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Summary. In this article, we present computational techniques for optimal control
of monodomain equations which are a well established model for describing wave
propagation of the action potential in the heart. The model consists of a non-linear
parabolic partial differential equation of reaction-diffusion type, where the reaction
term is a set of ordinary differential equations which characterize the dynamics of
cardiac cells.

Specifically, an optimal control formulation is presented for the monodomain
equations with an extracellular current as the control variable which must be de-
termined in such a way that wavefronts of transmembrane voltage are smoothed in
an optimal manner. Numerical results are presented based on the optimize before
discretize and discretize before optimize techniques. Moreover, the derivation of the
optimality system is given for both techniques and numerical results are discussed
for higher order methods to solve the optimality system. Finally, numerical results
are reported which show superlinear convergence when using Newton’s method.

1 Introduction

The bidomain equations are considered to be among the most accurate de-
scriptions of cardiac electric activity at the tissue and organ level. They char-
acterize cardiac tissue as a syncytial continuum, derived via a homogenization
procedure, that consists of two interpenetrating domains, intracellular and ex-
tracellular, separated by a cellular membrane at any given point in space. The
equations state that current leaving one domain, by traversing the cellular
membrane, acts as source of current density in the other domain. Mathemat-
ically, this leads to a degenerate parabolic problem that can be recast as an
elliptic partial differential equation (PDE) coupled to a parabolic PDE.The el-
liptic PDE expresses the extracellular potential distribution, Φe, as a function
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of the transmembrane voltage distribution, Vm whereas the parabolic PDE
models cellular activation and recovery processes (reaction term) and how
they affect adjacent tissue by diffusion. We refer to [8, 2] for more detailed
derivation of the bidomain model and further discussions. The numerical so-
lution of the bidomain equations is computationally expensive owing to the
high spatio-temporal resolution required to resolve the fast transients and
steep gradients governing wavefront propagation in the heart. Assuming that
the anisotropy ratios of the two spaces are equal leads to a reduced bidomain
model, referred to as monodomain, which can be solved at a much cheaper
cost by avoiding the time consuming solution of the elliptic PDE [7]. Under
most circumstances of practical relevance the monodomain model can be set
up to approximate the bidomain model fairly well [9, 6].

Under pathological conditions regular activation sequences may decay into
complex and irregular patterns which impair the heart’s capability to pump
blood. If sufficiently fast and disorganized, such patterns, referred to as car-
diac arrhythmias, may lead to death if not treated immediately. Electrical
defibrillation, i.e. the delivery of a strong electrical shock to the heart, is the
only known therapy to reliably restore a normal rhythm. During defibrilla-
tion shocks extracellular currents are injected via electrodes to establish an
extracellular potential distribution which acts to reduce the complexity of the
activity. This is achieved either by extinguishing all electrical activity, i.e. the
entire tissue returns to its quiescent state, or gradients in Vm are smoothed out
to drive the system to a less heterogeneous state which reduces the likelihood
of triggering new wavefronts via “break” mechanisms when switching off the
applied field. To optimally control cardiac arrhythmias, it is essential to de-
termine the control response to an applied electric field as well as the optimal
extracellular current density that acts to damp gradients of transmembrane
voltage in the system. The present article is devoted to the development of
efficient numerical techniques to solve this optimal control problem for the
monodomain equations.

The finite element method is chosen for the spatial discretization and
higher order linearly implicit Runge-Kutta time stepping methods for the tem-
poral discretization. Numerical techniques for solving optimal control prob-
lems typically require combining a discretization technique with an optimiza-
tion method. We will give a brief description of the optimize before discretize
technique, that is write the continuous optimality system first before discretiz-
ing them, and discretize before optimize, that is first discretize the differential
equations before discretizing the optimality system to solve the monodomain
equations. To the authors knowledge this is the first attempt to combine the
linearly implicit time stepping methods with the discretize before optimize
technique to solve the optimality system. The optimal control approach is
based on minimizing a properly chosen cost functional J(Vm, Ie) depending
on the extracellular current Ie as input and on the transmembrane potential
Vm as one of the state variables.
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The organization of this article is as follows: in the next section the gov-
erning equations for the action potential and the behavior of the ionic current
variables using ionic models are described. In section 3 the control problem
is posed for the monodomain equations and the optimality system is derived
for the two discretization approaches. Numerical results are presented in sec-
tion 4. Finally concluding remarks are given.

