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Summary. A second order variational model is tested to extract texture from an
image. An existence result is given. A fixed point algorithm is proposed to solve the
discretized problem. Some numerical experiments are done for two images.

Variational models in image processing have been extensively studied during
the past decade. They are used for segmentation processes (geodesic or geo-
metric contours), restoration and textures extraction purpose as well. Roughly
speaking image restoration problems are severely ill posed and a Tikhonov-
like regularization is needed. The general form of such models consists in the
mimization of an “energy” functional :

F(u) = ‖u− ud‖X +R(u) , u ∈ Y ⊂ X ,

where X, Y are (real) Banach spaces, R is a regularization operator, ud is
the observed (or measured) image and u is the image to recover. Here, we
are interested in textures extraction and/or image denoising. Recent works
were based on the assumption that an image can be decomposed in many
components, each component describing a particular property of the image
(see [6, 12, 14] for example). We follow this idea and assume that the image
f we want to recover from the data ud can be decomposed as f = u + v
where u and v are functions that belong to different functional spaces: u is
the “texture” part which involves (periodic or not) details (and noise as well)
while v is a more regular part (usually called the “cartoon” component).

In a first section, we present the functional framework, introducing the
BV 2 space, and the general variational model we consider. In section 2, we
focus on numerical implementation and present the discretization process.
Numerical tests are reported in the last section.
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1 Functional framework and model

1.1 The BV 2(Ω) space

Let Ω be an open bounded subset of Rn, n ≥ 2 (practically n = 2). Following
Demengel [9], we define the space of Hessian bounded functions that we call
BV 2(Ω). We recall that the space BV (Ω) of bounded variation functions (see
[2, 4, 3]) is defined as

BV (Ω) = {u ∈ L1(Ω) | Φ(u) < +∞},

where

Φ(u) = sup
{∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1c (Ω), ‖ξ‖∞ ≤ 1
}
. (1)

The space BV (Ω), endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + Φ(u), is
a Banach space. The derivative in the sense of the distributions of every
u ∈ BV (Ω) is a bounded Radon measure, denoted Du, and Φ(u) =

∫
Ω
|Du| is

the total variation of Du. We extend this definition to the second derivative
(in the distributional sense). Recall that the Sobolev space

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) }

where ∇u stands for the first order derivative of u (in the sense of distribu-
tions).

Definition 1. A function u ∈W 1,1(Ω) is Hessian bounded if

|u|BV 2(Ω) := sup
{∫

Ω

〈∇u, div(φ)〉Rn | φ ∈ C2c (Ω,Rn×n), ‖φ‖∞ ≤ 1
}
<∞,

where
div(φ) = (div(φ1), div(φ2), . . . , div(φn)),

with

∀i, φi = (φ1
i , φ

2
i , . . . , φ

n
i ) ∈ Rn and div(φi) =

n∑
k=1

∂φk
i

∂xk
.

For more information on the BV 2(Ω) space, see [9, 13].

1.2 The variational model

We now assume that the image we want to recover from the data ud can
be written as f = u + v where u is in BV (Ω) and v is in BV 2(Ω). Such
decompositions have already been performed [5, 6, 4] using the “Meyer” space
of oscillating function [10] instead of BV 2(Ω). So far, the model we propose
is not the same: the oscillating component will be included in the non regular
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part u while v involves the cartoon and the contours. We consider the following
function defined on BV (Ω)×BV 2(Ω) :

F (u, v) =
1
2
‖ud − u− v‖2L2(Ω) +λ|u|BV (Ω) +µ|v|BV 2(Ω) +δ‖∇v‖W 1,1(Ω), (2)

where λ, µ, δ ≥ 0 are weigths. We are looking for a solution to the optimisation
problem

inf
(u,v)∈BV (Ω)×BV 2(Ω)

F (u, v) (P)

The first term ‖ud − u− v‖2L2(Ω) of F is the fitting data term. Other terms are
Tychonov-like regularization terms. Note that the δ-term is not useful from
the modelling point of view. It is only a tool that allows to prove existence of
solutions. We shall choose δ = 0 for numerical tests.

If the image is noisy, the noise is considered as a texture and will be
included in u: more precisely v will be the part of the image without the
oscillating component, that is the denoised part. In a previous work, [7], we
focused on the denoising process taking only v into account (and assuming
that u = 0 so that ud−v is the noise). We now give an existence and uniqueness
result for the general problem (P) (see [7] for the proof).

