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Summary. We present a new family of sums of squares (SOS) relaxations to cones
of positive polynomials. The SOS relaxations employed in the literature are cones
of polynomials which can be represented as ratios, with an SOS as numerator and a
fixed positive polynomial as denominator. We employ nonlinear transformations of
the arguments instead. A fixed cone of positive polynomials, considered as a subset
in an abstract coefficient space, corresponds to an infinite, partially ordered set of
concrete cones of positive polynomials of different degrees and in a different number
of variables. To each such concrete cone corresponds its own SOS cone, leading to a
hierarchy of increasingly tighter SOS relaxations for the abstract cone.

1 Introduction

Many optimization problems can be recast as conic programs over a cone
of positive polynomials on Rn. Cones of positive polynomials cannot be de-
scribed efficiently in general, and the corresponding conic programs are NP-
hard. Hence approximations have to be employed to obtain suboptimal solu-
tions. A standard approach is to approximate the cone of positive polynomials
from inside by the cone of sums of squares (SOS), i.e. the cone of those poly-
nomials which are representable as a sum of squares of polynomials of lower
degree. The SOS cone is semidefinite representable, and conic programs over
this cone can be cast as efficiently solvable semidefinite programs. This ap-
proximation is not exact, however, even for polynomials of degree 6 in two
variables [6], as the famous example of the Motzkin polynomial [1] shows.
Tighter approximations can be obtained when using the cone of polynomials
which can be represented as ratios, with the numerator being a sum of squares
of polynomials, and the denominator a fixed positive polynomial. Usually this
fixed polynomial is chosen to be

(∑n
k=1 x

2
k

)d for some integer d > 0 [2].
We propose another family of SOS based relaxations of cones of positive

polynomials. We consider the cone of positive polynomials not as a cone of
functions, but rather as a subset in an abstract coefficient space. The same
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abstract cone then corresponds to an infinite number of concrete cones of
positive polynomials of different degrees and in a different number of variables.
To each such concrete cone corresponds its own SOS cone, and these SOS
cones are in general different for different realizations of the abstract cone.
We present a computationally efficient criterion to compare the different SOS
cones and introduce a corresponding equivalence relation and a partial order
on the set of these SOS cones. This allows us to build hierarchies of increasingly
tighter semidefinite relaxations for the abstract cone, and thus also for the
original cone of positive polynomials. We show on the example of the cone of
positive polynomials containing the Motzkin polynomial that our hierarchy of
relaxations possesses the capability of being exact at a finite step.

The remainder of the contribution is structured as follows. In the next
section we define notation that will be used in the paper. In Sect. 3 we define
and analyze the considered cones of positive polynomials. In Sect. 4 we con-
sider sums of squares relaxations of these cones and study their properties. In
Sect. 5 we define the abstract cones of positive polynomials and their SOS re-
laxations and establish a hierarchical structure on the set of these relaxations.
Finally, we demonstrate the developed apparatus on the example of the cone
containing the Motzkin polynomial in Sect. 6.

2 Notation

For a finite set S, denote by #S the cardinality of S.
For a subset A of a real vector space V , denote by clA the closure, by

intA the interior, by affA the affine hull, by convA the convex hull, and by
con clA the set cl ∪α≥0 αA. If A is a convex polytope, denote by extrA the
set of its vertices.

Let S(m) denote the space of real symmetric matrices of size m×m, and
S+(m) ⊂ S(m) the cone of positive semidefinite (PSD) matrices. By In denote
the n× n identity matrix. Let π2 : Z → F2 be the ring homomorphism from
the integers onto the field F2 = ({0, 1},+, ·) (mapping even integers to 0 and
odd ones to 1), and πn

2 : Zn → Fn
2 the corresponding homomorphism of the

product rings, acting as πn
2 : (a1, . . . , an) 7→ (π2(a1), . . . , π2(an)). For an inte-

ger matrix M , let π2[M ] be the matrix obtained by element-wise application
of π2 to M . The corresponding F2-linear map will also be denoted by π2[M ].
For a linear map M , let ImM be the image of M in the target space.

