
Fixed-Order H-infinity Optimization of
Time-Delay Systems

Suat Gumussoy1 and Wim Michiels2

1 Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A, 3001
Heverlee, Belgium, suat.gumussoy@cs.kuleuven.be

2 Department of Computer Science, K. U. Leuven, Celestijnenlaan 200A, 3001
Heverlee, Belgium, wim.michiels@cs.kuleuven.be

Summary. H-infinity controllers are frequently used in control theory due to their
robust performance and stabilization. Classical H-infinity controller synthesis meth-
ods for finite dimensional LTI MIMO plants result in high-order controllers for high-
order plants whereas low-order controllers are desired in practice. We design fixed-
order H-infinity controllers for a class of time-delay systems based on a non-smooth,
non-convex optimization method and a recently developed numerical method for
H-infinity norm computations.

Robust control techniques are effective to achieve stability and performance
requirements under model uncertainties and exogenous disturbances [16]. In
robust control of linear systems, stability and performance criteria are of-
ten expressed by H-infinity norms of appropriately defined closed-loop func-
tions including the plant, the controller and weights for uncertainties and dis-
turbances. The optimal H-infinity controller minimizing the H-infinity norm
of the closed-loop functions for finite dimensional multi-input-multi-output
(MIMO) systems is computed by Riccati and linear matrix inequality (LMI)
based methods [8, 9]. The order of the resulting controller is equal to the
order of the plant and this is a restrictive condition for high-order plants. In
practical implementations, fixed-order controllers are desired since they are
cheap and easy to implement in hardware and non-restrictive in sampling
rate and bandwidth. The fixed-order optimal H-infinity controller synthe-
sis problem leads to a non-convex optimization problem. For certain closed-
loop functions, this problem is converted to an interpolation problem and
the interpolation function is computed based on continuation methods [1].
Recently fixed-order H-infinity controllers are successfully designed for finite
dimensional LTI MIMO plants using a non-smooth, non-convex optimization
method [10]. This approach allows the user to choose the controller order and
tunes the parameters of the controller to minimize the H-infinity norm of the
objective function using the norm value and its derivatives with respect to
the controller parameters. In our work, we design fixed-order H-infinity con-
trollers for a class of time-delay systems based on a non-smooth, non-convex
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optimization method and a recently developed H-infinity norm computation
method [13]. H-infinity!optimization control!fixed-order

1 Problem Formulation

We consider time-delay plant G determined by equations of the form,

ẋ(t) = A0x(t) +

m
X

i=1

Aix(t− τi) +B1w(t) +B2u(t− τm+1) (1)

z(t) = C1x(t) +D11w(t) +D12u(t) (2)

y(t) = C2x(t) +D21w(t) +D22u(t− τm+2). (3)

where all system matrices are real with compatible dimensions andA0 ∈ Rn×n.
The input signals are the exogenous disturbances w and the control signals
u. The output signals are the controlled signals z and the measured signals
y. All system matrices are real and the time-delays are positive real numbers.
In robust control design, many design objectives can be expressed in terms of
norms of closed-loop transfer functions between appropriately chosen signals
w to z.

The controller K has a fixed-structure and its order nK is chosen by the
user a priori depending on design requirements,

ẋK(t) = AKxK(t) +BKy(t) (4)

u(t) = CKxK(t) (5)

where all controller matrices are real with compatible dimensions and AK ∈
RnK×nK .

By connecting the plant G and the controller K, the equations of the
closed-loop system from w to z are written as,

ẋcl(t) = Acl,0xcl(t) +

m+2
X

i=1

Acl,ixcl(t− τi) +Bclw(t)

z(t) = Cclxcl(t) +Dclw(t) (6)

where
Acl,0 =

„

A0 0
BKC2 AK

«

, Acl,i =

„

Ai 0
0 0

«

for i = 1, . . . ,m,

Acl,m+1 =

„

0 B2CK

0 0

«

, Acl,m+2 =

„

0 0
0 BKD22CK

«

,

Bcl =

„

B1

BKD21

«

, Ccl =
`

C1 D12CK

´

, Dcl = D11. (7)

The closed-loop matrices contain the controller matrices (AK , BK , CK)
and these matrices can be tuned to achieve desired closed-loop characteristics.

