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Summary. This paper deals with the best low multilinear rank approximation of
higher-order tensors. Given a tensor, we are looking for another tensor, as close
as possible to the given one and with bounded multilinear rank. Higher-order
tensors are used in higher-order statistics, signal processing, telecommunications
and many other fields. In particular, the best low multilinear rank approxima-
tion is used as a tool for dimensionality reduction and signal subspace estimation.

Computing the best low multilinear rank approximation is a nontrivial task.
Higher-order generalizations of the singular value decomposition lead to suboptimal
solutions. The higher-order orthogonal iteration is a widely used linearly convergent
algorithm for further refinement. We aim for conceptually faster algorithms. How-
ever, applying standard optimization algorithms directly is not a good idea since
there are infinitely many equivalent solutions. Nice convergence properties are ob-
served when the solutions are isolated. The present invariance can be removed by
working on quotient manifolds. We discuss three algorithms, based on Newton’s
method, the trust-region scheme and conjugate gradients. We also comment on the
local minima of the problem.
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1 Introduction

Multilinear algebra deals with higher-order tensors, generalizations of vec-
tors and matrices to higher-dimensional tables of numbers. Tensor algebra is
more involved than matrix algebra but can model more complex processes.
Higher-order tensors are used in many application fields so efficient and reli-
able algorithms for handling them are required.

Matrices are second-order tensors with well-studied properties. The matrix
rank is a well-understood concept. In particular, the low-rank approximation
of a matrix is essential for various results and algorithms. However, the matrix
rank and its properties are not easily or uniquely generalizable to higher-order
tensors. The rank, the row rank and the column rank of a matrix are equivalent
whereas in multilinear algebra these are in general different.

Of main concern for this paper is the multilinear rank [40, 41] of a
tensor, which is a generalization of column and row rank of a matrix.
In particular, we discuss algorithms for the best low multilinear rank ap-
proximation of a higher-order tensor. The result is a higher-order tensor,
as close as possible to the original one and having bounded multilinear
rank. In the matrix case, the solution is given by the truncated singu-
lar value decomposition (SVD) [34, 2.5]. In multilinear algebra, the trun-
cated higher-order SVD (HOSVD) [22] gives a suboptimal approximation,
which can be refined by iterative algorithms. The traditional algorithm for
this purpose is the higher-order orthogonal iteration (HOOI) [23, 52, 53].
In this paper, we discuss conceptually faster algorithms based on the New-
ton method, trust-region scheme and conjugate gradients. We also com-
ment on the fact that numerical methods converge to local minimizers [44]
of the function associated with the best low multilinear approximation.

It will be shown that the cost function has an invariance property by the
action of the orthogonal group. Conceptually speaking, the solutions are not
isolated, i.e., there are whole groups of infinitely many equivalent elements.
This is a potential obstacle for algorithms since in practice, convergence to
one particular point has to be achieved. Differential geometric techniques re-
move successfully the mentioned invariance. The working spaces are quotient
manifolds. The elements of such spaces are sets containing points that are
in some sense equivalent. For our particular problem, we work with matri-
ces but in practice we are only interested in their column space. There are
infinitely many matrices with the same column space that can be combined
in one compound element of a quotient space. Another possibility is to first
restrict the set of all considered matrices to the set of matrices with column-
wise orthonormal columns and then combine all equivalent matrices from the
selected ones in one element. This is justified by the fact that any subspace
can be represented by the column space of a column-wise orthonormal matrix.
We consider both options. We can summarize that in this paper, a multilinear
algebra optimization problem is solved using optimization on manifolds.

This paper is an overview of recent publications and technical reports

§
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[47, 46, 43, 44, 45] and the PhD thesis [42]. We present a digest of current
research results, a survey of the literature on the best low multilinear rank
approximation problem and other tensor approximations and discuss some
applications. The paper is organized as follows. In Section 2, some definitions
and properties of higher-order tensors are given. The main problem is for-
mulated, HOSVD and HOOI are presented and we also mention some other
related algorithms from the literature. Some applications are demonstrated in
Section 3. Three differential-geometric algorithms are discussed in Section 4.
In Section 5, we talk about local minima. Conclusions are drawn in Section 6.

In this paper we consider third-order tensors. The differences in the prop-
erties and algorithms for third-order tensors and for tensors of order higher
than three are mainly technical, whereas the differences between the matrix
case and the case of third-order tensors are fundamental.