Let A ⊂ Nn be an ordered finite set of multi-indices of length n, considered
as row vectors. Denote by ΓA = {

∑
α∈A aαα | aα ∈ Z ∀ α ∈ A} ⊂ Zn the

lattice generated by A in aff A, and let Γ e
A ⊂ ΓA be the sublattice of even

points. For x = (x1, . . . , xn)T ∈ Rn, denote by XA(x) the corresponding
vector of monomials (xα)α∈A, and define the set XA = {XA(x) |x ∈ Rn}. By
LA we denote the real vector space of polynomials p(x) =

∑
α∈A cαx

α. There
exists a canonical isomorphism IA : LA → R#A, which maps a polynomial
p ∈ LA to its coefficient vector IA(p) = (cα(p))α∈A.
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3 Cones of positive polynomials

Let A ⊂ Nn be an ordered finite set of multi-indices. We call a polynomial
p ∈ LA positive if p(x) = 〈IA(p), XA(x)〉 ≥ 0 for all x ∈ Rn. The positive
polynomials form a closed convex cone PA. This cone cannot contain a line,
otherwise the monomials xα, α ∈ A, would be linearly dependent.

Let p ∈ LA be a polynomial. The convex hull of all indices α ∈ A such that
cα(p) 6= 0, viewed as vectors in Rn, forms a convex polytope. This polytope
is called the Newton polytope of p and is denoted by N(p). The convex hull of
the whole multi-index set A, viewed as a subset of the integer lattice in Rn,
will be called the Newton polytope associated with the linear space LA and
denoted by NA. Obviously we have the relation NA = ∪p∈LAN(p). Newton
polytopes of polynomials in p ∈ LA have the following property.

Lemma 1. [4, p.365] Assume above notation and let p ∈ PA. If α ∈ A is an
extremal point of N(p), then α is even and cα(p) > 0.

Without restriction of generality we henceforth assume that

all indices in extrNA have even entries, (1)

otherwise the cone PA is contained in a proper subspace of LA.

Lemma 2. Under assumption (1), the cone PA has nonempty interior.

Proof. Let us show that the polynomial p(x) =
∑

α∈extrNA
xα is an interior

point of PA.
Since the logarithm is a concave function, we have for every integer N > 0,

every set of reals λ1, . . . , λN ≥ 0 such that
∑N

k=1 λk = 1, and every set of
reals a1, . . . , aN > 0 that log

∑N
k=1 λkak ≥

∑N
k=1 λk log ak. It follows that

log
∑N

k=1 ak ≥
∑N

k=1 λk log ak and therefore
∑N

k=1 ak ≥
∏N

k=1 a
λk

k .
Let now α1, . . . , αN be the extremal points ofNA, and let α =

∑N
k=1 λkα

k ∈
A be an arbitrary index, represented as a convex combination of the extremal
points. By the above, we then have for every x ∈ Rn satisfying Πn

l=1xl 6= 0
that

∑N
k=1 x

αk ≥
∏N

k=1(x
αk

)λk = |x|α = |xα|. By continuity this holds also
for x such that Πn

l=1xl = 0. Thus the polynomial p(x) + q(x) is positive, as
long as the 1-norm of the coefficient vector IA(q) does not exceed 1.

It follows that both the cone PA and its dual are regular cones, i.e. closed
convex cones with nonempty interior, containing no lines.

Lemma 3. Under assumption (1), (IA[PA])∗ = conv(con clXA).

Proof. Clearly p ∈ PA if and only if for all y ∈ con clXA we have 〈IA(p), y〉 ≥
0. Hence IA[PA] is the dual cone of the convex hull conv(con clXA).

It rests to show that this convex hull is closed. Let z be a vector in the
interior of the cone IA[PA]. Such a vector exists by the preceding lemma. Then
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the set C = {y ∈ con clXA | 〈y, z〉 = 1} is compact, and hence its convex hull
convC is closed. But conv(con clXA) is the conic hull of convC, and therefore
also closed. Thus (IA[PA])∗ = (conv(con clXA))∗∗ = conv(con clXA).

We shall now analyze the set con clXA, which is, as can be seen from the
previous lemma, determining the cone PA.

