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Summary. Motivated by car safety applications the goal is to deternmine a thick-
ness coefficient in the nonlinear p-Laplace equation. The associated optimal problem
is hard to solve numerically. Therefore, the computationally expensive, nonlinear
p-Laplace equation is replaced by a simpler, linear model. The space mapping tech-
nique is utilized to link the linear and nonlinear equations and drives the optimiza-
tion iteration of the time intensive nonlinear equation using the fast linear equation.
For this reason an efficient realization of the space mapping is utilized. Numerical
examples are presented to illustrate the advantage of the proposed approach.

1 Introduction

A main aspect in the design of passenger cars with respect to pedestrian safety
is the energy absorption capability of the car parts. Besides that, the car parts
have to fulfill several other requirements. The associated optimal problem is
hard to solve numerically. That makes it necessary to develop easy and fast to
solve prediction models with little loss in accuracy for optimization purpose.
Current simulation tools combined with standard optimization software are
not well suited to deal with the above mentioned needs [13].

We will show the application of mathematical methods on a simplified
model to reduce the optimization effort. The goal of the structural optimiza-
tion problem (see [7, 8]) is to determine a thickness parameter λ of a plate
Ω ⊂ R2 (representing a part of the vehicle) and an associated displacement u
satisfying the nonlinear p-Laplace equation

−div
(
2(1 + n)λ(x) |∇u(x)|2n

2 ∇u(x)
)

= g(x) for all x ∈ Ω (1)

together with Dirichlet boundary conditions, where g represents a force acting
on Ω, n ∈ (0, 1) is the Hollomon coefficient, and | · |2 stands for the Euclidean
norm. We suppose that 0 < λa ≤ λ(x) ≤ λb with positive scalars λa and λb.
Our goal is to minimize the mass of the plate, i.e., to minimize the integral
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J1(λ) =
∫

Ω

λ(x) dx

but also to avoid that the displacement is larger than a given threshold ub > 0.
This issue is motivated by our pedestrian safety application. Thus we choose

J2(u) = β

∫
Ω

min(u(x) − ub(x), 0)3 dx

as the second part of our cost functional. Here β > 0 is a weighting parameter.
Due to the nonlinear structure of the elliptic partial differential equation, the
numerical solution of the optimization problem governed by the partial differ-
ential equation (PDE) constraint (1) is expensive, we consider an alternative
constraint given by

−div
(
2(1 + n)µ(x)∇v(x)

)
= g(x) for all x ∈ Ω, (2)

which is a linear elliptic PDE. We will call (1) the fine model and (2) the
coarse model. It turns out that the space mapping technique [9] provides an
attractive framework to improve the use of the coarse model as a surrogate for
the optimization of the fine model. The space mapping technique is utilized to
link the linear and nonlinear equations and drives the optimization iteration
of the time intensive nonlinear equation using the fast linear equation. For
this reason an efficient realization of the space mapping is utilized.

The space mapping technique was first introduced in [2]. The idea of the
space mapping has been developed along different directions and generalized
to a number of contexts [14]. One of the problems lies in the information neces-
sary to compute the Jacobian of the space mapping which involves expensive
gradient information of (1). In [1] Broyden’s method is utilized to construct
an approximation of the Jacobian. This approach will be presented. In the
context of PDEs, we refer to [6, 10]. Compared to [1, 2, 14], our modified
approach is similar to [6], where a modified Broyden formula is used.

The paper is organized in the following manner. In Section 2 we introduce
the infinite-dimensional optimization problem for the p-Laplace equation. The
space mapping approach is described in Section 3, whereas in Section 4 the
surrogate optimization problem is formulated. Section 5 is devoted to present
numerical examples illustrating the advantage of the proposed approach.

2 Optimization of the complex model

In this section we formulate optimal control problem governed by the p-
Laplace equation. By W 1,p

0 (Ω), p ∈ [1,∞), we denote the Sobolev space of
weakly differentiable functions, whose weak derivative belongs to Lp(Ω) and
whose function values are zero on the boundary Γ = ∂Ω. We set p = 2n+ 2
for n ∈ (0, 1). Let us define the Banach space X = L∞(Ω) ×W 1,p

0 and the
nonlinear operator f : X →W 1,p

0 (Ω)′ (fine model) as
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〈f(x), ϕ〉(W 1,p
0 )′,W 1,p

0
=
∫

Ω

2(1+n)λ(x)|∇u(x)|p−2
2 ∇u(x)·∇ϕ(x)−g(x)ϕ(x) dx

for x = (λ, u) ∈ X and ϕ ∈ W 1,p
0 (Ω), where 〈· , ·〉(W 1,p

0 )′,W 1,p
0

denotes the

dual pairing between W 1,p
0 (Ω)′ and W 1,p

0 (Ω). Now f(x) = 0 in W 1,p
0 (Ω)′ for

x = (λ, u) ∈ X is equivalent with the fact that u is a weak solution to (1) for
thickness parameter λ.