2 Background material

2.1 Basic definitions

An Nth-order tensor is an element of the tensor product of N vector spaces.
When the choice of basis is implicit, we think of a tensor as its representation
as an N -way array [28]. Each “direction” of an Nth order tensor is called
a mode. The vectors, obtained by varying the nth index, while keeping the
other indices fixed are called mode-n vectors (n = 1, 2, . . . , N). For a tensor
A ∈ R6×5×4 they are visualized in Fig. 1. The mode-n rank of a tensor A,

Mode-1 vectors Mode-2 vectors Mode-3 vectors

Fig. 1. Mode-n vectors of a (6× 5× 4)-tensor.

denoted by rankn(A), is defined as the number of linearly independent mode-
n vectors. The multilinear rank of a tensor is then the n-tuple of the mode-n
ranks. An essential difference with the matrix case is that the mode-n ranks
are in general different from each other.

We use the following definition of mode-n products A •n M(n), n = 1, 2, 3
of a tensor A ∈ RI1×I2×I3 and matrices M(n) ∈ RJn×In :

(A •1 M(1))j1i2i3 =
∑

i1
ai1i2i3m

(1)
j1i1

,

(A •2 M(2))i1j2i3 =
∑

i2
ai1i2i3m

(2)
j2i2

,

(A •3 M(3))i1i2j3 =
∑

i3
ai1i2i3m

(3)
j3i3

,
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where 1 ≤ in ≤ In, 1 ≤ jn ≤ Jn. In this notation, A = UMVT is presented
as A = M •1 U •2 V. This is reasonable since the columns of U correspond
to the column space of A in the same way as the columns of V correspond to
the row space of A. The mode-n product has the following properties

(A •n U) •m V = (A •m V) •n U = A •n U •m V, m 6= n,

(A •n U) •n V = A •n (VU).

It is often useful to represent a tensor in a matrix form, e.g., by putting
all mode-n vectors one after the other in a specific order. For a tensor A ∈
RI1×I2×I3 , the matrix representations A(n), n = 1, 2, 3 that we use are

(A(1))i1,(i2−1)I3+i3 = (A(2))i2,(i3−1)I1+i1 = (A(3))i3,(i1−1)I2+i2 = ai1i2i3 ,

where 1 ≤ in ≤ In. This definition is illustrated in Fig. 2 for I1 > I2 > I3.PSfrag

A

I1

I1

I2

I2

I3

I3

I1

I2

I3

I2I3

I3I1

I1I2

A(1)

A(2)

A(3)

Fig. 2. Matrix representations of a tensor.

2.2 Best low multilinear rank approximation

Given A ∈ RI1×I2×I3 , its best rank-(R1, R2, R3) approximation is a tensor
Â ∈ RI1×I2×I3 , such that it minimizes the cost function f : RI1×I2×I3 → R,

f : Â 7→ ‖A − Â‖ 2 (1)

under the constraints rank1(Â) ≤ R1, rank2(Â) ≤ R2, rank3(Â) ≤ R3. This
problem is equivalent [23, 52, 53] to the problem of maximizing the function

g :St(R1, I1)× St(R2, I2)× St(R3, I3)→ R,
(U,V,W) 7→ ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT A(1)(V ⊗W)‖ 2

(2)

over the matrices U,V and W (St(p, n) stands for the set of column-wise
orthonormal (n × p)-matrices, ‖ · ‖ is the Frobenius norm and ⊗ denotes
the Kronecker product). This equivalence is a direct generalization of the
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matrix case where finding the best rank-R approximation Â = UBVT of
A ∈ RI1×I2 , where B ∈ RR×R, U ∈ St(R, I1), V ∈ St(R, I2) and ‖A− Â‖ is
minimized, is equivalent to the maximization of ‖UT AV‖ = ‖A•1UT •2VT ‖.
Having estimated U,V and W in (2), the solution of (1) is computed by

Â = A •1 UUT •2 VVT •3 WWT .

Thus, in this paper, our goal is to solve the maximization problem (2). In
practice, the function −g will be minimized.

2.3 Higher-order singular value decomposition

The SVD [34, 2.5] gives the best low-rank approximation of a matrix. In the
sense of multilinear rank, a generalization of the SVD is the higher-order SVD
(HOSVD) [22]. With possible variations it is also known as Tucker decompo-
sition [72, 73]. HOSVD decomposes a tensor A ∈ RI1×I2×I3 as

A = S •1 U(1) •2 U(2) •3 U(3) ,

where S ∈ RI1×I2×I3 and where U(n) ∈ RIn×In , n = 1, 2, 3, are orthogonal,
see Fig. 3. The matrices obtained from S by fixing any of the indices are

=

A
U(1) U(2)

U(3)

S

Fig. 3. Higher-order singular value decomposition.

orthogonal to each other and their norm is decreasing with increasing the
fixed index. The mode-n singular values of A are the singular values of A(n).

