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Summary. We consider an optimal control problem from hyperthermia treatment
planning and its barrier regularization. We derive basic results, which lay the ground-
work for the computation of optimal solutions via an interior point path-following
method in function space. Further, we report on a numerical implementation of such
a method and its performance at an example problem.

1 Hyperthermia Treatment Planning

Regional hyperthermia is a cancer therapy that aims at heating up deeply
seated tumors in order to make them more susceptible to an accompanying
chemo or radio therapy [12]. We consider a treatment modality where heat
is induced by a phased array microwave ring-applicator containing 12 anten-
nas. Each antenna emits a time-harmonic electromagnetic field the amplitude
and phase of which can be controlled individually. The linearly superposed
field acts as a heat source inside the tissue. We are interested in controlling
the resulting stationary heat distribution, which is governed by a semi-linear
elliptic partial differential equation, the bio-heat transfer equation (BHTE),
see [7]. The aim is to heat up the tumor as much as possible, without dam-
aging healthy tissue. We thus have to impose constraints on the temperature,
and mathematically, we have to solve an optimization problem subject to a
PDE as equality constraint and pointwise inequality constraints on the state.

We consider an interior point path-following algorithm that has been ap-
plied to this problem. In order to treat the state constraints, the inequality
constraints are replaced by a sequence of barrier functionals, which turn the
inequality constrained problem into a sequence of equality constrained prob-
lems. We will show existence of barrier minimizers and derive first and second
order optimality conditions, as well as as local existence and differentiability
of the path, and local convergence of Newtons method. Our work extends the
results of [10], which covers the case of linear PDE constraints, to a problem
with a non-linear control-to-state mapping, governed by a semi-linear PDE.
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1.1 The Bio-Heat Transfer Equation

The stationary bio-heat transfer equation was first introduced in [7] to model
the heat-distribution T in human tissue. This partial differential equation
is a semi-linear equation of elliptic type, which can be written as A(T ) −
B(u) = 0, where A(T ) is a differential operator, applied to the temperature
distribution, and B(u) is a source term, which can be influenced by complex
antenna parameters u ∈ C12.

More concretely, we set v := (T, u) and consider the following equation in
the weak form on a domain Ω ⊂ R3, which is an individual model of a patient:

〈A(T ), ϕ〉 :=
∫

Ω

〈κ∇T,∇ϕ〉R3 + w(T )(T − T0)ϕdx+
∫

∂Ω

h(T − Tout)ϕdS,

〈B(u), ϕ〉 :=
∫

Ω

σ

2
|E(u)|2C3 ϕdx

〈c(v), ϕ〉 := 〈A(T )−B(u), ϕ〉 = 0 ∀ϕ ∈ C∞(Ω),

where all coefficients may depend of the spacial variable x, and E(u) =∑12
k=1Ekuk is the superposition of complex time-harmonic electro-magnetic

fields, and uk are the complex coefficients of the control. Further, κ is the
temperature diffusion coefficient, σ is the electric conductivity and w(T ) de-
notes the blood perfusion. By T0, we denote the temperature of the unheated
blood, e.g. 37◦C. The domain Ω consists of a number of subdomains Ωi, corre-
sponding to various types of tissue. All coefficients may vary significantly from
tissue type to tissue type. For a more detailed description of the parameters
we refer to [2].

Assumption 4 Assume that κ, σ ∈ L∞(Ω) are strictly positive on Ω. Sim-
ilarly, let h ∈ L∞(∂Ω) be strictly positive on ∂Ω. Further, assume that
w(T, x)(T − T0) is strictly monotone, bounded and measurable for bounded
T , and twice continuously differentiable in T . Assume also that each electric
field Ek is contained in LqE

(Ω,C3) for some qE > 3.

