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Summary. We consider the problem of minimizing the sum of convex functions
over a network when each component function is known (with stochastic errors) to
a specific network agent. We discuss a gossip based algorithm of [2], and we analyze
its error bounds for a constant stepsize that is uncoordinated across the agents.

1 Introduction

The gossip optimization algorithm proposed in [2] minimizes a sum of func-
tions when each component function is known (with stochastic errors) to a spe-
cific network agent. The algorithm is reliant on the gossip-consensus scheme
of [1], which serves as a main mechanism for the decentralization of the over-
all network optimization problem. The gossip-based optimization algorithm
is distributed and totally asynchronous since there is no central coordinator
and the agents do not have a common notion of time. Furthermore, the algo-
rithm is completely local since each agent knows only its neighbors, and relies
on its own local information and some limited information received from its
neighbors. Agents have no information about the global network.

In [2], the convergence properties of the algorithm with a (random) di-
minishing uncoordinated stepsize was studied. In this paper we study the
properties of the algorithm when the agents use deterministic uncoordinated
constant stepsizes. Our primary interest is in establishing the limiting error
bounds for the method. We provide such error bounds for strongly convex
functions and for general convex functions (through the use of the running
averages of the iterates). The bounds are given explicitly in terms of the prob-
lem data, the network connectivity parameters and the agent stepsize values.
The bounds scale linearly in the number of agents.
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2 Problem, algorithm and assumptions

Throughout this paper, we use ‖x‖ to denote the Euclidean norm of a vector
x. We write 1 to denote the vector with all entries equal to 1. The matrix norm
‖M‖ of a matrix M is the norm induced by the Euclidean vector norm. We use
xT andMT to denote the transpose of a vector x and a matrixM , respectively.
We write [x]i to denote the i-th component of a vector x. Similarly, we write
[M ]i,j or Mi,j to indicate the (i, j)-th component of a matrix M . We write
|S| to denote the cardinality of a set S with finitely many elements.

Consider a network of m agents that are indexed by 1, . . . ,m, and let V =
{1, . . . ,m}. The agents communicate over a network with a static topology
represented by an undirected graph (V,E ), where E is the set of undirected
links {i, j} with i 6= j and {i, j} ∈ E only if agents i and j can communicate.

We are interested in solving the following problem over the network:

minimize f(x) ,
m∑

i=1

fi(x)

subject to x ∈ X, (1)

where each fi is a function defined over the set X ⊆ Rn. The problem (1)
is to be solved under the following restrictions on the network information.
Each agent i knows only its own objective function fi and it can compute
the (sub)gradients ∇fi with stochastic errors. Furthermore, each agent can
communicate and exchange some information with its local neighbors only.

To solve problem (1), we consider an algorithm that is based on the gossip
consensus model in [1]. Let N(i) be the set of all neighbors of agent i, i.e.,
N(i) = {j ∈ V | {i, j} ∈ E }. Each agent has its local clock that ticks at a
Poisson rate of 1 independently of the clocks of the other agents. At each tick
of its clock, agent i communicates with a randomly selected neighbor j ∈ N(i)
with probability Pij > 0, where Pij = 0 for j 6∈ N(i). Then, agent i and the
selected neighbor j exchange their current estimates of the optimal solution,
and each of these agents performs an update using the received estimate and
the erroneous (sub)gradient direction of its objective function.

Consider a single virtual clock that ticks whenever any of the local Poisson
clocks tick. Let Zk be the time of the k-th tick of the virtual Poisson clock,
and let the time be discretized according to the intervals [Zk−1, Zk), k ≥ 1.
Let Ik denote the index of the agent that wakes up at time k, and let Jk

denote the index of a neighbor that is selected for communication. Let xi,k

denote the iterate of agent i at time k. The iterates are generated according
to the following rule. Agents other than Ik and Jk do not update:

xi,k = xi,k−1 for i 6∈ {Ik, Jk}. (2)

Agents Ik and Jk average their current iterate and update independently using
subgradient steps as follows:
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vi,k = (xIk,k−1 + xJk,k−1) /2,
xi,k = PX [vi,k − αi(∇fi(vi,k) + εi,k)], (3)

where PX denotes the Euclidean projection on the set X, ∇fi(x) is a sub-
gradient of fi at x, αi is a positive stepsize, and εi,k is stochastic error in
computing ∇fi(vi,k). The updates are initialized with random vectors xi,0,
i ∈ V , which are assumed to be mutually independent and also independent
of all the other random variables in the process.

