-entrant processing network, most
likely involving cortico-subcortical and spinal reflex loops (see also Brown, 2003;
Rivlin-Etzion et al., 2006, Stilles and Pozos, 1976).

13.3 El-Niño/Southern Oscillation and Indian Monsoon

13.3.1 Object Description

Major climatic processes in Asian – Pacific region, which are of global importance,
are related with the phenomena of El-Niño/Southern Oscillation (ENSO) and Indian
monsoon (Solomon et al., 2007). The strongest interannual variations in the global
surface temperature depend on the intensity of the ENSO phenomenon. Two-thirds
of the Earth population live in the monsoon-related regions with a key role of Indian
monsoon (Zhou et al., 2008). Thus, investigation of the interaction between ENSO
and Indian monsoon activity is of both regional and global interest.

The presence of interdependence between these processes has been reliably
detected with different techniques in many works (Kripalani and Kulkarni, 1997;
2001, Krishnamurthy and Goswami, 2000; Kumar et al., 1999; Maraun and Kurths,
2005; Sarkar et al., 2004; Solomon et al., 2007; Walker and Bliss, 1932; Yim et al.,
2008; Zubair and Ropelewski, 2006). Indeed, an increase in the sea surface tempera-
ture (SST) in equatorial Pacific during El-Nino along with the corresponding change
in convective processes, the Walker zonal circulation, the Hadley meridional circula-
tion and the displacement of the intertropical convergence zone, is accompanied by
considerable seasonal anomalies of temperature and precipitation in many regions.
At that, there are significant variations in the correlation between characteristics of
ENSO and Indian monsoon, in particular, its noticeable decrease starting from the
last quarter of the XX century (Solomon et al., 2007). Along with the characterisa-
tion of an overall coupling strength provided by the coherence and synchronisation
analysis, climatologists are strongly interested in a quantitative estimation of direc-
tional couplings between ENSO and Indian monsoon along with tendencies of their
temporal changes.

Below, we describe estimation of the directional couplings by using the empirical
AR models, i.e. the Granger causality (Sect. 12.1), which gets more and more often
used in the Earth sciences (Mokhov and Smirnov, 2006, 2008; Mosedale et al., 2006;
Wang et al., 2004).
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13.3.2 Data Acquisition and Preliminary Processing

We have analysed monthly values of the ENSO and Indian monsoon indices for
the period 1871–2006 illustrated in Fig. 13.22. Indian monsoon is characterised by
variations in all-India monthly precipitation (Mooley and Parthasarathy, 1984). The
corresponding data of the Indian Institute of Tropical Meteorology are available at
http://climexp.knmi.nl/data/pALLIN.dat. As the ENSO index, we use SST in the
area Niño-3 (5S–5N, 150W–90W) in the Pacific Ocean. We take the UK Meteoro-
logical Office GISST2.3 data for the period 1871–1996 (Rayner et al., 2003), which
are available at http://paos.colorado.edu/research/wavelets/nino3data.asc, and sup-
plement them with the data of the Climate Prediction Center obtained via Reynolds’
optimal interpolation (Reynolds and Smith, 1994) for the period 1997–2006, which
are available at http://www.cpc.noaa.gov/data/indices/sstoi.indices. The concatena-
tion of the data is done in analogy with the work of Torrence and Compo presented
at http://atoc.colorado.edu/research/wavelets/wavelet1.html.

Seasonal variations in both processes are clearly seen in Fig. 13.22. They are
related to the common external driving, i.e. to the insolation cycle. Common exter-

Fig. 13.22 Climatic data available and their characteristics: (a) an index of Indian monsoon, (b)
its ACF estimate; the error bars show 95% confidence intervals according to Bartlett’s formula
(Bartlett, 1978); (c) its periodogram; (d) an ENSO index, (e) its ACF estimate, (f) its periodogram
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nal driving can lead to prediction improvements (Sect. 12.1) and to erroneous con-
clusions about the presence of mutual influences. Therefore, we have removed the
component with 12-month period and its higher harmonics from both signals. It
is realised as follows. An averaged value of an observed quantity η is computed
separately for each calendar month, e.g. for January. The averaging is performed
over the entire interval 1871–2006. This averaged value is subtracted from all the
January values of η. The values of η corresponding to each of the 12 months are
processed analogously. Below, we deal only with such deseasonalised signals and
denote the resulting monsoon index as x1(t) and the ENSO index as x2(t). The
resulting time series are shown in Fig. 13.23a, d and their length is N = 1632 data
points. Their power spectra and ACFs do not reveal any signs of a 12-month cycle
(Fig. 13.23b, c, e, f) as desired.

The cross-correlation function for the signals x1(t) and x2(t) reaches the value of
−0.22 for the 3-month time delay of the ENSO index relative to the monsoon index
(Fig. 13.24). According to Bartlett’s formula (Bartlett, 1978), the width of a point-
wise 95% confidence band for the CCF estimate is ±0.05. Therefore, although the
absolute value of the CCF is not very large, its difference from zero at the time lags
close to zero is highly statistically significant. The CCF indicates the presence of an

Fig. 13.23 Climatic data after the removal of the 12-month component: (a)–(c) an index of Indian
monsoon with its ACF and periodogram; (d)–(f) an ENSO index with its ACF and periodogram
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Fig. 13.24 The cross-
correlation function between
deseasonalised monsoon and
ENSO indices

interdependence between the processes, but it does not allow to reveal whether the
coupling is unidirectional (and, then, to find out its directionality) or bidirectional.