Remark 1. Our assumptions are chosen in a way that that the temperature
distribution inside the body is bounded and continuous, while still covering the
case of jumping coefficients due to different tissue properties inside the patient
models. Also the assumptions on the regularity of the fields Ek ∈ LqE , qE > 3
are necessary for guaranteeing continuity of the temperature distribution (cf.
e.g. [4, Thm. 6.6]). For the generic regularity Ek ∈ L2 this cannot be guaran-
teed a-priori. In clinical practice, of course, pointwise unbounded temperature
profiles do not occur. Overly large intensity peaks are avoided by construction
of the applicator. However, it is observed that near tissue boundaries so called
hot spots occur: small regions, where the temperature is significantly higher
than in the surrounding tissue due to singularities in the electro-magnetic
fields at tissue boundaries. One of the challenges of optimization is to elimi-
nate these hot spots.
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Under these assumption we can fix our functional analytic framework.
As usual in state constrained optimal control, we have to impose an ‖ · ‖∞-
topology on the space of temperature distributions. To this end, let q be in
the range qE > q > 3, and q′ = q/(q − 1) its dual exponent. We define
V = C(Ω)× C12 and

c : (C(Ω) ⊃ Dq)× C12 → (W 1,q′
)∗,

where Dq is the set of all T , such that A(T ) ∈ (W 1,q′
)∗, i.e. 〈A(T ), ϕ〉 ≤

M‖ϕ‖W 1,q′ ∀ϕ ∈ C∞(Ω). By suitable regularity assumptions Dq = W 1,q(Ω),
a result, which we will, however, not need.

It is well known (cf. e.g. [11, 4]) that A has a continuous inverse A−1 :
(W 1,q′

)∗ → C(Ω), and even ‖T‖Cβ ≤ c‖A(T )‖(W 1,q′)∗ for some β > 0 lo-
cally, where Cβ is the space of Hölder continuous functions. Moreover, it is
straightforward to show that Dq only depends on the main part of A, and is
thus independent of T .

Lemma 1. The mapping c(v) : (C(Ω) ⊃ Dq) × C12 → (W 1,q′
(Ω))∗ is twice

continuously Fréchet differentiable. Its derivatives are given by

〈c′(v)δv, ϕ〉 = 〈A′(T )δT −B′(u)δu, ϕ〉

〈A′(T )δT, ϕ〉=
∫

Ω

〈κ∇δT,∇ϕ〉R3 +(w′(T )(T−T0)+w(T ))δTϕ dx+
∫

∂Ω

hδTϕdS

〈B′(u)δu, ϕ〉 =
∫

Ω

σRe

〈
12∑

k=1

Ekuk,

12∑
k=1

Ekδuk

〉
C3

ϕdx

〈c′′(v)(δv)2,ϕ〉= 〈A′′(T )(δT )2 −B′′(u)(δu)2, ϕ〉 =

=
∫

Ω

(w′′(T )(T − T0) + 2w′(T ))δT 2ϕ− σRe

〈
12∑

k=1

Ekδuk,
12∑

k=1

Ekδuk

〉
C3

ϕdx.

Proof. Since all other parts are linear in T , it suffices to show Fréchet differ-
entiability of T → w(T, x)(T − T0) and u→ |E(u, x)|2. Since by assumption,
w(T, ·) ∈ C1(Ω), differentiability of T → w(T, x)(T − T0) : C(Ω) → Lt(Ω)
for every t < ∞ follows from standard results of Nemyckii operators (cf.
e.g. [3, Prop. IV.1.1], applied to remainder terms). By the dual Sobolev
embedding Lt(Ω) ↪→ (W 1,q′

(Ω))∗ for sufficiently large t, differentiability of
T → w(T, x)(T − T0) : C(Ω) ⊃ Dq → (W 1,q′

(Ω))∗ is shown.
Similarly, differentiability of the mapping u → |E(u, x)|2 : C12 → Ls(Ω)

for some s > 3/2 follows by the chain rule from the linearity of the mapping
u → E(u, x) : C12 → LqE

(Ω,C3) and the differentiability of the mapping
w → |w|2 : LqE (Ω,C3) → LqE/2(Ω,C3) with qE/2 = s > 3/2. Again, by the
dual Sobolev embedding Ls(Ω) ↪→ (W 1,q′

