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Summary. The problem of geometric ellipsoid fitting is considered. In connection
with a conjugate gradient procedure a suitable approximation for the Euclidean
distance of a point to an ellipsoid is used to calculate the fitting parameters. The
approach we follow here ensures optimization over the set of all ellipsoids with codi-
mension one rather than allowing for different conics as well. The distance function
is analyzed in some detail and a numerical example supports our theoretical consid-
erations.

1 Introduction

The approximation of a set of data by an ellipsoid is an important problem in
computer science and engineering, e.g. in computer vision or computer graph-
ics, or more specifically, in 3D-reconstruction and virtual reality generation.
Moreover, there are further applications in robotics [13], astronomy [18] and
in metrology [2, 5, 17], as well.

Mathematically, the problem of fitting can often be expressed by a set of
implicit equations depending on a set of parameters. For fixed parameters the
set of equations often describes implicitly a smooth manifold, e.g. in those
cases where the regular value theorem applies. The task then is to find a
parameter vector, such that the corresponding manifold best fits a given set
of data. As it is studied in the computer vision community, e.g. see [9, 8], a
large class of computer vision problems actually falls into this category.

Certainly, there exists a variety of different ways to measure the quality of a
fit, dependent on the application context. Here we focus on a certain problem
of geometric fitting, namely, minimizing the sum of the squared Euclidean
distances between the data points and the manifold. In a natural way this is
a generalization of the well known linear orthogonal regression problem.
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A quite different approach to geometric fitting comes under the name
of algebraic fitting which we do not follow here. It turns out that in many
cases the algebraic approach has to be distinguished from the geometric one.
Firstly, it seems that the numerical treatment of the former is more feasible,
mainly due to the fact that the underlying optimization problem is based
on a vector space model, rather than modelled in a nonlinear differential
manifold setting. This might be the reason why it was preferably studied in
much detail in the past, see e.g. [1, 4, 6, 10, 14, 15, 19]. Secondly, geometric
fitting does not necessarily support a traditional straightforward statistical
interpretation, again typical for a computer vision application, see [9] for a
thorough discussion of this aspect.

For early work in the spirit of our approach, see however [11].
As already mentioned above the parameter vector might vary itself over a

smooth manifold. E.g. fitting an ellipsoid of codimension one in Rn to a set
of data points sitting in Rn as well, amounts in an optimization problem over
the set of all codimension one ellipsoids. As we will see below this set can
be neatly parameterized by the product of Rn with the set Pn of symmetric
positive definite n×n-matrices, or equivalently, by the product of Rn with the
set Rn×n

+ of n× n upper triangular matrices with positive diagonal entries.
In general, there exists no explicit formula for the Euclidean distance of a

point to a set. We therefore will use a suitable approximation together with
a conjugate-gradient-type procedure to compute the fitting parameters.

In this paper we will put an emphasis on the geometric fitting of ellipsoids
of codimension one to data points. The approach we follow here ensures that
we actually optimize over all ellipsoids of codimension one, rather than al-
lowing for other or even all conics of codimension one, or even conics of any
codimension as well.

The paper is organized as follows. In the next section we motivate the
quality measure we use, namely a distance function which approximates the
Euclidean distance of a point to an ellipsoid in a consistent manner, in a way
made precise below. We investigate the local properties of this function and
compare it with the Euclidean distance and with algebraic fitting.

Differentiability of the square of this function allows for a smooth opti-
mization procedure. In the third section we briefly describe the global param-
eterization of the smooth manifold of all ellipsoids of codimension one in Rn

and set the ground for a conjugate gradient algorithm living on this manifold.
The last section briefly discusses the CG-method used here, supported by a
numerical example.

2 Motivation of the Distance Function

In this section we introduce a new distance measure as an approximation of
the Euclidean distance from a point to an ellipsoid. This measure has the
advantage that, in contrast to the Euclidean distance, it can be expressed
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explicitly in terms of the ellipsoid parameters and is therefore suitable for op-
timization tasks. Moreover, it does not have the drawback of the measure that
underlies algebraic fitting, where it might happen that, given a set of points,
any ellipsoid that is large enough drives the corresponding cost arbitrarily
small. We specify this phenomenon in Proposition 1 below.