The goal is to determine an optimal thickness parameter λ and a corre-
sponding optimal displacement u minimizing the cost functional Jf : X → R
given by

Jf (x) =
∫

Ω

λ(x) +
η

2

∣∣λ(x)− λ◦(x)
∣∣2 + β min

(
u(x)− ub(x), 0

)3 dx

for x = (λ, u) ∈ X subject to (s.t.) the equality constraints f(x) = 0 in
W 1,p

0 (Ω)′ and to the inequality constraints λa ≤ λ(x) ≤ λb f.a.a. x ∈ Ω, where
λa, λb are positive scalars with λa ≤ λb, η ≥ 0 is a regularization parameter
and λ◦ ∈ C0,1(Ω) is a nominal thickness parameter satisfying λa ≤ λ◦(x) ≤ λb

f.a.a. x ∈ Ω. Furthermore, β ≥ 0 is a weighting parameter and ub ∈ L∞(Ω)
satisfies ub(x) > 0 f.a.a. x ∈ Ω. The last term of the cost functional Jf

penalizes the situation if the displacement is larger than the given threshold
ub. We introduce the set of admissible thickness parameters by

Λad =
{
λ ∈ C0,1(Ω) |λa ≤ λ(x) ≤ λb f.a.a. x ∈ Ω and ‖λ‖C0,1(Ω) ≤ cb

}
with cb = ‖λb‖C0,1(Ω) and define Xad = Λad ×W 1,p

0 (Ω). Then, the infinite-
dimensional, nonconvex minimization problem can be formulated abstractly
as

minJf (x) s.t. x ∈ Ff =
{
x ∈ Xad

∣∣ f(x) = 0 in W 1,p
0 (Ω)′

}
, (3)

where Ff is the set of admissible solutions. Let us refer to [4, 5] for optimal
solutions existence results for (3), where a Dirichlet and Neumann optimal
control problem governed by the p-Laplace equation is considered.

Solving (1) numerically is a difficult task due to the quasilinear elliptic
constraint f(x) = 0 (fine model). In the next section we utilize instead of the
accurate, but complex model (1) a linear elliptic PDE as a simpler model that
is much easier to solve. Then we combine the simple and the complex model
by applying a space mapping approach.

3 Space mapping

The space mapping is a mapping between the fine model space parameter or
variables and the coarse model space. Then the optimization can be carried
out for the coarse model, but information from the fine model is utilized
to improve the accuracy of the optimization result with respect to the real
application.
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As introduced in Section 1 the goal is to replace the fine model (1) by
the coarse model (2). Later this fine model will be used in the optimization
problem. Existence and uniqueness of a weak solution to (2) were discussed in
[3]. Let us now define the Banach space Y = L∞(Ω)×H1

0 (Ω) and introduce
the bilinear operator c : Y → H−1(Ω) (coarse model) by

〈c(y), ϕ〉H−1,H1
0

=
∫

Ω

2(1 + n)µ(x)∇v(x) dx− 〈g, ϕ〉H−1,H1
0

for y = (µ, v) ∈ Y and ϕ ∈ H1
0 (Ω), where 〈· , ·〉H−1,H1

0
stands for the dual

pairing between H1
0 (Ω) and its dual space H−1(Ω).

Let us now formulate the space mapping. Our fine model is the p-Laplace
equation (1) with the model output u together with the thickness parameter
λ. The coarse model is given by the linear ellipic PDE (2) with the model
output v and the thickness parameter µ. The goal of the space mapping is
to adjust the thickness parameter µ in the coarse model so that the model
outputs u and v are similar. Furthermore we want to achieve that the thickness
parameters µ and λ are not too distinct.

