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Summary. The subject of this paper is an optimal control problem with ODE as
well as PDE constraints. As it was inspired, on the one hand, by a recently inves-
tigated flight path optimization problem of a hypersonic aircraft and, on the other
hand, by the so called ”rocket car on a rail track“-problem from the pioneering days
of ODE optimal control, we would like to call it ”hypersonic rocket car problem”.
While it features essentially the same ODE-PDE coupling structure as the aircraft
problem, the rocket car problem’s level of complexity is significantly reduced. Due to
this fact it is possible to obtain more easily interpretable results such as an insight
into the structure of the active set and the regularity of the adjoints. Therefore,
the rocket car problem can be seen as a prototype of an ODE-PDE optimal control
problem. The main objective of this paper is the derivation of first order necessary
optimality conditions.
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1 Introduction

Realistic mathematical models for applications with a scientific or engineering
background often have to consider different physical phenomena and therefore
may lead to coupled systems of equations that include partial and ordinary
differential equations. While each of the fields of optimal control of partial
resp. ordinary differential equations has already been subject to thorough re-
search, the optimal control of systems containing both has not been studied
theoretically so far to the best knowledge of the authors.
Recently Chudej et. al. [5] and M. Wächter [12] studied an optimal control
problem numerically which describes the flight of an aircraft at hypersonic
speed under the objective of minimum fuel consumption. The flight trajectory
is described, as usual, by a system of ordinary differential equations (ODE).
Due to the hypersonic flight conditions aerothermal heating of the aircraft
must be taken into account. This leads to a quasi-linear heat equation with
non-linear boundary conditions which is coupled with the ODE. As it is the
main objective of the optimization to limit the heating of the thermal protec-
tion system, one obtains a pointwise state constraint, which couples the PDE
with the ODE reversely. However, anything beyond mere numerical analysis
is prohibited by the considerable complexity of this problem. Therefore the
present paper’s focus is a model problem stripped of all unnecessary content
while still including the key features of ODE-PDE optimal control, which will
allow a clearer view on the structure of the problem and its solution.
This simplified model problem we would like to call the ”hypersonic rocket
car problem”. To one part it consists of the classical ”rocket car on a rail
track problem” from the early days of ODE control, first studied by Bushaw
[3]. The second part is a one dimensional heat equation with a source term
depending on the speed of the car, denoting the heating due to friction.
In contrast to [10], which deals with the same ODE-PDE problem but from
the ODE point of view, this paper is dedicated to a PDE optimal control
approach.
Another even more complicated optimal control problem for partial integro-
differential-algebraic equations including also ODEs, which describes the dy-
namical behaviour of the gas flows, the electro-chemical reactions, and the
potential fields inside a certain type of fuel cells, has been investigated in [6],
also numerically only. However, this model does not include a state constraint.

2 The hypersonic rocket car problem

In the following, the ODE state variable w denotes the one-dimensional po-
sition of the car depending on time t with the terminal time tf unspecified.
The PDE state variable T stands for the temperature and depends on time
as well as the spatial coordinate x describing the position within the car. The
control u denotes the acceleration of the car. The PDE is controlled only in-
directly via the velocity ẇ of the car.
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The aim is to drive the car in minimal time from a given starting position
and speed (w0 resp. v0) to the origin of the phase plane while keeping its
temperature below a certain threshold Tmax.

All in all, the hypersonic rocket car problem is given as follows:

min
u∈U

{
tf +

1
2
λ

∫ tf

0

u2(t) dt
}
, λ > 0 , (1a)

subject to

ẅ(t) = u(t) in (0, tf ) , (1b)

w(0) = w0 , ẇ(0) = v0 , (1c)

w(tf ) = 0 , ẇ(tf ) = 0 , (1d)

U := {u ∈ L2(0, tf ) : |u(t)| ≤ umax almost everywhere in [0, tf ]} , (1e)

and

∂T

∂t
(x, t)− ∂2T

∂x2
(x, t) = g(ẇ(t)) in (0, l)× (0, tf ) , (1f)

T (x, 0) = T0(x) on (0, l) , (1g)

−∂T
∂x

(0, t) = −
(
T (0, t)− T0(0)

)
,

∂T

∂x
(l, t) = −

(
T (l, t)− T0(l)

)
on [0, tf ] , (1h)

and finally subject to a pointwise state constraint of type

T (x, t) ≤ Tmax in [0, l]× [0, tf ] . (1i)

The initial temperature T0 of the car is in the following set to zero. In the
numerical experiments the regularisation parameter λ is chosen as 1

10 , the
length l of the car and the control constraint umax both as 1, and the source
term g(ẇ(t)) as ẇ(t)2, which models the temperature induced by friction
according to Stokes’ law (proportional to the square of the velocity).

