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Summary. In this paper, we discuss methods to refine locally optimal solutions of
sparse PCA. Starting from a local solution obtained by existing algorithms, these
methods take advantage of convex relaxations of the sparse PCA problem to propose
a refined solution that is still locally optimal but with a higher objective value.

1 Introduction

Principal component analysis (PCA) is a well-established tool for making
sense of high dimensional data by reducing it to a smaller dimension. Its
extension to sparse principal component analysisprincipal component analy-
sislsparce, which provides a sparse low-dimensional representation of the data,
has attracted alot of interest in recent years (see, e.g., [1, 2, 3, 5, 6, 7, 8, 9]).
In many applications, it is in fact worth to sacrifice some of the explained
variance to obtain components composed only from a small number of the
original variables, and which are therefore more easily interpretable.

Although PCA is, from a computational point of view, equivalent to a
singular value decomposition, sparse PCA is a much more difficult problem of
NP-hard complexity [8]. Given a data matrix A € R™*™ encoding m samples
of n variables, most algorithms for sparse PCA compute a unit-norm loading
vector z € R™ that is only locally optimal for an optimization problem aim-
ing at maximizing explained variance penalized for the number of non-zero
loadings. This is in particular the case of the SCOTLASS [7], the SPCA [10],
the rSVD [9] and the GPower [5] algorithms.

Convex relaxationsconvex relaxation have been proposed in parallel for
some of these formulations [2, 1]. To this end, the unit-norm loading vec-
tor z € R" is lifted into a symmetric, positive semidefinite, rank-one ma-
trix Z = 227 with unit trace. The relaxation consists of removing the rank-
one constraintrank-one!constraint and accepting any matrix of the spectahe-
dronspectahedron
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S={ZeS™"|Z*=0,Tx(Z) =1},

which is a convex set. The solution of these convex problems has usually a rank
larger than one. Hence, some post-processing is needed to round this solution
to rank-onerank-one!matrices in order to reconstruct a unit-norm vector z.

The aim of this paper is to discuss a way to refine locally optimal solutions
of sparse PCA by taking advantage of these convex relaxations. A well-known
formulation of sparse PCA is first reviewed and relaxed into a convex pro-
gram in Section 2. A method that uses both the initial formulation and the
relaxation is then discussed in Section 3 in order to improve the quality of the
components. Its efficiency is evaluated in Section 4.

2 Formulation and convex relaxation of sparse PCA

Under the assumption that the columns of the data matrix A € R™*" are
centered, PCA consists in computing the dominant eigenvectors of the scaled
sample covariance matrix X = AT A. The problem of computing the first
principal component can thus be written in the form

max 2! Xz. (1)

zER™

2T z=1
Several formulations of sparse PCA can be derived from (1) (see, e.g., [5]). A
possible one is provided by the optimization problem

z* = arg max 2T Xz — PHZHOa <2)
zqun
z'z=1

with p > 0 and where the ¢y “norm” is the number of nonzero coefficients
(or cardinality) of z. The formulation (2) is essentially the problem of find-
ing an optimal pattern of zeros and nonzeros for the vector z, which is of
combinatorial complexity.

Interestingly, as shown in [2, 5], problem (2) can be equivalently rewritten
as the maximization of a convex function on the unit Euclidean sphere,

n

vt =arg max » ((¢72)” = p)y, (3)
'f%??:l i=1

where a; is the ith column of A and x; = max(0, z). The solution z* of (2) is
reconstructed from the solution z* of (3) as follows,
. [sign((ATa") o (AT2*) = p))y 0 ATa"
[lsign((ATa*) o (AT2*) — p)]4 0 ATy’

where o denotes the matrix element-wise product. The ith component of z*
is thus active (i.e., not constrained to zero) if the condition (alz*)2 —p >0
holds.
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For the purpose of relaxing (2) into a convex program, the unit-norm
vector z is lifted into a matrix X = zz”. The formulation (3) is so rewritten
in terms of a matrix variable X as follows,

max S (af Xa; — p)

Xesm

st. Tr(X) =1, (4)
X =0,
rank(X) =1,

where S™ denotes the set of symmetric matrices in R™*".The problem (4)
is relaxed into a convex program in two steps. First, the nonconvex rank
constraint is removed. Then, the convex objective function

n

fcv:v(X) = Z(G;TXG»L - p)+

i=1

is replaced by the concave function
fCCU ZTr % 7PI)X%) 7

where Tr(X) denotes the sum of the positive eigenvalues of X. Observe that
maximizing a concave function over a convex set is indeed a convex program.
Since the values [ (X) and fee, (X) are equal for matrices X that are rank
one, the convex relaxation of the sparse PCA formulation (2),

max 30 L Tr(X 2 (aial — pI)X %) ¢
st Tr(X) =1, (5)

X =0,

is tight for solutions of rank one. We refer to [1] for more details on the
derivation of (5).

3 A procedure to refine the components

Several methods have been proposed to compute locally optimal solutions of
the NP-hard formulation (2) of sparse PCA. For instance, the greedy algo-
rithm of [2] sequentially increments the cardinality of the solution with the
component of z that maximizes the objective function in (2). The GPower
algorithm of [5] exploits the convexity of the objective function to generalize
the well-known power method in the present context.