For second-order tensors, i.e., matrices, HOSVD reduces to the well-known
SVD. However, truncation of HOSVD results in a suboptimal solution of the
best low multilinear rank approximation problem. This is due to the fact
that in general, it is impossible to obtain a diagonal S tensor. The number of
degrees of freedom in such a decomposition would be smaller than the number
of the elements of the tensor that needs to be decomposed. However, the
truncated HOSVD can serve as a good starting point for iterative algorithms.

Other generalizations of the matrix SVD have been discussed in the liter-
ature, focusing on different properties of the SVD. The tensor corresponding
to S can be made as diagonal as possible (in a least squares sense) under
orthogonal transformations [12, 24, 56, 10], or the original tensor can be de-
composed in a minimal number of rank-1 terms (CANDECOMP/PARAFAC)
[13, 37, 9, 25, 17], on which orthogonal [50] or symmetry [14] constraints
can be imposed. A unifying framework for Tucker/HOSVD and CANDE-
COMP/PARAFAC is given by the block term decompositions [18, 19, 26].

§
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2.4 Higher-order orthogonal iteration

The traditional iterative algorithm for maximizing (2) and thus minimizing (1)
is the higher-order orthogonal iteration (HOOI) [23, 52, 53]. It is an alternating
least-squares (ALS) algorithm. At each step the estimate of one of the matrices
U,V,W is optimized, while the other two are kept constant. The function
g from (2) is thought of as a quadratic expression in the components of the
matrix that is being optimized. For fixed V and W, since

g(U,V,W) = ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT (A(1)(V ⊗W))‖ 2 ,

the columns of the optimal U ∈ RI1×R1 build an orthonormal basis for the
left R1-dimensional dominant subspace of A(1)(V ⊗W). It can be obtained
from the SVD of A(1)(V ⊗W). The optimization with respect to the other
two unknown matrices is performed by analogy.

Initial matrices for HOOI are often taken from the truncated HOSVD.
These matrices usually belong to the attraction region of (2) but there are
exceptions. Moreover, convergence to the global maximum is not guaranteed.

HOOI is a simple concept and easy to implement. Therefore it is the most
widely used algorithm at the moment [51]. If we assume for simplicity that
R1 = R2 = R3 = R and I1 = I2 = I3 = I, the total cost for one iteration of
HOOI is then O(I3R + IR4 + R6) [32, 47]. However, the convergence speed
of HOOI is at most linear.

2.5 Other methods in the literature

Recently, a Newton-type algorithm for the best low multilinear rank approx-
imation of tensors has been proposed in [32]. It works on the so-called Grass-
mann manifold whereas the Newton-type algorithm considered in this paper
is a generalization of the ideas behind the geometric Newton method for Oja’s
vector field [2]. Quasi-Newton methods have been suggested in [64].

We also mention other related methods. A Krylov method for large sparse
tensors has been proposed in [63]. In [23, 75, 49], specific algorithms for the
best rank-1 approximation have been discussed. Fast HOSVD algorithms for
symmetric, Toeplitz and Hankel tensors have been proposed in [7]. For tensors
with large dimensions, Tucker-type decompositions are developed in [59, 8, 54].

3 Some applications

The best low multilinear rank approximation of tensors is used for signal
subspace estimation [60, 61, 52, 67, 51, 35] and as a dimensionality reduc-
tion tool for tensors with high dimensions [27, 4, 29, 30, 52, 67, 51], in-
cluding simultaneous dimensionality reduction of a matrix and a tensor [27].

Independent component analysis (ICA) [27] extracts statistically inde-
pendent sources from a linear mixture in fields like electroencephalography
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(EEG), magnetoencephalography (MEG) and nuclear magnetic resonance
(NMR). Sometimes only a few sources have significant contributions. A prin-
cipal component analysis (PCA)-based prewhitening step for reducing the di-
mensionality is often used. This is beneficial if white Gaussian noise is present
but is not applicable in case of colored Gaussian noise. In the latter case, low
multilinear rank approximation of a higher-order cumulant tensor of the ob-
servation vector can be performed instead. The dimensionality of the problem
is reduced from the number of observation channels to the number of sources.

