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Preface

The field of mathematical optimization combines a rich body of fundamen-
tal theory with a powerful collection of computational methods and a variety
of exciting applications. The field evolves fast, and the last decade has been
characterized by major developments in optimization theory, improvements
in numerical methods also benefiting from the parallel developments in com-
putational hardware, and emergence of novel applications.

Many of these novel applications belong to engineering, as globalization
of the economy, increased competition, limited natural resources and ever
stronger environmental constraints call for better performance of industrial
products and higher productivity of production processes. This new environ-
ment poses real challenges to engineering research, design and development.
Adequate translation of the conflicting objectives into optimization problems,
availability of efficient and reliable numerical algorithms and correct inter-
pretation of the results are essential in addressing these challenges. We are
convinced that significant advances can be achieved by cross-fertilization and
integration of the recent developments in the mathematical optimization com-
munity on the one hand and the different engineering communities on the
other hand.

The present volume contains a careful selection of articles on recent ad-
vances in optimization theory, numerical methods, and their applications in
engineering. The authors met at the 14th Belgian-French-German Conference
on Optimization (BFG09) that took place in Leuven in September 14–18,
2009. The conference was organized by the Optimization in Engineering Cen-
ter OPTEC at the Katholieke Universiteit Leuven (K.U.Leuven), in collab-
oration with the Center for Operations Research and Econometrics (CORE)
at the Université Catholique de Louvain (UCLouvain).

In the context sketched above, BFG09’s special topic was “Optimization in
Engineering”, aiming at deepening the contacts between engineering optimiz-
ers and mathematical optimizers. We believe that this aim has been reached
and that it is well reflected in the present volume, which is divided into the
following chapters: convex optimization, nonlinear optimization, optimization
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on manifolds, optimal control, model predictive control, PDE-constrained op-
timization and engineering applications of optimization. We want in particu-
lar to point out the overview articles by three of the invited speakers at the
BFG09 (M. Dür, P.-A. Absil, J.-B. Caillau) as well as by the winners of the
best talk and best poster prizes (A. Potschka, M. Ishteva). These overview
articles can be found at the beginning of their respective chapters.

This book would not have been possible without the substantial help of
many anonymous reviewers whom we want to thank at this place. Accep-
tance decisions for each submitted article were based on at least two reviews,
which also helped the authors to further improve their contributions. We also
gratefully acknowledge financial support by the Fonds Wetenschappelijk On-
derzoek – Vlaanderen (FWO) and the Fonds de la Recherche Scientifique
(F.R.S.-FNRS).

We are particularly indebted to Jacqueline De bruyn and Ioanna Stamati
for the numerous hours spent communicating with the authors of this volume
on technical questions, and in particular to Ioanna Stamati for compiling
the final LATEX manuscript. Last but not least, we want to thank the staff at
Springer, in particular Birgit Kollmar-Thoni and Eva Hestermann-Beyerle, for
their efficient and professional support, including the design of an innovative
cover, which features a word cloud (obtained from the web site wordle.net)
reflecting importance of the most frequent terms used throughout the book.

We wish all readers of this book the same pleasure we had in compiling it!

Leuven and Louvain-La-Neuve, Moritz Diehl
Belgium, July 2010 François Glineur

Elias Jarlebring
Wim Michiels
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Copositive Programming – a Survey

Mirjam Dür

Johann Bernoulli Institute of Mathematics and Computer Science, University of
Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands. M.E.Dur@rug.nl

Summary. Copositive programming is a relatively young field in mathematical op-
timization. It can be seen as a generalization of semidefinite programming, since it
means optimizing over the cone of so called copositive matrices. Like semidefinite
programming, it has proved particularly useful in combinatorial and quadratic op-
timization. The purpose of this survey is to introduce the field to interested readers
in the optimization community who wish to get an understanding of the basic con-
cepts and recent developments in copositive programming, including modeling issues
and applications, the connection to semidefinite programming and sum-of-squares
approaches, as well as algorithmic solution approaches for copositive programs.

1 Introduction

A copositive program is a linear optimization problem in matrix variables of
the following form:

min 〈C,X〉
s. t. 〈Ai, X〉 = bi (i = 1, . . . ,m),

X ∈ C,
(1)

where C is the cone of so-called copositive matrices, that is, the matrices whose
quadratic form takes nonnegative values on the nonnegative orthant Rn

+:

C = {A ∈ S : xTAx ≥ 0 for all x ∈ Rn
+}

(here S is the set of symmetric n× n matrices, and the inner product of two
matrices in (1) is 〈A,B〉 := trace(BA) =

∑n
i,j=1 aijbij , as usual). Obviously,

every positive semidefinite matrix is copositive, and so is every entrywise
nonnegative matrix, but the copositive cone is significantly larger than both
the semidefinite and the nonnegative matrix cones.

Interpreting (1) as the primal program, one can associate a corresponding
dual program which is a maximization problem over the dual cone. For an
arbitrary given cone K ⊆ S, the dual cone K∗ is defined as

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_1, © Springer-Verlag Berlin Heidelberg 2010 



4 Mirjam Dür

K∗ := {A ∈ S : 〈A,B〉 ≥ 0 for all B ∈ K}.

In contrast to the semidefinite and nonnegative matrix cones, the cone C is
not selfdual. It can be shown (see e.g. [6]) that C∗ is the cone of so-called
completely positive matrices

C∗ = conv{xxT : x ∈ Rn
+}.

Using this, the dual of (1) can be derived through the usual Lagrangian ap-
proach and is easily seen to be

max
m∑

i=1

biyi

s. t. C −
m∑

i=1

yiAi ∈ C∗, yi ∈ R.
(2)

Since both C and C∗ are convex cones, (1) and (2) are convex optimization
problems. KKT optimality conditions hold if Slater’s condition is satisfied,
as shown by [28], and imposing a constraint qualification guarantees strong
duality, i.e., equality of the optimal values of (1) and (2). The most common
constraint qualification is to assume that both problems are feasible and one
of them strictly feasible (meaning that there exists a strictly feasible point,
i.e., a solution to the linear constraints in the interior of the cone).

Copositive programming is closely related to quadratic and combinatorial
optimization. We illustrate this connection by means of the standard quadratic
problem

(StQP)
min xTQx
s. t. eTx = 1,

x ≥ 0,

where e denotes the all-ones vector. This optimization problem asks for the
minimum of a (not necessarily convex) quadratic function over the standard
simplex. Easy manipulations show that the objective function can be written
as xTQx = 〈Q, xxT 〉. Analogously the constraint eTx = 1 transforms to
〈E, xxT 〉 = 1, with E = eeT . Hence, the problem

min 〈Q,X〉
s. t. 〈E,X〉 = 1,

X ∈ C∗
(3)

is obviously a relaxation of (StQP). Since the objective is now linear, an
optimal solution must be attained in an extremal point of the convex feasible
set. It can be shown that these extremal points are exactly the rank-one
matrices xxT with x ≥ 0 and eTx = 1. Together, these results imply that (3)
is in fact an exact reformulation of (StQP).

The standard quadratic problem is an NP-hard optimization problem,
since the maximum clique problem can be reduced to an (StQP). Indeed,
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denoting by ω(G) the clique number of a graph G and by AG its adjacency
matrix, Motzkin and Straus [43] showed that

1
ω(G)

= min{xT (E −AG)x : eTx = 1, x ≥ 0}. (4)

Nevertheless, (3) is a convex formulation of this NP-hard problem. This shows
that NP-hard convex optimization problems do exist. The complexity has
moved entirely into the cone-constraint X ∈ C∗. It is known that testing
whether a given matrix is in C is co-NP-complete (cf. [44]). Consequently,
it is not tractable to do a line-search in C. The cones C and C∗ do allow
self-concordant barrier functions (see [46]), but these functions can not be
evaluated in polynomial time. Thus, the classical interior point methodology
does not work. Optimizing over either C or C∗ is thus NP-hard, and restating
a problem as an optimization problem over one of these cones does not resolve
the difficulty of that problem. However, studying properties of C and C∗ and
using the conic formulations of quadratic and combinatorial problems does
provide new insights and also computational improvements.

Historical remarks

The concept of copositivity seems to go back to Motzkin [42] in the year 1952.
Since then, numerous papers on both copositivity and complete positivity have
emerged in the linear algebra literature, see [6] or [36] for surveys. Using these
cones in optimization has been studied only in the last decade.

An early paper relating the solution of a certain quadratic optimization
problem to copositivity is Preisig [52] from 1996. Preisig describes properties
and derives an algorithm for what we would now call the dual problem of (3)
with E replaced by a strictly copositive matrix B. However, he just analyzes
this particular problem and does not provide the conic programming frame-
work outlined above. It seems that his paper has been widely ignored by the
optimization community.

Quist et al. [53] suggested in 1998 that semidefinite relaxations of quadratic
problems may be tightened by looking at the copositive cone. They were the
first to formulate problems with the conic constraints X ∈ C and X ∈ C∗.

Bomze et al. [11] were the first to establish an equivalent copositive formu-
lation of an NP-hard problem, namely the standard quadratic problem. Their
paper from 2000 also coined the term ”copositive programming”.

Since [11] appeared, a number of other quadratic and combinatorial prob-
lems have been shown to admit an exact copositive reformulation. Although
these formulations remain NP-hard, they have inspired better bounds than
previously available. Through sum-of-squares approximations (cf. Section 5
below) they have opened a new way to solve these problems. Finally, new so-
lution algorithms for copositive and completely positive problems have been
developed and proved very successful in some settings, as we describe in Sec-
tion 6.
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2 Applications

Binary quadratic problems

We have seen in Section 1 that the standard quadratic problem can be rewrit-
ten as a completely positive program. This can be extended to so-called multi-
StQPs, where one seeks to optimize a quadratic form over the cartesian prod-
uct of simplices, see [15].

Burer [19] showed the much more general result that every quadratic prob-
lem with linear and binary constraints can be rewritten as such a problem.
More precisely, he showed that a quadratic binary problem of the form

min xTQx+ 2cTx
s. t. aT

i x = bi (i = 1, . . . ,m)
x ≥ 0
xj ∈ {0, 1} (j ∈ B)

(5)

can equivalently be reformulated as the following completely positive problem:

min 〈Q,X〉+ 2cTx
s. t. aT

i x = bi (i = 1, . . . ,m)
〈aia

T
i , X〉 = b2i (i = 1, . . . ,m)

xj = Xjj (j ∈ B)(
1 x
x X

)
∈ C∗,

provided that (5) satisfies the so-called key condition, i.e., aT
i x = bi for all i

and x ≥ 0 implies xj ≤ 1 for all j ∈ B. As noted by Burer, this condition can
be enforced without loss of generality.

It is still an open question whether problems with general quadratic con-
straints can similarly be restated as completely positive problems. Only special
cases like complementarity constraints have been solved [19]. For a comment
on Burer’s result see [13]. Natarajan et al. [45] consider (5) in the setting where
Q = 0 and c is a random vector, and derive a completely positive formulation
for the expected optimal value.

Fractional quadratic problems

Consider a matrix A whose quadratic form xTAx does not have zeros in the
standard simplex, i.e., consider without loss of generality a strictly copositive
matrix A. Preisig [52] observed that then the problem of maximizing the ratio
of two quadratic forms over the standard simplex

min
{
xTQx

xTAx
: eTx = 1, x ≥ 0

}
is equivalent to
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min{xTQx : xTAx = 1, x ≥ 0}

and hence, by similar arguments as used to derive (3), is equivalent to the
completely positive program

min{〈Q,X〉 : 〈A,X〉 = 1, x ∈ C∗}

For a thorough discussion, see also [16].

Combinatorial problems

For the problem of determining the clique number ω(G) of a graph G, we
can combine the Motzkin-Straus formulation (4) with the completely positive
formulation (3) of the standard quadratic problem. Taking the dual of that
problem, we arrive at

1
ω(G) = max{λ : λ(E −AG)− E ∈ C}.

Using a somewhat different approach, De Klerk and Pasechnik [23] derive the
following formulation for the stability number α(G):

α(G) = min{λ : λ(I +AG)− E ∈ C}

(I the identity matrix), or, in the dual formulation,

α(G) = max{〈E,X〉 : 〈AG + I,X〉 = 1, X ∈ C∗}.

The last formulation can be seen as a strengthening of the Lovász ϑ number,
which is obtained by optimizing over the cone S+∩N of entrywise nonnegative
and positive semidefinite matrices instead of C∗ in the above problem.

Dukanovic and Rendl [26] introduce a related copositivity-inspired strength-
ening of the Lovász ϑ number toward the chromatic number of G, which is
shown to be equal to the fractional chromatic number.

For the chromatic number χ(G) of a graph G with n nodes, a copositive
formulation has been found by Gvozdenović and Laurent in [30]:

χ(G) = max y

s. t. 1
n2 (ty)E + z(n(I +AGt)E) ∈ C t = 1, . . . , n

y, z ∈ R.

where AGt denotes the adjacency matrix of the graph Gt, the cartesian prod-
uct of the graphs Kt (the complete graph on t nodes) and G. This product
graph Gt has node set V (Kt)×V (G) =

∪t
p=1 Vp, where Vp := {pi : i ∈ V (G)}.

An edge (pi, qj) is present in Gt if (p 6= q and i = j) or if (p = q and (ij) is
an edge in G).

A completely positive formulation of the related problem of computing the
fractional chromatic number can be found in [26].
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A completely positive formulation for the quadratic assignment prob-
lem (QAP) was developed in [50]. Introducing it requires some notation: let
A,B,C be the matrices describing the QAP instance. B⊗A denotes the Kro-
necker product of B and A, i.e., the n2×n2 matrix (bijA). Let c = vec(C) be
the vector derived from C by stacking the columns of C on top of each other,
and let Diag(c) be the n2 × n2 diagonal matrix with the entries of c on its
diagonal. The variable Y of the completely positive problem is also an n2×n2

matrix. Its n× n component blocks are addressed by Y ij with i, j = 1, . . . , n.
Finally, δij is the Kronecker-delta.

Using this notation, Povh and Rendl [50] show that the optimal value of
QAP is the solution of the following completely positive program of order n2:

OPTQAP = min 〈B ⊗A+ Diag(c), Y 〉
s. t.

∑
i Y

ii = I
〈I, Y ij〉 = δij (i, j = 1, . . . , n)
〈E, Y 〉 = n2

Y ∈ C∗.

The problem of finding a 3-partitioning of the vertices of a graph G was
studied by Povh and Rendl in [51]. Consider a graph on n vertices with weights
aij ≥ 0 on its edges. The problem is to partition the vertices of G into subsets
S1, S2, and S3 with given cardinalities m1,m2, and m3 (with

∑
imi = n) in

such a way that the total weight of edges between S1 and S2 is minimal. Note
that this problem contains the classical graph bisection problem as a special
case.

The completely positive formulation requires some notation again. Letting
ei denote the ith unit vector in appropriate dimension, take Eij = eie

T
j and

Bij its symmetrized version Bij = 1/2(Eij + Eji). For j = 1, . . . , n, define
matrices Wj ∈ Rn×n by Wj = eje

T . Moreover, define the following 3 × 3
matrices: E3 the all-ones matrix in R3×3, B = 2B12 in R3×3 and for i = 1, 2, 3
define Vi ∈ R3×3 as Vi = eie

T .
With these notations, Povh and Rendl derive the following completely

positive formulation of order 3n:

min 1
2 〈B

T ⊗A, Y 〉
s. t. 〈Bij ⊗ I, Y 〉 = miδij 1 ≤ i ≤ j ≤ 3
〈E3 ⊗ Eii, Y 〉 = 1 i = 1, . . . , n
〈Vi ⊗WT

j , Y 〉 = m i = 1, 2, 3; j = 1, . . . , n
〈Bij ⊗ E, Y 〉 = mimj 1 ≤ i ≤ j ≤ 3
Y ∈ C∗.

As far as we are aware, the above list comprises all problem classes for
which an equivalent copositive or completely positive formulation has been
established up to now. It illustrates that copositive programming is a pow-
erful modelling tool which interlinks the quadratic and binary worlds. In the
next sections, we will discuss properties of the cones as well as algorithmic
approaches to tackle copositive programs.
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3 The cones C and C∗

Topological properties

Both C and C∗ are full-dimensional closed, convex, pointed, non-polyhedral
matrix cones. The interior of C is the set of strictly copositive matrices:

int(C) = {A : xTAx > 0 for all x ≥ 0, x 6= 0}.

The extremal rays of C∗ are the rank-one completely positive matrices

Ext(C∗) = {xxT : x ≥ 0}.

Proofs of all these statements can be found in [6]. The interior of the com-
pletely positive cone has first been characterized in [27]. Dickinson [24] gave
an improved characterization which reads as follows:

int(C∗) = {AAT : rank(A) = n and A = [a|B] with a ∈ Rn
++, B ≥ 0}.

Here the notation [a|B] describes the matrix whose first column is a and whose
other columns are the columns of B. An alternative characterization is

int(C∗) = {AAT : rank(A) = n and A > 0}.

A full characterization of the extremal rays of C (or equivalently, a complete
“outer” description of C∗ in terms of supporting hyperplanes) is an open
problem. Partial results can be found in [3, 4, 5, 32, 34].

Small dimensions

The cones C and C∗ are closely related to the cones S+ of positive semidefinite
matrices and N of entrywise nonnegative matrices, since we immediately get
from the definitions that

C∗ ⊆ S+ ∩N and C ⊇ S+ +N .

Matrices in S+ ∩ N are sometimes called doubly nonnegative. It is a very
interesting fact (cf. [41]) that for n × n-matrices of order n ≤ 4, we have
equality in the above relations, whereas for n ≥ 5, both inclusions are strict.
A counterexample that illustrates C 6= S+ +N is the so-called Horn-matrix,
cf. [31]:

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

To see that H is copositive, write



10 Mirjam Dür

xTHx = (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4)
= (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5).

The first expression shows that xTHx ≥ 0 for nonnegative x with x5 ≥ x4,
whereas the second shows xTHx ≥ 0 for nonnegative x with x5 < x4. It
can be shown [31] that H is extremal for C, and consequently H can not be
decomposed into H = S +N with S ∈ S+ and N ∈ N .

Why is this jump when the size of A changes from 4 × 4 to 5 × 5? This
question was answered by Kogan and Berman [40] using graph theoretic ar-
guments: associate to a given symmetric matrix A ∈ Rn×n a graph G with n
vertices, such that an edge (i, j) is present in G if and only if Aij 6= 0. Kogan
and Berman [40] define a graph G to be completely positive, if every matrix
A ∈ S+ ∩ N whose graph is G is completely positive, and they show that a
graph is completely positive if and only if it does not contain a long odd cycle,
i.e., a cycle of length greater than 4. Obviously, this can not happen in graphs
on four vertices, which shows that for small dimensions C∗ = S+∩N . Observe
that the Horn-matrix is related to the 5-cycle via H = E−2A5, where A5 the
adjacency matrix of the 5-cycle.

The case of 5×5 copositive and completely positive matrices has therefore
attracted special interest, and several papers have dealt with this setting,
see [20] and references therein.

4 Testing copositivity and complete positivity

Complexity

It has been shown by Murty and Kabadi [44] that checking whether a given
matrix A ∈ C is a co-NP-complete decision problem. Intuitively, checking
A ∈ C∗ should have the same computational complexity. It seems, however,
that a formal proof of this statement has not yet been given.

This general complexity result does not exclude that for special matrix
classes checking copositivity is cheaper. For example, for diagonal matrices
one only needs to verify nonnegativity of the diagonal elements, evidently a
linear-time task. This can be generalized: For tridiagonal matrices [10] and
for acyclic matrices [35], testing copositivity is possible in linear time.

Complete positivity

There are several conditions, necessary and sufficient ones, for complete pos-
itivity of a matrix. Most of them use linear algebraic arguments or rely on
properties of the graph associated to the matrix, and it seems unclear how
they can be used for algorithmic methods to solve optimization problems
over C∗. For a comprehensible survey of these conditions, we refer to [6]. We
just mention two sufficient conditions: a sufficient condition shown in [39] is



Copositive Programming – a Survey 11

that A is nonnegative and diagonally dominant. Another sufficient condition
for A ∈ S+ ∩N to be in C∗ is that A is tridiagonal or acyclic, as shown in [8].

Decomposing a given matrix A ∈ C∗ into A =
∑k

i=1 bib
T
i is also a nontriv-

ial task. Since this is equivalent to finding a nonnegative matrix B ∈ Rn×k

(whose columns are bi) with A = BBT , this is sometimes called nonnegative
factorization of A. A major line of research in the linear algebra literature is
concerned with determining the minimal number k of factors necessary in such
a decomposition. This quantity is called the cp-rank, and is conjectured [25]
to be bn2/4c if n is the order of the matrix. See [6] for more details on the
cp-rank. Berman and Rothblum [7] proposed a non-polynomial algorithm to
compute the cp-rank (and thus to determine whether a matrix is completely
positive). Their method, however, does not provide a factorization. Jarre and
Schmallowsky [37] also propose a procedure which for a given matrix A either
determines a certificate proving A ∈ C∗ or converges to a matrix S ∈ C∗ which
is in some sense “close” to A. Bomze [9] shows how a factorization of A can

be used to construct a factorization of
(

1 bT

b A

)
.

Copositivity criteria based on structural matrix properties

Obviously, copositivity of a matrix can not be checked through its eigenvalues.
It can be checked by means of the so-called Pareto eigenvalues [33], but com-
puting those is not doable in polynomial time. Spectral properties of copositive
matrices provide some information and are discussed in [38].

For dimensions up to four, explicit descriptions are available [33]. For ex-
ample, a symmetric 2×2 matrix A is copositive if and only if its entries fulfill
a11 ≥ 0, a22 ≥ 0 and a12 +

√
a11a22 ≥ 0, see [1]. As this description indi-

cates, the boundary of the cone C has both “flat parts” and “curved parts”,
so the cone is neither polyhedral nor strictly nonpolyhedral everywhere. This
geometry and the facial structure of C is, however, not well-understood.

In all dimensions, copositive matrices necessarily have nonnegative diago-
nal elements: if aii < 0 for some i, then the corresponding coordinate vector
ei would provide eT

i Aei = aii < 0, thus contradicting copositivity of A.
A condition similar to the Schur-complement also holds for copositive ma-

trices, as shown in [29]: Consider

A =
(
a bT

b C

)
with a ∈ R, b ∈ Rn and C ∈ Rn×n. Then A is copositive iff a ≥ 0, C is
copositive, and yT (aC − bbT )y ≥ 0 for all y ∈ Rn

+ such that bT y ≤ 0.
Numerous criteria for copositivity in terms of structural properties of the

matrix have been given, many of them in terms of properties of principal sub-
matrices. We name just one example stated in [21] but attributed to Motzkin:
a symmetric matrix is strictly copositive iff each principal submatrix for which
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the cofactors of the last row are all positive has a positive determinant. Many
conditions of the same flavor can be found in the literature. Again, it seems
doubtful whether those conditions will prove useful for optimization purposes,
so we refer to the surveys [33] and [36] for a more thorough treatment.

A recursive method to determine copositivity of a matrix has been pro-
posed by Danninger [22].

An algorithmic approach

A conceptually different approach to copositivity testing which essentially uses
global optimization techniques has been proposed in [18]. This approach relies
on the observation that A is copositive iff the quadratic form xTAx ≥ 0 on
the standard simplex. If v1, . . . , vn denote the vertices of a simplex, we can
write a point x in the simplex in barycentric coordinates as x =

∑n
i=1 λivi

with λi ≥ 0 and
∑n

i=1 λi = 1. This gives

xTAx =
n∑

i,j=1

vT
i Avjλiλj .

Hence, a necessary condition for xTAx to be nonnegative on the simplex is
that

vT
i Avj ≥ 0 for all i, j. (6)

This condition can be refined by studying simplicial partitions of the stan-
dard simplex. As the partition gets finer, stronger and stronger necessary
conditions are derived which, in the limit, capture all strictly copositive ma-
trices. This approach gives very good numerical results for many matrices. It
can be generalized in such a way that cones between N and S+ +N are used
as certificates, see [54].

5 Approximation hierarchies

A matrix is copositive if its quadratic form is nonnegative for nonnegative
arguments. Based on this definition, various approaches have used conditions
which ensure positivity of polynomials.

For a given matrix A ∈ S, consider the polynomial

PA(x) :=
n∑

i=1

n∑
j=1

aijx
2
ix

2
j .

Clearly, A ∈ C if and only if PA(x) ≥ 0 for all x ∈ Rn. A sufficient condition
for this is that PA(x) has a representation as a sum of squares (sos) of polyno-
mials. Parrilo [47] showed that PA(x) allows a sum of squares decomposition
if and only if A ∈ S+ +N , yielding again the relation S+ +N ⊆ C.
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A theorem by Pólya [49] states that if f(x1, . . . , xn) is a homogeneous
polynomial which is positive on the standard simplex, then for sufficiently
large r ∈ N the polynomial

f(x1, . . . , xn) ·

(
n∑

i=1

x2
i

)r

has positive coefficients. Inspired by this result, Parrilo [47] (cf. also [23]
and [12]) defined the following hierarchy of cones for r ∈ N:

Kr :=

{
A ∈ S : PA(x)

(
n∑

i=1

x2
i

)r

has an sos decomposition

}
.

Parrilo showed S+ +N = K0 ⊂ K1 ⊂ . . ., and int(C) ⊆
∪

r∈NKr, so the cones
Kr approximate C from the interior. Since the sos condition can be written as
a system of linear matrix inequalities (LMIs), optimizing over Kr amounts to
solving a semidefinite program.

Exploiting a different sufficient condition for nonnegativity of a polyno-
mial, De Klerk and Pasechnik [23], cf. also Bomze and De Klerk [12], define

Cr :=

{
A ∈ S : PA(x)

(
n∑

i=1

x2
i

)r

has nonnegative coefficients

}
.

De Klerk and Pasechnik showed that N = C0 ⊂ C1 ⊂ . . ., and int(C) ⊆∪
r∈N Cr. Each of these cones is polyhedral, so optimizing over one of them is

solving an LP.
Refining these approaches, Peña et al. [48] derive yet another hierarchy of

cones approximating C. Adopting standard multiindex notation, where for a
given multiindex β ∈ Nn we have |β| := β1 + · · · + βn and xβ := xβ1

1 · · ·xβn
n ,

they define the following set of polynomials

Er :=

 ∑
β∈Nn,|β|=r

xβxT (Sβ +Nβ)x : Sβ ∈ S+, Nβ ∈ N

 .

With this, they define the cones

Qr :=

{
A ∈ S : xTAx

(
n∑

i=1

x2
i

)r

∈ Er

}
.

They show that Cr ⊆ Qr ⊆ Kr for all r ∈ N, with Qr = Kr for r = 0, 1.
Similar to Kr, the condition A ∈ Qr can be rewritten as a system of LMIs.
Optimizing over Qr is therefore again an SDP.

All these approximation hierarchies approximate C uniformly and thus do
not take into account any information provided by the objective function of an
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optimization problem. Moreover, in all these approaches the system of LMIs
(resp. linear inequalities) gets large quickly as r increases. Thus, dimension
of the SDPs increases so quickly that current SDP-solvers can only solve
problems over those cones for small values of r, i.e., r ≤ 3 at most.

We are not aware of comparable approximation schemes that approximate
the completely positive cone C∗ from the interior.

6 Algorithms

The approximation hierarchies described in the last section can be used to
approximate a copositive program, and in many settings this gives very good
results and strong bounds. However, the size of the problems increases ex-
ponentially as one goes through the approximation levels, so only low-level
approximations are tractable.

As far as we are aware, there are two approaches to solve copositive pro-
grams directly: one is a feasible descent method in the completely positive
cone C∗, the other one approximates the copositive cone C by a sequence of
polyhedral inner and outer approximations. In the sequel we briefly describe
both methods.

Optimizing over C∗

A recent attempt to solve optimization problems over C∗ is a feasible descent
method by Bomze et al. [14], who approximate the steepest descent path from
a feasible starting point in C∗. They study the problem

min 〈C,X〉
s. t. 〈Ai, X〉 = bi (i = 1, . . . ,m),

X ∈ C∗.
(7)

The optimal solution is approximated by a sequence of feasible solutions, and
in this sense the algorithm resembles an interior point method. Starting from
an initial feasible solution X0 of which a factorization X0 = (V 0)(V 0)T is
assumed to be available, the next iteration point is Xj+1 = Xj +∆Xj , where
∆Xj is a solution of the following regularized version of (7):

min ε〈C,∆X〉+ (1− ε)‖∆X‖2j
s. t. 〈Ai,∆X〉 = 0 (i = 1, . . . ,m),

Xj +∆X ∈ C∗.

The norm ‖ · ‖j used in iteration j depends on the current iterate Xj . Setting
Xj+1 = (V + ∆V )(V + ∆V )T , they show the regularized problem to be
equivalent to
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min ε〈C, V (∆V )T + (∆V )V T + (∆V )(∆V )T 〉
+(1− ε)‖V (∆V )T + (∆V )V T + (∆V )(∆V )T ‖2j

s. t. 〈Ai, V (∆V )T + (∆V )V T + (∆V )(∆V )T 〉 = 0 (i = 1, . . . ,m),

V +∆V ∈ N .

This problem now involves the tractable cone N instead of C∗, but the ob-
jective is now a nonconvex quadratic function, and the equivalence state-
ment only holds for the global optimum. Using linearization techniques and
Tikhonov regularization for this last problem in V -space, the authors arrive
at an implementable algorithm which shows promising numerical performance
for the max-clique problem as well as box-constrained quadratic problems.

Convergence of this method is not guaranteed. Moreover, the algorithm
requires knowledge of a feasible starting point together with its factorization.
Finding a feasible point is in general as difficult as solving the original problem,
and given the point, finding the factorization is highly nontrivial. In special
settings, however, the factorized starting point comes for free.

Optimizing over C

An algorithm for the copositive optimization problem (1) has been proposed
in [17]. We also refer to [16] for a detailed elaboration. The method is based
on the copositivity conditions developed in [18] which we briefly described
in Section 4. Recall condition (6). Consider a simplicial partition P of the
standard simplex ∆ into smaller simplices, i.e., a family P = {∆1, . . . , ∆m}
of simplices satisfying ∆ =

∪m
i=1∆

i and int(∆i) ∩ int(∆j) = ∅ for i 6= j. We
denote the set of all vertices of simplices in P by

VP = {v : v is a vertex of some simplex in P},

and the set of all edges of simplices in P by

EP = {(u, v) : u 6= v are vertices of the same simplex in P}.

In this notation, the necessary copositivity condition from [18] reads: a matrix
A is copositive if vTAv ≥ 0 for all v ∈ VP and uTAv ≥ 0 for all (u, v) ∈ EP ,
cf. (6). This motivates to define the following set corresponding to a given
partition P:

IP := {A ∈ S : vTAv ≥ 0 for all v ∈ VP ,
uTAv ≥ 0 for all (u, v) ∈ EP}.

It is not difficult so see that for each partition P the set IP is a closed, convex,
polyhedral cone which approximates C from the interior. Likewise, define the
sets

OP := {A ∈ S : vTAv ≥ 0 for all v ∈ VP}.
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These sets can be shown to be closed, convex, polyhedral cones which approx-
imate C from the exterior. For both inner and outer approximating cones the
approximation of C gets monotonically better if the partitions get finer. In the
limit (i.e., if the diameter δ(P) := max{u,v}∈EP ‖u− v‖ of the partitions goes
to zero), the cones IP converge to C from the interior, and the OP converge
to C from the exterior.

Note that due to their polyhedrality optimizing over IP or OP amounts
to solving an LP. Now replacing the cone C in (1) by IP and OP , respectively,
results in two sequences of LPs whose solutions are upper, resp. lower, bounds
of the optimal value of (1). Under standard assumptions, this algorithm is
provably convergent.

The performance of this method relies on suitable strategies to derive sim-
plicial partitions P of the standard simplex, and in this sense the approach
resembles a Branch-and-Bound algorithm. The partitioning strategy can be
guided adaptively through the objective function, yielding a good approxima-
tion of C in those parts of the cone that are relevant for the optimization and
only a coarse approximation in those parts that are not.

A drawback is that the number of constraints in the auxiliary LPs grows
very quickly and the constraint systems contain a lot of redundancy. This ne-
cessitates rather involved strategies to keep the size of the systems reasonable,
but nonetheless computer memory (not cpu-time) remains the limiting factor
for this algorithm.

The algorithm is not adequate for general models derived from Burer’s
result [19], and provides only poor results for box-constrained quadratic prob-
lems. However, the method turns out to be very successful for the stan-
dard quadratic problem: while a standard global optimization solver like
BARON [55] solves StQPs in 30 variables in about 1000 seconds, this method
solves problems in 2000 variables in 30 seconds (on average). This shows that
the copositive approach to StQPs outperforms all other available methods.

A variant of this approach can be found in [56].

Conclusion and outlook

Copositive programming is a new versatile research direction in conic opti-
mization. It is a powerful modelling tool and allows to formulate many com-
binatorial as well as nonconvex quadratic problems. In the copositive formu-
lation, all intractable constraints (binary as well as quadratic constraints) get
packed entirely in the cone constraint. Studying the structure of the copositive
and completely positive cones thus provides new insight to both combinatorial
and quadratic problems. Though formally very similar to semidefinite pro-
grams, copositive programs are NP-hard. Nonetheless, the copositive formu-
lations have lead to new and tighter bounds for some combinatorial problems.
Algorithmic approaches to directly solve copositive and completely positive
problems have been proposed and given encouraging numerical results.
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Copositive optimization continues to be a highly active research field. Fu-
ture research will deal with both modeling issues and algorithmic improve-
ments. For example, it would be intersting to extend Burer’s result to prob-
lems with general quadratic constraints. The now available algorithms are not
successful for all copositive models, so we need other, better models for some
problem classes. It will also be very interesting to see new copositivity driven
cutting planes for various combinatorial problems which will emerge from a
better understanding of the facial geometry of C.

On the algorithmic side, the methods need to be improved and adapted
to different problem classes. Since now a very good algorithm for StQPs is
available, a natural next step is to tailor this algorithm to QPs with arbitrary
linear constraints or box constraints.
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Summary. This work applies the quasi-LPV technique to the design of robust ob-
servers for a class of bioreactors. The system nonlinearities are modeled in terms of
two time varying parameter vectors, θ(t) and δ(t). The vector θ(t) contains all nonlin-
ear terms that are only function of the measurements, whereas the remaining terms
are lumped into the vector δ(t). Then, a θ(t) parameter-dependent Luenberger-like
observer is proposed, where the design conditions are given in terms of linear matrix
inequality constraints. These conditions ensure regional stability w.r.t. to a set of
admissible initial conditions and also minimizes an upper-bound on the L2-gain of
the error system. These results are applied to a high cell density bioreator.

1 Introduction

Since the seminal works of Kalman [1] and Luenberger [2], state estimation of
dynamical systems has been an active topic of research in control theory, fault
detection and information fusion. State estimation can be defined as the task
of estimating a function of the states of a dynamical system based on a (usually
uncertain) model and the measurements of its outputs which may be corrupted
by disturbance signals. Popular state estimators for linear systems are the
Kalman Filter and Luenberger observer, in which a certain level of accuracy on
the system model is required. When the model is uncertain, the observer may
have poor performance or even assume an erratic behavior. Moreover, in many
practical situations the signal to be observed results from a nonlinear map,
and only approximate solutions can be obtained based on system linearization,
as used in the extended Kalman filter (EKF) [3]. Certainly, the design of
nonlinear observers is much more involved than the linear counterpart, and
has led to a wide diversity of approaches, see, for instance, [4], [5], [6], [7] and
[8].

On the other hand, the problem of robustness and disturbance rejection
in control theory has been addressed by means of convex optimization tech-
niques. To this end, the control problem is recast as a set of linear matrix
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inequalities (LMIs) through the Lyapunov theory and a solution is then ob-
tained using very efficient interior-point method algorithms [9]. However, the
LMI framework cannot be applied in a straightforward way to deal with non-
linear dynamical systems. Recently, several authors have modeled the system
nonlinearities as time-varying parameters giving rise to the (quasi)-LPV ap-
proach [10]. However, the majority of these approaches does not properly
address the stability problem (note that the stability properties only hold
locally when dealing with nonlinear systems).

In this work, we propose a convex optimization problem for designing a
Luenberger-like observer for uncertain nonlinear systems. First, the system
nonlinearities are modeled as bounded time-varying parameters leading to
a quasi-LPV representation of the system. Then, the design conditions are
expressed in terms of a set of parameter-dependent LMIs, which can be nu-
merically solved [9]. The proposed LMI conditions ensure regional stability of
the error system and disturbance attenuation performance in an H∞ setting.
This approach is applied to the estimation of the dead biomass concentration
in a high cell density bioreactor.

2 Problem Statement

Consider the following nonlinear system

ẋ = f(x, q) +G(x, q)u+Bww , y = Cyx+Dww , x(0) = x0 (1)

where x ∈ X ⊂ <n is the state vector; q ∈ Q ⊂ <nq is the vector of parametric
uncertainties; y ∈ Y ⊂ <ny is the measurement vector; u ∈ U ∈ <nu is the
control input; w ∈ Lnw

2,[0,T ] is a vector of disturbance signals with bounded
energy in finite horizon; f(·) ∈ <n is a locally Lipschitz vector function of
(x, q); G(·) ∈ <n×nu is a continuous and bounded matrix function of (x, q);
and Bw ∈ <n×nw , Cy ∈ <ny×n and Dw ∈ <ny×nw are constant matrices. We
assume w.r.t. system (1) that X ,Q and U are given polytopic sets. Let Y be
a polytopic covering of the set {y : y = Cyx , x ∈ X}.

The objective of this work is to estimate a vector

ξ = Cξx , ξ ∈ <nξ , (2)

from the measurement of y, where Cξ ∈ <nξ×n is a given constant matrix. To
this end, we propose the following observer

˙̂x = f(x̂, 0) +G(x̂, 0)u+ L(y, u)(y − ŷ) , ŷ = Cyx̂ , ξ̂ = Cξx̂ (3)

where x̂ ∈ X̂ ⊂ <n is the observer state; ŷ ∈ <ny and ξ̂ ∈ <nξ are estimates
of y and ξ, respectively; L(·)<n×ny is a matrix function of (y, u) to be deter-
mined; and f(x̂, 0) and G(x̂, 0) are the same functions as f(x, q) and G(x, q)
in (1) obtained by setting x = x̂ and q = 0 (nominal model).
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For designing the matrix L(y, u), we model the nonlinearities of system
(1) using output and input-dependent parameters, e.g., θi = θi(y, u), for i =
1, . . . , nθ, as well as parameters affected by the uncertainties (possibly state
and input dependent), e.g., δj = δj(x, u, q), for j = 1, . . . , nδ, such that the
original system dynamics can be cast in the following form:

ẋ = (A1(θ) +A2(δ))x+ (B1(θ) +B2(δ))u+Bww (4)

where θ := [ θ1 · · · θnθ ]′ ∈ <nθ ; δ := [ δ1 · · · δnδ ]′ ∈ <nδ ; A1(·) and B1(·) are
affine matrix functions of θ; and A2(·) and B2(·) are linear matrix functions
of δ. Let Θ := {θ : αi ≤ θi ≤ αi;αi, αi ∈ <; i = 1, . . . , nθ} and ∆ :=
{δ : β

i
≤ δi ≤ βi;βi

, βi ∈ <; i = 1, . . . , nδ} be given polytopes such that
θ = θ(y, u) ∈ Θ and δ = δ(x, u, q) ∈ ∆ for all (x, y, u, q) ∈ X × Y × U × Q.
We stress that there is no limitation in rewriting the original system in (1) as
the time-varying parameter dependent representation in (4). However, we are
likely to be conservative when dealing with very complex dynamics.

In light of (4), we redefine the observer dynamics as follows:

˙̂x = A1(θ)x̂+B1(θ)u+ L(θ)(y − ŷ) , ŷ = Cyx̂ , ξ̂ = Cξx̂ (5)

where the observer gain L(θ) ∈ <n×ny is constrained to be an affine matrix
function of θ.

In this work, we aim at designing the matrix L(θ) such that the observer
has regional stability properties and some performance w.r.t. to disturbance
signals. Let e := x− x̂ be the state vector of the following error system

ė=(A1(θ)− L(θ)Cy)e+A2(δ)x+B2(δ)u+ (Bw − L(θ)Dw)w (6)

and let z := ξ− ξ̂ = Cξe be the observation error. We assume w.r.t. the above
error system that the pair (A1(θ), Cy) is observable for all θ ∈ Θ and there
exists a polytopic covering E such that e ∈ E for all x ∈ X and x̂ ∈ X̂ .

Notice that the error dynamics in (6) is also a function of x and u due the
non-cancelation of the terms that are dependent on the uncertain parameters
δ. To overcome this problem, let ν := [x′ u′ ]′ ∈ <nν , nν = n + nu, be a
fictitious disturbance signal. The vector ν belongs to Lnν

2,[0,T ], as x and u are
assumed bounded.

Now, we introduce the following definition of regional stability to be ap-
plied in the sequel.

Definition 1. Consider system (6). LetW := {w : ‖w‖22,[0,T ] ≤ ρw, ρw ∈ <+}
and N := {ν : ‖ν‖22,[0,T ] ≤ ρν , ρν ∈ <+}. The system (6) is regionally stable
w.r.t. R ⊂ E and W ×N , if for any e(0) ∈ R0 ⊂ R, w ∈ W and ν ∈ N , the
trajectory e(t) remains in R for all t ∈ [0, T ], θ ∈ Θ and δ ∈ ∆.

In view of the above, we can state the problem to be addressed in this work
as follows: design the matrix L(θ) such that the system (6) is regionally stable
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w.r.t. R and W×N for all θ ∈ Θ and δ ∈ ∆ and such that an upper bound γ
on the finite horizon L2-gain from wa to z is minimized, where wa := [ ν′ w′ ]′.

We end this section recalling the following results of the Lyapunov the-
ory [11].

Lemma 1. Consider a nonlinear system ẋ = f(x,w), where x ∈ X ⊂ <n,
w ∈ W ⊂ Lnw

2,[0,T ], W := {w : ‖w‖22,[0,T ] ≤ κ , κ ∈ <+}, f(0, 0) = 0 and
f(x,w) satisfies the conditions for existence and uniqueness of solution for
all (x,w) ∈ X ×W. Suppose there exist a continuously differentiable function
V :X 7→ < and positive scalars ε1 and ε2 satisfying the following conditions:

ε1x
′x ≤ V (x) ≤ ε2x′x , V̇ (x)− w′w < 0 , R ⊂ X , ∀ x ∈ X (7)

where R = {x : V (x) ≤ 1 + κ}. Then, the nonlinear system is regionally
exponentially stable w.r.t. R ⊂ X and W. That is, for any x(0) ∈ R0 ⊂ R,
where R0 := {x : V (x) ≤ 1}, and w ∈ W, the state trajectory x(t) remains in
R for all t ∈ [0, T ].

Lemma 2. Consider a nonlinear map z = h(x,w), ẋ = f(x,w), where x ∈
X ⊂ <n, z ∈ <nz , w ∈ W ⊂ Lnw

2,[0,T ], f(0, 0) = 0, f(x,w) satisfies the
conditions for existence and uniqueness of solution and h(x,w) is a continuous
and bounded vector function, for all (x,w) ∈ X × W. Assume the system
ẋ = f(x,w) is regionally exponentially stable w.r.t. to R ⊂ X and W. Let
γ ∈ <+ be a given scalar. Suppose there exist positive scalars ε1 and ε2 and
a continuously differentiable function V : X 7→ < satisfying the following
inequalities:

ε1x
′x ≤ V (x) ≤ ε2x′x , V̇ (x) +

z′z

γ
− γw′w < 0 , ∀ (x,w) ∈ X ×W (8)

Then, the finite horizon L2-gain from w to z is bounded by γ, i.e.

‖Gwz‖∞,[0,T ] := sup
0 6=w∈W,x∈R

‖z‖2,[0,T ]

‖w‖2,[0,T ]
≤ γ (9)

3 Observer Design

In this section, we devise a convex optimization problem for determining the
matrix L(θ). Basically, we translate the stability and performance conditions
of Lemmas 1 and 2 into parameter-dependent LMI constraints which can be
numerically solved.

To this end, let Bν(δ) := [A2(δ) B2(δ) ]. Thus, we can recast the error
system in (6) in the following compact form:

ė=(A1(θ)− L(θ)Cy)e+Bν(δ)ν + (Bw − L(θ)Dw)w , z = Cξe . (10)

Now, consider the following Lyapunov function candidate:

V (e) = e′Pe , P = P ′ > 0 (11)
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Remark 1. It turns out that the above quadratic function may be conserva-
tive for assessing the stability of parameter-dependent systems. However, the
stability conditions will also depend on θ̇ and δ̇ if we consider a parameter-
dependent Lyapunov function [12]. To avoid the estimation of bounding sets
for θ̇ and δ̇, the Lyapunov function is constrained to be parameter indepen-
dent. In addition, we provide an estimate of the system stability region based
on a level set of V (e), and a parameter dependent estimate would not be
practical.

In view of (10) and (11), the time derivative of V (e) is as follows:

V̇ = 2e′P ė = ζ ′Π(P,L)ζ (12)

where ζ = [ e′ ν′ w′ ]′ and

Π(P,L) =

Her(PA1(θ)−PL(θ)Cy) PBν(δ) PBw−PL(θ)Dw

Bν(δ)′P 0 0
B′wP−D′wL(θ)′P 0 0


with Her(·) = (·) + (·)′.

Notice in Lemma 1 that for ensuring regional stability properties we have
to guarantee that R ⊂ E . To this end, we first consider that the polytope E
can be represented by the following set of inequalities

E = {e : m′je ≤ 1 , j = 1, . . . , nm} (13)

where m1, . . . ,mnm ∈ <n are constant vectors defining the nm edges of E .
Then, the condition R ⊂ E can be written as follows:

2−m′je− e′mj ≥ 0 , ∀ e : V (e)− (1 + κ) ≤ 0

Applying the S-procedure [9], the above is guaranteed if the following
holds for some scalars τj ∈ <+:[

1
−e

]′ [ (2τj−1−κ) τjm
′
j

τjmj P

] [
1
−e

]
≥ 0 , j = 1, . . . , nm (14)

In view of the above, we propose the following Theorem.

Theorem 1. Consider the error system in (10). Let U , Θ and ∆ be given
polytopic sets. Let W := {w : ‖w‖22,[0,T ] ≤ ρw , ρw ∈ <+} and N := {ν :
‖ν‖22,[0,T ] ≤ ρν , ρν ∈ <+} be given admissible sets of disturbances w and
ν, respectively. Let E be a given polytope as defined in (13). Let R0 := {e :
e′P0e ≤ 1 , P0 = P ′0 > 0} ⊂ E be a given set of admissible initial conditions
for the error system. Suppose the matrices P = P ′, R0, R1, . . . , Rnθ

, with
appropriate dimensions, and scalars τ1, . . . , τnm and γ are a solution to the
following optimization problem, where the LMIs are constructed at all (θ, δ) ∈
V(Θ ×∆) and j = 1, . . . , nm



26 Daniel F. Coutinho and Alain Vande Wouwer

min
P,...,γ

γ :


P0 − P ≥ 0 ,

[
(2τj−1−ρw−ρν) τjm

′
j

τjmj P

]
> 0

Γa(P,R0, . . . , Rnθ
) < 0 , Γb(P,R0, . . . , Rnθ

, γ) < 0

(15)

where V(·) is the set of vertices of (·), R(θ) = R0 + θ1R1 + · · ·+ θnθ
Rnθ

and

Γa(P,R0, . . . , Rnθ
)=

Her(PA1(θ)−R(θ)Cy) ? ?
Bν(δ)′P −Inν 0

(B′wP−D′wR(θ)′) 0 −Inw

 , (16)

Γb(P,R0, . . . , Rnθ
, γ)=


Her(PA1(θ)−R(θ)Cy) ? ? C ′ξ

Bν(δ)′P −γInν 0 0
(B′wP −D′wR(θ)′) 0 −γInw 0

Cξ 0 0 −γInξ


with ? denoting symmetric block matrices. Then, the error system in (10), with
L(θ) = P−1R(θ), is regionally exponentially stable w.r.t. R := {e : e′Pe ≤
1+ρw+ρν} ⊂ E andW×N . That is, for any e(0) ∈ R0 := {e : e′P0e ≤ 1} ⊂ R,
w ∈ W and ν ∈ N , the trajectory e(t) remains in R for all t ∈ [0, T ].
Moreover, ‖Gwaz‖∞,[0,T ] ≤ γ, where wa = [w′ ν′ ]′.

Proof. Firstly, note that the last two LMIs in (15) are affine in (θ, δ). If they
hold for all (θ, δ) ∈ V(Θ×∆), then by convexity they also hold for all (θ, δ) ∈
Θ ×∆.

Secondly, consider the second LMI in (15). From the Schur complement [9],
we obtain that P > 0. Let λ and λ be the smallest and largest eigenvalues
of P , respectively. We have λe′e ≤ e′Pe ≤ λe′e In addition, pre- and post-
multiplying the second LMI in (15) by [ 1 −e′ ] and its transpose, respectively,
leads to (14) with κ = ρw + ρν . Hence, R := {e : e′Pe ≤ 1+ρw +ρν} ∈ E .
Notice that the first LMI in (15) implies R0 := {e : e′P0e ≤ 1} ⊂ R.

Thirdly, consider the notation in (12) and let wa = [ ν′ w′ ]′. Pre- and
post-multiplying the third LMI in (15) by ζ ′ and ζ, respectively, leads to
V̇ − w′awa < 0, since V̇ = ζ ′Π(P,L)ζ by noting that R(θ) = PL(θ).

Finally, applying the Schur complement to the fourth LMI in (15) yieldsHer(PA1(θ)−R(θ)Cy)−γ−1C ′ξCξ ? ?

Bν(δ)′P −γInν 0
(B′wP −D′wR(θ)′) 0 −γInw

 < 0

Pre- and post-multiplying the above by ζ ′ and ζ, respectively leads to V̇ +
γ−1z′z − γw′awa < 0, and the rest of this proof follows immediately from
Lemmas 1 and 2.

4 Case Study: A High Cell Density Bioreactor

To analyze the proposed approach for observer design, we consider the high-
cell-density perfusion bioreactor recently studied in [13]. The general bioreac-
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tor setup is illustrated in Figure 1. The fresh culture medium with concen-
tration Sin is fed to the bioreactor through the input flow Fin which can be
diluted by the flow Fw (with null glucose concentration). The culture medium
is drained from the bioreactor by the bleed flow F1 or by the perfusion flow F2.
A filtering device (for instance, an acoustic device for sono-perfusion) allows
the biomass to be recirculated to the bioreactor, so that F2 can be considered
as a cell-free stream.

Fw

 concentrations)

inS

in
F

2
F

1
F

(biomass  and subs trate
X,S

Fig. 1. A high-cell-density perfusion/chemostat bioreator.

For this system, the main objective is to control the biomass and substrate
concentrations in the culture medium by means of the inputs Fin and F1. The
flows Fw and F2 are employed to guarantee a constant volume operation. If
Fin ≥ F1 we have to drain the tank by means of F2 (and then Fw is null).
Otherwise, i.e., in the case of F1 > Fin, we have to fill the tank by adding the
glucose free flow Fw to maintain a constant volume in the tank where F2 = 0.
In the following, we assume that the flows Fw and F2 are perfectly regulated
by an additional controller, so that either Fw + Fin = F1 or Fin = F1 + F2.

The bioreactor dynamics can be expressed in terms of the living biomass
y1 = X, the substrate y2 = S and the dead biomass ξ concentrations leading
to the following state space representation [13]:

⎡
⎣ẏ1ẏ2
ξ̇

⎤
⎦ =

⎡
⎣ 1 −k2

−k1 0
0 k2

⎤
⎦ [

ψ1(y, ξ)
ψ2(y, ξ)

]
−

⎡
⎣ y1 0
σy2 (1−σ)y2−Sin

ξ 0

⎤
⎦ [

u1

u2

]
(17)

where y = [ y1 y2 ]′ is the measurement; u1 = F1/v and u2 = Fin/v are the
dilution rates with v denoting the reactor volume; k1 and k2 are the pseudo-
stoichiometric coefficients; Sin is the input substrate concentration; σ is a
binary number standing for the reactor mode of operation; and ψ1(·) and
ψ2(·) are nonlinear functions representing the reaction kinetics. In [13], the
reaction kinetics ψ1 and ψ2 are modeled by the following functions:

ψ1 = μ
y1y2

Kcy1 + y2
and ψ2 = (y1 + ξ)y1 (18)

(diluting flow)

(input substrate concentration)

(input flow)

(bleed)

(recirculating flow)

(cell−free stream)
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where µ is the maximal biomass growth rate, and Kc is the saturation coeffi-
cient.

The numerical value of the constants k1, k2,Kc and µ are experimentally
difficult to estimate [14]. To overcome this problem, we consider a robust
feedback linearizing control law as given below:

u1 =
1
y1

(
µ̄y1y2
K̄c+y2

−k̄2(y1+ξ)y1−1.2(ỹsp
1 −y1)

)
, ỹsp

1 =
∫

(ysp
1 −y1)dt (19)

u2(σ)=
1
Sin

(
µ̄k̄1y1y2
K̄c+y2

+y2u(1+σ)+2.3(ỹsp
2 −y2)

)
, ỹsp

2 =
∫

(ysp
2 −y2)dt (20)

where ysp
1 , y

sp
2 are the set-points of y1 and y2; u(1+σ) is a switched control

input, which can be either u1 when σ=0 or u2 for σ=1; and k̄1, k̄2, K̄c and
µ̄ represent the nominal values of the uncertain parameters ki(q)= k̄i(1+qi),
i = 1, 2, µ(q)= µ̄(1+qµ), Kc(q)= K̄c(1+qc) with q = [ q1 q2 qµ qc ]′ being the
uncertainty vector (i.e., admissible deviations from the nominal values).

To implement the control law, we need the information on the dead
biomass concentration which is difficult to measure on-line. Hence, we de-
sign an observer to estimate the state ξ from the measurements of y1 and y2
considering the results given in Section 3.

To simplify the design of the observer, we consider the following represen-
tation for system (17)

ẏ1 = µ̄(θ4 + δ2)y1 − k̄2(θ1 + δ1)(y1 + ξ)− θ1u1 (21)
ẏ2 = −k̄1µ̄(θ4 + δ3)y1 + Sinu2 − θ2u(1+σ) (22)

ξ̇ = k̄2(θ1 + δ1)(y1 + ξ)− θ3ξ (23)

with the time-varying parameters θ1 = y1, θ2 = y2, θ3 = u1, δ1 = q2y1, and

θ4 =
y2

K̄cy1 + y2
, δ2 = y2

qµ(K̄cy1 + y2)− K̄cqcy1
(K̄c(1 + qc)y1 + y2)(K̄cy1 + y2)

δ3 = y2
(K̄cy1 + y2)(q1 + qµ + q1qµ)− K̄cqcy1

(K̄c(1 + qc)y1 + y2)(K̄cy1 + y2)
(24)

For the above system, we consider the following numerical data taken from
[13]: k̄1 = 5.2, k̄2 = 7.6 × 10−5, K̄c = 8.0, and µ̄ = 5.04 × 10−2, where we
assume Q = {q : |q1| ≤ 0.2, |q2| ≤ 0.2, |qµ| ≤ 0.5, |qc| ≤ 0.5}. In addition,
we consider that ysp := [ ysp

1 ysp
2 ]′ may assume values in the following set

Ysp = {ysp : 0.5 ≤ ysp
1 ≤ 10, 10 ≤ ysp

2 ≤ 25}. Assuming the measurement of
ξ and applying a gridding technique to the parameter vector q ∈ Q, we have
performed exhaustive simulations where we have observed that the controller
in (19)-(20) leads to a zero closed-loop steady-state tracking error with no
overshoot (or undershoot) for step changes in ysp ∈ Ysp.

In view of the above observations, we have defined the polytope of ad-
missible states as X = {y1, y2, ξ : 0.5 ≤ y1 ≤ 10, 10 ≤ y2 ≤ 25, 0 ≤
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ξ ≤ 1}. Taking the definitions of θ and δ in (24) into account, we have
Θ = {θ : 1 ≤ θ1 ≤ 6, 5 ≤ θ2 ≤ 20, 0.01 ≤ θ3 ≤ 0.2, 0.2 ≤ θ4 ≤ 0.8} and
∆ = {δ : |δ1| ≤ 0.6, 0.01 ≤ δ2 ≤ 0.12, 0.01 ≤ δ3 ≤ 0.15}. In addition, we
have assumed N = {ν : ‖ν‖2,[0,T ] ≤ 1}, E = {e : |e1|≤4, |e2|≤4, |e3|≤1}, and
R0 = {e : e21 ≤ 9, e22 ≤ 9, e23 ≤ 1/4}. Thus, we get the following results from
Theorem 1:

L=

 825.416 0.000
0.000 814.835

2.5× 10−5 0.000

 , P =

0.0625 0.0000 0.0000
0.0000 0.0625 0.0000
0.0000 0.0000 0.9999

 , γ=10.820 ,

where L(θ) was constrained to be constant, and the computation has been
performed using YALMIP/SDPT3 package [15, 16]. The total CPU time was
0.3 [sec] running in a Core2 Duo CPU (@ 2.26GHz) with 21 LMI constraints
and 14 decision variables.

Figure 2 shows the (living) biomass (y1), the dead biomass (ξ) and its
estimate (ξ̂) concentrations for the following step variations on the reference
signals

ysp
1 (t)=

6 0 ≤ t ≤ 5 [hours]
for

2 t > 5 [hours]
, ysp

2 (t)=

16 0 ≤ t ≤ 15 [hours]
for

20 t > 15 [hours]

where we have considered a band limited white noise (with noise power 0.1)
on the measurement of the living biomass, the worst case values for k1, k2,Kc

and µ, the control law in (19) and (20) with ξ̂, and the following observer: ˙̂y1
˙̂y2
˙̂
ξ

 =

 1 −k̄2

−k̄1 0
0 k̄2

[ψ̂1

ψ̂2

]
−

 ŷ1 0
σy2 (1−σ)y2−Sin

ξ̂ 0

[u1

u2

]
− L(y − ŷ)

with ψ̂1 = µ̄ŷ1y2/(K̄cŷ1 + y2) and ψ̂2 = (ŷ1 + ξ̂)ŷ1.
It turns out that there is a constant steady-state error (ultimate boundness

stability [17]) on the estimate of ξ due to uncertainties on the model parame-
ters. However, the controller in (19) and (20) is robust against constant errors
leading to a response similar to the observer-free closed-loop system.

5 Conclusion

This work proposes a convex optimization approach for designing nonlinear
observers with guaranteed regional stability and disturbance attenuation per-
formance for the error system. Basically, the uncertain nonlinear system is
modeled by means of a quasi-LPV representation and then an LMI-based for-
mulation is derived to determine the observer gain. The proposed approach
is successfully applied to estimate the dead biomass in a high-cell-density
bioreactor recently studied in the process control literature.
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Fig. 2. Living, y1, and dead biomass, ξ, concentrations and the estimate ξ̂.
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Solving Infinite-dimensional Optimization
Problems by Polynomial Approximation
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Summary. We solve a class of convex infinite-dimensional optimization problems
using a numerical approximation method that does not rely on discretization. In-
stead, we restrict the decision variable to a sequence of finite-dimensional linear
subspaces of the original infinite-dimensional space and solve the corresponding
finite-dimensional problems in a efficient way using structured convex optimization
techniques. We prove that, under some reasonable assumptions, the sequence of these
optimal values converges to the optimal value of the original infinite-dimensional
problem and give an explicit description of the corresponding rate of convergence.

1 Introduction

Optimization problems in infinite-dimensional spaces, and in particular in
functional spaces, were already considered in the 17th century: the develop-
ment of the calculus of variations, motivated by physical problems, focused on
the development of necessary and sufficient optimality conditions and finding
closed-form solutions. Much later, the advent of computers in the mid-20th

century led to the consideration of finite-dimensional optimization from an
algorithmic point of view, with linear and nonlinear programming. Finally,
a general theory of optimization in normed spaces began to appear in the
70’s [8, 2], leading to a more systematic and algorithmic approach to infinite-
dimensional optimization.

Nowadays, infinite-dimensional optimization problems appear in a lot of
active fields of optimization, such as PDE-constrained optimization [7], with
applications to optimal control, shape optimization or topology optimization.
Moreover, the generalization of many classical finite optimization problems to
a continuous time setting lead to infinite-dimensional problems.
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M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
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From the algorithmic point of view, these problems are often solved using
discretization techniques (either discretization of the problem or discretization
of the algorithm). In this work, we consider a different method of resolution
that does not rely on discretization: instead, we restrict the decision variables
to a sequence of finite-dimensional linear subspaces of the original infinite-
dimensional space, and solve the corresponding finite-dimensional problems.

2 Problem class and examples

Consider a normed vector space (X, ‖.‖X) of infinite dimension and its topo-
logical dual (X ′, ‖.‖X′) equipped with the dual norm. We focus on the follow-
ing class of convex infinite-dimensional optimization problems:

P ∗ = inf
x∈X
〈c, x〉 s.t 〈ai, x〉 = bi ∀i = 1, . . . , L and ‖x‖X ≤M (P)

where c ∈ X ′, ai ∈ X ′, M ∈ R++, bi ∈ R for all i = 1, . . . , L (L is finite)
and P ∗ denotes the optimal objective value. This problem class, with a linear
objective, linear equalities and a single nonlinear inequality bounding the
norm of the decision variable, is one of the simplest that allows us to outline
and analyze our approximation technique. Nevertheless, it can be used to
model many applications, among which the following simple continuous-time
supply problem, which we describe for the sake of illustration.

A company buys a specific substance (for example oil or gas) in continuous
time. Assume that this substance is made of L different constituents and that
its composition continuously changes with time. In the same way, the price of
this substance follows a market rate and therefore also changes in continuous
time.

The finite time interval [0, T ] represents one production day. Assume that,
for each constituent i, a specific daily demand bi must be satisfied at the end
of the day. We want to compute a purchase plan x(t), i.e. the quantity of
substance to buy at each time t, such that it meets the daily demands for a
minimal total cost. For this application, the decision functional space X can
be taken as the space of continuous functions on [0, T ] (see also Section 5
for other examples of suitable functional spaces). Denoting the price of the
substance at time t by γ(t), the amount of constituent i in the substance at
time t by αi(t), we obtain the following infinite-dimensional problem

inf
x∈X

∫ T

0

γ(t)x(t)dt s.t
∫ T

0

αi(t)x(t)dt = bi ∀i and 0 ≤ x(t) ≤ K ∀t ∈ T

where we also impose a bound for the maximal quantity that we can buy at
each moment of time. The objective function and equality constraints are lin-
ear, so that we only need to model the bound constraints as a norm constraint.
This is easily done with a linear change of variable: letting x(t) = 1

2K+x̄(t) ∀t,
the bound constraint becomes ‖x̄‖∞ ≤

1
2K, which now fits the format of (P).

This model can also be used to compute how to modify an existing pur-
chase plan when changes in the demands occur. Denote the modification of
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the daily demand for the constituent i by ∆bi and the change in our purchase
quantity at time t by x̃(t), and assume we do not want to modify the existing
planning too much, so that we impose the constraint ‖x̃‖ ≤ M for a given
norm. We obtain the following infinite-dimensional problem:

inf
x∈X

∫ T

0

γ(t)x̃(t)dt s.t
∫ T

0

αi(t)x̃(t)dt = ∆bi ∀i = 1, . . . , L and ‖x̃‖ ≤M

which also belongs to problem class (P). Finally, note that this problem class
allows the formulation of continuous linear programs (CLPs, see [2]), such as

inf
x∈X

∫
γ(t)x(t)dt s.t

∫
αi(t)x(t)dt = bi ∀i and x(t) ≥ 0 ∀t

provided we know an upper bound K on the supremum of x(t), so that the
nonnegativity constraint can be replaced by 0 ≤ x(t) ≤ K ∀t, which can be
rewritten using the infinity norm with a linear change of variables as in first
example above.

3 Finite-dimensional approximations

We propose to approximate infinite-dimensional problem (P) by a sequence
of finite-dimensional approximations. Let {p1, . . . , pn, . . .} ⊂ X be an in-
finite family of linearly independent elements of X and denote by Xn =
span{p1, . . . , pn}, the finite-dimensional linear subspace generated by the first
n elements of this family.

Replacing the infinite-dimensional space X in (P) by Xn, we obtain the
following family of problems with optimal values P ∗n

P ∗n = inf
x∈Xn

〈c, x〉 s.t 〈ai, x〉 = bi ∀i = 1, . . . , L and ‖x‖X ≤M . (Pn)
Expressing function x as x =

∑n
i=1 xipi and denoting the finite vector of

variables xi by x leads to the following family of equivalent finite-dimensional
formulations
P ∗n = inf

x∈Rn
〈c(n),x〉 s.t 〈a(n)

i ,x〉 = bi ∀i = 1, . . . , L and
∥∥∥ n∑

i=1

xipi

∥∥∥
X
≤M ,

where c(n) and a
(n)
i are vectors in Rn whose components are defined by

[c(n)]j = 〈c, pj〉 and [a(n)
i ]j = 〈ai, pj〉 ∀j = 1, . . . , n and ∀i = 1, . . . , L.

For our approach to be effective, these problems must be solvable by ex-
isting algorithms for finite-dimensional optimization. In particular, we would
like to ensure that the bounded norm inequality can be handled by existing
efficient optimization methods (the other components of the problem, namely
the linear objective and linear equalities, are usually easily handled). We now
list some explicit situations where this is indeed the case.

1. The easiest case corresponds to situations where X is a Hilbert space. In-
deed, if we choose in that case {p1, . . . , pn} to be an orthonormal basis of
Xn, we have that ‖

∑n
i=1 xipi‖X = ‖x‖2, where the last norm is the stan-

dard Euclidean norm of Rn. The bounded norm inequality becomes a sim-
ple convex quadratic constraint, hence the approximation problem (Pn)
can easily be solved (in fact, it admits a solution in closed form).
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In the rest of this list, we focus on situations where functional space X is a
Lebesgue or Sobolev space (see Section 5 for some properties) and where the
basis elements p1, p2, . . . are polynomials (hence the title of this work), because
this leads in many situations to problems that can be efficiently solved. We
can take for example the monomial basis Xn = span{1, t, . . . , tn−1}, which
means that variable x in problem (Pn) can be written x(t) =

∑n−1
i=0 xit

i and
becomes a polynomial of degree n− 1.

2. Let [a, b] denote a bounded, semi-infinite or an infinite interval. When
X = L∞([a, b]), the norm inequality ‖x‖∞ ≤ M can be formulated as
−M ≤ x(t) ≤ M ∀t ∈ [a, b], which is equivalent to requiring positivity of
both polynomials x(t) +M and M − x(t) on interval [a, b]. This in turn
can be formulated as a semidefinite constraint, using the sum of squares
approach (see e.g. [10]). Therefore, problems (Pn) can be efficiently solved
as a semidefinite programming problem, using interior-point methods with
polynomial-time worst-case algorithmic complexity.

3. When X is the Sobolev space W k,∞([a, b]), we have that constraint
‖x‖k,∞ ≤ M is equivalent to −M ≤ x(l)(t) ≤ M∀t ∈ [a, b] and ∀l ≤ k,
where x(l)(t) is the lth derivative of x(t), whose coefficients depend lin-
early on those of vector x. Therefore, as in the previous case, we solve the
corresponding (Pn) as a semidefinite programming problem.

4. In the case of X = Lq([a, b]) where q is an even integer, we use Gaussian
quadrature to obtain an suitable finite-dimensional representation of the
constraint ‖x‖q = (

∫ b

a
|x(t)|qdt)1/q ≤ M . We use the following result (see

e.g. [6]):

Theorem 1. Given an integer m, there exists a set of m abscissas
{z1, z2, . . . , zm} and a set of m positive weights {w1, w2, . . . , wm} such
that the quadrature formula

∫ b

a
f(x)dx ≈

∑m
i=1 wif(zi) is exact for all

polynomials of degree less or equal to 2m− 1.

We now use the fact that, since x(t) is a polynomial of degree at most
n − 1, |x(t)|q is a polynomial of degree at most q(n − 1), so that we

can choose m = 1
2q(n − 1) + 1 and have

∫ b

a
|x(t)|qdt =

∑ 1
2 q(n−1)+1
i=1 wiλ

q
i

where λi = x(zi) ; note that quantities λi depend linearly on the coeffi-
cients x of polynomial x(t). The bound constraint can now be written as∑ 1

2 q(n−1)+1
i=1 wiλ

q
i ≤Mq, which is a structured convex constraint on vector

of variables x. Because a self-concordant barrier is known for this set [9,
Ch. 6], it can be solved in polynomial time with an interior-point method.
The same kind of approach can be used to obtain an explicit translation in
finite dimension of the polynomial approximation when X = W k,q([a, b])
for even integers q.

Now that we know how to solve problems (Pn) efficiently, we show in
the next section that, under some reasonable assumptions, the sequence of
their optimal values P ∗n converges to the optimal value of the original infinite-
dimensional problem P ∗ when n→ +∞.
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4 Convergence of the approximations

The optimal values of problems (P) and (Pn) clearly satisfy P ∗ ≤ P ∗n ; more-
over, P ∗n+1 ≤ P ∗n holds for all n ≥ 0. In order to prove that P ∗n converges to
P ∗, we also need to find an upper bound on the difference P ∗n−P ∗. Our proof
requires the introduction of a third problem, a relaxation of problem (Pn)
where the equality constraints are only satisfied approximately. More specifi-
cally, we define the linear operator A : X → RL by [Ax]i = 〈ai, x〉, form the
vector b = (b1, b2, . . . , bL) and impose that the norm of the residual vector
Ax− b is bounded by a positive parameter ε:

P ∗n,ε = inf
x∈Xn

〈c, x〉 s.t ‖Ax− b‖q ≤ ε and ‖x‖X ≤M (Pn,ε)

(we equip RL, the space of residuals, with the classical q-norm ‖.‖q norm and
define the conjugate exponent q′ by 1

q + 1
q′ = 1). We clearly have P ∗n,ε ≤ Pn.

Our proof of an upper bound for the quantity P ∗n−P ∗ = (P ∗n−P ∗n,ε)+(P ∗n,ε−
P ∗) proceeds in two steps: we first prove an upper bound on P ∗n,ε − P ∗ for a
specific value of ε depending on n, and then use a general regularity theorem
to establish a bound on the difference P ∗n − P ∗n,ε.

We use the following notations: for x ∈ X, an element of best approx-
imation of x in Xn is denoted by PXn

(x) = arg minp∈Xn
‖x− p‖X (such

kind of elements exists as X is a normed vector space and Xn is a finite-
dimensional linear subspace see e.g. section 1.6 in [4]; in case it is not
unique, it is enough to select one of these best approximations in the fol-
lowing developments), while the corresponding best approximation error is
En(x) = minp∈Xn ‖x− p‖X = ‖x− PXn(x)‖X .

4.1 Upper bound on P ∗
n,ε − P ∗

Assume that problem (P) is solvable. This is true for example ifX is a reflexive
Banach space or the topological dual of a separable Banach space (see [12]
and Section 5 for further comments on this issue). Let xopt be an optimal
solution to (P) and let us consider PXn(xopt), its best approximation in Xn

(note that if (P) is not solvable, we can consider for all µ > 0 a µ-solution
xµ of this problem, i.e. a feasible solution such that < c, xµ >≤ P ∗ + µ, and
replace P ∗ by P ∗ + µ in the following developments).

First, ‖PXn(xopt)‖X can be bigger than ‖xopt‖X , and does not neces-
sarily satisfy the norm inequality constraint, but we have ‖PXn(xopt)‖X ≤
‖xopt‖X + ‖xopt − PXn(xopt)‖X ≤ M + En(xopt). Therefore, if we choose
λ = M

M+En(xopt)
and p = λPXn(xopt), we obtain ‖p‖X ≤ M . Moreover,

we have ‖p− xopt‖X ≤ 2En(xopt) because we can write ‖p− xopt‖X ≤
‖p− PXn(xopt)‖X + ‖PXn(xopt)− xopt‖X , and ‖p− PXn(xopt)‖X = ‖(λ −
1)PXn(xopt)‖X ≤ (1− λ)(M + En(xopt)) ≤ En(xopt).

On the other hand, we have for all i = 1, . . . , L that |〈ai, p〉 − bi| =
|〈ai, p− xopt〉| ≤ ‖ai‖X′ ‖p− xopt‖X ≤ ‖ai‖X′ 2En(xopt). Therefore, choos-

ing ε(n) = 2En(xopt)
(∑L

i=1 ‖ai‖qX′

)1/q, we obtain that p is feasible for the
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problem (Pn,ε(n)). Similarly, we have |〈c, xopt〉 − 〈c, p〉| ≤ ‖c‖X′ 2En(xopt),
and we have proved the following lemma:

Lemma 1. For ε(n) = 2En(xopt)
(∑L

i=1 ‖ai‖qX′

)1/q, the optimal values of
problems (P) and (Pn,ε(n)) satisfy P ∗n,ε(n) − P

∗ ≤ ‖c‖X′ 2En(xopt).

4.2 Upper bound on P ∗
n − P ∗

n,ε

We first introduce a general regularity theorem that compares the optimal
value of a problem with linear equality constraints with the optimal value of its
relaxation, and then apply it to the specific pair of problems (Pn) and (Pn,ε).

Regularity Theorem

Let (Z, ‖.‖Z) and (Y, ‖.‖Y ) be two normed vector space, A : Z → Y be a linear
operator, Q ⊂ Z be a convex bounded closed subset of Z with nonempty
interior, b ∈ Y and L = {z ∈ Z : Az = b}. We denote the distance between a
point z and subspace L by d(z,L) = infy∈L ‖z − y‖Z .

Lemma 2. Assume that there exists a point ẑ ∈ Z such that Aẑ = b and
B(ẑ, ρ) ⊂ Q ⊂ B(ẑ, R) for some 0 < ρ ≤ R. Then, for every point z ∈ Q such
that d(z,L) ≤ δ, there exists z̃ ∈ L ∩Q such that ‖z − z̃‖Z ≤ δ

(
1 + R

ρ

)
.

Proof. Denote Qz = conv(z,B(ẑ, ρ)) ⊂ Q. The support function of this set is
σQz (s) = supy∈Qz

〈s, y〉 = max{〈s, z〉, 〈s, ẑ〉 + ρ ‖s‖Z′}. Let π be any element
of best approximation of the point z into L. Define α = ρ

ρ+δ and consider
z̃ = απ + (1− α)ẑ. Then we have for any s ∈ Z ′ that

〈s, z̃〉 = α〈s, z〉+ (1− α)〈s, ẑ〉+ α〈s, π − z〉

≤ α〈s, z〉+ (1− α)
[
〈s, ẑ〉+ αδ

1− α
‖s‖Z′

]
= α〈s, z〉+ (1− α) [〈s, ẑ〉+ ρ ‖s‖Z′ ] ≤ σQz (s)

and hence z̃ ∈ Qz ⊂ Q. Since we also have z̃ ∈ L, it remains to note that

‖z − z̃‖Z ≤ ‖z − π‖Z + ‖π − z̃‖Z = δ + (1− α) ‖π − ẑ‖Z
≤ δ + (1− α)(‖π − z‖Z + ‖z − ẑ‖Z) ≤ δ + (1− α)(δ +R)

= δ

(
1 +

R+ δ

ρ+ δ

)
≤ δ

(
1 +

R

ρ

)
ut

We consider now the following optimization problem:
g∗ = inf

z∈Z
〈c, z〉 s.t Az = b and z ∈ Q (G)

and its relaxed version
g∗ε = inf

z∈Z
〈c, z〉 s.t ‖Az − b‖Y ≤ ε and z ∈ Q. (Gε)

The following Regularity Theorem links the optimal values of these two prob-
lems.
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Theorem 2 (Regularity Theorem). Assume that

A1. (Gε) is solvable,
A2. there exists ẑ ∈ Z s.t Aẑ = b and B(ẑ, ρ) ⊂ Q ⊂ B(ẑ, R) for 0 < ρ ≤ R,
A3. the operator A : Z → Y is non degenerate, i.e. there exists a constant

σ > 0 such that ‖Az − b‖Y ≥ σd(z,L) ∀z ∈ Z.

Then g∗ ≥ g∗ε ≥ g∗ −
ε‖c‖Z′

σ

(
1 + R

ρ

)
.

Proof. The first inequality is evident. For the second one, consider z∗ε , an op-
timal value of the problem (Gε). Since d(z∗ε ,L) ≤ δ := ε

σ , in view of Lemma 2,

there exists a point z̃ ∈ L ∩ Q such that ‖z∗ε − z̃‖Z ≤ δ
(
1 + R

ρ

)
. Therefore,

we can conclude g∗ε = 〈c, z∗ε 〉 = 〈c, z̃〉+ 〈c, z∗ε − z̃〉 ≥ g∗ − ‖c‖Z′ δ
(
1 + R

ρ

)
ut

Satisfying the hypotheses of the Regularity Theorem

We want to apply the Regularity Theorem to the pair of problems (Pn)
and (Pn,ε). First, we note that, as Xn is finite-dimensional, the set {x ∈ Xn :
‖x‖X ≤M, ‖Ax− b‖q ≤ ε} is compact. As the functional c is continuous, we
conclude that problem (Pn,ε) is solvable, i.e. hypothesis A1 is satisfied.

In order to prove hypothesis A2, we assume that there exists x̂ ∈ Xn

such that Ax̂ = b and ‖x̂‖X < M (a kind of Slater condition). If we denote
Rn = minx∈Xn,Ax=b ‖x‖X , x̃ = arg minx∈Xn,Ax=b ‖x‖X and Qn = {x ∈ Xn :
‖x‖X ≤M} = BXn(0,M), we have : BXn(x̃,M −Rn) ⊂ Qn ⊂ BXn(x̃, 2M).

Regarding hypothesis A3, denote Ln = {x ∈ Xn : Ax = b} and write

d(x,Ln) = min
u∈Xn,Au=b

‖x− u‖X = min
λ∈Rn,A(n)λ=b

∥∥∥∥∥x−
n∑

i=1

λipi

∥∥∥∥∥
X

= min
u∈Xn

max
y∈RL

[
‖x− u‖X + 〈y,−Au+ b〉

]
where we defined [A(n)]i,j = 〈ai, pj〉. Since a linearly constrained optimization
problem in Rn with convex objective function always admits a zero duality
gap (see e.g. [3]), we have

d(x,Ln) = max
y∈RL

min
u∈Xn

[
‖x− u‖X + 〈y,−Au+ b〉

]
= max

y∈RL

(
〈y, b−Ax〉+ min

u∈Xn

‖x− u‖X + 〈y,A(x− u)〉
)
.

Consider now the Lagrangian dual functional γ(y) = minu∈Xn ‖x− u‖X +
〈y,A(x − u)〉. If we define A′ : RL → X ′ by 〈y,Ax〉 = 〈A′y, x〉 ∀x ∈
X,∀y ∈ RL, we can check that A′y =

∑L
i=1 yiai. Denoting ‖A′y‖X′,n =

supw∈Xn

|〈A′y,w〉|
‖w‖X

, it follows from the definition of the dual norm that γ(y) = 0
if ‖A′y‖X′,n ≤ 1 and −∞ otherwise. We conclude that
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d(x,Ln) = max
{y∈RL s.t. ‖A′y‖X′,n≤1}

〈y, b−Ax〉

≤ max
{y∈RL s.t. ‖A′y‖X′,n≤1}

‖y‖q′ ‖b−Ax‖q .

Therefore, choosing a σn > 0 such that 1
σn

= max{y∈RL s.t. ‖A′y‖X′,n≤1} ‖y‖q′

ensures degeneracy of A, and we have

Lemma 3. If σn = min{y∈RL,‖y‖q′=1} ‖A′y‖X′,n is strictly positive then oper-
ator A : Xn → RL is non-degenerate with constant σn.

Remark 1. If X is a Hilbert space and if we work with the Euclidean norm
for RL, we can obtain a more explicit non-degeneracy condition, by iden-
tifying all x′ ∈ X ′ with the corresponding element of X given by the
Riesz representation theorem such that X ′ is identified with X. Suppose
{p1, . . . , pn} is an orthonormal basis of Xn. Using A(n) as defined above, we

have supw∈Xn

|〈A′y,w〉|
‖w‖X

= supw∈Rn
|〈A(n)T y,w〉|
‖w‖2

=
∥∥A(n)T y

∥∥
2
. Furthermore,

if ∪Xn is dense in X,
∥∥A(n)T y

∥∥2

2
=
∑n

j=1

(
〈
∑L

i=1 aiyi, pj〉
)2

converges to∥∥AT y
∥∥2

X
=
∥∥∥∑L

i=1 aiyi

∥∥∥2

X
= λmin(AAT ) when n tends to infinity. Operator

AAT : RL → RL is positive semidefinite and corresponds to a matrix with
components [AAT ]i,j = 〈ai, aj〉. It is therefore enough to assume it is nonsin-
gular or, equivalently, the linear independence of all ai in X ′ = X, to show
that there exists N such that for all n ≥ N , σn > 0.

We are now able to apply the Regularity Theorem to (Pn) and (Pn,ε).

Lemma 4. Assume that

1. there exists x̂ ∈ Xn such that Ax̂ = b and ‖x̂‖X < M ,
2. σn = min{y∈RL,‖y‖q′=1} ‖A′y‖X′,n > 0.

Then the optimal values of the problems (Pn) and (Pn,ε) satisfy for all ε > 0

P ∗n −
ε‖c‖X′

σn

(
1 + 2M

M−Rn

)
≤ P ∗n,ε ≤ P ∗n with Rn = minx∈Xn,Ax=b ‖x‖X .

4.3 Convergence result

In order to combine the two bounds we have obtained, we need to assume
that hypotheses of Lemmas 1 and 4 are satisfied for some values of n. In fact,

If there exists N1 such that RN1 < M then Rn < M for all n ≥ N1.
If there exists N2 such that σN2 > 0 then σn > 0 for all n ≥ N2.

Therefore, we have proved the following convergence result:

Theorem 3. Assume that

1. the infinite-dimensional problem (P) is solvable

 •
•
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2. there exists N1 and x̂ ∈ XN1 such that Ax̂ = b and ‖x̂‖X < M
3. there exists N2 such that σN2 > 0.

Then we have for all n ≥ N = max{N1, N2} that

P ∗ ≤ P ∗n ≤ P ∗ + 2En(xopt) ‖c‖X′

(
1 + (PL

i=1‖ai‖q

X′)1/q

σn

(
1 + 2M

M−Rn

))
where xopt is an optimal solution of (P) and Rn = minx∈Xn,Ax=b ‖x‖X .

To summarize, we have obtained a convergence result for our polynomial
approximation scheme provided that En(xopt), the best approximation error
of the optimal solution of (P), converges to zero when n goes to infinity,
which is is a natural condition from the practical point of view. This holds for
example if the linear subspace span{p1, . . . , pn, . . .} = ∪nXn is dense in X.

5 Specific classes of infinite-dimensional problems

To conclude, we provide a few examples of specific functional spaces X and
comment on their solvability and the expected rate of convergence described
by Theorem 3.

X is the Lebesgue space Lq

These functional spaces are suitable for use in the supply problems consid-
ered in Section 2. Let Ω be a domain of RN and 1 ≤ q ≤ ∞. Let X be
the Lebesgue space Lq(Ω) = {u ∈ M(Ω) :

∫
Ω
|u(t)|q dt < +∞} with norm

‖u‖X = ‖u‖q =
(∫

Ω
|u(t)|q dt

)1/q in the case 1 ≤ q <∞, and ‖u‖X = ‖u‖∞ =
ess supt∈Ω |u(t)| when q = ∞. We take as linear and continuous functionals
c : Lq(Ω) → R, u →

∫
Ω
u(t)γ(t)dt and ai : Lq(Ω) → R, u →

∫
Ω
u(t)αi(t)dt

where γ and αi ∈ Lq′
(Ω) for all i = 1, . . . , L.

Concerning the solvability of this problem, note that Lq(Ω) is reflexive for
all 1 < q < ∞ and that L∞(Ω) = (L1(Ω))′ where L1(Ω) is separable ([1]).
Therefore, we can conclude that the infinite-dimensional problem has at least
one optimal solution for all 1 < q ≤ ∞. Similar results can be otained if we
consider the sequence space lq.

If Ω is a bounded interval [a, b] and Xn = span{1, t, . . . , tn−1}, we have
the following well-known results about the convergence of the best polynomial
approximation error of a function u ∈ X, see e.g. [11, 5]:

En(u)q → 0 iff u ∈ Lq([a, b]) for all 1 ≤ q <∞
En(u)∞ → 0 iff u ∈ C([a, b])
En(u)q = O( 1

nr ) if u ∈ Cr−1,r−1([a, b]) for all 1 < q ≤ ∞

where En(u)q = infv∈Xn ‖u− v‖q and Ck,r = {u ∈ Ck([a, b]) s.t u(r) is Lip-
schitz continuous } with r ≤ k.

Recall that these quantities, that describe the best approximation error of
the optimal solution of (P), have a direct influence on the convergence rate
of P ∗n to P ∗ (cf. Theorem 3).

•
•
•
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X is the Sobolev space W k,q

If we want to include derivatives of our variable in the constraints or in the
objective, we need to work in Sobolev spaces. Let Ω be a domain of RN ,
1 ≤ q ≤ ∞ and k ∈ N. For all multi-indices (β1, . . . , βN ) ∈ NN , we note
|β| =

∑N
i=1 βi and Dβu = ∂|β|u

∂t
β1
1 ...∂t

βN
N

in the weak sense. We choose for X the

Sobolev space W k,q(Ω) = {u ∈ M(Ω) : Dβu ∈ Lq(Ω) ∀0 ≤ |β| ≤ k} with

the norm ‖u‖X = ‖u‖k,q =
(∑

0≤|β|≤k

∥∥Dβu
∥∥q

q

)1/q

in the case 1 ≤ q < ∞
and ‖u‖k,∞ = max0≤|β|≤k

∥∥Dβu
∥∥
∞ when q = ∞. Our linear and continuous

functionals are c : W k,q(Ω) → R, u →
∑

0≤|β|≤k

∫
Ω
Dβu(t)γβ(t)dt and ai :

W k,q(Ω)→ R, u→
∑

0≤|β|≤k

∫
Ω
Dβu(t)αi,β(t)dt where γβ and αi,β ∈ Lq′

(Ω)
for all i = 1, . . . , L and for all 0 ≤ |β| ≤ k.

Since the space W k,q is reflexive for all k ∈ N and for all 1 < q < ∞ [1],
existence of an optimal solution to (P) is guaranteed. Furthermore, when Ω
is a bounded interval [a, b], it is well-known that the polynomials are dense in
the Sobolev space W k,q([a, b]) for all k ∈ N and for all 1 ≤ q <∞. Therefore,
Theorem 3 guarantees convergence of the polynomial approximation scheme
in this case.
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Summary. We present a new family of sums of squares (SOS) relaxations to cones
of positive polynomials. The SOS relaxations employed in the literature are cones
of polynomials which can be represented as ratios, with an SOS as numerator and a
fixed positive polynomial as denominator. We employ nonlinear transformations of
the arguments instead. A fixed cone of positive polynomials, considered as a subset
in an abstract coefficient space, corresponds to an infinite, partially ordered set of
concrete cones of positive polynomials of different degrees and in a different number
of variables. To each such concrete cone corresponds its own SOS cone, leading to a
hierarchy of increasingly tighter SOS relaxations for the abstract cone.

1 Introduction

Many optimization problems can be recast as conic programs over a cone
of positive polynomials on Rn. Cones of positive polynomials cannot be de-
scribed efficiently in general, and the corresponding conic programs are NP-
hard. Hence approximations have to be employed to obtain suboptimal solu-
tions. A standard approach is to approximate the cone of positive polynomials
from inside by the cone of sums of squares (SOS), i.e. the cone of those poly-
nomials which are representable as a sum of squares of polynomials of lower
degree. The SOS cone is semidefinite representable, and conic programs over
this cone can be cast as efficiently solvable semidefinite programs. This ap-
proximation is not exact, however, even for polynomials of degree 6 in two
variables [6], as the famous example of the Motzkin polynomial [1] shows.
Tighter approximations can be obtained when using the cone of polynomials
which can be represented as ratios, with the numerator being a sum of squares
of polynomials, and the denominator a fixed positive polynomial. Usually this
fixed polynomial is chosen to be

(∑n
k=1 x

2
k

)d for some integer d > 0 [2].
We propose another family of SOS based relaxations of cones of positive

polynomials. We consider the cone of positive polynomials not as a cone of
functions, but rather as a subset in an abstract coefficient space. The same
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abstract cone then corresponds to an infinite number of concrete cones of
positive polynomials of different degrees and in a different number of variables.
To each such concrete cone corresponds its own SOS cone, and these SOS
cones are in general different for different realizations of the abstract cone.
We present a computationally efficient criterion to compare the different SOS
cones and introduce a corresponding equivalence relation and a partial order
on the set of these SOS cones. This allows us to build hierarchies of increasingly
tighter semidefinite relaxations for the abstract cone, and thus also for the
original cone of positive polynomials. We show on the example of the cone of
positive polynomials containing the Motzkin polynomial that our hierarchy of
relaxations possesses the capability of being exact at a finite step.

The remainder of the contribution is structured as follows. In the next
section we define notation that will be used in the paper. In Sect. 3 we define
and analyze the considered cones of positive polynomials. In Sect. 4 we con-
sider sums of squares relaxations of these cones and study their properties. In
Sect. 5 we define the abstract cones of positive polynomials and their SOS re-
laxations and establish a hierarchical structure on the set of these relaxations.
Finally, we demonstrate the developed apparatus on the example of the cone
containing the Motzkin polynomial in Sect. 6.

2 Notation

For a finite set S, denote by #S the cardinality of S.
For a subset A of a real vector space V , denote by clA the closure, by

intA the interior, by affA the affine hull, by convA the convex hull, and by
con clA the set cl ∪α≥0 αA. If A is a convex polytope, denote by extrA the
set of its vertices.

Let S(m) denote the space of real symmetric matrices of size m×m, and
S+(m) ⊂ S(m) the cone of positive semidefinite (PSD) matrices. By In denote
the n× n identity matrix. Let π2 : Z → F2 be the ring homomorphism from
the integers onto the field F2 = ({0, 1},+, ·) (mapping even integers to 0 and
odd ones to 1), and πn

2 : Zn → Fn
2 the corresponding homomorphism of the

product rings, acting as πn
2 : (a1, . . . , an) 7→ (π2(a1), . . . , π2(an)). For an inte-

ger matrix M , let π2[M ] be the matrix obtained by element-wise application
of π2 to M . The corresponding F2-linear map will also be denoted by π2[M ].
For a linear map M , let ImM be the image of M in the target space.

Let A ⊂ Nn be an ordered finite set of multi-indices of length n, considered
as row vectors. Denote by ΓA = {

∑
α∈A aαα | aα ∈ Z ∀ α ∈ A} ⊂ Zn the

lattice generated by A in aff A, and let Γ e
A ⊂ ΓA be the sublattice of even

points. For x = (x1, . . . , xn)T ∈ Rn, denote by XA(x) the corresponding
vector of monomials (xα)α∈A, and define the set XA = {XA(x) |x ∈ Rn}. By
LA we denote the real vector space of polynomials p(x) =

∑
α∈A cαx

α. There
exists a canonical isomorphism IA : LA → R#A, which maps a polynomial
p ∈ LA to its coefficient vector IA(p) = (cα(p))α∈A.
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3 Cones of positive polynomials

Let A ⊂ Nn be an ordered finite set of multi-indices. We call a polynomial
p ∈ LA positive if p(x) = 〈IA(p), XA(x)〉 ≥ 0 for all x ∈ Rn. The positive
polynomials form a closed convex cone PA. This cone cannot contain a line,
otherwise the monomials xα, α ∈ A, would be linearly dependent.

Let p ∈ LA be a polynomial. The convex hull of all indices α ∈ A such that
cα(p) 6= 0, viewed as vectors in Rn, forms a convex polytope. This polytope
is called the Newton polytope of p and is denoted by N(p). The convex hull of
the whole multi-index set A, viewed as a subset of the integer lattice in Rn,
will be called the Newton polytope associated with the linear space LA and
denoted by NA. Obviously we have the relation NA = ∪p∈LAN(p). Newton
polytopes of polynomials in p ∈ LA have the following property.

Lemma 1. [4, p.365] Assume above notation and let p ∈ PA. If α ∈ A is an
extremal point of N(p), then α is even and cα(p) > 0.

Without restriction of generality we henceforth assume that

all indices in extrNA have even entries, (1)

otherwise the cone PA is contained in a proper subspace of LA.

Lemma 2. Under assumption (1), the cone PA has nonempty interior.

Proof. Let us show that the polynomial p(x) =
∑

α∈extrNA
xα is an interior

point of PA.
Since the logarithm is a concave function, we have for every integer N > 0,

every set of reals λ1, . . . , λN ≥ 0 such that
∑N

k=1 λk = 1, and every set of
reals a1, . . . , aN > 0 that log

∑N
k=1 λkak ≥

∑N
k=1 λk log ak. It follows that

log
∑N

k=1 ak ≥
∑N

k=1 λk log ak and therefore
∑N

k=1 ak ≥
∏N

k=1 a
λk

k .
Let now α1, . . . , αN be the extremal points ofNA, and let α =

∑N
k=1 λkα

k ∈
A be an arbitrary index, represented as a convex combination of the extremal
points. By the above, we then have for every x ∈ Rn satisfying Πn

l=1xl 6= 0
that

∑N
k=1 x

αk ≥
∏N

k=1(x
αk

)λk = |x|α = |xα|. By continuity this holds also
for x such that Πn

l=1xl = 0. Thus the polynomial p(x) + q(x) is positive, as
long as the 1-norm of the coefficient vector IA(q) does not exceed 1.

It follows that both the cone PA and its dual are regular cones, i.e. closed
convex cones with nonempty interior, containing no lines.

Lemma 3. Under assumption (1), (IA[PA])∗ = conv(con clXA).

Proof. Clearly p ∈ PA if and only if for all y ∈ con clXA we have 〈IA(p), y〉 ≥
0. Hence IA[PA] is the dual cone of the convex hull conv(con clXA).

It rests to show that this convex hull is closed. Let z be a vector in the
interior of the cone IA[PA]. Such a vector exists by the preceding lemma. Then
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the set C = {y ∈ con clXA | 〈y, z〉 = 1} is compact, and hence its convex hull
convC is closed. But conv(con clXA) is the conic hull of convC, and therefore
also closed. Thus (IA[PA])∗ = (conv(con clXA))∗∗ = conv(con clXA).

We shall now analyze the set con clXA, which is, as can be seen from the
previous lemma, determining the cone PA.

For every ordered index set A with elements α1, . . . , αm ∈ Nn, where each
multi-index is represented by a row vector αk = (αk

1 , . . . , α
k
n), define the m×n

matrix MA = (αk
l )k=1,...,m;l=1,...,n. Further define αk

0 = 1, k = 1, . . . ,m and
the m× (n+ 1) matrix M ′A = (αk

l )k=1,...,m;l=0,...,n.

Lemma 4. Assume above notation. Then

con clXA = cl{(−1)δ ◦ exp(y) | δ ∈ Imπ2[MA], y ∈ ImM ′A},

where both (−1)δ and exp(y) are understood element-wise, and ◦ denotes the
Hadamard product of vectors.

Proof. The space Rn is composed of 2n orthants Oγ , which can be indexed
by the vectors in Fn

2 . Here the index γ = (γ1, . . . , γn)T of the orthant Oγ

is defined such that sgnx = (−1)γ for all x ∈ intOγ , where both sgnx and
(−1)γ have to be understood element-wise. In a similar way, the 2m orthants
of Rm are indexed by the elements of Fm

2 .
We shall now compute the set Tγ = {βXA(x) |β > 0, x ∈ intOγ} ⊂ Rm.
First observe that the signs of the components of βXA(x) do not depend

on β and on x ∈ intOγ . Namely, the k-th component equals β
∏n

l=1 x
αk

l

l , and
its sign is (−1)δk , where δk =

∑n
l=1 π2(αk

l )γl. Therefore, Tγ is contained in
the interior of the orthant Oδ, where δ = (δ1, . . . , δm)T = π2[MA](γ) ∈ Fm

2 .
Thus, if γ runs through Fn

2 , then the indices of the orthants containing Tγ

run through Imπ2[MA].
Consider the absolute values of the components of βXA(x). The logarithm

of the modulus of the k-th component is given by log β +
∑n

l=1 α
k
l log |xl|.

Now the vector (log β, log |x1|, . . . , log |xn|)T runs through Rn+1 if (β, x) runs
through intR+ × intOγ , and therefore the element-wise logarithm of the ab-
solute values of βXA(x) runs through ImMA, independently of γ.

We have proven the relation

{βXA(x) |β > 0,
n∏

l=1

xl 6= 0} = {(−1)δ ◦ ey | δ ∈ Imπ2[MA], y ∈ ImM ′A}

(2)
It rests to show that the closure of the left-hand side equals con clXA. Clearly
this closure is contained in con clXA. The converse inclusion follows from the
continuity of the map (β, x) 7→ βXA(x) on R×Rn and the fact that the set
{(β, x) |β > 0,

∏n
l=1 xl 6= 0} is dense in R+ ×Rn. This concludes the proof.

The description of con clXA given by Lemma 4 allows us to relate these
sets for different index sets A.
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Theorem 1. Assume above notation. Let A = {α1, . . . , αm} ⊂ Nn, A′ =
{α′1, . . . , α′m} ⊂ Nn′

be nonempty ordered multi-index sets satisfying as-
sumption (1). Then the following are equivalent.

1) con clXA = con clXA′ ,
2) ImM ′A = ImM ′A′ and Imπ2[MA] = Imπ2[MA′ ],
3) the order isomorphism IA : A → A′ can be extended to a bijective,

affine map R : aff A → aff A′, and there exists a bijective linear map Z :
span(πn

2 [A])→ span(πn′

2 [A′]) such that (Z◦πn
2 )(αk) = πn′

2 (α′k), k = 1, . . . ,m,
4) the order isomorphism IA : A → A′ can be extended to a lattice iso-

morphism IΓ : ΓA → ΓA′ , and IΓ [Γ e
A] = Γ e

A′ .
Moreover, the following is a consequence of 1) — 4).
5) IA[PA] = IA′ [PA′ ].

Proof. 1) ⇔ 2): Denote set (2) by S(A). This set is contained in ∪δ∈Fm
2
Oδ

and is closed in its relative topology. Hence S(A) = (clS(A)) ∩
(
∪δ∈Fm

2
Oδ

)
.

Therefore, if condition 2) is not satisfied, then S(A) 6= S(A′), and hence
clS(A) 6= clS(A′), which implies by Lemma 4 that condition 1) is not satis-
fied. On the other hand, if condition 2) is satisfied, then S(A) = S(A′), and
again by Lemma 4 condition 1) is satisfied.

2) ⇔ 3): The first relation in condition 2) is equivalent to the coinci-
dence of the kernels of M ′TA and M ′

T
A′ . But these kernels define exactly all

affine dependencies between the elements of A and A′, respectively. Therefore
kerM ′TA =kerM ′TA′ if and only if there exists an isomorphism R between the
affine spaces aff A and aff A′ that takes αk to α′k, k = 1, . . . ,m. The equiva-
lence of the second relation in condition 2) and the existence of the map Z is
proven similarly.

3) ⇔ 4): Clearly the map R in 3) defines the sought lattice isomorphism
IΓ : ΓA → ΓA′ . On the other hand, the existence of IΓ implies that kerM ′TA∩
Zm = kerM ′TA′ ∩ Zm. For the kernel of an integer matrix, however, one can
always find an integer basis. Therefore it follows that kerM ′TA = kerM ′TA′ ,
and IΓ can be extended to an affine isomorphism R : aff A → aff A′. We have
shown equivalence of the first conditions in 3) and 4).

Note that πn
2 maps the lattice ΓA to aff(πn

2 [A]), and likewise, πn′

2 maps
ΓA′ to aff(πn′

2 [A′]). Since both A,A′ satisfy (1), these sets contain at least
one even point. Hence the images πn

2 [A], πn′

2 [A′] contain the origin, and the
affine spans of these images are actually linear spans. Let us now assume that
IΓ exists and consider the diagram

ΓA
IΓ−→ ΓA′

πn
2 ↓ πn′

2 ↓
span(πn

2 [A]) Z−→ span(πn′

2 [A′])

If there exists a linear map Z as in 3), then it makes the diagram commute.
The relation IΓ [Γ e

A] = Γ e
A′ now follows from the fact that Z maps the origin
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to the origin. On the other hand, let IΓ [Γ e
A] = Γ e

A′ . Since Γ e
A 6= ∅, we have

that IΓ takes pairs of points with even difference to pairs of points with even
difference. This implies that there exists a well-defined map Z which makes
the diagram commute. Moreover, Z takes the origin to the origin. Since IΓ is
affine, Z must also be affine and hence linear. Finally, repeating the argument
with I−1

Γ instead of IΓ , we see that Z must be invertible.
Finally, the implication 1) ⇒ 5) is a direct consequence of Lemma 3.

4 Sums of squares relaxations

Let A = {α1, . . . , αm} ⊂ Nn be an ordered multi-index set satisfying (1). A
polynomial p ∈ LA is certainly positive if it can be represented as a finite sum
of squares of other polynomials. The set of polynomials representable in this
way forms a closed convex cone [5], the sums of squares cone

ΣA =

{
p ∈ LA | ∃ N, q1, . . . , qN : p =

N∑
k=1

q2k

}
⊂ PA. (3)

The SOS cone is semidefinite representable, and therefore a semidefinite re-
laxation of the cone PA. We will henceforth call the cone ΣA the standard
SOS cone, or the standard SOS relaxation. In general we have ΣA 6= PA, and
we will see in Subsection 4.1 that we might even have dim ΣA 6= dim PA.

We shall now generalize the notion of the SOS cone ΣA. Let F =
{β1, . . . , βm′} ⊂ Nn be an ordered multi-index set. We then define the set

ΣF,A =

{
p ∈ LA | ∃ N, q1, . . . , qN ∈ LF : p =

N∑
k=1

q2k

}
,

=
{
p ∈ LA | ∃ C = CT � 0 : p(x) = XT

F (x)CXF (x)
}
, (4)

which is also a semidefinite representable closed convex cone. Obviously we
have the inclusion ΣF,A ⊂ ΣA. The next result shows that the standard SOS
cone ΣA is actually an element of the family {ΣF,A}F⊂Nn of cones.

Lemma 5. [4, p.365] If the polynomial p(x) =
∑N

k=1 q
2
k(x) is a sum of

squares, then for every polynomial qk participating in the SOS decomposition
of p we have 2N(qk) ⊂ N(p).

It follows that for every p(x) =
∑N

k=1 qk(x)2 ∈ ΣA, the nonzero coefficients
of every polynomial qk have multi-indices lying in the polytope 1

2NA. Thus
ΣA = ΣFmax(A),A, where Fmax(A) = ( 1

2NA)∩Nn. We get the following result.

Proposition 1. Assume above notation. Then for every finite multi-index set
F ⊂ Nn such that Fmax(A) ⊂ F we have ΣF,A = ΣA.



Abstract cones of positive polynomials 47

In general, the smaller F , the weaker will be the relaxation ΣF,A. It does
not make sense, however, to choose F larger than Fmax(A). Let us define the
following partial order on the relaxations ΣF,A.

Definition 1. Assume above notation and let the multi-index sets F1,F2 be
subsets of Fmax(A). If F1 ⊂ F2, then we say that the relaxation ΣF1,A of the
cone PA is coarser than ΣF2,A, or ΣF2,A is finer than ΣF1,A.

A finer relaxation is tighter, but a strictly finer relaxation does not a priori
need to be strictly tighter. The standard SOS relaxation ΣA is then the finest
relaxation among all relaxations of type (4).

We can make the semidefinite representation of ΣF,A explicit by com-
paring the coefficients in the relation p(x) = XT

F (x)CXF (x) appearing in
definition (4). As it stands, this relation determines the polynomial p(x) as
a function of the symmetric matrix C, thus defining a linear map LF,A :
S(m′)→ L(F+F)∪A by

cα(p) =
∑

k,k′: βk+βk′=α

Ckk′ , α ∈ (F + F) ∪ A.

Thus we obtain the description

ΣF,A = LA ∩ LF,A[S+(m′)], (5)

revealing ΣF,A as a linear section of a linear image of the PSD cone S+(m′).
Note that the linear map LF,A is completely determined by the map sF,A :

F × F → (F + F) ∪ A defined by sF,A(βk, βk′
) = βk +βk′

. Denote by inclA :
A → (F + F) ∪ A the inclusion map. We then have the following result.

Theorem 2. Let F = {β1, . . . , βm′},A = {α1, . . . , αm} ⊂ Nn, F ′ =
{β′1, . . . , β′m

′
},A′ = {α′1, . . . , α′m} ⊂ Nn′

, be ordered multi-index sets satis-
fying F ⊂ Fmax(A), F ′ ⊂ Fmax(A′), and let IF : F → F ′, IA : A → A′ be the
order isomorphisms. Suppose that there exists a bijective map I that makes
the following diagram commutative:

F × F sF,A−→ (F + F) ∪ A inclA←− A
IF×IF ↓ I ↓ IA ↓
F ′ ×F ′

sF′,A′
−→ (F ′ + F ′) ∪ A′ inclA′←− A′

Then IA[ΣF,A] = IA′ [ΣF ′,A′ ].

4.1 Dimensional considerations

From (5) it follows that the cone ΣF,A is always contained in the linear
subspace L(F+F)∩A ⊂ LA and thus is better viewed as a relaxation of the
cone P(F+F)∩A rather than of PA itself. In view of Lemma 2 a necessary
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condition for the cone ΣF,A to have the same dimension as PA is thus the
inclusion A ⊂ F + F .

A natural question is now whether this inclusion is always satisfied by
the multi-index set F := Fmax(A) = (1

2NA) ∩ Nn, which gives rise to the
standard SOS coneΣA. The answer to this question is negative, as the example
A = {(2, 0, 0), (0, 2, 0), (2, 2, 0), (0, 0, 4), (1, 1, 1)} taken from [4, p.373] shows.

It is, however, not hard to show that if A is contained in a 2-dimensional
affine plane, then A ⊂ Fmax(A) + Fmax(A).

5 Hierarchies of relaxations

In this section we construct hierarchies of semidefinite relaxations of the cone
of positive polynomials which are tighter than the standard SOS relaxation.

Conditions 2) — 4) of Theorem 1 define an easily verifiable equivalence
relation ∼P on the class of finite ordered multi-index sets satisfying (1). By
Theorem 1, we have for any two equivalent multi-index sets A ∼P A′ that
IA[PA] = IA′ [PA′ ]. It is therefore meaningful to define the abstract cone

P[A] = IA[PA] = {IA(p) | p ∈ PA} ⊂ Rm,

where [A] is the equivalence class of A with respect to the relation ∼P . The
points of this cone cannot anymore be considered as polynomials on Rn. A
cone of positive inhomogeneous polynomials on Rn, e.g., corresponds to the
same abstract cone as the cone of their homogenizations, which are defined
on Rn+1. For every concrete choice of a representative A′ ∈ [A], however, the
map I−1

A′ puts them in correspondence with positive polynomials in PA′ .
Similarly, the existence of the bijective map I in Theorem 2 defines an

easily verifiable equivalence relation ∼Σ on the class of pairs (F ,A) of ordered
finite multi-index sets satisfying F ⊂ Fmax(A). By Theorem 2, for any two
equivalent pairs (F ,A) ∼Σ (F ′,A′) we have IA[ΣF,A] = IA′ [ΣF ′,A′ ]. We
can then define the abstract cone Σ[(F,A)] = IA[ΣF,A] ⊂ Rm, where [(F ,A)]
is the equivalence class of the pair (F ,A) with respect to the relation ∼Σ .
For every concrete choice of a representative (F ′,A′) ∈ [(F ,A)] the map I−1

A′

takes the abstract cone Σ[(F,A)] to the cone ΣF ′,A′ of SOS polynomials.
For different, but equivalent, multi-index sets A ∼P A′ the standard SOS

relaxations ΣA, ΣA′ defined by (3) will in general not be equivalent. It is
therefore meaningless to speak of a standard SOS relaxation of the cone P[A′].
For every representative A ∈ [A′] we have, however, a finite hierarchy of SOS
relaxations ΣF,A defined by (4). This allows us to define SOS relaxations of
the abstract cone P[A′].

Definition 2. Let C be an equivalence class of finite ordered multi-index sets
with respect to the equivalence relation ∼P , and PC the corresponding abstract
cone of positive polynomials. For every pair (F ,A) of finite ordered multi-
index sets such that A ∈ C and F ⊂ Fmax(A), we call the abstract cone
Σ[(F,A)] an SOS relaxation of PC .
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Clearly the SOS relaxations of the cone PC are inner semidefinite relax-
ations. The set of SOS relaxations inherits the partial order defined in Defi-
nition 1.

Definition 3. Let C be an equivalence class of finite ordered multi-index sets
with respect to the equivalence relation ∼P , and let ΣC1 , ΣC2 be SOS relax-
ations of the cone PC , where C1, C2 are equivalence classes of the relation ∼Σ.
If there exist multi-index sets F1,F2,A such that (F1,A) ∈ C1, (F2,A) ∈ C2,
and F1 ⊂ F2, then we say that the relaxation ΣC1 is coarser than ΣC2 , or
ΣC2 is finer than ΣC1 .

It is not hard to see that the relation defined in Definition 3 is indeed a
partial order. A finer relaxation is tighter, but a strictly finer relaxation does
not a priori need to be strictly tighter. Note that we do not require A ∈ C.
This implies that if, e.g., both ΣC1 , ΣC2 are SOS relaxations for two different
abstract cones PC ,PC′ , and ΣC2 is a finer relaxation of PC than ΣC1 , then
ΣC2 is also a finer relaxation of PC′ than ΣC1 .

Theorem 3. Let F ,A ⊂ Nn be finite ordered multi-index sets satisfying F ⊂
Fmax(A), and suppose that A satisfies (1). Let further M be an n× n integer
matrix with odd determinant, and let v ∈ Zn be an arbitrary integer row
vector. Let now F ′ be the multi-index set obtained from F by application of
the affine map R′ : β 7→ βM+v, and A′ the set obtained from A by application
of the affine map R : α 7→ αM + 2v. Then A ∼P A′, provided the elements of
A′ have nonnegative entries, and (F ,A) ∼Σ (F ′,A′), provided the elements
of F ′,A′ have nonnegative entries.

Proof. Assume the conditions of the theorem. Then we have NA′ = R[NA],
and therefore 1

2NA′ = R′[12NA]. It follows that F ′ ⊂ Fmax(A′).
Since det M 6= 0, the map R is invertible. Further, the matrix π2[M ]

defines an invertible linear map Z on Fn
2 , because det π2[M ] = π2(det M) =

1. Moreover, the projection πn
2 intertwines the maps R and Z, because the

translational part of R is even. It is then easily seen that the restrictions
R|aff A : aff A → aff A′ and Z|span(πn

2 [A]) : span(πn
2 [A])→ span(πn

2 [A′]) satisfy
condition 3) of Theorem 1. This proves the relation A ∼P A′.

Likewise, the restriction I = R|(F+F)∪A makes the diagram in Theorem 2
commute, which proves the relation (F ,A) ∼Σ (F ′,A′).

We will use this result to construct strictly finer relaxations from a given
standard SOS relaxation.

If the determinant of the matrix M in Theorem 3 equals ±1, then the
maps R′, R define isomorphisms of Zn. Then #Fmax(A) = #Fmax(A′), and
the standard relaxations ΣA, ΣA′ are equivalent. If, however, |det M | > 1,
then #Fmax(A′) might be strictly bigger than #Fmax(A), and then IA′ [ΣA′ ]
will be strictly finer than IA[ΣA]. In particular, this happens if #A > 1 and
the sets F ′,A′ are obtained from F ,A by multiplying every multi-index with a
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fixed odd natural number k > 1. Thus, unlike the hierarchy of relaxations (4),
for abstract cones PC of dimension m > 1 the hierarchy of SOS relaxations is
infinite, and the corresponding partial order does not have a finest element.

6 Example

Consider the inhomogeneous Motzkin polynomial pM (x, y) = x4y2 + x2y4 +
1− 3x2y2 ∈ PA with A = {(4, 2), (2, 4), (0, 0), (2, 2)}. Its Newton polytope is
the triangle given by N(pM ) = NA = conv{(4, 2), (2, 4), (0, 0)}, and therefore
Fmax(A) = {(2, 1), (1, 2), (0, 0), (1, 1)}. It is easily checked that the standard
SOS cone ΣA obtained from (4) by setting F = Fmax(A) consists of those
polynomials in LA all whose coefficients are nonnegative. The corresponding
abstract SOS cone is therefore given by Σ[(F,A)] = R4

+.
Using Lemma 4, it is a little exercise to show con clXA = {(y1, y2, y3, y4)T ∈

R4
+ | y4 = 3

√
y1y2y3}. By Lemma 3 we then easily obtain P[A] = {c =

(c1, c2, c3, c4)T | c1, c2, c3 ≥ 0, c4 ≥ −3 3
√
c1c2c3}. Let us now apply the con-

struction provided in Theorem 3, setting M =
(

2 −1
−1 2

)
and v = 0.

Then F is mapped to F ′ = {(3, 0), (0, 3), (0, 0), (1, 1)}, and A to A′ =
{(6, 0), (0, 6), (0, 0), (2, 2)}. By Theorem 3 we then haveA ∼P A′ and (F ,A) ∼Σ

(F ′,A′). The set F ′′ = Fmax(A′), however, is now composed of 10 points and
is hence strictly larger than F ′. Therefore the relaxation Σ[(F ′′,A′)] of the cone
P[A] is strictly finer than Σ[(F,A)]. Moreover, with e3 = (1, 1, 1)T , v(x, y) =
( 3
√
c1x

2, 3
√
c2y

2, 3
√
c3)T every polynomial pc(x, y) = c1x

6 +c2y6 +c3 +c4x2y2 ∈
PA′ , i.e. satisfying c1, c2, c3 ≥ 0 and c4 ≥ −3 3

√
c1c2c3, can be written as

pc(x, y) = eT v(x, y) · v(x, y)T 3I3 − eeT

2
v(x, y) + (c4 + 3 3

√
c1c2c3)x2y2,

which obviously is a sum of squares. Thus the relaxation Σ[(F ′′,A′)] is exact.
From the proof of [3, Theorem 1] it follows that there does not exist a fixed

integer d > 0 such that with h(x) =
(∑n

k=1 x
2
k

)d the product hp is a sum of
squares for every polynomial p ∈ PA. Thus this commonly used hierarchy of
SOS relaxations is not capable of representing the cone P[A] at any finite step.
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Summary. We consider the problem of minimizing the sum of convex functions
over a network when each component function is known (with stochastic errors) to
a specific network agent. We discuss a gossip based algorithm of [2], and we analyze
its error bounds for a constant stepsize that is uncoordinated across the agents.

1 Introduction

The gossip optimization algorithm proposed in [2] minimizes a sum of func-
tions when each component function is known (with stochastic errors) to a spe-
cific network agent. The algorithm is reliant on the gossip-consensus scheme
of [1], which serves as a main mechanism for the decentralization of the over-
all network optimization problem. The gossip-based optimization algorithm
is distributed and totally asynchronous since there is no central coordinator
and the agents do not have a common notion of time. Furthermore, the algo-
rithm is completely local since each agent knows only its neighbors, and relies
on its own local information and some limited information received from its
neighbors. Agents have no information about the global network.

In [2], the convergence properties of the algorithm with a (random) di-
minishing uncoordinated stepsize was studied. In this paper we study the
properties of the algorithm when the agents use deterministic uncoordinated
constant stepsizes. Our primary interest is in establishing the limiting error
bounds for the method. We provide such error bounds for strongly convex
functions and for general convex functions (through the use of the running
averages of the iterates). The bounds are given explicitly in terms of the prob-
lem data, the network connectivity parameters and the agent stepsize values.
The bounds scale linearly in the number of agents.
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2 Problem, algorithm and assumptions

Throughout this paper, we use ‖x‖ to denote the Euclidean norm of a vector
x. We write 1 to denote the vector with all entries equal to 1. The matrix norm
‖M‖ of a matrix M is the norm induced by the Euclidean vector norm. We use
xT andMT to denote the transpose of a vector x and a matrixM , respectively.
We write [x]i to denote the i-th component of a vector x. Similarly, we write
[M ]i,j or Mi,j to indicate the (i, j)-th component of a matrix M . We write
|S| to denote the cardinality of a set S with finitely many elements.

Consider a network of m agents that are indexed by 1, . . . ,m, and let V =
{1, . . . ,m}. The agents communicate over a network with a static topology
represented by an undirected graph (V,E ), where E is the set of undirected
links {i, j} with i 6= j and {i, j} ∈ E only if agents i and j can communicate.

We are interested in solving the following problem over the network:

minimize f(x) ,
m∑

i=1

fi(x)

subject to x ∈ X, (1)

where each fi is a function defined over the set X ⊆ Rn. The problem (1)
is to be solved under the following restrictions on the network information.
Each agent i knows only its own objective function fi and it can compute
the (sub)gradients ∇fi with stochastic errors. Furthermore, each agent can
communicate and exchange some information with its local neighbors only.

To solve problem (1), we consider an algorithm that is based on the gossip
consensus model in [1]. Let N(i) be the set of all neighbors of agent i, i.e.,
N(i) = {j ∈ V | {i, j} ∈ E }. Each agent has its local clock that ticks at a
Poisson rate of 1 independently of the clocks of the other agents. At each tick
of its clock, agent i communicates with a randomly selected neighbor j ∈ N(i)
with probability Pij > 0, where Pij = 0 for j 6∈ N(i). Then, agent i and the
selected neighbor j exchange their current estimates of the optimal solution,
and each of these agents performs an update using the received estimate and
the erroneous (sub)gradient direction of its objective function.

Consider a single virtual clock that ticks whenever any of the local Poisson
clocks tick. Let Zk be the time of the k-th tick of the virtual Poisson clock,
and let the time be discretized according to the intervals [Zk−1, Zk), k ≥ 1.
Let Ik denote the index of the agent that wakes up at time k, and let Jk

denote the index of a neighbor that is selected for communication. Let xi,k

denote the iterate of agent i at time k. The iterates are generated according
to the following rule. Agents other than Ik and Jk do not update:

xi,k = xi,k−1 for i 6∈ {Ik, Jk}. (2)

Agents Ik and Jk average their current iterate and update independently using
subgradient steps as follows:
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vi,k = (xIk,k−1 + xJk,k−1) /2,
xi,k = PX [vi,k − αi(∇fi(vi,k) + εi,k)], (3)

where PX denotes the Euclidean projection on the set X, ∇fi(x) is a sub-
gradient of fi at x, αi is a positive stepsize, and εi,k is stochastic error in
computing ∇fi(vi,k). The updates are initialized with random vectors xi,0,
i ∈ V , which are assumed to be mutually independent and also independent
of all the other random variables in the process.

The key difference between the work in [2] and this paper is in the step-
size. The work in [2] considers a diminishing (random) stepsize αi,k, which
is defined in terms of the frequency of agent i updates. In contrast, in this
paper, we consider the method with a deterministic constant stepsize αi > 0
for all i. As the stepsizes across agents need not to be the same, the algorithm
does not require any coordination among the agents.

We next discuss our assumptions.

Assumption 1 The underlying communication graph (V,E ) is connected.

Assumption 1 ensures that, through the gossip strategy, the information of
each agent reaches every other agent frequently enough. However, to ensure
that the common vector solves problem (1), some additional assumptions are
needed for the set X and the functions fi. We use the following.

Assumption 2 The set X ⊆ Rn is compact and convex. Each function fi is
defined and convex over an open set containing the set X.

Differentiability of the functions fi is not assumed. At points where the gra-
dient does not exist, we use a subgradient. Under the compactness of X, the
subgradients are uniformly bounded over X, i.e., for some C > 0 we have

sup
x∈X
‖∇fi(x)‖ ≤ C for all i ∈ V .

Furthermore, the following approximate subgradient relation holds:

∇fi(v)T (v−x) ≥ fi(y)−fi(x)−C‖v−y‖ for any x, y, v ∈ X and i ∈ V . (4)

We now discuss the random errors εi,k in computing the subgradients
∇fi(x)T at points x = vi,k. Let Fk be the σ-algebra generated by the entire
history of the algorithm up to time k inclusively, i.e.,

Fk = {xi,0, i ∈ V } ∪ {I`, J`, εI`,`, εJ`,`; 1 ≤ ` ≤ k} for all k ≥ 1,

where F0 = {xi,0, i ∈ V }. We use the following assumption on the errors.

Assumption 3 With probability 1, for all i ∈ {Ik, Jk} and k ≥ 1, the errors
satisfy E [εi,k | Fk−1, Ik, Jk] = 0 and E

[
‖εi,k‖2 | Fk−1, Ik, Jk

]
≤ ν2 for some ν.

When X and each fi are convex, every vector vi,k is a convex combination
of xj,k ∈ X (see Eq. (3)), implying that vi,k ∈ X. In view of subgradient
boundedness and Assumption 3, it follows that for k ≥ 1,

E
[
‖∇fT

i (vi,k) + εi,k‖2 | Fk−1, Ik, Jk

]
≤ (C + ν)2 for i ∈ {Ik, Jk}. (5)



54 S.S. Ram, A. Nedić, and V.V. Veeravalli

3 Preliminaries

We provide an alternative description of the algorithm, and study the prop-
erties of the agent’s disagreements. Define the matrix Wk as follows:

Wk = I − 1
2
(eIk
− eJk

)(eIk
− eJk

)T for all k, (6)

where ei ∈ Rm has its i-th entry equal to 1, and the other entries equal to 0.
Using Wk, we can write method (2)–(3) as follows: for all k ≥ 1 and i ∈ V ,

xi,k = vi,k + pi,kχ{i∈{Ik,Jk}},

vi,k =
m∑

j=1

[Wk]ij xj,k−1, (7)

pi,k = PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k,

where χC is the characteristic function of an event C . The matrices Wk are
symmetric and stochastic, implying that each E [Wk] is doubly stochastic.
Thus, by the definition of the method in (7), we can see that

m∑
i=1

E
[
‖vi,k − x‖2 | Fk−1

]
≤

m∑
j=1

‖xj,k−1 − x‖2 for all x ∈ Rn and k, (8)

m∑
i=1

E [‖vi,k − x‖ | Fk−1] ≤
m∑

j=1

‖xj,k−1 − x‖ for all x ∈ Rn and k. (9)

In our analysis, we use the fact that W 2
k = Wk, (Wk − 1

m11T )2 = Wk −
1
m11T and that the norm of the matrices E[Wk]− 1

m11T is equal to the second
largest eigenvalue of E[Wk]. We let λ denote the square of this eigenvalue, i.e.,
λ = ‖E[Wk]− 1

m11T ‖2. We have the following lemma.

