
Application of Learning Automata for
Stochastic Online Scheduling

Yailen Martinez1,2, Bert Van Vreckem1∗, David Catteeuw1, and Ann Nowe1

1 Computational Modeling Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050
Brussels, Belgium {ymartine,bvvrecke,dcatteeu,ann.nowe}@vub.ac.be

2 Central University of Las Villas, Santa Clara, Cuba, yailenm@uclv.edu.cu

Summary. We look at a stochastic online scheduling problem where exact job-
lenghts are unknown and jobs arrive over time. Heuristics exist which perform very
well, but do not extend to multi-stage problems where all jobs must be processed
by a sequence of machines.

We apply Learning Automata (LA), a Reinforcement Learning technique, suc-
cessfully to such a multi-stage scheduling setting. We use a Learning Automaton
at each decision point in the production chain. Each Learning Automaton has a
probability distribution over the machines it can chose. The difference with simple
randomization algorithms is the update rule used by the LA. Whenever a job is
finished, the LA are notified and update their probability distribution: if the job
was finished faster than expected the probability for selecting the same action is
increased, otherwise it is decreased.

Due to this adaptation, LA can learn processing capacities of the machines, or
more correctly: the entire downstream production chain.

1 Introduction

Multi-stage scheduling over parallel machines

Batch chemical plants usually consist of a series of one or more processing
stages with parallel processing units at each stage. A new trend in production
processes is to operate flexible, adaptive multi-purpose plants. We look at an
application based on the chemical production plant of Castillo and Roberts [1,
2]. It is a two-stage process with four times two parallel machines, see Figure 1.

Each order (created at P1 and P2) must be handled first by a ‘stage-1’
machine M1− and afterwards by a ‘stage-2’ machine M2−. At each stage, a
scheduler must choose between two parallel machines. Parallel machines can
handle the same type of tasks, but may differ in speed. The possible choice in

∗ This research is partially funded by the IWT-SBO Project (DiCoMAS) “Dis-
tributed Collaboration using Multi-Agent System Architectures”

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,
DOI 10.1007/978-3-642-12598-0_43, © Springer-Verlag Berlin Heidelberg 2010

492 Yailen Martinez, Bert Van Vreckem, David Catteeuw, and Ann Nowe

parallel machines is depicted by the arrows in the figure. All machines have a
FIFO-queue and execute jobs non-preemptively.

Stochastic online scheduling

The length of the jobs varies according to an exponential distribution. Only
the average joblength is known by the schedulers. Also, the machines’ speeds
are unknown. Even the expected processing time of the jobs is unknown.
However, when a job is finished, the scheduler has access to its exact processing
time.

Moreover, it is not known in advance when a new order will arrive. I.e.
we have an online scheduling problem. In an offline problem, all product
orders are known in advance. An optimal algorithm will find the best feasible
schedule if time and memory restrictions allow it to be computed. In an online
scheduling problem, an algorithm has to make decisions based on the history
(i.e. information of already released or finished jobs) and the current product
request. It is obvious this makes for a more challenging problem. Moreover,
no algorithm can find the optimal schedule for all possible input sequences.

Approaches

This problem is particulary hard since it is stochastic, online and multi-stage
at the same time.

There exist heuristics for online stochastic scheduling in the single-stage
scenario. But these cannot be easily mapped to a multi-stage problem, in
this case we do not only need the information about the immediate available
machines, but also the information about the machines of the coming stages
and this, of course, increases the complexity. In Section 3 we discuss one such
heuristic.

In the next section, we introduce Reinforcement Learning and Learning
Automata. We propose to apply these techniques for difficult scheduling prob-
lems such as the one described above. Later, we will compare Learning Au-
tomata to the heuristic of Section 3 in an easy setting.

Fig. 1. A two-stage chemical production plant. For both product types P1 and P2,
there are two parallel machines at the first stage. At the second stage of the process,
there are also two parallel machines.

Application of Learning Automata for Stochastic Online Scheduling 493

2 Reinforcement Learning

Reinforcement Learning (RL), as noted by Kaelbling, Littman and Moore
in [4], dates back to the early days of cybernetics and work in statistics,
psychology, neuroscience, and computer science. It has attracted increasing
interest in the machine learning and artificial intelligence communities during
the past fifteen years.