Concentrating on the region of interest (the subset of Ω, where the force
g acts) we consider the space mapping on a subset A ⊆ Ω. We define the
restriction operator RA : L2(Ω)→ L2(Ω) as RAv = v on A a.e. and RAv = 0
otherwise. Further we introduce the set of admissible thickness parameters by

Mad =
{
µ ∈ C0,1(Ω) |µa ≤ µ(x) ≤ µb f.a.a. x ∈ Ω and ‖µ‖C0,1(Ω) ≤ Cb

}
with Cb = ‖µb‖C0,1(Ω). For µ ∈Mad the solution to (2) belongs to H2(Ω).

Now we introduce the space mapping P : Λad → Mad as follows: for a
given thickness parameter λ ∈ Λad the corresponding µ = P(λ) ∈Mad is the
thickness parameter so that RAv is as close as possible to RAu. We formulate
µ as the solution to a minimization problem. The goal is to determine an
optimal thickness µ for a given λ minimizing the cost functional Jsp : Y → R
given by

Jsp(y) =
γ

2

∫
A

∣∣v(x)− u(x)
∣∣2 dx +

κ

2

∫
Ω

∣∣µ(x)− λ(x)
∣∣2 dx

for y = (µ, v) ∈ Y subject to µ ∈Mad and the equality constraint c(y) = 0 in
H−1(Ω), where γ > 0 is a weighting and κ ≥ 0 is a smoothing parameter.

Let us now formulate the minimization problem more abstractly. We define
Yad = Mad ×H1

0 (Ω), then the problem can then be written as follows

min Jsp(y) s.t. y ∈ Fsp =
{
y ∈ Yad

∣∣ c(y) = 0 in H−1(Ω)
}
, (Psp)

where Fsp is the set of admissible solutions.
The following theorem ensures existence of optimal solutions to (Psp) and

states the first-order necessary optimality conditions. The proof follows from
[3] and [8].
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Theorem 1. The problem (Psp) has at least one optimal solution y∗ =
(µ∗, v∗) ∈ Yad, which can be characterized by first-order necessary optimal-
ity conditions: There exists a unique associated Lagrange multiplier p∗ ∈ V
together with y∗satisfying the adjoint equation

−div
(
2(1 + n)µ∗(x)∇p∗(x)

)
= −γ

(
RA(v∗ − u)

)
(x) f.a.a. x ∈ Ω,

p∗(x) = 0 f.a.a. x ∈ Γ. (4)

Moreover, the variational inequality∫
Ω

(
κ
(
µ∗(x)− λ(x)

)
+ 2(1 + n)

(
∇v∗(x) · ∇p∗(x)

)) (
µδ(x)− µ∗(x)

)
dx ≥ 0

holds for all µδ ∈Mad.

The optimal control problem given by (Psp) can be written in reduced form

min Ĵsp(µ) s.t. µ ∈Mad. (P̂sp)

The gradient of the reduced cost functional at a given point µ ∈ Mad in a
direction µδ ∈ L∞(Ω) is given by

Ĵ ′sp(µ)µδ =
∫

Ω

(κ (µ(x)− λ(x)) + 2(1 + n)∇v(x) · ∇p(x))µδ(x) dx,

where v satisfies (2) and p solves (4).
In our numerical experiments we assume that (P̂sp) has an inactive so-

lution µ∗, i.e., µa < µ∗ < µb f.a.a. x ∈ Ω and ‖µ∗‖C0,1(Ω) < Cb. We utilize
a globalized Newton method with Armijo backtracking line search algorithm
[12, p. 37] to solve (P̂sp). In each level of the Newton method the linear system

Ĵ ′′sp(µ
`)d` = −Ĵ ′sp(µ

`) (5)

is solved by the truncated conjugate gradient method [12, p. 169]. We find(
Ĵ ′′sp(µ

`)µδ

)
(x) = κµδ(x) + 2(1 + n)

(
∇vδ(x) · ∇p`(x) +∇v`(x) · ∇pδ(x)

)
f.a.a. x ∈ Ω, where u` and p` satisfy (2) and (4) respectively and uδ and pδ

satisfy linearized state and adjoint equations; see [8]. Another possibility to
solve (5) is to utilize a quasi Newton approximation or the Hessian.