Lemma 1. Let Assumption 1 hold. Then, we have λ < 1.

We next provide an estimate for the disagreement among the agents.

Lemma 2. Let Assumptions 1–3 hold4, and let {xi,k}, i = 1, . . . ,m, be the
iterate sequences generated by algorithm (7). Then, we have for all i,

lim sup
k→∞

m∑
i=1

E [‖xi,k − ȳk‖] ≤
√

2mᾱ

1−
√
λ

(C + ν),

where ȳk = 1
m

∑m
j=1 xj,k for all k, and ᾱ = max1≤j≤m αj .

4 Here, we only need the error boundedness from Assumption 3.
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Proof. We will consider coordinate-wise relations by defining the vector z`
k ∈

Rm, for each ` ∈ {1, . . . , n}, as the vector with entries [xi,k]`, i = 1, . . . ,m.
From the definition of the method in (7), we have

z`
k = Wk z

`
k−1 + ζ`

k for k ≥ 1, (10)

where ζ`
k ∈ Rm is a vector with coordinates [ζ`

k]i given by

[ζ`
k]i =

{
[PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]` if i ∈ {Ik, Jk},
0 otherwise. (11)

Furthermore, note that [ȳk]` is the average of the entries of the vector z`
k, i.e.,

[ȳk]` =
1
m

1T z`
k for all k ≥ 0. (12)

By Eqs. (10) and (12), we have [ȳk]` = 1
m

(
1TWkz

`
k−1 + 1T ζ`

k

)
, implying

z`
k − 1[ȳk]` = Wkz

`
k−1 + ζ`

k −
1
m

11T (Wkz
`
k−1 + ζ`

k)

=
(
Wk −

1
m

11T

)
z`
k−1 +

(
I − 1

m
11T

)
ζ`
k,

where I denotes the identity matrix, and the last equality follow by the
doubly stochasticity of Wk, i.e., 1TWk = 1T . Since the matrices Wk are
stochastic, i.e., Wk1 = 1, it follows

(
Wk − 1

m 11T
)
1 = 0, implying that(

Wk − 1
m 11T

)
[ȳk−1]`1 = 0. Hence,

z`
k − [ȳk]`1 = Dk(z`

k−1 − [ȳk−1]`1) +Mζ`
k for all k ≥ 1,

where Dk = Wk− 1
m 11T and M = I− 1

m 11T . Thus, we have for ` = 1, . . . , n
and all k ≥ 1,

‖z`
k−[ȳk]`1‖2 ≤ ‖Dk(z`

k−1−[ȳk−1]`1)‖2+‖Mζ`
k‖2+2‖Dk(z`

k−1−[ȳk−1]`1)‖ ‖Mζ`
k‖.

By summing these relations over ` = 1, . . . , n, and then taking the expectation
and using Hölder’s inequality we obtain for all k ≥ 1,

n
X

`=1

E
h

‖z`
k − [ȳk]`1‖2

i

≤

0

@

v

u

u

t

n
X

`=1

E
ˆ

‖Dk(z`
k−1 − [ȳk−1]`1)‖2

˜

+

v

u

u

t

n
X

`=1

E
ˆ

‖Mζ`
k‖2
˜

1

A

2

.(13)

Using the fact the matrix Wk is independent of the past Fk−1, we have

n∑
`=1

E
[∥∥Dk(z`

k−1 − [ȳk−1]`1)
∥∥2 | Fk−1

]
≤ λ

n∑
`=1

‖z`
k−1 − [ȳk−1]`1‖2, (14)

where λ = ‖E[DT
k Dk]‖2 = ‖E[Dk]‖2, and λ < 1 from Lemma 1.
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We next estimate the second term in (13). The matrix M = I − 1
m 11T is

a projection matrix (it projects on the subspace orthogonal to the vector 1),
so that we have ‖M‖2 = 1, implying that ‖Mζ`

k‖2 ≤ ‖ζ`
k‖2 for all k. Using

this and the definition of ζ`
k in (11), we obtain

‖Mζ`
k‖2 ≤ 2

∑
i∈{Ik,Jk}

∣∣[PX [vi,k − αi (∇fi(vi,k) + εi,k)]− vi,k]`
∣∣2 .

Therefore,

n
X

`=1

E
h

‖Mζ`
k‖2
i

≤ 2E

2

4E

2

4

X

i∈{Ik,Jk}

α2
i ‖∇fi(vi,k) + εi,k‖2 | Fk−1, Ik, Jk

3

5

3

5

≤ 2ᾱ2(C + ν)2,

where in the last inequality we use ᾱ = maxi αi and relation (5). Combining
the preceding relation with Eqs. (13) and (14), we obtain

v

u

u

t

n
X

`=1

E
ˆ

‖z`
k − [ȳk]`1‖2

˜

≤
√
λ

v

u

u

t

n
X

`=1

E
ˆ

‖z`
k−1 − [ȳk−1]`1‖2

˜

+
√

2 ᾱ(C + ν).

Since λ < 1, by recursively using the preceding relation, we have

lim sup
k→∞

√√√√ n∑
`=1

E
[
‖z`

k − [ȳk]`1‖2
]
≤
√

2 ᾱ
1−
√
λ

(C + ν).

The result now follows by
∑m

i=1 E
[
‖xi,k − ȳk‖2

]
=
∑n

`=1 E
[
‖z`

k − 1[ȳk]`‖2
]

and
∑m

i=1 E [‖xi,k − ȳk‖] ≤
√
m
√∑m

i=1 E [‖xi,k − ȳk‖2]. �
The bound in Lemma 2 captures the dependence of the differences between
xi,k and their current average ȳk in terms of the maximum stepsize and the
communication graph. The impact of the communication graph (V,E ) is cap-
tured by the spectral radius λ of the expected matrices E

[
(Wk − 1

m11T )2
]
.

4 Error Bounds

We have the following result for strongly convex functions.

Proposition 1. Let Assumptions 1–3 hold. Let each function fi be strongly
convex over the set X with a constant σi, and let αi be such that 2αiσi < 1.
Then, for the sequences {xi,k}, i ∈ V, generated by (7), we have for all i,

lim sup
k→∞

m∑
i=1

E[‖xi
k − x∗‖2] ≤

ω̄ − ω
1− q

2mCCX +
ᾱω̄

1− q

(
m+

2
√

2m
1−
√
λ

)
(C + ν)2,

where x∗ is the optimal solution of problem (1), q = maxi{1− 2γiαiσi}, γi =
1
m

(
1 +

∑
j∈N(i) Pji

)
, CX = maxx,y∈X ‖x− y‖, ᾱ = maxi αi, ω̄ = maxi γiαi,

and ω = mini γiαi.
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Proof. The sum f =
∑m

i=1 fi is strongly convex with constant σ =
∑m

i=1 σi.
Thus, problem (1) has a unique optimal solution x∗ ∈ X. From relation (7),
the nonexpansive property of the projection operation, and relation (5) we
obtain for the optimal point x∗, and any k and i ∈ {Ik, Jk},

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ ‖vi,k − x∗‖2 − 2αi∇fi(vi,k)T (vi,k − x∗)

+α2
i (C + ν)2. (15)

By the strong convexity of fi, it follows

∇fi(vi,k)T (vi,k − x∗) ≥ σi‖vi,k − x∗‖2 +∇fi(x∗)T (vi,k − x∗).

Using ȳk−1 = 1
m

∑m
j=1 xj,k−1, we have ∇fi(x∗)T (vi,k−x∗) = ∇fi(x∗)T (ȳk−1−

x∗) +∇fi(x∗)T (vi,k − ȳk−1), which in view of ‖∇fi(x∗)‖ ≤ C implies

∇fi(x∗)T (vi,k − x∗) ≥ ∇fi(x∗)T (ȳk−1 − x∗)− C ‖vi,k − ȳk−1‖. (16)

By combining the preceding two relations with inequality (15), we obtain

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ (1− 2αiσi)‖vi,k − x∗‖2

+α2
i (C + ν)2 − 2αi∇fi(x∗)T (ȳk−1 − x∗) + 2αiC‖vi,k − ȳk−1‖.

Taking the expectation with respect to Fk−1 and using the fact the preceding
inequality holds with probability γi (the probability that agent i updates at
time k), and xi,k = vi,k with probability 1− γi, we obtain for any i and k,

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ (1− 2γiαiσi)E

[
‖vi,k − x∗‖2 | Fk−1

]
+ γiα

2
i (C + ν)2 − 2γiαi∇fi(x∗)T (ȳk−1 − x∗) + 2γiαiCE [‖vi,k − ȳk−1‖ | Fk−1] .

Adding and subtracting (mini γiαi)∇fi(x∗)T (ȳk−1−x∗), and using ȳk−1 ∈ X
and the compactness of X, we obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ qE

[
‖vi,k − x∗‖2 | Fk−1

]
+ ω̄ᾱ(C + ν)2

+ 2(ω̄ − ω)CCX − 2ω∇fi(x∗)T (ȳk−1 − x∗) + 2ω̄CE [‖vi,k − ȳk−1‖ | Fk−1] ,

where q = maxi{1−2γiαiσi}, ω = mini γiαi, ω̄ = maxi γiαi, ᾱ = maxi αi and
CX = maxx,y∈X ‖x− y‖. Now, by summing the preceding relations over i, by
using

∑m
i=1∇fi(x∗)T (ȳk−1−x∗) ≥ 0 and using relation (8) (with x = x∗) and

relation (9) (with x = ȳk−1), we obtain
m∑

i=1

E[‖xi,k − x∗‖2] ≤ q
m∑

j=1

E[‖xj,k − x∗‖2] +mω̄ᾱ(C + ν)2

+ 2m(ω̄ − ω)CCX + 2ω̄C
m∑

j=1

E[‖xj,k − ȳk−1‖].

The desired estimate follows from the preceding relation by noting that q < 1,
by taking the limit superior and by using Lemma 2 and C(C+ ν) ≤ (C+ ν)2.
�
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Proposition 1 requires each node to select a stepsize αi so that 2αiσi < 1,
which can be done since each node knows its strong convexity constant σi.
Furthermore, note that the relation q = max1≤i≤m{1 − γiαiσi} < 1 can be
ensured globally over the network without any coordination among the agents.

The following error estimate holds without strong convexity.

Proposition 2. Let Assumptions 1–3 hold. Then, for the sequences {xi,k},
i ∈ V, generated by (7), we have for all i,

lim sup
k→∞

1
k

k∑
t=1

E[f(xi,t−1)] ≤ f∗ +m (ρ− 1)CCX

+ᾱ

(
(ρ+m)

√
2m

1−
√
λ

+
m

2
ρ

)
(C + ν)2,

where f∗ is the optimal value of problem (1), CX = maxx,y∈X ‖x − y‖,
ρ = maxi γiαi

mini γiαi
, γi = 1

m

(
1 +

∑
j∈N(i) Pji

)
and ᾱ = maxi αi.

Proof. The optimal setX∗ is nonempty. Thus, Eq. (15) holds for any x∗ ∈ X∗.
From approximate subgradient relation (4) it follows

∇fi(vi,k)T (vi,k − x∗) ≥ fi(ȳk−1)− fi(x∗)− C‖vi,k − ȳk−1‖.

The preceding relation and Eq. (15) yield for all i ∈ {Ik, Jk} and k ≥ 1,

E
[
‖xi,k − x∗‖2 | Fk−1, Ik, Jk

]
≤ ‖vi,k − x∗‖2 − 2αi(fi(ȳk−1)− fi(x∗))

+2αiC‖vi,k − ȳk−1‖+ α2
i (C + ν)2,

where CX = maxx,y∈X ‖x−y‖. The preceding relation holds when i ∈ {Ik, Jk},
which happens with probability γi. When i 6∈ {Ik, Jk}, we have xi,k = vi,k

(see Eq. (7)), which happens with probability 1 − γi. Thus, by taking the
expectation conditioned on Fk−1, we obtain

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
− 2γiαi(fi(ȳk−1)− fi(x∗))

+2γiαiCE [‖vi,k − ȳk−1‖ | Fk−1] + γiα
2
i (C + ν)2.

Letting ω = min1≤i≤m{γiαi} and ω̄ = max1≤i≤m{γiαi}, and using

|fi(ȳk−1)− fi(x∗)| ≤ C‖ȳk−1 − x∗‖ ≤ CCX ,

which holds by the subgradient boundedness and the fact ȳk ∈ X, we see that

E
[
‖xi,k − x∗‖2 | Fk−1

]
≤ E

[
‖vi,k − x∗‖2 | Fk−1

]
− 2ω(fi(ȳk−1)− fi(x∗))

+2(ω̄ − ω)CCX + 2ω̄CE [‖vi,k − ȳk−1‖ | Fk−1] + ω̄ᾱ(C + ν)2,

where ᾱ = max1≤i≤m αi. By summing the preceding inequalities over i, and
using Eq. (8) with x = x∗ and Eq. (9) with x = ȳk−1 ∈ X, we obtain
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2ωE[f(ȳk−1)− f(x∗)] ≤
m∑

j=1

E[‖xj,k−1 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]

+2m(ω̄ − ω)CCX + 2ω̄C
m∑

j=1

E[‖xj,k−1 − ȳk−1‖] +mω̄ᾱ(C + ν)2,

where f =
∑m

i=1 fi. Next, after dividing the preceding relation by 2ω and
noting that by convexity and the boundedness of the subgradients of each fi,
we have

f(xi,k−1)− f∗ ≤ f(ȳk−1)− f∗ +mC‖xi,k−1 − ȳk−1‖,

we obtain for all i,

E[f(xi,k−1)− f(x∗)] ≤ 1
2ω

 m∑
j=1

E[‖xj,k−1 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]


+m(ρ− 1)CCX + (ρ+m)C

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] +
m

2
ρᾱ(C + ν)2,

where ρ = ω̄
ω . By summing these relations from time 1 to time k, and then

averaging with respect to k, we obtain

1
k

k∑
t=1

E[f(xi,t−1)− f(x∗)] ≤ 1
2kω

 m∑
j=1

E[‖xj,0 − x∗‖2]−
m∑

i=1

E[‖xi,k − x∗‖2]


+m(ρ− 1)CCX + (ρ+m)C

1
k

k∑
t=1

m∑
j=1

E[‖xj,t−1 − ȳt−1‖] +
m

2
ρᾱ(C + ν)2.

Letting k →∞ and using the relation

lim sup
k→∞

1
k

k∑
t=1

 m∑
j=1

E[‖xj,k−1 − ȳk−1‖]

 ≤ lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖],

we have for any i,

lim sup
k→∞

1
k

k∑
t=1

E[f(xi,t−1)− f(x∗)] ≤ m(ρ− 1)CCX

+(ρ+m)C lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] +
m

2
ρᾱ(C + ν)2.

By Lemma 2 we have

lim sup
k→∞

m∑
j=1

E[‖xj,k−1 − ȳk−1‖] ≤
√

2mᾱ

1−
√
λ

(C + ν),
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which together with the preceding relation yields for all i,

lim sup
k→∞

1
k

k∑
t=1

(E[f(xi,t−1)]− f(x∗)) ≤ m (ρ− 1)CCX

+(ρ+m)C
√

2mᾱ

1−
√
λ

(C + ν) +
m

2
ρᾱ(C + ν)2.

By using C(C+ ν) ≤ (C+ ν)2 and grouping the terms accordingly, we obtain
the desired relation. �

By Proposition 2 and the convexity of f , we have for ui,k = 1
k

∑k
t=1 xi,t−1,

lim sup
k→∞

E[f (ui,k)] ≤ f∗ +B,

where B = m (ρ− 1)CCX + ᾱ
(
(ρ+m)

√
2m

1−
√

λ
+ m

2 ρ
)

(C + ν)2. When the
ratio ρ = maxi γiαi

mini γiαi
is close to value 1, the bound is approximately given by

B ≈ ᾱ
(
(1 +m)

√
2m

1−
√

λ
+ m

2

)
(C+ν)2. In this case, the bound scales in the size

m of the network as m3/2, which is by order 1/2 less than the scaling of the
bound for the distributed consensus-based subgradient algorithm of [3], which
scales at best as m2.

5 Discussion

The bounds scale well with the size of the network. For strongly convex func-
tions, the bound in Proposition 1 scales independently of the size of the net-
work if the degrees of the nodes are about the same order and do not change
with the size of the network. The bound in Proposition 2 scales as m

√
m with

the size m of the network. In our development, we have assumed that the net-
work topology is static, which may not be realistic in some applications. Of
future interest is to investigate the algorithm for dynamic network topology.
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1 Introduction

The main goal of this work is to sketch an efficient approach to solve nonlinear
programs of the form:

min
x∈Rn

f(x)

s.t. cI(x) ≤ 0
cE(x) = 0

 NLP.

Here cI = (ci)i∈I and cE = (ci)i∈E denote the mappings composed of the
inequality constraint functions ci : Rn → R, i ∈ I, and equality constraint
functions ci : Rn → R, i ∈ E , where f and ci, i ∈ I ∪J , are at least C2. Also,
the existence of a regular solution x∗ ∈ Rn where LICQ holds is assumed.

An active-set strategy can be used to handle the inequalities. Assume that the
active set A(x∗) of such a solution x∗ is known and denote by cA : Rn → Rm

the corresponding constraint mapping. Then solving the NLP is equivalent to
finding the solution of the reduced equality constraint problem:

min
x∈Rn

f(x)

s.t. cA(x) = 0.

Let λi be the Lagrange multiplier for the constraint ci. The Lagrangian

L(x, λ) := f(x) +
∑
i∈A

λici(x)

associated with the reduced equality-constrained problem can be used to state
the first-order optimality condition for the stationary point (x∗, λ∗):

∇x,λAL(x∗, λ∗) = 0. (1)

According to [4], a total quasi-Newton approach can be applied to determine
(x∗, λ∗). In such an approach the reduced Hessian of the Lagrangian and the
constraint Jacobian are approximated by some matrices B ≈ ∇2

xxL(x, λ) and
A ≈ c′A(x). Applying a null-space method based on an extended QR factor-
ization A = [L, 0][Y, Z]>, one obtains the approximating null-space factorized
KKT systemY >BY Y >BZ L>

Z>BY Z>BZ 0
L 0 0

Y >s
Z>s
σ

 = −

Y >∇xL(x, λ)
Z>∇xL(x, λ)

cA(x)


for (1) that can be efficiently updated by low-rank formulae. Here, the matrix
Z ∈ Rn × Rn−m contains an orthonormal null-space basis of A. The right-
hand side of the equation is obtained exactly by use of the backward mode
in Algorithmic Differentiation (cf. [3]). The approximate projected Hessian
Z>BZ is kept positive definite throughout the optimization procedure, since
the exact one will have this property near local minima where second-order
sufficiency conditions hold.
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2 A Limited-Memory Approach for the SR1 Method

2.1 Compact Representation Formula

Consider a symmetric rank-one update (SR1) of the Hessian B defined by

B+ = B + β
(w −Bs)(w −Bs)>

(w −Bs)>s
with (w −Bs)>s 6= 0

where β ∈ (0, 1] is a damping parameter. In order to avoid the complete fill-
in caused by the addition of low-rank terms, one prefers to store the triples
(s, w, β) ∈ Rn×Rn×R where s := x+−x and w := ∇xL(x+, λ)−∇xL(x, λ).
Unless w>s = 0 the pairs (s, w) are scaled throughout such that |w>s| = 1,
which leaves the secant condition w = B+s unaffected.

In the following a sequence of damped SR1 updates identified with (sj , wj , βj),
j ∈ {0, . . . , l − 1}, is applied to B(0) := γI using a compact representation
formula, which is well-known for many quasi-Newton updates. The scaled
update vectors and scalar products are, therefore, arranged in matrices

S :=
(
s0 · · · sl−1

)
∈ Rn×l, W :=

(
w0 · · · wl−1

)
∈ Rn×l,

Q ∈ Rl×l with Qih := Qhi = w>i−1sh−1(i ≥ h),
P ∈ Rl×l with Pih := Phi = s>i−1wh−1(i ≥ h).

Theorem 1 (SR1 - Compact representation formula).
Let l be the number of damped regular SR1 updates (sj , wj , βj)l−1

j=0, i.e.

(wj −B(j)sj)>sj 6= 0, βj 6= 0 ∀j ∈ {0, . . . , l − 1},

applied to the initial matrix B(0) = γI with B(j) defined as the intermediate
matrix after applying the first j ≤ l updates. Then M := P−D−γS>S ∈ Rl×l

is invertible and B = B(l) is given by

B = γI + (W − γS)M−1(W − γS)> (2)

where D denotes the diagonal matrix D = diag(Djj)l−1
j=0 with

Djj := (1− β−1
j )(wj −B(j)sj)>sj .

A compact representation formula for the BFGS update can be found in [2].

Remark: Equation (2) represents a generalization of the usual SR1 update
formula in [2]. In the undamped case, i.e. (βj)l−1

j=0 = 1, D vanishes.

Due to the Sherman Morrison Woodbury formula, one obtains a similar for-
mula for the inverse. Therefore, define N := Q+D − γ−1W>W and verify
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B−1 = γ−1I + (S − γ−1W )N−1(S − γ−1W )>.

The compact representation formulae offer a number of advantages over the
full-storage implementation. First and foremost the space for storing B is re-
duced to a pair of low-rank matrices S and W and the scalar γ that ideally
represents the average eigenvalue of B. In a limited-memory approach the
number l of updates is fixed, so only the most recent update vectors are kept
inside S and W . The computational effort for adding (or replacing) update
vectors for B is bounded by O(l ·n) compared to O(n2) for SR1 updates. The
bound O(l · n + l3) holds for multiplying vectors by B or its inverse B−1. If
l�
√
n is small, the factorization effort for M and N stays negligible.

On the other hand, not storing all updates causes the loss of superlinear
convergence (see [6]), which may possibly increase the overall computational
effort.

2.2 Maintaining the Positive Definiteness of the Hessian

Positive definiteness of Z>BZ and maximal rank of A imply unique solv-
ability of the KKT system. Unlike the BFGS update, the SR1 update does
not necessarily preserve the positive definiteness of Z>BZ. A remedy is pro-
posed in [7] for the limited-memory approach. It consists of both determining
suitable values for the damping parameters βi and adapting the scaling pa-
rameter γ. More specifically, one obtains the following statement (cf. [7]) for
Q̄ := Q+D ∈ Rl×l as defined before including a constructive proof for γ:

Lemma 1. If Q̄ is positive definite,5 then there exists Γ > 0 such that B
becomes positive definite for all γ > Γ .

Proof. Consider auxiliary matrices T1, T2, T3 ∈ R(n+l)×(n+l) defined by

T1 :=
(
γI U
U> −M

)
with U = (W − γS),

T2 :=
(
I UM−1

0 I

)(
γI U
U> −M

)(
I 0

M−1U> I

)
=
(
B 0
0 −M

)
,

T3 :=
(

I 0
−γ−1U> I

)(
γI U
U> −M

)(
I −γ−1U
0 I

)
=
(
γI 0
0 −M − γ−1U>U

)
.

Simplifying the last equation one recovers the middle term N of B−1:

−M − γ−1U>U = W>S + S>W − P +D − γ−1W>W = Q̄− γ−1W>W.

Due to Sylvester’s law, the inertias of T1, T2 and T3 coincide. So, one can
deduce: B is positive definite (as B(0) = γI) if and only if −M and N have
the same inertia. Furthermore, if Q̄ is positive definite, then there exists Γ > 0
such that N , T3 and B become positive definite. ut
5 The assumption is reasonable, as in quadratic programming without damping one

retrieves: Q̄ = Q = S>∇2
xxL(x, λ)S is positive definite.
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The assumption of the previous lemma can be guaranteed by damping a new
secant update pair (snew, wnew) to prevent the compact representation (2)
of the reduced Hessian losing its positive definiteness property. Therefore,
consider the rank-two update formula that describes the replacement of a
single update (sh, wh, βh) by (snew, wnew, βnew) for h ∈ {0, . . . , l − 1} in Q̄:

Q̄new := Q̄+
1
2
(eh + d)(eh + d)> − 1

2
(eh − d)(eh − d)> + βnewehe

>
h (3)

and (dj)l−1
j=0 :=

{
s>j wnew − Q̄hj if (j 6= h)

1
2 (s>newwnew − Q̄hh) otherwise.

Since the largest eigenvalue of Q̄new cannot grow rapidly but its smallest
one could become zero or even negative one can control its conditioning by
a Powell-like test on the determinant. A suitable choice for the damping pa-
rameter βnew can then be derived by investigating the determinant ratio for
Q̄ and the updated version Q̄new:

Lemma 2 (Determinant ratio for damping parameters).
Let (si, wi, βi)l−1

i=0 be a sequence of l regular SR1 updates and (snew, wnew, βnew)
be a regular SR1 update replacing (sh, wh, βh), h ∈ {0, . . . , l − 1}. Define the
determinant ratio function q : R→ R as

q(βnew) :=
det Q̄new

det Q̄
.

Then it holds for b := Q̄−1eh and c := Q̄−1d:

q(βnew) = bhβnew + c2h + 2ch − bhc>d+ 1.

Choosing βnew such that q(βnew) ∈ [1/µ, µ] maintains the positive definiteness
of Q̄new after the update (3) where 1 < µ is a fixed constant. In the next
step one can numerically try ascending values for γ and verify the positive
definiteness of B by analyzing the inertias of −M and N according to the first
Lemma.

2.3 Constrained Optimization and Limited-Memory

Consider again the factorized KKT system of the equality-constrained prob-
lem for computing a total quasi-Newton step, as described in Section 1:Y >BY Y >BZ L>

Z>BY Z>BZ 0
L 0 0

Y >s
Z>s
σ

 = −

Y >∇xL(x, λ)
Z>∇xL(x, λ)

cA(x)

 . (4)

Then the limited-memory approach can easily be incorporated by replacing
B with the compact representation formula. Hence, instead of storing the
factors Y >BY , Z>BY , and Z>BZ, it is sufficient to store and update only
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the matricesW , S, and two smaller matrices in Rl×l. In addition, the necessary
matrix-vector products can be calculated directly by multiplication from right
to left using the reformulation

Y >BY = γI + (Y >W − γY >S)M−1(Y >W − γY >S)>,
Y >BZ = (Y >W − γY >S)M−1(Z>W − γZ>S)>,
Z>BZ = γI + (Z>W − γZ>S)M−1(Z>W − γZ>S)>, and

(Z>BZ)−1 = γ−1I + γ−2(Z>W − γZ>S)N−1(Z>W − γZ>S)>

where the middle matrices M , N ∈ Rl×l are now defined as follows:

M := P −D − γS>S and N := −M − γ−1(W − γS)>ZZ>(W − γS).

Since the damping of the update and the choice of γ discussed in section
2.2 ensures the positive definiteness of B, this property will be shared by
the reduced Hessian Z>BZ. A major concern now is to handle the matrices
Y and Z of the extended QR-factorization, which also need to be stored.
Consequently, one needs at least a complexity of order O(n2) to store the
Jacobian factorization, even for problems with a few active constraints. The
next section gives a possible solution to this drawback.

2.4 Avoidance of the Null-space Factor Z

When using a partial limited-memory method in conjunction with a total
quasi-Newton approach and a null-space factorized KKT system, a significant
amount of memory is expended on the matrix Z containing the null-space
basis of the Jacobian. This fact reduces the benefits of the limited-memory
approach, especially, if only a small number of constraints is active. The fol-
lowing summarizes how the partial limited-memory approach can be improved
by utilizing the orthonormality relation ZZ> + Y Y > = I for the range- and
null-space representation [Y, Z].

In this case the storage of the (n−m)× n matrix Z can be avoided without
any loss in theory. According to [1], Z is necessary neither to get a total
quasi-Newton step nor for the update of the factorized KKT system (4) itself.
Thus, a further reduction of the computational effort in a realization of an
algorithm is possible by eliminating Z. Also a bilinear upper bound on memory
allocation and the operation count per iteration is obtained.

Theorem 2 (Solving KKT without Z).
The solution of the approximated null-space factorized KKT system (4)

s = −Y L−1cA(x)− Z(Z>BZ)−1(Z>∇xL(x, λ)− Z>BY L−1cA(x))
σ = −L−>(Y >∇xL(x, λ) + Y >BY Y >s+ Y >BZZ>s)

can be computed without using Z if the Hessian approximation B is given
as a low-rank perturbation of a multiple of the identity matrix.
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Proof. Consider the computation of the vector s, which can be written as

s = −Y L−1cA(x)− Z(Z>BZ)−1Z>
[
∇xL(x, λ)−BY L−1cA(x)

]
.

Here only the factor Z(Z>BZ)−1Z> is interesting, as it depends on Z. With
reference to section 2.3, (Z>BZ)−1 is given by

(Z>BZ)−1 = γ−1I + γ−2(Z>W − γZ>S)[−M
−γ−1(W − γS)ZZ>(W − γS)]−1(Z>W − γZ>S)>.

Multiplication on left and right by Z and its transpose, respectively, yields

Z(Z>BZ)−1Z> = γ−1ZZ> + γ−2ZZ> (W − γS) [−M

−γ−1(W − γS)>ZZ>(W − γS)
]−1

(W − γS)> ZZ>.

Applying the identity ZZ> = I − Y Y > to the equation above as well as to
the formula for the Lagrange multiplier step via

σ = −L−>
[
Y >∇xL(x, λ) + Y >BY Y >s+ Y >BZZ>s

]
= −L−>Y > [∇xL(x, λ) +Bs]

concludes the proof. ut

2.5 Improving Computational Efficiency

From a numerical point of view the most time-consuming part per iteration
is the step computation. Here several matrix-matrix products of order no less
than O(n ·m · l) would be necessary, since the reformulation

Z(Z>BZ)−1Z> = (γ−1I + γ−2ZZ>(W − γS)N−1(W − γS)>)ZZ>

involves a computation and factorization of the middle matrix N :

N = −M − γ−1(W − γS)(I − Y Y >)(W − γS) ∈ Rl×l.

As proven in [1], the basic idea to overcome this drawback is to avoid re-
computation of N from scratch and to apply Hessian and Jacobian updates
directly to the matrix N .

Hence, one can show by multiplication from right to left that the whole step-
computation has bilinear complexity O(n ·max(m, l)) because the remaining
matrix-matrix additions as well as matrix-vector products can be considered
as cheap, i.e. of bilinear complexity. Note thatN can be factorized from scratch
without exceeding O(n · l) operations for l� n sufficiently small.

The update of the matrix N due to changes of the Hessian, the Jacobian, and
the scaling parameter γ is examined in three propositions, where it is proven
that the effort is bounded by O(n · max(m, l)) operations. Since the proofs
are quite analogous, only the one for the Hessian updates is given.
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Proposition 1 (Updating N - Hessian updates).
The matrix N can be directly updated with O(n ·max(m, l)) operations if the
Hessian is subject to a rank-one modification.

Proof. Three different actions can be performed if the Hessian is updated in
the limited-memory case:

1. A new secant pair (si, wi) is added to (S,W ),
2. an old pair (si, wi) is removed from (S,W ), or
3. an old update (si, wi) is exchanged by a new one (snew, wnew).

In all these cases the matrix N needs to be modified as it depends on (S,W ).
The basic idea of the proof is to represent these changes as a constant number
of low-rank updates. Therefore, not only the matrices S and W will be stored
and updated but also S>Y , W>Y , and all summands of N up to transposi-
tions. All the three cases will be illustrated on S>W .

1. Appending a new update pair (snew, wnew) to the set (S,W ) by setting
(S,W )+ = ((s1, . . . , si−1, si = snew), (w1, . . . , wi−1, wi = wnew)) results
in an extended matrix plus a rank-two update:

(S>W )+ =
[
S>W S>wi

s>i W s>i wi

]
=
[
W>S 0

0 0

]
+ (S>wi)e>i + ei(s>i W )> + w>i si(eie

>
i ).

2. Assume the secant pair (si, wi) that shall be deleted is in last position in
(S,W ), i.e. (S,W ) = ((s1, . . . , si), (w1, . . . , wi)). Otherwise use the routine
described in the next point to exchange it with the last one. Then the
secant pair can be removed by erasing the last row and column of S>W .

3. Exchanging a secant pair (si, wi) by a new one can be realized by a rank-
two update on (S,W ) with s̃ := (snew − si) and w̃ := (wnew − wi):

(S>W )+ = S>W + eis̃
>W + S>w̃e>i + s̃>w̃(eie

>
i ).

Obviously, the operation count for the updates of all summands is dominated
by two extra calculations including the Y -factor, i.e. s>newY and w>newY , where
the numerical effort is of order O(n ·m). Evaluating the remaining expressions
without Y is cheap, e.g. the expression ei(s>i W )> can be computed by first
evaluating s>i W and storing this vector. In these cases the complexity bound
O(n · l) is not exceeded. Applying the results on N , one derives that the new
middle matrix N+ is given by a sequence of rank-one updates:

1. Appending a new secant pair (si, wi) to (S,W ) gives:

N+ =
[
N 0
0 0

]
+

8∑
j=1

λj(eiv
>
j + vje

>
i ) +

16∑
j=9

λj(eie
>
i ),
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2. using MATLAB-like notation, the deletion of (si, wi) in (S,W ) yields:

N+ =

⎛
⎝N +

8∑
j=1

λj(eiv
�
j + vje

�
i ) +

16∑
j=9

λj(eie
�
i )

⎞
⎠ [1 : k − 1; 1 : k − 1],

3. and exchanging (si, wi) with (snew, wnew) results in:

N+ = N +
8∑

j=1

λj(eiv
�
j + vje

�
i ) +

16∑
j=9

λj(eie
�
i )

where the vectors vj and scalars λj are defined by the performed action. ��
Hence, the following result is obtained by a careful implementation of the
linear algebra for the updating of the factorized KKT system.
Theorem 3 (Bosse).
For a partial limited-memory approach on a total quasi-Newton method with
an updated null-space factorized KKT system, the needed memory size and
computational effort per iteration are both of order O(nm+ nl + l3).
More details on the proof can be found in [1], Chapter 6: ’Zed is Dead’.

3 Examples

The effectiveness of the presented method has been verified on the two exam-
ples LUKVLE3 (top) and LUKVLI9 (bottom) from the CUTEr test set.
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Here the number of constraints is small (m = 2, m = 6) , whereas the number
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4 Conclusion

This article summarizes our recent research on total quasi-Newton methods
for nonlinear programming. A practical implementation of the limited-memory
SR1 method is presented. It avoids the explicit storage of the Hessian and re-
duces the computational effort for quasi-Newton updates to about O(l · n)
operations. A null-space factorized KKT system in the constrained case is re-
formulated by means of compact representation formulae and solved efficiently
using an updated QR decomposition of the Jacobian. The new approach cir-
cumvents the necessity of storing the matrix Z for the solution of the system
while reducing the computational effort per iteration to the bilinear complex-
ity O(n·max(l,m)). This should be particularly beneficial on dense large-scale
problems with a small set of active constraints m� n.

The quoted results for the large-scale problems LUKVLE3 and LUKVLI9 in-
dicate acceptable linear convergence rates even for a small number of stored
secant pairs (l = 4) with drastic reduction in computational effort per itera-
tion. More runs on the CUTEr test set have shown as a rule of thumb that
the choice of l between ∼ 5 and ∼ 15 results in a good balance between an
acceptable linear convergence rate and an effective step computation.

A further reduction in storage and operations count is envisioned by a semi-
normal approach that is based on a range-space method. In this case also
the storage of the range-space basis Y is omitted. The matrix-vector products
including Y are replaced by an extra Algorithmic Differentiation operation.
A smart updating of the triangular matrix L reduces the effort to the order
O(m2/2 + n · l).
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Summary. The problem of geometric ellipsoid fitting is considered. In connection
with a conjugate gradient procedure a suitable approximation for the Euclidean
distance of a point to an ellipsoid is used to calculate the fitting parameters. The
approach we follow here ensures optimization over the set of all ellipsoids with codi-
mension one rather than allowing for different conics as well. The distance function
is analyzed in some detail and a numerical example supports our theoretical consid-
erations.

1 Introduction

The approximation of a set of data by an ellipsoid is an important problem in
computer science and engineering, e.g. in computer vision or computer graph-
ics, or more specifically, in 3D-reconstruction and virtual reality generation.
Moreover, there are further applications in robotics [13], astronomy [18] and
in metrology [2, 5, 17], as well.

Mathematically, the problem of fitting can often be expressed by a set of
implicit equations depending on a set of parameters. For fixed parameters the
set of equations often describes implicitly a smooth manifold, e.g. in those
cases where the regular value theorem applies. The task then is to find a
parameter vector, such that the corresponding manifold best fits a given set
of data. As it is studied in the computer vision community, e.g. see [9, 8], a
large class of computer vision problems actually falls into this category.

Certainly, there exists a variety of different ways to measure the quality of a
fit, dependent on the application context. Here we focus on a certain problem
of geometric fitting, namely, minimizing the sum of the squared Euclidean
distances between the data points and the manifold. In a natural way this is
a generalization of the well known linear orthogonal regression problem.

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_7, © Springer-Verlag Berlin Heidelberg 2010 
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A quite different approach to geometric fitting comes under the name
of algebraic fitting which we do not follow here. It turns out that in many
cases the algebraic approach has to be distinguished from the geometric one.
Firstly, it seems that the numerical treatment of the former is more feasible,
mainly due to the fact that the underlying optimization problem is based
on a vector space model, rather than modelled in a nonlinear differential
manifold setting. This might be the reason why it was preferably studied in
much detail in the past, see e.g. [1, 4, 6, 10, 14, 15, 19]. Secondly, geometric
fitting does not necessarily support a traditional straightforward statistical
interpretation, again typical for a computer vision application, see [9] for a
thorough discussion of this aspect.

For early work in the spirit of our approach, see however [11].
As already mentioned above the parameter vector might vary itself over a

smooth manifold. E.g. fitting an ellipsoid of codimension one in Rn to a set
of data points sitting in Rn as well, amounts in an optimization problem over
the set of all codimension one ellipsoids. As we will see below this set can
be neatly parameterized by the product of Rn with the set Pn of symmetric
positive definite n×n-matrices, or equivalently, by the product of Rn with the
set Rn×n

+ of n× n upper triangular matrices with positive diagonal entries.
In general, there exists no explicit formula for the Euclidean distance of a

point to a set. We therefore will use a suitable approximation together with
a conjugate-gradient-type procedure to compute the fitting parameters.

In this paper we will put an emphasis on the geometric fitting of ellipsoids
of codimension one to data points. The approach we follow here ensures that
we actually optimize over all ellipsoids of codimension one, rather than al-
lowing for other or even all conics of codimension one, or even conics of any
codimension as well.

The paper is organized as follows. In the next section we motivate the
quality measure we use, namely a distance function which approximates the
Euclidean distance of a point to an ellipsoid in a consistent manner, in a way
made precise below. We investigate the local properties of this function and
compare it with the Euclidean distance and with algebraic fitting.

Differentiability of the square of this function allows for a smooth opti-
mization procedure. In the third section we briefly describe the global param-
eterization of the smooth manifold of all ellipsoids of codimension one in Rn

and set the ground for a conjugate gradient algorithm living on this manifold.
The last section briefly discusses the CG-method used here, supported by a
numerical example.

2 Motivation of the Distance Function

In this section we introduce a new distance measure as an approximation of
the Euclidean distance from a point to an ellipsoid. This measure has the
advantage that, in contrast to the Euclidean distance, it can be expressed



Approximate Geometric Ellipsoid Fitting: A CG-Approach 75

explicitly in terms of the ellipsoid parameters and is therefore suitable for op-
timization tasks. Moreover, it does not have the drawback of the measure that
underlies algebraic fitting, where it might happen that, given a set of points,
any ellipsoid that is large enough drives the corresponding cost arbitrarily
small. We specify this phenomenon in Proposition 1 below.

Let (·)> denote transposition and let

EQ,τ := {q ∈ Rn | (q − τ)>Q(q − τ) = 1} (1)

be an ellipsoid with center τ ∈ Rn and positive definite Q ∈ Pn. For ellipsoids
centered at the origin we shortly write EQ := EQ,0. In order to fit an ellipsoid
to a given set of data yi ∈ Rn, i = 1, . . . N , a quality measure is required
that reflects how well an ellipsoid fits the yi’s. There are two measures that
arise in a natural way: the Euclidean distance and, since any ellipsoid defines
a metric by considering it as a unit ball, the corresponding distance induced
by Q. For x, y ∈ Rn denote by

〈x, y〉Q := x>Qy (2)

the induced scalar product, the associated norm by ‖x‖Q = (x>Qx)
1
2 , and

the induced distance measure by

dQ(x, y) := ‖x− y‖Q. (3)

Lemma 1. Let x ∈ Rn. Then the Q-distance between x and EQ is given by

dQ(x, EQ) = |1− ‖x‖Q| . (4)

The point of lowest Q-distance to x on EQ is x̂ = x
‖x‖Q

.

Proof. Without loss of generality we might assume that x 6= 0. We compute
the critical points of the function

a : EQ → R, q 7→ ‖q − x‖2Q, (5)

as follows. The tangent space TqEQ of EQ at q ∈ EQ is given by

TqEQ := {ξ ∈ Rn | ξ>Qq = 0}, (6)

hence
D a(q)ξ = 2ξ>Q(q − x) = −2ξ>Qx. (7)

The derivative vanishes if and only if q ∈ Rx. A simple calculation then shows,
that the minimum of a is given by

x̂ := x
‖x‖Q

. (8)

Consequently,

dQ(x, EQ) = dQ(x, x̂) = ‖x− x̂‖Q = |1− ‖x‖Q| . (9)

�
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The quality measure used in algebraic fitting is closely related to the Q-
distance. It is defined by

dalg(x, EQ) =
∣∣1− ‖x‖2Q∣∣ (10)

or, for general ellipsoids,

dalg(x, EQ,τ ) =
∣∣1− ‖x− τ‖2Q∣∣ , (11)

cf. [10]. Although this is easy to compute, minimizing the sum of squares of
dalg for a given set of noisy data points may not yield a desired result as the
following proposition is stating.

Proposition 1. Let y1, . . . , yN ∈ Rn be given. Then for all ε > 0 there exists
δ > 0 and τ ∈ Rn such that

N∑
i=1

d2
alg(yi, EδIn,τ ) < ε. (12)

Proof. Let δ = δ(τ) = 1
‖τ‖2 . The claim follows since

N∑
i=1

d2
alg(yi, EδIn,τ ) =

N∑
i=1

(1− δ‖yi − τ‖2)2 =
N∑

i=1

(1− ‖yi−τ‖2
‖τ‖2 )2

‖τ‖→∞−−−−−→ 0.

�

Given a convex set C ⊂ Rn and a point x ∈ Rn outside C, it is well known
that there is a unique point q ∈ ∂C on the boundary of C such that d(x, ∂C) =
d(x, q), cf. Chapter 2 in [3]. If x lies in the interior of C, this needs not to be
true anymore. However, in the case where ∂C = EQ is an ellipsoid, q depends
smoothly on x in a neighborhood of EQ.

Lemma 2. Let x ∈ Rn and let π : Rn → EQ be such that d(x, EQ) =
d(x, π(x)). Then π is smooth in a neighborhood of EQ and

Dπ(x)|x=qh =
(
id−Qqq>Q

q>Q2q

)
h. (13)

Proof. Let x ∈ Rn be arbitrary but fixed and let e : EQ → R with e(q) =
1
2‖x− q‖

2. The minimal value of e then is d(x, Eq). Differentiating yields the
critical point condition, namely

De(q)ξ = ξ>(q − x) = 0 for all ξ ∈ TqEQ = {ξ ∈ Rn | ξ>Qq = 0}. (14)

Now since TqEQ = (im(Qq))⊥ = im
(
id−Qqq>Q>

q>Q2q

)
, the critical point condi-

tion is equivalent to (
id−Qqq>Q>

q>Q2q

)
(q − x) = 0. (15)
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Using q>Qq = 1 yields

(q>Q2q)(q − x)−Qq +Qqq>Qx = 0. (16)

Consider now the function

F : EQ × Rn → Rn, (q, x) 7→ (q>Q2q)(q − x)−Qq +Qqq>Qx. (17)

Then F is smooth and F (q, q) = 0 for all q ∈ EQ. We use the implicit function
theorem to complete the proof. The derivatives of F with respect to the first
and second argument, respectively, are

D1F (q, x)ξ =(2ξ>Q2q)q+(q>Q2q)ξ−Qξ−(2ξ>Q2q)x+Qξq>Qx+Qqξ>Qx

D2F (q, x)h =Qqq>Qh− (q>Q2q)h.
(18)

Hence D1 F (q, q)ξ = q>Q2qξ and notice that q>Q2q > 0. The implicit func-
tion theorem yields the existence of a neighborhood U around q and a unique
smooth function π̃ : U → EQ such that F (π̃(x), x) = 0. Using π defined
as above, we get F (π(x), x) = 0. Moreover, the uniqueness of π̃ implies
π̃|U = π|U . Furthermore,

0 = DF (π(x), x)h = D1 F (π(x), x)Dπ(x)h+ D2 F (π(x), x)h (19)

and hence

Dπ(x)|x=qh = −(D1 F (π(q), q)−1 D2 F (π(q), q)h

= −(q>Q2q)−1(Qqq>Qh− q>Q2qh) =
(
id−Qqq>Q

q>Q2q

)
h.

(20)

�

As an approximation of the Euclidean distance d(x, EQ), we consider the Eu-
clidean distance between x and x

‖x‖Q
, cf. Figure 1, i.e.

d̃ : Rn \ {0} → R, x 7→
∣∣∣1− ‖x‖−1

Q

∣∣∣ ‖x‖. (21)

The definition of d(x, EQ) immediately yields

d(x, EQ) ≤ d̃(x, EQ). (22)

For large ‖x‖ both d and d̃ tend to the same value, i.e.

lim
‖x‖→∞

d̃(x,EQ)
d(x,EQ) = 1. (23)

An investigation of the derivatives yields the local behavior of d, d̃ and dQ

around some q ∈ EQ. It allows in particular to compare the first order approx-
imations of the three distances: locally, d̃ behaves similar to the Euclidean
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Fig. 1. Illustration of the distance measure d̃.

distance the more the ellipsoid becomes similar to a sphere. Moreover it shares
the nice property with the Euclidean distance that it is invariant under scaling
of Q, whereas the local behavior of dQ depends on the absolute values of the
eigenvalues of Q.

Proposition 2. Let x ∈ Rn \ {0} and let q ∈ EQ. Let λmin, λmax be the
smallest, resp. largest eigenvalue of Q. Then

lim
x→q,x 6∈EQ

‖D d(x, EQ)‖ = 1, (24)

1 ≤ lim
x→q,x 6∈EQ

‖D d̃(x, EQ)‖ ≤
√

λmax
λmin

, (25)√
λmin ≤ ‖D dQ(x, EQ)‖ ≤

√
λmax, for all x 6∈ EQ, (26)

where equality holds in the last equation either in the case of Qx = λminx, or
for Qx = λmaxx.

Proof. Let π(x) be defined as in Lemma (2), let q ∈ EQ and let U ⊂ Rn be a
neighborhood of q such that π(x) is smooth. For x ∈ U \ EQ,

D d(x, EQ)h = D〈x− π(x), x− π(x)〉
1
2h =

〈
h−Dπ(x)h, x−π(x)

‖x−π(x)‖

〉
=
〈
h, (id−Dπ(x))> x−π(x)

‖x−π(x)‖

〉
.

(27)

Hence

‖D d(x, EQ)‖ =
∥∥∥(id−Dπ(x))> x−π(x)

‖x−π(x)‖

∥∥∥ ≤ ‖(id−Dπ(x))‖Frob,

by submultiplicativity of the Frobenius norm. Therefore, using Eq. (13),

lim
x→q,x6∈EQ

‖D d(x, EQ)‖ ≤ lim
x→q,x 6∈EQ

‖(id−Dπ(x))‖Frob =
∥∥∥Qqq>Q

q>Q2q

∥∥∥
Frob

= 1.

Now let
γx(t) = tx+(1−t)π(x)

‖x−π(x)‖ .

Then π(γx(t)) = π(x) for all t ∈ (0, 1) and
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d(γx(t), EQ) = d(γx(t), π(x)) = |t|. (28)

Therefore, by the Cauchy-Schwarz inequality and using ‖γ̇x(t)‖ = 1,

1 = | d
d td(γx(t), EQ)| = |D d(γx(t), EQ) · γ̇x(t)|

≤ ‖D d(γx(t), EQ)‖‖γ̇x(t)‖ = ‖D d(γx(t), EQ)‖.
(29)

This proves equation (24). For Eq. (25) note that

‖D d̃(x, EQ)‖ =
∥∥∥ x
‖x‖ (1− ‖x‖

−1
Q )− ‖x‖ Qx

‖x‖3Q

∥∥∥ . (30)

The first term tends to 0 for x → q and ‖x‖Q tends to 1. It is therefore

sufficient to consider the term ‖x‖‖Qx‖. Substituting y := Q
1
2x, which implies

‖y‖2 → 1 as x→ q, we obtain

‖x‖‖Qx‖ = (y>Q−1y)
1
2

‖y‖
(y>Qy)

1
2

‖y‖ ‖y‖2 ≤
√

λmax
λmin
‖y‖2, (31)

hence
lim

x→q,x 6∈EQ

‖D d̃(x, EQ)‖ ≤
√

λmax
λmin

. (32)

On the other hand, the Cauchy-Schwarz inequality implies

lim
x→q
‖x‖‖Qx‖ ≥ lim

x→q
x>Qx = 1. (33)

Finally, equation (26) follows since

‖D dQ(x, EQ)‖ =
∥∥∥ Qx
‖x‖Q

∥∥∥ =
(

x>Q2x
x>Qx

) 1
2
. (34)

�

3 Parameterization of the set of ellipsoids

Given a set of data points y1, . . . yN , our aim is to minimize the sum of the
squares of the individual distance measures d̃(yi, EQ,τ ) over the set of all el-
lipsoids EQ,τ , i.e. over the set

E := Pn × Rn. (35)

Each positive definite matrix Q ∈ Pn possesses a unique Cholesky decompo-
sition Q = S>S, with S ∈ Rn×n

+ , and Rn×n
+ being the set of upper triangular

n×n-matrices with positive diagonal entries. Explicit formulas for computing
the Cholesky decomposition, cf. [7], imply that

Rn×n
+ → Pn, S 7→ S>S (36)
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is a diffeomorphism. We exploit this fact to obtain a global parameterization
of E. Let Rn×n be the set of upper triangular matrices. ThenRn×n ' R

n(n+1)
2

and

φ : Rn×n →Rn×n
+ ,

 r11 r12 ... r1n
0 r22 ··· r2n

...
. . . . . .

...
0 ··· 0 rnn

 7→
 er11 r12 ··· r1n

0 er22 ··· r2n

...
. . . . . .

...
0 ··· 0 ernn

 (37)

is a diffeomorphism as well. Thus

Rn×n × Rn → E, (R, τ) 7→ (φ(R)>φ(R), τ) (38)

is a global parameterization of the set E of codimension one ellipsoids.

4 CG-method for fitting ellipsoids to data

Using the parameterization derived in the last section and recalling that

d̃(x, EQ,τ ) = |1− ‖x− τ‖−1
Q | · ‖x− τ‖,

a conjugate gradient method was implemented for the following problem.
Given a set of data points y1, . . . yN ∈ Rn, minimize

f : Rn×n × Rn → R,

(R, τ) 7→
N∑

i=1

(
1−

(
(yi − τ)>φ(R)>φ(R)(yi − τ)

)− 1
2
)2

‖yi − τ‖2.
(39)

The step-size selection was chosen using a modified one dimensional Newton
step, i.e. given a point (R, τ) ∈ Rn×n×Rn and a direction (ξ, h) ∈ Rn×n×Rn,
we have chosen the step-size

t∗ = −
d
d t f(R+tξ,τ+th)

˛

˛

˛

˛

d2

d t2 f(R+tξ,τ+th)

˛

˛

˛

˛

. (40)

The absolute value in the denominator has the advantage, that in a neighbor-
hood of a nondegenerated minimum the step-size coincides with the common
Newton step, whereas t∗ is equal to the negative of the Newton step-size if
d2

d t2 f(R + tξ, τ + th) > 0. Our step-size selection is also supported by sim-
ulations showing that this modification is essential for not getting stuck in
local maxima or saddle points. To derive the gradient of f , for convenience
we define

µi(t) := φ(R+ tξ)(yi − τ + th). (41)

Let diag(X) be the diagonal matrix having the same diagonal as the matrix X
and let off(X) be the strictly upper triangular matrix having the same upper
diagonal entries as X. Then

µ̇i(0) =
(
diag(ξ) ediag(R) + off(ξ)

)
(yi − τ) + φ(R)h. (42)
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Lemma 3. Let µi := µi(0) and let ci := (µ>i µi)−
1
2 . The gradient of f evalu-

ated at (R, τ) is given by

∇f(R, τ) =
(
∇1f(R, τ),∇2f(R, τ)

)
(43)

where

∇1f(R, τ) =2
N∑

i=1

(1− ci)c3i
(
diag((yi − τ)µ>i ) + off(µi(yi − τ)>)

)
,

∇2f(R, τ) =
N∑

i=1

(
2(1− ci)c3iφ(R)>µi + (1− ci)2(yi − τ)

)
.

(44)

�
The proof is lengthy but straightforward and is therefore omitted.

The algorithm was implemented using a direction update according to the
formula by Polak and Ribière with restart after n0 := dimE = n(n+1)

2 + n
steps, cf. [12]. The algorithm has the n0-step quadratic termination property.
That is, being a CG-method in a space diffeomorphic to a Euclidean space, it
could be applied equally well to the strictly convex quadratic function f̃(x) =
x>Cx for C ∈ Pn0 and therefore would terminate after at most n0 steps
at the minimum of f̃ . Consequently, under the assumption that the unique
minimum of our function f is nondegenerated, the implemented CG-method
is an n0-step locally quadratic convergent algorithm, cf. [16].

In Figure 2, eight data points y1, . . . , y8 have been generated in the follow-
ing way. First, an ellipsoid EQ0,τ0 has been specified and eight randomly chosen
points have been normalized to ŷ1, . . . , ŷ8, such that ŷ1, . . . , ŷ8 ∈ EQ0,τ0 . Then
noise has been added to obtain yi = ŷi +∆ŷi. The figure compares the min-
imum of our cost function with the result of an algebraic fit (dotted line) of
the yi’s. Due to Proposition 1 the algebraic fit might have a long tail.

-4 -2 0 2 4

-4

-2

0

2

4

Fig. 2. Algebraic fitting (dotted line) vs. the method proposed here.
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Continuous Reformulation of MINLP Problems
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Summary. The solution of mixed-integer nonlinear programming (MINLP) prob-
lems often suffers from a lack of robustness, reliability, and efficiency due to the
combined computational challenges of the discrete nature of the decision variables
and the nonlinearity or even nonconvexity of the equations. By means of a contin-
uous reformulation, the discrete decision variables can be replaced by continuous
decision variables and the MINLP can then be solved by reliable NLP solvers. In
this work, we reformulate 98 representative test problems of the MINLP library
MINLPLib with the help of Fischer-Burmeister (FB) NCP-functions and solve the
reformulated problems in a series of NLP steps while a relaxation parameter is re-
duced. The solution properties are compared to the MINLP solution with branch &
bound and outer approximation solvers. Since a large portion of the reformulated
problems yield local optima of poor quality or cannot even be solved to a discrete
solution, we propose a reinitialization and a post-processing procedure. Extended
with these procedures, the reformulation achieved a comparable performance to the
MINLP solvers SBB and DICOPT for the 98 test problems. Finally, we present a
large-scale example from synthesis of distillation systems which we were able to solve
more efficiently by continuous reformulation compared to MINLP solvers.

1 Introduction

Optimization problems in engineering are often of discrete-continuous nature
and usually nonlinear or even nonconvex. In the field of chemical engineer-
ing for example, typical examples include the synthesis of reactor or heat
exchanger networks, and unit or flowsheet structure optimization. The dis-
crete variables in these examples usually stem from the structural decisions
whereas typical continuous variables are compositions or energies, etc.. In ad-
dition, thermodynamics, reaction kinetics and economic objective functions
add strong nonlinearities. Due to the combined computational challenges from
both the discrete nature and the nonlinearity, these problems are particularly
hard to solve. Specifically, the solution performance often suffers from the lack
of robust solution algorithms, the necessity of a proper initialization with good

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_8, © Springer-Verlag Berlin Heidelberg 2010 
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starting points and long computational times. In the light of these challenges it
is comprehensible that only few applications of large-scale discrete-continuous
nonlinear optimization have been realized in industry.

Discrete-continuous nonlinear optimization problems are usually formu-
lated as MINLP problems. Lastusilta et al. [1] give a comparison of the per-
formances of different MINLP solvers, including recent developments such as
CoinBonmin [2]. In recent years, global MINLP solvers for nonconvex prob-
lems have been developed and successfully applied to problems of small to
medium scale. The high computational effort however still prohibits the use
of these solvers for large-scale problems. Local optimization algorithms for
MINLP problems are usually based on decomposition methods or tree-search
algorithms. Decomposition methods, e.g. outer approximation [3], rely on an
iteration between overestimating nonlinear programming (NLP) subproblems
and underestimating mixed-integer linear programming (MILP) subproblems.
Tree search algorithms like branch & bound [4] perform a search in the space
of the NLP subproblems with intelligent node selection and elimination. While
these local MINLP solvers have been applied to large-scale problems, the so-
lution robustness, reliability, and efficiency still remain issues.

In recent years, discrete-continuous nonlinear optimization problems have
also been reformulated as purely continuous optimization problems. The re-
sulting nonconvex NLP problems can then locally be solved with NLP solvers.
Continuous reformulation was first successfully applied to optimization prob-
lems in the form of mathematical programs with equilibrium constraints
(MPEC) [5]. Here, the equilibrium conditions in the MPEC problems are
replaced by nonconvex continuous formulations enforcing the discrete deci-
sions. More recently, general MINLP problems have also been reformulated as
purely continuous problems by replacing the discrete variable set with contin-
uous variables [6, 7]. Comparable to MPECs, the discrete decisions are then
reached by adding special nonconvex constraints.

2 Continuous Reformulation

Certain discrete-continuous problems can be formulated as MPEC problems
where discrete decisions are represented by equilibrium conditions. The equi-
librium condition implies that either a constraint is enforced or a decision
variable is at its bounds. MPEC problems are often reformulated as NLP
problems and solved by NLP solvers. One way to reformulate the equilibrium
constraint (EC) is to introduce a penalty function in the objective which penal-
izes non-discrete solutions. The EC can also be modeled by complementarity
constraints in the form of binary multiplications. Various authors suggest to
use NCP-functions for the formulation of the EC [5]. However, all these refor-
mulation strategies share one drawback: They violate the linear independence
constraint qualification (LICQ) and the Mangasarian-Fromovitz constraint
qualification (MFCQ) [8]. It was therefore proposed to relax the reformula-
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tions by adding a relaxation parameter µ to the EC. The problem is then
solved in a series of successive NLPs as the relaxation parameter µ is reduced
to zero. Stein et al. [6] transferred the continuous reformulation approach to
MINLP problems, which were derived from general disjunctive programs via
big-M constraints. The Fischer-Burmeister (FB) NCP-function was employed
to enforce the discrete decisions. Later, Kraemer et al. [7] proposed an exten-
sion of the continuous reformulation approach to include general formulations
of MINLP problems with binary variables, which are given by

min
x,y

f(x,y), s.t. g(x,y) ≤ 0, x ∈ <n, y ∈ {0, 1}m. (1)

For the continuous reformulation, the binary variables y ∈ [0, 1] were relaxed.
FB NCP-functions were used to force the relaxed binary variables to take on
binary values:

1−
√
yi

2 + (1− yi)2 ≤ µ, i ∈ [1,m]. (2)

Note that the FB NCP-function was relaxed by the relaxation parameter µ
which was reduced to zero in a series of successive NLPs. A discrete solution
is returned by the last NLP where µ = 0.

3 Results for MINLP Library

The continuous reformulation of MPECs and solution as NLPs has been ap-
plied to large MPEC problem libraries with good results [5, 9]. However, con-
tinuous reformulation strategies have not yet been applied to large MINLP
problem libraries. Hence, it is the objective of this work to study the perfor-
mance of continuous reformulation of MINLP problems empirically by means
of a large MINLP test problem library.

For this study, the MINLPLib [10] library was chosen. The test problems in
MINLPLib are supplied in GAMS [11] syntax by a large number of authors. At
the time of the study, MINLPLib contained 271 test problems. Some problems
occur in many similar versions which often only differ in a few parameters,
variables or equations and have very similar solution properties. Obviously,
the problems with many similar versions would have a disproportionate weight
in the empirical study. In order to prevent such a distortion, the library was
reduced to 98 representative MINLP problems by eliminating similar versions
of a problem a priori, i.e. before the performance was checked.

The 98 MINLP problems of the reduced library were automatically re-
formulated with the help of FB NCP-functions as in equation (2). The FB
NCP-functions are relaxed with the relaxation parameter µ and solved in a
series of successive NLPs with µ reduced in nine steps from 1 to 0.3, 0.25,
0.2, 0.15, 0.1, 0.05, 0.025 and finally to µ = 0. The solution properties of the
reformulated problems, i.e. the value of objective and the solution time, are
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compared to the solution properties of the MINLP solution with the branch &
bound solver SBB [12] and the outer approximation solver DICOPT [13], re-
spectively. All optimization problems were solved in GAMS 22.7 [11] on a PC
with a 3 GHz Dual-Core CPU (GAMS runs on one processor only). The NLP
problems or subproblems in sections 3 and 4 were solved with the SQP-based
solver SNOPT [14].

The continuous decision variables, which replace the binary variables in the
reformulated problems, are initialized with a value of 0.5. In a few instances,
the original MINLP program contains initial values for the binary variables.
In these cases, the given initial values are carried over to the reformulated
problems. It is however important to note that we did not assign any ”good”
initial values to the decision variables other than those given in the original
problem. The comparison of the solution quality, i.e. the value of the objective,
for the 98 test problems is shown in the upper part of Fig. 1. More than half
of the test problems yielded better solutions when solved with the classical
MINLP solvers SBB or DICOPT. The poor performance of the continuous
reformulation regarding the solution quality can in part be attributed to the
high rate of infeasibility: 61% of the reformulated problems could not be solved
to a discrete solution. The percentage of infeasible or non-converging problems
is significantly lower for the MINLP solvers SBB (21%) and DICOPT (27%).

Fig. 1. Performance of continuous reformulation versus branch & bound solver SBB
(left) and outer approximation solver DICOPT (right).

The solution times are compared in the lower part of Fig. 1. Note that
here we only compare problems for which both compared solvers yield feasible
solutions and at least one solution takes longer than 20 seconds (large-scale
problems). The solution procedure for the reformulated problems requires the
solution of only 9 NLPs regardless of the complexity of the original MINLP. It
is therefore not surprising that most large-scale or complex problems converge
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faster when reformulated compared to the MINLP solution, where a large
number of costly NLP subproblems have to be solved.

4 Extension of Continuous Reformulation

Reinitialization Procedure It was shown in the previous section that 61%
of the reformulated problems turn infeasible when solved as described in Sec-
tion 3. In most cases, the completely relaxed first NLP problem (µ = 1) in
the series of successive NLP problems can be solved but the solution becomes
infeasible when the relaxation parameter µ is tightened in the subsequent
NLPs. An illustration of this property is shown in the upper right of Fig. 2.
Here, we demonstrate the solution procedure for one relaxed binary variable
yi. We assume that there is a bound yi < 0.8 on the variable implied by the
inequality constraints. yi

opt = 0.68 is the value of the relaxed decision vari-
able at the solution of the NLP. When the relaxation parameter µ is reduced
in the successive solution steps, the feasible region for the relaxed decision
variable yi is split in two disjunct regions. As a consequence, yi

opt is pushed
to the ”right” towards yi = 1 in our example. When the bound imposed by
the FB NCP-function and the bound yi < 0.8 overlap for small values of µ,
the feasible region on the right side vanishes. Very often, the NLP solver then
does not move yi = 1 to the feasible region at the left side but returns an
infeasible solution. We therefore propose to reinitialize the decision variables,

Fig. 2. Solution procedure with reinitialization and post-processing procedures.
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which cause the infeasibility, in the feasible region at the opposite side of their
domain. In our example, yi would be reinitialized with yi = 0.

We implemented this reinitialization strategy in the solution procedure as
shown in Fig. 2. After each NLP, it is automatically checked whether any
FB NCP-functions are violated. When this is the case, the violated FB NCP-
functions are reinitialized by initializing the corresponding relaxed decision
variables at the opposite side of their domain (i.e. 0 or 1) as described above.
Then the NLP is solved again and when feasible, µ is reduced and the solution
procedure is resumed. However, when the same FB NCP-functions are still
violated and the reinitialized variables are still at the same side of their do-
main, these decision variables are forced to the opposite side of their domain
by setting bounds on the variables. In our example, yi would be bounded by
yi ≤ 0. When the following NLP can be solved, all bounds are released again,
µ is reduced, and the solution procedure is resumed. The number of reinitial-
ized problems, which may be solved for each value of the relaxation parameter
µ, is limited by an upper bound of m, i.e. the number of binary variables yi.

Post-Processing Procedure In order to improve the solution quality (lo-
cal optima) of the reformulated problems, a post-processing procedure was
implemented as shown in Fig. 2. The post-processing procedure is started
when µ = 0 is reached. Then additional NLPs are solved, where single binary
variables are fixed at the binary value which is complimentary to the value
in the preceding NLP. In other words, the binary variable is fixed at 1 when
it was 0 in the optimal solution of the preceding NLP and vice versa. The
decision, which binary variable to fix in each post-processing NLP depends on
the Lagrange multipliers of the preceding NLP: The binary variable bounded
by the FB NCP-function with the largest associated Lagrange multiplier is
chosen. The procedure is stopped when a maximum number of 10 NLPs in
the post-processing is reached. Together with the reinitialization procedure
for m binary variables and nine decreasing values of the relaxation parameter
mu, a maximum number of 9 ·m + 10 NLP subproblems need to be solved.
Thus, the maximum number of NLP subproblems is identical to the number
of combinations of binary variables for six binary variables and less for more
than six binary variables. It is important to note that the maximum number of
NLP subproblems was hardly ever reached in the solution of the test problems.

Results When extended by the reinitialization and post-processing proce-
dures, only 17% of the 98 test problems could not be solved to a discrete
solution. This is a significant reduction from the reformulation without the
reinitialization and post-processing procedures (61%). In fact, the number is
even lower than the number of problems which could not be solved by the
MINLP solvers SBB (21%) and DICOPT (27%). The comparison of the so-
lution quality for the 98 test problems is shown in the upper part of Fig.
3. With the help of the reinitialization and post-processing procedures, the
continuous reformulation closed the gap to the classical MINLP solvers: The
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Fig. 3. Performance of extended continuous reformulation versus branch & bound
solver SBB (left) and outer approximation solver DICOPT (right).

Fig. 4. Comparison of solver performances.

reformulation yielded better solutions almost as often as the MINLP solvers
SBB and DICOPT.

Note that the post-processing procedure improved the solution of 54% of
the reformulated test problems. However, the additional NLPs of the post-
processing and reinitialization procedures extended the solution times for the
reformulated problems. It becomes apparent in Fig. 4 that small-scale prob-
lems with few binary variables tend to demand longer solution times when
they are reformulated. This is because a disproportionally large number of
NLPs has to be solved within the reinitialization and post-processing proce-
dures. It needs to be noted, however, that contrary to the subproblems in
the fully implemented MINLP solvers, the reformulated problems are solved
as consecutive separate NLP problems. As a consequence, GAMS performs a
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time consuming pre-solve step for each NLP which adds to the solution time
especially for the small-scale problems.

Large-scale problems on the other hand, where the classical MINLP solvers
need to solve a large number of NLP subproblems, often converge faster when
they are reformulated. The solution times of the large-scale problems are com-
pared in the lower part Fig. 3. Note that we only consider problems for which
the solution took longer than 20 seconds with at least one of the compared
solvers. We also exclude problems which solutions are infeasible by one or more
solvers. Compared to the simple continuous reformulation in Section 3 the so-
lution time advantage over the solver DICOPT has decreased slightly but is
still noticeable. Obviously, there is a trade-off between robustness and relia-
bility (quality of the solution) of the reformulation on the one and efficiency
on the other hand. The extension with the reinitialization and post-processing
procedures has shifted the balance slightly towards robustness and reliability.

It is certainly an important question, for which discrete continuous op-
timization problems the continuous reformulation performs better than the
existing local MINLP solvers or vice versa. We cannot give definite answers
to this question as this is still a topic of research. As indicated above, the
reformulation offers the prospect of shorter solution times mostly for large-
scale problems. Of course, these are in fact the problems were computational
efficiency matters most. Regarding the robustness and reliability of the solu-
tion, the continuous reformulation tends to perform better for problems with
low combinatorial complexity, i.e. problems which are not highly disjunct but
where the local optima are located close together in the solution space. For
these problems, the tightening of the NCP-functions works more reliably.

5 Large-Scale Example from Process Synthesis

In the last section, we present an example of a MINLP problem from process
synthesis which fulfills all of the criteria for a superior performance of the
reformulation as mentioned above: It is a problem of large scale with a large
amount of variables and equations but it also displays a low combinatorial
complexity because the local optima are located close together. The example
is the rigorous economic optimization of a distillation process. Specifically, an
equimolar feed of acetone, chloroform, benzene and toluene is to be separated
into its pure components in a multicolumn process shown in Fig. 5. The pro-
cess requires a recycle since the mixture exhibits an azeotrope between acetone

Table 1. Objective values and solution times.

continuous
reformulation

MINLP
branch & bound

MINLP
outer approximation

annualized cost (objective value) 417612 e /a 417768 e /a no convergence

solution time optimization 146 s 1202 s -
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Fig. 5. Superstructure for the rigorous optimization of the multicolumn process.

and chloroform. We refer to [15] for a more detailed explanation of the separa-
tion process. The rigorous economic optimization provides information about
the optimal number of column trays, the optimal feed tray locations, and
the optimal operating point by minimizing a total cost function comprising
capital and operating costs. The number of trays and the feed tray locations
are discrete variables. Considering the large scale of the three-column process
and the nonlinearity of the nonideal thermodynamics, it is obvious that this
problem is particularly hard to solve.

Specifically, the optimization problem contains 3293 continuous variables,
376 binary variables, and 3305 mostly nonlinear equations. A detailed de-
scription of the column model formulation as well as the initialization can
be found elsewhere [15]. The MINLP problem was reformulated as a contin-
uous problem by introducing 376 relaxed FB NCP-functions as described in
Section 3. Like many unit operations in chemical engineering, distillation is
carried out in a cascade structure, i.e. a column. Here, the local optima are
close together: The favorable trays for feeds or product draws are located side
by side. In addition, the problem allows for a tight relaxation, i.e. the relaxed
solution places the feed trays and product draws on neighboring trays. As a
consequence of these favorable properties, the relaxation parameter could be
reduced in only three steps to (µ = 1, 0.2, 0). Since the NLPs in the step-
wise solution procedure could all be solved, a reinitialization procedure was
not necessary. The rigorous optimization of the large-scale example problem
could be solved with excellent robustness, efficiency and reliability due to the
continuous reformulation of the MINLP problem (and a suitable initialization
procedure). Table 1 lists the respective objective values and solution times
for a comparison of the optimization properties of the continuous reformula-
tion versus the MINLP solvers SBB and DICOPT. The reformulated problem
yielded a slightly better local optimum than the MINLP problem solved with
SBB. The DICOPT solver did not converge for this problem. The solution time
of the reformulated problem was significantly lower than the solution time of
the MINLP problem, which also benefited from the same initialization.
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6 Conclusion

In this work, 98 representative MINLP test problems of the library MINLPLib
were reformulated as continuous problems with the help of FB NCP-functions.
When solved in successive NLP steps with a gradually tightened relaxation
parameter, the reformulated problems yielded considerably shorter solution
times compared to the classical MINLP solvers SBB and DICOPT. As a
drawback however, 61% of the reformulated problems could not be solved
to a discrete solution. We therefore proposed an extension of the continu-
ous reformulation by a reinitialization and a post-processing procedure. With
this extension, the reformulation achieved a comparable performance to the
MINLP solvers SBB and DICOPT for the 98 test problems: The reformulation
identified better local optima for about the same percentage of problems as the
MINLP solvers. Small-scale problems tend to be solved faster by the MINLP
solvers whereas large-scale problems are often solved faster by the extended
continuous reformulation. Apparently, it is very problem-specific which solver
performs best. Finally, we presented an example from chemical process syn-
thesis, which is of large scale but displays low combinatorial complexity. The
continuous reformulation performs better than the MINLP solvers for this
example. Obviously, it would be of great value to be able to predict a priori,
whether a discrete-continuous optimization problem qualifies for continuous
reformulation. Further research should therefore be directed towards a more
detailed characterization of the problems which are suited for reformulation.
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Summary. This paper introduces sequential convex programming (SCP), a local
optimzation method for solving nonconvex optimization problems. A full-step SCP
algorithm is presented. Under mild conditions the local convergence of the algorithm
is proved as a main result of this paper. An application to optimal control illustrates
the performance of the proposed algorithm.

1 Introduction and Problem Statement

Consider the following nonconvex optimization problem:{
min

x
cTx

s.t. g(x) = 0, x ∈ Ω,
(P)

where c ∈ Rn, g : Rn → Rm is non-linear and smooth on its domain, and Ω
is a nonempty closed convex subset in Rn.

This paper introduces sequential convex programming (SCP), a local opti-
mization method for solving the nonconvex problem (P). We prove that under
acceptable assumptions the SCP method locally converges to a KKT point1

of (P) and the rate of convergence is linear.
Problems in the form of (P) conveniently formulate many problems of

interest such as least squares problems, quadratically constrained quadratic
programming, nonlinear semidefinite programming (SDP), and nonlinear sec-
ond order cone programming problems (see, e.g., [1, 2, 5, 6, 10]). In nonlinear
optimal control, by using direct transcription methods, the resulting problem
is usually formulated as an optimization problem of the form (P) where the
equality constraint g(x) = 0 originates from the dynamic system of an optimal
control problem.

The main difficulty of the problem (P) is concentrated in the nonlinear
constraint g(x) = 0 that can be overcome by linearizing it around the current

1
KKT stands for “Karush-Kuhn-Tucker”.
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iteration point and maintaining the remaining convexity of the original prob-
lem. This approach differs from sequential quadratic programming, Gauss-
Newton or interior point methods as it keeps even nonlinear constraints in
the subproblems as long as they are convex.

Optimization algorithms using convex approximation approaches have
been proposed and investigated by Fares et al. [4] for nonlinear SDP and
Jarre [8] for nonlinear programming. Recently, Lewis and Wright [12] intro-
duced a proximal point method for minimizing the composition of a general
convex function h and a smooth function c using the convex approximation
of h(c(·)).
1.1. Contribution. In this paper, we first propose a full-step SCP algorithm
for solving (P). Then we prove the local convergence of this method. The main
contribution of this paper is Theorem 1, which estimates the local contraction
and shows that the full-step SCP algorithm converges linearly to a KKT point
of the problem (P). An application in optimal control is implemented in the
last section.
1.2. Problem Statement. Throughout this paper, we assume that g is twice
continuously differentiable on its domain. As usual, we define the Lagrange
function of (P) by L(x, λ) := cTx+λT g(x) and the KKT condition associated
with (P) becomes {

0 ∈ c+∇g(x)λ+NΩ(x),
0 = g(x),

(1)

where ∇g(x) denotes the Jacobian matrix of g at x. The multivalued mapping

NΩ(x) :=

{
{w ∈ Rn | wT (y − x) ≤ 0, y ∈ Ω} if x ∈ Ω,
∅ otherwise

(2)

is the normal cone of the convex set Ω at x. A pair z∗ := (x∗, λ∗) satisfying (1)
is called a KKT point and x∗ is called a stationary point of (P). We denote by
Γ ∗ and S∗ the sets of the KKT and the stationary points of (P), respectively.
Note that the first line of (1) includes implicitly the condition x ∈ Ω due to
definition (2). Let us define K := Ω×Rm and introduce a new mapping ϕ as
follows

ϕ(z) :=
(
c+∇g(x)λ

g(x)

)
, (3)

where z stands for (x, λ) in Rn+m. Then the KKT condition (1) can be re-
garded as a generalized equation:

0 ∈ ϕ(z) +NK(z), (4)

where NK(z) is the normal cone of K at z.
The generalized equation (4) can be considered as a basic tool for studying

variational inequalities, complementarity problems, fixed point problems and
mathematical programs with equilibrium constraints. In the landmark paper
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[13], Robinson introduced a condition for generalized equation (4), which is
called strong regularity. This assumption is then used to investigate the so-
lution of (4) under the influence of perturbations. Strong regularity becomes
a standard condition in variational analysis as well as in optimization. It is
important to note that (see [3]) the generalized equation (4) is strongly reg-
ular at z∗ ∈ Γ ∗ if and only if the strong second order sufficient condition
(SOSC) of (P) holds at this point whenever Ω is polyhedral and the LICQ
condition2 is satisfied. Many research papers which have studied the stability
and sensitivity in parametric optimization and optimal control also used the
strong regularity property (see, e.g., [11, 14]).
1.4. Sequential Convex Programming Framework. The full-step se-
quential convex programming algorithm for solving (P) is an iterative method
that generates a sequence {zk}k≥0 as follows:

1. Choose an initial point x0 inside the convex set Ω and λ0 in Rm. Set
k := 0.

2. For a given xk, solve the following convex subproblem:
min

x
cTx

s.t. g(xk) +∇g(xk)T (x− xk) = 0,
x ∈ Ω,

(Pcvx(xk))

to obtain a solution x+(xk) and the corresponding Lagrange multiplier
λ+(xk). Set z+(xk) := (x+(xk), λ+(xk)). If ‖z+(xk)− zk‖ ≤ ε for a given
tolerance ε > 0, then stop. Otherwise, set zk+1 := z+(xk), increase k by
1 and go back to Step 2.

As we will show later, the iterative sequence {zk} generated by the full-step
SCP algorithm converges to a KKT point z∗ of the original problem (P), if
it starts sufficiently close to z∗ and the contraction property is satisfied (see
Theorem 1 below).

In practice, this method should be combined with globalization strategies
such as line search or trust region methods in order to ensure global conver-
gence, if the starting point is arbitrary. Since Ω is convex, projection methods
can be used to find an initial point x0 in Ω.

Lemma 1. If xk is a stationary point of Pcvx(xk) then it is a stationary point
of the problem (P).

Proof. We note that xk always belongs to Ω. Substituting xk into the KKT
condition of the subproblem Pcvx(xk), it collapses to (1).

2 Local convergence of SCP methods
Suppose that xk ∈ Ω, k ≥ 0, is the current iteration associated with λk ∈ Rm.
Then the KKT condition of the convex subproblem Pcvx(xk) becomes
2

LICQ stands for “Linear Independence Constraint Qualification”.
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0 ∈ c+∇g(xk)λ+NΩ(x),
0 = g(xk) +∇g(xk)T (x− xk),

(5)

where λ is the corresponding multiplier. Suppose that the Slater constraint
qualification condition holds for Pcvx(xk), i.e.,

relint Ω ∩ {x | g(xk) +∇g(xk)T (x− xk) = 0} 6= ∅,

where relintΩ is the set of the relative interior points of Ω. In other words,
there exists a strictly feasible point of Pcvx(xk). Then by convexity of Ω, a
point (x+(xk), λ+(xk)) is a KKT point of Pcvx(xk) if and only if x+(xk) is
a solution of (5) corresponding to the multiplier λ+(xk). In the sequel, we
use z for a pair (x, λ), z∗ and z+(xk) are a KKT point of (P) and Pcvx(xk),
respectively. We denote by

ϕ̂(z;xk) :=
(

c+∇g(xk)λ
g(xk) +∇g(xk)T (x− xk)

)
, (6)

a linear mapping and K := Ω×Rm. For each x∗ ∈ S∗, we define a multivalued
function:

L(z;x∗) := ϕ̂(z;x∗) +NK(z), (7)

and L−1(δ;x∗) := {z ∈ Rn+m : δ ∈ L(z;x∗)} for δ ∈ Rn+m is its inverse
mapping. To prove local convergence of the full-step SCP algorithm, we make
the following assumptions:

(A1) The set of KKT points Γ ∗ of (P) is nonempty.
(A2) Let z∗ ∈ Γ ∗. There exists a neighborhood U ⊂ Rn+m of the origin
and Z of z∗ such that for each δ ∈ U , z∗(δ) := L−1(δ;x∗) ∩ Z is single
valued. Moreover, the mapping z∗(·) is Lipschitz continuous on U with a
Lipschitz constant γ > 0, i.e.,

‖z∗(δ)− z∗(δ′)‖ ≤ γ‖δ − δ′‖, ∀δ, δ′ ∈ U. (8)

(A3) There exists a constant 0 < κ < 1/γ such that ‖Eg(z∗)‖ ≤ κ,
where Eg(z∗) is the Hessian of the Lagrange function L with respect to
the argument x at z∗ = (x∗, λ∗) defined by

Eg(z) :=
m∑

i=1

λi∇2gi(x). (9)

Remark 1. By definition of ϕ̂(·; ·), we can refer to xk as a parameter of this
mapping and Pcvx(xk) can be considered as a parametric convex problem with
respect to the parameter xk.
i) It is easy to show that z∗ is a solution to 0 ∈ ϕ(z) + NK(z) if and only if
it is a solution to 0 ∈ ϕ̂(z;x∗) +NK(z).
ii) Assumption (A3) implies that either the function g should be “weakly
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nonlinear” (small second derivatives) in a neighborhood of a stationary point
or the corresponding Lagrange multipliers are sufficiently small in the neigh-
borhood of λ∗. The latter case occurs if the optimal objective value of (P)
depends only weakly on perturbations of the nonlinear constraint g(x) = 0.
iii) Assumption (A2) is the strong regularity condition of the parametric gen-
eralized equation 0 ∈ ϕ̂(z;xk) + NK(z) at (z∗, x∗) in the sense of Robinson
[13].

For the assumption (A2), by linearity of ϕ̂, we have ϕ̂(z;x∗) = ϕ̂(z∗;x∗)+
∇ϕ̂(z∗;x∗)T (z − z∗) where matrix ∇ϕ̂(z) is defined by

∇ϕ̂(z;x∗) :=
[

0 ∇g(x∗)
∇g(x∗)T 0

]
, (10)

which may be singular even if∇g(x∗) is full-rank. It is easy to see that L(z;x∗)
defined by (7) has the same form as L̂(z;x∗) := ϕ̂(z∗, x∗) + ∇ϕ̂(z∗;x∗)(z −
z∗) +NK(z) a linearization of (4) at (z∗, x∗).
To make the strong regularity assumption clear in the sense of mathematical
programming, for a given neighborhood U of 0 and Z of z∗, we define the
following perturbed convex programming problem:

min
x

(c+ δc)T (x− x∗)
s.t. g(x∗) + δg +∇g(x∗)T (x− x∗) = 0,

x ∈ Ω,
(Pcvx(x∗; δ))

where δ = (δc, δg) is a perturbation (or a parameter) vector. The Slater con-
dition associated with Pcvx(x∗; δ) becomes

relint Ω ∩ {x | g(x∗) + δg +∇g(x∗)T (x− x∗) = 0} 6= ∅. (11)

Then the assumption (A2) holds if and only if z∗(δ) is the unique KKT point
of Pcvx(x∗; δ), and this solution is Lipschitz continuous on U with a Lipschitz
constant γ > 0 provided that (11) holds.

The full-step SCP algorithm is called to be well-defined if the convex sub-
problem Pcvx(xk) has at least one KKT point z+(xk) provided that zk is
sufficiently close to z∗ ∈ Γ ∗. In this case, the subproblem Pcvx(xk) is said to
be solvable.

Lemma 2. Suppose that Assumptions (A1)-(A3) are satisfied, then the full-
step SCP algorithm is well-defined.

Proof. It follows from Remark 1 (i) that the parametric generalized equation
0 ∈ ϕ̂(z;xk) +NK(z) is strongly regular at (z∗, x∗) according to Assumption
(A2), where xk is referred as a parameter. Applying Theorem 2.1 [13], we
conclude that there exists a neighborhood X of x∗ such that the generalized
equation 0 ∈ ϕ̂(z;xk) + NK(z) has unique solution z+(xk) for all xk ∈ X,
which means that z+(xk) is a KKT point of Pcvx(xk). 2
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The main result of this paper is the following theorem.

Theorem 1. [Local Contraction] Suppose that Assumptions (A1)-(A3) are
satisfied. Suppose further for z∗ ∈ Γ ∗ that g is twice continuously differentiable
on a neighborhood of x∗. Then the full-step SCP algorithm is well-defined and
there exists ρ > 0 such that for all zk ∈ B(z∗, ρ) we have:

‖z+(xk)− z∗‖ ≤ α‖zk − z∗‖, (12)

where α ∈ (0, 1) does not depend on zk and z+(xk). Thus, if the initial point
z0 is sufficiently close to z∗ then the sequence {zk} generated by full-step SCP
algorithm converges to z∗ linearly.

Proof. Note that Γ ∗ 6= ∅ by (A1), take any z∗ ∈ Γ ∗. Then the well-definedness
of the full-step SCP algorithm follows from Lemma 2. By assumption (A3)
that γκ < 1 we can choose ε := (1−γκ)

(4
√

22+2
√

3)γ
> 0. Since g is twice continuously

differentiable on a neighborhood X of x∗ and E(x, λ) defined by (9) is linear
with respect to λ, it implies that, for a given ε > 0 defined as above, there
exists a positive number r0 > 0 such that ‖∇g(x) −∇g(xk)‖ ≤ ε, ‖∇g(x) −
∇g(x∗)‖ ≤ ε, ‖Eg(z) − Eg(z∗)‖ ≤ ε and ‖Eg(z) − Eg(zk)‖ ≤ ε for all z =
(x, λ) ∈ B(z∗, r0) and zk = (xk, λk) ∈ B(z∗, r0), where B(z∗, r0) is the closed
ball of radius r0 centered at z∗.

Take any z ∈ B(z∗, r0) ⊆ Z and define the residual quantity

δ(z;x∗, xk) := ϕ̂(z;x∗)− ϕ̂(z;xk). (13)

This quantity can be expressed as

δ(z;x∗, xk) = [ϕ̂(z;x∗)− ϕ(z∗)] + [ϕ(z∗)− ϕ(z)]

+ [ϕ(z)− ϕ(zk)] + [ϕ(zk)− ϕ̂(z;xk)]

=
∫ 1

0

M(zk
t ;xk)(z − zk)dt−

∫ 1

0

M(z∗t ;x∗)(z − z∗)dt

=
∫ 1

0

[M(zk
t ;xk)−M(z∗t ;x∗)](z − zk)dt

−
∫ 1

0

M(z∗t ;x∗)(zk − z∗)dt, (14)

where z∗t := z∗+ t(z− z∗), zk
t := zk + t(z− zk) with t ∈ [0, 1], and the matrix

M is defined by

M(z̃; x̂) :=
[

Eg(z̃) ∇g(x̃)−∇g(x̂)
∇g(x̃)T −∇g(x̂)T 0

]
. (15)

Since t ∈ [0, 1], the points zk
t and z∗t must belong to B(z∗, r0). Using the

following inequalities
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‖Eg(zk
t )− Eg(z∗t )‖ ≤ ‖Eg(zk

t )− Eg(z∗)‖+ ‖Eg(z∗t )− Eg(z∗)‖ ≤ 2ε,

‖∇g(xk
t )−∇g(x∗t )‖ ≤ ‖∇g(xk

t )−∇g(x∗)‖+ ‖∇g(x∗t )−∇g(x∗)‖ ≤ 2ε,

and ‖∇g(xk)−∇g(x∗)‖ ≤ ε,

it follows that

‖M(zk
t ;xk)−M(z∗t ;x∗)‖2 ≤ ‖Eg(zk

t )− Eg(z∗t )‖2

+ 2[‖∇g(xk
t )−∇g(x∗t )‖+ ‖∇g(xk)−∇g(x∗)‖]2

≤ 22ε2.

This inequality implies that

‖M(z∗t ;x∗)−M(zk
t ;xk)‖ ≤

√
22ε. (16)

Similarly, using Assumption (A3), we can estimate

‖M(z∗t ;x∗)‖2 ≤ ‖Eg(z∗t )‖2 + 2‖∇g(x∗t )−∇g(x∗)‖2

≤ 2ε2 + [‖Eg(z∗t )− Eg(z∗)‖+ ‖Eg(z∗)‖]2

≤ 2ε2 + (ε+ κ)2

≤ (κ+
√

3ε)2. (17)

Combining (14), (16) and (17) together we obtain

‖δ(z, x∗, xk‖ ≤ (κ+
√

3ε)‖zk − z∗‖+
√

22ε‖z − zk‖. (18)

Alternatively, we first shrink B(z∗, r0), if necessary, such that δ(z, x∗;xk) ∈
U and then apply Assumption (A2) to imply that there exists z̃(δ) =
(x̃(δ), λ̃(δ)) ∈ B(z∗, r0) a solution of δ ∈ L(·; z∗) for all δ ∈ U satisfying

‖z̃(δ)− z∗‖ ≤ γ‖δ‖. (19)

If we recall z+(xk) a KKT point of Pcvx(xk), one has 0 ∈ ϕ̂(z+(xk);xk) +
NK(z+(xk)) which implies δ(z+(xk);x∗, xk) ∈ ϕ̂(z+(xk);x∗) + NK(z+(xk))
by definition of δ. Therefore, it follows from (19) that

‖z+(xk)− z∗‖ ≤ γ‖δ(z+(xk);x∗, xk)‖. (20)

Substituting z by z+(xk) into (18) and then merging with (20) we get

‖z+(xk)− z∗‖ ≤ (γκ+
√

3γε)‖zk − z∗‖+
√

22γε‖z+(xk)− zk‖. (21)

Using the triangle inequality ‖z+(xk)− zk‖ ≤ ‖z+(xk)− z∗‖+ ‖zk − z∗‖ for
the right hand side of (21), after a simple rearrangement, the inequality (21)
implies
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‖z+(xk)− z∗‖ ≤ [γκ+ (
√

22 +
√

3)γε]
1−
√

22γε
‖zk − z∗‖. (22)

Let us denote α := [γκ+(
√

22+
√

3)γε]

1−
√

22γε
. From the choice of ε, it is easy to show

that

α =
(3
√

22 +
√

3)γκ+
√

22 +
√

3
3
√

22 + 2
√

3 +
√

22γκ
∈ (0, 1). (23)

Thus the inequality (22) is rewritten as

‖z+(xk)− z∗‖ ≤ α‖zk − z∗‖, α ∈ (0, 1), (24)

which proves (12).
If the starting point z0 ∈ B(z∗, r0) then we have ‖z1−z∗‖ ≤ α‖z0−z∗‖ ≤

‖z0−z∗‖, which shows that z1 ∈ B(z∗, r0). By induction, we conclude that the
whole sequence {zk} is contained in B(z∗, r0). The remainder of the theorem
follows directly from (12).

Remark 2. It is easy to see from (23) that α ∈ (γκ, 1).

3 Numerical Results
In this section, we apply the SCP method to the optimal control problem
arising from the optimal maneuvers of a rigid asymmetric spacecraft [7, 9]. The
Euler equations for the angular velocity ω = (ω1, ω2, ω3)T of the spacecraft
are given by 

ω̇1 = − (I3−I2)
I1

ω2ω3 + u1
I1
,

ω̇2 = − (I1−I3)
I2

ω1ω3 + u2
I2
,

ω̇3 = − (I2−I1)
I3

ω1ω2 + u3
I3
,

(25)

where u = (u1, u2, u3)T is the control torque; I1 = 86.24 kg.m2, I1 =
85.07 kg.m2 and I3 = 113.59 kg.m2 are the spacecraft principal moments
of inertia. The performance index to be minimized is given by (see [7]):

J :=
1
2

∫ tf

0

‖u(t)‖2dt. (26)

The initial condition ω(0) = (0.01, 0.005, 0.001)T , and the terminal constraint
is

ω(tf ) = (0, 0, 0)T (Case 1) or ω(tf )TSfω(tf ) ≤ ρf (Case 2), (27)

where matrix Sf is symmetric positive definite and ρf > 0. Matrix Sf is
computed by using the discrete-time Riccati equation of the linearized form of
(25) and ρ is taken by ρ := 10−6×λmax(Sf ), where λmax(Sf ) is the maximum
eigenvalue of Sf . The additional inequality constraint is
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ω1(t)− (5× 10−6t2 − 5× 10−4t+ 0.016) ≤ 0, (28)

for all t ∈ [0, tf ] (see [7]).
In order to apply the SCP algorithm, we use the direct transcription

method to transform the optimal control problem into a nonconvex optimiza-
tion problem. The dynamic system is discretized based on the forward Euler
scheme. With the time horizon tf = 100, we implement the SCP algorithm for
Hp (the number of the discretization points) from 100 to 500. The size (n,m, l)
of the optimization problem goes from (603, 300, 104) to (3003, 1500, 504),
where n is the number of variables, m is the number of equality constraints,
and l is the number of inequality constraints.

We use an open source software (CVX) to solve the convex subproblems
Pcvx(xk) and combine it with a line search strategy to ensure global con-
vergence (not covered by this paper’s theory). All the computational results
are performed in Matlab 7.9.0 (2009) running on a desktop PC Pentium IV
(2.6GHz, 512Mb RAM).

If we take the tolerance TolX = 10−7 then the number of iterations goes
from 3 to 6 iterations depending on the size of the problem. Note that the
resulting convex subproblems in Case 1 are convex quadratic, while, in Case
2, they are quadratically constrained quadratic programming problems.
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Fig4. Optimal control torques [Case 2]

Figure 1 (resp. Figure 3) shows the optimal angular velocity ω(t) of the
rigid asymmetric spacecraft from 0 to 100s for Case 1 (resp. Case 2) withHp =
500. The results show that ω1(t) constrained by (28) touches its boundary
around the point t = 39s and ω(t) tends to zero at the end (t = 100s)
identical to the results in [7]. Figure 2 (resp. Figure 4) shows the optimal
torque u(t) of the rigid asymmetric spacecraft for Case 1 (resp. Case 2). The
rate of convergence is illustrated in Figures 5 and 6 for Case 1 and Case 2,
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respectively. As predicted by the theoretical results in this paper, the rate of
convergence shown in these figures is linear (with very fast contraction rate)
for all the cases we implemented.
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Summary. H-infinity controllers are frequently used in control theory due to their
robust performance and stabilization. Classical H-infinity controller synthesis meth-
ods for finite dimensional LTI MIMO plants result in high-order controllers for high-
order plants whereas low-order controllers are desired in practice. We design fixed-
order H-infinity controllers for a class of time-delay systems based on a non-smooth,
non-convex optimization method and a recently developed numerical method for
H-infinity norm computations.

Robust control techniques are effective to achieve stability and performance
requirements under model uncertainties and exogenous disturbances [16]. In
robust control of linear systems, stability and performance criteria are of-
ten expressed by H-infinity norms of appropriately defined closed-loop func-
tions including the plant, the controller and weights for uncertainties and dis-
turbances. The optimal H-infinity controller minimizing the H-infinity norm
of the closed-loop functions for finite dimensional multi-input-multi-output
(MIMO) systems is computed by Riccati and linear matrix inequality (LMI)
based methods [8, 9]. The order of the resulting controller is equal to the
order of the plant and this is a restrictive condition for high-order plants. In
practical implementations, fixed-order controllers are desired since they are
cheap and easy to implement in hardware and non-restrictive in sampling
rate and bandwidth. The fixed-order optimal H-infinity controller synthe-
sis problem leads to a non-convex optimization problem. For certain closed-
loop functions, this problem is converted to an interpolation problem and
the interpolation function is computed based on continuation methods [1].
Recently fixed-order H-infinity controllers are successfully designed for finite
dimensional LTI MIMO plants using a non-smooth, non-convex optimization
method [10]. This approach allows the user to choose the controller order and
tunes the parameters of the controller to minimize the H-infinity norm of the
objective function using the norm value and its derivatives with respect to
the controller parameters. In our work, we design fixed-order H-infinity con-
trollers for a class of time-delay systems based on a non-smooth, non-convex
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optimization method and a recently developed H-infinity norm computation
method [13]. H-infinity!optimization control!fixed-order

1 Problem Formulation

We consider time-delay plant G determined by equations of the form,

ẋ(t) = A0x(t) +

m
X

i=1

Aix(t− τi) +B1w(t) +B2u(t− τm+1) (1)

z(t) = C1x(t) +D11w(t) +D12u(t) (2)

y(t) = C2x(t) +D21w(t) +D22u(t− τm+2). (3)

where all system matrices are real with compatible dimensions andA0 ∈ Rn×n.
The input signals are the exogenous disturbances w and the control signals
u. The output signals are the controlled signals z and the measured signals
y. All system matrices are real and the time-delays are positive real numbers.
In robust control design, many design objectives can be expressed in terms of
norms of closed-loop transfer functions between appropriately chosen signals
w to z.

The controller K has a fixed-structure and its order nK is chosen by the
user a priori depending on design requirements,

ẋK(t) = AKxK(t) +BKy(t) (4)

u(t) = CKxK(t) (5)

where all controller matrices are real with compatible dimensions and AK ∈
RnK×nK .

By connecting the plant G and the controller K, the equations of the
closed-loop system from w to z are written as,

ẋcl(t) = Acl,0xcl(t) +

m+2
X

i=1

Acl,ixcl(t− τi) +Bclw(t)

z(t) = Cclxcl(t) +Dclw(t) (6)

where
Acl,0 =

„

A0 0
BKC2 AK

«

, Acl,i =

„

Ai 0
0 0

«

for i = 1, . . . ,m,

Acl,m+1 =

„

0 B2CK

0 0

«

, Acl,m+2 =

„

0 0
0 BKD22CK

«

,

Bcl =

„

B1

BKD21

«

, Ccl =
`

C1 D12CK

´

, Dcl = D11. (7)

The closed-loop matrices contain the controller matrices (AK , BK , CK)
and these matrices can be tuned to achieve desired closed-loop characteristics.

The transfer function from w to z is,

Tzw(s) = Ccl

 

sI −Acl,0 −
m+2
X

i=1

Acl,ie
−τis

!−1

Bcl +Dcl (8)
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and we define fixed-order H-infinity optimization problem as the following.
Problem Given a controller order nK , find the controller matrices (AK ,

BK , CK) stabilizing the system and minimizing the H-infinity norm of the
transfer function Tzw.

2 Optimization Problem

2.1 Algorithm

The optimization algorithm consists of two steps:

1. Stabilization: minimizing the spectral abscissa, the maximum real part
of the characteristic roots of the closed-loop system. The optimization
process can be stopped when the controller parameters are found that
stabilizes Tzw and these parameters are the feasible points for the H-
infinity optimization of Tzw.

2. H-infinity optimization: minimizing the H-infinity norm of Tzw using
the starting points from the stabilization step.

If the first step is successful, then a feasible point for the H-infinity opti-
mization is found, i.e., a point where the closed-loop system is stable. If in the
second step the H-infinity norm is reduced in a quasi-continuous way, then the
feasible set cannot be left under mild controllability/observability conditions.

Both objective functions, the spectral abscissa and the H-infinity norm, are
non-convex and not everywhere differentiable but smooth almost everywhere
[15]. Therefore we choose a hybrid optimization method to solve a non-smooth
and non-convex optimization problem, which has been successfully applied to
design fixed-order controllers for the finite dimensional MIMO systems [10].

The optimization algorithm searches for the local minimizer of the objec-
tive function in three steps [5]:

1. A quasi-Newton algorithm (in particular, BFGS) provides a fast way to
approximate a local minimizer [12],

2. A local bundle method attempts to verify local optimality for the best
point found by BFGS,

3. If this does not succeed, gradient sampling [6] attempts to refine the ap-
proximation of the local minimizer, returning a rough optimality measure.

The non-smooth, non-convex optimization method requires the evaluation
of the objective function -in the second step this is the H-infinity norm of Tzw-
and the gradient of the objective function with respect to controller parame-
ters where it exists. Recently a predictor-corrector algorithm has been devel-
oped to compute the H-infinity norm of time-delay systems [13]. We computed
the gradients using the derivatives of singular values at frequencies where the
H-infinity norm is achieved. Based on the evaluation of the objective function
and its gradients, we apply the optimization method to compute fixed-order
controllers. The computation of H-infinity norm of time-delay systems (8) is
discussed in the following section. non-smooth optimization
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2.2 Computation of the H-infinity Norm

We implemented a predictor-corrector type method to evaluate the H-infinity
norm of Tzw in two steps (for details we refer to [13]): H-infinity!norm com-
putationnorm!H-infinity

Prediction step: we calculate the approximate H-infinity norm and cor-
responding frequencies where the highest peak values in the singular value
plot occur.
Correction step: we correct the approximate results from the prediction
step.

Theoretical Foundation

The following theorem generalizes the well-known relation between the exis-
tence of singular values of the transfer function equal to a fixed value and the
presence of imaginary axis eigenvalues of a corresponding Hamiltonian matrix
[7] to time-delay systems:

Theorem 1. [13] Let ξ > 0 be such that the matrix

Dξ := DT
clDcl − ξ2I

is non-singular and define τmax as the maximum of the delays (τ1, . . . , τm+2).
For ω ≥ 0, the matrix Tzw(jω) has a singular value equal to ξ > 0 if and only
if λ = jω is an eigenvalue of the linear infinite dimensional operator Lξ on
X := C([−τmax, τmax],C2n) which is defined by

D(Lξ) =
˘

φ ∈ X : φ′ ∈ X, φ′(0) = M0φ(0) +

m+2
X

i=1

(Miφ(−τi) +M−iφ(τi))}, (9)

Lξφ = φ′, φ ∈ D(Lξ) (10)

with
M0 =

»

Acl,0 −BclD
−1
ξ DT

clCcl −BclD
−1
ξ BT

cl

ξ2CT
clD

−T
ξ Ccl −AT

cl,0 + CT
clDclD

−1
ξ BT

cl

–

,

Mi =

»

Acl,i 0
0 0

–

, M−i =

»

0 0
0 −AT

cl,i

–

, 1 ≤ i ≤ m+ 2.

By Theorem 1, the computation of H-infinity norm of Tzw can be formu-
lated as an eigenvalue problem for the linear operator Lξ.

Corollary 1.
‖Tzw‖∞ = sup{ξ > 0 : operator Lξ has an eigenvalue on the imaginary axis}

Conceptually Theorem 1 allows the computation of H-infinity norm via
the well-known level set method [2, 4]. However, Lξ is an infinite dimensional
operator. Therefore, we compute the H-infinity norm of the transfer function
Tzw in two steps:

1) The prediction step is based on a matrix approximation of Lξ.

•

•
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2) The correction step is based on reformulation of the eigenvalue problem
of Lξ as a nonlinear eigenvalue problem of a finite dimension.

The approximation of the linear operator Lξ and the corresponding stan-
dard eigenvalue problem for Corollary 1 is given in Section 2.3. The correction
algorithm of the approximate results in the second step is explained in Sec-
tion 2.4.

2.3 Prediction Step

The infinite dimensional operator Lξ is approximated by a matrix LN
ξ . Based

on the numerical methods for finite dimensional systems [2, 4], the H-infinity
norm of the transfer function Tzw can be computed approximately as

Corollary 2.
‖Tzw‖∞ ≈ sup{ξ > 0 : operator LN

ξ has an eigenvalue on the imaginary axis}.

The infinite-dimensional operator Lξ is approximated by a matrix using a
spectral method (see, e.g. [3]). Given a positive integer N , we consider a mesh
ΩN of 2N + 1 distinct points in the interval [−τmax, τmax]:

ΩN = {θN,i, i = −N, . . . , N}, (11)

where
−τmax ≤ θN,−N < . . . < θN,0 = 0 < · · · < θN,N ≤ τmax.

This allows to replace the continuous space X with the space XN of dis-
crete functions defined over the meshΩN , i.e. any function φ ∈ X is discretized
into a block vector x = [xT

−N · · · xT
N ]T ∈ XN with components

xi = φ(θN,i) ∈ C2n, i = −N, . . . , N.

Let PNx, x ∈ XN be the unique C2n valued interpolating polynomial of
degree ≤ 2N satisfying

PNx(θN,i) = xi, i = −N, . . . , N.

In this way, the operator Lξ over X can be approximated with the matrix
LN

ξ : XN → XN , defined as
“

LN
ξ x

”

i
= (PNx)

′ (θN,i), i = −N, . . . ,−1, 1, . . . , N,

“

LN
ξ x

”

0
= M0PNx(0) +

m+2
X

i=1

(MiPNx(−τi) +M−iPNx(τi)).

Using the Lagrange representation of PNx,

PNx =
∑N

k=−N lN,k xk,
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where the Lagrange polynomials lN,k are real valued polynomials of degree
2N satisfying

lN,k(θN,i) =
{

1 i = k,
0 i 6= k,

we obtain the explicit form

LN
ξ =

2

6

6

6

6

6

6

6

6

6

6

6

4

d−N,−N . . . d−N,N

...
...

d−1,−N . . . d−1,N

a−N . . . aN

d1,−N . . . d1,N

...
...

dN,−N . . . dN,N

3

7

7

7

7

7

7

7

7

7

7

7

5

∈ R(2N+1)(2n)×(2N+1)2n,

where
di,k = l′N,k(θN,i)I, i, k ∈ {−N, . . . , N}, i 6= 0,

a0 = M0 x0 +
Pm+2

k=1 (MklN,0(−τk) +M−klN,0(τk)) ,

ai =
Pm+2

k=1 (MklN,i(−τk) +M−klN,i(τk)) , k ∈ {−N, . . . , N}, k 6= 0.

2.4 Correction Step

By using the finite dimensional level set methods, the largest level set ξ where
LN

ξ has imaginary axis eigenvalues and their corresponding frequencies are
computed. In the correction step, these approximate results are corrected by
using the property that the eigenvalues of the Lξ appear as solutions of a finite
dimensional nonlinear eigenvalue problem. The following theorem establishes
the link between the linear infinite dimensional eigenvalue problem for Lξ and
the nonlinear eigenvalue problem.

Theorem 2. [13] Let ξ > 0 be such that the matrix

Dξ := DT
clDcl − ξ2I

is non-singular. Then, λ is an eigenvalue of linear operator Lξ if and only if

detHξ(λ) = 0, (12)

where
Hξ(λ) := λI −M0 −

m+2∑
i=1

(
Mie

−λτi +M−ie
λτi
)

(13)

and the matrices M0, Mi, M−i are defined in Theorem 1.

The correction method is based on the property that if ξ̂ = ‖Tzw(jω)‖∞,
then (13) has a multiple non-semisimple eigenvalue. If ξ̂ ≥ 0 and ω̂ ≥ 0 are
such that

‖Tzw(jω)‖H∞ = ξ̂ = σ1(Tzw(jω̂)), (14)
then setting

hξ(λ) = detHξ(λ),
the pair (ω̂, ξ̂) satisfies
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Fig. 1. (left) Intersections of the singular value plot of Tzw with the horizontal line
ξ = c, for c < ξ̂ (top), c = ξ̂ (middle) and c > ξ̂ (bottom). (right) Corresponding
eigenvalues of Hξ(λ) (13).

hξ(jω) = 0, h′ξ(jω) = 0. (15)

This property is clarified in Figure 1.
The drawback of working directly with (15) is that an explicit expression

for the determinant of Hξ is required. This scalar-valued conditions can be
equivalently expressed in a matrix-based formulation.

8

<

:

H(jω, ξ)

»

u,
v

–

= 0, n(u, v) = 0,

=
˘

v∗
`

I +
Pm+1

i=1 Acl,iτie
−jωτi

´

u
¯

= 0
(16)

where n(u, v) = 0 is a normalizing condition. The approximate H-infinity
norm and its corresponding frequencies can be corrected by solving (16). For
further details, see [13].

2.5 Computing the Gradients

The optimization algorithm requires the derivatives of H-infinity norm of the
transfer function Tzw with respect to the controller matrices whenever it is
differentiable. Define the H-infinity norm of the function Tzw as

f(Acl,0, . . . , Acl,m+2, Bcl, Ccl, Dcl) = ‖Tzw(jω)‖∞.

These derivatives exist whenever there is a unique frequency ω̂ such that (14)
holds, and, in addition, the largest singular value ξ̂ of Tzw(jω̂) has multiplicity
one. Let wl and wr be the corresponding left and right singular vector, i.e.
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Tzw(jω̂) wr = ξ̂ wl,

w∗l Tzw(jω̂) = ξ̂ w∗r .
(17)

When defining ∂f
∂Acl,0

as a n-by-n matrix whose (k, l)-th element is the deriva-
tive of f with respect to the (k, l)-th element of Acl,0, and defining the other
derivatives in a similar way, the following expressions are obtained [14]:

∂f

∂Acl,0
=
<
`

M(jω̂)∗CT
clwlw

∗
rB

T
clM(jω̂)∗

´

w∗
rwr

,

∂f

∂Acl,i
=
<
`

M(jω̂)∗CT
clwlw

∗
rB

T
clM(jω̂)∗ejωτi

´

w∗
rwr

for i = 1, . . . ,m+ 2,

∂f

∂Bcl
=
<(M(jω̂)∗CT

clwlw
∗
r )

w∗
rwr

,
∂f

∂Ccl
=
<(wlw

∗
rB

T
clM(jω̂)∗)

w∗
rwr

,

∂f

∂Dcl
=
< (wlw

∗
r )

w∗
rwr

where M(jω) =
(
jωI −Acl,0 −

∑m+2
i=1 Acl,ie

−jωτi

)−1

.
We compute the gradients with respect to the controller matrices as

∂f

∂AK
=
ˆ

0nK×n InK

˜ ∂f

∂Acl,0

»

0n×nK

InK

–

,

∂f

∂BK
=
ˆ

0nK×n InK

˜ ∂f

∂Acl,0

»

In

0nK×n

–

CT
2

+
ˆ

0nK×n InK

˜ ∂f

∂Acl,m+2

»

0n×nK

InK

–

CT
KD

T
22 +

ˆ

0nK×n InK

˜ ∂f

∂Bcl
DT

21,

∂f

∂CK
= BT

2

ˆ

In 0n×nK

˜ ∂f

∂Acl,m+1

»

0n×nK

InK

–

+DT
22B

T
K

ˆ

0nK×n InK

˜ ∂f

∂Acl,m+2

»

0n×nK

InK

–

+DT
12

∂f

∂Ccl

»

0n×nK

InK

–

where the matrices In, InK
and 0n×nK

, 0nK×n are identity and zero matrices.

3 Examples

We consider the time-delay system with the following state-space representa-
tion,

ẋ(t) = −x(t)− 0.5x(t− 1) + w(t) + u(t),

z(t) = x(t) + u(t),

y(t) = x(t) + w(t).

We designed the first-order controller, nK = 1,

ẋK(t) = 3.61xK(t) + 1.39y(t),

u(t) = −0.83xK(t),
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achieving the closed-loop H-infinity norm 0.064. The closed-loop H-infinity
norms of fixed-order controllers for nK = 2 and nK = 3 are 0.021 and 0.020
respectively.

Our second example is a 4th-order time-delay system. The system contains
4 delays and has the following state-space representation,

ẋ(t) =

0

B

@

−4.4656 −0.4271 0.4427 −0.1854
−0.8601 −5.6257 0.8577 −0.5210
0.9001 −0.7177 −6.5358 0.0417
−0.6836 0.0242 0.4997 −3.5618

1

C

A

x(t)+

0

B

@

0.6848 −0.0618 0.5399 0.5057
0.3259 −0.3810 0.6592 −0.0066
0.6325 0.3752 0.4122 0.7303
0.5878 0.9737 0.1907 −0.8639

1

C

A

x(t−3.2)

+

0

B

@

0.9371 −0.7859 0.1332 0.7429
−0.8025 0.4483 0.6226 0.0152
0.0940 0.2274 0.1536 0.5776
−0.1941 0.5659 0.8881 −0.0539

1

C

A

x(t−3.4)+

0

B

@

0.6576 −0.8543 −0.3460 0.6415
−0.3550 0.5024 0.6081 0.9038
0.9523 0.6624 0.0765 −0.8475
−0.4436 0.8447 −0.0734 0.4173

1

C

A

x(t−3.9)

+

0

B

@

1 0
−1.6 1

0 0
0 0

1

C

A

w(t) +

0

B

@

0.2
−1
0.1
−0.4

1

C

A

u(t− 0.2)

z(t) =

„

1 0 0 −1
0 −1 1 0

«

x(t) +

„

0.1 1
−1 0.2

«

w(t) +

„

1
−1

«

u(t)

y(t) =
`

1 0 −1 0
´

x(t) +
`

−2 0.1
´

w(t) + 0.4u(t− 0.2)

When nK = 1, our method finds the controller achieving the closed-loop
H-infinity norm 1.2606,

ẋK(t) = −0.712xK(t)− 0.1639y(t),

u(t) = −0.2858xK(t)

and the results for nK = 2 and nK = 3 are 1.2573 and 1.2505 respectively.

4 Concluding Remarks

We successfully designed fixed-order H-infinity controllers for a class of time-
delay systems. The method is based on non-smooth, non-convex optimization
techniques and allows the user to choose the controller order as desired. Our
approach can be extended to general time-delay systems. Although we illus-
trated our method for a dynamic controller, it can be applied to more general
controller structures. The only requirement is that the closed-loop matrices
should depend smoothly on the controller parameters. On the contrary, the
existing controller design methods optimizing the closed-loop H-infinity norm
are based on Lyapunov theory and linear matrix inequalities. These methods
are conservative if the form of the Lyapunov functionals is restricted, and they
require full state information.
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Summary. Optimization problems such as the parameter design of dynamical sys-
tems are often computationally expensive. In this paper, we apply Krylov based
model order reduction techniques to the parameter design problem of an acoustic
cavity to accelerate the computation of both function values and derivatives, and
therefore, drastically improve the performance of the optimization algorithms. Two
types of model reduction techniques are explored: conventional model reduction
and parameterized model reduction. The moment matching properties of derivative
computation via the reduced model are discussed. Numerical results show that both
methods are efficient in reducing the optimization time.

1 Introduction

Numerical parameter studies of acoustic problems arising from applications
such as airplane engines and insulation panels along motorways or in houses
are often carried out in order to choose the ‘optimal’ values of the parame-
ters to meet design objectives like reducing noise, and thus can be viewed as
optimization problems. These problems are often computationally extremely
expensive, since for each parameter value, an entire frequency response func-
tion (FRF) needs to be computed, which by itself is already quite expensive.

The computational cost for the FRF has been dramatically reduced by a
factor of ten or more by using model order reduction (MOR) techniques [12].
The goal of MOR is to construct a low order model to approximate the original
large-scale model with high accuracy to reduce the computational cost. It has
been successfully applied to many different fields such as circuit simulations [6,
13] and (vibro) acoustics [12]. However, little work has been done to introduce
MOR into optimization although optimization problems are more expensive
in general because solving an FRF is only one iteration step in optimization.

In this paper, we first introduce a minimax problem arising from the pa-
rameter design of an acoustic cavity, propose an algorithm to solve it, and
analyze its computational cost. Two types of Krylov based MOR methods

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_11, © Springer-Verlag Berlin Heidelberg 2010 



114 Yao Yue, Karl Meerbergen

are investigated to reduce the cost: conventional MOR on a single variable
like SOAR (Second Order ARnoldi) [2, 14] and parameterized MOR (PMOR)
on multiple variables like PIMTAP (Parameterized Interconnect Macromod-
eling via a Two-directional Arnoldi Process) [10]. We show how to integrate
SOAR and PIMTAP into the minimax algorithm, especially analyzing the
moment matching properties of the derivatives. Since computing the function
values and the gradients is the most expensive part in our application, both
SOAR and PIMTAP can drastically increase the performance of optimization
algorithms. Numerical results show that MOR can significantly reduce the
optimization time while still locating the optimizer with high accuracy.

2 Minimax Optimization

In this part, we introduce a minimax optimization problem arising from the
optimal design of an acoustic cavity, which is a unit cube. We imposed ho-
mogeneous boundary conditions on all faces except one where we imposed an
admittance boundary condition. The mathematical model of this problem is

−∇2u+ k2u = f,
∂u
∂n + iωγ u = 0, for u ∈ Γ1,
u = 0, for u ∈ Γ2,

(1)

where u, k, f , n, ω and γ denote displacement, the wave number, the exci-
tation, the normal direction, the frequency and the admittance ratio, respec-
tively, Γ1 denotes the face with admittance boundary condition and Γ2 denotes
the five other faces. We discretized the unit cube with finite differences and
analyzed this system in the frequency domain. The output of the system is the
displacement of a given point inside the cavity, which depends on both ω and
γ. Therefore, we denote it by y(ω, γ). For any fixed γ 0, |y(ω, γ 0)|2 defines an
FRF and we show three FRFs with different γ values in Fig. 1. Our design ob-
jective is to minimize the highest peak of the FRF by choosing the optimal γ.
To study how the local maxima change w.r.t γ, we consider the necessary con-
dition ∂|y|2

∂ω = 0. This condition implicitly defines several curves, namely Local
MAximum Curves (LMAC s) and Local MInimum Curves (LMIC s). Note that
an LMAC or LMIC may discontinue at certain points because of its interac-
tion with other LMACs or LMICs. To better understand this optimization
problem, we project the LMACs onto the |y|2– γ plane and get Fig. 2. In
practice, these Projected LMAC s (PLMAC s) appear to be convex for γs near
the optimizer. The Projected Global MAximum Curve (PGMAC ) in Fig. 2 is
the maximum of all the PLMACs. Although a PLMAC may discontinue at
some point, the PGMAC is defined everywhere and continuous. However, it
usually has non-differentiable kink points where different PLMACs intersect.

Mathematically, our optimization problem can be formulated as

min
γ

max
ωL≤ω≤ωH

|y(ω, γ)|2 s.t.
{

(K + iωγ C − ω2M)x(ω, γ) = f
y(ω, γ) = l∗x(ω, γ) (2)
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where K,C,M ∈ Cn×n are stiffness matrix, damping matrix and mass matrix
respectively and f, x, l ∈ Cn are input vector, state vector and output vector
respectively. Equivalently, the problem (2) can also be formulated as

min
γ

g(γ), (Min Phase or Outer Phase),

g(γ) = max
ωL≤ω≤ωH

|y(ω, γ)|2, (Max Phase or Inner Phase). (3)

For this system, the derivatives are cheap if y is already computed since

y = l∗(K + iωγ C − ω2M)−1f,

∂y

∂ω
= l∗(K + iωγ C − ω2M)−1(2ωM − iγ C)(K + iωγ C − ω2M)−1f, (4)

∂y

∂γ
= l∗(K + iωγ C − ω2M)−1(−iωC)(K + iωγ C − ω2M)−1f,

and they share the same computationally dominant part, namely the LU fac-
torization of the matrix K + iωγ C − ω2M . Therefore, the derivatives should
be exploited for fast convergence. On the other hand, to make MOR more ap-
plicable, we choose Quasi Newton type method because the first order deriva-
tives can be approximated well with the reduced model as we will discuss in
Section 4. We propose a Quasi Newton based algorithm in Algorithm 2.1.

Algorithm 2.1 (Minimax Optimization)
1. Initialization. Select the initial admittance rate γ 0 and the error tolerance
τ . Set k = 1.

2. Min Phase: For each γ k

2.1. Max Phase: Compute g(γ k) = max
ωL≤ω≤ωH

|y(ω, γ k)|2 using a grid search

followed by a Quasi Newton refinement. Let the optimizer be (ω k, γ k).

Compute the pseudo-gradient ∂g
∂γ

˛

˛

˛

(pseudo)

γ=γ k

M
= 2<



y∗(ω k, γ k) ∂y
∂γ

˛

˛

˛ω=ω k
γ=γ k

ff

.

2.2. Update: Use the function value and pseudo-gradient of g(γ k) and
g(γ k−1) to do a Quasi Newton step to get γ k+1. Set k = k + 1. If
|γ k − γ k−1| ≤ τ , return optimizer as γ k and end the algorithm.



116 Yao Yue, Karl Meerbergen

All Quasi Newton steps in the algorithm above use a backtracking strategy
with Armijo condition. In a Max Phase, an FRF may have many local maxima
and we are only interested in the global maximum in our application, so we use
grid search to try to avoid missing the highest peak and use a Quasi Newton
step afterwards to increase the precision. In the Min Phase, however, the
function g(γ) is convex in our application and a local optimization algorithm
suffices. The difficult part about the Min Phase is that g(γ) may have kink
points as is shown in Fig. 2. The pseudo-gradient equals the gradient at the
differentiable points and equals the gradient of one of several intersecting
PLMACs at a kink point. The direction obtained is always correct, and around
the kink optimizer, the backtracking will terminate when |γ k − γ k−1| ≤ τ .

In Algorithm 2.1, we need to compute y for each step of the Inner Phase,
∂y
∂ω for each Quasi Newton step of the Inner Phase, and ∂y

∂γ for each step of
the Outer Phase. When n is large, these computations are expensive due to
the LU factorization of the large scale matrix K + iωγ C − ω2M . A possible
way to reduce the computational cost is MOR. However, if we want to do this
efficiently, the gradient should also be computed via the reduced model; oth-
erwise, the large scale matrix is factorized anyway and the acceleration effect
is limited. We will introduce MOR in the next section and discuss derivative
computations via the reduced model in section 4.

3 Krylov based MOR

3.1 Arnoldi Process on First Order System

Given A ∈ Cn×n and b ∈ Cn, the k-dimensional Krylov subspace is defined as

Kk(A, b) = span{b, Ab,A2b, . . . , Ak−1b},

where k ≤ n and in most applications k � n. Krylov subspace methods are
very suitable for large scale problems because only matrix-vector multiplica-
tion is required. The Arnoldi process (AP) [1] is a numerically stable scheme
to generate an orthonormal basis of Kk(A, b).

