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Summary. Copositive programming is a relatively young field in mathematical op-
timization. It can be seen as a generalization of semidefinite programming, since it
means optimizing over the cone of so called copositive matrices. Like semidefinite
programming, it has proved particularly useful in combinatorial and quadratic op-
timization. The purpose of this survey is to introduce the field to interested readers
in the optimization community who wish to get an understanding of the basic con-
cepts and recent developments in copositive programming, including modeling issues
and applications, the connection to semidefinite programming and sum-of-squares
approaches, as well as algorithmic solution approaches for copositive programs.

1 Introduction

A copositive program is a linear optimization problem in matrix variables of
the following form:

min (C, X)
s.t. (A, X)=b; (i=1,...,m), (1)
X ec(,

where C is the cone of so-called copositive matrices, that is, the matrices whose
quadratic form takes nonnegative values on the nonnegative orthant R} :

C={AecS:2"Az>0for all z € R} }

(here S is the set of symmetric n x n matrices, and the inner product of two
matrices in (1) is (A4, B) := trace(BA) = sz:l a;;bi;, as usual). Obviously,
every positive semidefinite matrix is copositive, and so is every entrywise
nonnegative matrix, but the copositive cone is significantly larger than both
the semidefinite and the nonnegative matrix cones.

Interpreting (1) as the primal program, one can associate a corresponding
dual program which is a maximization problem over the dual cone. For an
arbitrary given cone K C S, the dual cone K* is defined as
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K*:={AeS8: (A, B)>0forall BeK}.

In contrast to the semidefinite and nonnegative matrix cones, the cone C is
not selfdual. It can be shown (see e.g. [6]) that C* is the cone of so-called
completely positive matrices

C* = conv{zz” : x € R} }.

Using this, the dual of (1) can be derived through the usual Lagrangian ap-
proach and is easily seen to be

m
max E b;y;
i=1

s. t. CnylAl eC*, y; € R

i=1

(2)

Since both C and C* are convex cones, (1) and (2) are convex optimization
problems. KKT optimality conditions hold if Slater’s condition is satisfied,
as shown by [28], and imposing a constraint qualification guarantees strong
duality, i.e., equality of the optimal values of (1) and (2). The most common
constraint qualification is to assume that both problems are feasible and one
of them strictly feasible (meaning that there exists a strictly feasible point,
i.e., a solution to the linear constraints in the interior of the cone).
Copositive programming is closely related to quadratic and combinatorial
optimization. We illustrate this connection by means of the standard quadratic
problem
min 27 Qz
(StQP) s.t. ez =1,
z >0,

where e denotes the all-ones vector. This optimization problem asks for the
minimum of a (not necessarily convex) quadratic function over the standard
simplex. Easy manipulations show that the objective function can be written
as v7Qr = (Q,r2T). Analogously the constraint e’z = 1 transforms to
(E,z2T) = 1, with E = ee’". Hence, the problem

min (Q, X)
s.t. (B, X) =1, (3)
Xecr

is obviously a relaxation of (StQP). Since the objective is now linear, an
optimal solution must be attained in an extremal point of the convex feasible
set. It can be shown that these extremal points are exactly the rank-one
matrices zoz? with # > 0 and e’z = 1. Together, these results imply that (3)
is in fact an exact reformulation of (StQP).

The standard quadratic problem is an NP-hard optimization problem,
since the maximum clique problem can be reduced to an (StQP). Indeed,
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denoting by w(G) the clique number of a graph G and by A its adjacency
matrix, Motzkin and Straus [43] showed that

ﬁ =min{z? (E — Ag)z: ez = 1,2 > 0}. (4)
Nevertheless, (3) is a convex formulation of this NP-hard problem. This shows
that NP-hard convex optimization problems do exist. The complexity has
moved entirely into the cone-constraint X € C*. It is known that testing
whether a given matrix is in C is co-NP-complete (cf. [44]). Consequently,
it is not tractable to do a line-search in C. The cones C and C* do allow
self-concordant barrier functions (see [46]), but these functions can not be
evaluated in polynomial time. Thus, the classical interior point methodology
does not work. Optimizing over either C or C* is thus NP-hard, and restating
a problem as an optimization problem over one of these cones does not resolve
the difficulty of that problem. However, studying properties of C and C* and
using the conic formulations of quadratic and combinatorial problems does
provide new insights and also computational improvements.