3 The state-unconstrained problem and its associated
temperature profile

For better illustration and to alleviate comparison with the numerical results
of section 5 let us first have a brief look at the solution of the state uncon-
strained (i. e. only ODE) problem; see Fig. 1. This figure describes the optimal



432 S. Wendl, H. J. Pesch, and A. Rund

solutions for all starting values in the w-ẇ-phase plane converging into the
origin. Unlike the non-regularized problem (λ = 0) with a pure bang-bang
switching structure and optimal solutions having at most one switching point
when its trajectories cross the switching curve (dotted black), on which the
car finally arrives at the origin, the optimal solutions of the regularized prob-
lem (λ > 0) have a transition phase between two bang-bang subarcs. The
smaller the regularization parameter λ is the closer the optimal trajectories
(grey) approach the switching curve which serves as their envelope here.
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Fig. 1. Optimal trajectories of the regularized minimum-time problem (λ > 0) in
the phase plane (grey). The dotted black curve is the switching curve of the non-
regularized problem (λ = 0). The black curves are the optimal solutions for the
starting conditions w0 = −6 and v0 = 0 resp. w0 = −6 and v0 = −6.

Along those two trajectories the following temperature profiles emerge:
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Fig. 2. Temperature profiles along the state-unconstrained trajectories due to the
data w0 = −6, v0 = 0 (left), resp. v0 = −6 (right); see Fig. 1.

Those temperature profiles have to be bounded in the following; cp. Fig. 3.
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4 Necessary optimality conditions: Interpretation as
state-constrained PDE optimal control problem

It is possible to reformulate (1) as a PDE optimal control problem by elimi-
nating the ODE-part:∫ tf

0

(
1 +

λ

2
u2(t)

)
dt != min

|u|≤umax

(2a)

subject to

Tt(x, t)− Txx(x, t) =
(
v0 +

∫ t

0
u(s) ds

)2

in (0, l)× (0, tf ) , (2b)

−Tx(0, t) + T (0, t) = 0 , Tx(l, t) + T (l, t) = 0 for 0 < t < tf , (2c)

T (x, 0) = 0 for 0 ≤ x ≤ l , (2d)∫ tf

0

u(t) dt = −v0 , (2e)

∫ tf

0

∫ t

0

u(s) dsdt = −w0 − v0 tf
part. int.

=⇒
∫ tf

0

t u(t) dt = w0 , (2f)

T (x, t) ≤ Tmax in [0, l]× [0, tf ] . (2g)

Here the term v(t) := v0 +
∫ t

0
u(s) ds plays the role of a “felt” control for the

heat equation. The two isoperimetric conditions (2e, f) are caused by the two
terminal conditions (1c) and comprehend the constraints (1b–d) of the ODE
part. While this reformulation will alleviate the derivation of first order nec-
essary conditions,it nevertheless comes at a price, namely the nonstandard
structure of (2e, f) and especially the source term in (2b). All these terms
contain the control under integral signs.

The existence and uniqueness of the solution T ∈ W 1,0
2 ((0, l) × (0, tf )) ∩

C([0, tf ], L2(0, l)), the Fréchet-differentiability of the solution operator and the
existence of a Lagrange multiplier µ̄ ∈ C([0, l] × [0, tf ])∗ =M([0, l] × [0, tf ])
[the set of regular Borel measures on ([0, l]× [0, tf ])] under the assumption of
a local Slater condition are proven in [8], [9]. Moreover, it turns out, that T is
of even higher regularity: Ttt and ∂4

xT are both of class Lr(ε, tf ;L2(0, l)) with
0 < ε < tf and r ≥ 2 for all controls u ∈ L2(0, tf ).