The key difference between the work in [2] and this paper is in the step-
size. The work in [2] considers a diminishing (random) stepsize αi,k, which
is defined in terms of the frequency of agent i updates. In contrast, in this
paper, we consider the method with a deterministic constant stepsize αi > 0
for all i. As the stepsizes across agents need not to be the same, the algorithm
does not require any coordination among the agents.

We next discuss our assumptions.

Assumption 1 The underlying communication graph (V,E ) is connected.

Assumption 1 ensures that, through the gossip strategy, the information of
each agent reaches every other agent frequently enough. However, to ensure
that the common vector solves problem (1), some additional assumptions are
needed for the set X and the functions fi. We use the following.

Assumption 2 The set X ⊆ Rn is compact and convex. Each function fi is
defined and convex over an open set containing the set X.

Differentiability of the functions fi is not assumed. At points where the gra-
dient does not exist, we use a subgradient. Under the compactness of X, the
subgradients are uniformly bounded over X, i.e., for some C > 0 we have

sup
x∈X
‖∇fi(x)‖ ≤ C for all i ∈ V .

Furthermore, the following approximate subgradient relation holds:

∇fi(v)T (v−x) ≥ fi(y)−fi(x)−C‖v−y‖ for any x, y, v ∈ X and i ∈ V . (4)

We now discuss the random errors εi,k in computing the subgradients
∇fi(x)T at points x = vi,k. Let Fk be the σ-algebra generated by the entire
history of the algorithm up to time k inclusively, i.e.,

Fk = {xi,0, i ∈ V } ∪ {I`, J`, εI`,`, εJ`,`; 1 ≤ ` ≤ k} for all k ≥ 1,

where F0 = {xi,0, i ∈ V }. We use the following assumption on the errors.

Assumption 3 With probability 1, for all i ∈ {Ik, Jk} and k ≥ 1, the errors
satisfy E [εi,k | Fk−1, Ik, Jk] = 0 and E

[
‖εi,k‖2 | Fk−1, Ik, Jk

]
≤ ν2 for some ν.

When X and each fi are convex, every vector vi,k is a convex combination
of xj,k ∈ X (see Eq. (3)), implying that vi,k ∈ X. In view of subgradient
boundedness and Assumption 3, it follows that for k ≥ 1,

E
[
‖∇fT

i (vi,k) + εi,k‖2 | Fk−1, Ik, Jk

]
≤ (C + ν)2 for i ∈ {Ik, Jk}. (5)
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3 Preliminaries

We provide an alternative description of the algorithm, and study the prop-
erties of the agent’s disagreements. Define the matrix Wk as follows:

Wk = I − 1
2
(eIk
− eJk

)(eIk
− eJk

)T for all k, (6)

where ei ∈ Rm has its i-th entry equal to 1, and the other entries equal to 0.
Using Wk, we can write method (2)–(3) as follows: for all k ≥ 1 and i ∈ V ,

xi,k = vi,k + pi,kχ{i∈{Ik,Jk}},

vi,k =
m∑

j=1

[Wk]ij xj,k−1, (7)

pi,k = PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k,

where χC is the characteristic function of an event C . The matrices Wk are
symmetric and stochastic, implying that each E [Wk] is doubly stochastic.
Thus, by the definition of the method in (7), we can see that

m∑
i=1

E
[
‖vi,k − x‖2 | Fk−1

]
≤

m∑
j=1

‖xj,k−1 − x‖2 for all x ∈ Rn and k, (8)

m∑
i=1

E [‖vi,k − x‖ | Fk−1] ≤
m∑

j=1

‖xj,k−1 − x‖ for all x ∈ Rn and k. (9)

In our analysis, we use the fact that W 2
k = Wk, (Wk − 1

m11T )2 = Wk −
1
m11T and that the norm of the matrices E[Wk]− 1

m11T is equal to the second
largest eigenvalue of E[Wk]. We let λ denote the square of this eigenvalue, i.e.,
λ = ‖E[Wk]− 1

m11T ‖2. We have the following lemma.