4 Surrogate optimization

In this subsection we turn to the surrogate optimization that is used to solve
approximately (3). The main idea is to solve the optimization problem using
the coarse model c(y) = 0, but to take the fine model f(x) = 0 into account
by the space mapping technique introduced in Section 3.
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Let us introduce the Banach space Z = L∞(Ω) ×H1
0 (Ω) and the subset

Zad = Λad ×H1
0 (Ω). We define the cost functional Jso : Z → R as

Jso(z) =
∫

Ω

λ(x) +
η

2

∣∣λ− λ◦∣∣2 + βmin
(
v(x)− ub(x), 0

)3 dx

for z = (λ, v) ∈ Z, where η, λ◦, β, ub are as in Section 2. We consider the
optimization problem

minJso(z) s.t. z ∈ Fso =
{
z ∈ Zad

∣∣ c(µ, v) = 0 and µ = P(λ)
}
. (Pso)

Note that in the surrogate optimization the space mapping is used to link
the coarse and the fine model and therefore informations of the fine model
are taken into account in the optimization prozess. We suppose that (Pso)
has a local optimal solution z∗ = (λ∗, v∗) ∈ Zad. In particular, we have
v∗ = Sc(P(λ∗)), where Sc denotes the solution operator for the coarse model.
The corresponding reduced problem is given by

min Ĵso(λ) s.t. λ ∈ Λad

with

Ĵso(λ) =
∫

Ω

λ(x) +
η

2

∣∣λ− λ◦∣∣2 + βmin
(
v(x)− ub(x), 0

)3 dx, λ ∈ Λad.

with v = Sc(P(λ)). Next we state the first-order necessary optimality condi-
tions for (Pso); see [7].

Theorem 2. Suppose that z∗ = (λ∗, v∗) is a local solution to (Pso) and the
space mapping P is Fréchet-differentiable. Then there exist unique associated
Lagrange multipliers p∗ ∈ V and ξ∗ ∈ L2(Ω) together with z∗ satisfying the
adjoint equation

−div
(
2(1 + n)µ∗(x)∇p∗(x)

)
= −3βmin

(
v∗(x)− ub(x), 0

)2 f.a.a. x ∈ Ω,
p∗(x) = 0 f.a.a. x ∈ Γ.

Moreover, the variational inequality∫
Ω

(
1 + η

(
λ∗(x)− λ◦(x)

)
+ 2(1 + n)P ′(λ∗)?

(
∇v∗(x) · ∇p∗(x)

))
(λδ(x)− λ∗(x)) dx ≥ 0

holds for all λδ ∈ Λad, where P ′(λ∗)? denotes the adjoint operator to P ′(λ∗).

It follows that the gradient Ĵ ′so of the reduced cost functional is given by

Ĵ ′so(λ) = 1 + η(λ− λ◦) + P ′(λ)?2(1 + n)∇v(·) · ∇p(·) in Ω,

where the function v satisfies
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−div
(
2(1 + n)µ(x)∇v(x)

)
= g(x) f.a.a. x ∈ Ω,

v(x) = 0 f.a.a. x ∈ Γ

with µ = P(λ) and p is the solution to

−div
(
2(1 + n)µ(x)∇p(x)

)
= −3βmin(v∗(x)− ub(x), 0)2 f.a.a. x ∈ Ω,

p(x) = 0 f.a.a. x ∈ Γ.

To avoid the computation of the operator P ′(λ) we apply Broyden’s updating
formula providing a matrix B which can be used to replace P ′(λ), but also
P ′(λ)?. We use a modified Broyden’s update formula introduced in [6]:

B`+1 = B` +
P̃δ −B`λδ

‖λδ‖2L2(Ω)

〈λδ, ·〉L2(Ω)

with

P̃δ = Pδ + σ
Ĵδ − 〈Ĵ ′sur(λ

k),Pδ〉L2(Ω)

‖λδ‖2L2(Ω)

Ĵ ′sur(λ
`),

where Ĵδ = Ĵ ′so(λ
`+1) − Ĵ ′so(λ

`), λδ = λ`+1 − λk and Pδ = P(λ`+1) − P(λ`).
Note that for σ = 0 we get the classical Broyden’s update formula.

For the numerical solution we apply the gradient projection method using
Broyden’s updating to obtain an approximation of the sensitivity P ′(λ).