Thereby, we can establish the optimality conditions by means of the La-
grange technique. Furthermore it can be seen that for any given point of time
[and for every control u ∈ L2(0, tf )] the maximum of T with respect to space
is obtained right in the middle at x = l

2 (cf. Fig. 2; for a proof see [8]). This
implies, that the active set A is a subset of the line L := {x = l

2 , 0 < t < tf}.
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Hence the state constraint can equivalently be replaced by T ≤ Tmax on L.
Using this we define the Lagrange-function by

L =
∫ tf

0

(
1 +

λ

2
u2(t)

)
dt −

∫ tf

0

∫ l

0

(
Tt − Txx − g

(
v0 +

∫ t

0
u(s) ds

))
q dxdt

−
∫ tf

0

(
−Tx(0, t) + T (0, t)

)
q(0, t) dt−

∫ tf

0

(
Tx(l, t) + T (l, t)

)
q(l, t) dt

+ν1

(∫ tf

0

u(t) dt+ v0

)
+ ν2

(∫ tf

0

t u(t) dt− w0

)

+
∫ tf

0

(
T (

l

2
, t)− Tmax

)
dµ(t) , (3)

with µ(t) ∈M(0, tf ) and the multipliers q associated with the constraints (2b–
c) respectively ν1 , ν2 ∈ R associated with (2e, f).

By partial integration and differentiation of (3) we find the necessary con-
ditions of first order (∗ shall in the following denote optimal values):

Adjoint equation:∫ t∗f

0

∫ l

0

qt ψ − qxψx dxdt−
∫ t∗f

0

q(0, t)ψ(0, t) dt−
∫ t∗f

0

q(l, t)ψ(l, t) dt

+
∫ tf

0

ψ(
l

2
, t) dµ(t) = 0 for all ψ ∈W (0, t∗f ) , (4a)

q(x, t∗f ) = 0 for almost all x ∈ [0, l] , (4b)

Variational inequality:∫ t∗f

0

(
λu∗(t) + ν1 + ν2 t

) (
u(t)− u∗(t)

)
dt

+
∫ t∗f

0

g′
(
v0 +

∫ t

0
u∗(r) dr

)(∫ t

0

u(s)− u∗(s) ds

)(∫ l

0

q(x, t) dx

)
dt ≥ 0

Fubini=⇒
∫ t∗f

0

[
λu∗(t) + ν1 + ν2 t+

∫ t∗f

t

g′
(
v0 +

∫ s

0
u∗(r) dr

)(∫ l

0

q(x, s) dx

)
ds

]
·

(
u(t)− u∗(t)

)
dt ≥ 0 , for all u ∈ U , (4c)

Complementarity condition:

µ ≥ 0 ,
∫ t∗f

0

(
T ∗(

l

2
, t)− Tmax

)
dµ(t) = 0 . (4d)
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The optimality system is completed by a condition for the free terminal
time t∗f and two conditions that give the switching times t∗on, t

∗
off [i. e. the

times where the temperature T ∗( l
2 , t) hits, resp. leaves the constraint Tmax,

cf. Fig. 3 (right)]. As the derivation of these condition would exceed the scope
of this paper they will be published in subsequent papers [8] and [9].

Equations (4a, b) represent the weak formulation of the adjoint equation,
which is retrograde in time, and can be formally understood as

−qt(x, t)− qxx(x, t) = µ(t) δ(x− l

2
) in (0, l)× (0, t∗f ) , (5a)

−qx(0, t) = −q(0, t) , qx(l, t) = −q(l, t) on [0, t∗f ] and

q(x, t∗f ) = 0 on [0, l] . (5b)

Since the adjoints can be interpreted as shadow prices, the line { l
2} ×

(t∗on, t
∗
off) indicates from where the temperature exerts an influence on the

objective functional. This result corresponds to the structure of the solution
of the initial-boundary value problem to be expected from (4a, b), in particular
q(x, t) ≡ 0 for t∗off ≤ t ≤ t∗f ; cf. Fig. 5.

A key condition is the optimality condition (4c) which determines the
optimal control. It is a complicated integro-variational inequality with a kernel
depending on all values of u∗ on the interval [0, t∗f ], forward in time, as well as
on all values of q on [t, t∗f ], backward in time. Instead (4c), we can determine
the optimal control by an integro-projection formula,

u∗(t) = P[−umax,umax]

{
− 1
λ

[
ν1 + ν2 t+

∫ t∗f

t

g′(v∗(s))

(∫ l

0

q(x, s) dx

)
ds

]}
.