First, we consider the simplest case: MOR on the first order linear system{
(K − αM)x = b,
y = l∗x,

(5)

where K, M ∈ Cn×n , K is nonsingular and b ∈ Cn. Given two matrices Wk,
Vk ∈ Cn×k, we can approximate x with a vector in the subspace colspan{Vk},
namely Vkz (z ∈ Ck) and then left multiply the first equation by W ∗k to obtain
the reduced model {

(K̂ − αM̂)z = b̂,

ŷ = l̂∗z,
(6)
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where K̂ = W ∗kKVk ∈ Ck×k , M̂ = W ∗kMVk ∈ Ck×k, b̂ = W ∗k b ∈ Ck and
l̂ = V ∗k l ∈ Ck. In this way, the order n system (5) is reduced to the order
k system (6) and the remaining problem is how to choose Wk and Vk such
that ŷ is a good approximation of y. One approach to generate Wk and Vk

is using a Krylov method. The key concept of Krylov based MOR is moment

matching. Let y =
∞∑

i=0

miα
i be the Taylor expansion of y, then mi is called

the i-th moment of y. For system (5), mi = l∗(K−1M)iK−1b. Theorem 3.1
shows that we can use Krylov methods to generate Wk and Vk with moment
matching property and ŷ is a Padé type approximation of y. So when α is small,
the reduced system (6) is a good approximation of the original system (5) [14].

For (5), Kk(K−1M,K−1b) is called the k-dimensional right Krylov sub-
space and Kk(K−∗M∗,K−∗l) is called the k-dimensional left Krylov sub-
space. In a one-sided method, we use an AP on Kk(K−1M,K−1b) (or on
Kk(K−∗M∗,K−∗l)) to get the column vectors of Vk (or Wk), and set Wk = Vk

(or Vk = Wk). In a two-sided method, we use an AP on Kk(K−1M,K−1b) to
get Vk and an AP on Kk(K−∗M∗,K−∗l) to get Wk.

Theorem 3.1

1. Using a one-sided method to reduce (5), the first k moments of y and ŷ
match if the left or the right Krylov subspace is of order k.

2. Using a two-sided method to reduce (5), the first 2k moments of y and ŷ
match if both the left and the right Krylov subspaces are of order k.

3.2 SOAR

Consider the second order system in the Max Phase optimization (3):{
(K + iωγ 0C − ω2M)x = f,
y = l∗x.

(7)

A straightforward method to reduce this system is to use the AP for an
equivalent first order system [4], but the reduced model does not preserve the
second order structure, which is often regarded as a disadvantage.

A solution to this problem is the SOAR method. SOAR builds the k-th Sec-
ond Order Krylov Subspace that contains the k-th Krylov subspace generated
by AP and thus inherits its moment matching properties. The k-th left (right)
second order Krylov subspace is defined as Kk(−iγ 0K

−∗C∗,K−∗M∗,K−∗l)
(Kk(−iγ 0K

−1C,K−1M,K−1f)) [14], where Kk(A,B, b) = {p1, p2, . . . , pk},
p1 = b, p2 = Ab, and pi = Api−1 +Bpi−2 (3 ≤ i ≤ k).

Instead of reducing the equivalent first order model, SOAR directly reduces
the second order system (7) to get the reduced system{

(K̂ + iωγ 0Ĉ − ω2M̂)z = f̂ ,

ŷ = l̂∗z,
(8)
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where [K̂, Ĉ, M̂ ] = W ∗[K,C,M ]V , f̂ = W ∗f , l̂ = V ∗l and W,V ∈ Cn×k

contain the base vectors of the subspaces. If either colspan{W} contains the
left second order Krylov subspace or colspan{V } contains the right second
order Krylov subspace, the SOAR method is called “one-sided”, and if both
these conditions are true, the SOAR method is called “two-sided”. In one-sided
SOAR, it is common practice to set W = V . We summarize some important
properties of SOAR in Theorem 3.2. See [4, 3, 2, 14] for more details.

Theorem 3.2 Let (8) be the SOAR reduced model of the system (7), we
have the following moment matching result for SOAR:

If one-sided SOAR is used and the dimension of the right (or left) second
order Krylov space is k, then the first k moments of y and ŷ match;
If two-sided SOAR is used and the dimensions of both second order Krylov
subspaces are k, then the first 2k moments of y and ŷ match.

3.3 PIMTAP

PMOR is a natural extension of MOR on one variable to accelerate the solu-
tion of parameterized linear systems. Pioneering work includes [16, 7, 15, 5],
etc. Here we concentrate on PIMTAP method. Consider the following system{(

G0 + γ G1 + s(C0 + γ C1)
)
x = b,

y = l∗x,
(9)

where G0, G1, C0, C1 ∈ Cn×n and b, l ∈ Cn. Let the Taylor series of x in terms

of s and γ be x =
∞∑

i=0

∞∑
j=0

rj
i s

iγj (rj
i ∈ Cn) and we define rj

i as the (i, j)-th

2-parameter moment of x. The idea of Krylov based PMOR is to match the
low order 2-parameter moments.

PIMTAP [10, 9, 8] provides a flexible, systematic and numerically stable
way for reducing linear systems with multiple parameters. It defines

r
[j]
[i] =


r0i−1

r1i−1
...

rj−1
i−1

 , G[j] =


G0

G1 G0

G1 G0

. . . . . .
G1 G0


︸ ︷︷ ︸

j blocks

, C[j] =


C0

C1 C0

C1 C0

. . . . . .
C1 C0


︸ ︷︷ ︸

j blocks

,

and finds the recursive relationship

r
[j]
[i] = −G−1

[j] C[j]r
[j]
[i−1], for all i > 1. (10)

It is clear that r[j][1], r
[j]
[2], . . . , r

[j]
[k] span the Krylov subspace Kk

(
−G−1

[j] C[j], r
[j]
[1]

)
and we can use AP to generate its base vectors in a numerically stable way.

•

•
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This method can generate rectangle moment matching patterns as is shown
in Fig 3(a), in which a solid circle in (i, j) means the moment rj

i is to be
matched.

-
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Fig. 3. PIMTAP moment matching patterns.

In some applications, the high order cross-term moments are not so im-
portant and moment matching patterns like Fig. 3(b) are wanted. In the
example of Fig. 3(b), we can build K10

“

−G−1
[1] C[1], r

[1]

[1]

”

, K7

“

−G−1
[2] C[2], r

[2]

[1]

”

,

K4

“

−G−1
[3] C[3], r

[3]

[1]

”

and K2

“

−G−1
[4] C[4], r

[4]

[1]

”

to get the projection matrix V .
PIMTAP recycles the moments that are already computed and thus avoids
recomputation. See [10, 9, 8] for more details about PIMTAP.

After we obtain V from PIMTAP, we can project the system (9) on the
subspace colspan{V } to get the reduced model{(

Ĝ0 + γ Ĝ1 + s(Ĉ0 + γ Ĉ1)
)
z = b̂,

ŷ = l̂∗z,
(11)

where [Ĝ0, Ĝ1, Ĉ0, Ĉ1] = V ∗[G0, G1, C0, C1]V and [b̂, l̂] = V ∗[b, l]. After this
reduction, the moments specified by the moment matching pattern will be
matched for y and ŷ.

4 Derivative Computation via the Reduced Model

The analysis in section 2 shows that computing derivatives via the reduced
model is crucial in using MOR to improve the performance of the Minimax
Algorithm 2.1. In this section, we analyze the moment matching properties for
derivatives in two-sided SOAR and PIMTAP, which means that computing
derivatives via the reduced model is feasible.

4.1 Computation of Derivatives w.r.t Free Variables

Theorem 4.1 Let y and ŷ be the output of the original system and the reduced
system respectively, and s1, s2, . . . , sl be l free parameters in both systems. Let

y =

∞
X

i1=0

∞
X

i2=0

. . .

∞
X

il=0

m(i1, i2, . . . , il)s
i1
1 s

i2
2 . . . s

il
l ,
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ŷ =

∞
X

i1=0

∞
X

i2=0

. . .

∞
X

il=0

m̂(i1, i2, . . . , il)s
i1
1 s

i2
2 . . . s

il
l .

Then if i1 ≥ 0, i2 ≥ 0, . . . , il ≥ 0, the (i1, i2, . . . , il)-th moments of
∂r1+r2+...+rl y

∂s
r1
1 ∂s

r2
2 ∂s

rl
l

and ∂r1+r2+...+rl ŷ

∂s
r1
1 ∂s

r2
2 ∂s

rl
l

match iff the (i1 + r1, i2 + r2, . . . , il + rl)-th
moments of y and ŷ match.

From Theorem 4.1, it is clear that in 2-variable case, the (i, j)-th moment of
∇y and ∇ŷ match if the (i + 1, j)-th and the (i, j + 1)-th moments of y and
ŷ match.

4.2 Computation of Derivatives w.r.t Fixed Variables

For SOAR, Theorem 3.2 implies moment matching properties for ∂y
∂ω , but not

for ∂y
∂γ since γ is a fixed variable rather than a free variable in the SOAR

reduced model. In this section, we show that we can compute first order
derivatives w.r.t fixed variables via the two-sided MOR reduced model with
the moment matching property.

For the first order system (5), dy
dα = l∗(K −αM)−1M(K −αM)−1b. Since

l∗(K − αM)−1 can be approximated by the left-Krylov subspace and (K −
αM)−1b can be approximated by the right-Krylov subspace, we also has the
following moment matching property for computing derivatives.

Theorem 4.2 In system (5), if both the left Krylov subspace match and the
right Krylov subspace are of dimension k, the first k moments of l∗(K −
αM)−1A(K −αM)−1b and l̂∗(K̂ −αM̂)−1Â(K̂ −αM̂)−1b̂ match, where A is
an arbitrary matrix and Â = W ∗AV . If A = βM (β ∈ C), the first 2k − 1
moments match.

The two-sided SOAR methods inherit the moment matching properties
from two-sided AP.

Corollary 4.3 For two-sided SOAR, if both the 2nd-order left-Krylov sub-
space and the 2nd-order right-Krylov subspace are of dimension k, the first 2k
moments of y and ŷ match, the first 2k−1 moments of ∂y

∂ω and ∂ŷ
∂ω match and

the first k moments of ∂y
∂γ and ∂ŷ

∂γ match.

5 Numerical Results

Now we apply MOR in solving the minimax optimization problem 2. Both
two-sided SOAR and PIMTAP reduced models can compute y, ∂y

∂ω and ∂ŷ
∂γ .

Two-sided SOAR can be directly used in the Max Phase, and to use PIMTAP,
we do the following substitution: G0 ← K, G1 ← C, C0 ← M , C1 ← 0,
γ ← iωγ, s ← −ω2 and b ← f . The advantage of PIMTAP is that it can be
used for several Max Phases. We compare three cases here: optimization with
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the original model, with one two-sided SOAR reduced model for each Max
Phase, and with a PIMTAP reduced model for the whole Min Phase.

In the first example, we apply MOR to a system of order 15625. The
numerical results in Table 1 show that MOR indeed drastically reduces the
optimization time as we expect. In the second example, the system order is
216 and the numerical results in Table 2 show that MOR is effective even
when the system order is relatively small. In both examples, the grid search
interval is set to 0.01, backtracking factor equals 0.5, γ0 = 0.3 and τ = 10−4.
In both examples, the original models are very accurately approximated by
the small order reduced system. How to choose the order of the reduced model
is an open problem, but if the eigenvalues of the system are clustered away
from zero, we can expect a low order reduced model to work well [11].

Table 1. Numerical Results for Example 1

Direct method Two-sided SOAR PIMTAP

Matrix size 15625 50 61
Optimizer computed (10.1245, 0.2671) (10.1245, 0.2671) (10.1245, 0.2671)

CPU time 3508s 128s 22s

Table 2. Numerical Results for Example 2

Direct method Two-sided SOAR PIMTAP

Matrix size 216 35 44
Optimizer computed (8.668, 0.2687) (8.669, 0.2687) (8.668, 0.2688)

CPU time 162s 27s 18s

6 Conclusions

In this paper, we have introduced MOR to a large scale minimax optimization
problem that is computationally very expensive. We show that derivative com-
putations, a key issue in many optimization algorithms, can also be computed
with the reduced model with moment matching property. As both function
values and the derivatives can be computed via the reduced model, the original
large-scale model is no longer explicitly involved in the optimization, and the
optimization time can be drastically reduced. Numerical results show that
both SOAR and PIMTAP are effective in reducing optimization time, and
PIMTAP is more efficient in our application.
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Summary. This paper provides an introduction to the topic of optimization on
manifolds. The approach taken uses the language of differential geometry, however,
we choose to emphasise the intuition of the concepts and the structures that are
important in generating practical numerical algorithms rather than the technical
details of the formulation. There are a number of algorithms that can be applied
to solve such problems and we discuss the steepest descent and Newton’s method
in some detail as well as referencing the more important of the other approaches.
There are a wide range of potential applications that we are aware of, and we briefly
discuss these applications, as well as explaining one or two in more detail.

1 Introduction

This paper is written as an invitation for the reader to the area of optimiza-
tion on manifolds. It follows quite closely the structure of the plenary talk
given by the first author at the 14th Belgian-French-German Conference on
Optimization, Leuven, 14–18 September 2009. The style is rather on the in-
formal side, and there is a definite bias towards the exposition given in the
monograph [5], to which we refer for more details and for a larger bibliogra-
phy. When we cite [5], we do not imply that it is the original reference for
the topic in question and we refer the reader to the “Notes and References”
sections of [5] for details of the history.

The general problem of optimization on manifolds is introduced in Sec-
tion 2. A motivation for considering the problem in its most abstract form
is given in Section 3. Manifolds are defined in more technical terms in Sec-
tion 4. Several specific manifolds are presented in Section 5, along with point-
ers to applications where they are involved. Section 6 describes a steepest-
descent optimization scheme on Riemannian manifolds. Its application to a
simple problem is worked out in Section 7. Section 8 is dedicated to Newton’s

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_12, © Springer-Verlag Berlin Heidelberg 2010 
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M f

R
x

Fig. 1. Optimization on manifolds in one picture.

method on Riemannian manifolds. Other optimization methods on manifolds
are briefly discussed in Section 9. Section 10 provides some conclusions.

2 Optimization on manifolds in one picture

The archetypal problem in optimization on manifolds is pictured in Figure 1.
The set of feasible points is a manifold M that, for the sake of developing
intuition, can be viewed as a smooth surface. We will argue in Section 3,
however, that it is beneficial to depart from this restrictive representation.
Anticipating Section 4, one can think ofM as a collection of points, endowed
with a yet-to-be-defined manifold structure that turns M into a topological
set—so we can talk about neighborhoods—and that makes it possible to de-
clare whether a real-valued function onM is smooth or not. The reader who
cannot wait to get a more precise definition of the concept of a manifold is
invited to take a peek at Section 4. It may also be reassuring to have a look
at the list of specific manifolds in Section 5.

The smooth real-valued function f on the set M that defines the goal of
the optimization problem is termed the objective function. A few of its level
curves f−1(c), c ∈ R, are represented in Figure 1. The dot inside the level
curves is an optimal point of f , say, a minimizer of f .

Computing minimizers of f is our goal. More precisely, the problem is as
follows:

Problem 1 (optimization on manifolds).
Given: a manifoldM and a smooth function f :M→ R.
Sought: an element x∗ ofM such that there is a neighborhood V of x∗ inM
with f(x∗) ≤ f(x) for all x ∈ V .

Such an x∗ is termed a local minimizer of f .
The methods we are interested in for solving Problem 1 are iterative algo-

rithms on the manifoldM. Given a starting point x0 ∈M, such an algorithm
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produces a sequence (xk)k≥0 in M that converges to x∗ whenever x0 is in a
certain neighborhood, or basin of attraction, of x∗. As in classical optimiza-
tion algorithms, the following properties are desirable: (i) the set of points
x0 for which convergence to x∗ occurs should be large; (ii) convergence to x∗
should be fast; (iii) the numerical effort required to compute each new iterate
should be reasonable.

3 Why consider general manifolds?

A motivation for considering general manifolds—and not only manifolds that
come to us as subsets of Euclidean spaces—is that they offer an adequate
common framework for dealing with the following two problems.

Problem 2. Given a matrix A = AT ∈ Rn×n and a diagonal n × n matrix
N = diag(1, . . . , p) with p ≤ n, solve

min f(X) = trace(XTAXN)

subj. to X ∈ Rn×p, XTX = I.

Solving this problem yields the p “leftmost” eigenvectors of A, i.e., those
associated with the p algebraically smallest eigenvalues of A; see Section 7
or [5, 4.8] for details.

The optimization domain in Problem 2 is the set

St(p, n) = {X ∈ Rn×p : XTX = I}, (1)

which is a subset of the Euclidean space Rn×p. If a subset of a Euclidean
space can be locally smoothly straightened—the submanifold property—, then
it admits one and only one “natural” manifold structure [5, Prop. 3.3.2]; see
Figure 2 for an illustration. The set St(p, n) happens to be such a subset [5,
3.3.2]. Endowed with its natural manifold structure, St(p, n) is termed the

Stiefel manifold of orthonormal p-frames in Rn.4

Problem 3. Given a matrix A = AT ∈ Rn×n, solve

min f(Y ) = trace
(
(Y TY )−1Y TAY

)
subj. to Y ∈ Rn×p

∗ ,

where Rn×p
∗ denotes the set of all full-rank n× p matrices (p < n).

4 The Stiefel manifold is named in honor of Eduard L. Stiefel who studied its
topology in [55]. Stiefel is perhaps better known for proposing with M. R. Hestenes
the conjugate gradient method [25]. Incidentally, he was born 100 years ago.

§

§
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ϕ(U)

Rd

Rn−d

∃ϕ(x) : U diffeo−→ ϕ(U)

M

U open

Rn

x

Fig. 2. The set M ⊂ Rn is termed a submanifold of Rn if the situation described
above holds for all x ∈ M. Charts for M are obtained by extracting the d first
coordinates.

The function f in Problem 3 has the following invariance property:

f(YM) = f(Y ), for all Y ∈ Rn×p
∗ and all M ∈ Rp×p

∗ . (2)

In other words, f is constant on each equivalence class

[Y ] = {YM : M ∈ Rp×p
∗ }, (3)

Y ∈ Rn×p
∗ . The equivalence class [Y ] is precisely the set of all n× p matrices

that have the same column space as Y , and Y is a minimizer of f if and
only if the column space of Y is a p-dimensional minor eigenspace of A (i.e.,
associated with the smallest eigenvalues); see [5, 2.1.1]. It is thus tempting
to reconsider Problem 3 on a search space whose elements are the equivalence
classes [Y ], Y ∈ Rn×p

∗ , and optimize the function

f̌ : {[Y ] : Y ∈ Rn×p
∗ } → R : [Y ] 7→ f(Y ), (4)

which is well defined in view of (2) and (3).
A major advantage of this reformulation of Problem 3 is that, for generic

A, the minimizers of f̌ are isolated, while they are never isolated in the original
formulation in view of the invariance property (2). The apparent downside is
that the new search space, the quotient space

Gr(p, n) = {[Y ] : Y ∈ Rn×p
∗ }, (5)

is no longer a Euclidean space. However, it turns out (see [5, 3.4.4]) that (5)
admits one and only one “natural” manifold structure, which is inherited from
the fact that, around every element of Rn×p

∗ , the bundle of equivalence classes
can be smoothly straightened; see Figure 3 for an illustration. Endowed with
this natural manifold structure, the set Gr(p, n) is termed the Grassmann
manifold5 of p-planes in Rn×p. (The set (5) is identified with the set of all p-
dimensional subspaces of Rn because [Y ] is the set of all n×p matrices whose
5 The Grassmann manifold is named in honor of Hermann Günther Graßmann

who proposed a representation of the manifold known as Plücker coordinates.
Graßmann is perhaps better known for his Sanskrit dictionary and his translation
of the Rgveda [21]. Incidentally, he was born 200 years ago.

§

§
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M

π(x)

M =M/ ∼

x

[x] = {y ∈M : y ∼ x}

π

Rq

Rn−q

∃ϕ(x)

diffeo

Fig. 3. The setM/ ∼:= {[x] : x ∈M} is termed a quotient manifold if the situation
described above holds for all x ∈ M. Charts for M/ ∼ are obtained by extracting
the q first coordinates.

columns form a basis of the same p-dimensional subspace of Rn.) Dealing
with optimization problems such as the minimization of (4) is precisely what
optimization on (quotient) manifolds is all about.

In summary, Problem 2 and the reformulated Problem 3 have the follow-
ing properties in common: (i) their search space admits a natural manifold
structure; (ii) in the sense of the manifold structure, the objective function is
smooth, as a consequence of [33, Prop. 8.22] and [33, Prop. 7.17]. In the next
section, we explain more technically what a manifold structure is, and what
it means for a objective function on a manifold to be smooth.

4 Manifolds and smooth objective functions

The time has come to give an informal, application-driven, definition of a
manifold structure. Details can be found in [5, 3.1.1] or in any textbook on
differential geometry.

The intuition can be obtained from Figure 4. We are given a setM, which
initially is just a collection of points without any particular structure, and we
are given a real-valued function f on the set M. Since M does not have a
vector space structure, the classical definition of differentiability of a function
f :M→ R at a point x ∈M does not apply. The remedy is to consider a one-
to-one correspondence ϕ between a subset U ofM containing x and an open
subset ϕ(U) of some Rd. Then f is declared to be differentiable at x ∈M when

§
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Fig. 4. Manifold structures and smoothness of objective functions.

the function f ◦ ϕ−1 : ϕ(U) → R : y 7→ f(ϕ−1(y)) is differentiable at ϕ(x).
Since ϕ(U) is an open subset of Rd, the usual definition of differentiability
applies.

For this procedure to be applicable to every point of the set M, we need
to provide a collection of ϕ’s such that the union of their domains is the whole
set M. Moreover, whenever the domains U and V of two correspondences ϕ
and ψ overlap on a point x ∈ M, we must require that, for all f : M → R,
f ◦ϕ−1 is differentiable at ϕ(x) if and only if f ◦ψ−1 is differentiable at ψ(x);
otherwise differentiability of f at x is not well defined. This goal is achieved by
imposing that the charts overlap smoothly, i.e., ψ◦ϕ−1 is a diffeomorphism—a
smooth bijection with smooth inverse—between ϕ(U ∩ V) and ψ(U ∩ V). The
collection of correspondences is then called an atlas, and the correspondences
are called charts. The maximal atlas generated by an atlas is the collection
of all charts that overlap smoothly with those of the given atlas. Finally, a
manifold is a pair (M,A+), where M is a set and A+ is a maximal atlas
on the set M. In other words, a maximal atlas uniquely specifies a manifold
structure onM. For brevity, it is common to say “the manifoldM” when the
maximal atlas is clear from the context or irrelevant.

Let us work out an example. When p = 1 and n = 2, the Stiefel mani-
fold (1) reduces to the unit circle in R2. Let U = St(1, 2)\{(0, 1), (0,−1)}, ϕ :
U → R : x 7→ x2/x1, V = St(1, 2) \ {(1, 0), (−1, 0)}, ψ : V → R : x 7→ x1/x2.
Then {ϕ,ψ} is an atlas of the set St(1, 2). Moreover, it can be shown that
this atlas induces the natural manifold structure mentioned in the previous
section.

Let us show that the objective function f defined in Problem 2 is smooth.
To this end, pick x ∈ St(1, 2), and assume that x ∈ U ∩ V. Observe that
ϕ−1(y) = 1√

1+y2

[
1 y
]T for all y ∈ R. Hence f ◦ϕ−1(y) = 1√

1+y2

[
1 y
]
A
[

1
y

]
,

and we see that f is a smooth function on U . A similar reasoning shows that f
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is a smooth function on V. Hence f is smooth on the whole manifoldM. (An
alternate way of obtaining this result is by invoking the fact [33, Prop. 8.22]
that the restriction of a smooth function to a submanifold is smooth.)

Looking back at the original Problem 1, we see that all the concepts in-
volved therein are now well defined, except for “neighborhood”. The notion of
neighborhood inM is directly inherited from its manifold structure: a neigh-
borhood of a point x in a manifold M is a subset of M that contains a set
of the form ϕ−1(Ω), where ϕ is a chart of the manifold M whose domain
contains x and Ω is an open subset that contains ϕ(x).

If all the charts of the maximal atlas are into the same Rd, then d is called
the dimension of the manifold. In particular, when the manifold is connected,
its dimension is well defined.

Finally, we point out that the notion of smoothness extends to functions
between two manifolds: the definition relies on expressing the function in
charts and checking whether this expression is smooth. Note also that the
Cartesian product of two manifolds admits a manifold structure in a natural
way.

5 Specific manifolds, and where they appear

In this section, we present a few specific manifolds, and we discuss their use
in science and engineering applications.

5.1 Stiefel manifold

The (compact) Stiefel manifold St(p, n) is the set of all p-tuples (x1, . . . , xp)
of orthonormal vectors in Rn. The notation Vn,p or Vp(Rn) is also frequently
encountered in the literature.

If we view Rn as the space of length-n column vectors and turn the p-tuples
into n× p matrices,

(x1, . . . , xp) 7→
[
x1 · · · xp

]
,

we obtain the definition (1), i.e.,

St(p, n) = {X ∈ Rn×p : XTX = I}.

To relate this definition with the illustration in Figure 1, imagine that each
point of M stands for an orthonormal p-frame (x1, . . . , xp), and that the
objective function f assigns a real value to each orthonormal p-frame. We
have already encountered such an f in Problem 2.

Here are a few domains of application for optimization methods on the
Stiefel manifold, along with related references, which are by no means ex-
haustive: principal component analysis and the singular value decomposition
[24, 8]; independent component analysis and the related problem of joint di-
agonalization of matrices [8, 42, 26, 56]; more generally, several applications
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related to machine learning [46, 57, 15]; Procrustes problems [20, 38]; com-
puter vision [34, 59]; Lyapunov exponent computation for dynamical systems
[14].

5.2 Sphere

When p = 1, the Stiefel manifold St(p, n) reduces to the unit sphere Sn−1, a
particularly simple nonlinear manifold.

5.3 Orthogonal group

When p = n, the Stiefel manifold St(p, n) admits a group structure, where the
group operation is the matrix product. This group is termed the orthogonal
group, often denoted by On or O(n). Moreover, the group operation and its
inverse are smooth in the sense of the manifold structure of St(p, n). This
makes On a Lie group. For more information on Lie groups at an introductory
level, see, e.g., [62].

The orthogonal group On has two connected components. The component
that contains the identity matrix is called the special orthogonal group SO(n).
The set SO(3) corresponds to the set of rotations.

5.4 Grassmann manifold

The Grassmann manifold Gr(p, n) is the set of all p-dimensional subspaces
of Rn. Most applications bear some relation with dimensionality reduction:
[24, 8, 40, 53, 4, 39, 54, 12, 23, 52, 59, 15, 27].

5.5 Set of fixed-rank positive-semidefinite matrices

The differential geometry of the set

S+(p, n) = {X ∈ Rn×n : X � 0, rk(X) = p}

is a topic of interest, in view of its application in rank reduction of positive-
definite matrices [13, 30, 60, 61].

5.6 Shape manifold

A quotient geometry arises because the notion of shape is invariant by rotation
and by reparameterization; see, e.g., [31, 32, 29].

5.7 Oblique manifold and products of spheres

The oblique manifold {Y ∈ Rn×p
∗ : diag(Y Y T ) = Ip}—where diag(Y Y T ) = Ip

means that the rows of Y belong to the unit sphere—and Cartesian products of
spheres appear, e.g., in the oblique Procrustes problem [58], in nonorthogonal
joint diagonalization [3], and in time-varying system identification [49].
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5.8 Flag manifold

Given 0 < p1 < . . . < pk, the flag manifold of type (p1, . . . , pk) is the collection
of all k-tuples of linear subspaces of Rpk (V1, . . . , Vk) with dim(Vi) = pi and
Vi subspace of Vi+1. Flag manifolds are useful in the analysis of eigenvalue
methods [9, 28] and in independent subspace analysis [47].

5.9 Essential manifold

An essential matrix is the product E = ΩR of a skew-symmetric matrix
Ω and a rotation matrix R. The essential manifold appears in stereo vision
processing [41, 22].

5.10 Other products of manifolds

Various Cartesian products of manifolds appear in applications. For example,
the Euclidean group SE(3), an important manifold in computer vision and
robotics, can be identified with SO(3)× R3. A product of 16 copies of SO(3)
was used in [7] to specify the position of a human spine.

The next step is to consider products of infinitely many copies of a man-
ifold, which brings us to curve fitting on manifolds; see [50] and references
therein. See also [51] where the problem consists in finding a curve in the
Euclidean group SE(3).

5.11 Other quotient manifolds

Quotient manifolds appear in several applications where the objective function
has an invariance property that induces a regular equivalence relation; a char-
acterization of regular equivalence relations can be found in [5, Prop. 3.4.2].
In fact, most of the manifolds above admit well-known quotient representa-
tions. For example, St(p, n) can be identified with O(n)/O(n− p); see [18] for
details.

6 Steepest descent: from Rn to manifolds

We now turn to optimization algorithms on manifolds. Amongst optimization
methods on manifolds that exploit the smoothness of the cost function, the
steepest-descent scheme is arguably the most basic.

The next table, where ∇f(x) =
[
∂1f(x) · · · ∂nf(x)

]T denotes the classical
Euclidean gradient, sketches a comparison between steepest-descent in Rn and
its generalization to manifolds. An illustration is given in Figure 5.
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R

f
x

x+

grad f (x)

Fig. 5. Steepest descent on Riemannian manifolds.

Rn Manifold
Search direction Vector at x Tangent vector at x
Steepest-desc. dir. −∇f(x) −grad f(x)
Search curve γ : t 7→ x− t∇f(x) γ s.t. γ(0) = x and

γ̇(0) = −grad f(x)

Figure 5 corresponds to a submanifold of a Euclidean space. However,
we are interested in a theory that subsumes both submanifolds and quotient
manifolds, for which we will need definitions of tangent vectors and gradients
that are rather abstract. Nevertheless, the reader is invited to keep Figure 5
in mind, because it helps in developing the intuition.

The particularization of the abstract steepest-descent scheme to subman-
ifolds of Euclidean spaces is rather simple and will be covered in this paper.
For quotient manifolds, the situation is a bit more complicated, and we refer
to [5] for details.

6.1 Tangent vectors and tangent spaces

The notion of a tangent vector at a point x ∈ M is intuitively clear when
M is a submanifold of a Euclidean space E . To obtain a tangent vector at x,
take a smooth curve γ : R →M with γ(0) = x; then γ̇(0)—the derivative of
γ at t = 0—is a tangent vector to M at x. Here the derivative is the usual
derivative: since M is a subset of the Euclidean space E , γ can be viewed as
a curve in E , and the derivative of γ is understood in this sense. The set of all
tangent vectors at x is termed the tangent space to M at x and denoted by
TxM. Given ξx ∈ TxM, we say that a curve γ on M realizes ξx if γ(0) = x
and γ̇(0) = ξx.

A tangent vector ξx can be paired with any smooth real-valued function
f onM to yield the real number

Df(x)[ξx] =
d
dt
f(γ(t))

∣∣∣∣
t=0

, (6)
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where γ is any curve that realizes ξx. This property is the key to generalizing
tangent vectors to abstract manifolds. A mapping ξx : f 7→ ξx(f) is a tangent
vector to M at x is there exists a curve γ on M such that γ(0) = x and
ξx(f) = d

dtf(γ(t))
∣∣
t=0

for all smooth real-valued functions f on M. Again,
the curve γ is said to realize ξx. An alternate notation for ξx(f) is Df(x)[ξx],
but one should bear in mind that it is only forM submanifold of a Euclidean
space that Df(x)[ξx] is equal to limt→0

f̄(x+tξx)−f̄(x)
t for any smooth extension

f̄ of f .
The above is a curve-based definition of tangent vectors; several equivalent

definitions can be found in the literature. We also point out that the disjoint
union of the tangent spaces admits a natural manifold structure. This manifold
is called the tangent bundle and denoted by TM. This concept will reappear
below when we introduce the notion of retraction.

6.2 Descent directions

With the notion of a tangent vector at hand, we can define a descent direction
for an objective function f on a manifoldM at a point x to be a tangent vector
ξx at x such that Df(x)[ξx] < 0. In this case, for any curve γ that realizes
ξx, we have d

dtf(γ(t))
∣∣
t=0

< 0. Hence, for all t positive and sufficiently small,
f(γ(t)) < f(x).

6.3 Steepest-descent direction and the gradient

By definition, the steepest ascent direction is along

arg max
ξx∈TxM
‖ξx‖=1

Df(x)[ξx].

For this expression to be well-defined, we need a norm on TxM. The most
convenient way of introducing such a norm is via an inner product. For all
x ∈M, let gx be an inner product in TxM, and define

‖ξx‖ :=
√
gx(ξx, ξx).

When gx smoothly depends on x, (M, g) is termed a Riemannian manifold .
As was the case with the maximal atlas, the notation (M, g) is often replaced
byM when no confusion arises.

There is a unique element of TxM, called the gradient of f at x and
denoted by grad f(x), such that{

grad f(x) ∈ TxM
gx(grad f(x), ξx) = Df(x)[ξx], ∀ξx ∈ TxM.

The gradient of f at x, whose definition depends on the Riemannian met-
ric, is along the steepest-ascent direction of f at x, whose definition also
depends on the Riemannian metric:
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grad f(x)
‖grad f(x)‖

= arg max
ξx∈TxM
‖ξx‖=1

Df(x)[ξx].

Hence, the steepest-descent direction is along −grad f(x).
Moreover, the norm of the gradient of f at x is equal to the slope at t = 0

of t 7→ f(γ(t)), where γ is any curve that realizes grad f(x)
‖grad f(x)‖ :

‖grad f(x)‖ = Df(x)
[

grad f(x)
‖grad f(x)‖

]
.

6.4 Gradient on submanifolds

Let (M, g) be a Riemannian manifold andM be a submanifold ofM. Then

gx(ξx, ζx) := gx(ξx, ηx), ∀ξx, ζx ∈ TxM

defines a Riemannian metric g on M. With this Riemannian metric, M is a
Riemannian submanifold ofM. Let T⊥x M denote the orthogonal complement
of TxM in TxM in the sense of g. Every z ∈ TxM admits a decomposition
z = Pxz+P⊥x z, where Pxz belongs to TxM and P⊥x z to T⊥x M. If f̄ :M→ R
and f = f̄ |M, then

grad f(x) = Pxgrad f̄(x). (7)

6.5 Gradient on quotient manifolds

For the case of quotient manifolds, see [5, 3.6.2].

6.6 Choice of the search curve

The next task is to choose a curve γ through x at t = 0 such that

γ̇(0) = −grad f(x).

The curve selection process can be specified by a retraction. A retraction on
M is a smooth mapping R : TM → M such that, for all x ∈ M and all
ξx ∈ TxM,

1. R(0x) = x, where 0x denotes the origin of TxM;
2. d

dtR(tξx)
∣∣
t=0

= ξx.

Given a retraction R onM, the curve γ : t 7→ R(−tgrad f(x)) is a descent
curve at t = 0 provided that grad f(x) 6= 0.

Note that, in topology, a continuous map from a topological space X to a
subspace A is termed a retraction if the restriction of the map to domain A
is the identity map on A. In view of the property R(0x) = x and the natural
inclusion of M in TM, the differential-geometric retractions are topological
retractions.

§
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6.7 Line-search procedure

It remains to find t∗ such that f(γ(t∗)) is sufficiently smaller than f(γ(0)).
Since t 7→ f(γ(t)) is simply a function from R to R, we can use the step
selection techniques that are available for classical line-search methods, e.g.,
exact minimization or Armijo backtracking.

The next iterate of the steepest-descent method is defined to be x+ =
γ(t∗). Observe that the method can be tuned by modifying the Riemannian
metric and the retraction.

7 A steepest-descent method for Problem 2

As an illustration, we apply the steepest-descent method of the previous sec-
tion to Problem 2.

Let A = AT ∈ Rn×n with (unknown) eigenvalues λ1 ≥ · · · ≥ λn. The
goal is to compute the p dominant eigenvectors of A, i.e., those associated to
λ1, . . . , λp, which are uniquely defined (up to sign reversal, assuming a unit-
norm constraint) if λ1 > · · · > λp. To this end, we define N = diag(p, p −
1, · · · , 1) and solve

max
XT X=Ip

trace(XTAXN). (8)

The columns of the solution X (unique up to sign reversal) are the p dominant
eigenvectors or A; see [24] or [5, 4.8].

Let us sketch the derivation of a steepest-ascent method on St(p, n) =
{X ∈ Rn×p : XTX = I} for solving (8). Details can be found in [5, 4.8].
Define f̄ : Rn×p → R : X 7→ trace(XTAXN) and f = f̄ |St(p,n). We have
1
2grad f̄(X) = AXN . Thus, in view of (7), 1

2grad f(X) = PTXSt(p,n)(AXN) =
AXN−Xsym(XTAXN), where sym(Z) := (Z+ZT )/2. This is the gradient in
the sense of the Riemannian metric inherited from the embedding of St(p, n)
in Rn×p. Possible choices for the retraction are given in [5, Ex. 4.1.3]. For
example, the mapping given by R(ξX) = qf(X + ξX) is a retraction, where qf
returns the Q factor of the QR decomposition of A.

This basic steepest-descent algorithm is given as an illustration; it is not
meant to be competitive with state-of-the-art algorithms for eigenvalue com-
putation. Competitive algorithms that stem from a Riemannian optimization
approach can be found in [11, 10].

8 Newton’s method on manifolds

We first present Newton’s method on general manifolds. Then we particularize
the algorithm to obtain an algorithm for Problem 2 with p = 1.

§

§
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8.1 Newton on abstract manifolds

The central equation for Newton’s method in Rn is

D(grad f)(x)[ηx] = −grad f(x),

a linear equation in the update vector ηx. On a Riemannian manifold, it
is clear that ηx becomes a tangent vector at x, and that grad f becomes the
gradient vector field defined in Section 6.3. It remains to define the directional
derivative of a vector field such as grad f . A thoughtless extension of (6) would
yield the formula limt→0

grad f(γ(t))−grad f(x)
t , which is inapplicable to abstract

manifolds since grad f(γ(t)) and grad f(x) belong to Tγ(t)M and TxM, which
are two different vector spaces. The remedy is given by endowingM with an
object called an affine connection and denoted by ∇, that takes as argument
a vector field and a tangent vector and returns the (covariant) derivative of
the vector field along the tangent vector.

The Riemannian Newton method given below is formulated as in [7] (or
see [5, 6.2]).

Required: Riemannian manifoldM; retraction R onM; affine connection
∇ onM; real-valued function f on M.

Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f(xk)ηk = −grad f(xk)

for the unknown ηk ∈ Txk
M, where

Hess f(xk)ηk := ∇ηk
grad f.

2. Set
xk+1 := Rxk

(ηk).

The algorithm has convergence properties akin to those of Newton’s algo-
rithm in Rn [5, 6.3].

8.2 Newton on submanifolds of Rn

If M is a submanifold of Rn, it naturally inherits a Riemannian metric by
the restriction of the standard inner product of Rn. If moreover the so-called
Levi-Civita connection is chosen for ∇, the algorithm below is obtained.

Required: Riemannian submanifold M of Rn; retraction R on M; real-
valued function f onM.

Iteration xk ∈M 7→ xk+1 ∈M defined by

1. Solve the Newton equation

Hess f(xk)ηk = −grad f(xk)

§

§
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for the unknown ηk ∈ Txk
M, where

Hess f(xk)ηk := PTxk
MDgrad f(xk)[ηk].

2. Set
xk+1 := Rxk

(ηk).

8.3 Newton on the unit sphere Sn−1

Let us now particularize the algorithm to the case whereM is the unit sphere
Sn−1, viewed as a Riemannian submanifold of Rn, with a particular choice
for the retraction. We obtain a numerical algorithm that can be formulated
without any reference to differential-geometric objects, and that inherits the
desirable convergence properties of the abstract Riemannian Newton method.

Required: real-valued function f on Sn−1.
Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation{
Pxk

D(grad f)(xk)[ηk] = −grad f(xk)
xT ηk = 0,

for the unknown ηk ∈ Rn, where Pxk
= (I − xkx

T
k ).

2. Set
xk+1 :=

xk + ηk

‖xk + ηk‖
.

In the algorithm above, grad f(x) = (I−xxT )grad f̄(x), where f̄(x) is any
smooth extension of f .

8.4 Newton for Rayleigh quotient optimization on unit sphere

Finally, if we apply the above algorithm to a specific objective function, such
as the one given in Problem 2 with p = 1, we obtain a concrete numerical
algorithm.

Iteration xk ∈ Sn−1 7→ xk+1 ∈ Sn−1 defined by

1. Solve the Newton equation{
Pxk

APxk
ηk − ηkx

T
kAxk = −Pxk

Axk,

xT
k ηk = 0,

for the unknown ηk ∈ Rn, where Pxk
= (I − xkx

T
k ).

2. Set
xk+1 :=

xk + ηk

‖xk + ηk‖
.

Not surprisingly for such a fundamental problem, we fall back on a known
eigenvalue algorithm, the Rayleigh quotient iteration. On several other prob-
lems, the Riemannian Newton method has led to novel numerical algorithms;
see, e.g., [41, 4, 40, 58, 22, 19].
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9 Other optimization methods on manifolds

Besides steepest descent and Newton, several other classical methods for
unconstrained optimization admit a generalization to manifolds. Chapter 8
in [5] briefly mentions approximate Newton methods and conjugate gradient
schemes. A Riemannian trust-region method was proposed in [2] (or see [5,
Ch. 7]), which led to competitive algorithms for symmetric eigenvalue prob-
lems [11, 10]. For a Riemannian BFGS method, see [48] and references therein.

The relation between optimization methods on manifolds and feasible
methods for equality-constrained optimization is investigated in [6]. This
concerns in particular the theory of U-Lagrangians, and the related VU-
decompositions and fast tracks [35, 43], as well as the theory of partly smooth
functions [36], both of which coincide in the convex case [44, Th. 2.9]. The
concepts of U-Lagrangian and partly smooth functions led to several Newton-
like algorithms whose iterates are constrained to a submanifoldM such that
the restriction f|M is smooth. These algorithms are unified in [16] under a
common two-step, predictor-corrector form, and connections with SQP and
Riemannian Newton are studied in [44].

We also mention the literature on proximal point algorithms on Hadamard
manifolds; see [37] and references therein.

10 Conclusion

We have proposed an introduction to the area of optimization on manifolds,
written as a digest of [5] enhanced with references to the most recent litera-
ture. In summary, optimization on manifolds is about exploiting tools of dif-
ferential geometry to build optimization schemes on abstract manifolds, then
turning these abstract geometric algorithms into practical numerical methods
for specific manifolds, with applications to problems that can be rephrased
as optimizing a differentiable function over a manifold. This research pro-
gram has shed new light on existing algorithms and produced novel numerical
methods backed by a strong convergence analysis.

We close by pointing out that optimization of real-valued functions on
manifolds, as formulated in Problem 1, is not the only place where numerical
optimization and differential geometry meet. Noteworthy are the Riemannian
geometry of the central path in linear programming [17, 45], and an intriguing
continuous-time system on the Grassmann manifold associated with linear
programs [63, 1].
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1 Introduction

Multilinear algebra deals with higher-order tensors, generalizations of vec-
tors and matrices to higher-dimensional tables of numbers. Tensor algebra is
more involved than matrix algebra but can model more complex processes.
Higher-order tensors are used in many application fields so efficient and reli-
able algorithms for handling them are required.

Matrices are second-order tensors with well-studied properties. The matrix
rank is a well-understood concept. In particular, the low-rank approximation
of a matrix is essential for various results and algorithms. However, the matrix
rank and its properties are not easily or uniquely generalizable to higher-order
tensors. The rank, the row rank and the column rank of a matrix are equivalent
whereas in multilinear algebra these are in general different.

Of main concern for this paper is the multilinear rank [40, 41] of a
tensor, which is a generalization of column and row rank of a matrix.
In particular, we discuss algorithms for the best low multilinear rank ap-
proximation of a higher-order tensor. The result is a higher-order tensor,
as close as possible to the original one and having bounded multilinear
rank. In the matrix case, the solution is given by the truncated singu-
lar value decomposition (SVD) [34, 2.5]. In multilinear algebra, the trun-
cated higher-order SVD (HOSVD) [22] gives a suboptimal approximation,
which can be refined by iterative algorithms. The traditional algorithm for
this purpose is the higher-order orthogonal iteration (HOOI) [23, 52, 53].
In this paper, we discuss conceptually faster algorithms based on the New-
ton method, trust-region scheme and conjugate gradients. We also com-
ment on the fact that numerical methods converge to local minimizers [44]
of the function associated with the best low multilinear approximation.

It will be shown that the cost function has an invariance property by the
action of the orthogonal group. Conceptually speaking, the solutions are not
isolated, i.e., there are whole groups of infinitely many equivalent elements.
This is a potential obstacle for algorithms since in practice, convergence to
one particular point has to be achieved. Differential geometric techniques re-
move successfully the mentioned invariance. The working spaces are quotient
manifolds. The elements of such spaces are sets containing points that are
in some sense equivalent. For our particular problem, we work with matri-
ces but in practice we are only interested in their column space. There are
infinitely many matrices with the same column space that can be combined
in one compound element of a quotient space. Another possibility is to first
restrict the set of all considered matrices to the set of matrices with column-
wise orthonormal columns and then combine all equivalent matrices from the
selected ones in one element. This is justified by the fact that any subspace
can be represented by the column space of a column-wise orthonormal matrix.
We consider both options. We can summarize that in this paper, a multilinear
algebra optimization problem is solved using optimization on manifolds.

This paper is an overview of recent publications and technical reports

§
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[47, 46, 43, 44, 45] and the PhD thesis [42]. We present a digest of current
research results, a survey of the literature on the best low multilinear rank
approximation problem and other tensor approximations and discuss some
applications. The paper is organized as follows. In Section 2, some definitions
and properties of higher-order tensors are given. The main problem is for-
mulated, HOSVD and HOOI are presented and we also mention some other
related algorithms from the literature. Some applications are demonstrated in
Section 3. Three differential-geometric algorithms are discussed in Section 4.
In Section 5, we talk about local minima. Conclusions are drawn in Section 6.

In this paper we consider third-order tensors. The differences in the prop-
erties and algorithms for third-order tensors and for tensors of order higher
than three are mainly technical, whereas the differences between the matrix
case and the case of third-order tensors are fundamental.

2 Background material

2.1 Basic definitions

An Nth-order tensor is an element of the tensor product of N vector spaces.
When the choice of basis is implicit, we think of a tensor as its representation
as an N -way array [28]. Each “direction” of an Nth order tensor is called
a mode. The vectors, obtained by varying the nth index, while keeping the
other indices fixed are called mode-n vectors (n = 1, 2, . . . , N). For a tensor
A ∈ R6×5×4 they are visualized in Fig. 1. The mode-n rank of a tensor A,

Mode-1 vectors Mode-2 vectors Mode-3 vectors

Fig. 1. Mode-n vectors of a (6× 5× 4)-tensor.

denoted by rankn(A), is defined as the number of linearly independent mode-
n vectors. The multilinear rank of a tensor is then the n-tuple of the mode-n
ranks. An essential difference with the matrix case is that the mode-n ranks
are in general different from each other.

We use the following definition of mode-n products A •n M(n), n = 1, 2, 3
of a tensor A ∈ RI1×I2×I3 and matrices M(n) ∈ RJn×In :

(A •1 M(1))j1i2i3 =
∑

i1
ai1i2i3m

(1)
j1i1

,

(A •2 M(2))i1j2i3 =
∑

i2
ai1i2i3m

(2)
j2i2

,

(A •3 M(3))i1i2j3 =
∑

i3
ai1i2i3m

(3)
j3i3

,
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where 1 ≤ in ≤ In, 1 ≤ jn ≤ Jn. In this notation, A = UMVT is presented
as A = M •1 U •2 V. This is reasonable since the columns of U correspond
to the column space of A in the same way as the columns of V correspond to
the row space of A. The mode-n product has the following properties

(A •n U) •m V = (A •m V) •n U = A •n U •m V, m 6= n,

(A •n U) •n V = A •n (VU).

It is often useful to represent a tensor in a matrix form, e.g., by putting
all mode-n vectors one after the other in a specific order. For a tensor A ∈
RI1×I2×I3 , the matrix representations A(n), n = 1, 2, 3 that we use are

(A(1))i1,(i2−1)I3+i3 = (A(2))i2,(i3−1)I1+i1 = (A(3))i3,(i1−1)I2+i2 = ai1i2i3 ,

where 1 ≤ in ≤ In. This definition is illustrated in Fig. 2 for I1 > I2 > I3.PSfrag

A

I1

I1

I2

I2

I3

I3

I1

I2

I3

I2I3

I3I1

I1I2

A(1)

A(2)

A(3)

Fig. 2. Matrix representations of a tensor.

2.2 Best low multilinear rank approximation

Given A ∈ RI1×I2×I3 , its best rank-(R1, R2, R3) approximation is a tensor
Â ∈ RI1×I2×I3 , such that it minimizes the cost function f : RI1×I2×I3 → R,

f : Â 7→ ‖A − Â‖ 2 (1)

under the constraints rank1(Â) ≤ R1, rank2(Â) ≤ R2, rank3(Â) ≤ R3. This
problem is equivalent [23, 52, 53] to the problem of maximizing the function

g :St(R1, I1)× St(R2, I2)× St(R3, I3)→ R,
(U,V,W) 7→ ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT A(1)(V ⊗W)‖ 2

(2)

over the matrices U,V and W (St(p, n) stands for the set of column-wise
orthonormal (n × p)-matrices, ‖ · ‖ is the Frobenius norm and ⊗ denotes
the Kronecker product). This equivalence is a direct generalization of the
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matrix case where finding the best rank-R approximation Â = UBVT of
A ∈ RI1×I2 , where B ∈ RR×R, U ∈ St(R, I1), V ∈ St(R, I2) and ‖A− Â‖ is
minimized, is equivalent to the maximization of ‖UT AV‖ = ‖A•1UT •2VT ‖.
Having estimated U,V and W in (2), the solution of (1) is computed by

Â = A •1 UUT •2 VVT •3 WWT .

Thus, in this paper, our goal is to solve the maximization problem (2). In
practice, the function −g will be minimized.

2.3 Higher-order singular value decomposition

The SVD [34, 2.5] gives the best low-rank approximation of a matrix. In the
sense of multilinear rank, a generalization of the SVD is the higher-order SVD
(HOSVD) [22]. With possible variations it is also known as Tucker decompo-
sition [72, 73]. HOSVD decomposes a tensor A ∈ RI1×I2×I3 as

A = S •1 U(1) •2 U(2) •3 U(3) ,

where S ∈ RI1×I2×I3 and where U(n) ∈ RIn×In , n = 1, 2, 3, are orthogonal,
see Fig. 3. The matrices obtained from S by fixing any of the indices are

=

A
U(1) U(2)

U(3)

S

Fig. 3. Higher-order singular value decomposition.

orthogonal to each other and their norm is decreasing with increasing the
fixed index. The mode-n singular values of A are the singular values of A(n).

For second-order tensors, i.e., matrices, HOSVD reduces to the well-known
SVD. However, truncation of HOSVD results in a suboptimal solution of the
best low multilinear rank approximation problem. This is due to the fact
that in general, it is impossible to obtain a diagonal S tensor. The number of
degrees of freedom in such a decomposition would be smaller than the number
of the elements of the tensor that needs to be decomposed. However, the
truncated HOSVD can serve as a good starting point for iterative algorithms.

Other generalizations of the matrix SVD have been discussed in the liter-
ature, focusing on different properties of the SVD. The tensor corresponding
to S can be made as diagonal as possible (in a least squares sense) under
orthogonal transformations [12, 24, 56, 10], or the original tensor can be de-
composed in a minimal number of rank-1 terms (CANDECOMP/PARAFAC)
[13, 37, 9, 25, 17], on which orthogonal [50] or symmetry [14] constraints
can be imposed. A unifying framework for Tucker/HOSVD and CANDE-
COMP/PARAFAC is given by the block term decompositions [18, 19, 26].

§
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2.4 Higher-order orthogonal iteration

The traditional iterative algorithm for maximizing (2) and thus minimizing (1)
is the higher-order orthogonal iteration (HOOI) [23, 52, 53]. It is an alternating
least-squares (ALS) algorithm. At each step the estimate of one of the matrices
U,V,W is optimized, while the other two are kept constant. The function
g from (2) is thought of as a quadratic expression in the components of the
matrix that is being optimized. For fixed V and W, since

g(U,V,W) = ‖A •1 UT •2 VT •3 WT ‖ 2 = ‖UT (A(1)(V ⊗W))‖ 2 ,

the columns of the optimal U ∈ RI1×R1 build an orthonormal basis for the
left R1-dimensional dominant subspace of A(1)(V ⊗W). It can be obtained
from the SVD of A(1)(V ⊗W). The optimization with respect to the other
two unknown matrices is performed by analogy.

Initial matrices for HOOI are often taken from the truncated HOSVD.
These matrices usually belong to the attraction region of (2) but there are
exceptions. Moreover, convergence to the global maximum is not guaranteed.

HOOI is a simple concept and easy to implement. Therefore it is the most
widely used algorithm at the moment [51]. If we assume for simplicity that
R1 = R2 = R3 = R and I1 = I2 = I3 = I, the total cost for one iteration of
HOOI is then O(I3R + IR4 + R6) [32, 47]. However, the convergence speed
of HOOI is at most linear.

2.5 Other methods in the literature

Recently, a Newton-type algorithm for the best low multilinear rank approx-
imation of tensors has been proposed in [32]. It works on the so-called Grass-
mann manifold whereas the Newton-type algorithm considered in this paper
is a generalization of the ideas behind the geometric Newton method for Oja’s
vector field [2]. Quasi-Newton methods have been suggested in [64].

We also mention other related methods. A Krylov method for large sparse
tensors has been proposed in [63]. In [23, 75, 49], specific algorithms for the
best rank-1 approximation have been discussed. Fast HOSVD algorithms for
symmetric, Toeplitz and Hankel tensors have been proposed in [7]. For tensors
with large dimensions, Tucker-type decompositions are developed in [59, 8, 54].

3 Some applications

The best low multilinear rank approximation of tensors is used for signal
subspace estimation [60, 61, 52, 67, 51, 35] and as a dimensionality reduc-
tion tool for tensors with high dimensions [27, 4, 29, 30, 52, 67, 51], in-
cluding simultaneous dimensionality reduction of a matrix and a tensor [27].

Independent component analysis (ICA) [27] extracts statistically inde-
pendent sources from a linear mixture in fields like electroencephalography
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(EEG), magnetoencephalography (MEG) and nuclear magnetic resonance
(NMR). Sometimes only a few sources have significant contributions. A prin-
cipal component analysis (PCA)-based prewhitening step for reducing the di-
mensionality is often used. This is beneficial if white Gaussian noise is present
but is not applicable in case of colored Gaussian noise. In the latter case, low
multilinear rank approximation of a higher-order cumulant tensor of the ob-
servation vector can be performed instead. The dimensionality of the problem
is reduced from the number of observation channels to the number of sources.

A rank-1 tensor is an outer product of a number of vectors. The decompo-
sition of higher-order tensors in rank-1 terms is called parallel factor decom-
position (PARAFAC) [37] or canonical decomposition (CANDECOMP) [9].
It has applications in chemometrics [67], wireless communication [66, 21], and
can also be used for epileptic seizure onset localization [30, 29, 4], since only
one of the rank-1 terms is related to the seizure activity. The best low multilin-
ear rank approximation of tensors is often used as a dimensionality reduction
step preceding the actual computation of PARAFAC. Such a preprocessing
step is implemented for example in the N -way toolbox for MATLAB [6].

Dimensionality reduction works as illustrated in Fig. 4. See also [16, Re-
mark 6.2.2]. Let the rank-R decomposition of A ∈ RI1×I2×I3 be required. If

= =+ +

A Â
B B

A

Fig. 4. Dimensionality reduction.

R < max (I1, I2, I3), then a reduction of A to a tensor B ∈ RI′
1×I′

2×I′
3 , I ′n =

min (In, R), n = 1, 2, 3 can be used for the actual computation of PARAFAC.
This can be done as follows. Let Â be the best rank-(I ′1, I

′
2, I
′
3) approximation

of A. If U,V,W are the matrices as in (2), i.e., if

Â = B •1 U •2 V •3 W

then a rank-R approximation A of A is computed from the best rank-R ap-
proximation B of B in the following way

A = B •1 U •2 V •3 W.

Tensor B has smaller dimensions than A so that computing B is much less
expensive than directly computing A. In practice, due to numerical problems,
in some applications I ′n = min (In, R + 2), n = 1, 2, 3 are used instead of the
dimensions I ′n = min (In, R). In general, it is advisable to examine the mode-n
singular values for gaps between them and use a corresponding low multilin-
ear rank approximation. It might also be useful to perform a few additional
PARAFAC steps on A in order to find an even better approximation of A.
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In signal processing applications, a signal is often modeled as a sum of
exponentially damped sinusoids (EDS). The parameters of the model have
to be estimated given only samples of the signal. In the literature there are
both matrix [31, 74] and tensor-based algorithms [60, 61]. The latter are based
on the best rank-(R1, R2, R3) approximation. In [48], the EDS model in the
multi-channel case is considered in the case of closely spaced poles. This prob-
lem is more difficult than the case where the poles are well separated. A
comparison of the performance of a matrix-based and a tensor-based method
was performed. None of them always outperforms the other one. However, in
the tensor-based algorithm, one can choose the mode-3 rank in such a way
that the performance is optimal. Numerical experiments indicate that if ill-
conditioning is present in the mode corresponding to the complex amplitudes,
taking a lower value for the mode-3 rank than for the mode-1 and mode-2
ranks improves the performance of the tensor method to the extent that it
outperforms the matrix method.

For more references and application areas, we refer to the books [67, 52, 11],
to the overview papers [51, 20] and to the references therein.

4 Algorithms

In this section, we will review three classical optimization algorithms adapted
for quotient matrix manifolds. We will then show how these algorithms can
be applied on the best low multilinear rank approximation problem.

4.1 Geometric Newton algorithm

In order to apply Newton’s method, the solutions of the optimization prob-
lem (2) have to be reformulated as zeros of a suitable function. The matrix
U ∈ St(R1, I1) is optimal if and only if [38, Th. 3.17] its column space is
the R1-dimensional left dominant subspace of A(1)(V ⊗W). A necessary
condition for this is that the column space of U is an invariant subspace of
A(1)(V ⊗W)(V ⊗W)T AT

(1). Defining X = (U,V,W) and

R1(X) = UT A(1)(V ⊗W) ,

this condition can be written as

F1(X) ≡ U R1(X)R1(X)T −A(1)(V ⊗W)R1(X)T = 0 .

In the same way two more conditions are obtained for the matrices V and
W. The new function is then

F : RI1×R1 × RI2×R2 × RI3×R3 → RI1×R1 × RI2×R2 × RI3×R3 ,

X 7→ (F1(X), F2(X), F3(X)).
(3)
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Newton’s method can be applied for finding the zeros of F . However, F1

has an invariance property

F1(XQ) = F1(X) Q1, (4)

where XQ = (UQ1, VQ2, WQ3) and Qi ∈ ORi , i = 1, 2, 3 are orthogonal
matrices. The functions F2 and F3 have similar properties, i.e.,

F (X) = 0 ⇐⇒ F (XQ) = 0.

Thus, the zeros of F are not isolated, which means that the plain Newton
method is expected to have difficulties (see, for example, [3, Prop. 2.1.2], [2]).

A solution to this problem is to combine equivalent solutions in one element
and work on the obtained quotient manifold (see [3] for the general theory on
optimization on matrix manifolds). For information on differential-geometric
version of Newton’s method see also [5]. If we perform as little quotienting as
possible in order to isolate the zeros, we obtain the quotient set

M = RI1×R1
∗ /OR1 × RI2×R2

∗ /OR2 × RI3×R3
∗ /OR3 . (5)

Rn×p
∗ is the set of all full-rank (n× p)-matrices, n ≥ p and each element [U]

of RI1×R1
∗ /OR1 is a set of all matrices that can be obtained by multiplying

U from the right by an orthogonal matrix. Any two sets [U1] and [U2] are
either disjoint or coincide and the union of all such sets equals Rn×p

∗ . They
are called equivalence classes. In each equivalence class all elements have the
same column space.

For our problem (2), working on the manifold M removes the invariance
and leads to a differential-geometric Newton algorithm [47]. The Newton al-
gorithm has local quadratic convergence to the nondegenerate zeros of the
vector field ξ on M (5) represented by the horizontal lift PhF ,

Ph
U(ZU) = ZU −U skew((UT U)−1UT ZU) ,

where skew(B) = (B − BT )/2. If X∗ is a zero of F (3), then [X∗] is a zero
of ξ. Numerical results indicate that that nondegeneracy holds under generic
conditions.

Numerical examples also confirmed the fast quadratic convergence of the
algorithm in the neighborhood of the solution. However, the cost per iter-
ation of the geometric Newton algorithm O(I3R3) is higher than the cost
O(I3R + IR4 + R6) for one HOOI iteration. Another possible disadvantage
of the proposed algorithm is that it does not necessarily converge to a local
maximum of (2) since not all zeros of F correspond to local maxima of (2). In
theory, Newton’s method can even diverge. However, this was not observed
in numerical experiments. To increase the chances of converging to a maxi-
mum of (2), one can first perform an HOSVD followed by a few iterations
of HOOI and additionally check for the negative definiteness of the Hessian
before starting the Newton algorithm.
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4.2 Trust-region based algorithm

Another iterative method for minimizing a cost function is the trust-region
method [15, 58]. At each step, instead of working with the original function, a
quadratic model is obtained. This model is assumed to be accurate in a neigh-
borhood (the trust-region) of the current iterate. The solution of the quadratic
minimization problem is suggested as a solution of the original problem. The
quality of the updated iterate is evaluated and is accepted or rejected. The
trust-region radius is also adjusted.

On a Riemannian manifold, the trust-region subproblem at a point x ∈M
is moved to the tangent plane TxM . The tangent plane is a Euclidean space
so the minimization problem can be solved with standard algorithms. The
update vector ξ ∈ TxM is a tangent vector, giving the direction in which the
next iterate is to be found and the size of the step. However, the new iterate
has to be on the manifold and not on the tangent plane. The correspondence
between vectors on the tangent plane and points on the manifold is given by
a retraction [65, 5], Fig. 5.

M

TXM
X

ξ

RX(ξ)

Fig. 5. Retraction.

The choice of retraction is important. The first obvious choice is the expo-
nential map. However, depending on the manifold, this choice may be compu-
tationally inefficient [55]. A retraction can be thought of as a cheap approxi-
mation of the exponential map, without destroying the convergence behavior
of the optimization methods.

As suggested in [70, 71], an approximate but sufficiently accurate solution
to the trust-region subproblem (the minimization of the quadratic model)
is given by the truncated conjugate gradient algorithm (tCG). An advan-
tage here is that the Hessian matrix is not computed explicitly but only its
application to a tangent vector is required. For other possible methods for
(approximately) solving the trust-region subproblem see [57, 15].

Notice that g from (2) has the following invariance property

g(U, V, W) = g(UQ1, VQ2, WQ3) , (6)

where Qi ∈ ORi , i = 1, 2, 3 are orthogonal matrices. This means that we
are not interested in the exact elements of the matrices U,V,W but in the



Best Low Multilinear Rank Approximation 155

subspaces that their columns span. For the Newton algorithm in Section 4.1
we worked on the manifold defined in (5). Here we choose the Grassmann
manifold which removes more unused information from the cost function. In
(2) we optimize three matrices so we need the product manifold

M = St(R1, I1)/OR1 × St(R2, I2)/OR2 × St(R3, I3)/OR3 , (7)

which can be thought of as a product of three Grassmann manifolds. A natural
choice of a retraction is [3, 4.1.2]

RXOp(Z) = qf(X + Z)Op , (8)

where qf denotes the Q factor of the thin QR decomposition [34, 5.2] and Z
is a tangent vector. This choice is also motivated by the fact that we are only
interested in column spaces of the matrices U,V and W from (2) and not in
their actual values.

In order to apply the Riemannian trust-region scheme to the problem
(2), we need to go through the “checklist” in [1, 5.1] and give closed-form
expressions for all the necessary components. A summary of the first version
of the trust-region algorithm has been proposed in [45]. The algorithm is
described in detail in [46].

The trust-region method has superlinear convergence. On the other hand,
the cost for one iteration O(I3R3) is higher than the cost for one HOOI iter-
ation O(I3R + IR4 + R6) [32, 47]. However, it should be taken into account
that in applications, the multilinear rank is often much smaller than the di-
mensions of the tensor. Moreover, one can reduce the computational cost of
the trust-region algorithm without losing its fast local convergence rate. This
can be done by choosing a stopping criterion based on the gradient of the cost
function for the inner iteration [1]. In this case, few inner tCG steps are taken
when the current iterate is far away from the solution (when the gradient is
large) and more inner tCG steps are taken close to the solution. Thus, the
overall performance of the trust-region method is to be preferred to HOOI in
many cases.

Newton-type methods (see [47, 32, 64] and Section 4.1) also have local
quadratic convergence rate and their computational cost per iteration is of
the same order as the one of the trust-region method. However, they are not
globally convergent and strongly depend on the initialization point. Although
the truncated HOSVD often gives good initial values, sometimes these val-
ues are not good enough. These methods might even diverge in practice. On
the other hand, the trust-region method converges globally (i.e., for all ini-
tial points) to stationary points [1] except for very special examples that are
artificially constructed. Moreover, since the trust-region method is decreasing
the cost function at each step, convergence to saddle points or local maxima
is not observed in practice. Newton methods do not distinguish between min-
ima, maxima and saddle points. Thus, if the stationary points are close to
each other, even if a relatively good starting point is chosen, these algorithms
might converge to a maximum or to a saddle point instead of to a minimum.

§

§

§
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4.3 Conjugate gradient based algorithm

The linear conjugate gradient (CG) method [39] is used for solving large sys-
tems of linear equations having a symmetric positive definite matrix. One can
also regard CG as a method to minimize a convex quadratic cost function. The
initial search direction is taken equal to the steepest descent direction. Every
subsequent search direction is required to be conjugate to all previously gen-
erated search directions. The step length is chosen as the exact minimizer in
the search direction and indicates where to take the next iterate. The optimal
solution is found in n steps, where n is the dimension of the problem.

Nonlinear CG methods [33, 62] use the same idea as linear CG but apply it
to general nonlinear functions. A few adjustments are necessary. The step size
is obtained by a line search algorithm. The computation of the next search
direction is not uniquely defined as in the linear CG. The main approaches are
those provided by Fletcher-Reeves [33] and Polak-Ribière [62], both having ad-
vantages and disadvantages. The nonlinear CG methods reduce to the linear
CG if the function is convex quadratic and if the step size is the exact mini-
mizer along the search direction. However, since the cost function is in general
not convex quadratic, convergence is obtained after more than n iterations.
Some convergence results can be found in [58, 5] and the references therein.

In order to generalize the nonlinear CG from functions in Rn to functions
defined on Riemannian manifolds, the expressions for the step length and
search direction have to be adjusted. Exact line search for the step length
could be extremely expensive. In that case, the step size could be computed
using a backtracking procedure, searching for an Armijo point [3, 4.2].

When computing the new search direction ηk+1, another obstacle appears.
The formula for ηk+1 involves the gradient at the new point xk+1 and the
previous search direction ηk, which are two vectors in two different tangent
spaces. A solution for this problem is to carry ηk over to the tangent space of
xk+1. Nonlinear CG on Riemannian manifolds was first proposed in [68, 69].
This algorithm makes use of the exponential map and parallel translation,
which might be inefficient. The algorithm proposed in [3] works with the more
general concepts of retraction and vector transport. The vector transport is a
mapping that transports a tangent vector from one tangent plane to another.
The vector transport has a different purpose than a retraction but is a similar
concept in the sense that it is a cheap version of parallel translation, being
just as useful as the parallel translation at the same time. We refer to [3, Def.
8.1.1] for the precise formulation. The concept is illustrated in Fig. 6. The
vector ξ is transported to the tangent plane of RX(η) and the result is Tηξ.

As in the trust-region algorithm, here, for solving (2) we work again on
the Grassmann manifold. A simple vector transport in this case is

(TηX
ξX)qf(X+ηX) = Ph

qf(X+ηX)
ξX , (9)

where ηx and ξx are two tangent vectors at point [X] and ξX and ηX are the
horizontal lifts [3, 3.5.8] at X of ξX and ηX respectively. Ph

Y is the orthogonal

§

§

§
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Fig. 6. Vector transport.

projection
Ph

Y(Z) = (I−YYT )Z

onto the horizontal space of the point Y. Note that [qf(X + ηX)] = R[X]ηx.
Some remarks are in order. Since the step size is not the optimal one

along ηk, it is possible that the new direction is not a descent direction. If
this is the case, we set the new direction to be the steepest descent direction.
A generalization of the computation of the search directions based on the
Fletcher-Reeves and Polak-Ribière formulas is given in [3, 8.3]. The precision
of CG was discussed in [3, 36]. When the distance between the current iterate
and the local minimum is close to the square root of the machine precision,
the Armijo condition within the line-search procedure can never be satisfied.
This results in CG having maximum precision equal to the square root of
the machine precision. To overcome this problem, an approximation of the
Armijo condition was proposed in [36]. Finally, we mention that for better
convergence results, it is advisable to “restart” the CG algorithm, i.e., to take
as a search direction the steepest descent direction. This should be done at
every n steps, where n is the number of unknown parameters, in order to
erase unnecessary old information. The convergence of CG in Rn is then n-
step quadratic. However, n is often too large in the sense that the algorithm
already converges in less than n iterations.

The convergence properties of nonlinear CG methods are difficult to an-
alyze. Under mild assumptions on the cost function, nonlinear CG converges
to stationary points. Descent directions are guaranteed if we take the steepest
descent direction when the proposed direction is not a descent direction it-
self. Thus, CG converges to local minima unless very special initial values are
started from. The advantage of the nonlinear CG methods is their low com-
putational cost and the fact that they do not require a lot of storage space.
At each iteration, the cost function and the gradient are evaluated but the
computation of the Hessian is not required, as it was the case for the trust-
region algorithm from Section 4.2.

It is expected that the proposed geometric CG algorithm [43] has proper-
ties similar to those of nonlinear CG although theoretical results are difficult

§
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to prove. Numerical experiments indicate that the performance of CG strongly
depends on the problem. If the tensor has a well-determined part with low
multilinear rank, CG performs well. The difficulty of the problem is related
to the distribution of the multilinear singular values of the original tensor. As
far as the computational time is concerned, CG seems to be competitive with
HOOI and the trust-region algorithm for examples that are not too easy and
not too difficult, such as tensors with elements taken from a normal distribu-
tion with zero mean and unit standard deviation.

In our study of algorithms for the low multilinear rank approximation of
tensors, it was important to investigate a CG-based algorithm. The conver-
gence speed of the algorithm is not favorable but this is compensated by the
fact that the iterations are extremely fast.

4.4 Remarks

HOOI is a simple algorithm with cheap iterations but linear convergence rate.
This suggests to use it if the precision or the computational time are not
critical. On the other hand, the Newton based algorithm has local quadratic
convergence rate but has expensive iterations and convergence issues. Thus,
this algorithm can be used if a good starting point is available. The trust-
region based algorithm has also fast (up to quadratic) convergence rate and
cost per iteration smaller or equal to the one of the Newton based algorithm.
Its computational time per iteration is competitive with the one of HOOI for
approximations with small multilinear rank. Finally, the CG based algorithm
converges after a large amount of cheap iterations. The cost for one iteration
is similar to the cost of one HOOI iteration. Numerical experiments suggest
that the CG algorithm has best performance for easy problems, i.e., for ap-
proximations where the original tensor is close to a tensor with low multilinear
rank. We summarize the most important features of the algorithms in Table 1.
Some numerical examples can be found in [42].

HOOI Newton TR CG

global/local
(global) local global (global)

convergence

convergence to

min,
stationary

point

min, min,
(saddle point), (saddle point), (saddle point),

((max)) ((max)) ((max))

local convergence
speed

linear quadratic
superlinear

up to quadratic

„

n-step
quadratic

«

cost/iteration O(I3R+IR4+R6) O(I3R3) ≤ O(I3R3) (∼ O(I3R))

monotonically
yes no yes yes

decreasing?

Table 1. Summary of the main features of HOOI, the Newton’s algorithm, the
trust-region algorithm and the conjugate gradient algorithm.
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The low multilinear rank approximation problem (1) may have many local
minima. Searching for distinct minima, all available algorithms could be run
with a number of initial points. Because of the different functioning of the al-
gorithms, they often find different solutions even if initialized in the same way.

5 Local minima

The best low multilinear rank approximation problem (1) has local minima
[16, 23, 44, 42]. This is a key observation since the best low-rank approximation
of a matrix has a unique minimum.

For tensors with low multilinear rank perturbed by a small amount of ad-
ditive noise, algorithms converge to a small number of local minima. After
increasing the noise level, the tensors become less structured and more local
minima are found [44]. This behavior is related to the distribution of the mode-
n singular values. In the first case, there is a large gap between the singular
values. If the gap is small or nonexistent, the best low multilinear rank approx-
imation is a difficult problem since we are looking for a structure that is not
present. In this case, there are many equally good, or equally bad, solutions.

The values of the cost function at different local minima seem to be sim-
ilar [44]. Thus, in applications where the multilinear rank approximation is
merely used as a compression tool for memory savings, taking a nonglobal lo-
cal minimum is not too different from working with the global minimum itself.

On the other hand, the column spaces of the matrices U1 and U2 corre-
sponding to two different local minima are very different and the same holds
for V and W [44]. In applications where these subspaces are important, local
minima may be an issue. This concerns in particular the dimensionality re-
duction prior to computing a PARAFAC decomposition. One should inspect
the gap between the mode-n singular values in each mode in order to choose
meaningful values for the multilinear rank of the approximation.

An additional problem appears when the subspaces are important but the
global minimum is not the desired one. This could happen when a tensor with
low multilinear rank is affected by noise. The subspaces corresponding to the
global minimum of (1) are not necessarily the closest to the subspaces corre-
sponding to the original noise-free tensor, especially for high noise levels. This
further stresses that solutions of the approximation problem have to be inter-
preted with care. It may even be impossible to obtain a meaningful solution.

It is usually a good idea to start from the truncated HOSVD. However,
convergence to the global optimum is not guaranteed [16, 23, 44]. In some
examples, a better (in the sense of yielding a smaller cost function value)
local minimum is obtained from another initial point. Considering different
algorithms with different initial values could improve the change to find the
global minimum.

Finally, we describe a procedure for dimensionality reduction of large-scale
problems. As an initial step, the HOSVD of the original tensor can be trun-
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cated so that the mode-n singular values close to zero be discarded. In this way,
the dimensions of the original tensor are reduced without losing much preci-
sion. As a second step prior to computing e.g., a PARAFAC decomposition,
an essential dimensionality reduction via low multilinear rank approximation
on an already smaller scale can be performed. The latter needs to take into
account gaps between mode-n singular values.

6 Conclusions

This paper combines several topics. The main problem, the best low multilin-
ear rank approximation of higher-order tensors, is a key problem in multilinear
algebra having various applications. We considered solutions based on opti-
mization on manifolds. The fact that the cost function is invariant under right
multiplication of the matrices U,V and W by orthogonal matrices prohibits
potential algorithms from converging to a particular solution. Working on
quotient manifolds isolates the solutions and makes the work of “standard”
optimization algorithms easier.

The optimization methods on which the discussed methods are based are
Newton’s method, trust-region and conjugate gradients. There are also other
methods in the literature. It is difficult to say which algorithm is the best.
All algorithms have their advantages and disadvantages. Depending on the
application, the dimensions of the tensor, the required precision and the time
restrictions, one of the algorithms can be the method of choice. The Newton
algorithm has local quadratic convergence rate but might diverge or converge
to a saddle point or a maximum instead of a minimum. Moreover, it needs a
good starting point. A well-chosen stopping criterion for the inner iteration
of the trust-region algorithm leads to an algorithm with local quadratic con-
vergence. The computational cost per iteration is competitive with the one
of HOOI, which has only linear local convergence. Moreover, convergence of
the trust-region algorithm to a minimum is (almost always) guaranteed. On
the other hand, the conjugate gradient based algorithm has much cheaper
iterations but lacks solid theoretical proofs.

It can make sense to apply several algorithms to the same problem. For
example, if one wishes to inspect several local minima, one strategy would be
to run all available algorithms, starting from enough initial points and in this
way to obtain a more complete set of solutions. Due to the different character
of the algorithms, they often find different solutions even when starting from
the same initial values.

We also discussed the issue of local minima of the low multilinear rank
approximation problem. It concerns the problem itself and does not depend
on the actual algorithm. There are important consequences for whole classes
of applications. One should be very careful when deciding whether or not it
is meaningful to use such an approximation. The higher-order singular values
may provide relevant information in this respect.
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Summary. In this paper, we discuss methods to refine locally optimal solutions of
sparse PCA. Starting from a local solution obtained by existing algorithms, these
methods take advantage of convex relaxations of the sparse PCA problem to propose
a refined solution that is still locally optimal but with a higher objective value.

1 Introduction

Principal component analysis (PCA) is a well-established tool for making
sense of high dimensional data by reducing it to a smaller dimension. Its
extension to sparse principal component analysisprincipal component analy-
sis!sparce, which provides a sparse low-dimensional representation of the data,
has attracted alot of interest in recent years (see, e.g., [1, 2, 3, 5, 6, 7, 8, 9]).
In many applications, it is in fact worth to sacrifice some of the explained
variance to obtain components composed only from a small number of the
original variables, and which are therefore more easily interpretable.

Although PCA is, from a computational point of view, equivalent to a
singular value decomposition, sparse PCA is a much more difficult problem of
NP-hard complexity [8]. Given a data matrix A ∈ Rm×n encoding m samples
of n variables, most algorithms for sparse PCA compute a unit-norm loading
vector z ∈ Rn that is only locally optimal for an optimization problem aim-
ing at maximizing explained variance penalized for the number of non-zero
loadings. This is in particular the case of the SCoTLASS [7], the SPCA [10],
the rSVD [9] and the GPower [5] algorithms.

Convex relaxationsconvex relaxation have been proposed in parallel for
some of these formulations [2, 1]. To this end, the unit-norm loading vec-
tor z ∈ Rn is lifted into a symmetric, positive semidefinite, rank-one ma-
trix Z = zzT with unit trace. The relaxation consists of removing the rank-
one constraintrank-one!constraint and accepting any matrix of the spectahe-
dronspectahedron
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S = {Z ∈ Sm | Z � 0,Tr(Z) = 1},

which is a convex set. The solution of these convex problems has usually a rank
larger than one. Hence, some post-processing is needed to round this solution
to rank-onerank-one!matrices in order to reconstruct a unit-norm vector z.

The aim of this paper is to discuss a way to refine locally optimal solutions
of sparse PCA by taking advantage of these convex relaxations. A well-known
formulation of sparse PCA is first reviewed and relaxed into a convex pro-
gram in Section 2. A method that uses both the initial formulation and the
relaxation is then discussed in Section 3 in order to improve the quality of the
components. Its efficiency is evaluated in Section 4.

2 Formulation and convex relaxation of sparse PCA

Under the assumption that the columns of the data matrix A ∈ Rm×n are
centered, PCA consists in computing the dominant eigenvectors of the scaled
sample covariance matrix Σ = ATA. The problem of computing the first
principal component can thus be written in the form

max
z∈Rn

zT z=1

zTΣz. (1)

Several formulations of sparse PCA can be derived from (1) (see, e.g., [5]). A
possible one is provided by the optimization problem

z∗ = arg max
z∈Rn

zT z=1

zTΣz − ρ‖z‖0, (2)

with ρ ≥ 0 and where the `0 “norm” is the number of nonzero coefficients
(or cardinality) of z. The formulation (2) is essentially the problem of find-
ing an optimal pattern of zeros and nonzeros for the vector z, which is of
combinatorial complexity.

Interestingly, as shown in [2, 5], problem (2) can be equivalently rewritten
as the maximization of a convex function on the unit Euclidean sphere,

x∗ = arg max
x∈Rm

xT x=1

n∑
i=1

((aT
i x)

2 − ρ)+, (3)

where ai is the ith column of A and x+ = max(0, x). The solution z∗ of (2) is
reconstructed from the solution x∗ of (3) as follows,

z∗ =
[sign((ATx∗) ◦ (ATx∗)− ρ)]+ ◦ATx∗

‖[sign((ATx∗) ◦ (ATx∗)− ρ)]+ ◦ATx∗‖2
,

where ◦ denotes the matrix element-wise product. The ith component of z∗

is thus active (i.e., not constrained to zero) if the condition (aT
i x
∗)2 − ρ ≥ 0

holds.
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For the purpose of relaxing (2) into a convex program, the unit-norm
vector x is lifted into a matrix X = xxT . The formulation (3) is so rewritten
in terms of a matrix variable X as follows,

max
X∈Sm

∑n
i=1(a

T
i Xai − ρ)+

s.t. Tr(X) = 1,
X � 0,
rank(X) = 1,

(4)

where Sm denotes the set of symmetric matrices in Rm×m.The problem (4)
is relaxed into a convex program in two steps. First, the nonconvex rank
constraint is removed. Then, the convex objective function

fcvx(X) =
n∑

i=1

(aT
i Xai − ρ)+

is replaced by the concave function

fccv(X) =
n∑

i=1

Tr(X
1
2 (aia

T
i − ρI)X

1
2 )+,

where Tr(X)+ denotes the sum of the positive eigenvalues of X. Observe that
maximizing a concave function over a convex set is indeed a convex program.
Since the values fcvx(X) and fccv(X) are equal for matrices X that are rank
one, the convex relaxation of the sparse PCA formulation (2),

max
X∈Sm

∑n
i=1 Tr(X

1
2 (aia

T
i − ρI)X

1
2 )+

s.t. Tr(X) = 1,
X � 0,

(5)

is tight for solutions of rank one. We refer to [1] for more details on the
derivation of (5).

3 A procedure to refine the components

Several methods have been proposed to compute locally optimal solutions of
the NP-hard formulation (2) of sparse PCA. For instance, the greedy algo-
rithm of [2] sequentially increments the cardinality of the solution with the
component of z that maximizes the objective function in (2). The GPower
algorithm of [5] exploits the convexity of the objective function to generalize
the well-known power method in the present context.

In parallel, a method for solving the convex relaxation (5) in an efficient
manner is discussed in the recent paper [4]. This method parameterizes the
positive semidefinite matrix variable X as the product X = Y Y T where the
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number of independent columns of Y ∈ Rm×p fixes the rank of X. The pa-
rameter p enables to interpolate between the initial combinatorial problem
(i.e., p = 1) and the convex relaxation (i.e., p = n). In practice, the dimension
p is incremented until a sufficient condition is satisfied for Y to provide a
solution Y Y T of (5). Since this often holds for p � n, the reduction of per-
iteration numerical complexity for solving (5) can be significant: from O(n2)
for traditional convex optimization tools to O(np) for the algorithm of [4].

Starting from a locally optimal solution of the sparse PCA formulation
(2), the proposed method for improving the quality of this solution works
in two steps. First, solve the convex relaxation (5) with the algorithm of
[4] that increases the rank of the variable X from one until a sufficiently
accurate solution is found. Then, in order to recover a rank-one matrix from
this solution of rank p ≥ 1, solve the optimization problem,

max
X∈Sm

µfcvx(X) + (1− µ)fccv(X)

s.t. Tr(X) = 1,
X � 0,

(6)

for the parameter µ that is gradually increased from 0 to 1. In the case µ = 0,
(6) is the convex relaxation (5). In the other limit case µ = 1, problem (6)
amounts to maximize a convex function on a convex set, which has local
solutions at all the extreme points of this set. Solving a sequence of problems
of the form of (6) for an increasing value of µ from zero to one converges to
the extreme points of the spectahedron that are all rank-one matrices. Hence,
this process reduces the rank of the solution of the convex relaxation (5) from
p ≥ 1 to one. This rank-one solution is hoped to have a larger objective
value than the rank-one matrix chosen to initialize the resolution of (5). The
algorithm of [4] can be used to solve (6) for any value of µ.

Figure 1 illustrates the proposed procedure in the case of a random Gaus-
sian matrix A ∈ R150×50. Because any matrix of the spectahedron has non-
negative eigenvalues with the sum being one, the maximum eigenvalue can be
used to monitor the rank: a matrix of the spectahedron is rank one if and only
if its maximum eigenvalue is one. The homotopy methodHomotopy method
(i.e., solving (6) for an increasing value of µ) is compared against the best
rank-one least squares approximation of the solution of (5), i.e., the matrix
X̃ = xxT where x is the unit-norm dominant eigenvector of X. Let fEV D(X)
denote the function

fEV D(X) = fccv(X̃) = fcvx(X̃).

The continuous plots of Figure 1 display the evolution of both functions
fccv(X) and fEV D(X) during the resolution of the convex program (5), i.e.,
µ = 0 in (6). Point A represents a rank-one solution that is locally optimal for
the sparse PCA formulation (2) and obtained, for instance, with the GPower
algorithm [4]. When solving the convex relaxation (5), the rank of the matrix
X is gradually incremented until a solution is identified (point B/B′). The
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dashed plots illustrate the resolution of (6) for a parameter µ that is grad-
ually increased from 0 to 1 (by steps of 0.05). For a sufficiently large value
of µ, problem (6) has a rank-one solution (point C). The objective value in
C is clearly larger than that of the initialization A as well as than that of
the best rank-one least-squares approximation B′. This improvement results
most probably from the fact that the homotopy method takes the objective
function into account whereas the least-squares approximation does not.
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Fig. 1. Evolution of the functions fccv(X) and fEV D(X) in two situations. Con-
tinuous plots: resolution of the convex program (5) (µ = 0 in (6)). Dashed plots:
projection of the solution of (5) on a rank-one matrix by gradual increase of µ in
(6).

4 Numerical experiments

In Table 1, we compare the objective value obtained by the GPower algorithm
which computes a locally optimal solution of the sparse PCA problem (3), the
objective value of the best rank-one approximation of the solution of the con-
vex relaxation (5) and finally the objective value of the proposed homotopy
method, i.e., we compare the objective values at the points A, B′ and C in
Figure 1. Each value in Table 1 is an average on 20 instances for each prob-
lem dimension. The data is systematically generated according to a Gaussian
distribution of zero mean and unit variance. The proposed homotopy method
is shown to improve the objective value by several percents. Such an improve-
ment might be significant for applications for which it is crucial to identify
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the best solution of sparse PCA. Compressed sensing is such an application
[1].

Dimension fA fB′ (fB′ − fA)/fA fC (fC − fA)/fA

50× 25 3.9757 4.0806 + 2.64 % 4.1216 + 3.67 %
100× 50 3.6065 3.7038 + 2.70 % 3.8276 + 6.13 %
200× 100 2.9963 2.8711 - 4.18 % 3.1904 +6.48 %
400× 200 3.9549 4.1089 +3.89 % 4.2451 + 7.34 %
800× 200 5.6032 5.6131 +0.18 % 5.8754 + 4.86 %
800× 400 3.0541 3.0688 + 0.48 % 3.4014 +11.37 %

Table 1. Average objective values at the points A, B′ and C of Figure (1) for
Gaussian data matrices of various size. The GPower algorithm of [5] is used to
compute the rank-one solution A.
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Summary. This work considers the problem of fitting data on a Lie group by a
coset of a compact subgroup. This problem can be seen as an extension of the prob-
lem of fitting affine subspaces in Rn to data which can be solved using principal
component analysis. We show how the fitting problem can be reduced for biin-
variant distances to a generalized mean calculation on an homogeneous space. For
biinvariant Riemannian distances we provide an algorithm based on the Karcher
mean gradient algorithm. We illustrate our approach by some examples on SO(n).

1 Introduction

In this paper we consider the problem of fitting a submanifold to data points
on a Lie group. Such fitting problems are relevant for dimension reduction and
statistical analysis of data on Lie groups. In Euclidean space it is well-known
that the best fitting k-dimensional linear subspace can be computed via prin-
cipal component analysis (PCA) and this tool is widely used in applications
in natural sciences, statistics and engineering.

However, in some applications the data naturally arises as points on an
embedded or abstract manifold, e.g. points on spheres [2] or manifolds of shape
representations [4, 5]. This raises the question of extending subspace fitting
and dimension reduction methods like PCA to nonlinear spaces like Rieman-
nian manifolds and Lie groups. In the recent years some approaches have been
proposed to construct local extensions of PCA [4, 5] on Riemannian manifolds
or to consider fitting by single geodesics and interpolation problems on man-
ifolds [7, 8]. Here, we focus on compact Lie groups and propose the different
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approach to fit a coset to the data. Our approach overcomes some limita-
tions of the local approaches and leads to potentially efficient computational
algorithms.

In Section 2 we recall basic facts on PCA. Section 3 discusses principal
geodesic analysis from [4, 5]. Section 4 introduces our fitting of cosets approach
and shows how it leads to a reduced optimization problem on a homogeneous
space. For Riemannian distances we derive an algorithm based on known
Karcher mean algorithms. Section 5 provides examples for fitting on SO(n).

Notation

In this paper G will always denote a compact, connected Lie group. For more
background on differential geometry, Lie groups etc. we refer to [1]. Recall that
given a closed subgroup H ⊂ G the quotient space G/H carries naturally
a manifold structure. A Riemannian metric on G is called left- resp. right-
invariant if it is invariant under the action of G on itself by left- resp. right-
multiplication, i.e. for all p, q ∈ G, v, w ∈ TpG we have 〈TpLqv, TpLqw〉 =
〈v, w〉 with Lq the left multiplication map Lq(p) = qp, analogously for the
right-invariant case. A Riemannian metric is called biinvariant if it is left- and
right-invariant. It can be shown that on any compact Lie group a biinvariant
Riemannian metric exists. This is not the case for non-compact groups.

Furthermore, we recall the definition of a Karcher mean on a Riemannian
manifold. Let M be a Riemannian manifold with Riemannian distance distR.
The Karcher mean of points q1, . . . , qk on M is defined [10] as a minimum of
the function f(x) =

∑k
i=1 distR(qi, x)2. Note that a Karcher mean does not

have to be unique.

2 Principal Component Analysis

In Euclidean spaces the most common method for dimension reduction of data
is principal component analysis (PCA). We recall some basic facts on PCA,
for a detailed account see the numerous literature on this topic, e.g. [3].

Given k data points q1, . . . , qk ∈ Rn, the problem is to determine an affine
subspace p+ V of dimension m such that the sum of squared Euclidean dis-
tances ∑k

i=1 minv∈p+V ‖qi − v‖2 =
∑k

i=1 distE(qi, p+ V )2 (1)

is minimized, distE denoting the Euclidean distance to a closed subset.
This problem can be solved by computing an eigenvalue decomposition

UDUT , D = diag(λ1, . . . , λn), λ1 ≥ . . . ≥ λn of the symmetric, positive
semidefinite matrix

∑k
i=1(qi − q)(qi − q)T with q = 1

k

∑k
i=1 qi the mean of

the data points. The best fitting affine subspace is given by (p + V )opt =
q+span{u1, . . . , um} with u1, . . . , um denoting the first m columns of U . The
ui are called the principal components of the qi.
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The orthogonal projection of the data points onto (p+ V )opt in the basis
u1, . . . , um of (p + V )opt is given by

(
u1 . . . um

)T (qi − q). This reduces the
n-dimensional data points to m-dimensional data points.

In this paper we concentrate on generalizing the fitting of a subspace to
the data (1) to Lie groups. This is justified by the statistical information hold
by the (p+ V )opt in the Euclidean case, cf. [3].

3 Principal geodesic analysis

Fletcher et al. propose principal geodesic analysis (PGA) — a local ap-
proach which lifts the data to a tangent space and performs PCA there —
as a generalization of PCA to manifolds, [4, 5]. They consider data points
q1, . . . , qk on a Riemannian manifold M and a Karcher mean q. Let expq

denote the Riemannian exponential map. They define principal geodesic sub-
manifolds recursively as submanifolds N1 := expq(V1), . . . , Nn := expq(Vn−1),
V1 = span{v1}, . . . , Vn−1 = span{v1, . . . , vn−1} minimizing the squared dis-
tance to the data; we refer to [5] for details. To calculate the submanifolds the
data points are first lifted to TqM by computing pi = exp−1

q (qi). Since TqM
is a finite dimensional Hilbert space with the scalar product given by the Rie-
mannian metric, one can choose an orthonormal basis of TqM and perform
PCA on the pi as points in an Euclidean space. The principal components
ui ∈ TqM yield an approximation Ṽm = span{u1, . . . , um} ⊂ TqM of the Vm

and therefore an approximation of the fitting problem

Minimize
∑k

i=1 distR(qi, expq(V ))2 (2)

over the set of m-dimensional subspaces V of TqM with distR the Riemannian
distance. Note that for M = Rn with the Euclidean metric this yields precisely
(p+ V )opt of (1) since (p+ V )opt = expq(Ṽ ) = q + Ṽ .

For a sufficiently small neighborhood U of 0 in TqM the set expq(Ṽ ∩ U)
is an embedded submanifold and it is ‘close’ to the optimal expq(V ) of (2).
Therefore PGA is suitable if the data are clustered around a unique Karcher
mean. However, if the data are not clustered around a point, one has to
take into account that the Karcher mean is not unique, that expq(Ṽ ) is not
necessarily an embedded manifold, and that expq(Ṽ ) is not an exact solution
of the fitting problem (2). In such cases PGA is not well-suited to compute a
best fitting submanifold and a global approach might be more desirable as a
generalization of (1).

4 Fitting cosets

We propose here a global approach to generalize (1) to compact Lie groups.
It is based on an alternative interpretation of the Euclidean fitting problem.
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Recall that the special Euclidean group SE(n) = {(R, p) | R ∈ SO(n), p ∈
Rn} acts on Rn transitively by φ : (x, (R, p)) 7→ Rx + p. Thus Rn can be
thought of as the homogeneous space Rn ∼= SE(n)/SO(n). For the Eu-
clidean distance distE we have distE(x, y) = distE(φ(x, (R, p)), φ(y, (R, p))
for all (R, p), i.e. distE is invariant under the action of SE(n) on Rn. In
general, a distance dist on a homogeneous space M is called G-invariant
if for all x, y ∈ M , s ∈ G dist(s · x, s · y) = dist(x, y), s · x denoting
the action of G on M . Note further that given a fixed subspace Ṽ ⊂ Rn,
dim Ṽ = m, any m-dimensional affine subspace can be written as RṼ + p
with (R, p) ∈ SE(n). Thus minimizing (1) over the set of affine subspaces is
equivalent to min(R,p)∈SE(n)

∑k
i=1 distE(qi, RṼ + p)2.

This motivates to consider the following fitting problem for invariant dis-
tances on homogeneous spaces as a generalization of (1).

Problem 1. LetM a homogeneous space with Lie group G̃ acting transitively
on M via φ : G̃ × M → M , N a submanifold on M and dist an invariant
distance. Solve the optimization problem

min
g∈G̃

∑k
i=1 dist(qi, φ(g,N))2. (3)

We have seen that (1) is a special case of (3) for M = Rn, G̃ = SE(n),
N = Ṽ ∼= Rm, dist = distE and φ(x, (R, p)) = Rx+ p.

To use (3) for data on the Lie group G, we have to turn G into an homo-
geneous space, i.e. find another Lie group acting transitively on G. A näıve
choice would be G with its action on itself by left- and right-multiplication.
However, if e.g. N is a subgroup this would turn G into a fiber bundle, pro-
viding not enough degrees of freedom for a sensible fitting of the data by
submanifolds diffeomorphic to N . The action ψ of G̃ = G × G on G with
ψ : (x, (p, q)) 7→ pxq−1 will be more suitable for our task: it will generate for
subgroups N a larger class of submanifolds in G. The distances dist on G,
invariant under the action ψ, are called biinvariant since for all q, p, s ∈ G
one has dist(sq, sp) = dist(q, p) = dist(qs, ps).

Examples of biinvariant distances include the following:
(a) Let 〈·, ·〉 be a biinvariant Riemannian metric on G. Then the Riemannian
distance on G is biinvariant.

(b) Let ρ : G → Cm×m be a faithful, unitary representation of G, i.e. a
homomorpism onto the group of unitary transformations of a finite dimen-
sional Hilbert space with ker ρ = {e}. Then dist(q, p) = ‖ρ(q) − ρ(p)‖F ,
‖A‖F = tr(A†A)1/2 the Frobenius norm, A† the Hermitian conjugate, is a
biinvariant distance on G. In particular, for the special orthogonal and the
unitary group, the Frobenius norm of the difference of two matrices ‖Q−P‖F
yields a biinvariant distance.

We have to choose the class of submanifolds which we use for fitting the
data. For PCA in Euclidean space the fitting submanifolds are affine sub-
spaces, i.e. totally geodesic submanifolds of Rn. This suggests the use of totally
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geodesic submanifolds at least for biinvariant Riemannian distances/metrics,
too. However, since we want to exploit the group structure to obtain a re-
duced optimization problem, we restrict ourselves to closed, i.e. in this case
compact, subgroups of G. Indeed subgroups of G are totally geodesic for any
biinvariant metric.

Considering G as a homogeneous space with G×G acting on it by ψ, the
fitting problem (3) for N a compact subgroup H ⊂ G has the form

min
(p,q)∈G×G

∑k
i=1 dist(qi, ψ((p, q),H))2 =

∑k
i=1 dist(qi, pHq−1)2

with dist a ψ-invariant, i.e. biinvariant, distance on G. This gives the following
fitting problem as a special case of (3) and a global generalization of (1) to
Lie groups.

Problem 2. Let H ⊂ G be a fixed, compact subgroup, dist : G × G → R
a biinvariant distance function and q1, . . . , qk ∈ G data points. Solve the
optimization problem

min
p,q∈G

∑k
i=1 dist(qi, pHq−1)2. (4)

Any of the pHq−1 can be written as p̃qHq−1, i.e. it is a coset of a subgroup
of G conjugate to H. Therefore our approach consists of optimally fitting to
the data a coset of a subgroup conjugate to H.

4.1 Reduction to a homogeneous space

Note that G×G is, especially for large subgroups H, a vast overparameteri-
zation of the family of submanifolds pHq−1. Fortunately, this problem can be
reduced to an optimization problem on the homogeneous space G/H ×G/H.
The key insight is that the biinvariant distance on G induces a G-invariant
distance on G/H.

Proposition 1. Let distG be a biinvariant distance on G and H ⊂ G a com-
pact subgroup. Then distG induces a G-invariant distance distG/H on G/H,
such that distG/H(qH, pH) = distG(q, pH).

Proof. Since distG is right-invariant we have for all k ∈ H

distG(q, pH) = min
h∈H

distG(q, ph) = min
h∈H

distG(qk, ph) = distG(qk, pH).

Thus distG(q, pH) induces a distance distG/H on G/H. The G-invariance of
distG/H follows directly from the left-invariance of distG.

Induced distances on G/H include the following examples:
(a) Let 〈·, ·〉G be a biinvariant Riemannian metric onG. We can define onG the
distribution N(p) := (TppH)⊥, W⊥ the orthogonal complement with respect
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to the Riemannian metric. Let π : G → G/H be the canonical projection
π(p) := pH. Then, the formula

〈v, w〉G/H := 〈vN , wN 〉 for v, w ∈ TpHG/H

defines an G-invariant Riemannian metric on G/H with vN , wN uniquely de-
fined by vN , wN ∈ N(p), Tpπv

N = v, Tpπw
N = w. This Riemannian metric is

called the normal metric [9]. The distance on G/H induced by the Rieman-
nian metric on G is the Riemannian distance of the normal metric.

(b) Let ρ be again a faithful, finite dimensional, unitary representation of
G and H = stab(v) = {p ∈ G | ρ(p)v = v} for a v ∈ Cm. We can iden-
tify the orbit O(v) = {ρ(p)v | p ∈ G} with G/H via pH 7→ ρ(p)v. Then
the distance dist(p, q) = ‖ρ(p) − ρ(q)‖F induces the the Euclidean distance
dist(p, q) = ‖ρ(p)(v)− ρ(q)(v)‖ on O(v) = G/H.

Problem (4) thus leads to the following reduced optimization problem on
G/H ×G/H.

Proposition 2. Assume that dist is a biinvariant distance on G. Then (p, q) ∈
G ×G is a solution of Problem (2) if and only if (qH, pH) is a minimum of
g : G/H ×G/H → R,

g(x, y) =
∑k

i=1 distG/H(qi · x, y)2 (5)

with q · x denoting the canonical action of G on G/H.

Proof. By the invariance of dist and Proposition 1 we have∑k
i=1 dist(qi, pHq−1)2 =

∑k
i=1 dist(qiq, pH)2 =

∑k
i=1 distG/H(qiqH, pH)2

Thus (p, q) solves (4) if and only if (qH, pH) is a minimum of g.

4.2 An algorithm for Riemannian fitting

If the distance on G is the Riemannian distance of a biinvariant Riemannian
metric, we can derive a general gradient algorithm to find a minimum of (5).
As discussed in the examples above the induced distance on G/H from the
biinvariant metric on G is the Riemannian distance with respect to the normal
metric on G/H. Thus we assume that G/H carries this normal metric in the
remainder of this section. Note that

g(x, y) =
∑k

i=1 distG/H(qi · x, y)2 =
∑k

i=1 distG/H(x, q−1
i · y)2 (6)

is in each variable the Karcher mean cost function for points qi ·x resp. q−1
i ·y

on G/H. It is well-known that the gradient of the Karcher mean cost c(x) =∑k
i=1 dist(x, xi)2 is given by grad c(x) = 1

k

∑k
i=1 exp−1

x (xi), see [4, 7, 11]. Thus
the gradient of g with respect to the product metric on G/H ×G/H is
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grad g(x, y) =
(

1
k

∑k
i=1 exp−1

x (q−1
i · y), 1

k

∑k
i=1 exp−1

y (qi · x)
)
.

The form (6) of the cost suggests the following gradient descent algorithm
to minimize g as an adaption of the Karcher mean algorithm [4, 7, 11].

Riemannian fitting algorithm

1. Initialize x0, y0 ∈ G/H and choose a ε > 0
2. xj+1 = expxj

(
1
k

∑k
i=1 exp−1

x (q−1
i · yj)

)
3. yj+1 = expyj

(
1
k

∑k
i=1 exp−1

y (qi · xj)
)

4. go to step 2 until dist(xj , xj+1) < ε and dist(yj , yj+1) < ε
5. Let xj = qH, yj = rH.
6. Output: (r, q) as an approximation of the minimum of f

This algorithm requires that the q−1
i · yj resp. qi · xj are in the domain

of exp−1
xj

resp. exp−1
yj

and is not necessarily globally defined. However, since
these are exponential maps on G/H the algorithm will work for data clustered
near a coset pHq−1 even if there is a continuum of Karcher means on G. An
alternative would be to globalize the algorithm using non-smooth optimization
methods, but this is beyond the scope of the present paper.

5 Example: Fitting on SO(n)

We illustrate the proposed approach on the special orthogonal group SO(n).
The distances discussed in the examples (a), (b) above yield two choices

for distances on SO(n): (a) the Riemannian distance of a biinvariant metric
and (b) the Frobenius norm distance on the matrix representation of SO(n).

(a) In the Riemannian case the induced distance on SO(n)/H is the nor-
mal Riemannian metric and the algorithm from Section 4.2 can be applied to
compute the optimal coset on SO(n). As a special case consider the problem
of fitting data with a coset of a conjugate of a subgroup H ∼= SO(n − 1).
The quotient space SO(n)/H can be identified with Sn−1 via the diffeo-
morphism QH 7→ Qv for v ∈ Sn−1 such that stab(v) = H. Any biivariant
Riemannian metric on SO(n) has the form 〈XΩ,XΘ〉 = C tr(ΩTΘ) with
C > 0; w.l.o.g. assume C = 1

2 . Then the normal metric on Sn−1 coin-
cides with the Riemannian metric on Sn−1. Thus the exponential map on
the sphere is given by expx(v) := cos(‖v‖)x + sin(‖v‖)

‖v‖ v and its inverse by
exp−1

x (y) := s
sin(s) (y− cos(s)x) with s = arccos(yTx). Using this information,

it is straightforward to implement the algorithm from Section 4.2.
(b) As an example for the Frobenius norm distance on a matrix repre-

sentation of SO(n), consider the representation ρ(U) : Cn×p → Cn×p with
ρ(U)(A) = UA. We treat Cn×p as the vector space Cnp. Then ρ(U) = (Ip⊗U)
and the Frobenius norm distance is given by
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distF (U, V ) = ‖ρ(U)− ρ(V )‖F = ‖(Ip ⊗ U)− (Ip ⊗ V )‖F = p‖U − V ‖F .

Let A =
(
Ip 0

)T ∈ Cn×p. Assume that we want to fit a coset of a subgroup
conjugate to H = stab(A) ∼= SO(n − p) to the data. The orbit O(A) is the
compact Stiefel manifold St(n, p) and we can identify SO(n)/H with St(n, p)
by UH 7→ ρ(U)A. By Section 4.1, Example (b), the induced distance on
SO(n)/H is the Euclidean distance on St(n, p), i.e.

distSO(n)/H(UA, V A) = ‖UA− V A‖F .

Thus to find the best fitting coset PHQ−1, P,Q ∈ SO(n), to data points
Q1, . . . , Qk in SO(n) one must minimize the cost

g(X,Y ) =
∑k

i=1 ‖X −QiY ‖2F

on St(n, p)×St(n, p). Here, we use the gradient descent with retractions from
[6] on the product of the Stiefel manifold. To compute a gradient we use the
Riemannian metric on the Stiefel manifold induced by the Euclidean one on
Rn×p and equip St(n, p)×St(n, p) with the product metric. The gradient with
respect to this induced Riemannian metric is given by the orthogonal projec-
tion of the Euclidean gradient of an extension of g to Rn×p × Rn×p onto the
tangent space T(X,Y ) (St(n, p)× St(n, p)). Since the Euclidean gradient of g is

given by gradE g(X,Y ) =
(∑k

i=1(X −QT
i Y ),

∑k
i=1(Y −QiX)

)
and the pro-

jection πX : Rn×p → TX St(n, p) by πX(V ) = V − 1
2X(XTV + V TX), cf. [6],

we obtain grad g(X,Y ) =
((

1
2XX

T − In
)∑k

i=1Q
T
i Y + 1

2XY
T
∑k

i=1QiX,(
1
2Y Y

T − In
)∑k

i=1QiX + 1
2Y X

T
∑k

i=1Q
T
i Y
)
. A descent algorithm on a

manifold needs suitable local charts RX which map lines in the tangent space
onto curves in the manifold. Here, we choose for the Stiefel manifold the
polar decomposition retractions from [6], i.e. RX : TX St(n, p) → St(n, p),
RX(V ) = (X+V )(Ip+V TV )−1/2. Since we have to optimize over the product
of two Stiefel manifolds, we use this retraction in each component. The step
length of the gradient descent is determined by an Armijo line search. This
yields the following algorithm:

1. Initialize X0, Y0 ∈ St(n, p) and choose a ε > 0, σ ∈ (0, 1)
2. Calculate SX,j =

∑k
i=1QiXj and SY,j =

∑k
i=1Q

T
i Yj.

3. Set ηj := ( 1
2XjX

T
j − In)SY,j + 1

2XjY
T
j SX,j, ζj := ( 1

2YjY
T
j − In)SX,j +

1
2YjX

T
j SY,j

4. Choose the smallest α ∈ N such that

g(Xj , Yj)− g
(
RXj (−2−αηj), RYj (−2−αζj)

)
≥ σ2−α

(
‖ηj‖2F + ‖ζj‖2F

)
5. Set Xj+1 := (Xj − 2−αηj)

(
Ip + 2−2αηT

j ηj

)−1/2
,

Yj+1 := (Yj − 2−αζj)
(
Ip + 2−2αζT

j ζj
)−1/2
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6. If ‖ηj‖ > ε or ‖ζj‖ > ε then j := j+1 and go to step 2, otherwise
go to step 7.

7. Find Q,R ∈ SO(n) such that Xj = QA, Yj = RA and output
(R,Q) as an approximation of the minimum of f.

Figure 1 shows the behavior of the algorithm for the Riemannian distance
and the H ∼= SO(n−1) with 30 data points in SO(10). The data points for the
left graph are constructed by choosing random points on a coset ∼= SO(9),
while for the right graph randomly chosen data points on the coset were
perturbed by multiplication with i.d.d. random rotations R = exp(N) with
N the skew-symmetric parts of i.d.d. random matrices M ∼ N(0,

√
0.1). For

the unperturbed case the algorithm shows linear convergence as it is to be
expected for a gradient method. In the perturbed case the algorithm converges
quickly to a cost function value larger than 0 since an exact fitting is not
possible anymore.
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Fig. 1. Evolution of the cost for the first example in Section 5 with n = 10 and
k = 30. The left figure shows the unperturbed case while the right the case of data
points perturbed by random rotations.

Figure 2 illustrates the behavior of the algorithm for the Frobenius norm
distance and the H = stab((Ip0)T ) ∼= SO(n − p) with n = 10, p = 8 and
k = 30. The left graph shows the case of data points randomly chosen on a
fixed coset, while the right graph shows the case of random points on the coset
perturbed by a random rotations R = exp(N) with N the skew-symmetric
part of random M ∼ N(0,

√
0.1).
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182 C. Lageman and R. Sepulchre

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10 20 30 40 50 60 70 80 90

C
o
s
t

Iteration

10

100

1000

10 20 30 40 50 60 70 80 90

C
o
s
t

Iteration

Fig. 2. Evolution of the cost for the second example in Section 5 with n = 10,
p = 8 and k = 30. The left figure shows the case of unperturbed data on a coset
while in the right one the data points have been perturbed by random rotations.

References

1. S. Helgason. (1994). Geometric analysis on symmetric spaces. American Math.
Soc., Providence, RI.

2. K. V. Mardia, P. E. Jupp. (2000). Directional Statistics. Wiley, Chichester.
3. I. T. Jolliffe. (1986). Principal Component Analysis. Springer-Verlag, New York.
4. P.T. Fletcher, C. Lu, S. Joshi. (2003). Statistics of Shape via Principal Geodesic

Analysis on Lie Groups. In: Proc. 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR03) p. I-95 – I-101

5. P.T. Fletcher, C. Lu, S.M. Pizer, S. Joshi. (2004). Principal Geodesic Analysis
for the Study of Nonlinear Statistics of Shape. IEEE Trans. Medical Imagining
23(8):995–1005

6. P.-A. Absil, R. Mahony, R. Sepulchre. (2008). Optimization Algorithms on
Matrix Manifolds. Princeton University Press, Princeton

7. L. Machado (2006) Least Squares Problems on Riemannian Manifolds. Ph.D.
Thesis, University of Coimbra, Coimbra

8. L. Machado, F. Silva Leite (2006). Fitting Smooth Paths on Riemannian Man-
ifolds. Int. J. Appl. Math. Stat. 4(J06):25–53

9. J. Cheeger, D. G. Ebin (1975). Comparison theorems in Riemannian geometry.
North-Holland, Amsterdam

10. H. Karcher (1977). Riemannian center of mass and mollifier smoothing. Comm.
Pure Appl. Math. 30:509–541

11. J. H. Manton. (2004). A Globally Convergent Numerical Algorithm for Com-
puting the Centre of Mass on Compact Lie Groups. Eighth Internat. Conf.
on Control, Automation, Robotics and Vision, December, Kunming, China.
p. 2211–2216

12. M. Moakher. (2002). Means and averaging in the group of rotations. SIAM
Journal on Matrix Analysis and Applications 24(1):1–16

13. J. H. Manton. (2006). A centroid (Karcher mean) approach to the joint ap-
proximate diagonalisation problem: The real symmetric case. Digital Signal
Processing 16:468–478



Riemannian BFGS Algorithm with
Applications

Chunhong Qi1, Kyle A. Gallivan1, and P.-A. Absil2

1 Department of Mathematics, Florida State University, Tallahassee, FL, 32306,
USA, {cqi, gallivan}@math.fsu.edu
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Summary. We present an algorithm model, called Riemannian BFGS (RBFGS),
that subsumes the classical BFGS method in Rn as well as previously proposed
Riemannian extensions of that method. Of particular interest is the choice of trans-
port used to move information between tangent spaces and the different ways of
implementing the RBFGS algorithm.

1 Introduction

Optimization on manifolds, or Riemannian optimization, concerns finding an
optimum (global or local) of a real-valued function defined over a smooth man-
ifold. A brief introduction to the area can be found in [1] in this volume, and
we refer to [3] and the many references therein for more details. Optimization
on manifolds finds applications in two broad classes of situations: classical
equality-constrained optimization problems where the constraints specify a
submanifold of Rn; and problems where the objective function has continuous
invariance properties that we want to eliminate for various reasons, e.g., effi-
ciency, consistency, applicability of certain convergence results, and avoiding
failure of certain algorithms due to degeneracy. As a result, the generalization
to manifolds of algorithms for unconstrained optimization in Rn can yield
useful and efficient numerical methods; see, e.g., recent work on Riemannian
trust-region methods [2] and other methods mentioned in [3]. Since BFGS is
one of the classical methods for unconstrained optimization (see [7, 10]), it is
natural that its generalization is a topic of interest.

Some work has been done on BFGS for manifolds. Gabay [9, 4.5] discussed
a version using parallel transport. Brace and Manton [6] have a version on the
Grassmann manifold for the problem of weighted low-rank approximations.
Savas and Lim [11] apply a version on a product of Grassmann manifolds to
the problem of best multilinear low-rank approximation of tensors.
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DOI 10.1007/978-3-642-12598-0_16, © Springer-Verlag Berlin Heidelberg 2010 
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Gabay’s Riemannian BFGS [9, 4.5] differs from the classical BFGS
method in Rn (see, e.g., [10, Alg. 6.1]) in five key aspects: (i) The search space,
to which the iterates xk belong, is a Riemannian submanifold M of Rn speci-
fied by equality constraints; (ii) The search direction at xk is a tangent vector
to M at xk; (iii) The update along the search direction is performed along
the geodesic determined by the search direction; (iv) The usual quantities sk

and yk that appear in the secant equation are tangent vectors to M at xk+1,
obtained using the Riemannian parallel transport (i.e., the parallel transport
induced by the Levi-Civita connection) along the geodesic. (v) The Hessian
approximation Bk is a linear transformation of the tangent space Txk

M that
gets updated using a generalized version of the BFGS update formula. This
generalized formula specifies recursively how Bk applies to elements of Txk

M .
In this paper, we present an algorithm model (or meta-algorithm), dubbed

RBFGS, that subsumes Gabay’s Riemannian BFGS method. Whereas Gabay’s
method is fully specified by the Riemannian manifold, the cost function, and
the initial iterate, our RBFGS algorithm offers additional freedom in the
choice of a retraction and a vector transport (see Section 2 for a brief re-
view of these two concepts). This additional freedom affects points (iii) and
(iv) above. For (iii), the curves along which the update is performed are spec-
ified by the retraction. For (iv), the Levi-Civita parallel transport is replaced
by the more general concept of vector transport. If the retraction is selected
as the Riemannian exponential and the vector transport is chosen to be the
Levi-Civita parallel transport, then the RBFGS algorithm reduces to Gabay’s
algorithm (barring variations of minor importance, e.g., in the line-search
procedure used).

The impact of the greater freedom offered by the RBFGS algorithm varies
according to the manifold of interest. On the sphere, for example, the com-
putational cost of the Riemannian exponential and the Levi-Civita parallel
transport is reasonable, and there is not much to be gained by choosing com-
putationally cheaper alternatives. In contrast, as we will show in numerical
experiments, when the manifold is the Stiefel manifold, St(p, n), of orthonor-
mal p-frames in Rn, the improvement in computational time can be much
more significant.

This paper also improves on Gabay’s work by discussing the practical
implementation of the algorithm. When the manifold M is a submanifold of
Rn, we offer the alternatives of either representing the tangent vectors and
the approximate Hessian using a basis in the tangent spaces, or relying on the
canonical inclusion of M in Rn. The latter leads to representations of tangent
vectors as n-tuples of real numbers and of the approximate Hessian as an n×n
matrix. This approach may offer a strong advantage when the co-dimension
of M is sufficiently small.

Another feature of RBFGS is that it does not assume that M is a subman-
ifold of a Euclidean space. As such, it can be applied to quotient manifolds
as well. However, in this paper, we concentrate the practical implementation
discussion on the submanifold case.

§
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This paper is a first glimpse at ongoing work that aims at a systematic
analysis and evaluation of the Riemannian versions of the BFGS algorithm.
It is organized as follows. The general RBFGS algorithm is given in Section 3.
The two implementation approaches and the particular implementation on
certain manifolds are given in Section 4. In Section 5, we summarize the re-
sults of our numerical experiments for two application problems: the Rayleigh
quotient problem on the sphere Sn−1 and a matrix Procrustes problem on the
compact Stiefel manifold.

2 Mathematical preliminaries

The notion of retraction on a manifold, due to Adler et al. [4], encompasses
all first-order approximations to the Riemannian exponential. Here we recall
the definition as given in [3].

Definition 1. A retraction on a manifold M is a mapping R from the tangent
bundle TM onto M with the following properties. Let Rx denote the restriction
of R to TxM .

1. R is continuously differentiable.
2. Rx(0x) = x, where 0x denotes the zero element of TxM .
3. With the canonical identification T0xTxM ' TxM , Rx satisfies DRx(0x) =
idTxM , where D denotes the derivative and idTxM denotes the identity
mapping on TxM .

The retraction is used as a way to take a step in the direction of a tangent
vector. Choosing a good retraction amounts to finding an approximation of
the exponential mapping that can be computed with low computational cost
while not adversely affecting the behavior of the optimization algorithm.

Next we recall the concept of vector transport, which specifies how to move
a tangent vector from one tangent space to another. This is also used to move
a linear operator from one tangent space to another, e.g., the approximate
Hessian in (4). The notion of vector transport was introduced in [3] for reasons
similar to those that motivated the introduction of retractions, namely, to
provide a framework for using computationally less expensive approximations
of the Levi-Civita parallel translation. The definition below, illustrated in
Figure 1, invokes the Whitney sum TM ⊕TM , which stands for the set of all
ordered pairs of tangent vectors with same foot.

Definition 2. A vector transport on a manifold M is a smooth mapping:
TM ⊕ TM → TM, (ηx, ξx) 7→ Tηx(ξx) ∈ TM satisfying the following proper-
ties for all x ∈M .

1. (Associated retraction) There exists a retraction R, called the retraction
associated with T , such that, for all ηx, ξx, it holds that Tηxξx ∈ TRx(ηx)M .

2. (Consistency) T0xξx = ξx for all ξx ∈ TxM ;
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x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Fig. 1. Vector transport.

3. (Linearity) The mapping Tηx : TxM → TR(ηx)M, ξx 7→ Tηx(ξx) is linear.

Note that, in general, vector transports are not isometries; in fact, the defi-
nition of a vector transport does not even assume an underlying Riemannian
metric. When M is a Riemannian manifold and the vector transport is se-
lected to be the Levi-Civita parallel translation, then it is an isometry. When
it exists, the inverse of the linear map Tηx is denoted by (Tηx)−1. Observe
that (Tηx)−1(ξRx(ηx)) belongs to TxM . If M is an embedded submanifold of
a Euclidean space and M is endowed with a retraction R, then a particular
choice of vector transport is given by

Tηxξx := PRx(ηx)ξx, (1)

where Px denotes the orthogonal projector onto TxM . Depending on the man-
ifold, this vector transport may be much less expensive to compute than the
Levi-Civita parallel transport. Other choices may also be used to achieve com-
putational savings. It may happen that the chosen vector transport and its
inverse are not defined everywhere, but then the set of problematic points
is usually of measure zero, and no difficulty is observed in numerical experi-
ments.

3 The RBFGS Algorithm

The structure of the RBFGS algorithm is given in Algorithm 0.1. Recall that,
given a smooth scalar field f on a Riemannian manifold M with Riemannian
metric g, the gradient of f at x, denoted by grad f(x), is defined as the unique
element of TxM that satisfies:

gx(grad f(x), ξ) = Df(x)[ξ],∀ξ ∈ TxM. (2)

The line-search procedure in Step 4 of RBFGS uses Armijo’s condition.
The RBFGS algorithm can also be reformulated to work with the inverse

Hessian approximation Hk = Bk
−1 rather than with the Hessian approxima-

tion Bk. In this case, Step 6 of RBFGS is replaced by



Riemannian BFGS Algorithm with Applications 187

Algorithm 0.1 RBFGS
1: Given: Riemannian manifold M with Riemannian metric g; vector transport T

on M with associated retraction R; smooth real-valued function f on M ; initial
iterate x0 ∈M ; initial Hessian approximation B0.

2: for k = 0, 1, 2, . . . do
3: Obtain ηk ∈ TxkM by solving Bkηk = −grad f(xk).
4: Set step size α = 1, c = g(grad f(xk), ηk). While f(Rxk(2αηk))− f(xk) < αc,

set α := 2α. While f(Rxk (αηk)) − f(xk) ≥ 0.5αc, set α := 0.5α. Set xk+1 =
Rxk(αηk).

5: Define sk = Tαηk(αηk) and yk = grad f(xk+1)− Tαηk(grad f(xk)).
6: Define the linear operator Bk+1 : Txk+1M → Txk+1M by

Bk+1p = B̃kp−
g(sk, B̃kp)

g(sk, B̃ksk)
B̃ksk +

g(yk, p)

g(yk, sk)
yk for all p ∈ Txk+1M, (3)

with
B̃k = Tαηk ◦ Bk ◦ (Tαηk )−1. (4)

7: end for

Hk+1p = H̃kp−
g(yk, H̃kp)
g(yk, sk)

sk −
g(sk, pk)
g(yk, sk)

H̃kyk

+
g(sk, p)g(yk, H̃kyk)

g(yk, sk)2
sk +

g(sk, sk)
g(yk, sk)

p (5)

with
H̃k = Tηk

◦ Hk ◦ (Tηk
)−1. (6)

This yields a mathematically equivalent algorithm. It is useful because it
makes it possible to cheaply compute an approximation of the inverse of the
Hessian. This may make RBFGS advantageous even in the case where we have
a cheap exact formula for the Hessian but not for its inverse.

