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Summary. This paper introduces sequential convex programming (SCP), a local
optimzation method for solving nonconvex optimization problems. A full-step SCP
algorithm is presented. Under mild conditions the local convergence of the algorithm
is proved as a main result of this paper. An application to optimal control illustrates
the performance of the proposed algorithm.

1 Introduction and Problem Statement

Consider the following nonconvex optimization problem:{
min

x
cTx

s.t. g(x) = 0, x ∈ Ω,
(P)

where c ∈ Rn, g : Rn → Rm is non-linear and smooth on its domain, and Ω
is a nonempty closed convex subset in Rn.

This paper introduces sequential convex programming (SCP), a local opti-
mization method for solving the nonconvex problem (P). We prove that under
acceptable assumptions the SCP method locally converges to a KKT point1

of (P) and the rate of convergence is linear.
Problems in the form of (P) conveniently formulate many problems of

interest such as least squares problems, quadratically constrained quadratic
programming, nonlinear semidefinite programming (SDP), and nonlinear sec-
ond order cone programming problems (see, e.g., [1, 2, 5, 6, 10]). In nonlinear
optimal control, by using direct transcription methods, the resulting problem
is usually formulated as an optimization problem of the form (P) where the
equality constraint g(x) = 0 originates from the dynamic system of an optimal
control problem.

The main difficulty of the problem (P) is concentrated in the nonlinear
constraint g(x) = 0 that can be overcome by linearizing it around the current

1
KKT stands for “Karush-Kuhn-Tucker”.
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iteration point and maintaining the remaining convexity of the original prob-
lem. This approach differs from sequential quadratic programming, Gauss-
Newton or interior point methods as it keeps even nonlinear constraints in
the subproblems as long as they are convex.

Optimization algorithms using convex approximation approaches have
been proposed and investigated by Fares et al. [4] for nonlinear SDP and
Jarre [8] for nonlinear programming. Recently, Lewis and Wright [12] intro-
duced a proximal point method for minimizing the composition of a general
convex function h and a smooth function c using the convex approximation
of h(c(·)).
1.1. Contribution. In this paper, we first propose a full-step SCP algorithm
for solving (P). Then we prove the local convergence of this method. The main
contribution of this paper is Theorem 1, which estimates the local contraction
and shows that the full-step SCP algorithm converges linearly to a KKT point
of the problem (P). An application in optimal control is implemented in the
last section.
1.2. Problem Statement. Throughout this paper, we assume that g is twice
continuously differentiable on its domain. As usual, we define the Lagrange
function of (P) by L(x, λ) := cTx+λT g(x) and the KKT condition associated
with (P) becomes {

0 ∈ c+∇g(x)λ+NΩ(x),
0 = g(x),

(1)

where ∇g(x) denotes the Jacobian matrix of g at x. The multivalued mapping

NΩ(x) :=

{
{w ∈ Rn | wT (y − x) ≤ 0, y ∈ Ω} if x ∈ Ω,
∅ otherwise

(2)

is the normal cone of the convex set Ω at x. A pair z∗ := (x∗, λ∗) satisfying (1)
is called a KKT point and x∗ is called a stationary point of (P). We denote by
Γ ∗ and S∗ the sets of the KKT and the stationary points of (P), respectively.
Note that the first line of (1) includes implicitly the condition x ∈ Ω due to
definition (2). Let us define K := Ω×Rm and introduce a new mapping ϕ as
follows

ϕ(z) :=
(
c+∇g(x)λ

g(x)

)
, (3)

where z stands for (x, λ) in Rn+m. Then the KKT condition (1) can be re-
garded as a generalized equation:

0 ∈ ϕ(z) +NK(z), (4)

where NK(z) is the normal cone of K at z.
The generalized equation (4) can be considered as a basic tool for studying

variational inequalities, complementarity problems, fixed point problems and
mathematical programs with equilibrium constraints. In the landmark paper
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[13], Robinson introduced a condition for generalized equation (4), which is
called strong regularity. This assumption is then used to investigate the so-
lution of (4) under the influence of perturbations. Strong regularity becomes
a standard condition in variational analysis as well as in optimization. It is
important to note that (see [3]) the generalized equation (4) is strongly reg-
ular at z∗ ∈ Γ ∗ if and only if the strong second order sufficient condition
(SOSC) of (P) holds at this point whenever Ω is polyhedral and the LICQ
condition2 is satisfied. Many research papers which have studied the stability
and sensitivity in parametric optimization and optimal control also used the
strong regularity property (see, e.g., [11, 14]).
1.4. Sequential Convex Programming Framework. The full-step se-
quential convex programming algorithm for solving (P) is an iterative method
that generates a sequence {zk}k≥0 as follows:

1. Choose an initial point x0 inside the convex set Ω and λ0 in Rm. Set
k := 0.

2. For a given xk, solve the following convex subproblem:
min

x
cTx

s.t. g(xk) +∇g(xk)T (x− xk) = 0,
x ∈ Ω,

(Pcvx(xk))

to obtain a solution x+(xk) and the corresponding Lagrange multiplier
λ+(xk). Set z+(xk) := (x+(xk), λ+(xk)). If ‖z+(xk)− zk‖ ≤ ε for a given
tolerance ε > 0, then stop. Otherwise, set zk+1 := z+(xk), increase k by
1 and go back to Step 2.

As we will show later, the iterative sequence {zk} generated by the full-step
SCP algorithm converges to a KKT point z∗ of the original problem (P), if
it starts sufficiently close to z∗ and the contraction property is satisfied (see
Theorem 1 below).

In practice, this method should be combined with globalization strategies
such as line search or trust region methods in order to ensure global conver-
gence, if the starting point is arbitrary. Since Ω is convex, projection methods
can be used to find an initial point x0 in Ω.

Lemma 1. If xk is a stationary point of Pcvx(xk) then it is a stationary point
of the problem (P).

Proof. We note that xk always belongs to Ω. Substituting xk into the KKT
condition of the subproblem Pcvx(xk), it collapses to (1).

2 Local convergence of SCP methods
Suppose that xk ∈ Ω, k ≥ 0, is the current iteration associated with λk ∈ Rm.
Then the KKT condition of the convex subproblem Pcvx(xk) becomes
2

LICQ stands for “Linear Independence Constraint Qualification”.
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0 ∈ c+∇g(xk)λ+NΩ(x),
0 = g(xk) +∇g(xk)T (x− xk),

(5)

where λ is the corresponding multiplier. Suppose that the Slater constraint
qualification condition holds for Pcvx(xk), i.e.,

relint Ω ∩ {x | g(xk) +∇g(xk)T (x− xk) = 0} 6= ∅,

where relintΩ is the set of the relative interior points of Ω. In other words,
there exists a strictly feasible point of Pcvx(xk). Then by convexity of Ω, a
point (x+(xk), λ+(xk)) is a KKT point of Pcvx(xk) if and only if x+(xk) is
a solution of (5) corresponding to the multiplier λ+(xk). In the sequel, we
use z for a pair (x, λ), z∗ and z+(xk) are a KKT point of (P) and Pcvx(xk),
respectively. We denote by

ϕ̂(z;xk) :=
(

c+∇g(xk)λ
g(xk) +∇g(xk)T (x− xk)

)
, (6)

a linear mapping and K := Ω×Rm. For each x∗ ∈ S∗, we define a multivalued
function:

L(z;x∗) := ϕ̂(z;x∗) +NK(z), (7)

and L−1(δ;x∗) := {z ∈ Rn+m : δ ∈ L(z;x∗)} for δ ∈ Rn+m is its inverse
mapping. To prove local convergence of the full-step SCP algorithm, we make
the following assumptions:

(A1) The set of KKT points Γ ∗ of (P) is nonempty.
(A2) Let z∗ ∈ Γ ∗. There exists a neighborhood U ⊂ Rn+m of the origin
and Z of z∗ such that for each δ ∈ U , z∗(δ) := L−1(δ;x∗) ∩ Z is single
valued. Moreover, the mapping z∗(·) is Lipschitz continuous on U with a
Lipschitz constant γ > 0, i.e.,

‖z∗(δ)− z∗(δ′)‖ ≤ γ‖δ − δ′‖, ∀δ, δ′ ∈ U. (8)

(A3) There exists a constant 0 < κ < 1/γ such that ‖Eg(z∗)‖ ≤ κ,
where Eg(z∗) is the Hessian of the Lagrange function L with respect to
the argument x at z∗ = (x∗, λ∗) defined by

Eg(z) :=
m∑

i=1

λi∇2gi(x). (9)

Remark 1. By definition of ϕ̂(·; ·), we can refer to xk as a parameter of this
mapping and Pcvx(xk) can be considered as a parametric convex problem with
respect to the parameter xk.
i) It is easy to show that z∗ is a solution to 0 ∈ ϕ(z) + NK(z) if and only if
it is a solution to 0 ∈ ϕ̂(z;x∗) +NK(z).
ii) Assumption (A3) implies that either the function g should be “weakly
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nonlinear” (small second derivatives) in a neighborhood of a stationary point
or the corresponding Lagrange multipliers are sufficiently small in the neigh-
borhood of λ∗. The latter case occurs if the optimal objective value of (P)
depends only weakly on perturbations of the nonlinear constraint g(x) = 0.
iii) Assumption (A2) is the strong regularity condition of the parametric gen-
eralized equation 0 ∈ ϕ̂(z;xk) + NK(z) at (z∗, x∗) in the sense of Robinson
[13].