Theorem 1. Assume that λ > 0, µ > 0 and δ > 0. Problem (P) has a unique
solution (u, v).

2 Numerical implementation

2.1 Discretization of the problem

We assume for simplicity that the image is square with size N×N . We denote
X := RN×N ' RN2

endowed with the usual inner product and the associated
euclidean norm

〈u, v〉X :=
∑

1≤i,j≤N

ui,jvi,j , ‖u‖X :=
√ ∑

1≤i,j≤N

u2
i,j . (3)

It is classical to define the discrete total variation as follows (see for example
[4]) : the discrete gradient of the numerical image u ∈ X is ∇u ∈ X2 defined
by

(∇u)i,j =
(
(∇u)1i,j , (∇u)

2
i,j

)
, (4)

where

(∇u)1i,j =
{
ui+1,j − ui,j if i < N
0 if i = N,

and (∇u)2i,j =
{
ui,j+1 − ui,j if j < N
0 if j = N.

The (discrete) total variation |u|BV (Ω) is given by
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J1(u) =
∑

1≤i,j≤N

∥∥∥(∇u)i,j

∥∥∥
R2
, (5)

where∥∥∥(∇u)i,j

∥∥∥
R2

=
∥∥∥((∇u)1i,j , (∇u)2i,j)∥∥∥R2

=

√(
(∇u)1i,j

)2

+
(
(∇u)2i,j

)2

.

The discrete divergence operator div is the adjoint operator of the gradient
operator ∇ :

∀(p, u) ∈ X2 ×X, 〈−div p, u〉X = 〈p,∇u〉X2 ,

so that

(div p)i,j =


p1

i,j − p1
i−1,j if 1 < i < N

p1
i,j if i = 1
−p1

i−1,j if i = N
+


p1

i,j − p2
i,j−1 if 1 < j < N

p2
i,j if j = 1
−p1

i,j−1 if i = N.
(6)

To define a discrete version of the second order total variation we have to
introduce the discrete Hessian operator. As for the gradient operator, we define
it by finite differences. So, for any v ∈ X, the Hessian matrix of v, denoted
Hv is identified to a X4 vector:

(Hv)i,j =
(
(Hv)11i,j , (Hv)

12
i,j , (Hv)

21
i,j , (Hv)

22
i,j

)
.

The discrete second order total variation |v|BV 2(Ω) of v is defined as

J2(v) =
∑

1≤i,j≤N

‖(Hv)i,j‖R4 . (7)

As in the BV case, we may compute the adjoint operator of H (which is the
discretized “second divergence” operator) :

∀p ∈ X4, ∀v ∈ X 〈H∗p, v〉X = 〈p,Hv〉X4 . (8)

and we deduce a numerical expression for H∗ from the equality (8). The
discretized problem stands

inf
(u,v)∈X2

1
2
‖ud − u− v‖2X + λJ1(u) + µJ2(v) + δ(|v|+ J1(v)), (Pd)

where
|v| :=

∑
1≤i,j≤N

|vi,j | .

In the finite dimensional case we still have an existence result.

Theorem 2. Problem Pd has a unique solution for every λ > 0, µ > 0 and
δ > 0 .
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For numerical purpose we shall set δ = 0. In fact, we have performed tests
with δ = 0 and very small δ 6= 0 (as required by the theory to get a solu-
tion to problem Pd) and results where identical. So, to simplify numerical
implementation, we consider the following discretized problem :

inf
(u,v)∈X2

1
2
‖ud − u− v‖2X + λJ1(u) + µJ2(v). (P̃d)

2.2 Algorithm

Using non smooth analysis tools (for convex functions) it is easy to derive
(necessary and sufficient) optimality conditions. More precisely (u, v) is a so-
lution of (P̃d) if and only if0 ∈ ∂

(
λJ1(u) + 1

2‖ud − u− v‖2
)

0 ∈ ∂
(
µJ2(v) + 1

2‖ud − u− v‖2
)
,

(9)

where ∂J is the classical subdifferential of J . Using subdifferential properties,
we see that (9) is equivalent to{

u = ud − v −ΠλK1 (ud − v)
v = ud − u−ΠµK2 (ud − u) .

