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Abstract

This contribution presents some of the tools developed at Cenaero to tackle indus-
trial multidisciplinary designs. Cenaero’s in-house optimization platform, Minamo
implements mono- and multi-objective variants of Evolutionary Algorithms strongly
accelerated by efficient coupling with surrogate models. The performance of Minamo
will be demonstrated on a turbomachinery design application.

1 Introduction

Nowadays, with the continuous increase in computing power, a widespread
practice in engineering is that of simulation-based design optimization. In-
deed, design of complex engineering systems, which is synonymous with the
use of accurate high-fidelity simulationmodels (e.g. Computational Fluid Dy-
namics (CFD) analysis or Finite Element Method (FEM)), has become a real-
ity. However, even with today’s computational power, it is rarely conceivable
to thoroughly search the design space using the high-fidelity simulations. Since
optimization procedures are mandatory to quickly provide optimal designs, an
adequate and general answer to optimization based on computationally ex-
pensive analysis lies in the exploitation of surrogate models. Surrogate-Based
Optimization (SBO) essentially exploits surrogates or approximations instead
of the expensive analysis results to contain the computational time within
affordable limits (see [4, 12]), with occasional recourse to the high-fidelity
model. The performance of such methods is known to be largely dependent on
the following key elements: the initial sample set used to build the surrogate
model(s), the underlying optimization algorithm(s), the surrogate model(s)
training and the surrogate model(s) management schemes.

This paper is structured as follows. First, the SBO methodology imple-
mented in Minamo is exposed with a focus on the design of experiments and
the surrogate modeling. Subsequently, the performance of our in-house opti-
mization platform is demonstrated on a turbomachinery design application.
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2 Optimization Methodology

In most engineering design optimization, every evaluation of functions in-
volved in the problem is expensive and their derivatives are, generally, un-
available or available at a prohibitive cost. Typical optimization techniques,
like gradient-based methods[11], are not applicable or not efficient in such con-
texts. Despite their speed of convergence, these methods are indeed known to
lack space exploration. They are appropriate if the derivatives are available
or can be inexpensively approximated and if a good starting point is known.
Moreover, they are restricted to mono-objective problems and only permit to
solve multi-objective problems by using an aggregation of the objectives with
pre-defined weights for each objective. Derivative-free algorithms [3] have been
developed for local optimization of computationally expensive functions, but
most of the time engineers are interested by a global optimum.

For these reasons, Minamo implements mono- and multi-objective Evolution-
ary Algorithms (EAs)sing real coded variables. These methods are stochastic,
population-based search techniques and widely used as efficient global opti-
mizers in the engineering world. Such zero-order optimization techniques are
indeed robust and able to cope with noisy, discontinuous, non-differentiable,
highly non-linear and uncomputable functions. Most importantly, they also
permit to simultaneously handle multiple physics as well as multiple objec-
tives. They are also less prone to getting trapped in local optima than other
optimization algorithms as gradient-based methods. Moreover, EAs provide a
list of optimal solutions from which the user/engineer can choose the best de-
sign according to his/her experience (see the two families of promising designs
obtained in Section 3). However one drawback of EAs is that they may suffer
from slow convergence due to their probabilistic nature. As a consequence,
for engineering applications involving expensive high-fidelity simulations, the
CPU time required for a pure EA is usually not practical. This highlights
the importance to reduce the number of calls to these simulations. Therefore,
the optimization process in Minamo is significantly accelerated by the use of
cheap-to-evaluate surrogate models, also known as metamodels or response
surface models.

2.1 Surrogate-Based Optimization

The heart of the proposed methodology consists of a surrogate modeling op-
timization strategy. As already underlined, SBO refers to the idea of accel-
erating optimization processes by exploiting surrogates for the objective and
constraint functions. An SBO design cycle consists of several major elements
as shown in Figure 1. It is worth underlying the major importance of the first
step, namely the problem definition and optimization specification, which can
include the parameterization, the definition of the bounds, the objectives and
the constraints. The second step consists of building an initial database by
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Fig. 1. Online surrogate-based optimization framework.