5 Numerical results

In this section we present numerical results for the space mapping and the
surrogate optimization. For our numerical example we consider a domain rep-
resenting a simplified door, denoted by Ω. The gray line in Figure 2 (left plot)
indicates the section of the boundary, where homogeneous Neuman bound-
ary conditions of the form 〈∇u(x),−→n 〉2 = 0 are applied, where −→n denotes
an outer normal on the boundary and 〈· , ·〉2 the Euclidean inner product.
We use the finite element discretization and solvers for (1) and (2) provided
by the Matlab Partial Differential Equation Toolbox. The right-hand
side g(x) (force term) is given as follows:

g(x) =
{

47.71, x ∈ Br(xmid) =
{
x ∈ Ω

∣∣ |xmid − x|2 < r
}
,

0, otherwise,

where xmid = (0.5, 0.45)T and r = 0.1. This force term is indicated as the
gray circle in Figure 2 (left plot). Let us next state the parameters for our
numerical example. The Hollomon coefficient is set to n = 0.22. For the space
mapping we choose the weight parameter as γ = (

∫
Ω
|u(x)|2 dx)−1 and κ =

10−3γ. Further we choose the region A to be a circle with radius 0.2 and
midpoint (0.5, 0.45), illustrated in Figure 2 (left plot) by a black circle. Next
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we have a look at the parameters for the surrogate optimization. We choose
η, β and λ◦ to be 1.25, 255 and 1.7, respectively. The threshold ub is set to
0.3 and the bounds for the thickness parameter are set to µa = λa = 0.05
and µb = λb = 10. As a stopping criteria we choose the norm of the reduced
gradient to be smaller than 0.1 times the maximum diameter of the finite
elements. We will report on numerical results for two different settings for the
parameter σ.

Fig. 1. Initial thickness parameter (left plot) and the optimal thickness parameter
µ∗ (right plot) for the space mapping using the Newton-CG method.

Fig. 2. Domain Ω with region A (black circle) and region Br(xmid) (gray circle)
(left plot) and the optimal thickness parameter λ∗ (right plot) for the surrogate
optimization.

Let us first present a numerical result for the space mapping. As an initial
thickness for the space mapping we choose a structured initial thickness pa-
rameter, shown in Figure 1 (left plot). In the right plot of Figure 1 we present
the corresponding thickness parameter µ∗ computed by the space mapping.
We observe that the thickness parameter is enlarged in the region A. In Ta-
ble 1 the numerical results and performace for the space mapping utilizing the
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Fig. 3. Displacement v solving (2) for µ = λ∗ (left plot) and solution u to (1) for
λ = λ∗ (right plot).

Table 1. Summary of the results for the space mapping and the performance for
two different methods.

v u BFGS Newton-CG

maxΩ 0.68961 0.59601 0.59541 0.59462
Iterations 9 4
Time (sec) 8.52 4.81

Table 2. Summary of the results for the surrogate optimization and the performance
of the gradient projection method for two different Broyden’s updates (σ = 0 and
σ = 0.2).

σ maxΩ u maxΩ v Volume minΩ λ maxΩ λ ‖u− v‖L2(Ω) Iter Time (sec)

0.0 0.31307 0.27650 0.48857 0.89759 1.77613 0.01198 10 82.72
0.2 0.31313 0.27606 0.48899 0.89555 1.67856 0.01204 7 57.65

Newton-CG and the BFGS algorithms are summarized. It turns out that for
the thickness parameter shown in Figure 1 (left plot) the maximal displace-
ments for v (solution to the linear model) and u (solution to the p-Laplacian)
are quite different. Using the space mapping the optimal thickness parame-
ter leads to a maximal displacement in the linear model that is very close to
maximal one of u. Furthermore, we observe from Table 1 that the Newton-
CG method performs significantly better then the BFGS method while giving
nearly the same results measured in the maximum displacement.

Next we present the numerical results for the surrogate optimization. In
Figure 2 (right plot) the optimal thickness parameter λ∗ for the surrogate
optimization is shown. The corresponding displacements for the coarse and
fine model are shown in Figure 3 (left and right plot), respectively. Compar-
ing the plots in Figure 3 we observe that the maximum displacement of the
non-linear model is significantly larger than the maximal displacement for the
linear model. Therefore, if we make the thickness parameter λ∗ smaller, the
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maximal displacement for the non-linear model would be significantely larger
than the threshold ub = 0.3. The surrogate optimization takes this fact into
account. In Table 2 we summarize the numerical results for the two different
values for σ. Note that the modified Broyden’s update gives a better per-
formance than the classical Broyden’s update with respect to the number of
iterations and CPU time while giving nearly the same results. Further it is
observed that for different initial guesses of λ0 the algorithm converges to the
same numerical solution.
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