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Summary. This work considers the problem of fitting data on a Lie group by a
coset of a compact subgroup. This problem can be seen as an extension of the prob-
lem of fitting affine subspaces in Rn to data which can be solved using principal
component analysis. We show how the fitting problem can be reduced for biin-
variant distances to a generalized mean calculation on an homogeneous space. For
biinvariant Riemannian distances we provide an algorithm based on the Karcher
mean gradient algorithm. We illustrate our approach by some examples on SO(n).

1 Introduction

In this paper we consider the problem of fitting a submanifold to data points
on a Lie group. Such fitting problems are relevant for dimension reduction and
statistical analysis of data on Lie groups. In Euclidean space it is well-known
that the best fitting k-dimensional linear subspace can be computed via prin-
cipal component analysis (PCA) and this tool is widely used in applications
in natural sciences, statistics and engineering.

However, in some applications the data naturally arises as points on an
embedded or abstract manifold, e.g. points on spheres [2] or manifolds of shape
representations [4, 5]. This raises the question of extending subspace fitting
and dimension reduction methods like PCA to nonlinear spaces like Rieman-
nian manifolds and Lie groups. In the recent years some approaches have been
proposed to construct local extensions of PCA [4, 5] on Riemannian manifolds
or to consider fitting by single geodesics and interpolation problems on man-
ifolds [7, 8]. Here, we focus on compact Lie groups and propose the different
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approach to fit a coset to the data. Our approach overcomes some limita-
tions of the local approaches and leads to potentially efficient computational
algorithms.

In Section 2 we recall basic facts on PCA. Section 3 discusses principal
geodesic analysis from [4, 5]. Section 4 introduces our fitting of cosets approach
and shows how it leads to a reduced optimization problem on a homogeneous
space. For Riemannian distances we derive an algorithm based on known
Karcher mean algorithms. Section 5 provides examples for fitting on SO(n).

Notation

In this paper G will always denote a compact, connected Lie group. For more
background on differential geometry, Lie groups etc. we refer to [1]. Recall that
given a closed subgroup H ⊂ G the quotient space G/H carries naturally
a manifold structure. A Riemannian metric on G is called left- resp. right-
invariant if it is invariant under the action of G on itself by left- resp. right-
multiplication, i.e. for all p, q ∈ G, v, w ∈ TpG we have 〈TpLqv, TpLqw〉 =
〈v, w〉 with Lq the left multiplication map Lq(p) = qp, analogously for the
right-invariant case. A Riemannian metric is called biinvariant if it is left- and
right-invariant. It can be shown that on any compact Lie group a biinvariant
Riemannian metric exists. This is not the case for non-compact groups.

Furthermore, we recall the definition of a Karcher mean on a Riemannian
manifold. Let M be a Riemannian manifold with Riemannian distance distR.
The Karcher mean of points q1, . . . , qk on M is defined [10] as a minimum of
the function f(x) =

∑k
i=1 distR(qi, x)2. Note that a Karcher mean does not

have to be unique.

2 Principal Component Analysis

In Euclidean spaces the most common method for dimension reduction of data
is principal component analysis (PCA). We recall some basic facts on PCA,
for a detailed account see the numerous literature on this topic, e.g. [3].

Given k data points q1, . . . , qk ∈ Rn, the problem is to determine an affine
subspace p+ V of dimension m such that the sum of squared Euclidean dis-
tances ∑k

i=1 minv∈p+V ‖qi − v‖2 =
∑k

i=1 distE(qi, p+ V )2 (1)

is minimized, distE denoting the Euclidean distance to a closed subset.
This problem can be solved by computing an eigenvalue decomposition

UDUT , D = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn of the symmetric, positive
semidefinite matrix

∑k
i=1(qi − q)(qi − q)T with q = 1

k

∑k
i=1 qi the mean of

the data points. The best fitting affine subspace is given by (p + V )opt =
q+span{u1, . . . , um} with u1, . . . , um denoting the first m columns of U . The
ui are called the principal components of the qi.
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The orthogonal projection of the data points onto (p+ V )opt in the basis
u1, . . . , um of (p + V )opt is given by

(
u1 . . . um

)T (qi − q). This reduces the
n-dimensional data points to m-dimensional data points.

In this paper we concentrate on generalizing the fitting of a subspace to
the data (1) to Lie groups. This is justified by the statistical information hold
by the (p+ V )opt in the Euclidean case, cf. [3].