2 The monodomain equations

The monodomain model consists of the equations for the transmembrane po-
tential and ionic current variables. We set Q = Ω × [0, tf ] where Ω ⊂ Rd,
d = 2, denotes the cardiac tissue sample domain.

∇ · σ̄i∇Vm =
∂Vm

∂t
+ Iion(Vm, w)− Ie in Q (1)

∂w

∂t
= g(Vm, w) in Q (2)

where Vm : Q→ R is the transmembrane voltage, w : Q→ Rn represents the
ionic current variables, σ̄i : Ω → Rd×d is the intracellular conductivity tensor,
Ie is an extracellular current density stimulus, and Iion is the current density
flowing through the ionic channels. The function g(Vm, w) determines the
evolution of the gating variables. Eq. (1) is a parabolic equation and Eq. (2)
is a set of ordinary differential equations which can be solved independently
for each node. Here the initial and boundary conditions are chosen as

σ̄i∇Vm · η = 0 on ∂Q = ∂Ω × [0, tf ] (3)
w(0) = w0 and Vm(0) = V0 in Ω . (4)

Ionic model

The ionic activity is modeled by nonlinear ordinary differential equations. For
the present paper we use the modified FitzHugh-Nagumo (FHN) model based
on the work of Rogers and McCulloch [10] and the simulation parameters are
taken from Colli Franzone et al. [1].

Iion(Vm, w) = GVm(1− Vm

vth
)(1− Vm

vp
) + η1Vmw . (5)

g(Vm, w) = η2(
Vm

vp
− η3w) . (6)

where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential
and vp the peak potential.
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3 Optimal control framework and numerical
discretization

In this section we set forth the optimal control problem, for which the numer-
ical experiments were carried out. We consider

(P)

minJ(Vm, Ie) ,

e(Vm, w, Ie) = 0 in Q ,
(7)

where Vm and w are the state and Ie is the control variable. The coupled PDE
and ODE constraints (1-2) for the monodomain equation together with initial
and boundary conditions for Vm are expressed as e(Vm, w, Ie) = 0. The control
variable Ie is chosen such that it is nontrivial only on the control domain Ωcon

of Ω and Ie equals zero on (Ω \Ωcon)× (0, T ).
The cost functional which is used to optimize the potentials and currents

is given by

J(Vm, Ie) =
1
2

∫ T

0

(∫
Ωobs

|Vm − Z|2 dΩobs + α

∫
Ωcon

|Ie|2 dΩcon

)
dt, (8)

where α is the weight of the cost of the control, Ωobs is the observation do-
main and Ωcon is the control domain. If Z = 0 then the interpretation of the
cost-functional J for the problems to be considered is such that by properly
applying Ie excitation waves are suppressed in the region Ωobs. The inclu-
sion of the tracking type term Z in the cost functional serves code-validation
purposes.

Due to their size and complexity PDE based optimization problems are
generally challenging to solve in practice. The interplay of optimization and
infinite dimensionality of the problem is a crucial one. There are essentially
two approaches to deal with it. In the optimize before discretize (OBD) ap-
proach, first a minimization strategy is applied to the continuous optimal
control problem, (this may consist of deriving the optimality system), and
subsequently the resulting formalism is discretized. Alternatively, in the dis-
cretize before optimize (DBO) approach, first the differential equations as
well as the cost J in (P ) are discretized and subsequently the optimization
procedure for solving the finite-dimensional minimization problem is fixed.