4 Practical Implementation of RBFGS

4.1 Two Approaches

A practical implementation of RBFGS requires the following ingredients: (i)
an efficient numerical representation for points x on M , tangent spaces TxM
and the inner products gx(ξ1, ξ2) on TxM ; (ii) an implementation of the chosen
retraction Rx : TxM →M ; (iii) efficient formulas for f(x) and grad f(x); (iv)
an implementation of the chosen vector transport Tηx and its inverse (Tηx)−1;
(v) a method for solving

Bkηk = −grad f(xk), (7)
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where Bk is defined recursively through (3), or alternatively, a method for
computing ηk = −Hkgrad f(xk) where Hk is defined recursively by (5). Point
(v) is the main difficulty. In this paper, we restrict to the case where M is a
submanifold of Rn, and we construct explicitly a matrix representation of Bk.
We discuss two implementation approaches.

Approach 1 realizes Bk as an n×n matrix B(n)
k . Since M is a submanifold

of Rn, tangent spaces TxM are naturally identified with subspaces of Rn

(see [3, 3.5.7] for details), and it is very common to use the same notation
for a tangent vector and its corresponding element of Rn. However, to explain
Approach 1, it is useful to distinguish the two objects. To this end, let ιx
denote the natural inclusion of TxM in Rn, ιx : TxM → Rn, ξx 7→ ιx(ξx).

To represent Bk, we pick B(n)
k ∈ Rn×n such that, for all ξxk

∈ Txk
M ,

B
(n)
k ιxk

(ξxk
) = ιxk

(Bkξxk
). (8)

Note that condition (8) does not uniquely specify B
(n)
k ; its action on the

normal space is irrelevant. Solving the linear system (7) then amounts to
finding ιxk

(ηk) in ιxk
(Txk

M) that satisfies

B
(n)
k ιxk

(ηk) = −ιxk
(grad f(xk)). (9)

It remains to give an expression for the update formula (3). To this end,
let T (n)

αηk be the n × n matrix that satisfies T (n)
αηk ιxk

(ξxk
) = ιxk+1(Tαηk

ξxk
)

for all ξxk
∈ Txk

M and T
(n)
αηkζk = 0 for all ζk ⊥ ιxk

(Txk
M). Since M is an

embedded submanifold of Rn, the Riemannian metric is given by g(ξx, ηx) =
ιx(ξx)T ιx(ηx) and the update equation (3) is then

B
(n)
k+1 = B̃

(n)
k −

B̃
(n)
k ιxk+1(sk)ιxk+1(sk)T B̃

(n)
k

ιxk+1(sk)T B̃
(n)
k ιxk+1(sk)

+
ιxk+1(yk)ιxk+1(yk)T

ιxk+1(yk)T ιxk+1(sk)
,

where B̃(n)
k = T

(n)
αηkB

(n)
k

(
(Tαηk

)(n)
)† and † denotes the pseudoinverse.

Approach 2 realizes Bk by a d×d matrix B(d)
k using bases, where d denotes

the dimension of M . Given a basis (Ek,1, . . . , Ek,d) of Txk
M , if Ĝk ∈ Rd is

the vector of coefficients of grad f(xk) in the basis and B
(d)
k is the d × d

matrix representation of Bk in the basis, then we must solve B(d)
k η̂k = −Ĝk

for η̂k ∈ Rd, and the solution ηk of (7) is given by ηk =
∑d

i=1Ek,i(η̂k)i.

4.2 Implementation on the Unit Sphere

We view the unit sphere Sn−1 = {x ∈ Rn : xTx = 1} as a Riemannian
submanifold of the Euclidean space Rn. In the rest of the paper, we abuse the
notation by ignoring the inclusions to simplify the formulas.

The tangent space at x, orthogonal projection onto the tangent space at
x, and the retraction chosen are given by

§
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TxS
n−1 = {ξ ∈ Rn : xT ξ = 0}

Pxξx = ξ − xxT ξx

Rx(ηx) = (x+ ηx)/‖(x+ ηx)‖,

where ‖ · ‖ denotes the Euclidean norm.
Vector transport (1) on Sn−1 is given by

Tηxξx =
(
I − (x+ ηx)(x+ ηx)T

‖x+ ηx‖2

)
ξx (10)

which takes a vector ξx that belongs to the orthogonal complement of x (be-
cause it is in the tangent space to the sphere at x) and projects it along (x+ηx)
into the orthogonal complement of (x + ηx). To invert (10), we start from a
vector in the orthogonal complement of (x+ ηx) and project it along (x+ ηx)
into the orthogonal complement of x. The result is an oblique projection

(Tηx)−1(ξRx(ηx)) =
(
I − (x+ ηx)xT

xT (x+ ηx)

)
ξRx(ηx) (11)

For the unit sphere, the Levi-Civita parallel transport of ξ ∈ TxS
n−1 along

the geodesic, γ, from x in direction η ∈ TxS
n−1 is [5]

P t←0
γ ξ =

(
In + (cos(‖η‖t)− 1)

ηηT

‖η‖2
− sin(‖η‖t)xη

T

‖η‖

)
ξ.

This parallel transport and its inverse have computational costs comparable
to the chosen vector transport and its inverse.

4.3 Implementation on the Compact Stiefel Manifold St(p, n)

We view the compact Stiefel manifold St(p, n) = {X ∈ Rn×p : XTX = Ip}
as a Riemannian submanifold of the Euclidean space Rn×p endowed with the
canonical Riemannian metric g(ξ, η) = tr(ξT η). The tangent space at X and
the associated orthogonal projection are given by

TXSt(p, n) = {Z ∈ Rn×p : XTZ + ZTX = 0}
= {XΩ +X⊥K : ΩT = −Ω,K ∈ R(n−p)×p}

PXξX = (I −XXT )ξX +Xskew(XT ξX)

We use the retraction given by RX(ηX) = qf(X + ηX), where qf(A) denotes
the Q factor of decomposition of A ∈ Rn×p

∗ as A = QR, where Rn×p
∗ denotes

the set of all nonsingular n × p matrices, Q ∈ St(p, n) , and R is an upper
triangular n× p matrix with strictly positive diagonal elements.

Vector transport (1) and its inverse on St(p, n) are given by
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TηX
ξX = (I − Y Y T )ξX + Y skew(Y T ξX)

(TηX
)−1ξY = ξY + ζ,

where Y := RX(ηX), ζ is in the normal space at Y which implies ζ = Y S
where S is a symmetric matrix, and (ξY + Y S) ∈ TxSt(p, n) which implies
XT (ξY + Y S) is skew symmetric. We therefore have

XTY S + SY TX +XT ξY + ξT
Y X = 0.

Therefore, S can be found by solving a Lyapunov equation.
For St(p, n), the parallel transport of ξ 6= H along the geodesic γ(t) from

Y in direction H, denoted by w(t) = P t←0
γ ξ, satisfies [8, 2.2.3]:

w′(t) = −1
2
γ(t)(γ′(t)Tw(t) + w(t)T γ′(t)), w(0) = ξ. (12)

In practice, the differential equation is solved numerically and the computa-
tional cost of parallel transport may be significantly higher than that of vector
transport.

5 Applications and numerical experiment results

We have experimented extensively with the versions of RBFGS described
above. Here we present the results of two problems that provide leading evi-
dence supporting the value of using retraction and vector transport in RBFGS
and its limits. We obtained similar iteration counts using different x0.

For a symmetric matrix A, the unit-norm eigenvector, v, corresponding to
the smallest eigenvalue, defines the two global minima, ±v, of the Rayleigh
quotient f : Sn−1 → R, x 7→ xTAx. The gradient of f is given by

grad f(x) = 2Px(Ax) = 2(Ax− xxTAx).

We show results of the minimization of the Rayleigh quotient to illustrate the
performance of RBFGS on Sn−1.

On St(p, n) we consider a matrix Procrustes problem that minimizes the
cost function f : St(p, n) → R, X → ‖AX − XB‖F given n × n and p × p
matrices A and B respectively. The gradient of f on the submanifold of Rn×p

used to represent St(p, n) is

grad f(X) = PXgrad f̄(X) = Q−Xsym(XTQ),

Q := ATAX −ATXB −AXBT +XBBT .

The versions of RBFGS that update B and B−1 perform similarly for these
problems so we report data from the B−1 version. Approach 1 and Approach 2
display similar convergence behavior and on these manifolds Approach 2 has
a higher computational complexity so we report data from Approach 1.

§
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Table 1. Vector transport vs. Parallel transport

Rayleigh Procrustes
n = 300 (n, p) = (12, 7)

Vector Parallel Vector Parallel

Time (sec.) 4.0 4.2 24.0 304.0

Iteration 97 95 83 175
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Fig. 2. Update of B−1, Parallel and Vector Transport for Procrustes. n=12, p=7.

Since parallel transport and vector transport by projection have similar
computational costs on Sn−1, the corresponding RBFGS versions have a sim-
ilar computational cost per iteration. Therefore, we would expect any perfor-
mance difference measured by time to reflect differences in rates of conver-
gence. Columns 2 and 3 of Table 1 show that vector transport produces a
convergence rate very close to parallel transport and the times are close as
expected. This is encouraging from the point of view that the more flexible
vector transport did not significantly degrade the convergence rate of RBFGS.

Given that vector transport by projection is significantly less expensive
computationally than parallel transport on St(p, n), we would expect a signif-
icant improvement in performance as measured by time if the vector transport
version manages to achieve a convergence rate similar to parallel transport.
The times in columns 4 and 5 of Table 1 show an advantage to the vector trans-
port version larger than the computational complexity predicts. The iteration
counts provide an explanation. Encouragingly, the use of vector transport ac-
tually improves convergence compared to parallel transport. We note that
the parallel transport version performs the required numerical integration of
a differential equation with a stepsize sufficiently small so that decreasing it
does not improve the convergence rate of RBFGS but no smaller to avoid
unnecessary computations. Figure 2 illustrates in more detail the significant
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improvement in convergence rate achieved for vector transport. It provides
strong evidence that a careful consideration of the choice of vector transport
may have significant beneficial effects on both cost per step and overall con-
vergence. More detailed consideration of this observation and the convergence
theory for RBFGS will be presented in a future paper.
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Summary. This paper presents a new approach to identify time-varying ARX mod-
els by imposing a penalty on the coefficient variation. Two different coefficient nor-
malizations are compared and a method to solve the two corresponding optimization
problems is proposed.

1 Introduction

Time-varying processes appear in many applications such as speech process-
ing, time-varying behavior detection (fault detection or wear detection) or
more generally when some parameters of a linear system vary over time. In
this paper, we are interested in time-varying systems identification using an
ARX model of order N − 1:

N−1∑
i=0

y(t− i)αi(t) =
N−1∑
i=0

u(t− i)βi(t) (1)

where y is the output of the time-varying system, u is the input and αi(t) and
βi(t) are the coefficients of the model at time t.

Several approaches have been adopted to deal with time-varying modeling
problems. One of the most popular ones is to use an adaptive algorithm that
computes iteratively the coefficients of the model; see, e.g., [1]. This approach
works quite well under the assumption that the time variations are slow.

Another approach is to expand the coefficients of the model in a finite set
of basis functions [2]. The problem then becomes time-invariant with respect
to the parameters in the expansion and is hence reduced to a least squares
problem. The two main issues which are encountered when this approach is
applied to general time-varying systems, are how to choose a family of basis
functions, and how to select finitely many significant ones.

Here, we consider a method which identifies the time-varying coefficients
in a fixed time window. This method is not recursive and does not assume
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DOI 10.1007/978-3-642-12598-0_17, © Springer-Verlag Berlin Heidelberg 2010 
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strong hypotheses on the evolution of the coefficients. Moreover, at each time
step, a value for the coefficients of the model is identified. Thus, it is not
necessary to find a basis to expand the coefficients which is an important
practical advantage. It will still be possible to choose a basis of functions to
expand the coefficients after the identification to reduce the space complexity
of the identified model. Our approach is based on a trade-off between the
minimization of the prediction error and the minimization of the variation of
the coefficients. The penalization of the variation of the coefficients enables
the reduction of high frequency noises and the use of classical techniques to
find the order of the model.

The paper is organized as follows. Section 2 introduces our approach and
describes a method to solve efficiently the least squares problem that arises.
Section 3 presents another normalization of the cost function introduced in
section 2 that leads to an optimization problem on the Cartesian product of
spheres. Numerical experiments and some ways to find the parameters of the
method are presented in section 4.

2 Our approach

On the one hand, the coefficients must be allowed to vary sufficiently to deal
with possibly large coefficient variations and to fit the data points. But, on
the other hand, the variation of the coefficients must be penalized to reduce
the influence of high frequency noises or outliers. To achieve this trade-off,
the following cost function is considered:

min
X(0),...,X(T−1)

T−1∑
t=1

‖X(t)−X(t− 1)‖22 + µ
T−1∑
t=0

‖φ>(t)X(t)‖22, (2)

where T is the size of the time window where the identification is performed,
X(t) =

[
α0(t), β0(t), . . . , αN−1(t), βN−1(t)

]> is the coefficient vector and

φ(t) =
[
y(t),−u(t), . . . , y(t−N + 1),−u(t−N + 1)

]> is the data vector. It
is also possible to identify the model structure (1) where some of the coef-
ficients are set to zero: it suffices to delete the coefficients in X(t) and the
corresponding inputs or outputs in φ(t).

The first term imposes that the coefficients do not vary too fast and the
second term corresponds to the square of prediction error. The parameter
µ > 0 can be chosen to find a compromise between fitting the data and
preventing the coefficients from varying too quickly.

This problem admits the trivial solution: X(t) = 0 for all t. Consequently,
we must normalize the coefficient vector. Two kinds of normalizations are
considered: fixing one coefficient at 1 for all t, and imposing ‖X(t)‖ = 1 for
all t. The first one yields a least squares problem. The second one yields an
optimization problem on the Cartesian product of spheres and is the subject
of the next section.
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The rest of this section explains how to solve the problem efficiently when
the normalization: α0(t) = 1 for all t is chosen. In this case, the problem (2)
can be rewritten as the following least squares problem:

min
X2
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whereX2(t) = [β0(t), . . . , αN−1(t), βN−1(t)]
> and φ2(t) = [−u(t), y(t− 1), . . .]>.

To preserve the structure, a method based on the normal equations (A2
>A2X2 =

A2
>b) is proposed to solve the problem. The A2
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where I is the identity matrix of size 2N − 1.
The matrix A2

>A2 is block tri-diagonal and is the sum of two positive
semi-definite matrices M and Φ. Hence, A2

>A2 is invertible if the kernel
of M has no intersection with the kernel of Φ. The eigenvalues λk and the
corresponding eigenspaces vk of M are (see [3]):

vk =
[
cos((0 + 1

2 )kπ
T )I · · · cos((j + 1

2 )kπ
T )I · · · cos(((T − 1) + 1

2 )kπ
T )I

]
λk = 2− 2 cos(

kπ

T
) 0 ≤ k ≤ T − 1.

The eigenspace relative to λ0 = 0 is: v0 =
[
I . . . I

]>. Consequently, in order
to get a unique solution, the following condition is required:

v>0 A2
>A2v0 = µv>0 Φv0 = µ

T−1∑
i=0

φ2(i)φ2(i)> � 0.
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This is true if λmin

(∑T−1
i=0 φ2(i)φ2(i)>

)
> 0 which means that the data vector

φ2(t) must span a space of dimension 2N − 1 on the whole time horizon of
size T . This condition will be easily satisfied if the input is sufficiently exciting
and if the order of the model is not overestimated. Notice that this tells no
information about the reliability of the identified coefficients. To be able to
recover the true coefficients of a model, the data should be unperturbed and
as exciting as possible. If λmin

(∑k+2N−2
i=k φ2(i)φ2(i)>

)
> 0 ∀k, the data are

very informative, and this will provide a more reliable approximation of the
coefficients.

The system of normal equations can be efficiently solved by performing
a block tri-diagonal LU factorization of the A2

>A2 matrix (3), see [4] for
more details. This decomposition has a complexity of O((T − 1)(2N − 1)3)
operations which is linear in T .

Using the same technique, it is also possible to normalize another coeffi-
cient than α0 and to take into account already known coefficients by fixing
them at their value. Unfortunately, the solution of the problem will depend
on the coefficient which is normalized, that is why another normalization is
proposed in the next section.

3 Normalization of the coefficient vector

In this section, we explain why it can be interesting to normalize the coefficient
vector, i.e., fixing ‖X(t)‖ = 1 for all t and we describe the method used to
solve the corresponding optimization problem.

The main idea behind this normalization is the following. The ARX rela-
tion (1) can be rewritten as:

X(t)>φ(t) = 0

and is unchanged if it is multiplied by a scalar γ(t) 6= 0 which means that
γ(t)X(t) corresponds to the same ARX model as X(t). Consequently, an ARX
model at time t is not represented by a particular coefficient vector but by a
direction in R2N . Hence, a good notion of distance between two ARX models
is the relative angle. In fact, this notion of distance does not depend on the
particular choice of vector in R2N used to represent an ARX model. When
‖X(t)‖ = 1 for all t, the first term of (2) becomes:

T−1∑
t=1

4 sin2

(
∠X(t)X(t− 1)

2

)
and only depends on the angle ∠X(t)X(t− 1) between two coefficient vectors
representing two ARX models at consecutive time steps.



Identification Method for Time-Varying ARX Models 197

This is also a more neutral normalization because the cost on the vari-
ation of the coefficients is uniformly distributed over all coefficients, as op-
posed to the normalization of the α0 coefficient. In fact, when the α0 coef-
ficient is normalized, the distance between two ARX models represented by
‖ X(t)

α0(t)
− X(t−1)

α0(t−1)‖
2
2 will be larger if the model at time t is well represented by

a model whose α0 coefficient gets close to 0 and lower if the model at time
t is well represented by a model whose α0 coefficient is large. This is shown
in the following example. At time t = 150, the α0 coefficient of the following
system:

α0(t) = 0.5 + 0.45 sin
(

t2π
200

)
1 ≤ t ≤ 200

β0(t) = 5
α1(t) = 0.01
β1(t) = −4

gets close to zero. Fig. 1. shows the identified β0 coefficient using the two
normalizations. If the coefficient α0 is normalized, the true coefficient is not
recovered in the neighborhood of t = 150 because a coefficient variation is
highly penalized in this neighborhood. This is avoided when the coefficient
vector is normalized since the cost on the variation of the coefficients depends
only on the angle.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

 β
0 

time step

 

 

identified coefficients with α0 = 1

true coefficients

identified coefficients with ‖X‖2 = 1

Fig. 1. true and identified coefficient β0 when ‖X(t)‖2 = 1 for all t

With this constraint, the optimization problem (2) is no longer a least
squares problem and an optimization technique on manifolds is proposed. We
will only describe the main points of this method. For more details, see [5].

By introducing the following notation:
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Y =

 X(0)
...

X(T − 1)

 =

 X0

...
XT−1

 ∈ R2NT ,

the constraint ‖X(t)‖ = 1 for all t can be also rewritten as: Y ∈ (S2N−1)T

where (S2N−1)T stands for the Cartesian product of T unit spheres in R2N :

(S2N−1)T = S2N−1 × · · · × S2N−1︸ ︷︷ ︸
T

⊂ R2NT

where S2N−1 = {x ∈ R2N |x>x = 1} is the unit sphere in R2N . This is a
submanifold of R2NT and its tangent space at Y is:

TY (S2N−1)T = {Z =
[
Z0 . . . ZT−1

]> ∈ R2NT |X>i Zi = 0 0 ≤ i ≤ T − 1}.

The orthogonal projection on this tangent space at the point Y is given by:

PY (Z) =

 PX0(Z0)
...

PXT−1(ZT−1)

 =

 (I2N −X0X
>
0 )Z0

...
(I2N −XT−1X

>
T−1)ZT−1

 .
Then, the problem (2) becomes the following optimization problem on

(S2N−1)T :

min
Y

f : R2NT −→ R, Y −→ Y >A>AY

s.t. Y ∈ (S2N−1)T

where the A>A matrix is given by:



I + µΦ(0) −I
−I 2I + µΦ(1) −I

. . . . . . . . .
. . . . . . −I

. . . 2I + µΦ(T − 2) −I
−I I + µΦ(T − 1)


(4)

with Φ(t) = φ(t)φ>(t) and I is the identity matrix of size 2N . The restriction
of f to (S2N−1)T is denoted by f .

A Newton method on the Cartesian product of spheres has been chosen
to solve this problem because our numerical experiments have shown that the
solution of the least squares problem (when α0 is normalized) belongs to the
attraction basin of the Newton method. So, the solution of the least squares
problem can be used as a starting value for the local optimization problem on
the Cartesian product of spheres. The Newton equation is given by:
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∇Zgrad f = −grad f(Y ), Z ∈ TY (S2N−1)T (5)

where grad f(Y ) represents the gradient at the current iterate Y and∇Zgrad f
stands for the Riemannian covariant derivative of the vector field grad f(Y )
in the direction Z where Z will be the next Newton direction.

To implement this method, an expression for the gradient and for the Rie-
mannian connection ∇ is required. The gradient with respect to the induced
metric is the unique element grad f(Y ) of TY (S2N−1)T which satisfies:

grad f(X)>Z = DF (Y )[Z] ∀Z ∈ TY (S2N−1)T

where DF (Y )[Z] stands for the differential at Y in the direction Z. In our
case, this gives:

grad f(Y ) = PY (2A>AY ).

Since (S2N−1)T is an Rn submanifold of the Euclidean space R2NT , the Rn

connection is equivalent to the classical directional derivative in R2NT followed
by a projection on the tangent space at Y : ∇Zgrad f = PY (Dgrad f(Y )[Z]).
Since

(Dgrad f(Y )[Z])i = 2((−XiZ
>
i − ZiX

>
i )BiY + PXi(BiZ)),

the Newton equation (5) becomes:

2

 PX0(B0Z)− Z0X
>
0 B0Y

...
PXT−1(BT−1Z)− ZT−1X

>
T−1BT−1Y

 = −grad f(Y ) (6)

Z ∈ TY (S2N−1)T (7)

where Bi is the block matrix composed of the rows i2N + 1 up to (i+ 1)2N
and all the columns of A>A in (4). By introducing the following change of
variables,

ωi = X⊥i
>
Zi where [Xi|X⊥i ]>[Xi|X⊥i ] = I2N

the condition (7) is trivially satisfied and (6) becomes:

K0ω0 −X⊥0
>
X⊥1 ω1 = −X⊥0

>
B0Y

−X⊥i
>
X⊥i−1ωi−1 +Kiωi −X⊥i

>
X⊥i+1ωi+1 = −X⊥i

>
BiY for 1 ≤ i ≤ T − 2

−X⊥T−1

>
X⊥T−2ωT−2 +KT−1ωT−1 = −X⊥T−1

>
BT−1Y

where Ki = X⊥i
>
µΦ(i)X⊥i − IX>i BiY . This system is block tri-diagonal and

can be easily solved using a block LU factorization which requires O((T −
1)(2N−1)3) operations. Consequently from a computational complexity point
of view, one iteration of this Newton method is equivalent to the least squares
method presented in the previous section. Once the Newton step Z has been
computed, the following retraction:
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RY (Z) =


X0+Z0
‖X0+Z0‖

...
XT−1+ZT−1
‖XT−1+ZT−1‖


can be used to compute the update Y+ = RY (Z).

4 Choice of µ and the order

In this section, some numerical experiments and methods to select or gain
some insight in the µ parameter value and the order of the system are pre-
sented. Let us consider the system defined by the following coefficient vector:

X(t) =


α0(t)
β0(t)
α1(t)
β1(t)
α2(t)
β2(t)

 =



1

1− 0.2e−( t−100
50 )2

−0.8
−0.2
0.6
−0.6

 .

This system was simulated with a white noise of unitary variance as input. The
output was perturbed in the following way: y(t) ← y(t) +∆|y(t)|U(t) where
U(t) is a random variable distributed uniformly on [−1, 1]. Fig. 2. shows the
error on the coefficients in function of µ for different levels of perturbation.
For an unperturbed model (∆ = 0), the error on the coefficients is smaller
for a large value of µ because the bias introduced by the first term of our
cost function is reduced. For a perturbed system, it is not optimal to trust
too much the data, and there exists an optimal value of µ that minimizes
the error on the coefficients. To get an insight of this optimal value of µ in
practice, we can look at the identified coefficient β0 shown in Fig. 3. For a
small value of µ, we get an almost constant coefficient and for a large value
of µ we identify a coefficient that oscillates around the true coefficient. This
means that we are identifying the noise. So it is possible to get an idea of
the best value of µ that makes a desired trade-off between the slow coefficient
variation or equivalently the risk of bias and the rejection of the perturbations.

The notion of order for a time invariant system somehow represents the
complexity of the model. If this complexity is increased, the model will better
fit the data. So, a common criterion to find the order of a time-invariant system
consists in measuring the fitting error (the prediction error in our case) and
selecting the order that corresponds to a drop on the fit level. This idea does
not directly extend to time-varying models. In fact, even with a time-varying
model of order 0, it is easy to make the fitting error go to 0. But by imposing
a cost on the variation of the coefficients, the same idea can be applied as
shown in the following experiment. A time-varing ARX system of order 4 was
identified using different models (different values of the order) and different
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Fig. 2. difference between the true X2 and the identified coefficients X̃2: ‖X2−X̃2‖2
in function of µ for different levels of perturbation ∆
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Fig. 3. identified (.-) and true (-) coefficients β0 for different values of µ when
∆ = 0.1

values of µ, see Fig. 4. When we go from a model of order 3 to a model of
order 4, the error drops and remains rather constant if the order is further
increased. This drop indicates that the model order is probably 4 and it is
interesting to notice that this conclusion does not depend on the value of µ.

5 Conclusions

We have presented a method to identify a time-varying ARX model by penal-
izing the variation of the coefficients. By doing so, we can choose the order
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Fig. 4. prediction error (
PT−1

t=0 ‖φ
>(t)X̃(t)‖2 where X̃(t) stands for the identified

coefficient vector) as a function of the order, for different values of µ

using classical techniques and the influence of the perturbations can be re-
duced. A more neutral normalization of the coefficient vector has also been
proposed. This normalization leads to better results on models whose α0 co-
efficient gets close to 0. In later work, we will extend these methods to MIMO
systems. When the coefficient matrix is normalized, this yields an optimization
problem on the Cartesian product of Grassmann manifolds.
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Summary. The flow of the Kepler problem (motion of two mutually attracting
bodies) is known to be geodesic after the work of Moser [21], extended by Belbruno
and Osipov [2, 22]: Trajectories are reparameterizations of minimum length curves
for some Riemannian metric. This is not true anymore in the case of the three-body
problem, and there are topological obstructions as observed by McCord et al. [20].
The controlled formulations of these two problems are considered so as to model
the motion of a spacecraft within the influence of one or two planets. The averaged
flow of the (energy minimum) controlled Kepler problem with two controls is shown
to remain geodesic. The same holds true in the case of only one control provided
one allows singularities in the metric. Some numerical insight into the control of the
circular restricted three-body problem is also given.
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1 Introduction

The circular restricted three-body problem is defined as follows [26].

Two bodies describe circular orbits around their center of mass under
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in the plane defined by the two rotating ones. The restricted problem
is to describe the motion of this third body.

We investigate the optimal control of this problem. The two primaries are
planets, typically Earth and Moon, the third body is a spacecraft. The con-
trol is the thrust of this spacecraft. A recent example of this problem is the
SMART-1 mission [4, 23] of the European Space Agency in the Earth-Moon
system. This case has three important features: (i) Provided we neglect non-
coplanar effects, the circular restricted model is germane to the problem as
the eccentricity of the Moon orbit is about 0.0549; (ii) The mass m2 of the
second primary (the Moon) is much smaller than the mass of the first (the
Earth), m1, so that µ = m2/(m1 +m2) ' 0.0121 is a small parameter of the
model; (iii) The thrust of the engine is very low since solar-electric propulsion
is used (around 0.07 Newtons for a 350 Kilogram vehicle), so the magnitude
of the control is another small parameter.

In a rotating frame, the dynamics is normalized to the second order me-
chanical system

q̈ +∇Vµ(q) + 2iq = εu, |u| =
√
u2

1 + u2
2 ≤ 1.

Coordinate q ∈ C ' R2 is the position vector while u is the control (the
normalized acceleration, here). In this moving frame, the circular restricted
three-body potential is

Vµ(q) = −q
2

2
− 1− µ

r1
− µ

r2
,

r21 = (q1 + µ)2 + q22 , r22 = (q1 − 1 + µ)2 + q22 .

Parameter µ is the ratio m2/(m1 + m2) of the masses of the two primaries,
and ε is the bound on the acceleration. When µ vanishes, we have a controlled
two-body problem. The uncontrolled equations of motion can also be written
in Hamiltonian form using Jacobi first integral (total energy),

Jµ(q, q̇) =
|q̇|2

2
+ Vµ(q).

In complex notation, let p = q̇ + iq. Then

Jµ(q, p) =
|p|2

2
+ p2q1 − p1q2 −

1− µ
r1
− µ

r2
·

The controlled system with Hamiltonian drift is so

q̇ =
∂Jµ

∂p
, ṗ = −∂Jµ

∂q
+ εu, |u| ≤ 1. (1)

In the case of two bodies (µ = 0) and no control (ε = 0), the equations of
motion in a fixed frame are
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q̈ +
q

|q|3
= 0, q ∈ R2 − {0}. (2)

In Hamiltonian form,

q̇ =
∂J0

∂p
, ṗ = −∂J0

∂q
,

with energy J0 = |q̇|2/2−1/|q| = |p|2/2−1/|q|, as p = q̇ in the fixed frame. It
was proven in [21] that, for negative values of the energy, the Hamiltonian flow
of the system is a reparameterization of the geodesic flow on the punctured
two-sphere, Ŝ2 = S2−{N} (North pole removed). We sketch the construction
in dimension n ≥ 2 where the result holds unchanged. (Take q ∈ Rn − {0} in
(2).) One first identifies the tangent bundle of the punctured n-sphere with
the set of vectors ξ = (ξ0, . . . , ξn), η = (η0, . . . , ηn) of Rn+1 such that

|ξ| = 1, (ξ|η) = 0.

The puncture is obtained by removing ξ0 = 1. Then, the transformation from
the tangent bundle to R2n is

qi = (1− ξ0)ηi + η0ξi, pi = − ξi
1− ξ0

, i = 1, . . . , n.

Provided time is changed according to

dt = |q|ds, (3)

the Hamiltonian flow on J0 = −1/2 is mapped into the Hamiltonian flow on
J̃0 = 1/2 ⊂ T Ŝn where

J̃0(ξ, η) =
1
2
|ξ|2|η|2.

This level set is the unit or spherical tangent bundle of Ŝ2 since |η| = 1.
There,

ξ′ = η, η′ = −ξ,

so ξ′′ + ξ = 0 and one actually gets geodesics parameterized by arc length.
The Levi-Civita change in time (3) regularizes the collision and the dynamics
is extended on the whole n-sphere. The result of [21] was further generalized
to cover the case of zero or positive energy levels by [2] and [22].

Trajectories in optimal control are projections of Hamiltonian flows, in
general with singularities described by Pontryagin maximization condition.
Riemannian problems being the simplest instance of control problems, one
may ask whether a given smooth Hamiltonian flow is the reparameterization
of some Riemannian flow as in the two-body case. This question is addressed
in [20], noting the following fact. Given a flow on an odd 2n− 1-dimensional
manifold M , a necessary condition for the flow to be geodesic is that the
manifold be the unit tangent bundle of some other manifold of dimension n.
This puts topological restrictions on M . These conditions are expressed in
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terms of the homology of M and applied to the (general) three-body problem.
We state the results and recall some basic facts on homology [17].

On a topological space X, a singular p-simplex is a continuous map σp :
∆p → X. Here, ∆p is the standard p-simplex, that is the set of (t0, . . . , tp) ∈
Rp+1 such that

t0 + · · ·+ tp = 1, ti ≥ 0, i = 0, . . . , p.

Let v0, . . . , vp be its vertices. The set Cp(X) of p-chains is the free abelian
group generated by singular p-simplices. The boundary operator ∂p : Cp(X)→
Cp−1(X) is

∂p(σp) =
p∑

i=0

(−1)pσp|∆(v0, . . . , v̂i, . . . , vp)

where the restriction is on the (p−1)-simplex ∆(v0, . . . , v̂i, . . . , vp) with vertex
vi removed, implicitly identified with ∆p−1. Images of (p+ 1)-chains by ∂p+1

are p-boundaries, and p-chains in the kernel of ∂p are p-cycles. As δpδp+1 = 0,
boundaries are cycles while, conversely, one defines the p-th homology group
Hp(X) as the quotient

Hp(X) = Ker ∂p/Im ∂p+1.

The rank of the Z-module Hp(X) is βp, the p-th Betti number, and the Euler-
Poincaré characteristic of M is

χ(M) =
n∑

p=0

βp.

Proposition 1 ([20]). If M is a non-compact connected orientable manifold
of dimension 2n−1, a necessary condition for it to be the unit tangent bundle
of some orientable n-manifold is βn−1 6= 0.

Applying this condition to the three-body problem, one gets the following
negative result.

Theorem 1 ([20]). The flow of the planar three-body problem on a negative
level of energy is not geodesic.

In the case of controlled two and three-body problems, there is not much
hope to retrieve Riemannian flows, unless one uses some approximation pro-
cess. The paper is organized as follows. In section 2, we examine the case of
two bodies and two controls. Using averaging on a relaxed problem, we show
that the flow is Riemannian when the L2-norm of the control is minimized.
Its properties are essentially captured by those of a metric on the two-sphere.
The same holds true for the case of two bodies and one control (directed by
velocity) provided one allows singularities in the metric. This is addressed
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in section 3. A preliminary discussion of the restricted three-body and two-
control case is made in section 4. The problem is control-affine, with a drift.
One can still define the exponential mapping associated with minimum time
extremals and compute conjugate points to ensure, as in the Riemannian case,
local optimality of trajectories.

2 Two bodies, two controls

We consider an L2-relaxation of the controlled two-body problem. The bound
ε on the control is dropped,

q̈ +
q

|q|3
= u, u ∈ R2, (4)

while the final time, tf , is a fixed parameter of the criterion:∫ tf

0

|u|2dt→ min .

In the sub-Riemannian case, L2-minimization parameterized by final time
can be recast as a minimum time problem with a bound on the control. Both
problems coincide, so tf and ε play dual roles in this sense. The situation is
more complicated here because of the Kepler drift in the motion. In order
to identify a new small parameter of the problem and perform averaging, we
notice that the negative energy level J0 < 0 has a trivial fiber structure. This
is apparent in suited geometric coordinates.

The set X of oriented ellipses has moduli space the product manifold
R∗+ × S2: Each ellipse is defined by its semi-major axis a > 0 (we exclude
trivial orbits, a = 0), and to any point on S2, (θ, ϕ) in standard spherical
coordinates, is uniquely associated an eccentricity, e = sinϕ, an argument
of perigee (angle of the semi-major axis with a fixed reference axis), θ, and
an orientation. The orientation of the ellipse changes when the point goes
from one hemisphere to the other. Collisions orbits correspond to the equator
ϕ = π/2 and are included in the model.

Remark 1. Ellipses associated with the poles or the equator have richer sym-
metries (automorphisms) than others. The moduli space is then said to be
coarse. It remains finer that the moduli space of conformal ellipses where
homothety and rotation moduli (a, θ) would be dropped.

Position on the orbit is defined by the polar angle in the plane or longitude,
l ∈ S1. The state space is hence S1 × X, and we have a trivial fiber space
whose fiber is the moduli space. To each uncontrolled trajectory on J0 < 0
corresponds a unique point in the fiber, so the drift in (4) has the form

F0(l, x) = ω(l, x)
∂

∂l
, (l, x) ∈ S1 ×X.
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(See (5) hereafter for the definition of ω.) Keeping the same notation, let then
l be the cumulated longitude, associated with the covering

R 3 l 7→ eil ∈ S1.

Choosing l as new time, we recast the problem as control-affine problem on X
without drift but with non-autonomous vector fields depending periodically
on l,

dx
dl

= u1F1(l, x) + u2F2(l, x), u ∈ R2,∫ lf

0

|u|2 dl
ω(l, x)

→ min (fixed lf ).

The two vector fields F1, F2 on X are periodic in the parameter l. Introducing
mean motion, n = a−3/2, and true anomaly, τ = l − θ, one gets

F1(l, x) =
P 2

W 2

(
−3ne sin τ

1− e2
∂

∂n
+ sin τ

∂

∂e
− cos τ

1
e

∂

∂θ

)
,

F2(l, x) =
P 2

W 2

(
− 3nW

1− e2
∂

∂n
+ (cos τ +

e+ cos τ
W

)
∂

∂e

+ (sin τ +
sin τ
W

)
1
e

∂

∂θ

)
,

with W = 1 + e cos τ . The pulsation is

ω(l, x) =
nW 2

(1− e2)3/2
· (5)

Averaging on the base space eliminates l, that is the drift in the equation.
The normal maximized Hamiltonian on S1 × T ∗X is

H(l, x, p) =
ω

2
(H2

1 +H2
2 )(l, x, p),

where Hi = 〈p, Fi(l, x)〉, i = 1, 2, are the Hamiltonian lifts of the vector fields.
Let

H(x, p) =
1
2π

∫ 2π

0

H(l, x, p)dl (6)

be the averaged Hamiltonian. As 1/lf , the new small parameter, tends to zero,
the flow of H converges uniformly towards the flow of H on [0, lf ]. (See [16].)
It turns out that the averaged flow is the flow of some Riemannian metric on
X, a result which can be traced back to Edelbaum [14]. We refer to [5, 9] for
details.

Proposition 2. The averaged Hamiltonian is

H(x, p) =
p2

r

2
+

c2

2r2

(
1− λ sin2 ϕ

sin2 ϕ
p2

θ + p2
ϕ

)
with r = (2/5)n5/6, c =

√
2/5 and λ = 4/5.
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The metric is

dr2 +
r2

c2

(
sin2 ϕ

1− λ sin2 ϕ
dθ2 + dϕ2

)
.

It is Liouville integrable. The integration and the analysis of optimality can
be made on the restriction to S2 by reparameterizing time according to ds =
c2dl/r2. (See [6].) This amounts to restricting to a coarser moduli space where
homothetic ellipses are identified. The restricted metric is

XR(λX)dθ2 + dϕ2 with R =
1

1−X
and X = sin2 ϕ. (7)

As χ(S2) = 2, the two vector fields (XR(X))−1/2∂θ, ∂/∂ϕ cannot form a
global frame on the sphere. They have polar singularities that do not define
genuine singularities of the metric.

Remark 2. Coordinates (θ, ϕ) are associated with the covering of the sphere
with two punctures at North and South poles,

R× (0, π) 3 (θ, ϕ) 7→ (sinϕ cos θ, sinϕ sin θ, cosϕ) ∈ R3.

One retrieves the standard covering exp : C→ C∗ ' S2 − {N,S} by putting
(θ, ϕ) 7→ tan(ϕ/2) exp(iθ).

The Hamiltonian on S2 is H2 = (1/2)[(XR(λX))−1p2
θ + p2

ϕ]. On the level
H2 = 1/2, time is arc length and we get the quadrature

Y 2 = 4(1−X)[X − p2
θ(1− λX)], Y = Ẋ.

Since θ is cyclic, pθ is constant (Clairaut first integral of a surface of revolu-
tion). The complex curve is of genus zero and admits a rational parameteri-
zation. We get

sin z =
1

δ2 − p2
θ

[2δ2X − (δ2 + p2
θ)], dt =

dz
2δ

,

for z ∈ R and δ2 = 1 + λp2
θ. We set θ0 = 0 by symmetry of revolution.

We also assume ϕ0 = π/2 without loss of generality since time translations
generate any extremal on H2 = 1/2 with arbitrary initial condition. The
squared adjoint p2

θ is bounded by 1/(1− λ).

Proposition 3. The system for two bodies and two controls can be integrated
using harmonic functions. One has

sin2 ϕ =
1

2δ2
[(δ2 − p2

θ) cos(2δt) + (δ2 + p2
θ)], δ2 = 1 + λp2

θ, λ = 4/5,

θ = sign(pθ)
[
atan

(δ2 − p2
θ) + (δ2 + p2

θ) tan(δt+ π/4)
2δpθ

]t

0

− λpθt.
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Proof. The quadrature on θ is

dθ
dz

=
pθ

2δ

(
1
X
− λ

)
,

whence the result. ut

Coordinate ϕ (resp. θ) is periodic (resp. quasi-periodic) with period T =
2π/δ = 2π/

√
1 + λp2

θ. (The period of ϕ is twice the period of X = sin2 ϕ.)
The increment of θ over one period is important for the optimality analysis
concluding the section. One has

∆θ = 2π

(
1− λpθ√

1 + λp2
θ

)
. (8)

Fix y0 on S2. The exponential mapping is defined for t ∈ R and p0 ∈
H2(y0, ·)−1(1/2) ⊂ T ∗y0

S2 by

expy0
: (t, p0) 7→ Π ◦ exp t

−→
H 2(y0, p0) = y(t, y0, p0)

where Π : T ∗S2 → S2 is the canonical projection and
−→
H 2 the symplectic

gradient. A conjugate point is a critical value of the exponential mapping. The
time associated with such a critical point is the conjugate time, and one can
define the first conjugate point along the geodesic associated with a given p0.
The (first) conjugate locus is the set of all such points on geodesics emanating
from y0. Jacobi theorem [13] asserts that, up to the first conjugate point, a
geodesic is locally minimizing with respect to neighbouring continuous broken
curves with same endpoints.

Theorem 2. In the two-body two-control case, the conjugate locus of any point
on the sphere has four (possibly degenerate) cusps, two horizontal and two
meridional.

Proof. According to [10] result, a sufficient condition is that ∆θ is strictly
decreasing convex. The condition is valid for (8). ut

Finally, define the cut time along the geodesic defined by p0 as the supre-
mum of times t such that the geodesic s 7→ expy0

(s, p0) is globally minimizing
on [0, t]. (See [13].) The corresponding point, if any, is the cut point . The cut
locus is the set of all such points on geodesics emanating from y0. It is known
since Poincaré that the cut locus of an analytic metric on the sphere is a finite
tree whose extremities are singularities of the conjugate locus. In the case of
a metric with more symmetries, the result can be specialized as follows.

Theorem 3 ([25]). The cut locus of an analytic metric on the sphere of rev-
olution with equatorial symmetry is an antipodal 3 subarc provided the Gauss
curvature is nondecreasing from North pole to equator.
3 Symmetric with respect to the center of the sphere.
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Fig. 1. Conjugate locus, two bodies and two controls. The astroid-shaped locus (in
red) is the envelope of geodesics (in blue) emanating from the initial point. It has
four (degenerate for initial condition on the poles) cusps, two horizontal and two
meridional. The cut locus is a closed antipodal subarc (in black) whose extremities
are horizontal cusps of the conjugate locus.

Though metric (7) has the required symmetries, the monotonicity condition
on the curvature does not hold as

K =
1− λ(3− 2X)

(1− λX)2

is not decreasing when X ∈ [0, 1] (remember that X = sin2 ϕ) for λ = 4/5. A
refined result relying on ∆θ being strictly decreasing still gives the result [10].

Theorem 4. In the two-body two-control case, the cut locus of any point on
the sphere is a closed antipodal subarc.

Varying λ from zero to one in the definition of the metric (7), one connects
the canonical metric on the sphere to a metric with an equatorial singularity,
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sin2 ϕ

1− sin2 ϕ
dθ2 + dϕ2.

The original metric is conformal to the standard metric on an oblate ellipsoid
of revolution with semi-minor axis

√
1− λ since

XR(λX)dθ2 + dϕ2 =
1

1− λ sin2 ϕ
[sin2 ϕ dθ2 + (1− λ sin2 ϕ)dϕ2].

Making λ tend to one can be interpretated as letting the semi-minor axis tend
to zero, thus collapsing the sphere on a two-face disk [7]. Such a singularity is
intrinsic in the case of only one control as explained in next section.

3 Two bodies, one control

Consider the L2-minimization of the two-body problem with only one control
acting tangentially [8],

q̈ +
q

|q|3
= u

q̇

|q̇|
, u ∈ R,

∫ tf

0

|u|2dt→ min .

The state space is as before the trivial fiber space S1×X, X = R∗+×S2, but
we correct the relation between ϕ and the eccentricity,

e = sinϕ
√

1 + cos2 ϕ.

Changing again time to cumulated longitude,

dx
dl

= uF1(l, x),
∫ lf

0

|u|2 dl
ω(l, x)

→ min (fixed lf ).

In (n, e, θ) coordinates,

F1 = − 3(1− e2)w
n1/3(1 + e cos τ)2

∂

∂n
+

2(1− e2)2

n4/3(1 + e cos τ)2w

[
(e+ cos τ)

∂

∂e
+

sin τ
e

∂

∂θ

]
with true anomaly τ = l − θ and w =

√
1 + 2e cos τ + e2. Since the drift is

unchanged, the pulsation is the same (compare (5)),

ω(l, x) =
n(1 + e cos τ)2

(1− e2)3/2
·

The normal maximized Hamiltonian on S1 × T ∗X is

H(l, x, p) =
ω

2
H2

1 (l, x, p),

where H1 = 〈p, F1(l, x)〉. Define the averaged Hamiltonian as in (6). It is
remarkable that the averaged flow remains Riemannian.
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Proposition 4. The averaged Hamiltonian is

H(x, p) =
p2

r

2
+

c2

2r2

[
(1− sin2 ϕ)2

sin2 ϕ(2− sin2 ϕ)2
p2

θ + p2
ϕ

]
with r = (2/5)n5/6 and c = 2/5.

As in the case of two controls, the flow is Liouville integrable and the whole
analysis can be restricted to S2. The metric induced on the sphere is

XR(X)dθ2 +dϕ2, R(X) =
1
4

[
1 +

2
1−X

+
1

(1−X)2

]
, X = sin2 ϕ. (9)

There is now an equatorial singularity at ϕ = π/2. It is an order two pole
at X = 1 of the rational fraction R. (Compare with R = 1/(1 − X) in the
previous section.)

LetH2 = (1/2)[(XR(X))−1p2
θ+p

2
ϕ]. On the levelH2 = 1/2, the quadrature

on ϕ is
Y 2 = 4(1−X)[X(2−X)2 − 4p2

θ(1−X)2], Y = Ẋ. (10)

The underlying curve is of genus one.4 It is parameterized by a doubly periodic
Weierstraß function,

X = 1− 1
℘(z)− 1/3

,
dt
dz

= 1 +
1

℘(z)− 1/3
, (11)

whose invariants reflect the dependence on pθ,

g2 =
16
3

+ 16p2
θ, g3 =

64
27
− 16

3
p2

θ. (12)

Without loss of generality, we restrict again the computation to θ0 = 0 and
ϕ0 = π/2. With the initial condition at singularity, p2

θ is unbounded in con-
trast to the two-control case. Analyzing roots of the degree three polynomial
4ξ3 − g2ξ − g3 associated with Weierstraß function, one sees that the param-
eterization has to be restricted to the unbounded component of the cubic to
ensure X ∈ [0, 1]. Hence z belongs to R.

Proposition 5. The transcendence for two bodies and one (tangential) con-
trol is elliptic. One has

sin2 ϕ =
℘(z)− 4/3
℘(z)− 1/3

, z ∈ R,

t =
1

℘′(a)

[
ln
σ(z − a)
σ(z + a)

]z

0

+
(

1 +
2ζ(a)
℘′(a)

)
z,

θ = 2pθ

[
1

℘′(b)
ln
σ(z − b)
σ(z + b)

− 1
℘′(c)

ln
σ(z − c)
σ(z + c)

]z

0

+ 4pθ

(
ζ(b)
℘′(b)

− ζ(c)
℘′(c)

)
z,

with ℘(a) = 1/3, ℘(b) = 4/3, ℘(c) = −2/3, and invariants (12).
4 Excluding the degenerate case pθ = 0 associated with meridians.
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Proof. The quadrature on θ is

dθ
dz

= 2pθ

(
1

℘(z)− 4/3
− 1
℘(z) + 2/3

)
.

It is similar to the quadrature (11) on t. Introducing Weierstraß ζ and σ
functions, ℘ = −ζ ′, ζ = σ′/σ, one has∫

℘′(a)dz
℘(z)− ℘(a)

= 2ζ(a)z + ln
σ(z − a)
σ(z + a)

,

whence the result. ut

The family of genus one complex curves (10) are all homeomorphic to the
torus. The topological classification of extremals is then trivial. We recall
standard facts on the moduli space of elliptic curves [18] so as to refine the
classification up to conformal equivalence.

Let L be a lattice in the complex plane with basis (l1, l2) (complex numbers
linearly independent over R2). A pair (l′1, l

′
2) defines another basis if only if

l′1 = al1 + bl2,

l′2 = cl1 + dl2,

for some matrix [
a b
c d

]
∈ SL(2,Z).

Two tori C/L, C/L′ are conformal if and only if there is some µ ∈ C∗ such
that L′ = µL. Let (l1, l2) and (l′1, l

′
2) be bases of L and L′, respectively. We

can assume that τ = l2/l1 and τ ′ = l′2/l
′
1 belong to Poincaré upper half-plane,

H. From the previous remarks, L and L′ are conformal if and only if there is
a quadruple (a, b, c, d) such that

τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1. (13)

Such particular Möbius transformations are automorphisms of H. The induced
group morphism between SL(2,Z) and Aut(H) has kernel ±id. Transforma-
tions (13) are then identified with the Fuchsian modular group PSL(2,Z) =
SL(2,Z)/± id. Then H/PSL(2,Z) is the moduli space for congruences of con-
formal tori. One eventually defines the modular function [18]

j(τ) =
g3
2

∆
·

It is a bijection from H/PSL(2,Z) onto C.
In our case, to each pθ is associated a real rectangular lattice. Using (12),

one can define

j(pθ) =
16(1 + 3p2

θ)
3

27p2
θ(8 + 13p2

θ + 16p4
θ)

(14)

and obtain the following classification of extremals.
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Proposition 6. There are not more than three conformal ϕ-curves.

Proof. Function (14) has exactly two critical points, so j(pθ) = constant has
at most three distinct solutions (not taking into account symmetric solutions,
±pθ). ut

To estimate the conjugate locus at singularity, we use the following local
model. Set x = π/2− ϕ, y = θ. The metric (9) is locally approximated by

dx2 +
dy2

x2p
· (15)

In the case of one (tangential) control, p = 2.

Proposition 7 ([7]). The conjugate locus at the origin of (15) is y =
±Cpx

p+1 minus the origin itself. As p→∞, Cp ∼ 8/(3p+ 1).

As a result, the conjugate locus of the metric on S2 has an order 3 contact with
the equatorial singularity. Because of the symmetry pθ → −pθ, this defines
two meridional cusps of the conjugate locus at ϕ0 = π/2. (See Fig. 2.) The
result of section 2 can be extended to this singular setting.

Theorem 5 ([7]). If ∆θ is strictly decreasing convex, the conjugate locus
has four (possibly degenerate) cusps, all meridional for equatorial points, two
horizontal and two meridional otherwise.

The verification on ∆θ is intricate but can again be made. The following
estimates are computed in [7],

∆θ ∼0 2π(1− 3
√

2
4
pθ +

35
√

2
128

p3
θ), ∆θ ∼∞

4
3
(2−

√
2)K(3− 2

√
2)p−3/2

θ ,

where K(k) is the complete Jacobi integral of first kind and modulus k. The
previous structure result on the cut locus is also extended to include the two-
body one-control case.

Theorem 6 ([7]). If ∆θ is strictly decreasing, the cut locus of a point on
the sphere is the equator minus the point itself for equatorial points, a closed
antipodal subarc otherwise.

4 Three bodies, two controls

In contrast with sections 2 and 3, we keep the original constraint on the
control, and consider the final time minimization of

q̈ +∇Vµ(q) + 2iq = εu, |u| ≤ 1.
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Fig. 2. Conjugate locus, two bodies and one (tangential) control. The double-heart
locus (in red) is the envelope of geodesics (in blue) emanating from the initial point.
It has four meridional cusps (two of them generated by order 3 contacts at origin).
The cut locus (in black) is the whole equator minus the origin.

See [9] for preliminary computations on the L2-relaxation of the problem.
Available results on controlled three-body problems are mostly numerical.
They usually deal with refined models taking into account three-dimensional
effects, perturbations, and rely on direct optimization methods. (See, e.g., [3].)

The position vector q belongs to the complex plane with two punctures
at −µ and 1− µ, denoted Qµ. The state space Xµ is the tangent space TQµ

in (rotating) cartesian coordinates (q, q̇). It is the cotangent space T ∗Qµ in
(q, p) variables, see (1). In both cases, Xµ ' Qµ ×R2 is a trivial bundle. In
cartesian coordinates,

ẋ = F0(x) + ε(u1F1(x) + u2F2(x)), |u| ≤ 1.

There,
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F0(x) = q̇
∂

∂q
− (∇Vµ(q) + 2iq)

∂

∂q̇
, F1(x) =

∂

∂q̇1
, F2(x) =

∂

∂q̇2
·

The maximized normal Hamiltonian5 is

H = −1 +H0 + ε
√
H2

1 +H2
2 , Hi = 〈p, Fi(x)〉, i = 0, . . . , 2.

Extremals are classified according to the order of their contact with the switch-
ing surface Σ = {H1 = H2 = 0}. (See [12].)

Proposition 8. Contacts with Σ are of order one and define isolated π-
singularities.6

Proof. The distribution {F1, F2} being involutive, the switching function ψ =
(H1,H2) is C 1,

ψ̇1 = {H0,H1} − u1{H1,H2}, ψ̇2 = {H0,H2}+ u2{H1, H2}.

The bracket {H1,H2} vanishes on Σ. The drift comes from a second order
mechanical system, so {F1, F2, [F0, F1], [F0, F2]} has full rank. Then ψ̇ 6= 0
on Σ and contacts are of order one. By Pontryagin maximization condition,
u = ψ/|ψ|, so u is changed to −u whenever ψ vanishes. ut

As Σ is of codimension two in T ∗Xµ, we can neglect these finitely many π-
singularities for the numerical computation and restrict to smooth extremals
not crossing the switching surface.

For the minimum time problem, the exponential mapping associated with
order zero extremals is defined on a neighbourhood of the origin in R ×
H(x0, ·)−1(0),

expx0
: (t, p0) 7→ Π ◦ exp t

−→
H (x0, p0) = x(t, x0, p0), Π : T ∗Xµ → Xµ.

Given a target xf , the problem is to find a zero of the shooting equation

expx0
(tf , p0) = xf .

The two-body problem is embedded into the three-body one thanks to
parameter µ. This paves the way for using continuation methods between
two and three-body control problems. (See also [15] for such an approach in
the two-body case.) Rather than information on the adjoint, the knowledge
of the Kepler minimum time from [12] turns out to be critical to initialize
the continuation. Our target for numerical computation is an equilibrium
point of the uncontrolled problem or Lagrange point [26]. Such points where
the influences of the two primaries compensate each other are appropriate
targets for the continuation. Here we use the L2 Lagrange point. It is equal to
5 From now on, p denotes the adjoint to x.
6 Instantaneous rotations of angle π of the control.



220 J.-B. Caillau, B. Daoud, and J. Gergaud

the second primary when µ = 0. Lagrange points are extensively studied in
celestial mechanics and mission design [19]. A second continuation on ε is also
used to reach low bounds on the control, see results in Fig. 3. Hill regions are
projections on the q-space of level sets of the Jacobi integral. In the controlled
case, they vary dynamically along the trajectory (see Fig. 4),

Rµ(t) = {ξ ∈ Qµ | Jµ(q(t), q̇(t))− Vµ(ξ) ≥ 0}.
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Fig. 3. Three bodies, two controls. Minimum time trajectories from the geostation-
ary orbit to Lagrange L2 point in the Earth-Moon system (µ ' 0.0121). Successively,
ε = 2.440, 0.2440, 0.1220 and 0.04148.

A normal extremal is regular if it verifies the strong Legendre condition
that there exists some positive α such that, everywhere on [0, tf ], ∂2H/∂u2 ≤
−αI along the extremal.

Lemma 1. Order zero extremals of the minimum time three-body problem
with two controls are regular.

Proof. Along an order zero extremal, u ∈ S1. In any chart,

∂2H

∂u2
= −ε

√
H2

1 +H2
2 = −ε|ψ|.

The absence of π-singularity implies the strong Legendre condition as |ψ| is
then smooth and bounded below by some positive constant. ut
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Fig. 4. Dynamics of the Hill regions, ε = 2.440. The controlled trajectory (in red)
is plotted up to three different times and prolongated by the osculating uncontrolled
trajectory (in blue). During a first phase, energy Jµ is increased so as to include the
L2 target. The second phase is close to the motion of the system towards projection in
the q-space of the Lagrange point. The last two graphs are identical (the rightmost
one has a finer scale) and illustrate instability of the L2 point after the target is
reached.

As in the Riemannian case (without singularities), regular extremals are lo-
cally time minimizing for short times [1]. To investigate further local optimal-
ity, one generalizes Jacobi theory to the optimal control setting. Define again
conjugate points as critical values of the exponential mapping. The following
technical condition is sufficient to avoid degenerate situations on the kernel of
the second variation of the problem (see [24]). Let

Ex0 : (tf , u) 7→ x(tf , x0, u)

be the endpoint mapping. It is defined on a neighbourhood of the reference
pair (tf , u) in R×L∞([0, tf ],S1). We assume that, for any subinterval [t1, t2]
of [0, tf ], the partial derivative ∂Ex(t1)/∂u(t2 − t1, u|[t1, t2]) has corank one.

Theorem 7 ([1, 24]). Under the corank one assumption, the trajectory as-
sociated with a regular extremal is C 0-locally time minimizing up to the first
conjugate point. Past this point, the control is not even L∞-locally minimizing.

Local optimality of every extremal is verified by a conjugate point test. (See
Fig. 5). The practical computation of conjugate points is done by rank eval-
uation on Jacobi fields [11]. The concept of conjugate point is extended by
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the notion of focal point [Ibid.] to encompass the case of submanifold targets.
Such an example for a lunar orbit target is provided Fig. 6.
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Fig. 5. Conjugate point computation, ε = 0.04148. The reference trajectory is
prolongated up to the first conjugate point, beyond the L2 target. Local optimality
up to the target is guaranteed. The cuspidal point of first kind observed is generically
due to the condition q̇f = 0.
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Fig. 6. Focal point computation, ε = 0.2440. The target is a lunar orbit, and the
focal point test ensures local optimality of the trajectory. The leftmost frame is the
rotating frame, the rightmost one is fixed.

Whatever the target, the value function ε 7→ tf (ε) of the minimum time
problem is decreasing: The smaller ε, the larger the transfer time. This is
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contradicted by results portrayed Fig. 7. We infer that the first extremal is
locally but not globally minimizing. When decreasing the bound on the control
ε from 0.2221 to 0.2196, one revolution around the first primary has to be
added before escape towards the second body is obtained. There lies global
analysis of the problem, in the interplay between the two small parameters µ,
ε. This leaves open the question of global optimality.
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Fig. 7. Lunar target, ε = 0.2221 and 0.2196. Focal point tests ensure local optimality
in both cases. However, tf ' 17.8 versus tf ' 10.8 in the second one. The first
extremal is a local but not a global minimizer. The difference in strategies is apparent
as one extra revolution around the Earth is added in the second case before reaching
the lunar orbit target.

References

1. Agrachev, A. A.; Sachkov, Y. L. Control Theory from the Geometric Viewpoint.
Springer, 2004.

2. Belbruno, E. A. Two-body motion under the inverse square central force and
equivalent geodesic flows. Celest. Mech. 15 (1977), no. 4, 467-476.

3. Betts, J. T.; Erb, S. O. Optimal Low Thrust Trajectories to the Moon. SIAM
J. Appl. Dyn. Syst. 2 (2003), no. 2, 144–170.

4. Bombrun, A.; Chetboun, J.; Pomet, J.-B. Transfert Terre-Lune en poussée
faible par contrôle feedback. La mission SMART-1. INRIA Research report
(2006), no. 5955, 1–27.

5. Bonnard, B.; Caillau, J.-B. Riemannian metric of the averaged energy mini-
mization problem in orbital transfer with low thrust. Ann. Inst. H. Poincaré
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Summary. In this paper we examine the numerical efficiency and effectiveness of
some algorithms proposed for the computation of the effective Hamiltonian, a classi-
cal problem arising e.g. in weak KAM theory and homogenization. In particular, we
will focus our attention on the performances of an algorithm of direct constrained
minimization based on the SPG (Spectral Projected Gradient) algorithm proposed
in [3, 4]. We will apply this method to the minimization of a functional proposed by
C. Evans in [9] and we will compare the results with other methods.

1 Introduction

The approximation of the effective Hamiltonian is a challenging problem with
a strong impact on many applications e.g. to the study of dynamical sys-
tems, weak KAM theory, homogenization, optimal mass transfer problems.
For example, in homogenization theory one has to study the properties of a
composite material with a periodic structure depending on a parameter ε in
order to guess the physical properties of the material obtained in the limit
for ε going to 0. In order to give a hint on the problem, let us consider the
following initial value problem:{

uε
t +H(x

ε , Du
ε) = 0 in TN×]0,+∞[

u(x, 0) = u0 in TN × {0} (1)

where TN is the unit flat torus, u : TN × (0, T ) → R, Du : RN → RN is its
gradient and the Hamiltonian H : TN × RN → R satisfies the assumptions :

H is Lipschitz continous on TN ×B(0, R), (2)
lim

|p|→+∞
H(x, p) = +∞ (3)

|H(x, p)−H(y, p)| ≤ C [|x− y|(1 + |p|)] . (4)

We are interested in the limiting behaviour of the solution uε(x, t) as ε goes
to 0. It is known that,
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lim
ε→0

uε(x, t) = u(x, t) (5)

uniformly on compact sets where u is the solution of a new evolutive problem{
ut +H(Du) = 0 in TN×]0,+∞[
u(x, 0) = u0(x) in TN × {0} (6)

In order to know the limiting behavior of uε one could solve (6), but this can
not be done without knowing the effective Hamiltonian H which just depends
on Du. As we will see in the sequel, this computation is a very hard task even
in low dimension and our goal here is to analyze and compare the perfor-
mances of three methods on some typical benchmarks. Several methods have
been proposed in the literature: some of them are based on the solution of
nonlinear Hamilton-Jacobi equations, others use a variational formulation or
discretize directly a representation formula for the solution based on a min-
max operator.
In some previous papers [17, 18, 1] the computation of the effective Hamilto-
nian in low dimension has been obtained solving the so called cell problem

H(x,Du+ P ) = λ on TN (7)

where P ∈ RN is a fixed vector and the unknown is the pair (u, λ), where λ is a
scalar representing the value of the effective Hamiltonian at P . Then, in order
to solve (7), one has to compute the solution u and the value λ(P ) = H(P )
for every vector P . Note that the problem was introduced circa in 1988 in
[16] but the corresponding numerical methods were proposed only in the last
decade due to the increase of computer power. Let us assume that H satisfies
(2)–(4) and that it is convex in the second variable. It is well known (see [16],
[8] for details) that for each fixed P ∈ RN there exists a unique real number
λ such that (7) has a periodic Lipschitz continuous viscosity solution. Since
the effective Hamiltonian verifies the following identity

H(P ) = inf
u∈C1(TN )

sup
x∈TN

H(x,Du+ P ) (8)

usually indicated as the min-max formula (see [6] and [14]) one can think that
the above characterization can lead to an algorithm. In fact, a direct discretiza-
tion of (8) has been proposed in [14] and some examples have been computed
using that formula. The main idea in that approach is to discretize C1(TN )
by piecewise linear functions (the P1 approximation of finite elements) and
then apply a min-max search to the discrete formula using MATLAB. Here
we try to improve the performances of the above method using the FFSQP
library [19] which has been conceived to solve nonlinear min-max problems.
Although this code has a better performance with respect to the MATLAB
minimax function used in [14], the method is still too expensive in terms of
CPU time and seems to be inadequate to compute H(P ) with a reasonable
accuracy (see the last section for details). This experience has motivated fur-
ther efforts to find new ways to compute the effective Hamiltonian. We note
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that one of the main difficulties in both problems (7) and (8) is that, even if
the value of H(P ) is unique for each fixed P , the solution of (7) or the mini-
mizer of (8) are in general not unique. In [18] and [17] different regularizations
of (7) are considered (see [5] for some a priori estimates).

In this paper we follow a variational approach based on a regularization of
the min-max formula (8) that was proposed in [9]. This approach, summarized
in Section 2, is in principle less accurate than the direct discretization of
the min-max formula since we replaced the original problem by a regularized
problem introducing an additional error. However, as we will see in the sequel,
this approach can be simpler and more efficient from a computational point of
view. In [13] we have solved this problem deriving the Euler-Lagrange equation
and finding a finite difference approximation of it. Here we try to solve it by a
direct minimization via the SPG methods proposed by [3, 4]. To this end we
will need to find an appropriate choice of the various parameters appearing
in the algorithm. In the last section we solve some typical benchmarks where
the exact solutions are known so that we can compare the effectiveness of the
results obtained by different approaches.

2 A variational approximation

As we said in the introduction, our starting point is the approximation of the
effective Hamiltonian proposed by Evans in [9]. This is defined by

Hk(P ) ≡ 1
k

log
(∫

Tn

ekH(x,Duk+P )dx
)
, (9)

where k ∈ N and uk ∈ C1(TN ) is a minimizer of the functional

Ik[uk] =
∫

Tn

ekH(x,Duk+P )dx (10)

satisfying the normalization constraint∫
TN

ukdx = 0. (11)

(this constraint is added in order to select a unique solution up to a constant).
This approach is effective due to the following result.

Theorem 1 ([9]). Assume that H(x, p) is strictly convex in p. Then,

H(P ) = lim
k→+∞

Hk(P ). (12)

Moreover, the above approximation leads to the following estimates:

Hk(P ) ≤ H(P ) ≤ Hk(P ) + C
log k
k

(13)
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for any k ∈ N.

The Euler-Lagrange approximation
In [13] we have solved that problem via the Euler–Lagrange equation

div
(
ekH(x,Dvk)DpH(x,Dvk)

)
= 0. (14)

We first compute its solution vk = uk +Px via a finite difference scheme and
then we derive uk from that expression.
For simplicity, let us fix the dimension to N = 1 and assume that the grid G is
a standard lattice G ≡ {xi : xi = i∆x, i = 1, . . . , n}. Using a standard second
order finite difference approximation for vx and a central approximation for
vxx we end up with a sparse nonlinear system of n equations in the n unknown
v1, . . . , vn. Since the term vi is contained only in the discretization of the
second derivative, it is easier to solve the i-th equation with respect to vi,
vi = Fi(vi+1, vi−1), and obtain the numerical solution by the iterative scheme

vm+1
i = Fi(vm

i+1, v
m
i−1) for i = 1, . . . , n. (15)

with boundary conditions vn+1 = v1 + P which correspond to the fact
that u has to be periodic. Once a minimizer is obtained, we compute
Hk(P ) renormalizing formula (9) by adding and subtracting the constant
C ≡ maxx∈TN H(x,Dvk) to obtain

Hk(P ) = C +
1
k

log

(∫
TN

e
k

„

H(x,Dvk)−max
x∈TN

H(x,Dvk)

«

dx

)
. (16)

The SPG method
We want to construct a direct discretization of the functional Ik on the space
of the piecewise linear function. Let us observe that the functional can be min-
imized with respect to the derivatives ci = ∂u(xi)/∂xi instead of the values of
ui using standard finite difference approximation. Note that by the derivatives
ci we can get back to the values ui by integration. Moreover, on a standard
lattice G in dimension 1, the periodicity constraint has a simple translation
in the new variables which correspond to a piecewise linear approximation,

n∑
i=0

ci = 0. (17)

Since the constraint is an hyperplane in dimension n, we can apply a Projected
Gradient (PG) method to solve it. Although the standard PG method is simple
to code, it is rather slow due the fact that in order to maintain feasibility of
the iterates it is necessary to project several times and recompute the optimal
step. The projection is in general the most expensive part of the method
even when the projection on the convex set of constraints is rather simple.
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New methods have been proposed to overcome this difficulty and to define
efficient techniques for the control of the step-size, see e.g. the survey by Dunn
[7]. For our problem, we have used the Spectral Projected Gradient (SPG)
method proposed by Birgin, Martinez and Rayan [3], see also [4]. This method
combines two techniques to improve the performances of the PG method. The
first is the non-monotone line search scheme developed by Grippo, Lampariello
and Lucidi [15] for Newton’s method. The second is based on the spectral step-
length proposed by Barzilai and Borwein [2].
Let us sketch the basic steps of the SPG method for the minimization of a
function f : Rn → R over a closed convex set Ω ⊂ Rn. We will assume that f ∈
C1(Rn) and we will denote by P (z) the orthogonal projection on Ω of a point
z. The algorithm starts with a point x0 and uses an integer M ≥ 1, two real
parameters αmin and αmax which allow to control the step-length, a sufficient
decrease parameter γ ∈ (0, 1), and two additional safeguarding parameters
0 < σ1 < σ2 < 1. The initial choice of α0 ∈ [αmin, αmax] is arbitrary and the
algorithm below describes how to compute the sequences {xk} and {αk} and
when to stop. The notations ‖ · ‖ and 〈·, ·〉 indicate respectively the Euclidean
norm and the scalar product in Rn.

The SPG Algorithm
Step 1. Detect if the current point xk is stationary
if ||P (xk −∇f(xk))− xk|| = 0, STOP and declare that the solution has been
found.
Step 2 Backtracking
Step 2.1 Compute dk = P (xk − αk∇f(xk))− xk. Set λ← 1.
Step 2.2 Set x+ = xk + λdk.
Step 2.3 If

f(x+) ≤ max
0≤j≤min{k,M−1}

f(xk − j) + γλ〈dk,∇f(xk)〉, (18)

then define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = ∇f(xk+1) − ∇f(xk),
and go to Step 3. If (18) does not hold, define

λnew ∈ [σ1λ, σ2λ], (19)

set λ← λnew and go to Step 2.2.
Step 3
Compute bk = 〈sk, yk〉.
If bk ≤ 0, set αk+1 = αmax;
else, compute ak = 〈sk, sk〉and set αk+1 = min{αmax,max{αmin, ak/bk}}.

Note that Step 2 is the main modification with respect to the standard
PG method. In the SPG method the condition (18) is computed along a set
of trial points of the form xk + λkdk which, in general are not aligned. The
path connecting the trial points is a curvilinear path. It has been proved that
this path is piecewise linear if the set of constraints Ω is a polyhedral set. A
convergence result which only requires the regularity for f and the convexity
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of Ω can be found in [3]. The interested reader will also find there more details
on the method and a detailed comparison with other constrained optimization
methods.

The min-max discrete approximation
Let us briefly recall the results related to this approach. We denote by

H
∆x

(P ) = inf
u∈W 1

ess sup
x∈TN

H(x,Du+ P )

where W 1 ≡
{
w : TN → R : w ∈ C(TN ) and Dw(x) = cj , ∀x ∈ Tj , ∀ j

}
, Tj

is a family of simplices such that TN =
∪

j Tj and ∆x ≡ maxj diam(Tj).

Proposition 1 ( [14]). Assume that H(x, p) is convex in p. Then H
∆x

(P )
is convex,

H(P ) = lim
∆x→0

H
∆x

(P ) (20)

and
H(P ) ≤ H∆x

(P ) (21)

It is interesting to note that some a priori error estimates are also available
for this approximation. More precisely, when u is Lipschitz continuous (which
is the case when H(x, p) is strictly convex in p), we have

H
∆x

(P ) ≤ H(P ) +O(∆x1/2). (22)

It is natural to discretize the spatial variable by computing the supremum
only on the nodes of the triangulation xi, i = 1, . . . , n. So the fully discrete
min-max problem is

min
u∈W 1

max
xi

H (xi, Du(xi) + P ) . (23)

The spatial approximation introduces an additional error of O(∆x), which
is proportional to the Lipschitz constant (in the x variable) of H. In our
implementation, the min-max problem (23) has been written as a minimum
problem for F (Du), where the map F : RNn → RNn (recall that N is the
dimension and n is the number of nodes) is defined by componentwise as
Fi(Du) = maxiH(xi, Du + P ), for i = 1, . . . , n. We note that the map F is
still convex as long as H is convex. In order to simplify the notations, let us
consider the case N = 1 with a uniform space step ∆x. In [14] a discretiza-
tion of Du by finite difference is used setting Du(xi) = (ui+1 − ui)/∆x and
then the problem is solved by the SQP (Sequential Quadratic Programming)
MATLAB routine. The periodicity of u is automatically verified imposing
un+1 = u1. Instead of introducing a discretization of Du(xi), we consider it
as an independent variable, ci, and so we consider the non linear constrained
optimization problem
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min
ci

max
xi

H(xi, ci + P ) subject to
∑

i

ci = 0. (24)

As we said before, the linear constraint in (24) is equivalent to impose the
periodicity of u. Although the linear constraint makes the problem harder,
it improves the accuracy of the solution as H /∈ C1. In [14], the fminimax
function, contained in the MATLAB Optimization Toolbox, is used to solve
the problem. Here we use the optimization routine ffsqp [19]. Both the algo-
rithms are based on SQP. It also provides two kinds of line search (monotone
and non-monotone). We use the non-monotone line search, which forces a de-
crease of the objective function within at most four iterations. In fact, the
monotone line search (of Armijo type) did not work in our experiments when
H is not strictly convex, e.g. when H(x, p) = |p| + V (x). We use ffsqp pro-
viding the gradient of the linear constraint and let it compute the gradient of
the objective function. It uses a forward finite differences approximation.

3 Numerical results

The tests considered in this section are representative of a class of Hamilto-
nians of the kind H = |p|2/2 + V (x) , i.e. the Hamiltonian is made by the
sum of a kinetic plus a potential energy. In this case (see [16, 14]) an im-
plicit formula for H is available. This allows for the precise computation of
the numerical errors which is essential to compare the methods. Note also
that the particular choice of the potential energy V is due to the fact that
in this case we can also obtain the exact solution u of the cell problem. We
present the numerical results for the three methods presented in the previous
section comparing their accuracy and their cost in term of CPU time. The
tests have been executed on a double-processor AMD opteron quad-core at
2.1 GHz without exploiting any parallelization option (so that the CPU time
has to be intended for a serial run).
Let us consider the following one dimensional cell problem

1
2
|Du+ P |2 =

1
2

(
x− 1

2

)2

+H(P ) x ∈ TN . (25)

This implies H(P ) ≥ 0. If H(P ) > 0,

|P | =
∫ 1

0

√
2H(P ) +

(
x− 1

2

)2

dx. (26)

It easy to check that this equation has a solution H(P ) whenever

|P | ≥
∫ 1

0

|x− 1
2
|dx =

1
4
. (27)
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In this case |P | = F (H(P )) with

F (z) =
1
4
√

8z + 1 + z
(
ln
(
2 + 2

√
8z + 1

)
− ln

(
−2 + 2

√
8z + 1

))
. (28)

For |P | ≤ 1/4, we have H(P ) = 0. Then, for every node Pj , j = 1, . . . ,m in
the P space, we define the error corresponding to an approximation based on
n nodes in the x space,

e(Pj ;n) =

{
H

∆
(Pj) for |P | ≤ 1/4

F (H
∆

(Pj))− |Pj | elsewhere

In the following Tables we show the L1 and L∞ norm of the error vector e

‖e(n)‖1 =
m∑

j=1

|e(Pj)|/m ‖e(n)‖∞ = max
j∈{1,...,m}

|e(Pj)|. (29)

The numerical order of convergence is obtained by the standard formula

log(‖e(n1)‖ / ‖e(n2)‖)
log(n2/n1)

where n2 > n1 and ‖ · ‖ represent either the L1 or the L∞ norm. Note that in
the tests H

∆

1 has been computed over a grid on [−0.5, 0.5] with ∆P = 0.01.

The min-max method
As shown in Table 1, the order of convergence of the min-max method is
greater than what we expected theoretically.

Table 1. L1 and L∞ norm of e and order for the min-max approximation

n L1 L∞ L1-order L∞-order

40 4.56× 10−5 1.04× 10−4

80 1.14× 10−5 2.59× 10−5 2 2
160 2.85× 10−6 6.47× 10−6 2 2

The Euler-Lagrange method
We set ε = n−3 and k = n, where k is that in formula (9). Note that the choice
of k is conservative and that better results of that reported in Table 2 can be
obtained increasing k at almost the same computational cost. Nevertheless for
high values of k, the approximation of argmin of the functional is not stable
when P belongs to the flat region of H, i.e. for |P | < 1/4.

The SPG method
We set ε = n−3 and k = n as for the Euler–Lagrange method. We apply
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Table 2. L1 and L∞ norm of e and order for the Euler–Lagrange approximation

n L1 L∞ L1-order L∞-order

40 1.10× 10−2 2.32× 10−2

80 7.67× 10−3 1.59× 10−2 0.52 0.54
160 5.03× 10−3 1.01× 10−2 0.6 0.65

a normalization of the functional (10) like for the computation of the ef-
fective Hamiltonian in the Euler–Lagrange method to avoid computational
overflow. In this case, we multiply (10) by the exponential of −kH̃ where
H̃ = maxxH(x, 0 + P ) and 0 is the starting point vector of the method. The
value of H is then obtained by adding H̃ to formula (9). Note that the errors
reported in Table 3 are almost the same that for the Euler–Lagrange method.

Table 3. L1 and L∞ norm of e and order for the SPG approximation

n L1 L∞ L1-order L∞-order

40 1.05× 10−2 2.32× 10−2

80 7.50× 10−3 1.59× 10−2 0.48 0.54
160 5.03× 10−3 1.01× 10−2 0.58 0.65

Two dimensional numerical results
The natural extension of the previous Hamiltonian to the two dimensional
case is

1
2
|Du+ P |2 =

1
2

(
x− 1

2

)2

+
1
2

(
y − 1

2

)2

+H(P ), x ∈ TN (30)

so that H(P ) = H1(P1) +H1(P2) where P = (P1, P2) and H1 is the effective
Hamiltonian in one dimension of the previous test. In this case to compute
the error approximation we use an accurate approximation of H1. The com-
putations have been made on [−0.5, 0.5]2 with ∆P = 0.125. This implies that
we have to solve m = 81 optimization problems to compute H.

The min-max method
Table 4 shows that just for n = 20 the computational cost is too high. Note
also that when the argminH(x, 0) does not belong to the grid, as for n = 11,
the method is less accurate.

The Euler–Lagrange method
We set ε = n−3 and k = n as in the one dimensional case. In Table 5 we do
not report the order of convergence which varies between 0.4 and 0.6.
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Table 4. L1 and L∞ norm of e and CPU time for the min-max approximation

n L1 L∞ CPU time

10 5.11× 10−4 1.30× 10−3 500s
11 1.20× 10−3 2.10× 10−3 300s
20 1.27× 10−4 3.14× 10−4 ' 16h

Table 5. L1 and L∞ norm of e and CPU time for the Euler–Lagrange approximation

n L1 L∞ CPU time

40 1.55× 10−2 4.63× 10−2 1s
80 1.13× 10−2 3.18× 10−2 22s
160 7.42× 10−3 2.02× 10−2 7m52s

The SPG method
To obtain errors comparable with that of the Euler–Lagrange method we set
ε = n−3/2 and k = n. This choice is motivated by the fact that for ε = n−3

the method, for n = 160, was less accurate with respect to the Euler–Lagrange
method.
As we can see comparing Table 5 and 6 with the above choice we get almost
the same accuracy. Increasing ε we get more accurate results but the compu-
tational cost increases. Note that the variables of the optimization problem
are 2n2 whereas the number of constraints is 2n.

Table 6. L1 and L∞ norm of e and CPU time for the SPG approximation

n L1 L∞ CPU time

40 1.62× 10−2 4.64× 10−2 2s
80 1.16× 10−2 3.18× 10−2 23s
160 9.00× 10−3 2.02× 10−2 1m33s

In conclusion, we can say that the approximation of the functional (10)
by SPG algorithm has comparable performance with respect to the Euler-
Lagrange approach with the advantage to avoid to compute and discretize the
Euler-Lagrange equation. Also the accuracy of the two methods is comparable
and as expected from theoretical results.

Acknowledgement. The authors wish to thank also the CASPUR consortium for the
technical support to the numerical tests.
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Summary. To operate crane systems in high rack warehouses, reference trajecto-
ries have to ensure that the swinging of the crane is under control during the fast
movement and disappears at the final point. These trajectories can be obtained
solving optimal control problems.

For security reasons the optimal control problem of a main trajectory is aug-
mented by additional constraints depending on the optimal solution of several safety
stop trajectories leading to a bilevel optimal control problem.

1 Introduction

Bilevel programming as an extension to linear and nonlinear programming
describes a static system of two decision makers or players, where the leader
knows exactly, how the follower will react to his decision. It is well explored
theoretically and various practical solution methods exist, cf. Bard [2] and
Dempe [5]. Bilevel optimal control problems as a combination of two classical
dynamic optimal control problems were introduced by Chen and Cruz [4] and
are described in more detail by Ye [11], e.g.

While working at an industrial project, a closer look was necessary at the
way, in which both levels of a bilevel optimal control problem interact in a
dynamic system, leading to the formulation of time dependent coupling [7].

2 Path Planning for Container Cranes

The conventional solution to load and unload goods in a high rack warehouse
is a floor driven shelf access equipment, similar to a fork lift truck. The same
tasks can be fulfilled by using a ceiling driven container crane. The crane
system consists of two parts, which have to be treated as a multibody system:
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DOI 10.1007/978-3-642-12598-0_20, © Springer-Verlag Berlin Heidelberg 2010 
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Positioning A trolley moves along rails on the top of the warehouse rack. Via
cable ropes it also controls the height by lifting or lowering a load-carrying
equipment.

Loading/Unloading If the load-carrying equipment is positioned by the
trolley, it can put or pick the payload from the rack with a fork-like con-
struction.

This construction implies some crucial disadvantages. As soon as the trol-
ley induces a lateral movement on the system, the load-carrying equipment
starts to oscillate, as it is only attached to wire ropes. If oscillation still occurs
at the final position, loading processes are impossible. This task of trajectory
planning can be formulated as an optimal control problem.

As an industrial device, the crane system has to fulfil severe safety require-
ments: An emergency stop avoids critical behaviour in case of a system
failure. At a user requested safety stop, the system should skip the current
trajectory and invoke a controlled braking, so that the whole system comes to
rest without any oscillation at an admissible final point within a given time.
To allow a fast change between the main and the alternative trajectories, all
data has to be online on the control unit before the main trajectory starts.

Obviously, the calculation of the alternative trajectories depends on the
main trajectory. But the alternative trajectories can also influence the main
trajectory. Coupling these two levels forms a bilevel optimal control problem.

3 Bilevel Optimization

The solution of a nonlinear programming problem is a variable x? ∈ Rn, which
minimizes an objective function under a set of (in-)equality constraints

min
x

f̄(x)

s.t. ḡi(x) = 0, i = 1, . . . ,me,
ḡj(x) ≤ 0, j = me + 1, . . . ,m,

(1)

where f̄ : Rn → R and ḡ : Rn → Rm. Under regularity assumptions on x?

and differentiability assumptions on f̄ and ḡ, first order necessary optimality
conditions for (1) are given by the KKT conditions

∇xL(x?, λ) = 0,
λi ≥ 0, for i ∈ I(x?),

λT ḡ(x?) = 0,
(2)

with the Lagrangian L(x, λ) = f̄(x) + λT ḡ(x), the vector of Lagrange multi-
pliers λ ∈ Rm and I(x?) = {i ∈ {me + 1, . . . ,m} : ḡi(x?) = 0} as the set of
active inequality constraints, see [6].

In bilevel programming, two problems of type (1) are combined hierarchi-
cally. The first player, the leader, tries to find the best solution for his decision
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variable x ∈ RN of the upper level problem3

min
x

F̄ (x, y)

s.t. Ḡ(x, y) ≤ 0,
y ∈ Ψ(x).

(3)

Problems of type (3) are known as mathematical programs with equilib-
rium constraints (MPEC), see Outrata et al. [8]. In bilevel programming, the
equilibrium constraint is given by the solution set of another optimization
problem: the leader’s decision depends on the possible reactions Ψ(x) of the
other player, the follower. With a fixed variable x of the leader, the follower
is looking for the best solution for his decision variable y ∈ Rn of the lower
level problem

min
y

f̄(x, y)

s.t. ḡ(x, y) ≤ 0.
(4)

Generally, the objective functions F̄ : RN ×Rn → R, f̄ : RN ×Rn → R as well
as the functions of the constraints Ḡ : RN × Rn → RM , ḡ : RN × Rn → Rm

depend on both decision variables on both levels.
If (4) is considered as a parametric problem depending on x, its feasible

set S(x) and its set of solutions Ψ(x) are

S : RN → {0, 1}Rn

, x 7→ {y ∈ Rn : ḡ(x, y) ≤ 0},
Ψ : RN → {0, 1}Rn

, x 7→ arg min
y

{f̄(x, y) : ḡ(x, y) ≤ 0}.

Problems (3) and (4) together form a Stackelberg game, where the leader
knows the set Ψ(x) of all possible reactions of the follower and is in advan-
tage. However, he doesn’t know which y ∈ Ψ(x) will be actually chosen by
the follower. By replacing the secondary problem of the bilevel problem (3, 4)
by its KKT conditions (2), it can be reduced to a problem in standard for-
mulation (1). Clearly, the solution set of the KKT conditions KKT (x) holds
the implication Ψ(x) ⊆ KKT (x) ⊆ S(x). If the objective function and the
feasible set in (4) are convex, the reduction leads to an equivalent problem,
as Ψ(x) = KKT (x):

min
x,y,λ

F̄ (x, y)

s.t. Ḡ(x) ≤ 0,
∇yL(x, y, λ) = 0,

ḡ(x, y) ≤ 0,
λ ≥ 0,

λT ḡ(x, y) = 0,

with L(x, y, λ) = f̄(x, y) + λT ḡ(x, y).
However, if the KKT conditions are used as complementary constraints,

the standard constraint qualifications are violated at all feasible points, see
3 For simplicity we omit the notation of possible equality constraints.
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Scheel and Scholtes [10]. The concept of bilevel programming is used just
as a motivation. Note that our analog approach for bilevel optimal control
problems in the next section won’t induce this problem.

4 Bilevel Optimal Control

The solution of an optimal control problem is a control vector u?(t) ∈ Rm

and a set of free variables, as a free final time tf for example, minimizing a
given objective function, so that a boundary value problem for a state vector
x(t) ∈ Rn holds under some additional control and state constraints

min
u,tf

φ(x(tf )) +

tf∫
0

f0(x(t), u(t))dt

s.t. ẋ(t) = f(x(t), u(t)),
ω(x(0), x(tf )) = 0,
g(x(t), u(t)) ≤ 0, t ∈ [0; tf ],

(5)

where φ : Rn → R, f0 : Rn × Rm → R, f : Rn × Rm → Rn, ω : Rn × Rn → R
and g : Rn ×Rm → Rk. If solved with indirect methods, (5) is converted into
a boundary value problem using the necessary conditions from the minimum
principle of Pontryagin [9]. The formulation for the special case, where only
control constraints u(t) ∈ U ⊂ Rm are used instead of g(x(t), u(t)) ≤ 0 is
needed at the end of this section. Under regularity assumption on the Hamil-
tonian H(x, u, λ0, λ) = λ0f0(x, u) + λT f(x, u), there exist λ0 ∈ R+

0 , ρ ∈ Rr,
λ ∈ C1

p([0; tf ],Rn) not all vanishing, so that

u?(x, λ) = arg min
u∈U

H(x, u, λ0, λ),

λ̇(t) = −∇xH(x?(t), u?(t), λ0, λ(t)), for almost all t ∈ [0; tf ],
λ(0)T = −∇x(0)

(
ρTω(x?(0), x?(tf ))

)
,

λ(tf )T = −∇x(tf )

(
λ0φ(x?(tf )) + ρTω(x?(0), x?(tf ))

)
.

(6)

With direct methods, on the other hand, a numerical solution of (5) is
found by transcribing it into an NLP problem of type (1). The continuous
optimal control problem with t ∈ [0; tf ] is reduced to a discretized version
where only t ∈ {0 = t1 ≤ t2 ≤ · · · ≤ tl = tf}, l ∈ N are considered.
From the continuous control function u(t), only a vector of discrete values
u = (u1, . . . u

l)T with ui ≈ u(ti) remains. The state function x(t) is replaced
by evaluations xi ≈ x(ti), which don’t have to be stored, as they can be
gathered depending on u:

min φ(xl(u)) +
l−1∑
i=1

(ti+1 − ti)f0(xi(u), ui)

s.t. xi+1(u) = xi(u) + (ti+1 − ti)f(xi(u), ui), i = 1, . . . , l − 1
ω(x1(u), xl(u)) = 0

g(xi(u), ui) ≤ 0, i = 1, . . . , l
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The software library NUDOCCCS by Büskens [3] generates an NLP problem
of this type automatically and solves it with an SQP solver.

Similarly to bilevel programming, the optimal control problems for one
leader and one follower can be combined, so that for the optimization of the
control variable u of the leader’s problem an additional constraint has to be
considered, which depends on the optimal solution v ∈ Ψ(u) of the follower’s
problem:

min
u

tf∫
0

F0(x(t), y(t), u(t), v(t)) dt

s.t. ẋ(t) = F (x(t), y(t), u(t), v(t))
Ω(x(0), x(tf )) = 0
G(x(t), u(t)) ≤ 0
(y(t), v(t)) ∈ Ψ(u)

with Ψ(u) set of solutions y(t) = y(t;u) and v(t) = v(t;u) of

min
v

tf∫
0

f0(x(t), y(t), u(t), v(t)) dt

s.t. ẏ(t) = f(x(t), y(t), u(t), v(t))
ω(y(0), y(tf )) = 0
vmin ≤ v(t) ≤ vmax

(7)

The formulation of bilevel optimal control problems in Ye [11] considers
only a system of differential equations in the lower level. If two optimal control
problems are coupled together as in (7), two distinct systems are used in the
upper and the lower level. If F does not depend on y(t) and v(t), as in the
following, these two formulations coincide, see [7].

Hence, if the lower level problem of (7) is replaced by its first order nec-
essary conditions (6), a single level optimal control problem remains, being
equivalent for a convex lower level problem:

min
u

tf∫
0

F0(x(t), y(t), u(t), v(t)) dt

s.t. ẋ(t) = F (x(t), u(t))
ẏ(t) = f(x(t), y(t), u(t), v(t))
λ̇(t) = −∇yh(x(t), y(t), v(t), λ(t))

Ω(x(0), x(tf )) = 0
ω(y(0), y(tf )) = 0

λ(0)T = −∇x(0)

(
ρTω(x(0), x(tf ))

)
λ(tf )T = −∇x(tf )

(
λ0φ(x(tf )) + ρTω(x(0), x(tf ))

)
G(x(t), u(t)) ≤ 0

v(t) = v(t;x, y, λ, u)

(8)
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Fig. 1. Single, continuous and discrete time dependent coupling between primary
and secondary problem.

Note that in (7), only control constraints are considered in the lower level
problem. For a given system of ODEs ẏ = f , the control v can be expressed
as a function of v(x, y, λ, u) in the unconstrained case, and clipped to the
control constraints in the constrained case.

Problem (8) as an ordinary optimal control problem can be transcribed
into an NLP problem of type (1). Due to the structure of the Hessian and the
Jacobian, sparse SQP solvers minimize calculation times, see Knauer [7].

5 Time Dependent Coupling

In section 4 the follower’s problem was solved depending on the leader’s de-
cision variable u. Alternatively, for a given time ϑ the state ξ = x(ϑ) of the
leader’s system can be passed to the follower, who creates a solution set Ψ(ξ):

min
u

tf∫
0

F0(x(t), u(t)) dt

s.t. ẋ(t) = F (x(t), u(t))
x(0) = x0

(y, v) ∈ Ψ(ξ)
with ξ = x(ϑ), ϑ ∈ [0; tf ] fixed
and Ψ(ξ) set of solutions y(τ) = y(τ ; ξ) and v(τ) = v(τ, ξ) of

min
v

τf∫
τ0

f0(y(τ), v(τ)) dτ

s.t. ẏ(τ) = f(y(τ), v(τ))
y(0) = y0
y(τ0) = ξ

(9)

Here, upper and lower level are treated as two systems with different
timescales t ∈ [0; tf ] and τ ∈ [τ0; τf ], which are only coupled at one time
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point. The lower level can be interpreted as an alternative ending of the up-
per level system, as shown in Fig. 1.

In order to calculate alternative trajectories for a safety stop as proposed
in section 2, not just one state ξ = x(ϑ) at a single time point ϑ has to be
considered for the set Ψ(ξ) as in (9), but all states ξϑ = x(ϑ) at ϑ ∈ [0; tf ],
leading to an infinite number of followers.

Due to differentiability of the solution of the lower level problem with
respect to parameters ξ, a good approximation for the infinite number of
followers can be found by only considering a finite number of followers for
states ξj = x(ϑj) at selected time points ϑj ∈ [0; tf ], j = 1, . . . , l:

min
u

tf∫
0

F0(x(t), u(t)) dt

s.t. ẋ(t) = F (x(t), u(t))
x(0) = x0

(y·,j , v·,j) ∈ Ψ(ξj), for all j = 1, . . . , k
with ξj = x(ϑj), for ϑj ∈ [0; tf ] fixed
and Ψ(ξj) set of solutions y·,j(τ) = y·,j(τ, ξj) and v·,j(τ) = v·,j(τ, ξj) of

min
v·,j

τf,j∫
τ0,j

f0(y·,j(τ), v·,j(τ)) dτ

s.t. ẏ·,j(τ) = f(y·,j(τ), v·,j(τ))
y·,j(τ0) = ξj

This problem formulation was already introduced by Abel and Marquardt [1].
They refer to the set of lower level problems for ϑ ∈ [0; tf ] as a scenario,
and allow the consideration of different scenarios. They suggest to replace
the bilevel problem either by a weighted formulation (SIOP3) or by a relaxed
formulation (SIOP6), where the optimality in the lower level is neglected, see
Knauer [7].

If the lower level problems are replaced by their first order necessary con-
ditions one large optimal control problem is gained. Due to the special type of
coupling, the subsystems of differential equations x and y·,j , λ·,j , j = 1, . . . k
can be integrated efficiently since they are independent from each other.

6 Main and Alternative Trajectories

The bilevel path planning problem can be outlined as “move from (S0, L0) to
(Sf , Lf ) and stop for t = τ0,j , j = 1, . . . , k”, where for the system dynamics of
the crane a jerk based model allows the necessary usage of acceleration values
as boundary values (g = 9.81

[
m
s2

]
):
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ẋ = fLK(x, u) =



x2

x5

x4

x5 − (g − x8)x3
x6

u1

x7

x8

u2



x1 : position trolley
x2 : velocity trolley
x3 : rel. displacement payload
x4 : rel. velocity payload
x5 : acceleration trolley
x6 : length of rope
x7 : velocity rope
x8 : acceleration rope

This leads to this bilevel optimal control problem:

min
u,tf

tf +

tf∫
0

u2
1(t) + u2

2(t) dt

s.t. ẋ(t) = fLK(x(t), u(t))
x(0) = (S0 0 0 0 0 L0 0 0)T , x(tf ) = (Sf 0 0 0 0 Lf 0 0)T

ui(t) ∈ [ui,min;ui,max], i = 1, 2
xi(t) ∈ [xi,min;xi,max], i ∈ Ic

(y·,j , v·,j , j = 1, . . . , k) ∈ Ψ(u)
with Ψ(u) set of solutions y·,j(τ) = y·,j(τ ;u) and v·,j(τ) = v·,j(τ ;u) of

min
v·,j

τf,j∫
τ0,j

v2
1,j(τ) + v2

2,j(τ) dτ

s.t. ẏ·,j(τ) = fLK(y·,j(τ), v·,j(τ))
y·,j(τ0,j) = x(τ0,j), y·,j(τf,j) = (free 0 0 0 0 free 0 0)T

vi,j(τ) ∈ [vi,min; vi,max], i = 1, 2

The main trajectory is calculated with respect to time and energy optimality.
The alternative trajectories should stop within a fixed time minimizing energy
consumption.

Each lower level problem for an alternative trajectory can be replaced by a
boundary value problem using the necessary conditions. For energy optimality∫
v2
1,j + v2

2,j dτ the system of differential equations

ẏ·,j = fLK(y·,j , v·,j), y(τ0,j) = x(τ0,j), y(τf,j) = (free 0 0 0 0 free 0 0)T

is augmented by a system of adjoint differential equations:

λ̇·,j =



0
−λ1,j

λ4,j(g−y8,j)
y6,j

−λ3,j

−λ2,j − λ4,j

−λ4,jy3,j(g−y8,j)

y2
6,j

−λ6,j

−λ4,jy3,j

y6,j
− λ7,j


, λ·,j(τ0,j) =



free
free
free
free
free
free
free
free


, λ·,j(τf,j) =



0
free
free
free
free
0

free
free
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Following the minimum principle (6), the controls can be calculated as

v1,j(τ) = −1
2
λ5,j(τ), v2,j(τ) = −1

2
λ8,j(τ)

in the unconstrained case. Considering box constraints vi,j(t) ∈ [vi,min; vi,max],
i = 1, 2 for the controls, the optimal solution is found using ṽ1,j and ṽ2,j :

ṽi,j(τ) =


vi,min for λz,j(τ) > −2vi,min

−λz,j

2 for − 2vi,max ≤ λz,j(τ) ≤ −2vi,min

vi,max for λz,j(τ) < −2vi,max

(i, z) ∈ {(1, 5), (2, 8)}

control trolley u1, ṽ1,j
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 -1.0

control rope u2, ṽ2,j

0 2 4 6 8 10 12 14
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  0.5

  0.0

 -0.5

 -1.0

2.a: Controls
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    2

    0

velocity trolley x2, y2,j
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  0.5
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rel. displacement x3, y3,j
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velocity payload x4, y4,j
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acceleration trolley x5, y5,j
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2.b: States

Fig. 2. Optimal controls and state vectors for main trajectory (thick black) and 5
alternative trajectories (thin black) for constrained lower level control in comparison
to single level problem (thick grey)
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The numerical solution of this bilevel problem is shown in Fig. 2 for a
main trajectory from (S0, L0) = (0, 5) to (Sf , Lf ) = (20, 4) in [m] with an
equidistant discretization of l = 41 points. At the discretization points lj =
5 · j of the main trajectory, alternative trajectories with τf,j − τ0,j = 4 [s],
j = 1, . . . , 5 are considered with 11 discretization points. The state constraints
in the upper level stay inactive. The controls for both levels are constrained
by (ui,min, ui,max) = (vi,min, vi,max) = (−1, 1) in

[
m
s3

]
, i = 1, 2. The constraints

in the lower level have a direct influence on the states of the main trajectory,
where additionally the optimal solution without considering a safety stop is
drawn. The oscillating behaviour, shown in the relative displacement of the
payload, is reduced slightly at the cost of taking a longer time.

The continuous time dependent coupling led to a bilevel optimal control
problem with an infinite number of followers, which was reduced to a finite
selection, to find numerical solutions. Using necessary conditions, a classical
optimal control problem was obtained, which was solved by direct methods,
leading to a hybrid solution method.
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Summary. The concept of consistent control procedures is introduced in optimal
control computations. The stock of such procedures of the MSE, a direct method
of dynamic optimization, is extended to handle state-constrained and interior arcs.
Thus equipped, the MSE can automatically identify optimal control structures and
yield arbitrarily exact approximations of optimal solutions by adjusting a bounded
number of parameters.

1 Introduction

The method of Monotone Structural Evolution (MSE) is a direct computa-
tional method for dynamic optimization, see [6, 7, 8] and references therein.
Its fundamental feature is that the decision space of the induced optimiza-
tion problem undergoes gradual evolution, driven by discrepancy from the
Maximum Principle conditions. The induced problems are solved by gradi-
ent methods with the cost derivatives evaluated by means of adjoint tech-
niques, also used to trigger discrete changes of the decision space (structural
changes). Since the control is not directly affected by structural changes, the
cost monotonously decreases due to gradient optimization. Special rules pre-
vent convergence to chattering modes.

We consider a control system described by a state equation

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = x0, (1)

with the state x(t) ∈ Rn and piecewise continuous controls u, u(t) ∈ R. The
optimal control problem is to find a control minimizing the cost functional

Q(u) = q(x(T )), (2)

possibly subject to control bounds umin ≤ u(t) ≤ umax and a scalar state
constraint g(x(t)) ≤ 0, t ∈ [0, T ]. The initial state x0 and the horizon T are
fixed. The functions f , q and g are sufficiently smooth (C1, at least).
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Our aim is to introduce the concept of consistency in dynamic opti-
mization, and propose consistent control procedures which handle state-
constrained and interior arcs in the MSE algorithm. The MSE thus becomes
more complete, with the stock of available control procedures being able to
produce practically all types of arcs which may appear in an optimal solution.
In consequence, the MSE can automatically identify optimal control struc-
tures and yield an arbitrarily exact approximation of the optimal solution by
adjusting a bounded number of scalar parameters. To the authors’ knowledge,
this ability to find optimal structures automatically is unique among direct
algorithms, although similar basic ideas (such as structural evolution, mono-
tonicity, and spike generations, called ‘mode insertions’) are encountered in
recent works on optimization of switched systems [1, 4].

The state-constrained problems are treated by penalty techniques. For
index-1 constraints, a method with the exact fulfillment of the state constraint
is described. The necessary jumps of the adjoint variables are calculated. A
new technique of prototype adjoints, with some resemblance to the direct
shooting [2], is constructed for consistent parameterization of interior arcs.
For singular problems, we present a variant with partial elimination of ad-
joint variables, which extends earlier results [5] beyond pure state-feedback
consistent representations of control. Numerical examples and a discussion of
computational aspects are given in [9].

2 Basics of the MSE

We begin with the MSE elements relevant to this work. The general algorithm
is described in [9], see also [6, 7, 8]. In the MSE approach to an optimal
control problem, we first define a finite set Π (the stock) of appropriately
regular control procedures P : R×Rµ(P ) → R, where µ(P ) is the number of
scalar parameters of P . The functions P may be suggested by the Maximum
Principle conditions and by general numerical techniques. Given structural
nodes τ0, τ1, ..., τN , 0 = τ0 ≤ τ1 ≤ ... ≤ τN = T , and a control structure
S = (Si)N

i=1 ∈ ΠN , the control is determined by

u(t) = Si(t, pi), t ∈ [τi−1, τi[, i = 1, ..., N. (3)

Here pi ∈ Rµ(Si). The restriction of u to an interval [τi−1, τi[ is called a control
arc. The control structure, its parameters, and the nodes τ1, ..., τN−1 are the
decision variables of the MSE. Let US : Da(S) → U be the mapping defined
by (3), from the admissible set Da(S) in the respective decision space D(S)
into the functional control space U . For a given control structure, the induced
cost is given by Σ = Q(US( · )) : Da(S)→ R.

Recall that an admissible control is extremal, if it satisfies the Maximum
Principle optimality conditions. A control procedure P ∈ Π is called consis-
tent, if there are reals a and b, 0 ≤ a < b ≤ T , a parameter p∗ ∈ Rµ(P ) and
an extremal control u∗, such that
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u∗(t) = P (t, p∗), t ∈ [a, b [. (4)

The stock Π may also contain approximative control procedures. Observe that
once an optimal control structure has been found, the concatenation of the
corresponding control arcs becomes an optimal control when the parameters
and nodes take optimal values, which is in contrast to typical approximation
methods where approaching an exact optimal solution requires more and more
parameters, with no finite limit in general. It is therefore important to equip
the MSE with a sufficiently rich set of consistent control procedures, if we
wish the method to identify optimal control structures.

The MSE algorithm uses cost gradients, computed by solving adjoint equa-
tions constructed for the induced problems. This construction is straightfor-
ward for control procedures of type A, which include all procedures consid-
ered in this paper, except those introduced in Section 4. Given X ⊂ Rn,
[a, b [ ⊂ [0, T ], and D̂ ⊂ Rµ̂, we say that a procedure P ∈ Π is of type A
in X × [a, b [ ×D̂, if there is a function P̂ : Rn ×R ×Rµ̂ → R (also called
a control procedure) such that P (t, p) = P̂ (x(t, xa), t, p̂) for all t ∈ [a, b [,
xa ∈ X, p̂ ∈ D̂. Here p = (xa, p̂), and x(t, xa) is a solution of the state equa-
tion with x(a, xa) = xa. If Si is of type A, that is, Si(t, pi) = Ŝi(x(t), t, p̂i),
t ∈ [τi−1, τi[, the state equation in [τi−1, τi[ takes the form ẋ(t) = f̂(x(t), t),
with f̂(ξ, t) = f(ξ, Ŝi(ξ, t, p̂i)). Define the Hamiltonian for the induced prob-
lem

Ĥ(ψ̂(t), x(t), t) = ψ̂(t)>f̂(x(t), t), t ∈ [τi−1, τi[. (5)

The adjoint function ψ̂ is piecewise continuous, and its only possible discon-
tinuities are described in Section 3. For a.a. t ∈ [τi−1, τi[ it satisfies

˙̂
ψ(t) = −∇xĤ(ψ̂(t), x(t), t). (6)

For i < N , ψ̂(τi−) is determined by the continuity or jump conditions, and

ψ̂(T ) = −∇q(x(T )). (7)

3 State-constrained arcs

There are several ways of consistent, or asymptotically consistent represen-
tation of state-constrained arcs. All of them use a penalty approach with a
family of auxiliary optimization problems parameterized by a (vector) penalty
coefficient. An additional state equation is introduced to this end, ṙ = φ(x, ρ),
r(0) = 0, where φ is an exterior penalty function, C1 in the first argu-
ment, and ρ > 0 is the penalty coefficient. As ρ → ∞, it is required that
φ(x, ρ) → 0 ∀x : g(x) ≤ 0 and φ(x, ρ) → ∞ ∀x : g(x) > 0. The respec-
tive auxiliary cost equals Qρ(u) = q(x(T )) + r(T ). Any differentiable exterior
penalty function can be employed, but we find the exponential penalty espe-
cially useful. We then put φ(x, ρ) = ρ−1 exp(ρg(x)).
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To proceed, we need two definitions. A control procedure P is candidate
singular, if it is consistent and additionally, the control (4) is singular on
[a, b [. Similarly, a control procedure P is candidate state-constrained, if it is
consistent and the state trajectory x∗ produced by the control (4) satisfies
g(x∗(t)) = 0, t ∈ [a, b [.

In the basic variant of the method, no special new elements are introduced
into Π. It should, however, include the candidate singular procedures of the
auxiliary problems. The candidate singular arcs of the auxiliary problems can
evolve, as ρ → ∞, both into the candidate state-constrained and candidate
singular arcs of the original problem. Since they are consistent in the auxiliary
problems, for the original problem they are asymptotically consistent. The
candidate singular arcs for a fixed ρ can be treated as in [5, 6], or by prototype
adjoints as in Section 4.

In another variant, explicit candidate state-constrained procedures are
used. Assume that the state constraint is of index k, that is, k differentiations
of the identity g(x(t)) = 0 along system trajectories yield a control procedure
of type A, u(t) = Pcon(x(t)). We construct a sequence of auxiliary optimiza-
tion problems as in the basic variant, but adding Pcon to Π and excluding
from Π that candidate singular procedure which asymptotically represents
state-constrained arcs of the original problem. Notice that Pcon is consistent
in the original state-constrained problem, but not in the auxiliary problems.
In consequence, if we want to avoid complicated control structures in the in-
termediate solutions, we have to strengthen the conditions for generations on
the candidate state-constrained arcs (see [6]).

In a third variant of the penalty method Pcon /∈ Π, and the elements of Π
are modified. For a control procedure P ∈ Π assigned to a structural interval
[t1, t2[, the entry time te ∈ ] t1, t2[ is defined by the relationships g(x(te)) = 0,
and g(x(t)) < 0 for some s > 0 and every t in [te − s, te[. We put te = t1,
if g(x(t1)) = 0 and ∇g(x(t1))>f̂(x(t1), t1+) ≥ 0. The control u produced by
the procedure P is modified for t ∈ [te, t2[ as follows

u(t) :=

 umin, if Pcon(x(t)) ≤ umin

Pcon(x(t)), if Pcon(x(t)) ∈ [umin, umax]
umax, if Pcon(x(t)) ≥ umax

As a result, the adjoint variable defined by (6), (7) has a jump at te

ψ̂(te−) = Zψ̂(te+), (8)

where

Z = I −
∇g(x(te))

(
f̂(x(te), te−)− f̂(x(te), te+)

)>
∇g(x(te))>f̂(x(te), te−)

.

We give a proof in Appendix together with detailed assumptions. For the case
of index 1 constraint, formula (8) coincides with a result in [3].
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In some cases an additional penalization may improve convergence. Let
t1 denote te in the third variant and besides, the initial structural node of
a control arc which asymptotically represents a state-constrained arc of the
optimal solution. The additional penalty term in the auxiliary cost has the
form

qσ(x(t1)) = 1
2

k−1∑
i=0

σi g
(i)(x(t1))2, σi ≥ 0, i = 0, ..., k − 1, (9)

where g(i) denotes the ith time derivative of g(x( · )) along state trajectories.
In the first two variants of the penalty method the resulting discontinuity of
the adjoint variable at t1 is given by ψ̂(t1−) = ψ̂(t1+) − ∇qσ(x(t1)). In the
third variant, this jump has to be added to that described by (8), and we put
σ0 = 0 in (9).

4 Interior arcs

The possibility of control arc parameterization in the MSE using adjoints was
mentioned in [7]. While it was rightly estimated as promising in application
to singular arcs in bang-singular optimal controls, in the general case it was
then dismissed because of poor convergence, and in particular, the small area
of convergence. Later it was found out that these difficulties can be overcome
due to a proper generation policy and a freezing technique, which suppress
the expansion of control arcs with parameter values far from optimal (see [9]).

4.1 Full parameterization with prototype adjoints

Define the Hamiltonian and the adjoint equation for the system (1) and cost
(2)

H(ψ, x, u) = ψ>f(x, u)

ψ̇ = −∇xH(ψ, x, u), ψ(T ) = −∇q(x(T )).

For ease of presentation, assume that there are no control or state con-
straints. Suppose that for every t the control maximizing the Hamiltonian
can be obtained from the equation ∇u(t)H(ψ(t), x(t), u(t)) = 0 in the form
u(t) = PB(x(t), ψ(t)), with PB ∈ C1. Define the augmented system of state
equations (formally identical with the canonical system) in a structural time
interval [t1, t2[

ẋ = F1(x, y), ẏ = F2(x, y), (10)

where F1(x, y) = f(x, PB(x, y)) and F2(x, y) = −∇zH(y, z, PB(x, y))|z=x.
The variable x is continuous at t1, and satisfies x(t1) = x0 if t1 = 0. The
variable y, called the prototype adjoint, satisfies y(t1) = p. The parameter
p ∈ Rn is a decision variable of the MSE.

We can now define a control procedure assigned to [t1, t2[
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P ′B(t, p′ ) = PB(x(t ; t1, x(t1), p), y(t ; t1, x(t1), p)),

where x(t ; t1, x(t1), p) and y(t ; t1, x(t1), p) are the solution of (10) taking the
value p′ = col(x(t1), p) at t1. It directly follows from the construction that
P ′B is consistent and is not of type A. Both P ′B and PB will be called control
procedures of type B. The augmented Hamiltonian is defined by

Ĥ(ψ̂, ω, x, y) = ψ̂>F1(x, y) + ω>F2(x, y),

where the augmented adjoint col(ψ̂, ω) satisfies the augmented adjoint system
of equations

˙̂
ψ = −∇xĤ(ψ̂, ω, x, y)

ω̇ = −∇yĤ(ψ̂, ω, x, y).

The variable ψ̂ is continuous at t2, and satisfies (7) if t2 = T . The variable ω
satisfies ω(t2−) = 0.

4.2 Derivatives of cost

Suppose that the control procedure Si is of type B, for some i ∈ {1, ..., N}. Si

is valid in the time interval [τi−1, τi[. Denote the corresponding initial value
of the prototype adjoint by pi, y(τi−1) = pi. We will prove that the cost
derivative w.r.t. pi is given by

∇piΣ = −ω(τi−1). (11)

To this end, consider a variation δpi of the parameter pi and the resulting
variation of the augmented state δx(t), δy(t) for t ∈ [τi−1, τi[. By virtue of
the well known property of the adjoints, ψ̂(t)>δx(t) + ω(t)>δy(t) = const,
t ∈ [τi−1, τi[, and so

ψ̂(τi−)>δx(τi−) + ω(τi−)>δy(τi−) = ψ̂(τi−1)>δx(τi−1) + ω(τi−1)>δy(τi−1).

As δx(τi−1) = 0, δy(τi−1) = δpi, ω(τi−) = 0, and ψ̂ and δx are continuous at
τi, we have ψ̂(τi)>δx(τi) = ω(τi−1)>δpi. If τi = T , the terminal condition (7)
gives

−∇q(x(T ))>δx(T ) = ω(τi−1)>δpi, (12)

whence (11) follows. Suppose now that τi < T . If Si+1 is also of type B, we
use a similar reasoning as above with δy(τi) = δpi+1 = 0 and ω(τi+1−) = 0
to obtain

ψ̂(τi+1)>δx(τi+1) = ψ̂(τi)>δx(τi) = ω(τi−1)>δpi. (13)

If Si+1 is of type A, we immediately arrive at (13) using the equality
ψ̂(t)>δx(t) = const, t ∈ [τi, τi+1[. Substituting i := i + 1 and repeating this
argument until i = N , we finally get (12) and (11).
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We will now prove that the derivative of cost w.r.t. a structural node τi is
given by

∇τiΣ = Ĥ |τi+ − Ĥ |τi−, for i ∈ {1, ..., N − 1}. (14)

Assume first that Si and Si+1 are both of type B. A variation δτi of τi results
in a variation of x(τi)

δx(τi) = (F1(x(τi), y(τi−))− F1(x(τi), y(τi))) δτi.

By assumption, y(τi) = y(τi + δτi) + δy(τi + δτi) + o(δτi) = pi+1. Hence

δy(τi) = −F2(x(τi), y(τi)) δτi.

The variation of cost equals δΣ = −ψ̂(τi)>δx(τi)− ω(τi)>δy(τi), and so

∇τiΣ = ψ̂(τi)>(F1(x(τi), y(τi))− F1(x(τi), y(τi−))) + ω(τi)>F2(x(τi), y(τi)).
(15)

As ω(τi−) = 0, we can rewrite this equality in the more convenient form (14)
where Ĥ stands for the augmented Hamiltonian. It is easy to see that this
formula remains valid if one of the procedures Si and Si+1 is of type A. If Si

is of type A, the variation of x(τi) takes the form

δx(τi) = (f̂(x(τi), τi−)− F1(x(τi), y(τi))) δτi

and again we obtain (14), with Ĥ |τi− determined by (5). If Si+1 is of type A,
we have

δx(τi) = (F1(x(τi), y(τi))− f̂(x(τi), τi+)) δτi

and δΣ = −ψ̂(τi)>δx(τi). As ω(τi−) = 0, we arrive at (14) with Ĥ |τi+

determined by (5).

4.3 Spike and flat generations of type B procedures

Consider the situation immediately after a spike generation of procedure PB

as the ith element of a control structure S. Thus, Si is of type B and τi−1 = τi.
Assume that the function t 7→ f(x(t), u(t)) is continuous at τi, with u given
by (3). Let first τi < T and Si+1 be of type A. The right-hand derivative of
the cost w.r.t. τi can be written in the form

∇+
τi
Σ = ψ̂(τi)>f̂(x(τi), τi)− ψ̂(τi)>f(x(τi), PB(x(τi), pi)).

For τi > 0 and Si−1 of type A, the left-hand derivative equals

∇−τi−1
Σ = ψ̂(τi)>f(x(τi), PB(x(τi), pi))− ψ̂(τi)>f̂(x(τi), τi).

Let now τi < T and Si+1 be of type B. From (15)

∇+
τi
Σ = ψ̂(τi)>f(x(τi), PB(x(τi), y(τi)))− ψ̂(τi)>f(x(τi), PB(x(τi), pi))

+ω(τi)>F2(x(τi), y(τi)).
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For τi > 0 and Si−1 of type B

∇−τi−1
Σ = ψ̂(τi)>f(x(τi), PB(x(τi), pi))− ψ̂(τi)>f(x(τi), PB(x(τi), y(τi−)))

−ω(τi)>F2(x(τi), y(τi−)).

If 0 < τi < T , we have ∇−τi−1
Σ = −∇+

τi
Σ. As PB maximizes the Hamiltonian,

these formulae show that ∇+
τi
Σ attains a minimum at pi = ψ̂(τi), and this

minimum is nonpositive. The equality ∇+
τi
Σ = 0 may only occur if the nec-

essary condition of the Maximum Principle is fulfilled at τi, but in that case
the MSE algorithm does not allow generations. Similarly, ∇−τi−1

Σ attains a
nonnegative maximum at pi = ψ̂(τi).

Consider now a flat generation of type B, which consists in inserting a
new structural node τi, 0 < τi < T , inside a structural interval of type B. The
procedures Si and Si+1 are then of type B, and pi+1 = y(τi) = y(τi−). The
formulae (11) and (15) give the values of ∇piΣ, ∇pi+1Σ, ∇τi−1Σ and ∇τiΣ.
The remaining components of the cost gradient in the decision space are not
changed, except for the obvious renumeration.

4.4 Partial parameterization with prototype adjoints

Consider a problem (1), (2) with the Hamiltonian affine in control

H(ψ, x, u) = H0(ψ, x) +H1(ψ, x)u.

A control u is candidate singular on [t1, t2[, if H1(ψ(t), x(t)) ≡ 0 in [t1, t2[.
Assume that for some even k > 0, k successive differentiations of this identity
along system trajectories yield

H
(i)
1 (ψ(t), x(t)) = 0, i = 0, ..., k − 1 (16)

H
(k)
10 (ψ(t), x(t)) +H

(k)
11 (ψ(t), x(t))u(t) = 0, H

(k)
11 (ψ(t), x(t)) 6= 0. (17)

This set of k+1 equations is linear in ψ(t). By virtue of (17), it can be solved
w.r.t. u(t) in the form u(t) = PB(x(t), ψ(t)) and the theory of Section 4.1 may
be applied. However, it is advantageous both from the numerical and analyt-
ical point of view to use the equations (16) to eliminate some components of
ψ(t) from the expression for u(t). If the vector ψ(t) is entirely eliminated, we
obtain a candidate singular control in a pure state feedback form; that case
was discussed in [5, 6]. In the general case assume that n− n̄ components of
ψ are eliminated and the remaining components constitute a vector ψ̄ ∈ Rn̄.
Let the function χ : Rn̄×Rn → Rn assign the respective values of ψ ∈ Rn to
every ψ̄ ∈ Rn̄ and x ∈ Rn, which means that ψ(t) = χ(ψ̄(t), x(t)). We then
define a procedure of type B

P̄B(x(t), ψ̄(t)) = PB(x(t), χ(ψ̄(t), x(t))).

The parameterization technique proposed in 4.1 can now be employed. Of
course, the number of eliminated adjoints is to an extent a matter of choice,
but the computational experience shows that eliminating more components
of ψ usually improves convergence.
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5 Conclusions

It has been shown that general interior and state-constrained arcs of optimal
control may be produced in the MSE by means of consistent, or asymptoti-
cally consistent control procedures, with state constraints of index 1 exactly
satisfied.

In consequence, typical optimal controls may be entirely approximated
by consistent procedures, and so an arbitrarily accurate approximation can
be fully characterized by a bounded, relatively small number of parameters,
which are decision variables in the induced optimization problems. This is in
contrast to most approximation methods where increasing accuracy requires
more and more parameters, without a finite limit. An important property
characteristic of indirect methods has thus been attained, but without the
well-known drawbacks of those methods, such as small areas of convergence
or discontinuous state trajectories in intermediate solutions.

Several consistent procedures have been proposed and characterized. It
should be stressed that the construction of efficient computational algorithms
based on the presented theory requires that the general scheme of the MSE be
completed with some additional rules and specific techniques. These issues are
discussed in Part 2 of this paper (see [9]), together with illustrative numerical
examples.
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2. Diehl M, Leineweber D B, Schäfer A (2001), MUSCOD-II Users’ Manual. Uni-
versity of Heidelberg, IWR-Preprint 2001-25

3. Fiorini P, Shiller Z (1997), Time optimal trajectory planning in dynamic envi-
ronments. Appl Math Comp Sci 7, 2:101–126

4. Gonzalez H, Vasudevan R, Kamgarpour M, Sastry S S, Bajcsy R, Tomlin C
J (2010), A descent algorithm for the optimal control of constrained nonlinear
switched dynamical systems. 13th HSCC, Stockholm

5. Korytowski A, Szymkat M, Maurer H, Vossen G (2008), Optimal control of
a fedbatch fermentation process: numerical methods, sufficient conditions and
sensitivity analysis. 47th IEEE CDC, Cancun, 1551–1556

6. Szymkat M, Korytowski A (2003), Method of monotone structural evolution
for control and state constrained optimal control problems. ECC, Cambridge

7. Szymkat M, Korytowski A (2007), Evolution of structure for direct control
optimization. Discussiones Mathematicae DICO, 27:165–193

8. Szymkat M, Korytowski A (2008), The method of monotone structural evolu-
tion for dynamic optimization of switched systems. 47th IEEE CDC, Cancun,
1543–1550

9. Szymkat M, Korytowski A (2010), Consistent control procedures in the mono-
tone structural evolution. Part 2: Examples and computational aspects. This
volume



256 Adam Korytowski and Maciej Szymkat

Appendix

Assume that f1 : Rn ×R → Rn is C1 in the first argument and continuous
in the second, θ0 ⊂ [0, T ] is an open interval, Pcon is the control procedure
defined in Section 3, and f2(ξ) = f(ξ, Pcon(ξ)), f2 ∈ C1. Consider a state
equation

ż(t) =
{
f1(z(t), t), if g(z(t)) < 0
f2(z(t)), if g(z(t)) ≥ 0

}
, t ∈ θ0 . (A1)

Let x be a solution of (A1), s, te ∈ θ0, s < te, f1(x(te), te)>∇g(x(te)) > 0,
g(x(t)) < 0 if θ0 3 t < te, and g(x(t)) ≥ 0 if θ0 3 t ≥ te. Due to the
rule of the MSE algorithm which enforces saturation generations before every
gradient computation (see [9]) we may assume, without a loss of generality,
that umin < Pcon(x(t)) < umax if t ∈ θ0. Denote by z(t, ξ) the solution of (A1)
which satisfies z(s, ξ) = ξ. By a continuity argument and by the definition of
f2, there exist an open neighborhood X of x(s) and an open interval θ ⊂ θ0
containing s and te, with the following properties

∀ξ ∈ X ∃η(ξ) ∈ θ : f1(zξ, η(ξ))>∇g(zξ) > 0,

g(z(t, ξ)) < 0 if s ≤ t < η(ξ), g(z(t, ξ)) ≥ 0 if t ≥ η(ξ), t ∈ θ,
where zξ = z(η(ξ), ξ). It follows from the Implicit Function Theorem that the
function η, X 3 ξ 7→ η(ξ) ∈ θ is of class C1, and

∇η(ξ) = − ∇2z(η(ξ)−, ξ)∇g(zξ)
f1(zξ, η(ξ))>∇g(zξ)

. (A2)

Consider ξ1, ξ2 ∈ X and denote ηi = η(ξi), zi(t) = z(t, ξi), i = 1, 2. Let
η2 ≥ η1. From (A1),

z2(η2)−z1(η2)=z2(η1)−z1(η1)+(f1(z2(η1), η1)−f2(z1(η1)))(η2−η1)+o(η2−η1).