For the assumption (A2), by linearity of ϕ̂, we have ϕ̂(z;x∗) = ϕ̂(z∗;x∗)+
∇ϕ̂(z∗;x∗)T (z − z∗) where matrix ∇ϕ̂(z) is defined by

∇ϕ̂(z;x∗) :=
[

0 ∇g(x∗)
∇g(x∗)T 0

]
, (10)

which may be singular even if∇g(x∗) is full-rank. It is easy to see that L(z;x∗)
defined by (7) has the same form as L̂(z;x∗) := ϕ̂(z∗, x∗) + ∇ϕ̂(z∗;x∗)(z −
z∗) +NK(z) a linearization of (4) at (z∗, x∗).
To make the strong regularity assumption clear in the sense of mathematical
programming, for a given neighborhood U of 0 and Z of z∗, we define the
following perturbed convex programming problem:

min
x

(c+ δc)T (x− x∗)
s.t. g(x∗) + δg +∇g(x∗)T (x− x∗) = 0,

x ∈ Ω,
(Pcvx(x∗; δ))

where δ = (δc, δg) is a perturbation (or a parameter) vector. The Slater con-
dition associated with Pcvx(x∗; δ) becomes

relint Ω ∩ {x | g(x∗) + δg +∇g(x∗)T (x− x∗) = 0} 6= ∅. (11)

Then the assumption (A2) holds if and only if z∗(δ) is the unique KKT point
of Pcvx(x∗; δ), and this solution is Lipschitz continuous on U with a Lipschitz
constant γ > 0 provided that (11) holds.

The full-step SCP algorithm is called to be well-defined if the convex sub-
problem Pcvx(xk) has at least one KKT point z+(xk) provided that zk is
sufficiently close to z∗ ∈ Γ ∗. In this case, the subproblem Pcvx(xk) is said to
be solvable.

Lemma 2. Suppose that Assumptions (A1)-(A3) are satisfied, then the full-
step SCP algorithm is well-defined.

Proof. It follows from Remark 1 (i) that the parametric generalized equation
0 ∈ ϕ̂(z;xk) +NK(z) is strongly regular at (z∗, x∗) according to Assumption
(A2), where xk is referred as a parameter. Applying Theorem 2.1 [13], we
conclude that there exists a neighborhood X of x∗ such that the generalized
equation 0 ∈ ϕ̂(z;xk) + NK(z) has unique solution z+(xk) for all xk ∈ X,
which means that z+(xk) is a KKT point of Pcvx(xk). 2
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The main result of this paper is the following theorem.

Theorem 1. [Local Contraction] Suppose that Assumptions (A1)-(A3) are
satisfied. Suppose further for z∗ ∈ Γ ∗ that g is twice continuously differentiable
on a neighborhood of x∗. Then the full-step SCP algorithm is well-defined and
there exists ρ > 0 such that for all zk ∈ B(z∗, ρ) we have:

‖z+(xk)− z∗‖ ≤ α‖zk − z∗‖, (12)

where α ∈ (0, 1) does not depend on zk and z+(xk). Thus, if the initial point
z0 is sufficiently close to z∗ then the sequence {zk} generated by full-step SCP
algorithm converges to z∗ linearly.

Proof. Note that Γ ∗ 6= ∅ by (A1), take any z∗ ∈ Γ ∗. Then the well-definedness
of the full-step SCP algorithm follows from Lemma 2. By assumption (A3)
that γκ < 1 we can choose ε := (1−γκ)

(4
√

22+2
√

3)γ
> 0. Since g is twice continuously

differentiable on a neighborhood X of x∗ and E(x, λ) defined by (9) is linear
with respect to λ, it implies that, for a given ε > 0 defined as above, there
exists a positive number r0 > 0 such that ‖∇g(x) −∇g(xk)‖ ≤ ε, ‖∇g(x) −
∇g(x∗)‖ ≤ ε, ‖Eg(z) − Eg(z∗)‖ ≤ ε and ‖Eg(z) − Eg(zk)‖ ≤ ε for all z =
(x, λ) ∈ B(z∗, r0) and zk = (xk, λk) ∈ B(z∗, r0), where B(z∗, r0) is the closed
ball of radius r0 centered at z∗.