(Ω))∗ we obtain the desired result.
Similarly, one can discuss the second derivatives. We note that (|E(u, x)|2)′

is linear in u, and thus it coincides with its linearization.
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Remark 2. Note that A′ : C(Ω) ⊃ Dq → (W 1,q′
(Ω))∗ is not a continuous

linear operator, but since it has a continuous inverse, it is a closed operator.
Moreover, since the main part ofA is linear, A′(T )−A′(T̃ ) contains no differen-
tial operator. Hence ‖T̃−T‖∞ → 0 implies ‖A′(T )−A′(T̃ )‖C(Ω)→(W 1,q′ )∗ → 0.
These facts allow us to apply results, such as the open mapping theorem and
the inverse function theorem to A.

Lemma 2. For each v ∈ Dq × C12 the linearization

c′(v) = A′(T )−B′(u) : Dq × C12 → (W 1,q′
(Ω))∗

is surjective and has a finite dimensional kernel.
For each v with c(v) = 0 there is a neighborhood U(v) and a local diffeo-

morphism
ψv : ker c′(v)↔ U(v) ∩ {v : c(v) = 0},

satisfying ψ′v(0) = Id and c′(v)ψ′′v (0) = −c′′(v).

Proof. It follows from the results in [4] that A′(T ) has a continuous in-
verse A′(T )−1 : (W 1,q′

(Ω))∗ → C(Ω). Since A′ is bijective, also c′(v) =
(A′(T ),−B′(u)) is surjective, and each element δv = (δT, δu) of ker c′ can
be written in the form (A′(T )−1B′(u)δu, δu). Since δu ∈ C12, ker c′(v) is fi-
nite dimensional. Via the inverse function theorem we can now conclude local
continuous invertibility of A, and also that A−1 is twice differentiable.

Let (δT, δu) = δv ∈ ker c′(v). Then we define

ψv(δv) :=
(

(A−1 ◦B)(u+ δu)
u+ δu

)
and compute

(A−1 ◦B)′(v)δu = A′(T )−1B′(u)δu = δT

(A−1◦B)′′(v)(δu)2 =−A′(T )−1A′′(T )A′(T )−1(B′(u)δu)2+A′(T )−1B′′(u)(δu)2

= −A′(T )−1
(
A′′(T )(δT )2 −B′′(u)(δu)2

)
.

It follows

ψ′v(0)δv = (δT, δu) = δv

c′(v)ψ′′v (0)(δv)2 = (A′(T ),−B′(u))ψ′′v (0)(δv)2

= −(A′′(T )(δT )2 −B′′(u)(δu)2) = −c′′(v)(δv)2.

1.2 Inequality constraints and objective

As for inequality constraints, we impose upper bounds on the amplitudes of
the controls to model the limited power of the microwave applicator:
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|uk| ≤ umax, k = 1 . . . 12.

Moreover, crucially, we impose upper bounds on the temperature inside the
healthy tissue. These are state constraints, which pose significant practical
and theoretical difficulties. These constraints are necessary to avoid excessive
heating of healthy tissue, which would result in injuries of the patient. We
have

T ≤ Tmax(x),

where Tmax is chosen as a piecewise constant function on each tissue type,
depending on the sensitivity of the tissue with respect to heat.

Algorithmically, we treat the inequality constrained optimization problem
in function space by a barrier approach (cf. [10]) and replace the inequality
constraints by a sequence of barrier functionals, depending on a parameter µ
(setting again v = (T, u)):

b(v;µ) =
∫

Ω

l(Tmax − T ;µ) dx− µ
12∑

i=1

ln(umax − |uk|)

here l may be a sum of logarithmic and rational barrier functionals:

lk(·;µ) : R+ → R := R ∪ {+∞}
l1(t;µ) := −µ ln(t), lk(t;µ) := µk/((k − 1)tk−1) (k > 1)

A straightforward computation shows that b(v;µ) is a convex function (as
a composition of convex and convex, monotone functions), and it is also clear
that for strictly feasible v, b : C(Ω)× C12 is twice continuously differentiable
near v, and thus locally Lipschitz continuous there. It has been shown in [10]
that b is also lower semi-continuous.