Let (·)> denote transposition and let

EQ,τ := {q ∈ Rn | (q − τ)>Q(q − τ) = 1} (1)

be an ellipsoid with center τ ∈ Rn and positive definite Q ∈ Pn. For ellipsoids
centered at the origin we shortly write EQ := EQ,0. In order to fit an ellipsoid
to a given set of data yi ∈ Rn, i = 1, . . . N , a quality measure is required
that reflects how well an ellipsoid fits the yi’s. There are two measures that
arise in a natural way: the Euclidean distance and, since any ellipsoid defines
a metric by considering it as a unit ball, the corresponding distance induced
by Q. For x, y ∈ Rn denote by

〈x, y〉Q := x>Qy (2)

the induced scalar product, the associated norm by ‖x‖Q = (x>Qx)
1
2 , and

the induced distance measure by

dQ(x, y) := ‖x− y‖Q. (3)

Lemma 1. Let x ∈ Rn. Then the Q-distance between x and EQ is given by

dQ(x, EQ) = |1− ‖x‖Q| . (4)

The point of lowest Q-distance to x on EQ is x̂ = x
‖x‖Q

.

Proof. Without loss of generality we might assume that x 6= 0. We compute
the critical points of the function

a : EQ → R, q 7→ ‖q − x‖2Q, (5)

as follows. The tangent space TqEQ of EQ at q ∈ EQ is given by

TqEQ := {ξ ∈ Rn | ξ>Qq = 0}, (6)

hence
D a(q)ξ = 2ξ>Q(q − x) = −2ξ>Qx. (7)

The derivative vanishes if and only if q ∈ Rx. A simple calculation then shows,
that the minimum of a is given by

x̂ := x
‖x‖Q

. (8)

Consequently,

dQ(x, EQ) = dQ(x, x̂) = ‖x− x̂‖Q = |1− ‖x‖Q| . (9)

�



76 Martin Kleinsteuber and Knut Hüper

The quality measure used in algebraic fitting is closely related to the Q-
distance. It is defined by

dalg(x, EQ) =
∣∣1− ‖x‖2Q∣∣ (10)

or, for general ellipsoids,

dalg(x, EQ,τ ) =
∣∣1− ‖x− τ‖2Q∣∣ , (11)

cf. [10]. Although this is easy to compute, minimizing the sum of squares of
dalg for a given set of noisy data points may not yield a desired result as the
following proposition is stating.

Proposition 1. Let y1, . . . , yN ∈ Rn be given. Then for all ε > 0 there exists
δ > 0 and τ ∈ Rn such that

N∑
i=1

d2
alg(yi, EδIn,τ ) < ε. (12)

Proof. Let δ = δ(τ) = 1
‖τ‖2 . The claim follows since

N∑
i=1

d2
alg(yi, EδIn,τ ) =

N∑
i=1

(1− δ‖yi − τ‖2)2 =
N∑

i=1

(1− ‖yi−τ‖2
‖τ‖2 )2

‖τ‖→∞−−−−−→ 0.

�

Given a convex set C ⊂ Rn and a point x ∈ Rn outside C, it is well known
that there is a unique point q ∈ ∂C on the boundary of C such that d(x, ∂C) =
d(x, q), cf. Chapter 2 in [3]. If x lies in the interior of C, this needs not to be
true anymore. However, in the case where ∂C = EQ is an ellipsoid, q depends
smoothly on x in a neighborhood of EQ.