Take any z ∈ B(z∗, r0) ⊆ Z and define the residual quantity

δ(z;x∗, xk) := ϕ̂(z;x∗)− ϕ̂(z;xk). (13)

This quantity can be expressed as

δ(z;x∗, xk) = [ϕ̂(z;x∗)− ϕ(z∗)] + [ϕ(z∗)− ϕ(z)]

+ [ϕ(z)− ϕ(zk)] + [ϕ(zk)− ϕ̂(z;xk)]

=
∫ 1

0

M(zk
t ;xk)(z − zk)dt−

∫ 1

0

M(z∗t ;x∗)(z − z∗)dt

=
∫ 1

0

[M(zk
t ;xk)−M(z∗t ;x∗)](z − zk)dt

−
∫ 1

0

M(z∗t ;x∗)(zk − z∗)dt, (14)

where z∗t := z∗+ t(z− z∗), zk
t := zk + t(z− zk) with t ∈ [0, 1], and the matrix

M is defined by

M(z̃; x̂) :=
[

Eg(z̃) ∇g(x̃)−∇g(x̂)
∇g(x̃)T −∇g(x̂)T 0

]
. (15)

Since t ∈ [0, 1], the points zk
t and z∗t must belong to B(z∗, r0). Using the

following inequalities



Local Convergence of Sequential Convex Programming Methods 99

‖Eg(zk
t )− Eg(z∗t )‖ ≤ ‖Eg(zk

t )− Eg(z∗)‖+ ‖Eg(z∗t )− Eg(z∗)‖ ≤ 2ε,

‖∇g(xk
t )−∇g(x∗t )‖ ≤ ‖∇g(xk

t )−∇g(x∗)‖+ ‖∇g(x∗t )−∇g(x∗)‖ ≤ 2ε,

and ‖∇g(xk)−∇g(x∗)‖ ≤ ε,

it follows that

‖M(zk
t ;xk)−M(z∗t ;x∗)‖2 ≤ ‖Eg(zk

t )− Eg(z∗t )‖2

+ 2[‖∇g(xk
t )−∇g(x∗t )‖+ ‖∇g(xk)−∇g(x∗)‖]2

≤ 22ε2.

This inequality implies that

‖M(z∗t ;x∗)−M(zk
t ;xk)‖ ≤

√
22ε. (16)

Similarly, using Assumption (A3), we can estimate

‖M(z∗t ;x∗)‖2 ≤ ‖Eg(z∗t )‖2 + 2‖∇g(x∗t )−∇g(x∗)‖2

≤ 2ε2 + [‖Eg(z∗t )− Eg(z∗)‖+ ‖Eg(z∗)‖]2

≤ 2ε2 + (ε+ κ)2

≤ (κ+
√

3ε)2. (17)

Combining (14), (16) and (17) together we obtain

‖δ(z, x∗, xk‖ ≤ (κ+
√

3ε)‖zk − z∗‖+
√

22ε‖z − zk‖. (18)

Alternatively, we first shrink B(z∗, r0), if necessary, such that δ(z, x∗;xk) ∈
U and then apply Assumption (A2) to imply that there exists z̃(δ) =
(x̃(δ), λ̃(δ)) ∈ B(z∗, r0) a solution of δ ∈ L(·; z∗) for all δ ∈ U satisfying

‖z̃(δ)− z∗‖ ≤ γ‖δ‖. (19)

If we recall z+(xk) a KKT point of Pcvx(xk), one has 0 ∈ ϕ̂(z+(xk);xk) +
NK(z+(xk)) which implies δ(z+(xk);x∗, xk) ∈ ϕ̂(z+(xk);x∗) + NK(z+(xk))
by definition of δ. Therefore, it follows from (19) that

‖z+(xk)− z∗‖ ≤ γ‖δ(z+(xk);x∗, xk)‖. (20)

Substituting z by z+(xk) into (18) and then merging with (20) we get

‖z+(xk)− z∗‖ ≤ (γκ+
√

3γε)‖zk − z∗‖+
√

22γε‖z+(xk)− zk‖. (21)

Using the triangle inequality ‖z+(xk)− zk‖ ≤ ‖z+(xk)− z∗‖+ ‖zk − z∗‖ for
the right hand side of (21), after a simple rearrangement, the inequality (21)
implies
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‖z+(xk)− z∗‖ ≤ [γκ+ (
√