For every ordered index set A with elements α1, . . . , αm ∈ Nn, where each
multi-index is represented by a row vector αk = (αk

1 , . . . , α
k
n), define the m×n

matrix MA = (αk
l )k=1,...,m;l=1,...,n. Further define αk

0 = 1, k = 1, . . . ,m and
the m× (n+ 1) matrix M ′A = (αk

l )k=1,...,m;l=0,...,n.

Lemma 4. Assume above notation. Then

con clXA = cl{(−1)δ ◦ exp(y) | δ ∈ Imπ2[MA], y ∈ ImM ′A},

where both (−1)δ and exp(y) are understood element-wise, and ◦ denotes the
Hadamard product of vectors.

Proof. The space Rn is composed of 2n orthants Oγ , which can be indexed
by the vectors in Fn

2 . Here the index γ = (γ1, . . . , γn)T of the orthant Oγ

is defined such that sgnx = (−1)γ for all x ∈ intOγ , where both sgnx and
(−1)γ have to be understood element-wise. In a similar way, the 2m orthants
of Rm are indexed by the elements of Fm

2 .
We shall now compute the set Tγ = {βXA(x) |β > 0, x ∈ intOγ} ⊂ Rm.
First observe that the signs of the components of βXA(x) do not depend

on β and on x ∈ intOγ . Namely, the k-th component equals β
∏n

l=1 x
αk

l

l , and
its sign is (−1)δk , where δk =

∑n
l=1 π2(αk

l )γl. Therefore, Tγ is contained in
the interior of the orthant Oδ, where δ = (δ1, . . . , δm)T = π2[MA](γ) ∈ Fm

2 .
Thus, if γ runs through Fn

2 , then the indices of the orthants containing Tγ

run through Imπ2[MA].
Consider the absolute values of the components of βXA(x). The logarithm

of the modulus of the k-th component is given by log β +
∑n

l=1 α
k
l log |xl|.

Now the vector (log β, log |x1|, . . . , log |xn|)T runs through Rn+1 if (β, x) runs
through intR+ × intOγ , and therefore the element-wise logarithm of the ab-
solute values of βXA(x) runs through ImMA, independently of γ.

We have proven the relation

{βXA(x) |β > 0,
n∏

l=1

xl 6= 0} = {(−1)δ ◦ ey | δ ∈ Imπ2[MA], y ∈ ImM ′A}

(2)
It rests to show that the closure of the left-hand side equals con clXA. Clearly
this closure is contained in con clXA. The converse inclusion follows from the
continuity of the map (β, x) 7→ βXA(x) on R×Rn and the fact that the set
{(β, x) |β > 0,

∏n
l=1 xl 6= 0} is dense in R+ ×Rn. This concludes the proof.

The description of con clXA given by Lemma 4 allows us to relate these
sets for different index sets A.
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Theorem 1. Assume above notation. Let A = {α1, . . . , αm} ⊂ Nn, A′ =
{α′1, . . . , α′m} ⊂ Nn′

be nonempty ordered multi-index sets satisfying as-
sumption (1). Then the following are equivalent.

1) con clXA = con clXA′ ,
2) ImM ′A = ImM ′A′ and Imπ2[MA] = Imπ2[MA′ ],
3) the order isomorphism IA : A → A′ can be extended to a bijective,

affine map R : aff A → aff A′, and there exists a bijective linear map Z :
span(πn

2 [A])→ span(πn′

2 [A′]) such that (Z◦πn
2 )(αk) = πn′

2 (α′k), k = 1, . . . ,m,
4) the order isomorphism IA : A → A′ can be extended to a lattice iso-

morphism IΓ : ΓA → ΓA′ , and IΓ [Γ e
A] = Γ e

A′ .
Moreover, the following is a consequence of 1) — 4).
5) IA[PA] = IA′ [PA′ ].

Proof. 1) ⇔ 2): Denote set (2) by S(A). This set is contained in ∪δ∈Fm
2
Oδ

and is closed in its relative topology. Hence S(A) = (clS(A)) ∩
(
∪δ∈Fm

2
Oδ

)
.

Therefore, if condition 2) is not satisfied, then S(A) 6= S(A′), and hence
clS(A) 6= clS(A′), which implies by Lemma 4 that condition 1) is not satis-
fied. On the other hand, if condition 2) is satisfied, then S(A) = S(A′), and
again by Lemma 4 condition 1) is satisfied.

