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Summary. In this paper we discuss the problem of modeling Magnetic Resonance
Spectroscopic Imaging (MRSI) signals, in the aim of estimating metabolite concen-
tration over a region of the brain. To this end, we formulate nonconvex optimization
problems and focus on appropriate constraints and starting values for the model
parameters. Furthermore, we explore the applicability of spatial smoothness for the
nonlinear model parameters across the MRSI grid. In order to simultaneously fit all
signals in the grid and to impose spatial constraints, an adaptive alternating non-
linear least squares algorithm is proposed. This method is shown to be much more
reliable than independently fitting each signal in the grid.

1 Introduction

Magnetic Resonance (MR) is widely used in hospitals to distinguish between
normal and abnormal tissue. Among the established MR techniques, Mag-
netic Resonance Imaging (MRI) has a high spatial resolution and is able to
provide detailed pictures reflecting differences in tissue, but this technique
has a low spectral resolution since it mainly represents the density of water.
A second important technique is Magnetic Resonance Spectroscopy (MRS),
which provides a signal from a small localized region called voxel, and has
a high spectral resolution, i.e., many metabolites (chemicals) are identifieble
from an MR spectrum. Thirdly, Magnetic Resonance Spectroscopic Imaging
(MRSI) is a multi-voxel technique that combines imaging and spectroscopy
in order to provide a trade-off between spatial and spectral resolution.

An MRS signal is a complex-valued time-domain signal y induced by a pop-
ulation of nuclei immersed in a magnetic field after applying a radio-frequency
pulse. This time-domain signal is a superposition of many exponentially decay-
ing components. The problem of metabolite quantification amounts to fitting
a certain model to the MRS signal.
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In this paper we focus on modeling and fitting MRSI data, which is a chal-
lenging computational problem because of relatively low spectral resolution
and high level of noise in the signals. To overcome low data quality, it is im-
portant to formulate appropriate constraints and to use good starting values
in the nonconvex metabolite quantification optimization problems. In partic-
ular, we focus on the spatial smoothness of the nonlinear model parameters
across the MRSI grid. In order to simultaneously fit all signals in the grid and
to impose spatial constraints, an alternating nonlinear least squares algorithm
is proposed. This method is adaptive, in the sense that each subproblem may
tune some hyperparameters at run-time, instead of always keeping them fixed.

The paper is organized as follows. In Section 2, the state-of-the-art model
for MRS signals, as well as details on the optimization methods used for single-
voxel MRS signals, are presented. Further, we pursue in Section 3 the topic
of MRSI data quantification, where we first motivate the need to impose
spatial relations between the grid’s signals; then, the optimization problem
and solution method for simultaneous MRSI data quantification are described.
Finally, numerical illustrations on simulated noisy MRSI grids are found in
Section 4.

2 Metabolite quantification of MRS signals

2.1 MRS model

An MRS signal can be modeled in the time-domain as a sum of complex
damped exponentials

∑K′

k=1 ak exp(jφk) exp(−dkt + 2πjfkt), where ak are
amplitudes, φk phases, dk damping factors and fk frequencies, j =

√
−1

and t denotes a particular time instant among the discrete measuring times
t0, . . . , tm−1. In this parametric model, the frequencies are characteristic to
the metabolites under investigation, while the amplitudes are proportional to
the concentration of the respective molecule.

Due to the fact that many metabolites resonate in a well-defined pattern
at more than one frequency, depending on the molecular configuration, a more
sophisticated model is currently used for MRS signals,

ŷ(t) =
K∑

k=1

ak exp(jφk) exp(−dkt+ 2πjfkt) vk(t), (1)

where we point out that vk, with k = 1, . . . ,K, denotes a pure metabolite
signal, which can be measured in vitro or simulated using quantum mechanical
knowledge. In this case the factor exp(jφk) exp(−dkt + 2πjfkt) accounts for
corrections to the ideal metabolite signal vk, such as small frequency shifts
fk, small damping corrections dk and phase corrections φk, while ak stands
for the total amplitude of metabolite k.
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2.2 Model fitting