Lemma 2. Let x ∈ Rn and let π : Rn → EQ be such that d(x, EQ) =
d(x, π(x)). Then π is smooth in a neighborhood of EQ and

Dπ(x)|x=qh =
(
id−Qqq>Q

q>Q2q

)
h. (13)

Proof. Let x ∈ Rn be arbitrary but fixed and let e : EQ → R with e(q) =
1
2‖x− q‖

2. The minimal value of e then is d(x, Eq). Differentiating yields the
critical point condition, namely

De(q)ξ = ξ>(q − x) = 0 for all ξ ∈ TqEQ = {ξ ∈ Rn | ξ>Qq = 0}. (14)

Now since TqEQ = (im(Qq))⊥ = im
(
id−Qqq>Q>

q>Q2q

)
, the critical point condi-

tion is equivalent to (
id−Qqq>Q>

q>Q2q

)
(q − x) = 0. (15)
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Using q>Qq = 1 yields

(q>Q2q)(q − x)−Qq +Qqq>Qx = 0. (16)

Consider now the function

F : EQ × Rn → Rn, (q, x) 7→ (q>Q2q)(q − x)−Qq +Qqq>Qx. (17)

Then F is smooth and F (q, q) = 0 for all q ∈ EQ. We use the implicit function
theorem to complete the proof. The derivatives of F with respect to the first
and second argument, respectively, are

D1F (q, x)ξ =(2ξ>Q2q)q+(q>Q2q)ξ−Qξ−(2ξ>Q2q)x+Qξq>Qx+Qqξ>Qx

D2F (q, x)h =Qqq>Qh− (q>Q2q)h.
(18)

Hence D1 F (q, q)ξ = q>Q2qξ and notice that q>Q2q > 0. The implicit func-
tion theorem yields the existence of a neighborhood U around q and a unique
smooth function π̃ : U → EQ such that F (π̃(x), x) = 0. Using π defined
as above, we get F (π(x), x) = 0. Moreover, the uniqueness of π̃ implies
π̃|U = π|U . Furthermore,

0 = DF (π(x), x)h = D1 F (π(x), x)Dπ(x)h+ D2 F (π(x), x)h (19)

and hence

Dπ(x)|x=qh = −(D1 F (π(q), q)−1 D2 F (π(q), q)h

= −(q>Q2q)−1(Qqq>Qh− q>Q2qh) =
(
id−Qqq>Q

q>Q2q

)
h.

(20)

�

As an approximation of the Euclidean distance d(x, EQ), we consider the Eu-
clidean distance between x and x

‖x‖Q
, cf. Figure 1, i.e.

d̃ : Rn \ {0} → R, x 7→
∣∣∣1− ‖x‖−1

Q

∣∣∣ ‖x‖. (21)

The definition of d(x, EQ) immediately yields

d(x, EQ) ≤ d̃(x, EQ). (22)

For large ‖x‖ both d and d̃ tend to the same value, i.e.

lim
‖x‖→∞

d̃(x,EQ)
d(x,EQ) = 1. (23)

An investigation of the derivatives yields the local behavior of d, d̃ and dQ

around some q ∈ EQ. It allows in particular to compare the first order approx-
imations of the three distances: locally, d̃ behaves similar to the Euclidean
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Fig. 1. Illustration of the distance measure d̃.

distance the more the ellipsoid becomes similar to a sphere. Moreover it shares
the nice property with the Euclidean distance that it is invariant under scaling
of Q, whereas the local behavior of dQ depends on the absolute values of the
eigenvalues of Q.

Proposition 2. Let x ∈ Rn \ {0} and let q ∈ EQ. Let λmin, λmax be the
smallest, resp. largest eigenvalue of Q. Then

lim
x→q,x 6∈EQ

‖D d(x, EQ)‖ = 1, (24)

1 ≤ lim
x→q,x 6∈EQ

‖D d̃(x, EQ)‖ ≤
√

λmax
λmin

, (25)√
λmin ≤ ‖D dQ(x, EQ)‖ ≤

√
λmax, for all x 6∈ EQ, (26)

where equality holds in the last equation either in the case of Qx = λminx, or
for Qx = λmaxx.

