
On Hessian- and Jacobian-Free SQP Methods -
a Total Quasi-Newton Scheme with Compact
Storage

Torsten Bosse1, Andreas Griewank2, Lutz Lehmann3, and
Volker Schloßhauer4

1 † Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6,
10099 Berlin, Germany, bosse@math.hu-berlin.de

2 † Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6,
10099 Berlin, Germany, griewank@math.hu-berlin.de

3 Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6,
10099 Berlin, Germany, llehmann@math.hu-berlin.de

4 † Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstr. 39,
10117 Berlin, Germany, schlosshauer@wias-berlin.de

Keywords: NLP; Total quasi-Newton method; Limited-memory; Symmetric rank-one update;

Compact representation (with damping); Algorithmic Differentiation; BFGS

Summary. In this paper we describe several modifications to reduce the memory
requirement of the total quasi-Newton method proposed by Andreas Griewank et al..

The idea is based on application of the compact representation formulae for the well-
known BFGS and SR1 update for unconstrained optimization. It is shown how these
definitions can be extended to a total quasi-Newton approach for the constrained
case.

A brief introduction to the limited-memory approach is described in the present
paper using an updated null-space factorization for the KKT system as well as an
efficient numerical implementation of the null-space method in which the null-space
representation is not stored directly. It can be proven that the number of operations
per iteration is bounded by a bilinear order O(n ·max(m, l)) instead of a cubic order
O(m · n2) for standard SQP methods. Here n denotes the number of variables, m
the maximal number of active constraints, and l the user-selected number of stored
update vectors.

† Supported by the DFG Research Center matheon Mathematics for Key tech-
nologies , Straße des 17. Juni 136, 10623 Berlin, Germany, www.matheon.de

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,
DOI 10.1007/978-3-642-12598-0_6, © Springer-Verlag Berlin Heidelberg 2010

“

”

64 Torsten Bosse, Andreas Griewank, Lutz Lehmann, and Volker Schloßhauer

1 Introduction

The main goal of this work is to sketch an efficient approach to solve nonlinear
programs of the form:

min
x∈Rn

f(x)

s.t. cI(x) ≤ 0
cE(x) = 0

 NLP.

Here cI = (ci)i∈I and cE = (ci)i∈E denote the mappings composed of the
inequality constraint functions ci : Rn → R, i ∈ I, and equality constraint
functions ci : Rn → R, i ∈ E , where f and ci, i ∈ I ∪J , are at least C2. Also,
the existence of a regular solution x∗ ∈ Rn where LICQ holds is assumed.

An active-set strategy can be used to handle the inequalities. Assume that the
active set A(x∗) of such a solution x∗ is known and denote by cA : Rn → Rm

the corresponding constraint mapping. Then solving the NLP is equivalent to
finding the solution of the reduced equality constraint problem:

min
x∈Rn

f(x)

s.t. cA(x) = 0.

Let λi be the Lagrange multiplier for the constraint ci. The Lagrangian

L(x, λ) := f(x) +
∑
i∈A

λici(x)

associated with the reduced equality-constrained problem can be used to state
the first-order optimality condition for the stationary point (x∗, λ∗):

∇x,λAL(x∗, λ∗) = 0. (1)

According to [4], a total quasi-Newton approach can be applied to determine
(x∗, λ∗). In such an approach the reduced Hessian of the Lagrangian and the
constraint Jacobian are approximated by some matrices B ≈ ∇2

xxL(x, λ) and
A ≈ c′A(x). Applying a null-space method based on an extended QR factor-
ization A = [L, 0][Y, Z]>, one obtains the approximating null-space factorized
KKT systemY >BY Y >BZ L>

Z>BY Z>BZ 0
L 0 0

Y >s
Z>s
σ

 = −

Y >∇xL(x, λ)
Z>∇xL(x, λ)

cA(x)

for (1) that can be efficiently updated by low-rank formulae. Here, the matrix
Z ∈ Rn × Rn−m contains an orthonormal null-space basis of A. The right-
hand side of the equation is obtained exactly by use of the backward mode
in Algorithmic Differentiation (cf. [3]). The approximate projected Hessian
Z>BZ is kept positive definite throughout the optimization procedure, since
the exact one will have this property near local minima where second-order
sufficiency conditions hold.