13.3.3 Selection of the Model Equation Structure

Since any a priori information about an appropriate model structure is absent, we
use universal autoregressive models (Sect. 12.1) to describe the observed dynamics
and reveal the character of coupling. Namely, individual (univariate) models are
constructed in the form

x1(t) = f1(x1(t − 1), . . . ,x1(t − d1)) + ξ1(t),
x2(t) = f2(x2(t − 1), . . . ,x2(t − d2)) + ξ2(t),

(13.12)

where f1 and f2 are polynomials of the orders P1 and P2, respectively, d1 and d2 are
the model dimensions (orders), ξ1 and ξ2 are Gaussian white noises. Analogously,
the joint (bivariate) model structure is

x1(t) = f1|2 (x1(t − 1), . . . ,x1(t − d1), x2(t − 1), . . . , x2(t − d2→1)) + η1(t),
x2(t) = f2|1 (x2(t − 1), . . . ,x2(t − d2), x1(t − 1), . . . , x1(t − d1→2)) + η2(t),

(13.13)
where f 2|1 and f 1|2 are polynomials of the same orders P1 and P2 as for the indi-
vidual models (13.12), d2→1 and d1→2 are the numbers of the values of the other
process taken into account (they characterise inertial properties of couplings), η1
and η2 are Gaussian white noises.

Polynomial coefficients in the models (13.12) and (13.13) are estimated via the
ordinary least-squares technique, i.e. via minimisation of the sums of the squared
residual errors (Sect. 12.1). Since any a priori information about an appropriate
model structure is absent, we try different values of dk, d j→k and Pk to find opti-
mal ones. It is important to select the form of the non-linear functions properly.
Due to relatively short time series at hand, we use low-order algebraic polynomials
(Ishiguro et al., 2008; Mokhov and Smirnov, 2006) as a reasonable universal choice
under the “black box” problem setting (Chap. 10).

Concretely, to select dk, d j→k and Pk , we proceed as follows. At a fixed Pk ,
the value of dk is selected according to Schwarz’s information criterion (see the
discussion of the cost functions in Sect. 7.2.3), i.e. so as to minimise the value of
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Sk = N

2
ln σ̂ 2

k + ln N

2
Pk,

where σ̂ 2
k is the minimal mean-squared prediction error of the individual AR model

(13.12) at the given dk and Pk (see the notations in Sect. 12.1). Then, we validate
the univariate AR model obtained. Firstly, we check whether its residual errors are
delta correlated to assure further applicability of the F-test for the coupling estima-
tion (Sect. 12.1). Secondly, we check whether its time realisations are close to the
observed time series xk(t) in a statistical sense: temporal profiles look similar; the
ranges of probable values of the model and observed variables are almost the same.
If all that is fulfilled, then the univariate model is regarded satisfactory, otherwise
the value of dk is increased.

Given dk , we use Schwarz’s criterion to select d j→k , i.e. we minimise

S j→k = N

2
ln σ̂ 2

k| j + ln N

2
Pk| j ,

where σ̂ 2
k| j is the minimal mean-squared prediction error of the bivariate AR model

(13.13). However, for the purposes of coupling detection, another approach may
be even more appropriate: one can select such value of d j→k , which maximises
PI j→k = σ̂ 2

k − σ̂ 2
k| j or corresponds to the value of PI j→k , which exceeds zero at the

smallest significance level p. We use the latter approach as well and compare the
results of both approaches. An obtained bivariate AR model is validated in the same
way as the univariate models.

Different values of Pk are tried. The above analysis, including the selection of dk

and d j→k , is performed for each Pk . The most appropriate value of Pk is selected
both according to Schwarz’s criterion and to the most significant PI j→k and the
results are compared. The trial values of dk, d j→k and Pk are varied within such a
range that the number of coefficients in any fitted AR model remains much less than
the time series length N , namely the number of model coefficients does not exceed√

N , i.e. approximately 40 in our case.

13.3.4 Model Fitting, Validation and Usage

Firstly, we fit models and estimate couplings for the entire period 1871–2006. Sec-
ondly, the analysis is done in moving windows of length ranging from 10 to 100
years to get time-resolved coupling characteristics.

13.3.4.1 Univariate models

The number of coefficients in the linear models is equal to Pk = dk + 1 so that dk

can be increased up to 39 when a model is fitted to the entire period 1871–2006. For
the quadratic models, we get
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Fig. 13.25 Mean-squared prediction errors (first row) and Schwarz’s criterion (second row) for
the individual AR models of the Indian monsoon index (left column) and the ENSO index (right
column)

Pk = (dk + 1)(dk + 2)

2

so that dk may not exceed 7. It should be dk ≤ 4 for Pk = 3, dk ≤ 3 for Pk = 4, etc.
For the monsoon index, an optimal model is achieved at d1 = 1 for any P1

(Fig. 13.25a, c). Schwarz’s criterion takes the smallest values for the linear models.
Thus, an optimal model is linear with d1 = 1. It gives a prediction error with the
variance σ̂ 2

1 /var[x1] = 0.98, where var[x1] is the sample variance of x1. The model
explains only 2% of var[x1].