3.1 Optimize before discretize

In this subsection we follow an OBD technique to solve the monodomain
model. More specifically for the problem under consideration the Lagrangian
is defined by

L (Vm, w, Ie, p, q) = J(Vm, Ie) +
∫ T

0

∫
Ω

(
∂w

∂t
− g(Vm, w)

)
q dΩ dt

+
∫ T

0

∫
Ω

(
∇ · σ̄i∇Vm −

∂Vm

∂t
+ Iion(Vm, w)− Ie

)
p dΩ dt, (9)
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where the initial conditions are kept as explicit constraints. The first order
optimality system is obtained by formally setting the partial derivatives of L
equal to 0. We find

LVm : (Vm − Z)Ωobs
+∇ · σ̄i∇p+ pt − (Iion)Vmp− gVmq = 0 , (10)

Lw : −(Iion)wp− qt − gwq = 0 , (11)

where the subscripts Vm and w denote partial derivatives with respect to these
variables. Further we obtain the

terminal conditions: p(T ) = 0, q(T ) = 0, (12)
boundary conditions: σ̄i∇p · η = 0 on ∂Q , (13)
and the optimality condition: LIe : αIe + p = 0 , on Ωcon . (14)

To solve (P) numerically we need to solve the coupled system of primal
equations (1-2), adjoint equations (10-11), together with initial conditions
(4), boundary conditions (3,13), terminal conditions (12), and the optimality
system (14). The optimality system serves as a gradient of the cost functional
for our computations.

In this study, we have chosen the finite element method for the spatial-
and higher order linearly implicit Runge-Kutta time stepping methods for the
temporal discretizations, specifically a 2-stage Rosenbrock type method [3].
We now give a brief description of spatial and temporal discretizations for the
primal and adjoint equations. For further details we refer to Nagaiah et al. [4].

Discretization of primal and adjoint problems

In computations, the primal problem is solved by decoupling the parabolic
part from the ordinary differential equation. In a first step we use the Euler
explicit time stepping method to solve the ODE part. In a second step, using
the new solution of the gating variables w, we solve the parabolic part by
employing a Rosenbrock time stepping method, refer to [4, 5] for more details.
After the space and time discretization for the primal problem, the system of
linear equations can be expressed as follows:

wn = wn−1 + δtη2

(
vn−1

vp
− η3wn−1

)
J1kn

1 = −Kvn−1 −MIion(vn−1,wn) + MIe ,

J1kn
2 = −K (vn−1 + α21kn

1 )−MIion(vn−1 + α21kn
1 ,wn) + MIe −

c21
δt

Mkn
1

vn = vn−1 +m1kn
1 +m2kn

2 , for n = 1, . . . , Nt, (15)

where K is the stiffness matrix, M is the mass matrix, J1 = ( 1
δtγ M + K +

M[Iion(vn−1,wn)]v), Nt is the maximum number of time steps, the coeffi-
cients γ, αij , cij are constants and the subscript v denotes the partial deriva-
tive with respect to this variable. For solving the linear system the BiCGSTAB
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method with ILU preconditioning is used. We use the same discretization
techniques to solve the adjoint problem. After spatial discretization by FEM
and time discretization by a 2-stage Rosenbrock type method for the adjoint
problem the system can be written as follows:

qn = (1− δtη2η3)qn+1 + δtη1vn+1pn

J2l1 = Kpn+1 + M[Iion(vn+1)]vpn+1 +
η2
vp

Mqn −M(vn+1 − zn+1)Ωobs
,

J2l2 = K (pn+1 + α21l1) + M[Iion(vn+1)]v (pn+1 + α21l1) +
η2
vp

Mqn

−M(vn+1 − zn+1)Ωobs
− c21

τ
Ml1

pn = pn+1 +m1l1 +m2l2 , for n = 1, . . . , Nt − 1 , (16)

where J2 = −
(

1
τnγ

M− (K + M[Iion(vn+1)]vn+1)
)

3.2 Discretize before optimize

In this subsection we explain a discretize before optimize (DBO) technique
to solve the monodomain model. This technique first transforms the original
continuous problem into a finite dimensional optimization problem by dis-
cretizing in space and time. Then the fully discretized optimization problem
is solved by existing optimization solvers. First, in this process the objective
functional is written as follows

J(v, Ie) =
δt

2
(
Nt−1∑
n=1

(vn − zn)>M(vn − zn) + α(In
e )>MIn

e )

+
δt

4
[
(vNt − zNt)

>M(vNt − zNt) + α(INt
e )>MINt

e

]
+
δt

4
α(I0

e)
>MI0

e.