A rank-1 tensor is an outer product of a number of vectors. The decompo-
sition of higher-order tensors in rank-1 terms is called parallel factor decom-
position (PARAFAC) [37] or canonical decomposition (CANDECOMP) [9].
It has applications in chemometrics [67], wireless communication [66, 21], and
can also be used for epileptic seizure onset localization [30, 29, 4], since only
one of the rank-1 terms is related to the seizure activity. The best low multilin-
ear rank approximation of tensors is often used as a dimensionality reduction
step preceding the actual computation of PARAFAC. Such a preprocessing
step is implemented for example in the N -way toolbox for MATLAB [6].

Dimensionality reduction works as illustrated in Fig. 4. See also [16, Re-
mark 6.2.2]. Let the rank-R decomposition of A ∈ RI1×I2×I3 be required. If

= =+ +

A Â
B B

A

Fig. 4. Dimensionality reduction.

R < max (I1, I2, I3), then a reduction of A to a tensor B ∈ RI′
1×I′

2×I′
3 , I ′n =

min (In, R), n = 1, 2, 3 can be used for the actual computation of PARAFAC.
This can be done as follows. Let Â be the best rank-(I ′1, I

′
2, I
′
3) approximation

of A. If U,V,W are the matrices as in (2), i.e., if

Â = B •1 U •2 V •3 W

then a rank-R approximation A of A is computed from the best rank-R ap-
proximation B of B in the following way

A = B •1 U •2 V •3 W.

Tensor B has smaller dimensions than A so that computing B is much less
expensive than directly computing A. In practice, due to numerical problems,
in some applications I ′n = min (In, R + 2), n = 1, 2, 3 are used instead of the
dimensions I ′n = min (In, R). In general, it is advisable to examine the mode-n
singular values for gaps between them and use a corresponding low multilin-
ear rank approximation. It might also be useful to perform a few additional
PARAFAC steps on A in order to find an even better approximation of A.
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In signal processing applications, a signal is often modeled as a sum of
exponentially damped sinusoids (EDS). The parameters of the model have
to be estimated given only samples of the signal. In the literature there are
both matrix [31, 74] and tensor-based algorithms [60, 61]. The latter are based
on the best rank-(R1, R2, R3) approximation. In [48], the EDS model in the
multi-channel case is considered in the case of closely spaced poles. This prob-
lem is more difficult than the case where the poles are well separated. A
comparison of the performance of a matrix-based and a tensor-based method
was performed. None of them always outperforms the other one. However, in
the tensor-based algorithm, one can choose the mode-3 rank in such a way
that the performance is optimal. Numerical experiments indicate that if ill-
conditioning is present in the mode corresponding to the complex amplitudes,
taking a lower value for the mode-3 rank than for the mode-1 and mode-2
ranks improves the performance of the tensor method to the extent that it
outperforms the matrix method.

For more references and application areas, we refer to the books [67, 52, 11],
to the overview papers [51, 20] and to the references therein.

4 Algorithms

In this section, we will review three classical optimization algorithms adapted
for quotient matrix manifolds. We will then show how these algorithms can
be applied on the best low multilinear rank approximation problem.

4.1 Geometric Newton algorithm

In order to apply Newton’s method, the solutions of the optimization prob-
lem (2) have to be reformulated as zeros of a suitable function. The matrix
U ∈ St(R1, I1) is optimal if and only if [38, Th. 3.17] its column space is
the R1-dimensional left dominant subspace of A(1)(V ⊗W). A necessary
condition for this is that the column space of U is an invariant subspace of
A(1)(V ⊗W)(V ⊗W)T AT

(1). Defining X = (U,V,W) and

R1(X) = UT A(1)(V ⊗W) ,

this condition can be written as

F1(X) ≡ U R1(X)R1(X)T −A(1)(V ⊗W)R1(X)T = 0 .

In the same way two more conditions are obtained for the matrices V and
W. The new function is then

F : RI1×R1 × RI2×R2 × RI3×R3 → RI1×R1 × RI2×R2 × RI3×R3 ,

X 7→ (F1(X), F2(X), F3(X)).
(3)



Best Low Multilinear Rank Approximation 153

Newton’s method can be applied for finding the zeros of F . However, F1

has an invariance property

F1(XQ) = F1(X) Q1, (4)

where XQ = (UQ1, VQ2, WQ3) and Qi ∈ ORi , i = 1, 2, 3 are orthogonal
matrices. The functions F2 and F3 have similar properties, i.e.,

F (X) = 0 ⇐⇒ F (XQ) = 0.

Thus, the zeros of F are not isolated, which means that the plain Newton
method is expected to have difficulties (see, for example, [3, Prop. 2.1.2], [2]).

