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Summary. This work introduces a mathematical model for laser cutting which
involves two coupled nonlinear partial differential equations. The model will be in-
vestigated by linear stability analysis to study the occurence of ripple formations at
a cutting surface. We define a measurement for the roughness of the cutting surface
and give a method for minimizing the roughness with respect to process parameters.
A numerical solution of this nonlinear optimization problem will be presented and
compared with the results of the linear stability analysis.

1 Introduction

Laser cutting is a thermal separation process widely used in shaping and
contour cutting applications. There are, however, gaps in understanding the
dynamics of the process, especially issues related to cut quality. One essential
problem in laser cutting is the occurence of ripple structures at the cutting
surface, cf. Figure 1. Such structures can be induced by fluctuations in the

Fig. 1. Image of a cutting surface with ripple structures
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melt flow during the process. Typical tasks in laser cutting applications involve
finding process parameters like laser power or cutting speed such that ripple
structures at the cutting front are minimal.

Research work has been done in the fields of modeling, model analysis
and numerical simulation of laser cutting. One of the major challenges is
the treatment of the arising melt and its free boundaries in the process. An
overview on state-of-the-art and new developments in the field of modeling
on the basis of asymptotic expansions, integral (or variational) methods and
spectral methods is presented in [9]. Numerical simulation involving Level Set
methods and adaptive sparse grids has been applied in [7]. Nonlinear stability
analysis of melt flows has been carried out in [12]. The special problem of
ripple formations has been investigated in [10, 3]. An optimization on the
basis of the model in the latter reference has been applied in [11].

2 A model for the dynamical behavior of the melt
surfaces

We introduce a model in scaled and dimensionless coordinates for the surfaces
of the melt arising in a laser cutting process. Figure 2 shows the melt bounded

Fig. 2. Schematic 2D view of a laser cutting process

by three free boundaries: the melt front and the absorption front (intersecting
at z = 0) and the lower boundary along z = 1. The position of the laser beam
axis (dashed) is x = xL := t and the laser with beam radius m0 propagates
vertically in z–direction. The melt front with position x = xM := xL + M
where M = M(z, t) is the distance from the laser beam axis is given by the
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phase boundary where molten material from the solid phase enters the liq-
uid phase. The cutting gas expelling the melt downwards and the laser beam
hit the melt at the absorption front with position x = xA := xM − h where
h = h(z, t) is the melt film thickness. It intersects the melt front at
(x, z) = (m0, 0). The lower boundary of the melt is given as the connect-
ing arc between the lower end points of the melt and the absorption front
along z = 1.

A model for the dynamical behavior of the melt and the absorption front
and their interactions is given by the initial/boundary value problem

∂h

∂t
+ 2h

∂h

∂z
= vp,

∂M

∂t
= vp − 1, vp = QA −Qs, Qs =

cp∆T

Hm
(1)

QA = νµA(µ), ν =
PL

πw2
0ρHmv0

, A(µ) =
4µι

2µ2 + 2µι+ ι2
(2)

µ = α

(
∂h

∂z
− ∂M

∂z

)
, α =

dm

d
, dm =

√
2ηlv0d

τg
(3)

h(0, t) = 0, M(0, t) = m0 = w0/dm, h(z, 0) = hi(z), M(z, 0) = Mi(z) (4)

for z, t ≥ 0. Here, vp = vp(z, t) denotes the dimensionless in-flow velocity of
the melt in normal direction at the melt front. Furthermore, QA = QA(z, t)
and the constant Qs are dimensionless heat flow densities at the absorption
front and in the solid phase at the melt front, respectively. Here, QA is a
function of the Fresnel absorption A = A(µ) and the cosine µ = µ(z, t) of the
angle of incidence of the laser beam onto the absorption front which involves
spatial derivatives of h and M . Thus, (1)–(3) yield a nonlinear coupled system
of partial differential equations with initial and boundary conditions (4) where
m0 is the distance of the melt front at z = 0, and hi,Mi are initial distributions
for h and M at t = 0.