Historical remarks

The concept of copositivity seems to go back to Motzkin [42] in the year 1952.
Since then, numerous papers on both copositivity and complete positivity have
emerged in the linear algebra literature, see [6] or [36] for surveys. Using these
cones in optimization has been studied only in the last decade.

An early paper relating the solution of a certain quadratic optimization
problem to copositivity is Preisig [52] from 1996. Preisig describes properties
and derives an algorithm for what we would now call the dual problem of (3)
with E replaced by a strictly copositive matrix B. However, he just analyzes
this particular problem and does not provide the conic programming frame-
work outlined above. It seems that his paper has been widely ignored by the
optimization community.

Quist et al. [53] suggested in 1998 that semidefinite relaxations of quadratic
problems may be tightened by looking at the copositive cone. They were the
first to formulate problems with the conic constraints X € C and X € C*.

Bomze et al. [11] were the first to establish an equivalent copositive formu-
lation of an NP-hard problem, namely the standard quadratic problem. Their
paper from 2000 also coined the term ”copositive programming”.

Since [11] appeared, a number of other quadratic and combinatorial prob-
lems have been shown to admit an exact copositive reformulation. Although
these formulations remain NP-hard, they have inspired better bounds than
previously available. Through sum-of-squares approximations (cf. Section 5
below) they have opened a new way to solve these problems. Finally, new so-
lution algorithms for copositive and completely positive problems have been
developed and proved very successful in some settings, as we describe in Sec-
tion 6.
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2 Applications

Binary quadratic problems

We have seen in Section 1 that the standard quadratic problem can be rewrit-
ten as a completely positive program. This can be extended to so-called multi-
StQPs, where one seeks to optimize a quadratic form over the cartesian prod-
uct of simplices, see [15].

Burer [19] showed the much more general result that every quadratic prob-
lem with linear and binary constraints can be rewritten as such a problem.
More precisely, he showed that a quadratic binary problem of the form

min 27 Qz + 2cTx

sst.alz=b (i=1,...,m)
e 0 (5)
z; €{0,1} (jeB)

can equivalently be reformulated as the following completely positive problem:

min (Q, X) + 2cTx

s.t.afz=b (i=1,...,m)
(a;al , X)=b? (i=1,...,m)
zj=Xj; (j€B)

1z N
r X €c,

provided that (5) satisfies the so-called key condition, i.e., al x = b; for all i

and x > 0 implies z; < 1 for all j € B. As noted by Burer, this condition can
be enforced without loss of generality.

It is still an open question whether problems with general quadratic con-
straints can similarly be restated as completely positive problems. Only special
cases like complementarity constraints have been solved [19]. For a comment
on Burer’s result see [13]. Natarajan et al. [45] consider (5) in the setting where
@ = 0 and c is a random vector, and derive a completely positive formulation
for the expected optimal value.

Fractional quadratic problems

Consider a matrix A whose quadratic form z7 Az does not have zeros in the
standard simplex, i.e., consider without loss of generality a strictly copositive
matrix A. Preisig [52] observed that then the problem of maximizing the ratio
of two quadratic forms over the standard simplex

T
L frt Qe
mm{xTAx'e x—l,xZO}

is equivalent to
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min{z” Qz : 2T Az = 1,2 > 0}

and hence, by similar arguments as used to derive (3), is equivalent to the
completely positive program

min{(Q,X) : (4, X) =1,z € C*}

For a thorough discussion, see also [16].

Combinatorial problems

For the problem of determining the clique number w(G) of a graph G, we
can combine the Motzkin-Straus formulation (4) with the completely positive
formulation (3) of the standard quadratic problem. Taking the dual of that
problem, we arrive at

ﬁ =max{\: A(E — Ag) — F € C}.
Using a somewhat different approach, De Klerk and Pasechnik [23] derive the
following formulation for the stability number «o(G):

a(G) =min{A: NI+ Ag) — E€C}
(I the identity matrix), or, in the dual formulation,
®(G) =max{(E, X) : (Ag +1,X) =1,X e C*}.

The last formulation can be seen as a strengthening of the Lovasz ¢ number,
which is obtained by optimizing over the cone STNAN of entrywise nonnegative
and positive semidefinite matrices instead of C* in the above problem.