(10)

where K1 and K2 are closed convex sets. Chambolle [8] proved that

K1 = {div p | p ∈ X2, ‖pi,j‖R2 ≤ 1 ∀i, j = 1, . . . , N} (11)

in the BV (Ω) setting and we may prove similarly that

K2 = {H∗p | p ∈ X4, ‖pi,j‖R4 ≤ 1, ∀i, j = 1, . . . , N}, (12)

(see [7]). Moreover, Chambolle [8] proposed a fixed point algorithm to compute
ΠλK1 and we are able to extend this result to the second order case.

p0 = 0 (13a)

pn+1
i,j =

pn
i,j − τ(H[H∗pn − ud/λ])i,j

1 + τ‖(H[H∗pn − ud/λ])i,j‖R4

. (13b)

which convergence is proved in [7] :

Theorem 3. Let τ ≤ 1/64. Then λ (H∗pn)n converges to ΠλK2(ud).

So, we propose the following algorithm :
• Step 1 : We choose u0 et v0 (for example, u0 = 0 et v0 = ud) and
0 < α < 1.
• Step 2 : define the sequences ((un, vn))n as follows:
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un+1 = un + α (ud − vn −ΠλK1 (ud − vn)− un)
vn+1 = vn + α (ud − un −ΠµK2 (ud − un)− vn) .

• Step 3 : if a stopping criterion is not satisfied, set k := k+ 1 and go back
to 2.

We can show that the algorithm converges for α ∈]0, 1/2[. In practice, we
observed that the convergence is faster for α = 0.6.

3 Numerical tests and comments

We test the model on two images: The first one is a synthetic image where
texture has been artificially added, and the second one is the well known
“Barbara” benchmark, often used in texture extraction.

(a) (b)

Fig. 1. Original images.

We perform many tests with respect to the different parameters. We only
present here the most significant : α = 0.6, λ = 0.5 and µ = 100. Let us first
report on the iterations number effect with image (a).

If we are only interested in the texture part, we can observe in fig 2 that we
get back all the textures. Unfortunately, most of the geometrical information
(that we don’t want) is also kept, and we observe that the involved geometric
part is getting more important as the iteration number is growing.
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Fig. 2. Number of iterations: first line: 60; second line: 200; third line: 2000.

We see in fig 3 that we can choose a large number of iterations for the texture
extraction of image (b) because of its inner structure.
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On the other hand, we have to limit this number for the image (a). We give
an example image (b) with a very large iterations number.

Fig. 3. Number of iterations: 2000.

In addition, we see that too many geometrical information remains together
with the texture in the oscillating part: this is a bad point. Nevertheless, our
main goal is to locate the texture and we don’t need to work with the cartoon
part anymore once it has been identified. We do not need to recover all the
texture but only a significant part to identify it. In that case, we propose
a method that permits to improve the results significantly: we modify the
Hessian operator to make it anisotropic. More precisely, we reinforce chosen
directions. As texture is made of oscillating information, we hope that we
shall keep most of it while many contour lines disappear. We specially act
on the vertical and horizontal components of the hessian operator. To deal
with non vertical and horizontal lines, we just have to let the image rotate.
In the following test, we have replaced the Hessian operator by the operator
H ′ defined for all v ∈ X4 by :

∀(i, j) ∈ {1, ..., N}2, (H ′v)i,j =
(
0, (Hv)12i,j , (Hv)

21
i,j , 0

)
.

We can see on fig 4 that we keep most of the texture without geometrical
information. Of course, this method is only efficient on contour lines which are
beelines, and permits to deal with only two directions which are necessarily
perpendicular. We will propose, in a forthcoming work, a local method to
eliminate contour lines in every directions.
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Fig. 4. Test with the anisotropic operator H ′. Number of iterations: first line: 60;
second line: 2000.

4 Conclusion

The model permits to extract texture from an image, but the texture part
still contains too much geometric information. Thus, to recover what we are
interested in, we have to use the algorithm with a limited number of iterations.
Moreover, we have noticed that we recover too many contour lines as well.
The asset of this model is that we can make it anisotropic, modifying the
hessian operator in an appropriate way. Therefore we get rid of geometrical
information, but we lose part of the texture as well. Nevertheless, if our goal
is just to locate texture on an image, this loss remains acceptable.
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	A Variational Model for Image Texture Identification
	1 Functional framework and model
	1.2 The variational model

	2 Numerical implementation
	2.1 Discretization of the problem

	3 Numerical tests and comments
	4 Conclusion
	References