Limited-memory updating for total quasi-Newton methods 65

2 A Limited-Memory Approach for the SR1 Method

2.1 Compact Representation Formula

Consider a symmetric rank-one update (SR1) of the Hessian B defined by

B+ = B + β
(w −Bs)(w −Bs)>

(w −Bs)>s
with (w −Bs)>s 6= 0

where β ∈ (0, 1] is a damping parameter. In order to avoid the complete fill-
in caused by the addition of low-rank terms, one prefers to store the triples
(s, w, β) ∈ Rn×Rn×R where s := x+−x and w := ∇xL(x+, λ)−∇xL(x, λ).
Unless w>s = 0 the pairs (s, w) are scaled throughout such that |w>s| = 1,
which leaves the secant condition w = B+s unaffected.

In the following a sequence of damped SR1 updates identified with (sj , wj , βj),
j ∈ {0, . . . , l − 1}, is applied to B(0) := γI using a compact representation
formula, which is well-known for many quasi-Newton updates. The scaled
update vectors and scalar products are, therefore, arranged in matrices

S :=
(
s0 · · · sl−1

)
∈ Rn×l, W :=

(
w0 · · · wl−1

)
∈ Rn×l,

Q ∈ Rl×l with Qih := Qhi = w>i−1sh−1(i ≥ h),
P ∈ Rl×l with Pih := Phi = s>i−1wh−1(i ≥ h).

Theorem 1 (SR1 - Compact representation formula).
Let l be the number of damped regular SR1 updates (sj , wj , βj)l−1

j=0, i.e.

(wj −B(j)sj)>sj 6= 0, βj 6= 0 ∀j ∈ {0, . . . , l − 1},

applied to the initial matrix B(0) = γI with B(j) defined as the intermediate
matrix after applying the first j ≤ l updates. Then M := P−D−γS>S ∈ Rl×l

is invertible and B = B(l) is given by

B = γI + (W − γS)M−1(W − γS)> (2)

where D denotes the diagonal matrix D = diag(Djj)l−1
j=0 with

Djj := (1− β−1
j)(wj −B(j)sj)>sj .

A compact representation formula for the BFGS update can be found in [2].

Remark: Equation (2) represents a generalization of the usual SR1 update
formula in [2]. In the undamped case, i.e. (βj)l−1

j=0 = 1, D vanishes.

Due to the Sherman Morrison Woodbury formula, one obtains a similar for-
mula for the inverse. Therefore, define N := Q+D − γ−1W>W and verify

66 Torsten Bosse, Andreas Griewank, Lutz Lehmann, and Volker Schloßhauer

B−1 = γ−1I + (S − γ−1W)N−1(S − γ−1W)>.

The compact representation formulae offer a number of advantages over the
full-storage implementation. First and foremost the space for storing B is re-
duced to a pair of low-rank matrices S and W and the scalar γ that ideally
represents the average eigenvalue of B. In a limited-memory approach the
number l of updates is fixed, so only the most recent update vectors are kept
inside S and W . The computational effort for adding (or replacing) update
vectors for B is bounded by O(l ·n) compared to O(n2) for SR1 updates. The
bound O(l · n + l3) holds for multiplying vectors by B or its inverse B−1. If
l�
√
n is small, the factorization effort for M and N stays negligible.

On the other hand, not storing all updates causes the loss of superlinear
convergence (see [6]), which may possibly increase the overall computational
effort.

2.2 Maintaining the Positive Definiteness of the Hessian

Positive definiteness of Z>BZ and maximal rank of A imply unique solv-
ability of the KKT system. Unlike the BFGS update, the SR1 update does
not necessarily preserve the positive definiteness of Z>BZ. A remedy is pro-
posed in [7] for the limited-memory approach. It consists of both determining
suitable values for the damping parameters βi and adapting the scaling pa-
rameter γ. More specifically, one obtains the following statement (cf. [7]) for
Q̄ := Q+D ∈ Rl×l as defined before including a constructive proof for γ:

Lemma 1. If Q̄ is positive definite,5 then there exists Γ > 0 such that B
becomes positive definite for all γ > Γ .