In parallel, a method for solving the convex relaxation (5) in an efficient
manner is discussed in the recent paper [4]. This method parameterizes the
positive semidefinite matrix variable X as the product X = YY 7T where the
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number of independent columns of Y € R™*? fixes the rank of X. The pa-
rameter p enables to interpolate between the initial combinatorial problem
(i.e., p = 1) and the convex relaxation (i.e., p = n). In practice, the dimension
p is incremented until a sufficient condition is satisfied for Y to provide a
solution YYT of (5). Since this often holds for p < n, the reduction of per-
iteration numerical complexity for solving (5) can be significant: from O(n?)
for traditional convex optimization tools to O(np) for the algorithm of [4].

Starting from a locally optimal solution of the sparse PCA formulation
(2), the proposed method for improving the quality of this solution works
in two steps. First, solve the convex relaxation (5) with the algorithm of
[4] that increases the rank of the variable X from one until a sufficiently
accurate solution is found. Then, in order to recover a rank-one matrix from
this solution of rank p > 1, solve the optimization problem,

)?'}éaé)vgz Mfcv:v(‘x) + (1 - M)chU(X)

st Tr(X) =1, (6)
X =0,

for the parameter u that is gradually increased from 0 to 1. In the case u = 0,
(6) is the convex relaxation (5). In the other limit case y = 1, problem (6)
amounts to maximize a convex function on a convex set, which has local
solutions at all the extreme points of this set. Solving a sequence of problems
of the form of (6) for an increasing value of u from zero to one converges to
the extreme points of the spectahedron that are all rank-one matrices. Hence,
this process reduces the rank of the solution of the convex relaxation (5) from
p > 1 to one. This rank-one solution is hoped to have a larger objective
value than the rank-one matrix chosen to initialize the resolution of (5). The
algorithm of [4] can be used to solve (6) for any value of p.

Figure 1 illustrates the proposed procedure in the case of a random Gaus-
sian matrix A € R1%0%30, Because any matrix of the spectahedron has non-
negative eigenvalues with the sum being one, the maximum eigenvalue can be
used to monitor the rank: a matrix of the spectahedron is rank one if and only
if its maximum eigenvalue is one. The homotopy methodHomotopy method
(i.e., solving (6) for an increasing value of p) is compared against the best
rank-one least squares approximation of the solution of (5), i.e., the matrix
X = 22 where z is the unit-norm dominant eigenvector of X. Let fryp(X)
denote the function

fEVD(X) = fccv(X) = fC’UI(X)

The continuous plots of Figure 1 display the evolution of both functions
feeo(X) and fryp(X) during the resolution of the convex program (5), i.e.,
1= 01n (6). Point A represents a rank-one solution that is locally optimal for
the sparse PCA formulation (2) and obtained, for instance, with the GPower
algorithm [4]. When solving the convex relaxation (5), the rank of the matrix
X is gradually incremented until a solution is identified (point B/B’). The
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dashed plots illustrate the resolution of (6) for a parameter p that is grad-
ually increased from 0 to 1 (by steps of 0.05). For a sufficiently large value
of u, problem (6) has a rank-one solution (point C'). The objective value in
C is clearly larger than that of the initialization A as well as than that of
the best rank-one least-squares approximation B’. This improvement results
most probably from the fact that the homotopy method takes the objective
function into account whereas the least-squares approximation does not.
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A rank one solution of (5)
r B = B’ optimal solution of (5) (rank = 17) 150
e} rank one solution of (6)
L L L L L L L L L 0
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Amax (X)

Fig. 1. Evolution of the functions feco(X) and frvp(X) in two situations. Con-
tinuous plots: resolution of the convex program (5) (u = 0 in (6)). Dashed plots:
projection of the solution of (5) on a rank-one matrix by gradual increase of p in

(6).

4 Numerical experiments

In Table 1, we compare the objective value obtained by the GPower algorithm
which computes a locally optimal solution of the sparse PCA problem (3), the
objective value of the best rank-one approximation of the solution of the con-
vex relaxation (5) and finally the objective value of the proposed homotopy
method, i.e., we compare the objective values at the points A, B’ and C in
Figure 1. Each value in Table 1 is an average on 20 instances for each prob-
lem dimension. The data is systematically generated according to a Gaussian
distribution of zero mean and unit variance. The proposed homotopy method
is shown to improve the objective value by several percents. Such an improve-
ment might be significant for applications for which it is crucial to identify
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the best solution of sparse PCA. Compressed sensing is such an application

[1].

Dimension fa  fgr (fer — fa)/fa fo  (fc—fa)/fa
50 x 25 3.9757 4.0806 + 2.64 % 4.1216 + 3.67%
100 x 50 3.6065 3.7038 +2.70% 3.8276 +6.13 %

200 x 100 2.9963 2.8711 -4.18 % 3.1904 +6.48 %

400 x 200 3.9549 4.1089 +3.89 % 4.2451 + 734 %

800 x 200 5.6032 5.6131 +0.18 % 5.8754 + 4.86 %

800 x 400 3.0541 3.0688 + 0.48 %  3.4014 +11.37 %

Table 1. Average objective values at the points A, B’ and C of Figure (1) for
Gaussian data matrices of various size. The GPower algorithm of [5] is used to
compute the rank-one solution A.
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