2) ⇔ 3): The first relation in condition 2) is equivalent to the coinci-
dence of the kernels of M ′TA and M ′

T
A′ . But these kernels define exactly all

affine dependencies between the elements of A and A′, respectively. Therefore
kerM ′TA =kerM ′TA′ if and only if there exists an isomorphism R between the
affine spaces aff A and aff A′ that takes αk to α′k, k = 1, . . . ,m. The equiva-
lence of the second relation in condition 2) and the existence of the map Z is
proven similarly.

3) ⇔ 4): Clearly the map R in 3) defines the sought lattice isomorphism
IΓ : ΓA → ΓA′ . On the other hand, the existence of IΓ implies that kerM ′TA∩
Zm = kerM ′TA′ ∩ Zm. For the kernel of an integer matrix, however, one can
always find an integer basis. Therefore it follows that kerM ′TA = kerM ′TA′ ,
and IΓ can be extended to an affine isomorphism R : aff A → aff A′. We have
shown equivalence of the first conditions in 3) and 4).

Note that πn
2 maps the lattice ΓA to aff(πn

2 [A]), and likewise, πn′

2 maps
ΓA′ to aff(πn′

2 [A′]). Since both A,A′ satisfy (1), these sets contain at least
one even point. Hence the images πn

2 [A], πn′

2 [A′] contain the origin, and the
affine spans of these images are actually linear spans. Let us now assume that
IΓ exists and consider the diagram

ΓA
IΓ−→ ΓA′

πn
2 ↓ πn′

2 ↓
span(πn

2 [A]) Z−→ span(πn′

2 [A′])

If there exists a linear map Z as in 3), then it makes the diagram commute.
The relation IΓ [Γ e

A] = Γ e
A′ now follows from the fact that Z maps the origin
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to the origin. On the other hand, let IΓ [Γ e
A] = Γ e

A′ . Since Γ e
A 6= ∅, we have

that IΓ takes pairs of points with even difference to pairs of points with even
difference. This implies that there exists a well-defined map Z which makes
the diagram commute. Moreover, Z takes the origin to the origin. Since IΓ is
affine, Z must also be affine and hence linear. Finally, repeating the argument
with I−1

Γ instead of IΓ , we see that Z must be invertible.
Finally, the implication 1) ⇒ 5) is a direct consequence of Lemma 3.

4 Sums of squares relaxations

Let A = {α1, . . . , αm} ⊂ Nn be an ordered multi-index set satisfying (1). A
polynomial p ∈ LA is certainly positive if it can be represented as a finite sum
of squares of other polynomials. The set of polynomials representable in this
way forms a closed convex cone [5], the sums of squares cone

ΣA =

{
p ∈ LA | ∃ N, q1, . . . , qN : p =

N∑
k=1

q2k

}
⊂ PA. (3)

The SOS cone is semidefinite representable, and therefore a semidefinite re-
laxation of the cone PA. We will henceforth call the cone ΣA the standard
SOS cone, or the standard SOS relaxation. In general we have ΣA 6= PA, and
we will see in Subsection 4.1 that we might even have dim ΣA 6= dim PA.

We shall now generalize the notion of the SOS cone ΣA. Let F =
{β1, . . . , βm′} ⊂ Nn be an ordered multi-index set. We then define the set

ΣF,A =

{
p ∈ LA | ∃ N, q1, . . . , qN ∈ LF : p =

N∑
k=1

q2k

}
,

=
{
p ∈ LA | ∃ C = CT � 0 : p(x) = XT

F (x)CXF (x)
}
, (4)

which is also a semidefinite representable closed convex cone. Obviously we
have the inclusion ΣF,A ⊂ ΣA. The next result shows that the standard SOS
cone ΣA is actually an element of the family {ΣF,A}F⊂Nn of cones.

Lemma 5. [4, p.365] If the polynomial p(x) =
∑N

k=1 q
2
k(x) is a sum of

squares, then for every polynomial qk participating in the SOS decomposition
of p we have 2N(qk) ⊂ N(p).