The transfer function from w to z is,

Tzw(s) = Ccl

 

sI −Acl,0 −
m+2
X

i=1

Acl,ie
−τis

!−1

Bcl +Dcl (8)
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and we define fixed-order H-infinity optimization problem as the following.
Problem Given a controller order nK , find the controller matrices (AK ,

BK , CK) stabilizing the system and minimizing the H-infinity norm of the
transfer function Tzw.

2 Optimization Problem

2.1 Algorithm

The optimization algorithm consists of two steps:

1. Stabilization: minimizing the spectral abscissa, the maximum real part
of the characteristic roots of the closed-loop system. The optimization
process can be stopped when the controller parameters are found that
stabilizes Tzw and these parameters are the feasible points for the H-
infinity optimization of Tzw.

2. H-infinity optimization: minimizing the H-infinity norm of Tzw using
the starting points from the stabilization step.

If the first step is successful, then a feasible point for the H-infinity opti-
mization is found, i.e., a point where the closed-loop system is stable. If in the
second step the H-infinity norm is reduced in a quasi-continuous way, then the
feasible set cannot be left under mild controllability/observability conditions.

Both objective functions, the spectral abscissa and the H-infinity norm, are
non-convex and not everywhere differentiable but smooth almost everywhere
[15]. Therefore we choose a hybrid optimization method to solve a non-smooth
and non-convex optimization problem, which has been successfully applied to
design fixed-order controllers for the finite dimensional MIMO systems [10].

The optimization algorithm searches for the local minimizer of the objec-
tive function in three steps [5]:

1. A quasi-Newton algorithm (in particular, BFGS) provides a fast way to
approximate a local minimizer [12],

2. A local bundle method attempts to verify local optimality for the best
point found by BFGS,

3. If this does not succeed, gradient sampling [6] attempts to refine the ap-
proximation of the local minimizer, returning a rough optimality measure.

The non-smooth, non-convex optimization method requires the evaluation
of the objective function -in the second step this is the H-infinity norm of Tzw-
and the gradient of the objective function with respect to controller parame-
ters where it exists. Recently a predictor-corrector algorithm has been devel-
oped to compute the H-infinity norm of time-delay systems [13]. We computed
the gradients using the derivatives of singular values at frequencies where the
H-infinity norm is achieved. Based on the evaluation of the objective function
and its gradients, we apply the optimization method to compute fixed-order
controllers. The computation of H-infinity norm of time-delay systems (8) is
discussed in the following section. non-smooth optimization
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2.2 Computation of the H-infinity Norm

We implemented a predictor-corrector type method to evaluate the H-infinity
norm of Tzw in two steps (for details we refer to [13]): H-infinity!norm com-
putationnorm!H-infinity

Prediction step: we calculate the approximate H-infinity norm and cor-
responding frequencies where the highest peak values in the singular value
plot occur.
Correction step: we correct the approximate results from the prediction
step.

Theoretical Foundation

The following theorem generalizes the well-known relation between the exis-
tence of singular values of the transfer function equal to a fixed value and the
presence of imaginary axis eigenvalues of a corresponding Hamiltonian matrix
[7] to time-delay systems:

Theorem 1. [13] Let ξ > 0 be such that the matrix

Dξ := DT
clDcl − ξ2I

is non-singular and define τmax as the maximum of the delays (τ1, . . . , τm+2).
For ω ≥ 0, the matrix Tzw(jω) has a singular value equal to ξ > 0 if and only
if λ = jω is an eigenvalue of the linear infinite dimensional operator Lξ on
X := C([−τmax, τmax],C2n) which is defined by

D(Lξ) =
˘

φ ∈ X : φ′ ∈ X, φ′(0) = M0φ(0) +

m+2
X

i=1

(Miφ(−τi) +M−iφ(τi))}, (9)

Lξφ = φ′, φ ∈ D(Lξ) (10)

with
M0 =

»

Acl,0 −BclD
−1
ξ DT

clCcl −BclD
−1
ξ BT

cl

ξ2CT
clD

−T
ξ Ccl −AT

cl,0 + CT
clDclD

−1
ξ BT

cl

–

,

Mi =

»

Acl,i 0
0 0

–

, M−i =

»

0 0
0 −AT

cl,i

–

, 1 ≤ i ≤ m+ 2.