For the ENSO index, an optimal model dimension is d2 = 1 at P2 = 2, 4 and
d2 = 2 at P2 = 3, but the best model is linear with d2 = 5 (Fig. 13.25b, d). The
normalised variance of its prediction error is σ̂ 2

2 /var[x2] = 0.18.
The obtained individual models appear valid: the residual errors of the optimal

models (Fig. 13.26a, d) for both processes are delta correlated (Fig. 13.26b, e) and
exhibit distributions with quickly decreasing tails (Fig. 13.26c, f); model time real-
isations are statistically close to the observed data (the plots are not shown, since
they are similar to those for a bivariate model presented below).

13.3.4.2 ENSO-to-Monsoon Driving

To construct bivariate models for the monsoon index, we use d1 = 1 at different
values of P1 based on the results shown in Fig. 13.25c. The value of d2→1 = 1
appears optimal at P1 = 1 and 3 (Fig. 13.27a). The linear model gives the smallest
value of Schwarz’ criterion. However, the model with P1 = 3 gives greater and
the most statistically significant prediction improvement (Fig. 13.27c, e). This is a
sign of non-linearity in the ENSO-to-monsoon influence, which would be ignored
if the linear model were used to estimate the coupling. To avoid such a negli-
gence, we regard the model with P1 = 3 as optimal. Its prediction improvement
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Fig. 13.26 Residual errors of the optimal individual models (13.12) with ACFs and histograms:
(a)–(c) for the Indian monsoon index; (d)–(f) for the ENSO index

is PI2→1/σ̂
2
1 = 0.028, i.e. it equals only 2.8% of the variance of all factors, which

remain unexplained by the univariate model. Yet, the ENSO-to-monsoon influence
is detected with high confidence (p < 10−8).

The optimality of the value of d2→1 = 1 means “inertialless” ENSO-to-monsoon
influence. The model reads as

x1(t) = a1,1x1(t − 1) + b1,1x2(t − 1) + c1,1x2
1(t − 1)x2(t − 1) + c1,2x3

2(t − 1)
+η1(t),

(13.14)
where σ 2

η1
= 5.84 × 102 mm2 and estimates of the coefficients and their standard

deviations (see Sect. 7.4.1 and Seber, 1977) are the following: a1,1 = 0.071 ±
0.035, b1,1 = −4.65 ± 1.11 mm K−1, c1,1 = (−3.53 ± 0.76) · 10−3 mm−1 K−1

and c1,2 = 1.53 ± 0.38 mm K−3. We have shown only the terms whose coefficients
differ from zero at least at the pointwise significance level of 0.05, i.e. the absolute
value of a coefficient is at least twice as big as its standard deviation. The linear
coupling coefficient b1,1 is negative, which corresponds to the above-mentioned
negative correlation between the signals x1 and x2.

13.3.4.3 Monsoon-to-ENSO Driving

A bivariate model for the ENSO index is optimal at P2 = 1 and d1→2 = 3
(Fig. 13.27b). It corresponds to the most significant prediction improvement
PI1→2/σ̂

2
2 = 0.024 exceeding zero at the significance level of p < 10−8

(Fig. 13.27d, f). The model reads as

x2(t) = a2,1x2(t − 1) + a2,5x2(t − 5) + b2,1x1(t − 1) + b2,2x1(t − 2)
+b2,3x1(t − 3) + η2(t),

(13.15)
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Fig. 13.27 Fitting the bivariate models to the monsoon (the left column) and ENSO (the right
column) data: Schwarz’s criterion (first row), the prediction improvement (second row) and the
significance level (third row)

where σ 2
η2

= 0.11 K2, a2,1 = 0.92 ± 0.025, a2,5 = −0.083 ± 0.025, b2,1 =
(−1.44 ± 0.34) × 10−3 mm−1 K, b2,2 = (−1.04 ± 0.35) × 10−3 mm−1 K and
b2,3 = (−1.01 ± 0.35) × 10−3 mm−1 K. The monsoon-to-ENSO influence is iner-
tial, since the optimal value of d1→2 > 1. Namely, the behaviour of the ENSO
index depends on the values of the monsoon index for three previous months.
The coupling coefficients b2,1, b2,2, b2,3 are negative and also correspond to the
observed anti-correlation between x1 and x2. All the three coupling coefficients are
almost identical, i.e. the total contribution of the monsoon index to equation (13.15)
(b2,1x1(t − 1)+ b2,2x1(t − 2)+ b2,3x1(t − 3)) is approximately proportional to its
average value over 3 months. No signs of non-linearity of the monsoon-to-ENSO
influence are detected.

13.3.4.4 Validation of the Bivariate Model

ACFs and histograms of the residual errors for the bivariate models (13.14) and
(13.15) are very similar to those for the individual models in Fig. 13.26; they
exhibit delta correlatedness and quickly decreasing tails (not shown). The corre-
lation coefficient between the residual errors for the monsoon and ENSO indices
is 0.02 ± 0.05, i.e. equals zero within the estimation error. Thus, the noises η1
and η2 are considered independent when realisations of the bivariate model (13.14)
and (13.15) are simulated. Time realisations of this optimal model with P1 = 3,
d1 = 1, d2→1 = 1, P2 = 1, d2 = 5, d1→2 = 3 look similar to the observed time
series (Fig. 13.28a,c). For a quantitative comparison, an ensemble of model realisa-
tions at the same initial conditions is generated and 95% intervals of the distributions
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Fig. 13.28 Behaviour of the optimal AR model (13.14) and (13.15): (a), (c) model time realisations
corresponding to the monsoon index and the ENSO index, respectively; (b), (d) 95% intervals of
the model variables (dotted lines) and the observed data (solid lines), respectively

of the model variables are determined. It appears that 95% of the observed values
of the ENSO and monsoon indices fall within those intervals (Fig. 13.28b,d), which
confirms validity of the model.