Proof. Let π(x) be defined as in Lemma (2), let q ∈ EQ and let U ⊂ Rn be a
neighborhood of q such that π(x) is smooth. For x ∈ U \ EQ,

D d(x, EQ)h = D〈x− π(x), x− π(x)〉
1
2h =

〈
h−Dπ(x)h, x−π(x)

‖x−π(x)‖

〉
=
〈
h, (id−Dπ(x))> x−π(x)

‖x−π(x)‖

〉
.

(27)

Hence

‖D d(x, EQ)‖ =
∥∥∥(id−Dπ(x))> x−π(x)

‖x−π(x)‖

∥∥∥ ≤ ‖(id−Dπ(x))‖Frob,

by submultiplicativity of the Frobenius norm. Therefore, using Eq. (13),

lim
x→q,x6∈EQ

‖D d(x, EQ)‖ ≤ lim
x→q,x 6∈EQ

‖(id−Dπ(x))‖Frob =
∥∥∥Qqq>Q

q>Q2q

∥∥∥
Frob

= 1.

Now let
γx(t) = tx+(1−t)π(x)

‖x−π(x)‖ .

Then π(γx(t)) = π(x) for all t ∈ (0, 1) and
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d(γx(t), EQ) = d(γx(t), π(x)) = |t|. (28)

Therefore, by the Cauchy-Schwarz inequality and using ‖γ̇x(t)‖ = 1,

1 = | d
d td(γx(t), EQ)| = |D d(γx(t), EQ) · γ̇x(t)|

≤ ‖D d(γx(t), EQ)‖‖γ̇x(t)‖ = ‖D d(γx(t), EQ)‖.
(29)

This proves equation (24). For Eq. (25) note that

‖D d̃(x, EQ)‖ =
∥∥∥ x
‖x‖ (1− ‖x‖

−1
Q )− ‖x‖ Qx

‖x‖3Q

∥∥∥ . (30)

The first term tends to 0 for x → q and ‖x‖Q tends to 1. It is therefore

sufficient to consider the term ‖x‖‖Qx‖. Substituting y := Q
1
2x, which implies

‖y‖2 → 1 as x→ q, we obtain

‖x‖‖Qx‖ = (y>Q−1y)
1
2

‖y‖
(y>Qy)

1
2

‖y‖ ‖y‖2 ≤
√

λmax
λmin
‖y‖2, (31)

hence
lim

x→q,x 6∈EQ

‖D d̃(x, EQ)‖ ≤
√

λmax
λmin

. (32)

On the other hand, the Cauchy-Schwarz inequality implies

lim
x→q
‖x‖‖Qx‖ ≥ lim

x→q
x>Qx = 1. (33)

Finally, equation (26) follows since

‖D dQ(x, EQ)‖ =
∥∥∥ Qx
‖x‖Q

∥∥∥ =
(

x>Q2x
x>Qx

) 1
2
. (34)

�

3 Parameterization of the set of ellipsoids

Given a set of data points y1, . . . yN , our aim is to minimize the sum of the
squares of the individual distance measures d̃(yi, EQ,τ ) over the set of all el-
lipsoids EQ,τ , i.e. over the set

E := Pn × Rn. (35)

Each positive definite matrix Q ∈ Pn possesses a unique Cholesky decompo-
sition Q = S>S, with S ∈ Rn×n

+ , and Rn×n
+ being the set of upper triangular

n×n-matrices with positive diagonal entries. Explicit formulas for computing
the Cholesky decomposition, cf. [7], imply that

Rn×n
+ → Pn, S 7→ S>S (36)
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is a diffeomorphism. We exploit this fact to obtain a global parameterization
of E. Let Rn×n be the set of upper triangular matrices. ThenRn×n ' R

n(n+1)
2

and

φ : Rn×n →Rn×n
+ ,

 r11 r12 ... r1n
0 r22 ··· r2n

...
. . . . . .

...
0 ··· 0 rnn

 7→
 er11 r12 ··· r1n

0 er22 ··· r2n

...
. . . . . .