Substituting here z2(η1) − z1(η1) = ∇2z(η1−, ξ1)>(ξ2 − ξ1) + o(ξ2 − ξ1),
z2(η2)−z1(η2) = ∇2z(η2, ξ1)>(ξ2−ξ1)+o(ξ2−ξ1) and η2−η1 = ∇η(ξ1)>(ξ2−
ξ1) + o(ξ2 − ξ1), obtain

∇2z(η2, ξ1)>(ξ2 − ξ1) = ∇2z(η1−, ξ1)>(ξ2 − ξ1)
+ (f1(z2(η1), η1)− f2(z1(η1))) ∇η(ξ1)>(ξ2 − ξ1) + o(ξ2 − ξ1). (A3)

Let ξ1 → x(s), ξ2 → x(s), so that η1 → te−, η2 → te+. Then ∇2z(η1−, ξ1)→
∇2z(te−, x(s)), ∇2z(η2, ξ1)→ ∇2z(te+, x(s)). Finally, from (A3) and (A2)

∇2z(te+, x(s)) = ∇2z(te−, x(s))Z

Z = I − ∇g(x(te))
∇g(x(te))>f1(x(te), te)

(f1(x(te), te)− f2(x(te)))> .

We require∇2z(te−, x(s))ψ(te−) = ∇2z(te+, x(s))ψ(te+). As∇2z(te−, x(s))
is nonsingular, we obtain ψ(te−) = Zψ(te+).
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Summary. The consistent control procedures for state-constrained and interior
arcs are implemented in the MSE, and their performance demonstrated on numerical
examples. For state constrained problems with index 1, a two-phase technique is
proposed which ensures the exact fulfillment of the state constraint. To enhance
efficiency of the method of prototype adjoints applied to consistent representation
of interior control arcs, a new ‘freezing’ technique is used.

1 Introduction

Our aim is to present an implementation of the consistent control procedures
of Part 1 [5] in the MSE. To make it efficient, the MSE has been equipped
with special techniques essential for the rate of convergence and accuracy of
results.

We first recall the basic features of the MSE algorithm. Then, a consistent
approach to state constrained problems with index 1 is demonstrated using
two-phase optimization with shifted penalty. It ensures the exact fulfillment
of the state constraint. We next show the method of prototype adjoints with
full parameterization and a ‘freezing’ technique, applied to interior arcs. The
variant with partial parameterization is presented for the singular case. The
explanations are illustrated with three numerical examples. We also give an
account of the computational environment and numerical procedures of the
MSE. The notations and definitions introduced in [5] are used throughout the
paper.

2 Algorithm of MSE

In the MSE, the decision space evolves in a series of structural changes, sep-
arated by periods of gradient optimization in a constant space. Let Π denote
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the stock of available control procedures and Da(S), the set of admissible
decision vectors for a given control structure S. Each structural change con-
sists in replacing the current control structure S ∈ ΠN and decision vector
d ∈ Da(S) by a new structure S̄ ∈ ΠN̄ and decision vector d̄ ∈ Da(S̄). It has
to satisfy the condition of control preservation US̄(d̄) = US(d) where Uσ(δ)
stands for the control produced by δ ∈ Da(σ). The control as an element of the
functional control space U is not immediately affected, and in consequence,
the cost monotonously decreases. To define the efficiency E of a structural
change, denote Σ̄ = Q(US̄(·)). If the antigradient γ = −∇Σ(d) points to
intDa(S) and γ̄ = −∇Σ̄(d̄) to intDa(S̄), E = || γ̄||2 − || γ ||2. In the general
case the antigradients are replaced by their orthogonal projections onto the
local conical approximations of the admissible sets.

Two kinds of structural changes are typical for the MSE: the number of de-
cision variables increases in generations, and is diminished in reductions. The
aim of driving generations is to speed up optimization when it is approaching
a stationary point in the current decision space. Such a generation usually
consists of adding one or more procedures to the current control structure, or
reparameterization of some procedures. Typically, it has the form of inserting
a spike of a new control arc of zero length. The driving generation occurs
when its efficiency exceeds a given threshold, E > ε(|| γ ||) where ε is a con-
tinuous strictly increasing function vanishing at 0. The new structure S̄ and
point d̄ are chosen so as to maximize the efficiency subject to some additional
rules, such as limiting the number of new decision variables or the number of
affected procedures. One of the most essential is the rule of minimum positive
efficiency (see [9] and references therein) used for choosing new consistent
procedures to be inserted into S. It prevents the MSE algorithm from con-
vergence to chattering modes. The MSE also admits saturation generations,
enforced by the requirement that at the moment of gradient computation each
control arc has to be either purely boundary or purely interior. Typical reduc-
tions consist of eliminating arcs of zero length when they are not promising,
or unification of two adjacent arcs described by identical procedures.

The MSE algorithm begins with the selection of an initial control structure
S0 and a starting point in Da(S0). An iteration of the algorithm, in its basic
form, contains the following steps.

10 Termination, if MP optimality conditions in U are satisfied.
20 Generation, if it is sufficiently efficient or needed.
30 Iteration of gradient optimization in current decision space.
40 Reduction, if necessary.
The iteration involves a solution of the adjoint equations and an evaluation

of the cost gradient. In step 10 it is verified if the condition of Hamiltonian
maximization is fulfilled with sufficient accuracy. This can be also formulated
as a condition of existence of appropriately efficient generations. Step 20 is
distinctive for the MSE and crucial for its convergence.
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3 State-constrained arcs

Here we present a consistent approach to problems with state constraint of
index 1, which ensures the exact fulfillment of the constraint due to the mod-
ification of control procedures described in Section 3 of [5]. This modification
will enforce the state trajectory to slide along the boundary of the admissi-
ble region until the end of the structural interval. To avoid the Zeno effect
and traps of conflicting constraints, known as ‘blocking behavior’, we employ
a preliminary phase of computations where the penalty method of the basic
variant (see Section 3 of [5]) is used with only bang control procedures and a
strengthened state constraint, that is, the boundary of the set of admissible
states shifted inward. The preliminary phase is continued until a solution is
obtained which is sufficiently close to optimal and satisfies the original state
constraint. The proper, penalty-free phase is then started, with the original
state constraint, original cost, and the modified control procedures. In this
phase, generations are suppressed on the time intervals where the state con-
straint is active. Note that the control is preserved at the switch of phases, as
it is admissible.

We illustrate this method with an example of the pendulum on a cart [8].
The state equations are as follows

ẋ1 = x3, ẋ2 = x4

ẋ3 =
u− x2

4 sinx2 + sinx2 cosx2

2− cos2 x2
, ẋ4 =

(u− x2
4 sinx2) cosx2 + 2 sinx2

2− cos2 x2
.

The control is bounded, −umax ≤ u(t) ≤ umax, and a pathwise constraint
is imposed on the cart velocity x3(t) ≤ x3 max, t ∈ [0, T ]. The initial state
x(0) = col(0, π, 0, 0) and the horizon T are fixed. The cost is given by

Q(u) = 1
2 (x1(T )2 + x2(T )2 + x3(T )2 + x4(T )2).

At the initial moment of time the cart is at rest at zero, with the pendulum
in the down stable position. The control task is to steer the system as close
as possible to another, unstable equilibrium where the cart again is stopped
at zero, but the pendulum is at rest in the upward position. For calculations
we take T = 2.5, umax = 4, x3 max = 1.8. On a state-constrained arc x3 =
x3 max, ẋ3 = 0, whence u = Pcon(x) = (x2

4 − cosx2) sinx2, and ẋ1 = x3 max,
ẋ4 = sinx2.

In the preliminary phase of computations we use the penalty coefficient
ρ = 8 and the state boundary shifted inward, x3 max = 1.4. Only two control
procedures are allowed, P1,2 = ±umax. Fig. 1a shows the generation of two
spikes of bang control at iteration 4. The corresponding state trajectories
are depicted in Fig. 1b. The preliminary phase is stopped after 12 iterations,
when the solution is sufficiently close to optimal and satisfies the original state
constraint, see Figs. 1c (control) and 1d (states). In the next, proper phase, the
original cost Q is minimized and the original state constraint with x3 max = 1.8
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is strictly observed. The same two control procedures are used, but modified as
in Section 3 of [5]. One state-constrained arc is created as a result of constraint
activation, with the entry time enforced by the trajectory and the exit time
being a decision variable. The optimal solution, shown in Figs. 1e and 1f is
obtained in 24 iterations. The respective adjoints are presented in Fig. 2b
(note the discontinuity at the entry time).

The switching function defined as ψ̂>∇uf(x, u) and plotted in Fig. 1e in a
normalized form, indicates that the Maximum Principle necessary conditions
of optimality are satisfied. Note that this function is decreasing on the state-
constrained arc and vanishes at its end. Simple calculations show that the
conditions of Theorem 5.2 in [4] are thus fulfilled, which is a consequence of the
fact that the adjoint variable ψ̂ of the MSE coincides with the adjoint variable
in the ‘indirect adjoining’ approach, and the switching function multiplied by
a weakly varying positive function 2 − cos2 x2(t) is equal to the appropriate
Lagrange multiplier on the state-constrained arc.

Fig. 2a shows the evolution of control structure during the optimization.
The iteration numbers are on the horizontal axis, and the control time t ∈
[0, T ] on the vertical axis. The black color represents u(t) = umax, white
u(t) = −umax, and grey u(t) = Pcon(x(t)). The vertical dashed line marks the
switch of phases (also in Figs. 2c and 2d). The values of maxt∈[0,T ] g(x(t)) =
maxt∈[0,T ](x3(t)− 1.8) in successive iterations are presented in Fig. 2c. Note
that the preliminary phase (to the left of the vertical dashed line) ends when
the state trajectory becomes admissible, maxt∈[0,T ] g(x(t)) < 0. As can be
seen in Fig. 2a, a state-constrained control time-interval appears in the next,
13th iteration. Fig. 2d shows the values of norm of gradient (dots) and of the
difference ‘cost − optimal cost’ (circles) in successive iterations. The scale on
the vertical axis is decimal logarithmic.

4 Full parameterization with prototype adjoints

We again consider the pendulum on a cart described by the state equations
of Section 3. No control or state constraints are assumed. The initial state
x(0) = col(0, π, 0, 0) and the horizon T are fixed. The cost function has an
integral form

Q(u) = 1
2

T∫
0

(β1x
2
1 + β2x

2
2 + x2

3 + x2
4 + αu2)dt,

where β1 = β2 = 4, α = 0.1, T = 2.5. The adjoint equations read

ψ̇1 = β1x1, ψ̇2 = −A32ψ3 −A42ψ4 + β2x2

ψ̇3 = −ψ1 + x3, ψ̇4 = −ψ2 −A34ψ3 −A44ψ4 + x4,

where
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Fig. 1. Control (bold) vs. time in a, c, e; states vs. time in b, d, f ; solid line in a
and e represents the normalized switching function; dashed line in e denotes Pcon(x)
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A32 =
cos 2x2 − x2

4 cosx2 − f3 sin 2x2

2− cos2 x2
, A34 =

−2x4 sinx2

2− cos2 x2

A42 =
2 cosx2 − u sinx2 − x2

4 cos 2x2 − f4 sin 2x2

2− cos2 x2
, A44 = A34 cosx2

f3 =
u− x2

4 sinx2 + sinx2 cosx2

2− cos2 x2
, f4 =

(u− x2
4 sinx2) cosx2 + 2 sinx2

2− cos2 x2
.

To determine the control procedure PB , we proceed as in Section 4.1 of [5].
Note that no consistent alternatives to type B procedures are available as there
are no control or state constraints, or singular arcs. We first augment the set
of state equations given in Section 3 with the prototype adjoint equations

ẏ1 = β1x1, ẏ2 = −A32y3 −A42y4 + β2x2

ẏ3 = −y1 + x3, ẏ4 = −y2 −A34y3 −A44y4 + x4.

Next, we find the control maximizing the Hamiltonian H as a function of x
and ψ, and substitute the prototype adjoint y for the original adjoint ψ. Hence

PB(x, y) =
y3 + y4 cosx2

α(2− cos2 x2)
.

In the cases where the evolution of control structure leads to more than one
control arcs of type B, it has been observed that the convergence significantly
slows down in the final phase of optimization. The reason for this effect might
be that the optimization path then zigzags along a curved, narrow valley
with steep slopes. A practical remedy is offered by the ‘freezing’ technique,
which reduces the dimension of the decision space. When it is noticed that
the optimization becomes slower, the best fitted arc of type B is selected for
further optimization, and all the other arcs of type B are ‘frozen’, that is, their
parameters and structural nodes (as far as possible) are kept constant. If the
optimization potential of that arc is exhausted before reaching the optimum,
e.g., a stationary point is achieved or the arc gets reduced, we return to the
original algorithm, continue it for some time and then try again.

The freezing technique is illustrated by Fig. 3. Figures 3a and 3b show
the evolution of control structure during the optimization. As in Fig. 1, the
iteration numbers are on the horizontal axis, and the control time on the
vertical axis. The white color represents u(t) = 0, and the grey colors, control
arcs of type B. We start from a zero control. In the first iteration, a spike of
type B is generated at t ≈ 0.3 (see Fig. 3a). This arc (dark grey) evolves due
to BFGS optimization in a constant decision space until iteration 17, when
another spike of type B appears at t ≈ 1.1 (light grey). They then evolve
together until iteration 20, when the ‘freezing’ decision is taken. Surprisingly,
the second, less developed arc proves better fitted and so the first arc of
type B is frozen. The control at iteration 20 is shown in Fig. 3c (bold line)
together with the function PB(x(t), ψ̂(t)) (dashed line). The corresponding
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state trajectories are plotted in Fig. 3d. The optimization is then continued
for the next 200 iterations (Fig. 3b), until a satisfactory approximation of the
optimal solution is obtained. Fig. 3e depicts the optimal control and Fig. 3f,
the optimal state trajectories. The final control structure consists of only one
arc of type B. As can be seen from the history of optimization in Fig. 3b, the
second arc of type B has eventually ‘eaten up’ all other arcs.
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Fig. 3. Evolution of control structure (a and b); control (c) and states (d) at
iteration 20; optimal control (e) and optimal state trajectories (f) (explanations in
text)

5 Partial parameterization with prototype adjoints

Consider a bilinear control system

ẋ = uA1x+ (1− u)A2x

A1 =

⎡
⎣−1 1 0
−1 −1 0

0 0 2

⎤
⎦ , A2 =

⎡
⎣−2 0 0

0 1 1
0 −1 1

⎤
⎦ , x(0) =

⎡
⎣−81
−27
−3

⎤
⎦ ,

with bounded controls 0 ≤ u ≤ 1, and a cost functional



264 Maciej Szymkat and Adam Korytowski

Q(u) = 1
2

T∫
0

(x2
1 + x2

2 + x2
3) dt, T = 1.

We write the adjoint equations

ψ̇1 = (2− u)ψ1 + uψ2 + x1, ψ1(T ) = 0

ψ̇2 = −uψ1 + (2u− 1)ψ2 + (1− u)ψ3 + x2, ψ2(T ) = 0

ψ̇3 = (1− u)ψ2 − (1 + u)ψ3 + x3, ψ3(T ) = 0.

Equating the switching function to zero, we obtain the condition of singularity
ψ>(A1 − A2)x = 0. As the singularity is of order one, this condition yields
three equations for ψ and u. We solve them w.r.t. ψ2 and u (ψ1 is unnecessary
in the sequel)

ψ2 = χ2(x, ψ3) =
a1(x) + a2(x)ψ3

a3(x)
, u = PB(x, ψ3) =

a4(x) + a5(x)ψ3

a6(x) + a7(x)ψ3
.

The functions a1, . . . , a7 are low-degree homogeneous polynomials. The aug-
mented state equations, valid in control intervals of type B, read

ẋ = PB(x, y)A1x+ (1− PB(x, y))A2x

ẏ = (1− PB(x, y)) χ2(x, y)− (1 + PB(x, y)) y + x3.

In the MSE algorithm we define three control procedures, Pmin = 0, Pmax = 1,
and PB(x, y). The computations are started from a control identically equal
to one. The optimal control (see Fig. 4b) is obtained in 38 iterations. The
evolution of control structure is shown in Fig. 4a. The black color represents
u(t) = 1, white u(t) = 0, and grey u(t) = PB(x(t), y(t)). Fig. 4c allows a
comparison of the adjoint ψ̂ and prototype adjoint y at tini, the initial time
of the arc of type B. The values of gradient norm and cost are plotted in Fig.
4d (same conventions are used as in Fig. 2d).

6 MSE implementation

The MSE software is run within the MATLAB environment. The problem
description is required from the user in a file form. It should use predefined
objects and structures. The first version required C language procedures for
faster ODE integration. In the current version, all computations are solely
performed in MATLAB. Optimization in variable decision spaces relies on
the computation of adjoint variables, for gradient and efficiency evaluations.

The implemented solvers include partitioned RK methods using formally
adjoint pairs [3]: explicit RK4/RK4 or RK38/RK38 (in the fixed step mode),
or a fully implicit 5th order, 3 stage Radau IIa/Radau Ia pair (in the vari-
able step mode for stiff cases). This choice proves particularly advantageous
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Fig. 4. Evolution of control structure (a); optimal control (b); y(tini) (dots) and
ψ̂3(tini) (circles) in successive iterations (c); norm of gradient and cost (d)

both from the numerical and optimal control point of view [2]. In all cases
interpolation is used to obtain a dense representation of trajectories. Similar
concepts are employed in KPP v. 2.2 [6]. In the MSE, the mesh generation
process always guarantees a proper treatment of discontinuities. The available
optimizers include the BFGS method and the Newton method with curvilin-
ear search, if Hessians are supplied. In both cases the constraints on structural
nodes are always preserved and a simple active set strategy is employed. The
current version of the MSE includes various types of approximative control
procedures based on piecewise polynomial interpolation with fixed or moving
nodes.

The forthcoming version of the MSE will have a more intuitive and friendly
interface, and an explicit representation of discontinuous functions in data
structures (including states and adjoints), with automatic mesh indexing and
contiguous storage. As a further improvement we consider automatic differen-
tiation for the generation of procedures computing adjoint variables, gradients
and Hessians. We also plan a stand-alone version, dependent only on the freely
distributed MATLAB run-time component.

The MSE as described here is a direct sequential method. Recently, a new
variant has been initially tested [7], which goes along the ideas of simultaneous
collocation [1]. It has been proved that for certain problems, especially with
terminal constraints, the area of convergence of the new variant is larger.
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7 Conclusions

The MSE equipped with a sufficiently rich stock of consistent control pro-
cedures can provide optimal solutions in a particularly attractive form, fully
characterized by a relatively small number of parameters, and giving precise
information on the optimal control structure. These features and the auto-
matic handling of structural changes may prove advantageous in the design
of NMPC control schemes.

It is often helpful to use approximative procedures in conjunction with the
consistent ones. It may speed up the convergence, especially if the adjacent
approximative and consistent control arcs are distinctly different. If they are
similar, a ‘substitution effect’ sometimes occurs. As a result, the optimiza-
tion becomes slower and nonconsistent procedures may persist in the final
approximation of optimal solution. To prevent this effect, we have applied the
freezing technique to approximative arcs.

An apparent drawback of the current version of the MSE, shared to some
extent with typical indirect methods is the burden of analytical work needed
in the preparatory stage of computations (mainly, analytical differentiation).
However, the use of computer packages for symbolic calculations which become
increasingly effective and popular, is an obvious remedy. Another direction for
reducing this burden is in DAE formulations.
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Summary. Optimal and suboptimal protocols are given for a mathematical model
for tumor anti-angiogenesis. If a linear model for the pharmacokinetics of the anti-
angiogenic agent is included in the modeling, optimal controls have chattering arcs,
but excellent suboptimal approximations can be given.

1 Introduction

Tumor anti-angiogenesis is a rather novel cancer treatment approach that lim-
its a tumor’s growth by inhibiting it from developing the vascular network it
needs for its further supply with nutrients and oxygen. Ideally, deprived of
its sustenance, the tumor regresses. As with any novel approach, the under-
lying biological mechanisms are not fully understood and several important
questions such as how to best schedule these therapies over time still need to
be answered. Various anti-angiogenic agents have been and still are tested in
clinical trials (e.g., [6, 11]). Naturally, the scope of these experiments is lim-
ited to simple structured protocols. Mathematical modeling and analysis can
give valuable insights here into the structure of both optimal and suboptimal
protocols and can thus become an important tool towards the overall aim of
establishing robust and effective treatment protocols (e.g., [1, 9]).

Mathematically, the various protocols can be considered as control func-
tions defined over time and the tools and techniques from optimal control
theory are uniquely suited to address these difficult scheduling problems. In
previous research, for various formulations of the dynamics underlying anti-
angiogenic treatments that were based on a biologically validated model devel-
oped at Harvard Medical School [10] and one of its modifications formulated
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at the Cancer Research Institute at NIH [7], Ledzewicz et al. have considered
the optimal control problem of how to schedule an a priori given amount of
anti-angiogenic agents in order to minimize the tumor volume. Complete solu-
tions in form of a regular synthesis of optimal controlled trajectories [2] (which
specifies the optimal controls and their corresponding trajectories for arbitrary
initial conditions) have been given for the two main models in [13, 17].

Because of the great complexity of the underlying biological processes,
in these papers the dosages and concentrations of the anti-angiogenic agents
have been identified, a commonly made first modeling simplification. In reality
these clearly are different relations studied as pharmacokinetics (PK) in the
medical and pharmaceutical literature. The standard and most commonly
used model for PK is a simple model of exponential growth and decay given
by

ċ = −ρc+ u, c(0) = 0, (1)

where u denotes the dosage of the agent and c its concentration. The coeffi-
cient ρ is the clearance rate and is related to the half-life of the agents. The
important question is to what extent optimal controls will be altered under
the addition of pharmacokinetic equations, both qualitatively and quantita-
tively. In models for chemotherapy which we had considered earlier optimal
controls were bang-bang and this structure was retained if a linear pharma-
cokinetic model of the form (1) was added [14, 16]. Thus in this case no
qualitative changes and in fact also only minor quantitative changes arose.
But the solutions to the mathematical models for tumor anti-angiogenesis are
characterized by optimal singular arcs which are defined by highly nonlinear
relations (see below, [13, 17]) and now significant qualitative changes in the
concatenation structure of optimal controls occur. They lead to the presence
of optimal chattering arcs once a pharmacokinetic model (1) is included. In
this paper we describe these changes for the mathematical model proposed by
Ergun et al. [7] and give numerical results that show that the minimal tumor
values can very accurately be approximated by reasonably simple, piecewise
constant controls.

2 A Mathematical Model for Tumor Anti-Angiogenesis

We consider a mathematical model for tumor anti-angiogenesis that was for-
mulated by Ergun, Camphausen and Wein in [7] and is a modification of the
model by Hahnfeldt et al. from [10]. In both models the spatial aspects of
the underlying consumption-diffusion processes that stimulate and inhibit an-
giogenesis are incorporated into a non-spatial 2-compartment model with the
primary tumor volume p and its carrying capacity q as variables. The carrying
capacity is mostly determined by the volume of endothelial cells that form the
lining of the newly developing blood vessels and capillaries and we also call it
the endothelial support. The tumor dynamics is modeled by a Gompertzian
function,
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ṗ = −ξp ln
(
p

q

)
(2)

with ξ denoting a tumor growth parameter. The carrying capacity q is variable
and in [7] its dynamics is modeled as

q̇ = bq
2
3 − dq 4

3 − µq − γuq, (3)

where b (birth) and d (death), respectively, are endogeneous stimulation and
inhibition parameters for the endothelial support; the term µq represents nat-
ural death terms and γuq stands for additional exogenous inhibition. The
variable u represents the control in the system and corresponds to the an-
giogenic dose rate while γ is a constant that represents the anti-angiogenic
killing parameter. The particular inhibition and stimulation terms chosen in
this model, I(q) = dq

4
3 and S(q) = bq

2
3 , are a modification of the original

terms in [10] in the sense that the tumor’s stimulation of the carrying ca-
pacity now becomes proportional to the tumor radius, no longer its surface
area. Also, compared with [10] the dynamics of the vascular support has been
slowed down leading to an overall improved balance in the substitution of
stimulation and inhibition (see [7]).

Anti-angiogenic agents are “biological drugs” that need to be grown in a
lab and are very expensive and limited. From a practical point of view, it is
therefore of importance how given amounts of these agents,∫ T

0

u(t)dt ≤ ymax, (4)

can be administered to have “optimal” effect. Taking as objective to maximize
the possible tumor reduction and adding an extra variable y that keeps track
of the total amounts of agent that have been given, this problem takes the
following form:

[C] for a free terminal time T , minimize the objective J(u) = p(T ) subject
to the dynamics

ṗ = −ξp ln
(

p
q

)
, p(0) = p0, (5)

q̇ = bq
2
3 − dq 4

3 − µq − γuq, q(0) = q0, (6)
ẏ = u, y(0) = 0 (7)

over all Lebesgue measurable functions u : [0, T ]→ [0, umax] for which the
corresponding trajectory satisfies the end-point constraints y(T ) ≤ ymax.

It is easily seen that for any admissible control u and arbitrary positive
initial conditions p0 and q0 the solution (p, q, y) to the corresponding differen-
tial equation exists for all times t > 0 and both p and q remain positive [15].
Hence no state space constraints need to be imposed.
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Necessary conditions for optimality are given by the Pontryagin Maximum
Principle (e.g., see [3, 4]) and these conditions identify the constant controls
u = 0 (no dose) and u = umax (maximum dose), the so-called bang controls,
as well as a time-varying feedback control, a so-called singular control, as
candidates for optimality. Using Lie-algebraic calculations, analytic formulas
for the singular control and the corresponding trajectory can be given.

Proposition 1. [15, 13] The singular control is given in feedback form as

usin(q) = ψ(q) =
1
γ

(
b− dq 2

3

q
1
3

+ 3ξ
b+ dq

2
3

b− dq 2
3
− µ

)
. (8)

This control is locally optimal if the state of the system lies on the correspond-
ing singular arc S defined in (p, q)-space by

psin = psin(q) = q exp

(
3
b− dq 2

3 − µq 1
3

b+ dq
2
3

)
. (9)

This curve is an admissible trajectory (i.e., the singular control takes values
between 0 and umax) for q∗` ≤ q ≤ q∗u where q∗` and q∗u are the unique solutions

to the equation ψ(q) = a in (0,
√(

b
d

)3
).

Fig. 1 gives the graph of the singular control (8) on the left and the cor-
responding singular arc defined by (9) is shown on the right.
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Fig. 1. Singular control (left) and singular arc, the corresponding trajectory (right)

Overall, optimal controls then need to be synthesized from bang and sin-
gular controls. This requires to analyze concatenations of these structures.
Based on the formulas above a full synthesis of optimal controlled trajectories
was given in [13]. Such a synthesis provides a complete “road map” of how
optimal protocols look like depending on the initial condition in the problem,
both qualitatively and quantitatively. Examples of projections of optimal tra-
jectories into the (p, q)-space are given in Fig. 2. The admissible singular arc
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is shown as a solid curve which becomes dotted after the saturation point.
Trajectories corresponding to u ≡ umax are marked as thinner solid curves
whereas trajectories corresponding to u ≡ 0 are marked as dashed-dotted
curves. The dotted line on the graph is the diagonal, p = q. We highlighted
with bold one specific, characteristic example of the synthesis. Initially the
optimal control is given by a full dose u = umax segment until the correspond-
ing trajectory hits the singular arc. At that time the optimal control becomes
singular following the singular arc until all inhibitors become exhausted. Since
the singular arc lies in the region p > q, the tumor volume still shrinks along
u = 0 until the trajectory reaches the diagonal p = q at the final time T when
the minimum tumor volume is realized. This structure umax − s− 0 is the
most typical form of optimal controls. (For a more precise description of the
synthesis, see [13])
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3 Addition of a Pharmacokinetic Model

We now add the standard linear pharmacokinetic model (1) to the mathe-
matical model and replace the control u in (6) by the concentration c, but
otherwise preserve the same formulation. Thus the optimal control problem
now becomes to minimize p(T ) subject to

ṗ = −ξp ln
(

p
q

)
, p(0) = p0, (10)

q̇ = bq
2
3 − dq 4

3 − µq − γcq, q(0) = q0, (11)



272 Urszula Ledzewicz, Helmut Maurer, and Heinz Schättler

ċ = −ρc+ u, c(0) = 0, (12)
ẏ = u, y(0) = 0. (13)

Once more the conditions of the Maximum Principle identify bang and
singular controls as candidates. In [18] it is shown for a more general control-
linear nonlinear system of a form that includes problem [C] that the optimality
status of a singular arc is preserved under the addition of a linear pharmacoki-
netic model. In fact, the very same equations that define the singular control
and arc in the model without PK remain valid verbatim, albeit with a differ-
ent interpretation. The singular curve (9) is preserved as a vertical surface in
(p, q, c)-space and the singular arc is now defined as the intersection of this
cylindrical surface with the graph of the function c = ψ(q) defined by (8), see
Fig. 3.
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Fig. 3. Vertical singular surface in (p, q, c)-space (left) and intersection with the
concentration c = ψ(q) (right)

However, under the addition of pharmacokinetic equations of the form (1),
the so-called order of the singular arc increases from 1 to 2. It is well-known
that a smooth singular control with values in the interior of the control set for
which the Kelley condition (a high order necessary condition for optimality of
singular controls of order 2, [21]) is satisfied, cannot be concatenated optimally
with either of the constant bang controls u = 0 or u = umax [3, 20, 21]. These
concatenations are now accomplished by means of chattering controls. This
fact is also known as the Fuller phenomenon in the optimal control literature
[8]. The structure of optimal controlled trajectories therefore clearly changes.
The construction of an optimal synthesis that contains chattering arcs is quite
a challenging task [21] and has not yet been completed for this model. How-
ever, practically the relevant question is what effect these changes actually
have on the value of the objective. Chattering controls are not practical and
thus the question about realizable suboptimal structures arises.
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4 Suboptimal Approximations

In this section we give numerical results which show that it is possible to
give simple suboptimal controls that achieve a tumor volume which gives
an excellent approximation of the optimal value. In our calculations we use
the following parameter values taken from [10] that are based on biologically
validated data for the anti-angiogenic agent angiostatin: ξ = 0.192 per day,
b = 5.85 per day, d = 0.00873 per mm2 per day, γ = 0.15 kg per mg of dose
per day with concentration in mg of dose per kg. For illustrative purposes we
also chose a small positive value for µ, µ = 0.02 per day. The upper limit
of the dosage was taken as umax = 15 mg per kg and ymax = 60 mg per kg.
The half-life k of the agent is k = 0.38 per day [10]. The variables p and q
are volumes measured in mm3 and the initial conditions for our numerical
calculations are p0 = 8, 000 mm3 and q0 = 10, 000 mm3.

The optimal control package NUDOCCCS due to Büskens [5] is imple-
mented to compute a solution of the discretized control problem using non-
linear programming methods. We chose a time grid with N = 400 points and
a high order Runge-Kutta integration method. Fig. 4 shows the graph of a
numerically computed ‘optimal’ chattering control on the left and gives the
corresponding concentration c on the right. The highly irregular structure of
the control is caused by the fact that the theoretically optimal control chat-
ters and has a singular middle segment. Due to numerical inaccuracies, as the
intervals shrink to 0, the actual control values no longer are at their upper
and lower values ±1. But the value of the objective is within the desired error
tolerance. The final time is T = 11.6406 and the minimum tumor volume is
given by p(T ) = 78.5326.
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Fig. 4. A numerically computed ‘optimal’ chattering control (left) with correspond-
ing concentration c (right)

For the same parameter values, Fig. 5 gives an example of a suboptimal
control that is computed taking a control of the following simple bang-bang
structure:

u(t) =


umax for 0 ≤ t < t1

0 for t1 ≤ t < t2
umax for t3 ≤ t < t3

0 for t4 ≤ t ≤ T

.
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Thus both the chattering and singular arcs are completely eliminated at the
expense of two adjacent bang-bang arcs that become larger. The switching
times t1, t2, t3 and the final time T are the free optimization variables. Using
the arc-parametrization method developed in [19] and the code NUDOCCCS
[5], we obtain the optimal switching times t1 = 1.78835, t2 = 4.60461, t3 =
6.86696 and the final time T = 11.3101. This suboptimal control approxima-
tion gives the minimal tumor volume p(T ) = 78.8853. It is surprising that
this rather crude approximation of the chattering control gives a final tumor
volume that is very close to the minimal tumor volume p(T ) = 78.5326 for
the “chattering control” in Fig. 4. On the right of Fig. 5 the corresponding
concentration is shown.
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Fig. 5. A simple suboptimal bang-bang control with four arcs (left) and correspond-
ing concentration c (right)

Tumor volumes that are close to identical with those realized by the op-
timal control can be achieved with a slightly more refined control structure
given by

u(t) =


umax for 0 ≤ t < t1

0 for t1 ≤ t < t2
v for t2 ≤ t < t3

umax for t3 ≤ t < t4
0 for t4 ≤ t ≤ T

.

Again both chattering arcs are approximated by a simple bang-bang control
that switches once from umax to 0 and the singular segment is approximated
by a constant control v over the full singular interval. This particular choice is
probably the simplest reasonable approximation to the control structure that
the theory predicts as optimal: a chattering control followed by a singular
control and one more chattering control. Here the switching times ti, i =
1, . . . , t4, the final time T , and the value v of the control are free optimization
variables. Again, we use the arc-parametrization method [19] and the code
NUDOCCCS [5] to compute the optimal switching times t1 = 1.46665, t2 =
3.08056, t3 = 5.98530, t4 = 7.35795, the final time T = 11.6388 and the
constant control v is given by v = 6.24784. This gives the minimal tumor
volume p(T ) = 78.5329 for the suboptimal approximation which, for practical
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purposes, is identical with the minimal tumor volume p(T ) = 78.5326 for the
“chattering control” in Fig. 4. The computations also show that second order
sufficient conditions for the underlying optimization problem are satisfied and
hence we have found a strict (local) minimum. On the right of Fig. 6 the
corresponding concentration is shown. Overall the behavior is very similar as
in case of the chattering control, but the system has a much smoother and
thus for many aspects preferable response. Like in the case of the problem
when PK is not modeled [12], it appears that the differences in the minimum
tumor volumes that can be achieved on the level of suboptimal controls are
negligible.
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Fig. 6. A suboptimal piecewise constant control (left) and corresponding concen-
tration c (right)

5 Conclusion

For a model of tumor anti-angiogenesis we have shown that, based on the
structure of optimal controls, excellent simple suboptimal protocols can be
constructed that realize tumor volumes close to the optimal ones. This holds
both for the model without and with a linear pharmacokinetic model (1).
Obviously, our numerical results are only for one special case, but we expect
similar good approximations to be valid for a broad range of parameters. The
significance of knowing the optimal solutions is bifold: it sets the benchmark to
which suboptimal ones will be compared and it suggests the simpler structures
for the approximating controls.
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Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003



276 Urszula Ledzewicz, Helmut Maurer, and Heinz Schättler

4. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,
American Institute of Mathematical Sciences, 2007
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Summary. We describe a prey-predator model by a nonlinear optimal control prob-
lem with infinite horizon. This problem is non convex. Therefore we apply a duality
theory developed in [17] with quadratic statements for the dual variables S. The
essential idea is to use weighted Sobolev spaces as spaces for the states and to for-
mulate the dual problem in topological dual spaces. We verify second order sufficient
optimality condition to prove local optimality of the steady state in [T,∞).

1 Introduction

Control problems with infinite horizon have been investigated since the 1970s
and became very important with regards to applications in economics, where
an infinite horizon seems to be a very natural phenomenon, [2], [3],[4],[5],
[6],[8],[11], [14], [15],[21],[22]. “The infinite horizon is an idealization of the
fundamental point that the consequences of an investment are very long-lived;
any short horizon requires some methods of evaluating end-of-period capital
stock, and the only proper evaluation is their value in use the subsequent fu-
ture”, (Arrow and Kurz (1970),[1]). Infinite horizon optimal control problems
naturally arises not only in economics but also in natural sciences, like Biol-
ogy. This can be explained by the fact that it is often unrealistic to assume
the time is fixed or free. It is much more realistic to assume, that the termi-
nation time T of an admissible process is a random variable. Suppose, it is
Poisson–distributed the conditional probability P (T < t+4t|T ≥ t) satisfies
the equation

P (T < t+4t|T ≥ t) = ρ4t+ o(4t), (1)

where ρ > 0 and o(4t)
4t → 0 for 4t → 0. By the definition of the conditional

probability we have

P (T < t+∇t) = P (T < t) + P (T < t+4t|T ≥ t)P (T ≥ t)
= P (T < t) + P (T < t+4t|T ≥ t)(1− P (T < t)).

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_24, © Springer-Verlag Berlin Heidelberg 2010 
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Therefore, by (1) we obtain for the distribution function Φ(t) := P (T < t):

Φ(t+4t) = Φ(t) + ρ(1− Φ(t))4t+ o(4t) (2)

and the function Φ satisfies the initial value problem

Φ̇(t) = ρ(1− Φ(t)), Φ(0) = 0. (3)

Solving (3), we find the distribution function

Φ(t) = 1− e−ρt

with the density function ϕ(t) := ρe−ρt. The objective in our optimal control
problem is now to maximize (or minimize) the mathematical expectation of
the random variable

JT (x, u) =

T∫
0

f(t, x(t), u(t)) dt, (4)

J∞(x, u) = ρ

∞∫
0

 T∫
0

f(t, x(t), u(t)) dt

 e−ρT dT. (5)

If we assume that

lim
T→∞

e−ρT

T∫
0

f(t, x(t), u(t)) dt = 0, (6)

then upon integrating (5) by parts, we obtain

J∞(x, u) =

∞∫
0

e−ρt f(t, x(t), u(t)) dt. (7)

The purpose of this contribution is to illustrate the use of optimal control
theory for infinite horizon problems, to obtain an optimal strategy for the
control of a prey-predator system.
Following the paper [10], we use as a control the rate of release of predators
or preys, which are bred in the laboratories. In the cited paper [10] the per-
formance index is (4), where the time T is specified or unspecified, see ([10],
p. 266). The final state is the steady state of the system.
In our consideration, the time is a Poisson-distributed random variable. We
prove that the steady state is a local optimal solution, if the system achieves
this point at any time T0.
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2 Problem formulation

We deal with problems of the following type (P )∞: Minimize the functional

J∞(x, u) =
∞∫
0

f(t, x(t), u(t))ν̃(t) dt (8)

with respect to all

[x , u ] ∈W 1,n
p,ν (0,∞)× Lr

∞(0,∞) (9)

fulfilling the

State equations x′(t) = g(t, x(t), u(t)) a.e. on (0,∞), (10)
Control restrictions u(t) ∈ U ⊆ Comp( IRr ) a.e. on (0,∞), (11)

State constraints x(t) ∈ G(t) on (0,∞), (12)
Initial conditions x(0) = x0. (13)

The spaces W 1,n
p,ν (0,∞) are weighted Sobolev spaces, see [13]. There appli-

cation in control theory is shown in [20].
Let us note that in this paper all appearing integrals are understood as

Lebesgue integrals and AL consists of all processes (x, u), which make the
Lebesgue integral in (8) convergent and satisfy the constraints (9) – (13).

Throughout the paper we assume that the data satisfy the following con-
ditions:

1. The functions f, g are continuously differentiable in all arguments.
2. The control set U is assumed to be compact.
3. The functions ν and ν̃ are weight functions in the sense of [13] explained

below.
4. For all (x, u) ∈ AL let

lim
T→∞

ν̃(T )

T∫
0

f(t, x(t), u(t)) dt = 0. (14)

For the prey-predator model we have the following setting in this problem
(P )∞: x1 is the population of preys, x2 is the population of predators. The
state equations form a Lotka-Volterra-System ,

ẋ1(t) = x1(t)(α1 − β1x2(t)), (15)
ẋ2(t) = x2(t)(β2x1(t)− α2 − bu2(t)), (16)

where the control variable u2 is an insecticide which kills the predator only,
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0 ≤ u2(t) ≤ umax.

In the mathematical model we normalize the constants,

α1 = α2 = β1 = β2 = umax = 1.

The only steady state of the uncontrolled system is then x1 = x2 = 1, see
[10]. Starting in this steady state x1(T0) = x2(T0) = 1, we ask for the optimal
solution of the control problem (P )∞ with the performance index

J∞(x1, x2, u2) : =

∞∫
T0

e−ρt(x1(t)− cu2(t))dt. (17)

By the time shift t := t− T0 we obtain the optimal control problem (P )∞,

J∞(x1, x2, u2) :=
∞∫
0

e−ρt(x1(t)− cu2(t))dt, (0 < ρ < 1) (18)

with respect to all

[x , u ] ∈W 1,2
p,ν (0,∞)× L∞(0,∞) (19)

fulfilling a.e. on (0,∞) the

State equations ẋ1(t) = x1(t)(1− x2(t)), (20)
ẋ2(t) = x2(t)(x1(t)− 1− bu2(t)), (21)

Control restrictions u(t) ∈ U = [0, 1], (22)
State constraints x(t) ∈ G(t) on (0,∞), (23)
Initial conditions x1(0) = x1(0) = 1. (24)

3 Optimality Criteria

In the case of infinite horizon optimal control problems we can find several op-
timality criteria, which are adopted either to problems with Riemann integrals
or to problems (P )∞ with Lebesgue integrals, see [6],[20].

Our considerations are focused on global and strong local optimality in
the following sense:

Definition 1. Let a process (x, u) ∈ AL be given. We define

∆L(T ) := L-
∫ T

0

f(t, x(t), u(t))ν̃(t) dt− L-
∫ T

0

f(t, x∗(t), u∗(t))ν̃(t) dt. (25)

Then the pair (x∗, u∗) ∈ AL is called global optimal for (P )∞ in the sense of
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criterion L1, if for any pair (x, u) ∈ AL we have lim
T→∞

∆L(T ) ≥ 0.

The pair (x∗, u∗) ∈ AL is called strong locally optimal for (P )∞ in the sense of

criterion L1sl, if for an ε > 0 any pair (x, u) ∈ AL, with ‖x∗−x‖C(0,∞) < ε,
we have lim

T→∞
∆L(T ) ≥ 0.

4 Duality in Weighted Sobolev Spaces

We consider Weighted Sobolev Spaces W 1,n
p,ν (Ω) as subspaces of weighted

Ln
p,ν(Ω) spaces of those absolutely continuous functions x for which both

x and its derivative ẋ lie in Ln
p,ν(Ω), see [13].

Let Ω = [0,∞) and let Mn =M(Ω; IRn) denote the space of Lebesgue mea-
surable functions defined on Ω with values in IRn. Let a weight function ν be
given, i.e. ν is a function continuous on Ω, 0 < ν(t) <∞, then we define the
space Ln

p,ν(Ω) with p ≥ 2 by

Ln
p,ν(Ω) = {x ∈Mn| ‖x‖pp :=

∫
Ω

|x(t)|pν(t) dt <∞}, (26)

for p =∞

Ln
∞,ν(Ω) = {x ∈Mn| ‖x‖∞ := ess sup

t∈Ω
|x(t)|ν(t) <∞} (27)

and the weighted Sobolev space by

W 1,n
p,ν (Ω) = {x ∈Mn|x ∈ Ln

p,ν(Ω), ẋ ∈ Ln
p,ν(Ω) }. (28)

Here ẋ is the distributional derivative of x in the sense of [23], [p. 49]. This
space, equipped with the norm

‖x‖p
W 1,n

p,ν (Ω)
=
∫
Ω

{|x(t)|+ |ẋ(t)|}pν(t)dt, (29)

is a Banach space.
The following lemma, proved in [17], provides basic properties of functions

in Weighted Sobolev spaces:

Lemma 1. Let x∗ ∈ W 1,n
p,ν (Ω) with x∗(0) = x0 and S : Ω × IRn → IR be a

function of the form

S(t, ξ) = a(t) + 〈y(t), ξ − x∗(t)〉+ 1
2
〈Q(t)(ξ − x∗(t)), (ξ − x∗(t))〉 , (30)

having a ∈ W 1
1 (Ω); y ∈ W 1,n

q,ν1−q (Ω) and Q ∈ W 1,n×n
∞,ν−1(Ω) symmetric. Then,

for any x ∈W 1,n
p,ν (Ω) with x(0) = x0, it holds:
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lim
T→∞

S(T, x(T )) = 0, (31)

∞∫
0

d

dt
S(t, x(t))dt = −S(0, x0). (32)

We introduce the Hamiltonian as

H(t, ξ, η) = sup
v∈U

H(t, ξ, v, η) (33)

with

H(t, ξ, v, η) = −f(t, ξ, v) +
1
ν̃(t)

< η, g(t, ξ, v) >, (34)

where H represents the Pontrjagin function. Let

X := {(t, ξ) |t ∈ (0,∞), ξ ∈ G(t) } (35)

and

Y =


S : X → IR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S(t, ξ) = a(t) + 〈y(t), ξ − x∗(t)〉
+1

2 〈Q(t)(ξ − x∗(t)), (ξ − x∗(t))〉

a ∈W 1
1 (Ω), y ∈W 1,n

q,ν1−q (Ω),
Q ∈W 1,n×n

∞,ν−1(Ω)

1
ν̃(t)∂tS(t, ξ) +H(t, ξ, ∂ξS(t, ξ)) ≤ 0

∀(t, ξ) ∈ X


. (36)

Using the scheme described in [12] we construct a dual problem (D)∞ and
prove

Theorem 1. (Weak Duality) Let a problem (P )∞ be given. Then the prob-
lem (D)∞:

g∞(S) : = −S(0, x0)→ sup ! (37)
with respect to S ∈ Y, (38)

is a dual problem to (P )∞, i.e. the weak duality relation

inf(P )∞ ≥ sup(D)∞ (39)

holds.

For the proof see [17]. The next two corollaries provide sufficiency conditions
for optimality in the sense of criterion L1 and criterion L1sl, respectively.
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Corollary 1. (Sufficient optimality conditions, criterion L1):

Let G(t) = IRn (no state constraints). An admissible pair (x∗, u∗) is a global
minimizer of (P )L

∞ (in the sense of criterion L1), if there exists an admissible
S for (D)∞, S ∈ Y , such that the following conditions are fulfilled for almost
all t > 0:

(M) H(t, x∗(t), ∂ξS(t, x∗(t))) = H(t, x∗(t), u∗(t), ∂ξS(t, x∗(t))) , (40)
(HJ) 1

ν(t)∂tS(t, x∗(t)) +H(t, x∗(t), ∂ξS(t, x∗(t))) = 0, (41)

Proof: This follows immediately from the weak duality relation (39), the
proof is given in [17],[20].
Conclusion 1. The boundary condition

(B∞) lim
T→∞

S(T, x∗(T )) = 0 (42)

is automatically satisfied due to Lemma 1.

Conclusion 2. Let now G(t) = Kε(x∗(t)), ε > 0,

Kε(x∗(t)) := {ξ ∈ IRn | |ξ − x∗(t)| < ε }. (43)

The corresponding sets X and Y from (35) and (36) are now denoted by Xε

and Yε.

Corollary 2. (Sufficient optimality conditions, criterion L1sl ):

An admissible pair (x∗, u∗) is a strong local minimizer of (P )L
∞ (in the sense

of criterion L1sl), if there exists an admissible S for (D)L
∞, S ∈ Yε, such that

the conditions (M) and (HJ) are fulfilled for almost all t > 0.

5 Application to the Prey-Predator model

We want to prove that the steady-state of the uncontrolled system

(x∗1, x
∗
2, u
∗
2) = (1, 1, 0)

is a strong local minimizer of (P )∞ in the sense of criterion L1sl.
1. Die Pontrjagin-function of this problem is:

H(t, ξ, v, η) = (−ξ1 − cv) + eρt (η1ξ1(1− ξ2)− η2ξ2(1− ξ1 + bv)) . (44)

2. Assuming u∗2 = 0, the Hamiltonian H is twice continuously differentiable
and is calculated by the condition (M):

H(t, ξ, v, η) = (−ξ1) + eρt (η1ξ1(1− ξ2)− η2ξ2(1− ξ1)) . (45)
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3. Admissibility of S means that the Hamilton-Jacobi-Inequality

Λ(t, ξ) :=
1
ν̃(t)

St(t, ξ) +H(t, ξ, y(t)) ≤ 0 (46)

has to be satisfied for all ξ ∈ Kε(x∗(t)), t ∈ Ω.
4. The condition (HJ) means

Λ(t, x∗(t)) = 0 ∀ t ∈ Ω. (47)

5.(46) and (47) are satisfied, iff x∗(t) solves the optimization problem

Λ(t, ξ) −→ max ! with respect to ξ ∈ Kε(x∗(t)). (48)

(48) is a parametric optimization problem. The following second order opti-
mality conditions are necessary and sufficient for local optimality of x∗(t).

Λξ(t, x∗(t)) = 0. (49)
Λξξ(t, x∗(t)) ≺ 0. (50)

In [9] is shown, that

S(t, ξ) = a(t) + 〈y(t), ξ − x∗(t)〉+ 1
2
〈Q(t)(ξ − x∗(t)), (ξ − x∗(t))〉 , (51)

with

a(t) = 0, y1(t) = − ρ

1 + ρ2 e
−ρt, y2(t) =

1
1 + ρ2 e

−ρt. (52)

and the quadratic 2× 2− matrix Q,

Q11(t) = Q22 = Ae−ρt, Q12(t) = Q21 = 0, A >
1

ρ(1− ρ)

is admissible, S ∈ Y ε, (with ε > 0, independent of t) and solves (48).
Particularly the tuple (x∗1, x

∗
2) = (1, 1) belongs to the weighted Sobolev

space,
x∗ ∈W 1,2

2,ν (Ω), ν̃(t) = ν(t) = e−ρt,

and (a, y,Q) belong to corresponding dual spaces,

a ∈W 1
1 (Ω), y ∈W 1,2

2,ν−1(Ω), Q ∈W 1,2×2
∞,ν−1(Ω).

Finally, conditions (M) and (HJ) are fulfilled and Corollary 2 can be applied.
Summarizing we have shown that (x∗1, x

∗
2, u
∗
2) = (1, 1, 0) is a strong local

minimizer of (P )∞ in the sense of criterion L1sl.
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6 Summary and Conclusions

The considered prey-predator model was described by a nonlinear optimal
control problem with infinite horizon. The problem is non convex. Therefore
it was necessary to apply the duality theory with quadratic statement for
the dual variables S. The essential idea is to use weighted Sobolev spaces as
spaces for the states and to formulate the dual problem in topological dual
spaces. We verified second order sufficient optimality condition to prove local
optimality of the steady state in [T,∞).

Pontryagins Maximum Principle was used to find candidates for the op-
timal solution which transfers the system from an arbitrary starting point
into the steady state, [10]. Up to now it was not possible to verify sufficient
optimality conditions as in [16] for this problem. Since this problem can not
be solved analytically, numerical methods should be used to solve the dual
problem.
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Summary. In this paper we investigate the performance of unconstrained nonlinear
model predictive control (NMPC) schemes, i.e., schemes in which no additional
terminal constraints or terminal costs are added to the finite horizon problem in
order to enforce stability properties. The contribution of this paper is twofold: on
the one hand in Section 3 we give a concise summary of recent results from [7, 3, 4]
in a simplified setting. On the other hand, in Section 4 we present a numerical case
study for a control system governed by a semilinear parabolic PDE which illustrates
how our theoretical results can be used in order to explain the differences in the
performance of NMPC schemes for distributed and boundary control.

1 Introduction

Model predictive control (MPC) is a well established method for approxi-
mating the optimal control of linear and nonlinear systems [1, 8, 9]. MPC
approximates the optimal solutions of in general computationally intractable
infinite horizon optimal control problems by the iterative solution of finite
horizon problems, the so called receding horizon strategy. This interpretation
of MPC immediately leads to the question of how good the performance of
the MPC scheme is compared to the original infinite horizon optimization cri-
terion. Since infinite horizon problems are often formulated in order to obtain
stabilizing feedback laws, another important question is whether the resulting
MPC feedback law will still stabilize the system.

In this paper we investigate these issues for so called unconstrained non-
linear MPC (NMPC) schemes. Here unconstrained refers to those terminal
constraints or terminal costs which are added to the finite horizon problem in
order to enforce stability properties; other constraints like, e.g., state and con-
trol constraints motivated by physical considerations can easily be included
in our analysis although for simplicity of exposition we do not elaborate on
this aspect in this paper and refer to, e.g., [9] for an extensive treatment of
feasibility issues. Such unconstrained schemes are appealing in many ways, cf.
the discussion at the end of the introductory Section 2.
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DOI 10.1007/978-3-642-12598-0_25, © Springer-Verlag Berlin Heidelberg 2010 
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The contribution of this paper is twofold: on the one hand in Section 3 we
give a concise summary of recent results from [3, 4, 7] in a simplified setting,
restricting the reasoning to the special case of exponential controllability and
classical NMPC feedback laws. For an extended setting including networked
control systems, finite time controllability and additional weights in the cost
functional we refer to [3, 4] and [5]. On the other hand, in Section 4 we present
a numerical case study for a control system governed by a semilinear parabolic
PDE. This case study illustrates how our theoretical results can be used in
order to explain the differences in the performance of NMPC schemes for
distributed and boundary control.

2 Setup and Preliminaries

We consider a nonlinear discrete time control system given by

x(n+ 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here the state space X and the
control value space U are arbitrary metric spaces with metrics denoted by
d(·, ·). We denote the space of control sequences u : N0 → U by U and the
solution trajectory for given u ∈ U by xu(·). State and control constraints can
be incorporated by replacingX and U by appropriate subsets of the respective
spaces, however, for brevity of exposition we will not address feasibility issues
in this paper.

A typical class of such discrete time systems are sampled- data systems in-
duced by a controlled — finite or infinite dimensional — differential equation
with sampling period T > 0 where the discrete time control value u(n) cor-
responds to the constant control value uc(t) applied in the sampling interval
[nT, (n+ 1)T ).

Our goal is to minimize the infinite horizon cost functional J∞(x0, u) =∑∞
n=0 `(xu(n), u(n)) with running cost ` : X × U → R+

0 by a static state
feedback control law µ : X → U which is applied according to the rule

xµ(0) = x0, xµ(n+ 1) = f(xµ(n), µ(xµ(n))). (2)

We denote the optimal value function for this problem by V∞(x0) := infu∈U
J∞(x0, u). The motivation for this problem stems from stabilizing the system
(1) at a fixed point, i.e., at a point x? ∈ X for which there exists a control
value u? ∈ U with f(x?, u?) = x? and `(x?, u?) = 0. Under mild conditions on
` it is known that the optimal feedback for J∞ indeed asymptotically stabilizes
the system with V∞ as a Lyapunov function, see, e.g., [6].

Since infinite horizon optimal control problems are in general computation-
ally infeasible, we use a receding horizon NMPC method in order to compute
an approximately optimal feedback law. To this end, we consider the finite
horizon functional
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JN (x0, u) =
N−1∑
n=0

`(xu(n), u(n)) (3)

with optimization horizon N ∈ N≥2 and optimal value function VN (x0) :=
infu∈U JN (x0, u). By minimizing (3) over u ∈ U we obtain an optimal control
sequence1 u?(0), u?(1), . . . , u?(N − 1) depending on the initial value x0. Im-
plementing the first element of this sequence, i.e., u?(0), yields a new state
xu?(1, x0) for which we redo the procedure, i.e., at the next time instant we
minimize (3) for x0 := xu?(1, x0). Iterative application of this procedure pro-
vides a control sequence on the infinite time interval. A corresponding closed
loop representation of the type (2) is obtained as follows.

Definition 1. For N ≥ 2 we define the MPC feedback law µN (x0) := u?(0),
where u? is a minimizing control for (3) with initial value x0.

In many papers in the (N)MPC literature additional stabilizing terminal con-
straints or terminal costs are added to the optimization objective (3) in
order to ensure asymptotic stability of the NMPC closed loop despite the
truncation of the horizon (see, e.g., the monograph [9] for a recent account
of this theory). In contrast to this approach, here we investigate (3) with-
out any changes. This is motivated by the fact that this “plain” NMPC
scheme is the most easy one to implement and appears to be predominant
in practical applications, cf. [8]. Another reason appears when looking at
the infinite horizon performance of the NMPC feedback law µN given by
J∞(x0, µN ) :=

∑∞
n=0 l(xµN (n), µN (xµN (n))). As we will see, under a suit-

able controllability condition for NMPC without stabilizing constraints we
can establish an upper bound for this value in terms of the optimal value
function V∞(x0), which is in general not possible for schemes with stabilizing
constraints.

3 Performance and stability analysis

In this section we summarize the main steps of the stability and suboptimality
analysis of unconstrained NMPC schemes from [3, 4, 7] in a simplified setting.
The cornerstone of our analysis is the following proposition which uses ideas
from relaxed dynamic programming.

Proposition 1. Assume there exists α ∈ (0, 1] such that for all x ∈ X the
inequality

VN (x) ≥ VN (f(x, µN (x))) + α`(x, µN (x)) (4)

holds. Then for all x ∈ X the estimate

1 For simplicity of exposition we assume that a minimizing control sequence u?

exists for (3). However, given that in this abstract formulation U may be infinite
dimensional we do not assume uniqueness of u?.
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αV∞(x) ≤ αJ∞(x, µN ) ≤ VN (x) ≤ V∞(x) (5)

holds. If, in addition, there exist x? ∈ X and K∞-functions2 α1, α2 such that
the inequalities

`?(x) := min
u∈U

`(x, u) ≥ α1(d(x, x?)) and VN (x) ≤ α2(d(x, x?)) (6)

hold for all x ∈ X, then x? is a globally asymptotically stable equilibrium for
(2) with µ = µN with Lyapunov function VN .

Proof. See [7, Prop. 2.2] or [3, Prop. 2.4] and [3, Theorem 5.2]. ut

In order to compute α in (4) we use the following controllability property:
we call the system (1) exponentially controllable with respect to the running
cost ` if there exist constants C ≥ 1 (overshoot bound) and σ ∈ [0, 1) (decay
rate) such that

for each x ∈ X there exists ux ∈ U with

`(xux
(n, x), ux(n)) ≤ Cσn`?(x) for all n ∈ N0.

(7)

This condition implies

VN (x) ≤ JN (x, ux) ≤
N−1∑
n=0

Cσn`?(x) = C
1− σN

1− σ
`?(x) =: BN (`?(x)). (8)

Hence, in particular (6) follows for α2 = BN ◦ α3 if the inequality

α1(d(x, x?)) ≤ `?(x) ≤ α3(d(x, x?)) (9)

holds for some α1, α3 ∈ K∞ and all x ∈ X. Now consider an arbitrary x ∈ X
and let u? ∈ U be an optimal control for JN (x, u), i.e., JN (x, u?) = VN (x).
Note that by definition of µN the identity xu?(1, x) = f(x, µN (x)) follows.

For the following lemma we abbreviate

λn = `(xu?(n, x), u?(n)), n = 0, . . . , N − 1 and ν = VN (xu?(1, x)). (10)

Lemma 1. Assume (7) holds. Then the inequalities

N−1∑
n=k

λn ≤ BN−k(λk) and ν ≤
j−1∑
n=0

λn+1 +BN−j(λj+1) (11)

hold for k = 0, . . . , N − 2 and j = 0, . . . , N − 2.

Proof. See [3, Section 3 and Proposition 4.1]. ut
2 A continuous function α : R+

0 → R+
0 is said to be of class K∞ if it is strictly

increasing and unbounded with α(0) = 0.
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The inequalities from Lemma 1 now lead to the following theorem.

Theorem 1. Assume that the system (1) and ` satisfy the controllability con-
dition (7). Then inequality (4) holds for all x ∈ X with

α = min
λ0,...,λN−1,ν

N−1∑
n=0

λn − ν (12)

subject to the constraints (11), λ0 = 1 and λ1, . . . , λN−1, ν ≥ 0.

Proof. See [3, Section 4]. ut

The consequence of this theorem for the performance of the NMPC closed
loop, i.e., (2) with µ = µN , is as follows: if (1) and ` satisfy (7) and (9), then
global asymptotic stability and the suboptimality estimate (5) are guaranteed
whenever α from (12) is positive. In fact, regarding stability we can show more:
the construction of an explicit example yields that whenever α from (12) is
negative, then there is a system (1) and an ` which satisfy (7) and (9) but for
which (2) with µ = µN is not asymptotically stable, cf. [3, Theorem 5.3].

The key observation for computing an explicit expression for α in (4) is
that the linear program in Theorem 1 can be solved explicitly.

Theorem 2. Under the assumptions of Theorem 1 the value α from (12) is
given by

α = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi = C

1− σi

1− σ
. (13)

Proof. See [4, Theorem 5.3]. ut

The explicit formula thus derived for α allows us to visualize the impact
of the parameters C, σ in (7) on the value of α in (4). As an example, Figure
1 shows the regions in the C, σ-plane for which α > 0 and thus asymptotic
stability holds for optimization horizons N = 2, 4, 8, and 16. Note that since α
is increasing in N the stability region for N is always contained in the stability
region for all Ñ > N .

Figure 1 clearly shows the different roles of the parameters C and σ in (7):
While for fixed C the minimal stabilizing N for varying σ is usually larger
than 2, for fixed σ it is always possible to achieve stability with N = 2 by
reducing C. Thus, the overshoot bound C plays a decisive role for the stability
and performance of NMPC schemes.

An important observation in this context is that C and σ do not only
depend on the control system but also on the running cost `. Hence, ` can be
used as a design parameter in order to “tune” C and σ with the goal to obtain
good closed loop performance with small control horizons N by reducing C as
much as possible. For examples see, e.g., [3] and [2] and the following section in
which we will illustrate and explain this procedure for a semilinear parabolic
PDE control system.
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Fig. 1. Stability regions for various optimization horizons N depending on C and
σ from (7)

4 A numerical case study

In practice, for many complex control systems and associated running cost
functions ` it is difficult if not impossible to exactly determine the constants
C and σ. However, by means of a controlled semilinear parabolic PDE, in
this section we demonstrate that an exact computation of these constants is
not necessarily needed in order to understand differences in the NMPC closed
loop behavior for different running costs `.

The first model we are considering is the semilinear parabolic PDE

yt(t, x) = νyxx(t, x)− yx(t, x) + µ
(
y(t, x)− y(t, x)3

)
+ u(t, x) (14)

with distributed control u ∈ L∞(R×Ω,R) and Ω = (0, 1) and real parameters
ν = 0.1, µ = 10. Here yt and yx denote the partial derivatives with respect
to t and x, respectively and yxx denotes the second partial derivative with
respect to x.

The solution y of (14) is supposed to be continuous in Ω and to satisfy
the boundary and initial conditions

y(t, 0) = 0, y(t, 1) = 0 for all t ≥ 0 and y(0, x) = y0(x) for all x ∈ Ω (15)

for some given continuous function y0 : Ω → R with y0(0) = y0(1) = 0.
Observe that we have changed notation here in order to be consistent with

the usual PDE notation: x ∈ Ω is the independent space variable while the
unknown function y(t, ·) : Ω → R in (14) is the state now. Hence, the state
is now denoted by y (instead of x) and the state space of this PDE control
system is a function space, more precisely the Sobolev space H1

0 (Ω), although
the specific form of this space is not crucial for the subsequent reasoning.

Figure 2 shows the solution of the uncontrolled system (14), (15), i.e.,
with u ≡ 0. For growing t the solution approaches an asymptotically stable
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steady state y∗∗ 6= 0. The figure (as well as all other figures in this section)
was computed numerically using a finite difference scheme with 50 equidistant
nodes on (0, 1) (finer resolutions did not yield significantly different results)
and initial value y0 with y0(0) = y0(1) = 0, y0|[0.02,0.3] ≡ −0.1, y0|[0.32,0.98] ≡
0.1 and linear interpolation in between.
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Fig. 2. Solution y(t, x) of (14), (15) with u ≡ 0.

By symmetry of (14) the function −y∗∗ must be an asymptotically stable
steady state, too. Furthermore, from (14) it is obvious that y∗ ≡ 0 is another
steady state, which is, however, unstable. Our goal is now to use NMPC in
order to stabilize the unstable equilibrium y∗ ≡ 0.

To this end we consider the sampled-data system corresponding to (14)
with sampling period T = 0.025 and denote the state of the sampled-data
system at the n-th sampling instant, i.e., at time nT by y(n, ·). For penalizing
the distance of the state y(n, ·) to y∗ ≡ 0 a popular choice in the literature is
the L2-functional

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω) (16)

with λ = 0.1 which penalizes the mean squared distance from y(n, ·) to y∗ ≡ 0.
Another possible choice of measuring the distance to y∗ ≡ 0 is obtained

by using the H1 norm for y(n, ·) in `, i.e,

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω), (17)

which in addition to the L2 distance (16) also penalizes the mean squared
distance from yx(n, ·) to y∗x ≡ 0. Figures 3 and 4 show the respective NMPC
closed loop solutions with optimization horizons N = 3 and N = 11.3

Figure 3 indicates that for N = 3 the NMPC scheme with ` from (16) does
not stabilize the system at y∗ ≡ 0 while for ` from (17) it does. For (16) we
need an optimization horizon of at least N = 11 in order to obtain a stable

3 The computations were performed with PCC, http://www.nonlinearmpc.com/
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Fig. 3. NMPC closed loop for (14) with N = 3 and ` from (16)(left) and (17)(right)
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Fig. 4. NMPC closed loop for (14) with N = 11 and ` from (16)(left) and (17)(right)

closed loop solution, cf. Figure 4. For ` from (17) the right images in Figure
3 and 4 show that enlarging the horizon does not improve the solution.

Using our theoretical results we can explain why ` from (17) performs much
better for small horizons N . For this example our controllability condition (7)
reads

`(y(n, ·), u(n, ·)) ≤ Cσn`?(y(0, ·)). (18)

For ` from (16) this becomes

‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω) ≤ Cσ
n‖y(0, ·)‖2L2(Ω). (19)

Now in order to control the system to y∗ ≡ 0, in (14) the control needs to
compensate for yx and µ

(
y(t, x)− y(t, x)3

)
, i.e., any control steering y(n, ·)

to 0 must satisfy

‖u(n, ·)‖2L2(Ω) ≈ ‖yx(n, ·)‖2L2(Ω) + ‖µ
(
y(n, ·)− y(n, ·)3

)
‖2L2(Ω). (20)

This implies — regardless of the value of σ — that the overshoot bound C in
(19) is large if ‖yx(n, ·)‖2L2(Ω) >> ‖y(0, ·)‖

2
L2(Ω) holds, which is the case in our

example.
For ` from (17) inequality (18) becomes
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‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω)

≤ Cσn
(
‖y(0, ·)‖2L2(Ω) + ‖yx(0, ·)‖2L2(Ω)

)
. (21)

Due to the fact that ‖yx(0, ·)‖2L2(Ω) >> ‖y(0, ·)‖
2
L2(Ω) holds in our example,

the approximate equation (20) does not imply large C in (21), which explains
the considerable better performance for ` from (17).

The fact that the H1-norm penalizes the distance to y∗ ≡ 0 in a “stronger”
way might lead to the conjecture that the better performance for this norm
is intuitive. Our second example shows that this is not necessarily the case.
This example is similar to the equation (14), (15), except that the distributed
control is changed to Dirichlet boundary control. Thus, (14) becomes

yt(t, x) = νyxx(t, x)− yx(t, x) + µ
(
y(t, x)− y(t, x)3

)
, (22)

again with ν = 0.1 and µ = 10, and (15) changes to

y(t, 0) = u0(t), y(t, 1) = u1(t) for all t ≥ 0, y(0, x) = y0(x) for all x ∈ Ω

with u0, u1 ∈ L∞(R,R). The cost functions (16) and (17) change to

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ(u0(n)2 + u1(n)2) (23)

and

`(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) +‖yx(n, ·)‖2L2(Ω) +λ(u0(n)2 +u1(n)2), (24)

respectively, again with λ = 0.1.
Due to the more limited possibilities to control the equation the problem

obviously becomes more difficult, hence we expect to need larger optimization
horizons for stability of the NMPC closed loop. However, what is surprising
at the first glance is that ` from (23) stabilizes the system for smaller horizons
than ` from (24), as the numerical results in Figure 5 confirm.
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Fig. 5. NMPC closed loop for (22) with N = 15 and ` from (16)(left) and (17)(right)
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A closer look at the dynamics reveals that we can again explain this be-
haviour with our theoretical results. In fact, steering the chosen initial solution
to y∗ = 0 requires u1 to be such that a rather large gradient appears close
to 1. Thus, during the transient phase ‖yx(n, ·)‖2L2(Ω) becomes large which in
turn causes ` from (24) to become large and thus causes a large overshoot
bound C in (18). In ` from (23), on the other hand, these large gradients are
not “visible” which is why the overshoot in (18) is smaller and thus allows for
stabilization with smaller N .

5 Conclusions

In this paper we have shown how performance of NMPC schemes can be
analyzed on basis of a controllability condition involving both the system
dynamics and the cost function used in the optimization. The example of a
semilinear parabolic PDE with distributed and boundary control illustrates
how our theoretical results can be used for analyzing concrete systems.
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Summary. In this contribution we apply receding horizon constrained nonlinear
optimal control to the computation of insulin administration for people with type 1
diabetes. The central features include a multiple shooting algorithm based on sequen-
tial quadratic programming (SQP) for optimization and an explicit Dormand-Prince
Runge-Kutta method (DOPRI54) for numerical integration and sensitivity compu-
tation. The study is based on a physiological model describing a virtual subject with
type 1 diabetes. We compute the optimal insulin administration in the cases with
and without announcement of the meals (the major disturbances). These calcula-
tions provide practical upper bounds on the quality of glycemic control attainable
by an artificial β-cell.

1 Introduction

The World Health Organization estimates that more than 220 million people
worldwide have diabetes, and this number is growing quickly [13]. The number
of people with diabetes is projected to double between 2005 and 2030. In
addition to the obvious physical and personal effects of diabetes, the disease
also has a detrimental economic impact. In the USA, for example, the budget
for diabetes care represents 10% of the health care budget, or more than 130
billion ( 132 billion in 2002).

In people without diabetes, the pancreas regulates the blood glucose con-
centration tightly near 90 mg/dL (∼5 mmol/L). Type 1 diabetes is a chronic
disease characterized by the autoimmune destruction of the insulin-producing
β-cells in the pancreas. Consequently, without insulin—a hormone whose key
physiological role is to facilitate the uptake of glucose from the blood into
the cells where it is metabolized—elevated concentrations of blood glucose, or
hyperglycemia, occur. Prolonged hyperglycemia is known to cause a litany of
complications: eye, nerve, and kidney disease, to name a few. Thus, exogenous
insulin must be injected to lower the blood glucose. This treatment must be
done carefully, however, because overinsulinization results in low blood glucose

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_26, © Springer-Verlag Berlin Heidelberg 2010 



300 Dimitri Boiroux et al.

Fig. 1. Closed-loop glucose control for an artificial β-cell. Glucose is measured
subcutaneously using a continuous glucose monitor (CGM). Insulin is dosed either
continuously (using a pump) or in discrete instances (using a pen), based on the
control algorithm.

concentrations, or hypoglycemia, which can pose immediate and severe health
threats. Ideally, the blood glucose concentration should be kept within the
normoglycemic range of approximately 70–140 mg/dL (or 3.9–7.8 mmol/L).

By today’s standards, treatment consists of administration of exogenous
insulin either continuously using an insulin pump or in discrete instances using
an insulin pen (or syringe). In any case, the insulin is infused or injected into
the subcutaneous tissue of the user, and thus must absorb into the intravenous
system before being dispersed throughout the body. A critical component of
this insulin therapy is the delivery of boluses (i.e., rapid injections) to offset
the effects of carbohydrate (CHO) meals. The size of the bolus is based on
a measurement of the current blood glucose and the (estimated) size of the
meal, i.e., the amount of CHO in the meal.

Unfortunately, estimating the size of a meal can be a difficult task. Fur-
thermore, having measurements only at meal times does not provide enough
information about blood glucose. Hypoglycemic and hyperglycemic events can
be missed due to these infrequent blood glucose measurements. In addition,
such a measurement process does not provide any information about the dy-
namic trends of the blood glucose. Consequently, people with diabetes often
tolerate frequent hyperglycemia in order to avoid hypoglycemia and its drastic
effects.

An artificial β-cell is a biomedical device which would provide automatic
regulation of blood glucose (in the case of a pump-based system), or at least
optimal treatment suggestions (in the case of a pen-based system), based on
a robust control algorithm [4]. A vital element to the success of such a device
is the continuous glucose monitor (CGM), which will be used as the sensor
in the closed-loop controller. A schematic of the artificial β-cell algorithm is
shown in Fig. 1.
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Fig. 2. Diagram of the physiological Hovorka model [8].

From a control perspective, insulin administration via an insulin pump of-
fers a key advantage over insulin pens. Since an insulin pump is permanently
attached to the patient, it is suitable for truly automatic, user-free control.
That is, a pump-based system has the ability to adjust the manipulated vari-
able, insulin infusion rate, at any time, independent of the patient. In contrast,
a pen-based system ultimately relies on the patient physically delivering the
insulin dose. There is, of course, an associated tradeoff: insulin pens are less
invasive and cheaper for patients with type 1 diabetes.

2 Model Description

A prominent physiological model of the glucose-insulin dynamics in type 1
diabetes developed by Hovorka and colleagues [8] is depicted in Fig. 2. We
use this Hovorka model to simulate a virtual subject with type 1 diabetes.
In brief, it is a nonlinear model describing the effect of exogenous insulin,
u(t), on plasma insulin concentration, I(t), and ultimately on blood glucose
concentration, G(t). In addition, the model accounts for the appearance of
glucose in the blood due to CHO meals, d(t), and endogenous insulin produc-
tion, EGP , and removal due to insulin-independent cellular uptake, F01, and
renal excretion, FR.

The model includes descriptions of subcutaneous (SC)-to-intravenous in-
sulin absorption and CHO absorption from a meal, which are both represented
as two-compartment (i.e., second order) submodels with time constants of
τS = 55 min and τD = 40 min, respectively. The “slower” appearance of in-
sulin in the blood, relative to meal-related glucose, has important and limiting
control implications. These implications are elucidated through one of our key
results, which is discussed in Optimization Results.
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The nonlinearity in the Hovorka model is due primarily to the time-varying
actions of insulin on glucose processes (namely, glucose transport, disposal,
and endogenous production), denoted by w1–w3 in Fig. 2. Two other sources
of nonlinearity are the insulin-independent glucose consumption F01 and the
renal excretion of glucose FR, which are both (modeled as) piecewise affine
functions of the glucose concentration.

3 Problem Formulation

In this section, we state and discuss the continuous-time optimal control prob-
lem that is the basis for computing the insulin injection profiles for people with
type 1 diabetes. We also discuss a numerically tractable discrete-time approx-
imation to the continuous-time optimal control problem. The optimal insulin
administration is formulated as the bound-constrained continuous-time Bolza
problem

min
[x(t),u(t)]

tf
t0

φ =
∫ tf

t0

g(x(t), u(t))dt+ h(x(tf )) (1a)

s.t. x(t0) = x0 (1b)
ẋ(t) = f(x(t), u(t), d(t)) t ∈ [t0, tf ] (1c)
umin ≤ u(t) ≤ umax t ∈ [t0, tf ] (1d)

in which x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the vector of
manipulated inputs, and d(t) ∈ Rnd is a vector of known disturbances.
ẋ(t) = f(x(t), u(t), d(t)) represents the model equations. The initial time,
t0, and the final time, tf , are specified parameters. The initial state, x0, is a
known parameter in (1). The inputs are bound-constrained and must be in
the interval [umin, umax].

The objective function is stated generally with a stage cost term, g(x(t), u(t)),
and a cost-to-go term, h(x(tf )). The numerical algorithms for the problem are
based on this general structure of the objective function.

3.1 Discrete-time Approximation

The continuous-time bound-constrained Bolza problem (1) is approximated by
a numerically tractable discrete-time bound-constrained Bolza problem using
the zero-order-hold input parameterization of the manipulated variables, u(t),
as well as the known disturbance variables, d(t). We divide the time interval,
[t0, tf ], into N intervals, each of length Ts. Let N = {0, 1, ..., N − 1} and
tk = t0+kTs for k ∈ N . The zero-order-hold restriction on the input variables,
u(t) and d(t), implies
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u(t) = uk tk ≤ t < tk+1 k ∈ N (2a)
d(t) = dk tk ≤ t < tk+1 k ∈ N (2b)

Using this zero-order-hold restriction on the inputs, the bound constrained
continuous-time Bolza problem (1) may be approximated by

min
{xk+1,uk}N−1

k=0

φ =
N−1∑
k=0

Gk(xk, uk, dk) + h(xN ) (3a)

s.t. bk := Fk(xk, uk, dk)− xk+1 = 0 k ∈ N (3b)
umin ≤ uk ≤ umax k ∈ N (3c)

The discrete-time state transition function is

Fk(xk, uk, dk) = {x(tk+1) : ẋ(t) = f(x(t), uk, dk), x(tk) = xk} (4)

and the discrete time stage cost is

Gk(xk, uk, dk) = {
∫ tk+1

tk

g(x(t), uk)dt : ẋ(t) = f(x(t), uk, dk), x(tk) = xk}

(5)

4 Numerical Optimization Algorithm

In this section, we implement a multiple-shooting based SQP algorithm for
the numerical solution of (1) [1, 5, 10]. The SQP algorithm is based on line
search and structured high rank BFGS updates of the Hessian matrix [1,
10]. The structures of the quadratic subproblems are utilized and they are
solved by a primal-dual interior-point algorithm using Riccati iterations [9,
11]. DOPRI54 is used for numerical solution of the differential equation model
and sensitivities [3, 6, 7].

4.1 SQP Algorithm

We define the parameter vector, p, as p =
[
u′0 x

′
1 u
′
1 x
′
2 . . . x

′
N−1 u

′
N−1 x

′
N

]′,
and the disturbance vector, d, as d =

[
d′0 d

′
1 . . . d

′
N−1

]′.
Then the bound constrained discrete-time Bolza problem (3) may be ex-

pressed as a constrained optimization problem in standard form

min
p

φ = φ(p) (6a)

s.t. b(p) = 0 (6b)
c(p) ≥ 0 (6c)

The concise formulation (6) is useful for presentation of the numerical opti-
mization algorithm used for solving the bound constrained continuous-time
Bolza problem (1).

The steps for solution of (6) by an SQP algorithm with line search are
listed in Algorithm 1.
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Algorithm 0.1 1 SQP Algorithm for (6)
Require: Initial guess: (p0, y0, z0) with z0 ≥ 0.

Compute: φ(p0), ∇pφ(p0), b(p0), ∇pb(p
0), c(p0), ∇pc(p

0)
Set λ = 0, µ = 0, W 0 = I
while NOT stop do

Compute (∆pk, ỹk+1, z̃k+1) by solution of:

min
∆p

1

2
∆p′W k∆p+∇pφ

′(pk)∆p (7a)

s.t.
h

∇pb(p
k)
i′
∆p = −b(pk) (7b)

h

∇pc(p
k)
i′
∆p ≥ −c(pk) (7c)

Compute ∆yk = ỹk+1 − yk and ∆zk = z̃k+1 − zk

Update the penalty parameter:
µ← max{|z|, 1

2
(µ+ |z|)} and λ← max{|y|, 1

2
(λ+ |y|)}

Compute α using soft line search and Powell’s `1 merit function.
pk+1 = pk + α∆pk, yk+1 = yk + α∆yk, zk+1 = zk + α∆zk

Compute φ(pk+1),∇pφ(pk+1), c(pk+1), ∇pc(p
k+1), b(pk+1) and ∇pb(p

k+1)
Compute W k+1 by Powell’s modified BFGS update. k ← k + 1.

end while

4.2 Gradient Computation

The most demanding computations in Algorithm 1 are those of the objective
function φ(p), the derivatives of the objective function ∇pφ(p), the dynamics
b(p), and the sensitivities, ∇pb(p), associated with the dynamics. b(p) and
φ(p) are computed by evaluation of (4) and (5), respectively. Consequently

bk = bk(xk, xk+1, uk, dk) = Fk(xk, uk, dk)− xk+1 (8a)
∇xk

bk = ∇xk
Fk(xk, uk, dk) (8b)

∇uk
bk = ∇uk

Fk(xk, uk, dk) (8c)
∇xk+1bk = −I (8d)

The gradients ∇xk
Fk(xk, uk, dk) ∇uk

Fk(xk, uk, dk) are computed by numeri-
cal integration of the sensitivity equations [2].

In the evaluation of the functions and derivatives needed in the SQP al-
gorithm, i.e., φ(p), ∇pφ(p), b(p), and ∇pb(p), the major computational task
is solving the sensitivity equations and evaluating the associated quadrature
equations. The Hovorka model is a non-stiff system of differential equations.
Therefore, we use an embedded Dormand-Prince explicit Runge-Kutta scheme
(DOPRI54) for solving the differential equations and integrating the quadra-
ture equations. A special DOPRI54 method has been implemented [2] in which
we use the internal stages already computed by solving ẋ(t) = f(x(t), uk, dk)
in the evaluation of the quadrature equation. The implementation uses an
adaptive time step based on PI-control [7].
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5 Application to an Artificial β-cell

In this section we state and discuss the objective function and the scenarios
used in the simulations. We also state the strategy for the nonlinear model
predictive controller.

5.1 Nonlinear Model Predictive Control (NMPC)

NMPC is a receding horizon control technology that repeatedly solves open-
loop nonlinear optimal control problems and implements the computed opti-
mal control associated to the current time period [12]. In this contribution, we
use a receding horizon strategy to compute the ideal insulin administration
profile for people with type 1 diabetes. In order to obtain the ideal insulin
profile, the NMPC uses state feedback and relative long prediction horizons.

5.2 Objective Function with Soft Output Constraints

The objective of the insulin administration is to compensate for glucose ex-
cursions caused by meals and by variations in endogenous glucose production
and utilization. We use a penalty function defined as

ρ(G(t)) =
κ1

2
|max{0, G(t)− Ḡ}|2 +

κ2

2
|max{0, Ḡ−G(t)}|2+

κ3

2
|max {0, G(t)−GU}|2 +

κ4

2
|max {0, GL −G(t)}|2

(9)

where G(t) is the blood glucose concentration, Ḡ = 5 mmol/L is the target
value for the blood glucose concentration, GL = 4 mmol/L is a lower accept-
able limit, and GU = 8 mmol/L is an upper acceptable limit. The weights
κ1–κ4 are used to balance the desirability of different deviations from the
target. As hypoglycemia is considered a more immediate risk than hyper-
glycemia, κ1 < κ2 and κ3 < κ4. The penalty function used in the simulations
is illustrated in Fig. 3. Even though the penalty function (9) is not twice dif-
ferentiable, we use the standard BFGS update procedure. G(t) is a function of
the state, x(t), in the Hovorka model. Therefore, the penalty function (9) may
be expressed as a stage cost in the form g(x(t), u(t)). The objective function
used in the simulations is

φ =
∫ tf

t0

g(x(t), u(t))dt+
η

2

N−1∑
k=0

‖∆uk‖22 (10)

where u(t) represents the rate of insulin injection at any time and ∆uk =
uk+1 − uk. Given an initial state, x0, and a CHO intake rate profile, [d(t)]tf

t0 ,
the continuous-time Bolza problem (1) computes the optimal insulin injection
rate profile, [u(t)]tf

t0 , as well as the optimal state trajectory, [x(t)]tf

t0 . This
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Fig. 3. Penalty as a function of the blood glucose concentration. The shaded region
is the interval of acceptable glucose concentrations. The target glucose concentration
is 5 mmol/L. Blood glucose concentrations less than 3 mmol/L are very undesirable
as severe hypoglycemia can result in immediate dangers for the patient.

objective function has no cost-to-go function, i.e., h(x(tf )) = 0, and can be
brought into the standard form (3a) using state augmentation [12].

We use umin = 0 and a large umax such that the upper bound is never
active. (The former bound is self-evident, and the latter is consistent with
realistic insulin pump and pen specifications.) We perform the optimization
over a 24-hour window, i.e., t0 = 0 min and tf = 24 · 60 = 1440 min, using a
sampling time of Ts = 5 min (consistent with realistic CGM and insulin pump
specifications). In the scenario considered, the simulated 70-kg subject has a
62-g CHO meal at 6:00, a 55-g CHO meal at 12:00, and a 50-g CHO meal
at 18:00. To ensure an optimal blood glucose profile, a prediction horizon of
six hours, i.e., N = 6 · 12 = 72 samples, is employed in the receding horizon
strategy.

6 Optimization Results

In this section, we use the Hovorka model and the developed multiple shooting
SQP algorithm for (1) to compute insulin administration profiles for a virtual
patient with type 1 diabetes.

Fig. 4(a) depicts the optimal insulin administration profile for the scenario
in which the controller knows the size and time of all meals in advance. It
illustrates the absolutely best insulin dosage and the corresponding glucose
profile. This profile is obtained by solving the discrete-time constrained op-
timal control problem (3) given the disturbance vector d. It is evident from
Fig. 4(a) that, due to the slower absorption of insulin relative to meal-related
glucose (see Model Description), the optimal glucose concentration is achieved
by administering the insulin in advance of the meal. Knowing the meal times
and sizes allows the controller to deliver this anticipatory insulin to preempt
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(a) Optimal insulin administration
for the case with meal announcement
in advance of the meal. Most insulin
is taken before the meals.

(b) Optimal insulin administration
with meal announcement at meal-
time. Most insulin is taken in bolus
like form at meal time.

Fig. 4. Optimal insulin administration and blood glucose profiles.

postprandial hyperglycemia. However, the assumption that the patient would
know in advance—and with accuracy—the meal times and sizes is not practi-
cal. Safety considerations would preclude significant amounts of insulin from
being delivered prior to mealtime.

Fig. 4(b) shows the simulation results for the more practical case in which
the meals are announced to the MPC only at mealtime. Thus, the controller
can deliver no anticipatory insulin prior to meals. The limitations for this case
force the subject into (mild) hyperglycemia, but hypoglycemia is avoided. The
insulin delivery profile for this case looks qualitatively similar to bolus delivery
of insulin by a pen; most of the meal-related insulin is delivered in bolus form
within the few samples after the meals are taken (and announced). Simulated
optimal bolus treatment with a pen provides glucose profiles comparable to
the glucose profile in Fig. 4(b) (results not shown).

These results demonstrate that for realistic cases, e.g., cases for which
meal information is unknown until mealtime, acceptable control can still be
obtained.

7 Conclusion

In this paper, we described a multiple shooting SQP algorithm for the solution
of a bound-constrained discrete-time Bolza problem. Based on the Hovorka
model for people with type 1 diabetes, we use an optimal control algorithm
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to compute insulin administration profiles for the cases with and without
meal announcement in advance. The blood glucose profiles provide informa-
tion about the best achievable performance in the case where anticipatory
insulin administration is allowed, and in the case where insulin is delivered
at mealtimes. The insulin profile for the realistic case with announcement of
meals at mealtime is reminiscent of a bolus-based treatment regimen. This
suggests that, for certain situations, insulin treatment based on pen systems
may be nearly as effective as insulin treatment based on pump systems.
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Summary. This article addresses the fast on-line solution of a sequence of quadratic
programs underlying a linear model predictive control scheme. We introduce an
algorithm which is tailored to efficiently handle small to medium sized problems
with relatively small number of active constraints. Different aspects of the algorithm
are examined and its computational complexity is presented. Finally, we discuss a
modification of the presented algorithm that produces “good” approximate solutions
faster.

1 Introduction

Model Predictive Control (MPC) is an advanced control tool that originates
in the late seventies. Due to its simplicity, it quickly became the preferred con-
trol tool in many industrial applications [1]. Some of the fields where MPC
is already considered to be a mature technique involve linear and rather slow
systems like the ones usually encountered in the chemical process industry.
However, the application of MPC to more complex systems, involving nonlin-
ear, hybrid, or very fast processes is still in its infancy.

MPC does not designate a specific control strategy but rather an am-
ple range of control methods which use a model of a process to obtain con-
trol actions by minimizing an objective function, possibly subject to given
constraints. The various algorithms in the MPC family can be distinguished
mainly by: (i) the model used to represent the process; (ii) the objective func-
tion to be minimized; (iii) the type of constraints. The most popular scheme
applied in practice involves a linear time-invariant process model, linear con-
straints and quadratic objective function [2]. In general, it is referred to as
linear MPC (LMPC). The computational burden associated with the appli-
cation of LMPC is mainly due to forming and solving a Quadratic Program
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(QP) at each sampling interval. This imposes restrictions on the application
of LMPC to systems that require short sampling times.

In practice, the solution of the underlying sequence of QPs is left to state
of the art QP solvers [3]. Even though such solvers implement very efficient
algorithms, in most cases they do not make use of the properties of each
particular problem, which could speed up computations considerably.

In this article we present an algorithm for the fast on-line solution of a
sequence of QPs in the context of LMPC. When the control sampling times
become so small, that classical methods fail to reach a solution (within a
given sampling interval), algorithms that can exploit the particular structure
of LMPC problems become attractive. The proposed algorithm is tailored to
efficiently utilize data that can be precomputed off-line, leading to smaller
on-line computational burden. We assume that the problem to be solved is
small to medium sized, with relatively small6 number of active constraints.

The presented algorithm can be classified as a primal active set method
with range space linear algebra. We motivate our choice by analyzing the
requirements of our problem. Different aspects of the algorithm are examined,
and its computational complexity is presented. We discuss details related to
efficient update methods for the solution of the underlying systems of linear
equations. Finally, we present a strategy for altering the working set resulting
in a “good” approximate solutions that can be computed faster.

2 Linear Model Predictive Control

There is a great variety of models commonly used in the context of MPC.
In general, they can be divided into two groups: (i) first principles models
and (ii) identified models. The former are based on physical or chemical laws
of nature, whereas the latter are built as a result of empirical measurements
of the real process. Here, we assume that regardless of the way the model is
obtained, it is represented in the following form

xk+1 = Axk +B uk, (1a)
yk = C xk (1b)

where, xk ∈ Rnx represents the state of the system, uk ∈ Rnu is control input,
yk ∈ Rny is a vector of measured outputs which are to be controlled (to satisfy
given constraints and when possible to follow certain reference profile), and
A, B, C are constant matrices with appropriate dimensions.

In order to express the behavior of system (1) for N discrete steps in the
future as a function of xk and n = Nnu control actions, equation (1a) is
iterated N times (combined with N versions of (1b)) as follows

6 The term “relatively small” will be properly defined in Section 3.
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yk+τ = CAτxk + C
τ−1∑
ρ=0

A(τ−ρ−1)Buk+ρ , (τ = 1, ..., N). (2)

Using the notation

Yk+1 =

 yk+1

...
yk+N

 ∈ RNny , U =

 uk

...
uk+N−1

 ∈ Rn

recursion (2) can be expressed in the following compact way

Yk+1 = Px xk + Pu U (3)

where, Px ∈ RNny×nx and Pu ∈ RNny×n are constant matrices (independent
of k).

MPC uses a process model in order to predict the process behavior starting
at a given discrete time k, over a future prediction horizon k + N . Assum-
ing that information about disturbances and state measurement noise is not
available, the predicted behavior depends on the current state xk and the
assumed control input trajectory U that is to be applied over the prediction
horizon. The idea is in step (i) to select U which leads to the “best” predicted
behavior (according to a given objective function). Once U is obtained, in
step (ii) only the first control action (uk) is applied to the system until the
next sampling instant. Then in step (iii) the new state xk+1 is measured (or
estimated), and the process is repeated again from step (i). Hence, MPC is a
feedback control strategy. In a standard LMPC scheme, the n future control
actions U are computed to minimize given quadratic cost function [2]

minimize
U

1
2
UTQU + UT pk (4)

where, Q ∈ Rn×n is a symmetric and positive-definite constant Hessian ma-
trix, and pk ∈ Rn is a gradient vector.

Furthermore, the profile of the outputs Yk+1 are possibly constrained to
satisfy a set of m linear constraints of the form

Dk+1Yk+1 ≤ b
′

k+1, (5)

for some matrix Dk+1 ∈ Rm×Nny and vector b
′

k+1 ∈ Rm. If the ith row of
Dk+1 (i = 1, . . . ,m) imposes constraints only on yk+i (which is very common
in practice), Dk+1 will be extremely sparse and well structured matrix with
at most ny nonzero entries in each row. Hereafter, we assume that Dk+1 has
such structure. Introducing (3) in (5) leads to

Gk+1U ≤ bk+1 (6)

where, Gk+1 = Dk+1Pu, and bk+1 = b
′

k+1−Dk+1Pxxk. Additional constraints
accounting for actuator limits etc. could be imposed.
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The objective function (4) in combination with the constraints (6) define
a canonical optimization problem known as quadratic program. Its solution is
required for the application of a LMPC scheme.

3 General design choices for a QP solver

The choice of algorithm that can efficiently solve a sequence of quadratic
programs defined by (4) and (6) is not unique. In general, the choice depends
mostly on: (i) the number ma of active constraints (constraints that hold as
equalities at the optimal point) and the dimension N ; (ii) whether a “warm
start” is available; (iii) whether there is a cheap way to determine an initial
feasible point that satisfies the constraints in (6). The following short overview
aims at outlining some of the considerations that need to be made when
choosing a QP solver.

3.1 Interior point vs. active set methods

Fast and reliable solvers for solving QPs are generally available, usually based
on interior point or active set methods, and there has been a great deal of re-
search related to the application of both approaches in the context of MPC [4].

Finding the solution of a QP in the case when the set of active constraints
at the optimum is known, amounts to solving a linear system of equations
that has a unique solution [5]. Active set methods are iterative processes that
exploit the above property and try to guess at each iteration which are the ac-
tive constraints at the optimal point. They usually consider active constraints
one at a time, inducing a computation time directly related to ma. On the
contrary, the computation time of interior point methods is relatively con-
stant, regardless of the number of active constraints. However, this constant
computation time can be large enough to compare unfavorably with active
set methods in cases where ma is relatively small.

It should be noted that what we have to solve is not a singe QP but a
series of QPs, which appear to be sequentially related. It is possible then to
use information about the solution computed at sampling time k to accelerate
the computation of the solution at sampling time k + 1. Such information is
usually referred to as “warm starting”, and active set methods typically gain
more from it [4]. Hence, they are preferred when dealing with small to medium
sized QPs where ma is kept small.

3.2 Primal vs. dual strategies

There exist mainly two classes of active set methods, primal and dual strate-
gies. Primal strategies ensure that all the constraints (6) are satisfied at every
iteration. An important implication of this feature is that if there is a limit on
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computation time (a real-time bound), e.g. because of the sampling period of
the control law, the iterative process can be interrupted and still produce at
any moment a feasible motion. Obviously, this comes at the cost of obtaining
a sub-optimal solution.

One limitation of primal strategies is that they require an initial value
for the variables U which already satisfy all the constraints. For a general
QP, computing such an initial value can take as much time as solving the
QP afterwards, which is a strong disadvantage. This is why dual methods are
usually preferred: they satisfy all the constraints (6) only at the last iteration,
but they do not require such an initial value.

3.3 Null space vs. range space algebra

There exist mainly two ways of making computations with the linear con-
straints (6), either considering the null space of the matrix Gk+1, orthogonal
to the constraints, or the range space of this matrix, parallel to the constraints.
The first choice leads to working with matrices of size (n −ma) × (n −ma),
while the second choice leads to working with matrices of size ma×ma. Hence,
the most efficient of those two options depends on whether ma < n/2 or not.
It should be noted that, when dealing with ill-conditioned matrices, range
space algebras can behave poorly.

3.4 Problem structure

As it was already pointed out, in practice the solution of the QP underlying
a LMPC scheme is left to state of the art QP solvers [3]. Even though such
solvers implement very efficient algorithms, in most cases they do not exploit
the properties of each particular problem. One such property is that the matrix
Gk+1 of the constraints (6) can be expressed as a product of Dk+1Pu, where
Pu is constant. In many applications [6] Dk+1 is well structured and extremely
sparse (a property that is lost after Gk+1 is formed explicitly). The primal
algorithm in [7] and dual algorithm in [8] are probably the ones that are
considered as first choices when dealing with small to medium sized problems,
however, they are not able to take advantage of the sparsity pattern of Dk+1

and the fact that Pu is constant, leading to a requirement for new algorithms
that account for this structure.

3.5 Our choice

If the system in (1) is output controllable, Pu will have full row rank
and by computing its (generalized) inverse off-line, a feasible U can be
obtained at a low cost [9], [10]. Furthermore, if the solution of a QP can
not be obtained within a predefined sampling time, we want to be able
to interrupt the process and still obtain a feasible motion of our system.
These considerations led to the development of a primal solver.

•
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Due to our assumption, that the number of active constraints is relatively
small i.e. ma < n/2, we chose to use a solver with range space linear
algebra.

4 An optimized QP solver

4.1 Off-line change of variable

Typically, the first action of an active set method is to make a Cholesky
decomposition of the matrix Q = LQL

T
Q. When range space algebra is used,

at each iteration a change of variable involving LQ is performed twice [7].
First, when adding a constraint to the so called working set, and second,
when the search direction is evaluated. This results in using n2 flops at each
iteration7. In this way, the QP defined by (4) and (6) simplifies to a Least
Distance Problem (LDP) [11]

minimize
V

1
2
V TV + V T gk (7a)

subject to Dk+1Pu︸ ︷︷ ︸
Gk+1

L−T
Q V ≤ bk+1, (7b)

where, V = LT
QU and gk = L−1

Q pk. In a general setting, representing (4)
and (6) in the form of (7) using one change of variable before solving the
QP is not performed, because the matrix-matrix product Gk+1L

−T
Q has to be

evaluated (which is computationally expensive if both matrices are dense).
For the problem treated in this article, however, the matrices LQ and Pu

are constant and the product PuL
−T
Q can be precomputed off-line. Further-

more, due to the assumption that Dk+1 is sparse (with at most ny nonzero
entries in each row), forming Dk+1PuL

−T
Q requires mnny flops, which is com-

putationally cheaper than using n2 flops during each step of the solution. Note
that in many applications, large parts of Dk+1 can remain unchanged from
one sampling time to the next. Due to the above considerations, we perform
a change of variable and solve on-line the LDP (7).

4.2 The iterative process

Active set methods are iterative processes that try to guess at each itera-
tion which are the active constraints, the inequalities in (7b) which hold as
equalities at the minimum V ∗. Indeed, once these equalities, denoted by

EV = q

7 We measure computational complexity in number of floating-point operations,
flops. We define a flop as one multiplication/division together with an addition.
Hence, a dot product aT b of two vectors a, b ∈ Rn requires n flops.

•
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are identified, the minimum of the LDP is [5]

V ∗ = −gk + ETλ (8)

with Lagrange multipliers λ solving

EETλ = q + Egk. (9)

In the case of a primal strategy, the iterations consist in solving these equa-
tions with a guess of what the active set should be, and if the corresponding
solution violates some of the remaining constraints, include (usually) one of
them (using a give criterion) in our guess (working set) and try again. Once
the solution does not violate any other constraint, it remains to check that all
the constraints we have included in our guess should actually hold as equali-
ties. That is done by checking the sign of the Lagrange multipliers. A whole
new series of iterations could begin then which alternate removing or adding
constraints to our guess. All necessary details can be found in [5], [11].

4.3 Efficient update method

At each iteration we need to solve equations (8) and (9) with a new guess of
the active set (here, we assume that the constraints in our guess are linearly
independent, i.e. EET is full rank). The only thing that changes from one
iteration to the next is that a single constraint is added or removed to/from
the working set, i.e. only one line is either added or removed to/from the
matrix E. Due to this structure, there exist efficient ways to compute the
solution of (8) and (9) at each iteration by updating the solution obtained at
the previous iteration without requiring the computation of the whole solution
from scratch.

Probably the most efficient way to do so in the general case is the method
described in [7]. There, a Gram-Schmidt decomposition of the matrix E is
updated at each iteration at a cost of 2nma flops. Consequently, the Gram-
Schmidt decomposition is used in a “clever way”, allowing to update the
solution of (8) and (9) at a negligible cost. In this way, the only computational
cost when adding a constraint is the 2nma flops of the Gram-Schmidt update.

In our specific case, we can propose a slightly better option, based on the
Cholesky decomposition of the matrix EET = LEL

T
E . Below we describe the

update procedure when a new row e is added to the matrix E. In such case,
we need the decomposition of the new matrix[

E
e

] [
ET eT

]
=
[
EET EeT

eET eeT

]
. (10)

First note that, since the matrix PuL
−T
Q is constant, we can form off-line

the Gramian matrix G = PuL
−T
Q L−1

Q PT
u , which is the matrix containing the

dot products of each row of PuL
−T
Q with all others. Noting that, the rows of
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matrix E and the (row) vector e are taken from the constraints (7b), the dot
products EeT and eeT can be obtained at a negligible cost from the entries
of G under the action of the varying but extremely sparse and well structured
matrix Dk+1. After matrix (10) is formed, classical methods for updating its
Cholesky decomposition (once EET = LEL

T
E is known) require m2

a/2 flops.
Using Cholesky decomposition, equation (9) can be solved in three very

efficient steps:

w1 = q + Egk, (11a)
LEw2 = w1, (11b)

LT
Eλ = w2. (11c)

When one constraint is added to the matrix E, updating the value of w1

requires only one dot product to compute its last element. Since only the last
element of w1 changes and only one new line is added to LE , only the last
element of w2 needs to be computed to update its value, at the cost of a dot
product. Only the third step requires more serious computations: since the
matrix LE is lower triangular of size ma, solving this system requires m2

a/2
flops.

Once equation (9) is solved for the Lagrange multipliers λ, the computation
of V in (8) requires a nma matrix-vector product. In total, the above update
requires nma +m2

a flops, which is slightly better than the 2nma found in [7],
which is possible in our case due to the precomputation of the matrix G off-line.
Even though V (computed from (8)) satisfies the equality constraints EV = q,
it is not guaranteed to satisfy all the inequality constraint not included in the
working set. In order to produce feasible iterates, at each step, the scheme
presented in [5] (pp. 468-469), [9] is used.

The case when a constraint is removed from E is handled in a classical
way (see [12]), and is not presented here.

4.4 Approximate solution & warm start

Depending on the sampling time of the control, obtaining the solution of each
QP might not be possible. Because of this, here we present a modification of
a standard primal algorithm that computes a “good” approximate solution
faster. As observed in [9], [14], a “good” approximate solution does not result
in a significant decrease in the quality of the MPC control law.

As already mentioned in Section 4.2, once a solution V (for some guess
of the active set) that does not violate any of the constraints (7b) is found,
it can be certified to be the optimal point if λi > 0 (i = 1, . . . ,ma). If this
test fails, (usually) one constraint is dropped from the working set, resulting
in a new series of iterations. In order to speed-up the on-line computation, we
propose to terminate the solution of each QP once a solution V of (8) that
satisfies all constraints in (7b) is found, regardless of signs of the Lagrange
multipliers. Accounting for the negative entries of λ is then performed when
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formulating the warm start for the next QP. Under the assumption that the
active set of the QP solved at sampling time k closely resembles the one of
the QP that needs to be solved at sampling time k + 1, we use as an initial
guess for the working set all active constraints from the previous QP except
the ones that correspond to negative Lagrange multipliers. In that way, the
modification of the working set is no longer treated separately at a local level
(for each separate QP), but rather considered as a shared resource among the
whole sequence.

The reasoning for starting with a nonempty working set can be motivated
by noting that, if only adding constraints to our guess for the active set is
considered, each iteration of the presented algorithm requires nm+m2

a flops.
If the solution of each QP starts with an empty working set, the complexity of
adding ma constraints (one at a time) is approximately nmma +m3

a/3+m2
a/2

flops8. In contrast, if matrix E from the previous QP is used (with some rows
removed), the only necessary computation required for realizing the warm
start is finding the Cholesky decomposition of the modified EET . This can be
done by updating the already available factorization LEL

T
E from the previous

QP, which (depending on which constraints are removed) requires at most
m3

a/3 flops, which is a tremendous improvement over the nmma+m3
a/3+m2

a/2
flops that would have been necessary to reach the same active set through the
whole set of iterations.

In [9], we already applied the above idea using the LMPC scheme for
walking motion generation for a humanoid robot proposed in [13], and the
active set when doing so is in most cases correct or includes only one, and
in rare cases two unnecessarily activated constraints. This leads to slightly
sub-optimal solutions, which nevertheless are feasible. We have observed that
this does not affect the stability of the scheme: the difference in the generated
walking motions is negligible, however, the computation time is considerably
smaller (see [9] for results from a numerical comparison with a state of the
art QP solver).

When a nonempty initial active set is specified, the initial point needs to
lie on the constraints in this set. If the system in (1) is output controllable,
such point can be generated by using a procedure similar to the one presented
in [10]. In the general case, however, a general feasibility problem has to be
solved.

5 Conclusion

In this article we presented an optimized algorithm for the fast solution of a
quadratic program in the context of model predictive control. We discussed
8 To this count one should add nmma − nm2

a/2− nma/2 flops, which is the com-
plexity of checking whether V (computed from (8)) violates any of the inequality
constraints not included in the active set. This check is common for all active set
algorithms, and is not discussed in this article.
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alternative solution methods, and analyzed their properties for different prob-
lem structures. The presented algorithm was designed with the intention of
using as much as possible data structures which can be precomputed off-line.
In such a way, we are able to decrease the on-line computational complexity.
A strategy for producing “good” approximate solutions in the presence of a
real-time bound on the computation time was presented.
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We consider nonlinear control problems subject to control and state con-
straints and develop a model-predictive controller which aims at tracking a
given reference solution. Instead of solving the nonlinear problem, we suggest
solving a local linear-quadratic approximation in each step of the algorithm.
Application of the virtual control concept introduced in [1, 4] ensures that the
occuring control-state constrained linear-quadratic problems are solvable and
accessible to fast function space methods like semi-smooth Newton methods.
Numerical examples support this approach and illustrate the idea.

1 LQR control with constraints

The goal of this work is to propose a fast and reliable numerical method for
controlling control-state constrained control systems. The underlying system
in the time interval [0, tf ] with fixed tf > 0 is described by ordinary differential
equations

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (1)

subject to control and state constraints

u(t) ∈ U(t) (2)
s(t, x(t)) ≤ 0, (3)

where f and s are sufficiently smooth functions and U(t) is a convex set
with non-empty interior. The aim is to track a given reference state tra-
jectory xref ∈ W 1,∞([0, tf ],Rnx) and a given reference control trajectory
uref ∈ L∞([0, tf ],Rnu) in the time interval [0, tf ]. Herein, W 1,∞([0, tf ],Rnx)
and L∞([0, tf ],Rnu) denote the space of absolutely continuous functions with
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DOI 10.1007/978-3-642-12598-0_28, © Springer-Verlag Berlin Heidelberg 2010 



320 Matthias Gerdts and Björn Hüpping

ti ti +∆t

ti+1 = ti + δt ti+1 +∆t

x̂
˛

˛

[ti,ti+∆t]

x̂
˛

˛

[ti+1,ti+1+∆t]

x(t)

Fig. 1. MPC Concept

essentially bounded first derivative and the space of essentially bounded func-
tions, respectively.

The reference functions may result from an optimal control problem or an
equilibrium solution. For a given initial state x0 ∈ Rnx , which may deviate
from the reference state trajectory, a controller aims at solving the following

Problem 1 (Tracking problem). Find a state x ∈ W 1,∞([0, tf ],Rnx) and
a control u ∈ L∞([0, tf ],Rnu) with (1), (2), and (3), that minimizes the func-
tional

F (x, u) :=
1
2

tf∫
0

(
∆x(t) ∆u(t)

)( Q(t) R(t)
R>(t) S(t)

)(
∆x(t)
∆u(t)

)
dt,

for some positive semidefinite symmetric time dependent weighting matrix(
Q R

R> S

)
, where

∆x(t) := x(t)− xref (t), ∆u(t) := u(t)− uref (t).

Solving the fully nonlinear Problem 1 in real-time is often not possible owing
to high computational costs. Hence, we aim at approximately solving the
problem using a model predictive control (MPC) approach in combination
with a linear-quadratic regulator (LQR) approximation. Related approaches
using nonlinear MPC and efficient implementations with realtime ability have
been established in [5, 6, 7].

The idea of model predictive control is illustrated in Figure 1. The al-
gorithm depends on a local time horizon ∆t > 0 and sampling times
ti+1 = ti + δt, i = 0, 1, 2, . . .. On each local time horizon [ti, ti + ∆t], a
local tracking problem similar to Problem 1 with initial state x(ti) = xi has
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to be solved. Then the resulting optimal control is applied on the interval
[ti, ti + δt]. In the next step, the computation is started anew in the period
[ti+1, ti+1 +∆t] with ti+1 := ti + δt and new initial state xi+1 = x(ti+1), cf.
Figure 1.

In order to accelerate the computation, linear-quadratic approximations
of Problem 1 are being solved on each local time horizon in spite of the
linearization error that unavoidably will occur. These problems take the form

Problem 2. Let ∆xi denote the deviation of the actual state from the refer-
ence state trajectory at ti. Find a control correction∆u ∈ L∞([ti, ti+∆t],Rnu)
and a state correction ∆x ∈W 1,∞([ti, ti +∆t],Rnx) that minimize

F (∆u,∆x) :=
1
2

ti+∆t∫
ti

(
∆x(t) ∆u(t)

)( Q(t) R(t)
R>(t) S(t)

)(
∆x(t)
∆u(t)

)
dt

and satisfy the constraints

∆ẋ(t) = A(t)∆x(t) +B(t)∆u(t), ∆x(ti) = ∆xi,

C(t)∆x(t) ≤ d(t),
∆u(t) ∈ U(t)− {uref (t)}.

Herein, A, B, C, and d are given by

A(t) = f ′x(t, xref (t), uref (t)), B(t) = f ′u(t, xref (t), uref (t))
C(t) = s′x(t, xref (t)), d(t) = −s(t, xref (t)).

Summarizing, we obtain

Algorithm: (Linear-quadratic MPC algorithm)

1. Let i = 0, ∆x0 = x0 − xref (0).
2. Compute the solution (∆u,∆x) of Problem 2 on [ti, ti +∆t].
3. Apply the control u|[ti,ti+δt) := uref |[ti,ti+δt)+∆u in [ti, ti+δt) and predict

the state trajectory by solving in [ti, ti + δt] the initial value problem

ẋ(t) = f(t, x(t), u(t)), x(ti) = xi.

4. Let xi+1 = x(ti + δt), ∆xi+1 := xi+1−xref (ti + δt), i := i+1 and goto 2.

It should be mentioned that this algorithm will not be able to exactly
satisfy the state constraints (3). But in contrast to classical LQR controllers it
will take these constraints into account in a weak sense that often is sufficiently
accurate for practical purposes. The algorithm can be extended using a robust
optimal control setting, where robust solutions w.r.t. to perturbations, e.g.
linearization errors, are sought. The robust optimal control setting will help
to further reduce the constraint violation in the MPC algorithm.
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2 Virtual control regularization

Problem 2 in Section 1 is a linear quadratic control problem with control and
state constraints, so directly applying an appropriate optimal control algo-
rithm seems natural. However, owing to the linearization of the dynamics (1)
and the state constraint (3) along to the reference trajectory, Problem 2 may
become infeasible, especially if the initial state violates the state constraint.
The virtual control approach used in this paper regularizes inconsistent prob-
lems in a way that helps to decreases the violation of the state constraints.

This technique also makes the problem accessible for a fast and reliable
function space Newton method, see [2]. As a side product, the regularization
method suggested below can be used within a function space SQP method to
regularize inconsistent quadratic subproblems.

Various ways for regularization of state constrained problems have been
suggested. Lavrientiev regularization uses the control u itself to approximate
the pure state constraint by a mixed control-state constraint of type

s(x(t))− α‖u(t)‖2e ≤ 0,

where e is a vector of all ones of appropriate dimension and α > 0 is a
regularization parameter that has to be driven to zero. However, if the state
constraints cannot be met, this technique enforces potentially large controls
‖u(t)‖2 ≥ α−1si(x(t)). i = 1, . . . , ns. This condition often is in conflict with
the set constraints u(t) ∈ U(t) as often U(t)∩{u | s(x(t))−α‖u‖2 ≤ 0} turns
out to be empty.

For this reason, we prefer to introduce an additional so-called virtual con-
trol v to regularize the pure state constraint. This virtual control approach
was suggested in [1, 4] in the context of optimal control of a state constrained
elliptic PDE optimal control problem. While this additional control increases
the dimension of the problem, it has the advantage that it does not directly
interfere with the original control u and the resulting regularized problems are
always feasible. The virtual control approach can be applied to a slightly more
general problem class than Problem 2 with general linear boundary conditions
of type E0x(0)+E1x(1) = g instead of just initial conditions as in Problem 2
and we present it for the following problem (LQR):

Minimize
1
2

∫ 1

0

x>Qx+ 2x>Ru+ u>Sudt

s.t. x′ = Ax+Bu a.e. in [0, 1],

E0x(0) +E1x(1) = g,

Cx ≤ d in [0, 1],

u ∈ U a.e. in [0, 1].

For notational convenience, we omit the explicit dependence on time and note
that Q(·) ∈ Rnx×nx , R(·) ∈ Rnx×nu , S(·) ∈ Rnu×nu , A(·) ∈ Rnx×nx , B(·) ∈
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Rnx×nu , C(·) ∈ Rns×nx , and d(·) ∈ Rns are time dependent functions. More-
over, the matrices E0, E1 ∈ Rnr×nx and the vector g ∈ Rnr are given. For a
regularization parameter α > 0, LQR is embedded into a family of perturbed
problems (LQRα) with mixed-control state constraints using the virtual con-
trol v(·) ∈ Rns :

Minimize
1
2

∫ 1

0

x>Qx+ 2x>Ru+ u>Su dt+
φ(α)

2

∫ 1

0

‖v‖2dt

s.t. x′ = Ax+Bu− κ(α)
ns∑
i=1

vie a.e. in [0, 1],

E0x(0) + E1x(1) = g,

Cx− γ(α)v ≤ d in [0, 1],

u ∈ U a.e. in [0, 1].

Herein, φ(α), κ(α), and γ(α) are functions to be defined later. For each α >
0 problem LQRα contains only mixed control-state constraints and can be
solved by the semi-smooth Newton method in [2] provided that first-order
necessary optimality conditions hold, which we will assume throughout this
paper. A sufficient condition for first-order necessary optimality conditions
to hold is controllability and a Slater condition. The optimality conditions
for a minimizer (x̂, û) ∈ L∞([0, 1],Rnu) ×W 1,∞([0, 1],Rnx) of LQR read as
follows: There exist multipliers λ̂ ∈ BV ([0, 1],Rnx), µ̂ ∈ NBV ([0, 1],Rns) and
σ̂ ∈ Rnr such that

λ̂(t) = λ̂(0)−
∫ t

0

Qx̂+Rû+A>λ̂dτ −
∫ t

0

C>dµ̂ (4)

λ̂(0) = −E>0 σ̂, λ̂(1) = E>1 σ̂, (5)

0 ≤
(
x̂>R+ û>S + λ̂>B

)
(u− û) ∀u ∈ U, (6)

0 =
∫ 1

0

(d− Cx̂)> dµ̂ (7)

0 ≤
∫ 1

0

z>dµ ∀z ∈ {C([0, 1], Rns) | z(·) ≥ 0}. (8)

The respective conditions for a minimizer (x̂α, ûα) ∈ L∞([0, 1],Rnu) ×
W 1,∞([0, 1],Rnx) of LQRα read as follows: There exist multipliers λ̂α ∈
W 1,∞([0, 1],Rnx), η̂α ∈ NBV ([0, 1],Rns) and σ̂α ∈ Rnr such that

λ̂′α = −
(
Qx̂α +Rûα +A>λ̂α + C>η̂α

)
, (9)

λ̂α(0) = −E>0 σ̂α, λ̂α(1) = E>1 σ̂α, (10)

0 ≤
(
x̂>αR+ û>αS + λ̂>αB

)
(u− ûα) ∀u ∈ U , (11)

η̂α ≥ 0 , η̂α(Cx− d) = 0, (12)

0 = φ(α)v̂i,α − κ(α)λ̂>α e− γ(α)η̂i,α. (13)
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The following theorem establishes a convergence result and shows how the
functions φ, κ, γ have to be chosen. A proof can be found in the recent report
[3].

Theorem 1. Let (x̂, û, λ̂, η̂, σ̂) and (x̂α, ûα, λ̂α, η̂α, σ̂α) be solutions of the con-
ditions (4)-(8) and (9)-(13), respectively. Let there be a constant δ > 0, such
that a.e. in [0, 1],(

x u
)( Q(t) R(t)

R(t)> S(t)

)(
x
u

)
≥ δ‖(x, u)‖2 ∀(x, u) ∈ Rnx+nu .

Let one of the following conditions be fulfilled:

(a) µ̂ ∈W 1,2([0, 1],Rns), i.e. µ̂, µ̂′ ∈ L2([0, 1],Rns).
(b) ‖v̂α‖∞ ≤ Cv for some constant Cv independent of α.

Let φ, κ, γ : R+ → R+ be such that φ(α) ≥ δ̃ for all α > 0 and

lim
α→0

γ(α)
φ(α)

= 0, lim
α→0

κ(α)
φ(α)

= 0, lim
α→0

γ(α) = 0, lim
α→0

κ(α) = 0.

Then,

lim
α→0
‖(x̂α − x̂, ûα − û)‖2 = 0 and lim

α→0
‖v̂α‖2 = 0.

Remark 1. A similar result holds if the matrix
(

Q R

R> S

)
is just positive semidef-

inite and S is uniformly positive definite. In this case, ûα converges to û in
the L2 norm sense.

3 Examples

We present two examples for which the following approaches are compared:

(A1) linear-quadratic MPC algorithm with a state constraint and weighting
matrices Q, R, and S,

(A2) linear-quadratic MPC algorithm without state constraint and Q, R, S
as in (A1),

(A3) linear-quadratic MPC algorithm without state constraint and R and S
as in (A1). Q will be adapted by increasing the weight for the constrained
state in order to better track the constrained reference state, which im-
plicitly aims at reducing constraint violations.

Hence, while (A1) is the algorithm proposed in this paper, (A2) is the well-
known standard LQR control, and (A3) is an LQR variation aimed at state
constrained problems. The following examples have been calculated for κ(α) =
0, φ(α) = 1, γ(α) = α. The algorithms have been implemented in SCILAB.
The computations were done on a laptop (Dell XPS M1530) running at 2
GHz.
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3.1 Inverse Pendulum

The Inverse Pendulum example is a simple representation of an inverse pen-
dulum mounted on a cart that can be accelerated.

The non-linear dynamics on the left are linearized in the unstable equi-
librium state xref ≡ (0, 0, 0, 0)> and uref ≡ 0 and lead to the linearized
equations on the right:

ẋ1 = x2 ∆ẋ1 = ∆x2

ẋ2 = g sinx1 − kx2 + u cosx1 ∆ẋ2 = g∆x1 − k∆x2 +∆u

ẋ3 = x4 ∆ẋ3 = ∆x4

ẋ4 = u ∆ẋ4 = ∆u

Here, g = 9.81 [m/s2] denotes the gravitational acceleration, and k = 1
models the friction. In practice, the space in which the wagon can be moved
is not unlimited. We account for this fact by inducing the state constraint
−0.3 ≤ x3(t) ≤ 0.3 on the system. Linearization in xref leads to

−0.3 ≤ ∆x3(t) ≤ 0.3. (14)

For (A1) and (A2) we used Q ∈ R4×4 with Q11 = 1, Qij = 0, (i, j) 6=
(1, 1), S = 0.01, R = 0. Note that these weights do not ‘encourage’ the
system to move back to the center position x3 = 0. Although such a behavior

x constrained
Q33 = 100
unconstrained

x constrained
Q33 = 100
unconstrained

x constrained
Q33 = 100
unconstrained
-0.3

x constrained
Q33 = 100
unconstrained

Fig. 2. Inverse Pendulum: Constrained and unconstrained algorithm
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might be desirable in practice, the purpose of this example is to illustrate that
satisfying the constraints can be encouraged with no further influence on the
tracking goal. For (A3) we increase the weight Q33 to Q33 = 100. This weight
‘encourages’ the system to move back to the center position x3 = 0.

For the simulations in Figure 2, we used ∆t = 1.8 [s] (with step size
h = 0.05 [s]), δt = 0.45 [s], and α = 0.1.

While the unconstrained algorithm (A2) tracks the given equilibrium with
the lowest control effort, the state constraint will not be obeyed. Approach
(A2) works smoothly and almost satisfies the state constraint, but its perfor-
mance in tracking the remaining states suffers from the altered weight matrix
as the weight concentrates on tracking state x3. The linear-quadratic MPC
algorithm (A1) satisfies the state constraint even better and it also tracks the
remaining states very well. The CPU time for (A1) is 0.75 [s] (at most 0.064
[s] per step) and 0.44 [s] (at most 0.04 [s] per step) for (A2) and (A3). In this
example at most two Newton steps were performed, which turned out to be
sufficient. The inverse pendulum was controlled for 6 [s] (the pictures only
show the first 3 [s] as afterwards an equilibrium was reached).