Constant positive parameters in this model are the specific heat capacity
cp, the difference ∆T between melting and ambient temperature, the enthalpy
of fusion Hm, the beam radius w0, the mass density ρ, the material absorption
parameter ι, the thickness d of the workpiece, the dynamical viscosity ηl and
the shear stress τg of the cutting gas along the absorption front. Parameters
which can be used as optimization variables are the laser power PL and the
cutting velocity v0. All parameters are given in corresponding physical units.

We use scaled and dimensionless coordinates x = x̃/dm, z = z̃/d,
t = v0t̃/dm and obtain the scalings h = h̃/dm, M = M̃/dm where the ∼
superscript indicates that the quantity is given in its corresponding physical
unit. The quantity dm is a typical length for the melt film thickness. The
in-flow velocity vp is scaled by vp = ṽp/v0 whereas the heat flow densities are
scaled by Q = Q̃/(v0ρHm) where, again, ṽp and Q̃ are given in corresponding
physical units.

To deduce the model, we consider the implicit description

ΦM (x, z, t) : = xL(t) +M(z, t)− x = 0 (5)



524 Georg Vossen, Jens Schüttler and Markus Nießen

for the melt front at x = xM and the dynamical behavior of a particle (x, z)
along this surface which yields

d

dt
(ΦM (x(t), z(t), t)) = 1 + vz,M

∂M

∂z
+
∂M

∂t
− vx,M = 0 (6)

Here, vx,M = vx,M (z, t) and vz,M = vz,M (z, t) denote the dimensionless ve-
locities of the melt front in x– and z–direction, respectively, which can be
substituted by means of the dimensionless in-flow velocity vp of the melt. De-
noting nM = nM (z, t) as the scaled unit length outer normal vector of the
melt along the melt front, we obtain

vp = 〈(vx,M , vz,M ), nM 〉 =
1√

1 +
(
α ∂M

∂z

)2
(
vx,M − vz,M

∂M

∂z

)
(7)

at the melt front. Combining (6) with (7) yields

∂M

∂t
= vp

√
1 +

(
α
∂M

∂z

)2

− 1 = vp − 1 +O(α2) (8)

For the absorption front x = xA, we consider the transformation x̄ = xM − x
and obtain the implicit form

ΦA(x̄, z, t) := h(z, t)− x̄ = 0 (9)

which can be used to deduce a kinematic boundary condition from

d

dt
(ΦA(x̄(t), z(t), t)) = vz,A

∂h

∂z
+
∂h

∂t
− vx̄,A = 0 (10)

In [7] we obtain that the relative velocities vx̄,A and vz,A of the absorption
front in x̄– and z–direction are given by

vx̄,A = vp +O(α), vz,A = 2h+O(α) (11)

The expression for dm can be deduced from [8] which implies α � 1 in a
realistic cutting process. Neglecting therefore terms of order O(α) in (8) and
(11) yields the two first-order partial differential equations in (1). The coupling
can be deduced by means of the so-called Stefan condition [4] where the in-
flow velocity vp is given by the jump of the heat flow density at the melt
front. Due to the thinness of the melt, we assume that, for fixed z, the heat
flow density in the liquid phase is constant which leads to the third equation
in (1). The expressions for QA and Qs as well as the other formulae in (2),
(3) can be found in [8] where, again, higher order terms in α are neglected.
We note that the approximation for µ is only good for values around zero,
i.e. for nearly vertical absorption fronts, which is the case in a typical cutting
process. The x–position m0 of the two fronts at z = 0 is given by the scaled
value w0/dm of the beam radius. For this model we assume no interaction of
the lower boundary at z = 1 with the melt. Hence, we consider z ∈ [0,∞) in
the following theoretical discussions.
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3 Linear stability analysis