22 +
√

3)γε]
1−
√

22γε
‖zk − z∗‖. (22)

Let us denote α := [γκ+(
√

22+
√

3)γε]

1−
√

22γε
. From the choice of ε, it is easy to show

that

α =
(3
√

22 +
√

3)γκ+
√

22 +
√

3
3
√

22 + 2
√

3 +
√

22γκ
∈ (0, 1). (23)

Thus the inequality (22) is rewritten as

‖z+(xk)− z∗‖ ≤ α‖zk − z∗‖, α ∈ (0, 1), (24)

which proves (12).
If the starting point z0 ∈ B(z∗, r0) then we have ‖z1−z∗‖ ≤ α‖z0−z∗‖ ≤

‖z0−z∗‖, which shows that z1 ∈ B(z∗, r0). By induction, we conclude that the
whole sequence {zk} is contained in B(z∗, r0). The remainder of the theorem
follows directly from (12).

Remark 2. It is easy to see from (23) that α ∈ (γκ, 1).

3 Numerical Results
In this section, we apply the SCP method to the optimal control problem
arising from the optimal maneuvers of a rigid asymmetric spacecraft [7, 9]. The
Euler equations for the angular velocity ω = (ω1, ω2, ω3)T of the spacecraft
are given by 

ω̇1 = − (I3−I2)
I1

ω2ω3 + u1
I1
,

ω̇2 = − (I1−I3)
I2

ω1ω3 + u2
I2
,

ω̇3 = − (I2−I1)
I3

ω1ω2 + u3
I3
,

(25)

where u = (u1, u2, u3)T is the control torque; I1 = 86.24 kg.m2, I1 =
85.07 kg.m2 and I3 = 113.59 kg.m2 are the spacecraft principal moments
of inertia. The performance index to be minimized is given by (see [7]):

J :=
1
2

∫ tf

0

‖u(t)‖2dt. (26)

The initial condition ω(0) = (0.01, 0.005, 0.001)T , and the terminal constraint
is

ω(tf ) = (0, 0, 0)T (Case 1) or ω(tf )TSfω(tf ) ≤ ρf (Case 2), (27)

where matrix Sf is symmetric positive definite and ρf > 0. Matrix Sf is
computed by using the discrete-time Riccati equation of the linearized form of
(25) and ρ is taken by ρ := 10−6×λmax(Sf ), where λmax(Sf ) is the maximum
eigenvalue of Sf . The additional inequality constraint is
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ω1(t)− (5× 10−6t2 − 5× 10−4t+ 0.016) ≤ 0, (28)

for all t ∈ [0, tf ] (see [7]).
In order to apply the SCP algorithm, we use the direct transcription

method to transform the optimal control problem into a nonconvex optimiza-
tion problem. The dynamic system is discretized based on the forward Euler
scheme. With the time horizon tf = 100, we implement the SCP algorithm for
Hp (the number of the discretization points) from 100 to 500. The size (n,m, l)
of the optimization problem goes from (603, 300, 104) to (3003, 1500, 504),
where n is the number of variables, m is the number of equality constraints,
and l is the number of inequality constraints.

We use an open source software (CVX) to solve the convex subproblems
Pcvx(xk) and combine it with a line search strategy to ensure global con-
vergence (not covered by this paper’s theory). All the computational results
are performed in Matlab 7.9.0 (2009) running on a desktop PC Pentium IV
(2.6GHz, 512Mb RAM).

If we take the tolerance TolX = 10−7 then the number of iterations goes
from 3 to 6 iterations depending on the size of the problem. Note that the
resulting convex subproblems in Case 1 are convex quadratic, while, in Case
2, they are quadratically constrained quadratic programming problems.
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Fig4. Optimal control torques [Case 2]

Figure 1 (resp. Figure 3) shows the optimal angular velocity ω(t) of the
rigid asymmetric spacecraft from 0 to 100s for Case 1 (resp. Case 2) withHp =
500. The results show that ω1(t) constrained by (28) touches its boundary
around the point t = 39s and ω(t) tends to zero at the end (t = 100s)
identical to the results in [7]. Figure 2 (resp. Figure 4) shows the optimal
torque u(t) of the rigid asymmetric spacecraft for Case 1 (resp. Case 2). The
rate of convergence is illustrated in Figures 5 and 6 for Case 1 and Case 2,
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respectively. As predicted by the theoretical results in this paper, the rate of
convergence shown in these figures is linear (with very fast contraction rate)
for all the cases we implemented.
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