A solution to this problem is to combine equivalent solutions in one element
and work on the obtained quotient manifold (see [3] for the general theory on
optimization on matrix manifolds). For information on differential-geometric
version of Newton’s method see also [5]. If we perform as little quotienting as
possible in order to isolate the zeros, we obtain the quotient set

M = RI1×R1
∗ /OR1 × RI2×R2

∗ /OR2 × RI3×R3
∗ /OR3 . (5)

Rn×p
∗ is the set of all full-rank (n× p)-matrices, n ≥ p and each element [U]

of RI1×R1
∗ /OR1 is a set of all matrices that can be obtained by multiplying

U from the right by an orthogonal matrix. Any two sets [U1] and [U2] are
either disjoint or coincide and the union of all such sets equals Rn×p

∗ . They
are called equivalence classes. In each equivalence class all elements have the
same column space.

For our problem (2), working on the manifold M removes the invariance
and leads to a differential-geometric Newton algorithm [47]. The Newton al-
gorithm has local quadratic convergence to the nondegenerate zeros of the
vector field ξ on M (5) represented by the horizontal lift PhF ,

Ph
U(ZU) = ZU −U skew((UT U)−1UT ZU) ,

where skew(B) = (B − BT )/2. If X∗ is a zero of F (3), then [X∗] is a zero
of ξ. Numerical results indicate that that nondegeneracy holds under generic
conditions.

Numerical examples also confirmed the fast quadratic convergence of the
algorithm in the neighborhood of the solution. However, the cost per iter-
ation of the geometric Newton algorithm O(I3R3) is higher than the cost
O(I3R + IR4 + R6) for one HOOI iteration. Another possible disadvantage
of the proposed algorithm is that it does not necessarily converge to a local
maximum of (2) since not all zeros of F correspond to local maxima of (2). In
theory, Newton’s method can even diverge. However, this was not observed
in numerical experiments. To increase the chances of converging to a maxi-
mum of (2), one can first perform an HOSVD followed by a few iterations
of HOOI and additionally check for the negative definiteness of the Hessian
before starting the Newton algorithm.
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4.2 Trust-region based algorithm

Another iterative method for minimizing a cost function is the trust-region
method [15, 58]. At each step, instead of working with the original function, a
quadratic model is obtained. This model is assumed to be accurate in a neigh-
borhood (the trust-region) of the current iterate. The solution of the quadratic
minimization problem is suggested as a solution of the original problem. The
quality of the updated iterate is evaluated and is accepted or rejected. The
trust-region radius is also adjusted.

On a Riemannian manifold, the trust-region subproblem at a point x ∈M
is moved to the tangent plane TxM . The tangent plane is a Euclidean space
so the minimization problem can be solved with standard algorithms. The
update vector ξ ∈ TxM is a tangent vector, giving the direction in which the
next iterate is to be found and the size of the step. However, the new iterate
has to be on the manifold and not on the tangent plane. The correspondence
between vectors on the tangent plane and points on the manifold is given by
a retraction [65, 5], Fig. 5.

M

TXM
X

ξ

RX(ξ)

Fig. 5. Retraction.

The choice of retraction is important. The first obvious choice is the expo-
nential map. However, depending on the manifold, this choice may be compu-
tationally inefficient [55]. A retraction can be thought of as a cheap approxi-
mation of the exponential map, without destroying the convergence behavior
of the optimization methods.

As suggested in [70, 71], an approximate but sufficiently accurate solution
to the trust-region subproblem (the minimization of the quadratic model)
is given by the truncated conjugate gradient algorithm (tCG). An advan-
tage here is that the Hessian matrix is not computed explicitly but only its
application to a tangent vector is required. For other possible methods for
(approximately) solving the trust-region subproblem see [57, 15].

Notice that g from (2) has the following invariance property

g(U, V, W) = g(UQ1, VQ2, WQ3) , (6)

where Qi ∈ ORi , i = 1, 2, 3 are orthogonal matrices. This means that we
are not interested in the exact elements of the matrices U,V,W but in the
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subspaces that their columns span. For the Newton algorithm in Section 4.1
we worked on the manifold defined in (5). Here we choose the Grassmann
manifold which removes more unused information from the cost function. In
(2) we optimize three matrices so we need the product manifold

M = St(R1, I1)/OR1 × St(R2, I2)/OR2 × St(R3, I3)/OR3 , (7)

which can be thought of as a product of three Grassmann manifolds. A natural
choice of a retraction is [3, 4.1.2]

RXOp(Z) = qf(X + Z)Op , (8)

where qf denotes the Q factor of the thin QR decomposition [34, 5.2] and Z
is a tangent vector. This choice is also motivated by the fact that we are only
interested in column spaces of the matrices U,V and W from (2) and not in
their actual values.