...
0 ··· 0 ernn

 (37)

is a diffeomorphism as well. Thus

Rn×n × Rn → E, (R, τ) 7→ (φ(R)>φ(R), τ) (38)

is a global parameterization of the set E of codimension one ellipsoids.

4 CG-method for fitting ellipsoids to data

Using the parameterization derived in the last section and recalling that

d̃(x, EQ,τ ) = |1− ‖x− τ‖−1
Q | · ‖x− τ‖,

a conjugate gradient method was implemented for the following problem.
Given a set of data points y1, . . . yN ∈ Rn, minimize

f : Rn×n × Rn → R,

(R, τ) 7→
N∑

i=1

(
1−

(
(yi − τ)>φ(R)>φ(R)(yi − τ)

)− 1
2
)2

‖yi − τ‖2.
(39)

The step-size selection was chosen using a modified one dimensional Newton
step, i.e. given a point (R, τ) ∈ Rn×n×Rn and a direction (ξ, h) ∈ Rn×n×Rn,
we have chosen the step-size

t∗ = −
d
d t f(R+tξ,τ+th)

˛

˛

˛

˛

d2

d t2 f(R+tξ,τ+th)

˛

˛

˛

˛

. (40)

The absolute value in the denominator has the advantage, that in a neighbor-
hood of a nondegenerated minimum the step-size coincides with the common
Newton step, whereas t∗ is equal to the negative of the Newton step-size if
d2

d t2 f(R + tξ, τ + th) > 0. Our step-size selection is also supported by sim-
ulations showing that this modification is essential for not getting stuck in
local maxima or saddle points. To derive the gradient of f , for convenience
we define

µi(t) := φ(R+ tξ)(yi − τ + th). (41)

Let diag(X) be the diagonal matrix having the same diagonal as the matrix X
and let off(X) be the strictly upper triangular matrix having the same upper
diagonal entries as X. Then

µ̇i(0) =
(
diag(ξ) ediag(R) + off(ξ)

)
(yi − τ) + φ(R)h. (42)
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Lemma 3. Let µi := µi(0) and let ci := (µ>i µi)−
1
2 . The gradient of f evalu-

ated at (R, τ) is given by

∇f(R, τ) =
(
∇1f(R, τ),∇2f(R, τ)

)
(43)

where

∇1f(R, τ) =2
N∑

i=1

(1− ci)c3i
(
diag((yi − τ)µ>i ) + off(µi(yi − τ)>)

)
,

∇2f(R, τ) =
N∑

i=1

(
2(1− ci)c3iφ(R)>µi + (1− ci)2(yi − τ)

)
.

(44)

�
The proof is lengthy but straightforward and is therefore omitted.

The algorithm was implemented using a direction update according to the
formula by Polak and Ribière with restart after n0 := dimE = n(n+1)

2 + n
steps, cf. [12]. The algorithm has the n0-step quadratic termination property.
That is, being a CG-method in a space diffeomorphic to a Euclidean space, it
could be applied equally well to the strictly convex quadratic function f̃(x) =
x>Cx for C ∈ Pn0 and therefore would terminate after at most n0 steps
at the minimum of f̃ . Consequently, under the assumption that the unique
minimum of our function f is nondegenerated, the implemented CG-method
is an n0-step locally quadratic convergent algorithm, cf. [16].

In Figure 2, eight data points y1, . . . , y8 have been generated in the follow-
ing way. First, an ellipsoid EQ0,τ0 has been specified and eight randomly chosen
points have been normalized to ŷ1, . . . , ŷ8, such that ŷ1, . . . , ŷ8 ∈ EQ0,τ0 . Then
noise has been added to obtain yi = ŷi +∆ŷi. The figure compares the min-
imum of our cost function with the result of an algebraic fit (dotted line) of
the yi’s. Due to Proposition 1 the algebraic fit might have a long tail.

-4 -2 0 2 4

-4

-2

0

2

4

Fig. 2. Algebraic fitting (dotted line) vs. the method proposed here.
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