3 Principal geodesic analysis

Fletcher et al. propose principal geodesic analysis (PGA) — a local ap-
proach which lifts the data to a tangent space and performs PCA there —
as a generalization of PCA to manifolds, [4, 5]. They consider data points
q1, . . . , qk on a Riemannian manifold M and a Karcher mean q. Let expq

denote the Riemannian exponential map. They define principal geodesic sub-
manifolds recursively as submanifolds N1 := expq(V1), . . . , Nn := expq(Vn−1),
V1 = span{v1}, . . . , Vn−1 = span{v1, . . . , vn−1} minimizing the squared dis-
tance to the data; we refer to [5] for details. To calculate the submanifolds the
data points are first lifted to TqM by computing pi = exp−1

q (qi). Since TqM
is a finite dimensional Hilbert space with the scalar product given by the Rie-
mannian metric, one can choose an orthonormal basis of TqM and perform
PCA on the pi as points in an Euclidean space. The principal components
ui ∈ TqM yield an approximation Ṽm = span{u1, . . . , um} ⊂ TqM of the Vm

and therefore an approximation of the fitting problem

Minimize
∑k

i=1 distR(qi, expq(V ))2 (2)

over the set of m-dimensional subspaces V of TqM with distR the Riemannian
distance. Note that for M = Rn with the Euclidean metric this yields precisely
(p+ V )opt of (1) since (p+ V )opt = expq(Ṽ ) = q + Ṽ .

For a sufficiently small neighborhood U of 0 in TqM the set expq(Ṽ ∩ U)
is an embedded submanifold and it is ‘close’ to the optimal expq(V ) of (2).
Therefore PGA is suitable if the data are clustered around a unique Karcher
mean. However, if the data are not clustered around a point, one has to
take into account that the Karcher mean is not unique, that expq(Ṽ ) is not
necessarily an embedded manifold, and that expq(Ṽ ) is not an exact solution
of the fitting problem (2). In such cases PGA is not well-suited to compute a
best fitting submanifold and a global approach might be more desirable as a
generalization of (1).

4 Fitting cosets

We propose here a global approach to generalize (1) to compact Lie groups.
It is based on an alternative interpretation of the Euclidean fitting problem.
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Recall that the special Euclidean group SE(n) = {(R, p) | R ∈ SO(n), p ∈
Rn} acts on Rn transitively by φ : (x, (R, p)) 7→ Rx + p. Thus Rn can be
thought of as the homogeneous space Rn ∼= SE(n)/SO(n). For the Eu-
clidean distance distE we have distE(x, y) = distE(φ(x, (R, p)), φ(y, (R, p))
for all (R, p), i.e. distE is invariant under the action of SE(n) on Rn. In
general, a distance dist on a homogeneous space M is called G-invariant
if for all x, y ∈ M , s ∈ G dist(s · x, s · y) = dist(x, y), s · x denoting
the action of G on M . Note further that given a fixed subspace Ṽ ⊂ Rn,
dim Ṽ = m, any m-dimensional affine subspace can be written as RṼ + p
with (R, p) ∈ SE(n). Thus minimizing (1) over the set of affine subspaces is
equivalent to min(R,p)∈SE(n)

∑k
i=1 distE(qi, RṼ + p)2.

This motivates to consider the following fitting problem for invariant dis-
tances on homogeneous spaces as a generalization of (1).

Problem 1. LetM a homogeneous space with Lie group G̃ acting transitively
on M via φ : G̃ × M → M , N a submanifold on M and dist an invariant
distance. Solve the optimization problem

min
g∈G̃

∑k
i=1 dist(qi, φ(g,N))2. (3)

We have seen that (1) is a special case of (3) for M = Rn, G̃ = SE(n),
N = Ṽ ∼= Rm, dist = distE and φ(x, (R, p)) = Rx+ p.

To use (3) for data on the Lie group G, we have to turn G into an homo-
geneous space, i.e. find another Lie group acting transitively on G. A näıve
choice would be G with its action on itself by left- and right-multiplication.
However, if e.g. N is a subgroup this would turn G into a fiber bundle, pro-
viding not enough degrees of freedom for a sensible fitting of the data by
submanifolds diffeomorphic to N . The action ψ of G̃ = G × G on G with
ψ : (x, (p, q)) 7→ pxq−1 will be more suitable for our task: it will generate for
subgroups N a larger class of submanifolds in G. The distances dist on G,
invariant under the action ψ, are called biinvariant since for all q, p, s ∈ G
one has dist(sq, sp) = dist(q, p) = dist(qs, ps).

Examples of biinvariant distances include the following:
(a) Let 〈·, ·〉 be a biinvariant Riemannian metric on G. Then the Riemannian
distance on G is biinvariant.