In order to apply the Riemannian trust-region scheme to the problem
(2), we need to go through the “checklist” in [1, 5.1] and give closed-form
expressions for all the necessary components. A summary of the first version
of the trust-region algorithm has been proposed in [45]. The algorithm is
described in detail in [46].

The trust-region method has superlinear convergence. On the other hand,
the cost for one iteration O(I3R3) is higher than the cost for one HOOI iter-
ation O(I3R + IR4 + R6) [32, 47]. However, it should be taken into account
that in applications, the multilinear rank is often much smaller than the di-
mensions of the tensor. Moreover, one can reduce the computational cost of
the trust-region algorithm without losing its fast local convergence rate. This
can be done by choosing a stopping criterion based on the gradient of the cost
function for the inner iteration [1]. In this case, few inner tCG steps are taken
when the current iterate is far away from the solution (when the gradient is
large) and more inner tCG steps are taken close to the solution. Thus, the
overall performance of the trust-region method is to be preferred to HOOI in
many cases.

Newton-type methods (see [47, 32, 64] and Section 4.1) also have local
quadratic convergence rate and their computational cost per iteration is of
the same order as the one of the trust-region method. However, they are not
globally convergent and strongly depend on the initialization point. Although
the truncated HOSVD often gives good initial values, sometimes these val-
ues are not good enough. These methods might even diverge in practice. On
the other hand, the trust-region method converges globally (i.e., for all ini-
tial points) to stationary points [1] except for very special examples that are
artificially constructed. Moreover, since the trust-region method is decreasing
the cost function at each step, convergence to saddle points or local maxima
is not observed in practice. Newton methods do not distinguish between min-
ima, maxima and saddle points. Thus, if the stationary points are close to
each other, even if a relatively good starting point is chosen, these algorithms
might converge to a maximum or to a saddle point instead of to a minimum.

§

§

§
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4.3 Conjugate gradient based algorithm

The linear conjugate gradient (CG) method [39] is used for solving large sys-
tems of linear equations having a symmetric positive definite matrix. One can
also regard CG as a method to minimize a convex quadratic cost function. The
initial search direction is taken equal to the steepest descent direction. Every
subsequent search direction is required to be conjugate to all previously gen-
erated search directions. The step length is chosen as the exact minimizer in
the search direction and indicates where to take the next iterate. The optimal
solution is found in n steps, where n is the dimension of the problem.

Nonlinear CG methods [33, 62] use the same idea as linear CG but apply it
to general nonlinear functions. A few adjustments are necessary. The step size
is obtained by a line search algorithm. The computation of the next search
direction is not uniquely defined as in the linear CG. The main approaches are
those provided by Fletcher-Reeves [33] and Polak-Ribière [62], both having ad-
vantages and disadvantages. The nonlinear CG methods reduce to the linear
CG if the function is convex quadratic and if the step size is the exact mini-
mizer along the search direction. However, since the cost function is in general
not convex quadratic, convergence is obtained after more than n iterations.
Some convergence results can be found in [58, 5] and the references therein.

In order to generalize the nonlinear CG from functions in Rn to functions
defined on Riemannian manifolds, the expressions for the step length and
search direction have to be adjusted. Exact line search for the step length
could be extremely expensive. In that case, the step size could be computed
using a backtracking procedure, searching for an Armijo point [3, 4.2].

When computing the new search direction ηk+1, another obstacle appears.
The formula for ηk+1 involves the gradient at the new point xk+1 and the
previous search direction ηk, which are two vectors in two different tangent
spaces. A solution for this problem is to carry ηk over to the tangent space of
xk+1. Nonlinear CG on Riemannian manifolds was first proposed in [68, 69].
This algorithm makes use of the exponential map and parallel translation,
which might be inefficient. The algorithm proposed in [3] works with the more
general concepts of retraction and vector transport. The vector transport is a
mapping that transports a tangent vector from one tangent plane to another.
The vector transport has a different purpose than a retraction but is a similar
concept in the sense that it is a cheap version of parallel translation, being
just as useful as the parallel translation at the same time. We refer to [3, Def.
8.1.1] for the precise formulation. The concept is illustrated in Fig. 6. The
vector ξ is transported to the tangent plane of RX(η) and the result is Tηξ.