Dukanovic and Rendl [26] introduce a related copositivity-inspired strength-
ening of the Lovasz ¢ number toward the chromatic number of G, which is
shown to be equal to the fractional chromatic number.

For the chromatic number x(G) of a graph G with n nodes, a copositive
formulation has been found by Gvozdenovié and Laurent in [30]:

X(G) = max y
s.t. S (ty)E + z(n(I + Ag,)E) €C t=1,...,n
Y,z € R.

where A, denotes the adjacency matrix of the graph Gy, the cartesian prod-
uct of the graphs K; (the complete graph on ¢t nodes) and G. This product
graph G has node set V(K;) xV(G) = U;Zl Vp, where V, := {pi : i € V(G)}.
An edge (pi, qj) is present in Gy if (p # q and ¢ = j) or if (p = ¢ and (¢j) is
an edge in G).

A completely positive formulation of the related problem of computing the
fractional chromatic number can be found in [26].
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A completely positive formulation for the quadratic assignment prob-
lem (QAP) was developed in [50]. Introducing it requires some notation: let
A, B, C be the matrices describing the QAP instance. B® A denotes the Kro-
necker product of B and A4, i.e., the n? x n? matrix (b;;A). Let ¢ = vec(C) be
the vector derived from C' by stacking the columns of C' on top of each other,
and let Diag(c) be the n? x n? diagonal matrix with the entries of ¢ on its
diagonal. The variable Y of the completely positive problem is also an n? x n?
matrix. Its n x n component blocks are addressed by Y% with 4,5 =1,...,n.
Finally, d;; is the Kronecker-delta.

Using this notation, Povh and Rendl [50] show that the optimal value of
QAP is the solution of the following completely positive program of order n?:

OPToap = min (B ® A + Diag(c),Y)

st >, Y =1
<I,Y”>:(Sij (Z,]:l,,n)
(B,Y) =n?
Y eC*.

The problem of finding a 3-partitioning of the vertices of a graph G was
studied by Povh and Rendl in [51]. Consider a graph on n vertices with weights
ai; > 0 on its edges. The problem is to partition the vertices of G into subsets
S1, S5, and S3 with given cardinalities mq,mg, and ms (with ), m; = n) in
such a way that the total weight of edges between S; and S5 is minimal. Note
that this problem contains the classical graph bisection problem as a special
case.

The completely positive formulation requires some notation again. Letting
e; denote the ith unit vector in appropriate dimension, take E;; = eiejT and
B;j its symmetrized version B;; = 1/2(E;; + Ej;). For j = 1,...,n, define
matrices W; € R™*" by W, = ejel. Moreover, define the following 3 x 3
matrices: E3 the all-ones matrix in R3*3, B = 2B, in R3*3 and for i = 1,2,3
define V; € R3%3 ag V; = e;e”.

With these notations, Povh and Rendl derive the following completely
positive formulation of order 3n:

min %(BT®A,Y)

s. t. <Bij®I,Y)=mi5ij 1<:<53<3
<E3®E“7Y>:1 iil,...,ﬂ
VieWl.Yy=m i=123;j=1...,n

As far as we are aware, the above list comprises all problem classes for
which an equivalent copositive or completely positive formulation has been
established up to now. It illustrates that copositive programming is a pow-
erful modelling tool which interlinks the quadratic and binary worlds. In the
next sections, we will discuss properties of the cones as well as algorithmic
approaches to tackle copositive programs.
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3 The cones C and C*
Topological properties

Both C and C* are full-dimensional closed, convex, pointed, non-polyhedral
matrix cones. The interior of C is the set of strictly copositive matrices:

int(C) = {A: 27 Az > 0 for all z > 0,2 # 0}.
The extremal rays of C* are the rank-one completely positive matrices
Ext(C*) = {za” : 2 > 0}.

Proofs of all these statements can be found in [6]. The interior of the com-
pletely positive cone has first been characterized in [27]. Dickinson [24] gave
an improved characterization which reads as follows:

int(C*) = {AA” : rank(A) = n and A = [a|B] with a € R, B > 0}.