3.2 Trolley

This is a model of a trolley carrying a freight on a rope (with a length of
l = 0.73 [m]). The acceleration ẋ3 of the trolley can be controlled by u. Here
we make use of a reference trajectory resulting from a suitably defined optimal
control problem. The task was to move the trolley (and the freight) over a
total distance of one meter (x1(tf ) = 1 [m] at final time tf ) in a way that is
time efficient but also prevents the rope from swinging too much. The system
is described by the following dynamic equations:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 =
(m2

2l
3x2

4 +m2Iy2 lx
2
4 +m2

2l
2g cos(x2)) sin(x2)− (m2l

2 + Iy2)u
−m1m2l2 −m1Iy2 −m2

2l
2 −m2Iy2 +m2

2l
2 cos(x2)2

,

ẋ4 =
m2l(m2l cos(x2)2x2

4 sin(x2) + g sin(x2)(m1 +m2)− cos(x2)u)
−m1m2l2 −m1Iy2 −m2

2l
2 −m2Iy2 +m2

2l
2 cos(x2)2

.

Here, x1 and x3 denote the distance and velocity, respectively, of the trol-
ley, while x2 and x4 model the angle and the angle velocity, respectively, of
the freight. We impose the state constraint x3 ≤ 0.25 [m/s]. The parameters
m1 and m2 describe the masses of the trolley (0.6 [kg]) and the freight (0.62
[kg]), respectively. Iy2 = 0.00248 [kg·m2] denotes the moment of inertia of
the freight, and g = 9.81 [m/s2] is the gravitational acceleration. We start
the control problem with a deviation ∆x = (−0.05, 0, 0, 0)> of the reference
trajectory. For all calculations we used a discretization with 201 data points.
The LQR methods predict the model behavior over 21 points, before the next
control is applied in the next six time steps.
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x constrained
Q33 = 100
unconstrained
reference tr.

x constrained
Q33 = 100
unconstrained
reference tr.

Fig. 3. Trolley: States x3 and x2.

For (A1) and (A2) we used the weight matrices Q = I, S = I, and R = 0.
For (A3) we set Q33 = 100 instead. Figure 3 shows that (A1) and (A3) obey
the state constraint, which is active in the middle of the time interval, while
(A2) does not. The tracking behavior of the three approaches with respect to
the reference angle x2 of the freight is satisfactory for (A1)-(A3). In order to
investigate the behavior of the three approaches more clearly, Figure 4 shows
the displacements ∆x = x− xref .

While (A3) owing to the high weight Q33 tracks the reference trajectory
component x3,ref very well, the deviation in x1,ref stays rather large, i.e. this
approach makes the trolley travel at the same speed as the reference trol-
ley, but with a displacement in the position. Hence, the terminal condition of
traveling one meter will not be met by (A3). In contrast, the linear-quadratic
MPC approach (A1) obeys the state constraint, manages to decrease the de-
viation from the reference x1,ref , and almost meets the terminal condition

x constrained
Q33 = 100
unconstrained

x constrained
Q33 = 100
unconstrained

x constrained
Q33 = 100
unconstrained

x constrained
Q33 = 100
unconstrained

Fig. 4. Trolley: Displacements for states and control.
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x1,ref (tf ) = 1 [m]. At the same time, the deviation in x2,ref and uref are
moderate.

The CPU time for (A1) is 1.82 [s] (at most 0.048 [s] per step) and 0.824 [s]
(at most 0.022 [s] per step) for (A2) and (A3). In this example at most four
Newton steps were performed and turned out to be sufficiently accurate.
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Summary. In this paper we consider unconstrained model predictive control
(MPC) schemes and investigate known stability and performance estimates with
respect to their applicability in the context of sampled–data systems. To this end,
we show that these estimates become rather conservative for sampling periods tend-
ing to zero which is, however, typically required for sampled–data systems in order
to inherit the stability behavior of their continuous–time counterparts. We introduce
a growth condition which allows for incorporating continuity properties in the MPC
performance analysis and illustrate its impact – especially for fast sampling.

1 Introduction

In order to deal with optimal control problems on an infinite horizon we use
model predictive control (MPC). This method relies on an iterative online so-
lution of finite horizon optimal control problems. To this end, a performance
criterion is optimized over the predicted trajectories of the system. The sta-
bility and performance analysis of linear and nonlinear MPC schemes has
attracted considerable attention during the last years, cf. [2, 9]. Here we con-
sider unconstrained nonlinear MPC (NMPC) schemes which are frequently
used in industrial applications, cf. [8]. These incorporate neither additional
terminal constraints nor terminal costs in the finite horizon problems in order
to enforce stability properties. Nevertheless, a stability analysis – based on a
controllability assumption – is possible and given in [3, 5].

In the present paper we focus on sampled–data continuous systems. Typi-
cally, these require sufficiently fast sampling in order to preserve their stability
properties, cf. [7]. However, the direct application of [3, 5] leads to very pes-
simistic performance bounds, cf. Section 4. In order to compensate for this
drawback we incorporate a growth condition which reflects properties of the
considered sampled–data systems in the ensuing section. Finally, we investi-
gate qualitative and quantitative effects related to the proposed condition.
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DOI 10.1007/978-3-642-12598-0_29, © Springer-Verlag Berlin Heidelberg 2010 
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2 Setup and Preliminaries

We consider a nonlinear discrete time control system given by

x(n+ 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here the state space X and
the control value space U are arbitrary metric spaces. We denote the space
of control sequences u : N0 → U by U and the solution trajectory for given
u ∈ U by xu(·). A typical class of such discrete time systems are sampled–data
systems induced by a controlled — finite or infinite dimensional — differential
equation with sampling period T > 0, see Section 4 for details.

Our goal consists of minimizing the infinite horizon cost J∞(x0, u) =∑∞
n=0 l(xu(n), u(n)) with running cost l : X ×U → R+

0 by a static state feed-
back control law µ : X → U which is applied according to the rule xµ(0) = x0,

xµ(n+ 1) = f(xµ(n), µ(xµ(n))). (2)

We denote the optimal value function for this problem by V∞(x0) := infu∈U
J∞(x0, u). Since infinite horizon optimal control problems are in general com-
putationally intractable, we use a receding horizon approach in order to com-
pute an approximately optimal controller. To this end, we consider the finite
horizon functional

JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n)) (3)

with optimization horizon N ∈ N≥2 inducing the optimal value function

VN (x0) = inf
u∈U

JN (x0, u). (4)

By solving this finite horizon optimal control problem we obtain N control
values u∗(0), u∗(1), . . . , u∗(N−1) which depend on the state x0. Implementing
the first element of this sequence, i.e., u∗(0), yields a new state x(1). Iterative
application of this construction provides a control sequence on the infinite
time interval. We obtain a closed loop representation by applying the map
µN : X → U which is given in Definition 1 as a static state feedback law.

Definition 1. For N ∈ N≥2 we define the MPC feedback law µN (x0) :=
u?(0), where u? is a minimizing control for (4) with initial value x0.

Remark 1. For simplicity of exposition we assume that the infimum in (4) is
a minimum, i.e., that a minimizing control sequence u∗ exists.

In this paper we consider the conceptually simplest MPC approach imposing
neither terminal costs nor terminal constraints. In order to measure the sub-
optimality degree of the MPC feedback for the infinite horizon problem we
define

V µ
∞(x0) :=

∞∑
n=0

l(xµ(n), µ(xµ(n))).
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3 Controllability and performance bounds

In this section we introduce an exponential controllability assumption and
deduce several consequences for our optimal control problem. In order to fa-
cilitate this relation we will formulate our basic controllability assumption not
in terms of the trajectory but in terms of the running cost l along a trajectory.
To this end, we define l?(x) := minu∈U l(x, u).

Property 1. Assume exponential controllability with overshoot bound C ≥ 1
and decay rate σ ∈ (0, 1), i.e., for each x0 ∈ X there exists a control function
ux0 ∈ U satisfying the estimate

l(xux0
(n), ux0(n)) ≤ Cσnl?(x0) for all n ∈ N0. (5)

Based on Property 1 and Bellman’s optimality principle an optimization
problem is derived in [3] whose solution, which depends on the optimization
horizon N , coincides with the parameter αN in the relaxed Lyapunov inequal-
ity VN (f(x, µN (x))) ≤ VN (x)−αN l(x, µN (x)). As a consequence the estimate

αNV∞(x) ≤ αNV
µN
∞ (x) ≤ VN (x) (6)

holds for all x ∈ X. Hence, αN specifies a suboptimality degree. For details
we refer to [1]. Since we focus on the stability behavior of systems satisfying
(5), i.e. exponential controllability, it is possible to calculate this performance
index αN explicitly, cf. [5, section 5].

Theorem 1. Assume Property 1 and let the optimization horizon N be given.
Then we obtain for the suboptimality degree αN from (6) the formula

αN = 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi := C

i−1∑
n=0

σn = C
1− σi

1− σ
. (7)

Remark 2. Theorem 1 is generalizable to functionals including an additional
weight on the final term. This may enhance the stability behavior of the
underlying system significantly. Moreover, it remains valid for more general
controllability assumptions, for instance, finite time controllability with linear
overshoot, cf. [5, Sections 5 and 8] for details.

Remark 3. Theorem 1 is also applicable in the context of networked control
systems which require the implementation of more than only the first element
of the obtained sequence of control values, cf. [6] for details.
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4 Sampled–data systems and arbitrary fast sampling

Given a continuous time control system governed by the differential equation
ϕ̇ = g(ϕ(t), ũ(t)), we assume exponential controllabilty, i.e., that for each
x0 ∈ X there exists a control function ũx0(·) such that

l(ϕ(t;x0, ũx0), ũx0(t)) ≤ Ce−λtl∗(x0) (8)

holds almost everywhere for given overshoot C ≥ 1 and decay rate λ > 0.
Here ϕ(t;x0, ũ) denotes the solution of the respective control system. In order
to analyze the stability behavior, we define the discrete time system (1) by
f(x, u) := ϕ(T ;x, ũ) with discretization parameter T > 0. Consequently, the
assumed exponential controllability of the continuous time system implies (5)
in the discrete time setting, i.e., Property 1 with σ = e−λT for an appropriately
chosen control value space. Moreover, we fix the continuous time optimization
interval [0, tF ) which corresponds to an optimization horizon of length N =
tF /T in the discrete time setting.

A typical representative of this class are sampled–data systems with sam-
pling period T0 := T and piecewise constant control, i.e., ũ(t) = u for all
t ∈ [0, T0). However, sampled–data systems require sufficiently fast sampling
in order to inherit the stability behavior from (8), cf. [7]. Consequently, it
may be necessary to increase the sampling rate, i.e., using smaller sampling
periods. In this section we focus on effects caused by this adjustment. Thus,
we reduce the discretization parameter of the discrete time model along with
the sampling rate of the sampled–data system in consideration.

In order to investigate this issue systematically, we consider the sequence
of sampling periods T0, T0/2, T0/4, . . ., i.e., Tk = 2−kT0. This determines the
optimization horizons N0, 2N0, 4N0, . . ., i.e. Nk = 2kN0, for the discrete time
system because we have fixed the optimization interval [0, tF ) and coupled the
discretization parameter with the sampling period. The corresponding decay
rate from (8) is σk = e−λTk , cf. Figure 1 on the left. Hence, we consider the
sequence

(Tk, Nk, σk)k∈N0 = (2−kT0, 2kN0, e
−λTk)k∈N0 (9)

of parameter combinations consisting of sampling period, optimization hori-
zon, and decay rate. Note that the interval [0, Tk) on which the first element
of the calculated control value sequence is applied scales down as well.

We require the following definition.

Definition 2. Let C ≥ 1, λ > 0, and T0 > 0 be given. In addition, we set
σk := e−λ(2−kT0). Then we define

γk
i :=

i−1∑
n=0

Ce−λ(2−kT0)n = C
i−1∑
n=0

σn
k =

C(1− σi
k)

1− σk
. (10)

Remark 4. Note that we use an additional index in order to indicate the de-
pendence of γk

i on σk. For k = 0 we obtain exactly γi from (7). Moreover, the
relation σk = √σk−1 = σ2−k

0 holds.
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Theorem 2 shows that the suboptimality estimates from Theorem 1 become
arbitrarily bad for sampling periods tending to zero, cf. Figure 1. In order to
compensate this drawback for sampled-data continuous systems we introduce
an appropriate condition in the ensuing section.

Fig. 1. Visualization of the bounds induced by our controllability assumption for

(2−kT0, 2kN0, e
−λ(2−kT0))k∈N0 with T0 = 1, N0 = 8, λ = − ln(1/2), and C = 2 for

k = 0, 1, 2 (2, ∗, ·) on the left. On the right we depict the suboptimality estimates
αk

Nk
, k = 0, 1, 2, . . . , 8, from Theorem 2 for this sequence.

Theorem 2. Assume (8) and let N0 := N ∈ N≥2, T0 > 0 be given. Then
the suboptimality bounds corresponding to the sequence (Tk, Nk, σk)k∈N0 =
(2−kT0, 2kN0, e

−λ(2−kT0))k∈N0 diverge to −∞, i.e.,

αk
Nk

= 1−
(γk

Nk
− 1)

∏Nk

i=2(γ
k
i − 1)∏Nk

i=2 γ
k
i −

∏Nk

i=2(γ
k
i − 1)

−→ −∞ for k →∞ (11)

with γk
i from Definition 2.

Proof. Since
∏2kN

i=2 γ
k
i ≥

∏2kN
i=2 (γk

i − 1) ≥ 0 proving the assertion follows from

0 ≤ 1
γk
2kN
− 1
·
2kN∏
i=2

γk
i

γk
i − 1

k→∞−→ 0. (12)

In order to estimate (12) we establish the inequalities

1
γk
2kN
− 1
≤ 1− σk

C1
and

2kN∏
i=2

γk
i

γk
i − 1

≤ C0(21/C)k (13)

with C0 := σ
−N/C
0

∏N
i=2

iC
iC−1 and C1 := C(1−σN

0 )−1+σ0. Note that C0 and
C1 do not depend on k. The first inequality is directly implied by Definition
2. In order to show the second we prove the inequality
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γk
i

γk
i − 1

=
C

C − 1 + σk

(1− σi
k)(C − 1 + σk)

C − 1 + σk − Cσi
k

≤ C

C − 1 + σk
· iC

iC − 1

which is equivalent to iσi
kC(1 − σk) ≤ (C − 1 + σk)(1 − σi

k), k ∈ N0 and
i ∈ N≥1. Since Cσk/(C − 1 + σk) ≤ 1 this is shown by iσi−1

k ≤
∑i−1

n=0 σ
n
k =

(1− σi
k)/(1− σk). Moreover, we require the inequality(

C

C − 1 + σk

)2kN

≤ σ−N/C
0 (14)

which is – in consideration of Definition 2 – equivalent to f(σk) := C−Cσ1/C
k −

1 + σk ≥ 0. However, since f(0) = C − 1 ≥ 0 and f(1) = 0 the inequality
f ′(σk) = 1− σ−(C−1)/C

k ≤ 0 implies (14).
Hence, taking into account that the factor C/(C − 1 + σk) is independent

of the control variable i and applying the two deduced estimates leads to

2kN∏
i=2

γk
i

γk
i − 1

< σ
−N/C
0 ·

2kN∏
i=2

iC

iC − 1
= C0

k−1∏
j=0

 2j+1N∏
i=2jN+1

iC

iC − 1

 (15)

for k ∈ N0. Thus, it suffices to estimate the expression in brackets uniformly
from above by 21/C for j ∈ N≥0 in order to show (13).

In the following, we use the functional equation, i.e., Γ (x + 1) = xΓ (x)
and Γ (1) = 1, for the gamma function Γ (·) which is connected to the beta
function B(·, ·) via the formula

B(x, y) =
Γ (x)Γ (y)
Γ (x+ y)

, (16)

cf. [11, p.442]. Moreover, we require the equation

B(p, p+ s) =
B(p, p)

2s

(
1 +

s(s− 1)
2(2p+ 1)

+
s(s− 1)(s− 2)(s− 3)

2 · 4 · (2p+ 1) · (2p+ 3)
+ . . .

)
(17)

which holds for p > 0, p+ s > 0 according to [10, p.262] in order to estimate
the term in brackets from (15) as follows

2k+1N∏
i=2kN+1

iC

iC − 1
=

2k+1N∏
i=2kN+1

i

i− 1
C

=
(2k+1N)!
(2kN)!

 2k+1N∏
i=2kN+1

i− 1
C

−1

=
Γ (2k+1N + 1)
Γ (2kN + 1)

·
Γ (2kN + 1− 1

C )
Γ (2k+1N + 1− 1

C )

(16)
=

B(2kN, 2kN + C−1
C )

B(2kN, 2kN + 1)
(17)
= 21/C

(
1 +

s(s− 1)
2(2p+ 1)

+
s(s− 1)(s− 2)(s− 3)

2 · 4 · (2p+ 1) · (2p+ 3)
+ . . .

)
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with s = (C−1)/C ∈ [0, 1) and p = 2kN . Since s ∈ [0, 1) the term in brackets
is less or equal to one. Hence, we obtain the desired estimate (13).

Thus, it suffices to show (21/C)k(1 − σk) → 0 as k approaches infinity in
order to complete the proof. To this aim, we define ak := (21/C)k(1−σk) and
show that the quotient ak+1/ak converges to 21/C/2 for k →∞:

ak+1

ak
=

1− σk+1

1− σk
21/C =

(1− σk+1)21/C

(1− σk+1)(1 + σk+1)
=

21/C

1 + σ2−(k+1)

0

k→∞−→ 21/C/2.

Thus, there exists k∗ such that the considered quotient ak+1/ak is less or
equal θ := (2 + 21/C)/4 < 1 for all k ≥ k∗. This implies the convergence of
ak = 21/C(1− σk) to zero for k approaching infinity.

5 Growth condition and analytic formula

Although the estimate stated in Theorem 1 is strict for the whole class of
systems satisfying the assumed controllability condition, cf. [3, Theorem 5.3],
it may be conservative for subsets of this class. For instance, for sampled–
data continuous time systems the difference between x(n + 1) and x(n) is
usually of order O(T ), a property which is not reflected in the optimization
problem on which Theorem 1 is based on. Neglecting this leads to very pes-
simistic estimates if the sampling period T tends to 0 and the continuous time
optimization horizon H = [0, tF ) is fixed, cf. Section 4.

In order to compensate for this drawback, we incorporate a growth condi-
tion in our suboptimality estimate.

Property 2. For each x0 ∈ X there exists a control function ũx0(·) ∈ U such
that

l(ϕ(t;x0, ũx0), ũx0(t)) ≤ eLctl∗(x0) for all t ≥ 0 (18)

with constant Lc > 0 which is independent of the chosen state x0. Let a
discretization parameter T > 0 be given and define the discrete time system
by f(x, ũ) = ϕ(T ;x, ũ) with an appropriately chosen control value space U .
Then – as a consequence from (18) – the inequality

JN−k(xũx0
(k), ũx0(k + ·)) ≤ l∗(xũx0

(k))
N−k−1∑

n=0

Ln

holds with L = eLcT > 1 for k = 0, . . . , N − 1.

In combination with our controllability property (8) this leads to the def-
inition

γi := min

{
C

i−1∑
n=0

σn,
i−1∑
n=0

Ln

}
(19)
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Fig. 2. Visualization of the bounds induced by our controllability assumption
(dashed-dotted line) and our growth condition (solid line) for C = 3, σ = 3/5,
and L = 5/4. Each time the minimum is marked with solid circles. The solid circles
on the right coincide with γi from (19)

with σ := e−λT and L from Property 2. Thus, we obtain tighter bounds with
respect to the stage costs where the introduced growth condition is applicable
in contrast to γi from (7), cp. Figure 2.

Theorem 1 remains valid if we substitute the definition of γi in (7) by (19).

Theorem 3. Assume exponential controllability and our growth condition,
i.e., Properties 1 and 2, with parameters σ ∈ (0, 1), C ≥ 1, and L ≥ 1
then we obtain for given optimization horizon N Formula (7) with γi from
(19).

Proof. Sifting through the proof of Theorem 1 one notices that changing the
definition of γi to (19) does not affect the part of the proof in which (7) is
established as the solution of the relaxed optimization problem, cf. [5, Problem
5.3]. However, we have to show the inequality

(γ2 − 1)
N−j+1∏

i=3

(γi − 1) ≥ (γN−j+1 − γN−j)
N−j∏
i=2

γi, j = 1, . . . , N − 2,

which implies [5, Inequality (5.8)] for m = 1, ω = 1 and – as a consequence –
ensures that Formula (7) provides the solution of the respective optimization
problem.

Moreover, note that there exists exactly one index i? ∈ N≥1 such that
γi? =

∑i?−1
n=0 L

n and γi?+1 <
∑i?

n=0 L
n. n? ≥ N − j + 1 corresponds to C :=

L ≥ 1 and σ := 1. However, since [5] shows the desired inequality for arbitrary
σ ∈ (0, 1) this situation is covered. n? = N − j is also trivial, since we may
estimate γN−j+1 ≤

∑N−j
n=0 L

n. Thus, γN−j+1 = γN−j +CσN−j = C
∑N−j

n=0 σ
n

holds. We rewrite the above inequality as

(C − 1)
N−j∏
i=2

(γi − 1) + C

N−j∏
i=2

(γi − 1)
N−j∑
n=1

σn ≥ CσN−j

N−j∏
i=2

γi.
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Consequently, it suffices to show
∏N−j

i=2 (γi − 1)
∑N−j

n=1 σ
n ≥ σN−j

∏N−j
i=2 γi

which can be done by induction. The induction start j = N − 2 is (γ2 −
1)(σ + σ2) ≥ σ2γ2 or equivalently σ(γ2 − (1 + σ)) ≥ 0 which holds due to the
definition of γ2. The induction step from j + 1  j holds since the desired
inequality may be written as
N−j̄
Y

i=2

(γi − 1)

"

σγN−j −
N−j
X

n=1

σn

#

+ σγN−j

2

4

N−j̄
Y

i=2

(γi − 1)

N−j̄
X

n=1

σn − σN−j̄
N−j̄
Y

i=2

γi

3

5 ≥ 0.

with j̄ := j + 1.

Remark 5. Conditions which guarantee Property 2 can be found in [4].

6 Numerical Examples

We have observed that sampling periods tending to zero cause serious prob-
lems in applying our estimates from Theorem 1, cf. Figure 1. In order to
compensate for this drawback we introduced Property 2 for sampled–data
continuous time systems and generalized our results to this setting, cf. The-
orem 3. This justifies the application of Formula (7) in consideration of the
imposed growth condition and enables us to analyze its impact.

Again, we fix the continuous time optimization interval [0, tF ) and consider
sequence (9). However, we assume – in addition to (8) – Property 2. As a
consequence, we obtain the suboptimality bounds from Formula (7) with

γk
i := min

{
C

i−1∑
n=0

σn
k ,

i−1∑
n=0

Ln
k

}
(20)

with σk := e−λTk = e−λ(2−kT0) and Lk := eLcTk = eLc(2
−kT0). As shown by

Figure 3, our continuity condition counteracts occurring problems in connec-
tion with arbitrary fast sampling.

Next, we consider quantitative effects related to Property 2. Since the
overshoot C has been proven to be the decisive parameter in order to estab-
lish stability, cf. [3, section 6], [5, section 6], we investigate its sensitivity to
changes in the growth constant L. To this aim, we fix the decay rate σ = 0.7.
Our goal consists of determining the maximal overshoot C which allows for
guaranteeing stability for the whole class of systems, i.e., αN ≥ 0, for a given
optimization horizon N . Neglecting our growth condition yields the values
1.8189, 2.0216, 2.2208 for N = 8, 10, and 12 respectively. Whereas Figure 3
shows that Property 2 allows for significantly larger values for C. The impact
of our growth condition remains basically the same for αN > 0, i.e., if we do
not only aim at ensuring stability, but also set performance specification on
our calculated NMPC-Feedback.

Hence, Property 2 allows for calculating tighter bounds, i.e. larger αN

values, and consequently a more accurate characterization of the system’s
behavior.
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Fig. 3. On the left we depict the suboptimality estimates obtained from (7) with
γk

i from (20) with (�) and without (◦) our growth condition (2) in dependence on
the sampling period T . The parameters are the same as used for Figure 1. On the
right the maximal feasible overshoot C in dependence of our growth constant L is
presented for given overshoot σ and optimization horizon N = 8 (solid), 10 (dashed),
and 12 (dash–dotted) respectively for which Theorem 3 guarantees stability, i.e.,
αN ≥ 0.
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Summary. We review a closely connected family of algorithmic approaches for fast
and real–time capable nonlinear model predictive control (NMPC) of dynamic pro-
cesses described by ordinary differential equations or index-1 differential-algebraic
equations. Focusing on active–set based algorithms, we present emerging ideas on
adaptive updates of the local quadratic subproblems (QPs) in a multi–level scheme.
Structure exploiting approaches for the solution of these QP subproblems are the
workhorses of any fast active–set NMPC method. We present linear algebra tailored
to the QP block structures that act both as a preprocessing and as block structured
factorization methods.

1 Introduction

Nonlinear model predictive control has become an increasingly popular con-
trol approach, and is both theoretically and computationally well-established.
However, its application to time-critical systems requiring fast feedback is
still a major computational challenge. We review a closely connected family
of algorithmic approaches for fast and real–time capable NMPC of dynamic
processes described by ordinary differential equations (ODEs) or differential-
algebraic equations (DAEs). We start with the discretization of the optimal
control problems (OCPs), focus on active–set based algorithms for the solution
of the resulting nonlinear programs (NLPs), and present emerging ideas on
adaptive updates of the local quadratic subproblems in a multi–level scheme.
Structure exploiting approaches for the solution of these QP subproblems are
the workhorses of any fast active–set NMPC method. Here, we present linear
algebra tailored to the QP block structures that act both as a preprocessing
and as block structured factorization methods. An introduction to a new block
structured active set QP method concludes our review.
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1.1 Direct Optimal Control in Nonlinear Model Predictive Control

We consider the following class of optimal control problems which typically
arise in nonlinear model predictive control.

min
x(·),u(·)

J(x(t), u(t); p) =
∫ tf

t0

L (x(t), u(t); p) dt+ E (x(tf ; p)) (1a)

s.t. x(t0) = x0, (1b)
ẋ(t) = f (t, x(t), u(t); p) , ∀t ∈ [t0, tf ] (1c)

0 ≤ hpath (x(t), u(t); p) , ∀t ∈ [t0, tf ] (1d)
0 ≤ hend(x(tf); p). (1e)

The OCPs are formulated on a fixed and finite time horizon T := [t0, tf]
which is called the prediction horizon. We denote by x(t) ∈ Rnx the state
vector of the dynamic process, and by u(t) ∈ Rnu the vector of continuous
controls influencing the dynamic process. In the following, we drop the explicit
time dependency and write x and u as shorthands for x(t) and u(t).

The state trajectory is determined by the initial value problem (IVP)
(1b)-(1c), where x0 is the current state of the process and f (t, x(t), u(t); p)
describes the dynamic process model. In this paper we consider process models
described by ordinary differential equations to keep the presentation clear.
However, the approach can naturally be extended to models described by
differential-algebraic equations (see [22]). States and controls may be subject
to path constraints hpath (x(t), u(t); p) and the final state may be restricted
by an end-point constraint hend(x(tf); p).

The objective function is of Bolza type with a Lagrange term L (x, u; p)
and a Mayer term E (x(tf); p). An important and frequently occurring choice
for the Lagrange term are least-squares objective functions of the form

L (x, u; p) = ‖l(x, u; p)‖22, (2)

where l is the least-squares residual vector. A typical example is the tracking-
type objective

L (x, u; p) = (x− x̄)T
Q(t) (x− x̄) + (u− ū)T

R(t) (u− ū) , (3)

with x̄ and ū are given reference trajectories for x and u, and Q(t) and R(t) are
suitable positive definite weighting matrices. A typical choice for the Mayer
term is the quadratic cost

E (x(tf); p) = (x(tf)− x̄(tf))T
P (x(tf)− x̄(tf)) , (4)

with a suitable weighting matrix P . The Mayer term can be used — typically
in conjunction with the end–point constraint hend — to design feedback con-
trol schemes that guarantee stability of the closed-loop system. For a detailed
discussion of nominal stability for NMPC see, e.g., [24].
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The problem may also depend on time-independent model parameters p ∈
Rnp , but they are not included as degrees of freedom for the optimization.
In practice, it may happen that some of the parameters change their value
during the runtime of the process. This gives rise to the important area of
online state and parameter estimation (see [27, 11]). However, in this work we
assume the parameters to be known and constant over time, and we will drop
them in the following presentation.

1.2 The Principle of Model Predictive Control

Model predictive control schemes generate feedback by repetitively performing
the following actions:

1. Obtain the process state x0 at the current sampling time t0.
2. Solve OCP (1) for the current x0 to obtain optimal state and control

trajectories x?(·;x0) and u?(·;x0).
3. Feed back the first part of u?(·;x0) as feedback control to the process

during the current sampling period [t0, t0 + δ].

Advantages of this approach are the possibility to use a sophisticated process
model to predict the behavior of the process, the flexibility in the choice of an
optimization criterion and a natural incorporation of the process constraints.

However, solving an OCP for each sampling time is computationally chal-
lenging. The fact that OCP (1) depends parametrically on x0 has to be ex-
ploited by carefully using the results from the last problem to solve the current
problem.

1.3 Direct Multiple Shooting Discretization

Approaches to solve OCP (1) divide up in indirect methods which first set
up optimality conditions for the OCP and then discretize and solve these
conditions (see [8]) and direct methods which first discretize the OCP and then
setup und solve optimality conditions for the arising nonlinear program. In this
work, we will consider the Direct Multiple Shooting method, first described by
[26] and [7] and extended in a series of subsequent works (see, e.g., [23]). With
the optimal control software package MUSCOD-II an efficient implementation
of this method is available. For the use of other direct methods such as Single
Shooting and Collocation in the context of online optimization we refer to the
recent survey [10] and the references therein.

For a suitable partition of the horizon [t0, tf] into N subintervals [ti, ti+1],
0 ≤ i < N , we set

u(t) = ϕi(t, qi), for t ∈ [ti, ti+1] (5)

where ϕi are given basis functions parametrized by a finite dimensional param-
eter vector qi. The functions ϕi may be for example vectors of polynomials; a
common choice for NMPC are piecewise constant controls



342 C.Kirches, L.Wirsching, S.Sager and H.G.Bock

ϕi(t, qi) = qi for t ∈ [ti, ti+1]. (6)

Note that for this particular choice of basis functions bounds on the control
u transfer immediately to bounds on the parameter vectors qi and vice versa.

Furthermore, we introduce additional variables si that serve as initial val-
ues for computing the state trajectories independently on the subintervals

ẋi(t) = f(t, xi(t), ϕi(t, qi)), xi(ti) = si, t ∈ [ti, ti+1], 0 ≤ i < N.

To ensure continuity of the optimal trajectory on the whole interval [t0, tf] we
add matching conditions to the optimization problem

si+1 = xi(ti+1; ti, si, qi), 0 ≤ i < N (7)

where xi(t; ti, si, qi) denotes the solution of the IVP on [ti, ti+1], depending
on si and qi. This method allows using state-of-the-art adaptive integrators
for function and sensitivity evaluation, cf. [1, 25]. The path constraints (1d)
are enforced in the shooting nodes ti.

1.4 Sequential Quadratic Programming

From the multiple shooting discretization we obtain the NLP

min
s,q

N−1∑
i=0

Li (si, qi) + E (sN ) (8a)

s.t. 0 = s0 − x0, (8b)
0 = si+1 − xi(ti+1; ti, si, qi), 0 ≤ i < N, (8c)
0 ≤ hpath(si, ϕi(ti, qi)), 0 ≤ i < N, (8d)
0 ≤ hend(sN ), (8e)

where

Li (si, qi) =
∫ ti+1

ti

L(x(t), ϕi(t, qi)) dt. (9)

This NLP depends parametrically on x0 and can be written in the generic
form

min
w

φ(w) s.t. c(w) + Λx0 = 0, d(w) ≥ 0, (10)

where Λ = (−Inx , 0, 0, . . . ) and w = (s0, q0, . . . , sN−1, qN−1, sN ) is the vector
of all unknowns.

We choose to solve this NLP using a Newton–type framework. The vari-
ous structural features such as the separable Lagrangian, the block diagonal
Hessian, and the block structure of the Jacobians of the matching constraints
(7) can be extensively exploited by tailored linear algebra. In particular using
block–wise high–rank updates of the Hessian and a structure–exploiting algo-
rithm for the solution of the arising QP subproblems as presented in section
4 improves convergence speed and computational efficiency.
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Starting with an initial guess (w0, λ0, µ0), a full step sequential quadratic
programming (SQP) iteration is performed as follows

wk+1 = wk +∆wk, λk+1 = λk
QP, µk+1 = µk

QP (11)

where (∆wk, λk
QP, µ

k
QP) is the solution of the QP subproblem

min
∆w

1
2∆w

TBk∆w + bkT∆w (12a)

s.t. 0 = Ck∆w + c(wk) + Λx0, (12b)

0 ≤ Dk∆w + d(wk). (12c)

Here, Bk denotes an approximation of the Hessian of the Lagrangian of (8),
and bk, Ck and Dk are the objective gradient and the Jacobians of the con-
straints c and d.

2 SQP based Model–Predictive Control

2.1 Initial Value Embedding and Tangential Predictors

The key to a performant numerical algorithm for NMPC is to reuse informa-
tion from the last QP subproblem to initialize the new subproblem. This is
due to the fact that subsequent problems differ only in the parameter x0 of
the linear embedding Λ. Given that the sampling periods are not too long
and that the process does not behave too different from the prediction by the
model, the solution information of the last problem can be expected to be a
very good initial guess close to the solution of the new subproblem.

In [9] and related works it has been proposed to initialize the current
problem with the full solution of the previous optimization run, i.e., control
and state variables. Doing so, the value of s0 will in general not be the value
of the current state. By explicitly including the initial value constraint (8b)
in the QP formulation, we can guarantee that the constraint is satisfied after
the first full Newton–type step due to its linearity in x0. This is called the
initial value embedding technique.

On the other hand, by using the full solution of the last problem as ini-
tialization of the new problem, the first full Newton–type step already gives
us a first order approximation of the solution of the new problem, even in the
presence of an active set change. This motivates the idea of real–time itera-
tions, which perform only one Newton–type iteration per sample, and is at
the same time the main reason for our preference of active set methods over
interior–point techniques. We refer to [10] for a detailed survey on the topic
of initial value embeddings and the resulting first order tangential predictors.
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2.2 Real–Time Iterations

Using the initial value embedding also has an important algorithmical advan-
tage. We can evaluate all derivatives and all function values except the initial
value constraint prior to knowing the current state x0. Consequently, we can
also presolve a major part of QP (12). This allows to separate each real–time
iteration into the following three phases.

Preparation

All functions and derivatives that do not require knowledge of x0 are evaluated
using the iterate of the previous step (wk, λk, µk). Due to its special structure,
the variables (∆s1, . . . ,∆sN ) can be eliminated from QP (12), cf. section 4.

Feedback

As soon as x0 is available, ∆s0 can be eliminated as well and a small QP
only in the variables (∆q0, . . . , ∆qN−1) is solved. The variable qk+1

0 = qk
0 +

∆qk
0 is then given to the process, allowing to compute the feedback control

ϕ0(t, qk+1
0 ). Thus, the actual feedback delay reduces to the solution time of the

QP resulting from both eliminations. The affine-linear dependence of this QP
on x0 via Λ can further be exploited by parametric quadratic programming
as described in section 2.3.

Transition

Finally, the eliminated variables are recovered and step (11) is performed to
obtain the new set of NLP variables (wk+1, λk+1, µk+1).

2.3 Parametric Quadratic Programming

Both the structured NLP (8) and the QP subproblems (12) derived from
it depend parametrically on x0. This linear dependence on x0 is favourably
exploited by parametric active set methods for the solution of (12), cf. [4]
and [12]. The idea here is to introduce a linear affine homotopy in a scalar
parameter τ ∈ [0, 1] ⊂ R from the QP that was solved in iteration k − 1 to
the QP to be solved in iteration k:

min
∆w

1
2∆w

TBk∆w + bT (τ)∆w (13a)

s.t. 0 = Ck∆w + c(τ) + Λx0(τ), (13b)

0 ≤ Dk∆w + d(τ), (13c)

with initial values x0(0) = xk−1
0 , x0(1) = xk

0 . Linear affine gradient and con-
straint right hand sides on the homotopy path,
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b(τ) = (1− τ)b(wk−1) + τb(wk), (14a)

c(τ) = (1− τ)c(wk−1) + τc(wk), (14b)

d(τ) = (1− τ)d(wk−1) + τd(wk), (14c)

allow for an update of the QP’s vectors in iteration k by one of the multi–level
scheme’s modes, cf. section 3. From the optimality conditions of QP (13) in
τ = 0 and τ = 1 it is easily found that an update of the QP’s matrices is
possible as well, without having to introduce matrix–valued homotopies.

Using this approach to compute the SQP algorithm’s steps has multiple
advantages. First, a phase I for finding a feasible point of the QP is unnec-
essary, as we can start the homotopy in a trivial QP with zero vectors and
known optimal solution. Second, we can monitor the process of solving the
QP using the distance 1 − τ to the homotopy path’s end. Intermediate iter-
ates are physically meaningful and optimal for a known QP on the homotopy
path. Thus, intermediate control feedback can be given during the ongoing
solution process. Finally, premature termination of the QP solution process
due to computing time constraints becomes possible, cf. [12].

3 The Multi–Level Iteration Scheme

A novel and promising algorithmic approach to SQP based nonlinear model
predictive control is the multi–level iteration method, first proposed in [6, 5].

The multi–level iteration method aims at providing feedback very fast,
while updating the data of the feedback-generating QP with information from
the process on different levels. We distinguish four levels or modes, from which
multi–level iteration schemes can be combined.

3.1 Mode A: Feedback Iterations

For Mode A, we assume that QP (12) is given with a Hessian approxima-
tion B, objective gradient b, constraint values c, d, and Jacobians C, D, and
working on a reference solution (w, λ, µ). The aim of Mode A is to compute
feedback by resolving the QP for new given current states x0 and returning
the control parameters q0 +∆qk

0 to the process as quickly as possible. Mode
A is essentially a linear model predictive controller (LMPC). In contrast to
LMPC which uses linearizations of a steady state model, Mode A works on
linearizations provided by higher modes of the multi–level scheme, which may
include transient phases of the nonlinear process.

3.2 Mode B: Feasibility Improvement Iterations

In Mode B, we assume that we have a Hessian approximation B, a reference
objective gradient b, Jacobians C, D and a reference solution (w, λ, µ). Fur-
thermore, Mode B holds its own variables wk

B, which are initially set to w.
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To finish the setup of QP (12), we evaluate new function values c(wk) and
d(wk) and approximate the QP gradient by b(wk) = b+B

(
wk

B − w
)
, so that

we come up with the following QP

min
∆wk

B

1
2
∆wk T

B B ∆wk
B + b(wk)T∆wk

B (15a)

s. t. C ∆wk
B + c(wk) + Λx0 = 0 (15b)

D∆wk
B + d(wk) ≥ 0. (15c)

Once we have solved the QP, we return the control parameters qk
B,0 +∆qk

B,0

to the process and iterate by setting wk+1
B = wk

B +∆wk
B.

When performing Mode B iterations with a fixed x0, one can show that
wk

B converges locally to a suboptimal but feasible point of NLP (8), thus
Mode B iterations are also referred to as feasibility improvement iterations.
Optimality is approximately treated by the gradient updates. In comparison
to Mode A, the additional computational cost for a Mode B iteration are
evaluations of the constraints c and d, and condensing of the constraint vectors
and the approximated gradient. Since the QP matrices are fixed, no new
matrix decompositions are required during QP solving.

3.3 Mode C: Optimality Improvement by Adjoint SQP Iterations

In Mode C, we assume that we have a Hessian approximation B, Jacobians
C, D and a reference solution (w, λ, µ). Furthermore, Mode C holds its own
variables (wk

C, λ
k
C, µ

k
C), which are initially set to (w, λ, µ). To finish the setup

of QP (12), we have to evaluate new function values c(wk) and d(wk), and we
compute a modified gradient by

b(wk) = ∇φ(wk) +
(
C

T − Ck T
)
λk +

(
D

T −Dk T
)
µk, (16)

where Ck and Dk are the Jacobians of the constraints c and d at wk. However,
the Jacobians need not to be calculated completely, but rather the adjoint
derivatives Ck Tλk and Dk Tµk. This can be done efficiently by the reverse
mode of automatic differentiation, cf. [17]. After solving the following QP

min
∆wk

C

1
2
∆wk T

C B ∆wk
C + b(wk)T∆wk

C (17a)

s. t. C ∆wk
C + c(wk) + Λx0 = 0 (17b)

D∆wk
C + d(wk) ≥ 0, (17c)

we return the control parameters qk
C,0 +∆qk

C,0 to the process and iterate by
setting

wk+1
C = wk

C +∆wk
C, λk+1

C = λk
QP, µk+1

C = µk
QP, (18)
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where λk
QP and µk

QP are the multipliers obtained from the QP solution.
When performing Mode C iterations with a fixed x0, one can show local

convergence of the sequence (wk
C, λ

k
C, µ

k
C) to a KKT–point of NLP (8), cf.

[31], thus Mode C iterations are also referred to as optimality improvement
iterations. In comparison to Mode B, the additional computational cost for a
Mode C iteration are evaluations of the adjoint derivatives Ck Tλk andDk Tµk

which can be obtained at no more than five times the cost of the respective
constraint evaluation [17]. Again, no new matrix decompositions are required
during QP solving.

3.4 Mode D: Forward SQP Iterations

Mode D iterations are essentially standard real–time iterations, i.e. full SQP
iterations. Mode D holds its own variables (wk

D, λ
k
D, µ

k
D) and in each Mode D

iteration, we evaluate the constraints c(wk) and d(wk), the objective gradi-
ent b(wk), and the constraint Jacobians C(wk) and D(wk), and build a new
Hessian approximation B(wk). After solving QP (12) the control parameters
qk
D,0 +∆qk

D,0 are given to the process and we iterate by setting

wk+1
D = wk

D +∆wk
D, λk+1

D = λk
QP, µk+1

D = µk
QP, (19)

where λk
QP and µk

QP are the multipliers obtained from the QP solution. In each
Mode D iteration we have to evaluate the full constraint Jacobians, which
amounts to the computational cost of the number of degrees of freedom times
the cost for a constraint evaluation. Furthermore, a full initial decomposition
has to be performed for the solution of the QP, cf. section 4, which depend-
ing on the chosen block structured QP method may have a computational
complexity of up to O(N2n3).

3.5 Assembling Multi-level Iteration Schemes

From the four modes described above, we can assemble multi-level iteration
schemes in various ways. A sequential approach is outlined in the following:
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Choose initial B,C, D,b,c, d and (w, λ, µ) for all modes
while Process running do

Determine mode
case mode A: Perform calculations described in subsection 3.1
case mode B: Perform calculations described in subsection 3.2

Update b, c, d in mode A with the new values from mode B
Update w in mode A with wB

case mode C: Perform calculations described in subsection 3.3
Update b, c, d in mode A and B with the new values from mode C
Update w in mode A and wB with wC

case mode D: Perform calculations described in subsection 3.4
Update B, C, D, b, c, d in mode A, B and C with the new mode D

values
Update w in mode A and wB, wC with wD and (λc, µc) with (λD, µD)

end while

However, a parallel implementation would be an even more natural choice,
starting all modes at one time and then performing the updates described
above whenever one of the modes has finished one calculation cycle. Ofcouse,
one has to consider the issue of synchronization, so that the faster modes are
updated only after finishing their current feedback calculation.

Multi-level iteration schemes do not need to employ all modes described
above. An example application of a sequential multi-level iteration scheme
using modes A and D to a vehicle model is presented in [1].

3.6 Euler Steps

In some cases the limiting factor for feedback generation is the sampling rate
of the system states x0, e.g., if the current states are obtained from a mea-
surement procedure with limited throughput.

If it is still desired to update the feedback control with a higher frequency,
a possible remedy is to use the model to predict the next x0 by an Euler step

xnew
0 = x0 + hf(x0, ϕ0(t0, qk

0 )) (20)

with a small stepsize h = tnew
0 −t0 and use xnew

0 to obtain a new feedback qk+1
0 .

In addition, as the explicit Euler scheme generates a linear affine homotopy
path for xnew

0 (t) starting in t0, it can be readily combined with the parametric
QP strategy of section 2.3. This allows system state predictions to enter the
QP solution even before the solution process has been completed.

3.7 Computing the Local Feedback Law

Phase A iterations can even be used to generate a local feedback law which
maps differences ∆x0 = xnew

0 − x0 to feedback updates and thus can be used
as an explicit continuous feedback law betweeen two following QP solutions.
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To see this, we consider the Karush-Kuhn-Tucker (KKT) system of the
QP after a successful solution B −CT −DT

A
C
DA


︸ ︷︷ ︸

:=K

∆w
∆λ
∆µA

 = −

 b
c+ Λx0

dA

 , (21)

where A is the optimal active set. Let I be the index set of ∆q0 within ∆w.
We can easily calculate the part of the inverse of K which gives us ∆q0 when
applied to the right hand side by solving

KTXi = ei, i ∈ I, (22)

with ei the i-th unity vector. Since a decomposition of K is available from
the QP solver, this amounts to only nu backsolves. Assuming that A keeps
constant for small changes in x0, we can determine an update for ∆q0 by
building

XT

 0
Λ∆x0

0

 , (23)

for which we actually need only a small part of the matrix X.

4 Structured Quadratic Programming

This final part of our survey is concerned with numerical methods for the effi-
cient solution of the QPs that arise from a direct multiple shooting discretiza-
tion of the model predictive control problem. The focus is put on methods
that efficiently exploit the block structure of problem (24) by appropriate lin-
ear algebra. We present the condensing algorithm due to [26, 7] that works as
a preprocessing step, mention Riccati recursion to exploit the block structure,
and conclude with a block structured active set method.

4.1 The Block Structured Quadratic Subproblem

To gain insight into the direct multiple shooting structure of QP (12) we
rewrite it to expose the individual block matrices. The matching conditions
(7) are separated in (24b), and equality as well as inequality point constraints
are collected in (24c):

min
∆w

N∑
i=0

(
1
2∆w

T
i Bi∆wi + ΦT

i ∆w
)

(24a)

s.t. 0 = Xi∆wi −∆wi+1 − hi 0 ≤ i < N (24b)
0 5 Ri∆wi + ri 0 ≤ i ≤ N (24c)
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4.2 Condensing and Dense Active Set Methods

The purpose of the following condensing algorithm that is due to [26] and
[7], cf. also [23], is to exploit the block sparse structure of QP (24) in a
preprocessing or condensing step that transforms the QP into a smaller and
densely populated one.

Reordering the Sparse Quadratic Problem

We start by reordering the constraint matrix of QP (24) to separate the mul-
tiple shooting state values ∆v1 = (∆s1, . . . , ∆sN ) introduced in section 1.3
from the single shooting values ∆v2 = (∆s0,∆q0, . . . ,∆qN−1) as shown in
(25). Therein, we use partitions Xi = (Xs

i X
q
i ) and Ri = (Rs

i R
q
i ) of the

Jacobians Xi and Ri with respect to ∆s and ∆q.

Xs
0 X

q
0 −I
Xq

1 Xs
1 −I

. . . . . . . . .
Xq

N−1 Xs
N−1 −I

Rs
0 R

q
0

Rq
1 Rs

1

. . . . . .
Rq

N−1 Rs
N−1

Rs
N


. (25)

Elimination Using the Matching Conditions

We may now use the negative identity matrix blocks of the equality match-
ing conditions as pivots to formally eliminate the state values (∆s0, . . . , ∆sN )
from system (25), analogous to the usual Gaussian elimination method for tri-
angular matrices. From this elimination procedure the dense constraint matrix

(
X−I
R 0

)
:=



Xs
0 Xq

0 −I
Xs

1X
s
0 Xs

1X
q
0 Xq

1 −I
...

...
...

. . . . . .
ΠN−1

0 ΠN−1
1 Xq

0 ΠN−1
2 Xq

1 · · · X
q
N−1 −I

Rs
0 Rq

0

Rs
1X

s
0 Rs

1X
q
0 Rq

1
...

...
...

. . .
Rs

NΠ
N−1
0 Rs

NΠ
N−1
1 Xq

0R
s
NΠ

N−1
2 Xq

1 · · ·Rs
NX

q
N−1


is obtained, with sensitivity matrix products Πk

j defined to be

Πk
j :=

k∏
l=j

Xs
l , 0 ≤ j ≤ k ≤ N − 1. (26)
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From (4.2) we deduce that, after this elimination step, the transformed QP
in terms of the two unknowns ∆v1 and ∆v2 reads

min
∆v

1
2

(
∆v1
∆v2

)T
(
B11 B12

B
T

12 B22

)(
∆v1
∆v2

)
+
(
Φ1

Φ2

)T (
∆v1
∆v2

)
(27a)

s.t. 0 = X∆v1 −∆v2 − h (27b)

0 5 R∆v1 − r (27c)

wherein B and Φ are reorderings of B and Φ, and h and r are appropriate
right hand side vectors obtained by applying the Gaussian elimination steps
to h and r.

Reduction to a Single Shooting Sized System

System (27) lends itself to the elimination of the unknown ∆v2. By this step
we arrive at the final condensed QP

min
∆v1

1
2∆v

T
1 B∆v1 + Φ

T
∆v1 (28a)

s.t. 0 ≤ R∆v1 − r (28b)

with the following dense Hessian matrix and gradient obtained from substi-
tution of ∆v2 in the objective (27a)

B = B11 +B12X +X
T
B

T

12 +X
T
B22X, (29a)

Φ = Φ1 +X
T
Φ2 −B

T

12h−X
T
B22h. (29b)

The required matrix multiplications are easily laid out to exploit the block
triangular structure of X and the block diagonal structure of B. In addition,
from the elimination steps described in the previous two paragraphs one ob-
tains relations that allow to recover ∆v2 = (∆s1, . . . , ∆sN ) from the solution
∆v1 = (∆s0, ∆q0, . . . , ∆qN−1) of the condensed QP (28).

Solving the Condensed Quadratic Problem

The resulting condensed QP (28) no longer has a multiple shooting specific
structure. It may thus be solved using any standard dense active–set method,
which is what condensing ultimately aims for. Popular codes are the null space
method QPSOL and its successor QPOPT [15]. The code BQPD [13] is even able
to exploit remaining sparsity to some extent. An efficient code for parametric
quadratic programming is qpOASES [12].
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Condensing in Model–Predictive Control

The run time complexity of the condensing preprocessing step is O(N2) due
to the elimination in (4.2). As all controls remain in the condensed QP, from
which all states additionally introduced in section 1.3 are eliminated, con-
densing is a computationally favourable approach for model predictive control
problems with a large number nx of system states, few control parameters,
and a limited number N of discretization points of the prediction horizon.
The majority of condensing can be carried out in the preparation phase, cf.
section 2.2, as the initial value xnew

0 need not be known in advance. This re-
duces the control feedback delay to essentially the run time of the QP solver
on the condensed QP (28).

4.3 Riccati Recursion

While the condensing algorithm acts as a preprocessing step on the block
structured QP data, an alternative approach is to exploit this structure inside
the QP solver, i.e. to solve block structured KKT systems. Riccati recur-
sion, based on the dynamic programming principle, is a popular concept here.
Starting with the last shooting node’s cost function

φN (∆sN ) = 1
2∆s

T
NBN∆sN + ΦT

N∆sN (30)

the cost–to–go function φN−1 of the previous node is found from tabulation
of the optimal control step ∆qN−1 for each admissible state step ∆sN−1. This
procedure is repeated until the backwards recursion arrives at the first node
i = 0, at which point the sequence of optimal control steps ∆q can simply be
obtained from a table look–up using the estimated or measured initial value
xnew

0 .
The optimal control steps∆qi of nodes i = N−1, . . . , 0 are found by solving

the purely equality-constrained QP (31) using an appropriate factorization of
the associated KKT system,

φi(∆si) = min
∆si+1

∆qi

1
2

(
∆si

∆qi

)T (
Bss

i Bsq
i

Bqs
i Bqq

i

)(
∆si

∆qi

)
+
(
Φs

i

Φq
i

)T (
∆si

∆qi

)
+ φi+1(∆si+1)

(31a)

s.t. hi =
(
Xs

i X
q
i

)(∆si

∆qi

)
−∆si+1. (31b)

Riccati Recursion in Model–Predictive Control

By observing that the optimal cost–to–go functions φi(∆si) remain quadratic
functions,

φi(∆si) = ∆sT
i Pi∆si + pT

i ∆si + πi, (32)
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and by inserting (31b) into (31a), the unknown ∆si+1 can be eliminated.
Problem (31) then becomes an unconstrained minimization problem,

φi(∆si) = min
∆qi

1
2

(
∆si

∆qi

)T (
Bss

i +Xs
i
TPi+1X

s
i Bsq

i +Xs
i
TPi+1X

q
i

Bqs
i +Xq

i
T
Pi+1X

s
i B

qq
i +Xq

i
T
Pi+1X

q
i

)(
∆si

∆qi

)
(33a)

+
(
Φs

i −Xs
i
TPi+1hi +Xs

i
T pi+1

Φq
i −X

q
i

T
Pi+1hi +Xq

i
T
pi+1

)T (
∆si

∆qi

)
(33b)

+ hT
i Pi+1hi − pT

i+1hi + πi+1 (33c)

From this, an explicit expression for the optimal ∆qi is easily obtained. Insert-
ing it into the cost–to–go function finally allows for the direct computation
of φi(∆si). The backwards recursion can thus be started with PN = BN ,
pN = Φn, πn = 0, and carried out without knowledge of the true system state
xnew

0 . After the backward sweep has been completed, the feedback control step
is available as

∆q0 = K0(x0 − xnew
0 ) + k0 (34)

with an nq × nx matrix K0 and an nq-vector k0 obtained from the backward
sweep eliminations. The feedback delay is as small as the time required for a
matrix–vector–multiplication with K0. A forward recursion starting with the
known initial value ∆s0 = xnew

0 − s0 is employed afterwards to recover the
steps ∆q1, . . . , ∆qN−1 and ∆s which are not needed for the immediate control
feedback.

Inequality Constraints

The applicability of Riccati recursion is restricted to purely equality con-
strained systems, i.e. KKT systems or QPs with only equality constraints.
In order to treat inequality constraints, a Riccati recursion based KKT solver
can be employed inside an active set method. The performance of such Riccati
recursion based active set solvers suffers from the O(Nn3) runtime complexity
of the KKT system solution, and the approach is thus more popular for inte-
rior point methods [18, 28, 30], where it has been successfully used in place
of symmetric indefinite factorizations.

4.4 Block Structured Active Set Methods

A third possibility of solving QP (24) is to employ a block structured factor-
ization of the KKT system inside an active set method. For efficiency, matrix
updates for such factorizations should be available.
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Block Structured Factorization

We present here a block structured factorization due to [19, 30] that is com-
posed from step-wise reductions of the KKT matrix (35), in which all matrices
and vectors are understood as restrictions onto the current active set,

B0 R
T
0 XT

0

R0

X0 P1

PT
1 B1 R

T
1 XT

1

R1

X1

. . .
BN RT

N

RN


(35)

Similar to Ricatti recursion, the idea is to factorize this KKT matrix and
exploit the inherent block structure while avoiding any fill–in.

Matrix Updates

Contrary to Ricatti recursion, though, we desire to derive a factorization that
opens up the possibility of applying matrix update techniques, cf. [14, 16].
These allow to recover the factorization of the KKT matrix after an active
set exchange in O(n2) time, while computing a factorization anew usually
requires O(n3) time. An example is the Schur complement based dual active
set method presented in [29, 3]. A factorization tailored to the block structure
(35) that is based on a hybrid null–space range–space is given in [19]. Suitable
updates are derived in [20], based on techniques by [14].

Runtime Complexity

This approach has O(N) runtime complexity compared to O(N2) for the
condensing approach of section 4.2, and is therefore suited problems that
require longer prediction horizons or finer discretizations of the prediction
horizon. As the factorization eliminates all controls from the system in the
first step, problems with limited state dimension but with a large number
of controls, e.g. in mixed–integer predictive control [21] or in online optimal
experimental design, will benefit from this approach. Compared to the O(n3)
runtime complexity of Riccati recursion techniques, the availability of matrix
updates reduces the runtime complexity for all but the first iteration of the
active set loop to O(n2).
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5 Summary

We reviewed a collection of state–of–the–art numerical methods for efficient
NMPC of nonlinear dynamic processes in ODE and DAE systems under real–
time conditions. Our presentation started with a presentation of the discussed
problem class and a brief introduction to direct multiple shooting for the dis-
cretization of the optimal control problem. We focussed on a Newton–type
framework for the solution of the resulting nonlinear problem, relying on ac-
tive set based methods. In combination with initial value embedding, the
real–time iteration scheme provides an efficient first order tangential predic-
tor of the optimal feedback control. A multi–level scheme featuring at least
four distinct modes that provide adaptive updates to selected components of
the quadratic subproblem is presented, and we mentioned theoretical results
as well as computational effort of the different modes. Connections to emerg-
ing ideas such as parametric quadratic programming, Euler feedback steps,
and the computation of the local linear feedback law providing microsecond
control feedback opportunities are shown. The efficient solution of the arising
quadratic subproblems is the core of all active–set based NMPC algorithms.
Here we introduced the block structure that is due to direct multiple shooting,
and reviewed the condensing preprocessing step as well as a Riccati recursion
scheme. Both exploit the exhibited block structure, but also left room for im-
provements. Our survey concluded with mentioning block structured active
set methods. These require matrix updates tailored to the block structure,
but are able to reduce the run time of an active set iteration to an unmatched
complexity of O(Nn2).
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Fast nonlinear model predictive control with an application in automotive engi-
neering. In L. Magni, D. Raimondo, and F. Allgöwer, editors, Lecture Notes in
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Periodic Adsorption Processes:
The Newton-Picard Inexact SQP Method
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Summary. The Newton-Picard method for the computation of time-periodic solu-
tions of Partial Differential Equations (PDE) is an established Newton-type method.
We present an improvement of the contraction rate by an overrelaxation for the Pi-
card iteration which comes with no additional cost. Theoretical convergence results
are given. Further, we extend the idea of Newton-Picard to the solution of opti-
mization problems with time-periodic Partial Differential Equations. We discuss the
resulting inexact Sequential Quadratic Programming (SQP) method and present
numerical results for the ModiCon variant of the Simulated Moving Bed process.

1 Introduction

Periodic adsorption processes play an important role in chemical engineer-
ing. E.g., in preparative chromatography, product purity and yield can be
significantly increased by transition from batch to periodic operation. A pro-
duction plant will usually be operated in a periodic steady state, also called
“cyclic steady state” (CSS). To exploit the high potential of periodic oper-
ation, numerical optimization has been proven to be an indispensable tool
(see, e.g., [12, 17, 4, 8]). The resulting optimization problems are subject to
PDE constraints and additional boundary conditions for periodicity in time.
The main focus of this article is on the employment of a fast solver for the
determination of periodic solutions [11] simultaneously with an inexact SQP
optimization method similar to [5].

2 Application: The Simulated Moving Bed Process

In a chromatographic column, different components that are dissolved in a
liquid are separated due to different affinities to the adsorbent. As a result,

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_31, © Springer-Verlag Berlin Heidelberg 2010 
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Fig. 1. SMB configuration with 6 columns and 4 zones.

the different components move with different velocities through the column,
and hence, can be separated into nearly pure fractions at the outlet. The SMB
process consists of several chromatographic columns which are interconnected
in series to constitute a closed loop (see Figure 1). An effective counter-current
movement of the stationary phase relative to the liquid phase is realized by
periodic and simultaneous switching of the inlet and outlet ports by one col-
umn in the direction of the liquid flow. Compared to the batch operation of
a single chromatographic column, the Simulated Moving Bed (SMB) process
offers great improvements of process performance in terms of eluent consump-
tion and utilization of the solid bed. In the basic SMB process, all flow rates
are constant and the switching of the columns is simultaneous with a fixed
switching period. By introducing more degrees of freedom, the efficiency of
the separation can be increased further. E.g., the flow rates can be varied
during the switching periods (PowerFeed), the feed concentration can be var-
ied during the switching periods (ModiCon) or asynchronous switching of the
ports can be introduced (VariCol) [14, 15].

Accurate dynamic models of such multi-column continuous chromato-
graphic processes consist of the dynamic process models of the single chro-
matographic columns, the node balances which describe the connection of
the columns, and the port switching. The behaviour of radially homogeneous
chromatographic columns is described by the General Rate Model [13].

For both species i = 1, 2, the General Rate Model considers three phases,
namely the instationary phase ci which moves through the columns between
the fixed bed particles, the liquid stationary phase cp,i inside the porous fixed
bed particles, and the adsorbed stationary phase qp,i on the inner surface of
the particles.
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It is assumed that the columns are long and thin enough that radial con-
centration profiles can be neglected. The fixed bed particles are assumed to
be spherical and the concentrations inside the particles are assumed to be
rotationally symmetric. The governing equations in non-dimensional form are

∂tci = Pe−1
i ∂2

zci − ∂zci − Sti (ci − cp,i|r=1) , (t, z) ∈ (0, T )× (0, 1), (1a)

∂t ((1− εp)qp,i + εpcp,i) = ηi

(
r−2∂r

(
r2∂rcp,i

))
, (t, r) ∈ (0, T )× (0, 1), (1b)

together with the boundary conditions

∂zci(t, 0) = Pei

(
ci(t, 0)− cin(t)

)
, ∂zci(t, 1) = 0,

∂rcp,i(t, 0) = 0, ∂rcp,i(t, 1) = Bii (ci(t, z)− cp,i(t, 1)) ,

with positive constants εp (porosity), ηi (nondimensional diffusion coefficient),
Pei (Péclet number), Sti (Stanton number), and Bii (Biot number). The sta-
tionary phases are coupled by an algebraic condition, e.g. the nonlinear Bi-
Langmuir isotherm equation

qp,i =
H1

i cp,i

1 + k1
1cp,1 + k1

2cp,2
+

H2
i cp,i

1 + k2
1cp,1 + k2

2cp,2
, (2)

with non-negative constants Hj
i (Henry coefficients) and kj

i (isotherm param-
eters).

The model poses a number of difficulties:

1. The isotherm equations are algebraic constraints.
2. The time derivatives ∂tqp,i and ∂tcp,i are coupled on the left hand side of

equation (1b).
3. For each point z ∈ [0, 1] in the axial direction a stationary phase equa-

tion (1b) is supposed to hold.
4. The stationary phase equation has a singularity for r = 0.

Points 1 and 2 are addressed by elimination of qp,i via substitution of the
algebraic constraints (2) into equation (1b). After differentiation with respect
to t, one obtains a system of the form

G(cp,1, cp,2)
(
∂tcp,1

∂tcp,2

)
=
(
η1
(
r−2∂r

(
r2∂rcp,1

))
η2
(
r−2∂r

(
r2∂rcp,2

))) ,
where the coupling 2-by-2 matrix G depends nonlinearly on cp,i.

Regarding point 3, one should think of equation (1b) as living on the 2-
dimensional (z, r) domain without any derivatives in the axial direction. The
coupling occurs through the boundary conditions and equation (1a).

The model for the whole Simulated Moving Bed process consists of a fixed
number Ncol of columns described by the General Rate Model and mass bal-
ances at the ports between the columns. The concentrations of column j are
denoted by a superscript j. In the ModiCon variant, the process is controlled
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by the time-independent flow rates QDe (desorbent), QEx (extract), QRec (re-
cycle) and the time-dependent feed concentration cFe(t). The feed flow rate
QFe is fixed. The remaining flow rates, which are the raffinate flow rate QRa

and the zone flow rates QI , . . . , QIV , are fully determined by conservation of
mass via

QRa = QDe −QEx +QFe,

QI = QDe +QRec,

QII = QI −QEx,

QIII = QII +QFe,

QIV = QIII −QRa = QRec.

The inflow concentrations of the column after the feed and the desorbent
ports can be calculated from the feed concentration cFe,i and from the outflow
concentrations cout

.,i of the previous column according to

cinI,iQI = cout
IV,iQIV,

cinIII,iQIII = cout
II,iQII + cFe,iQFe,

for i = 1, 2, With the port concentrations and the flow rates the feed, extract,
and raffinate masses, and the product purities can be calculated via

mFe,i(t) =
∫ t

0

cFe,i(τ)QFedτ,

mEx,i(t) =
∫ t

0

cout
I,i (τ, 1)QExdτ,

mRa,i(t) =
∫ t

0

cout
III,i(τ, 1)QRadτ,

PurEx(t) = mEx,1(t)/(mEx,1(t) +mEx,2(t)),
PurRa(t) = mRa,2(t)/(mRa,1(t) +mRa,2(t)).

3 Formulation of the Optimization Problem

We consider the optimization of an SMB process with variable feed concentra-
tion (ModiCon process) with respect to the purity of the two product streams
Purmin for a constant feed flow QFe but varying feed concentration cFe(t).
Over one period T , the average feed concentration must be equal to the given
feed concentration cSMB

Fe of a reference SMB process.
We discretize the spatial part of the PDE inside the particles with one

polynomial (see [7]) and use an appropriate discontinuous Galerkin method



Optim. of Periodic Ads. Proc.: The Newton-Picard inexact SQP method 365

for the axial direction of the columns. This leads to a system of ordinary
differential equations. Let all the discretized concentrations cji , c

j
p,i be com-

bined into a single vector x, all masses mFe,i,mEx,i,mRa,i into m, and the
time-independent quantities QDe, QEx, QRec, T , Purmin into v.

The semi-discretized optimal control problem to be solved is then

maximize
x,m,cFe,v

Purmin

subject to ẋ(t) = f(t, x(t), cFe(t), v), t ∈ [0, T ],
ṁ(t) = fm(x(t), cFe(t), v), t ∈ [0, T ],
x(0) = Px(T ),
m(0) = 0,

mFe(T ) = cSMB
Fe QFeT,

PurEx(T ) ≥ Purmin,

PurRa(T ) ≥ Purmin,

cFe,max ≥ cFe(t) ≥ 0, t ∈ [0, T ],
QDe,max ≥ QDe,

Qmax ≥


0 I 0 0
0 0 0 I
I −I I 0
I 0 0 I
I −I 0 I
I −I I I



QDe

QEx

QFe

QRec

 ≥ Qmin,

The constant permutation matrix P represents the switching of ports.
We discretize the control cFe(t) as piecewise constant on a control grid

0 = t0 < t1 < · · · < tN = T with values qi in (ti−1, ti]. The states x are
parametrized by their free initial value, denoted by s0. A parametrization for
the integration states m is not needed. The remaining degrees of freedom are
just w = (s0, v, q1, . . . , qN ) with the dimensions ns + nv +Nnq.

We denote intermediate state variables on the control discretization grid as
si and mi. They can be determined by integration of the differential equation.
The optimization problem is (with obvious choices of the functions J, r and
the vectors vl, vu, ql, qu)

minimize
w

J(v) (3a)

subject to s0 − PsN = 0, (3b)

r(mN , v)
{

=
≥

}
0, (3c)

vu ≥ v ≥ vl, (3d)
qu ≥ q ≥ ql. (3e)

We denote the sensitivities of sN and mN with
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Xs =
dsN

ds0
, Xv =

dsN

dv
, Xi

q =
dsN

dqi
,

Ys =
dmN

ds0
, Yv =

dmN

dv
, Y i

q =
dmN

dqi
,

for i = 1, . . . , N . Furthermore, we define Rm = ∂r
∂m and Rv = ∂r

∂v .

4 Calculating Periodic Solutions

4.1 The Newton-Shift-Picard Method

In this section we want to review and extend existing techniques for the deter-
mination of the CSS when the controls and switching period are fixed. Thus,
we are interested in solving equation (3b) alone. Lust et al. [11] have studied
and analyzed Newton-Picard methods in the framework of approximate New-
ton methods. In a simplified form, they approximate the Newton system for
the step ∆s0

(I−M)∆s0 = −(s0 − PsN ), with M = PXs, (4)

by the projective approximation(
I−MV V T

)
∆s0 = −(s0 − PsN ), (5)

where M is only calculated on the subspace spanned by the columns of the
orthonormal ns-by-p matrix V . We extend this approximation to the form[

1/(1 + σ)
(
I− V V T

)
+ (I−M)V V T

]
∆s0 = −(s0 − PsN ),

with a scalar relaxation factor σ 6= −1. We call σ the “shift” factor for reasons
which will become clear later in the convergence proof. For σ = 0, we exactly
recover equation (5), and if additionally p = ns, we recover equation (4). The
shift leads to an overrelaxation for the Picard iteration of the fast modes which
accelerates the overall convergence.

4.2 Asymptotic Convergence Rates of the Newton-Shift-Picard
Method

Let λi, i = 1, . . . , ns, denote the eigenvalues of M ordered with decreasing
modulus. We generally assume equation (4) to have a unique solution, requir-
ing λi 6= 1 for all i = 1, . . . , ns.

In order to investigate the local linear convergence rate κ of the different
approximations, we use the following lemma which is a version of the Local
Contraction Theorem of Bock [3] adapted to our purposes.
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Lemma 1. Let x ∈ Rn, and let f : Rn → Rn be twice continuously differen-
tiable in an ε-neighborhood U = Bε(x) and such that f(x) = 0. Furthermore,
let x̃ ∈ U be a sufficiently small perturbation of x and let J be an invertible
n-by-n matrix. Define x+ ∈ Rn according to

x+ = x̃− J−1f(x̃).

Then it holds that

‖x+ − x‖ ≤ κ‖x̃− x‖+O(ε2), with κ = ρ(J−1(J −∇f(x)T)).

Conversely, there exists a x̃ ∈ U such that

‖x+ − x‖ ≥ κ‖x̃− x‖ −O(ε2).

Proof. By Taylor’s Theorem we have

x+ = x̃− J−1f(x̃) = x̃− J−1∇f(x)T(x̃− x) +O(ε2),

and thus
x+ − x = J−1(J −∇f(x)T)(x̃− x) +O(ε2).

The first assertion then holds by the triangle inequality. For the second asser-
tion, construct x̃ = x+ (ε/2)δx, where

δx = arg max
‖y‖=1

‖J−1(J −∇f(x)T)y‖.

The lower-bound version of the triangle equality completes the proof. �
To appreciate the convergence rate of the different approximations, we also

need an explicit form of the inverse of the approximated Jacobian.

Lemma 2. Let S = 1/(1 + σ)
(
I− V V T

)
+ (I−M)V V T be as above and

invertible. Define the p-by-p matrix J := I − V TMV . Then the inverse S−1

can be explicitly calculated as

S−1 =
[
V J−1V T + (1 + σ)

(
I− V V T

) (
I +MV J−1V T

)]
.

Proof. Let the columns of V⊥ be a basis completion for the full space such
that

(
V V⊥

)
is unitary. Let y solve the system

Sy = b. (6)

For each y there exists a unique decomposition

y = V p̄+ V⊥q̄. (7)

Substitution of (7) into (6) and multiplication with the unitary matrix Q =(
V⊥ V

)T from the left yields a 2-by-2 block system which can be reduced to
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−V T
⊥MV 1/(1 + σ)I

I− V TMV 0

)(
p̄
q̄

)
=
(
V T
⊥ b
V Tb

)
(8)

by the properties V T
⊥ V = 0, V TV⊥ = 0, V T

⊥ V⊥ = I, V TV = I.
The second row of (8) can now be used to calculate p̄ by inversion of

J := I− V TMV . The first row then yields q̄. Thus, y can be expressed as

y =
[
V J−1V T + (1 + σ)

(
V⊥V

T
⊥ + V⊥V

T
⊥MV J−1V T

)]
b

=
[
V J−1V T + (1 + σ)

(
I− V V T

) (
I +MV J−1V T

)]
b,

by virtue of V⊥V T
⊥ = I− V V T. �

Remark 1. From an algorithmical point of view, only the action of M on V
is needed, which can be evaluated by p directional forward derivatives of the
solution of the differential equation.

Lemma 3. Let spanV be an invariant subspace of the monodromy matrix M
in the solution of equation (3b). Then, the asymptotic linear convergence rate
of the Newton-Shift-Picard method is

κNSP = ρ((1 + σ)V T
⊥MV⊥ − σI).

Proof. By Lemma 1 and unitary basis transformation with Q =
(
V⊥ V

)T we
have

κNSP = ρ(S−1(S − (I−M)))

= ρ(QTS−1QQT(S − (I−M))Q).

Using Lemma 2, we explicitly calculate the matrices

A = QTS−1Q

=
(
V⊥ V

)T [
V J−1V T + (1 + σ)

(
I− V V T

) (
I +MV J−1V T

)] (
V⊥ V

)
=
(

(1 + σ)I (1 + σ)V T
⊥MV J−1

0 J−1

)
=
(

(1 + σ)I 0
0 J−1

)
,

and

B = QT(S − (I−M))Q

=
(
V⊥ V

)T [1/(1 + σ)
(
I− V V T

)
+ (I−M)V V T − (I−M)

] (
V⊥ V

)
=
(
V⊥ V

)T [1/(1 + σ)I− (I−M)]
(
I− V V T

) (
V⊥ V

)
=
(
V T
⊥ (M − σ/(1 + σ)I)V⊥ V T

⊥ (M − σ/(1 + σ)I)V
0 0

)
=
(
V T
⊥MV⊥ − σ/(1 + σ)I 0

0 0

)
.



Optim. of Periodic Ads. Proc.: The Newton-Picard inexact SQP method 369

Here we used that spanV is invariant under M and thus V T
⊥MV = 0. Finally,

we obtain
κNSP = ρ(AB) = ρ((1 + σ)V T

⊥MV⊥ − σI).

This completes the proof. �

Theorem 1. Let V span the so called “dominant” invariant subspace corre-
sponding to the eigenvalues λ1, . . . , λp of M , and let all eigenvalues λp+1, . . . ,
λns be enclosed in the closed disc Br(c) ⊂ B1(0) ⊂ C with r, c ∈ R. Then,
the Newton-Shift-Picard method with shift σ = c/(1 − c) is locally linearly
convergent with asymptotic convergence rate of

κNSP ≤
r

1− c
.

Equality holds if there is an i ∈ {p+ 1, . . . , ns} such that λi ∈ ∂Br(c).

Proof. Let C = (1 + σ)V T
⊥MV⊥ − σI. The eigenvectors of C are the eigenvec-

tors of V T
⊥MV⊥ which correspond to the eigenvalues λp+1, . . . , λns of M . By

Lemma 3 we get

κNSP = ρ(C)
= max

i=p+1,...,ns

|(1 + σ)λi − σ|

= max
i=p+1,...,ns

|λi − c|/(1− c) ≤ r/(1− c).

Equality holds if |λi − c| = r for one i. �
Figure 2 shows a typical spectrum of the monodromy matrix. These spectra

are characterized by real and complex conjugated pairs of eigenvalues which
cluster around the origin. Only few eigenvalues have modulus larger than 1/2,
and one eigenvalue is close to the unit circle, resulting in a rather slow linear
convergence rate for the pure Picard method of about 0.98.

In order to illustrate the importance of Theorem 1, we refer to Figure 3
for the example of p = 4 and σ = 0.28. First of all, by proper choice of
p and V , one can eliminate a few “slow” modes. In the figure, these corre-
spond to the four right-most +-marks. The remaining spectrum consists of
eigenvalues which lie inside the circle with radius r′ = 0.50 (dashed circle).
Thus, a pure Newton-Picard without shift (σ = 0) has an asymptotic linear
convergence rate of about 0.5. Using the shift, this convergence rate can be
further improved with negligible additional numerical effort by exploiting the
asymmetric distribution of eigenvalues in the sense that the smallest enclos-
ing disc has a (obviously real) center (small solid black circle) with a non-zero
distance to the origin. In the example, an optimal shift of σ = 0.28 improves
the convergence rate to r = 0.36 (centered solid black circle). The ×-marks
display the eigenvalues of the “shifted” matrix (1 + σ)M − σI.
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Fig. 2. Typical spectrum of the monodromy matrixM in the solution of problem (3).
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Fig. 3. Illustration of Theorem 1 for p = 4 and σ = 0.28 with contraction circles of
radii r′ = 0.50 and r = 0.36.
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4.3 Numerical Effort of the Newton-Shift-Picard Method:
Example SMB

We want to estimate the numerical effort of the Newton-Shift-Picard method
for the SMB example. For simplicity, we assume that one forward simulation
is as expensive as the evaluation of one directional forward derivative, which
is needed to evaluate one matrix vector product Mv.

We calculate the number of iterations, which are needed for a reduction
of the distance to the solution by a factor of 10−3 as the minimal k ∈ N such
that

κk ≤ 10−3,

with different values of κ coming from the previous theoretical investigations
applied to the example.

To reduce the distance to the solution by a factor of 10−3, a pure Picard
method takes at most 335 iterations. One Picard iteration has the cost of one
forward simulation. One step of a full Newton method costs already 384 for-
ward derivatives plus one forward simulation and is thus not competitive with
a pure Picard method. The Shift-Picard method with an optimal σ = 0.85
completes the reduction of 10−3 within at most 179 iterations. Because one
Shift-Picard iterations also needs only one forward simulation, we get a re-
duction of effort to 53% of the pure Picard method. The effort for different
choices p for the full Newton-Shift-Picard method with optimal shift is as-
sembled in Table 1. We assume that one Newton-Shift-Picard iteration needs
p additional matrix vector products. For a detailed description of the effort
required to determine the subspaces, see Section 7.

p 1 2 4 6 10 20

σ 0.54 0.40 0.28 0.24 0.094 0.021
κ 0.63 0.48 0.36 0.31 0.16 0.086

Iters 15 10 7 6 4 3
#SIM 15 10 7 6 4 3

#MVP 15 20 28 36 40 60
Effort 30 30 35 42 44 63

Table 1. Comparison of numerical effort for the Newton-Shift-Picard method for
different subspace sizes p. Legend: σ (optimal shift), κ (convergence rate), Iters
(number of iterations), #SIM (number of forward simulations), #MVP (number of
matrix vector products/directional forward derivatives), Effort (#SIM + #MVP)

5 The Newton-Picard Inexact SQP Method

We solve the optimization problem with an inexact Sequential Quadratic Pro-
gramming method. As opposed to the well-known SQP methods where the
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Hessians are approximated (for example by update methods) and the lin-
earizations of the constraints in the subproblems are exact, we understand
inexact SQP methods as those that also approximate the constraint Jaco-
bians. Theoretical and numerical details can be found in Diehl et al. [5] and
Wirsching [18]. Here, the approximation will be based on the Newton-Picard
ideas.

5.1 Inexact SQP

First, we write problem (3) in the more suggestive form

minimize
w∈Rn

F (w)

subject to Gi(w) = 0, i ∈ E ,
Gj(w) ≥ 0, j ∈ I.

Starting from an initial guess w0, a sequence of iterates

wk+1 = wk +∆wk, λk+1 = λk +∆λk

is generated from the primal-dual solution (∆wk, ∆λk) of the quadratic sub-
problems

minimize
∆wk∈Rn

1
2∆w

kTBk∆wk + bkT∆wk (9a)

subject to Gi(wk) + Ck
i ∆w

k = 0, i ∈ E , (9b)

Gj(wk) + Ck
j ∆w

k ≥ 0, j ∈ I, (9c)

with inexact Hessians Bk, exact gradient bk of the Lagrangian

L(w∗, λ∗) = F (w∗)−
∑

i∈E∪I
λ∗iGi(w∗),

and inexact rows Ck
i of the constraint Jacobians∇G(wk)T. The exact gradient

bk is preferably evaluated by reverse mode of Algorithmic Differentiation [6].
In the view of Internal Numerical Differentiation, this is an adjoint solve of
the differential equations, with the adjoint integration scheme added to the
forward integrator [1].

5.2 QP Reduction

Let us assume that QP (9) can be written in the split form

minimize
(∆wk

1 ,∆wk
2 )∈Rn1+n2

1
2

(
∆wk

1

∆wk
2

)T(
Bk

11 B
k
12

Bk
21 B

k
22

)(
∆wk

1

∆wk
2

)
+
(
bk1
bk2

)T(
∆wk

1

∆wk
2

)
(10a)

subject to Gi(wk
1 , w

k
2 ) + Ck

1i∆w
k
1 + Ck

2i∆w
k
2 = 0, i ∈ E1, (10b)

Gi(wk
1 , w

k
2 ) + Ck

1i∆w
k
1 + Ck

2i∆w
k
2 = 0, i ∈ E2, (10c)

Gj(wk
1 , w

k
2 ) + Ck

1j∆w
k
1 + Ck

2j∆w
k
2 ≥ 0, j ∈ I, (10d)
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such that the partial derivative C1 := (Ck
1i)i∈E1 is non-singular. Then, ∆wk

1

is uniquely determined by the affine-linear dependence on ∆wk
2 via equa-

tion (10b) and can be eliminated. The remaining QP only has the dimension
n2 instead of n1 + n2. For details, including techniques to recover the La-
grange multipliers of the eliminated constraint (10b) can be recovered from
the primal-dual solution of the reduced QP by KKT transformation rules,
see [10].

We shall describe the elimination procedure for problem (3) in the follow-
ing. We drop the iteration index, and furthermore omit the bound constraints
because they are not changed by the QP tranformations. We use the variable
partition ∆w1 = ∆s0 and ∆w2 = (∆v,∆q) and eliminate the constraint (3b).
The linearized constraint system in the subproblems is[

I− PXs −PXv −PXq

RmYs RmYv +Rv RmYq

]∆s0∆v
∆q

+
[
s0 − Ps0

r

]{
=
≥

}
0.

We approximate the upper left block with an invertible matrix S choice of
which was discussed in Sections 4. The approximated system is premultiplied
with the matrix [

−S−1 0
−RmYsS

−1 I

]
to yield the new block-triangular approximated system

[
−I S−1PXv S−1PXq

0 Rm(Yv + YsS
−1PXv) +Rv Rm(Yq + YsS

−1PXq)

]∆s0∆v
∆q


+
[

−S−1(s0 − PsN )
r −RmYsS

−1(s0 − PsN )

]{
=
≥

}
0. (11)

Then, the first line shows the affine-linear dependence of ∆s0 on ∆v and ∆q.
Thus, we arrive at a QP only in the space of parameters and control variables.
Eventually, also the Lagrange multipliers of the eliminating constraint can be
recovered from the primal QP solution ∆s0,∆q,∆v and the reduced dual QP
solution ∆µ via

∆λ = −S−T

(
−B11∆s

0 −B12

(
∆v
∆v

)
− b1 + Y T

s R
T
m∆µ

)
.

The term Y T
s R

T
m∆µ is computed with one adjoint solve.

6 Simultaneous Approximation of Dominant Subspaces

The choice of the orthonormal matrices V k has not been discussed so far. The
key idea of Lust et al. [11] is to use an iterative method for the calculation
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of the dominant subspace of the monodromy matrix simultaneously with the
iterations of the approximate Newton method. This extends very naturally to
the SQP case, which is also a Newton-type method, once the active set of the
solution is found.

We employ a variant of the Subspace Iteration which is used by Lust et
al. [11] and was originally developed by Stewart [16] to calculate the dom-
inant subspaces of a complex non-Hermitian ns-by-ns matrix M using only
matrix-vector products Mv. The subspaces are represented as the span of an
orthonormal ns-by-p matrix V . The method is efficient for p� ns.

In its simplest form, the Subspace Iteration comprises three steps: First,
calculate MV , second, orthogonalize MV , and third, perform a Schur-Ray-
leigh-Ritz (SRR) approximation to update V . This procedure is repeated until
convergence of span(V ).

The Subspace Iteration is intertwined with the inexact SQP method such
that per SQP iteration only a small number of Subspace Iterations has to be
performed to update the basis of the approximation of the dominant subspace.

7 Numerical Effort

7.1 Effort per SQP iteration

The numerical effort of the proposed method can be best described by the
number of forward simulations (FS), forward directional derivatives (FDD),
and adjoint directional derivatives (ADD) of the differential equations, be-
cause typically more than 95% of the method is spent in these parts of the
algorithm. Additionally, the effort for directional derivatives can be estimated
by small constants times the effort for a forward simulation (for details see
Albersmeyer [2]).

Per iteration, the method needs one FS of the differential equations in
order to evaluate the constraint residuals and the objective functional value.

The number of ADD per SQP step is three. The first is needed to cal-
culate the subproblem gradient gk = ∇L(wk+1, λk+1, µk+1), the second for
a Hessian update from the Lagrangian gradients gk and ∇L(wk, λk+1, µk+1).
The third is needed for the recovery of the Lagrange multipliers steps ∆λk of
equation (10b).

The number of FDD is composed of the following contributions: For the
evaluation ofXv, Xq, Yv, Yq, it is necessary to perform nv+((N+1)/2)nq FDD.
Furthermore, the evaluation of MV takes another pmin FDD plus a small
number padd additional FDD for the Subspace Iterations (compare also the
Section 7.2). The evaluation of the Jacobian terms YsS

−1P (Xv Xq) and the
residual term YsS

−1(s0 − PsN ) in the eliminated QP constraint system (11)
contribute with additional nv +Nnq + 1 FDD.
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7.2 Additional Effort for Subspace Iterations

Finally, we shortly discuss the extra work of padd FDD which is needed for the
piggy-back Subspace Iteration: In the first iterations and far away from the
solution, it may be necessary to perform more Subspace Iterations in order
to guarantee a sufficiently accurate approximation of the dominant subspace.
Close to the solution, however, the matrices Mk will eventually differ only
slightly and the dominant subspaces will become stationary, such that from a
certain iteration on, no extra directional forward derivatives of the differential
equations have to be calculated, i.e., padd = 0. We also want to remark that
the numerical effort for the linear algebra necessary for the Subspace Iteration
is negligible compared to the cost for the solution and differentiation of the
differential equations because pmax � ns can be assumed.

7.3 Comparison with Exact Jacobian SQP

An SQP method with exact Jacobians needs one FS, zero ADD, and ns +
nv + ((N + 1)/2)nq FDD. The grand total of FS, ADD, and FDD is shown in
Table 2. The fundamental improvement of the inexact SQP method over the
exact SQP method is the independence of the state discretization degrees of
freedom ns.

Method FS ADD FDD

Inexact SQP 1 3 2nv + ((3N + 1)/2)nq + pmin + padd + 1
Exact SQP 1 0 ns + nv + ((N + 1)/2)nq

Table 2. Comparison of the numerical effort of the inexact and exact SQP method
per SQP step.

8 Numerical Results

The Newton-Picard Inexact SQP method was implemented in the software
package MUSCOD-II [9] in a single-shooting version.

A self-convergence test for the ModiCon optimization scenario was con-
ducted on an SMB configuration of Ncol = 6 columns. Each column was
discretized with four Discontinuous Galerkin elements of polynomial degree
three, resulting in a total number of ns = 384 periodic state variables. The
feed concentration was discretized as piecewise constant on the grid ti = Tτi,
with τ0 = 0, τi = 0.6 + 0.05(i − 1), i = 1, . . . , 9. Figure 4 depicts the optimal
feed concentration profile. All the feed mass is inserted as late as possible in
the switching period. In Figure 5 shows the distance to the reference solu-
tion in a weighted norm of primal and dual variables for varying values of
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Fig. 4. Optimal feed concentration for the ModiCon process.

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
rim

al
 D

ua
l E

rr
or

Iterations

 

 

p=0
p=1
p=2
p=3
p=5
p=384

Fig. 5. Self-convergence of the Newton-Picard Inexact SQP method.
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p = 0, 1, 2, 3, 5, 384. One can see that starting from p = 2, a linear conver-
gence rate is achieved on the average which is almost as good as the SQP
convergence rate with exact monodromy matrix (p = 384), especially close to
the solution. The counterintuitive fact that we obtain faster convergence for
p = 3 than for p = 5 is indeed also theoretically possible. This non-monotonic
behavior shall be discussed in more detail in a future paper.

9 Conclusion

In the operating regime of the ModiCon variant of the SMB process, the
forward problem of finding a cyclic steady state for fixed controls can be
efficiently solved by the Newton-Picard method. Only few Newton directions
(p = 1 or p = 2) are needed to achieve good contraction. The contraction rate
can be further improved without additional numerical effort by introducing an
overrelaxation for the fast modes. We have shown how the overrelaxation can
be cast in a Newton-type framework, and have presented convergence results
for the Newton-Shift-Picard method.

We have demonstrated how to use Jacobian approximations from the
Newton-Shift-Picard method in an inexact SQP method. We have imple-
mented the method and numerical results for the ModiCon SMB process show
that already low subspace dimensions between 3 and 5 are sufficient to yield
a fast linear convergence rate, while each inexact SQP iteration is less ex-
pensive than a conventional SQP iteration, due to less evaluations of forward
derivatives. This leads to a reduction in the complexity of the algorithm with
respect to the degrees of freedom ns of the state discretization.
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Summary. Optimal control problems of Bingham fluid flow in pipes are considered.
After introducing a family of regularized problems, convergence of the regularized
solutions towards the orignal one is verified. An optimality condition for the original
problem is obtained as limit of the regularized optimality systems. For the solution
of each regularized system a semismooth Newton algorithm is proposed.

We consider a pipe with cross section Ω ⊂ R2 convex and bounded. The
tracking type optimal control problem for a Bingham flow passing through Ω
is given by

min
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y, u) =

1
2

∫
Ω

|y − yd|2 dx+
α

2

∫
Ω

|u|2 dx (1a)

subject to

ν

∫
Ω

(∇y,∇(v − y))R2 dx+ g

∫
Ω

|∇v| dx− g
∫

Ω

|∇y| dx

≥
∫

Ω

(f + u)(v − y) dx, for all v ∈ H1
0 (Ω), (1b)

where ν > 0 denotes the viscosity coefficient of the fluid and g > 0 stands for
the plasticity threshold of the material.

Bingham materials are characterized by the presence of a so-called yield
stress: they behave like solids in regions where the stresses are small and like
incompressible fluids where the stresses are larger than a plasticity threshold.
The solid regions, in addition, are of two types:

IS = {x ∈ Ω : ∇y(x) = 0, y(x) = 0} and IN = {x ∈ Ω : ∇y(x) = 0, y(x) > 0}.

The first one corresponds to the stagnation zones, while the second one is
called nucleus and corresponds to the sector where the Bingham flow moves
like a rigid solid. If Ω is strongly symmetric and simply connected, it is known
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(see [10]) that the set IN is also simply connected. Moreover, in such cases
the nucleus is unique and its internal boundary is convex.

Existence and uniqueness of solutions to (1b) can be obtained by standard
techniques (see [7]). Moreover, by using Fenchel duality theory, inequality (1b)
can be equivalently written as:

a(y, v) + (q,∇v) = (f + u, v), for all v ∈ H1
0 (Ω), (2a)

(q(x),∇y(x))R2 = g|∇y(x)| a.e. in Ω, (2b)
|q(x)| ≤ g a.e. in Ω. (2c)

where q ∈ L2(Ω) :=
(
L2(Ω)

)2 stands for the dual variable, a(v, w) :=
ν(∇v,∇w) for all v, w ∈ H1

0 (Ω), and f ∈ L2(Ω). We denote by ‖ · ‖X the
norm in a Banach space X and by (·, ·)Y the scalar product of a Hilbert space
Y . For the space L2(Ω) no subindex is used.

Existence of an optimal solution for the control problem (1) can be
obtained by standard arguments (see e.g. [1, pg.151]). Due to the non-
differentiability of the control-to-state operator resulting from (1b), however,
the derivation of a detailed necessary optimality condition turns out to be
challenging. Moreover, in order to obtain a solution for (1) numerically, an
appropriate approximation technique has to be considered.

In what follows we propose a unifying regularization approach, which en-
ables us, on one hand, to derive an optimality system for (1) and, on the other
hand, to approximate an optimal solution by using a Newton type algorithm.

1 Regularized problem

We start by considering the following regularized version of the primal-dual
system:

a(yγ , v) + (qγ ,∇v) = (f + u, v), for all v ∈ H1
0 (Ω) (3a)

qγ =
gγ∇yγ

max(g, γ|∇yγ |)
a.e. in Ω. (3b)

Such a system results from a Tikhonov regularization of the dual problem and
has been previously considered for the numerical solution of some variational
inequalities of the second kind by semismooth Newton methods (see [11, 9, 4]).

Based on the regularization of the governing variational inequality given by
(3) and a local smoothing of the max function, a family of regularized optimal
control problems is introduced and studied next. The additional smoothing
enables us to obtain differentiability properties of the problem and is impor-
tant in the construction of the approximation algorithm given in Section 3.

The local C1-smoothing of the max function is given by
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maxc(0, x) =


x if x ≥ 1

2c
c
2

(
x+ 1

2c

)2 if |x| ≤ 1
2c

0 if x ≤ − 1
2c

(4)

and its derivative by

max′c(0, x) =


1 if x ≥ 1

2c

c
(
x+ 1

2c

)
if |x| ≤ 1

2c

0 if x ≤ − 1
2c .

(5)

According to (3) and the proposed smoothing of the max function, we
introduce, for each γ > 0, the following regularized optimal control problem:

min
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y, u) =

1
2

∫
Ω

|y − yd|2 dx+
α

2

∫
Ω

|u|2 dx (6a)

subject to

a(y, v) +
(

gγ∇y
maxγ(g, γ|∇y|)

,∇v
)

= (f + u, v), for all v ∈ H1
0 (Ω). (6b)

Theorem 1. Let g > 0, γ > 0 and uγ ∈ L2(Ω). There exist a unique solution
yγ ∈ H1

0 (Ω) to the equation

a(y, v) +
(

gγ∇y
maxγ(g, γ|∇y|)

,∇v
)

= (f + uγ , v), for all v ∈ H1
0 (Ω). (7)

Moreover, if uγ converges to u strongly in L2(Ω) as γ → ∞, then the corre-
sponding sequence of solutions {yγ} converges to the solution y of (1b), with
f + u on the right hand side, strongly in H1

0 (Ω), as γ →∞.

Proof. For the complete proof we refer to [5].

Additionally, it can be verified that there exists an optimal solution for prob-
lem (6). Moreover, the sequence {uγ} of solutions to (6) contains a weakly
convergent subsequence and any weak accumulation point of {uγ} is an opti-
mal solution for (1). Considering, in addition, the special structure of the cost
functional, uγ → ū strongly in U , where ū stands for an optimal solution to
(1).

Proposition 1. Let yγ ∈ H1
0 (Ω) and h ∈ L2(Ω). There exists a unique solu-

tion z ∈ H1
0 (Ω) to the linearized equation

a(z, v)+gγ
∫
Ω

(
∇z

m̃axγ
,∇v

)
R2

ds−gγ
∫
Aγ

(
∇yγ

m̃axγ

γ(∇yγ ,∇z)R2

|∇yγ |
,
∇v

m̃axγ

)
R2

ds

− gγ
∫
Sγ

γ

(
γ|∇yγ | − g +

1
2γ

)(
∇yγ

m̃axγ

γ(∇yγ ,∇z)R2

|∇yγ |
,
∇v

m̃axγ

)
R2

ds

= (h, v), for all v ∈ H1
0 (Ω), (8)
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where m̃axγ := maxγ(g, γ|∇yγ |), Aγ = {x ∈ Ω : γ|∇yγ(x)| − g ≥ 1
2γ },

Sγ = {x ∈ Ω : |γ|∇yγ(x)| − g| ≤ 1
2γ } and Iγ = Ω\(Aγ ∪ Sγ).

Proof. Choosing v = z, the left hand side of the last equality takes the form

a(z, z) + gγ

∫
Ω

|∇z|2

m̃axγ
ds− gγ

∫
Aγ

γ(∇yγ ,∇z)2R2

|∇yγ |m̃ax2
γ

ds

− gγ
∫
Sγ

γ

(
γ|∇yγ | − g +

1
2γ

)
γ(∇yγ ,∇z)2R2

|∇yγ |m̃ax2
γ

ds. (9)

Considering that m̃axγ ≥ max(g, γ|∇yγ |) a.e. on Ω, γ|∇yγ |
max(g,γ|∇yγ |) ≤ 1 a.e.

on Ω and γ(γ|∇yγ | − g + 1
2γ ) ≤ 1 a.e. on Sγ , and using Cauchy-Schwarz, it

follows that

gγ

∫
Sγ

γ(γ|∇yγ | − g +
1
2γ

)
γ(∇yγ ,∇z)2R2

|∇yγ |m̃ax2
γ

ds ≤ gγ
∫
Sγ

|∇z|2

m̃axγ
ds. (10)

Similarly, we get that

gγ

∫
Aγ

γ(∇yγ ,∇z)2R2

|∇yγ |m̃ax2
γ

ds ≤ gγ
∫
Aγ

|∇z|2

m̃axγ
ds. (11)

Altogether we obtain that

gγ

∫
Ω

|∇z|2

m̃axγ
ds− gγ2

∫
Aγ

(∇z,∇yγ)2R2

m̃ax2
γ |∇yγ |

ds

− gγ2

∫
Sγ

γ(γ|∇yγ | − g +
1
2γ

)
(∇z,∇yγ)2R2

m̃ax2
γ |∇yγ |

ds ≥ gγ
∫
Iγ

|∇z|2

m̃axγ
ds. (12)

The result then follows from the Lax-Milgram theorem. ut

Let us now introduce the control-to-state operator G : L2(Ω) → H1
0 (Ω),

which assigns to each control u ∈ L2(Ω) the correspondent solution to equa-
tion (7). The governing equation in this case corresponds to a PDE of quasi-
linear type and it can be proved (see [3, Thm. 3.1]) that G is Gateaux differen-
tiable. Moreover, its derivative z = G′(u)v corresponds to the unique solution
of equation (8).

Theorem 2. Let (yγ , uγ) be an optimal solution of the regularized problem
(6). Then it satisfies the following optimality system:
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a(yγ , v) + (qγ ,∇v) = (f + uγ , v), for all v ∈ H1
0 (Ω), (13a)

qγ =
gγ∇yγ

m̃axγ
in L2(Ω), (13b)

a(pγ , v) + (λ,∇v) = −
∫

Ω

(yγ − yd)v dx, for all v ∈ H1
0 (Ω), (13c)

λ := gγ
∇pγ

m̃axγ
− gγ2χAγ

(∇pγ ,∇yγ)R2

m̃ax2
γ

∇yγ

|∇yγ |

− gγ3χSγ (γ|∇yγ | − g +
1
2γ

)
(∇pγ ,∇yγ)R2

m̃ax2
γ

∇yγ

|∇yγ |
,

(13d)

αuγ = pγ , (13e)

where χD denotes the indicator function of a set D.

Proof. Let T : U → R be the reduced cost functional defined by T (u) :=
J(G(u), u). From the structure of J and due to the differentiability of G we
obtain that uγ satisfies the equality T ′(uγ)h = 0, for all h ∈ L2(Ω).

Introducing pγ as the unique solution to the adjoint equation (13c), where
λ ∈ L2(Ω) is given by (13d), we obtain that

T ′(uγ)h = (yγ − yd, z) + α(uγ , h)U = −a(pγ , z)− (λ,∇z) + α(uγ , h)U

= −a(z, pγ)− gγ
∫
Ω

(
∇z

m̃axγ
,∇pγ

)
ds+ gγ

∫
Aγ

(
∇yγ

m̃axγ

γ (∇yγ ,∇z)
|∇yγ |

,
∇pγ

m̃axγ

)
ds

+ gγ

∫
Sγ

γ

(
γ|∇yγ | − g +

1
2γ

)(
∇yγ

m̃axγ

γ(∇yγ ,∇z)
|∇yγ |

,
∇pγ

m̃axγ

)
ds+ α(uγ , h)U .

From Proposition 1 we consequently obtain (13e). ut

2 Optimality system

Next an optimality condition for the original optimal control problem (1) is
obtained as limit of the regularized optimality systems (13).

Theorem 3. Let ū be an optimal solution for (1) and {uγ} a convergent
subsequence of solutions to (6) such that uγ → ū in L2(Ω), as γ →∞. There
exists a subsequence (denoted in the same way) and p ∈ H1

0 (Ω), λ ∈ L2(Ω)
such that

∇yγ(x)→ ∇ȳ(x) a.e. in Ω,

pγ ⇀ p weakly in H1
0 (Ω) (strongly in L2(Ω)),

−∆pγ ⇀ −∆p weakly in H−1(Ω),

λ ⇀ λ weakly in L2(Ω).
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where ∆ denotes the Laplacian operator. Moreover, the multipliers (p, λ) sat-
isfy together with the optimal solution of the original control problem (ȳ, ū)
the following optimality system:

a(ȳ, v) + (q̄,∇v) = (f + ū, v), for all v ∈ H1
0 (Ω) (14a)

(q̄,∇ȳ) = |∇ȳ| a.e. in Ω (14b)
|q̄| ≤ g a.e. in Ω (14c)

a(p, v) + (λ,∇v) = −
∫

Ω

(ȳ − yd)v dx, for all v ∈ H1
0 (Ω) (14d)

αū = p a.e. in Ω (14e)∫
Ω

λ · ∇p dx ≥ 0 (14f)

∇p = 0 a.e. in I := {x ∈ Ω : ∇ȳ(x) = 0}, (14g)

In addition, if IN is Lipschitz and IN ⊂ Ω, then

div λ = ȳ − yd in H−1(IN ). (15)

Proof. Theorem [5, Thm.5.1] may be applied and system (14) is obtained.
Let us now consider test functions ṽ ∈ H1

0 (Ω) of the following form

ṽ =
{
v in IN

0 elsewhere,

where v ∈ H1
0 (IN ). It then follows from the adjoint equation (14d) that

ν

∫
IN

(∇p,∇v) dx+
∫
IN

(λ,∇v) dx = −
∫
IN

(ȳ− yd)v dx, for all v ∈ H1
0 (IN ).

Since by (14g) ∇p = 0 a.e. on I we obtain that∫
IN

(λ,∇v) dx = −
∫
IN

(ȳ − yd)v dx, for all v ∈ H1
0 (IN ),

which, by applying integration by parts, yields (15).

Note that in order to obtain (15) we assumed some properties about the
nucleus of the flow. Such properties hold in many cases (see [10] and the
references therein). It is important to distinguish, however, between the two
types of inactive sets (IN and IS), since stagnation zones are usually attached
to the boundary of the domain Ω.

From equation (14g) we also conclude that the adjoint variable p has a
constant value on the sectors where the material behaves like a rigid solid.

3 Semi-smooth Newton algorithm and numerical tests

Based on the structure of the regularized optimality systems given by (13) we
propose next a generalized Newton algorithm for its numerical approximation.
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3.1 Algorithm

By introducing the operator F : H1
0 (Ω)×H1

0 (Ω)→ H−1(Ω)×H−1(Ω) given
by

F (y, p) =

 a(y, ·) + gγ
(
∇y

gmaxγ
,∇·
)
− (f + 1

αp, ·)

a(p, ·) + gγ
(
∇p

gmaxγ
,∇·
)
− gγ

(
(∇p,∇y)R2

gmax2
γ

, m̃ax′γ(·)
)

+ (y − yd, ·)


where

m̃ax′γ(δy) := max′γ(g, γ|∇y|)(δy) =


γ

(∇y,∇δy)R2

|∇y| in Aγ ,

γ2
(
γ|∇y| − g + 1

2γ

)
(∇y,∇δy)R2

|∇y| in Sγ ,

0 in Iγ ,

each regularized optimality system may be written as:

F (y, p) = 0. (16)

To apply a Newton type method for the solution of (16) a generalized
Jacobian of F must be computed (see e.g. [8] for further details). From (5) a
natural candidate for the generalized second derivative of the maxc function
is given by

max′′c (0, x) =

{
c if |x| ≤ 1

2c ,

0 elsewhere.
(17)

Taking the vector-valued infinite dimensional counterpart of this candidate,
the components of the generalized derivative of F at (y, p), in direction (δy, δp),
are given by

G1F (y, p)(δy, δp) = a(δy, ·) + gγ

(
∇δy
m̃axγ

,∇·
)

− gγ

(
m̃ax′γ(δy)

m̃ax2
γ

∇y,∇·

)
− 1
α

(δp, ·), (18)

G2F (y, p)(δy, δp) = a(δp, ·) + gγ

(
∇δp
m̃axγ

,∇·
)
− gγ

(
m̃ax′γ(δy)

m̃ax2
γ

∇p,∇·

)

− gγ

(
(∇δp,∇y)R2

m̃ax2
γ

+
(∇p,∇δy)R2

m̃ax2
γ

− 2
(∇p,∇y)R2

m̃ax3
γ

m̃ax′γ(δy), m̃ax′γ(·)

)

− gγ

(
(∇p,∇y)R2

m̃ax2
γ

, m̃ax′′γ [δy](·)

)
+ (δy, ·), (19)
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where, for v ∈ H1
0 (Ω),

m̃ax′′γ [δy](v) =


γ
h

(∇y,∇v)R2
|∇y| − (∇y,∇δy)R2

|∇y|3 (∇y,∇v)R2

i

in Aγ

γ2
“

γ|∇y| − g + 1
2γ

” h

(∇y,∇v)R2
|∇y| − (∇y,∇δy)R2

|∇y|3 (∇y,∇v)R2

i

+γ3 (∇y,∇δy)R2
|∇y|2 (∇y,∇v)R2 in Sγ

0 in Iγ .

A Newton type algorithm for solving each regularized system can therefore
be given as follows:
Algorithm 1

1. Initialize (y0, p0) ∈ H1
0 (Ω)×H1

0 (Ω) and set k = 0.
2. Set Ak = {x ∈ Ω : γ|∇yk(x)| − g ≥ 1

2γ }, Sk = {x ∈ Ω : |γ|∇yk(x)| − g| ≤
1
2γ } and Ik = Ω\(Ak ∪ Sk).

3. Solve the increment equation

GF (yk, pk)(δy, δp) = −F (yk, pk) (20)

and update yk+1 = yk + δy, pk+1 = pk + δp.
4. Stop or set k = k + 1 and goto 2.

3.2 Example

Next we apply the proposed semi-smooth Newton algorithm for the optimal
control of a Bingham flow with parameter values ν = 1 and g = 2. We
consider a homogeneous finite differences scheme, with centered differences
for the approximation of the gradient and the divergence operators. For the
discrete Laplacian the five point stencil is utilized. The algorithm starts with
all variables equal to zero and terminates when the norm of the optimality
system is smaller than tol = 10−4.

The controlled state for the parameter values ν = 1, g = 2, γ = 100, α =
0.1, h = 1/120, f ≡ 10 and the desired state z ≡ 1 is plotted in Figure 1
jointly with the Euclidean norm of the dual variable.

The optimal control for the problem is plotted in Figure 2. Since in this
case αū = p, the satisfaction of (14g) can be inferred from the plot.

The convergence of the algorithm is registered in Table 1. With %k :=
‖F (yk, pk)‖ and σk := ‖F (yk,pk)‖

‖F (yk−1,pk−1)‖ as indicators for the residuum and the
convergence rate, local superlinear behavior of the algorithm can be experi-
mentally verified.
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Summary. In this paper optimal Dirichlet boundary control problems governed by
the wave equation and the strongly damped wave equation with control constraints
are analyzed. For treating inequality constraints semismooth Newton methods are
discussed and their convergence properties are investigated. For numerical realiza-
tion a space-time finite element discretization is introduced. Numerical examples
illustrate the results.

1 Introduction

In this paper we consider primal-dual active set methods (PDAS) applied
to optimal Dirichlet boundary control problems governed by the wave equa-
tion and the strongly damped wave equation subject to pointwise con-
trol constraints. We interprete the PDAS-methods as semismooth New-
ton methods and analyze them with respect to superlinear convergence, cf.
[10, 13, 27, 28, 17].

Let Ω ⊂ Rn, n ≥ 1, be a bounded domain which has either a C2-boundary
or is polygonal and convex. For T > 0 we denote I = (0, T ), Q = I × Ω and
Σ = I×∂Ω. Here and in what follows, we employ the usual notion of Lebesgue
and Sobolev spaces.

Then the optimal control problem under consideration is formulated as
follows: 

Minimize J(y, u) = G(y) + α
2 ‖u‖

2
L2(Σ),

subject to y = S(u),
y ∈ L2(Q), u ∈ Uad,

(1)

for α > 0 and where S : L2(Σ) → L2(Q) is given as the control-to-state
operator of the following equation with 0 ≤ ρ ≤ ρ0, ρ0 ∈ R+:
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ytt −∆y − ρ∆yt = f in Q,
y(0) = y0 in Ω,
yt(0) = y1 in Ω,
y = u on Σ.

(2)

The functional G : L2(Q) → R is assumed to be quadratic with G′ being an
affine operator from L2(Q) to itself, and G′′ is assumed to be non-negative.
The set of admissible controls Uad is given by bilateral box constraints

Uad = {u ∈ L2(Σ)|ua ≤ u ≤ ub} with ua, ub ∈ L2(Σ).

If we set ρ = 0 in (2) we obtain the usual wave equation. For ρ > 0 we get
the strongly damped wave equation which often appears in models with loss
of energy, e.g., it arises in the modelling of longitudinal vibrations in a ho-
mogeneous bar, in which there are viscous effects, cf. [22]. The corresponding
optimal control problem (with small ρ > 0) can also be regarded as regular-
ization of the Dirichlet boundary control problem for the wave equation.

Optimal control problems governed by wave equations are considered in
several publications, see [20, 21, 24, 25, 18, 8, 19, 9]. A survey about finite
difference approximations in the context of control of the wave equation is
presented in [29].

In this paper we summarize the results from [16] for the case of optimal
Dirichlet boundary control. We analyze semismooth Newton methods applied
to (1) with respect to superlinear convergence. Here, an important ingredient
in proving superlinear convergence is a smoothing property of the operator
mapping the control variable u to the trace of the normal derivative of the
adjoint state p. For ρ > 0 we verify, that such a smoothing property is given.
For ρ = 0 we will provide an example illustrating the fact that such a property
can not hold in general. This is different to optimal distributed and Neumann
boundary control of the wave equation, see [16], where this property is given.
For the numerical realization of the arising infinite dimensional optimal control
problems we use space-time finite element methods following [4, 23, 17].

The paper is organized as follows. In the next section we discuss the semi-
smooth Newton method for an abstract optimal control problem. Section 3 is
devoted to relevant existence, uniqueness and regularity results for the state
equation. In Section 4 we check the assumptions for superlinear convergence
of the semismooth Newton method. In Section 5 we describe the space-time
finite element discretization and in Section 6 we present numerical examples
illustrating our results.

2 Semismooth Newton methods and the primal-dual
active set strategy

In this section we summarize known results for semismooth Newton methods,
which are relevant for the analysis in this paper.
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Let X and Z be Banach spaces and let F : D ⊂ X → Z be a nonlinear
mapping with open domain D. Moreover, let L(X,Z) be the set of continuous,
linear mappings from X to Z.

Definition 1. The mapping F : D ⊂ X → Z is called Newton-differentiable
in the open subset U ⊂ D if there exists a family of generalized derivatives
G : U → L(X,Z) such that

lim
h→0

1
‖h‖X

‖F (x+ h)− F (x)−G(x+ h)h‖Z = 0,

for every x ∈ U .

Using this definition there holds the following proposition, see [10].

Proposition 1. The mapping max(0, ·) : Lq(Σ) → Lp(Σ) with 1 ≤ p < q <
∞ is Newton-differentiable on Lq(Σ).

The following theorem provides a generic result on superlinear convergence
for semismooth Newton methods, see [10].

Theorem 1. Suppose, that x∗ ∈ D is a solution to F (x) = 0 and that F is
Newton–differentiable with Newton-derivative G in an open neighborhood U
containing x∗ and that

{‖G(x)−1‖L(X,Z)|x ∈ U}

is bounded. Then for x0 ∈ D the Newton–iteration

xk+1 = xk −G(xk)−1F (xk), k = 0, 1, 2, . . . ,

converges superlinearly to x∗ provided that ‖x0 − x∗‖X is sufficiently small.

In the following we consider the linear quadratic optimal control problem
(1). The operator S is affine-linear, thus it can be characterized in the following
way

S(u) = Tu+ ȳ, T ∈ L(L2(Σ), L2(Q)), ȳ ∈ L2(Q).

From standard subsequential limit arguments, see, e. g., [20], follows:

Proposition 2. There exists a unique global solution of the optimal control
problem under consideration.

We define the reduced cost functional

j : U → R, j(u) = G(S(u)) +
α

2
‖u‖2L2(Σ)

and reformulate the optimal control problem under consideration as

Minimize j(u), u ∈ Uad.
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The first (directional) derivative of j is given as

j′(u)(δu) = (αu− q(u), δu)L2(Σ),

where the operator q : L2(Σ)→ L2(Σ) is given by

q(u) = −T ∗G′(S(u)). (3)

A short calculation proves the next proposition, cf. [12].

Proposition 3. The necessary optimality condition for (1) can be formulated
as

F(u) = 0, (4)

with the operator F : L2(Σ)→ L2(Σ) defined by

F(u) = α(u− ub) + max(0, αub − q(u)) + min(0, q(u)− αua).

The following assumption will insure the superlinear convergence of the semi-
smooth Newton method applied to (4).

Assumption 1. We assume, that the operator q defined in (3) is a continuous
affine-linear operator q : L2(Σ)→ Lr(Σ) for some r > 2.

In Section 4 we will check this assumption for the optimal control problem
under consideration.

Lemma 1. Let Assumption 1 be fulfilled and ua, ub ∈ Lr(Σ) for some r > 2.
Then the operator F : L2(Σ) → L2(Σ) is Newton-differentiable and a gene-
ralized derivative GF (u) ∈ L(L2(Σ), L2(Σ)) exists. Moreover,

‖GF (u)−1(w)‖L2(Σ) ≤ CG ‖w‖L2(Σ) for all w ∈ L2(Σ)

for a constant CG and each u ∈ L2(Σ).

For a proof see [16].
After these considerations we can formulate the following theorem.

Theorem 2. Let Assumption 1 be fulfilled and suppose that u∗ ∈ L2(Σ) is the
solution to (1). Then, for u0 ∈ L2(Σ) with ‖u0 − u∗‖L2(Σ) sufficiently small,
the semismooth Newton method

GF (uk)(uk+1 − uk) + F(uk) = 0, k = 0, 1, 2, . . . ,

converges superlinearly.

Proof. This follows from Theorem 1 and Lemma 1.

Remark 1. This semismooth Newton method is known to be equivalent to a
primal-dual active set strategy (PDAS), cf. [10, 13] which we apply for our
numerical examples.
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3 On the state equation

In this section we summarize some existence and regularity results for equation
(2), cf. [16]. Here and in what follows, we use the following notations (·, ·),
〈·, ·〉, (·, ·)I and 〈·, ·〉I for the inner products in the spaces L2(Ω), L2(∂Ω),
L2(L2(Ω)) and L2(L2(Σ)), respectively.

Theorem 3. Let ρ = 0, u|Σ = 0 and (f, y0, y1) ∈ L2(L2(Ω)) × H1
0 (Ω) ×

L2(Ω). Then equation (2) admits a unique solution (y, yt) ∈ C(H1
0 (Ω)) ×

C(L2(Ω)) depending continuously on the data (f, y0, y1).

Theorem 4. Let ρ = 0, (f, y0, y1, u) ∈ L1((H1
0 (Ω))∗)×L2(Ω)× (H1

0 (Ω))∗×
L2(Σ). Then equation (2) admits a unique solution (y, yt) ∈ C(L2(Ω)) ×
C(H−1(Ω)) depending continuously on the data (f, y0, y1, u). It satisfies

(y, ζtt −∆ζ)I = (f, ζ)I − (y0, ζt(0)) + 〈y1, ζ(0)〉(H1(Ω))∗,H1(Ω) − 〈u, ∂nζ〉I

where ζ is the solution to{
ζtt −∆ζ = g,
ζ(T ) = 0, ζt(T ) = 0, ζ|Σ = 0

for any g ∈ L1(L2(Ω)).

Theorem 5. Let ρ > 0, u|Σ = 0 and (f, y0, y1) ∈ L2(L2(Ω)) × H1
0 (Ω) ∩

H2(Ω)×H1
0 (Ω). Then equation (2) admits a unique solution

y ∈ D = H2(L2(Ω)) ∩ C1(H1
0 (Ω)) ∩H1(H2(Ω))

defined by the conditions: y(0) = y0, yt(0) = y1 and

(ytt(s), φ) + (∇y(s),∇φ) + ρ(∇yt(s),∇φ) = (f(s), φ)

for all φ ∈ H1
0 (Ω) a.e. in (0, T ).

Moreover, the a priori estimate

‖y‖D ≤ C
(
‖f‖L2(L2(Ω)) + ‖∇y0‖L2(Ω) + ‖∆y0‖L2(Ω) + ‖∇y1‖L2(Ω)

)
,

holds, where the constant C = C(ρ) tends to infinity as ρ tends to zero.

Theorem 6. Let ρ > 0 and (f, y0, y1, u) ∈ L2(L2(Ω)) × H1(Ω) × L2(Ω) ×
L2(Σ). Then equation (2) admits a unique very weak solution y ∈ L2(L2(Ω))
defined by

(v, y)I = −(y0, ζt(0)) + (y1, ζ(0))− 〈u, ∂nζ〉I + ρ〈u, ∂nζt〉I − ρ(y0,∆ζ(0))

+ ρ〈y0, ∂nζ(0)〉+ (f, ζ)I for all v ∈ L2(L2(Ω)),

where ζ is the solution of
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ζtt −∆ζ + ρ∆ζt = v,
ζ(T ) = 0, ζt(T ) = 0, ζ|Σ = 0.

Furthermore, the following estimate

‖y‖L2(L2(Ω)) ≤ C
(
‖u‖L2(Σ) + ‖f‖L2(L2(Ω)) + ‖y0‖H1(Ω) + ‖y1‖L2(Ω)

)
,

holds, where the constant C = C(ρ) tends to infinity as ρ tends to zero.

4 Optimal control problem

In this section we check Assumption 1 for the control problem under consi-
deration. Let y0 ∈ H1

0 (Ω), y1 ∈ L2(Ω) and f ∈ L2(L2(Ω)). Then we have the
following optimality system

ytt −∆y − ρ∆yt = f,
y(0) = y0, yt(0) = y1, y|Σ = u,

ptt −∆p+ ρ∆yt = −G′(y),
p(T ) = 0, pt(T ) = 0, p|Σ = 0,

αu+ λ = −∂np|Σ ,
λ = max(0, λ+ c(u− ub)) + min(0, λ+ c(u− ua))

for c > 0, λ ∈ L2(Σ) and the solution p of the adjoint equation.
The operator q defined in (3) turns out to be a continuous affine-linear

operator q : L2(Σ)→ L2(Σ) with q(u) = −∂np.
However, Assumption 1 is not fulfilled for ρ = 0, see Example 1.

Example 1. We consider an one dimensional wave equation with Dirichlet
boundary control

ytt − yxx = 0 in (0, 1)× (0, 1),
y(t, 0) = u(t), y(t, 1) = 0 in (0, 1),
y(0, x) = 0, yt(0, x) = 0 in (0, 1)

with u ∈ L2(0, 1). Here, for a general control u ∈ L2(0, 1) it turns out that
q(u)(t) = −16(1− t)u(t) for t ∈ (0, 1), and therefore the image q(u) does not
have an improved regularity q(u) ∈ Lr(0, 1) for r > 2, see [16]. This lack of
additional regularity is due to the nature of the wave equation. In the elliptic
as well as in the parabolic cases the corresponding operator q possess the
required regularity for Dirichlet boundary control, see [17].

For ρ > 0 Assumption 1 is true:

Theorem 7. For ρ > 0, the operator q defined in (3) satisfies q : L2(Σ) →
Lr(Σ) with some r > 2.

For a proof we refer to [16]. Therein we apply Theorem 5 to derive an improved
regularity of ∂np.
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5 Discretization

In this section we present a short overview about the discretization of the
optimal control problem under consideration, for details we refer to [16]. Finite
element discretizations of the wave equations are analyzed, e.g., in [1, 2, 3, 6,
11, 14, 15]. Here, we apply a cG(1)cG(1) discretization, which is known to be
energy conserving.

For a precise definition of our discretization we consider a partition of the
time interval Ī = [0, T ] as Ī = {0} ∪ I1 ∪ · · · ∪ IM with subintervals Im =
(tm−1, tm] of size km and time points 0 = t0 < t1 < · · · < tM−1 < tM = T.

For spatial discretization we will consider two- or three-dimensional shape
regular meshes Th = {K}, for details see [5].

Let V = H1(Ω) and V 0 = H1
0 (Ω). On the mesh Th we construct conform-

ing finite element spaces Vh ⊂ V and V 0
h ⊂ V 0 in a standard way:

Vh = {v ∈ V |v|K ∈ Q1(K) for K ∈ Th},
V 0

h = {v ∈ V 0|v|K ∈ Q1(K) for K ∈ Th},

where Q1(K) is a space of bi- or trilinear shape functions on the cell K.
We define the following space-time finite element spaces:

Xkh = {vkh ∈ C(Ī , Vh)|vkh|Im ∈ P1(Im, Vh)},
X0

kh = {vkh ∈ C(Ī , V 0
h )|vkh|Im ∈ P1(Im, V 0

h )},

X̃kh = {vkh ∈ L2(I, Vh)|vkh|Im ∈ P0(Im, Vh) and vkh(0) ∈ Vh},

X̃0
kh = {vkh ∈ L2(I, V 0

h )|vkh|Im ∈ P0(Im, V 0
h ) and vkh(0) ∈ Vh},

where Pr(Im, Vh) denotes the space of polynomials up to degree r on Im
with values in Vh.

For the definition of the discrete control space, we introduce the space of
traces of functions in Vh:

Wh = {wh ∈ H
1
2 (∂Ω)|wh = γ(vh), vh ∈ Vh},

where γ : H1(Ω)→ H
1
2 (∂Ω) denotes the trace operator. Thus, we can define

Ukh = {vkh ∈ C(Ī ,Wh)|vkh|Im ∈ P1(Im,Wh)}.