Lemma 1. Let Assumption 1 hold. Then, we have λ < 1.

We next provide an estimate for the disagreement among the agents.

Lemma 2. Let Assumptions 1–3 hold4, and let {xi,k}, i = 1, . . . ,m, be the
iterate sequences generated by algorithm (7). Then, we have for all i,

lim sup
k→∞

m∑
i=1

E [‖xi,k − ȳk‖] ≤
√

2mᾱ

1−
√
λ

(C + ν),

where ȳk = 1
m

∑m
j=1 xj,k for all k, and ᾱ = max1≤j≤m αj .

4 Here, we only need the error boundedness from Assumption 3.



Gossip Algorithm 55

Proof. We will consider coordinate-wise relations by defining the vector z`
k ∈

Rm, for each ` ∈ {1, . . . , n}, as the vector with entries [xi,k]`, i = 1, . . . ,m.
From the definition of the method in (7), we have

z`
k = Wk z

`
k−1 + ζ`

k for k ≥ 1, (10)

where ζ`
k ∈ Rm is a vector with coordinates [ζ`

k]i given by

[ζ`
k]i =

{
[PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]` if i ∈ {Ik, Jk},
0 otherwise. (11)

Furthermore, note that [ȳk]` is the average of the entries of the vector z`
k, i.e.,

[ȳk]` =
1
m

1T z`
k for all k ≥ 0. (12)

By Eqs. (10) and (12), we have [ȳk]` = 1
m

(
1TWkz

`
k−1 + 1T ζ`

k

)
, implying

z`
k − 1[ȳk]` = Wkz

`
k−1 + ζ`

k −
1
m

11T (Wkz
`
k−1 + ζ`

k)

=
(
Wk −

1
m

11T

)
z`
k−1 +

(
I − 1

m
11T

)
ζ`
k,

where I denotes the identity matrix, and the last equality follow by the
doubly stochasticity of Wk, i.e., 1TWk = 1T . Since the matrices Wk are
stochastic, i.e., Wk1 = 1, it follows

(
Wk − 1

m 11T
)
1 = 0, implying that(

Wk − 1
m 11T

)
[ȳk−1]`1 = 0. Hence,

z`
k − [ȳk]`1 = Dk(z`

k−1 − [ȳk−1]`1) +Mζ`
k for all k ≥ 1,

where Dk = Wk− 1
m 11T and M = I− 1

m 11T . Thus, we have for ` = 1, . . . , n
and all k ≥ 1,

‖z`
k−[ȳk]`1‖2 ≤ ‖Dk(z`

k−1−[ȳk−1]`1)‖2+‖Mζ`
k‖2+2‖Dk(z`

k−1−[ȳk−1]`1)‖ ‖Mζ`
k‖.

By summing these relations over ` = 1, . . . , n, and then taking the expectation
and using Hölder’s inequality we obtain for all k ≥ 1,

n
X

`=1

E
h

‖z`
k − [ȳk]`1‖2

i

≤

0

@

v

u

u

t

n
X

`=1

E
ˆ

‖Dk(z`
k−1 − [ȳk−1]`1)‖2

˜

+

v

u

u

t

n
X

`=1

E
ˆ

‖Mζ`
k‖2
˜

1

A

2

.(13)

Using the fact the matrix Wk is independent of the past Fk−1, we have

n∑
`=1

E
[∥∥Dk(z`

k−1 − [ȳk−1]`1)
∥∥2 | Fk−1

]
≤ λ

n∑
`=1

‖z`
k−1 − [ȳk−1]`1‖2, (14)

where λ = ‖E[DT
k Dk]‖2 = ‖E[Dk]‖2, and λ < 1 from Lemma 1.
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We next estimate the second term in (13). The matrix M = I − 1
m 11T is

a projection matrix (it projects on the subspace orthogonal to the vector 1),
so that we have ‖M‖2 = 1, implying that ‖Mζ`

k‖2 ≤ ‖ζ`
k‖2 for all k. Using

this and the definition of ζ`
k in (11), we obtain

‖Mζ`
k‖2 ≤ 2

∑
i∈{Ik,Jk}

∣∣[PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]`
∣∣2 .