In this section, we perform a linear stability analysis of the system (1)–(4).
We introduce a perturbation parameter ε > 0 and investigate (1)–(4) by using
the initial condition

hi = h0 + εgh, Mi = M0 + εgM (12)

where h0 = h0(z) and M0 = M0(z) are stationary solutions of (1)–(4) and
gh = g(z), gM = gM (z) are initial perturbations in the system, e.g. given by
a sinusoidal wave with fixed frequency. We partition the solution by

h = h0 + εh1, M = M0 + εM1 (13)

where h1 = h1(z, t) and M1 = M1(z, t) describe the dynamical behavior of
the initial perturbations gh, gM . We consider the Taylor expansion of the
absorption A around the stationary value µ0 of µ given by

A(µ) = A(µ0) + εµ1A′(µ0) +O(ε2), µ = µ0 + εµ1. (14)

where the partition of µ is a direct consequence of (13) and (3).
In the following, we suppose µ0 ≥ 0 since µ0 < 0 implies that the laser

beam hits the absorption front from inside the melt which is, from the physical
point of view, not reasonable.

Lemma 1. A stationary solution of (1)–(4) with µ0 ≥ 0 exists if and only if

0 < r < 2ι, r =
1 +Qs

ν
(15)

holds. In this case, the solution is unique and given by

h0(z) =
√
z, M0(z) =

√
z − 1

α
µ0z +m0, µ0 =

ιr√
(4ι− r)r − r

(16)

Proof. We substitute (13) and (14) into (1)–(4) and consider terms of order
O(1) in ε to obtain two solutions µ(1)

0 and µ(2)
0 given by

µ
(1)
0 =

ιr√
(4ι− r)r − r

, µ
(2)
0 =

ιr

−
√

(4ι− r)r − r
, r =

1 +Qs

ν
(17)

for the stationary value µ0 of µ. Hence, for r > 4ι, i.e. large values of v0
or small values of PL, there exists no stationary solution. Furthermore, for
all r ≤ 4ι, we obtain µ

(2)
0 < 0 which contradicts the assumption µ0 ≥ 0.

Since r > 2ι implies µ(1)
0 < 0 and r = 2ι provides no solution for µ(1)

0 , the
only possible setting is r < 2ι (i.e. small v0 or large PL) which leads to the
stationary solutions given in (16).
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Remark 1. We note that in this model µ0 and hence the angle of incidence of
the laser beam onto the absorption front is constant for all z.

Considering terms of order O(ε) yields the linear perturbation system

∂y

∂t
+ F

∂y

∂z
= Ny, y(0, t) =

(
0
0

)
, y(z, 0) =

(
gh(z)
gM (z)

)
(18)

F = F (z) =
(

2h0 − c0 c0
−c0 c0

)
, N = N(z) =

(
−1/h0 0

0 0

)
(19)

for the vector perturbation y = (h1, A1)T with, using (16),

c0 = αν (A(µ0) + µ0A′(µ0)) = α(1 +Qs)
2ι(ι+ µ0)

µ0(ι2 + 2ιµ0 + 2µ2
0)
> 0 (20)

Lemma 2. For z > 0, the system (18), (19) is hyperbolic, elliptic or parabolic
if and only if the term h0(z)− 2c0 is positive, negative or zero, respectively.

Proof. The eigenvalues of F are given by h0 ±
√
h2

0 − 2c0h0. For z > 0, i.e.
h0 > 0, we obtain two real, two complex or one multiple eigenvalue if the
radicant is positive, negative or zero, respectively, which proves Lemma 2.

Remark 2. The system (18), (19) yields an interesting example of a system
whose property changes from elliptic via parabolic to hyperbolic while z de-
creases.