Here the notation [a|B] describes the matrix whose first column is @ and whose
other columns are the columns of B. An alternative characterization is

int(C*) = {AA” : rank(A) = n and A > 0}.

A full characterization of the extremal rays of C (or equivalently, a complete
“outer” description of C* in terms of supporting hyperplanes) is an open
problem. Partial results can be found in [3, 4, 5, 32, 34].

Small dimensions

The cones C and C* are closely related to the cones ST of positive semidefinite
matrices and N of entrywise nonnegative matrices, since we immediately get
from the definitions that

C*CSTNN and CDOST+N.

Matrices in ST N A are sometimes called doubly nonnegative. It is a very
interesting fact (cf. [41]) that for n x m-matrices of order n < 4, we have
equality in the above relations, whereas for n > 5, both inclusions are strict.
A counterexample that illustrates C # St + N is the so-called Horn-matrix,
cf. [31]:

1-1 1 1-1

-1 1-1 1 1

H = 1-1 1-1 1
1 1-1 1-1

-1 1 1-1 1

To see that H is copositive, write
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eTHr = (21 — 20 + 23 + 4 — 25)° + dwoxy + 423(T5 — 74)

=(z1—z2t+ o3 — 24+ x5)2 + dxows + daq (x4 — w5).

The first expression shows that 27 Hz > 0 for nonnegative & with x5 > x4,
whereas the second shows T Hz > 0 for nonnegative x with x5 < x4. It
can be shown [31] that H is extremal for C, and consequently H can not be
decomposed into H = S + N with § € ST and N € V.

Why is this jump when the size of A changes from 4 x 4 to 5 x 57 This
question was answered by Kogan and Berman [40] using graph theoretic ar-
guments: associate to a given symmetric matrix A € R”*" a graph G with n
vertices, such that an edge (i, 7) is present in G if and only if 4,; # 0. Kogan
and Berman [40] define a graph G to be completely positive, if every matrix
A € ST NN whose graph is G is completely positive, and they show that a
graph is completely positive if and only if it does not contain a long odd cycle,
i.e., a cycle of length greater than 4. Obviously, this can not happen in graphs
on four vertices, which shows that for small dimensions C* = STNN. Observe
that the Horn-matrix is related to the 5-cycle via H = E — 2 A5, where Aj the
adjacency matrix of the 5-cycle.

The case of 5 x 5 copositive and completely positive matrices has therefore
attracted special interest, and several papers have dealt with this setting,
see [20] and references therein.

4 Testing copositivity and complete positivity
Complexity

It has been shown by Murty and Kabadi [44] that checking whether a given
matrix A € C is a co-NP-complete decision problem. Intuitively, checking
A € C* should have the same computational complexity. It seems, however,
that a formal proof of this statement has not yet been given.

This general complexity result does not exclude that for special matrix
classes checking copositivity is cheaper. For example, for diagonal matrices
one only needs to verify nonnegativity of the diagonal elements, evidently a
linear-time task. This can be generalized: For tridiagonal matrices [10] and
for acyclic matrices [35], testing copositivity is possible in linear time.

Complete positivity

There are several conditions, necessary and sufficient ones, for complete pos-
itivity of a matrix. Most of them use linear algebraic arguments or rely on
properties of the graph associated to the matrix, and it seems unclear how
they can be used for algorithmic methods to solve optimization problems
over C*. For a comprehensible survey of these conditions, we refer to [6]. We
just mention two sufficient conditions: a sufficient condition shown in [39] is
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that A is nonnegative and diagonally dominant. Another sufficient condition
for A € STNN to be in C* is that A is tridiagonal or acyclic, as shown in [8].

Decomposing a given matrix A € C* into A = Zle b;bl is also a nontriv-
ial task. Since this is equivalent to finding a nonnegative matrix B € R™*F
(whose columns are b;) with A = BBT| this is sometimes called nonnegative
factorization of A. A major line of research in the linear algebra literature is
concerned with determining the minimal number & of factors necessary in such
a decomposition. This quantity is called the cp-rank, and is conjectured [25]
to be |n?/4] if n is the order of the matrix. See [6] for more details on the
cp-rank. Berman and Rothblum [7] proposed a non-polynomial algorithm to
compute the cp-rank (and thus to determine whether a matrix is completely
positive). Their method, however, does not provide a factorization. Jarre and
Schmallowsky [37] also propose a procedure which for a given matrix A either
determines a certificate proving A € C* or converges to a matrix S € C* which
is in some sense “close” to A. Bomze [9] shows how a factorization of A can

.. 167
be used to construct a factorization of ( b bA )

Copositivity criteria based on structural matrix properties

Obviously, copositivity of a matrix can not be checked through its eigenvalues.
It can be checked by means of the so-called Pareto eigenvalues [33], but com-
puting those is not doable in polynomial time. Spectral properties of copositive
matrices provide some information and are discussed in [38].