As in the trust-region algorithm, here, for solving (2) we work again on
the Grassmann manifold. A simple vector transport in this case is

(TηX
ξX)qf(X+ηX) = Ph

qf(X+ηX)
ξX , (9)

where ηx and ξx are two tangent vectors at point [X] and ξX and ηX are the
horizontal lifts [3, 3.5.8] at X of ξX and ηX respectively. Ph

Y is the orthogonal

§

§

§
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Fig. 6. Vector transport.

projection
Ph

Y(Z) = (I−YYT )Z

onto the horizontal space of the point Y. Note that [qf(X + ηX)] = R[X]ηx.
Some remarks are in order. Since the step size is not the optimal one

along ηk, it is possible that the new direction is not a descent direction. If
this is the case, we set the new direction to be the steepest descent direction.
A generalization of the computation of the search directions based on the
Fletcher-Reeves and Polak-Ribière formulas is given in [3, 8.3]. The precision
of CG was discussed in [3, 36]. When the distance between the current iterate
and the local minimum is close to the square root of the machine precision,
the Armijo condition within the line-search procedure can never be satisfied.
This results in CG having maximum precision equal to the square root of
the machine precision. To overcome this problem, an approximation of the
Armijo condition was proposed in [36]. Finally, we mention that for better
convergence results, it is advisable to “restart” the CG algorithm, i.e., to take
as a search direction the steepest descent direction. This should be done at
every n steps, where n is the number of unknown parameters, in order to
erase unnecessary old information. The convergence of CG in Rn is then n-
step quadratic. However, n is often too large in the sense that the algorithm
already converges in less than n iterations.

The convergence properties of nonlinear CG methods are difficult to an-
alyze. Under mild assumptions on the cost function, nonlinear CG converges
to stationary points. Descent directions are guaranteed if we take the steepest
descent direction when the proposed direction is not a descent direction it-
self. Thus, CG converges to local minima unless very special initial values are
started from. The advantage of the nonlinear CG methods is their low com-
putational cost and the fact that they do not require a lot of storage space.
At each iteration, the cost function and the gradient are evaluated but the
computation of the Hessian is not required, as it was the case for the trust-
region algorithm from Section 4.2.

It is expected that the proposed geometric CG algorithm [43] has proper-
ties similar to those of nonlinear CG although theoretical results are difficult

§
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to prove. Numerical experiments indicate that the performance of CG strongly
depends on the problem. If the tensor has a well-determined part with low
multilinear rank, CG performs well. The difficulty of the problem is related
to the distribution of the multilinear singular values of the original tensor. As
far as the computational time is concerned, CG seems to be competitive with
HOOI and the trust-region algorithm for examples that are not too easy and
not too difficult, such as tensors with elements taken from a normal distribu-
tion with zero mean and unit standard deviation.

In our study of algorithms for the low multilinear rank approximation of
tensors, it was important to investigate a CG-based algorithm. The conver-
gence speed of the algorithm is not favorable but this is compensated by the
fact that the iterations are extremely fast.

4.4 Remarks

HOOI is a simple algorithm with cheap iterations but linear convergence rate.
This suggests to use it if the precision or the computational time are not
critical. On the other hand, the Newton based algorithm has local quadratic
convergence rate but has expensive iterations and convergence issues. Thus,
this algorithm can be used if a good starting point is available. The trust-
region based algorithm has also fast (up to quadratic) convergence rate and
cost per iteration smaller or equal to the one of the Newton based algorithm.
Its computational time per iteration is competitive with the one of HOOI for
approximations with small multilinear rank. Finally, the CG based algorithm
converges after a large amount of cheap iterations. The cost for one iteration
is similar to the cost of one HOOI iteration. Numerical experiments suggest
that the CG algorithm has best performance for easy problems, i.e., for ap-
proximations where the original tensor is close to a tensor with low multilinear
rank. We summarize the most important features of the algorithms in Table 1.
Some numerical examples can be found in [42].

HOOI Newton TR CG

global/local
(global) local global (global)

convergence

convergence to

min,
stationary

point

min, min,
(saddle point), (saddle point), (saddle point),

((max)) ((max)) ((max))

local convergence
speed

linear quadratic
superlinear

up to quadratic

„

n-step
quadratic

«

cost/iteration O(I3R+IR4+R6) O(I3R3) ≤ O(I3R3) (∼ O(I3R))

monotonically
yes no yes yes

decreasing?

Table 1. Summary of the main features of HOOI, the Newton’s algorithm, the
trust-region algorithm and the conjugate gradient algorithm.
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The low multilinear rank approximation problem (1) may have many local
minima. Searching for distinct minima, all available algorithms could be run
with a number of initial points. Because of the different functioning of the al-
gorithms, they often find different solutions even if initialized in the same way.