13.3.4.5 Coupling Analysis in Moving Window

Finally, let us consider temporal variations in the coupling characteristics by using
the moving window analysis, i.e. the intervals [T − W, T ], where W is the window
length and T is a coordinate of the window endpoint (in years). At a fixed value of
W (which is systematically changed from 10 years to 100 years with a step of 10
years), the Granger causality estimates are calculated for T ranging from 1871 + W
till 2006.

To assess significance levels of the conclusions about the coupling present under
the moving-window scenario, a multiple test correction (Lehmann, 1986) must be
applied. Namely, according to the above procedure, one gets the estimates of the
prediction improvement PI j→k and the corresponding significance level p for each
time window. This is the so-called pointwise significance level, i.e. a probability of
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Fig. 13.29 Estimates of the ENSO-to-monsoon influence in a moving window [T –W , T ] versus
the coordinate of the window endpoint T : (a), (b) prediction improvements; (c), (d) pointwise
significance levels. Different panels show the results for the two different window lengths of 30
and 100 years. The dashed lines show the critical values pc of the pointwise significance level
corresponding to the resulting significance level of p = 0.05 (see the text)

a random erroneous conclusion for a single time window considered separately. The
probability of a false positive conclusion at the pointwise level p for at least one of
M non-overlapping time windows may reach the value of p · M , because probability
of a union of independent events is approximately equal to the sum of their individ-
ual probabilities (if the resulting value p · M is still much less than unity). Thus,
one can establish the presence of coupling for a particular time window among M
non-overlapping windows at a “true” significance level p if the pointwise signifi-
cance level for this window equals p/M , where the multiplier 1

/
M is called the

Bonferroni correction. The dashed lines in Figs. 13.29 and 13.30 show such a

Fig. 13.30 Estimates of the monsoon-to-ENSO influence in a moving window [T –W , T ] versus
the coordinate of the window endpoint T : (a), (b) prediction improvements; (c), (d) pointwise
significance levels. Different panels show the results for the two different window lengths of 30
and 100 years. The dashed lines show the critical values pc of the pointwise significance level
corresponding to the resulting significance level of p = 0.05 (see the text)
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threshold value of pc = 0.05/(N/W ), where N/W estimates the number of
non-overlapping windows; if the pointwise significance level p for any time win-
dow gets less than pc, we infer coupling presence for this window at the resulting
significance level less than 0.05.

Estimates of the ENSO-to-monsoon driving for the optimal non-linear model
with the parameters d1 = d2→1 = 1, P1 = 3 are presented in Fig. 13.29 for the
window lengths of 30 years (Fig. 13.29a, c) and 100 years (Fig. 13.29b, d). The
100-year windows give highly significant results for any T . A long-term tendency
consists of a weak rise of the ENSO-to-monsoon coupling strength at the begin-
ning of the investigated period, reaching a maximum, and a subsequent decrease.
The duration of the decrease period is longer than that of the rise period. When
the time window length is decreased, the temporal resolution enhances at the
expense of the significance of the results. Thus, the 30-year windows reveal cou-
pling for 1910 ≤ T ≤ 1930 and 1975 ≤ T ≤ 1985, i.e. over the intervals
1880–1930 and 1945–1985. For shorter moving windows, the non-linear model
gets relatively too “big” and gives less significant results. In total, the ENSO-to-
monsoon driving is relatively weak before 1880, during the period 1930–1945 and
after 1985.

One can see statistically significant influence of the monsoon on ENSO in a 100-
year moving window for any T (Fig. 13.30). A long-term tendency is the same
as for the ENSO-to-monsoon driving, but the monsoon-to-ENSO coupling strength
starts to decrease later; a maximum of its temporal profile is closer to the year of
2006. A significant monsoon-to-ENSO influence in a 30-year window is observed
for 1917 ≤ T ≤ 1927 and, especially, for 1935 ≤ T ≤ 2000. With a 20-year
moving window, a significant influence is detected only over the interval 1930–
1960; with a 10-year moving window, it is not detected at all (the plots are not
shown). In total, the monsoon-to-ENSO influence is not seen only before 1890 and
it is the most essential during the period 1930–1950.

Thus, the intervals of the strongest ENSO-to-monsoon and monsoon-to-ENSO
influences do not coincide in time but follow each other. The coupling between
both processes is approximately symmetric “in strength”: the normalised prediction
improvement is about 2–3% for the entire interval 1871–2006 and reaches about 7%
in a 30-year moving window for both directions.