Therefore,

n
X

`=1

E
h

‖Mζ`
k‖2
i

≤ 2E

2

4E

2

4

X

i∈{Ik,Jk}

α2
i ‖∇fi(vi,k) + εi,k‖2 | Fk−1, Ik, Jk

3

5

3

5

≤ 2ᾱ2(C + ν)2,

where in the last inequality we use ᾱ = maxi αi and relation (5). Combining
the preceding relation with Eqs. (13) and (14), we obtain

v

u

u

t

n
X

`=1

E
ˆ

‖z`
k − [ȳk]`1‖2

˜

≤
√
λ

v

u

u

t

n
X

`=1

E
ˆ

‖z`
k−1 − [ȳk−1]`1‖2

˜

+
√

2 ᾱ(C + ν).

Since λ < 1, by recursively using the preceding relation, we have

lim sup
k→∞

√√√√ n∑
`=1

E
[
‖z`

k − [ȳk]`1‖2
]
≤
√

2 ᾱ
1−
√
λ

(C + ν).

The result now follows by
∑m

i=1 E
[
‖xi,k − ȳk‖2

]
=
∑n

`=1 E
[
‖z`

k − 1[ȳk]`‖2
]

and
∑m

i=1 E [‖xi,k − ȳk‖] ≤
√
m
√∑m

i=1 E [‖xi,k − ȳk‖2]. �
The bound in Lemma 2 captures the dependence of the differences between
xi,k and their current average ȳk in terms of the maximum stepsize and the
communication graph. The impact of the communication graph (V,E ) is cap-
tured by the spectral radius λ of the expected matrices E

[
(Wk − 1

m11T )2
]
.

4 Error Bounds

We have the following result for strongly convex functions.

Proposition 1. Let Assumptions 1–3 hold. Let each function fi be strongly
convex over the set X with a constant σi, and let αi be such that 2αiσi < 1.
Then, for the sequences {xi,k}, i ∈ V, generated by (7), we have for all i,

lim sup
k→∞

m∑
i=1

E[‖xi
k − x∗‖2] ≤

ω̄ − ω
1− q

2mCCX +
ᾱω̄

1− q

(
m+

2
√

2m
1−
√
λ

)
(C + ν)2,

where x∗ is the optimal solution of problem (1), q = maxi{1− 2γiαiσi}, γi =
1
m

(
1 +

∑
j∈N(i) Pji

)
, CX = maxx,y∈X ‖x− y‖, ᾱ = maxi αi, ω̄ = maxi γiαi,

and ω = mini γiαi.
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Proof. The sum f =
∑m

i=1 fi is strongly convex with constant σ =
∑m

i=1 σi.
Thus, problem (1) has a unique optimal solution x∗ ∈ X. From relation (7),
the nonexpansive property of the projection operation, and relation (5) we
obtain for the optimal point x∗, and any k and i ∈ {Ik, Jk},

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ ‖vi,k − x∗‖2 − 2αi∇fi(vi,k)T (vi,k − x∗)

+α2
i (C + ν)2. (15)

By the strong convexity of fi, it follows

∇fi(vi,k)T (vi,k − x∗) ≥ σi‖vi,k − x∗‖2 +∇fi(x∗)T (vi,k − x∗).

Using ȳk−1 = 1
m

∑m
j=1 xj,k−1, we have ∇fi(x∗)T (vi,k−x∗) = ∇fi(x∗)T (ȳk−1−

x∗) +∇fi(x∗)T (vi,k − ȳk−1), which in view of ‖∇fi(x∗)‖ ≤ C implies

∇fi(x∗)T (vi,k − x∗) ≥ ∇fi(x∗)T (ȳk−1 − x∗)− C ‖vi,k − ȳk−1‖. (16)

By combining the preceding two relations with inequality (15), we obtain

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ (1− 2αiσi)‖vi,k − x∗‖2

+α2
i (C + ν)2 − 2αi∇fi(x∗)T (ȳk−1 − x∗) + 2αiC‖vi,k − ȳk−1‖.