RL is learning what to do in which situation to maximize a numerical re-
ward signal. The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield the most re-
ward by trial-and-error. In the most interesting and challenging cases, actions
may affect not only the immediate reward but also the next situation and,
through that, all subsequent rewards. These two characteristics, trial-and-
error search and delayed reward, are the two most important distinguishing
features of RL [3].

In the standard RL paradigm, an agent is connected to its environment via
perception and action, as depicted in Figure 2. In each step of interaction, the
agent senses the current state s of its environment, and then selects an action
a which may change this state. The action generates a reinforcement signal
r, which is received by the agent. The task of the agent is to learn a policy
for choosing actions in each state to receive the maximal long-run cumulative
reward.

One of the challenges that arise in RL is the trade-off between exploration
and exploitation. To obtain a high reward, an RL agent must prefer actions
that it has tried in the past and found to be effective in producing reward.
But to discover such actions, it has to try actions that it has not selected
before. The agent has to exploit what it already knows in order to obtain
reward, but it also has to explore in order to make better action selections in
the future. The dilemma is that neither exploration nor exploitation can be
pursued exclusively without failing at the task. The agent must try a variety
of actions and progressively favor those that appear to be best.

In many cases the environment is stochastic. This means, (i) rewards are
drawn from a probability distribution and (ii) for each current state s and the
chosen action a there is a probability distribution for the transition to any
other state. As long as the environment is stationary (i.e. the transition and
reward probabilities do not change over time) RL agents can learn an optimal
policy. This was e.g. proven for the well-known Q-Learning algorithm [5].

In the next section we look at a particular RL method: Learning Automata.

2.1 Learning Automata

Learning Automata (LA) [6] keep track of a probability distribution over their
actions.3 At each timestep an LA selects one of its actions according to its
3 Here we look only at ‘Linear Reward’ LA, there are many more described in

literature [6], but this is probably the most widely used.

494 Yailen Martinez, Bert Van Vreckem, David Catteeuw, and Ann Nowe

Fig. 2. The RL Paradigm: an agent repeatedly perceives the state of the environ-
ment and takes action. After each action the agent receives a reinforcement signal.
The goal of the agent is to collect as much reward as possible over time.

probability distribution. After taking the chosen action i, its probability pi is
updated based on the reward r ∈ {0, 1}, see Equation 1, first line. The other
probabilities pj (for all actions j 6= i) are adjusted in a way that keeps the
sum of all probabilities equal to 1 (

∑
i pi = 1), see Equation 1, second line.

This algorithm is based on the simple idea that whenever the selected action
results in a favorable response, the action probability is increased; otherwise
it is decreased.

pi ← pi + αr(1− pi)− β(1− r)pi ,

pj ← pj − αrpj + β(1− r)
(

1
n−1 − pj

)
, ∀j 6= i.

(1)

The parameters α and β (α, β ∈ [0, 1]) are the reward and penalty learning
rate. In literature, three common update schemes are defined based on the
values of α and β:

Linear Reward-Inaction (LR−I) for β = 0,
Linear Reward-Penalty (LR−P) for α = β,
Linear Reward-ε-Penalty (LR−εP) for β � α.

2.2 Application to Scheduling

To apply LA to a scheduling problem we need to define the actions of all
agents, the rewards and the problem’s state space. We define an action of the
LA as submitting a job to one of the parallel machines. Thus, for the problem
described in Section 1 we have 6 agents: two receive product orders P1 and
P2 and decide which ‘stage-1’ machine will be used. The other four agents
receive partially processed jobs from a ‘stage-1’ machine M1− and send them
to a ‘stage-2’ machine M2−. Note, the agent cannot wait to submit a job and

•
•
•

Application of Learning Automata for Stochastic Online Scheduling 495

cannot stop a job preemptively. In other settings these could be added as
extra actions.