For a function ukh ∈ Ukh we define an extension ûkh ∈ Xkh such that

γ(ûkh(t, ·)) = ukh(t, ·) and ûkh(t, xi) = 0

on all interior nodes xi of Th and for all t ∈ Ī.
Then the discrete optimization problem is formulated as follows:

Minimize J(y1
kh, ukh)
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for ukh ∈ Ukh ∩ Uad and ykh = (y1
kh, y

2
kh) ∈ (ûkh +X0

kh)×Xkh subject to

aρ(ykh, ξkh) = (f, ξ1kh)I + (y1, ξ1kh(0))− (y0, ξ2kh(0))

for all ξkh = (ξ1kh, ξ
2
kh) ∈ X̃0

kh × X̃kh, (5)

where the bilinear form aρ : Xkh ×Xkh × X̃kh × X̃kh → R is defined by

aρ(y, ξ) = aρ(y1, y2, ξ1, ξ2) = (∂ty
2, ξ1)I + (∇y1,∇ξ1)I + ρ(∇y2,∇ξ1)I

+ (∂ty
1, ξ2)I − (y2, ξ2)I + (y2(0), ξ1(0))− (y1(0), ξ2(0)),

with y = (y1, y2) and ξ = (ξ1, ξ2) with a real parameter ρ ≥ 0.

Remark 2. We approximate the time integrals in equation (5) piecewise by
the trapezoidal rule, thus the time discretization results in a Crank-Nicolson
scheme.

As on the continuous level equation (5) defines the corresponding discrete
solution operator Skh mapping a given control ukh to the first component of
the state y1

kh. We introduce the discrete reduced cost functional

jkh(ukh) = J(Skh(ukh), ukh)

and reformulate the discrete optimization problem as

Minimize jkh(ukh) for ukh ∈ Ukh ∩ Uad.

This optimization problem is solved using the semismooth Newton method
(primal-dual active set method) as described in Section 2 for the continuous
problem, see [16].

6 Numerical examples

In this section we present a numerical example illustrating our theoretical
results for the optimal control problem under consideration. All computations
are done using the optimization library RoDoBo [26] and the finite element
toolkit Gascoigne [7].

We specify the functional G in the following way: For a given function
yd ∈ L2(L2(Ω)) we define G(y) = 1

2‖y − yd‖
2
L2(Q).

Then we consider the control problem for the following data:

f(t, x) =

{
1, x1 > 0.5,
x1, else

, ua = −0.18, ub = 0.2, T = 1,

yd(t, x) =

{
x1 x1 > 0.5
−x1 else

, y0(x) = sin(πx1) sin(πx2), y1(x) = 0
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Table 1. Numbers of PDAS-iterations on the sequence of uniformly refined meshes
for different parameters α and ρ

α = 10−4 α = 10−2

Level N M ρ = 0 ρ = 0.1 ρ = 0.7 ρ = 0 ρ = 0.1 ρ = 0.7

1 16 2 4 3 5 4 4 5
2 64 4 5 4 3 4 4 3
3 256 8 5 5 4 5 4 4
4 1024 16 6 6 6 5 7 5
5 4096 32 11 7 7 9 6 5
6 16384 64 13 9 7 10 8 5

for t ∈ [0, T ] and x = (x1, x2) ∈ Ω = (0, 1)2.
Table 1 illustrates the effect of damping introduced by the term −ρ∆yt

on the number of PDAS steps. For α = 0.01 and ρ = 0 we observe a mesh-
dependence of the algorithm. Moreover, the number of PDAS steps declines
for increasing value of ρ and stays nearly mesh independent for ρ > 0. Further-
more, we consider the effect of α on the number of PDAS steps. As expected
the number of iterations declines also for increasing α.

Further numerical examples indicate that on a given mesh we have super-
linear convergence only for ρ > 0, see [16].

Acknowledgment. The authors would like to thank Dominik Meidner
for helpful discussions about the implementation.
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Summary. Motivated by car safety applications the goal is to deternmine a thick-
ness coefficient in the nonlinear p-Laplace equation. The associated optimal problem
is hard to solve numerically. Therefore, the computationally expensive, nonlinear
p-Laplace equation is replaced by a simpler, linear model. The space mapping tech-
nique is utilized to link the linear and nonlinear equations and drives the optimiza-
tion iteration of the time intensive nonlinear equation using the fast linear equation.
For this reason an efficient realization of the space mapping is utilized. Numerical
examples are presented to illustrate the advantage of the proposed approach.

1 Introduction

A main aspect in the design of passenger cars with respect to pedestrian safety
is the energy absorption capability of the car parts. Besides that, the car parts
have to fulfill several other requirements. The associated optimal problem is
hard to solve numerically. That makes it necessary to develop easy and fast to
solve prediction models with little loss in accuracy for optimization purpose.
Current simulation tools combined with standard optimization software are
not well suited to deal with the above mentioned needs [13].

We will show the application of mathematical methods on a simplified
model to reduce the optimization effort. The goal of the structural optimiza-
tion problem (see [7, 8]) is to determine a thickness parameter λ of a plate
Ω ⊂ R2 (representing a part of the vehicle) and an associated displacement u
satisfying the nonlinear p-Laplace equation

−div
(
2(1 + n)λ(x) |∇u(x)|2n

2 ∇u(x)
)

= g(x) for all x ∈ Ω (1)

together with Dirichlet boundary conditions, where g represents a force acting
on Ω, n ∈ (0, 1) is the Hollomon coefficient, and | · |2 stands for the Euclidean
norm. We suppose that 0 < λa ≤ λ(x) ≤ λb with positive scalars λa and λb.
Our goal is to minimize the mass of the plate, i.e., to minimize the integral
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J1(λ) =
∫

Ω

λ(x) dx

but also to avoid that the displacement is larger than a given threshold ub > 0.
This issue is motivated by our pedestrian safety application. Thus we choose

J2(u) = β

∫
Ω

min(u(x) − ub(x), 0)3 dx

as the second part of our cost functional. Here β > 0 is a weighting parameter.
Due to the nonlinear structure of the elliptic partial differential equation, the
numerical solution of the optimization problem governed by the partial differ-
ential equation (PDE) constraint (1) is expensive, we consider an alternative
constraint given by

−div
(
2(1 + n)µ(x)∇v(x)

)
= g(x) for all x ∈ Ω, (2)

which is a linear elliptic PDE. We will call (1) the fine model and (2) the
coarse model. It turns out that the space mapping technique [9] provides an
attractive framework to improve the use of the coarse model as a surrogate for
the optimization of the fine model. The space mapping technique is utilized to
link the linear and nonlinear equations and drives the optimization iteration
of the time intensive nonlinear equation using the fast linear equation. For
this reason an efficient realization of the space mapping is utilized.

The space mapping technique was first introduced in [2]. The idea of the
space mapping has been developed along different directions and generalized
to a number of contexts [14]. One of the problems lies in the information neces-
sary to compute the Jacobian of the space mapping which involves expensive
gradient information of (1). In [1] Broyden’s method is utilized to construct
an approximation of the Jacobian. This approach will be presented. In the
context of PDEs, we refer to [6, 10]. Compared to [1, 2, 14], our modified
approach is similar to [6], where a modified Broyden formula is used.

The paper is organized in the following manner. In Section 2 we introduce
the infinite-dimensional optimization problem for the p-Laplace equation. The
space mapping approach is described in Section 3, whereas in Section 4 the
surrogate optimization problem is formulated. Section 5 is devoted to present
numerical examples illustrating the advantage of the proposed approach.

2 Optimization of the complex model

In this section we formulate optimal control problem governed by the p-
Laplace equation. By W 1,p

0 (Ω), p ∈ [1,∞), we denote the Sobolev space of
weakly differentiable functions, whose weak derivative belongs to Lp(Ω) and
whose function values are zero on the boundary Γ = ∂Ω. We set p = 2n+ 2
for n ∈ (0, 1). Let us define the Banach space X = L∞(Ω) ×W 1,p

0 and the
nonlinear operator f : X →W 1,p

0 (Ω)′ (fine model) as
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〈f(x), ϕ〉(W 1,p
0 )′,W 1,p

0
=
∫

Ω

2(1+n)λ(x)|∇u(x)|p−2
2 ∇u(x)·∇ϕ(x)−g(x)ϕ(x) dx

for x = (λ, u) ∈ X and ϕ ∈ W 1,p
0 (Ω), where 〈· , ·〉(W 1,p

0 )′,W 1,p
0

denotes the

dual pairing between W 1,p
0 (Ω)′ and W 1,p

0 (Ω). Now f(x) = 0 in W 1,p
0 (Ω)′ for

x = (λ, u) ∈ X is equivalent with the fact that u is a weak solution to (1) for
thickness parameter λ.

The goal is to determine an optimal thickness parameter λ and a corre-
sponding optimal displacement u minimizing the cost functional Jf : X → R
given by

Jf (x) =
∫

Ω

λ(x) +
η

2

∣∣λ(x)− λ◦(x)
∣∣2 + β min

(
u(x)− ub(x), 0

)3 dx

for x = (λ, u) ∈ X subject to (s.t.) the equality constraints f(x) = 0 in
W 1,p

0 (Ω)′ and to the inequality constraints λa ≤ λ(x) ≤ λb f.a.a. x ∈ Ω, where
λa, λb are positive scalars with λa ≤ λb, η ≥ 0 is a regularization parameter
and λ◦ ∈ C0,1(Ω) is a nominal thickness parameter satisfying λa ≤ λ◦(x) ≤ λb

f.a.a. x ∈ Ω. Furthermore, β ≥ 0 is a weighting parameter and ub ∈ L∞(Ω)
satisfies ub(x) > 0 f.a.a. x ∈ Ω. The last term of the cost functional Jf

penalizes the situation if the displacement is larger than the given threshold
ub. We introduce the set of admissible thickness parameters by

Λad =
{
λ ∈ C0,1(Ω) |λa ≤ λ(x) ≤ λb f.a.a. x ∈ Ω and ‖λ‖C0,1(Ω) ≤ cb

}
with cb = ‖λb‖C0,1(Ω) and define Xad = Λad ×W 1,p

0 (Ω). Then, the infinite-
dimensional, nonconvex minimization problem can be formulated abstractly
as

minJf (x) s.t. x ∈ Ff =
{
x ∈ Xad

∣∣ f(x) = 0 in W 1,p
0 (Ω)′

}
, (3)

where Ff is the set of admissible solutions. Let us refer to [4, 5] for optimal
solutions existence results for (3), where a Dirichlet and Neumann optimal
control problem governed by the p-Laplace equation is considered.

Solving (1) numerically is a difficult task due to the quasilinear elliptic
constraint f(x) = 0 (fine model). In the next section we utilize instead of the
accurate, but complex model (1) a linear elliptic PDE as a simpler model that
is much easier to solve. Then we combine the simple and the complex model
by applying a space mapping approach.

3 Space mapping

The space mapping is a mapping between the fine model space parameter or
variables and the coarse model space. Then the optimization can be carried
out for the coarse model, but information from the fine model is utilized
to improve the accuracy of the optimization result with respect to the real
application.
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As introduced in Section 1 the goal is to replace the fine model (1) by
the coarse model (2). Later this fine model will be used in the optimization
problem. Existence and uniqueness of a weak solution to (2) were discussed in
[3]. Let us now define the Banach space Y = L∞(Ω)×H1

0 (Ω) and introduce
the bilinear operator c : Y → H−1(Ω) (coarse model) by

〈c(y), ϕ〉H−1,H1
0

=
∫

Ω

2(1 + n)µ(x)∇v(x) dx− 〈g, ϕ〉H−1,H1
0

for y = (µ, v) ∈ Y and ϕ ∈ H1
0 (Ω), where 〈· , ·〉H−1,H1

0
stands for the dual

pairing between H1
0 (Ω) and its dual space H−1(Ω).

Let us now formulate the space mapping. Our fine model is the p-Laplace
equation (1) with the model output u together with the thickness parameter
λ. The coarse model is given by the linear ellipic PDE (2) with the model
output v and the thickness parameter µ. The goal of the space mapping is
to adjust the thickness parameter µ in the coarse model so that the model
outputs u and v are similar. Furthermore we want to achieve that the thickness
parameters µ and λ are not too distinct.

Concentrating on the region of interest (the subset of Ω, where the force
g acts) we consider the space mapping on a subset A ⊆ Ω. We define the
restriction operator RA : L2(Ω)→ L2(Ω) as RAv = v on A a.e. and RAv = 0
otherwise. Further we introduce the set of admissible thickness parameters by

Mad =
{
µ ∈ C0,1(Ω) |µa ≤ µ(x) ≤ µb f.a.a. x ∈ Ω and ‖µ‖C0,1(Ω) ≤ Cb

}
with Cb = ‖µb‖C0,1(Ω). For µ ∈Mad the solution to (2) belongs to H2(Ω).

Now we introduce the space mapping P : Λad → Mad as follows: for a
given thickness parameter λ ∈ Λad the corresponding µ = P(λ) ∈Mad is the
thickness parameter so that RAv is as close as possible to RAu. We formulate
µ as the solution to a minimization problem. The goal is to determine an
optimal thickness µ for a given λ minimizing the cost functional Jsp : Y → R
given by

Jsp(y) =
γ

2

∫
A

∣∣v(x)− u(x)
∣∣2 dx +

κ

2

∫
Ω

∣∣µ(x)− λ(x)
∣∣2 dx

for y = (µ, v) ∈ Y subject to µ ∈Mad and the equality constraint c(y) = 0 in
H−1(Ω), where γ > 0 is a weighting and κ ≥ 0 is a smoothing parameter.

Let us now formulate the minimization problem more abstractly. We define
Yad = Mad ×H1

0 (Ω), then the problem can then be written as follows

min Jsp(y) s.t. y ∈ Fsp =
{
y ∈ Yad

∣∣ c(y) = 0 in H−1(Ω)
}
, (Psp)

where Fsp is the set of admissible solutions.
The following theorem ensures existence of optimal solutions to (Psp) and

states the first-order necessary optimality conditions. The proof follows from
[3] and [8].
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Theorem 1. The problem (Psp) has at least one optimal solution y∗ =
(µ∗, v∗) ∈ Yad, which can be characterized by first-order necessary optimal-
ity conditions: There exists a unique associated Lagrange multiplier p∗ ∈ V
together with y∗satisfying the adjoint equation

−div
(
2(1 + n)µ∗(x)∇p∗(x)

)
= −γ

(
RA(v∗ − u)

)
(x) f.a.a. x ∈ Ω,

p∗(x) = 0 f.a.a. x ∈ Γ. (4)

Moreover, the variational inequality∫
Ω

(
κ
(
µ∗(x)− λ(x)

)
+ 2(1 + n)

(
∇v∗(x) · ∇p∗(x)

)) (
µδ(x)− µ∗(x)

)
dx ≥ 0

holds for all µδ ∈Mad.

The optimal control problem given by (Psp) can be written in reduced form

min Ĵsp(µ) s.t. µ ∈Mad. (P̂sp)

The gradient of the reduced cost functional at a given point µ ∈ Mad in a
direction µδ ∈ L∞(Ω) is given by

Ĵ ′sp(µ)µδ =
∫

Ω

(κ (µ(x)− λ(x)) + 2(1 + n)∇v(x) · ∇p(x))µδ(x) dx,

where v satisfies (2) and p solves (4).
In our numerical experiments we assume that (P̂sp) has an inactive so-

lution µ∗, i.e., µa < µ∗ < µb f.a.a. x ∈ Ω and ‖µ∗‖C0,1(Ω) < Cb. We utilize
a globalized Newton method with Armijo backtracking line search algorithm
[12, p. 37] to solve (P̂sp). In each level of the Newton method the linear system

Ĵ ′′sp(µ
`)d` = −Ĵ ′sp(µ

`) (5)

is solved by the truncated conjugate gradient method [12, p. 169]. We find(
Ĵ ′′sp(µ

`)µδ

)
(x) = κµδ(x) + 2(1 + n)

(
∇vδ(x) · ∇p`(x) +∇v`(x) · ∇pδ(x)

)
f.a.a. x ∈ Ω, where u` and p` satisfy (2) and (4) respectively and uδ and pδ

satisfy linearized state and adjoint equations; see [8]. Another possibility to
solve (5) is to utilize a quasi Newton approximation or the Hessian.

4 Surrogate optimization

In this subsection we turn to the surrogate optimization that is used to solve
approximately (3). The main idea is to solve the optimization problem using
the coarse model c(y) = 0, but to take the fine model f(x) = 0 into account
by the space mapping technique introduced in Section 3.
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Let us introduce the Banach space Z = L∞(Ω) ×H1
0 (Ω) and the subset

Zad = Λad ×H1
0 (Ω). We define the cost functional Jso : Z → R as

Jso(z) =
∫

Ω

λ(x) +
η

2

∣∣λ− λ◦∣∣2 + βmin
(
v(x)− ub(x), 0

)3 dx

for z = (λ, v) ∈ Z, where η, λ◦, β, ub are as in Section 2. We consider the
optimization problem

minJso(z) s.t. z ∈ Fso =
{
z ∈ Zad

∣∣ c(µ, v) = 0 and µ = P(λ)
}
. (Pso)

Note that in the surrogate optimization the space mapping is used to link
the coarse and the fine model and therefore informations of the fine model
are taken into account in the optimization prozess. We suppose that (Pso)
has a local optimal solution z∗ = (λ∗, v∗) ∈ Zad. In particular, we have
v∗ = Sc(P(λ∗)), where Sc denotes the solution operator for the coarse model.
The corresponding reduced problem is given by

min Ĵso(λ) s.t. λ ∈ Λad

with

Ĵso(λ) =
∫

Ω

λ(x) +
η

2

∣∣λ− λ◦∣∣2 + βmin
(
v(x)− ub(x), 0

)3 dx, λ ∈ Λad.

with v = Sc(P(λ)). Next we state the first-order necessary optimality condi-
tions for (Pso); see [7].

Theorem 2. Suppose that z∗ = (λ∗, v∗) is a local solution to (Pso) and the
space mapping P is Fréchet-differentiable. Then there exist unique associated
Lagrange multipliers p∗ ∈ V and ξ∗ ∈ L2(Ω) together with z∗ satisfying the
adjoint equation

−div
(
2(1 + n)µ∗(x)∇p∗(x)

)
= −3βmin

(
v∗(x)− ub(x), 0

)2 f.a.a. x ∈ Ω,
p∗(x) = 0 f.a.a. x ∈ Γ.

Moreover, the variational inequality∫
Ω

(
1 + η

(
λ∗(x)− λ◦(x)

)
+ 2(1 + n)P ′(λ∗)?

(
∇v∗(x) · ∇p∗(x)

))
(λδ(x)− λ∗(x)) dx ≥ 0

holds for all λδ ∈ Λad, where P ′(λ∗)? denotes the adjoint operator to P ′(λ∗).

It follows that the gradient Ĵ ′so of the reduced cost functional is given by

Ĵ ′so(λ) = 1 + η(λ− λ◦) + P ′(λ)?2(1 + n)∇v(·) · ∇p(·) in Ω,

where the function v satisfies
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−div
(
2(1 + n)µ(x)∇v(x)

)
= g(x) f.a.a. x ∈ Ω,

v(x) = 0 f.a.a. x ∈ Γ

with µ = P(λ) and p is the solution to

−div
(
2(1 + n)µ(x)∇p(x)

)
= −3βmin(v∗(x)− ub(x), 0)2 f.a.a. x ∈ Ω,

p(x) = 0 f.a.a. x ∈ Γ.

To avoid the computation of the operator P ′(λ) we apply Broyden’s updating
formula providing a matrix B which can be used to replace P ′(λ), but also
P ′(λ)?. We use a modified Broyden’s update formula introduced in [6]:

B`+1 = B` +
P̃δ −B`λδ

‖λδ‖2L2(Ω)

〈λδ, ·〉L2(Ω)

with

P̃δ = Pδ + σ
Ĵδ − 〈Ĵ ′sur(λ

k),Pδ〉L2(Ω)

‖λδ‖2L2(Ω)

Ĵ ′sur(λ
`),

where Ĵδ = Ĵ ′so(λ
`+1) − Ĵ ′so(λ

`), λδ = λ`+1 − λk and Pδ = P(λ`+1) − P(λ`).
Note that for σ = 0 we get the classical Broyden’s update formula.

For the numerical solution we apply the gradient projection method using
Broyden’s updating to obtain an approximation of the sensitivity P ′(λ).

5 Numerical results

In this section we present numerical results for the space mapping and the
surrogate optimization. For our numerical example we consider a domain rep-
resenting a simplified door, denoted by Ω. The gray line in Figure 2 (left plot)
indicates the section of the boundary, where homogeneous Neuman bound-
ary conditions of the form 〈∇u(x),−→n 〉2 = 0 are applied, where −→n denotes
an outer normal on the boundary and 〈· , ·〉2 the Euclidean inner product.
We use the finite element discretization and solvers for (1) and (2) provided
by the Matlab Partial Differential Equation Toolbox. The right-hand
side g(x) (force term) is given as follows:

g(x) =
{

47.71, x ∈ Br(xmid) =
{
x ∈ Ω

∣∣ |xmid − x|2 < r
}
,

0, otherwise,

where xmid = (0.5, 0.45)T and r = 0.1. This force term is indicated as the
gray circle in Figure 2 (left plot). Let us next state the parameters for our
numerical example. The Hollomon coefficient is set to n = 0.22. For the space
mapping we choose the weight parameter as γ = (

∫
Ω
|u(x)|2 dx)−1 and κ =

10−3γ. Further we choose the region A to be a circle with radius 0.2 and
midpoint (0.5, 0.45), illustrated in Figure 2 (left plot) by a black circle. Next
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we have a look at the parameters for the surrogate optimization. We choose
η, β and λ◦ to be 1.25, 255 and 1.7, respectively. The threshold ub is set to
0.3 and the bounds for the thickness parameter are set to µa = λa = 0.05
and µb = λb = 10. As a stopping criteria we choose the norm of the reduced
gradient to be smaller than 0.1 times the maximum diameter of the finite
elements. We will report on numerical results for two different settings for the
parameter σ.

Fig. 1. Initial thickness parameter (left plot) and the optimal thickness parameter
µ∗ (right plot) for the space mapping using the Newton-CG method.

Fig. 2. Domain Ω with region A (black circle) and region Br(xmid) (gray circle)
(left plot) and the optimal thickness parameter λ∗ (right plot) for the surrogate
optimization.

Let us first present a numerical result for the space mapping. As an initial
thickness for the space mapping we choose a structured initial thickness pa-
rameter, shown in Figure 1 (left plot). In the right plot of Figure 1 we present
the corresponding thickness parameter µ∗ computed by the space mapping.
We observe that the thickness parameter is enlarged in the region A. In Ta-
ble 1 the numerical results and performace for the space mapping utilizing the
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Fig. 3. Displacement v solving (2) for µ = λ∗ (left plot) and solution u to (1) for
λ = λ∗ (right plot).

Table 1. Summary of the results for the space mapping and the performance for
two different methods.

v u BFGS Newton-CG

maxΩ 0.68961 0.59601 0.59541 0.59462
Iterations 9 4
Time (sec) 8.52 4.81

Table 2. Summary of the results for the surrogate optimization and the performance
of the gradient projection method for two different Broyden’s updates (σ = 0 and
σ = 0.2).

σ maxΩ u maxΩ v Volume minΩ λ maxΩ λ ‖u− v‖L2(Ω) Iter Time (sec)

0.0 0.31307 0.27650 0.48857 0.89759 1.77613 0.01198 10 82.72
0.2 0.31313 0.27606 0.48899 0.89555 1.67856 0.01204 7 57.65

Newton-CG and the BFGS algorithms are summarized. It turns out that for
the thickness parameter shown in Figure 1 (left plot) the maximal displace-
ments for v (solution to the linear model) and u (solution to the p-Laplacian)
are quite different. Using the space mapping the optimal thickness parame-
ter leads to a maximal displacement in the linear model that is very close to
maximal one of u. Furthermore, we observe from Table 1 that the Newton-
CG method performs significantly better then the BFGS method while giving
nearly the same results measured in the maximum displacement.

Next we present the numerical results for the surrogate optimization. In
Figure 2 (right plot) the optimal thickness parameter λ∗ for the surrogate
optimization is shown. The corresponding displacements for the coarse and
fine model are shown in Figure 3 (left and right plot), respectively. Compar-
ing the plots in Figure 3 we observe that the maximum displacement of the
non-linear model is significantly larger than the maximal displacement for the
linear model. Therefore, if we make the thickness parameter λ∗ smaller, the
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maximal displacement for the non-linear model would be significantely larger
than the threshold ub = 0.3. The surrogate optimization takes this fact into
account. In Table 2 we summarize the numerical results for the two different
values for σ. Note that the modified Broyden’s update gives a better per-
formance than the classical Broyden’s update with respect to the number of
iterations and CPU time while giving nearly the same results. Further it is
observed that for different initial guesses of λ0 the algorithm converges to the
same numerical solution.
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Summary. In this article, we present computational techniques for optimal control
of monodomain equations which are a well established model for describing wave
propagation of the action potential in the heart. The model consists of a non-linear
parabolic partial differential equation of reaction-diffusion type, where the reaction
term is a set of ordinary differential equations which characterize the dynamics of
cardiac cells.

Specifically, an optimal control formulation is presented for the monodomain
equations with an extracellular current as the control variable which must be de-
termined in such a way that wavefronts of transmembrane voltage are smoothed in
an optimal manner. Numerical results are presented based on the optimize before
discretize and discretize before optimize techniques. Moreover, the derivation of the
optimality system is given for both techniques and numerical results are discussed
for higher order methods to solve the optimality system. Finally, numerical results
are reported which show superlinear convergence when using Newton’s method.

1 Introduction

The bidomain equations are considered to be among the most accurate de-
scriptions of cardiac electric activity at the tissue and organ level. They char-
acterize cardiac tissue as a syncytial continuum, derived via a homogenization
procedure, that consists of two interpenetrating domains, intracellular and ex-
tracellular, separated by a cellular membrane at any given point in space. The
equations state that current leaving one domain, by traversing the cellular
membrane, acts as source of current density in the other domain. Mathemat-
ically, this leads to a degenerate parabolic problem that can be recast as an
elliptic partial differential equation (PDE) coupled to a parabolic PDE.The el-
liptic PDE expresses the extracellular potential distribution, Φe, as a function
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of the transmembrane voltage distribution, Vm whereas the parabolic PDE
models cellular activation and recovery processes (reaction term) and how
they affect adjacent tissue by diffusion. We refer to [8, 2] for more detailed
derivation of the bidomain model and further discussions. The numerical so-
lution of the bidomain equations is computationally expensive owing to the
high spatio-temporal resolution required to resolve the fast transients and
steep gradients governing wavefront propagation in the heart. Assuming that
the anisotropy ratios of the two spaces are equal leads to a reduced bidomain
model, referred to as monodomain, which can be solved at a much cheaper
cost by avoiding the time consuming solution of the elliptic PDE [7]. Under
most circumstances of practical relevance the monodomain model can be set
up to approximate the bidomain model fairly well [9, 6].

Under pathological conditions regular activation sequences may decay into
complex and irregular patterns which impair the heart’s capability to pump
blood. If sufficiently fast and disorganized, such patterns, referred to as car-
diac arrhythmias, may lead to death if not treated immediately. Electrical
defibrillation, i.e. the delivery of a strong electrical shock to the heart, is the
only known therapy to reliably restore a normal rhythm. During defibrilla-
tion shocks extracellular currents are injected via electrodes to establish an
extracellular potential distribution which acts to reduce the complexity of the
activity. This is achieved either by extinguishing all electrical activity, i.e. the
entire tissue returns to its quiescent state, or gradients in Vm are smoothed out
to drive the system to a less heterogeneous state which reduces the likelihood
of triggering new wavefronts via “break” mechanisms when switching off the
applied field. To optimally control cardiac arrhythmias, it is essential to de-
termine the control response to an applied electric field as well as the optimal
extracellular current density that acts to damp gradients of transmembrane
voltage in the system. The present article is devoted to the development of
efficient numerical techniques to solve this optimal control problem for the
monodomain equations.

The finite element method is chosen for the spatial discretization and
higher order linearly implicit Runge-Kutta time stepping methods for the tem-
poral discretization. Numerical techniques for solving optimal control prob-
lems typically require combining a discretization technique with an optimiza-
tion method. We will give a brief description of the optimize before discretize
technique, that is write the continuous optimality system first before discretiz-
ing them, and discretize before optimize, that is first discretize the differential
equations before discretizing the optimality system to solve the monodomain
equations. To the authors knowledge this is the first attempt to combine the
linearly implicit time stepping methods with the discretize before optimize
technique to solve the optimality system. The optimal control approach is
based on minimizing a properly chosen cost functional J(Vm, Ie) depending
on the extracellular current Ie as input and on the transmembrane potential
Vm as one of the state variables.
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The organization of this article is as follows: in the next section the gov-
erning equations for the action potential and the behavior of the ionic current
variables using ionic models are described. In section 3 the control problem
is posed for the monodomain equations and the optimality system is derived
for the two discretization approaches. Numerical results are presented in sec-
tion 4. Finally concluding remarks are given.

2 The monodomain equations

The monodomain model consists of the equations for the transmembrane po-
tential and ionic current variables. We set Q = Ω × [0, tf ] where Ω ⊂ Rd,
d = 2, denotes the cardiac tissue sample domain.

∇ · σ̄i∇Vm =
∂Vm

∂t
+ Iion(Vm, w)− Ie in Q (1)

∂w

∂t
= g(Vm, w) in Q (2)

where Vm : Q→ R is the transmembrane voltage, w : Q→ Rn represents the
ionic current variables, σ̄i : Ω → Rd×d is the intracellular conductivity tensor,
Ie is an extracellular current density stimulus, and Iion is the current density
flowing through the ionic channels. The function g(Vm, w) determines the
evolution of the gating variables. Eq. (1) is a parabolic equation and Eq. (2)
is a set of ordinary differential equations which can be solved independently
for each node. Here the initial and boundary conditions are chosen as

σ̄i∇Vm · η = 0 on ∂Q = ∂Ω × [0, tf ] (3)
w(0) = w0 and Vm(0) = V0 in Ω . (4)

Ionic model

The ionic activity is modeled by nonlinear ordinary differential equations. For
the present paper we use the modified FitzHugh-Nagumo (FHN) model based
on the work of Rogers and McCulloch [10] and the simulation parameters are
taken from Colli Franzone et al. [1].

Iion(Vm, w) = GVm(1− Vm

vth
)(1− Vm

vp
) + η1Vmw . (5)

g(Vm, w) = η2(
Vm

vp
− η3w) . (6)

where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential
and vp the peak potential.
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3 Optimal control framework and numerical
discretization

In this section we set forth the optimal control problem, for which the numer-
ical experiments were carried out. We consider

(P)

minJ(Vm, Ie) ,

e(Vm, w, Ie) = 0 in Q ,
(7)

where Vm and w are the state and Ie is the control variable. The coupled PDE
and ODE constraints (1-2) for the monodomain equation together with initial
and boundary conditions for Vm are expressed as e(Vm, w, Ie) = 0. The control
variable Ie is chosen such that it is nontrivial only on the control domain Ωcon

of Ω and Ie equals zero on (Ω \Ωcon)× (0, T ).
The cost functional which is used to optimize the potentials and currents

is given by

J(Vm, Ie) =
1
2

∫ T

0

(∫
Ωobs

|Vm − Z|2 dΩobs + α

∫
Ωcon

|Ie|2 dΩcon

)
dt, (8)

where α is the weight of the cost of the control, Ωobs is the observation do-
main and Ωcon is the control domain. If Z = 0 then the interpretation of the
cost-functional J for the problems to be considered is such that by properly
applying Ie excitation waves are suppressed in the region Ωobs. The inclu-
sion of the tracking type term Z in the cost functional serves code-validation
purposes.

Due to their size and complexity PDE based optimization problems are
generally challenging to solve in practice. The interplay of optimization and
infinite dimensionality of the problem is a crucial one. There are essentially
two approaches to deal with it. In the optimize before discretize (OBD) ap-
proach, first a minimization strategy is applied to the continuous optimal
control problem, (this may consist of deriving the optimality system), and
subsequently the resulting formalism is discretized. Alternatively, in the dis-
cretize before optimize (DBO) approach, first the differential equations as
well as the cost J in (P ) are discretized and subsequently the optimization
procedure for solving the finite-dimensional minimization problem is fixed.

3.1 Optimize before discretize

In this subsection we follow an OBD technique to solve the monodomain
model. More specifically for the problem under consideration the Lagrangian
is defined by

L (Vm, w, Ie, p, q) = J(Vm, Ie) +
∫ T

0

∫
Ω

(
∂w

∂t
− g(Vm, w)

)
q dΩ dt

+
∫ T

0

∫
Ω

(
∇ · σ̄i∇Vm −

∂Vm

∂t
+ Iion(Vm, w)− Ie

)
p dΩ dt, (9)
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where the initial conditions are kept as explicit constraints. The first order
optimality system is obtained by formally setting the partial derivatives of L
equal to 0. We find

LVm : (Vm − Z)Ωobs
+∇ · σ̄i∇p+ pt − (Iion)Vmp− gVmq = 0 , (10)

Lw : −(Iion)wp− qt − gwq = 0 , (11)

where the subscripts Vm and w denote partial derivatives with respect to these
variables. Further we obtain the

terminal conditions: p(T ) = 0, q(T ) = 0, (12)
boundary conditions: σ̄i∇p · η = 0 on ∂Q , (13)
and the optimality condition: LIe : αIe + p = 0 , on Ωcon . (14)

To solve (P) numerically we need to solve the coupled system of primal
equations (1-2), adjoint equations (10-11), together with initial conditions
(4), boundary conditions (3,13), terminal conditions (12), and the optimality
system (14). The optimality system serves as a gradient of the cost functional
for our computations.

In this study, we have chosen the finite element method for the spatial-
and higher order linearly implicit Runge-Kutta time stepping methods for the
temporal discretizations, specifically a 2-stage Rosenbrock type method [3].
We now give a brief description of spatial and temporal discretizations for the
primal and adjoint equations. For further details we refer to Nagaiah et al. [4].

Discretization of primal and adjoint problems

In computations, the primal problem is solved by decoupling the parabolic
part from the ordinary differential equation. In a first step we use the Euler
explicit time stepping method to solve the ODE part. In a second step, using
the new solution of the gating variables w, we solve the parabolic part by
employing a Rosenbrock time stepping method, refer to [4, 5] for more details.
After the space and time discretization for the primal problem, the system of
linear equations can be expressed as follows:

wn = wn−1 + δtη2

(
vn−1

vp
− η3wn−1

)
J1kn

1 = −Kvn−1 −MIion(vn−1,wn) + MIe ,

J1kn
2 = −K (vn−1 + α21kn

1 )−MIion(vn−1 + α21kn
1 ,wn) + MIe −

c21
δt

Mkn
1

vn = vn−1 +m1kn
1 +m2kn

2 , for n = 1, . . . , Nt, (15)

where K is the stiffness matrix, M is the mass matrix, J1 = ( 1
δtγ M + K +

M[Iion(vn−1,wn)]v), Nt is the maximum number of time steps, the coeffi-
cients γ, αij , cij are constants and the subscript v denotes the partial deriva-
tive with respect to this variable. For solving the linear system the BiCGSTAB
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method with ILU preconditioning is used. We use the same discretization
techniques to solve the adjoint problem. After spatial discretization by FEM
and time discretization by a 2-stage Rosenbrock type method for the adjoint
problem the system can be written as follows:

qn = (1− δtη2η3)qn+1 + δtη1vn+1pn

J2l1 = Kpn+1 + M[Iion(vn+1)]vpn+1 +
η2
vp

Mqn −M(vn+1 − zn+1)Ωobs
,

J2l2 = K (pn+1 + α21l1) + M[Iion(vn+1)]v (pn+1 + α21l1) +
η2
vp

Mqn

−M(vn+1 − zn+1)Ωobs
− c21

τ
Ml1

pn = pn+1 +m1l1 +m2l2 , for n = 1, . . . , Nt − 1 , (16)

where J2 = −
(

1
τnγ

M− (K + M[Iion(vn+1)]vn+1)
)

3.2 Discretize before optimize

In this subsection we explain a discretize before optimize (DBO) technique
to solve the monodomain model. This technique first transforms the original
continuous problem into a finite dimensional optimization problem by dis-
cretizing in space and time. Then the fully discretized optimization problem
is solved by existing optimization solvers. First, in this process the objective
functional is written as follows

J(v, Ie) =
δt

2
(
Nt−1∑
n=1

(vn − zn)>M(vn − zn) + α(In
e )>MIn

e )

+
δt

4
[
(vNt − zNt)

>M(vNt − zNt) + α(INt
e )>MINt

e

]
+
δt

4
α(I0

e)
>MI0

e.

To solve the monodomain problem with the DBO approach we discretize
the problem first in space and time. For the space discretization we used piece-
wise linear FEM, and for the temporal discretization a 2 stage Rosenbrock
type method. The resulting algebraic system can be obtained as in Eq. (15).
The corresponding Lagrangian is given by

L(w,v, Ie,k1,k2,p,q, φ, ψ)

= J(v, Ie) +
N∑

n=1

q>n
(
Mwn −Mwn−1 − δt Mg(vn−1,wn−1)

)
+

N∑
n=1

φ>n (J1kn
1 + Kvn−1 + MIion(vn−1,wn)−MIn

e )

+
N∑

n=1

ψ>n

(
J1kn

2 + K (vn−1 + α21kn
1 ) + MIion(vn−1 + a21kn

1 ,wn)
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−MIn
e + M

c21
δt

kn
1

)
+

N∑
n=1

p>n (vn − vn−1 −m1kn
1 −m2kn

2 ) .

The first order optimality system is obtained by formally setting the partial
derivatives of L equal to 0. We find

Lwn : q>n − q>n+1 + δtη2η3q>n+1 + φ>n η1v
n+1 + ψ>n

(
vn+1 + a21kn

1

)
η1 = 0

Lkn
2

: ψ>n J1 −m2p>n = 0

Lkn
1

: φ>n J1 + ψ>n Ka21 + ψ>n M(Iion)k1 +
c21
δt
ψ>n M−m1p>n = 0

Lv : δt[M(vn − zn)Ωobs
− η2
vp

Mq>n+1] + φ>n+1K + φ>n+1M(Iion(v))v

+ψ>n+1K + ψ>n+1M
(
Iion(vn+1 + a21k1,wn)

)
v

+ p>n − p>n+1 = 0 (17)

LvNt : pNt = −δt
2

M(vNt − zNt) (18)

LIe : δtαMIn
e = M(φn + ψn) , where n = N − 1, . . . , 1 (19)

LINt
e

:
δt

2
αMINt

e = M(φNt + ψNt). (20)

In this case eqs. (19) and (20) serve as a gradient of the cost functional in
computations.

3.3 Comparison of optimization methods

If we observe the first derivative of the cost functional, it involves the adjoint
stage solutions φn and ψn of time stepping method in the DBO case and in the
OBD case it involves the adjoint variable of the primal solution. The terminal
solution to solve the adjoint problem is different in the DBO from the OBD
case. Also, one needs to evaluate two extra matrix times vector products in
the DBO case, see eq. (17), in comparison to algebraic system of the OBD.
If one uses Newton’s method to solve the optimality system, the DBO case
requires more memory than the OBD case, because the stage solutions of
primal problem are involved in the linearized primal and adjoint equations.

A nonlinear conjugate gradient (NCG) method and Newton’s method are
adopted to solve the optimality system. In both cases a line search is required.
For this purpose we use the strong Wolfe conditions with a back tracking
strategy. A more in-depth description will be found in [4, 5] to solve the
current optimization problem.

4 Results

In this section numerical results are presented to demonstrate the capability
of dampening an excitation wave of the transmembrane potential by prop-
erly applying an extracellular current stimulus. In this note the numerical
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results for the OBD and DBO approaches are compared for 1D examples, see
[5] for 2D results. Also comparisons with respect to the NCG and Newton
optimization algorithms are given. The computational domain is Ω = (0, 1).
The relevant subdomains are depicted in Figure 1. The observation domain is
Ωobs = Ω\(Ωf1 ∪Ωf2), the excitation domain is Ωexi and the control domain
is Ωcon = Ωcon1 ∪Ωcon2.

Ωcon1 Ωexi Ωcon2

Ωf2

Ω

Ωf1

Fig. 1. Control and excitation region at the cardiac domain

The choice Z = 0 corresponds to the desire to dampen the wave in Ωobs.
For the computations the simulation time is set to 4 msec. A uniform spatial
mesh consisting of 100 nodes, and 200 equidistant time steps are used. Also we
assume that the initial wave excitation takes place on the excitation domain.
In all simulations the weight of the cost of the control is fixed at α = 5 · 10−3

and the optimization iterations were terminated when the following condition
is satisfied: ‖∇Jk‖∞ ≤ 10−3(1 + |Jk|) or difference of the cost functional
between two successive optimization iterations is less than 10−3. The code is
implemented using MATLAB-7.4 version.

The continuous L2 norm of the gradient and the minimum value of the cost
functional with respect to the optimization iterations are depicted in Figure 2
for OBD and DBO, using the NCG and Newton optimization algorithms. The
norm of the gradient and the minimal values of the cost functional decrease
more rapidly for Newton’s method. In this case both OBD and DBO take 7
optimization iterations to reach the stopping criterion. The DBO algorithm is
bit faster and takes 13 sec of CPU time. The OBD algorithm takes 1.04 times
of CPU time more than the DBO case. Indeed, there is no big difference
between the OBD and DBO techniques for this particular problem. Also,
similar behavior between the OBD and DBO is observed using the NCG
algorithm. For all methods the cost functional value is approximately 102
at the optimal state solution. The optimal state solution of transmembrane
voltage is shown in Figure 3 at time t = 0.04 msec and t = 1.40 msec and we
can observe that excitation wave is completely dampened.

The line search algorithm takes small step lengths at the beginning of opti-
mization iterations and full steps towards the end of the iterations. In Table 4
the optimization iterations, the norm of the gradient of the cost functional
and the order of convergence for the OBD method using Newton’s algorithm
is presented. From this table we can conclude that the OBD technique based
on the Newton method shows super linear convergence from iteration 3 to 6.
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Fig. 2. The norm of the gradient and minimum value of the cost functional are
shown on left and right respectively for T = 4 msec of simulation time.
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Fig. 3. The optimal state solution of Vm at time t = 0.04 msec and t = 1.80 msec
for T = 4 msec of simulation time.

opt.iters ||∇J(Vm, Ie)|| ||∇J(Vm,Ie)||i+1
||∇J(Vm,Ie)||i

1 160.4675668
2 38.2739193 0.2385
3 17.7594672 0.4640
4 5.4176392 0.3051
5 0.4178937 0.0771
6 0.0064591 0.0155
7 0.0001882 0.0291

Table 1. Optimization iterations, norm of gradient of cost functional and order of
convergence for the OBD technique with Newton’s algorithm are presented.

5 Conclusions

In this note, two concrete realizations of the OBD and the DBO approaches for
optimal control of the action potential in cardiac electrophysiology based on
the monodomain equation were discussed and numerical results are presented
for a one-D example. For the current problem there is no significant difference
for these two techniques. However, there is a significant difference between
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the NCG and the Newton methods. Due to the strong nonlinearities in the
model, it appears to be difficult to observe a second order convergence. In this
respect we were more successful to achieve a superlinear convergence for both
discretization methods. The results motivate us to continue our investigations
for the bidomain model. The computational results, with extracellular control
dampening the complete wave propagation of the transmembrane potential,
suggest to also strive for more insight into longer time horizons, with com-
plete simulations of several heart beats, and more realistic geometries and
finer meshes.

Acknowledgement: The authors gratefully acknowledge the Austrian Sci-
ence Foundation (FWF) for financial support under SFB 032, ”Mathematical
Optimization and Applications in Biomedical Sciences”.
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Summary. We consider an optimal control problem from hyperthermia treatment
planning and its barrier regularization. We derive basic results, which lay the ground-
work for the computation of optimal solutions via an interior point path-following
method in function space. Further, we report on a numerical implementation of such
a method and its performance at an example problem.

1 Hyperthermia Treatment Planning

Regional hyperthermia is a cancer therapy that aims at heating up deeply
seated tumors in order to make them more susceptible to an accompanying
chemo or radio therapy [12]. We consider a treatment modality where heat
is induced by a phased array microwave ring-applicator containing 12 anten-
nas. Each antenna emits a time-harmonic electromagnetic field the amplitude
and phase of which can be controlled individually. The linearly superposed
field acts as a heat source inside the tissue. We are interested in controlling
the resulting stationary heat distribution, which is governed by a semi-linear
elliptic partial differential equation, the bio-heat transfer equation (BHTE),
see [7]. The aim is to heat up the tumor as much as possible, without dam-
aging healthy tissue. We thus have to impose constraints on the temperature,
and mathematically, we have to solve an optimization problem subject to a
PDE as equality constraint and pointwise inequality constraints on the state.

We consider an interior point path-following algorithm that has been ap-
plied to this problem. In order to treat the state constraints, the inequality
constraints are replaced by a sequence of barrier functionals, which turn the
inequality constrained problem into a sequence of equality constrained prob-
lems. We will show existence of barrier minimizers and derive first and second
order optimality conditions, as well as as local existence and differentiability
of the path, and local convergence of Newtons method. Our work extends the
results of [10], which covers the case of linear PDE constraints, to a problem
with a non-linear control-to-state mapping, governed by a semi-linear PDE.
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DOI 10.1007/978-3-642-12598-0_36, © Springer-Verlag Berlin Heidelberg 2010 



420 Anton Schiela and Martin Weiser

1.1 The Bio-Heat Transfer Equation

The stationary bio-heat transfer equation was first introduced in [7] to model
the heat-distribution T in human tissue. This partial differential equation
is a semi-linear equation of elliptic type, which can be written as A(T ) −
B(u) = 0, where A(T ) is a differential operator, applied to the temperature
distribution, and B(u) is a source term, which can be influenced by complex
antenna parameters u ∈ C12.

More concretely, we set v := (T, u) and consider the following equation in
the weak form on a domain Ω ⊂ R3, which is an individual model of a patient:

〈A(T ), ϕ〉 :=
∫

Ω

〈κ∇T,∇ϕ〉R3 + w(T )(T − T0)ϕdx+
∫

∂Ω

h(T − Tout)ϕdS,

〈B(u), ϕ〉 :=
∫

Ω

σ

2
|E(u)|2C3 ϕdx

〈c(v), ϕ〉 := 〈A(T )−B(u), ϕ〉 = 0 ∀ϕ ∈ C∞(Ω),

where all coefficients may depend of the spacial variable x, and E(u) =∑12
k=1Ekuk is the superposition of complex time-harmonic electro-magnetic

fields, and uk are the complex coefficients of the control. Further, κ is the
temperature diffusion coefficient, σ is the electric conductivity and w(T ) de-
notes the blood perfusion. By T0, we denote the temperature of the unheated
blood, e.g. 37◦C. The domain Ω consists of a number of subdomains Ωi, corre-
sponding to various types of tissue. All coefficients may vary significantly from
tissue type to tissue type. For a more detailed description of the parameters
we refer to [2].

Assumption 4 Assume that κ, σ ∈ L∞(Ω) are strictly positive on Ω. Sim-
ilarly, let h ∈ L∞(∂Ω) be strictly positive on ∂Ω. Further, assume that
w(T, x)(T − T0) is strictly monotone, bounded and measurable for bounded
T , and twice continuously differentiable in T . Assume also that each electric
field Ek is contained in LqE

(Ω,C3) for some qE > 3.

Remark 1. Our assumptions are chosen in a way that that the temperature
distribution inside the body is bounded and continuous, while still covering the
case of jumping coefficients due to different tissue properties inside the patient
models. Also the assumptions on the regularity of the fields Ek ∈ LqE , qE > 3
are necessary for guaranteeing continuity of the temperature distribution (cf.
e.g. [4, Thm. 6.6]). For the generic regularity Ek ∈ L2 this cannot be guaran-
teed a-priori. In clinical practice, of course, pointwise unbounded temperature
profiles do not occur. Overly large intensity peaks are avoided by construction
of the applicator. However, it is observed that near tissue boundaries so called
hot spots occur: small regions, where the temperature is significantly higher
than in the surrounding tissue due to singularities in the electro-magnetic
fields at tissue boundaries. One of the challenges of optimization is to elimi-
nate these hot spots.
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Under these assumption we can fix our functional analytic framework.
As usual in state constrained optimal control, we have to impose an ‖ · ‖∞-
topology on the space of temperature distributions. To this end, let q be in
the range qE > q > 3, and q′ = q/(q − 1) its dual exponent. We define
V = C(Ω)× C12 and

c : (C(Ω) ⊃ Dq)× C12 → (W 1,q′
)∗,

where Dq is the set of all T , such that A(T ) ∈ (W 1,q′
)∗, i.e. 〈A(T ), ϕ〉 ≤

M‖ϕ‖W 1,q′ ∀ϕ ∈ C∞(Ω). By suitable regularity assumptions Dq = W 1,q(Ω),
a result, which we will, however, not need.

It is well known (cf. e.g. [11, 4]) that A has a continuous inverse A−1 :
(W 1,q′

)∗ → C(Ω), and even ‖T‖Cβ ≤ c‖A(T )‖(W 1,q′)∗ for some β > 0 lo-
cally, where Cβ is the space of Hölder continuous functions. Moreover, it is
straightforward to show that Dq only depends on the main part of A, and is
thus independent of T .

Lemma 1. The mapping c(v) : (C(Ω) ⊃ Dq) × C12 → (W 1,q′
(Ω))∗ is twice

continuously Fréchet differentiable. Its derivatives are given by

〈c′(v)δv, ϕ〉 = 〈A′(T )δT −B′(u)δu, ϕ〉

〈A′(T )δT, ϕ〉=
∫

Ω

〈κ∇δT,∇ϕ〉R3 +(w′(T )(T−T0)+w(T ))δTϕ dx+
∫

∂Ω

hδTϕdS

〈B′(u)δu, ϕ〉 =
∫

Ω

σRe

〈
12∑

k=1

Ekuk,

12∑
k=1

Ekδuk

〉
C3

ϕdx

〈c′′(v)(δv)2,ϕ〉= 〈A′′(T )(δT )2 −B′′(u)(δu)2, ϕ〉 =

=
∫

Ω

(w′′(T )(T − T0) + 2w′(T ))δT 2ϕ− σRe

〈
12∑

k=1

Ekδuk,
12∑

k=1

Ekδuk

〉
C3

ϕdx.

Proof. Since all other parts are linear in T , it suffices to show Fréchet differ-
entiability of T → w(T, x)(T − T0) and u→ |E(u, x)|2. Since by assumption,
w(T, ·) ∈ C1(Ω), differentiability of T → w(T, x)(T − T0) : C(Ω) → Lt(Ω)
for every t < ∞ follows from standard results of Nemyckii operators (cf.
e.g. [3, Prop. IV.1.1], applied to remainder terms). By the dual Sobolev
embedding Lt(Ω) ↪→ (W 1,q′

(Ω))∗ for sufficiently large t, differentiability of
T → w(T, x)(T − T0) : C(Ω) ⊃ Dq → (W 1,q′

(Ω))∗ is shown.
Similarly, differentiability of the mapping u → |E(u, x)|2 : C12 → Ls(Ω)

for some s > 3/2 follows by the chain rule from the linearity of the mapping
u → E(u, x) : C12 → LqE

(Ω,C3) and the differentiability of the mapping
w → |w|2 : LqE (Ω,C3) → LqE/2(Ω,C3) with qE/2 = s > 3/2. Again, by the
dual Sobolev embedding Ls(Ω) ↪→ (W 1,q′

(Ω))∗ we obtain the desired result.
Similarly, one can discuss the second derivatives. We note that (|E(u, x)|2)′

is linear in u, and thus it coincides with its linearization.
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Remark 2. Note that A′ : C(Ω) ⊃ Dq → (W 1,q′
(Ω))∗ is not a continuous

linear operator, but since it has a continuous inverse, it is a closed operator.
Moreover, since the main part ofA is linear, A′(T )−A′(T̃ ) contains no differen-
tial operator. Hence ‖T̃−T‖∞ → 0 implies ‖A′(T )−A′(T̃ )‖C(Ω)→(W 1,q′ )∗ → 0.
These facts allow us to apply results, such as the open mapping theorem and
the inverse function theorem to A.

Lemma 2. For each v ∈ Dq × C12 the linearization

c′(v) = A′(T )−B′(u) : Dq × C12 → (W 1,q′
(Ω))∗

is surjective and has a finite dimensional kernel.
For each v with c(v) = 0 there is a neighborhood U(v) and a local diffeo-

morphism
ψv : ker c′(v)↔ U(v) ∩ {v : c(v) = 0},

satisfying ψ′v(0) = Id and c′(v)ψ′′v (0) = −c′′(v).

Proof. It follows from the results in [4] that A′(T ) has a continuous in-
verse A′(T )−1 : (W 1,q′

(Ω))∗ → C(Ω). Since A′ is bijective, also c′(v) =
(A′(T ),−B′(u)) is surjective, and each element δv = (δT, δu) of ker c′ can
be written in the form (A′(T )−1B′(u)δu, δu). Since δu ∈ C12, ker c′(v) is fi-
nite dimensional. Via the inverse function theorem we can now conclude local
continuous invertibility of A, and also that A−1 is twice differentiable.

Let (δT, δu) = δv ∈ ker c′(v). Then we define

ψv(δv) :=
(

(A−1 ◦B)(u+ δu)
u+ δu

)
and compute

(A−1 ◦B)′(v)δu = A′(T )−1B′(u)δu = δT

(A−1◦B)′′(v)(δu)2 =−A′(T )−1A′′(T )A′(T )−1(B′(u)δu)2+A′(T )−1B′′(u)(δu)2

= −A′(T )−1
(
A′′(T )(δT )2 −B′′(u)(δu)2

)
.

It follows

ψ′v(0)δv = (δT, δu) = δv

c′(v)ψ′′v (0)(δv)2 = (A′(T ),−B′(u))ψ′′v (0)(δv)2

= −(A′′(T )(δT )2 −B′′(u)(δu)2) = −c′′(v)(δv)2.

1.2 Inequality constraints and objective

As for inequality constraints, we impose upper bounds on the amplitudes of
the controls to model the limited power of the microwave applicator:
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|uk| ≤ umax, k = 1 . . . 12.

Moreover, crucially, we impose upper bounds on the temperature inside the
healthy tissue. These are state constraints, which pose significant practical
and theoretical difficulties. These constraints are necessary to avoid excessive
heating of healthy tissue, which would result in injuries of the patient. We
have

T ≤ Tmax(x),

where Tmax is chosen as a piecewise constant function on each tissue type,
depending on the sensitivity of the tissue with respect to heat.

Algorithmically, we treat the inequality constrained optimization problem
in function space by a barrier approach (cf. [10]) and replace the inequality
constraints by a sequence of barrier functionals, depending on a parameter µ
(setting again v = (T, u)):

b(v;µ) =
∫

Ω

l(Tmax − T ;µ) dx− µ
12∑

i=1

ln(umax − |uk|)

here l may be a sum of logarithmic and rational barrier functionals:

lk(·;µ) : R+ → R := R ∪ {+∞}
l1(t;µ) := −µ ln(t), lk(t;µ) := µk/((k − 1)tk−1) (k > 1)

A straightforward computation shows that b(v;µ) is a convex function (as
a composition of convex and convex, monotone functions), and it is also clear
that for strictly feasible v, b : C(Ω)× C12 is twice continuously differentiable
near v, and thus locally Lipschitz continuous there. It has been shown in [10]
that b is also lower semi-continuous.

Finally, we consider an objective functional J : C(Ω) × C12 → R, which
we assume to be twice continuously differentiable, and thus locally Lipschitz
continuous. For our numerical experiments, below, we will choose a simple
objective of the form J(v) = ‖T − Tdes‖2L2

(recall that the control is finite di-
mensional), but more sophisticated functionals are under consideration, which
more directly model the damage caused in the tumor.

Summarizing, we can write down regularized optimal control problem:

min
v∈V

Jµ(v) := J(v) + b(v;µ) s.t. c(v) = 0. (1)

2 Barrier Minimizers and their Optimality Conditions

Next we study existence and basic properties of solutions of the barrier prob-
lems. For this purpose we impose the assumption that there is at least one
strictly feasible solution. This is fulfilled, for example by u = 0, if the upper
bounds Tmax are chosen reasonably.
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Theorem 1. For every µ > 0 the barrier problem (1) has an optimal solution,
which is strictly feasible with respect to the inequality constraints.

Proof. Since the set of feasible controls is finite dimensional, closed, and
bounded and by our assumptions the control-to-space mapping u → T is
continuous (cf. e.g. [4, Thm. 6.6] and the discussion after that theorem), the
set of all feasible pairs (T, u) is compact in C(Ω)×C12. By assumption, there
is at least one strictly feasible solution, for which J + b takes a finite value.
Hence, existence of an optimal solution follows immediately from the Theorem
of Weierstraß (its generalization for lower semi-continuous functions).

Since all solutions of our PDE are Hölder continuous, strict feasibility for
sufficiently high order of the barrier functional follows from [10, Lemma 7.1].

Lemma 3. If vµ is a locally optimal solution of (1), then δv = 0 is a mini-
mizer of the following convex problem:

min
δv

J ′(vµ)δv + b(vµ + δv;µ) s.t. c′(vµ)δv = 0 (2)

Proof. For given, δv ∈ ker c′(vµ), and t > 0 let ṽ = vµ + tδv. By Lemma 2
there are v̂ = ψvµ

(δv), such that c(v̂) = 0 and v̂ − ṽ = o(t). Further, by strict
feasibility of vµ, J + b is locally Lipschitz continuous near vµ with Lipschitz
constant LJ+b. We compute

J ′(vµ)(tδv) + b′(vµ;µ)(tδv) = (J + b)(ṽ;µ)− (J + b)(vµ;µ) + o(t)
= (J + b)(v̂;µ)− (J + b)(vµ;µ) + (J + b)(ṽ;µ)− (J + b)(v̂;µ) + o(t)
≥ 0 + LJ+bo(t) + o(t).

it follows J ′(vµ)δv+b′(vµ;µ)δv ≥ 0, and by linearity J ′(vµ)δv+b′(vµ;µ)δv = 0.
By convexity of b we have b′(vµ;µ)δv ≤ b(vµ + δv;µ)− b(vµ;µ) and thus

J ′(vµ)δv + b(vµ + δv;µ)− b(vµ;µ) ≥ 0

which proofs our assertion.

Theorem 2. If vµ is a locally optimal solution of (1), then there exists a
unique p ∈ H1(Ω), such that

0 = F (v, p;µ) :=
{
J ′µ(vµ) + c′(vµ)∗p,
c(vµ). (3)

Proof. Clearly, the second row of (3) holds by feasibility of vµ. By Lemma 3
δv = 0 is a minimizer of the convex program (2). Hence, we can apply [10,
Thm. 5.4] to obtain first order optimality conditions for this barrier problem
with p ∈W 1,p′

(Ω). Taking into account strict feasibility of vµ with respect to
the inequality constraints, all elements of subdifferentials in [10, Thm. 5.4] can
be replaced by Fréchet derivatives, so (3) follows. In particular, p satisifies the
adjoint equation ∂yJµ(vµ) +A′(T )∗p = 0, which can be interpreted as a PDE
in variational form with ∂yJµ(vµ) ∈ L∞(Ω), and thus p ∈ H1(Ω) follows.
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Before we turn to second order conditions we perform a realification of
the complex vector u ∈ C12. Since |E(u, x)| only depends on the the relative
phase shifts of the antenna parameters, optimal controls of our problem are
non-unique. This difficulty can be overcome easily by fixing Im(u1) = 0. After
that, realification (x + iy → (x, y)) yields a new control vector u ∈ R23

(dropping the component that corresponds to Im(u1)), which we will use in
the following. We define the Hessian of the Lagrangian H(v; p) by

H(v, p)δv2 = J ′′µ (v)δv2 + 〈p, c′′(v)δv2〉

Theorem 3. Let (vµ, pµ) be a solution of (3). Then,

1
2
H(vµ, pµ)δv2 = Jµ(ψvµ(δv))− Jµ(vµ) + o(‖δv‖2). (4)

(i) H(vµ, pµ) is positive semi-definite on ker c′(vµ), if vµ is a local minimizer
of (1).

(ii)H(vµ; pµ) is positive definite on ker c′(vµ), if and only if vµ is a local
minimizer of (1) and Jµ satisfies a local quadratic growth condition.
Then for each (r1, r2) ∈ ((H1(Ω))∗×R23)× (W 1,q′

(Ω))∗ the linear system(
H(vµ, pµ) c′(vµ)∗

c′(vµ) 0

)(
δv
δp

)
=
(
r1
r2

)
(5)

has a unique solution (δv, δp) ∈ V × H1(Ω), depending continuously on
(r1, r2).

Proof. Let δv ∈ ker c′(vµ), and ψvµ be defined as in Lemma 2. We show (4)
by Taylor expansion:

Jµ(ψvµ(δv))− Jµ(vµ) =J ′µ(vµ)ψ′vµ
(0)δv

+ 0.5
(
J ′′µ (vµ)(ψ′vµ

(0)δv)2+J ′µ(vµ)ψ′′vµ
(0)(δv)2

)
+o(‖δv‖2).

(6)

Since J ′µ(vµ)δv = 0 ∀δv ∈ ker c′(vµ), ψ′vµ
(0) = Id, it follows J ′µ(vµ)ψ′vµ

(0)δv =
0. Further, by J ′µ(vµ)δv + 〈pµ, c

′(vµ)δv〉 = 0 ∀δv ∈ V and c′(vµ)ψ′′vµ
(0) =

−c′′(vµ) we deduce

J ′µ(vµ)ψ′′vµ
(0)(δv)2 = −〈pµ, c

′(vµ)ψ′′vµ
(0)(δv)2〉 = 〈pµ, c

′′(vµ)(δv)2〉.

Inserting these two results into (6) yields (4).
All other assertions, except for solvability of (5) then follow directly, using

the fact that |‖δv‖ − ‖ψvµ(δv)− vµ‖| ≤ ‖vµ + δv − ψvµ(δv)‖ = o(‖δv‖).
Let us turn to (5). If H(vµ; pµ) is positive definite on kerc′(vµ) (which is

finite dimensional), then the minimization problem

min
c′(vµ)δv=r2

−〈r1, δv〉+H(vµ; pµ)δv2
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is strictly convex and has a unique solution δv. The first order optimality
conditions for this problem yield solvability of the system (5) at (vµ, pµ).
Since we have assumed r1 ∈ (H1)∗ × R23 and A′(Tµ)∗ : H1 → H−1 is an
isomorphism, we obtain δp ∈ H1. Thus, the matrix in (5) is surjective, and
we may deduce its continuous invertibility by the open mapping theorem.

Corollary 1. If H(vµ, pµ) is positive definite on ker c′(vµ), then, locally, there
is a differentiable path µ → zµ of local minimizers of the barrier problems,
defined in some open interval ]µ, µ[⊃ µ. Further, Newton’s method, applied to
F (v, p;µ) converges locally superlinearly to (vµ, pµ).

Proof. We note that F (v, p;µ) is differentiable w.r.t. µ, and w.r.t. (v, p). Since
F ′ = dF/d(v, p), given by (5) is continuously invertible, local existence and
differentiability follows from the implicit function theorem. Since F ′(v, p;µ)
depends continuously on (v, p), we can use a standard local convergence result
for Newton’s method (cf. e.g. [6, Thm. 10.2.2]).

Remark 3. Since all these results depend on the positive definiteness of H,
we cannot expect to obtain global convergence results for barrier homotopy
paths. From a global point of view, several branches may exist, and if H is
only positive semi-definite at a point of one such branch, it may cease to exist
or bifurcate. As a consequence, a local Newton path-following scheme should
be augmented by a globalization scheme. for non-convex optimization in the
spirit of trust-region methods. This is subject to current reasearch.

3 Numerical results

For the optimization of the antenna parameters we use an interior point path-
following method, applying Newton’s method to the system (3). As barrier
functional we use the sum of rational barrier functionals, and the reduction
of the barrier parameter is chosen adaptively in the spirit of [1, Chapt. 5] by
an affine covariant estimation of the non-linearity of the barrier subproblems.
Further, Newton’s method is augmented by a pointwise damping step. A more
detailed description of this algorithm can be found in [9]. This algorithm can
be applied safely in a neighborhood of the barrier homotopy path, as long as
positive definiteness of H(vµ, pµ) holds. In practice, this works well, as long
as a reasonable starting guess is available for the antenna parameters. Just as
predicted by the theory in the convex case (cf. [10]) the error in the function
value decreases linearly with µ (cf. Figure 1, right).

The discretization of the Newton steps was performed via linear finite
element spaces Xh for T and p (cf. [5]). Discretization and assembly were
performed with the library Kaskade7. In view of Newton’s method this gives
rise to the following block matrix, which has to be factorized at each Newton
step:
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Fig. 1. Left: µ-reduction factors σk = µk+1/µk. Right: error in functional values.

F ′(v, p;µ) =

H1(T, p;µ) 0 A′(T )∗

0 H2(u, p;µ) B′(u)∗

A′(T ) B′(u) 0

 ,

where

H1(T, p;µ)(v, w) = J ′′(T )(v, w) + b′′(T ;µ)(v, w) + 〈p,A′′(T )(v, w)〉L2(Ω)

H2(u, p;µ)(v, w) = b′′(u;µ)(v, w) + 〈p,B′′(u)(v, w)〉L2(Ω).

Note that H2 : R23 → R23, and B′ : R23 → X∗h are dense matrices, while
A′,H1 : Xh → X∗h are sparse. The factorization of this matrix is performed
via building a Schur complement for the (2, 2)-block, so that essentially only
a sparse factorization of A′ and a couple of back-solves have to be performed
via a direct sparse solver. As an alternative one can use an iterative solver,
preconditioned by incomplete factorizations as proposed in [8].

Fig. 2. Heat distribution inside body for µ = 1.0, 0.7, 0.1, 10−4 (left to right).

Let us consider the development of the stationary heat distribution during
the algorithm in Figure 2. We observe the effect of the barrier regularization.
The algorithm starts with a very conservative choice of antenna parameters,
an tends to a more and more aggressive configuration, as µ decreases. This
may be of practical value for clinicians. Further, it is interesting to observe
that already at a relatively large value of µ = 0.1, we are rather close to the
optimal solution. This is reflected by the choice of steps (cf. Figure 1).
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4 Conclusion and Outlook

In this work basic results in function space for barrier methods applied to a
hyperthermia planning problem with state constraints were established. The
theory extends known results from the convex case. While the set of assump-
tions is taylored for hyperthermia, it is clear that the theory also applies to
a wider class of optimal control problems, as long as appropriate regularity
results for the involved differential equation are at hand. Subject of current
research is the extension of our algorithm by a globalization scheme in the
spirit of non-linear programming, in order to increase its robustness in the
presence of non-convexity.
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1 Introduction

Realistic mathematical models for applications with a scientific or engineering
background often have to consider different physical phenomena and therefore
may lead to coupled systems of equations that include partial and ordinary
differential equations. While each of the fields of optimal control of partial
resp. ordinary differential equations has already been subject to thorough re-
search, the optimal control of systems containing both has not been studied
theoretically so far to the best knowledge of the authors.
Recently Chudej et. al. [5] and M. Wächter [12] studied an optimal control
problem numerically which describes the flight of an aircraft at hypersonic
speed under the objective of minimum fuel consumption. The flight trajectory
is described, as usual, by a system of ordinary differential equations (ODE).
Due to the hypersonic flight conditions aerothermal heating of the aircraft
must be taken into account. This leads to a quasi-linear heat equation with
non-linear boundary conditions which is coupled with the ODE. As it is the
main objective of the optimization to limit the heating of the thermal protec-
tion system, one obtains a pointwise state constraint, which couples the PDE
with the ODE reversely. However, anything beyond mere numerical analysis
is prohibited by the considerable complexity of this problem. Therefore the
present paper’s focus is a model problem stripped of all unnecessary content
while still including the key features of ODE-PDE optimal control, which will
allow a clearer view on the structure of the problem and its solution.
This simplified model problem we would like to call the ”hypersonic rocket
car problem”. To one part it consists of the classical ”rocket car on a rail
track problem” from the early days of ODE control, first studied by Bushaw
[3]. The second part is a one dimensional heat equation with a source term
depending on the speed of the car, denoting the heating due to friction.
In contrast to [10], which deals with the same ODE-PDE problem but from
the ODE point of view, this paper is dedicated to a PDE optimal control
approach.
Another even more complicated optimal control problem for partial integro-
differential-algebraic equations including also ODEs, which describes the dy-
namical behaviour of the gas flows, the electro-chemical reactions, and the
potential fields inside a certain type of fuel cells, has been investigated in [6],
also numerically only. However, this model does not include a state constraint.

2 The hypersonic rocket car problem

In the following, the ODE state variable w denotes the one-dimensional po-
sition of the car depending on time t with the terminal time tf unspecified.
The PDE state variable T stands for the temperature and depends on time
as well as the spatial coordinate x describing the position within the car. The
control u denotes the acceleration of the car. The PDE is controlled only in-
directly via the velocity ẇ of the car.
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The aim is to drive the car in minimal time from a given starting position
and speed (w0 resp. v0) to the origin of the phase plane while keeping its
temperature below a certain threshold Tmax.

All in all, the hypersonic rocket car problem is given as follows:

min
u∈U

{
tf +

1
2
λ

∫ tf

0

u2(t) dt
}
, λ > 0 , (1a)

subject to

ẅ(t) = u(t) in (0, tf ) , (1b)

w(0) = w0 , ẇ(0) = v0 , (1c)

w(tf ) = 0 , ẇ(tf ) = 0 , (1d)

U := {u ∈ L2(0, tf ) : |u(t)| ≤ umax almost everywhere in [0, tf ]} , (1e)

and

∂T

∂t
(x, t)− ∂2T

∂x2
(x, t) = g(ẇ(t)) in (0, l)× (0, tf ) , (1f)

T (x, 0) = T0(x) on (0, l) , (1g)

−∂T
∂x

(0, t) = −
(
T (0, t)− T0(0)

)
,

∂T

∂x
(l, t) = −

(
T (l, t)− T0(l)

)
on [0, tf ] , (1h)

and finally subject to a pointwise state constraint of type

T (x, t) ≤ Tmax in [0, l]× [0, tf ] . (1i)

The initial temperature T0 of the car is in the following set to zero. In the
numerical experiments the regularisation parameter λ is chosen as 1

10 , the
length l of the car and the control constraint umax both as 1, and the source
term g(ẇ(t)) as ẇ(t)2, which models the temperature induced by friction
according to Stokes’ law (proportional to the square of the velocity).

3 The state-unconstrained problem and its associated
temperature profile

For better illustration and to alleviate comparison with the numerical results
of section 5 let us first have a brief look at the solution of the state uncon-
strained (i. e. only ODE) problem; see Fig. 1. This figure describes the optimal
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solutions for all starting values in the w-ẇ-phase plane converging into the
origin. Unlike the non-regularized problem (λ = 0) with a pure bang-bang
switching structure and optimal solutions having at most one switching point
when its trajectories cross the switching curve (dotted black), on which the
car finally arrives at the origin, the optimal solutions of the regularized prob-
lem (λ > 0) have a transition phase between two bang-bang subarcs. The
smaller the regularization parameter λ is the closer the optimal trajectories
(grey) approach the switching curve which serves as their envelope here.

–4

0

4

–20 –10 10 20

ẇ

w

=⇒

=⇒

Fig. 1. Optimal trajectories of the regularized minimum-time problem (λ > 0) in
the phase plane (grey). The dotted black curve is the switching curve of the non-
regularized problem (λ = 0). The black curves are the optimal solutions for the
starting conditions w0 = −6 and v0 = 0 resp. w0 = −6 and v0 = −6.

Along those two trajectories the following temperature profiles emerge:
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Fig. 2. Temperature profiles along the state-unconstrained trajectories due to the
data w0 = −6, v0 = 0 (left), resp. v0 = −6 (right); see Fig. 1.

Those temperature profiles have to be bounded in the following; cp. Fig. 3.
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4 Necessary optimality conditions: Interpretation as
state-constrained PDE optimal control problem

It is possible to reformulate (1) as a PDE optimal control problem by elimi-
nating the ODE-part:∫ tf

0

(
1 +

λ

2
u2(t)

)
dt != min

|u|≤umax

(2a)

subject to

Tt(x, t)− Txx(x, t) =
(
v0 +

∫ t

0
u(s) ds

)2

in (0, l)× (0, tf ) , (2b)

−Tx(0, t) + T (0, t) = 0 , Tx(l, t) + T (l, t) = 0 for 0 < t < tf , (2c)

T (x, 0) = 0 for 0 ≤ x ≤ l , (2d)∫ tf

0

u(t) dt = −v0 , (2e)

∫ tf

0

∫ t

0

u(s) dsdt = −w0 − v0 tf
part. int.

=⇒
∫ tf

0

t u(t) dt = w0 , (2f)

T (x, t) ≤ Tmax in [0, l]× [0, tf ] . (2g)

Here the term v(t) := v0 +
∫ t

0
u(s) ds plays the role of a “felt” control for the

heat equation. The two isoperimetric conditions (2e, f) are caused by the two
terminal conditions (1c) and comprehend the constraints (1b–d) of the ODE
part. While this reformulation will alleviate the derivation of first order nec-
essary conditions,it nevertheless comes at a price, namely the nonstandard
structure of (2e, f) and especially the source term in (2b). All these terms
contain the control under integral signs.

The existence and uniqueness of the solution T ∈ W 1,0
2 ((0, l) × (0, tf )) ∩

C([0, tf ], L2(0, l)), the Fréchet-differentiability of the solution operator and the
existence of a Lagrange multiplier µ̄ ∈ C([0, l] × [0, tf ])∗ =M([0, l] × [0, tf ])
[the set of regular Borel measures on ([0, l]× [0, tf ])] under the assumption of
a local Slater condition are proven in [8], [9]. Moreover, it turns out, that T is
of even higher regularity: Ttt and ∂4

xT are both of class Lr(ε, tf ;L2(0, l)) with
0 < ε < tf and r ≥ 2 for all controls u ∈ L2(0, tf ).

Thereby, we can establish the optimality conditions by means of the La-
grange technique. Furthermore it can be seen that for any given point of time
[and for every control u ∈ L2(0, tf )] the maximum of T with respect to space
is obtained right in the middle at x = l

2 (cf. Fig. 2; for a proof see [8]). This
implies, that the active set A is a subset of the line L := {x = l

2 , 0 < t < tf}.



434 S. Wendl, H. J. Pesch, and A. Rund

Hence the state constraint can equivalently be replaced by T ≤ Tmax on L.
Using this we define the Lagrange-function by

L =
∫ tf

0

(
1 +

λ

2
u2(t)

)
dt −

∫ tf

0

∫ l

0

(
Tt − Txx − g

(
v0 +

∫ t

0
u(s) ds

))
q dxdt

−
∫ tf

0

(
−Tx(0, t) + T (0, t)

)
q(0, t) dt−

∫ tf

0

(
Tx(l, t) + T (l, t)

)
q(l, t) dt

+ν1

(∫ tf

0

u(t) dt+ v0

)
+ ν2

(∫ tf

0

t u(t) dt− w0

)

+
∫ tf

0

(
T (

l

2
, t)− Tmax

)
dµ(t) , (3)

with µ(t) ∈M(0, tf ) and the multipliers q associated with the constraints (2b–
c) respectively ν1 , ν2 ∈ R associated with (2e, f).

By partial integration and differentiation of (3) we find the necessary con-
ditions of first order (∗ shall in the following denote optimal values):

Adjoint equation:∫ t∗f

0

∫ l

0

qt ψ − qxψx dxdt−
∫ t∗f

0

q(0, t)ψ(0, t) dt−
∫ t∗f

0

q(l, t)ψ(l, t) dt

+
∫ tf

0

ψ(
l

2
, t) dµ(t) = 0 for all ψ ∈W (0, t∗f ) , (4a)

q(x, t∗f ) = 0 for almost all x ∈ [0, l] , (4b)

Variational inequality:∫ t∗f

0

(
λu∗(t) + ν1 + ν2 t

) (
u(t)− u∗(t)

)
dt

+
∫ t∗f

0

g′
(
v0 +

∫ t

0
u∗(r) dr

)(∫ t

0

u(s)− u∗(s) ds

)(∫ l

0

q(x, t) dx

)
dt ≥ 0

Fubini=⇒
∫ t∗f

0

[
λu∗(t) + ν1 + ν2 t+

∫ t∗f

t

g′
(
v0 +

∫ s

0
u∗(r) dr

)(∫ l

0

q(x, s) dx

)
ds

]
·

(
u(t)− u∗(t)

)
dt ≥ 0 , for all u ∈ U , (4c)

Complementarity condition:

µ ≥ 0 ,
∫ t∗f

0

(
T ∗(

l

2
, t)− Tmax

)
dµ(t) = 0 . (4d)



On a State-Constr. PDE OCP arising from ODE-PDE Optimal Control 435

The optimality system is completed by a condition for the free terminal
time t∗f and two conditions that give the switching times t∗on, t

∗
off [i. e. the

times where the temperature T ∗( l
2 , t) hits, resp. leaves the constraint Tmax,

cf. Fig. 3 (right)]. As the derivation of these condition would exceed the scope
of this paper they will be published in subsequent papers [8] and [9].

Equations (4a, b) represent the weak formulation of the adjoint equation,
which is retrograde in time, and can be formally understood as

−qt(x, t)− qxx(x, t) = µ(t) δ(x− l

2
) in (0, l)× (0, t∗f ) , (5a)

−qx(0, t) = −q(0, t) , qx(l, t) = −q(l, t) on [0, t∗f ] and

q(x, t∗f ) = 0 on [0, l] . (5b)

Since the adjoints can be interpreted as shadow prices, the line { l
2} ×

(t∗on, t
∗
off) indicates from where the temperature exerts an influence on the

objective functional. This result corresponds to the structure of the solution
of the initial-boundary value problem to be expected from (4a, b), in particular
q(x, t) ≡ 0 for t∗off ≤ t ≤ t∗f ; cf. Fig. 5.

A key condition is the optimality condition (4c) which determines the
optimal control. It is a complicated integro-variational inequality with a kernel
depending on all values of u∗ on the interval [0, t∗f ], forward in time, as well as
on all values of q on [t, t∗f ], backward in time. Instead (4c), we can determine
the optimal control by an integro-projection formula,

u∗(t) = P[−umax,umax]

{
− 1
λ

[
ν1 + ν2 t+

∫ t∗f

t

g′(v∗(s))

(∫ l

0

q(x, s) dx

)
ds

]}
.

(6)
Comparing this result with the analogous projection formula of [10] it

turns out that the second factor [in squared brackets] is just the adjoint ve-
locity pẇ(t) of the equivalent ODE optimal control formulation with the PDE
eliminated analytically by a Fourier-type series. This formulation however is
also of non-standard form (with a non-local state constraint leading to bound-
ary value problems for systems of complicated integro-ODEs); see [10].

5 Numerical results

The numerical calculations were conducted with the interior point solver
IPOPT [7], [11] by A. Wächter and Biegler in combination with the mod-
elling software AMPL [1], with the latter featuring automatic differentiation.
This first-discretize-then-optimize (direct) approach was chosen, because even
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the ostensibly simple and handsome problem (1) proves to be a ”redoubtable
opponent” for a first-optimize-then-discretize (indirect) method.

After a time transformation τ := t
tf

to a problem with fixed terminal time
(at the cost of spawning an additional optimization variable tf ), applying a
simple quadrature formula1 to (1a), discretizing the ODE with the implicit
midpoint rule and the PDE with the Crank-Nicolson scheme, one obtains a
nonlinear program to be solved with IPOPT.

0
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Fig. 3. Temperature T ∗(x, t) (left) and cross-section T ∗ ` 1
2
, t
´

(right) along the
state-constrained trajectory due to the data w0 = −6, v0 = 0, and Tmax = 1.5, cf.
Figs. 1 and 2 (left).

The approximation of the optimal temperature is shown in Fig. 3. The set
of the active state constraint, the line segment A = { l

2}× [t∗on, t
∗
off ], can clearly

be seen. The computations used a space-time discretization of 100 by 1000
grid points yielding t∗f = 5.35596, overall objective functional value of 5.51994,
t∗on = 2.53 and t∗off = 3.96.

Figure 4 shows the approximations of the optimal control (solid) and the
adjoint velocity pẇ (dashed) from the ODE optimal control problem investi-
gated in [10] and also obtained by IPOPT.2 The perfect coincidence with the
projection formula (6) becomes apparent; note the remark to (6).

Figure 5 depicts the approximation of the discrete adjoint temperature
yielded by IPOPT2. With a closer look at q one can observe a jump discon-
tinuity of its derivative in spatial direction along the relative interior of A.
This corresponds to the known jump conditions for adjoints on interior line
segments in state-constrained elliptic optimal control [2]. Furthermore one can
notice two Dirac measures as parts of the multiplier µ at the entry and exit
points of A in analogy to the behaviour of isolated active points [4]. On the

1 a linear combination of the trapezoidal sum and the trapezoidal rule with equal
weights 1 which indeed approximates a multiple of the integral (2a), but avoids
any oscillations of the control.

2 Note that IPOPT delivers estimates for the adjoint variables with opposite sign
compared to our notation.
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other hand the multiplier µ contains a smooth part in the relative interior of
A reminiscent of the common behaviour in ODE optimal control.

0 1 2 3 4 5

u∗

pẇ

t

Fig. 4. Optimality check according to the projection formula (6)

q

t

x

Fig. 5. Adjoint state q of the temperature T .

6 Conclusion

In this paper we studied a prototype of an ODE-PDE optimal control problem.
As it is of relatively simple structure, it allows an unobstructed view on its
adjoints and optimality system. However an adjoint based method even for
such a seemingly simple model problem still remains a formidable task, leaving
a direct method as a much more convenient way to go. This of course results in
the downside that one has to content oneself with estimates of the continuous
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problems’ adjoints obtained from the discrete adjoints of the NLP solver used
in the first-discretize-then-optimize approach.
Transforming the ODE-PDE problem into an only PDE problem, as it has
been done in this paper is not the only possibility of tackling it. As it is also
viable to transform it into an only ODE problem, which will of course also be
pretty nonstandard, an interesting opportunity to compare concepts of ODE
and PDE optimal control may arise here such as statements on the topology
of active sets. However this is beyond the limited scope of the present paper
but can be found in [8], [9].
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1 Introduction

The automotive industry represents a significant part of the economic activity,
in Europe and globally. Common drivers are the improvement of customer sat-
isfaction (performance, personalization, safety, comfort, brand values,) and the
adherence to increasingly strict environmental and safety regulations, while
at the same time reducing design and manufacturing costs and reducing the
time to market. The product evolution is dominated by pushing the envelope
on these conflicting demands.

A major evolution currently taking place in this industry is the increase
of the electronic and mechatronic content in vehicles. Several studies forecast
that the related increase to the vehicle value may well become up to 40 %
by 2010 and that up to 80% of the automotive innovation will come from
intelligent systems [1], [2], [3], [4]. This of course relates in part to entertain-
ment and telematics systems, but also to the use of many control systems
applied to powertrain, chassis and body engineering [5], [6], [7]. One example
is the optimization of performance, economy and emissions with engine and
transmission controls to realize ”green” driving through energy regeneration,
automatic start/stop and smart driving control. Another example is the re-
alization of ”safe” driving, through the application of ABS and ESP systems
for vehicle dynamics control, but also through the adoption of numerous Ad-
vanced Driver Assistance Systems (ADAS) such as for lane following, active
cruise control, object detection etc. And every vehicle design has ultimately to
aim for best customer experience, e.g. by optimizing through control systems
ride comfort and handling behaviour and driveability, or by adoption of active
systems to control brand sound. This evolution will however not only impact
the vehicle product content itself, but also the way vehicle developers (OEM)
will cooperate with suppliers in new business models, offering new opportu-
nities for full subsystem responsibility. It will also impact the way the design

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_38, © Springer-Verlag Berlin Heidelberg 2010 
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and development process itself has to change to enable widespread market
introduction in standard vehicles [2], [4], [8], [9]. As a consequence, innovative
solutions have lately been introduced for communication and entertainment,
engine control and active safety. To a large extent, these innovations however
remain on the level of add-on systems and a major need exists to integrate
all functionality on the vehicle level through a systems approach. Configura-
tion and performance optimization, system integration, control, component,
subsystem and system-level validation of the intelligent systems must be an
intrinsic part of the standard vehicle engineering process, just as this is today
the case for the structural, vibro-acoustic and kinematic design. This is the
goal for Intelligent Vehicle Systems Design Engineering. Such an integrated
approach is addressed in this paper. Multiphysics modeling and optimization
are key technologies in this process.

2 Engineering Challenges for Intelligent Vehicle Systems

Fig. 1. Double-V process for mechatronic systems.

As Fig. 1 illustrates, the engineering of intelligent systems requires the
application of two interconnected ”V-shaped” developments: one focusing on
the multi-physics system engineering (like the mechanical and electrical com-
ponents of an electrically powered steering system, including sensors and ac-
tuators); and one focused on the controls engineering, the control logic, the
software and realization of the control hardware and embedded software. Up
to present this process is however very little integrated, with a clearly sepa-
rated mechanic and electronic design cycle and hence failing to address the
need for integrated and maximally frontloaded system modeling. In this pa-
per, the interconnected V-shaped approach is applied on the level of concept
modeling, which is situated in the left upper part of the V’s in Fig. 1.

The objective of this paper is to perform systems engineering based on
multi-physics ”plant” models, including the application (and representation
of) control. This serves the purpose of configuration design, concept evaluation
studies and the optimization of the mechanical system design taking into
account the presence of control and certain control laws (or even systems).
This will be applied to the design of an active damper.

The methodology to combine detailed mechanic models with control soft-
ware is not new in automotive. An example related to the simulation and
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optimization of a Vehicle Dynamics Control system is discussed in [10]. In
[11], the application to motorcycle dynamics control is presented. [12], [13]
show that the design of an active noise control system for sound quality con-
trol uses the same principles. In general in automotive, during the control
design cycle of a system, different stages can be distinguished:

1. ”Model-in-the-Loop” (MIL): the combination of the multi-physics simula-
tion model with this of the controller, to enable the design of the control
logic and the performance engineering of the intelligent system. The sim-
ulation is ”off-line”, i.e. there is no requirement for Real-Time.

2. ”Software-in-the-Loop” (SIL): the development and optimization of the
”embedded” control software.

3. ”Hardware-in-the-Loop” (HIL): the final testing and calibration of the
controller software and hardware, requires the controller to be connected
to a multi-physics simulation model of the components, subsystems or
system, in a dedicated computing environment. This requires real-time
capable simulation models.

Although in these 3 stages, models of different design cycles are coupled
to the control design cycle, it can hardly be stated that there is an integra-
tion. The models are just used to check functionality, proper implementation
and final operation of the controller in the vehicle. The controller itself has no
impact on the mechanical design. In this paper, the complete mechatronic sys-
tem on concept level, including a controller model, will impact the mechanical
design and hydraulic specification of the component.

3 The optimal design approach

The active damper considered in the investigation hereafter is a hydraulic
single rod cylinder with two valves and a pump providing a continuous flow
through the cylinder [14]. The final objective is to optimize cylinder and rod
diameters, pump flow and characteristics of the valves with respect to energy
consumption while meeting the performance criteria defined by the probability
distribution of the mission profiles (force velocity couples at the dampers).

More in detail and considering the scheme proposed in Figure 2, the design
optimization is performed in two stages:

” the first stage, addressed to as ”Vehicle Model”, calculates the optimal
parameters of an ideally controlled vehicle with a skyhook based algorithm;
” the second stage, referred to as ”Actuator Model”, aims at optimizing
the actuator model properties.

The first step in the optimization, represents the conceptual design stage. In
this phase, an optimization on the controller parameters is performed in order
to meet certain ride & handling and comfort criteria. As this is a conceptual
model, instead of implementing the active shock absorbers in the model, the

•

•
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forces computed by the controller are immediately fed into the suspension. In
this way, perfect actuator behavior is assumed. The second stage consists of
the modeling of the active damper, built with the hydraulic component design
library in LMS Imagine.Lab AMESim. As not all damper configurations are
suited to meet the performance at concept level, the set of parameters for the
shock absorbers is determined that meets this performance. The selection of
the feasible configurations is carried out with a full factorial DOE (Design
Of Experiment) considering the active deliverable mechanical power as the
restrictive constraint. Between those elected combinations, using force-velocity
couples weighted in function of the most occurring road profiles, the optimal
damper parameters with respect to energy consumption are selected.

Fig. 2. Process scheme for the design of the active damper.

4 Vehicle model

The vehicle model has been developed in the 1D environment of LMS
Imegine.Lab AMESim using a modular approach, as shown in Figure 3 in
which a number of blocks representing the different vehicle subsystems are
interconnected.

The multibody equations governing the behavior of the system are con-
tained in the central block which details in fact a 15 DOF (Degrees of Freedom)
vehicle model:

car body: 6 DOF
steering rack: 1 DOF
rotation of the wheels: 4 DOF

•
•
•
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Fig. 3. Model of the vehicle in Imagine.Lab (Amsim).

vertical displacement of the wheels: 4 DOF

Within this approach a conceptual representation of the suspension be-
havior is used. More specifically, this means that the different contributions of
kinematic characteristics and compliances are addressed as, respectively, look
up tables and flexibility matrixes.

Kinematic tables are a functional representation of the axle geometry mod-
ification. They describe the variation of track width, wheelbase, steering angle,
camber angle and self rotating angle as function of vertical wheel lifts (current,
z, and opposite wheel, zopp) and steering rack displacement yn for front axle
system. This allows the definition of the interdependence of the left and right
half axle motion as well as the steering input, coming out with the definition
of four dimensional matrices.

Flexibility matrices, contained in the compliances blocks, allow the cal-
culation of the contributions in velocity, position, rotary velocity and angle
under efforts due to bushing stiffness.

In the modeling of the passively suspended vehicle non linear damping
characteristics have been considered as well as end stops, while springs and

•
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antiroll bars (present in the front and rear axels) have been included with
linear behavior. For all the mentioned force elements acting at the interface
between suspended masses nodes and vehicle body connection points, three
dimensional tables have been generated to take into account the trigonomet-
rical transformation needed to convert the forces acting within the suspension
elements from the pure vertical direction (degree of freedom granted to the
tires) to the direction in which the physical elements act and return the forces
to be applied on the degrees of freedom of the chassis.

5 Controller modeling

The controller is based on the sky-hook principle [16] and can be illustrated
in Figure 4. The principle is illustrated on the ”quarter car model”. Assum-
ing that every suspension element on each corner of the vehicle works inde-
pendently (which is a very rough approximation), the behaviour of the car
can be represented by 4 independent systems as represented in Figure 4. The
sprung and un-sprung masses (MS and MUS) represent respectively one quar-
ter of the body mass and the wheel mass. The connection between each other
through a linear spring and damper element, represent the lumped and lin-
earized suspension (subscripted S) stiffness and damping, while MUS is con-
nected to the ground with another spring and damper element schematically
representing the tire’s (subscripted T) vertical behavior. In skyhook damping
the suspended mass is connected to an inertial frame: the ”sky”. ”). From the
absolute velocity of the suspended mass (dZS/dt) and the damping coefficient
of the skyhook damper (RSKY ), one can calculate the force (FSKY ) generated
by the damper as follows:

FSKY = −dZS

dt
.RSKY (1)

Fig. 4. Ideal skyhook damping (a) and its practical implementation (b).
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On top of the skyhook damping, a classical damping force FWH , depending
on the relative velocity (ŻS − ŻUS) between the wheel (unsprung mass) and
the car body (sprung mass) is added:

FS = FSKY + FWH = −dZS

dt
.RSKY −

(
ŻS − ŻUS

)
.RWH (2)

Clearly the two gains RSKY and RWH have a different effect on the ve-
hicle behavior. This is visible in Figure 5, where bode plots of the transfer
functions between heave displacement of the body ZS and road input ZR are
represented, showing the effect of the variation of the two damping coeffi-
cients. It can be seen that an increase of RSKY lowers the peak amplitude at
the first resonance, while an increase of RWH lowers the amplitude at both
resonance peaks, but increases the roll-off amplitude in the frequency range
above the first resonance frequency. Separately tuning of the two gains makes
then possible to act distinctly on the comfort and on the handling behavior.

Fig. 5. Effect of the variation of the Skyhook and Wheelhop gains.

The skyhook principle is applied for the following degrees of freedom: heave
(linear vertical motion), roll and pitch.

6 Concept model optimization

From Figure 5, it is clear that the skyhook gain doesn’t have any influence
on the wheel hop damping (second mode around 15 Hz) and the final roll-
off of the transfer function. On the other hand, the wheel hop gain affects
the body mode (first mode around 1.5 Hz). Therefore, the skyhook gain can
be set such that the damping ratio of the body mode is ideally damped i.e.
1
2 . This leads to a nested optimization scheme, which is performed in Noesis
OPTIMUS using a differential evolution algorithm. For the tuning of the wheel
hop gains, the active full vehicle model is run over three different ride profiles,
defined by the vehicle manufacturer. Those profiles, called Road 1, 2 and 3,
characterize both common situations as well as extreme events, and can be
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considered as representing respectively the 5%, 5% and 90% to the definition
of the mission profiles on which the components design has to be defined.
Given updated wheel hop gains, the skyhook gains are determined such that
the damping ratios of the heave, roll and pitch mode are 1

2 . This is performed
on the Amesim model discussed in section 4, but linearized around its settled
equilibrium position.

7 Shock absorber optimization

Fig. 6. Schematic representation of the active shock absorber.

The Tenneco shock absorber is shown in Figure 6 and has been modeled in
Imagine.Lab, Amesim. Without the pump, it acts like a semi-active damper,
in which the damping characteristics are modified by acting on the piston
and base CVSA valves. The accumulator is foreseen to take or deliver oil
when the shock absorber moves respectively in or out. By adding a pump, the
shock absorber becomes active. In case the pressure difference between rod
and piston side is small (highest respectively middle chamber of the shock
absorber), the larger area at piston side with respect to rod side, creates an
upward force on the piston. Note that the pressure on the rod side is always
the highest from the three chambers in the damper cylinder. On the other
hand, while the pressure difference between rod and piston side is high, a
downward force is created.

As stated earlier, following parameters need to be optimized: pump flow,
piston and rod diameter, flow characteristics of piston and base valves. Apart
from the pump flow, which is constrained to 10l/min, these parameter values
cannot vary continuously. Due to standardization, Tenneco uses a limited
number of sizes and valves. From this limited set, a subset must be derived
that meets the performance criteria of the concept phase. The performance
criteria of the concept phase are translated to power criteria, which are used
in a full factorial design of experiments (DOE) in OPTIMUS.
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From this subset, the parameters are selected with minimal energy con-
sumption. As equations of hydraulic systems are known to be stiff, small time
steps are needed to perform simulations, which makes the simulation of hy-
draulic systems computationally expensive. Instead of applying the complete
mission profiles (force velocity couples of the dampers), obtained from the con-
cept design phase, a limited set of force, velocity couples is selected according
their probability. In this way, the original mission profiles are compressed and
simulation times are reduced. The final optimization is performed by a genetic
algorithm in OPTIMUS.

8 Conclusions

The performance engineering of intelligent vehicle systems mandates simula-
tion and test methods that are capable to simulate, analyze and optimize the
performance of such a product, taking into account the interaction of many
subsystems and working as active systems with sensors, actuators and inter-
connections to controllers. The paper presented the optimization of an active
damper, in which a conceptual chassis model, including the controller, imposes
requirements on the mechanical and hydraulic characteristics of the damper.
Nested optimization on the concept level stage, determines the optimal active
controller gains. By using full factorial DOE, the set of possible damper pa-
rameters is restricted to the ones that meet the performance criteria of the
concept design stage. From this restricted set, the configuration is selected
that provides minimal energy consumption. Mission profile compression is
performed to reduce the computational cost during optimization.
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Optimal Control of Machine Tool Manipulators
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Summary. Based on the dynamical models for machine tool manipulators in Zirn
[11, 12], we compare state-of-the-art feedback controls with optimal controls that
either minimize the transfer time or damp vibrations of the system. The damping
performance can be improved substantially by imposing state constraints on some
of the state variables. Optimal control results give hints for suitable jerk limitations
in the setpoint generator of numerical control systems for machine tools.

1 Introduction

Fig. 1 shows two typical machine tool manipulators. Both are representative
for the dynamical model presented in the following section.

(a) Milling Machine Tool Workpiece
Manipulator

(b) Honing Machine Tool Ma-
nipulator

Fig. 1. Typical Machine Tool Manipulators.
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Fig. 1(a) displays a manipulator on the workpiece side of a 5-axis milling ma-
chine with the translatory X-axis driven by a linear motor and two rotary
axes. The performance of the linear X-axis is limited significantly by the flex-
ible mechanical structure. Although the voice–coil–motor servo axis that we
discussed in [2] also carries a flexible load, Coulombic friction represents the
dominating influence on the dynamic axis performance of that example. For
the machine tool axis discussed here, the guide friction is comparably small
and can be compensated with moderate effort in the axis controller. Fig. 1(b)
shows a honing machine tool for the fine finishing of gear wheels. This ma-
nipulator has two translatory Z-axes, one for the honing wheel, which is the
mid abrasive honing stone, and a second one for the gear wheel.

2 Dynamic control model of a machine tool manipulator

The dynamic process of a machine tool manipulator is considered in the time
interval t ∈ [0, tf ] with t measured in seconds; the final time tf is either fixed
or free. The state variables are as follows: the base position xb(t), the slider po-
sition xs(t), the slider rotary position ϕ(t), the corresponding velocities vb(t),
vs(t) and vϕ(t) and the X-axis linear motor force F (t). The input variable
(control) of the motor is the setpoint motor force Fset(t). The dynamics is
given by the following system of linear differential equations, where as usual
the dot denotes the time derivative. System parameters are listed in Tab. 1.

ẋb(t) = vb(t) , v̇b(t) = − 1
mb

(kbxb(t) + dbvb(t) + F (t)) ,

ẋs(t) = vs(t) , v̇s(t) = 1
ms
F (t) ,

ϕ̇(t) = vϕ(t) , v̇ϕ(t) = 1
J (rF (t)− kϕ(t)− dvϕ(t)) ,

Ḟ (t) = 1
T (Fset(t)− F (t)) .

(1)

The control constraint is given by

−Fmax ≤ Fset(t) ≤ Fmax, 0 ≤ t ≤ tf , (2)

Base mass mb = 450 kg
Slider mass ms = 750 kg
Slider inertia J = 40 kg m2

Slider centre of gravity excentricity - guides r = 0.25m
Slider centre of gravity excentricity - TCP h = 0.21m
Stiffness of the base anchorage kb = 4.441 · 107 N/m
Damping constant of the base anchorage db = 8500 Ns/m
Stiffness of the fictive rotary joint torsion spring k = 8.2 · 106 Nm/rad
Damping constant of the fictive rotary joint torsion spring d = 1800 Nms/rad
Current control loop time constant T = 2.5ms
Maximum input force |Fmax| ≤ 4 kN

Table 1. List of system parameters
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where Fmax ≤ 4 kN holds for mechanical reasons. The initial and terminal
conditions for the state vector x = (xb, xs, ϕ, vb, vs, vϕ, F )∗ ∈ R7 are given by

x(0) = (0, 0, 0, 0, 0, 0, 0)∗, x(tf ) = (0,undef., 0, 0, 0.1, 0, 0)∗. (3)

3 Feedback control performance

The state-of-the-art feedback control for CNC machine tools is shown as a
block diagram in Fig. 2.

Fig. 2. Block diagramm for feedback control

The velocity-, acceleration- and jerk-limited setpoints generated by the
numerical control system are feedback controlled by a cascade controller with
velocity and position control loop and a state space control extension to im-
prove the active structural vibration damping for the dominant mode. Com-
pared to robots, where TCP vibrations caused by rough setpoints and flexible
structure can hardly be identified by the motor measurement systems and
are eliminated by short waiting times after positioning operations, the re-
quirements for machine tool manipulators are much more challenging. Due to
the milling or grinding process, all TCP vibrations are visible directly on the
workpiece. So it is mandatory that the input variables never excite remark-
able structural vibrations at all. Machine tools measure their drive states not
only at the motor but also quite near to the TCP, so it is possible to damp
structural vibrations by the feedback servo controller. But in practice, the
achievable damping is not sufficient and vibration-free control values remain
an improtant future issue for machine tools.

The plant model is the block diagram representation of the differential
equations discussed in Sec. 2. In Fig. 3(a), the typical setpoints Fset that
result from such a control concept are shown for an exemplary acceleration
operation of the axis: The optimum productivity in combination with suitable
damping performance is achieved for significant jerk control, i.e. the maximum
acceleration has to be achieved by smooth setpoints. Also with state space
control, the suitable setpoints have a typical trapezodial shape, cf. Fig. 3(b).
The practical experience with many machine tool axis control applications
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(a) Pure cascade controlled system (b) Axis with state space control exten-
sions

Fig. 3. State-of-the-art feedback control for CNC machine tools

shows that the possible jerk depends on the eigenfrequency of the dominating
mode, but no commissioning rules have been derived up to now.

Fig. 3(b) indicates two deficiences of feedback controls: (i) the terminal
position is not attained precisely leading to a terminal overshooting, (ii) the
transfer time is much larger than the minimal transfer time computed via
optimal control methods in the following sections.

4 Optimal control models of machine tool manipulators

The dynamic equation (1) can be written in compact linear form as

ẋ = f(x, Fset) = Ax+BFset (4)

with a matrix A ∈ R7×7 and a column vector B ∈ R7×1. Since the pro-
cess duration is an important criterion for the efficient usage of machine tool
manipulators, we first consider the control problem of minimizing the final
time tf subject to the conditions (1)–(3). It turns out that some of the time-
optimal state trajectories are highly oscillatory. Damping of oscillations can
be achieved by an alternative cost functional that is quadratic in control and
state variables,

minimize
∫ tf

0

F 2
set + c1x

2
b + c2ϕ

2 + c3v
2
b + c4v

2
ϕdt (fixed tf > 0), (5)

where c1, c2, c3, c4 > 0 are appropriate constants. Of course, the fixed final
time tf in the cost functional (5) must be larger than the minimal time tmin

f .
Note that we keep the control constraint (2). Another approach to avoid larger
oscillations consists in imposing state constraints of the form

−cϕ ≤ vϕ(t) ≤ cϕ, t ∈ [0, tf ], (6)

with a prescribed constant cϕ > 0, cf. Sec. 5.2.



Optimal Control of Machine Tool Manipulators 455

5 Time-optimal control

Pontryagin’s Minimum Principle involves the adjoint variable (row vector)
λ = (λxb

, λxs , λϕ, λvb
, λvs , λvϕ , λF ) ∈ R7 and the Hamiltonian function

H(x, λ, Fset) = 1 + λ(Ax+BFset). (7)

The adjoint λ satisfies the linear adjoint equation λ̇ = −λA,

λ̇xb
=

kb

mb
λvb

, λ̇xs = 0, λ̇ϕ =
k

J
λvϕ , λ̇vb

= −λxb
+
db

mb
λvb

, (8)

λ̇vs = −λxs , λ̇vϕ = −λϕ +
d

J
λvϕ , λ̇F =

1
mb

λvb
− 1
ms

λvs −
r

J
λvϕ +

1
T
λF .

We have λxs(tf ) = 0, since the terminal state xs(tf ) is free. Then the adjoint
equations (8) imply λxs(t) = 0 and λvs(t) = const for all 0 ≤ t ≤ tf . The
optimal control Fset(t) minimizes the Hamiltonian function on the control set
−Fmax ≤ Fset(t) ≤ Fmax. This gives the control law

Fset(t) = −sign (λF (t))Fmax. (9)

The linear system (4) is completely controllable, since the 7×7 Kalman matrix

C = (B,AB,A2B,A3B,A4B,A5B,A6B) (10)

has maximal rank 7. Hence, the time–optimal control Fset(t) is of bang–bang
type; cf. [5].

The optimal control problem is solved by a discretization approach using
Euler’s method or a higher order Runge–Kutta integration method. The re-
sulting large–scale optimization problem is implemented via the modeling lan-
guage AMPL [3] and is solved by the interior point optimization solver IPOPT
due to Wächter et al. [10]. Alternatively, we use the optimal control package
NUDOCCCS developed by Büskens [1]. Computations with N = 10000 grid
points show that for all values of Fmax > 0 the control has the following struc-
ture with 5 switching times 0 =: t0 < t1 < t2 < t3 < t4 < t5 < tf and the free
final time t6 := tf :

Fset(t) =



Fmax for t0 ≤ t < t1
−Fmax for t1 ≤ t < t2
Fmax for t2 ≤ t < t3
−Fmax for t3 ≤ t < t4
Fmax for t4 ≤ t < t5
−Fmax for t5 ≤ t ≤ t6


. (11)

This control structure is not surprising, since one intuitively expects that six
degrees of freedom, namely the six variables ti, i = 1, . . . , 6, would suffice to
satisfy the six terminal conditions in (3). The discretization and optimization
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approach provides switching times that are correct up to 3 – 4 decimals. The
arc–parametrization method in [7] then allows us to compute the switching
times with higher precision which simultaneously provides a test of optimality
[8, 9]. In this method, the arclengths of the bang–bang arcs defined by ξj =
tj − tj−1, (j = 1, . . . , 6), t0 := 0, t6 := tf are optimized directly using again
the code NUDOCCCS [1].

5.1 Numerical results

Fig. 4 displays the optimal solution for the control constraint Fmax = 2 kN.
The switching times and final time are computed as

t1 = 0.009337, t2 = 0.009668, t3 = 0.036552,
t4 = 0.037653, t5 = 0.041942, tf = 0.043505.

(12)

The initial value of the adjoint variable λ(t) ∈ R7 satisfying the adjoint equa-
tion (8) is given by

λ(0) = (−11.87902, 0.00000, 14.75425, 0.05508,
−0.23018, 0.01149, −1.2503 · 10−6).
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Fig. 4. Time-optimal solution for control bound Fmax = 2kN
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With these values the reader may verify that the switching function σ(t) :=
HFset(t) = λF (t)/T obeyes the control law (9) with high accuracy; cf. Fig.
4(d). The local optimality of this trajectory follows from the fact that the
6 × 6 Jacobian matrix of the terminal conditions computed with respect to
the switching times and final time has full rank. Hence, first order sufficient
conditions are satisfied for this time–optimal problem; cf. [8, 9].

5.2 State constraints

Higher values of the control bound Fmax lead to higher vibrations in the ma-
chine tool system. Hence, it is reasonable to impose constraints on the oscillat-
ing state variables. We restrict the discussion to vibrations of the slider tower
ϕ and consider the state constraint |vϕ(t)| ≤ cϕ for the velocity. Following the
notations in [4, 6], this can be written as two inequalities

S1(x) := vϕ(t)− cϕ ≤ 0, S2(x) := −cϕ − vϕ(t) ≤ 0. (13)

Computations show that by imposing these constraints we can also achieve
a significant reduction of the deviation ||ϕ(t)||∞ . The reader is referred to
[4, 6] for the discussion of necessary conditions for state–constrained optimal
control problems. It suffices to analyze the component S1. The constraint has
order 2 since the control variable Fset appears for the first time in the second
time derivative of S1,

d2

dt2
S1(x) =

d2 − k
J

vϕ +
dk

J
ϕ−

(
r

JT
+
rd

J2

)
F +

r

JT
Fset.

A boundary arc [ ten, tex] for the constraint S1(x) ≤ 0 is characterized by the
equation S1(x(t)) = 0 for ten ≤ t ≤ tex ( ten : entry-time, tex : exit-time).
Along a boundary arc the equation d2S1(t)/dt2 = 0 holds, from which we
obtain the following feedback expression for the boundary control:

F (b)
set (x) =

T (k − d2)
r

vϕ −
Tdk

r
ϕ+

(
1 +

Td

J

)
F .

The augmented Hamiltonian H̃ is obtained from the Hamiltonian H by ad-
joining the state constraint with a multiplier µ1 ∈ R,

H̃(x, Fset, λ, µ1) = 1 + λ(Ax+BFset) + µ1(vϕ − cϕ).

Assuming as in [4, 6] that the boundary control F (b)
set (x) lies in the interior

of the control set, it follows from the minimum principle that the switching
function vanishes along a boundary arc:

1
T
λI(t) = H̃U (t) = 0 for ten ≤ t ≤ tex. (14)

From the equation d2λF /dt
2 = 0, ten ≤ t ≤ tex , we obtain the relation
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Fig. 5. Time-optimal solution for control bound Fmax = 2kN and state constraint
|vϕ(t)| ≤ cϕ = 0.005

µ1 = µ1(λ) =
J

rmb
λxb
− λϕ −

Jdb

rmb
2
λvb

. (15)

The adjoint variable λvϕ(t) may have jumps at the entry and exit time τ ∈
{ten, tex}; cf. [4, 6]. Fig. 5 displays the optimal solution for the rather rigorous
bound cϕ = 0.005. The optimal control has one boundary arc with vϕ(t) = cϕ,
one boundary arc with vϕ(t) = −cϕ and altogether nine interior bang–bang
arcs, two of which are located before the first interior arc, five between the
interior arcs and two after the last boundary arc. The final time tf = 0.0522
is about 23% higher than in the unconstrained case (12).

6 Damping-optimal control

We consider the “damping-optimal” cost functional (5) of minimizing∫ tf

0

(F 2
set + c1x

2
B + c2ϕ

2 + c3v
2
B + c4v

2
ϕ ) dt,

with a fixed final time tf > tmin
f , where tmin

f is the minimal time computed
in Sec. 5.1. The weights ci, i = 1, .., 4, are equilibrated in such a way that
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Fig. 6. Damping-optimal solution for control bound Fmax = 2 kN, final time
tf = 0.0522 and weights (17).

all terms in the quadratic cost functional (5) have the same magnitude. The
Hamiltonian

H(x(t), λ(t), Fset) = F 2
set + c1x

2
B(t) + c2ϕ

2(t) + c3v
2
B(t) + c4v

2
ϕ(t)

+λ(t)(Ax(t) +BFset)

is regular and admits a unique minimizer

Fset(t) = Proj[−Fmax,Fmax] (−λF (t) / 2T ), (16)

where Proj denotes the projection onto the control set. Since the convexity
conditions of the second order sufficient conditions (SSC) in [4] are satis-
fied, the optimality of the presented solution is garanteed. The adjoint vari-
ables satisfy the adjoint equations λ̇ = −2Dx−λA with the diagonal matrix
D = diag(c1, 0, c2, c3, 0, c4). In particular, the control law (16) shows that
any optimal control is continuous. Fig. 6 displays the optimal solution for the
fixed final time tf = 0.0522 that is the minimal time under the state constraint
|vϕ(t)| ≤ cϕ = 0.005. The weigths are given by

c1 = 1.8858 ·1015, c2 = 1.0961 ·1015, c3 = 8.6070 ·1010, c4 = 2.8505 ·1010. (17)

Fig. 6(b) clearly confirms the control law (16). For this control we get
||ϕ(t)||∞ = 0.008916. Though this value is notably higher than the prescribed
bound ||ϕ(t)||∞ = 0.005 for the time–optimal solution, it is significantly
smaller than the value ||ϕ(t)||∞ = 0.022444 obtained for the unconstrained
time–optimal control.

7 Conclusion

In this paper, we have studied time–optimal and damping–optimal controls for
typical machine tool manipulators. Time–optimal controls are bang–bang, for



460 Christiansen, Maurer, Zirn

which optimality can be established by second order conditions [7, 8, 9]. The
damping performance of time-optimal solutions can be significantly improved
by imposing suitable state constraints. Damping-optimal controls are found
as solutions to a linear–quadratic control problem with control constraints
(saturated control). The numerical results give concrete hints for suitable
jerk limitations in the setpoint generator of numerical control systems for
machine tools, that otherwise has to be tuned heuristically. This will help to
commission control systems for optimal machine performance based on the
relevant mechanical system parameters.
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Summary. We consider an evolutionary method applied to a topology optimiza-
tion problem. We compare two material distribution formalisms (static vs. Voronoi-
based dynamic), and two sets of reproduction mechanisms (standard vs. topology-
adapted). We test those four variants on both theoretical and practical test cases, to
show that the Voronoi-based formalism combined with adapted reproduction mech-
anisms performs better and is less sensitive to its parameters.

1 Introduction

Optimization methods are used more and more frequently at increasingly early
stages in the design process, with the goal of improving performance with re-
spect to cost, weight or other criteria. One can distinguish three paradigms
according to the type of design variable used: parametric, geometric and topol-
ogy optimization.

Parametric optimization deals with a fixed geometry, chosen by the de-
signer, and tries to find optimal choices of geometric parameters such as
lengths, widths, etc. Geometric optimization considers instead design param-
eters which define various shapes in the object under study, using for example
spline functions. The designer remains responsible for selecting the initial ge-
ometry and choosing which shapes (typically interfaces between materials)
are optimized, and how they are parameterized.

In this work, we focus on topology optimization, where design parameters
describe the distribution of some materials in a design space. This paradigm
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offers two significant advantages over the other two. First, it can be started
from an empty design space, hence the designer does not have to provide
a priori solutions or initial geometries. Second, potential solutions are not
restricted in any way, and methods can find designs with a completely arbi-
trary topology. Topology optimization tools are generally composed of three
functional blocks:

1. A material distribution formalism that converts a list of design parameters
into a solution (i.e. a design);

2. An evaluation tool that computes the objective function(s) of solutions
produced by the material distribution formalism;

3. An optimization algorithm that modifies the solution through its design
parameters in order to improve the objective function(s).

These blocks are obviously not completely independent. The choice of one
may influence more or less significantly the choice of others and how they are
implemented [1, 2, 3, 4]. In this article, we focus on the following two aspects:
what is the impact of the material distribution formalism on the performance
of the optimization tool, and can the optimization algorithm be adapted to
the specific problem of topology optimization.

The material distribution formalisms we consider are based on a subdivi-
sion of the design space into cells, each cell being filled homogeneously with a
given material. The optimization algorithm used is NSGA-II [5], a genetic al-
gorithm. The choice of an evolutionary meta-heuristic algorithm is motivated
by our will to develop a generic optimization tool, completely independent of
a particular physics or evaluation tool, that does not require the availability
of derivative information and is able to handle discrete parameters (to decide
the type of material in each cell) ; other non-evolutionary derivative-free al-
gorithms [6], such as direct search methods, could also be appropriate but fall
outside the scope of this work.

This article is structured as follows. Section 2 presents the two different
material distribution formalisms we consider, one based on a static division of
the design space and the other allowing dynamic divisions using the notion of
Voronoi cells. Section 3 proposes one way to adapt, through its reproduction
mechanisms, the genetic algorithm to the specific case of topology optimiza-
tion. Section 4 describes the study cases used in Section 5 to assess the impact
of the choice of a material distribution formalism and the adaptation of the
optimization algorithm on the quality of the solution found. The results reveal
notably that, for a given number of evaluations, a dynamic material distribu-
tion formalism leads to solutions with a better objective function, and that
the proposed adaptation of the genetic algorithm improves robustness of the
results with respect to variations in the number of design parameters used.

2 Material distribution formalisms

Material distribution formalisms can be either static or dynamic. In the first
case, subdivision of the design space into cells is decided once and for all before
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the optimization. Design parameters are then limited to materials constituting
each cell, and their total number remains constant. In the second case, the
subdivision may evolve during optimization through the number of cells, their
shapes and their positions. Design parameters must therefore also include a
geometric description of each cell, and their number can vary.

2.1 Static formalism

The static formalism we consider is based on a subdivision of the design space
into a regular fixed rectangular grid with m rows and n columns (Fig. 1, left),
which is the most frequently used configuration in the literature, see e.g. [8].

Fig. 1. Illustration of the static (left) and dynamic Voronoi (right) formalism.

Genetic algorithms manipulate the design parameters via a problem-
dependent data structures called chromosomes. In this case, they are arrays
where each element, called gene, is a discrete variable indicating the material
of the cell. In this work, we only consider two materials, i.e. work with binary
variables.

2.2 Dynamic formalism

The dynamic formalism we consider is based on the notion of Voronoi cells [9],
whose use in the context of topology optimization was pioneered by Schoe-
nauer (see e.g. [10, 7]). Each of the q cells is defined by its center, and includes
all points of the design space that are nearest to this center (Fig. 1, right). In
addition to the binary material chromosome of the static case, design param-
eters include the positions of each cell center, listed in a separate array of real
x- and y-coordinates (i.e. 3q parameters in total).

3 Reproduction mechanisms

One of the main characteristics of meta-heuristic optimization algorithms is
that they can be applied to various problems without requiring special adap-
tations. Indeed, genetic algorithms can be run as soon as the encoding of the
design parameters characterizing a solution (called an individual) into one or
more chromosomes is defined. These algorithms evolve a population of indi-
viduals by appropriate selection and reproduction mechanisms, with the aim
of converging to an optimal solution (or to a set of non-dominated solutions
if several objective functions are considered).



464 Denies J., Dehez B., Glineur F. and Ben Ahmed H.

3.1 Standard mechanisms

The reproduction mechanisms involved in genetic algorithms are crossover
and mutation. Crossover consists in exchanging some of the genes of two
individuals, called parents, to produce two new individuals, called children. In
its standard version, a pivot is randomly positioned inside the chromosome to
determine the genes undergoing the exchange (Fig. 2, left). Mutation consists
in modifying the (binary or real) value of a randomly chosen gene (Fig. 2,
right).

Fig. 2. Standard crossover (left) and mutation (right) reproduction mechanisms

These standard reproduction mechanisms may be applied to both static
and dynamic material distribution formalisms (we must nevertheless ensure
in the case of the dynamic formalism that crossovers are applied to the same
parts of material and position chromosomes). Examples of these standard
mechanisms are illustrated on Fig. 3.

Fig. 3. Examples of standard reproduction mechanisms: crossover with static for-
malism (left) ; mutation with dynamic formalism (right)

3.2 Adapted mechanisms

The previous selection and reproduction mechanisms are completely generic
and independent of the addressed problem. We now propose to use additional
mechanisms better suited to the case of topology optimization and its geo-
metric nature. More specifically, we suggest to apply the reproduction mech-
anisms graphically instead of working directly on chromosomes: a geometric
region in the design space will be selected randomly and will then undergo a
crossover or a mutation, after which the results will be translated back into
the chromosome encoding.

In practice, the adapted crossovers we introduce in the static and dynamic
cases are based on a random circle whose center and radius are randomly
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chosen to fit within the design space. In the static cases, material genes within
the circle are exchanged between the parents, while in the dynamic cases both
position and material genes are exchanged (see an example on Fig. 4 left).

We also propose to introduce adapted mutations. In the static case, we
set a whole randomly selected rectangle (instead of a single gene) to a single
type of material (see Fig. 4 right). In the dynamic case, since standard muta-
tions are already effective, we introduce a different type of adapted mutation
that consists in randomly adding or deleting a Voronoi cell (note that the
adapted crossover mechanism, in contrast with the standard mechanisms, al-
ready allows variations in the number of Voronoi cells, see again Fig. 4 left)4.

Fig. 4. Adapted mechanisms: dynamic crossover (left) static mutation (right)

4 Study cases

The dominating cost in a typical application of a genetic algorithm to an
engineering design problem is the evaluation of the objective function, since
computations required for population evolution are typically much cheaper.
Therefore, in order to ensure a fair comparison between variants, we run each
algorithm for a fixed number of generations, specifically 200 for the experi-
ments reported in Section 5. We also use 1% mutation rates and 80% crossover
rates, which have been empirically observed to give good results.

However, like others [10], we first consider a more theoretical test case
where the objective function can be evaluated very cheaply. This allows us
to run extensive experiments involving all proposed algorithm variants, and
derive general observations about them. These conclusions are then validated
on an actual engineering problem involving real physics but requiring much
higher evaluation times.

4.1 Theoretical case

Our theoretical case study consists in searching for a hidden reference shape
(Fig. 5, left). The corresponding objective function to minimize is given by the
difference of concordance between the reference shape and that described using
the material distribution formalisms. It is evaluated by projecting these two
4 This however implies that standard crossovers are then no longer possible, because

chromosomes can now have different lengths.
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Fig. 5. Diagrams for theoretical (left, reference) and the practical (right) cases.

shapes onto a fine and identical M×N mesh (with M � m and N � n). The

objective function is therefore given by
PN

i=1
PN

j=1(pij⊕qij)

M×N , where ⊕ denotes
the exclusive or operation and pij and qij represent components on the fine
mesh of the reference solution and of the solution to assess.

4.2 Practical case

Our practical study case concerns the design of a variable reluctance linear
actuator (Fig. 5, right). The objective is to maximize the restoring force de-
veloped by the actuator between conjunction and opposition positions.

Given this objective and the symmetrical structure imposed on the actu-
ator, the design space can be reduced to a small area (Fig. 5, right). This
design space is partitioned into two subspaces, the first related to the mobile
part and the other to the fixed part of the actuator.

The objective function to minimize is given by function f = ψopp − ψconj

[11], where ψconj and ψopp are the magnetic flux intercepted by the coils
formed by the copper in the conjunction and opposition positions respectively.
Evaluation of this function requires the use of a FEM software for calculating
magnetic field distribution ; we used version 3.5 of COMSOL [12] (evaluation
of a solution takes approximately 2 seconds on a 3 GHz computer).

5 Results and discussion

Whatever the formalism, one can expect that the (initial) number of cells
significantly influences the behavior of the topology optimization tool. This
is confirmed by results reported on Figs. 5 and 7 for all four combinations
(static/dynamic and without/with adaptation). Note first that, in each sit-
uation, the smaller the number (initial) cells, the faster the convergence to
a solution (a stable solution is even reached before the end of the 200 gen-
erations in the two smallest static cases 5 × 5 and 10 × 10). This is to be
expected since a large number of cells, corresponding to a large number of
design parameters, is naturally harder to optimize.

The effect of the proposed adaptation can be observed by comparing the
left and right sides of Figs. 5 and 7. On the one hand, for the dynamic for-
malism, the adaptations are always beneficial, i.e. the final solution is always
better. On the other hand, in the static case, results depend on the number
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Fig. 6. Convergence of the objective function (theoretical case) for the classical
formalism without (left) and with (right) adaptation for different grid sizes.

Fig. 7. Convergence of the objective function (theor. case) for the Voronoi formalism
without (left) and with (right) adaptation for different initial numbers of cells.

of cells. For small grids, using the standard reproduction mechanisms leads
to faster convergence, while the adapted mechanisms perform better for large
grids. We explain this by noting that the adapted mutation mechanism, which
works with groups of cells, can only speed up convergence when the number
of cells is high, allowing more significant changes in the solution at each iter-
ation. For lower number of cells, working with groups of cells has no effect or
is even detrimental for the convergence.