Metabolite quantification amounts to a nonlinear least squares problem of fit-
ting model (1) to a measured signal y(t).1 Figure 1 (left) shows a typical basis
set of metabolite spectra vk that can be used for fitting in vivo measured MRS
signals from the human brain. Figure 1, bottom right, illustrates the fitting
of a noisy signal with the metabolite basis set; to this end, the metabolite
spectra are appropriately modified, as shown in Figure 1, top right, by broad-
ening the peaks (i.e., increasing dk), by slightly shifting the spectra along the
frequency axis (with fk Hz), and by scaling each of them to an appropriate
amplitude ak.
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Fig. 1. (left) Metabolite basis set:
horizontal axis represents frequency
in normalized units, vertical axis
shows the real part of the spectra in
arbitrary units. (right top) Modified
metabolite basis set. (right bottom)
Noisy spectrum fitted as a sum of the
modified metabolite basis set.
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The nonlinear least squares problem mentioned above involves also bounds
on the considered parameters, which come from the physical meaning of these
parameters. In mathematical terms, this problem reads:

min
ak,φk,dk,fk
k=1,...,K

‖y − ŷ‖2 s.t. ak ≥ 0, φk ∈ [0, 2π], dk ∈ (−εd, εd), f ∈ (−εf , εf )

(2)
It is important to notice the two important hyperparameters εd and εf , which
specify the allowed variation of the damping corrections and of the frequency

1 There are several acquisition conditions that lead to distortions or artifacts of the
considered model (1) and for which specialized preprocessing steps exists. They
will not be discussed in this paper; see, e.g, [12] for more details.
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shifts, respectively. Since in vivo spectra may be quite different from each
other, there are no predetermined optimal values for these hyperparameters,
however such bounds are needed in order to preserve the physical meaning
of each metabolite spectrum. Their chosen values might be critical for the
estimated model parameters (ak, etc.).

2.3 Variable projection approach

In the considered model (1), the complex amplitudes αk = ak exp(jφk) appear
as coefficients of a linear combination of nonlinear functions in the parameters
dk, fk. Thus, for any fixed values of the nonlinear parameters dk, fk, k =
1, . . . ,K, one can obtain corresponding optimal values for all αk using linear
least squares. The constraints ak ≥ 0, φk ∈ [0, 2π] are then readily satisfied if
we take ak = |αk| and φk = angle(αk).

The variable projection approach [4, 11] is an optimization framework
where the coefficients αk are projected out, such as to obtain an optimization
problem only in the remaining nonlinear variables. The projected functional
will be denoted φ(θ), where θ ∈ <2K stands for the vector of parameters
d1, . . . , dK , f1, . . . , fK . Function and Jacobian evaluations needed by optimiza-
tion solvers such as Gauss-Newton, Levenberg-Marquardt, or trust region, are
slightly more computationally expensive than for the original problem formu-
lation. Still, it is well known and proven by theory [10] and practice that
variable projection always converges in less iterations than the original full
functional approach. This includes convergence in cases when the full func-
tional approach diverges. Another advantage of this formulation is that no
starting values are needed for the linear parameters, and that the number of
parameters is halved.

The Levenberg-Marquardt algorithm [6] applied to the variable projection
functional is implemented in the quantification method AQSES (Accurate
Quantification of Short Echo-Time MRS Signals) [8]. The starting values for
the nonlinear parameters dk and fk are set by default in AQSES to zero, with
the motivation that dk and fk represent small corrections to the metabolite
profiles in the basis set.

3 Metabolite quantification of MRSI signals

3.1 Characteristics of MRSI data

MRSI signals can be modeled with the same mathematical formulation as
the MRS signals (1). A straightforward approach to quantify metabolites in a
grid of MRSI voxels would be to apply a single-voxel quantification method,
such as AQSES, to each signal in the grid individually. As opposed to single-
voxel measurements, the MRSI signals usually have a much lower quality,
due to the spatial/spectral trade-off for the available measuring time. Thus,
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they are more prone to quantification errors, since metabolites present in
low concentration are almost embedded in noise. Moreover, a lower spectral
resolution also implies that metabolite components become more strongly
overlapping in frequency.