We note that in Maraun and Kurths (2005) the authors found intervals of 1:1
synchronisation between both signals, i.e. the intervals when the phase difference
φ1 − φ2 is approximately constant. These are the intervals 1886–1908 and 1964–
1980, which correspond to the strong ENSO-to-monsoon influence detected by the
Granger causality. Next, the intervals of 1:2 synchronisation (when the difference
φ1 − 2φ2 is approximately constant) appear during 1908–1921 (corresponds to
a predominant monsoon-to-ENSO driving detected with the Granger causality),
1935–1943 (the strongest monsoon-to-ENSO driving and no significant ENSO-
to-monsoon driving) and 1981–1991 (a predominant monsoon-to-ENSO driving).
Thus, the 1:1 synchronisation coincides with the intervals of a stronger ENSO-to-
monsoon influence, while the 1:2 synchronisation to a predominant monsoon-to-
ENSO influence.
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13.4 Conclusions

The investigation of coupling between the climatic processes considered here rep-
resents a black-box problem. With the universal model structure (polynomial AR
models), we have obtained valid models and used them to characterise direc-
tional couplings between ENSO and Indian monsoon. The results complement pre-
vious knowledge of anti-correlation between these processes (Walker and Bliss,
1932) and their phase synchrony intervals (Maraun and Kurths, 2005). Namely,
the empirical modelling has revealed bidirectional coupling between ENSO and
Indian monsoon with high confidence. The ENSO-to-monsoon influence appears
inertialless and non-linear. The monsoon-to-ENSO influence is linear and inertial;
the values of the monsoon index for three months affect the future behaviour of
the ENSO index. However, in some sense the coupling is symmetric; prediction
improvement is about 2–3% in both directions. The moving window analysis has
revealed an alternating character of the coupling. The monsoon-to-ENSO coupling
strength rises since the end of the nineteenth century till approximately the period
of 1930–1950, when it is maximal. This influence weakens in the last decade of
the twentieth century. The opposite influence is strongest during the period of
1890–1920. It is also noticeable in 1950–1980 and not detected in 1920–1950 and
after 1980.

To summarise, the three examples considered in Chap. 13 illustrate an empirical
modelling procedure under three different settings: complete a priori information
about a model structure, partial information and no information. The first setting
takes place for the laboratory electronic systems, which is typical since laboratory
experiments can be devised so as to control many properties of the objects under
study. The second setting corresponds to a physiological problem, where partial
information about an appropriate model structure is available due to specific prop-
erties (considerable regularity) of the observed signals. The third example of no
specific knowledge about a model structure is taken from climatology. Estimates of
couplings between the investigated processes provided by the empirical modelling
can be regarded as most “valuable” in the latter case, where the results seem to be
obtained practically “from nothing”. However, under all the three settings, empirical
modelling allows to get useful information such as validation of the physical ideas
behind model equations and quantitative characterisation of individual dynamics
and interactions.
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Summary and Outlook

Mathematical modelling is one of the main methods in scientific research. It is
discussed in multitude of textbooks and monographs, each of them being devoted
to selected aspects of the topic, such as models developed in a specific field of
science, peculiarities of certain mathematical tools and technical applications. The
main distinctive feature of the present book consists in the consideration of recently
developed non-linear methods for dynamical modelling of complex (irregular, non-
stationary, noise-corrupted) processes and signals. These properties are inherent
to many real-world systems. The corresponding experimental data, recorded with
modern digital devices, are often represented as a time series, i.e. a sequence of
measured values of an observable. Such a form is “understandable” for a computer.
If necessary, the data can be visualised on a screen or subjected to further mathe-
matical transformations. In the book, we have considered opportunities of the time
series-based construction of mathematical models, which can be used to predict
future behaviour of an object in time or under parameter variations and solve a
number of other practical tasks. It is not a rare case when fundamental laws of an
object functioning are unknown and, therefore, such a way of constructing a model
(i.e. its restoration from the observation data) appears the only possible.

The Main Points of Part I

Despite an overall applied character of the book, it starts with a general outlook, with
a brief discussion of the experience obtained from centuries-old activity related to
the scientific description of natural phenomena with mathematical models. Chap-
ter 1 presents the most fruitful approaches to modelling and lists some “eternal
questions” such as the causes of amazing efficiency of mathematics, the number
of possible models for a given object and existence of a “true” model. History of
mechanical models is exposed as an example of non-trivial evolution of model rep-
resentations.

Two basic approaches to modelling, resulting from activity of many genera-
tions of scientists, are discussed in Chap. 2. The first one is dynamical (determin-
istic) approach associated mainly with the names of I. Newton and P. Laplace.
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Deterministic models (dynamical systems) allow precise forecast of their future
behaviour if an initial state is given. The latest jump of interest to the dynam-
ical description of natural phenomena lasts from the 1960s till now. This is the
“Golden Age” of non-linear dynamics with its possibilities of a vivid representation
of complex behaviour, the concept of dynamical chaos and a set of paradigmatic
simple models with complex dynamics. Basic concepts of non-linear dynamics are
described in the beginning of Chap. 2. Then, we discuss the grounds to use an
alternative approach to modelling, which is called stochastic or probabilistic. There
are several quite different ideas allowing to call a process “random” (stochastic).
They complement each other and, sometimes, lead to mutually opposite statements.
Non-trivial interrelations between the deterministic and the stochastic approaches
are discussed and illustrated in the end of Chap. 2.