To solve the monodomain problem with the DBO approach we discretize
the problem first in space and time. For the space discretization we used piece-
wise linear FEM, and for the temporal discretization a 2 stage Rosenbrock
type method. The resulting algebraic system can be obtained as in Eq. (15).
The corresponding Lagrangian is given by

L(w,v, Ie,k1,k2,p,q, φ, ψ)

= J(v, Ie) +
N∑

n=1

q>n
(
Mwn −Mwn−1 − δt Mg(vn−1,wn−1)

)
+

N∑
n=1

φ>n (J1kn
1 + Kvn−1 + MIion(vn−1,wn)−MIn

e )

+
N∑

n=1

ψ>n

(
J1kn

2 + K (vn−1 + α21kn
1 ) + MIion(vn−1 + a21kn

1 ,wn)
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−MIn
e + M

c21
δt

kn
1

)
+

N∑
n=1

p>n (vn − vn−1 −m1kn
1 −m2kn

2 ) .

The first order optimality system is obtained by formally setting the partial
derivatives of L equal to 0. We find

Lwn : q>n − q>n+1 + δtη2η3q>n+1 + φ>n η1v
n+1 + ψ>n

(
vn+1 + a21kn

1

)
η1 = 0

Lkn
2

: ψ>n J1 −m2p>n = 0

Lkn
1

: φ>n J1 + ψ>n Ka21 + ψ>n M(Iion)k1 +
c21
δt
ψ>n M−m1p>n = 0

Lv : δt[M(vn − zn)Ωobs
− η2
vp

Mq>n+1] + φ>n+1K + φ>n+1M(Iion(v))v

+ψ>n+1K + ψ>n+1M
(
Iion(vn+1 + a21k1,wn)

)
v

+ p>n − p>n+1 = 0 (17)

LvNt : pNt = −δt
2

M(vNt − zNt) (18)

LIe : δtαMIn
e = M(φn + ψn) , where n = N − 1, . . . , 1 (19)

LINt
e

:
δt

2
αMINt

e = M(φNt + ψNt). (20)

In this case eqs. (19) and (20) serve as a gradient of the cost functional in
computations.

3.3 Comparison of optimization methods

If we observe the first derivative of the cost functional, it involves the adjoint
stage solutions φn and ψn of time stepping method in the DBO case and in the
OBD case it involves the adjoint variable of the primal solution. The terminal
solution to solve the adjoint problem is different in the DBO from the OBD
case. Also, one needs to evaluate two extra matrix times vector products in
the DBO case, see eq. (17), in comparison to algebraic system of the OBD.
If one uses Newton’s method to solve the optimality system, the DBO case
requires more memory than the OBD case, because the stage solutions of
primal problem are involved in the linearized primal and adjoint equations.

A nonlinear conjugate gradient (NCG) method and Newton’s method are
adopted to solve the optimality system. In both cases a line search is required.
For this purpose we use the strong Wolfe conditions with a back tracking
strategy. A more in-depth description will be found in [4, 5] to solve the
current optimization problem.

4 Results

In this section numerical results are presented to demonstrate the capability
of dampening an excitation wave of the transmembrane potential by prop-
erly applying an extracellular current stimulus. In this note the numerical



416 Ch. Nagaiah, K. Kunisch, and G. Plank

results for the OBD and DBO approaches are compared for 1D examples, see
[5] for 2D results. Also comparisons with respect to the NCG and Newton
optimization algorithms are given. The computational domain is Ω = (0, 1).
The relevant subdomains are depicted in Figure 1. The observation domain is
Ωobs = Ω\(Ωf1 ∪Ωf2), the excitation domain is Ωexi and the control domain
is Ωcon = Ωcon1 ∪Ωcon2.