It is obvious that supplementary information expressed as constraints on
the optimization parameters would be very valuable in analysing this type of
data. Since MRSI signals are obtained during a single scan using a certain
acquisition protocol, many characteristics of the signals within the same grid
are related [3]. Differences in the signals may appear due to two main causes:
the heterogeneity of the tissue under investigation, and the magnetic field
applied in the scanner, which cannot be kept perfectly constant over the whole
volume under investigation.2 In particular, the damping factors and frequency
location of each individual exponential decay are directly related to the local
magnetic field. Assuming there are no abrupt changes in the magnetic field, the
damping and frequency parameters exhibit smooth maps over the considered
MRSI grid.

3.2 Smoothness of parameter maps

Smoothness of a 2D parameter map can be locally measured at every voxel
(`, κ) in the grid by using the parameter value at the current location and the
values in a certain neighborhood. We denote that two voxels are neighbors
by (`1, κ1) ∼ (`2, κ2). Because MRSI grids are rather coarse, we usually focus
on 3× 3 regions with the current voxel (`, κ) in the center. When (`, κ) is on
the border of the MRSI grid, only the available neighbors are used. A possible
measure for the smoothness at point (`, κ) is given by the first order difference
norm ∑

(i,j)∼(`,κ)

(p`κ − pij)2, (3)

where p stands for any of the parameters dk or fk, for any k. Second order
formulas are also possible, such as the second order differences

(2p`κ − p`−1,κ − p`+1,κ)2 + (2p`κ − p`,κ−1 − p`,κ+1)2, (4)

(4p`κ − p`−1,κ − p`+1,κ − p`,κ−1 − p`,κ+1)2, (5)

3.3 Simultaneous optimization of MRSI signals

A complete optimization problem for fitting all signals in the MRSI grid and,
simultaneously, penalizing all the parameter maps for smoothness (with, e.g.,
a penalty of type (3)) is formulated as (see also Kelm [5])

2 Other causes of spectral differences could be differences in temperature or in pH,
but we assume them constant over the grid.
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min
Θ∈I

∑
`,κ

φ`κ(θ`κ) +
∑

(i,j)∼(`,κ)

λ(i,j),(`,κ)‖W (θ`κ − θij)‖22, (6)

where Θ stands for the entire set of parameters θ`κ ∈ <2K , for all voxels (`, κ),
and I denotes the box defined by the hyperparameters εd, εf . Moreover, the
diagonal 2K × 2K matrix W is used to account for different scaling of the
dk and fk parameters in θ`κ, and the scalars λ(i,j),(`,κ) are regularization
hyperparameters that affect the trade-off between data fitting and parameter
map smoothing.

This optimization problem is highly dimensional, having 2KMN variables,
where M×N is the grid size. (In practice we may have grids of at least 16×16
voxels and at least 10 metabolite signals in the basis set, leading to a total
of more than 5000 nonlinear variables.) However, the objective function is a
sum of squares, where each term contains only a few variables. Assuming all
variables fixed, except for the vector θ`κ, we obtain tractable subproblems of
the form

min
θ`κ∈I`κ

φ`κ(θ`κ) +
∑

(i,j)∼(`,κ)

λ(i,j),(`,κ)‖W (θ`κ − θij)‖22, (7)

with I`κ denoting the box corresponding to the vector θ`κ. Thus, the total
optimization problem (6) is a natural candidate for an alternating minimiza-
tion procedure, where subproblems of the type (7) are solved for each voxel
in several sweeps through the grid, until convergence.

Remark 1. In a statistical setting, this type of alternating minimization has
been introduced in the field of computer vision under the name iterated con-
ditional modes (ICM). An extension of ICM to MRSI data is proposed in [5]
under the name block-ICM, where instead of minimizing only over θ`κ, each
subproblem takes a set of parameters corresponding to a neighborhood of
voxels as free variables.