By Theorem 1, the computation of H-infinity norm of Tzw can be formu-
lated as an eigenvalue problem for the linear operator Lξ.

Corollary 1.
‖Tzw‖∞ = sup{ξ > 0 : operator Lξ has an eigenvalue on the imaginary axis}

Conceptually Theorem 1 allows the computation of H-infinity norm via
the well-known level set method [2, 4]. However, Lξ is an infinite dimensional
operator. Therefore, we compute the H-infinity norm of the transfer function
Tzw in two steps:

1) The prediction step is based on a matrix approximation of Lξ.

•

•
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2) The correction step is based on reformulation of the eigenvalue problem
of Lξ as a nonlinear eigenvalue problem of a finite dimension.

The approximation of the linear operator Lξ and the corresponding stan-
dard eigenvalue problem for Corollary 1 is given in Section 2.3. The correction
algorithm of the approximate results in the second step is explained in Sec-
tion 2.4.

2.3 Prediction Step

The infinite dimensional operator Lξ is approximated by a matrix LN
ξ . Based

on the numerical methods for finite dimensional systems [2, 4], the H-infinity
norm of the transfer function Tzw can be computed approximately as

Corollary 2.
‖Tzw‖∞ ≈ sup{ξ > 0 : operator LN

ξ has an eigenvalue on the imaginary axis}.

The infinite-dimensional operator Lξ is approximated by a matrix using a
spectral method (see, e.g. [3]). Given a positive integer N , we consider a mesh
ΩN of 2N + 1 distinct points in the interval [−τmax, τmax]:

ΩN = {θN,i, i = −N, . . . , N}, (11)

where
−τmax ≤ θN,−N < . . . < θN,0 = 0 < · · · < θN,N ≤ τmax.

This allows to replace the continuous space X with the space XN of dis-
crete functions defined over the meshΩN , i.e. any function φ ∈ X is discretized
into a block vector x = [xT

−N · · · xT
N ]T ∈ XN with components

xi = φ(θN,i) ∈ C2n, i = −N, . . . , N.

Let PNx, x ∈ XN be the unique C2n valued interpolating polynomial of
degree ≤ 2N satisfying

PNx(θN,i) = xi, i = −N, . . . , N.

In this way, the operator Lξ over X can be approximated with the matrix
LN

ξ : XN → XN , defined as
“

LN
ξ x

”

i
= (PNx)

′ (θN,i), i = −N, . . . ,−1, 1, . . . , N,

“

LN
ξ x

”

0
= M0PNx(0) +

m+2
X

i=1

(MiPNx(−τi) +M−iPNx(τi)).

Using the Lagrange representation of PNx,

PNx =
∑N

k=−N lN,k xk,
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where the Lagrange polynomials lN,k are real valued polynomials of degree
2N satisfying

lN,k(θN,i) =
{

1 i = k,
0 i 6= k,

we obtain the explicit form

LN
ξ =

2

6

6

6

6

6

6

6

6

6

6

6

4

d−N,−N . . . d−N,N

...
...

d−1,−N . . . d−1,N

a−N . . . aN

d1,−N . . . d1,N

...
...

dN,−N . . . dN,N

3

7

7

7

7

7

7

7

7

7

7

7

5

∈ R(2N+1)(2n)×(2N+1)2n,

where
di,k = l′N,k(θN,i)I, i, k ∈ {−N, . . . , N}, i 6= 0,

a0 = M0 x0 +
Pm+2

k=1 (MklN,0(−τk) +M−klN,0(τk)) ,

ai =
Pm+2

k=1 (MklN,i(−τk) +M−klN,i(τk)) , k ∈ {−N, . . . , N}, k 6= 0.