(6)
Comparing this result with the analogous projection formula of [10] it

turns out that the second factor [in squared brackets] is just the adjoint ve-
locity pẇ(t) of the equivalent ODE optimal control formulation with the PDE
eliminated analytically by a Fourier-type series. This formulation however is
also of non-standard form (with a non-local state constraint leading to bound-
ary value problems for systems of complicated integro-ODEs); see [10].

5 Numerical results

The numerical calculations were conducted with the interior point solver
IPOPT [7], [11] by A. Wächter and Biegler in combination with the mod-
elling software AMPL [1], with the latter featuring automatic differentiation.
This first-discretize-then-optimize (direct) approach was chosen, because even
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the ostensibly simple and handsome problem (1) proves to be a ”redoubtable
opponent” for a first-optimize-then-discretize (indirect) method.

After a time transformation τ := t
tf

to a problem with fixed terminal time
(at the cost of spawning an additional optimization variable tf ), applying a
simple quadrature formula1 to (1a), discretizing the ODE with the implicit
midpoint rule and the PDE with the Crank-Nicolson scheme, one obtains a
nonlinear program to be solved with IPOPT.

0
0.2

0.4
0.6

0.8
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0

2
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t
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1 2 3 4 5

T ∗
(

1
2 , t
)

t

Fig. 3. Temperature T ∗(x, t) (left) and cross-section T ∗ ` 1
2
, t
´

(right) along the
state-constrained trajectory due to the data w0 = −6, v0 = 0, and Tmax = 1.5, cf.
Figs. 1 and 2 (left).

The approximation of the optimal temperature is shown in Fig. 3. The set
of the active state constraint, the line segment A = { l

2}× [t∗on, t
∗
off ], can clearly

be seen. The computations used a space-time discretization of 100 by 1000
grid points yielding t∗f = 5.35596, overall objective functional value of 5.51994,
t∗on = 2.53 and t∗off = 3.96.

Figure 4 shows the approximations of the optimal control (solid) and the
adjoint velocity pẇ (dashed) from the ODE optimal control problem investi-
gated in [10] and also obtained by IPOPT.2 The perfect coincidence with the
projection formula (6) becomes apparent; note the remark to (6).

Figure 5 depicts the approximation of the discrete adjoint temperature
yielded by IPOPT2. With a closer look at q one can observe a jump discon-
tinuity of its derivative in spatial direction along the relative interior of A.
This corresponds to the known jump conditions for adjoints on interior line
segments in state-constrained elliptic optimal control [2]. Furthermore one can
notice two Dirac measures as parts of the multiplier µ at the entry and exit
points of A in analogy to the behaviour of isolated active points [4]. On the

1 a linear combination of the trapezoidal sum and the trapezoidal rule with equal
weights 1 which indeed approximates a multiple of the integral (2a), but avoids
any oscillations of the control.

2 Note that IPOPT delivers estimates for the adjoint variables with opposite sign
compared to our notation.
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other hand the multiplier µ contains a smooth part in the relative interior of
A reminiscent of the common behaviour in ODE optimal control.

0 1 2 3 4 5

u∗

pẇ

t

Fig. 4. Optimality check according to the projection formula (6)

q

t

x

Fig. 5. Adjoint state q of the temperature T .

6 Conclusion

In this paper we studied a prototype of an ODE-PDE optimal control problem.
As it is of relatively simple structure, it allows an unobstructed view on its
adjoints and optimality system. However an adjoint based method even for
such a seemingly simple model problem still remains a formidable task, leaving
a direct method as a much more convenient way to go. This of course results in
the downside that one has to content oneself with estimates of the continuous
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problems’ adjoints obtained from the discrete adjoints of the NLP solver used
in the first-discretize-then-optimize approach.
Transforming the ODE-PDE problem into an only PDE problem, as it has
been done in this paper is not the only possibility of tackling it. As it is also
viable to transform it into an only ODE problem, which will of course also be
pretty nonstandard, an interesting opportunity to compare concepts of ODE
and PDE optimal control may arise here such as statements on the topology
of active sets. However this is beyond the limited scope of the present paper
but can be found in [8], [9].
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12. Wächter, M., Optimalflugbahnen im Hyperschall unter Berücksichtigung der
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