3.4 Adaptive alternating minimization

Alternating minimization algorithms are known to converge under very mild
conditions [9, 2]. Recently, convergence properties have been analyzed for
the situation when the problem statement slightly changes from sweep to
sweep [7]. In [7] the variables are partitioned in only two sets, while here we
apply adaptive alternative minimization with a large number of subsets (one
subset per voxel). Slight changes in problem formulation are expressed, in
our case, as modifications of the hyperparameters of the problem. These are,
essentially, the bounds on dk and fk, which define at each sweep w = 1, 2, . . .
a box Iw

`,κ for each voxel (`, κ). Thus, the new subproblem at sweep w for
the voxel (`, κ) is very similar to (7), except that the box constraint may
vary at each sweep, and so do the regularization factors. Updates for the box
constraints, for the regularization factors and for the starting values of each
subproblem are proposed in [1].
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4 Numerical results

In this section we illustrate several aspects of the new method on realistically
simulated signals. The simulated signals follow model (1), where 11 in vitro
measured metabolite profiles vk are used, and the model parameters take
biologically relevant values.3 In order to better approximate MRSI situations,
we artificially smoothen the parameter maps of the nonlinear variables. We
set random, but realistic values for the amplitude maps, except in the case of
two metabolites: for the first, we create a smooth map and for the second a
map with an abrupt change in value. This is done for the purpose of checking
whether the method is able to capture such specific situations, although the
amplitudes are not explicitly constrained. The signals are finally perturbed
with additive white noise with various signal-to-noise ratios. The size of the
simulated grids is 5 × 5, the considered neighborhoods are 3 × 3, and only
maximum 4 neighbors (up, down, left, right) are considered when imposing
spatial constraints. The spatial constraint in these simulations involves the
second order difference (5). Results with the first order difference (3) are
comparable, but a bit less suitable for this particular simulation with very
smooth parameter maps for the nonlinear variables.

Figure 2 depicts the estimated amplitude values for a grid of signals, and
Figure 3 the corresponding frequency shifts, when the signals contain a high
level of noise (SNR = 5). We clearly see that the results of the multi-voxel
approach are much closer to the true simulated values compared to the single-
voxel based method AQSES. For lower noise levels the differences are not as
pronounced, since in that case AQSES performs already well enough.

Further we illustrate in Figure 4 the effect of the hyperparameters εd,
εf . These bounds are computed at each sweep as the median value of the
corresponding parameters from the neighboring voxels plus/minus a fraction
of the previous length of the interval.

A final illustration of the importance of the considered box constraints is
given by the contour plot in Figure 5. All parameters are set to the optimal
values computed by the new method, except for two frequency shifts, f2 and
f4, corresponding to metabolites that partially overlap in frequency. The pro-
jected objective function, although regularized with the smoothness penalty
terms, and having excellent values for 20 out of 22 model parameters, is highly
nonconvex. Still, the obtained optimal solution is very close to the minimum
and also close to the true simulated values.

5 Conclusions

We discussed an alternating minimization algorithm with varying values for
the hyperparameters, applied to the simultaneous, spatially constrained fitting
3 See [8] for more details on the measured metabolite profiles and on how meaningful

values for the model parameters are obtained.
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Fig. 2. Amplitude values on a 5× 5 grid for a selection of 3 out of 11 metabolites
(the 3 rows of grids), namely two metabolites with smooth and abrupt amplitude
maps, and a third one with random entries. The middle column corresponds to the
true values, while the left and right columns correspond to the estimated amplitudes
provided by the single-voxel and the multi-voxel approaches, respectively.

Fig. 3. Frequency values for the same example as in Figure 2. Damping maps are
similar, although not shown here.

of Magnetic Resonance Spectroscopic Imaging signals. This approach is more
accurate than individually fitting each signal in the grid. Still, some issues
must be further studied, such as what smoothness measure is more appropriate
for in vivo data, or how to automatically safeguard against decreasing the
constraint box too much; ideas from trust region methods could be adapted for
this purpose. Finally, the relevance of this approach to clinical data obtained
from brain tumor patients is being evaluated in [1].
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Fig. 4. Convergence of three damping estimates corresponding to the middle voxel
of a 5 × 5 simulated MRSI grid with SNR=10. The estimated values for 12 sweeps
are plotted together with the corresponding upper and lower bounds; the true values
are also shown as big dots.
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Fig. 5. Contour plot for the objective function projected onto the (f2, f4)-plane of a
subproblem corresponding to the voxel (1, 1) during the last sweep of the multi-voxel
method, in a simulated MRSI grid with SNR=10. True and estimated parameters
are shown as a star and a circle, respectively. The successive box constraints are also
sketched.
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