Proof. Consider auxiliary matrices T1, T2, T3 ∈ R(n+l)×(n+l) defined by

T1 :=
(
γI U
U> −M

)
with U = (W − γS),

T2 :=
(
I UM−1

0 I

)(
γI U
U> −M

)(
I 0

M−1U> I

)
=
(
B 0
0 −M

)
,

T3 :=
(

I 0
−γ−1U> I

)(
γI U
U> −M

)(
I −γ−1U
0 I

)
=
(
γI 0
0 −M − γ−1U>U

)
.

Simplifying the last equation one recovers the middle term N of B−1:

−M − γ−1U>U = W>S + S>W − P +D − γ−1W>W = Q̄− γ−1W>W.

Due to Sylvester’s law, the inertias of T1, T2 and T3 coincide. So, one can
deduce: B is positive definite (as B(0) = γI) if and only if −M and N have
the same inertia. Furthermore, if Q̄ is positive definite, then there exists Γ > 0
such that N , T3 and B become positive definite. ut
5 The assumption is reasonable, as in quadratic programming without damping one

retrieves: Q̄ = Q = S>∇2
xxL(x, λ)S is positive definite.

Limited-memory updating for total quasi-Newton methods 67

The assumption of the previous lemma can be guaranteed by damping a new
secant update pair (snew, wnew) to prevent the compact representation (2)
of the reduced Hessian losing its positive definiteness property. Therefore,
consider the rank-two update formula that describes the replacement of a
single update (sh, wh, βh) by (snew, wnew, βnew) for h ∈ {0, . . . , l − 1} in Q̄:

Q̄new := Q̄+
1
2
(eh + d)(eh + d)> − 1

2
(eh − d)(eh − d)> + βnewehe

>
h (3)

and (dj)l−1
j=0 :=

{
s>j wnew − Q̄hj if (j 6= h)

1
2 (s>newwnew − Q̄hh) otherwise.

Since the largest eigenvalue of Q̄new cannot grow rapidly but its smallest
one could become zero or even negative one can control its conditioning by
a Powell-like test on the determinant. A suitable choice for the damping pa-
rameter βnew can then be derived by investigating the determinant ratio for
Q̄ and the updated version Q̄new:

Lemma 2 (Determinant ratio for damping parameters).
Let (si, wi, βi)l−1

i=0 be a sequence of l regular SR1 updates and (snew, wnew, βnew)
be a regular SR1 update replacing (sh, wh, βh), h ∈ {0, . . . , l − 1}. Define the
determinant ratio function q : R→ R as

q(βnew) :=
det Q̄new

det Q̄
.

Then it holds for b := Q̄−1eh and c := Q̄−1d:

q(βnew) = bhβnew + c2h + 2ch − bhc>d+ 1.

Choosing βnew such that q(βnew) ∈ [1/µ, µ] maintains the positive definiteness
of Q̄new after the update (3) where 1 < µ is a fixed constant. In the next
step one can numerically try ascending values for γ and verify the positive
definiteness of B by analyzing the inertias of −M and N according to the first
Lemma.

2.3 Constrained Optimization and Limited-Memory

Consider again the factorized KKT system of the equality-constrained prob-
lem for computing a total quasi-Newton step, as described in Section 1:Y >BY Y >BZ L>

Z>BY Z>BZ 0
L 0 0

Y >s
Z>s
σ

 = −

Y >∇xL(x, λ)
Z>∇xL(x, λ)

cA(x)

 . (4)

Then the limited-memory approach can easily be incorporated by replacing
B with the compact representation formula. Hence, instead of storing the
factors Y >BY , Z>BY , and Z>BZ, it is sufficient to store and update only

68 Torsten Bosse, Andreas Griewank, Lutz Lehmann, and Volker Schloßhauer

the matricesW , S, and two smaller matrices in Rl×l. In addition, the necessary
matrix-vector products can be calculated directly by multiplication from right
to left using the reformulation

Y >BY = γI + (Y >W − γY >S)M−1(Y >W − γY >S)>,
Y >BZ = (Y >W − γY >S)M−1(Z>W − γZ>S)>,
Z>BZ = γI + (Z>W − γZ>S)M−1(Z>W − γZ>S)>, and

(Z>BZ)−1 = γ−1I + γ−2(Z>W − γZ>S)N−1(Z>W − γZ>S)>

where the middle matrices M , N ∈ Rl×l are now defined as follows:

M := P −D − γS>S and N := −M − γ−1(W − γS)>ZZ>(W − γS).