When a job j is completely finished, the two agents that decided the path
of that job are notified of this. Based on the completion time Cj and the release
times Rj for both stages a reward r ∈ {0, 1} is created, see Equation 2. Note,
(i) completion time is the time at which the job has finished both stage 1 and
stage 2, and (ii) release times are the times at which the job starts stage 1 or
stage 2 depending on the agent.

r =

{
0 if T > Tavg ,

1 otherwise,
(2)

where the flowtime T = Cj − Rj and Tavg is the average flowtime over the
last n number of jobs. The larger n is the more accurate the LA’s belief of
the average flowtime of the jobs. The smaller n the faster the LA will adapt
his belief of the average flowtime when for example a machine breaks down
or the performance of a machine increases.

For this problem, it is unnecessary to define a state-space. From the agents’
point of view the system is always in the same state.

3 WSEPT Heuristic for Stochastic Online Scheduling

We do not know of any good approximation algorithm for scheduling problems
that are online, stochastic and multi-stage at the same time. For the single-
stage case, however, there exists a very good heuristic: Weighted Shortest
Expected Processing Time (WSEPT) [7].

It works in the following setup: orders are arriving over time and must
be processed by one out of several parallel machines. The objective is to
reduce the total weighted completion time (

∑
j wjCj , for all jobs j). Each

time an order arrives, the WSEPT rule submits the job to the machine that
is expected to finish it first. To this end it polls each machine for its current
expected makespan (including the new job). If, for example, all jobs have equal
expected processing time, and each machine the same average speed, then the
expected makespan is the queuelength (including the currently processed job
if any). In [7] lower bounds on the total weighted completion time (

∑
j wjCj)

are given for the WSEPT heuristic.
In the next section we will compare the WSEPT and the Learning Au-

tomata in a simple single-stage scheduling task.

4 Experimental Results

4.1 WSEPT Heuristic versus Learning Automata

We ran some experiments on single-stage scheduling with N = 4, 5 or 6 iden-
tical machines. One scheduler receives a sequence of jobs. The joblengths are

496 Yailen Martinez, Bert Van Vreckem, David Catteeuw, and Ann Nowe

generated by an exponential distribution with average µ = 100. The identical
machines have unit processing speed si = 1, for i = 1, . . . , N . I.e. a machine
needs 100 timesteps to process an average job.

To make sure the system can actually handle the load, we set the proba-
bility of creating a job at any timestep to 95% of the total processing speed
divided by the average job length: 0.95

∑
i si/µ. To keep things easy, all jobs

have unit weight wj = 1.
We tested the following agents on the same sequence of orders:

RND: uniformly distributes the jobs over all machines,
WSEPT: uses the WSEPT heuristic as described in Section 3,
LA: a Learning Automaton as described in Section 2.1 with α = β = 0.02.

Results

The experiments show that the LA clearly performs better than the RND
scheduler. This is not at all to be expected. The optimal (but static) distri-
bution of jobs of equal expected processing length on identical machines is
the uniform distribution. Which is exactly what RND uses. However, due to
the high variance in processing times, adapting the load distribution is more
efficient at keeping the queues short.

Obviously, WSEPT outperforms LA. Note, the heuristic uses information
which both LA and RND cannot access. The length of the queues over time
show that WSEPT balances the load better: queues are 4 to 5 times shorter.
On the other hand, the total weighted completion time (

∑
j wjCj) does not

show huge differences between WSEPT and LA (in the order of 0.001 to 0.01).
Although the WSEPT heuristic outperforms the Reinforcement Learning

approach, the LA are not useless. WSEPT requires access to more information
and only works in single-stage loadbalancing problems. In the next section,
we test LA in the multi-stage setting as described in Section 1.

4.2 Multi-Stage Scheduling

We look at two slightly different settings, see Table 1. Setting 1 is copied
from [2]. In both cases, the average joblength is 100 and the jobrate is 1/45
for both product types P1 and P2. The performance is measured by total
flowtime of the jobs through entire processing chain.