(b) Let ρ : G → Cm×m be a faithful, unitary representation of G, i.e. a
homomorpism onto the group of unitary transformations of a finite dimen-
sional Hilbert space with ker ρ = {e}. Then dist(q, p) = ‖ρ(q) − ρ(p)‖F ,
‖A‖F = tr(A†A)1/2 the Frobenius norm, A† the Hermitian conjugate, is a
biinvariant distance on G. In particular, for the special orthogonal and the
unitary group, the Frobenius norm of the difference of two matrices ‖Q−P‖F
yields a biinvariant distance.

We have to choose the class of submanifolds which we use for fitting the
data. For PCA in Euclidean space the fitting submanifolds are affine sub-
spaces, i.e. totally geodesic submanifolds of Rn. This suggests the use of totally
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geodesic submanifolds at least for biinvariant Riemannian distances/metrics,
too. However, since we want to exploit the group structure to obtain a re-
duced optimization problem, we restrict ourselves to closed, i.e. in this case
compact, subgroups of G. Indeed subgroups of G are totally geodesic for any
biinvariant metric.

Considering G as a homogeneous space with G×G acting on it by ψ, the
fitting problem (3) for N a compact subgroup H ⊂ G has the form

min
(p,q)∈G×G

∑k
i=1 dist(qi, ψ((p, q),H))2 =

∑k
i=1 dist(qi, pHq−1)2

with dist a ψ-invariant, i.e. biinvariant, distance on G. This gives the following
fitting problem as a special case of (3) and a global generalization of (1) to
Lie groups.

Problem 2. Let H ⊂ G be a fixed, compact subgroup, dist : G × G → R
a biinvariant distance function and q1, . . . , qk ∈ G data points. Solve the
optimization problem

min
p,q∈G

∑k
i=1 dist(qi, pHq−1)2. (4)

Any of the pHq−1 can be written as p̃qHq−1, i.e. it is a coset of a subgroup
of G conjugate to H. Therefore our approach consists of optimally fitting to
the data a coset of a subgroup conjugate to H.

4.1 Reduction to a homogeneous space

Note that G×G is, especially for large subgroups H, a vast overparameteri-
zation of the family of submanifolds pHq−1. Fortunately, this problem can be
reduced to an optimization problem on the homogeneous space G/H ×G/H.
The key insight is that the biinvariant distance on G induces a G-invariant
distance on G/H.

Proposition 1. Let distG be a biinvariant distance on G and H ⊂ G a com-
pact subgroup. Then distG induces a G-invariant distance distG/H on G/H,
such that distG/H(qH, pH) = distG(q, pH).

Proof. Since distG is right-invariant we have for all k ∈ H

distG(q, pH) = min
h∈H

distG(q, ph) = min
h∈H

distG(qk, ph) = distG(qk, pH).

Thus distG(q, pH) induces a distance distG/H on G/H. The G-invariance of
distG/H follows directly from the left-invariance of distG.

Induced distances on G/H include the following examples:
(a) Let 〈·, ·〉G be a biinvariant Riemannian metric onG. We can define onG the
distribution N(p) := (TppH)⊥, W⊥ the orthogonal complement with respect
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to the Riemannian metric. Let π : G → G/H be the canonical projection
π(p) := pH. Then, the formula

〈v, w〉G/H := 〈vN , wN 〉 for v, w ∈ TpHG/H

defines an G-invariant Riemannian metric on G/H with vN , wN uniquely de-
fined by vN , wN ∈ N(p), Tpπv

N = v, Tpπw
N = w. This Riemannian metric is

called the normal metric [9]. The distance on G/H induced by the Rieman-
nian metric on G is the Riemannian distance of the normal metric.

(b) Let ρ be again a faithful, finite dimensional, unitary representation of
G and H = stab(v) = {p ∈ G | ρ(p)v = v} for a v ∈ Cm. We can iden-
tify the orbit O(v) = {ρ(p)v | p ∈ G} with G/H via pH 7→ ρ(p)v. Then
the distance dist(p, q) = ‖ρ(p) − ρ(q)‖F induces the the Euclidean distance
dist(p, q) = ‖ρ(p)(v)− ρ(q)(v)‖ on O(v) = G/H.

Problem (4) thus leads to the following reduced optimization problem on
G/H ×G/H.

Proposition 2. Assume that dist is a biinvariant distance on G. Then (p, q) ∈
G ×G is a solution of Problem (2) if and only if (qH, pH) is a minimum of
g : G/H ×G/H → R,

g(x, y) =
∑k

i=1 distG/H(qi · x, y)2 (5)

with q · x denoting the canonical action of G on G/H.