Quality of the final solution obtained could be expected to increase when
the number of cell increases, because this allows for more precise solutions.
This is only partially confirmed by our results: while the static 10× 10 result
is better than its 5× 5 counterpart, this trend does not continue with larger
numbers of cells, nor with the dynamic formalism. The reason is that, when the
number of cells is large, the 200-generation limit prevents the algorithm from
reaching a stable solution. Running with an unlimited number of generations
would show that larger numbers of cells lead to better final solutions, but this
is of course unrealistic in practice.

Therefore, the initial number of cells becomes a key parameter in a topol-
ogy optimization process. Too high, the slower convergence rate penalizes the
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results because the solution does not have time to converge. Too low, the
solution converges too quickly to a stable solution with lower quality and gen-
erations are wasted. Finding the optimum initial number of cells, one which
ensures that the topological optimization tool converges to an optimal solution
around the end of the fixed number of generations, is a crucial but difficult
challenge, moreover likely to be heavily problem-dependent. Figures 8 and 9
illustrate this tradeoff for our theoretical case study (each box plot stands for
5 experiments).

Fig. 8. Result (theoretical case) of the classical formalism without (left) and with
(right) adaptation when the number of cells varies

Fig. 9. Result (theoretical case) of the Voronoi formalism without (left) and with
(right) adaptation when the number of cells varies

It appears that, when a static formalism is used, or when a dynamic for-
malism is used without adaptation, quality of the final solution returned by
the genetic algorithm is very sensitive to the initial number of cells, the sweet
spot for this particular problem being around a 14× 14 grid or 25-35 Voronoi
cells. However, the fourth combination, using a dynamic formalism with adap-
tations, is clearly much less sensitive to the initial conditions. Recall that this
is the only variant where the number of cells can vary from individual to in-
dividual. We ascribe its better behaviour to this feature. Indeed, checking the
number of cells present in the final solution confirms that this number natu-
rally increases (resp. decreases) when it initially is too low (resp. too high).
It is also worth noting that the absolute best objective function among all
experiments (around 1.5%) is obtained by this fourth variant.
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To conclude this section, we validate these observations on the practical
case described at the end of the previous section, with a single run of each of
the four versions of the optimization tool, again using a limit of 200 genera-
tions. We allocate roughly 200 parameters for both formalisms (a 2× 10× 10
grid in the static case, and 67 initial cells in the dynamic case, which corre-
sponds to 3× 67 = 201 design parameters).

Results for the objective function reported in Table 1 are consistent with
observations made on the theoretical case (objective values are normalized
with respect to the baseline static case without adaptation). The advantage
of the dynamic formalism over its static counterpart even seems to be larger
than for the theoretical case, with solutions whose objective function is nearly
an order of magnitude better than those obtained with the static formalism.
Usefulness of the algorithm adaptation is also confirmed, at least in the case
of the dynamic formalism.

Distribution formalism Static Static Dynamic Dynamic
Reproduction mechanisms Standard Adapted Standard Adapted

Objective function (normalized) 1.00 0.90 6.62 7.20

Table 1. Objective functions obtained after 200 generations in the practical case.

Finally, Fig. 10 displays solutions obtained in the two extreme cases: static
formalism with standard reproduction mechanisms (left) and dynamic formal-
ism coupled with adapted mechanisms (right). They suggest that the initial
number of cells was too high in the static case, preventing the tool to converge
over the course of the 200 generations (observe e.g. the mixture of materials
in the lower part of the solution). The solution produced in the second case
seems much closer to a stable design. However, the initial number of Voronoi
cells was apparently not enough since it rose from 67 to 78 during the opti-
mization. This confirms the observation that the optimization tool based on a
combination of a dynamic formalism and an adapted optimization algorithm
is much more robust with respect to variations in the initial number of cells.

Fig. 10. Actuator design for the practical case obtained with a non-adapted static
formalism (left) and adapted dynamic formalism (right).
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To conclude, we relate our work with that of Schoenauer et al. (see e.g.
[10, 7]), which demonstrates the potential of evolutionary algorithms when
applied to the topology optimization of mechanical structures. We confirm
their observation that the use of a dynamic formalism with adapted algorithms
is beneficial for topology optimization, both on a theoretical case and on a
practical application in electromagnetic design.

Our works differs however in several aspects: instead of waiting for con-
vergence of the algorithm, which is unrealistic in many practical situations,
we enforce a limit on the number of generations. We demonstrate that the
initial number of cells provided to the algorithm is a key parameter influ-
encing the quality of the final solution, but that it cannot be determined a
priori. Nevertheless, we show that the quality of the solutions returned by our
Voronoi-adapted variant is, through a regulation mechanism on the number of
cells, less dependent on the initial number of cells while it converges towards
better solutions.
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Summary. A second order variational model is tested to extract texture from an
image. An existence result is given. A fixed point algorithm is proposed to solve the
discretized problem. Some numerical experiments are done for two images.

Variational models in image processing have been extensively studied during
the past decade. They are used for segmentation processes (geodesic or geo-
metric contours), restoration and textures extraction purpose as well. Roughly
speaking image restoration problems are severely ill posed and a Tikhonov-
like regularization is needed. The general form of such models consists in the
mimization of an “energy” functional :

F(u) = ‖u− ud‖X +R(u) , u ∈ Y ⊂ X ,

where X, Y are (real) Banach spaces, R is a regularization operator, ud is
the observed (or measured) image and u is the image to recover. Here, we
are interested in textures extraction and/or image denoising. Recent works
were based on the assumption that an image can be decomposed in many
components, each component describing a particular property of the image
(see [6, 12, 14] for example). We follow this idea and assume that the image
f we want to recover from the data ud can be decomposed as f = u + v
where u and v are functions that belong to different functional spaces: u is
the “texture” part which involves (periodic or not) details (and noise as well)
while v is a more regular part (usually called the “cartoon” component).

In a first section, we present the functional framework, introducing the
BV 2 space, and the general variational model we consider. In section 2, we
focus on numerical implementation and present the discretization process.
Numerical tests are reported in the last section.
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1 Functional framework and model

1.1 The BV 2(Ω) space

Let Ω be an open bounded subset of Rn, n ≥ 2 (practically n = 2). Following
Demengel [9], we define the space of Hessian bounded functions that we call
BV 2(Ω). We recall that the space BV (Ω) of bounded variation functions (see
[2, 4, 3]) is defined as

BV (Ω) = {u ∈ L1(Ω) | Φ(u) < +∞},

where

Φ(u) = sup
{∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1c (Ω), ‖ξ‖∞ ≤ 1
}
. (1)

The space BV (Ω), endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + Φ(u), is
a Banach space. The derivative in the sense of the distributions of every
u ∈ BV (Ω) is a bounded Radon measure, denoted Du, and Φ(u) =

∫
Ω
|Du| is

the total variation of Du. We extend this definition to the second derivative
(in the distributional sense). Recall that the Sobolev space

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) }

where ∇u stands for the first order derivative of u (in the sense of distribu-
tions).

Definition 1. A function u ∈W 1,1(Ω) is Hessian bounded if

|u|BV 2(Ω) := sup
{∫

Ω

〈∇u, div(φ)〉Rn | φ ∈ C2c (Ω,Rn×n), ‖φ‖∞ ≤ 1
}
<∞,

where
div(φ) = (div(φ1), div(φ2), . . . , div(φn)),

with

∀i, φi = (φ1
i , φ

2
i , . . . , φ

n
i ) ∈ Rn and div(φi) =

n∑
k=1

∂φk
i

∂xk
.

For more information on the BV 2(Ω) space, see [9, 13].

1.2 The variational model

We now assume that the image we want to recover from the data ud can
be written as f = u + v where u is in BV (Ω) and v is in BV 2(Ω). Such
decompositions have already been performed [5, 6, 4] using the “Meyer” space
of oscillating function [10] instead of BV 2(Ω). So far, the model we propose
is not the same: the oscillating component will be included in the non regular
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part u while v involves the cartoon and the contours. We consider the following
function defined on BV (Ω)×BV 2(Ω) :

F (u, v) =
1
2
‖ud − u− v‖2L2(Ω) +λ|u|BV (Ω) +µ|v|BV 2(Ω) +δ‖∇v‖W 1,1(Ω), (2)

where λ, µ, δ ≥ 0 are weigths. We are looking for a solution to the optimisation
problem

inf
(u,v)∈BV (Ω)×BV 2(Ω)

F (u, v) (P)

The first term ‖ud − u− v‖2L2(Ω) of F is the fitting data term. Other terms are
Tychonov-like regularization terms. Note that the δ-term is not useful from
the modelling point of view. It is only a tool that allows to prove existence of
solutions. We shall choose δ = 0 for numerical tests.

If the image is noisy, the noise is considered as a texture and will be
included in u: more precisely v will be the part of the image without the
oscillating component, that is the denoised part. In a previous work, [7], we
focused on the denoising process taking only v into account (and assuming
that u = 0 so that ud−v is the noise). We now give an existence and uniqueness
result for the general problem (P) (see [7] for the proof).

Theorem 1. Assume that λ > 0, µ > 0 and δ > 0. Problem (P) has a unique
solution (u, v).

2 Numerical implementation

2.1 Discretization of the problem

We assume for simplicity that the image is square with size N×N . We denote
X := RN×N ' RN2

endowed with the usual inner product and the associated
euclidean norm

〈u, v〉X :=
∑

1≤i,j≤N

ui,jvi,j , ‖u‖X :=
√ ∑

1≤i,j≤N

u2
i,j . (3)

It is classical to define the discrete total variation as follows (see for example
[4]) : the discrete gradient of the numerical image u ∈ X is ∇u ∈ X2 defined
by

(∇u)i,j =
(
(∇u)1i,j , (∇u)

2
i,j

)
, (4)

where

(∇u)1i,j =
{
ui+1,j − ui,j if i < N
0 if i = N,

and (∇u)2i,j =
{
ui,j+1 − ui,j if j < N
0 if j = N.

The (discrete) total variation |u|BV (Ω) is given by
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J1(u) =
∑

1≤i,j≤N

∥∥∥(∇u)i,j

∥∥∥
R2
, (5)

where∥∥∥(∇u)i,j

∥∥∥
R2

=
∥∥∥((∇u)1i,j , (∇u)2i,j)∥∥∥R2

=

√(
(∇u)1i,j

)2

+
(
(∇u)2i,j

)2

.

The discrete divergence operator div is the adjoint operator of the gradient
operator ∇ :

∀(p, u) ∈ X2 ×X, 〈−div p, u〉X = 〈p,∇u〉X2 ,

so that

(div p)i,j =


p1

i,j − p1
i−1,j if 1 < i < N

p1
i,j if i = 1
−p1

i−1,j if i = N
+


p1

i,j − p2
i,j−1 if 1 < j < N

p2
i,j if j = 1
−p1

i,j−1 if i = N.
(6)

To define a discrete version of the second order total variation we have to
introduce the discrete Hessian operator. As for the gradient operator, we define
it by finite differences. So, for any v ∈ X, the Hessian matrix of v, denoted
Hv is identified to a X4 vector:

(Hv)i,j =
(
(Hv)11i,j , (Hv)

12
i,j , (Hv)

21
i,j , (Hv)

22
i,j

)
.

The discrete second order total variation |v|BV 2(Ω) of v is defined as

J2(v) =
∑

1≤i,j≤N

‖(Hv)i,j‖R4 . (7)

As in the BV case, we may compute the adjoint operator of H (which is the
discretized “second divergence” operator) :

∀p ∈ X4, ∀v ∈ X 〈H∗p, v〉X = 〈p,Hv〉X4 . (8)

and we deduce a numerical expression for H∗ from the equality (8). The
discretized problem stands

inf
(u,v)∈X2

1
2
‖ud − u− v‖2X + λJ1(u) + µJ2(v) + δ(|v|+ J1(v)), (Pd)

where
|v| :=

∑
1≤i,j≤N

|vi,j | .

In the finite dimensional case we still have an existence result.

Theorem 2. Problem Pd has a unique solution for every λ > 0, µ > 0 and
δ > 0 .
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For numerical purpose we shall set δ = 0. In fact, we have performed tests
with δ = 0 and very small δ 6= 0 (as required by the theory to get a solu-
tion to problem Pd) and results where identical. So, to simplify numerical
implementation, we consider the following discretized problem :

inf
(u,v)∈X2

1
2
‖ud − u− v‖2X + λJ1(u) + µJ2(v). (P̃d)

2.2 Algorithm

Using non smooth analysis tools (for convex functions) it is easy to derive
(necessary and sufficient) optimality conditions. More precisely (u, v) is a so-
lution of (P̃d) if and only if0 ∈ ∂

(
λJ1(u) + 1

2‖ud − u− v‖2
)

0 ∈ ∂
(
µJ2(v) + 1

2‖ud − u− v‖2
)
,

(9)

where ∂J is the classical subdifferential of J . Using subdifferential properties,
we see that (9) is equivalent to{

u = ud − v −ΠλK1 (ud − v)
v = ud − u−ΠµK2 (ud − u) .

(10)

where K1 and K2 are closed convex sets. Chambolle [8] proved that

K1 = {div p | p ∈ X2, ‖pi,j‖R2 ≤ 1 ∀i, j = 1, . . . , N} (11)

in the BV (Ω) setting and we may prove similarly that

K2 = {H∗p | p ∈ X4, ‖pi,j‖R4 ≤ 1, ∀i, j = 1, . . . , N}, (12)

(see [7]). Moreover, Chambolle [8] proposed a fixed point algorithm to compute
ΠλK1 and we are able to extend this result to the second order case.

p0 = 0 (13a)

pn+1
i,j =

pn
i,j − τ(H[H∗pn − ud/λ])i,j

1 + τ‖(H[H∗pn − ud/λ])i,j‖R4

. (13b)

which convergence is proved in [7] :

Theorem 3. Let τ ≤ 1/64. Then λ (H∗pn)n converges to ΠλK2(ud).

So, we propose the following algorithm :
• Step 1 : We choose u0 et v0 (for example, u0 = 0 et v0 = ud) and
0 < α < 1.
• Step 2 : define the sequences ((un, vn))n as follows:
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un+1 = un + α (ud − vn −ΠλK1 (ud − vn)− un)
vn+1 = vn + α (ud − un −ΠµK2 (ud − un)− vn) .

• Step 3 : if a stopping criterion is not satisfied, set k := k+ 1 and go back
to 2.

We can show that the algorithm converges for α ∈]0, 1/2[. In practice, we
observed that the convergence is faster for α = 0.6.

3 Numerical tests and comments

We test the model on two images: The first one is a synthetic image where
texture has been artificially added, and the second one is the well known
“Barbara” benchmark, often used in texture extraction.

(a) (b)

Fig. 1. Original images.

We perform many tests with respect to the different parameters. We only
present here the most significant : α = 0.6, λ = 0.5 and µ = 100. Let us first
report on the iterations number effect with image (a).

If we are only interested in the texture part, we can observe in fig 2 that we
get back all the textures. Unfortunately, most of the geometrical information
(that we don’t want) is also kept, and we observe that the involved geometric
part is getting more important as the iteration number is growing.
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Fig. 2. Number of iterations: first line: 60; second line: 200; third line: 2000.

We see in fig 3 that we can choose a large number of iterations for the texture
extraction of image (b) because of its inner structure.
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On the other hand, we have to limit this number for the image (a). We give
an example image (b) with a very large iterations number.

Fig. 3. Number of iterations: 2000.

In addition, we see that too many geometrical information remains together
with the texture in the oscillating part: this is a bad point. Nevertheless, our
main goal is to locate the texture and we don’t need to work with the cartoon
part anymore once it has been identified. We do not need to recover all the
texture but only a significant part to identify it. In that case, we propose
a method that permits to improve the results significantly: we modify the
Hessian operator to make it anisotropic. More precisely, we reinforce chosen
directions. As texture is made of oscillating information, we hope that we
shall keep most of it while many contour lines disappear. We specially act
on the vertical and horizontal components of the hessian operator. To deal
with non vertical and horizontal lines, we just have to let the image rotate.
In the following test, we have replaced the Hessian operator by the operator
H ′ defined for all v ∈ X4 by :

∀(i, j) ∈ {1, ..., N}2, (H ′v)i,j =
(
0, (Hv)12i,j , (Hv)

21
i,j , 0

)
.

We can see on fig 4 that we keep most of the texture without geometrical
information. Of course, this method is only efficient on contour lines which are
beelines, and permits to deal with only two directions which are necessarily
perpendicular. We will propose, in a forthcoming work, a local method to
eliminate contour lines in every directions.
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Fig. 4. Test with the anisotropic operator H ′. Number of iterations: first line: 60;
second line: 2000.

4 Conclusion

The model permits to extract texture from an image, but the texture part
still contains too much geometric information. Thus, to recover what we are
interested in, we have to use the algorithm with a limited number of iterations.
Moreover, we have noticed that we recover too many contour lines as well.
The asset of this model is that we can make it anisotropic, modifying the
hessian operator in an appropriate way. Therefore we get rid of geometrical
information, but we lose part of the texture as well. Nevertheless, if our goal
is just to locate texture on an image, this loss remains acceptable.
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Summary. This paper deals with the design and optimization of a vehicle bumper
subsystem, which is a key scenario for vehicle component design. More than ever
before, the automotive industry operates in a highly competitive environment. Man-
ufacturers must deal with competitive pressure and with conflicting demands from
customers and regulatory bodies regarding the vehicle functional performance and
the environmental and societal impact, which forces them to develop products of
increasing quality in even shorter time. As a result, bumper suppliers are under
pressure to increasingly limit the weight, while meeting all relevant design targets
for crashworthiness and safety. In the bumper design process, the structural crash-
worthiness performance as the key attribute taken into account, mainly through
the Allianz crash repair test, but also through alternative tests such as the impact
to pole test. The structural bumper model is created, parameterizing its geomet-
ric and sectional properties. A Design of Experiments (DOE) strategy is adopted
to efficiently identify the most important design parameters. Subsequently, an op-
timization is performed on efficient Response Surface Models (RSM), in order to
minimize the vehicle bumper weight, while meeting all design targets.

1 Integrated methodology

A methodology is developed and presented to support early balancing between
different crash attributes of the vehicle bumper system. Figure 1 presents the
schematic representation of the bumper optimization process, starting from
geometric design. The process consists of 3 main elements. The first element
incorporates design modification and pre-processing in LMS Virtual.Lab [1].
In the second phase, the impact problem is solved with LS-DYNA [2]. The
full process of the crash scenario is then captured in the third element
OPTIMUS [3], which allows the process integration and design optimization
of the sequence in an automated way.

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_42, © Springer-Verlag Berlin Heidelberg 2010 
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Fig. 1. Schematic representation of the automated process

1.1 Integrated solution for geometry based multi-attribute
simulation

A key element in this integrated process is LMS Virtual.Lab, which addresses
multi-attribute model assembly and analysis areas to perform end-to-end as-
sessment of a design with respect to multiple performance attributes long
before committing to expensive tooling and physical prototypes. For the ve-

Fig. 2. Integrated solution: from CAD changes to FE models

hicle bumper subsystem of interest, engineers can start from the CAD design,
define a generic assembly model, define multi-attribute simulation models and
meshes, as well as multiple analysis cases (see figure 2). The entire process is
fully associative, enabling automated iteration of design and model changes,
which is key towards an efficient optimization process.

1.2 Process integration and automation for optimization purpose

In order to automate the entire design procedure from parameter changes to
analysis results processing, the above process has been formalized and inte-
grated. For the present case, the OPTIMUS software package has been used to
apply the selected analysis methodology and to integrate the different analysis
tools for parameter pre-processing, mesh regeneration, crash analysis as well
as output extraction and post-processing. The process integration workflow
has enabled the automatic execution of the different analysis phases in order
to automatically iterate during the optimization process and find the opti-
mal design. Figure 3 shows the workflow of the multi-attribute optimization
process, which has been captured.
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Fig. 3. Process integration workflow in OPTIMUS

1.3 Design exploration and optimization tools

Design of Experiments (DOE)
DOE is a technique [5] that in a statistics context allows the analysis of
correlations or shows the statistical significance of an effect, but it is also used
for screening purposes or to build meta-models. OPTIMUS provides wide
a range of DOE methods for different kinds of applications, such as factorial
designs, Box-Behnken, Latin Hypercube, Taguchi or Monte Carlo sampling [4].
In the bumper optimization process, the DOE strategy is used with double
purpose: on the one hand it allows the extraction of global sensitivities or so
called degree of influence (DOI) [7], on the other hand, the DOE experiments
serve as a basis for response surface models (RSM).

Degree of Influence (DOI)
In order to identify the most significant parameters in an optimization pro-
cess, a large scale sensitivity analysis is performed. Opposed to the generally
applied local sensitivity measures based on finite differences, this approach
provides large-scale sensitivity information that is calculated based on DOE.
Given that for each parameter i, a specific output o is available at 3 differ-
ent levels (minimum, centre, maximum), the variation of the output o with
respect to parameter i is approximated: the large-scale sensitivity is given by
V ARo

i = (|∆1|+ |∆2|) (see figure 4). The DOI for each parameter-output pair
is expressed with the following formula:

DOIo
i = V ARo

i /
∑

i V AR
o
i (1)

The DOI information is used to select a subset of parameters that have strong
influence on the outputs. Parameters with a minor influence can be omitted
form further analysis. This way, the computational burden on the optimization
is relaxed.
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Fig. 4. Variation of output w.r.t. an input parameter

Response Surface Modelling (RSM)
DOE is often used to build a RSM [6]: a meta-model is estimated from the
experimental data, to build an approximate functional relationship between
the input parameters and the true response. In this context, OPTIMUS offers
a whole range of meta-models, from the simple polynomial approximations to
more advanced Radial Basis Functions or Kriging models [4].

1.4 Multi-objective Optimization

In many cases, design engineers are faced with multiple objectives, possibly
conflicting with each other, so that some trade-off between the optimality
criteria is needed. Multi-objective optimization methods that construct the
so-called Pareto front allow the solution of such problems. The goal of the
different methods that generate the Pareto front is to find a number of points
on the Pareto surface, by giving different weights to the different objectives [4].
In order to limit the total computational effort required for a full optimization
process, a hybrid optimization approach has been used, taking advantage of
DOE and RSM techniques, which is summarized in the following steps:

Design space exploration with DOE
Response surface modelling of the functional performance
Multi-objective optimization, based on the response surface model
Validation of the obtained results

For the present paper, given the computational time required for one single
execution of the complete analysis, the DOE approach limits the total com-
putational effort that needs be spent. The optimization relies on the creation
of response models to considerably speed up the process. To guarantee the
validity of the optimum found with the efficient RSM analyses, the results of
the optimization process obtained with the RSM are verified, which allows as-
sessing the local error at the optimum between the predictive response model
and the simulation analysis.

2 Application: mass optimization of a bumper system

To illustrate the methodology described in section 2 of this paper, an opti-
mization study is performed on an industrial parametric CAD bumper system.

• 
•
•
•
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This application case has been defined by LMS and PUNCH as a representa-
tive bumper design scenario of semi-industrial complexity, which will be used
in this paper to demonstrate the structural simulation optimization method-
ologies.

2.1 Bumper system

The bumper geometry has been taken from an industrial design practice with
a mesh density that is both acceptable for the predictions of interest and also
feasible in terms of computational effort. The geometry consists of a cross
section made of 2 chambers. Subsequently, an assembly is made to connect
with the bumper, the longitudinal beams through brackets using seamweld
connections and rigid connections (see figure 5).

Fig. 5. CAD-based mesh and assembly of the bumper system

2.2 Load cases: reparability low speed impact

Two load cases are considered for the evaluation of the crashworthiness per-
formance of the vehicle bumper system: the Allianz crash repair test and
the impact to pole test. The Allianz test (AZT) is the most important low

Fig. 6. The Allianz and impact to pole load cases

speed load case in the vehicle bumper design. This test aims at evaluating the
reparability cost, and is used by insurance companies to determine the insur-
ance fee of a vehicle. The more damage the vehicle will endure in this impact
case, the higher the insurance fee will be. The AZT test protocol prescribes
a 40% offset impact at 16km/h against a rigid barrier(see figure 6 left). To
minimize the reparability cost, the deformation should be limited within the
bumper system and the load transferred to the longitudinal members should
be limited to avoid permanent deformations. Frontal pole-impact test is used
to study the intrusion during a frontal impact with a rigid pole. Similarly to
the AZT test, it allows evaluating the repairability cost of the bumper system
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in a different typical crash scenario. The larger the intrusion, the higher the
risk of damaging costly parts, such as the engine cooling system. This test
consists of a 15km/h central impact against a rigid pole (see figure 6 right).

3 Optimization

The goal of the optimization process is to obtain an optimized bumper profile
in terms of mass and Allianz test crash performance, while satisfying a set of
design constraints. Multi-objective optimization ensures an optimal trade-off
between the two selected objectives. At each iteration of the DOE experi-
ments, 2 parallel analyses are performed, one analysis for each load case.

3.1 Input parameters

In order to optimize the bumper system, 9 parameters are considered. Param-
eters L1, H1, H2, G1, G2, D1 and D2 are geometrical parameters that define
the profile of the bumper, while t1 and t2 represent shell thickness values. The
cross-sectional length of the bumper is considered to be fixed to L = 150mm.
The parameter ranges and the nominal values are presented in table 1.

Fig. 7. Bumper parameters

Table 1. Design parameters

Parameter L1 H1 H2 G1 G2 D1 D2 t1 t2

Min[mm] 60 70 55 5 0 -15 -15 2 2
Max[mm] 100 100 65 15 10 15 15 4 4
Nom[mm] 85 85 60 10 5 0 0 3 3.3

3.2 Objectives and constraints

Nowadays, with the increasing awareness of the environmental footprint of
the vehicle, mass reduction of the different vehicle subcomponents is manda-
tory. Reducing the mass of the bumper is therefore the primary objective. To
optimize energy absorption potential of the bumper for the Allianz test, the



Optimization study of a parametric vehicle bumper subsystem 487

deviation with respect to an ideal 85kN constant curve is considered. The tar-
get curve is the ideal force level to absorb the total kinetic energy of a 1200kg
car that crashes into the rigid barrier in conformity with the Allianz test, with
an initial velocity of 16km/h. The target force level is equivalent to 11, 9kJ
(total initial kinetic energy), based on a deformation length of 140mm (total
collapse of the bumper section). The average deviation of the actual force-
deflection curve from this ideal curve is expressed with the root mean squared
error (RMSE) formula that is based on 10 sample points:

RMSE Fx =
√∑10

i=1(F i
x − 85kN)2/10 (2)

Figure 8 shows the AZT load case sectional force X at section 1 for the

Fig. 8. X-force at section 1 vs. time

nominal bumper variant. The red line represents the ideal force curve, while
the black dots represent the sampled data for the RMSE calculation. The

Table 2. Summary of the objectives

Objectives Abbreviation Nominal value

Total bumper mass Mass 5.54kg
AZT test: RMSE of X-force w.r.t. 85kN RMSE Fx 33kN

optimization is subject to two constraints: the X force level at section 1 during
the AZT test is limited to 120kN , and the intrusion for the pole impact
scenario is limited to 100mm.

Table 3. Summary of the constraints

Constraints Abbreviation Nominal value Limit value

AZT test: highest X force section 1 Max Fx 135kN 120kN
Pole impact test: largest bumper intrusion Max Int 52mm 100mm
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3.3 First screening results: DOI

In order to identify the most significant parameters with respect to the objec-
tives and constraints, a first output screening based on the DOE is performed.
The objective of this step is to reduce the number of parameters from 9 to 5.
This parameter reduction results in a reduced number of experiments used as
basis for the RSM. For a 3-level full factorial (3FF) design, the full set of 9 pa-
rameters would result in 19683 experiments. 3FF design based on the reduced
set of parameters results in a feasible number of 243 experiments. Given 70
minutes CPU time for 1 experiment, the 3FF design could be covered within
12 days. The DOE adopted for the large scale sensitivities (DOI’s), consists of
a set of experiments that includes the central point and the extreme points,
requiring a total number of 19 evaluations. Based on the DOI results (see

Fig. 9. DOI of the 9 parameters with respect to objectives and constraints

figure 9), a set containing 5 parameters is selected: L1, H1, H2, t1, t2.

3.4 DOE and RSM selection

The 5 considered parameters are used for a DOE based on 3FF design, to
ensure uniform sampling of the design space. The experimental results of the
objectives and constraints are then used to build a meta-model for each ob-
jective and constraint. The Radial Basis Functions-based (RBF) interpolating
response models [8] amended with quadratic polynomial functions are adopted
for this purpose, and subsequently used in the multi-objective optimization.

3.5 Bumper Design Optimization

The multi-objective optimization problem is solved with the Normal-Boundary
Intersection (NBI) method which searches the Pareto front that represents the
set of optimal trade-off solutions [9]. Table 4 summarizes 5 selected Pareto-
optimal solutions that are obtained with 1367 iterations based on the RSM
using the NBI method. As a final step, the optimum with weight of 0.5 for
both objectives has been selected and validated (see table 5). The validation
of the optimum shows some difference (13%) as compared to the RMSE ob-
jective, which indicates room for improvement of the RSM for this specific
output. This potential improvement however was not adressed in this study.
The start and optimized geometries of the bumper are showed in figure 10.
Figure 11 compares the normal sectional force profile for both the initial and
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Table 4. 5 different trade-off optimums

L1 H1 H2 t1 t2 MassWeightRMSE Fx Weight Max Fx Max Int
[mm] [mm] [mm] [mm] [mm] [kg] Mass [kN ] RMSE [kN ] [mm]

Opt1 60 75.6 56.7 2.29 2.89 4.38 1 19.3 0 119 94
Opt2 60.5 75.1 55.9 2.34 2.88 4.41 0.75 17.7 0.25 119 92
Opt3 61.5 74.4 55.2 2.44 2.89 4.49 0.5 16.3 0.5 120 88
Opt4 63.8 74.5 55 2.62 2.94 4.68 0.25 15.1 0.75 117 80
Opt5 73.3 82.7 55.8 2.92 2.94 5.12 0 14.5 1 107 61

Table 5. The selected optimum and validation

L1 H1 H2 t1 t2 Mass RMSE Fx Max Fx Max Int
[mm] [mm] [mm] [mm] [mm] [kg] [kN ] [kN ] [mm]

Start 80 85 60 3 3.3 5.54 33.7 135 52.5
RSM 61.57 74.43 55.27 2.44 2.89 4.49 16.3 120 88.5
Simulation ∼ ∼ ∼ ∼ ∼ 4.5 18.8 118.5 90.5
Relative error 0.2% 13% 1.2% 2.2%

Fig. 10. The initial and the optimized bumper geometries

the optimized design. The optimized bumper has an improved performance:
the mass is reduced with 18.7% and the RMSE of the normal sectional force
as compared to the ideal force profile is reduced with 44%, while the imposed
constraints are satisfied.

4 Conclusions and discussion

This paper presents a generic methodology for automated crash performance
optimization, which is illustrated on a real-case scenario. LMS Virtual.Lab
offers an integrated solution for CAD-based simulations with the benefits of
decreasing analysis time by means of quick model updates, by offering an inte-
grated platform for multi-attribute system modelling for design engineers. The
crash design process from parametric model modification and preprocessing
in LMS Virtual.Lab and the solution of the crash problems with LS-DYNA
is captured with the use of OPTIMUS, which is a dedicated platform for
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Fig. 11. The original design (blue) and the optimized design (green)

process automation that enables multi-disciplinary design optimization. The
automated methodology is illustrated on a vehicle bumper system that is sub-
ject to multiple load cases. It is shown that the multi-objective optimization
process based on DOE and RSM significantly improves the crash performance
of the bumper while reducing mass and satisfying different crash criterias.
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Summary. We look at a stochastic online scheduling problem where exact job-
lenghts are unknown and jobs arrive over time. Heuristics exist which perform very
well, but do not extend to multi-stage problems where all jobs must be processed
by a sequence of machines.

We apply Learning Automata (LA), a Reinforcement Learning technique, suc-
cessfully to such a multi-stage scheduling setting. We use a Learning Automaton
at each decision point in the production chain. Each Learning Automaton has a
probability distribution over the machines it can chose. The difference with simple
randomization algorithms is the update rule used by the LA. Whenever a job is
finished, the LA are notified and update their probability distribution: if the job
was finished faster than expected the probability for selecting the same action is
increased, otherwise it is decreased.

Due to this adaptation, LA can learn processing capacities of the machines, or
more correctly: the entire downstream production chain.

1 Introduction

Multi-stage scheduling over parallel machines

Batch chemical plants usually consist of a series of one or more processing
stages with parallel processing units at each stage. A new trend in production
processes is to operate flexible, adaptive multi-purpose plants. We look at an
application based on the chemical production plant of Castillo and Roberts [1,
2]. It is a two-stage process with four times two parallel machines, see Figure 1.

Each order (created at P1 and P2) must be handled first by a ‘stage-1’
machine M1− and afterwards by a ‘stage-2’ machine M2−. At each stage, a
scheduler must choose between two parallel machines. Parallel machines can
handle the same type of tasks, but may differ in speed. The possible choice in

∗ This research is partially funded by the IWT-SBO Project (DiCoMAS) “Dis-
tributed Collaboration using Multi-Agent System Architectures”
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parallel machines is depicted by the arrows in the figure. All machines have a
FIFO-queue and execute jobs non-preemptively.

Stochastic online scheduling

The length of the jobs varies according to an exponential distribution. Only
the average joblength is known by the schedulers. Also, the machines’ speeds
are unknown. Even the expected processing time of the jobs is unknown.
However, when a job is finished, the scheduler has access to its exact processing
time.

Moreover, it is not known in advance when a new order will arrive. I.e.
we have an online scheduling problem. In an offline problem, all product
orders are known in advance. An optimal algorithm will find the best feasible
schedule if time and memory restrictions allow it to be computed. In an online
scheduling problem, an algorithm has to make decisions based on the history
(i.e. information of already released or finished jobs) and the current product
request. It is obvious this makes for a more challenging problem. Moreover,
no algorithm can find the optimal schedule for all possible input sequences.

Approaches

This problem is particulary hard since it is stochastic, online and multi-stage
at the same time.

There exist heuristics for online stochastic scheduling in the single-stage
scenario. But these cannot be easily mapped to a multi-stage problem, in
this case we do not only need the information about the immediate available
machines, but also the information about the machines of the coming stages
and this, of course, increases the complexity. In Section 3 we discuss one such
heuristic.

In the next section, we introduce Reinforcement Learning and Learning
Automata. We propose to apply these techniques for difficult scheduling prob-
lems such as the one described above. Later, we will compare Learning Au-
tomata to the heuristic of Section 3 in an easy setting.

Fig. 1. A two-stage chemical production plant. For both product types P1 and P2,
there are two parallel machines at the first stage. At the second stage of the process,
there are also two parallel machines.
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2 Reinforcement Learning

Reinforcement Learning (RL), as noted by Kaelbling, Littman and Moore
in [4], dates back to the early days of cybernetics and work in statistics,
psychology, neuroscience, and computer science. It has attracted increasing
interest in the machine learning and artificial intelligence communities during
the past fifteen years.

RL is learning what to do in which situation to maximize a numerical re-
ward signal. The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield the most re-
ward by trial-and-error. In the most interesting and challenging cases, actions
may affect not only the immediate reward but also the next situation and,
through that, all subsequent rewards. These two characteristics, trial-and-
error search and delayed reward, are the two most important distinguishing
features of RL [3].

In the standard RL paradigm, an agent is connected to its environment via
perception and action, as depicted in Figure 2. In each step of interaction, the
agent senses the current state s of its environment, and then selects an action
a which may change this state. The action generates a reinforcement signal
r, which is received by the agent. The task of the agent is to learn a policy
for choosing actions in each state to receive the maximal long-run cumulative
reward.

One of the challenges that arise in RL is the trade-off between exploration
and exploitation. To obtain a high reward, an RL agent must prefer actions
that it has tried in the past and found to be effective in producing reward.
But to discover such actions, it has to try actions that it has not selected
before. The agent has to exploit what it already knows in order to obtain
reward, but it also has to explore in order to make better action selections in
the future. The dilemma is that neither exploration nor exploitation can be
pursued exclusively without failing at the task. The agent must try a variety
of actions and progressively favor those that appear to be best.

In many cases the environment is stochastic. This means, (i) rewards are
drawn from a probability distribution and (ii) for each current state s and the
chosen action a there is a probability distribution for the transition to any
other state. As long as the environment is stationary (i.e. the transition and
reward probabilities do not change over time) RL agents can learn an optimal
policy. This was e.g. proven for the well-known Q-Learning algorithm [5].

In the next section we look at a particular RL method: Learning Automata.

2.1 Learning Automata

Learning Automata (LA) [6] keep track of a probability distribution over their
actions.3 At each timestep an LA selects one of its actions according to its
3 Here we look only at ‘Linear Reward’ LA, there are many more described in

literature [6], but this is probably the most widely used.
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Fig. 2. The RL Paradigm: an agent repeatedly perceives the state of the environ-
ment and takes action. After each action the agent receives a reinforcement signal.
The goal of the agent is to collect as much reward as possible over time.

probability distribution. After taking the chosen action i, its probability pi is
updated based on the reward r ∈ {0, 1}, see Equation 1, first line. The other
probabilities pj (for all actions j 6= i) are adjusted in a way that keeps the
sum of all probabilities equal to 1 (

∑
i pi = 1), see Equation 1, second line.

This algorithm is based on the simple idea that whenever the selected action
results in a favorable response, the action probability is increased; otherwise
it is decreased.

pi ← pi + αr(1− pi)− β(1− r)pi ,

pj ← pj − αrpj + β(1− r)
(

1
n−1 − pj

)
, ∀j 6= i.

(1)

The parameters α and β (α, β ∈ [0, 1]) are the reward and penalty learning
rate. In literature, three common update schemes are defined based on the
values of α and β:

Linear Reward-Inaction (LR−I ) for β = 0,
Linear Reward-Penalty (LR−P ) for α = β,
Linear Reward-ε-Penalty (LR−εP ) for β � α.

2.2 Application to Scheduling

To apply LA to a scheduling problem we need to define the actions of all
agents, the rewards and the problem’s state space. We define an action of the
LA as submitting a job to one of the parallel machines. Thus, for the problem
described in Section 1 we have 6 agents: two receive product orders P1 and
P2 and decide which ‘stage-1’ machine will be used. The other four agents
receive partially processed jobs from a ‘stage-1’ machine M1− and send them
to a ‘stage-2’ machine M2−. Note, the agent cannot wait to submit a job and

•
•
•
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cannot stop a job preemptively. In other settings these could be added as
extra actions.

When a job j is completely finished, the two agents that decided the path
of that job are notified of this. Based on the completion time Cj and the release
times Rj for both stages a reward r ∈ {0, 1} is created, see Equation 2. Note,
(i) completion time is the time at which the job has finished both stage 1 and
stage 2, and (ii) release times are the times at which the job starts stage 1 or
stage 2 depending on the agent.

r =

{
0 if T > Tavg ,

1 otherwise,
(2)

where the flowtime T = Cj − Rj and Tavg is the average flowtime over the
last n number of jobs. The larger n is the more accurate the LA’s belief of
the average flowtime of the jobs. The smaller n the faster the LA will adapt
his belief of the average flowtime when for example a machine breaks down
or the performance of a machine increases.

For this problem, it is unnecessary to define a state-space. From the agents’
point of view the system is always in the same state.

3 WSEPT Heuristic for Stochastic Online Scheduling

We do not know of any good approximation algorithm for scheduling problems
that are online, stochastic and multi-stage at the same time. For the single-
stage case, however, there exists a very good heuristic: Weighted Shortest
Expected Processing Time (WSEPT) [7].

It works in the following setup: orders are arriving over time and must
be processed by one out of several parallel machines. The objective is to
reduce the total weighted completion time (

∑
j wjCj , for all jobs j). Each

time an order arrives, the WSEPT rule submits the job to the machine that
is expected to finish it first. To this end it polls each machine for its current
expected makespan (including the new job). If, for example, all jobs have equal
expected processing time, and each machine the same average speed, then the
expected makespan is the queuelength (including the currently processed job
if any). In [7] lower bounds on the total weighted completion time (

∑
j wjCj)

are given for the WSEPT heuristic.
In the next section we will compare the WSEPT and the Learning Au-

tomata in a simple single-stage scheduling task.

4 Experimental Results

4.1 WSEPT Heuristic versus Learning Automata

We ran some experiments on single-stage scheduling with N = 4, 5 or 6 iden-
tical machines. One scheduler receives a sequence of jobs. The joblengths are
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generated by an exponential distribution with average µ = 100. The identical
machines have unit processing speed si = 1, for i = 1, . . . , N . I.e. a machine
needs 100 timesteps to process an average job.

To make sure the system can actually handle the load, we set the proba-
bility of creating a job at any timestep to 95% of the total processing speed
divided by the average job length: 0.95

∑
i si/µ. To keep things easy, all jobs

have unit weight wj = 1.
We tested the following agents on the same sequence of orders:

RND: uniformly distributes the jobs over all machines,
WSEPT: uses the WSEPT heuristic as described in Section 3,
LA: a Learning Automaton as described in Section 2.1 with α = β = 0.02.

Results

The experiments show that the LA clearly performs better than the RND
scheduler. This is not at all to be expected. The optimal (but static) distri-
bution of jobs of equal expected processing length on identical machines is
the uniform distribution. Which is exactly what RND uses. However, due to
the high variance in processing times, adapting the load distribution is more
efficient at keeping the queues short.

Obviously, WSEPT outperforms LA. Note, the heuristic uses information
which both LA and RND cannot access. The length of the queues over time
show that WSEPT balances the load better: queues are 4 to 5 times shorter.
On the other hand, the total weighted completion time (

∑
j wjCj) does not

show huge differences between WSEPT and LA (in the order of 0.001 to 0.01).
Although the WSEPT heuristic outperforms the Reinforcement Learning

approach, the LA are not useless. WSEPT requires access to more information
and only works in single-stage loadbalancing problems. In the next section,
we test LA in the multi-stage setting as described in Section 1.

4.2 Multi-Stage Scheduling

We look at two slightly different settings, see Table 1. Setting 1 is copied
from [2]. In both cases, the average joblength is 100 and the jobrate is 1/45
for both product types P1 and P2. The performance is measured by total
flowtime of the jobs through entire processing chain.

The first type of LA we test are Linear Reward-Inaction LA (LR−I ). After
some time, the queues started growing indefinitely. This was caused by some
automata converging prematurely to a pure strategy. I.e. they end up selecting
the same action forever. This is due to the fact that LR−I never penalize bad
actions (β = 0). Although this may be favorable for many RL problems, it
will almost never be for load-balancing. The only obvious exception is when
one machine is able to process all jobs before any new order arrives.
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The LR−εP generated better and better results when ε is increased. Finally,
when ε = 1 we have LR−P , where penalty and reward have an equally large
influence on the probabilities. This gives the best results.

The value of α and β, which determines the learning speed, seems best
around 0.01 for this problem. Table 2 shows the average policy for each of the
six agents. For example, the fourth agent receives jobs partially finished by
machine M13 and distributes them over M23 and M24.

The second setting shows that the agents take into account the time needed
for a job to go through all stages. Machines M13 and M14 are 10 times faster
as in the first setting. This does not increase the total system capacity, since
the machines in the second stage would create a bottleneck. The result is that
the first two agents still favor M11 and M12, but slightly less. For example,
the first agent in Table 2 distributes 71% of the load on M11 in the second
setting, as opposed to 74% in the first setting.

Table 1. Processing speeds of all machines for two different settings.

Machine M11 M12 M13 M14 M21 M22 M23 M24

Speed setting 1 3.33 2 1 1 3.33 1 1 1
Speed setting 2 3.33 2 10 10 3.33 1 1 1

Table 2. Average probabilities of all agents through an entire simulation.

Machine M11 M13 M12 M14 M21 M22 M23 M24 M21 M22 M23 M24

Setting 1 .74 .26 .69 .31 .76 .24 .50 .50 .77 .23 .50 .50
Setting 2 .71 .29 .61 .39 .77 .23 .50 .50 .78 .22 .50 .50

5 Discussion

Following advantages of LA make them very applicable in difficult scheduling
scenarios:

They can cope with uncertainty: unknown joblengths, unknown future jobs
and unknown machine speeds.
The decisions based on the probability distribution and the updates of
those distribution are very straightforward. They can be performed in a
minimum of time and require only very limited resources.

The performed experiments show that LA can learn processing capaci-
ties of entire downstream chains. Note however that the rewards are delayed.

•

•
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While waiting for a submitted job to be finished, other jobs must already be
scheduled. In our scheduling problem, this is not a problem for the LA. When
more stages would be added to the system, the LA could be equipped with
so-called eligibility traces [3].

Since LA are very adaptive, it should even be possible to detect changes
in processing speed, such as machine break downs.

Finally, when applying any randomization technique (such as LA) to bal-
ance a load, one is always better off with many short jobs than very few long
ones (cf. the law of large numbers). It remains to be seen how large the effect
of fewer but longer jobs will be in our setting.
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Abstract

This contribution presents some of the tools developed at Cenaero to tackle indus-

trial multidisciplinary designs. Cenaero’s in-house optimization platform, Minamo

implements mono- and multi-objective variants of Evolutionary Algorithms strongly

accelerated by efficient coupling with surrogate models. The performance of Minamo

will be demonstrated on a turbomachinery design application.

1 Introduction

Nowadays, with the continuous increase in computing power, a widespread
practice in engineering is that of simulation-based design optimization. In-
deed, design of complex engineering systems, which is synonymous with the
use of accurate high-fidelity simulationmodels (e.g. Computational Fluid Dy-
namics (CFD) analysis or Finite Element Method (FEM)), has become a real-
ity. However, even with today’s computational power, it is rarely conceivable
to thoroughly search the design space using the high-fidelity simulations. Since
optimization procedures are mandatory to quickly provide optimal designs, an
adequate and general answer to optimization based on computationally ex-
pensive analysis lies in the exploitation of surrogate models. Surrogate-Based
Optimization (SBO) essentially exploits surrogates or approximations instead
of the expensive analysis results to contain the computational time within
affordable limits (see [4, 12]), with occasional recourse to the high-fidelity
model. The performance of such methods is known to be largely dependent on
the following key elements: the initial sample set used to build the surrogate
model(s), the underlying optimization algorithm(s), the surrogate model(s)
training and the surrogate model(s) management schemes.

This paper is structured as follows. First, the SBO methodology imple-
mented in Minamo is exposed with a focus on the design of experiments and
the surrogate modeling. Subsequently, the performance of our in-house opti-
mization platform is demonstrated on a turbomachinery design application.

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
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2 Optimization Methodology

In most engineering design optimization, every evaluation of functions in-
volved in the problem is expensive and their derivatives are, generally, un-
available or available at a prohibitive cost. Typical optimization techniques,
like gradient-based methods[11], are not applicable or not efficient in such con-
texts. Despite their speed of convergence, these methods are indeed known to
lack space exploration. They are appropriate if the derivatives are available
or can be inexpensively approximated and if a good starting point is known.
Moreover, they are restricted to mono-objective problems and only permit to
solve multi-objective problems by using an aggregation of the objectives with
pre-defined weights for each objective. Derivative-free algorithms [3] have been
developed for local optimization of computationally expensive functions, but
most of the time engineers are interested by a global optimum.
For these reasons, Minamo implements mono- and multi-objective Evolution-
ary Algorithms (EAs)sing real coded variables. These methods are stochastic,
population-based search techniques and widely used as efficient global opti-
mizers in the engineering world. Such zero-order optimization techniques are
indeed robust and able to cope with noisy, discontinuous, non-differentiable,
highly non-linear and uncomputable functions. Most importantly, they also
permit to simultaneously handle multiple physics as well as multiple objec-
tives. They are also less prone to getting trapped in local optima than other
optimization algorithms as gradient-based methods. Moreover, EAs provide a
list of optimal solutions from which the user/engineer can choose the best de-
sign according to his/her experience (see the two families of promising designs
obtained in Section 3). However one drawback of EAs is that they may suffer
from slow convergence due to their probabilistic nature. As a consequence,
for engineering applications involving expensive high-fidelity simulations, the
CPU time required for a pure EA is usually not practical. This highlights
the importance to reduce the number of calls to these simulations. Therefore,
the optimization process in Minamo is significantly accelerated by the use of
cheap-to-evaluate surrogate models, also known as metamodels or response
surface models.

2.1 Surrogate-Based Optimization

The heart of the proposed methodology consists of a surrogate modeling op-
timization strategy. As already underlined, SBO refers to the idea of accel-
erating optimization processes by exploiting surrogates for the objective and
constraint functions. An SBO design cycle consists of several major elements
as shown in Figure 1. It is worth underlying the major importance of the first
step, namely the problem definition and optimization specification, which can
include the parameterization, the definition of the bounds, the objectives and
the constraints. The second step consists of building an initial database by
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Fig. 1. Online surrogate-based optimization framework.

choosing a set of points in the design space and conducting high-fidelity sim-
ulations at these points. This exercise is called the Design of Experiments
(DoE) Based on this DoE, surrogate models are constructed in order to build
an analytical relationship between the design parameters and the expensive
simulation responses. This phase provides cheap responses to be used by an
optimizer. Using the surrogate models to evaluate the objective and constraint
functions, an optimization is then carried out to identify the optimum, at least
in the sense of the surrogates. The accurate simulation is used to evaluate the
objective function and constraint values for this optimum in order to check
the accuracy of the surrogates at the optimal solution. The new simulation
result (and possibly simulation results at other infill points) is (are) added
to the database which is therefore continuously improved with new design
points, leading to increasingly accurate approximate models all along the de-
sign. This design loop is repeated until the maximum number of optimization
cycles specified by the user is reached. In this contribution, an EA is employed
to optimize the surrogate model(s) because this optimizer choice allows any
kind of surrogate models without particular properties such as differentiability
of the surrogates and also permits to deal with multiple objectives. It is impor-
tant to note that our SBO scheme can incorporate the derivative information,
when it is available, in different ways without any major modifications. For
instance, the derivatives could be exploited directly in the construction of
the metamodels. The periodic retraining of the surrogates ensures that the
metamodels continue to be representative of the newly-defined search regions.
Furthermore, in order to obtain a better approximate solution, a framework
for managing surrogate models is used. Based on effectiveness of approxi-
mations, a move-limitprocedure adapts the range of the variables along the
design process, focusing the optimization search on smaller regions of the de-
sign space and exploiting local models. As the optimization proceeds, the idea
is to enlarge or restrict the search space in order to refine the candidate opti-
mal region. The main advantage of this is that it assures that the optimization
does not generate new points in regions where the surrogates are not valid.
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In order to guarantee diversity in the population, Minamo also exploits a
merit functionwhich is combined with the objective function of each candi-
date solution [15]. This function takes into account the average distance of
a candidate with the other candidate solutions, and favors the solutions far
away from their neighbours. A good approach for SBO seeks a balance be-
tween exploitation and exploration search, or refining the approximate model
and finding the global optimum. Our strategy also allows the addition of
several new design points evaluated in parallel at each cycle. Typically, the
design point coming from the optimization of the surrogate(s) is added and
other update points may be appended to the database as well. Using several
research criteria per iteration allows to combine exploitation (optimization of
the approximate function) and exploration (to systematically aim for a bet-
ter global capture) within a single iteration, speeding up the restitution time
of the optimization. In other words, although most of the optimizers based
on the Kriging model use one single refinement criterion per iteration (such
as the Expected Improvement criterion), Minamo is capable to proceed by
iteratively enhancing with more than one point per iteration by using a bal-
ancing between model function minimization and uncertainty minimization.
This process builds upon multiples high-fidelity simulations (e.g. CFD runs)
in parallel.
The efficiency of our SBO algorithm is illustrated in the search of the global
minimum of the Ackley function which is a well-known multimodal function.
The left plot of Figure 2 depicts the function with 2 design parameters, while

Fig. 2. Ackley function and convergence history comparison.

the optimization has been carried out on the same function but generalized
to 5 dimensions within [−2, 2] for every parameter. The optimization is first
performed using the EA alone, with a population of 50 individuals for 40
generations (i.e. 2000 function evaluations). These results are compared with
those obtained by the method combining the surrogate model with the EA.
An initial database comprising 20 sample points is used and then only 100
design iterations are performed. The convergence histories are displayed in
the right plot of Figure 2. The results clearly indicate that, for a given fixed
number of actual function evaluations, the SBO approach drastically outper-
forms a pure EA optimization using actual function evaluations.
In Minamo, particular attention has been paid to handling simulation fail-
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ures i.e. experiments where the simulation fails to converge. Indeed, when
optimization is carried out using high-fidelity simulations, it is an inevitable
fact that not all simulations provide reliable results (due to an inappropriate
mesh, failed geometry regeneration, etc.). The best practice is to try to make
the simulation chain as robust as possible, and let the optimizer take care
of the simulation failures. In Minamo, the simulation failures are recorded
for every sample point through a boolean response, called the success/failure
flag. Two separate surrogate models are maintained simultaneously, namely
the response model(s) (used for the evaluation of objective and constraint
functions) and the failure prediction model (used for the evaluation of the
simulation failure). The idea is to bias the search away from failed sample
points by penalizing, via a constraint, regions containing simulation failures.

2.2 Design of Experiments

The design of experiments is the sampling plan in the design parameter space.
This is a crucial ingredient of the SBO procedure, especially when the function
evaluations are expensive, because it must concentrate as much information
as possible. The qualities of surrogate models are mainly related to the good
choice of the initial sample points. The challenge is in the definition of an ex-
periment set that will maximize the ratio of the model accuracy to the number
of experiments, as the latter is severely limited by the computational cost of
each sample point evaluation. Minamo features various DoE techniques aim-
ing at efficient and systematic analysis of the design space. Besides classical
space-filling techniques, such as Latin Hypercube Sampling (LHS), Minamo’s
DoE module also offers Centroidal Voronoi Tessellations (CVT) and Latinized
CVT (LCVT) [14]. A drawback of LHS is that sample points could cluster
together due to the random process by which the points are generated. CVT
efficiently produces a highly uniform distribution of sample points over large
dimensional parameter spaces. However, a CVT dataset (in a hypercube) has
the tendency for the projections of the sample points to cluster together in
any coordinate axis. LCVT technique tries to achieve good dispersion in two
opposite senses: LHS and CVT senses. The idea is to compute a CVT dataset
and then apply a Latinization on this set of points. Latinizing a set of points
means transforming it into another set of neighbouring points that fulfills the
Latin hypercube property. The aim of this Latinization of CVT sample points
is to improve the discrepancy of the set of points. LCVT technique has both
lower discrepancy than pure CVT and higher volumetric uniformity than pure
LHS (see Figure 3). The discrepancyis a measure of a point set’s uniformity of
projection onto all the coordinate axes. As uniformity increases, discrepancy
decreases. All these space-filling techniques, independent of the design space
dimensionality and of the type of surrogates, constitute good first choices to
generate an a priori sample set in large dimensions. The DoE can be gener-
ated quickly by making use of massively parallel computers.
Since the computation of the response functions can typically take several
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Fig. 3. LHS, CVT and LCVT, respectively, sample sets showing discrepancies of
point projections (in red) onto coordinate axes.

hours on tens of computational cores, next to LCVT implementation, further
research effort has been put to achieve a good accuracy of approximate models
with a reasonable number of samples by incorporating function knowledge. In
order to further tailor the sampling and to better capture the responses under-
lying physics, Minamo exhibits an auto-adaptive DoE technique. The idea is to
locally increase the sampling intensity where it is required, depending on the
response values observed at previous sample points. Such auto-adaptive tech-
niques are also known as capture/recapture sampling or a posteriori sequential
sampling (see [8, 9]). They incorporate information on the true function in
sample distribution, explaining the term a posteriori. The aim is to auto-
matically explore the design space while simultaneously fitting a metamodel,
using predictive uncertainty to guide subsequent experiments. Our method
consists in iteratively refining the sample dataset where the model exhibits
its maximum of error, with the error indicator provided by a Leave-One-Out
(LOO) procedure [10]. The use of adaptive sampling helps shorten the time
required for the construction of a surrogate model of satisfactory quality. Fig-
ure 4 shows the performance of this sampling technique on a mathematical
function with 2 design parameters. It allows to directly and correctly identi-

Fig. 4. The exact function, the model built using 60 LHS points and the one with
60 points generated by auto-adaptive LCVT sampling technique, respectively.

fied the region of the global optimum, whereas, using the same type of model
and the same number of samples from LHS, the optimum is misplaced and
the optimization will therefore be stuck in a local optimum of the original
function.
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2.3 Surrogate Modeling

The challenge of the surrogate modeling is similar to that of the DoE: the gen-
eration of a surrogate that is as good as possible, using as few expensive evalu-
ations as possible. Polynomial fitting surfaces are generally not well-suited for
high dimensional and highly multimodal problems. Several non-linear data-
fitting modeling techniques can be used to build the surrogates, e.g. artificial
neural networks, Radial Basis Functions (RBF) networks, Kriging or sup-
port vector machines [2]. Contrary to polynomial models, these techniques
have the advantage of decoupling the number of free parameters with respect
to the number of design parameters. Furthermore, they can describe com-
plex and multimodal landscapes. The Minamo surrogate module offers several
generic interpolators such as RBFetworks, ordinary and universal Kriging. In
the training process, a trade-off must be attained between the accuracy of the
surrogates and their computational cost. For our RBF network, the models
are generated without the user’s prescription of the type of basis function and
model parameter values. Our method autonomously chooses the type of basis
functions (between Gaussian or multiquadric) and adjusts the width param-
eter of each basis function in order to obtain an accurate surrogate model.
RBF implementation is built on the efficient LOO procedure proposed by
Rippa [13], while for our Kriging implementation, the parameters defining the
model are estimated by solving the log-likelihood estimation problem using
our EA as this problem is known to be multimodal.

3 Sample Turbomachinery Design Application

he performance of Minamo is demonstrated with the multi-point aerodynamic
optimization of a non axisymmetric hub for a high pressure compressor single-
row rotor blade. This work has been performed within the NEWAC project
(NEW Aero engine Core concepts, project co-funded by the European Com-
mission within the Sixth Framework Program for Research and Technological
Development), aimed at technological breakthroughs for the field of aero en-
gines efficiency and emissions. The objective was to identify the hub endwall
parameter values that create a non axisymmetric hub endwall leading to sig-
nificant global losses reduction with respect to the axisymmetric case at design
point, while preserving the total-to-total pressure ratio close to stall.
Computer-Aided Design (CAD)systems have become an entire and critical
part of the design process in many engineering fields. Therefore, it is of prime
importance to exploit the native CAD system and CAD model directly within
the design loop in order to avoid translation, manipulation/regeneration errors
resulting from different geometry kernels. For the works presented in [6, 7],
the CAPRI CAD integration middleware [5] has been exploited to provide
direct CAD access without manual interventions in the CAD system during
the optimization loops. Based on CAPRI, an object-oriented framework has
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Fig. 5. Hub and blade surface
mesh for the non axisymmetric
hub optimizations.

Fig. 6. Performance map with the baseline
axisymmetric and optimized hub endwalls (in-
dividuals 13 and 144).

been developed for Minamo to: interact with the underlying CAD system
transparently, modify the shape design variables, regenerate the CAD model
and provide an updated native geometry representation to be used for the
analyses.
The non axisymmetric hub surface has been parameterized under CATIA V5
and imported into the AutoGrid5 mesh generation tool for meshing purposes.
The flow computations have been performed with 3D Reynolds-Averaged
Navier-Stokes simulations using the elsA code developed at ONERA [1]. These
tools have then been coupled with Minamo. Most importantly, this optimiza-
tion chain can be easily applied to any blade/endwall geometry with only
minor adjustments. The hub endwall has been parameterized with 16 design
parameters, that can create circumferential 3D bumps and hollows that follow
the blade curvature. The 2.2 million grid points mesh deformation at the hub
is illustrated in Figure 5. Reference [6] has focused on the description of the
optimization chain and methodology that have been set up, with presentation
of the mono-point optimization results. Indeed, before the multi-point opti-
mization was conducted, only one operating point was considered in order to
gain first experience with limited computational cost and let the optimizer as
free as possible to explore the search space. The objective was to maximize
the isentropic efficiency of the compressor while imposing no additional op-
erational or manufacturing constraints. The initial DoE was performed with
LHS and held 97 sample points among which 74 experiments were considered
as a success (≈ 4.5 times the number of parameters). The type of surrogate
models used was RBF network. This first optimization allowed indentifica-
tion of a non axisymmetric surface yielding an isentropic efficiency gain of
about 0.4%. This increase may be seen as quite important, when considering
that the geometry changes very locally, only at the hub endwall. However,
the total-to-total pressure ratio decreased by 0.4%. This highlights one of the
main drawbacks of the mono-point optimization that lead to the specification
of a second robust optimization [7], now considering two operating points. The
first operating point was again chosen close to peak efficiency (design point)
and the second point was chosen closer to the stall region (stall point), in order
to better represent the performance map of the compressor. The objective was
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to maximize the efficiency at the design point while preserving at least the
same total-to-total pressure ratio at the stall point. The mass flow at design
point was also constrained to remain within 0.5% of the reference axisymmet-
ric flow value and some manufacturing constraints were also imposed (limited
digging/removal of material). The number of success experiments for the DoE
was 71 over the 97 experiments. The most interesting sample of this new DoE
appeared to be the hereafter noted individual 13, which yielded an increase in
terms of isentropic efficiency of about 0.39% with respect to the axisymmetric
case, while it increased the total-to-total pressure ratio by 0.31% at stall with-
out exceeding the limit on the mass flow at design point. A series of promising
individuals were then found along the optimization phase in itself. Some of
them were quite close in terms of performance and shape to the best DoE ex-
periment. However, most interestingly, a second family of promising designs,
quite different and somewhat smoother in terms of 3D surface definition, was
found. This illustrates the ability of the EA to globally search the space and
possibly offer a panel of solutions to the designer. Let us point out one design
in this second family, individual 144, which yields an increase of efficiency of
0.35% with respect to the reference axisymmetric case, while increasing the
total-to-total pressure ratio by 0.1% at stall without exceeding the limit on the
mass flow at design point and satisfying the manufacturing constraints (this
was not the case of individual 13). Interestingly also, individual 134 appeared
quite close in shape to the interesting designs found from the mono-point op-
timization. The isentropic efficiency curves of the rotor with the optimized
non axisymmetric hub endwalls and with the baseline axisymmetric hub are
shown in Figure 6 for the two-point optimization results. The pressure con-
tours on the blade suction side are displayed in Figure 7 and indicate that
the main loss mechanism results from the shock and acceleration system along
the blade suction side. The different non-axisymmetric endwall geometries de-

Fig. 7. Pressure contours on the blade suction side at design point for the two-point
optimization - Non axisymmetric individuals 13, 134, 144 and axisymmetric case 0.

creased the losses until 50% of the blade span in the region just downstream
the blade trailing edge at the hub compared to the reference axisymmetric
hub geometry. The optimized designs decreased the losses downstream the
shock, during the flow acceleration between 10 and 50% span.
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4 Conclusion

This paper has presented our in-house optimization platform, Minamo, imple-
menting an SBO scheme. Its capabilities have been demonstrated in a truly in-
dustrial framework with an aerodynamic design optimization. With Minamo,
multi-physics multi-criteria designs tackling over a hundred parameters within
a heavily constrained setting are successfully handled on a day-to-day basis.
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Summary. In this paper we discuss the problem of modeling Magnetic Resonance
Spectroscopic Imaging (MRSI) signals, in the aim of estimating metabolite concen-
tration over a region of the brain. To this end, we formulate nonconvex optimization
problems and focus on appropriate constraints and starting values for the model
parameters. Furthermore, we explore the applicability of spatial smoothness for the
nonlinear model parameters across the MRSI grid. In order to simultaneously fit all
signals in the grid and to impose spatial constraints, an adaptive alternating non-
linear least squares algorithm is proposed. This method is shown to be much more
reliable than independently fitting each signal in the grid.

1 Introduction

Magnetic Resonance (MR) is widely used in hospitals to distinguish between
normal and abnormal tissue. Among the established MR techniques, Mag-
netic Resonance Imaging (MRI) has a high spatial resolution and is able to
provide detailed pictures reflecting differences in tissue, but this technique
has a low spectral resolution since it mainly represents the density of water.
A second important technique is Magnetic Resonance Spectroscopy (MRS),
which provides a signal from a small localized region called voxel, and has
a high spectral resolution, i.e., many metabolites (chemicals) are identifieble
from an MR spectrum. Thirdly, Magnetic Resonance Spectroscopic Imaging
(MRSI) is a multi-voxel technique that combines imaging and spectroscopy
in order to provide a trade-off between spatial and spectral resolution.

An MRS signal is a complex-valued time-domain signal y induced by a pop-
ulation of nuclei immersed in a magnetic field after applying a radio-frequency
pulse. This time-domain signal is a superposition of many exponentially decay-
ing components. The problem of metabolite quantification amounts to fitting
a certain model to the MRS signal.

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_45, © Springer-Verlag Berlin Heidelberg 2010 
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In this paper we focus on modeling and fitting MRSI data, which is a chal-
lenging computational problem because of relatively low spectral resolution
and high level of noise in the signals. To overcome low data quality, it is im-
portant to formulate appropriate constraints and to use good starting values
in the nonconvex metabolite quantification optimization problems. In partic-
ular, we focus on the spatial smoothness of the nonlinear model parameters
across the MRSI grid. In order to simultaneously fit all signals in the grid and
to impose spatial constraints, an alternating nonlinear least squares algorithm
is proposed. This method is adaptive, in the sense that each subproblem may
tune some hyperparameters at run-time, instead of always keeping them fixed.

The paper is organized as follows. In Section 2, the state-of-the-art model
for MRS signals, as well as details on the optimization methods used for single-
voxel MRS signals, are presented. Further, we pursue in Section 3 the topic
of MRSI data quantification, where we first motivate the need to impose
spatial relations between the grid’s signals; then, the optimization problem
and solution method for simultaneous MRSI data quantification are described.
Finally, numerical illustrations on simulated noisy MRSI grids are found in
Section 4.

2 Metabolite quantification of MRS signals

2.1 MRS model

An MRS signal can be modeled in the time-domain as a sum of complex
damped exponentials

∑K′

k=1 ak exp(jφk) exp(−dkt + 2πjfkt), where ak are
amplitudes, φk phases, dk damping factors and fk frequencies, j =

√
−1

and t denotes a particular time instant among the discrete measuring times
t0, . . . , tm−1. In this parametric model, the frequencies are characteristic to
the metabolites under investigation, while the amplitudes are proportional to
the concentration of the respective molecule.

Due to the fact that many metabolites resonate in a well-defined pattern
at more than one frequency, depending on the molecular configuration, a more
sophisticated model is currently used for MRS signals,

ŷ(t) =
K∑

k=1

ak exp(jφk) exp(−dkt+ 2πjfkt) vk(t), (1)

where we point out that vk, with k = 1, . . . ,K, denotes a pure metabolite
signal, which can be measured in vitro or simulated using quantum mechanical
knowledge. In this case the factor exp(jφk) exp(−dkt + 2πjfkt) accounts for
corrections to the ideal metabolite signal vk, such as small frequency shifts
fk, small damping corrections dk and phase corrections φk, while ak stands
for the total amplitude of metabolite k.
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2.2 Model fitting

Metabolite quantification amounts to a nonlinear least squares problem of fit-
ting model (1) to a measured signal y(t).1 Figure 1 (left) shows a typical basis
set of metabolite spectra vk that can be used for fitting in vivo measured MRS
signals from the human brain. Figure 1, bottom right, illustrates the fitting
of a noisy signal with the metabolite basis set; to this end, the metabolite
spectra are appropriately modified, as shown in Figure 1, top right, by broad-
ening the peaks (i.e., increasing dk), by slightly shifting the spectra along the
frequency axis (with fk Hz), and by scaling each of them to an appropriate
amplitude ak.
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Fig. 1. (left) Metabolite basis set:
horizontal axis represents frequency
in normalized units, vertical axis
shows the real part of the spectra in
arbitrary units. (right top) Modified
metabolite basis set. (right bottom)
Noisy spectrum fitted as a sum of the
modified metabolite basis set.
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The nonlinear least squares problem mentioned above involves also bounds
on the considered parameters, which come from the physical meaning of these
parameters. In mathematical terms, this problem reads:

min
ak,φk,dk,fk
k=1,...,K

‖y − ŷ‖2 s.t. ak ≥ 0, φk ∈ [0, 2π], dk ∈ (−εd, εd), f ∈ (−εf , εf )

(2)
It is important to notice the two important hyperparameters εd and εf , which
specify the allowed variation of the damping corrections and of the frequency

1 There are several acquisition conditions that lead to distortions or artifacts of the
considered model (1) and for which specialized preprocessing steps exists. They
will not be discussed in this paper; see, e.g, [12] for more details.
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shifts, respectively. Since in vivo spectra may be quite different from each
other, there are no predetermined optimal values for these hyperparameters,
however such bounds are needed in order to preserve the physical meaning
of each metabolite spectrum. Their chosen values might be critical for the
estimated model parameters (ak, etc.).

2.3 Variable projection approach

In the considered model (1), the complex amplitudes αk = ak exp(jφk) appear
as coefficients of a linear combination of nonlinear functions in the parameters
dk, fk. Thus, for any fixed values of the nonlinear parameters dk, fk, k =
1, . . . ,K, one can obtain corresponding optimal values for all αk using linear
least squares. The constraints ak ≥ 0, φk ∈ [0, 2π] are then readily satisfied if
we take ak = |αk| and φk = angle(αk).

The variable projection approach [4, 11] is an optimization framework
where the coefficients αk are projected out, such as to obtain an optimization
problem only in the remaining nonlinear variables. The projected functional
will be denoted φ(θ), where θ ∈ <2K stands for the vector of parameters
d1, . . . , dK , f1, . . . , fK . Function and Jacobian evaluations needed by optimiza-
tion solvers such as Gauss-Newton, Levenberg-Marquardt, or trust region, are
slightly more computationally expensive than for the original problem formu-
lation. Still, it is well known and proven by theory [10] and practice that
variable projection always converges in less iterations than the original full
functional approach. This includes convergence in cases when the full func-
tional approach diverges. Another advantage of this formulation is that no
starting values are needed for the linear parameters, and that the number of
parameters is halved.

The Levenberg-Marquardt algorithm [6] applied to the variable projection
functional is implemented in the quantification method AQSES (Accurate
Quantification of Short Echo-Time MRS Signals) [8]. The starting values for
the nonlinear parameters dk and fk are set by default in AQSES to zero, with
the motivation that dk and fk represent small corrections to the metabolite
profiles in the basis set.

3 Metabolite quantification of MRSI signals

3.1 Characteristics of MRSI data

MRSI signals can be modeled with the same mathematical formulation as
the MRS signals (1). A straightforward approach to quantify metabolites in a
grid of MRSI voxels would be to apply a single-voxel quantification method,
such as AQSES, to each signal in the grid individually. As opposed to single-
voxel measurements, the MRSI signals usually have a much lower quality,
due to the spatial/spectral trade-off for the available measuring time. Thus,
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they are more prone to quantification errors, since metabolites present in
low concentration are almost embedded in noise. Moreover, a lower spectral
resolution also implies that metabolite components become more strongly
overlapping in frequency.

It is obvious that supplementary information expressed as constraints on
the optimization parameters would be very valuable in analysing this type of
data. Since MRSI signals are obtained during a single scan using a certain
acquisition protocol, many characteristics of the signals within the same grid
are related [3]. Differences in the signals may appear due to two main causes:
the heterogeneity of the tissue under investigation, and the magnetic field
applied in the scanner, which cannot be kept perfectly constant over the whole
volume under investigation.2 In particular, the damping factors and frequency
location of each individual exponential decay are directly related to the local
magnetic field. Assuming there are no abrupt changes in the magnetic field, the
damping and frequency parameters exhibit smooth maps over the considered
MRSI grid.

3.2 Smoothness of parameter maps

Smoothness of a 2D parameter map can be locally measured at every voxel
(`, κ) in the grid by using the parameter value at the current location and the
values in a certain neighborhood. We denote that two voxels are neighbors
by (`1, κ1) ∼ (`2, κ2). Because MRSI grids are rather coarse, we usually focus
on 3× 3 regions with the current voxel (`, κ) in the center. When (`, κ) is on
the border of the MRSI grid, only the available neighbors are used. A possible
measure for the smoothness at point (`, κ) is given by the first order difference
norm ∑

(i,j)∼(`,κ)

(p`κ − pij)2, (3)

where p stands for any of the parameters dk or fk, for any k. Second order
formulas are also possible, such as the second order differences

(2p`κ − p`−1,κ − p`+1,κ)2 + (2p`κ − p`,κ−1 − p`,κ+1)2, (4)

(4p`κ − p`−1,κ − p`+1,κ − p`,κ−1 − p`,κ+1)2, (5)

3.3 Simultaneous optimization of MRSI signals

A complete optimization problem for fitting all signals in the MRSI grid and,
simultaneously, penalizing all the parameter maps for smoothness (with, e.g.,
a penalty of type (3)) is formulated as (see also Kelm [5])

2 Other causes of spectral differences could be differences in temperature or in pH,
but we assume them constant over the grid.
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min
Θ∈I

∑
`,κ

φ`κ(θ`κ) +
∑

(i,j)∼(`,κ)

λ(i,j),(`,κ)‖W (θ`κ − θij)‖22, (6)

where Θ stands for the entire set of parameters θ`κ ∈ <2K , for all voxels (`, κ),
and I denotes the box defined by the hyperparameters εd, εf . Moreover, the
diagonal 2K × 2K matrix W is used to account for different scaling of the
dk and fk parameters in θ`κ, and the scalars λ(i,j),(`,κ) are regularization
hyperparameters that affect the trade-off between data fitting and parameter
map smoothing.

This optimization problem is highly dimensional, having 2KMN variables,
where M×N is the grid size. (In practice we may have grids of at least 16×16
voxels and at least 10 metabolite signals in the basis set, leading to a total
of more than 5000 nonlinear variables.) However, the objective function is a
sum of squares, where each term contains only a few variables. Assuming all
variables fixed, except for the vector θ`κ, we obtain tractable subproblems of
the form

min
θ`κ∈I`κ

φ`κ(θ`κ) +
∑

(i,j)∼(`,κ)

λ(i,j),(`,κ)‖W (θ`κ − θij)‖22, (7)

with I`κ denoting the box corresponding to the vector θ`κ. Thus, the total
optimization problem (6) is a natural candidate for an alternating minimiza-
tion procedure, where subproblems of the type (7) are solved for each voxel
in several sweeps through the grid, until convergence.

Remark 1. In a statistical setting, this type of alternating minimization has
been introduced in the field of computer vision under the name iterated con-
ditional modes (ICM). An extension of ICM to MRSI data is proposed in [5]
under the name block-ICM, where instead of minimizing only over θ`κ, each
subproblem takes a set of parameters corresponding to a neighborhood of
voxels as free variables.

3.4 Adaptive alternating minimization

Alternating minimization algorithms are known to converge under very mild
conditions [9, 2]. Recently, convergence properties have been analyzed for
the situation when the problem statement slightly changes from sweep to
sweep [7]. In [7] the variables are partitioned in only two sets, while here we
apply adaptive alternative minimization with a large number of subsets (one
subset per voxel). Slight changes in problem formulation are expressed, in
our case, as modifications of the hyperparameters of the problem. These are,
essentially, the bounds on dk and fk, which define at each sweep w = 1, 2, . . .
a box Iw

`,κ for each voxel (`, κ). Thus, the new subproblem at sweep w for
the voxel (`, κ) is very similar to (7), except that the box constraint may
vary at each sweep, and so do the regularization factors. Updates for the box
constraints, for the regularization factors and for the starting values of each
subproblem are proposed in [1].
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4 Numerical results

In this section we illustrate several aspects of the new method on realistically
simulated signals. The simulated signals follow model (1), where 11 in vitro
measured metabolite profiles vk are used, and the model parameters take
biologically relevant values.3 In order to better approximate MRSI situations,
we artificially smoothen the parameter maps of the nonlinear variables. We
set random, but realistic values for the amplitude maps, except in the case of
two metabolites: for the first, we create a smooth map and for the second a
map with an abrupt change in value. This is done for the purpose of checking
whether the method is able to capture such specific situations, although the
amplitudes are not explicitly constrained. The signals are finally perturbed
with additive white noise with various signal-to-noise ratios. The size of the
simulated grids is 5 × 5, the considered neighborhoods are 3 × 3, and only
maximum 4 neighbors (up, down, left, right) are considered when imposing
spatial constraints. The spatial constraint in these simulations involves the
second order difference (5). Results with the first order difference (3) are
comparable, but a bit less suitable for this particular simulation with very
smooth parameter maps for the nonlinear variables.

Figure 2 depicts the estimated amplitude values for a grid of signals, and
Figure 3 the corresponding frequency shifts, when the signals contain a high
level of noise (SNR = 5). We clearly see that the results of the multi-voxel
approach are much closer to the true simulated values compared to the single-
voxel based method AQSES. For lower noise levels the differences are not as
pronounced, since in that case AQSES performs already well enough.

Further we illustrate in Figure 4 the effect of the hyperparameters εd,
εf . These bounds are computed at each sweep as the median value of the
corresponding parameters from the neighboring voxels plus/minus a fraction
of the previous length of the interval.

A final illustration of the importance of the considered box constraints is
given by the contour plot in Figure 5. All parameters are set to the optimal
values computed by the new method, except for two frequency shifts, f2 and
f4, corresponding to metabolites that partially overlap in frequency. The pro-
jected objective function, although regularized with the smoothness penalty
terms, and having excellent values for 20 out of 22 model parameters, is highly
nonconvex. Still, the obtained optimal solution is very close to the minimum
and also close to the true simulated values.

5 Conclusions

We discussed an alternating minimization algorithm with varying values for
the hyperparameters, applied to the simultaneous, spatially constrained fitting
3 See [8] for more details on the measured metabolite profiles and on how meaningful

values for the model parameters are obtained.
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Fig. 2. Amplitude values on a 5× 5 grid for a selection of 3 out of 11 metabolites
(the 3 rows of grids), namely two metabolites with smooth and abrupt amplitude
maps, and a third one with random entries. The middle column corresponds to the
true values, while the left and right columns correspond to the estimated amplitudes
provided by the single-voxel and the multi-voxel approaches, respectively.

Fig. 3. Frequency values for the same example as in Figure 2. Damping maps are
similar, although not shown here.

of Magnetic Resonance Spectroscopic Imaging signals. This approach is more
accurate than individually fitting each signal in the grid. Still, some issues
must be further studied, such as what smoothness measure is more appropriate
for in vivo data, or how to automatically safeguard against decreasing the
constraint box too much; ideas from trust region methods could be adapted for
this purpose. Finally, the relevance of this approach to clinical data obtained
from brain tumor patients is being evaluated in [1].
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are also shown as big dots.

f
2

f 4

 

 

−0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
objective function
optimal solution
true solution
box constraints

Fig. 5. Contour plot for the objective function projected onto the (f2, f4)-plane of a
subproblem corresponding to the voxel (1, 1) during the last sweep of the multi-voxel
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Optimization of Partial Differential Equations
for Minimizing the Roughness of Laser Cutting
Surfaces
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Summary. This work introduces a mathematical model for laser cutting which
involves two coupled nonlinear partial differential equations. The model will be in-
vestigated by linear stability analysis to study the occurence of ripple formations at
a cutting surface. We define a measurement for the roughness of the cutting surface
and give a method for minimizing the roughness with respect to process parameters.
A numerical solution of this nonlinear optimization problem will be presented and
compared with the results of the linear stability analysis.

1 Introduction

Laser cutting is a thermal separation process widely used in shaping and
contour cutting applications. There are, however, gaps in understanding the
dynamics of the process, especially issues related to cut quality. One essential
problem in laser cutting is the occurence of ripple structures at the cutting
surface, cf. Figure 1. Such structures can be induced by fluctuations in the

Fig. 1. Image of a cutting surface with ripple structures
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melt flow during the process. Typical tasks in laser cutting applications involve
finding process parameters like laser power or cutting speed such that ripple
structures at the cutting front are minimal.

Research work has been done in the fields of modeling, model analysis
and numerical simulation of laser cutting. One of the major challenges is
the treatment of the arising melt and its free boundaries in the process. An
overview on state-of-the-art and new developments in the field of modeling
on the basis of asymptotic expansions, integral (or variational) methods and
spectral methods is presented in [9]. Numerical simulation involving Level Set
methods and adaptive sparse grids has been applied in [7]. Nonlinear stability
analysis of melt flows has been carried out in [12]. The special problem of
ripple formations has been investigated in [10, 3]. An optimization on the
basis of the model in the latter reference has been applied in [11].

2 A model for the dynamical behavior of the melt
surfaces

We introduce a model in scaled and dimensionless coordinates for the surfaces
of the melt arising in a laser cutting process. Figure 2 shows the melt bounded

Fig. 2. Schematic 2D view of a laser cutting process

by three free boundaries: the melt front and the absorption front (intersecting
at z = 0) and the lower boundary along z = 1. The position of the laser beam
axis (dashed) is x = xL := t and the laser with beam radius m0 propagates
vertically in z–direction. The melt front with position x = xM := xL + M
where M = M(z, t) is the distance from the laser beam axis is given by the
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phase boundary where molten material from the solid phase enters the liq-
uid phase. The cutting gas expelling the melt downwards and the laser beam
hit the melt at the absorption front with position x = xA := xM − h where
h = h(z, t) is the melt film thickness. It intersects the melt front at
(x, z) = (m0, 0). The lower boundary of the melt is given as the connect-
ing arc between the lower end points of the melt and the absorption front
along z = 1.

A model for the dynamical behavior of the melt and the absorption front
and their interactions is given by the initial/boundary value problem

∂h

∂t
+ 2h

∂h

∂z
= vp,

∂M

∂t
= vp − 1, vp = QA −Qs, Qs =

cp∆T

Hm
(1)

QA = νµA(µ), ν =
PL

πw2
0ρHmv0

, A(µ) =
4µι

2µ2 + 2µι+ ι2
(2)

µ = α

(
∂h

∂z
− ∂M

∂z

)
, α =

dm

d
, dm =

√
2ηlv0d

τg
(3)

h(0, t) = 0, M(0, t) = m0 = w0/dm, h(z, 0) = hi(z), M(z, 0) = Mi(z) (4)

for z, t ≥ 0. Here, vp = vp(z, t) denotes the dimensionless in-flow velocity of
the melt in normal direction at the melt front. Furthermore, QA = QA(z, t)
and the constant Qs are dimensionless heat flow densities at the absorption
front and in the solid phase at the melt front, respectively. Here, QA is a
function of the Fresnel absorption A = A(µ) and the cosine µ = µ(z, t) of the
angle of incidence of the laser beam onto the absorption front which involves
spatial derivatives of h and M . Thus, (1)–(3) yield a nonlinear coupled system
of partial differential equations with initial and boundary conditions (4) where
m0 is the distance of the melt front at z = 0, and hi,Mi are initial distributions
for h and M at t = 0.

Constant positive parameters in this model are the specific heat capacity
cp, the difference ∆T between melting and ambient temperature, the enthalpy
of fusion Hm, the beam radius w0, the mass density ρ, the material absorption
parameter ι, the thickness d of the workpiece, the dynamical viscosity ηl and
the shear stress τg of the cutting gas along the absorption front. Parameters
which can be used as optimization variables are the laser power PL and the
cutting velocity v0. All parameters are given in corresponding physical units.

We use scaled and dimensionless coordinates x = x̃/dm, z = z̃/d,
t = v0t̃/dm and obtain the scalings h = h̃/dm, M = M̃/dm where the ∼
superscript indicates that the quantity is given in its corresponding physical
unit. The quantity dm is a typical length for the melt film thickness. The
in-flow velocity vp is scaled by vp = ṽp/v0 whereas the heat flow densities are
scaled by Q = Q̃/(v0ρHm) where, again, ṽp and Q̃ are given in corresponding
physical units.

To deduce the model, we consider the implicit description

ΦM (x, z, t) : = xL(t) +M(z, t)− x = 0 (5)
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for the melt front at x = xM and the dynamical behavior of a particle (x, z)
along this surface which yields

d

dt
(ΦM (x(t), z(t), t)) = 1 + vz,M

∂M

∂z
+
∂M

∂t
− vx,M = 0 (6)

Here, vx,M = vx,M (z, t) and vz,M = vz,M (z, t) denote the dimensionless ve-
locities of the melt front in x– and z–direction, respectively, which can be
substituted by means of the dimensionless in-flow velocity vp of the melt. De-
noting nM = nM (z, t) as the scaled unit length outer normal vector of the
melt along the melt front, we obtain

vp = 〈(vx,M , vz,M ), nM 〉 =
1√

1 +
(
α ∂M

∂z

)2
(
vx,M − vz,M

∂M

∂z

)
(7)

at the melt front. Combining (6) with (7) yields

∂M

∂t
= vp

√
1 +

(
α
∂M

∂z

)2

− 1 = vp − 1 +O(α2) (8)

For the absorption front x = xA, we consider the transformation x̄ = xM − x
and obtain the implicit form

ΦA(x̄, z, t) := h(z, t)− x̄ = 0 (9)

which can be used to deduce a kinematic boundary condition from

d

dt
(ΦA(x̄(t), z(t), t)) = vz,A

∂h

∂z
+
∂h

∂t
− vx̄,A = 0 (10)

In [7] we obtain that the relative velocities vx̄,A and vz,A of the absorption
front in x̄– and z–direction are given by

vx̄,A = vp +O(α), vz,A = 2h+O(α) (11)

The expression for dm can be deduced from [8] which implies α � 1 in a
realistic cutting process. Neglecting therefore terms of order O(α) in (8) and
(11) yields the two first-order partial differential equations in (1). The coupling
can be deduced by means of the so-called Stefan condition [4] where the in-
flow velocity vp is given by the jump of the heat flow density at the melt
front. Due to the thinness of the melt, we assume that, for fixed z, the heat
flow density in the liquid phase is constant which leads to the third equation
in (1). The expressions for QA and Qs as well as the other formulae in (2),
(3) can be found in [8] where, again, higher order terms in α are neglected.
We note that the approximation for µ is only good for values around zero,
i.e. for nearly vertical absorption fronts, which is the case in a typical cutting
process. The x–position m0 of the two fronts at z = 0 is given by the scaled
value w0/dm of the beam radius. For this model we assume no interaction of
the lower boundary at z = 1 with the melt. Hence, we consider z ∈ [0,∞) in
the following theoretical discussions.
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3 Linear stability analysis

In this section, we perform a linear stability analysis of the system (1)–(4).
We introduce a perturbation parameter ε > 0 and investigate (1)–(4) by using
the initial condition

hi = h0 + εgh, Mi = M0 + εgM (12)

where h0 = h0(z) and M0 = M0(z) are stationary solutions of (1)–(4) and
gh = g(z), gM = gM (z) are initial perturbations in the system, e.g. given by
a sinusoidal wave with fixed frequency. We partition the solution by

h = h0 + εh1, M = M0 + εM1 (13)

where h1 = h1(z, t) and M1 = M1(z, t) describe the dynamical behavior of
the initial perturbations gh, gM . We consider the Taylor expansion of the
absorption A around the stationary value µ0 of µ given by

A(µ) = A(µ0) + εµ1A′(µ0) +O(ε2), µ = µ0 + εµ1. (14)

where the partition of µ is a direct consequence of (13) and (3).
In the following, we suppose µ0 ≥ 0 since µ0 < 0 implies that the laser

beam hits the absorption front from inside the melt which is, from the physical
point of view, not reasonable.

Lemma 1. A stationary solution of (1)–(4) with µ0 ≥ 0 exists if and only if

0 < r < 2ι, r =
1 +Qs

ν
(15)

holds. In this case, the solution is unique and given by

h0(z) =
√
z, M0(z) =

√
z − 1

α
µ0z +m0, µ0 =

ιr√
(4ι− r)r − r

(16)

Proof. We substitute (13) and (14) into (1)–(4) and consider terms of order
O(1) in ε to obtain two solutions µ(1)

0 and µ(2)
0 given by

µ
(1)
0 =

ιr√
(4ι− r)r − r

, µ
(2)
0 =

ιr

−
√

(4ι− r)r − r
, r =

1 +Qs

ν
(17)

for the stationary value µ0 of µ. Hence, for r > 4ι, i.e. large values of v0
or small values of PL, there exists no stationary solution. Furthermore, for
all r ≤ 4ι, we obtain µ

(2)
0 < 0 which contradicts the assumption µ0 ≥ 0.

Since r > 2ι implies µ(1)
0 < 0 and r = 2ι provides no solution for µ(1)

0 , the
only possible setting is r < 2ι (i.e. small v0 or large PL) which leads to the
stationary solutions given in (16).
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Remark 1. We note that in this model µ0 and hence the angle of incidence of
the laser beam onto the absorption front is constant for all z.

Considering terms of order O(ε) yields the linear perturbation system

∂y

∂t
+ F

∂y

∂z
= Ny, y(0, t) =

(
0
0

)
, y(z, 0) =

(
gh(z)
gM (z)

)
(18)

F = F (z) =
(

2h0 − c0 c0
−c0 c0

)
, N = N(z) =

(
−1/h0 0

0 0

)
(19)

for the vector perturbation y = (h1, A1)T with, using (16),

c0 = αν (A(µ0) + µ0A′(µ0)) = α(1 +Qs)
2ι(ι+ µ0)

µ0(ι2 + 2ιµ0 + 2µ2
0)
> 0 (20)

Lemma 2. For z > 0, the system (18), (19) is hyperbolic, elliptic or parabolic
if and only if the term h0(z)− 2c0 is positive, negative or zero, respectively.

Proof. The eigenvalues of F are given by h0 ±
√
h2

0 − 2c0h0. For z > 0, i.e.
h0 > 0, we obtain two real, two complex or one multiple eigenvalue if the
radicant is positive, negative or zero, respectively, which proves Lemma 2.

Remark 2. The system (18), (19) yields an interesting example of a system
whose property changes from elliptic via parabolic to hyperbolic while z de-
creases.

In general, a solution of (18), (19) cannot be given since F and N depend
on z. To investigate further properties, we consider for a fixed position z0 > 0,
the solution in a small neighborhood |z−z0| < δ, z0−δ > 0, where the variation
of h0(z) is small. We denote c1 := h0(z0) and obtain

∂y

∂t
+ F̄

∂y

∂z
= N̄y, F̄ =

(
2c1 − c0 c0
−c0 c0

)
, N̄ =

(
−1/c1 0

0 0

)
(21)

with initial condition y(z, 0) = (gh(z), gM (z))T . Note that we are interested in
stability of the system (18), (19), i.e. in particular large variations in h1, M1.
Thus, it is reasonable to investigate the solutions of (21) which will give, for
small times t ≥ 0, local approximations of the solutions of (18), (19). For a
rigorous investigation of error bounds between the solutions of both systems,
we refer to [1].

Proposition 1. The system (21) is linearly unstable.

Proof. Using Fourier transform with respect to z yields the ordinary differen-
tial equation

∂Y

∂t
= R̄Y, R̄ = N̄ − ikF̄ , Y = Y (k, t) =

1
2π

∫ ∞
−∞

y(w, t) exp(−ikw) dw (22)
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Stability of (22) and hence, cf. [6], of (21), can be analyzed by means of the
real parts of the two complex eigenvalues σ1/2 = σr

1/2 + iσi
1/2 of R partitioned

in real and imaginary parts given by

σr
1/2 = − 1

2c1
±

√
ξ +

√
ξ2 + ζ2

2
, σi

1/2 = −kc1 ±

√
−ξ +

√
ξ2 + ζ2

2
(23)

ξ = k2c1(2c0 − c1) +
1

4c21
, ζ = k

(
1− c0

c1

)
(24)

Since ζ = 0 implies c0 = c1 and hence ξ > 0, we have σr
1 > σr

2. Therefore,
(22) is stable if and only if σr

1 ≤ 0 holds. Basic calculations yield that this is
equivalent to the three conditions

(I) :
1

2c1
≥ 0, (II) :

1
2c21
− ξ ≥ 0, (III) : − c20 ≥ 0 (25)

Condition (I) is fulfilled for all z > 0. In view of Lemma 2, Condition (II) is
satisfied if and only if the system is not elliptic. However, condition (III) is
not fulfilled since from (20) we obtain c0 6= 0. This implies σr

1 > 0 and hence
instability of the system.

As shown in Proposition 1, system (21) is unstable since c0 6= 0. However,
the proof illustrates that c0 = 0 implies σr

1 = 0 and hence marginal stability.
Therefore, the value of c0 can be interpreted as a measurement for instability
and for decreasing values c0 → 0 the process becomes more stable. From (20)
we conclude that c0 → 0 holds for µ0 →∞ which, due to (15), is obtained for
r → 2ι. In the limit case r = 2ι, we obtain a marginal stability curve

N = {(v0, PL) ∈ R2 : PL = C v0}, C =
(1 +Qs)πw2

0ρHm

2ι
(26)

which, as mentioned above, cannot be achieved in practice since µ0 is not
defined in this case. Figure 3 shows the nonlinear dependency of c0 on p

Fig. 3. c0 as a function of the process parameters v0 and PL

where the plot is cut at the curve N for realistic parameters for stainless steel

cp = 550, ∆T = 1500, Hm = 277 · 103, w0 = 300 · 10−6 (27)
ρ = 7000, ι = 0.25, d = 4 · 10−3, ηl = 2 · 10−3, τg = 500 (28)
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It can be deduced that c0 is strictly monotonuously increasing with PL and
decreasing with v0 which implies that large values of v0 and small values of
PL may provide a stationary solution with only small instabilities.

4 Minimizing the roughness of the surfaces

To extend our results about the connection between the process parameters
v0, PL and stability of the system, we will investigate a nonlinear optimization
problem. The goal is to find a process parameter vector

p = (v0, PL)T ∈ P, P ⊂ Pad := {p ∈ R2 : PL > C v0 > 0} (29)

with C from (26) such that the melt surfaces stay close to the stationary
solution. Here, P is an arbitrary non-empty compact and convex subset of
Pad where the condition PL > C v0 (which is equivalent to r < 2ι, cf. (15))
in the definition of Pad ensures the existence of a stationary solution due to
Lemma 1 and v0 > 0 (note that C > 0) is a physically reasonable bound. The
problem is to find p ∈ P which minimizes the roughness

R(p) :=
1
2

1∫
0

tf∫
0

[
(h(z, t; p) −h0(z; p))2 + λ(M(z, t; p)−M0(z; p))2

]
dt dz (30)

where h(z, t; p), M(z, t; p) are solutions of (1)–(4) with inital condition (12) us-
ing h0(z; p), M0(z; p) from (16) as stationary solutions, λ is a weighting param-
eter and tf is a suitable chosen final time. We will assume that h0, h, M0, M
are unique solutions sufficiently smooth with respect to p. Note that for all p
the system is not stable. Hence, a solution of the optimization problem will
yield parameters where the surface roughness is as small as possible.

We present a numerical solution of problem (30). The spatial and time
domain is partitioned into Nz = 80 and Nt = 1600 intervals of length hz and
ht, respectively. We use the Lax-Wendroff [5] and an Euler-forward scheme for
the equation for h and M , respectively. The derivatives in µ are treated by an
upwind method. The cost functional (30) is approximated by the composite
trapezoidal rule. Using data (27), (28) yields C = 4362.164. We choose

ε = 0.025, gh(z) = sin(5 · 2πz) = 10gM (z), tf = 0.8, λ = 10 (31)

The domain P ∈ Pad is taken as

0.01 ≤ v0 ≤ 0.2, 100 ≤ PL ≤ 6000, PL ≥ 1.5C v0 (32)

Using the code IPOPT [13] together with the modeling language AMPL [2],
we obtain two local minima p1 and p2 of R(p) in P given by

p1 = (0.019995, 180.80)T , p2 = (0.2, 6000)T (33)
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with R(p1) = 0.2500914087 and R(p2) = 0.4751724227 where p1 is close to
N and p2 is at the boundary of P far away from N . Hence, there exists a
domain where the roughness decreases for p approaching N which is equal to
the results in the previous section. However, p1 is strictly inside P close to the
boundary and there exists a second minimum. A possible interpretation for
these discrepancies with the linear stability analysis is that there are nonlinear
effects in the system which can lead to a surface with small roughness although
the process is strongly linear instable. Figure 4 shows the solution for h and
M for the parameter p1.

Fig. 4. Melt thickness h (left) and position M of the melt front (right)

We emphasize that p1 is no realistic parameter vector since PL is not large
enough to melt the workpiece. This can also be seen from the mathematical
point of view since µ0 in this case is so large that at z = 1 the absorption front
has left the area [−m0,m0] of the laser beam, i.e. M0(1) < −m0. Adjusting P
by adding this constraint µ0 ≤ α(1 + 2m0), we obtain the only minimum p2.

5 Conclusions and Outlook

We presented a model for the dynamical behavior of the free melt surfaces in a
laser cutting process which involves two nonlinear coupled partial differential
equations. We identified parameter domains for the existence of a stationary
solution and showed uniqueness in this case. We applied a linear stability
analysis to an approximate model and obtained that the system is linearly
unstable. This investigation implied that the distance of the parameter vec-
tor to a practically not achievable neutral stability curve is a measurement
for instability of the system providing rough cutting surfaces. As a second ap-
proach, we formulated a nonlinear optimization problem. The goal was to find
parameters which minimize the roughness of the cutting surface defined by a
tracking cost functional measuring the L2 distance to the stationary solution.
A numerical solution was presented which showed that in a certain domain
the results correspond to the linear stability analysis. However, presumedly
due to nonlinear effects, we obtained a second local minimum far away from
the neutral stability curve. We finally identified a further condition for the
technically relevant parameter domain leading to only this second minimum.
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Future works comprise extension of the model by non-vertical beam in-
cidence, nonlinear stability analyis (which may lead to explanations for the
second minimum), study of necessary and sufficient optimality conditions and
the consideration of further, also spatial and time dependent optimization
variables which leads to optimal control problems.
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Schlöder, Johannes, 361
Sepulchre, Rodolphe, 125, 165, 173
Sima, Diana M., 510
Stasse, Olivier, 309
Sundhar Ram, Srinivasan, 51
Szymkat, Maciej, 247, 257

Tran Dinh, Quoc, 93

Van der Auweraer, Herman, 441,
481

Van Dooren, Paul, 193
Van Huffel, Sabine, 145, 510
Van Vreckem, Bert, 491
Vande Wouwer, Alain, 21
Veervalli, Venugopal V., 51
Vexler, Boris, 389
Volkwein, Stefan, 399
von Lossow, Markus, 329
Vossen, Georg, 521

Weiser, Martin, 419
Wendl, Stefan, 429

Wieber, Pierre-Brice, 309
Wirsching, Leonard, 339
Worthmann, Karl, 289, 329

Yue, Yao, 113

Zirn, Oliver, 451

532 Author Index



Subject Index

p-Laplace equation, 399

active set, 433, 436, 438
active set methods, 353
adjoint equation, 434, 435
affine connection, 138
algebraic fitting, 73
algorithmic differentiation, 64
alternative trajectory, 243
approximative control procedure,

249
arc parametrization method, 455
asymptotic stability, 292
author, 104–106, 165, 166, 168
averaging, 208

barrier methods, 419
best low multilinear rank approxi-

mation, 148
BFGS algorithm, 140, 183
biinvariant distance, 176
bilevel optimal control problem, 241

candidate singular procedure, 250
candidate state-constrained proce-

dure, 250
cG(1)cG(1) discretization, 395
chart, 130
complementarity condition, 434
condensing algorithm, 350
conjugate gradient based algorithm,

156
conjugate point, 212
consistent control procedure, 248
control

bang-bang, 432, 455
boundary, 297
feedback, 453
linear-quadratic, 458
preservation, 258
structure, 248
time-optimal, 455

controllability, 292, 331
coset fitting, 175
coupled system, 430
covariant derivative, 138
crane, 237
Crank-Nicolson scheme, 396
cut point, 212
CUTEr, 71
cyclic steady state(CSS), 361

differentiable manifold, 73
dimensionality reduction tool, 150
direct multiple shooting method,

341
Dirichlet boundary control, 389
discontinuous adjoint, 250
distance function, 73
distributed control, 294
duality, 281

efficiency of structural change, 258
electro-magnetic fields, 420
ellipsoid, 73
elliptic partial differential equation,

419
essential manifold, 133
Euler steps, 348
existence of solutions, 433
exponential controllability, 331
exponential penalty, 249

feasibility improvement iteration,
345

feedback iteration, 345
finite element, 405
first discretize then optimize, 435
first optimize then discretize, 436
fitting on SO(n), 179
flag manifold, 133
free boundaries, 522
freezing technique, 262
Fresnel absorption, 523



General Rate Model, 362
geometric fitting, 73
geometric Newton algorithm, 152
Grassmann manifold, 128, 155
growth condition, 335

Hamiltonian, 282
heat equation, 431, 433
high rack warehouse, 237
higher-order orthogonal iteration (HOOI),

150
higher-order singular value decom-

position (HOSVD), 149
higher-order tensor, 147
hybrid solution method, 246
hypersonic aircraft, 430
hyperthermia treatment planning,

419

implicit function theorem, 73
in-flow velocity, 523
infinite horizon, 277
initial value embedding, 343
interior point method in function

space, 419
invariance property, 153, 154
isoperimetric condition, 433

Karcher mean, 174
Kepler problem, 205
kinematic boundary condition, 524
KKT conditions, 238

Lagrange multiplier, 436, 437
laser cutting, 521
Learning Automata, 491
Lie group, 132
Linear Quadratic Regulator, 320
linear stability analysis, 525
local minimizer, 126
local feedback law, 348
local minima, 159
Lotka-Volterra-System, 279
low-rank update, 65

machine tool manipulator, 451

matrix updates, 353
melt, 522
mode-n rank, 147
multi–level iteration scheme, 345
multi-stage scheduling, 491
multilinear rank, 147
multiple shooting method, 341

Newton’s method, 137, 403
Newton-Shift-Picard method, 366–

371
norm

H1, 295
L2, 295

NUDOCCCS, 241
null-space factorization, 64

oblique manifold, 132
online scheduling, 491
optimal value function, 330
optimality criteria, 280
optimality improvement iteration,

346
optimization horizon, 291
optimization problem in function

space, 423
orthogonal group, 132
oscillation, 238, 458
overshoot, 292

parallel machines, 491
parameterization, 73
parametric problem, 239
parametric quadratic programming,

344
path-following method, 419
PDAS, 391
performance bounds, 331
periodic adsorption processes, 361
primal-dual active set strategy, 391
principal component analysis, 174
principal geodesic

analysis, 175
submanifolds, 175

projection formula, 435

534 IndexSubject



prototype adjoint, 251, 260

quotient manifold, 129, 153

rational barrier functionals, 423
RBFGS algorithm, 187
real–time iterations, 344
receding horizon, 330
regularity of solutions, 433
regularization, 322
reinforcement learning, 491
relaxed Lyapunov inequality, 331
retraction, 136, 154, 185
Riccati recursion, 352
Riemannian

fitting, 178
manifold, 135
optimization, 183
submanifold, 136

ripples, 522
rocket car, 430, 431
roughness of a cutting surface, 528

safety stop, 238
sampled–data systems, 332
sampling rate, 332
semilinear parabolic PDE, 294
semismooth Newton methods, 390
Sequential Quadratic Programming(SQP),

140, 371
shape manifold, 132
signal subspace estimation tool, 150
simulated moving bed process, 361–

364
singular control arc, 264
space mapping, 400, 402
stability analysis, 329
state constraint, 419, 430, 431, 434–

436, 457
state-constrained arc, 260
steepest descent, 133
Stefan condition, 524
Stiefel manifold, 127
stochastic scheduling, 491
strongly damped wave equation, 393

structural change, 258
submanifold, 128
submanifold property, 127
suboptimality, 291, 331
surrogate optimization, 403
switching curve, 432

tangent
bundle, 135
space, 134
vector, 135

three-body problem, 205
total quasi-Newton

limited-memory, 71
method, 64

truncated conjugate gradient, 403
trust-region method, 140, 154
two-body problem, 206
two-phase technique, 259

uniqueness of solutions, 433

variational inequality, 434, 435
vector transport, 156, 185
vibration-reducing, 458
virtual control concept, 319, 322

wave equation, 393
weak duality, 282
Weighted Shortest Expected Pro-

cessing Time(WSEPT), 495
weighted Sobolev spaces, 281

535IndexSubject


	Preface
	Contents
	Part I Convex Optimization
	Copositive Programming – a Survey
	1 Introduction
	Historical remarks

	2 Applications
	Binary quadratic problems
	Fractional quadratic problems
	Combinatorial problems

	3 The cones
	Topological properties
	Small dimensions

	4 Testing copositivity and complete positivity
	Complexity
	Complete positivity
	Copositivity criteria based on structural matrix properties
	An algorithmic approach

	5 Approximation hierarchies
	6 Algorithms
	Optimizing over

	Conclusion and outlook
	References

	A Robust H8 Quasi-LPV Approach for Designing Nonlinear Observers
	1 Introduction
	2 Problem Statement
	Definition 1.
	Lemma 1.
	Lemma 2.

	3 Observer Design
	Theorem 1.

	4 Case Study: A High Cell Density Bioreactor
	5 Conclusion
	Acknowledgments
	References

	Solving Infinite-dimensional Optimization Problems by Polynomial Approximation
	1 Introduction
	2 Problem class and examples
	3 Finite-dimensional approximations
	4 Convergence of the approximations
	4.1 Upper bound on
	Lemma 1.
	4.2 Upper bound on
	Regularity Theorem
	Lemma 2.
	Theorem 2 (Regularity Theorem).
	Satisfying the hypotheses of the Regularity Theorem
	Lemma 3.
	Lemma 4.
	4.3 Convergence result
	Theorem 3.

	5 Specific classes of infinite-dimensional problems
	X is the Lebesgue space Lq
	X is the Sobolev space Wk;q

	References

	Abstract Cones of Positive Polynomials and Their Sums of Squares Relaxations
	1 Introduction
	2 Notation
	3 Cones of positive polynomials
	4 Sums of squares relaxations
	5 Hierarchies of relaxations
	6 Example
	References

	Asynchronous Gossip Algorithm for Stochastic Optimization: Constant Stepsize Analysis*
	1 Introduction
	2 Problem, algorithm and assumptions
	3 Preliminaries
	4 Error Bounds
	5 Discussion
	References


	Part II Nonlinear Optimization
	On Hessianand Jacobian-Free SQP Methods a Total Quasi-Newton Scheme with Compact Storage
	1 Introduction
	2 A Limited-Memory Approach for the SR1 Method
	2.1 Compact Representation Formula
	2.2 Maintaining the Positive Definiteness of the Hessian
	2.3 Constrained Optimization and Limited-Memory
	2.4 Avoidance of the Null-space Factor
	2.5 Improving Computational Efficiency

	3 Examples
	4 Conclusion
	References

	Approximate Geometric Ellipsoid Fitting: A CG-Approach
	1 Introduction
	2 Motivation of the Distance Function
	3 Parameterization of the set of ellipsoids
	Acknowledgments
	References

	Continuous Reformulation of MINLP Problems
	1 Introduction
	2 Continuous Reformulation
	3 Results for MINLP Library
	4 Extension of Continuous Reformulation
	5 Large-Scale Example from Process Synthesis
	6 Conclusion
	References

	Local Convergence of Sequential Convex Programming for Nonconvex Optimization
	1 Introduction and Problem Statement
	2 Local convergence of SCP methods
	3 Numerical Results
	References

	Fixed-Order H-infinity Optimization of Time-Delay Systems
	1 Problem Formulation
	2 Optimization Problem
	2.1 Algorithm
	2.2 Computation of the H-infinity Norm
	2.3 Prediction Step
	2.4 Correction Step
	2.5 Computing the Gradients

	3 Examples
	4 Concluding Remarks
	5 Acknowledgements
	References

	Using Model Order Reduction for the Parameter Optimization of Large Scale Dynamical Systems
	1 Introduction
	2 Minimax Optimization
	3 Krylov based MOR
	3.1 Arnoldi Process on First Order System
	3.2 SOAR
	3.3 PIMTAP

	4 Derivative Computation via the Reduced Model
	4.1 Computation of Derivatives w.r.t Free Variables
	4.2 Computation of Derivatives w.r.t Fixed Variables

	5 Numerical Results
	6 Conclusions
	References


	Part III Optimization on Manifolds
	Optimization On Manifolds: Methods and Applications
	1 Introduction
	2 Optimization on manifolds in one picture
	3 Why consider general manifolds?
	4 Manifolds and smooth objective functions
	5 Specific manifolds, and where they appear
	5.1 Stiefel manifold
	5.2 Sphere
	5.3 Orthogonal group
	5.4 Grassmann manifold
	5.5 Set of fixed-rank positive-semidefinite matrices
	5.6 Shape manifold
	5.7 Oblique manifold and products of spheres
	5.8 Flag manifold
	5.9 Essential manifold
	5.10 Other products of manifolds
	5.11 Other quotient manifolds

	6 Steepest descent: from Rn to manifolds
	6.1 Tangent vectors and tangent spaces
	6.2 Descent directions
	6.3 Steepest-descent direction and the gradient
	6.4 Gradient on submanifolds
	6.5 Gradient on quotient manifolds
	6.6 Choice of the search curve
	6.7 Line-search procedure

	7 A steepest-descent method for Problem 2
	8 Newton’s method on manifolds
	8.1 Newton on abstract manifolds
	8.2 Newton on submanifolds of
	8.3 Newton on the unit sphere
	8.4 Newton for Rayleigh quotient optimization on unit sphere

	9 Other optimization methods on manifolds
	10 Conclusion
	Acknowledgements
	References

	On the Best Low Multilinear Rank Approximation of Higher-order Tensors*
	1 Introduction
	2 Background material
	2.1 Basic definitions
	2.2 Best low multilinear rank approximation
	2.3 Higher-order singular value decomposition
	2.4 Higher-order orthogonal iteration
	2.5 Other methods in the literature

	3 Some applications
	4 Algorithms
	4.1 Geometric Newton algorithm
	4.2 Trust-region based algorithm
	4.3 Conjugate gradient based algorithm
	4.4 Remarks

	5 Local minima
	6 Conclusions
	References

	Refining Sparse Principal Components
	1 Introduction
	2 Formulation and convex relaxation of sparse PCA
	3 A procedure to refine the components
	4 Numerical experiments
	5 Acknowledgements
	References

	Optimal Data Fitting on Lie Groups: a Coset Approach
	1 Introduction
	2 Principal Component Analysis
	3 Principal geodesic analysis
	4 Fitting cosets
	4.1 Reduction to a homogeneous space
	4.2 An algorithm for Riemannian fitting

	5 Example: Fitting on SO(n)
	Acknowledgments

	References

	Riemannian BFGS Algorithm with Applications
	1 Introduction
	2 Mathematical preliminaries
	3 The RBFGS Algorithm
	4 Practical Implementation of RBFGS
	4.1 Two Approaches
	4.2 Implementation on the Unit Sphere
	4.3 Implementation on the Compact Stiefel Manifold St(p,n)

	5 Applications and numerical experiment results
	References

	Identification Method for Time-Varying ARX Models
	1 Introduction
	2 Our approach
	3 Normalization of the coefficient vector
	4 Choice of and the order
	5 Conclusions
	References


	Part IV Optimal Control
	On Some Riemannian Aspects of Two and Three-Body Controlled Problems*
	1 Introduction
	2 Two bodies, two controls
	3 Two bodies, one control
	4 Three bodies, two controls
	References

	Optimization techniques for the computation of the effective Hamiltonian
	1 Introduction
	2 A variational approximation
	3 Numerical results
	The min-max method
	The Euler-Lagrange method
	The SPG method
	Two dimensional numerical results
	The min-max method
	The Euler–Lagrange method
	The SPG method

	References

	Hybrid Solution Methods for Bilevel Optimal Control Problems with Time Dependent Coupling
	1 Introduction
	2 Path Planning for Container Cranes
	3 Bilevel Optimization
	4 Bilevel Optimal Control
	5 Time Dependent Coupling
	6 Main and Alternative Trajectories
	References

	Consistent Control Procedures in the Monotone Structural Evolution. Part 1: Theory
	1 Introduction
	2 Basics of the MSE
	3 State-constrained arcs
	4 Interior arcs
	4.1 Full parameterization with prototype adjoints
	4.2 Derivatives of cost
	4.3 Spike and flat generations of type B procedures
	4.4 Partial parameterization with prototype adjoints

	5 Conclusions
	References
	Appendix

	Consistent Control Procedures in the Monotone Structural Evolution. Part 2: Examples and Computational Aspects
	1 Introduction
	2 Algorithm of MSE
	3 State-constrained arcs
	4 Full parameterization with prototype adjoints
	5 Partial parameterization with prototype adjoints
	6 MSE implementation
	7 Conclusions
	References

	Minimizing Tumor Volume for a Mathematical Model of Anti-Angiogenesis with Linear Pharmacokinetics
	1 Introduction
	2 A Mathematical Model for Tumor Anti-Angiogenesis
	3 Addition of a Pharmacokinetic Model
	4 Suboptimal Approximations
	5 Conclusion
	References

	On Infinite Horizon Optimal Control of a Lotka-Voltera-System
	1 Introduction
	2 Problem formulation
	3 Optimality Criteria
	4 Duality in Weighted Sobolev Spaces
	5 Application to the Prey-Predator model
	6 Summary and Conclusions
	References


	Part V Model Predictive Control
	Performance of NMPC Schemes without Stabilizing Terminal Constraints
	1 Introduction
	2 Setup and Preliminaries
	3 Performance and stability analysis
	4 A numerical case study
	5 Conclusions
	References

	Nonlinear Model Predictive Control for an Artificial
	1 Introduction
	2 Model Description
	3 Problem Formulation
	3.1 Discrete-time Approximation

	4 Numerical Optimization Algorithm
	4.1 SQP Algorithm
	4.2 Gradient Computation

	5 Application to an Artificial
	5.1 Nonlinear Model Predictive Control (NMPC)
	5.2 Objective Function with Soft Output Constraints

	6 Optimization Results
	7 Conclusion
	References

	An Optimized Linear Model Predictive Control Solver
	1 Introduction
	2 Linear Model Predictive Control
	3 General design choices for a QP solver
	3.1 Interior point vs. active set methods
	3.2 Primal vs. dual strategies
	3.3 Null space vs. range space algebra
	3.4 Problem structure
	3.5 Our choice

	4 An optimized QP solver
	4.1 Off-line change of variable
	4.2 The iterative process
	4.3 Efficient update method
	4.4 Approximate solution & warm start

	5 Conclusion
	References

	A Linear-Quadratic Model-Predictive Controller for Control and State Constrained Nonlinear Control Problems
	1 LQR control with constraints
	2 Virtual control regularization
	3 Examples
	3.1 Inverse Pendulum
	3.2 Trolley

	References

	NMPC Suboptimality Estimates for Sampled–Data Continuous Systems
	1 Introduction
	2 Setup and Preliminaries
	3 Controllability and performance bounds
	4 Sampled–data systems and arbitrary fast sampling
	5 Growth condition and analytic formula
	6 Numerical Examples
	References

	Efficient Numerics for Nonlinear Model Predictive Control
	1 Introduction
	1.1 Direct Optimal Control in Nonlinear Model Predictive Control
	1.2 The Principle of Model Predictive Control
	1.3 Direct Multiple Shooting Discretization
	1.4 Sequential Quadratic Programming

	2 SQP based Model–Predictive Control
	2.1 Initial Value Embedding and Tangential Predictors
	2.2 Real–Time Iterations
	2.3 Parametric Quadratic Programming

	3 The Multi–Level Iteration Scheme
	3.1 Mode A: Feedback Iterations
	3.2 Mode B: Feasibility Improvement Iterations
	3.3 Mode C: Optimality Improvement by Adjoint SQP Iterations
	3.4 Mode D: Forward SQP Iterations
	3.5 Assembling Multi-level Iteration Schemes
	3.6 Euler Steps
	3.7 Computing the Local Feedback Law

	4 Structured Quadratic Programming
	4.1 The Block Structured Quadratic Subproblem
	4.2 Condensing and Dense Active Set Methods
	4.3 Riccati Recursion
	4.4 Block Structured Active Set Methods

	5 Summary
	References


	Part VI PDE-Constrained Optimization
	Optimal Control of Periodic Adsorption Processes: The Newton-Picard Inexact SQP Method
	1 Introduction
	2 Application: The Simulated Moving Bed Process
	3 Formulation of the Optimization Problem
	4 Calculating Periodic Solutions
	4.1 The Newton-Shift-Picard Method
	4.2 Asymptotic Convergence Rates of the Newton-Shift-Picard Method
	4.3 Numerical Effort of the Newton-Shift-Picard Method: Example SMB

	5 The Newton-Picard Inexact SQP Method
	5.1 Inexact SQP
	5.2 QP Reduction

	6 Simultaneous Approximation of Dominant Subspaces
	7 Numerical Effort
	7.1 Effort per SQP iteration
	7.2 Additional Effort for Subspace Iterations
	7.3 Comparison with Exact Jacobian SQP

	8 Numerical Results
	9 Conclusion
	Acknowledgements
	References

	On the Optimization of Steady Bingham Flow in Pipes
	1 Regularized problem
	2 Optimality system
	3 Semi-smooth Newton algorithm and numerical tests
	References

	Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations
	1 Introduction
	2 Semismooth Newton methods and the primal-dual active set strategy
	3 On the state equation
	4 Optimal control problem
	5 Discretization
	6 Numerical examples
	References

	A Space Mapping Approach for the p-LaplaceEquation
	1 Introduction
	2 Optimization of the complex model
	3 Space mapping
	4 Surrogate optimization
	5 Numerical results
	References

	Numerical Solutions for Optimal Control of Monodomain Equations in Cardiac Electrophysiology
	1 Introduction
	2 The monodomain equations
	3 Optimal control framework and numerical discretization
	3.1 Optimize before discretize
	Discretization of primal and adjoint problems
	3.2 Discretize before optimize
	3.3 Comparison of optimization methods

	4 Results
	5 Conclusions
	Acknowledgement:

	References

	Barrier Methods for a Control Problem from Hyperthermia Treatment Planning
	1 Hyperthermia Treatment Planning
	1.1 The Bio-Heat Transfer Equation
	Assumption 4
	Lemma 1.
	Lemma 2.
	1.2 Inequality constraints and objective

	2 Barrier Minimizers and their Optimality Conditions
	3 Numerical results
	4 Conclusion and Outlook
	References

	On a State-Constrained PDE Optimal Control Problem arising from ODE-PDE Optimal Control
	1 Introduction
	2 The hypersonic rocket car problem
	3 The state-unconstrained problem and its associated temperature profile
	4 Necessary optimality conditions: Interpretation as state-constrained PDE optimal control problem
	5 Numerical results
	6 Conclusion
	References


	Part VII Engineering Applications of Optimization
	Multi-Disciplinary Optimization of an Active Suspension System in the Vehicle Concept Design Stage
	1 Introduction
	2 Engineering Challenges for Intelligent Vehicle Systems
	3 The optimal design approach
	4 Vehicle model
	5 Controller modeling
	6 Concept model optimization
	7 Shock absorber optimization
	8 Conclusions
	9 Acknowledgements
	References

	Optimal Control of Machine Tool Manipulators
	1 Introduction
	2 Dynamic control model of a machine tool manipulator
	3 Feedback control performance
	4 Optimal control models of machine tool manipulators
	5 Time-optimal control
	5.1 Numerical results
	5.2 State constraints

	6 Damping-optimal control
	7 Conclusion
	References

	Impact of the Material Distribution Formalism on the Efficiency of Evolutionary Methods for Topology Optimization
	1 Introduction
	2 Material distribution formalisms
	2.1 Static formalism
	2.2 Dynamic formalism

	3 Reproduction mechanisms
	3.1 Standard mechanisms
	3.2 Adapted mechanisms

	4 Study cases
	4.1 Theoretical case
	4.2 Practical case

	5 Results and discussion
	References

	A Variational Model for Image Texture Identification
	1 Functional framework and model
	1.2 The variational model

	2 Numerical implementation
	2.1 Discretization of the problem

	3 Numerical tests and comments
	4 Conclusion
	References

	Optimization Study of a Parametric Vehicle Bumper Subsystem Under Multiple Load Cases
	1 Integrated methodology
	1.1 Integrated solution for geometry based multi-attribute simulation
	1.2 Process integration and automation for optimization purpose
	1.3 Design exploration and optimization tools Design of Experiments (DOE)
	Degree of Influence (DOI)
	Response Surface Modelling (RSM)
	1.4 Multi-objective Optimization

	2 Application: mass optimization of a bumper system
	2.1 Bumper system
	2.2 Load cases: reparability low speed impact

	3 Optimization
	3.1 Input parameters
	3.2 Objectives and constraints
	3.3 First screening results: DOI
	3.4 DOE and RSM selection
	3.5 Bumper Design Optimization

	4 Conclusions and discussion
	Acknowledgements
	References

	Application of Learning Automata for Stochastic Online Scheduling
	1 Introduction
	2 Reinforcement Learning
	2.1 Learning Automata
	2.2 Application to Scheduling

	3 WSEPT Heuristic for Stochastic Online Scheduling
	4 Experimental Results
	4.1 WSEPT Heuristic versus Learning Automata
	4.2 Multi-Stage Scheduling

	5 Discussion
	References

	Global Optimization with Expensive Functions Sample Turbomachinery Design Application
	Abstract
	1 Introduction
	2 Optimization Methodology
	2.1 Surrogate-Based Optimization
	2.2 Design of Experiments
	2.3 Surrogate Modeling

	3 Sample Turbomachinery Design Application
	4 Conclusion
	References

	Adaptive Alternating Minimization for Fitting Magnetic Resonance Spectroscopic Imaging Signals
	1 Introduction
	2 Metabolite quantification of MRS signals
	2.1 MRS model
	2.2 Model fitting
	2.3 Variable projection approach

	3 Metabolite quantification of MRSI signals
	3.1 Characteristics of MRSI data
	3.2 Smoothness of parameter maps
	3.3 Simultaneous optimization of MRSI signals
	3.4 Adaptive alternating minimization

	4 Numerical results
	5 Conclusions
	Acknowledgments
	References

	Optimization of Partial Differential Equations for Minimizing the Roughness of Laser Cutting Surfaces
	1 Introduction
	2 A model for the dynamical behavior of the melt surfaces
	3 Linear stability analysis
	4 Minimizing the roughness of the surfaces
	5 Conclusions and Outlook
	6 Acknowledgement
	References


	Author Index
	Subject Index