It follows that for every p(x) =
∑N

k=1 qk(x)2 ∈ ΣA, the nonzero coefficients
of every polynomial qk have multi-indices lying in the polytope 1

2NA. Thus
ΣA = ΣFmax(A),A, where Fmax(A) = ( 1

2NA)∩Nn. We get the following result.

Proposition 1. Assume above notation. Then for every finite multi-index set
F ⊂ Nn such that Fmax(A) ⊂ F we have ΣF,A = ΣA.
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In general, the smaller F , the weaker will be the relaxation ΣF,A. It does
not make sense, however, to choose F larger than Fmax(A). Let us define the
following partial order on the relaxations ΣF,A.

Definition 1. Assume above notation and let the multi-index sets F1,F2 be
subsets of Fmax(A). If F1 ⊂ F2, then we say that the relaxation ΣF1,A of the
cone PA is coarser than ΣF2,A, or ΣF2,A is finer than ΣF1,A.

A finer relaxation is tighter, but a strictly finer relaxation does not a priori
need to be strictly tighter. The standard SOS relaxation ΣA is then the finest
relaxation among all relaxations of type (4).

We can make the semidefinite representation of ΣF,A explicit by com-
paring the coefficients in the relation p(x) = XT

F (x)CXF (x) appearing in
definition (4). As it stands, this relation determines the polynomial p(x) as
a function of the symmetric matrix C, thus defining a linear map LF,A :
S(m′)→ L(F+F)∪A by

cα(p) =
∑

k,k′: βk+βk′=α

Ckk′ , α ∈ (F + F) ∪ A.

Thus we obtain the description

ΣF,A = LA ∩ LF,A[S+(m′)], (5)

revealing ΣF,A as a linear section of a linear image of the PSD cone S+(m′).
Note that the linear map LF,A is completely determined by the map sF,A :

F × F → (F + F) ∪ A defined by sF,A(βk, βk′
) = βk +βk′

. Denote by inclA :
A → (F + F) ∪ A the inclusion map. We then have the following result.

Theorem 2. Let F = {β1, . . . , βm′},A = {α1, . . . , αm} ⊂ Nn, F ′ =
{β′1, . . . , β′m

′
},A′ = {α′1, . . . , α′m} ⊂ Nn′

, be ordered multi-index sets satis-
fying F ⊂ Fmax(A), F ′ ⊂ Fmax(A′), and let IF : F → F ′, IA : A → A′ be the
order isomorphisms. Suppose that there exists a bijective map I that makes
the following diagram commutative:

F × F sF,A−→ (F + F) ∪ A inclA←− A
IF×IF ↓ I ↓ IA ↓
F ′ ×F ′

sF′,A′
−→ (F ′ + F ′) ∪ A′ inclA′←− A′

Then IA[ΣF,A] = IA′ [ΣF ′,A′ ].

4.1 Dimensional considerations

From (5) it follows that the cone ΣF,A is always contained in the linear
subspace L(F+F)∩A ⊂ LA and thus is better viewed as a relaxation of the
cone P(F+F)∩A rather than of PA itself. In view of Lemma 2 a necessary
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condition for the cone ΣF,A to have the same dimension as PA is thus the
inclusion A ⊂ F + F .

A natural question is now whether this inclusion is always satisfied by
the multi-index set F := Fmax(A) = (1

2NA) ∩ Nn, which gives rise to the
standard SOS coneΣA. The answer to this question is negative, as the example
A = {(2, 0, 0), (0, 2, 0), (2, 2, 0), (0, 0, 4), (1, 1, 1)} taken from [4, p.373] shows.

It is, however, not hard to show that if A is contained in a 2-dimensional
affine plane, then A ⊂ Fmax(A) + Fmax(A).

5 Hierarchies of relaxations

In this section we construct hierarchies of semidefinite relaxations of the cone
of positive polynomials which are tighter than the standard SOS relaxation.