Taking the expectation with respect to Fk−1 and using the fact the preceding
inequality holds with probability γi (the probability that agent i updates at
time k), and xi,k = vi,k with probability 1− γi, we obtain for any i and k,

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ (1− 2γiαiσi)E

[
‖vi,k − x∗‖2 | Fk−1

]
+ γiα

2
i (C + ν)2 − 2γiαi∇fi(x∗)T (ȳk−1 − x∗) + 2γiαiCE [‖vi,k − ȳk−1‖ | Fk−1] .

Adding and subtracting (mini γiαi)∇fi(x∗)T (ȳk−1−x∗), and using ȳk−1 ∈ X
and the compactness of X, we obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ qE

[
‖vi,k − x∗‖2 | Fk−1

]
+ ω̄ᾱ(C + ν)2

+ 2(ω̄ − ω)CCX − 2ω∇fi(x∗)T (ȳk−1 − x∗) + 2ω̄CE [‖vi,k − ȳk−1‖ | Fk−1] ,

where q = maxi{1−2γiαiσi}, ω = mini γiαi, ω̄ = maxi γiαi, ᾱ = maxi αi and
CX = maxx,y∈X ‖x− y‖. Now, by summing the preceding relations over i, by
using

∑m
i=1∇fi(x∗)T (ȳk−1−x∗) ≥ 0 and using relation (8) (with x = x∗) and

relation (9) (with x = ȳk−1), we obtain
m∑

i=1

E[‖xi,k − x∗‖2] ≤ q
m∑

j=1

E[‖xj,k − x∗‖2] +mω̄ᾱ(C + ν)2

+ 2m(ω̄ − ω)CCX + 2ω̄C
m∑

j=1

E[‖xj,k − ȳk−1‖].

The desired estimate follows from the preceding relation by noting that q < 1,
by taking the limit superior and by using Lemma 2 and C(C+ ν) ≤ (C+ ν)2.
�
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Proposition 1 requires each node to select a stepsize αi so that 2αiσi < 1,
which can be done since each node knows its strong convexity constant σi.
Furthermore, note that the relation q = max1≤i≤m{1 − γiαiσi} < 1 can be
ensured globally over the network without any coordination among the agents.

The following error estimate holds without strong convexity.

Proposition 2. Let Assumptions 1–3 hold. Then, for the sequences {xi,k},
i ∈ V, generated by (7), we have for all i,

lim sup
k→∞

1
k

k∑
t=1

E[f(xi,t−1)] ≤ f∗ +m (ρ− 1)CCX

+ᾱ

(
(ρ+m)

√
2m

1−
√
λ

+
m

2
ρ

)
(C + ν)2,

where f∗ is the optimal value of problem (1), CX = maxx,y∈X ‖x − y‖,
ρ = maxi γiαi

mini γiαi
, γi = 1

m

(
1 +

∑
j∈N(i) Pji

)
and ᾱ = maxi αi.

Proof. The optimal setX∗ is nonempty. Thus, Eq. (15) holds for any x∗ ∈ X∗.
From approximate subgradient relation (4) it follows

∇fi(vi,k)T (vi,k − x∗) ≥ fi(ȳk−1)− fi(x∗)− C‖vi,k − ȳk−1‖.

The preceding relation and Eq. (15) yield for all i ∈ {Ik, Jk} and k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ ‖vi,k − x∗‖2 − 2αi(fi(ȳk−1)− fi(x∗))

+2αiC‖vi,k − ȳk−1‖+ α2
i (C + ν)2,

where CX = maxx,y∈X ‖x−y‖. The preceding relation holds when i ∈ {Ik, Jk},
which happens with probability γi. When i 6∈ {Ik, Jk}, we have xi,k = vi,k

(see Eq. (7)), which happens with probability 1 − γi. Thus, by taking the
expectation conditioned on Fk−1, we obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
− 2γiαi(fi(ȳk−1)− fi(x∗))

+2γiαiCE [‖vi,k − ȳk−1‖ | Fk−1] + γiα
2
i (C + ν)2.