Finally, we consider an objective functional J : C(Ω) × C12 → R, which
we assume to be twice continuously differentiable, and thus locally Lipschitz
continuous. For our numerical experiments, below, we will choose a simple
objective of the form J(v) = ‖T − Tdes‖2L2

(recall that the control is finite di-
mensional), but more sophisticated functionals are under consideration, which
more directly model the damage caused in the tumor.

Summarizing, we can write down regularized optimal control problem:

min
v∈V

Jµ(v) := J(v) + b(v;µ) s.t. c(v) = 0. (1)

2 Barrier Minimizers and their Optimality Conditions

Next we study existence and basic properties of solutions of the barrier prob-
lems. For this purpose we impose the assumption that there is at least one
strictly feasible solution. This is fulfilled, for example by u = 0, if the upper
bounds Tmax are chosen reasonably.
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Theorem 1. For every µ > 0 the barrier problem (1) has an optimal solution,
which is strictly feasible with respect to the inequality constraints.

Proof. Since the set of feasible controls is finite dimensional, closed, and
bounded and by our assumptions the control-to-space mapping u → T is
continuous (cf. e.g. [4, Thm. 6.6] and the discussion after that theorem), the
set of all feasible pairs (T, u) is compact in C(Ω)×C12. By assumption, there
is at least one strictly feasible solution, for which J + b takes a finite value.
Hence, existence of an optimal solution follows immediately from the Theorem
of Weierstraß (its generalization for lower semi-continuous functions).

Since all solutions of our PDE are Hölder continuous, strict feasibility for
sufficiently high order of the barrier functional follows from [10, Lemma 7.1].

Lemma 3. If vµ is a locally optimal solution of (1), then δv = 0 is a mini-
mizer of the following convex problem:

min
δv

J ′(vµ)δv + b(vµ + δv;µ) s.t. c′(vµ)δv = 0 (2)

Proof. For given, δv ∈ ker c′(vµ), and t > 0 let ṽ = vµ + tδv. By Lemma 2
there are v̂ = ψvµ

(δv), such that c(v̂) = 0 and v̂ − ṽ = o(t). Further, by strict
feasibility of vµ, J + b is locally Lipschitz continuous near vµ with Lipschitz
constant LJ+b. We compute

J ′(vµ)(tδv) + b′(vµ;µ)(tδv) = (J + b)(ṽ;µ)− (J + b)(vµ;µ) + o(t)
= (J + b)(v̂;µ)− (J + b)(vµ;µ) + (J + b)(ṽ;µ)− (J + b)(v̂;µ) + o(t)
≥ 0 + LJ+bo(t) + o(t).

it follows J ′(vµ)δv+b′(vµ;µ)δv ≥ 0, and by linearity J ′(vµ)δv+b′(vµ;µ)δv = 0.
By convexity of b we have b′(vµ;µ)δv ≤ b(vµ + δv;µ)− b(vµ;µ) and thus

J ′(vµ)δv + b(vµ + δv;µ)− b(vµ;µ) ≥ 0

which proofs our assertion.

Theorem 2. If vµ is a locally optimal solution of (1), then there exists a
unique p ∈ H1(Ω), such that

0 = F (v, p;µ) :=
{
J ′µ(vµ) + c′(vµ)∗p,
c(vµ). (3)

Proof. Clearly, the second row of (3) holds by feasibility of vµ. By Lemma 3
δv = 0 is a minimizer of the convex program (2). Hence, we can apply [10,
Thm. 5.4] to obtain first order optimality conditions for this barrier problem
with p ∈W 1,p′