Chapter 3 concentrates on the mathematical tools used under the deterministic
approach to describe the systems of different levels of complexity in respect of their
dimensionality and spatial extension. These tools range from explicit functions of
time and one-dimensional discrete maps to partial differential equations and net-
works with complex topology. The concepts of linearity and non-linearity are dis-
cussed in some detail. Also, we consider etalon systems of non-linear dynamics,
which are useful in the study of a complex behaviour due to a wide set of possible
oscillatory regimes and their non-trivial evolution under parameter variations.

Chapter 4 gives a general information on stochastic models. It comprises basic
concepts and models used in the theory of random processes. Peculiarities of numer-
ical integration of stochastic differential equations are highlighted. Currently, inves-
tigations in the field of “purely deterministic” non-linear dynamics have become less
popular, since incorporation of random terms into model equations allows a more
realistic description of many natural processes and a study of some fundamental
noise-induced phenomena. In particular, we briefly touch on a possible constructive
role of noise (stochastic and coherence resonances).

The Main Points of Part II

It is devoted to modelling from time series including its ideology, techniques and
applications. This is only one of the four ways of model construction presented
in Sect. 1.5. Experience of many researchers shows that the modelling procedure
summarised in a vivid scheme in Chap. 5 often gives successful results if techniques
and pitfalls described, e.g., in Chaps. 6, 7, 8, 9 and 10 are taken into account. Prob-
ably, such a technology as fitting models to data cannot be considered as a highest
degree of perfection: ill-posedness of modelling problems and other difficulties are
mentioned already in Chap. 5. However, its attractiveness rises under the realistic
setting of a deficit of prior information about an object with complex behaviour.

The field of empirical modelling emerged long time ago due to the problems of
approximation of experimental dependencies with smooth functions. Its essential
development in mathematical statistics was associated with the theory of system
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identification. Then, the interest of scientists to specific problems of empirical
modelling varied in time. Its rise during the 1980s–1990s was determined by the
birth of the concept of dynamical chaos, proofs of the celebrated Takens’ theorems
and availability of fast computers. Indeed, if a simple quadratic map is capable of
demonstrating a hierarchy of periodic regimes ending with chaos (Sect. 3.6.2), then
what a potential could be expected from more complex non-linear equations, whose
investigation became possible!

One could even think that modelling from data series would become a routine
operation. However, researchers became disappointed soon at frequent failures of
the developed universal approaches in practice. The models were often quite cum-
bersome, unstable to variations in parameters, etc. In particular, the difficulties in
modelling rise with increasing dimensionality of a model, the so-called “curse of
dimensionality”. However, chances for a success can be increased if one refuses
universal techniques and pays more attention to specific features of an object. We
have tried to develop and illustrate this idea through Part II: It is not fruitful to look
for a “panacea”, a universal model, and an omnipotent algorithm of its construction
from data. It seems more reasonable to develop specialised techniques for modelling
certain classes of systems. At that, one must be accurate and attentive to the details
of the modelling procedure at all stages of the scheme shown in Chap. 5, at any
level of prior uncertainty ranging from complete knowledge of the form of appro-
priate equations to complete absence of any information about a suitable model
structure.

Fruitful ideas for the model structure selection can be obtained from a prelim-
inary analysis of the observed data as discussed in Chap. 6, where we describe
peculiarities of getting experimental time series, their visual inspection and obtain-
ing time courses of model variables from observed data. Chapter 7 considers con-
struction of models in the simplest form of explicit functions of time. However,
it includes basic ideas and techniques exploited in the construction of much more
sophisticated models. Chaps. 8, 9 and 10 are devoted to the construction of dynam-
ical model equations under different degrees of prior uncertainty. The case of com-
plete knowledge of the model structure is presented in Chap. 8, where parameter
estimation and dealing with hidden variables are described. Chapter 9 presents
the case of partial uncertainty with the emphasis on approximation problems and
restoration of non-linear characteristics. Chapter 10 considers the most difficult and
intriguing “black box” problem, i.e. the case of complete prior uncertainty about the
model structure.

Applications of empirical modelling are given in Chaps. 11, 12 and 13, where
we present examples of different levels of complexity. Firstly, reconstruction of
etalon dynamical systems from their numerical solutions is useful from illustra-
tive and methodological point of view. Secondly, modelling of laboratory systems,
which allow to select regimes of their functioning purposefully, is more complicated
(since these are real systems subjected to random influences, etc.) but has mainly a
methodological value too. Thirdly, the investigation of real-world processes, where
possibilities of active manipulations with an object are quite restricted or even absent
(e.g., in geophysics), is the most complex and practically important case. At that,
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Chap. 13 gives more detailed illustrations of the different steps of a modelling pro-
cedure and intended for a wider audience.

General Concluding Remarks

Techniques of the time series analysis can be distinguished by convention into two
groups: “direct” processing and model-based approach.

The former way is more traditional, e.g., a cardiologist considers an electrocar-
diogram by visual inspection of the form of PQRST complexes. Analogously, one
can compute power spectra and correlation functions, estimate fractal dimensions
and restore phase orbits directly from time series. In part, this way is concerned in
Chap. 6, where we present also some newer techniques including wavelet analysis,
empirical mode decomposition and recurrence analysis. Currently, one of the most
popular directions in the field of “direct” techniques of time series analysis is the
development of the concept and quantitative characteristics of complexity and meth-
ods for their estimation (see, for example, Badii and Politi, 1997; Boffetta et al.,
2002; Shalizi, 2003).