Since the damping of the update and the choice of γ discussed in section
2.2 ensures the positive definiteness of B, this property will be shared by
the reduced Hessian Z>BZ. A major concern now is to handle the matrices
Y and Z of the extended QR-factorization, which also need to be stored.
Consequently, one needs at least a complexity of order O(n2) to store the
Jacobian factorization, even for problems with a few active constraints. The
next section gives a possible solution to this drawback.

2.4 Avoidance of the Null-space Factor Z

When using a partial limited-memory method in conjunction with a total
quasi-Newton approach and a null-space factorized KKT system, a significant
amount of memory is expended on the matrix Z containing the null-space
basis of the Jacobian. This fact reduces the benefits of the limited-memory
approach, especially, if only a small number of constraints is active. The fol-
lowing summarizes how the partial limited-memory approach can be improved
by utilizing the orthonormality relation ZZ> + Y Y > = I for the range- and
null-space representation [Y, Z].

In this case the storage of the (n−m)× n matrix Z can be avoided without
any loss in theory. According to [1], Z is necessary neither to get a total
quasi-Newton step nor for the update of the factorized KKT system (4) itself.
Thus, a further reduction of the computational effort in a realization of an
algorithm is possible by eliminating Z. Also a bilinear upper bound on memory
allocation and the operation count per iteration is obtained.

Theorem 2 (Solving KKT without Z).
The solution of the approximated null-space factorized KKT system (4)

s = −Y L−1cA(x)− Z(Z>BZ)−1(Z>∇xL(x, λ)− Z>BY L−1cA(x))
σ = −L−>(Y >∇xL(x, λ) + Y >BY Y >s+ Y >BZZ>s)

can be computed without using Z if the Hessian approximation B is given
as a low-rank perturbation of a multiple of the identity matrix.

Limited-memory updating for total quasi-Newton methods 69

Proof. Consider the computation of the vector s, which can be written as

s = −Y L−1cA(x)− Z(Z>BZ)−1Z>
[
∇xL(x, λ)−BY L−1cA(x)

]
.

Here only the factor Z(Z>BZ)−1Z> is interesting, as it depends on Z. With
reference to section 2.3, (Z>BZ)−1 is given by

(Z>BZ)−1 = γ−1I + γ−2(Z>W − γZ>S)[−M
−γ−1(W − γS)ZZ>(W − γS)]−1(Z>W − γZ>S)>.

Multiplication on left and right by Z and its transpose, respectively, yields

Z(Z>BZ)−1Z> = γ−1ZZ> + γ−2ZZ> (W − γS) [−M

−γ−1(W − γS)>ZZ>(W − γS)
]−1

(W − γS)> ZZ>.

Applying the identity ZZ> = I − Y Y > to the equation above as well as to
the formula for the Lagrange multiplier step via

σ = −L−>
[
Y >∇xL(x, λ) + Y >BY Y >s+ Y >BZZ>s

]
= −L−>Y > [∇xL(x, λ) +Bs]

concludes the proof. ut

2.5 Improving Computational Efficiency

From a numerical point of view the most time-consuming part per iteration
is the step computation. Here several matrix-matrix products of order no less
than O(n ·m · l) would be necessary, since the reformulation

Z(Z>BZ)−1Z> = (γ−1I + γ−2ZZ>(W − γS)N−1(W − γS)>)ZZ>

involves a computation and factorization of the middle matrix N :

N = −M − γ−1(W − γS)(I − Y Y >)(W − γS) ∈ Rl×l.

As proven in [1], the basic idea to overcome this drawback is to avoid re-
computation of N from scratch and to apply Hessian and Jacobian updates
directly to the matrix N .