Proof. By the invariance of dist and Proposition 1 we have∑k
i=1 dist(qi, pHq−1)2 =

∑k
i=1 dist(qiq, pH)2 =

∑k
i=1 distG/H(qiqH, pH)2

Thus (p, q) solves (4) if and only if (qH, pH) is a minimum of g.

4.2 An algorithm for Riemannian fitting

If the distance on G is the Riemannian distance of a biinvariant Riemannian
metric, we can derive a general gradient algorithm to find a minimum of (5).
As discussed in the examples above the induced distance on G/H from the
biinvariant metric on G is the Riemannian distance with respect to the normal
metric on G/H. Thus we assume that G/H carries this normal metric in the
remainder of this section. Note that

g(x, y) =
∑k

i=1 distG/H(qi · x, y)2 =
∑k

i=1 distG/H(x, q−1
i · y)2 (6)

is in each variable the Karcher mean cost function for points qi ·x resp. q−1
i ·y

on G/H. It is well-known that the gradient of the Karcher mean cost c(x) =∑k
i=1 dist(x, xi)2 is given by grad c(x) = 1

k

∑k
i=1 exp−1

x (xi), see [4, 7, 11]. Thus
the gradient of g with respect to the product metric on G/H ×G/H is
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grad g(x, y) =
(

1
k

∑k
i=1 exp−1

x (q−1
i · y), 1

k

∑k
i=1 exp−1

y (qi · x)
)
.

The form (6) of the cost suggests the following gradient descent algorithm
to minimize g as an adaption of the Karcher mean algorithm [4, 7, 11].

Riemannian fitting algorithm

1. Initialize x0, y0 ∈ G/H and choose a ε > 0
2. xj+1 = expxj

(
1
k

∑k
i=1 exp−1

x (q−1
i · yj)

)
3. yj+1 = expyj

(
1
k

∑k
i=1 exp−1

y (qi · xj)
)

4. go to step 2 until dist(xj , xj+1) < ε and dist(yj , yj+1) < ε
5. Let xj = qH, yj = rH.
6. Output: (r, q) as an approximation of the minimum of f

This algorithm requires that the q−1
i · yj resp. qi · xj are in the domain

of exp−1
xj

resp. exp−1
yj

and is not necessarily globally defined. However, since
these are exponential maps on G/H the algorithm will work for data clustered
near a coset pHq−1 even if there is a continuum of Karcher means on G. An
alternative would be to globalize the algorithm using non-smooth optimization
methods, but this is beyond the scope of the present paper.

5 Example: Fitting on SO(n)

We illustrate the proposed approach on the special orthogonal group SO(n).
The distances discussed in the examples (a), (b) above yield two choices

for distances on SO(n): (a) the Riemannian distance of a biinvariant metric
and (b) the Frobenius norm distance on the matrix representation of SO(n).

(a) In the Riemannian case the induced distance on SO(n)/H is the nor-
mal Riemannian metric and the algorithm from Section 4.2 can be applied to
compute the optimal coset on SO(n). As a special case consider the problem
of fitting data with a coset of a conjugate of a subgroup H ∼= SO(n − 1).
The quotient space SO(n)/H can be identified with Sn−1 via the diffeo-
morphism QH 7→ Qv for v ∈ Sn−1 such that stab(v) = H. Any biivariant
Riemannian metric on SO(n) has the form 〈XΩ,XΘ〉 = C tr(ΩTΘ) with
C > 0; w.l.o.g. assume C = 1

2 . Then the normal metric on Sn−1 coin-
cides with the Riemannian metric on Sn−1. Thus the exponential map on
the sphere is given by expx(v) := cos(‖v‖)x + sin(‖v‖)

‖v‖ v and its inverse by
exp−1

x (y) := s
sin(s) (y− cos(s)x) with s = arccos(yTx). Using this information,

it is straightforward to implement the algorithm from Section 4.2.
(b) As an example for the Frobenius norm distance on a matrix repre-

sentation of SO(n), consider the representation ρ(U) : Cn×p → Cn×p with
ρ(U)(A) = UA. We treat Cn×p as the vector space Cnp. Then ρ(U) = (Ip⊗U)
and the Frobenius norm distance is given by
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distF (U, V ) = ‖ρ(U)− ρ(V )‖F = ‖(Ip ⊗ U)− (Ip ⊗ V )‖F = p‖U − V ‖F .