Under the model-based approach, one creates and uses a necessary intermediate
element for the analysis of a process. This element is a mathematical model, which
describes the observed dynamics. We stress that, typically, it is a predictive model
of the observed motion, rather than a model of the object structure or of the entire
mechanism of its functioning. The model-based approach is required to solve the
problems of the forecast of a future behaviour, prediction of changes under parame-
ter variations, signal classification, data compression and storage, validation of ideas
about an object, “measurement” of hidden variables, etc.

When reporting results of our investigations, we face some disappointment of
listeners who expected a universal recipe of empirical modelling but learned a spe-
cific technique directed to a certain class of objects. Indeed, mathematical modelling
remains and, probably, will always stay a kind of art to a significant extent or a kind
of piecework requiring a preliminary preparation of unique tools. However, if a
problem or an object under study is important enough, then it can be worth spending
a lot of time and efforts to such a piecework. Furthermore, let us recall that making
semiconductor elements was a kind of art 50 years ago when getting two identical
transistors was almost impossible. Currently, technological achievements allow one
to make identical processors consisting of millions of transistors. Not all specialists
would share such an optimistic attitude to the field of empirical modelling. However,
the results which are already achieved in this field deserve studying and application
in practice.

Our teaching experience shows that the topic is of interest for university stu-
dents and Ph.D. students. The talks devoted to modelling problems induce concep-
tual discussions at scientific conferences of different profiles, which have already
led our group to fruitful collaboration with climatologists (Mokhov and Smirnov,
2006, 2008, 2009), neurophysiologists (Dikanev et al., 2005; Sitnikova et al., 2008;
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Smirnov et al., 2005a, 2008; Stoop et al., 2006), and cardiologists (Prokhorov et al.,
2003). We hope that this book will further contribute to the rise in such interest and
attract attention of people from different fields of science, technology and medicine.
Of course, it is only “an excursus into . . .”, rather than an exhaustive discussion
of the eternal question about possibilities of mathematical description of real-world
objects and phenomena.
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Diffeomorphism, 281
Diffusion, 62
Digital smoothing polynomial, 228
Dimension

correlation, 36
fractal, 35
generalised (Renyi), 36
Hausdorff, 36
information, 36
topological, 35

Discrepancy, 222
Discrete time, 73, 167
Distributed system, 75
Distribution function, 43
Dynamical

approach, 25
model, 26
system, 26

conservative, 33
dissipative, 32

variables, 26
choice, 289

E
El Niño – Southern Oscillation, 333
Embedding, 281

filtered, 284
space, 283

Empirical
mode decomposition, 187
model, 16
risk minimisation, 215

Ensemble model, 16, 79
Equation, 72

Burgers’, 115
Corteveg – de Vries, 115
delay differential, 78
Fokker – Planck, 136
generalized Markov, 136
Ikeda, 114, 270–271
Kolmogorov, 135
Mackey – Glass, 114
ordinary differential

standard form, 92
simple wave, 115

stochastic differential, 139–140
van der Pol, 89

Established motion, 32
Estimator, 45

asymptotically efficient, 209
asymptotically unbiased, 209
consistent, 48, 209
linear, 208
maximum likelihood, 49

Estimator error, 46–47
Event, 42

elementary, 43
union of, 42

Evolution operator, 26, 71
Excitation phase, 117
Extrapolation, 213, 226

F
False nearest neighbours technique,

37, 285–286
Filter

band-pass, 189
Kalman, 244
linear, 136–137
Savitzky – Golay, 228
unscented Kalman, 244

First principles, 16, 87
Fisher’s F-law, 321
Flow, 736
Forecast, 213

iterative, 294
Formal neuron, 116

standard, 292
Fourier

analysis, 175
transform

continuous, 178
discrete, 176
finitary, 178

Fractal, 35
F-test, 321
Function

explicit, 76, 79
radial basis, 291

G
Game “Life”, 111
Generalised polynomial, 220, 291
Genericity, 283
Global

minimum, 242, 269
surface temperature, 337
warming, 337, 344

Granger causality, 319
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Granger – Sargent test, 321
Grey box, 255, 270
Gutenberg – Richter law, 141

H
Hidden variables, 239
Hilbert transform, 188–189
Homeomorphism, 280

I
Indian monsoon, 375
Initial value approach, 240
In-sample criteria, 217
Interdependence analysis, 193
Interpolation, 213, 227
Interval

estimator, 50
prediction, 225

Iterate, 73

L
Laplace distribution, 44
Least

absolute values technique, 206
maximal deviation technique, 207
squares technique, 205

ordinary, 235, 320, 324, 378
total, 238

Lebesgue measure, 43
Likelihood, 49

equations, 49
function, 49, 205

Limit cycle, 34
Linearity, 81
Lyapunov

exponent, 37
largest, 40, 56
local, 39
signature, 38
spectrum, 38

time, 57

M
Manifold, 280
Map

circle, 96
discrete, 73, 93
logistic, 96

Mapping, 71
Markov chain, 135
Maximum likelihood technique, 205
Mean phase coherence, 195, 326
Measurement function, 152
Mesoscopic level, 75