Letting ω = min1≤i≤m{γiαi} and ω̄ = max1≤i≤m{γiαi}, and using

|fi(ȳk−1)− fi(x∗)| ≤ C‖ȳk−1 − x∗‖ ≤ CCX ,

which holds by the subgradient boundedness and the fact ȳk ∈ X, we see that

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
− 2ω(fi(ȳk−1)− fi(x∗))

+2(ω̄ − ω)CCX + 2ω̄CE [‖vi,k − ȳk−1‖ | Fk−1] + ω̄ᾱ(C + ν)2,

where ᾱ = max1≤i≤m αi. By summing the preceding inequalities over i, and
using Eq. (8) with x = x∗ and Eq. (9) with x = ȳk−1 ∈ X, we obtain
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2ωE[f(ȳk−1)− f(x∗)] ≤
m∑

j=1

E[‖xj,k−1 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]

+2m(ω̄ − ω)CCX + 2ω̄C
m∑

j=1

E[‖xj,k−1 − ȳk−1‖] +mω̄ᾱ(C + ν)2,

where f =
∑m

i=1 fi. Next, after dividing the preceding relation by 2ω and
noting that by convexity and the boundedness of the subgradients of each fi,
we have

f(xi,k−1)− f∗ ≤ f(ȳk−1)− f∗ +mC‖xi,k−1 − ȳk−1‖,

we obtain for all i,

E[f(xi,k−1)− f(x∗)] ≤ 1
2ω

 m∑
j=1

E[‖xj,k−1 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]


+m(ρ− 1)CCX + (ρ+m)C

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] +
m

2
ρᾱ(C + ν)2,

where ρ = ω̄
ω . By summing these relations from time 1 to time k, and then

averaging with respect to k, we obtain

1
k

k∑
t=1

E[f(xi,t−1)− f(x∗)] ≤ 1
2kω

 m∑
j=1

E[‖xj,0 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]


+m(ρ− 1)CCX + (ρ+m)C

1
k

k∑
t=1

m∑
j=1

E[‖xj,t−1 − ȳt−1‖] +
m

2
ρᾱ(C + ν)2.

Letting k →∞ and using the relation

lim sup
k→∞

1
k

k∑
t=1

 m∑
j=1

E[‖xj,k−1 − ȳk−1‖]

 ≤ lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖],

we have for any i,

lim sup
k→∞

1
k

k∑
t=1

E[f(xi,t−1)− f(x∗)] ≤ m(ρ− 1)CCX

+(ρ+m)C lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] +
m

2
ρᾱ(C + ν)2.

By Lemma 2 we have

lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] ≤
√

2mᾱ

1−
√
λ

(C + ν),
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which together with the preceding relation yields for all i,

lim sup
k→∞

1
k

k∑
t=1

(E[f(xi,t−1)]− f(x∗)) ≤ m (ρ− 1)CCX

+(ρ+m)C
√

2mᾱ

1−
√
λ

(C + ν) +
m

2
ρᾱ(C + ν)2.

By using C(C+ ν) ≤ (C+ ν)2 and grouping the terms accordingly, we obtain
the desired relation. �

By Proposition 2 and the convexity of f , we have for ui,k = 1
k

∑k
t=1 xi,t−1,

lim sup
k→∞

E[f (ui,k)] ≤ f∗ +B,

where B = m (ρ− 1)CCX + ᾱ
(
(ρ+m)

√
2m

1−
√

λ
+ m

2 ρ
)

(C + ν)2. When the
ratio ρ = maxi γiαi

mini γiαi
is close to value 1, the bound is approximately given by

B ≈ ᾱ
(
(1 +m)

√
2m

1−
√

λ
+ m

2

)
(C+ν)2. In this case, the bound scales in the size

m of the network as m3/2, which is by order 1/2 less than the scaling of the
bound for the distributed consensus-based subgradient algorithm of [3], which
scales at best as m2.

5 Discussion

The bounds scale well with the size of the network. For strongly convex func-
tions, the bound in Proposition 1 scales independently of the size of the net-
work if the degrees of the nodes are about the same order and do not change
with the size of the network. The bound in Proposition 2 scales as m

√
m with

the size m of the network. In our development, we have assumed that the net-
work topology is static, which may not be realistic in some applications. Of
future interest is to investigate the algorithm for dynamic network topology.
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