choosing a set of points in the design space and conducting high-fidelity sim-
ulations at these points. This exercise is called the Design of Experiments
(DoE) Based on this DoE, surrogate models are constructed in order to build
an analytical relationship between the design parameters and the expensive
simulation responses. This phase provides cheap responses to be used by an
optimizer. Using the surrogate models to evaluate the objective and constraint
functions, an optimization is then carried out to identify the optimum, at least
in the sense of the surrogates. The accurate simulation is used to evaluate the
objective function and constraint values for this optimum in order to check
the accuracy of the surrogates at the optimal solution. The new simulation
result (and possibly simulation results at other infill points) is (are) added
to the database which is therefore continuously improved with new design
points, leading to increasingly accurate approximate models all along the de-
sign. This design loop is repeated until the maximum number of optimization
cycles specified by the user is reached. In this contribution, an EA is employed
to optimize the surrogate model(s) because this optimizer choice allows any
kind of surrogate models without particular properties such as differentiability
of the surrogates and also permits to deal with multiple objectives. It is impor-
tant to note that our SBO scheme can incorporate the derivative information,
when it is available, in different ways without any major modifications. For
instance, the derivatives could be exploited directly in the construction of
the metamodels. The periodic retraining of the surrogates ensures that the
metamodels continue to be representative of the newly-defined search regions.
Furthermore, in order to obtain a better approximate solution, a framework
for managing surrogate models is used. Based on effectiveness of approxi-
mations, a mowve-limitprocedure adapts the range of the variables along the
design process, focusing the optimization search on smaller regions of the de-
sign space and exploiting local models. As the optimization proceeds, the idea
is to enlarge or restrict the search space in order to refine the candidate opti-
mal region. The main advantage of this is that it assures that the optimization
does not generate new points in regions where the surrogates are not valid.
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In order to guarantee diversity in the population, Minamo also exploits a
merit functionwhich is combined with the objective function of each candi-
date solution [15]. This function takes into account the average distance of
a candidate with the other candidate solutions, and favors the solutions far
away from their neighbours. A good approach for SBO seeks a balance be-
tween exploitation and exploration search, or refining the approximate model
and finding the global optimum. Our strategy also allows the addition of
several new design points evaluated in parallel at each cycle. Typically, the
design point coming from the optimization of the surrogate(s) is added and
other update points may be appended to the database as well. Using several
research criteria per iteration allows to combine exploitation (optimization of
the approximate function) and exploration (to systematically aim for a bet-
ter global capture) within a single iteration, speeding up the restitution time
of the optimization. In other words, although most of the optimizers based
on the Kriging model use one single refinement criterion per iteration (such
as the Expected Improvement criterion), Minamo is capable to proceed by
iteratively enhancing with more than one point per iteration by using a bal-
ancing between model function minimization and uncertainty minimization.
This process builds upon multiples high-fidelity simulations (e.g. CFD runs)
in parallel.

The efficiency of our SBO algorithm is illustrated in the search of the global
minimum of the Ackley function which is a well-known multimodal function.
The left plot of Figure 2 depicts the function with 2 design parameters, while
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Fig. 2. Ackley function and convergence history comparison.

the optimization has been carried out on the same function but generalized
to 5 dimensions within [—2,2] for every parameter. The optimization is first
performed using the EA alone, with a population of 50 individuals for 40
generations (i.e. 2000 function evaluations). These results are compared with
those obtained by the method combining the surrogate model with the EA.
An initial database comprising 20 sample points is used and then only 100
design iterations are performed. The convergence histories are displayed in
the right plot of Figure 2. The results clearly indicate that, for a given fixed
number of actual function evaluations, the SBO approach drastically outper-
forms a pure EA optimization using actual function evaluations.

In Minamo, particular attention has been paid to handling simulation fail-
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ures i.e. experiments where the simulation fails to converge. Indeed, when
optimization is carried out using high-fidelity simulations, it is an inevitable
fact that not all simulations provide reliable results (due to an inappropriate
mesh, failed geometry regeneration, etc.). The best practice is to try to make
the simulation chain as robust as possible, and let the optimizer take care
of the simulation failures. In Minamo, the simulation failures are recorded
for every sample point through a boolean response, called the success/failure
flag. Two separate surrogate models are maintained simultaneously, namely
the response model(s) (used for the evaluation of objective and constraint
functions) and the failure prediction model (used for the evaluation of the
simulation failure). The idea is to bias the search away from failed sample
points by penalizing, via a constraint, regions containing simulation failures.