Conditions 2) — 4) of Theorem 1 define an easily verifiable equivalence
relation ∼P on the class of finite ordered multi-index sets satisfying (1). By
Theorem 1, we have for any two equivalent multi-index sets A ∼P A′ that
IA[PA] = IA′ [PA′ ]. It is therefore meaningful to define the abstract cone

P[A] = IA[PA] = {IA(p) | p ∈ PA} ⊂ Rm,

where [A] is the equivalence class of A with respect to the relation ∼P . The
points of this cone cannot anymore be considered as polynomials on Rn. A
cone of positive inhomogeneous polynomials on Rn, e.g., corresponds to the
same abstract cone as the cone of their homogenizations, which are defined
on Rn+1. For every concrete choice of a representative A′ ∈ [A], however, the
map I−1

A′ puts them in correspondence with positive polynomials in PA′ .
Similarly, the existence of the bijective map I in Theorem 2 defines an

easily verifiable equivalence relation ∼Σ on the class of pairs (F ,A) of ordered
finite multi-index sets satisfying F ⊂ Fmax(A). By Theorem 2, for any two
equivalent pairs (F ,A) ∼Σ (F ′,A′) we have IA[ΣF,A] = IA′ [ΣF ′,A′ ]. We
can then define the abstract cone Σ[(F,A)] = IA[ΣF,A] ⊂ Rm, where [(F ,A)]
is the equivalence class of the pair (F ,A) with respect to the relation ∼Σ .
For every concrete choice of a representative (F ′,A′) ∈ [(F ,A)] the map I−1

A′

takes the abstract cone Σ[(F,A)] to the cone ΣF ′,A′ of SOS polynomials.
For different, but equivalent, multi-index sets A ∼P A′ the standard SOS

relaxations ΣA, ΣA′ defined by (3) will in general not be equivalent. It is
therefore meaningless to speak of a standard SOS relaxation of the cone P[A′].
For every representative A ∈ [A′] we have, however, a finite hierarchy of SOS
relaxations ΣF,A defined by (4). This allows us to define SOS relaxations of
the abstract cone P[A′].

Definition 2. Let C be an equivalence class of finite ordered multi-index sets
with respect to the equivalence relation ∼P , and PC the corresponding abstract
cone of positive polynomials. For every pair (F ,A) of finite ordered multi-
index sets such that A ∈ C and F ⊂ Fmax(A), we call the abstract cone
Σ[(F,A)] an SOS relaxation of PC .
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Clearly the SOS relaxations of the cone PC are inner semidefinite relax-
ations. The set of SOS relaxations inherits the partial order defined in Defi-
nition 1.

Definition 3. Let C be an equivalence class of finite ordered multi-index sets
with respect to the equivalence relation ∼P , and let ΣC1 , ΣC2 be SOS relax-
ations of the cone PC , where C1, C2 are equivalence classes of the relation ∼Σ.
If there exist multi-index sets F1,F2,A such that (F1,A) ∈ C1, (F2,A) ∈ C2,
and F1 ⊂ F2, then we say that the relaxation ΣC1 is coarser than ΣC2 , or
ΣC2 is finer than ΣC1 .

It is not hard to see that the relation defined in Definition 3 is indeed a
partial order. A finer relaxation is tighter, but a strictly finer relaxation does
not a priori need to be strictly tighter. Note that we do not require A ∈ C.
This implies that if, e.g., both ΣC1 , ΣC2 are SOS relaxations for two different
abstract cones PC ,PC′ , and ΣC2 is a finer relaxation of PC than ΣC1 , then
ΣC2 is also a finer relaxation of PC′ than ΣC1 .

Theorem 3. Let F ,A ⊂ Nn be finite ordered multi-index sets satisfying F ⊂
Fmax(A), and suppose that A satisfies (1). Let further M be an n× n integer
matrix with odd determinant, and let v ∈ Zn be an arbitrary integer row
vector. Let now F ′ be the multi-index set obtained from F by application of
the affine map R′ : β 7→ βM+v, and A′ the set obtained from A by application
of the affine map R : α 7→ αM + 2v. Then A ∼P A′, provided the elements of
A′ have nonnegative entries, and (F ,A) ∼Σ (F ′,A′), provided the elements
of F ′,A′ have nonnegative entries.