Ωcon1 Ωexi Ωcon2

Ωf2

Ω

Ωf1

Fig. 1. Control and excitation region at the cardiac domain

The choice Z = 0 corresponds to the desire to dampen the wave in Ωobs.
For the computations the simulation time is set to 4 msec. A uniform spatial
mesh consisting of 100 nodes, and 200 equidistant time steps are used. Also we
assume that the initial wave excitation takes place on the excitation domain.
In all simulations the weight of the cost of the control is fixed at α = 5 · 10−3

and the optimization iterations were terminated when the following condition
is satisfied: ‖∇Jk‖∞ ≤ 10−3(1 + |Jk|) or difference of the cost functional
between two successive optimization iterations is less than 10−3. The code is
implemented using MATLAB-7.4 version.

The continuous L2 norm of the gradient and the minimum value of the cost
functional with respect to the optimization iterations are depicted in Figure 2
for OBD and DBO, using the NCG and Newton optimization algorithms. The
norm of the gradient and the minimal values of the cost functional decrease
more rapidly for Newton’s method. In this case both OBD and DBO take 7
optimization iterations to reach the stopping criterion. The DBO algorithm is
bit faster and takes 13 sec of CPU time. The OBD algorithm takes 1.04 times
of CPU time more than the DBO case. Indeed, there is no big difference
between the OBD and DBO techniques for this particular problem. Also,
similar behavior between the OBD and DBO is observed using the NCG
algorithm. For all methods the cost functional value is approximately 102
at the optimal state solution. The optimal state solution of transmembrane
voltage is shown in Figure 3 at time t = 0.04 msec and t = 1.40 msec and we
can observe that excitation wave is completely dampened.

The line search algorithm takes small step lengths at the beginning of opti-
mization iterations and full steps towards the end of the iterations. In Table 4
the optimization iterations, the norm of the gradient of the cost functional
and the order of convergence for the OBD method using Newton’s algorithm
is presented. From this table we can conclude that the OBD technique based
on the Newton method shows super linear convergence from iteration 3 to 6.
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Fig. 2. The norm of the gradient and minimum value of the cost functional are
shown on left and right respectively for T = 4 msec of simulation time.
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Fig. 3. The optimal state solution of Vm at time t = 0.04 msec and t = 1.80 msec
for T = 4 msec of simulation time.

opt.iters ||∇J(Vm, Ie)|| ||∇J(Vm,Ie)||i+1
||∇J(Vm,Ie)||i

1 160.4675668
2 38.2739193 0.2385
3 17.7594672 0.4640
4 5.4176392 0.3051
5 0.4178937 0.0771
6 0.0064591 0.0155
7 0.0001882 0.0291

Table 1. Optimization iterations, norm of gradient of cost functional and order of
convergence for the OBD technique with Newton’s algorithm are presented.

5 Conclusions

In this note, two concrete realizations of the OBD and the DBO approaches for
optimal control of the action potential in cardiac electrophysiology based on
the monodomain equation were discussed and numerical results are presented
for a one-D example. For the current problem there is no significant difference
for these two techniques. However, there is a significant difference between
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the NCG and the Newton methods. Due to the strong nonlinearities in the
model, it appears to be difficult to observe a second order convergence. In this
respect we were more successful to achieve a superlinear convergence for both
discretization methods. The results motivate us to continue our investigations
for the bidomain model. The computational results, with extracellular control
dampening the complete wave propagation of the transmembrane potential,
suggest to also strive for more insight into longer time horizons, with com-
plete simulations of several heart beats, and more realistic geometries and
finer meshes.
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Optimization and Applications in Biomedical Sciences”.
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