Model, 3
efficiency, 152
fitting, 152
global, 221, 290
local, 222, 291

with fixed neighbourhood size, 296
with fixed number of neighbours, 296

overfitting, 216
parameter, 160
parsimonious, 216
pseudo-linear, 220, 225, 293
residual error, 208, 222
structure, 151

optimisation, 220, 260
universal, 275

validation (verification), 152, 222, 304
variable, 160

Modelling, 3
from data series, 309

Motion
irregular, 174
periodic, 172
quasi-periodic, 172
regular, 174

Multiple shooting approach, 240
Multistability, 32, 105, 107

N
Nearest neighbours, 294
Network

artificial neural, 115, 292
fully connected, 118
multilayer, 118, 293
one-layer, 293
two-layer, 293

with complex topology, 112
Network learning, 120, 294
Newtonian paradigm, 85
Noise

dynamical, 55, 152, 235
of ignorance, 55
measurement, 55, 152, 235
white, 134

Noisy chaos, 63
Nonlinear dynamics, ix–xi
Nonlinearity, 81

of hard spring, 84, 90
of soft spring, 84, 90

Nonstationarity, 192, 309
dynamical, 310

Normal (Gaussian) law, 44
Normal probability paper, 223
North Atlantic Oscillation, 333
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Numerical differentiation, 227
Numerical integration of SDEs, 143

O
Observable, 159
Ockham’s razor, 219
Operator, 71
Optimal estimation, 210
Ordinary moment, 44
Oscillations

chaotic, 34
isochronous, 83
relaxation, 263
self-sustained, 263

Oscillator, 88
equation, 88
nonisochronous nonlinear, 98
Toda, 91

Out-of-sample criteria, 217

P
Parameter, 29

estimation, 152, 201, 235
space, 31, 41
vector, 31

Parkinsonian tremor, 326
Partial Fisher information, 209
Pendulum, 83
Period adding sequence, 102
Phase, 187

dynamics, 322
modelling, 319

orbit, 31
reconstruction, 174, 276

portrait, 31
of a signal, 187
space, 31
synchronisation, 194

index, 326
Phenomenological model, 16
Poincare

map, 73
section, 73

Point
estimator, 50
map, 71
prediction, 225

Power spectrum, 177–178
Predictability time, 56–57, 304
Prediction improvement, 320
Predictor

combined, 301
direct, 301
iterative, 301

Predictor – corrector, 302
Prevalence, 283
Principal component, 287

analysis, 37, 286
Principle

of Bayes, 211
of complementarity, 14
of falsification, 7
of minimax, 210
of superposition, 81
of verification, 7

Probability density function, 44
Problem

ill-conditioned, 157
ill-posed according to Hadamard, 155
inverse, 154
well-posed according to Hadamard, 155

Process
autoregression, 137

and integrated moving average, 138
and moving average, 138

diffusive Markovian, 136
Markovian, 133
moving average, 137
non-stationary, 174
normal (Gaussian), 133
Poisson, 134
stationary, 174
Wiener’s, 133

Q
Quasi-stationary segment, 312

R
Random

process, 45, 128
ergodicity, 131
realisation, 129
section, 130
stationarity, 131

quantity, 42–43
sequence, 129
vector, 45

Reconstruction
of dynamical systems, x
global, 290

Recurrence
analysis, 193
diagram, 311
plot, 193

Recurrent formula, 73
Refractory phase, 117–118
Regression, 213
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estimation, 213
restoration, 213

Regular external driving, 268
Representative point, 31
Residual, 208

error, 208
analysis, 304

normality, 223
uncorrelatedness, 223

Resonance
coherence, 146
stochastic, 144

Resting phase, 117
Restoration

of equivalent characteristics, 256, 316
of external driving, 314

Richardson – Obukhov law, 141
Robust estimation, 211
Robustness, 47
Roessler system, 299
R-R interval, 170

S
Sample, 45

mean, 47
median, 47
moment, 48
variance, 48

Sampling interval, 167
Saw tooth, 94
Scale-free property, 113
Schwarz criterion, 218
Self-mapping, 71
Signal classification, 314
Significance level, 321
Simple averaging technique, 203
Singular point, 32
Small-world property, 113
Smooth optimisation, 221
Solar irradiance variations, 338
Solution

analytic, 87
closed-form, 86

Spatially extended system, 76
Spike, 117
Spring area, 90
Standard form of model equations, 299
Starting guess, 202, 241
State, 26

space, 31
vector, 26

Stationarity, 191
Statistical

independence, 45
moments technique (method), 48, 204
stability, 43

Stochastic, 25
model, 128

Structural risk minimisation, 219
Successive derivatives, 288
Successive differentiation technique, 164
Superfluous terms, 260
Synchronisation, 319

coefficient, 195
generalised, 194

Systematisation of scientific models, 8
System identification, x

T
Testing for nonlinearity and determinism,

315
Theorem

generalised approximation, 291
of Kotel’nikov, 165
of Takens, 275, 277
of Weierstrass, 80, 294

Time delay, 276
embedding, 164
system, 270
technique, 284

Time series, 166
equidistant, 167
test, 167
training, 167

Torus, 34
Transient process, 32
Trend, 163
Trial, 42

U
Uniform distribution, 44

V
Validation of physical ideas, 309
Variance, 45
Velocity field, 77
Volcanic activity, 338

W
Wavelet, 175

analysis, 175
HAAR, 182
Morlet, 181
spectrum, 184
transform, 183

Weighted summation, 164
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