For dimensions up to four, explicit descriptions are available [33]. For ex-
ample, a symmetric 2 X 2 matrix A is copositive if and only if its entries fulfill
air > 0,a22 > 0 and a2 + \/ariaze > 0, see [1]. As this description indi-
cates, the boundary of the cone C has both “flat parts” and “curved parts”,
so the cone is neither polyhedral nor strictly nonpolyhedral everywhere. This
geometry and the facial structure of C is, however, not well-understood.

In all dimensions, copositive matrices necessarily have nonnegative diago-
nal elements: if a;; < 0 for some i, then the corresponding coordinate vector
e; would provide el Ae; = a;; < 0, thus contradicting copositivity of A.

A condition similar to the Schur-complement also holds for copositive ma-
trices, as shown in [29]: Consider

4 (a bt )
b C
with ¢ € R, b € R® and C € R" "™, Then A is copositive iff a > 0, C is
copositive, and y” (aC' — bbT)y > 0 for all y € R such that b’y < 0.
Numerous criteria for copositivity in terms of structural properties of the
matrix have been given, many of them in terms of properties of principal sub-

matrices. We name just one example stated in [21] but attributed to Motzkin:
a symmetric matrix is strictly copositive iff each principal submatrix for which
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the cofactors of the last row are all positive has a positive determinant. Many
conditions of the same flavor can be found in the literature. Again, it seems
doubtful whether those conditions will prove useful for optimization purposes,
so we refer to the surveys [33] and [36] for a more thorough treatment.

A recursive method to determine copositivity of a matrix has been pro-
posed by Danninger [22].

An algorithmic approach

A conceptually different approach to copositivity testing which essentially uses
global optimization techniques has been proposed in [18]. This approach relies
on the observation that A is copositive iff the quadratic form 7 Az > 0 on
the standard simplex. If vq,...,v, denote the vertices of a simplex, we can
write a point x in the simplex in barycentric coordinates as x = > | A\
with A\; > 0 and > | A\; = 1. This gives

al Az = Z vf AvjAi);.

4,j=1

Hence, a necessary condition for 27 Az to be nonnegative on the simplex is
that
v} Av; > 0 for all 4, j. (6)

This condition can be refined by studying simplicial partitions of the stan-
dard simplex. As the partition gets finer, stronger and stronger necessary
conditions are derived which, in the limit, capture all strictly copositive ma-
trices. This approach gives very good numerical results for many matrices. It
can be generalized in such a way that cones between N and ST + AN are used
as certificates, see [54].

5 Approximation hierarchies

A matrix is copositive if its quadratic form is nonnegative for nonnegative
arguments. Based on this definition, various approaches have used conditions
which ensure positivity of polynomials.

For a given matrix A € S, consider the polynomial

PA(.Z‘) = i: zn: auxfx?

i=1 j=1

Clearly, A € C if and only if P4(x) > 0 for all z € R™. A sufficient condition
for this is that Pa(z) has a representation as a sum of squares (sos) of polyno-
mials. Parrilo [47] showed that P4(z) allows a sum of squares decomposition
if and only if A € ST + N, yielding again the relation ST + N C C.
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A theorem by Pélya [49] states that if f(z1,...,2,) is a homogeneous
polynomial which is positive on the standard simplex, then for sufficiently
large r € N the polynomial

flxy,. ... @) - (Z x?)

has positive coefficients. Inspired by this result, Parrilo [47] (cf. also [23]
and [12]) defined the following hierarchy of cones for r € N:

KT o= {A €S8 : Pa(x) (Z x?) has an sos decomposition } .
i=1

Parrilo showed ST+ N =K% c £ C ..., and int(C) € |J, ey K", so the cones
K" approximate C from the interior. Since the sos condition can be written as
a system of linear matrix inequalities (LMIs), optimizing over K" amounts to
solving a semidefinite program.