Hence, one can show by multiplication from right to left that the whole step-
computation has bilinear complexity O(n ·max(m, l)) because the remaining
matrix-matrix additions as well as matrix-vector products can be considered
as cheap, i.e. of bilinear complexity. Note thatN can be factorized from scratch
without exceeding O(n · l) operations for l� n sufficiently small.

The update of the matrix N due to changes of the Hessian, the Jacobian, and
the scaling parameter γ is examined in three propositions, where it is proven
that the effort is bounded by O(n · max(m, l)) operations. Since the proofs
are quite analogous, only the one for the Hessian updates is given.

70 Torsten Bosse, Andreas Griewank, Lutz Lehmann, and Volker Schloßhauer

Proposition 1 (Updating N - Hessian updates).
The matrix N can be directly updated with O(n ·max(m, l)) operations if the
Hessian is subject to a rank-one modification.

Proof. Three different actions can be performed if the Hessian is updated in
the limited-memory case:

1. A new secant pair (si, wi) is added to (S,W),
2. an old pair (si, wi) is removed from (S,W), or
3. an old update (si, wi) is exchanged by a new one (snew, wnew).

In all these cases the matrix N needs to be modified as it depends on (S,W).
The basic idea of the proof is to represent these changes as a constant number
of low-rank updates. Therefore, not only the matrices S and W will be stored
and updated but also S>Y , W>Y , and all summands of N up to transposi-
tions. All the three cases will be illustrated on S>W .

1. Appending a new update pair (snew, wnew) to the set (S,W) by setting
(S,W)+ = ((s1, . . . , si−1, si = snew), (w1, . . . , wi−1, wi = wnew)) results
in an extended matrix plus a rank-two update:

(S>W)+ =
[
S>W S>wi

s>i W s>i wi

]
=
[
W>S 0

0 0

]
+ (S>wi)e>i + ei(s>i W)> + w>i si(eie

>
i).

2. Assume the secant pair (si, wi) that shall be deleted is in last position in
(S,W), i.e. (S,W) = ((s1, . . . , si), (w1, . . . , wi)). Otherwise use the routine
described in the next point to exchange it with the last one. Then the
secant pair can be removed by erasing the last row and column of S>W .

3. Exchanging a secant pair (si, wi) by a new one can be realized by a rank-
two update on (S,W) with s̃ := (snew − si) and w̃ := (wnew − wi):

(S>W)+ = S>W + eis̃
>W + S>w̃e>i + s̃>w̃(eie

>
i).

Obviously, the operation count for the updates of all summands is dominated
by two extra calculations including the Y -factor, i.e. s>newY and w>newY , where
the numerical effort is of order O(n ·m). Evaluating the remaining expressions
without Y is cheap, e.g. the expression ei(s>i W)> can be computed by first
evaluating s>i W and storing this vector. In these cases the complexity bound
O(n · l) is not exceeded. Applying the results on N , one derives that the new
middle matrix N+ is given by a sequence of rank-one updates:

1. Appending a new secant pair (si, wi) to (S,W) gives:

N+ =
[
N 0
0 0

]
+

8∑
j=1

λj(eiv
>
j + vje

>
i) +

16∑
j=9

λj(eie
>
i),

Limited-memory updating for total quasi-Newton methods 71

2. using MATLAB-like notation, the deletion of (si, wi) in (S,W) yields:

N+ =

⎛
⎝N +

8∑
j=1

λj(eiv
�
j + vje

�
i) +

16∑
j=9

λj(eie
�
i)

⎞
⎠ [1 : k − 1; 1 : k − 1],

3. and exchanging (si, wi) with (snew, wnew) results in:

N+ = N +
8∑

j=1

λj(eiv
�
j + vje

�
i) +

16∑
j=9

λj(eie
�
i)

where the vectors vj and scalars λj are defined by the performed action. ��
Hence, the following result is obtained by a careful implementation of the
linear algebra for the updating of the factorized KKT system.
Theorem 3 (Bosse).
For a partial limited-memory approach on a total quasi-Newton method with
an updated null-space factorized KKT system, the needed memory size and
computational effort per iteration are both of order O(nm+ nl + l3).
More details on the proof can be found in [1], Chapter 6: ’Zed is Dead’.