(Ω). Taking into account strict feasibility of vµ with respect to
the inequality constraints, all elements of subdifferentials in [10, Thm. 5.4] can
be replaced by Fréchet derivatives, so (3) follows. In particular, p satisifies the
adjoint equation ∂yJµ(vµ) +A′(T )∗p = 0, which can be interpreted as a PDE
in variational form with ∂yJµ(vµ) ∈ L∞(Ω), and thus p ∈ H1(Ω) follows.
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Before we turn to second order conditions we perform a realification of
the complex vector u ∈ C12. Since |E(u, x)| only depends on the the relative
phase shifts of the antenna parameters, optimal controls of our problem are
non-unique. This difficulty can be overcome easily by fixing Im(u1) = 0. After
that, realification (x + iy → (x, y)) yields a new control vector u ∈ R23

(dropping the component that corresponds to Im(u1)), which we will use in
the following. We define the Hessian of the Lagrangian H(v; p) by

H(v, p)δv2 = J ′′µ (v)δv2 + 〈p, c′′(v)δv2〉

Theorem 3. Let (vµ, pµ) be a solution of (3). Then,

1
2
H(vµ, pµ)δv2 = Jµ(ψvµ(δv))− Jµ(vµ) + o(‖δv‖2). (4)

(i) H(vµ, pµ) is positive semi-definite on ker c′(vµ), if vµ is a local minimizer
of (1).

(ii)H(vµ; pµ) is positive definite on ker c′(vµ), if and only if vµ is a local
minimizer of (1) and Jµ satisfies a local quadratic growth condition.
Then for each (r1, r2) ∈ ((H1(Ω))∗×R23)× (W 1,q′

(Ω))∗ the linear system(
H(vµ, pµ) c′(vµ)∗

c′(vµ) 0

)(
δv
δp

)
=
(
r1
r2

)
(5)

has a unique solution (δv, δp) ∈ V × H1(Ω), depending continuously on
(r1, r2).

Proof. Let δv ∈ ker c′(vµ), and ψvµ be defined as in Lemma 2. We show (4)
by Taylor expansion:

Jµ(ψvµ(δv))− Jµ(vµ) =J ′µ(vµ)ψ′vµ
(0)δv

+ 0.5
(
J ′′µ (vµ)(ψ′vµ

(0)δv)2+J ′µ(vµ)ψ′′vµ
(0)(δv)2

)
+o(‖δv‖2).

(6)

Since J ′µ(vµ)δv = 0 ∀δv ∈ ker c′(vµ), ψ′vµ
(0) = Id, it follows J ′µ(vµ)ψ′vµ

(0)δv =
0. Further, by J ′µ(vµ)δv + 〈pµ, c

′(vµ)δv〉 = 0 ∀δv ∈ V and c′(vµ)ψ′′vµ
(0) =

−c′′(vµ) we deduce

J ′µ(vµ)ψ′′vµ
(0)(δv)2 = −〈pµ, c

′(vµ)ψ′′vµ
(0)(δv)2〉 = 〈pµ, c

′′(vµ)(δv)2〉.

Inserting these two results into (6) yields (4).
All other assertions, except for solvability of (5) then follow directly, using

the fact that |‖δv‖ − ‖ψvµ(δv)− vµ‖| ≤ ‖vµ + δv − ψvµ(δv)‖ = o(‖δv‖).
Let us turn to (5). If H(vµ; pµ) is positive definite on kerc′(vµ) (which is

finite dimensional), then the minimization problem

min
c′(vµ)δv=r2

−〈r1, δv〉+H(vµ; pµ)δv2
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is strictly convex and has a unique solution δv. The first order optimality
conditions for this problem yield solvability of the system (5) at (vµ, pµ).
Since we have assumed r1 ∈ (H1)∗ × R23 and A′(Tµ)∗ : H1 → H−1 is an
isomorphism, we obtain δp ∈ H1. Thus, the matrix in (5) is surjective, and
we may deduce its continuous invertibility by the open mapping theorem.

Corollary 1. If H(vµ, pµ) is positive definite on ker c′(vµ), then, locally, there
is a differentiable path µ → zµ of local minimizers of the barrier problems,
defined in some open interval ]µ, µ[⊃ µ. Further, Newton’s method, applied to
F (v, p;µ) converges locally superlinearly to (vµ, pµ).