The first type of LA we test are Linear Reward-Inaction LA (LR−I). After
some time, the queues started growing indefinitely. This was caused by some
automata converging prematurely to a pure strategy. I.e. they end up selecting
the same action forever. This is due to the fact that LR−I never penalize bad
actions (β = 0). Although this may be favorable for many RL problems, it
will almost never be for load-balancing. The only obvious exception is when
one machine is able to process all jobs before any new order arrives.

Application of Learning Automata for Stochastic Online Scheduling 497

The LR−εP generated better and better results when ε is increased. Finally,
when ε = 1 we have LR−P , where penalty and reward have an equally large
influence on the probabilities. This gives the best results.

The value of α and β, which determines the learning speed, seems best
around 0.01 for this problem. Table 2 shows the average policy for each of the
six agents. For example, the fourth agent receives jobs partially finished by
machine M13 and distributes them over M23 and M24.

The second setting shows that the agents take into account the time needed
for a job to go through all stages. Machines M13 and M14 are 10 times faster
as in the first setting. This does not increase the total system capacity, since
the machines in the second stage would create a bottleneck. The result is that
the first two agents still favor M11 and M12, but slightly less. For example,
the first agent in Table 2 distributes 71% of the load on M11 in the second
setting, as opposed to 74% in the first setting.

Table 1. Processing speeds of all machines for two different settings.

Machine M11 M12 M13 M14 M21 M22 M23 M24

Speed setting 1 3.33 2 1 1 3.33 1 1 1
Speed setting 2 3.33 2 10 10 3.33 1 1 1

Table 2. Average probabilities of all agents through an entire simulation.

Machine M11 M13 M12 M14 M21 M22 M23 M24 M21 M22 M23 M24

Setting 1 .74 .26 .69 .31 .76 .24 .50 .50 .77 .23 .50 .50
Setting 2 .71 .29 .61 .39 .77 .23 .50 .50 .78 .22 .50 .50

5 Discussion

Following advantages of LA make them very applicable in difficult scheduling
scenarios:

They can cope with uncertainty: unknown joblengths, unknown future jobs
and unknown machine speeds.
The decisions based on the probability distribution and the updates of
those distribution are very straightforward. They can be performed in a
minimum of time and require only very limited resources.

The performed experiments show that LA can learn processing capaci-
ties of entire downstream chains. Note however that the rewards are delayed.

•

•

498 Yailen Martinez, Bert Van Vreckem, David Catteeuw, and Ann Nowe

While waiting for a submitted job to be finished, other jobs must already be
scheduled. In our scheduling problem, this is not a problem for the LA. When
more stages would be added to the system, the LA could be equipped with
so-called eligibility traces [3].

Since LA are very adaptive, it should even be possible to detect changes
in processing speed, such as machine break downs.

Finally, when applying any randomization technique (such as LA) to bal-
ance a load, one is always better off with many short jobs than very few long
ones (cf. the law of large numbers). It remains to be seen how large the effect
of fewer but longer jobs will be in our setting.

References

1. Castillo I, Roberts CA (2001) Real-time control/scheduling for multi-purpose
batch plants. Computers & Industrial Engineering,

2. Peeters M (2008) Solving Multi-Agent Sequential Decision Problems Using
Learning Automata. PhD Thesis, Vrije Universiteit Brussel, Belgium.

3. Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA.

4. Kaelbling LP, Littman M, Moore A (1996) Reinforcement Learning: a survey.
Journal of Artificial Intelligence Research 4: 237-285.

5. Watkins C, Dayan P (1992) Technical note Q-Learning. Machine Learning.
Springer Netherlands 8: 279-292.

6. Narendra KS, Thathachar MAL (1974) Learning automata - A survey. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-4(4): 323-334.

7. Megow N, Uetz M, and Vredeveld T (2006) Models and algorithms for stochastic
online scheduling. Mathematics of Operations Research, 31(3): 513-525.

	Application of Learning Automata for Stochastic Online Scheduling
	1 Introduction
	2 Reinforcement Learning
	2.1 Learning Automata
	2.2 Application to Scheduling

	3 WSEPT Heuristic for Stochastic Online Scheduling
	4 Experimental Results
	4.1 WSEPT Heuristic versus Learning Automata
	4.2 Multi-Stage Scheduling

	5 Discussion
	References