5 Local minima

The best low multilinear rank approximation problem (1) has local minima
[16, 23, 44, 42]. This is a key observation since the best low-rank approximation
of a matrix has a unique minimum.

For tensors with low multilinear rank perturbed by a small amount of ad-
ditive noise, algorithms converge to a small number of local minima. After
increasing the noise level, the tensors become less structured and more local
minima are found [44]. This behavior is related to the distribution of the mode-
n singular values. In the first case, there is a large gap between the singular
values. If the gap is small or nonexistent, the best low multilinear rank approx-
imation is a difficult problem since we are looking for a structure that is not
present. In this case, there are many equally good, or equally bad, solutions.

The values of the cost function at different local minima seem to be sim-
ilar [44]. Thus, in applications where the multilinear rank approximation is
merely used as a compression tool for memory savings, taking a nonglobal lo-
cal minimum is not too different from working with the global minimum itself.

On the other hand, the column spaces of the matrices U1 and U2 corre-
sponding to two different local minima are very different and the same holds
for V and W [44]. In applications where these subspaces are important, local
minima may be an issue. This concerns in particular the dimensionality re-
duction prior to computing a PARAFAC decomposition. One should inspect
the gap between the mode-n singular values in each mode in order to choose
meaningful values for the multilinear rank of the approximation.

An additional problem appears when the subspaces are important but the
global minimum is not the desired one. This could happen when a tensor with
low multilinear rank is affected by noise. The subspaces corresponding to the
global minimum of (1) are not necessarily the closest to the subspaces corre-
sponding to the original noise-free tensor, especially for high noise levels. This
further stresses that solutions of the approximation problem have to be inter-
preted with care. It may even be impossible to obtain a meaningful solution.

It is usually a good idea to start from the truncated HOSVD. However,
convergence to the global optimum is not guaranteed [16, 23, 44]. In some
examples, a better (in the sense of yielding a smaller cost function value)
local minimum is obtained from another initial point. Considering different
algorithms with different initial values could improve the change to find the
global minimum.

Finally, we describe a procedure for dimensionality reduction of large-scale
problems. As an initial step, the HOSVD of the original tensor can be trun-
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cated so that the mode-n singular values close to zero be discarded. In this way,
the dimensions of the original tensor are reduced without losing much preci-
sion. As a second step prior to computing e.g., a PARAFAC decomposition,
an essential dimensionality reduction via low multilinear rank approximation
on an already smaller scale can be performed. The latter needs to take into
account gaps between mode-n singular values.

6 Conclusions

This paper combines several topics. The main problem, the best low multilin-
ear rank approximation of higher-order tensors, is a key problem in multilinear
algebra having various applications. We considered solutions based on opti-
mization on manifolds. The fact that the cost function is invariant under right
multiplication of the matrices U,V and W by orthogonal matrices prohibits
potential algorithms from converging to a particular solution. Working on
quotient manifolds isolates the solutions and makes the work of “standard”
optimization algorithms easier.

The optimization methods on which the discussed methods are based are
Newton’s method, trust-region and conjugate gradients. There are also other
methods in the literature. It is difficult to say which algorithm is the best.
All algorithms have their advantages and disadvantages. Depending on the
application, the dimensions of the tensor, the required precision and the time
restrictions, one of the algorithms can be the method of choice. The Newton
algorithm has local quadratic convergence rate but might diverge or converge
to a saddle point or a maximum instead of a minimum. Moreover, it needs a
good starting point. A well-chosen stopping criterion for the inner iteration
of the trust-region algorithm leads to an algorithm with local quadratic con-
vergence. The computational cost per iteration is competitive with the one
of HOOI, which has only linear local convergence. Moreover, convergence of
the trust-region algorithm to a minimum is (almost always) guaranteed. On
the other hand, the conjugate gradient based algorithm has much cheaper
iterations but lacks solid theoretical proofs.

It can make sense to apply several algorithms to the same problem. For
example, if one wishes to inspect several local minima, one strategy would be
to run all available algorithms, starting from enough initial points and in this
way to obtain a more complete set of solutions. Due to the different character
of the algorithms, they often find different solutions even when starting from
the same initial values.

We also discussed the issue of local minima of the low multilinear rank
approximation problem. It concerns the problem itself and does not depend
on the actual algorithm. There are important consequences for whole classes
of applications. One should be very careful when deciding whether or not it
is meaningful to use such an approximation. The higher-order singular values
may provide relevant information in this respect.
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