In general, a solution of (18), (19) cannot be given since F and N depend
on z. To investigate further properties, we consider for a fixed position z0 > 0,
the solution in a small neighborhood |z−z0| < δ, z0−δ > 0, where the variation
of h0(z) is small. We denote c1 := h0(z0) and obtain

∂y

∂t
+ F̄

∂y

∂z
= N̄y, F̄ =

(
2c1 − c0 c0
−c0 c0

)
, N̄ =

(
−1/c1 0

0 0

)
(21)

with initial condition y(z, 0) = (gh(z), gM (z))T . Note that we are interested in
stability of the system (18), (19), i.e. in particular large variations in h1, M1.
Thus, it is reasonable to investigate the solutions of (21) which will give, for
small times t ≥ 0, local approximations of the solutions of (18), (19). For a
rigorous investigation of error bounds between the solutions of both systems,
we refer to [1].

Proposition 1. The system (21) is linearly unstable.

Proof. Using Fourier transform with respect to z yields the ordinary differen-
tial equation

∂Y

∂t
= R̄Y, R̄ = N̄ − ikF̄ , Y = Y (k, t) =

1
2π

∫ ∞
−∞

y(w, t) exp(−ikw) dw (22)
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Stability of (22) and hence, cf. [6], of (21), can be analyzed by means of the
real parts of the two complex eigenvalues σ1/2 = σr

1/2 + iσi
1/2 of R partitioned

in real and imaginary parts given by

σr
1/2 = − 1

2c1
±

√
ξ +

√
ξ2 + ζ2

2
, σi

1/2 = −kc1 ±

√
−ξ +

√
ξ2 + ζ2

2
(23)

ξ = k2c1(2c0 − c1) +
1

4c21
, ζ = k

(
1− c0

c1

)
(24)

Since ζ = 0 implies c0 = c1 and hence ξ > 0, we have σr
1 > σr

2. Therefore,
(22) is stable if and only if σr

1 ≤ 0 holds. Basic calculations yield that this is
equivalent to the three conditions

(I) :
1

2c1
≥ 0, (II) :

1
2c21
− ξ ≥ 0, (III) : − c20 ≥ 0 (25)

Condition (I) is fulfilled for all z > 0. In view of Lemma 2, Condition (II) is
satisfied if and only if the system is not elliptic. However, condition (III) is
not fulfilled since from (20) we obtain c0 6= 0. This implies σr

1 > 0 and hence
instability of the system.

As shown in Proposition 1, system (21) is unstable since c0 6= 0. However,
the proof illustrates that c0 = 0 implies σr

1 = 0 and hence marginal stability.
Therefore, the value of c0 can be interpreted as a measurement for instability
and for decreasing values c0 → 0 the process becomes more stable. From (20)
we conclude that c0 → 0 holds for µ0 →∞ which, due to (15), is obtained for
r → 2ι. In the limit case r = 2ι, we obtain a marginal stability curve

N = {(v0, PL) ∈ R2 : PL = C v0}, C =
(1 +Qs)πw2

0ρHm

2ι
(26)

which, as mentioned above, cannot be achieved in practice since µ0 is not
defined in this case. Figure 3 shows the nonlinear dependency of c0 on p

Fig. 3. c0 as a function of the process parameters v0 and PL

where the plot is cut at the curve N for realistic parameters for stainless steel

cp = 550, ∆T = 1500, Hm = 277 · 103, w0 = 300 · 10−6 (27)
ρ = 7000, ι = 0.25, d = 4 · 10−3, ηl = 2 · 10−3, τg = 500 (28)
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It can be deduced that c0 is strictly monotonuously increasing with PL and
decreasing with v0 which implies that large values of v0 and small values of
PL may provide a stationary solution with only small instabilities.

4 Minimizing the roughness of the surfaces

To extend our results about the connection between the process parameters
v0, PL and stability of the system, we will investigate a nonlinear optimization
problem. The goal is to find a process parameter vector

p = (v0, PL)T ∈ P, P ⊂ Pad := {p ∈ R2 : PL > C v0 > 0} (29)

with C from (26) such that the melt surfaces stay close to the stationary
solution. Here, P is an arbitrary non-empty compact and convex subset of
Pad where the condition PL > C v0 (which is equivalent to r < 2ι, cf. (15))
in the definition of Pad ensures the existence of a stationary solution due to
Lemma 1 and v0 > 0 (note that C > 0) is a physically reasonable bound. The
problem is to find p ∈ P which minimizes the roughness