2.2 Design of Experiments

The design of experiments is the sampling plan in the design parameter space.
This is a crucial ingredient of the SBO procedure, especially when the function
evaluations are expensive, because it must concentrate as much information
as possible. The qualities of surrogate models are mainly related to the good
choice of the initial sample points. The challenge is in the definition of an ex-
periment set that will maximize the ratio of the model accuracy to the number
of experiments, as the latter is severely limited by the computational cost of
each sample point evaluation. Minamo features various DoE techniques aim-
ing at efficient and systematic analysis of the design space. Besides classical
space-filling techniques, such as Latin Hypercube Sampling (LHS), Minamo’s
DoE module also offers Centroidal Voronoi Tessellations (CVT) and Latinized
CVT (LCVT) [14]. A drawback of LHS is that sample points could cluster
together due to the random process by which the points are generated. CVT
efficiently produces a highly uniform distribution of sample points over large
dimensional parameter spaces. However, a CVT dataset (in a hypercube) has
the tendency for the projections of the sample points to cluster together in
any coordinate axis. LCV'T technique tries to achieve good dispersion in two
opposite senses: LHS and CVT senses. The idea is to compute a CVT dataset
and then apply a Latinization on this set of points. Latinizing a set of points
means transforming it into another set of neighbouring points that fulfills the
Latin hypercube property. The aim of this Latinization of CVT sample points
is to improve the discrepancy of the set of points. LCVT technique has both
lower discrepancy than pure CVT and higher volumetric uniformity than pure
LHS (see Figure 3). The discrepancyis a measure of a point set’s uniformity of
projection onto all the coordinate axes. As uniformity increases, discrepancy
decreases. All these space-filling techniques, independent of the design space
dimensionality and of the type of surrogates, constitute good first choices to
generate an a priori sample set in large dimensions. The DoE can be gener-
ated quickly by making use of massively parallel computers.

Since the computation of the response functions can typically take several
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Fig. 3. LHS, CVT and LCVT, respectively, sample sets showing discrepancies of
point projections (in red) onto coordinate axes.

hours on tens of computational cores, next to LCVT implementation, further
research effort has been put to achieve a good accuracy of approximate models
with a reasonable number of samples by incorporating function knowledge. In
order to further tailor the sampling and to better capture the responses under-
lying physics, Minamo exhibits an auto-adaptive DoFE technique. The idea is to
locally increase the sampling intensity where it is required, depending on the
response values observed at previous sample points. Such auto-adaptive tech-
niques are also known as capture/recapture sampling or a posteriori sequential
sampling (see [8, 9]). They incorporate information on the true function in
sample distribution, explaining the term a posteriori. The aim is to auto-
matically explore the design space while simultaneously fitting a metamodel,
using predictive uncertainty to guide subsequent experiments. Our method
consists in iteratively refining the sample dataset where the model exhibits
its maximum of error, with the error indicator provided by a Leave-One-Out
(LOO) procedure [10]. The use of adaptive sampling helps shorten the time
required for the construction of a surrogate model of satisfactory quality. Fig-
ure 4 shows the performance of this sampling technique on a mathematical
function with 2 design parameters. It allows to directly and correctly identi-
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Fig. 4. The exact function, the model built using 60 LHS points and the one with
60 points generated by auto-adaptive LCVT sampling technique, respectively.

fied the region of the global optimum, whereas, using the same type of model
and the same number of samples from LHS, the optimum is misplaced and
the optimization will therefore be stuck in a local optimum of the original
function.
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2.3 Surrogate Modeling

The challenge of the surrogate modeling is similar to that of the DoE: the gen-
eration of a surrogate that is as good as possible, using as few expensive evalu-
ations as possible. Polynomial fitting surfaces are generally not well-suited for
high dimensional and highly multimodal problems. Several non-linear data-
fitting modeling techniques can be used to build the surrogates, e.g. artificial
neural networks, Radial Basis Functions (RBF) networks, Kriging or sup-
port vector machines [2]. Contrary to polynomial models, these techniques
have the advantage of decoupling the number of free parameters with respect
to the number of design parameters. Furthermore, they can describe com-
plex and multimodal landscapes. The Minamo surrogate module offers several
generic interpolators such as RBFetworks, ordinary and universal Kriging. In
the training process, a trade-off must be attained between the accuracy of the
surrogates and their computational cost. For our RBF network, the models
are generated without the user’s prescription of the type of basis function and
model parameter values. Our method autonomously chooses the type of basis
functions (between Gaussian or multiquadric) and adjusts the width param-
eter of each basis function in order to obtain an accurate surrogate model.
RBF implementation is built on the efficient LOO procedure proposed by
Rippa [13], while for our Kriging implementation, the parameters defining the
model are estimated by solving the log-likelihood estimation problem using
our EA as this problem is known to be multimodal.

3 Sample Turbomachinery Design Application

he performance of Minamo is demonstrated with the multi-point aerodynamic
optimization of a non axisymmetric hub for a high pressure compressor single-
row rotor blade. This work has been performed within the NEWAC project
(NEW Aero engine Core concepts, project co-funded by the European Com-
mission within the Sixth Framework Program for Research and Technological
Development), aimed at technological breakthroughs for the field of aero en-
gines efficiency and emissions. The objective was to identify the hub endwall
parameter values that create a non axisymmetric hub endwall leading to sig-
nificant global losses reduction with respect to the axisymmetric case at design
point, while preserving the total-to-total pressure ratio close to stall.