Exploiting a different sufficient condition for nonnegativity of a polyno-
mial, De Klerk and Pasechnik [23], cf. also Bomze and De Klerk [12], define

Cr— {A €S8 : Py(x) (Z xf) has nonnegative coefficients } .
i=1

De Klerk and Pasechnik showed that N = C® Cc C' C ..., and int(C) C
U,en €. Each of these cones is polyhedral, so optimizing over one of them is
solving an LP.

Refining these approaches, Pena et al. [48] derive yet another hierarchy of
cones approximating C. Adopting standard multiindex notation, where for a
given multiindex 3 € N” we have |3] := 81 + - + 8, and 27 := x?l coegPn
they define the following set of polynomials

E" = Z xﬁxT(Sﬁ—FNg)I:SgESJF,NgGN
BEN™,|B|=r

With this, they define the cones

Q"= {AES:xTAx <Z$Z2) GET}.

i=1

They show that C" C Q" C K" for all r € N, with Q" = K" for r = 0, 1.
Similar to K", the condition A € Q" can be rewritten as a system of LMIs.
Optimizing over Q" is therefore again an SDP.

All these approximation hierarchies approximate C uniformly and thus do
not take into account any information provided by the objective function of an



14 Mirjam Diir

optimization problem. Moreover, in all these approaches the system of LMIs
(resp. linear inequalities) gets large quickly as r increases. Thus, dimension
of the SDPs increases so quickly that current SDP-solvers can only solve
problems over those cones for small values of r, i.e., r < 3 at most.

We are not aware of comparable approximation schemes that approximate
the completely positive cone C* from the interior.

6 Algorithms

The approximation hierarchies described in the last section can be used to
approximate a copositive program, and in many settings this gives very good
results and strong bounds. However, the size of the problems increases ex-
ponentially as one goes through the approximation levels, so only low-level
approximations are tractable.

As far as we are aware, there are two approaches to solve copositive pro-
grams directly: one is a feasible descent method in the completely positive
cone C*, the other one approximates the copositive cone C by a sequence of
polyhedral inner and outer approximations. In the sequel we briefly describe
both methods.

Optimizing over C*

A recent attempt to solve optimization problems over C* is a feasible descent
method by Bomze et al. [14], who approximate the steepest descent path from
a feasible starting point in C*. They study the problem

min (C, X)
s. t. <A1,X>:bz (iil,...,m), (7)
X ecCr.

The optimal solution is approximated by a sequence of feasible solutions, and
in this sense the algorithm resembles an interior point method. Starting from
an initial feasible solution X of which a factorization X% = (VO)(V)T is
assumed to be available, the next iteration point is X7t = X7 + AX7, where
AX7 is a solution of the following regularized version of (7):

min e(C, AX) + (1 —5)||AX||?
s.t. (4, AX) =0 (i=1,...,m),
X7+ AX €C*.

The norm || - ||; used in iteration j depends on the current iterate X7. Setting
Xt = (V + AV)(V + AV)T, they show the regularized problem to be
equivalent to
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min £(C, V(AV)T + (AV)VT + (AV)(AV)T)
+(1 =) [V(AV)T + (AV)VT + (AV)(AV)T|3
s.t. (A, V(AV)T + (AV)VT +(AV)(AV)T) =0 (i=1,...,m),
V+ AV e N.

v
Vv

This problem now involves the tractable cone A instead of C*, but the ob-
jective is now a nonconvex quadratic function, and the equivalence state-
ment only holds for the global optimum. Using linearization techniques and
Tikhonov regularization for this last problem in V-space, the authors arrive
at an implementable algorithm which shows promising numerical performance
for the max-clique problem as well as box-constrained quadratic problems.

Convergence of this method is not guaranteed. Moreover, the algorithm
requires knowledge of a feasible starting point together with its factorization.
Finding a feasible point is in general as difficult as solving the original problem,
and given the point, finding the factorization is highly nontrivial. In special
settings, however, the factorized starting point comes for free.