R(p) :=
1
2

1∫
0

tf∫
0

[
(h(z, t; p) −h0(z; p))2 + λ(M(z, t; p)−M0(z; p))2

]
dt dz (30)

where h(z, t; p), M(z, t; p) are solutions of (1)–(4) with inital condition (12) us-
ing h0(z; p), M0(z; p) from (16) as stationary solutions, λ is a weighting param-
eter and tf is a suitable chosen final time. We will assume that h0, h, M0, M
are unique solutions sufficiently smooth with respect to p. Note that for all p
the system is not stable. Hence, a solution of the optimization problem will
yield parameters where the surface roughness is as small as possible.

We present a numerical solution of problem (30). The spatial and time
domain is partitioned into Nz = 80 and Nt = 1600 intervals of length hz and
ht, respectively. We use the Lax-Wendroff [5] and an Euler-forward scheme for
the equation for h and M , respectively. The derivatives in µ are treated by an
upwind method. The cost functional (30) is approximated by the composite
trapezoidal rule. Using data (27), (28) yields C = 4362.164. We choose

ε = 0.025, gh(z) = sin(5 · 2πz) = 10gM (z), tf = 0.8, λ = 10 (31)

The domain P ∈ Pad is taken as

0.01 ≤ v0 ≤ 0.2, 100 ≤ PL ≤ 6000, PL ≥ 1.5C v0 (32)

Using the code IPOPT [13] together with the modeling language AMPL [2],
we obtain two local minima p1 and p2 of R(p) in P given by

p1 = (0.019995, 180.80)T , p2 = (0.2, 6000)T (33)
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with R(p1) = 0.2500914087 and R(p2) = 0.4751724227 where p1 is close to
N and p2 is at the boundary of P far away from N . Hence, there exists a
domain where the roughness decreases for p approaching N which is equal to
the results in the previous section. However, p1 is strictly inside P close to the
boundary and there exists a second minimum. A possible interpretation for
these discrepancies with the linear stability analysis is that there are nonlinear
effects in the system which can lead to a surface with small roughness although
the process is strongly linear instable. Figure 4 shows the solution for h and
M for the parameter p1.

Fig. 4. Melt thickness h (left) and position M of the melt front (right)

We emphasize that p1 is no realistic parameter vector since PL is not large
enough to melt the workpiece. This can also be seen from the mathematical
point of view since µ0 in this case is so large that at z = 1 the absorption front
has left the area [−m0,m0] of the laser beam, i.e. M0(1) < −m0. Adjusting P
by adding this constraint µ0 ≤ α(1 + 2m0), we obtain the only minimum p2.

5 Conclusions and Outlook

We presented a model for the dynamical behavior of the free melt surfaces in a
laser cutting process which involves two nonlinear coupled partial differential
equations. We identified parameter domains for the existence of a stationary
solution and showed uniqueness in this case. We applied a linear stability
analysis to an approximate model and obtained that the system is linearly
unstable. This investigation implied that the distance of the parameter vec-
tor to a practically not achievable neutral stability curve is a measurement
for instability of the system providing rough cutting surfaces. As a second ap-
proach, we formulated a nonlinear optimization problem. The goal was to find
parameters which minimize the roughness of the cutting surface defined by a
tracking cost functional measuring the L2 distance to the stationary solution.
A numerical solution was presented which showed that in a certain domain
the results correspond to the linear stability analysis. However, presumedly
due to nonlinear effects, we obtained a second local minimum far away from
the neutral stability curve. We finally identified a further condition for the
technically relevant parameter domain leading to only this second minimum.
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Future works comprise extension of the model by non-vertical beam in-
cidence, nonlinear stability analyis (which may lead to explanations for the
second minimum), study of necessary and sufficient optimality conditions and
the consideration of further, also spatial and time dependent optimization
variables which leads to optimal control problems.
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