Computer-Aided Design (CAD)systems have become an entire and critical
part of the design process in many engineering fields. Therefore, it is of prime
importance to exploit the native CAD system and CAD model directly within
the design loop in order to avoid translation, manipulation/regeneration errors
resulting from different geometry kernels. For the works presented in [6, 7],
the CAPRI CAD integration middleware [5] has been exploited to provide
direct CAD access without manual interventions in the CAD system during
the optimization loops. Based on CAPRI, an object-oriented framework has
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been developed for Minamo to: interact with the underlying CAD system
transparently, modify the shape design variables, regenerate the CAD model
and provide an updated native geometry representation to be used for the
analyses.

The non axisymmetric hub surface has been parameterized under CATIA V5
and imported into the AutoGrid5 mesh generation tool for meshing purposes.
The flow computations have been performed with 3D Reynolds-Averaged
Navier-Stokes simulations using the elsA code developed at ONERA [1]. These
tools have then been coupled with Minamo. Most importantly, this optimiza-
tion chain can be easily applied to any blade/endwall geometry with only
minor adjustments. The hub endwall has been parameterized with 16 design
parameters, that can create circumferential 3D bumps and hollows that follow
the blade curvature. The 2.2 million grid points mesh deformation at the hub
is illustrated in Figure 5. Reference [6] has focused on the description of the
optimization chain and methodology that have been set up, with presentation
of the mono-point optimization results. Indeed, before the multi-point opti-
mization was conducted, only one operating point was considered in order to
gain first experience with limited computational cost and let the optimizer as
free as possible to explore the search space. The objective was to maximize
the isentropic efficiency of the compressor while imposing no additional op-
erational or manufacturing constraints. The initial DoE was performed with
LHS and held 97 sample points among which 74 experiments were considered
as a success (/~ 4.5 times the number of parameters). The type of surrogate
models used was RBF network. This first optimization allowed indentifica-
tion of a non axisymmetric surface yielding an isentropic efficiency gain of
about 0.4%. This increase may be seen as quite important, when considering
that the geometry changes very locally, only at the hub endwall. However,
the total-to-total pressure ratio decreased by 0.4%. This highlights one of the
main drawbacks of the mono-point optimization that lead to the specification
of a second robust optimization [7], now considering two operating points. The
first operating point was again chosen close to peak efficiency (design point)
and the second point was chosen closer to the stall region (stall point), in order
to better represent the performance map of the compressor. The objective was
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to maximize the efficiency at the design point while preserving at least the
same total-to-total pressure ratio at the stall point. The mass flow at design
point was also constrained to remain within 0.5% of the reference axisymmet-
ric flow value and some manufacturing constraints were also imposed (limited
digging /removal of material). The number of success experiments for the DoE
was 71 over the 97 experiments. The most interesting sample of this new DoE
appeared to be the hereafter noted individual 13, which yielded an increase in
terms of isentropic efficiency of about 0.39% with respect to the axisymmetric
case, while it increased the total-to-total pressure ratio by 0.31% at stall with-
out exceeding the limit on the mass flow at design point. A series of promising
individuals were then found along the optimization phase in itself. Some of
them were quite close in terms of performance and shape to the best DoE ex-
periment. However, most interestingly, a second family of promising designs,
quite different and somewhat smoother in terms of 3D surface definition, was
found. This illustrates the ability of the EA to globally search the space and
possibly offer a panel of solutions to the designer. Let us point out one design
in this second family, individual 144, which yields an increase of efficiency of
0.35% with respect to the reference axisymmetric case, while increasing the
total-to-total pressure ratio by 0.1% at stall without exceeding the limit on the
mass flow at design point and satisfying the manufacturing constraints (this
was not the case of individual 13). Interestingly also, individual 134 appeared
quite close in shape to the interesting designs found from the mono-point op-
timization. The isentropic efficiency curves of the rotor with the optimized
non axisymmetric hub endwalls and with the baseline axisymmetric hub are
shown in Figure 6 for the two-point optimization results. The pressure con-
tours on the blade suction side are displayed in Figure 7 and indicate that
the main loss mechanism results from the shock and acceleration system along
the blade suction side. The different non-axisymmetric endwall geometries de-

Fig. 7. Pressure contours on the blade suction side at design point for the two-point
optimization - Non axisymmetric individuals 13, 134, 144 and axisymmetric case 0.

creased the losses until 50% of the blade span in the region just downstream
the blade trailing edge at the hub compared to the reference axisymmetric
hub geometry. The optimized designs decreased the losses downstream the
shock, during the flow acceleration between 10 and 50% span.
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4 Conclusion

This paper has presented our in-house optimization platform, Minamo, imple-
menting an SBO scheme. Its capabilities have been demonstrated in a truly in-
dustrial framework with an aerodynamic design optimization. With Minamo,
multi-physics multi-criteria designs tackling over a hundred parameters within
a heavily constrained setting are successfully handled on a day-to-day basis.
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