2.4 Correction Step

By using the finite dimensional level set methods, the largest level set ξ where
LN

ξ has imaginary axis eigenvalues and their corresponding frequencies are
computed. In the correction step, these approximate results are corrected by
using the property that the eigenvalues of the Lξ appear as solutions of a finite
dimensional nonlinear eigenvalue problem. The following theorem establishes
the link between the linear infinite dimensional eigenvalue problem for Lξ and
the nonlinear eigenvalue problem.

Theorem 2. [13] Let ξ > 0 be such that the matrix

Dξ := DT
clDcl − ξ2I

is non-singular. Then, λ is an eigenvalue of linear operator Lξ if and only if

detHξ(λ) = 0, (12)

where
Hξ(λ) := λI −M0 −

m+2∑
i=1

(
Mie

−λτi +M−ie
λτi
)

(13)

and the matrices M0, Mi, M−i are defined in Theorem 1.

The correction method is based on the property that if ξ̂ = ‖Tzw(jω)‖∞,
then (13) has a multiple non-semisimple eigenvalue. If ξ̂ ≥ 0 and ω̂ ≥ 0 are
such that

‖Tzw(jω)‖H∞ = ξ̂ = σ1(Tzw(jω̂)), (14)
then setting

hξ(λ) = detHξ(λ),
the pair (ω̂, ξ̂) satisfies
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Fig. 1. (left) Intersections of the singular value plot of Tzw with the horizontal line
ξ = c, for c < ξ̂ (top), c = ξ̂ (middle) and c > ξ̂ (bottom). (right) Corresponding
eigenvalues of Hξ(λ) (13).

hξ(jω) = 0, h′ξ(jω) = 0. (15)

This property is clarified in Figure 1.
The drawback of working directly with (15) is that an explicit expression

for the determinant of Hξ is required. This scalar-valued conditions can be
equivalently expressed in a matrix-based formulation.

8

<

:

H(jω, ξ)

»

u,
v

–

= 0, n(u, v) = 0,

=
˘

v∗
`

I +
Pm+1

i=1 Acl,iτie
−jωτi

´

u
¯

= 0
(16)

where n(u, v) = 0 is a normalizing condition. The approximate H-infinity
norm and its corresponding frequencies can be corrected by solving (16). For
further details, see [13].

2.5 Computing the Gradients

The optimization algorithm requires the derivatives of H-infinity norm of the
transfer function Tzw with respect to the controller matrices whenever it is
differentiable. Define the H-infinity norm of the function Tzw as

f(Acl,0, . . . , Acl,m+2, Bcl, Ccl, Dcl) = ‖Tzw(jω)‖∞.

These derivatives exist whenever there is a unique frequency ω̂ such that (14)
holds, and, in addition, the largest singular value ξ̂ of Tzw(jω̂) has multiplicity
one. Let wl and wr be the corresponding left and right singular vector, i.e.
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Tzw(jω̂) wr = ξ̂ wl,

w∗l Tzw(jω̂) = ξ̂ w∗r .
(17)

When defining ∂f
∂Acl,0

as a n-by-n matrix whose (k, l)-th element is the deriva-
tive of f with respect to the (k, l)-th element of Acl,0, and defining the other
derivatives in a similar way, the following expressions are obtained [14]:

∂f

∂Acl,0
=
<
`

M(jω̂)∗CT
clwlw

∗
rB

T
clM(jω̂)∗

´

w∗
rwr

,

∂f

∂Acl,i
=
<
`

M(jω̂)∗CT
clwlw

∗
rB

T
clM(jω̂)∗ejωτi

´

w∗
rwr

for i = 1, . . . ,m+ 2,

∂f

∂Bcl
=
<(M(jω̂)∗CT

clwlw
∗
r )

w∗
rwr

,
∂f

∂Ccl
=
<(wlw

∗
rB

T
clM(jω̂)∗)

w∗
rwr

,

∂f

∂Dcl
=
< (wlw

∗
r )

w∗
rwr

where M(jω) =
(
jωI −Acl,0 −

∑m+2
i=1 Acl,ie

−jωτi

)−1

.
We compute the gradients with respect to the controller matrices as

∂f

∂AK
=
ˆ

0nK×n InK

˜ ∂f

∂Acl,0

»