Optimizing over C

An algorithm for the copositive optimization problem (1) has been proposed
in [17]. We also refer to [16] for a detailed elaboration. The method is based
on the copositivity conditions developed in [18] which we briefly described
in Section 4. Recall condition (6). Consider a simplicial partition P of the
standard simplex A into smaller simplices, i.e., a family P = {Al,..., A™}
of simplices satisfying A = [J;~, A? and int(A?) Nint(A7) = @ for i # j. We
denote the set of all vertices of simplices in P by

Vp = {v : v is a vertex of some simplex in P},
and the set of all edges of simplices in P by
Ep = {(u,v) : u # v are vertices of the same simplex in P}.

In this notation, the necessary copositivity condition from [18] reads: a matrix
A is copositive if vI Av > 0 for all v € Vp and uT Av > 0 for all (u,v) € Ep,
cf. (6). This motivates to define the following set corresponding to a given
partition P:

Ip:={AcS: vl Av >0 forall v € Vp,
u’ Av >0 for all (u,v) € Ep}.
It is not difficult so see that for each partition P the set Zp is a closed, convex,
polyhedral cone which approximates C from the interior. Likewise, define the

sets
Op:={AcS:v"Av >0 forallv e Vp}.
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These sets can be shown to be closed, convex, polyhedral cones which approx-
imate C from the exterior. For both inner and outer approximating cones the
approximation of C gets monotonically better if the partitions get finer. In the
limit (i.e., if the diameter J(P) := maxy, ,1ep, [[u — v|| of the partitions goes
to zero), the cones Zp converge to C from the interior, and the Op converge
to C from the exterior.

Note that due to their polyhedrality optimizing over Zp or Op amounts
to solving an LP. Now replacing the cone C in (1) by Zp and Op, respectively,
results in two sequences of LPs whose solutions are upper, resp. lower, bounds
of the optimal value of (1). Under standard assumptions, this algorithm is
provably convergent.

The performance of this method relies on suitable strategies to derive sim-
plicial partitions P of the standard simplex, and in this sense the approach
resembles a Branch-and-Bound algorithm. The partitioning strategy can be
guided adaptively through the objective function, yielding a good approxima-
tion of C in those parts of the cone that are relevant for the optimization and
only a coarse approximation in those parts that are not.

A drawback is that the number of constraints in the auxiliary LPs grows
very quickly and the constraint systems contain a lot of redundancy. This ne-
cessitates rather involved strategies to keep the size of the systems reasonable,
but nonetheless computer memory (not cpu-time) remains the limiting factor
for this algorithm.

The algorithm is not adequate for general models derived from Burer’s
result [19], and provides only poor results for box-constrained quadratic prob-
lems. However, the method turns out to be very successful for the stan-
dard quadratic problem: while a standard global optimization solver like
BARON [55] solves StQPs in 30 variables in about 1000 seconds, this method
solves problems in 2000 variables in 30 seconds (on average). This shows that
the copositive approach to StQPs outperforms all other available methods.

A variant of this approach can be found in [56].

Conclusion and outlook

Copositive programming is a new versatile research direction in conic opti-
mization. It is a powerful modelling tool and allows to formulate many com-
binatorial as well as nonconvex quadratic problems. In the copositive formu-
lation, all intractable constraints (binary as well as quadratic constraints) get
packed entirely in the cone constraint. Studying the structure of the copositive
and completely positive cones thus provides new insight to both combinatorial
and quadratic problems. Though formally very similar to semidefinite pro-
grams, copositive programs are NP-hard. Nonetheless, the copositive formu-
lations have lead to new and tighter bounds for some combinatorial problems.
Algorithmic approaches to directly solve copositive and completely positive
problems have been proposed and given encouraging numerical results.
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Copositive optimization continues to be a highly active research field. Fu-
ture research will deal with both modeling issues and algorithmic improve-
ments. For example, it would be intersting to extend Burer’s result to prob-
lems with general quadratic constraints. The now available algorithms are not
successful for all copositive models, so we need other, better models for some
problem classes. It will also be very interesting to see new copositivity driven
cutting planes for various combinatorial problems which will emerge from a
better understanding of the facial geometry of C.

On the algorithmic side, the methods need to be improved and adapted
to different problem classes. Since now a very good algorithm for StQPs is
available, a natural next step is to tailor this algorithm to QPs with arbitrary
linear constraints or box constraints.
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