Proof. We note that F (v, p;µ) is differentiable w.r.t. µ, and w.r.t. (v, p). Since
F ′ = dF/d(v, p), given by (5) is continuously invertible, local existence and
differentiability follows from the implicit function theorem. Since F ′(v, p;µ)
depends continuously on (v, p), we can use a standard local convergence result
for Newton’s method (cf. e.g. [6, Thm. 10.2.2]).

Remark 3. Since all these results depend on the positive definiteness of H,
we cannot expect to obtain global convergence results for barrier homotopy
paths. From a global point of view, several branches may exist, and if H is
only positive semi-definite at a point of one such branch, it may cease to exist
or bifurcate. As a consequence, a local Newton path-following scheme should
be augmented by a globalization scheme. for non-convex optimization in the
spirit of trust-region methods. This is subject to current reasearch.

3 Numerical results

For the optimization of the antenna parameters we use an interior point path-
following method, applying Newton’s method to the system (3). As barrier
functional we use the sum of rational barrier functionals, and the reduction
of the barrier parameter is chosen adaptively in the spirit of [1, Chapt. 5] by
an affine covariant estimation of the non-linearity of the barrier subproblems.
Further, Newton’s method is augmented by a pointwise damping step. A more
detailed description of this algorithm can be found in [9]. This algorithm can
be applied safely in a neighborhood of the barrier homotopy path, as long as
positive definiteness of H(vµ, pµ) holds. In practice, this works well, as long
as a reasonable starting guess is available for the antenna parameters. Just as
predicted by the theory in the convex case (cf. [10]) the error in the function
value decreases linearly with µ (cf. Figure 1, right).

The discretization of the Newton steps was performed via linear finite
element spaces Xh for T and p (cf. [5]). Discretization and assembly were
performed with the library Kaskade7. In view of Newton’s method this gives
rise to the following block matrix, which has to be factorized at each Newton
step:
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−1
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−4
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−3
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−2

10
−1
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0

µ

j(µ
)−

j op
t

Fig. 1. Left: µ-reduction factors σk = µk+1/µk. Right: error in functional values.

F ′(v, p;µ) =

H1(T, p;µ) 0 A′(T )∗

0 H2(u, p;µ) B′(u)∗

A′(T ) B′(u) 0

 ,

where

H1(T, p;µ)(v, w) = J ′′(T )(v, w) + b′′(T ;µ)(v, w) + 〈p,A′′(T )(v, w)〉L2(Ω)

H2(u, p;µ)(v, w) = b′′(u;µ)(v, w) + 〈p,B′′(u)(v, w)〉L2(Ω).

Note that H2 : R23 → R23, and B′ : R23 → X∗h are dense matrices, while
A′,H1 : Xh → X∗h are sparse. The factorization of this matrix is performed
via building a Schur complement for the (2, 2)-block, so that essentially only
a sparse factorization of A′ and a couple of back-solves have to be performed
via a direct sparse solver. As an alternative one can use an iterative solver,
preconditioned by incomplete factorizations as proposed in [8].

Fig. 2. Heat distribution inside body for µ = 1.0, 0.7, 0.1, 10−4 (left to right).

Let us consider the development of the stationary heat distribution during
the algorithm in Figure 2. We observe the effect of the barrier regularization.
The algorithm starts with a very conservative choice of antenna parameters,
an tends to a more and more aggressive configuration, as µ decreases. This
may be of practical value for clinicians. Further, it is interesting to observe
that already at a relatively large value of µ = 0.1, we are rather close to the
optimal solution. This is reflected by the choice of steps (cf. Figure 1).
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4 Conclusion and Outlook

In this work basic results in function space for barrier methods applied to a
hyperthermia planning problem with state constraints were established. The
theory extends known results from the convex case. While the set of assump-
tions is taylored for hyperthermia, it is clear that the theory also applies to
a wider class of optimal control problems, as long as appropriate regularity
results for the involved differential equation are at hand. Subject of current
research is the extension of our algorithm by a globalization scheme in the
spirit of non-linear programming, in order to increase its robustness in the
presence of non-convexity.
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