3 Examples

The effectiveness of the presented method has been verified on the two exam-
ples LUKVLE3 (top) and LUKVLI9 (bottom) from the CUTEr test set.

0 20 40 60 80 100
10

−10

10
0

10
10

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
0

10
5

Number of iterations

an
d

op
tim

al
ity

 d
is

cr
ep

an
cy

Here the number of constraints is small (m = 2, m = 6) , whereas the number
of variables is comparatively large (n ≈ 10000). For l = 4 secant pairs in stor-
age, the two problems were solved within 111 and 20 iterations, respectively.
Thus, the overall effort ∼ 100 ·6 ·104 arithmetic operations was less than that
for one null-space factorization of the full KKT system. IPOPT takes 9 and 33
steps, respectively, using full first- and second-order derivative information!

Eu
cl

id
ea

n
no

rm
 o

f c
on

st
ra

in
t v

io
la

tio
n

Feasibility

Optimality

72 Torsten Bosse, Andreas Griewank, Lutz Lehmann, and Volker Schloßhauer

4 Conclusion

This article summarizes our recent research on total quasi-Newton methods
for nonlinear programming. A practical implementation of the limited-memory
SR1 method is presented. It avoids the explicit storage of the Hessian and re-
duces the computational effort for quasi-Newton updates to about O(l · n)
operations. A null-space factorized KKT system in the constrained case is re-
formulated by means of compact representation formulae and solved efficiently
using an updated QR decomposition of the Jacobian. The new approach cir-
cumvents the necessity of storing the matrix Z for the solution of the system
while reducing the computational effort per iteration to the bilinear complex-
ity O(n·max(l,m)). This should be particularly beneficial on dense large-scale
problems with a small set of active constraints m� n.

The quoted results for the large-scale problems LUKVLE3 and LUKVLI9 in-
dicate acceptable linear convergence rates even for a small number of stored
secant pairs (l = 4) with drastic reduction in computational effort per itera-
tion. More runs on the CUTEr test set have shown as a rule of thumb that
the choice of l between ∼ 5 and ∼ 15 results in a good balance between an
acceptable linear convergence rate and an effective step computation.

A further reduction in storage and operations count is envisioned by a semi-
normal approach that is based on a range-space method. In this case also
the storage of the range-space basis Y is omitted. The matrix-vector products
including Y are replaced by an extra Algorithmic Differentiation operation.
A smart updating of the triangular matrix L reduces the effort to the order
O(m2/2 + n · l).

References

1. Bosse T (2009) A Derivative-matrix-free NLP Solver without Explicit Nullspace
Representation. Diploma Thesis, Humboldt Universität zu Berlin, Berlin

2. Byrd R, et al. (1994) Representations of quasi-Newton matrices and their use
in limited-memory methods, Math. Programming 63:129–156

3. Griewank A, Walther A (2008) Evaluating derivatives. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA

4. Griewank A, Walther A, Korzec M (2007) Maintaining factorized KKT systems
subject to rank-one updates of Hessians and Jacobians, Optimization Methods
& Software 22:279–295

5. Korzec M (2006) A General-Low-Rank Update-Based Quadratic Programming
Solver. Diploma Thesis, Humboldt Universität zu Berlin, Berlin

6. Nocedal J, Wright S (2006) Numerical Optimization, Springer Series in Oper-
ations Research, 2nd Edt.

7. Schloßhauer V (2009) Strukturausnutzung und Speicherplatzbegrenzung für
hochdimensionale, nichtlineare Optimierung. Diploma Thesis, Humboldt Uni-
versität zu Berlin, Berlin

	On Hessianand Jacobian-Free SQP Methods a Total Quasi-Newton Scheme with Compact Storage
	1 Introduction
	2 A Limited-Memory Approach for the SR1 Method
	2.1 Compact Representation Formula
	2.2 Maintaining the Positive Definiteness of the Hessian
	2.3 Constrained Optimization and Limited-Memory
	2.4 Avoidance of the Null-space Factor
	2.5 Improving Computational Efficiency

	3 Examples
	4 Conclusion
	References