Let A =
(
Ip 0

)T ∈ Cn×p. Assume that we want to fit a coset of a subgroup
conjugate to H = stab(A) ∼= SO(n − p) to the data. The orbit O(A) is the
compact Stiefel manifold St(n, p) and we can identify SO(n)/H with St(n, p)
by UH 7→ ρ(U)A. By Section 4.1, Example (b), the induced distance on
SO(n)/H is the Euclidean distance on St(n, p), i.e.

distSO(n)/H(UA, V A) = ‖UA− V A‖F .

Thus to find the best fitting coset PHQ−1, P,Q ∈ SO(n), to data points
Q1, . . . , Qk in SO(n) one must minimize the cost

g(X,Y ) =
∑k

i=1 ‖X −QiY ‖2F

on St(n, p)×St(n, p). Here, we use the gradient descent with retractions from
[6] on the product of the Stiefel manifold. To compute a gradient we use the
Riemannian metric on the Stiefel manifold induced by the Euclidean one on
Rn×p and equip St(n, p)×St(n, p) with the product metric. The gradient with
respect to this induced Riemannian metric is given by the orthogonal projec-
tion of the Euclidean gradient of an extension of g to Rn×p × Rn×p onto the
tangent space T(X,Y ) (St(n, p)× St(n, p)). Since the Euclidean gradient of g is

given by gradE g(X,Y ) =
(∑k

i=1(X −QT
i Y ),

∑k
i=1(Y −QiX)

)
and the pro-

jection πX : Rn×p → TX St(n, p) by πX(V ) = V − 1
2X(XTV + V TX), cf. [6],

we obtain grad g(X,Y ) =
((

1
2XX

T − In
)∑k

i=1Q
T
i Y + 1

2XY
T
∑k

i=1QiX,(
1
2Y Y

T − In
)∑k

i=1QiX + 1
2Y X

T
∑k

i=1Q
T
i Y
)
. A descent algorithm on a

manifold needs suitable local charts RX which map lines in the tangent space
onto curves in the manifold. Here, we choose for the Stiefel manifold the
polar decomposition retractions from [6], i.e. RX : TX St(n, p) → St(n, p),
RX(V ) = (X+V )(Ip+V TV )−1/2. Since we have to optimize over the product
of two Stiefel manifolds, we use this retraction in each component. The step
length of the gradient descent is determined by an Armijo line search. This
yields the following algorithm:

1. Initialize X0, Y0 ∈ St(n, p) and choose a ε > 0, σ ∈ (0, 1)
2. Calculate SX,j =

∑k
i=1QiXj and SY,j =

∑k
i=1Q

T
i Yj.

3. Set ηj := ( 1
2XjX

T
j − In)SY,j + 1

2XjY
T
j SX,j, ζj := ( 1

2YjY
T
j − In)SX,j +

1
2YjX

T
j SY,j

4. Choose the smallest α ∈ N such that

g(Xj , Yj)− g
(
RXj (−2−αηj), RYj (−2−αζj)

)
≥ σ2−α

(
‖ηj‖2F + ‖ζj‖2F

)
5. Set Xj+1 := (Xj − 2−αηj)

(
Ip + 2−2αηT

j ηj

)−1/2
,

Yj+1 := (Yj − 2−αζj)
(
Ip + 2−2αζT

j ζj
)−1/2
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6. If ‖ηj‖ > ε or ‖ζj‖ > ε then j := j+1 and go to step 2, otherwise
go to step 7.

7. Find Q,R ∈ SO(n) such that Xj = QA, Yj = RA and output
(R,Q) as an approximation of the minimum of f.

Figure 1 shows the behavior of the algorithm for the Riemannian distance
and the H ∼= SO(n−1) with 30 data points in SO(10). The data points for the
left graph are constructed by choosing random points on a coset ∼= SO(9),
while for the right graph randomly chosen data points on the coset were
perturbed by multiplication with i.d.d. random rotations R = exp(N) with
N the skew-symmetric parts of i.d.d. random matrices M ∼ N(0,

√
0.1). For

the unperturbed case the algorithm shows linear convergence as it is to be
expected for a gradient method. In the perturbed case the algorithm converges
quickly to a cost function value larger than 0 since an exact fitting is not
possible anymore.
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Fig. 1. Evolution of the cost for the first example in Section 5 with n = 10 and
k = 30. The left figure shows the unperturbed case while the right the case of data
points perturbed by random rotations.

Figure 2 illustrates the behavior of the algorithm for the Frobenius norm
distance and the H = stab((Ip0)T ) ∼= SO(n − p) with n = 10, p = 8 and
k = 30. The left graph shows the case of data points randomly chosen on a
fixed coset, while the right graph shows the case of random points on the coset
perturbed by a random rotations R = exp(N) with N the skew-symmetric
part of random M ∼ N(0,

√
0.1).
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