0n×nK

InK

–

,

∂f

∂BK
=
ˆ

0nK×n InK

˜ ∂f

∂Acl,0

»

In

0nK×n

–

CT
2

+
ˆ

0nK×n InK

˜ ∂f

∂Acl,m+2

»

0n×nK

InK

–

CT
KD

T
22 +

ˆ

0nK×n InK

˜ ∂f

∂Bcl
DT

21,

∂f

∂CK
= BT

2

ˆ

In 0n×nK

˜ ∂f

∂Acl,m+1

»

0n×nK

InK

–

+DT
22B

T
K

ˆ

0nK×n InK

˜ ∂f

∂Acl,m+2

»

0n×nK

InK

–

+DT
12

∂f

∂Ccl

»

0n×nK

InK

–

where the matrices In, InK
and 0n×nK

, 0nK×n are identity and zero matrices.

3 Examples

We consider the time-delay system with the following state-space representa-
tion,

ẋ(t) = −x(t)− 0.5x(t− 1) + w(t) + u(t),

z(t) = x(t) + u(t),

y(t) = x(t) + w(t).

We designed the first-order controller, nK = 1,

ẋK(t) = 3.61xK(t) + 1.39y(t),

u(t) = −0.83xK(t),
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achieving the closed-loop H-infinity norm 0.064. The closed-loop H-infinity
norms of fixed-order controllers for nK = 2 and nK = 3 are 0.021 and 0.020
respectively.

Our second example is a 4th-order time-delay system. The system contains
4 delays and has the following state-space representation,

ẋ(t) =

0

B

@

−4.4656 −0.4271 0.4427 −0.1854
−0.8601 −5.6257 0.8577 −0.5210
0.9001 −0.7177 −6.5358 0.0417
−0.6836 0.0242 0.4997 −3.5618

1

C

A

x(t)+

0

B

@

0.6848 −0.0618 0.5399 0.5057
0.3259 −0.3810 0.6592 −0.0066
0.6325 0.3752 0.4122 0.7303
0.5878 0.9737 0.1907 −0.8639

1

C

A

x(t−3.2)

+

0

B

@

0.9371 −0.7859 0.1332 0.7429
−0.8025 0.4483 0.6226 0.0152
0.0940 0.2274 0.1536 0.5776
−0.1941 0.5659 0.8881 −0.0539

1

C

A

x(t−3.4)+

0

B

@

0.6576 −0.8543 −0.3460 0.6415
−0.3550 0.5024 0.6081 0.9038
0.9523 0.6624 0.0765 −0.8475
−0.4436 0.8447 −0.0734 0.4173

1

C

A

x(t−3.9)

+

0

B

@

1 0
−1.6 1

0 0
0 0

1

C

A

w(t) +

0

B

@

0.2
−1
0.1
−0.4

1

C

A

u(t− 0.2)

z(t) =

„

1 0 0 −1
0 −1 1 0

«

x(t) +

„

0.1 1
−1 0.2

«

w(t) +

„

1
−1

«

u(t)

y(t) =
`

1 0 −1 0
´

x(t) +
`

−2 0.1
´

w(t) + 0.4u(t− 0.2)

When nK = 1, our method finds the controller achieving the closed-loop
H-infinity norm 1.2606,

ẋK(t) = −0.712xK(t)− 0.1639y(t),

u(t) = −0.2858xK(t)

and the results for nK = 2 and nK = 3 are 1.2573 and 1.2505 respectively.

4 Concluding Remarks

We successfully designed fixed-order H-infinity controllers for a class of time-
delay systems. The method is based on non-smooth, non-convex optimization
techniques and allows the user to choose the controller order as desired. Our
approach can be extended to general time-delay systems. Although we illus-
trated our method for a dynamic controller, it can be applied to more general
controller structures. The only requirement is that the closed-loop matrices
should depend smoothly on the controller parameters. On the contrary, the
existing controller design methods optimizing the closed-loop H-infinity norm
are based on Lyapunov theory and linear matrix inequalities. These methods
are conservative if the form of the Lyapunov functionals is restricted, and they
require full state information.
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