Proof. Assume the conditions of the theorem. Then we have NA′ = R[NA],
and therefore 1

2NA′ = R′[12NA]. It follows that F ′ ⊂ Fmax(A′).
Since det M 6= 0, the map R is invertible. Further, the matrix π2[M ]

defines an invertible linear map Z on Fn
2 , because det π2[M ] = π2(det M) =

1. Moreover, the projection πn
2 intertwines the maps R and Z, because the

translational part of R is even. It is then easily seen that the restrictions
R|aff A : aff A → aff A′ and Z|span(πn

2 [A]) : span(πn
2 [A])→ span(πn

2 [A′]) satisfy
condition 3) of Theorem 1. This proves the relation A ∼P A′.

Likewise, the restriction I = R|(F+F)∪A makes the diagram in Theorem 2
commute, which proves the relation (F ,A) ∼Σ (F ′,A′).

We will use this result to construct strictly finer relaxations from a given
standard SOS relaxation.

If the determinant of the matrix M in Theorem 3 equals ±1, then the
maps R′, R define isomorphisms of Zn. Then #Fmax(A) = #Fmax(A′), and
the standard relaxations ΣA, ΣA′ are equivalent. If, however, |det M | > 1,
then #Fmax(A′) might be strictly bigger than #Fmax(A), and then IA′ [ΣA′ ]
will be strictly finer than IA[ΣA]. In particular, this happens if #A > 1 and
the sets F ′,A′ are obtained from F ,A by multiplying every multi-index with a
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fixed odd natural number k > 1. Thus, unlike the hierarchy of relaxations (4),
for abstract cones PC of dimension m > 1 the hierarchy of SOS relaxations is
infinite, and the corresponding partial order does not have a finest element.

6 Example

Consider the inhomogeneous Motzkin polynomial pM (x, y) = x4y2 + x2y4 +
1− 3x2y2 ∈ PA with A = {(4, 2), (2, 4), (0, 0), (2, 2)}. Its Newton polytope is
the triangle given by N(pM ) = NA = conv{(4, 2), (2, 4), (0, 0)}, and therefore
Fmax(A) = {(2, 1), (1, 2), (0, 0), (1, 1)}. It is easily checked that the standard
SOS cone ΣA obtained from (4) by setting F = Fmax(A) consists of those
polynomials in LA all whose coefficients are nonnegative. The corresponding
abstract SOS cone is therefore given by Σ[(F,A)] = R4

+.
Using Lemma 4, it is a little exercise to show con clXA = {(y1, y2, y3, y4)T ∈

R4
+ | y4 = 3

√
y1y2y3}. By Lemma 3 we then easily obtain P[A] = {c =

(c1, c2, c3, c4)T | c1, c2, c3 ≥ 0, c4 ≥ −3 3
√
c1c2c3}. Let us now apply the con-

struction provided in Theorem 3, setting M =
(

2 −1
−1 2

)
and v = 0.

Then F is mapped to F ′ = {(3, 0), (0, 3), (0, 0), (1, 1)}, and A to A′ =
{(6, 0), (0, 6), (0, 0), (2, 2)}. By Theorem 3 we then haveA ∼P A′ and (F ,A) ∼Σ

(F ′,A′). The set F ′′ = Fmax(A′), however, is now composed of 10 points and
is hence strictly larger than F ′. Therefore the relaxation Σ[(F ′′,A′)] of the cone
P[A] is strictly finer than Σ[(F,A)]. Moreover, with e3 = (1, 1, 1)T , v(x, y) =
( 3
√
c1x

2, 3
√
c2y

2, 3
√
c3)T every polynomial pc(x, y) = c1x

6 +c2y6 +c3 +c4x2y2 ∈
PA′ , i.e. satisfying c1, c2, c3 ≥ 0 and c4 ≥ −3 3

√
c1c2c3, can be written as

pc(x, y) = eT v(x, y) · v(x, y)T 3I3 − eeT

2
v(x, y) + (c4 + 3 3

√
c1c2c3)x2y2,

which obviously is a sum of squares. Thus the relaxation Σ[(F ′′,A′)] is exact.
From the proof of [3, Theorem 1] it follows that there does not exist a fixed

integer d > 0 such that with h(x) =
(∑n

k=1 x
2
k

)d the product hp is a sum of
squares for every polynomial p ∈ PA. Thus this commonly used hierarchy of
SOS relaxations is not capable of representing the cone P[A] at any finite step.
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